The Engineering Staff of
TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

Fifth Edition
GENERAL INFORMATION
Table of Contents • Alphanumeric Index • Glossary
INTERCHANGEABILITY GUIDE
INFRARED-EMITTING DIODES
PHOTODETECTORS
OPTO-COUPLERS
SENSOR/EMITTER ARRAYS
LIGHT-EMITTING DIODES
DISPLAYS
HERMETIC DISPLAYS

Texas Instruments Incorporated	Texas Instruments Incorporated	Texas Instruments Incorporated
Optoelectronics Marketing	Optoelectronics Marketing	Electro-optical Components Marketing
P.O. Box 10508, MS 5811	P.O. Box 225012, MS 12	P.O. Box 225012, MS 12
Lubbock, Texas 79408	Dallas, Texas 75265	Dallas, Texas 75265
Phone: (806) 747-3066	Phone: (214) 238-3821	Phone: (214) 238-4422

TI Worldwide Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive. Suite 514. Huntsville
ARIZONA: Phoenlx, P.O. Box 35160.8102 N. 23rd Ave.. Suite
A. Phoenix. AZ 85069. (602) 249-1313

CALIFORMLA: El Sequido, 831 S. Douglas St. El Segundo. CA 90245. (213) 973-2571: Ervine, 17620 Fitch. Ervine. CA 92714. (714) 545-5210: San Diepo, 4333 View Ridge Ave.. Suite B.. San Diego. CA 92123. (714) $278 \cdot 9600$: Sunnyrale. P.O. Box 518. 776 Palomar Ave.. Sunnyvale. CA 94086. (408) 732-1840

COLORADO: Denver, 9725 E. Hampden St. . Suite 301. Denver. C0 80231. (303) 695-2800.
CONNECTICUT: Wallingtord, 9 Barnes Industrial Park Rd. Barnes Industrial Park. Wallinglord. CT 06492. (203) 269 0074.

FLORIDA: Claarwater, 2280 U.S. Hwy 19 N. . Suite 232. Clearwater, FL 33515. (813) 796-1928: Ft. Lauderdale, 2765 N W 62nd. Suite A. Ft. Lauderdale. FL 33309. (305) 973-8502: Winter Park, 1850 Lee Rd.. Suite 115. Winter Park. FL 32789. (305) 644-3535.

GEORGIA: Atianta, 3300 Northeast Expy. Suite 9. Atlanta. GA 30341. (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W . Algonquin. Arlington Heights, IL 60005. (312) 640-3000
MOIANA: Ft. Wayne, 2020 Inwood Dr. Ft. Wayne. IN 46805. (219) 424-5174: Indianapolls, 2343 S. Lynhurst. Suite J-400 Indianapolis. IN 46241. (317) 248-8555.

MARYLAND: Ealtimore 1 Rutherford PI. . 7133 Rutheriord Rd Baltimore. MD 21207. (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd.. Waltham,
MA 02154. (617) 890-6671.
MICHIGAN: Southfieid, Central Park Plaza. 26211 Central Park
Blvd.. Suite 215. Southfield. M1 48076. (313) 353-0830.
MINNESOTA: Edina, 7625 Parklawn. Edina. MN 55435. (612) 830-1600.
MISSOURI: Kansas City, 8080 Ward Pkwy. Kansas City. MO 64114. (816) 523-2500: St. Louis, 2368 Schuetz Rd. St. Louis. M0 63141. (314) 432-3333.
NEW JERSEY: Clark, 292 Terminal Ave. West. Clark. NJ 07066. (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice N.E. Suite E. Albuquerque. NM 87110. (505) 265-8491.
NEW YORK: East Syracuse, 6700 Old Collamer Rd.. East Syracuse. NY 13057, (315) 463-9291: Endicott, 112 Nanticoke Ave. P.O. Box 618. Endicott, NY 13760. (607) 754-3900: Melville, 1 Huntington Quadrangle. Suite 3C10. P.O. Box 2936. Melville. NY 11747. (596) 454-6600. Poughkeepsie, 201 South Ave.. Poughkeepsie. NY 12601. (914) 473-2900. Rochester, 1210 Jefferson Rd.. Rochester. NY 14623. (716) 461 1800 .

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodiawn Rd.. Chariotte. NC 28210. (704) 527-0930.
OHIO: Beachwood. 23408 Commerce Park Rd. Beachwood. OH 44122. (216) 464-6100. Daytion, Kingsley BIdg. . 4124
Linden Ave.. Dayton. OH 45432. (513) $258-3877$.
okLahoma: Tulsa, 3105 E. Skelly Dr. Suite t10. Tulsa. OK 74105. (918) 749-9548.

OREGON: Beaverton, 10700 S.W. Beaverton Hwy. Suite 565. Beaverton. OR 97005. (503) 643-6759.
PENHSYLVANIA: Ft. Washington, 575 Virginia Dr. Ft. Washington. PA 19034. (215) 643-6450
TENNESSEE: Knoxville, 106 Cavetton Rd. Apt. 1F. Knoxvilte. TN 37919. (615) 691-3380; Johnson City P.O. Drawer 1255. Erwin Hwy. . Johnson City. TN 37601. (615) 282-2200.

TEXAS: Austtn, 12501 Research Bldg.. P.O. Box 2909. Austin. TX 78723. (512) 250-7655: Dallas, P.O. Box 225214. Dallas. TX 75265. (214) 995-6531: Houston, 9000 Southwest Frwy. Suite 400. Houston. TX 77036. (713) 778-6592.
UTAH: Salt Lake City, 3672 West 2100 South. Salt Lake City UT 84120. (801) 973-6310.

VIRGINIA: Arlington, Crystal Square 4. 1745 Jefferson Davis Hwy. Suite 600. Arlington. VA 22202. (703) 553-2200: Mid-$44-1487$. Rishm 711 Sutters Mill Cr. Midiothian. VA 23113. (204) (804) 275-8148

WASHINGTON: Redmond, 2723 152nd Ave.. N.E. Bidg 6. (206) 881 -3080. Redmond. WA 98052.

CANADA: Oltawa, 436 McClaren St. Ottawa. Canada, K2POM8. (613) 233-1177: Richmond Hill, 280 Centre St. E.: Richmond Hill L4C1B1, Ontario. Canada, (416) 884-9181: St. Laurent, Ville St. Laurent Quebec, 9460 Trans Canada Hwy.;
St. Laurent. Quebec. Canada H4SiR7, (514) $334-3635$.

ARGENTINA, Texas Instruments Argentina S.A.I.C.F: Km 25.5 Ruta Panamericana Don Torcuato. C.C. 2296. 1000 Correo Central. Buenos Aires. Argentina. 748-1141.

AUSTRALIA, Texas Instruments Australia Lid: Unit 1A. 5 Byfield St.. P.O. Box 106. North Ryde. N.S.W. 2113. Sydney. Australia. 02-887-1122: 6th floor. 60 Albert Road. South Melbourne. 3004. Victoria. Australia. 699-5788.

AUSTRIA, Texas Instruments Ges. m.b.H: Rennweg 17. 1030 Vienna, Austria. 0222-724186.
Belgium, Texas Instruments S/A: Mercure Centre. Raketstraat. Rue De La Fusee 100. 1130 Brussels. Belgium.

ERNIIL, Texas Instrumentos Electronicos do Brasil Ltda: Rua Padre Pereira De Andrade. 591 Cep- 05469 Sao Paulo. Brazi. 011-260-6347.
DELMARK, Texas Instruments A/D: Marielundvej 46E. 2730 Herlev. Denmark. 02-917400

FINLANO, Texas Instruments Finland OY: Fressenkatu 6. P.L. 917. 00101 Helsinki 10. Finland. 80-408300.

FRAMCE, Texas Instruments France: La Boursidiere. Bat. A. R.N. 186. 92350 Le Plessis Robinson. France, 01-6302343 de la Chartreuse. 38240 Men. France. $078-373585 ; 1$ Av. Place de Bretange. 35000 Rennes. France, 099-795481.

100-102 Alle de Barcetone. Residence L'Autay. 31000 Toulouse. France. 061-213032.
germany, Texas Instruments Deutschland GmbH: Kurfuerstendamm 146. 1000 Berlin 31. Germany. 030-8927013: III Hagen 43. Frankfurter Allee 6-8. 6236 Eschborn, Germany. terhuder Weg: 4300 Essen. Germany. 0201-233551: WinHaggertystrasse 2000 Hamburg 76. Germany: 040-2201154. Riethorst 4. 3000 H. 8050 Freising. Germany. $08161-801$. bellastrasse 13.15. 8000 . Germany. Onmany. 089-92341 Marientorgraben $3-5$. 8500 Nuernberg. Germany. 0911. 22877: Krefelderstrasse 11-15. 7000 Stuttgart 50 . Germany. 0711 -547001.

HONG KONG, Texas Instruments Asia Ltd: 902. Asian House. 1. Hennessy Rd., Hong Kong. 05-279041.

ITALY, Texas Instruments Italia Spa: Via Europa $38 / 44$. Cologno Monzese. Milan. italy. 02-253-2451: Via Salaria 1319. 00138 Rome, Italy. 06-6917127: Via Montebello 27. 10124 Turin. Italy. $011-832276$.
JAPAN, Texas Instruments Asia Ltd Aoyama Tower Bldg 4 5. \& 6F, 24-15 Minami Aoyama. 2-Chome. Minato ${ }^{-K u}$ Tokyo. Japan 107. 03-402-6171.
KOREA, Texas Instruments Supply Company: Room 301. Kwang Poong Bldg, 24-1 Hwayang Dong. Sungdong-Ku Kwang Poong Bldg. ${ }^{24}$
Seoul. Korea, 446-1565

MEXICO, Texas Instruments de Mexico S.A: Poniente 116 \#489. Col. Industrial Vallejo. Mexico City 15. D.F. Mexico. 905-567-9200
NETHERLANDS. Texas instruments Holland BV: Laan Van de Helende Meesters 421 A. P.O. Box 283. 1180 AG Amstelveen. Holtand. 020-473391.
NORWAY, Texas Instruments A/S: Ryensvingen 15. Oslo 6. Norway. 02-689487.
PORTUGAL. Texas Instruments Equipamento Electronico LDA: Rua Eng. Frederico Ulrich. 2650 Moreira Da Maia. Douro. Portugal. 948-1003.
SINGAPORE, Texas Instruments Asia Ltd: P.O. Box 2093. 990 Bendemeer Rd.. Singapore 1. Republic of Singapore. $65-2581122$.
SPAIN, Texas Instruments Espana S.A: Balmes 89.12 BarceIona 12. Spain.
SWEDEN. Texas instruments International Trade Corporation (Sverigefilialen): Norra Hannvagen 3. Fack S-100 54 Stockholm 39. Sweden. 08.235480
TAIWAN, Texas Instruments Taiwan Lid: 10th floor. Fu Shing Bidg... 71 Sung-Kiang Rd.. Taipei. Taiwan. Republic of China
UNITED KINGDOM, Texas Instruments Lid: Manton Lane.

The

 Optoelectronics Data Bookfor

Design Engineers

Fifth Edition

Texas Instruments
INCORPORATED

IMPORTANT NOTICES

Texas instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein supercedes previously published data on optoelectronics and electro-optical devices from TI, including data books LCC4230 and LCC4340.

ISBN 0-89512-102-6
Library of Congress No. 78-65638
Copyright © 1978
Texas Instruments Incorporated

THE OPTOELECTRONICS DATA BOOK

Few people in the electronics industry realize that optoelectronics technology has a history that precedes the invention of the integrated circuit. It is also a relatively unknown fact that Texas Instruments was a pioneer in the development and manufacture of some of the first optoelectronic components, viz infrared detectors and photovoltaic solar cells, back in 1957.

During the past 21 years TI has continued to develop and build optoelectronic devices and assemblies for end applications in the space, military, computer, industrial, and consumer industries. Tl opto devices have helped to revolutionize the industry and to make it easier for the design engineer to accomplish his job.

In addition to offering the most experience, TI also provides the most complete line of standard opto products in the world. This ensures that design engineers can obtain more answers to questions involving circuitry and operating conditions by contacting TI .

If the most experience and the largest product line are not enough, TI also offers a locally based field sales engineering staff to assist design engineers. In most major cities throughout the U.S. and other countries there is a field sales engineer who has been trained as a specialist in opto products. His job is to provide the right product recommendations after considering all of the facts.

To complete the service aspect, TI has a world-wide distributor network that stocks almost 150 standard opto devices and assemblies. This means that design engineers can obtain fast delivery on small quantities required for initial circuit evaluation and purchasing departments can be assured of a local source of supply for production quantities.

It is the purpose of this data book to better acquaint both engineers and buyers with TI opto products and capabilities. It offers the user a categorized listing of optoelectronic data sheets, application reports, and product bulletins for more than 270 standard devices including 74 new types not included in the fourth edition of this data book. Each product section has a quick reference guide that lists the key electrical parameters and features for products in that section.

To further assist the user, there is an interchangeability guide that lists more than 240 optoelectronics devices built by other manufacturers, along with the nearest TI equivalent devices. There is also a glossary of optoelectronic terminology to answer questions on optoelectronic terms and phrases.

We feel that this data book is the most complete publication of its kind. It was compiled and edited with the objective of making your job easier.

General Information

TABLE OF CONTENTS

PAGE
Alphanumeric Index 12
Glossary 14
Interchangeability 23
Infrared-Emitting Diodes
Quick Reference Guide 28
TIL23, TIL24, TIL25 Gallium Arsenide Infrared-Emitting Diodes 29
TIL26 Gallium Arsenide Infrared-Emitting Diode 33
TIL31, TIL33, TIL34 Gallium Arsenide Infrared-Emitting Diodes 35
TIL32 Gallium Arsenide Infrared-Emitting Diode 37
TIL38 Gallium Arsenide Infrared-Emitting Diode 39
TIL41 thru TIL50 Infrared-Emitting-Diode Arrays 41
Measuring the Output of Infrared-Emitting and Light-Emitting Diodes 43
TIL23, TIL24 Reliability Data 47
Photodatectors
Quick Reference Guide 52
1N5722 thru 1N5725 Phototransistors 53
TIL63 thru TIL67 Phototransistors 57
TIL. 78 Phototransistor 61
TIL81 Phototransistor 63
TIL99 Phototransistor 67
TIL100 Large-Area Silicon Photodetector 69
LS400, TIL401 thru TIL406 Phototransistors 71
LS600, TIL601 thru TIL608 Phototransistors 73
TIL621 thru TIL630 Phototransistor Arrays 81
LS600 Reliability Data 85
Opto-couplers
Quick Reference Guide 92
4N22, 4N23, 4N24 Opto-couplers 93
JAN, JANTX, JANTXV Processing for 4N22 Series 97
4N25 thru 4N28 Opto-couplers 99
4N47 thru 4N49 Opto-couplers 101
TIL102, TIL 103 Opto-couplers 106
TIL107, TIL108 Opto-couplers 110
TIL111, TIL114, TIL116, TIL117 Opto-couplers 114
Opto-couplers (continued) PAGE
TIL112, TIL115, TIL1 18 Opto-couplers 119
TIL113, TIL119 Opto-couplers 123
TIL120, TIL121 Opto-couplers 127
TIL124, TIL125, TIL126 Opto-couplers 131
TIL127, TIL128 Opto-couplers 136
TIL153, TIL154, TIL155 Opto-couplers 140
TIL156, TIL157 Opto-couplers 145
Opto-couplers In Circuits 149
Opto-couplers 155
Sensor/Emitter Arrays
Quick Reference Guide 160
TIL131 thru TIL133 9-Element Arrays and 9-Channel Pair 161
TIL134 thru TIL136 12-Element Arrays and 12-Channel Pair 165
TIL138 Source and Sensor Assembly 169
TIL139 Source and Sensor Assembly 171
TIL141, TIL142 12-Channel Paper Tape Readers 173
TIL143, TIL144 Source and Sensor Assemblies 177
TIL145, TIL 146 Source and Darlington Sensor Assemblies 179
TIL 147, TIL148 Source and Sensor Assemblies 181
TIL149 Source and Sensor Assembly 183
Optoelectronic Read Head For Punched Cards and Tape 185
Light-Emitting Diodes
Quick Reference Guide 192
5082-4550, 5082-4555, 5082-4650, 5082-4655, 5082-4950,
5082-4955 Yellow, Red, or Green LED's 193
TIL209A Red LED 195
TIL212, TIL216, TIL232 Yellow, Red, or Green LED's 197
TIL220 Red LED 199
TIL224, TIL227 Yellow LED's 201
TIL228, TIL231 Red LED's 203
TIL234, TIL236 Green LED's 205
TIL261 thru TIL270 Red LED 1- to 10-Element Arrays 207
TIL271 thru TIL280 Green LED 1- to 10-Element Arrays 208
Texas Instruments

TABLE OF CONTENTS

Light-Emitting Diodes (continued) PAGE
TIL281 thru TIL290 Yellow LED 1- to 10-Element Arrays 209
TILM1 LED Panel Mounting Bushing (T1) 210
TILM2 LED Panel Mounting Bushing with Lock Collar (T1 \% $/$) 211
TILM3 LED Panel Mounting Clip and Colored Lens 212
Optoelectronic Fault Indicator for Logic Circuits 213
Displays
Quick Reference Guide 218
5082-7730, 5082-7731, 5082-7736, 5082-7740 0.3"' Single-Digit Numeric Displays 220
TIL302, TIL303, TIL304 0.27" Single-Digit Numeric Displays 222
TIL305 5×7 Alphanumeric Display 227
TIL306, TIL307 0.27" Numeric Displays with Integral Logic 233
TIL308, TIL309 0.27" Numeric Displays with Integral Logic 239
TIL311 Hexadecimal Display with Integral Logic 245
TIL312, TIL313, TIL327 0.3" Single-Digit Numeric Displays 249
TIL321A, TIL322A, TIL330A 0.5' Single-Digit Numeric Displays 251
TIL360 0.1" Six-Digit Numeric Display 253
TIL393 6-, 9-, or 12-Digit Calculator Numeric Displays 258
TIL804 12-Digit Numeric Display 260
TIL807, TIL808 0.3" 2-Digit Numeric Displays 264
TIL829 thru TIL834 $31 / 2$ - and 4-Digit Timer Displays 266
TIL835, TIL836 0.5" 3 12-Digit Numeric Displays 268
TIL837, TIL838 0.27" 5-Digit Numeric Displays 271
TIL839 thru TIL842 0.5" 2-Digit Numeric Displays 275
TIL311 Hexadecimal LED Dispay Applications 277
Counting Circuits Using TIL306 and TIL308 Displays 279
Hermetic Displays
Quick Reference Guide 286
4N41 0.27" Single-Digit Numeric Display 287
TIL504 5×7 Alphanumeric Display 291
TIL505 Hexadecimal Display with Logic 297
TIL506 0.3" Numeric Display with Integral Logic 301
TIL5075 X 7 Alphanumeric Display with Integral Logic 304
TIL560 3-Character Display with Integral Logic 307
Special Electro-Optical Components PAGE
Quick Reference Guide 312
TIED55 Silicon Avalanche Photodiode 313
TIED59 Silicon Avalanche Photodiode 315
TIED69 Silicon Avalanche Photodiode 317
TIED80 Silicon Photodiode 320
TIED82 Quadrant-Geometry Silicon Photodiode 323
TIED83, TIED84 Silicon Avalanche Photodiodes 326
TIED85, TIED86 Avalanche Diode/Reference Diode Pairs 329
TIED87 thru TIED89 Avalanche Photodiode/Reference Diode Pairs 333
TIED90 thru TIED93 Photodetector Modules 337
TIED94 thru TIED97 Photodetector Modules 340
TIED98 High-Resistivity Silicon Photodiode 343
TIED451 Silicon Avalanche Photodiode 345
TIED452 Fiber-Optic Receiver Module 347
TXED453 Fiber-Optic Silicon Detector Assembly 351
TIEF 150 thru TIEF 152 Transimpedance Amplifiers 355
TXEF402 Fiber-Optic Cable Assembly 357
TIESO6 Infrared-Emitting Diode 359
TIES12 thru TIES15 Infrared-Emitting Diodes 361
TIES16A thru TIES16C Infrared-Emitting Diodes 362
TIES27 Infrared-Emitting Diode 363
TIES35 Infrared-Emitting Diode 365
TIES36 Infrared-Emitting Diode 366
TXES37 Infrared-Emitting Diode 367
TIES471 Infrared-Emitting Diode 369
TIES472 Fiber-Optic Transmitter Module 371
TXES475, TXES476 Fiber-Optic Source Assemblies 375
Efficient High-Power GaAs Infrared Sources 377
TIES27 GaAs Noncoherent Infrared Source 391
High-Resistivity Silicon Photodiodes 397
Fiber-Optic Assemblies (Including New Fiber-Optic Data-Link Products) 401

ALPHANUMERIC INDEX

ALPHANUMERIC INDEX

TYPE	PAGE	TYPE	Page	TYPE	Page
TIL212	197	TIL307	233	TIL622	81
TIL216	197	TIL308	239	TIL623	81
TIL220	199	TIL309	239	TIL624	81
TIL221	199	TIL311	245	TIL625	81
TIL222	Superseded	TIL312	249	TIL626	81
	by TIL 234-1	TIL313	249	TIL627	81
TIL224	201	TIL321A	251	TIL628	81
TIL227	201	TIL322A	. 251	TIL629	81
TIL228	203	TIL327	249	TIL630	81
TIL231	. 203	til330A	. . 251	TIL804	260
TIL232	. 197	TIL360	. 253	TIL807	264
TIL234	. 205	TIL361	Superseded	TIL803	264
TIL236	205		by TIL840	TIL829	266
TIL261	. 207	TIL364	Superseded	TIL830	266
TIL262	207		by TIL829	TIL831	266
TIL263	207	TIL367	Superseded	TIL832	266
TIL264	207		by TIL830	TIL833	266
TIL265	207	TIL370	Superseded	TIL834	266
TIL266	207		by TIL832	TIL835	268
TIL267	207	TIL373	Superseded	TIL836	268
TIL268	207		by TIL833	TIL837	271
TIL269	207	TIL393-6	. . 258	TIL838	271
TIL270	207	TIL393-8	. 258	TIL839	275
TIL271	. . 208	TIL393-9	. . 258	TIL840	275
TIL272	208	TIL401	71	TIL841	275
TIL273	208	TIL402	71	TIL842	275
TIL274	208	TIL403	71	TILM1	210
TIL275	208	TIL404	71	tilm2	211
TIL276	208	TIL405	71	TILM3	212
TIL277	208	TIL406	. 71	TXED453	351
TIL278	208	TIL504	. . 291	TXED454	404
TIL279	208	TIL505	. 297	TXED455	404
TIL280	. . 208	TIL506	. . 301	TXED456	404
TIL281	209	TIL507	. 304	TXEF402	357
TIL282	209	TIL560	. 307	TXES37	367
TIL283	209	TIL601	73	TXES475	375
TIL284	209	TIL601HR	90	TXES476	375
TIL285	209	TIL602	73	TXES478	402
TIL286	. 209	TIL602HR	90	TXES479	402
TIL287	209	TIL603	73	TXES480	402
TIL288	. 209	TIL603HR	90	TXES481	402
TIL289	209	TIL604	73	TXES485	402
TIL290	. 209	TIL604HR	90	TXES486	402
TIL302	. 222	TIL605	73	TXES488	402
TIL303	. 222	TIL606	73	TXES489	402
TIL304	. 222	TIL607	. . 73	TXES490	402
TIL305	. . 227	TIL608	. 73	TXES491	. 402
TIL306	. . . 233	TIL621	. 81		

Texas Instruments
INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

glossary
 optoelectronic terms and definitions

Introduction

This glossary contains letter symbols, abbreviations, terms, and definitions commonly used with optoelectronic devices. Most of the information was obtained from JEDEC Publication No. 77A.

Index to Glossary by Symbols and Abbreviations

APD	Avalanche photodiode
B	Demodulation bandwidth
E_{e}	Irradiance
$\mathrm{E}_{\mathbf{v}}$	Illuminance
$\mathrm{f}_{\text {mod }}$	Modulation frequency
H	Irradiance
Ic(off)	Off-state collector current
IC(on)	On-state collector current
1 D	Dark current
I_{e}	Radiant intensity
If	Forward current
IL	Light current
1_{R}	Reverse current
IRED	Infrared-emitting diode
I_{v}	Luminous intensity
L_{e}	Radiance
L_{v}	Luminance
LED	Light-emitting diode
M	Photocurrent gain ${ }^{\dagger}$
NEP	Noise equivalent power (spectral density)
P_{n}	Noise equivalent power (spectral density)
Po	Radiant flux or power output
$\mathrm{O}_{\boldsymbol{0}}$	Radiant energy
a_{v}	Luminous energy
Re_{e}	Radiant responsivity
Rv	Luminous responsivity
sr	Steradian
t_{d}	Delay time
t_{f}	Fall time
t_{f}	Radiant pulse fall time
t_{r}	Radiant pulse rise time
t_{r}	Rise time
t_{s}	Storage time
V_{F}	Forward voltage
VLED	Visible-light-emitting diode
$\Delta \mathrm{f}$	Noise equivalent bandwidth
$\Delta \lambda$	Spectral bandwidth
${ }^{\theta} \mathrm{HI}$	Half-intensity beam angle
λp	Wavelength at peak emission
$\Phi_{\text {e }}$	Radiant flux
Φ_{V}	Luminous flux

${ }^{T} M$ is also the symbol for luminous or radiant exitance; however, these terms are not used in this publication.

GLOSSARY
 OPTOELECTRONIC TERMS AND DEFINITIONS

Units of Measurement

Symbol	Note
A	
A	$1 \AA=10^{-10} \mathrm{~m}=10^{-4} \mu \mathrm{~m}=0.1 \mathrm{~nm}$
cd	$1 \mathrm{~cd}=1 \mathrm{~lm} / \mathrm{sr}$
$\mathrm{cd} / \mathrm{ft}{ }^{2}$	$1 \mathrm{~cd} / \mathrm{ft}^{2}=10.76391 \mathrm{~cd} / \mathrm{m}^{2}$
$\mathrm{cd} / \mathrm{m}^{2}$	
${ }^{\circ} \mathrm{C}$	
${ }^{\circ} \mathrm{K}$	See K
F	
ft	$1 \mathrm{ft}=0.3048 \mathrm{~m}$ (exactly)
fc	$1 \mathrm{fc}=1 \mathrm{~lm} / \mathrm{ft}^{2}=10.76391 \mathrm{~lx}$
$f \mathrm{~L}$	$1 \mathrm{fL}=(1 / \pi) \mathrm{cd} / \mathrm{ft}^{2}=3.426259 \mathrm{~cd} / \mathrm{m}^{2}$
Hz	
in	$1 \mathrm{in}=2.54 \mathrm{~cm}$ (exactiy)
K	Formerly ${ }^{\circ} \mathrm{K}$, degree Kelvin
L	$1 \mathrm{~L}=3183.099 \mathrm{~cd} / \mathrm{m}^{2}$
Im	
$1 \times$	$1 \mathrm{~lx}=1 \mathrm{~m} / \mathrm{m}^{2}$
m	
mho	$1 \mathrm{mho}=1 \mathrm{~S}$
μ	The equivalent unit $\mu \mathrm{m}$ is preferred
mil	$1 \mathrm{mil}=10^{-3} \mathrm{in}=0.0254 \mathrm{~mm}$ (exactly)
nt	$1 \mathrm{nt}=1 \mathrm{~cd} / \mathrm{m}^{2}$
Ω	
ph	$1 \mathrm{ph}=1 \mathrm{~lm} / \mathrm{cm}^{2}$
s	
S	
sr	
sb	$1 \mathrm{sb}=1 \mathrm{~cd} / \mathrm{cm}^{2}$
V	
W	

${ }^{\dagger}$ International System (SI) units.

Metric Multipliers

Many of the preceding unit symbols can be combined with the metric multipliers which follow.

Symbol	Prefix	Multiple
G	giga	10^{9}
M	mega	10^{6}
k	kilo	10^{3}
h	hecto	10^{2}
da	deka	10
d	deci	10^{-1}
c	centi	10^{-2}
m	milli	10^{-3}
μ	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}
f	femto	10^{-15}

GLOSSARY
 OPTOELECTRONIC TERMS AND DEFINITIONS

Terms and Definitions

Avalanche Photodiode (APD)

A photodiode that is intended to take advantage of avalanche multiplication of photocurrent. As the reverse-bias voltage approaches the breakdown voltage, hole-electron pairs created by absorbed photons acquire sufficient energy to create additional hole-electron pairs when they collide with substrate atoms; thus a multiplication of signal current is achieved.
NOTE: APD's are especially suited for low-noise and/or high-speed applications.

Axis of Measurement

The direction from the source of radiant energy, relative to the mechanical axis, in which the measurement of radiometric and or spectroradiometric characteristics is performed.

Beam-Lead Phototransistor

A phototransistor chip with thick-film leads formed on the chip that project cantilever-style beyond the chip periphery for attachment to a separate substrate.
NOTE: When assembled into arrays and mounted on a ceramic substrate, beam-lead phototransistor arrays offer accurate spacing on centers too close for conventional discrete packages and too far apart formonolithic arrays; see TI Bulletin CB-128 for further information.

Brightness

See Luminance

Color Temperature

The temperature of a blackbody having the same visible color as that of a given non-blackbody radiator. TYPICAL UNIT: K (formerly ${ }^{\circ} \mathrm{K}$).

Conversion Efficiency (of a Photon-Emitting Device)

The ratio of maximum available luminous or radiant flux output to total input power.

Dark Current (ID)

The current that flows through a photosensitive device in the dark condition.
NOTE: The dark condition is attained when the electrical parameter under consideration approaches a value that cannot be altered by further irradiation shielding.

Darlington-Connected Phototransistor

A phototransistor the collector and emitter of which are connected to the collector and base, respectively, of a second transistor. The emitter current of the input transistor is amplified by the second transistor and the device has very high sensitivity to illumination or irradiation.
GRAPHIC SYMBOL:

NOTE: The base region(s) may or may not be brought out as (an)electrical terminal(s).

GLOSSARY OPTOELECTRONIC TERMS AND DEFINITIONS

D-C Transfer Ratio (of an Opto-coupler)

The ratio of the dc output current to the dc input current.

Delay Time (t_{d})

The time interval from the point at which the leading edge of the input pulse has reached 10% of its maximum amplitude to the point at which the leading edge of the output pulse has reached 10% of its maximum amplitude.

Demodulation Bandwidth (B)

The frequency interval in which the demodulated output of a photodetector, or a system including a photodetector, is not more than 3 dB below the midband output. Midband output is the output in the region of flat response or the average output over a specific frequency range.

Electroluminescence

The direct conversion of electrical energy into visible radiation.

Fall Time (t_{f})

The time duration during which the trailing edge of a pulse is decreasing from 90% to 10% of its maximum amplitude.

Forward Current (IF)

The current through a semiconductor diode when the p region (anode) is at a positive potential with respect to the n region (cathode).

Forward Voltage (V_{F})

The voltage across a semiconductor diode associated with the flow of forward current. The p-region is at a positive potential with respect to the n-region.

Gain-Bandwidth Product (of an Avalanche Photodiode)

The gain times the frequency of measurement when the device is biased for maximum obtainable gain.

Half-Intensity Beam Angle (θ_{HI})
The angle within which the radiant intensity is not less than half of the maximum intensity.

Hexadecimal Display

A solid-state display capable of exhibiting numbers 0 through 9 and alpha characters A through F. NOTE: The TIL311 and TIL505 are hexadecimal displays each with an integral TTL circuit that will accept, store, and display 4-bit binary data.

Illuminance (Illumination) (E_{V})
The luminous flux density incident on a surface; the quotient of the flux divided by the area of illuminated surface.
TYPICAL UNITS: $\mathrm{Im} / \mathrm{ft}^{2}, \mathrm{~lx}=\mathrm{Im} / \mathrm{m}^{2} .1 \mathrm{Im} / \mathrm{ft}^{2}=10.76391 \mathrm{~lx}$.

GLOSSARY
 OPTOELECTRONIC TERMS AND DEFINITIONS

Radiant energy that is characterized by wavelengths longer than visible red, i.e., about $0.78 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$.

Infrared-Emitting Diode (IRED)

A diode capable of emitting radiant energy, in the infrared region of the spectrum, resulting from the recombination of electrons and holes.
NOTE: TI manufactures GaAs and GaAIAs radiant-energy sources that emit in the $0.82-\mu \mathrm{m}$ to $0.94-\mu \mathrm{m}$ portion of the near-infrared region. These emitters are spectrally matched with TI silicon photodetectors. GRAPHIC SYMBOL:

Irradiance (E_{e}, formerly H)
The radiant flux density incident on a surface; the quotient of the flux divided by the area of irradiated surface. TYPICAL UNITS: $\mathrm{W} / \mathrm{ft}^{2}, \mathrm{~W} / \mathrm{m}^{2} .1 \mathrm{~W} / \mathrm{ft}^{2}=10.76391 \mathrm{~W} / \mathrm{m}^{2}$.

Light Current ($I_{\text {L }}$)

The current that flows through a photosensitive device, such as a phototransistor or a photodiode, when it is exposed to radiant energy.

Light-Emitting Diode (LED)

A diode capable of emitting luminous energy resulting from the recombination of electrons and holes. NOTE: In popular usage, this term is sometimes used for infrared-emitting diodes. GRAPHIC SYMBOL:

Luminance (L_{v}) (Photometric Brightness)
The luminous intensity of a surface in a given direction per unit of projected area of the surface as viewed from that direction.
TYPICAL UNITS: $\mathrm{fL}, \mathrm{cd} / \mathrm{ft}^{2}, \mathrm{~cd} / \mathrm{m}^{2} .1 \mathrm{fL}=(1 / \pi) \mathrm{cd} / \mathrm{ft}^{2}=3.426259 \mathrm{~cd} / \mathrm{m}^{2}$.
Luminous Energy ($\mathbf{Q}_{\mathbf{v}}$)
Energy traveling in the form of visible radiation. TYPICAL UNITS: Im•s

Luminous Flux ($\Phi_{\mathbf{v}}$)
The time rate of flow of luminous energy.
TYPICAL UNIT: Im
NOTE: Luminous flux is related to radiant flux by the eye-response curve of the International Commission on Illumination (CIE). At the peak response ($\lambda=555 \mathrm{~nm}$), $1 \mathrm{~W}=680 \mathrm{~lm}$.

GLOSSARY OPTOELECTRONIC TERMS AND DEFINITIONS

Luminous Intensity (IV)

Luminous flux per unit solid angle in a given direction. TYPICAL UNIT: cd. 1 cd = $1 \mathrm{~lm} / \mathrm{sr}$.

Luminous Responsivity (R_{V})

The quotient of the rms value of the fundamental component of the electrical output divided by the rms value of the fundamental component of the luminous flux of a specified distribution. TYPICAL UNITS: V/Im, A/Im

Modulation Frequency ($\mathrm{f}_{\text {mod }}$)

The frequency of modulation of the luminous or radiant flux.

Noise Equivalent Bandwidth ($\Delta \mathrm{f}$)

The equivalent bandwidth of a flat (or white) sharp-cutoff noise spectrum, having the same maximum value and containing the same noise power as the actual broadband output noise power of the device or circuit. TYPICAL UNIT: Hz

Noise Equivalent Power (P_{n} or NEP)

The rms value of the fundamental component of a modulated radiant flux incident on the detector area that will produce a signal (voltage or current) at the detector output that is equal to the broadband rms noise (voltage or current).
TYPICAL UNIT: W
NOTE: The noise equivalent power equals the broadband output noise (voltage or current) divided by the responsivity (in volts/watt or amperes/watt).

Noise Equivalent Power (Pn or NEP) (Spectral Density)

The noise equivalent power in a one-Hertz bandwidth at the detector output. TYPICAL UNIT: W/Hz¹/2
NOTE: The noise equivalent power spectral density equals the noise equivalent power divided by the square root of the noise bandwidth.

Off-State Collector Current (IC(off)) (of an Opto-coupler)

The output current when the input current is zero.

On-State Collector Current (IC(on)) (of an Opto-coupler)

The output current when the input current is above the threshold level.
NOTE: An increase in the input current will usually result in a corresponding increase in the on-state collector current.

Optical Axis

A line about which the radiant-energy pattern is centered.
NOTES: 1. The radiant-energy pattern may be nonsymmetrical.
2. The optical axis may deviate from the mechanical axis.

GLOSSARY
 OPTOELECTRONIC TERMS AND DEFINITIONS

Opto-coupler (Optically Coupled Isolator, Photo-coupler)
A device designed for the transformation of electrical signals by utilizing optical radiant energy so as to provide coupling with electrical isolation between the input and the output.
NOTE: A's manufactured by Texas Instruments, these devices consist of a gallium arsenide infrared-emitting diode and a silicon phototransistor and provide high-voltage isolation between separate pairs of input and output terminals.

Optoelectronic Device

A device that is responsive to or that emits or modifies coherent or noncoherent electromagnetic radiation in the visible, infrared, and/or ultraviolet spectral regions; or a device that utilizes such electromagnetic radiation for its internal operation.

Photocurrent

The difference between light current (IL) and dark current (ID) in a photodetector.

Photocurrent Gain (M) (of an Avalanche Photodiode)

The ratio of photocurrent at high bias voltage to that at low bias voltage. (See also avalanche photodiode definition).

Photodetector, Photosensitive Device

A device that is responsive to electromagnetic radiation in the visible, infrared, and/or ultraviolet spectral regions.

Photodiode

A diode that is intended to be responsive to radiant energy. GRAPHIC SYMBOLS:

NOTE: The photodiode is characterized by linearity between the input radiation and the output current. It has faster switching speeds than a phototransistor.

Photometric Axis

See Axis of Measurement.

Photometric Brightness

See Luminance.

Photon

A quantum (the smallest possible unit) of radiant energy; a photon carries a quantity of energy equal to Planck's constant (6.6262×10^{-34} joule/hertz) times the frequency.

GLOSSARY
 OPTOELECTRONIC TERMS AND DEFINITIONS

Phototransistor

A transistor (bipolar or field-effect) that is intended to be responsive to radiant energy. NOTE: The base region or gate may or may not be brought out as an external terminal. GRAPHIC SYMBOLS:

Quantum Efficiency (of a Photosensitive Device)

The fractional number of effective electron-hole pairs produced within the device for each incident photon. For devices that internally amplify or multiply the electron-hole pairs (such as phototransistors or avalanche photodiodes), the effect of the gain is to be excluded from quantum efficiency.

Quantum Efficiency, External (of a Photoemitter)

The number of photons radiated for each electron flowing into the radiant source.

Radiance (Le)

The radiant intensity of a surface in a given direction per unit of projected area of the surface as viewed from that direction. TYPICAL UNIT: $W \cdot \mathrm{sr}^{-1} \mathrm{~m}^{-2}$.

Radiant Energy $\left(\mathrm{O}_{\mathrm{e}}\right)$

Energy traveling in the form of electromagnetic waves.
TYPICAL UNITS: W•s, J

Radiant Flux or Power Output (Φ_{e} or P_{O})

The time rate of flow of radiant energy. TYPICAL UNITS: W

Radiant Intensity (I_{e})

Radiant flux per unit solid angle in a given direction. TYPICAL UNIT: W/sr

Radiant Pulse Fall Time ($\mathrm{t} \boldsymbol{f}$)
The time required for a radiometric quantity to change from 90% to 10% of its peak value for a step change in electrical input.

Radiant Pulse Rise Time ($\mathbf{t}_{\mathbf{r}}$)

The time required for a radiometric quantity to change from 10% to 90% of its peak value for a step change in electrical input.

Radiant Responsivity ($\mathbf{R}_{\mathbf{e}}$)

The quotient of the rms value of the fundamental component of the electrical output divided by the rms value of the fundamental component of the radiant flux of a specified distribution. TYPICAL UNITS: V/W, A/W

GLOSSARY

OPTOELECTRONIC TERMS AND DEFINITIONS

Reverse Current ($\mathbf{I}_{\mathbf{R}}$)

The current through a semiconductor diode when the n region (cathode) is at a positive potential with respect to the p region (anode).

Reverse Voltage ($\mathbf{V}_{\mathbf{R}}$)

The voltage across a semiconductor diode associated with the flow of reverse current. The n region is at a positive potential with respect to the p region.

Rise Time (\mathbf{t}_{r})

The time duration during which the leading edge of a pulse is increasing from 10% to 90% of its maximum amplitude.

Series Resistance

The undepleted bulk resistance of the photodiode substrate.
NOTE: This characteristic becomes significant at higher frequencies where the capacitive reactance of the junction is of the same or lower magnitude compared to the series resistance.

Spectral Bandwidth $(\Delta \lambda)$

The wavelength interval in which the spectral concentration of a photometric or radiometric quantity is not less than half of its maximum value. TYPICAL UNITS: $\AA, \mu \mathrm{m}, \mathrm{nm}$

Steradian (sr)

A unit of solid angular measurement equal to the solid angle at the center of a sphere subtended by a portion of the surface area equal to the square of the radius; there are 4π steradians in a complete sphere. The number of steradians in a cone of full angle θ is $2 \pi(1-\cos 0.5 \theta)$.

Storage Time (t_{s})

The time interval from a point at which the trailing edge of the input pulse has dropped to 90% of its maximum amplitude to a point at which the trailing edge of the output pulse has dropped to 90% of its maximum amplitude.

Visible Emission

Radiant energy that is characterized by wavelengths of about $0.38 \mu \mathrm{~m}$ to $0.78 \mu \mathrm{~m}$.

Visible-Light-Emitting Diode (VLED)

Synonym for Light-Emitting Diode.
NOTE: Strictly speaking, the adjective "visible" is redundant; however, this term is frequently used when there is a likelihood of confusion with infrared-emitting diodes.

Wavelength at Peak Emission $\left(\lambda_{p}\right)$

The wavelength at which the spectral radiant intensity is maximum. TYPICAL UNITS: $\AA, \mu \mathrm{m}, \mathrm{nm} .1 \AA=10^{-4} \mu \mathrm{~m}=0.1 \mathrm{~nm}$.

Interchangeability Guide

INTERCHANGEABILITY GUIDE

This suggested replacement list represents what are believed to be pin-for-pin, mechanically and electrically interchangeable devices. However, TI does not guarantee that replacements are exact in all respects. Therefore the applicable product data sheets should be used to determine product interchangeability. Your local TI sales office or authorized distributor will assist you in selecting the appropriate device for your application.

PART		TI	PART		TI
NUMBER	MANUFACTURER	REPLACEMENT	NUMBER	MANUFACTURER	REPLACEMENT
4N25		4N25	1716R	IEE	TIL313
4N25A		TIL154	1716G	IEE	TIL315
4N26		4N26	1717	IEE	TIL309
4N21		4N27	1718	IEE	TIL330
4N28		4N28	1719	IEE	TIL321A
4N29A		TIL156	1729	IEE	TIL322A
4N30		TIL113	1730	IEE	4N41
4N31		TIL119	1731	IEE	TIL504
4N33		TIL113	1733	IEE	TIL507
4N34		TIL113	1736	IEE	TIL307
209A	Industrial Electronic Engineers	TIL.209A	5082-4550	Hewlett-Packard	5082-4550
211	IEE	TIL211	5082-4555	HP	5082-4555
220	IEE	TIL220	5082-4650	HP	5082-4650
222	IEE	TIL. 222	5082-4655	HP	5082-4655
441-0002	Dialight Corp.	TIL111	5082-4950	HP	5082-4950
521-9189	Dialco	TIL209A	5082-4955	HP	5082-4955
521.9217	Dialco	TIL220	5082.7730	HP	5082-7730
551-0003	Dialco	TIL112	5082-7731	HP	5082-7731
745-0004	Dialco	TIL304	5082.7732	HP	5082.7732
745-0005	Dialco	TIL305	5082.7740	HP	5082.7740
745-0006	Dialco	TIL302			
745-0007	Dialco	TIL311	CM4-100	Chicago-Miniature	TIL. 302
745-0008	Dialco	TIL308	CM4-101	CM	TIL304
745-0009	Dialco	TIL306	CM4-110	CM	TIL302
745-0014	Dialco	TIL312	CM4-111	CM	TIL304
745-0015	Dialco	TIL327	CM4-5010	CM	TIL112
745-0016	Dialco	TIL313	CM4-5020	CM	TIL111
1701	IEE	TIL 302	DL1A	Litronix	TIL302
1702	IEE	TIL303	DL10	Litronix	TIL302
1703	IEE	TIL304	DL10A	Litronix	TIL302
1704	IEE	TIL305	DL57	Litronix	TIL305
1705	IEE	TIL306	DL101	Litronix	TIL304
1706	IEE	TIL308	DL101A	Litronix	TIL304
1707	IEE	TIL311	DL701	Litronix	TIL327
1710	IEE	TIL327	DL707	Litronix	TIL312
1711	IEE	TIL312	DL1001A	Litronix	TIL304

INTERCHANGEABILITY GUIDE

PART		TI	PART		TI
NUMBER	MANUFACTURER	REPLACEMENT	NUMBER	MANUFACTURER	REPLACEMENT
ED123	Sprague	TIL220	FLV455	Fairchild	TIL224-1
ED201	Sprague	TIL302	FLV460	Fairchild	TIL224-2
ED730	Sprague	TIL113	FLV465	Fairchild	TIL224-1
FCD810	Fairchild	TIL111	FND500	Fairchild	TIL322A
FCD810A	Fairchild	TIL111	FND507	Fairchild	TIL321A
FCD8108	Fairchild	TIL114	GL4850	Litronix	TIL322
FCD810C	Fairchild	TIL124	H11A1	General Electric	TIL117
FCD820	Fairchild	TIL111	H11A2	GE	TIL112
FCD820A	Fairchild	TIL111	H11A3	GE	TIL114
FCD8208	Fairchild	TIL116	H11A4	GE	TILI11
FCD820C	Fairchitd	TIL 125	H11A5	GE	TIL116
FCD825	Fairchild	TIL116	H11A520	GE	TIL125
FCD825A	Fairchild	TIL116	H11A590	GE	TIL126
FCD825B	Fairchild	TIL116	H11b2	GE	TIL. 113
FCD825C	Fairchild	TIL126	H11B3	GE	TIL119
FCD850	Fairchild	TIL113	IL1	Litronix	TIL114
FCD850C	Fairchild	TIL125	IL5	Litronix	TILI17
FCD855	Fairchild	TIL113	IL12	Litronix	TILI11
FCD855C	Fairchild	TIL127	IL15	Litronix	TIL. 112
FCD860	Fairchild	TIL113	LI5A600	GE	LS400
FCD860C	Fairchild	TIL 127	LI5AX601	GE	TIL601
FCD865	Fairchild	TIL113	LI5AX604	GE	TIL604
FCD865C	Fairchild	TIL 127			
			MAN1A	Monsanto	TIL302
FLV110	Fairchild	TIL228-1	MAN2	Monsanto	TIL305
FLV111	Fairchild	TIL221	MAN2A	Monsanto	TIL305
FLV112	Fairchild	TIL230-1	MAN10	Monsanto	TIL302
FLV117	Fairchild	TIL220	MAN10A	Monsanto	TIL302
FLV118	Fairchild	TIL221	MAN71	Monsanto	TIL312
FLV119	Fairchild	Til230-1	MAN72	Monsnato	TIL312
FLV150	Fairchild	TIL228-1	MAN73	Monsanto	TIL327
FLV160	Fairchild	TIL228-1	MAN101	Monsanto	TIL304
FLV210	Fairchild	TIL228-2	MAN101A	Monsanto	TIL304
FLV250	Fairchild	TIL228-2	MAN1001	Monsanto	TIL 304
FLV260	Fairchild	TIL228-2	MAN1001A	Monsanto	TIL 304
FLV310	Fairchild	TIL234-2	MCA7	Monsanto	TIL149
FLV315	Fairchild	TIL234-2	MCA8	Monsanto	TIL 143
FLV350	Fairchild	TIL234-2	MCA81	Monsanto	TILI44
FLV355	Fairchild	TIL234-1	MCA230	Monsanto	TIL113
FLV360	Fairchild	TIL234-2	MCA231	Monsanto	TIL 113
FLV365	Fairchild	TIL234-1	MCT2	Monsanto	MCT2
FLV410	Fairchild	TIL224-2	MCT2E	Monsanto	MCT2E
FLV450	Fairchild	TIL224-2	MCT8	Monsanto	TIL143

[^0]
INTERCHANGEABILITY GUIDE

PART		TI
number	MANUFACTURER	REPLACEMENT
MCT26	Monsanto	TIL111
MCT81	Monsanto	TIL 144
MLED650	Motorola	TIL220
MLED655	Motorola	TIL 220
MLED910	Motorola	TIL23
MLED930	Motorola	TIL31
MOC1000	Motorola	TIL116
MOC1001	Motorola	TIL1 16
MOC1002	Motorola	TIL116
MOC1003	Motorola	TIL136
MOC1100	Motorola	TIL113
MOC1200	Motorola	TIL113
MOC2000	Motorola	TIL107
MRD601	Motorola	TIL601
MR0602	Motorola	TIL602
MRD603	Motorola	TIL603
MRD604	Motorola	TIL604
MV5021	Monsanto	5082-4655
MV5022	Monsanto	5082-4655
MV5023	Monsanto	5082-4655
MV5024	Monsanto	TIL228-2
MV5026	Monsanto	TIL220
MV5051	Monsanto	TIL220
MV5052	Monsanto	TIL231-1
MV5053	Monsanto	TIL220
MV5054-1	Monsanto	TIL228-1
MV5054-2	Monsanto	TIL228-1
MV5054-3	Monsanto	TIL228-2
MV5074B	Monsanto	TIL216-1
MV5075B	Monsanto	TIL216-1
MV5253	Monsanto	TIL234-1
MV5274B	Monsanto	TIL232-1
MV5353	Monsanto	TIL224-1
MV53748	Monsanto	TIL212-2
NSN71L	National	TIL312
NSN71R	National	TIL312
NSN5020	National	TIL221
OP122	Optron	TIL23
OP123	Optron	TIL23
OP124	Optron	TIL24
OP131	Optron	TIL31
OP400	Optron	LS400
OP440	Optron	LS400

PART
NUMBER
OP600
OP601
OP602
OP603
OP604
OP640
OP641
OP642
OP643
OP644
OP800
OP801
OP802
OP803
OP804
RL2000
RL4403
RL4850
RL5054-1
RL5054-2
RL5054-5
SD-2440-1
SD-2440-2
SD-2440-3
SD-2440-4
SE-2450-1
SE-2450-2
SE-2450-3
SE-2460-3
SE-2460-4
SE-5450-1
SE-5450-2
SE-5450-3
SE-5451-1
SE-5451-2
SE-5451-3
STPT40
STPT60
XAN71
XAN72
XC209
YL4850

MANUFACTURER
Optron
REPLACEMENT
LS600

TIL601
TIL602
TIL603
TIL604
LS600
TIL601
TIL602
TIL603
TIL604
TIL81
TIL81
TIL81
TIL81
TIL81
TIL228-1
TIL220
TIL220
TIL228-1
TIL228-2
TIL601
TIL602
TIL603
TIL604
TIL23
TIL23
TIL25
TIL25
TIL24
TIL31
TIL31
TIL31
TIL31
TIL31
TIL31

Sensor-Technology	LS400
Senor-Technology	LS600
XCitron	TIL312
Xcitron	TIL312
Xcitron	TIL209A
Litronix	TIL224-1

Infrared-Emitting
 Diodes

QUICK REFERENCE GUIDE

INFRARED EMITTERS

INFRARED EMITTERS QUICK REFERENCE GUIDE

DEVICE	POWER OUTPUT		${ }^{\boldsymbol{\theta}} \mathrm{HI}$	V_{F}		λ_{p} $T Y P$ $\mu \mathrm{~m}$ 0.94	FEATURES
	MIN $\mathrm{m} N$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}} \\ & \mathrm{~mA} \end{aligned}$		MAX V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}} \\ & \mathrm{~mA} \end{aligned}$		
TIL23 ${ }^{\text { }}$	0.4	50	35°	1.5	50	0.94	
TIL24 ${ }^{+}$	1	50	35°	1.5	50	0.94	Pill package for mounting on double-sided printed circuit board
TIL25 ${ }^{\text {+ }}$	0.75	50	35°	1.5	50	0.94	
TIL26	1	35	175°	1.9	35	0.94	Low-cost header with epoxy lens
TIL31	3.3	100	10°	1.75	100	0.94	Hermetically sealed TO-18 package
TIL32	0.5	20	35°	1.6	20	0.94	Low-cost plastic package
TIL33	2.5	100	80°	1.75	100	0.94	Hermetically sealed TO-18 package
TIL34	1.6	100	10°	1.75	100	0.94	Hermetically sealed TO-18 package
TIL38	6	100	60°	1.75	100	0.94	Low-cost epoxy package
TIL41	0.5	20		1.6	20	0.94	Single element
TIL. 42	$0.5 \ddagger$	20		1.6	20	0.94	2element array
TIL43	$0.5 \ddagger$	20		1.6	20	0.94	3-lement array
TIL44	$0.5 \ddagger$	20		1.6	20	0.94	4-element array
TIL45	$0.5 \ddagger$	20		1.6	20	0.94	5-lement array
TIL46	$0.5 \ddagger$	20		1.6	20	0.94	6element array
TIL47	$0.5 \ddagger$	20		1.6	20	0.94	7element array
TIL48	$0.5 \ddagger$	20		1.6	20	0.94	8 -element array
TIL49	$0.5 \ddagger$	20		1.6	20	0.94	9 element array
TIL50	$0.5 \ddagger$	20		1.6	20	0.94	10-element array

[^1]
TYPES TIL23, TIL24, TIL25 P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES

BULLETIN NO. DL-S 11312, FEBRUARY 1970-REVISED JANUARY 1976

DESIGNED TO EMIT NEAR-INFRARED RADIATION WHEN FORWARD BIASED

- Output Spectrally Compatible with Silicon Sensors
- High Power Efficiency, Typically 1.5 Percent at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$
- High Power Output, Typically 2.0 mW at $25^{\circ} \mathrm{C}$
- Small Size Permits Matrix Assembly Directly into Printed Circuit Boards
- High Radiant Intensity, Typically $7 \mathrm{~mW} / \mathrm{sr}$ for TIL24
mechanical data

absolute maximum ratings

${ }^{\dagger}$ Radiant intensity is calculated from $I_{\theta}=P_{O} / 2 \pi\left(1-\cos 0.5 \theta_{H 1}\right)$. One steradian is the solid angle at the center of a sphere subtended by a portion of the surface area equal to the square of the radius of the sphere. There are 4π steradians in a complete sphere.

NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For pulsed operation at higher currents, see Figures 8 and 9.

TYPES TIL23, TIL24, TIL25
P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	TIL23			TIL24			TIL25			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Po Radiant Power Output	$I_{F}=50 \mathrm{~mA}$	0.4			1			0.75			mW
λ_{p} Wavelength at Peak Emission		915	940	975	915	940	975	915	940	975	nm
$\Delta \lambda$ Spectral Bandwidth			50	75		50	75		50	75	nm
θ_{HI} Half-Intensity Beam Angle			35°			35°			35°		
V_{F} Static Forward Voltage			1.25	1.5			1.5			1.5	V

TYPICAL CHARACTERISTICS

TYPES TIL23, TIL24, TIL25 P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES

TYPICAL CHARACTERISTICS

NOTE 2: These parameters must be measured using pulse techniques: $t_{w}=0.04$ ms, duty cycle $<10 \%$.
\ddagger Normalized to output at $I_{F}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

TYPES TIL23, TIL24, TIL25
 P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES

TYPICAL CHARACTERISTICS

TIL23
FORWARD CONDUCTION CHARACTERISTICS

FIGURE 6

COUPLING CHARACTERISTICS OF TIL23, TIL24, AND TIL25 WITH TIL602, TIL606, TIL610, OR TIL614

FIGURE 7

NOTE 2: These parameters must be measured using pulse techniques: $t_{w}=0.04 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
THERMAL CHARACTERISTICS

FIGURE 9

HOT RECOMMENDED FOR NEW DESIGN

FOR NEW DESIGN, USE TIL31
mechanical data

absolute maximum ratings

$$
\begin{aligned}
& \text { Reverse Voltage at } 25^{\circ} \mathrm{C} \text { Free-Air Temperature . } 2 \mathrm{~V} \\
& \text { Continuous Forward Current at (or below) } 25^{\circ} \mathrm{C} \text { Free-Air Temperature (See Note) } 50 \mathrm{~mA} \\
& \text { Operating Free-Air Temperature Range . }-40^{\circ} \mathrm{C} \text { to } 80^{\circ} \mathrm{C} \\
& \text { Storage Temperature Range . }-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\
& \text { Lead Temperature } 1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch}) \text { from Case for } 10 \text { Seconds } 240^{\circ} \mathrm{C}
\end{aligned}
$$

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{P}_{\mathrm{O}} \quad$ Radiant Power Output	$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$	1			mW
$\lambda_{\mathbf{p}} \quad$ Wavelength at Peak Emission		915	940	975	nm
$\Delta \lambda \quad$ Spectral Bandwidth			50	75	nm
$\theta_{\text {HI }} \quad$ Half-Intensity Beam Angle			175°		
$V_{F} \quad$ Static Forward Voltage			1.2	1.9	V

NOTE: Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.91 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS

FIGURE 1

FIGURE 2

RELATIVE POWER OUTPUT FORWARD CURRENT

FIGURE 3

[^2]
DESIGNED TO EMIT NEAR-INFRARED RADIATION WHEN FORWARD BIASED

- Output Spectrally Compatible with Silicon Sensors
- Mechanically Compatible with TIL81
- Typical Applications Include Card Readers, Encoders, Intrusion Alarms, Sector Sensors, Level Indicators, and Beginning-of-Tape/End-of-Tape Indicators
mechanical data
Each device is in a hermetically sealed welded case similar to JEDEC TO-18 with window. The TIL31 and TIL34 have convex lenses while that of the TIL33 is essentially flat. A coin header is used to increase dissipation capability. All TO-18 registration notes also apply to this outline. Approximate weight is 0.35 gram. All metal surfaces are gold plated.

absolute maximum ratings

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	TIL31			TIL33			TIL34			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
PO Radiant Power Output	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	3.3	6		2.5	5		1.6	3		mW
λ_{p} Wavelength at Peak Emission		915	940	975	915	940	975	915	940	975	nm
$\Delta \lambda$ Spectral Bandwidth			50	75		50	75		50	75	nm
${ }^{\theta} \mathrm{HI}$ Half-Intensity Beam Angle			10°			80°			10°		
V_{F} Static Forward Voltage			1.4	1.75		1.4	1.75		1.4	1.75	V
$\mathrm{tr}_{\mathrm{r}} \quad$ Radiant Pulse Rise Time \ddagger	$\begin{aligned} & I_{F M}=50 \mathrm{~mA}, \quad \mathrm{t}_{\mathrm{w}}=2 \mu \mathrm{~s}, \\ & \mathrm{f}=45 \mathrm{kHz} \end{aligned}$	600			600			600			ns
$\mathrm{t}_{\mathrm{f}} \quad$ Radiant Pulse Fall Time ${ }^{\ddagger}$		350			350			350			

[^3]
TYPES TIL31, TIL33, TIL34

P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES

NOTE 2: This parameter must be measured using pulse techniques. $t_{w}=0.04 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
\ddagger Normalized to output at $I_{F}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

DESIGNED TO EMIT NEAR-INFRARED RADIATION WHEN FORWARD BIASED

- Output Spectrally Compatible with Silicon Sensors
- High Power Efficiency . . . Typically 5 Percent at $25^{\circ} \mathrm{C}$
- High Power Output . . . Typically 1.2 mW at $25^{\circ} \mathrm{C}$
- High Radiant Intensity... Typically 4 mW per Steradian ${ }^{\dagger}$
- Plastic Package with Two Leads for Ease of Handling
mechanical data
This device has a gray-tinted molded plastic body.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature . 2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 40 mA
Operating Free-Air Temperature Range . $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range . $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 5 Seconds $240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
PO Radiant Power Output	$I_{F}=20 \mathrm{~mA}$	0.51 .2	miW
$\lambda_{p} \quad$ Wavelength at Peak Emission		$\begin{array}{lll}915 & 940 & 975\end{array}$	nm
$\Delta \lambda \quad$ Spectral Bandwidth		$50 \quad 75$	nm
$\theta_{\mathrm{HI}} \quad$ Half-Intensity Beam Angle		35°	
V_{F} Static Forward Voltage		1.21 .6	V
$\mathrm{t}_{\mathrm{r}} \quad$ Radiant Pulse Rise Time \ddagger	$\begin{aligned} & \mathrm{I}_{\mathrm{FM}}=20 \mathrm{~mA}, \quad \mathrm{t}_{\mathrm{w}}=2 \mu \mathrm{~s}, \\ & \mathrm{f}=45 \mathrm{kHz} \end{aligned}$	600	ns
$\mathrm{t}_{\mathrm{f}} \quad$ Radiant Pulse Fall Time ${ }^{\ddagger}$		350	

[^4]
TYPE TIL32

P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODE

NOTE 2: This parameter must be measured using pulse techniques: $\mathrm{t}_{\mathrm{w}}=0.04 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
\ddagger Normalized to Output at $I_{F}=20 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$.

TYPE TIL38
 P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODE

DESIGNED TO EMIT NEAR-INFRARED RADIATION WHEN FORWARD BIASED

- Output Spectrally Compatible with Silicon Sensors
- High Power Efficiency . . . Typically 8.5 Percent at $25^{\circ} \mathrm{C}$
- High Power Output . . . Typically 12 mW at 100 mA
- High Radiant Intensity . . . Typically 15 mW/sr ${ }^{\dagger}$ at 100 mA
- Low-Cost Epoxy Package
mechanical data
This device has a gray-tinted molded plastic body.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Reverse Voltage Continuous Forward Current at (or below) Peak Forward Current (See Note 2) Operating Free-Air Temperature Range Storage Temperature Range Lead Temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{Inch}$) fro				

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Po Radiant Power Output	$I_{F}=100 \mathrm{~mA}, \quad$ See Note 3	6	12		mW
$\lambda_{p} \quad$ Wavelength at Peak Emission		915	940	975	nm
$\Delta \lambda \quad$ Spectral Bandwidth Between Half-Power Points			50	75	nm
${ }^{\theta} \mathrm{HI}$ Emission Beam Angle Between Half-Intensity Points			60°		
	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$, See Note 3		1.4	1.75	V
VF Static Forward Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \quad \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}, \\ & \text { duty cycle } \leqslant 1 \% \end{aligned}$		2.55		
C Capacitance	$\mathrm{V}_{\mathrm{F}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		25		pF
$\mathrm{tr}_{\mathrm{r}} \quad$ Radiant Pulse Rise Time \ddagger	$\begin{aligned} & \mathrm{I}_{\mathrm{FM}}=20 \mathrm{~mA}, \quad \mathrm{t}_{\mathrm{W}}=2 \mu \mathrm{~s}, \\ & \mathrm{f}=45 \mathrm{kHz} \end{aligned}$		600		ns
If Radiant Pulse Fall Time \ddagger			350		

[^5]
TYPE TIL38
 P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODE

TYPICAL CHARACTERISTICS

NOTE 4: Radiant intensity is measured over 0.01 steradian on the mechanical axis.

TYPES TIL41 THRU TIL50 GALLIUM ARSENIDE INFRARED-EMITTING DIODE ARRAYS

BULLETIN NO. DL-S 12230, NOVEMBER 1974-REVISED SEPTEMBER 1978

DESIGNED TO EMIT NEAR-INFRARED RADIATION WHEN FORWARD BIASED

- Single Element or Arrays from 2 to 10 Elements
- Recommended for Application in Tape and Card Readers
- Spectrally Matched to TIL621 thru TIL630 Sensor Arrays
- Center-to-Center Spacing of $\mathbf{2 , 5 4} \mathbf{~ m m}(0.100$ Inch)

TYPE NUMBER	TIL41	TIL42	TIL43	TIL44	TIL45	TIL46	TIL47	TIL48	TIL49	TIL50
NUMBER OF ELEMENTS	1	2	3	4	5	6	7	8	9	10

mechanical data

Each device has an orange molded transparent epoxy body with silver-plated leads.

absolute maximum ratings

NOTE 1: Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.73 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

TYPES TIL41 THRU TIL50 gallium arsenide infrared-emitting diode arrays

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PO Radiant Power Output (See Note 2)	$I_{F}=20 \mathrm{~mA}$	0.5	1.2		mW
$\lambda_{p} \quad$ Wavelength at Peak Emission		915	940	975	nm
$\Delta \lambda \quad$ Spectral Bandwidth			60	75	nm
$V_{F} \quad$ Static Forward Voltage			1.2	1.6	V
$I_{R} \quad$ Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$		0.1	100	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{r}} \quad$ Radiant Pulse Rise Time ${ }^{\dagger}$	$\begin{aligned} & I_{F M}=20 \mathrm{~mA}, \quad t_{\mathrm{w}}=2 \mu \mathrm{~s}, \\ & f=45 \mathrm{kHz} \end{aligned}$		600		ns
t_{f} Radiant Pulse Fall Time ${ }^{\dagger}$			350		

NOTE 2: The single elements only are available in the following selected categories of radiant power output:

PARAMETER		TEST CONDITIONS	TIL41-1		TIL41-II		TIL41-III		TIL41-IV		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
P_{0}	Radiant Output Power		$I_{F}=20 \mathrm{~mA}$	0.35	0.7	0.5	1	0.7	1.4	1	2	mW

${ }^{\dagger}$ Radiant pulse rise time is the time required for a change in radiant power output from 10% to 90% of its peak value for a step change in current; radiant pulse fall time is the time required for a change in radiant power output from $\mathbf{9 0 \%}$ to $\mathbf{1 0 \%}$ of its peak value for a step change in current.

TYPICAL CHARACTERISTICS

FIGURE 1

MEASURING THE OUTPUT OF INFRARED-EMITTING AND LIGHT-EMITTING DIODES

Ronald D. Grotti and Larry D. Major
Optoelectronics Department

Making accurate radiant-energy measurements involves, if not a little black magic, at least a relatively complicated commercial instrument and a skilled operator. However, the increased use of infrared-emitting diodes (IRED's) and light-emitting diodes (LED's) as a precision system component has necessitated the development of equipment suitable for measuring radiant energy from IRED's and LED's in the designer's lab, in the quality control lab, and on the production line. This equipment must be easy to use, provide the necessary accuracy, be calibratable, and be inexpensive.

To develop such equipment requires the selection of a suitable photodetector and the development of the proper calibration and operation procedures. This report describes a method that has been used in the Texas Instruments Optoelectronic Device Department for measuring the output of its radiation-emitting diode products. The apparatus consists simply of a photovoltaic detector connected directly to an ammeter, with a special mechanical fixture to prevent escape of radiant energy.

SELECTION OF DETECTOR

Detectors that might be considered for measuring IRED and LED output include thermopiles, photocells, photodiodes, photomultipliers and photovoltaic cells. To show why the photovoltaic cell was chosen for this application, a review of pertinent detector characteristics is in order.

Thermopiles can be excellent primary detecting devices, but are generally unsuitable for most laboratory and quality control types of service. Not only are they difficult to apply properly, but they are costly, lose their calibration when mishandled, and have an inadequate frequency response.

Photodiodes have good frequency capabilities, are reasonably priced, and are being used in pulse and high-frequency applications. However, most IRED's and LED's are tested under low-frequency conditions, and therefore frequency response is not a critical sensor parameter. Because the photodiode must be electronically biased, a well-regulated bias supply is required to ensure consistent results.

Good sensitivity and frequency response plus a large
detection area are some photomultiplier features. But multi-element phototubes are expensive, require high-voltage supplies, and since output is a function of supply voltage, stability problems can arise. Also, if improperly applied, photomultipliers can saturate, causing errors and possibly permanent tube damage.

Photovoltaic cells-particularly the solar-cell varietyhave a large active area, good long-term stability, and good spectral matching, are easy to use, and are inexpensive. The frequency response from dc to 100 kHz , although less than that of the photomultiplier and photodiode, is satisfactory for this application. These factors, combined with the fact that power or bias supplies are not required, makes the solar cell appear to have the best combination of qualities for this application.

Using the photovoltaic cell to precisely measure the emitter output and determine its quantum efficiency requires detailed knowledge of the cell, the emitter, and how they are optically coupled. Such knowledge depends not only on the mathematical characterization of the two devices, but on an accurate calibration of the photovoltaic cell. Once these steps have been accomplished, the emitter's power output and its quantum efficiency can be calculated using only two measured values - the emitter's input current and the cell's output current.

THE PHOTOVOLTAIC CELL

Before describing how the photovoltaic cell is calibrated, a few comments on the basic characteristics of this semiconductor device are in order. It is not necessary for our purposes to discuss the theory of operation in detail. Suffice it to say that electron-hole pairs are generated within the device as a function of impinging photons. Only those photons that have a quantum energy larger than the band gap between the valence band and the conduction band generate electron-hole pairs. The lower-energy photons simply transmit through the cell and do not cause an output. The ratio of electrons generated to the total number of incident photons is the cell's quantum efficiency, and is defined as

$$
\eta_{\mathrm{sc}}=\frac{\text { electrons generated } / \mathrm{sec}}{\text { incident photons } / \mathrm{sec}}
$$

It is necessary to note that the cell's quantum efficiency is a function of the wavelength (Figure 1). This fact is particularly important because the sensor specifications are often based on the device's sensitivity to a particular wavelength. This quantum efficiency curve can be shaped through various means including the deposition of anti-reflection coatings on the photovoltaic cell's surface.

FIGURE 1. Photodetector Quantum Efficiency Varies as a Function of Wavelength, Thus Making Calibration at a Number of Wavelengths

Necessary for General Use

CELL CALIBRATION

Before using the photovoltaic cell to measure the IRED or LED power output, the cell must be calibrated. This calibration is a two-step process, with the first step being the accurate determination of the cell's relative response. This determination is made using a grating monochromator, a tungsten light source, and a thermocouple detector that has a flat response in the spectral region of 500 nm to 1000 nm . Two curves are obtained, one using the thermocouple detector to measure the tungsten source's output and the other using the photovoltaic detector to measure the same output.
By dividing the photovoltaic cell response by the thermocouple response, the relative response of the cell is obtained. The relative response curve allows the measurement of radiation sources with different spectral characteristics to be accurately compared. However, to determine the actual power generated by a particular source using this cell requires another calibration step in which the photovoltaic cell output is determined when illuminated by a radiation source with a known power output. To accomplish this goal, the output of three monochromatic sources (gallium arsenide IRED, helium-neon laser, and argon laser) are measured by the cell being calibrated and by an Eppley thermopile. The quantum efficiency of the cell at the wavelength of each emitter is then found by using the optical power equation:

$$
\eta_{\mathrm{sc}}=\left(\frac{\mathrm{I}_{\mathrm{L}}}{\text { optical power }}\right)\left(\frac{\text { energy }}{\text { photon }}\right)
$$

where I_{L} is the short-circuit current from the photovoltaic cell under test and optical power is the measurement made by the thermopile.

The three quantum efficiencies are then plotted, and a curve is generated that allows the cell to be used to measure accurately any impinging light of known spectral characteristics.

MEASUREMENT PROCEDURE

To employ this calibrated detector in a radiationemitting diode testing system, it is necessary to develop the relationships that can describe the diode's quantum efficiency.

The diode output is directly proportional to the emitted photon energy and quantity per unit of time. The relation between energy E and wavelength λ is defined as

$$
\lambda=\frac{1.24}{\mathrm{E}} \text { or } \mathrm{E}=\frac{1.24}{\lambda} \quad \text { (units are } \mu \mathrm{m} \text { and } \mathrm{eV} \text {) }
$$

Energy, and therefore wavelength, of any given photon emitted from an IRED or LED source fall within a distribution curve such as that shown in Figure 2 for a GaAs IRED. To be absolutely accurate in calculating the optical power output of a solid-state source requires a time-consuming graphical integration using Figure 1 and Figure 2. Fortunately, all photons emitted by a monochromatic source have the same energy. Since it is a valid assumption to consider the IRED to be monochromatic, the IRED's optical power can be described to a first approximation without any noticeable error.

FIGURE 2. Spectral Characteristics of GaAs Diode Indicate that the Device is Nearly Monochromatic

MEASURING THE OUTPUT OF INFRARED-EMITTING AND LIGHT-EMITTING DIODES

For simplicity of calculation, let us assume that all photons generated by the IRED are collected by the photovoltaic cell. Therefore, considering the ammeter as a load consisting of a calibrated resistor and microvoltmeter, (Figure 3), the current I_{L} (neglecting the internal resistance $\mathbf{R}_{\text {shunt }}$ of the photocell) is proportional to the number of photons striking the surface:

$$
\mathrm{I}_{\mathrm{L}}=\left(\frac{\text { electrons }}{\sec }\right)\left(1.602 \times 10^{-19}\right)
$$

and

$$
\mathrm{I}_{\mathrm{L}}=\eta_{\mathrm{sc}}\left(\frac{\text { photons }}{\mathrm{sec}}\right)\left(1.602 \times 10^{-19}\right)
$$

therefore,

$$
\text { photons } / \mathrm{sec}=\frac{\mathbf{I}_{\mathbf{L}}}{\eta_{\mathrm{sc}}\left(1.602 \times 10^{-19}\right)}
$$

FIGURE 3. Equivalent Circuit of a Photovoltaic Cell (Silicon Solar Cell) Connected to the Ammeter Used to Measure Short Circuit Current

Knowing I_{L}, we can now calculate the emitter quantum efficiency η_{em} and optical power P_{O} :

$$
\begin{aligned}
& \eta_{\mathrm{em}}=\frac{\mathrm{I}_{\mathrm{L}}}{\eta_{\mathrm{sc}} \mathrm{I}_{\mathrm{D}}} \\
& \mathrm{PO}_{\mathrm{O}}=\left(\frac{\mathrm{I}_{\mathrm{L}}}{\eta_{\mathrm{sc}}}\right)\left(\frac{\text { energy }}{\text { photon }}\right)
\end{aligned}
$$

Using these equations, we can indeed determine both the quantum efficiency and the optical power generated by the IRED under conditions where all the power emitted is collected. by the photovoltaic cells. To ensure the
photovoltaic cell receives all emitted photons, it is necessary to build special testing jigs using detectors either singly or in arrays. (See Figures 4 and 5). In either case, the test procedures are the same. However, if such jigs are not possible, then the percentage of energy emitted that actually reaches the detector must be included in the calculation. This fraction can be determined by dividing the total power emitted by the steradian relationship between the detector and the emitter, the total number of steradians being equal to the aperture area of the detector divided by the square of the distance between the emitter and the detector surface.

FIGURE 4. Calibrating the Test Setup

FIGURE 5. Test Jig for Capturing the Total Diode Output with a Single Photovoltaic Cell

TESTING PRECAUTIONS

Generally, gallium arsenide and gallium arsenide phosphide (GaAsP) infrared emitters provide an output signal l_{L} large enough that an ammeter may be used to measure the cell's short-circuit current directly. The measurement of GaAsP visible-light-emitting diodes and tests such as radiant intensity measurements usually produce signal levels that require a calibrated resistor and a microvoltmeter. The important point is that the input impedance of the measuring instrument must be less than $1 / 10$ the value of $R_{\text {shunt }}$ to prevent lowering the output of the cell. The exact value of $\mathrm{R}_{\text {shunt }}$ for photovoltaic cells is difficult to measure, but it is usually in the order of 10 to $30 \mathrm{k} \Omega$. If the cell has been mistreated, the $\mathrm{R}_{\text {shunt }}$ may be as low as $1 \mathrm{k} \Omega$ or less. Thus, if an electronic ammeter is used in the 3×10^{-6} ampere range, as may be required for

Texas Instruments

MEASURING THE OUTPUT OF
 INFRARED-EMITTING AND LIGHT-EMITTING DIODES

testing GaAsP LED's, the input meter impedance of 300 to 1000Ω approaches the critical value of the typical solar cell. Thus, these low-level measurements must be made using the resistor-microvoltmeter technique.

The second problem occurs when the photovoltaic cell becomes appreciably self-biased, because of the voltage drop developed across the load. Care must be taken to limit this bias to prevent a reduced output signal. As a rule of thumb, this load-voltage drop is kept lower than 50 mV . When measuring high-power emitters, the value of I_{L} of a 2-by- $2 \cdot \mathrm{~cm}$ photovoltaic cell is capable of reaching the $200-\mathrm{mA}$ level without saturation; therefore at these levels, the input impedance of the ammeter and the value of the calibrated resistor (See Figure 3) must be kept less than 0.25Ω.

SAMPLE CALCULATION OF DIODE POWER OUTPUT AND QUANTUM EFFICIENCY

Assume the following values:
$I_{D}=$ emitting diode current $=300 \mathrm{~mA}$
$V_{F}=$ forward voltage of the emitter $=1.6$ volts
$\mathrm{I}_{\mathrm{L}}=$ solar cell output signal $=25 \mathrm{~mA}$
$\lambda_{\mathrm{p}}=$ peak wavelength of the emitter $=0.925 \mu \mathrm{~m}$
$\eta_{\text {SC }}=$ quantum efficiency of the cell $=0.70$ electrons per photon

This material appeared as an article in Electro-Optical Systems Design, Vol. 2 No. 7, July 1970.

Then:
$\eta_{\mathrm{em}}=$ emitter quantum efficiency

$$
\begin{aligned}
& =\left(\frac{\mathrm{I}_{\mathrm{L}}}{\eta_{\mathrm{sc}}}\right)\left(\frac{1}{\mathrm{I}_{\mathrm{D}}}\right)=\left(\frac{25 \mathrm{~mA}}{0.7 \frac{\text { elect }}{\text { photon }}}\right)\left(\frac{1}{300 \mathrm{~mA}}\right) \\
& =0.119 \text { photons/electron }
\end{aligned}
$$

$\eta_{\mathrm{em}}=11.9 \%$
Optical Power $=\mathrm{P}_{\mathrm{O}}=\left(\frac{\mathrm{I}_{\mathrm{L}}}{\eta_{\mathrm{sc}}}\right)\left(\frac{\text { energy }}{\text { photon }}\right)$

Where energy $=\frac{1.24}{\lambda_{\mathrm{p}}}=\frac{1.24}{0.925} \sim 1.341 \mathrm{eV}$

$$
\mathrm{P}_{\mathrm{O}}=\left(\frac{25 \mathrm{~mA}}{0.7 \frac{\text { elect }}{\text { photon }}}\right)\left(1.341 \frac{\mathrm{eV}}{\text { photon }}\right)
$$

Power efficiency $=\frac{P_{O}}{\ln \text { put Power }}$

$$
=\frac{47.9 \times 10^{-3} \mathrm{~W}}{I_{D} V_{F}}=\frac{47.9 \times 10^{-3} \mathrm{~W}}{48 \times 10^{-2} \mathrm{~W}}
$$

Power efficiency $=0.0998=9.98 \%$

TIL23, TIL24 RELIABILITY DATA

TIL23, TIL24 RELIABILITY DATA

INTRODUCTION

Texas Instruments has long been noted as a quality producer of semiconductor components. The TIL23 and TIL24 solid-state infrared-emitting diodes (IRED's) are high-quality, reliable additions to its line of optoelectronic products. They have been designed as highly reliable, long-life products capable of meeting demanding military and commercial needs. Quality control of these products begins with incoming inspection of raw materials and is continued throughout the manufacturing process as shown in assembly-test flow diagram (Figure 1). Conscientious quality control practiced by the manufacturing organization and monitored at critical steps by the quality control organization ensures that the designed reliability will be achieved in the finished product.

Since this product was announced in 1970, some three million device hours of reliability testing have been accumulated on ungraded, unburned-in samples, and additional data is continuously being accumulated. This report summarizes, in graphical form, data on the operating life of TIL23 and TIL24 at 10, 30, and 50 mA at $25^{\circ} \mathrm{C}$ and 50 mA at $55^{\circ} \mathrm{C}$. Results of various mechanical and temperature stress tests are also presented.

OPERATING LIFE TESTS

Room temperature $\left(25^{\circ} \mathrm{C}\right)$ life tests were performed at three different current levels: $10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 50 mA . Readings of power output were made with a solar cell in a short-circuit current mode at 0,168 , 500 and 1,000 hours. Forward voltage was read at these intervals and no significant changes were observed. Extended operating life tests at $25^{\circ} \mathrm{C}(4,000$ hours $)$ on 300 units have substantiated the extrapolated degradation rates shown in Figures 2, 3, 4, and 5.

Since 1976864,000 device hours have been accumulated on equal samples (see Figures 6 and 7) operated for 1000 hours. Failure criteria were degradation of output power of more than 50% or a change in V_{F} of more than 5%. Readings were taken at 0,168 , and 1000 hours. The samples were taken from lots whose total count exceeded one million LED's.

STORAGE LIFE TESTS

High-temperature $\left(85^{\circ} \mathrm{C}\right)$ storage tests were performed for 1000 hours on 1818 devices (see Figure 8). Only one unit ($\Delta V_{F}=19 \%$) exceeded the failure criteria of 50% degradation of output power or 5% change in V_{F}.

ENVIRONMENTAL TESTS

The tests listed in Figure 10 were performed on samples of the product with the catastrophic failures as shown. It should be noted that the test conditions shown are not the ultimate strength of the product but represent the test requirements imposed by our customers. The ultimate strength of these devices is much higher in most cases. Inquiries concerning response to particular requirements should be addressed to your TI sales representative.

TIL23HR, TIL24HR, TIL25HR . . . HIGHRELIABILITY INFRARED EMITTERS

Texas Instruments now offers the TIL23HR, TIL24HR, and TIL25HR as standard product items to customers requiring extra reliability in their applications. Utilizing the same small ceramic pill package design as LS600 series phototransistor, the TIL23HR, TIL24HR, and TIL25HR are used to provide dependable and reliable infrared sources in military and aerospace applications. The TIL23HR, TIL24HR, and TIL25HR infrared emitters and the complementary TIL601HR thru TIL604HR phototransistors are now available as standard product items. For more information, contact you nearest TI sales representative or Optoelectronic Department Product Marketing.

TIL23, TIL24 RELIABILITY DATA

FIGURE 1. TIL23 and TIL24 Infrared-Emitter Flow Diagram

FIGURE 2. Change in Power Output as a Function of Operating Time at $I_{F}=10 \mathrm{~mA}, 25^{\circ} \mathrm{C}$

FIGURE 3. Change in Power Output as a Function of Operating Time at $I_{F}=30 \mathrm{~mA}, 25^{\circ} \mathrm{C}$

FIGURE 4. Change in Power Output as a Function of Operating Time at $I_{F}=50 \mathrm{~mA}, 25^{\circ} \mathrm{C}$

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			TOTAL	FAILURE RATE IN \%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
1384	1,384,000	0	1	0.15	0.28	680,000 HOURS

FIGURE 5. Operating Life at $25^{\circ} \mathrm{C}$ and 50 mA

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			TOTAL	FAILURE RATE IN\%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
432	432,000	0	2	0.72	1.23	140,000 HOURS

FIGURE 6. Operating Life at $25^{\circ} \mathrm{C}$ and 75 mA

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			total	FAILURE RATE IN\%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
432	432,000	0	3	0.97	1.55	104,000 HOURS

FIGURE 7. Operating Life at $55^{\circ} \mathrm{C}$ and 50 mA

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATIION FAILURES			
			TOTAL	FAILURE RATE IN \%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
1818	1,818,000	0	1	0.11	0.21	900,000 HOURS

FIGURE 8. Storage Life at $85^{\circ} \mathrm{C}$

MIL-STD-750 Test Method	Test	Quantity Tested	Failures (Catastrophic or Degradation)
1051	Temperature Cycle: 5 Cycles, 30 Minutes, $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	566	0
1051	Temperature Cycle: 5 Cycles, 30 Minutes, $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	50	0
1056	Thermal Shock: 5 Cycles, Condition A	50	0
1021	Moisture Resistance	50	0
2016	Shock, Impact: $1500 \mathrm{~g}, \mathrm{Z}_{1}$ Axis, 0.5 milliseconds	1046	2
2056	Vibration, Variable Frequency: 20 g	1058	1
2006	Constant Acceleration: $20 \mathrm{~kg}, 1$ Min. Z_{1}	390	0
1071	Hermetic Seal: Test Condition E	1	

FIGURE 10. Environmental Test Results

Photodetectors

QUICK REFERENCE GUIDE
 PHOTODETECTORS

DEVICE	TYPE	LIGHT CURRE MIN MAX ©		DARK CU MAX @	$\begin{aligned} & \text { RENT } \\ & V \end{aligned}$	POWER DISS.	FEATURES
1N5722	Phototransistor	0.5 mA 3 mA	5	25 nA	30	50 mW	EIA-Registered versions of TIL601-TIL604
1N5723	Phototransistor	2 mA 5 mA		25 nA	30	50 mW	
1N5724	Phototransistor	4 mA 8 mA	5	25 nA	30	50 mW	
1N5725	Phototransistor	7 mA	5	25 nA	30	50 mW	
LS400	Phototransistor	1 mA	5	25 nA	30	50 mW	Hermetic glass package
LS600	Phototransistor	0.8 mA	5	25 nA	30	50 mW	Pill package
TIL63§	Phototransistor	0.4 mA	5	25 nA	30	50 mW	Low-cost header with epoxy lens. Operating temp. range $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
TIL64§	Phototransistor		5	25 nA	30	50 mW	
TIL65§	Phototransistor	0.4 mA 1 mA $\mathbf{1 . 6 \mathrm { mA }}$	5	25 nA	30	50 mW	
TIL66§	Phototransistor	$2.5 \mathrm{~mA} \quad 10 \mathrm{~mA}$	5	25 nA	30	50 mW	
TIL67§	Phototransistor	6 mA	5	25 nA	30	50 mW	
TIL78	Phototransistor	1 mA	5	25 nA	30	50 mW	Low-cost epoxy package
TIL81	As Phototransistor	$5 \mathrm{~mA}$		00 nA		250 mW	TO-18 package with narrow field of view
	As Photodiode	$170 \mu \mathrm{ATyp}$	0-50	10 nA	30	250 mW	
TIL99	As Phototransistor	$1 \mathrm{~mA}$	5	00 nA	10	250 mW	Similar to TIL81 except flat lens
TIL9	As Photodiode	$40 \mu \mathrm{~A}$ Typ	0-50	10 nA	10	250 mW	Similar to TVL81 except Hat lens
TIL100	Photodiode	$10 \mu \mathrm{~A}$	10	50 nA	10	150 mW	$\overline{\text { Designed for infrared remote-control systems }}$ Spectrally matched with TIL38 IRED
TIL401	Phototransistor	0.5 mA 3 mA 5		25 nA	30	50 mW	Glass, hermetically sealed
TIL402	Phototransistor	2 mA 6 mA 5 mA 10 mA 8 mA 16 mA 10 mA 20 mA 15 mA	5	25 nA	30	50 mW	
TIL403	Phototransistor		5	25 nA	30	50 mW	
TIL404	Phototransistor		5	25 nA	30	50 mW	
TIL405	Phototransistor		5	25 nA	30	50 mW	
TIL406	Phototransistor		5	25 nA	30	50 mW	
TIL601 ${ }^{\text {t }}$	Phototransistor	0.5 mA 3 mA 2 mA 5 mA 4 mA 8 mA 7 mA	5	25 nA	30	50 mW	Pill package designed for mounting on doublesided printed board
TIL602 ${ }^{\text {t }}$	Phototransistor		5	25 nA	30	50 mW	
TIL603 ${ }^{\dagger}$	Phototransistor		5	25 nA	30	50 mW	
TIL604 ${ }^{\text {t }}$	Phototransistor		5	25 nA	30	50 mW	
TIL605	Phototransistor	0.5 mA 3 mA 2 mA 5 mA 4 mA 8 mA 7 mA	5	25 nA	30	50 mW	Same as TIL601-TIL604 except wider field of view
TIL606	Phototransistor		5	25 nA	30	50 mW	
TIL607	Phototransistor		5	25 nA	30	50 mW	
TIL608	Phototransistor		5	25 nA	30	50 mW	
TIL621	Phototransistor	1.5 mA	5	50 nA	30	50 mW	Single element
TIL622	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	2element array
TIL623	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	3-element array
TIL624	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	4 element array
TIL625	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	5 element array
TIL626	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	6 -element array
TIL627	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	7 7element array
TIL628	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	8 8element array
TIL629	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	9 element array
TIL630	Phototransistor	1.5 mA	5	50 nA	30	$50 \mathrm{~mW} \ddagger$	10-element array

[^6]TYPES 1 N5722 THRU 1 N5725
N-P-N PLANAR SILICON PHOTOTRANSISTORS
BULLETIN NO. DL-S 11689, MARCH 1972-REVISED NOVEMBER 1974

JEDEC-REGISTERED VERSIONS OF TIL601 THRU TIL604

- Recommended for Application in Character Recognition, Tape and Card Readers, Velocity Indicators, and Encoders
- Unique Package Design Allows for Assembly into Printed Circuit Boards
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

- JEDEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.

TYPES 1N5722 THRU 1N5725

N-P-N PLANAR SILICON PHOTOTRANSISTORS

*switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
t_{r} Rise Time	$\begin{array}{ll} V_{C C}=30 \mathrm{~V}, & I_{\mathrm{L}}=800 \mu \mathrm{~A}, \\ R_{\mathrm{L}}=1 \mathrm{k} \Omega, & \text { See Figure } 1 \end{array}$	$1.5 \quad 2.5$	$\mu \mathrm{s}$
t_{f} Fall Time		$15 \quad 25$	

NOTES: a. Input irradiance is supplied by a pulsed xenon bulb source. Incident irradiation is adjusted for $I_{L}=800 \mu A$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.
*JEDEC registered data
TYPICAL CHARACTERISTICS

NOTE 2: Irradiance (E_{e}) is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

FIGURE 11

TEXAS INSTRUMENTS CUSTOMIZED OPTOELECTRONIC ARRAYS

The 1N5722 through 1N5725 series is available mounted in printed circuit boards for custom-designed array or matrix applications. The array is a complete unit, without the problems associated with small, difficult-to-handle components. These arrays can be designed for punched-card or tape readers, position indicators, pattern and character recognition, shaft encoders, and many other special applications.

Texas Instruments custom-array techniques offer many advantages:

- The arrays are pre-assembled and tested, ready for installation.
- Custom arrays can be manufactured in almost any configuration to allow maximum design flexibility
- Sensitivity across an entire array will be matched to within 50\%.
- GaAs sources can be furnished to give complete solid-state matched sets for specific applications.
- Arrays with components firmly soldered into place on both sides of a printed circuit board are more rugged than individually wired sensing devices.

Specifying optoelectronic arrays is easy; all that is required is a print of the array and the desired specifications.

TI sales engineers will assist in developing specifications for special applications.

Standard card-reader and tape-reader arrays are available.

TYPES TIL63 THRU TIL67
N-P-N PLANAR SILICON PHOTOTRANSISTORS
BULLETIN NO. DL-S 11291, DECEMBER 1969-REVISED NOVEMBER 1974

NOT RECOMMHERDED FOR WEW DESIGN

FOR NEW DESIGN, USE TIL81

mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TYPE	MIN	TYP	MAX	UNIT
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$	ALL	50			V
$V_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	$I_{E}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$	ALL	7			V
	Dark Current	$V_{C E}=30 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0$	ALL			25	nA
'D	Dark Current	$V_{C E}=30 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0, \quad \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	ALL		0.5		$\mu \mathrm{A}$
			TIL63	0.4			
			TIL64	0.4		1.6	
I_{L}	Light Current	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 2	TIL65	1		4	mA
			TIL66	2.5		10	
			TIL67	6			
$\mathrm{V}_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=0.4 \mathrm{~mA}, \quad \mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 2	ALL		0.15		V

NOTES: 1. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.91 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

TYPES TIL63 THRU TIL67
 N-P-N PLANAR SILICON PHOTOTRANSISTORS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TYP	UNIT
t_{r} Rise Time	$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=800 \mu \mathrm{~A}$,	8	H
t	Fall Time	$R_{\mathrm{L}}=1 \mathrm{k} \Omega$, See Figure 1	

PARAMETER MEASUREMENT INFORMATION

NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide infrared emitter with rise and fall times of less than 50 ns. Incident irradiation is adjusted for $I_{L}=800 \mu \mathrm{~A}$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

TYPICAL APPLICATION DATA

FIGURE 2-LIGHT PULSE DETECTOR

TYPES TIL63 THRU TIL67 N-P-N PLAMAR SILICON PHOTOTRANSISTORS

TYPICAL CHARACTERISTICS

NOTE: 2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

TYPES TIL63 THRU TIL67
 N-P-N PLANAR SILICON PHOTOTRANSISTORS

TYPICAL CHARACTERISTICS

TYPE TIL78
 N-P-N SILICON PHOTOTRANSISTOR

BULLETIN NO. DL-S 11549, SEPTEMBER 1971-REVISED SEPTEMBER 1978

- Designed for Automatic or Hand Insertion in Sockets or PC Boards

- Recommended for Industrial Applications Requiring Low-Cost Discrete Phototransistors
- Spectrally and Mechanically Matched with TIL32 IR Emitter.
mechanical data
This device has a clear molded epoxy body.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$$
\begin{aligned}
& \text { Collector-Emitter Voltage . } 50 \text { V } \\
& \text { Emitter-Collector Voltage . } 7 \text { V } \\
& \text { Continuous Device Dissipation at (or below) } 25^{\circ} \mathrm{C} \text { Free-Air Temperature (See Note 1) } 50 \mathrm{~mW} \\
& \text { Operating Free-Air Temperature Range . }-40^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\
& \text { Storage Temperature Range } \\
& -40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\
& \text { Lead Temperature } 1,6 \mathrm{~mm} \text { (} 1 / 16 \text { Inch) from Case for } 5 \text { Seconds } \\
& 240^{\circ} \mathrm{C}
\end{aligned}
$$

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\text {C }}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$		50			V
$\mathrm{V}_{\text {(BR)ECO }}$ Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$		7			V
ID Dark Current	$\mathrm{V}_{C E}=30 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0$		25			nA
	$\mathrm{V}_{C E}=30 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0$,	$\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	1			$\mu \mathrm{A}$
Light Current	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$	See Note 2	1	7		mA
	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=2 \mathrm{~mW} / \mathrm{cm}^{2}$			0.5		
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=2 \mathrm{~mA}, \quad \mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$,	See Note 2		0.4		V

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		TYP	UNIT
t_{r}	Rise Time	$\begin{array}{ll} V_{C C}=30 \mathrm{~V}, & I_{L}=800 \mu \mathrm{~A}, \\ R_{L}=1 \mathrm{k} \Omega, & \text { See Figure } 1 \end{array}$		8	$\mu \mathrm{s}$
t_{f}	Fall Time			6	

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of $\mathbf{2 8 7 0} \mathrm{K}$.

TYPE TIL78

N-P-N SILICON PHOTOTRANSISTOR

PARAMETER MEASUREMENT INFORMATION

FIGURE 1
NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide infrared emitter with rise and fall times of less than 50 ns. Incident irradiation is adjusted for $I_{L}=800 \mu \mathrm{~A}$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 20 \mathrm{pF}$.

TYPICAL CHARACTERISTICS

NOTE 2: Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of $\mathbf{2 8 7 0} \mathrm{K}$.

- Recommended for Application in Character Recognition, Tape and Card Readers, Velocity Indicators, and Encoders
- Spectrally and Mechanically Matched with TIL31 IR Emitter
- Glass-to-Metal-Seal Header
- Base Contact Externally Available
- Saturation Level Directly Compatible with Most TTL/DTL
mechanical data
The device is in a hermetically sealed package with glass window. The outline of the TIL81 is similar to TO-18 except for the window. All TO-18 registration notes also apply to this outline

absolute maximum ratings at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 50 V
Collector-Emitter Voltage 30 V
Emitter-Base Voltage 7 V
Emitter-Collector Voltage 7 V
Continuous Collector Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 250 mW
Operating Free-Air Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 10 Seconds $240^{\circ} \mathrm{C}$

NOTE 1: Derate lineariy to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPE TIL81

N-P-N PLANAR SILICON PHOTOTRANSISTOR
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS			MIN	TYP MAX	UNIT
$\mathrm{V}_{(B R) C B O}$ Collector-Base Breakdown Voltage			$I_{C}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$E_{e}=0$	50		V
$\mathrm{V}_{(B R)} \mathrm{V}_{(B R)}$ Collector-Emitter Breakdown Voltage			$I^{\prime} C=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$	30		V
$\mathrm{V}_{(B R) E B O}$ Emitter-Base Breakdown Voltage			$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$	7		V
$\mathrm{V}_{(B R) E C O}$ Emitter-Collector Breakdown Voltage			$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$	7		V
${ }^{1} \mathrm{D}$	Dark Current	Phototransistor Operation	$\mathrm{V}_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$		0.1	$\mu \mathrm{A}$
			$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	$I_{B}=0,$	$E_{e}=0$,		20	
		Photodiode Operation	$\mathrm{V}_{C B}=10 \mathrm{~V}$,	$I_{E}=0$,	$E_{\text {e }}=0$		0.01	$\mu \mathrm{A}$
I_{L}	Light Current	Phototransistor Operation	$V_{C E}=5 \mathrm{~V} .$ See Note 2	$I_{B}=0,$	$\mathrm{E}_{\mathrm{e}}=5 \mathrm{~mW} / \mathrm{cm}^{2}$	5	22	mA
		Photodiode Operation	$V_{C B}=0 \text { to } 50$ See Note 2	$I_{E}=0,$	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$,		170	$\mu \mathrm{A}$
$h_{\text {FE }}$	Static Forward Current Transfer Ratio		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	$E_{e}=0$		200	
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage		$I_{C}=2 \mathrm{~mA},$ See Note 2	$I_{B}=0$	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$		0.2	V

NOTE 2: Irradiance (E_{e}) is the radiant power per unit area incident upon a surface. For these measurements the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	TYPICAL	UNIT
t_{r}	Rise Time	Phototransistor Operation	$V_{C C}=5 \mathrm{~V}, \quad I_{\mathrm{L}}=800 \mu \mathrm{~A}, \quad \mathrm{R}_{\mathrm{L}}=100 \Omega,$ See Test Circuit A of Figure 1	8	$\mu \mathrm{s}$
t_{f}	Fall Time			6	
t_{r}	Rise Time	Photodiode Operation	$V_{C C}=0 \text { to } 50 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=60 \mu \mathrm{~A}, \quad \mathrm{R}_{\mathrm{L}}=100 \Omega,$ See Test Circuit B of Figure 1	350	ns
t_{f}	Fall Time			500	

PARAMETER MEASUREMENT INFORMATION

NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide infrared emitter with rise and fall times less than 50 ns. Incident irradiation is adjusted for specified I_{L}.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1

TYPICAL CHARACTERISTICS

NOTE 2: Irradiance (E_{e}) is the radiant power per unit area incident upon a surface. For these measurements the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

TYPE TIL81
 N-P-N PLANAR SILICON PHOTOTRANSISTOR

TYPICAL CHARACTERISTICS

RELATIVE SPECTRAL CHARACTERISTICS

TEXASINSTRUMMENTS
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

FOR WIDE-ANGLE VIEWING APPLICATIONS

- Recommended for Application in Character Recognition, Tape and Card Readers, Velocity Indicators, and Encoders
- Spectrally and Mechanically Matched with TIL31 IR Emitter
- Glass-to-Metal-Seal Header
- Base Connection Externally Available
- Saturation Level Directly Compatible with Most TTL/DTL
mechanical data

The device is in a hermetically sealed package with glass window. The outline of the TIL99 is similar to TO-18 except for the window. All TO-18 registration notes also apply to this outline.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 50 V
Collector-Emitter Voltage 30 V
Emitter-Base Voltage 7 V
Emitter-Collector Voltage 7 V
Continuous Collector Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 250 mW
Operating Free-Air Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{Inch}$) from Case for 10 Seconds $240^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPE TIL99

N-P-N PLANAR SILICON PHOTOTRANSISTOR

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS			MIN	TYP	MAX	UNIT
$V_{\text {(BR) }} \mathrm{CBO}$	Collector-Base Breakdown Voltage		$\mathrm{I}^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	${ }^{1} \mathrm{E}=0$,	$E_{e}=0$	50			V
$V_{\text {(BR) }}{ }^{\text {(BEEO }}$	Collector-Emitter Breakdown Voltage		$\mathrm{I}^{\text {C }}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$	30			V
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage		$\mathrm{I}_{\mathrm{E}} \mathrm{E}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$,	$E_{e}=0$	7			V
$\mathrm{V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage		$I_{E}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$	7			V
${ }^{\prime}$	Dark Current	Phototransistor Operation	$\mathrm{V}_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{E}_{\mathrm{e}}=0$			0.1	$\mu \mathrm{A}$
			$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \\ & T_{A}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$I_{B}=0,$	$\mathrm{E}_{\mathrm{e}}=0$,		20		
		Photodiode Operation	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$,	$I_{E}=0$,	$E_{e}=0$			0.01	$\mu \mathrm{A}$
IL	Light Current	Phototransistor Operation	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V},$ See Note 2	$I_{B}=0,$	$E_{e}=20 \mathrm{~mW} / \mathrm{cm}^{2}$	1	5		mA
		Photodiode Operation	$V_{C B}=0 \text { to } 50$ See Note 2	$I_{E}=0$	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$		40		$\mu \mathrm{A}$
$h_{\text {FE }}$	Static Forward Current Transfer Ratio		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~m}$	$\mathrm{E}_{\mathrm{e}}=0$		200		
$V_{\text {CE (sat) }}$	Collector-Emitter Saturation Voltage		$I_{C}=0.4 \mathrm{~mA},$ See Note 2	$I_{B}=0,$	$E_{e}=20 \mathrm{~mW} / \mathrm{cm}^{2}$		0.2		V

NOTE 2: Irradiance (E_{e}) is the radiant power per unit area incident upon a surface. For these measurements the source is an unfilered tungsten linear-filament lamp operating at a color temperature at 2870 K .
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	TYPICAL	UNIT
t_{r}	Rise Time	Phototransistor Operation	$V_{C C}=5 V, \quad I_{L}=800 \mu \mathrm{~A}, \quad R_{L}=100 \Omega$ See Test Circuit A of Figure 1	8	$\mu \mathrm{s}$
t_{f}	Fall Time			6	
t_{r}	Rise Time	Photodiode Operation	$V_{C C}=0 \text { to } 50 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=60 \mu \mathrm{~A}, \quad R_{\mathrm{L}}=100 \Omega,$ See Test Circuit B of Figure 1	350	ns
t_{f}	Fall Time			500	

PARAMETER MEASUREMENT INFORMATION

NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide radiant-energy source with rise and fall times less than 50 ns. Incident irradiation is adjusted for specified I_{L}.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant \mathbf{2 5} \mathbf{n s}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1

- High Photosensitivity

- Fast Response
- Low-Cost Plastic Package
- Designed for Infrared Remote-Control Systems
- Spectrally Matched with TIL38 Emitter

description

The TIL100 is a high-speed PIN photodiode designed to operate in the reverse-bias mode. It provides low capacitance with high speed and high photosensitivity suitable for near-infrared applications.
mechanical data
The photodiode chip is mounted on a lead frame and molded in black infrared-transmissive plastic. The active chip area is typically 8,83 square millimeters (0.0137 square inches). Its centerline is nominally 4 millimeters (0.157 inch) above the seating plane.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPE TIL100

LARGE-AREA SILICON PHOTODIODE

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$V_{\text {(BR) }}$	Breakdown Voltage	$I_{R}=100 \mu \mathrm{~A}$,	$\mathrm{E}_{\mathrm{e}}{ }^{\text {t }}=0$	30			V
ID	Dark Current	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$,	$\mathrm{E}_{\mathrm{e}}{ }^{\text {d }}=0$		5	50	$n \mathrm{~A}$
IL	Light Current	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$,	$\mathrm{E}_{\mathrm{e}}{ }^{\dagger}=250 \mu \mathrm{~W} / \mathrm{cm}^{2}$ at 940 nm	10	15		$\mu \mathrm{A}$
$\mathrm{C}_{\text {T }}$	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$,	$\mathrm{E}_{\mathrm{e}}^{\dagger}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		35	50	pF
t_{r}	Rise Time	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$,	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		100		ns
${ }_{f}$	Fall Time	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$,	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		100		ns

IIrradiance (E_{e}) is the radiant power per unit area incident on a surface.

TYPICAL CHARACTERISTICS

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES LS400, TIL401 THRU TIL406 N-P-N PLANAR SILICON PHOTOTRANSISTORS

BULLETIN NO. DL-S 12217, NOVEMBER 1974

DESIGNED FOR APPLICATIONS IN CHARACTER RECOGNITION TAPE-READOUT, PHOTO SWITCHING, PROPORTIONAL CONTROL, AND DIFFERENTIAL DETECTION

- Fast Switching Times
- Collector-Emitter Breakdown Voltage . . . 50 V Min
mechanical data
Each device is in a hard glass, hermetically sealed package with a dome-shaped lens. Unit weight is approximately 0.1 gram.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)
Collector-Emitter Voltage . 50 V
Emitter-Collector Voltage . 6 V
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) 50 mW
Operating Case Temperature Range . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{lnch})$ from Case for 10 Seconds $260^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\begin{array}{\|c\|} \hline \text { MIN } \\ \hline 50 \end{array}$	TYP	MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline V \\ \hline \end{array}$
$\mathrm{V}_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=100 \mu \mathrm{~A}, \quad \mathrm{E}_{\mathrm{e}}=0$					
$\mathrm{V}_{\text {(BR)ECO }}$ Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \quad \mathrm{E}_{\mathrm{e}}=0$		6			V
ID Dark Current	$V_{C E}=30 \mathrm{~V}, \quad E_{e}=0$		10		25	nA
	$\begin{array}{ll} \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, & \mathrm{E}_{\mathrm{e}}=0, \\ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} & \\ \hline \end{array}$		1030			$\mu \mathrm{A}$
Light Current	$\begin{aligned} & V_{C E}=5 \mathrm{~V} \\ & E_{e}=9 \mathrm{~mW} / \mathrm{cm}^{2} \\ & \text { See Note } 2 \end{aligned}$	LS400	1			mA
		TIL401	0.5		3	
		TIL402	2		6	
		TIL403	5		10	
		TIL404	8		16	
		TIL405	10		20	
		TIL406	15			
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=0.4 \mathrm{~mA},$ See Note 2	$=9 \mathrm{~mW} / \mathrm{cm}^{2}$		0.3		V

NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Irradiance $\left(E_{\mathrm{e}}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is a tungsten-filament bulb. The wavelength is 0.7 to $1.0 \mu \mathrm{~m}$ determined by a Corning CS7-69 filter.

TYPES LS400, TIL401 THRU TIL406 N-P-N PLANAR SILICON PHOTOTRANSISTORS

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	TYP	UNIT	
$\mathrm{t}_{\mathbf{r}}$	Rise Time	$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{L}}=400 \mu \mathrm{~A}$,	8	$\mu \mathrm{~s}$
t_{f}	Fall Time	$R_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad$ See Figure 1	6	$\mu \mathrm{~s}$

PARAMETER MEASUREMENT INFORMATION

NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide infrared emitter with rise and fall times of less than 50 ns. Incident irradiation is adjusted for $I_{L}=400 \mu \mathrm{~A}$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

DESIGNED FOR HIGH-DENSITY READ OUT

mechanical data

TYPES LS600, TIL601 THRU TIL608
 N-P-N PLANAR SILICON PHOTOTRANSISTORS

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER		TEAT CONDITIONS		TYPE	MIN	TYP	MAX	$\begin{array}{\|c} \hline \text { UNIT } \\ \hline V \\ \hline \end{array}$
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	$E_{e}=0$	ALL	50			
V (BR)ECO	Emitter-Collector Breakdown Voltage	$I_{E}=100 \mu \mathrm{~A}$,	$E_{e}=0$	ALL	7			V
I_{D}	Dark Current	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$,	$E_{\theta}=0$	ALL			25	nA
		$\begin{aligned} & V_{C E}=30 \mathrm{~V} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$	$E_{\mathrm{e}}=0,$	ALL		3		$\mu \mathrm{A}$
IL	Light Current	$V_{C E}=5 \mathrm{~V}$,See Note 2		LS600	0.8			mA
				$\begin{aligned} & \text { TIL601 } \\ & \text { TIL605 } \end{aligned}$	0.5		3	mA
				$\begin{aligned} & \text { TIL602 } \\ & \text { TIL606 } \end{aligned}$	2		5	mA
				TIL603 TIL607	4		8	mA
				TIL604 TIL608	7			mA
VCE(sat)	Collector-Emitter Saturation Voltage	$I_{C}=0.4 \mathrm{~mA},$ See Note 2	$E_{e}=20 \mathrm{~mW} / \mathrm{cm}^{2}$	ALL		0.15		V

NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .
switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

	PAR	TEST CONDITIONS	TYP	UNIT
${ }^{\text {r }}$	Rise Time	$\begin{aligned} & V_{C C}=30 \mathrm{~V}, \quad I_{L}=800 \mu \mathrm{~A} \\ & R_{L}=1 \mathrm{k} \Omega, \quad \text { See Figure } 1 \end{aligned}$	8	μs
tf_{f}	Fall Time		6	

TYPES LS600, TIL601 THRU TIL608 N-P-N PLANAR SILICON PHOTOTRANSISTORS

PARAMETER MEASUREMENT INFORMATION

OUTPUT VOLTAGE WAVEFORM
FIGURE 1
NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide infrared emitter with rise and fall times of less than 50 ns . Incident irradiation is adjusted for $I_{L}=800 \mu \mathrm{~A}$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

TYPICAL APPLICATION DATA

FIGURE 2-LOW-LEVEL DETECTOR AND PREAMPLIFIER

TYPES LS600, TIL601 THRU TIL608
 N-P-N PLANAR SILICON PHOTOTRANSISTORS

TYPICAL APPLICATION DATA

FIGURE 3-OPTICALLY COUPLED AMPLIFIER

TYPES LS600, TIL601 THRU TIL608 N-P-N PLANAR SILICON PHOTOTRANSISTORS

NOTE 2: Irradiance (E_{e}) is the radiant power per unit area incident upon a surface. For this measurement the source is an unfilered tungsten linear-filament lamp operating at a color temperature of 2870 K .

TYPES LS600, TIL601 THRU TIL608
N-P-N PLANAR SILICON PHOTOTRANSISTORS

TYPICAL CHARACTERISTICS

TYPES LS600. TIL601 THRU TIL608 N-P-N PLANAR SILICON PHOTOTRANSISTORS

TYPICAL CHARACTERISTICS

Texas Instruments

TYPES LS600, TIL601 THRU TIL608 N-P-N PLANAR SILICON PHOTOTRANSISTORS

TEXAS INSTRUMENTS CUSTOMIZED OPTOELECTRONIC ARRAYS

The LS600, TIL601 through TIL608 series is available mounted in printed circuit boards for custom-designed array or matrix applications. The array is a complete unit, without the problems associated with small, difficult-to-handle components. These arrays can be designed for punched-card or tape readers, position indicators, pattern and character recognition, shaft encoders, and many other special applications.

Texas Instruments custom-array techniques offer many advantages:

- The arrays are pre-assembled and tested, ready for installation.
- Custom arrays can be manufactured in almost any configuration to allow maximum design flexibility.
- Sensitivity across an entire array will be matched to within 50%.
- Associated components such as ICs and switches can be mounted directly on the printed circuit board.
- Arrays with components firmly soldered into place on both sides of a printed circuit board are more rugged than individually wired sensing devices.

Specifying optoelectronic arrays is easy; all that is required is a print of the array and the desired specifications.
TI sales engineers will assist in developing specifications for special applications.
Standard card-reader and tape-reader arrays are available.

- Spectrally and Mechanically Matched to TIL41 thru TIL50 IR-Emitter Arrays
- Recommended for Application in Tape and Card Readers and Encoders
- Single Element or Arrays from 2 to 10 Elements
- Center-to-Center Spacing of $2,54 \mathrm{~mm}(0.100$ Inch)

TYPE NUMBER	TIL621	TIL622	TIL623	TIL624	TIL625	TIL626	TIL627	TIL628	TIL629	TIL630
NUMBER OF ELEMENTS	1	2	3	4	5	6	7	8	9	10

mechanical data
Each device has a clear molded epoxy body with silver-plated leads.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Emitter Voltage 50 V
Emitter-Collector Voltage 7 V
Continuous Device Dissipation of Each Element at (or below)$25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)50 mW
Operating Free-Air Temperature Range $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature Range $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ below Seating Plane for 3 Seconds $240^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.91 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES TIL621 THRU TIL630
 N-P-N PLANAR SILICON PHOTOTRANSISTORS

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	${ }^{1} \mathrm{C}=100 \mu \mathrm{~A}, \quad \mathrm{E}_{\mathrm{e}}=0$	50			V
$\mathrm{V}_{\text {(BR)ECO }}$ Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \quad \mathrm{E}_{\mathrm{e}}=0$	7			V
	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=0$		10	100	nA
ID Dark Current	$\begin{array}{ll} V_{C E}=30 \mathrm{~V}, & \mathrm{E}_{\mathrm{e}}=0, \\ T_{A}=80^{\circ} \mathrm{C} \end{array}$		1		$\mu \mathrm{A}$
IL Light Current (See Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=5 \mathrm{~mW} / \mathrm{cm}^{2}, \\ & \text { See Note } 3 \end{aligned}$	0.6			mA
$\frac{I_{L} \text { max }}{I_{L} \text { min }}$ Light Current Matching Factor	$\mathrm{V}_{C E}=5 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=5 \mathrm{~mW} / \mathrm{cm}^{2}$,	0.5			
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$\mathrm{I}^{2}=0.4 \mathrm{~mA}, \quad \mathrm{E}_{\mathrm{e}}=5 \mathrm{~mW} / \mathrm{cm}^{2}$		0.25		V

NOTE 2: The single elements only are avallable in the following selected categories of light current:

PARAMETER	TEST CONDITIONS	TIL621-I		TIL621-II		TIL.621-III		TIL621-IV		TIL621-IV		UNIT
		MIN	MAX									
11 Light Cu	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=5 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3	0.6	1.2	1	2	1.75	3.5	2.75	5.5	4.75	9.5	mA

NOTE 3: Irradiance (E_{e}) is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tr_{r}	Rise Time	$\begin{array}{ll} V_{C C}=30 \mathrm{~V}, & \mathrm{I}_{\mathrm{L}}=800 \mu \mathrm{~A}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, & \text { See Figure } 1 \end{array}$		8			μs
t_{f}	Fall Time			6			

PARAMETER MEASUREMENT INFORMATION

NOTES: a. Input irradiance is supplied by a pulsed gallium arsenide infrared emitter with rise and fall times less than 50 ns. Incident irradiation is adjusted for $I_{L}=800 \mu \mathrm{~A}$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 25 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 20 \mathrm{pF}$.

TYPICAL CHARACTERISTICS

FIGURE 2

RELATIVE LIGHT CURRENT
vs
ANGULAR DISPLACEMENT

FIGURE 3

LS600 RELIABILITY DATA

INTRODUCTION

Texas Instruments designs and builds quality and reliability into all the products that it offers in the electronic marketplace. The quality control organization is uniquely responsible for coordinating the total effort and for providing direct action necessary to assure that quality and reliability objectives are met. Accordingly, quality control reaches from raw material inputs to evaluation of finished goods as evidenced by the many inspections and tests shown on the typical light sensor flow diagram in Figure 1.
The reliability data shown in this report is based on extensive tests performed by Texas Instruments to assure continued leadership in optical sensor quality and reliability. More than 31,000 units have been subjected to life test with an accumulation of over $30,000,000$ device hours. The data is complete, representing all devices produced during the years 1966 through 1977. The tests were performed on ungraded, unburned-in devices and are typical of TI sensor products.

OPERATING LIFE TESTS

The $25^{\circ} \mathrm{C}$ life tests were performed with incident light intensity adjusted for power dissipation of each device of 50 milliwatts at 10 volts $\mathrm{V}_{\text {CE }}$. Readings of dark current (ID) and light current (IL) were made at $0,250,500$, and 1000 hours. Failure criteria were $0.2 \mu \mathrm{~A}$ maximum for I_{D} and 20% degradation of limits for IL. A total of 3210 sensors were tested to these criteria with 6 failures. These samples were taken from lots whose total count exceeded $1,050,000$ sensors. Data from these tests are shown in Figure 2.
The $55^{\circ} \mathrm{C}$ life tests were performed with incident light intensity adjusted for power dissipation on each device of 50 milliwatts at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$. Readings of dark current (ID) and light current (I_{L}) were made at 0,168 , and 1000 hours. Failure criteria were $0.2 \mu \mathrm{~A}$ maximum for I_{D} and $\pm 40 \%$ change in I_{L} within original specification limits. A total of 12,059 units were tested to these criteria with 45 failures. These samples were taken from lots whose total count exceeded $7,000,000$ sensors. Data from these tests are shown in Figure 3.

The long-term reliability of the LS600 sensor is demonstrated by the plots shown in Figure 6 and Figure 7. The data is completely representative of all tests conducted during the reporting period. The projected degradation limits are based upon the exponential distribution of failure. Extended tests performed on small samples confirm that the degradation is within the limits as shown.

ENVIRONMENTAL TESTS

The tests listed in Figure 8 were performed on samples of the product with the catastrophic or degradation failures as shown. It must be pointed out that test conditions shown are not the ultimate strength of the product but represent the test requirements imposed by our customers. The ultimate strength of these devices is much higher in most cases. Inquiries concerning response to particular requirements should be addressed to your TI sales representative.

HIGH-TEMPERATURE REVERSE BIAS

Devices are stored in dark ovens at $150^{\circ} \mathrm{C}$ with 45 volts applied for 1000 hours. Readings of dark current (ID), breakdown voltage ($V(B R) C E O)$, and light current (l_{L}) were made at 0,168 , and 1000 hours. Failure criteria were $0.2 \mu \mathrm{~A}$ maximum for I_{D} and 60% degradation within original limits for IL. A total of 12,023 units were tested to these criteria with 64 failures. These samples were taken from lots whose total count exceeded 7,000,000 sensors. Data from these tests are shown in Figure 4.

STORAGE LIFE TESTS

Devices were stored in ovens at $150^{\circ} \mathrm{C}$ for 500 and 1000 hours (depending upon requirements). Readings of dark current (ID) and light current (IL) were made at 0,250 , and 1000 hours. Failure criteria were $0.2 \mu \mathrm{~A}$ maximum for I_{D} and 20% degradation of limits for IL. A total of 1829 units were tested to these criteria with 6 failures. These samples were taken from lots whose total count exceeded 745,000 sensors. Data from these tests are shown in Figure 5.

FIGURE 1. Typical Light Sensor Flow Diagram

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			TOTAL	FAILURE RATE IN \%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
3210	2,847,000	0	6	0.20	0.33	390,000 HOURS

FIGURE 2. Operating Life at $25^{\circ} \mathrm{C}$

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			TOTAL	FAILURE RATE IN\%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
12,059	12,059,000	0	45	0.39	0.45	250,000 HOURS

FIGURE 3. Operating Life at $55^{\circ} \mathrm{C}$.

LS600 RELIABILITY DATA

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			TOTAL	FAILURE RATE IN \%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
12,023	12,023,000	0	64	0.56	0.62	178,000 HOURS

FIGURE 4. High-Temperature Reverse Bias

UNITS TESTED	UNIT HOURS	CATASTROPHIC FAILURES	DEGRADATION FAILURES			
			TOTAL	FAILURE RATE IN\%/1,000 HOURS		MEAN TIME BETWEEN FAILURES
				60\% CONFIDENCE	90\%CONFIDENCE	
1829	963,500	0	0	0.78	1.1	1,040,000 HOURS

FIGURE 5. High-Temperature Storage

Texas Instruments

INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

FIGURE 6. \% ΔI_{L} vs Operating Life at $25^{\circ} \mathrm{C}$

FIGURE 7. $\% \Delta_{L}$ vs Operating Life at $55^{\circ} \mathrm{C}$

MIL-STD. 750 Test Method	Test	Quantity Tested	Failures (Catastrophic or Degradation)
2026	Solderability: $\mathbf{2 4 0}{ }^{\circ} \mathrm{C}, 3$ Minutes	126	0
1051	Temperature Cycle: 5 Cycles, 30 Min ., $\mathbf{- 6 5}$ to $+125^{\circ} \mathrm{C}$	126	0
1051	Temperature Cycle $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}, 5 \mathrm{Cycles}, 30 \mathrm{Minutes}$	11,150	5
1056	Thermal Shock: 5 Cycles	126	0
1021	Moisture Resistance	126	0
2016	"Shock, Impact: $1000 \mathrm{~g}, 5$ Each Axis, 0.5 millisecond	126	0
2056	Vibration, Variable Frequency: 10 g	11,276	11
2046	Vibration Fatigue: $\mathbf{1 0 g}$	126	0
2006	Constant Acceleration: 10kg, 1 Min.	126	0
1001	Barometric Pressure: $15 \mathrm{mmHg}, 45 \mathrm{~V}$	126	0
1071	Hermetic Seal: Test Condition E	11,150	0

FIGURE 8. Environmental Test Results

TIL601HR THROUGH TIL604HR HIGH-RELIABILITY PHOTOTRANSISTORS

Texas Instruments has always been known as a producer of high-quality products, and the LS600 series phototransistor is no exception as evidenced by the testing of more than 31,000 units with an accumulation of over $30,000,000$ hours without a catastrophic failure. This small pill package, developed by Texas Instruments, has an excellent record for reliability over more than 10 years in military and aero-space applications. Utilizing the expertise, techniques, and processes developed during these years of building the LS600 phototransistors to high-reliability customer specifications, Texas Instruments now offers the TIL601HR thru TIL604HR as standard high-reliability devices to customers requiring extra reliability in their applications.

The phototransistors and the complementary TIL23HR and TIL24HR infrared emitters are now available as standard product items. For more information, contact your nearest TI sales representative, or Optoelectronics Department Product Marketing.

Opto-couplers

QUICK REFERENCE GUIDE OPTO-COUPLERS

DEVICE	ISOLATION VOLTAGE (kV)		MINIMUM CTR (\%)	FEATURES
	PEAK	RMS		
4N22 ${ }^{\dagger}$	1.0	-	25	JEDEC, Metal can
$4 \mathrm{~N} 23{ }^{\dagger}$	1.0	-	60	
4N24 ${ }^{+}$	1.0	-	100	
4N25	2.5	-	20	JEDEC, Plastic DIP
4N26	1.5	-	20	
4N27	1.5	-	10	
4N28	0.5	-	10	
4N47	1.0	-	100	JEDEC, Metal can
4N48	1.0	-	200 (800 max)	
4N49	1.0	-	400 (1600 max)	
MCT2	1.5	-	20	Plastic DIP
MCT2E	2.5	-	20	
TIL102	1.0	-	25	Metal can
TIL103	1.0	-	100	
TIL107	1.0	-	4	Metal can
TIL108	1.0	-	14	
TIL11 ${ }^{\text {d }}$	1.5	-	13	Plastic DIP
TIL112	1.5	-	2	
TIL113	1.5	-	300	
TIL114	2.5	-	13	
TIL115	2.5	-	2	
TILI 116	2.5	-	20	
TIL117	2.5	-	50	
TIL118	1.5	-	10	
TIL119	1.5	-	300	
TIL120	1.0	-	25	Metal can
TIL121	1.0	-		
TIL124	5.0	-	10	High voltage, Plastic DIP
TIL125	5.0	-	20	
TIL126	5.0	-	50	
TIL127	5.0	-	300	High voltage, Darlington, Plastic DIP
TIL128	5.0	-		
TIL153	3.54	2.5	10	High voltage, Plastic DIP, UL File E-65085
TIL154	3.54	2.5	20	
TIL155	3.54	2.5	50	
TIL156	3.54	2.5	300	High voltage, Darlington, UL. File E-65085, Plastic DIP
TIL157	3.54	2.5	300	

†JAN, JANTX. JANTXV levels to MIL-S-19500/486A USAF are also available.

JEDEC REGISTERED DEVICES
 gallium arsenide diode infrared source optically coupled TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR

- JAN, JAN TX, JAN TXV Versions Available
- Base Lead Provided for Conventional Transistor Biasing
- High Overall Current Gain . . . 1.5 Typ (4N24)
- High-Gain, High-Voltage Transistor . . . hFE = 800 Typ (4N24),
V (BR)CEO $=35 \mathrm{~V}$ Min
- High-Voltage Electrical Isolation ... 1-kV Rating
- Stable over Wide Temperature Range
*mechanical data

[^7]
TYPES 4N22, 4N23, 4N24

OPTO-COUPLERS
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	4N22			4N23			4N24			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$\begin{array}{ll} I_{C}=100 \mu \mathrm{~A}, & I_{E}=0, \\ I_{F}=0 & \\ \hline \end{array}$	35			35			35			V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\begin{array}{ll} I_{C}=1 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=0 & \end{array}$	35			35			35			V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\begin{aligned} & I_{E}=100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0, \\ & \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$	4			4			4			V	
I_{R}	Input Diode Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$			100			100			100	$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{C}$ (on)	On-State Collector Current	$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{B}=0, \\ I_{F}=2 \mathrm{~mA} & \\ \hline \end{array}$	0.15			0.2			0.4			mA	
		$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{B}=0, \\ I_{F}=10 \mathrm{~mA}, & T_{A}=-55^{\circ} \mathrm{C} \end{array}$	1			2.5			4				
		$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{B}=0, \\ I_{F}=10 \mathrm{~mA} & \end{array}$	2.5	4		6	8		10	15			
		$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{B}=0, \\ I_{F}=10 \mathrm{~mA}, & T_{A}=100^{\circ} \mathrm{C} \end{array}$	1			2.5			4				
${ }^{\text {I }}$ (off)	Off-State Collector Current	$\begin{array}{ll} \mathrm{V}_{C E}=20 \mathrm{~V}, & \mathrm{I}_{\mathrm{B}}=0, \\ \mathrm{I}_{\mathrm{F}}=0 \end{array}$			100			100			100	nA	
		$\begin{array}{ll} V_{C E}=20 \mathrm{~V}, & I_{B}=0, \\ I_{F}=0, & T_{A}=100^{\circ} \mathrm{C} \\ \hline \end{array}$			100			100			100	$\mu \mathrm{A}$	
V_{F}	Input Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \quad \mathrm{~T}_{A}=-55^{\circ} \mathrm{C}$	1		1.5	1		1.5	1		1.5	v	
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	0.8		1.3	0.8		1.3	0.8		1.3		
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	0.7		1.2	0.7		1.2	0.7		1.2		
$V_{C E(s a t)}$	Collector-Emitter Stauration Voltage	$\begin{array}{ll} I_{C}=2.5 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=.20 \mathrm{~mA} & \\ \hline \end{array}$			0.3							v	
		$\begin{array}{ll} I_{C}=5 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=20 \mathrm{~mA} & \\ \hline \end{array}$						0.3					
		$\begin{array}{ll} I_{C}=10 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=20 \mathrm{~mA} & \\ \hline \end{array}$									0.3		
r10	Input-to-Output Internal Resistance	$V_{\text {in-out }}= \pm 1 \mathrm{kV}$, See Note 5	10^{11}			10^{11}			10^{11}			Ω	
$C_{i 0}$	Input-to-Output Capacitance	$\begin{array}{ll} \mathrm{V}_{\text {in-out }}=0, \quad \mathrm{f}=1 \mathrm{MHz}, \\ \text { See Note } 5 \end{array}$			5			5			5	pF	

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		4N22			4N23			4N24			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
t_{r}	Rise Time			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \end{aligned}$	$I F(o n)=10 \mathrm{~mA},$ See Figure 1			15			15			20	$\mu \mathrm{s}$
t_{f}	Fall Time					15			15			20	$\mu \mathrm{s}$		

NOTE 5: These parameters are measured between all the input diode leads shorted together and all the phototransistor leads shorted together.

*PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=100 \mu \mathrm{~s}, \mathrm{duty}$ cycle $\approx 1 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 20 \mathrm{pF}$.
-JEDEC registered data FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

4N23
COLLECTOR CURRENT

FIGURE 3

NOTE 6: This parameter was measured using pulse techniques. $\mathbf{r}_{w}=100 \mu \mathrm{~s}$, duty cycle $=1 \%$.

TYPICAL CHARACTERISTICS
NORMALIZED ON-STATE COLLECTOR CURRENT ${ }^{\dagger}$

NOTE 7: This parameter was measured in the test circult of Figure 1 with R_{L} varied between 40Ω and $10 \mathrm{k} \Omega$.

TYPES 4N22, 4N23, 4N24 JAN, JANTX, AND JANTXV PROCESSING

This processing applies only to opto-couplers ordered under part numbers shown below:

> JAN 4N22, JANTX 4N22, JANTXV 4N22
> JAN 4N23, JANTX 4N23, JANTXV 4N23
> JAN 4N24, JANTX 4N24, JANTXV 4N24

TEST (PER MIL-S-19500/486A)	MIL-STD-750 TEST METHOD	JAN	JANTX	JANTXV
100\% Processing				
Internal visual	2072			x
Storage: $\mathrm{T}_{A}=125^{\circ} \mathrm{C}, \mathrm{t}=72 \mathrm{~h}$ (This test is not required by MIL-S-19500/486A)	-		x	X
Temperature cycle: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, 10$ cycles	1051		x	X
Constant acceleration: $20,000 \mathrm{G}, \mathrm{Y}_{1}$ axis	2006		x	X
High-temperature reverse bias: $I_{F}=0 . T_{A}=125^{\circ} \mathrm{C}, \mathrm{V}_{C B}=20 \mathrm{~V}, \mathrm{t}=96 \mathrm{~h}$	1039		x	x
Power burn-in: $\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}, \mathrm{P}_{\mathrm{D}}=275 \pm 25 \mathrm{~mW}, \mathrm{t}=168 \mathrm{~h}$	1039		x	x
Hermetic seal, fine	1071 Cond. G or H		x	x
Hermetic seal, gross	1071 Cond. C or D		x	x
External visual	2071		x	x
Product Acceptance				
Group A				
External visual: LTPD is 10 for JAN, 7 for JANTX and JANTXV	2071	x	x	x
Electrical: $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, LTPD is 7 for JAN, 5 for JANTX and JANTXV	as needed	X	X	x
Electrical: $T_{A}=100^{\circ} \mathrm{C}$, LTPD is 10 for JAN, 7 for JANTX and JANTXV	as needed	x	X	x
Electrical: $\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$, LTPD is 10 for JAN, 7 for JANTX and JANTXV	as needed	\times	x	x
Group B-1: LTPD $=15$				
Solderability	2026	\times	x	X
Thermal shock	1051 Cond. B	x	X	x
Thermal shock	1056 Cond. A	x	x	x
Hermetic seal, fine	1071 Cond. G or H	\times	\times	x
Hermetic seal, gross	1071 Cond. G or H	x	X	X
Moisture resistance	1021	x	x	x
Group B-2: LTPD $=10$				
Shock: 1500 G	2016	x	x	x
Vibration: 50 G	2056	\times	x	x
Acceleration: 30,000 G	2006	x	x	x
Group B-3: LTPD $=20$				
Isolation voltage: $\mathrm{V}_{10}=150 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, \mathrm{t}=24 \mathrm{~h}$	1016	x	x	x
Group B-4: LTPD is 7 for JAN, 5 for JANTX and JANTXV High temperature life (nonoperating): $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, \mathrm{t}=340 \mathrm{~h}$	1032	x	X	X
Group B-5: LTPD is 7 for JAN, 5 for JANTX and JANTXV Steady-state operating life: $\mathbf{t}=\mathbf{3 4 0} \mathrm{h}$	1027	X	x	x

TYPES 4N22, 4N23, 4N24

JAN, JANTX AND JANTXV PROCESSING

TEST (PER MIL-S-19500/486A)	$\begin{aligned} & \text { MIL-STD- } 750 \\ & \text { TEST METHOD } \end{aligned}$	JAN	JANTX	JANTXV
(Group C tests are run on one lot every six months) Group C-1 Barometric pressure: LTPD $=10$	1001	X	X	X
Group C-2 Physical dimensions: LTPD $=20$	2066	X	X	X
Group C-3 (MIL-STD 202, Method 215) Resistance to solvents: LTPD $=10$	-	X	X	X
Group C-4 Terminal strength	2036 Cond. E	X	X	X
Group C-5 Salt atmosphere: $\operatorname{LTPD}=\mathbf{1 0}$	1041	X	X	X
Group C-6 High-temperature life (nonoperating): $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, \mathrm{t}=1000 \mathrm{~h}$, LTPD is 7 for JAN, 5 for JANTX and JANTXV	1032	X	X	X
```Group C-7 Steady-state operating life: }\mathbf{t=1000 h, LTPD is 7 for JAN, 5 for JANTX and JANTXV```	1027	X	X	X

## COMPATIBLE WITH STANDARD DTL AND TTL INTEGRATED CIRCUITS

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Phototransistor
- High Direct-Current Transfer Ratio
- High-Voltage Electrical Isolation . . . 2.5-kV, 1.5-V, or 0.5-kV Rating
- Plastic Dual-In-Line Package
- High-Speed Switching ... $\mathrm{t}_{\mathrm{r}}=2 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=2 \mu \mathrm{~s}$ Typical
mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$$
\begin{aligned}
& { }^{*} \text { Peak Input-to-Output Voltage: 4N25 . . . . . . . . . . . . . . . . . . . . . . . . . . . } \pm 2.5 \mathrm{kV} \\
& 4 \mathrm{~N} 26,4 \mathrm{~N} 27 \text {. . . . . . . . . . . . . . . . . . . . . . . . . } \pm 1.5 \mathrm{kV} \\
& \text { 4N28 . . . . . . . . . . . . . . . . . . . . . . . . . . . } \pm 0.5 \mathrm{kV}
\end{aligned}
$$

NOTES: 1. This value applies when the base-emitter diode is open-circuited.2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable JEDEC-registered data in effect at the time of publication.

## TYPES 4N25, 4N26, 4N27, 4N28 OPTO-COUPLERS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		4N25, 4N26			4N27, 4N28			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
${ }^{*} V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$I^{\prime}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	70			70			V
${ }^{*} V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	30			30			V		
${ }^{*} \mathrm{~V}$ (BR) V CO	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{B}=0$,	$I_{F}=0$	7			7			V		
${ }^{\prime} \mathrm{I}_{\mathrm{R}}$	Input Diode Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		100			100			$\mu \mathrm{A}$		
*IC(on)	On-State Collector Current   (Phototransistor Operation)	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$,	$I_{F}=10 \mathrm{~mA}$	25			3			mA		
'C(on)	On-State Collector Current (Photodiode Operation)	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$I_{F}=10 \mathrm{~mA}$	20			20			$\mu \mathrm{A}$		
*'C(off)	Off-State Collector Current (Phototransistor Operation)	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$,	$I_{F}=0$		1	50		1	50	nA		
* C (off)	Off-State Collector Current (Photodiode Operation)	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$.	$I_{F}=0$		0.1	20		0.1	20	nA		
${ }^{*} V_{F}$	Input Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$			1.25	1.5		1.25	. 1.5	V		
${ }^{*} \mathrm{~V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$			0.25	0.5		0.25	0.5	V		
10	Input-to-Output Internal Resistance	$\begin{aligned} \mathrm{V}_{\text {in-out }}= & \pm 2.5 \mathrm{kV} \text { for } 4 \mathrm{~N} 25, \\ & \pm 1.5 \mathrm{kV} \text { for } 4 \mathrm{~N} 26,4 \mathrm{~N} 27, \\ & \pm 0.5 \mathrm{kV} \text { for } 4 \mathrm{~N} 28, \\ & \text { See Note } 6 \end{aligned}$		1011	$10^{12}$		1011	$10^{12}$		$\Omega$		
$\mathrm{C}_{\text {io }}$	Input-to-Output Capacitance	$\mathrm{V}_{\text {in-out }}=0, f=1 \mathrm{MHz}$, See Note 6			1			1		pF		

NOTE 6: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together. *JEDEC registered data
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS		TYP	UNIT
$t_{t}$	Rise Time	Phototransistor	$\mathrm{V}_{C C}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0, \quad \mathrm{I}^{\text {c }}$ (on) $=2 \mathrm{~mA}$,	2	
$t_{f}$	Fall Time	Operation	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	See Test Circuit A of Figure 1	2	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Photodiode	$\mathrm{V}_{\text {CC }}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{I} C$ (on) $=20 \mu \mathrm{~A}$,	1	
$\mathrm{t}_{\mathrm{f}}$	Fall Time	Operation	$R_{L}=1 \mathrm{k} \Omega$,	See Test Circuit B of Figure 1	1	$\mu$

PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for:
$I_{C}(o n)=2 \mathrm{~mA}$ (Test Circuit A) or
IC(on) $=\mathbf{2 0 \mu A}$ (Test Circuit B)

test circuit a PHOTOTRANSISTOR OPERATION


VOLTAGE WAVEFORMS


TEST CIRCUIT B PHOTODIODE OPERATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r}<15 \mathrm{~ns}$, duty $\mathbf{c y c l e} \approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1 - SWITCHING TIMES

## GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR

- Very High Current Transfer Ratio . . . 800\% Typ
- Photon Coupling for Isolator Applications
- Base Lead Provided for Conventional Transistor Biasing
- High-Gain, High-Voltage Transistor
- High-Voltage Electrical Isolation . . 1-kV Rating
- Stable over Wide Temperature Range


## description

This opto-coupler features a minimum current transfer ratio (CTR) of $100 \%$ at an input of one milliampere making it ideal for coupling with isolation from low-output MOS and CMOS devices to power devices or other systems. Typical applications include motor-speed controls, numeric control systems, meters, and instrumentation.
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Input-to-Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 1 \mathrm{kV}$
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V
Collector-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V
Emitter-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V
Input Diode Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
Input Diode Continuous Forward Current at (or below) $65^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . . 40 mA
Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Peak Diode Current (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A
Continuous Transistor Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) . . . . . 300 mW
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature $1 / 16 \operatorname{Inch}(1.6 \mathrm{~mm})$ from Case for 10 Seconds . . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This values applies for $\mathrm{t}_{\mathrm{w}} \leqslant 1 \mu \mathrm{~s}, \mathrm{PRR} \leqslant 300 \mathrm{pps}$.
3. Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.

## TYPES 4N47, 4N48, 4N49 OPTO-COUPLERS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	4N47			4N48			4N49			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$V$ (BR)CBO	Collector-Base   Breakdown Voltage		$\begin{array}{ll} I_{C}=100 \mu A, & I_{E}=0, \\ I_{F}=0 \end{array}$	35			35			35			V
$V$ (BR)CEO	Collector-Emitter Breakdown Voltage	$\begin{array}{ll} I_{C}=1 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=0 & \end{array}$	35			35			35			V	
$V$ (BR)EBO	Emitter-Base   Breakdown Voltage	$\begin{array}{ll} I_{E}=100 \mu A, \quad I_{C}=0, \\ I_{F}=0 & \\ \hline \end{array}$	4			4			4			V	
$I_{R}$	Input Diode Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$			100			100			100	$\mu \mathrm{A}$	
'C(on)	On-State   Collector Current	$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{B}=0, \\ I_{F}=1 \mathrm{~mA} & \\ \hline \end{array}$	1			2		8	4		16	mA	
		$\begin{array}{ll} \hline V_{C E}=5 \mathrm{~V}, & I_{B}=0, \\ I_{F}=1 \mathrm{~mA}, & T_{A}=-55^{\circ} \mathrm{C} \\ \hline \end{array}$	0.7			1.4			2.8				
		$V_{C E}=5 \mathrm{~V}$, $I_{B}=0$,   $I_{F}=1 \mathrm{~mA}$, $T_{A}=100^{\circ} \mathrm{C}$	0.2			0.4			0.8				
		$V_{C E}=5 \mathrm{~V}$, $I_{B}=0$,   $I_{F}=10 \mathrm{~mA}$, See Note 4				100			110				
${ }^{\text {I C }}$ (off)	Off-State   Collector Current	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, \quad I_{B}=0, \\ & I_{F}=0 \end{aligned}$		6	100		6	100		6	100	nA	
		$\begin{array}{ll} \hline V_{C E}=20 \mathrm{~V}, & I_{B}=0, \\ I_{F}=0, & T_{A}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		4	100		4	100		4	100	$\mu \mathrm{A}$	
$V_{F}$	Input Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \quad \mathrm{~T}_{A}=-55^{\circ} \mathrm{C}$	1		1.7	1		1.7	1		1.7	V	
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$,	0.8	1.4	1.5	0.8	1.4	1.5	0.8	1.4	1.5		
		$I_{F}=10 \mathrm{~mA}, \quad T_{A}=100^{\circ} \mathrm{C}$	0.7		1.3	0.7		1.3	0.7		1.3		
$V_{C E}$ (sat)	Collector-Emitter   Saturation Voltage	$\begin{array}{ll} I_{C}=1 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=1 \mathrm{~mA} & \\ \hline \end{array}$			0.3			0.3			0.3	V	
		$\begin{array}{ll} I_{C}=10 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=10 \mathrm{~mA} & \\ \hline \end{array}$			0.3			0.3			0.3		
rı	Input-to-Output Internal Resistance	$V_{\text {in-out }}= \pm 1 \mathrm{kV}$, See Note 5	$10^{11} 10^{12}$			$10^{11} 10^{12}$			$10^{11} 10^{12}$			$\Omega$	
$C_{i o}$	Input-to-Output Capacitance	$v_{\text {in-out }}=0, \quad f=1 \mathrm{MHz},$   See Note 5		2.5	5		2.5	5		2.5	5	pF	

NOTES: 4. This parameter must be measured using pulse techniques, $t_{w}=100 \mu \mathrm{~s}$, duty cycle $\leqslant 1 \%$.
5. These parameters are measured between both input diode leads shorted together and all the phototransistor leads shortcd together.
*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Phototransistor Operation	$V_{C C}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad I_{C(o n)}=5 \mathrm{~mA},$   See Test Circuit A of Figure 1	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	10	20	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time				10	20	
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Photodiode Operation	$V_{C C}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$   See Test Circuit B of Figure	$R_{L}=100 \Omega,$	850		ns
$\mathrm{t}_{\mathrm{f}}$	Fall Time				850		

[^8]
## TYPES 4N47, 4N48, 4N49 OPTO-COUPLERS

## PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input pulse for:
${ }^{\prime} \mathrm{C}(\mathrm{on})=5 \mathrm{~mA}$ (Test Circuit A) or
${ }^{I} C(o n)=50 \mu A$ (Test Circuit B)


TEST CIRCUIT A PHOTOTRANSISTOR OPERATION


VOLTAGE WAVEFORMS


TEST CIRCUIT B PHOTODIODE OPERATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, duty cycle $\approx 1 \%$. For Test Circuit A, $\mathrm{t}_{\mathrm{w}}=100 \mu \mathrm{~s}$. For Test Circuit B, $\mathrm{t}_{\mathrm{w}}=1 \mu \mathrm{~s}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

## TYPICAL CHARACTERISTICS

INPUT DIODE FORWARD CONDUCTION CHARACTERISTICS


FIGURE 2

## TYPES 4N47, 4N48, 4N49 <br> OPTO-COUPLERS

TYPICAL CHARACTERISTICS

4N47
COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE


FIGURE 3
4N47
COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE


FIGURE 5

4N47
COLLECTOR CURRENT
COLLECTOR-EMITTER VOLTAGE


Figure 4

COLLECTOR CURRENT
COLLECTOR-EMITTER VOLTAGE


NOTE 6: This parameter was measured using pulse techniques. $t_{w}=100 \mu \mathrm{~s}$, duty cycle $=1 \%$.

# TYPES 4N47, 4N48, 4N49 OPTO-COUPLERS 

## TYPICAL CHARACTERISTICS

$4 N 47$
$4 N 47$

## COLLECTOR CURRENT

vs
INPUT DIODE FORWARD CURRENT


FIGURE 7

COLLECTOR CURRENT
vs
COLLECTOR-BASE VOLTAGE
(PHOTODIODE OPERATION)


TRANSISTOR COLLECTOR CHARACTERISTICS


RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE


NOTE 6: This parameter was measured using pulse techniques. $t_{w}=100 \mu \mathrm{~s}$, duty cycle $=1 \%$.

## GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR

- Photon Coupling for Isolator Applications
- Base Lead Provided for Conventional Transistor Biasing
- High Overall Current Gain . . . 1.5 Typ (TIL103)
- High-Gain, High-Voltage Transistor . . . hFE = 500 Typ (TIL103),
$V_{\text {(BR)CEO }}=35 \mathrm{~V}$ Min
- High-Voltage Electrical Isolation . . . 1-kV Rating
- Stable over Wide Temperature Range
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS			TIL102		TIL103		UNIT			
			MIN	TYP MAX	MIN	TYP MAX							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage					$\mathrm{I}^{\mathrm{C}}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	35		35		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	35		35		V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage		$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	4		4		V			
$\mathrm{I}_{\text {R }}$	Input Diode Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$				100		100	$\mu \mathrm{A}$			
IC(on)	On-State   Collector Current	Phototransistor Operation	$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$I_{F}=10 \mathrm{~mA}$	2.5	6	10	15	mA			
		Photodiode Operation	$V_{C B}=5 \mathrm{~V}$,	$I_{E}=0$,	$1 \mathrm{~F}=10 \mathrm{~mA}$		40		40	$\mu \mathrm{A}$			
'C(off)	Off-State   Collector Current		$V_{C E}=20 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$		6100		6100	nA			
		Operation	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$I_{B}=0$	$I_{F}=0,$		4		4	$\mu \mathrm{A}$			
		Photodiode Operation	$V_{C B}=20 \mathrm{~V}$,	${ }^{\prime} \mathrm{E}=0$.	$I_{F}=0$		0.1		0.1	nA			
hfe	Transistor Static Forward Current Transfer Ratio		$V_{C E}=5 \mathrm{~V}$,	$I_{C}=10$	, $\mathrm{F}=0$		300		500				
$\mathrm{V}_{\mathrm{F}}$	Input Diode Static Forward Voltage		$I_{F}=10 \mathrm{~mA}$				1.3		1.3	V			
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage		$\mathrm{I}^{\prime} \mathrm{C}=2.5 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$I_{F}=20 \mathrm{~mA}$		0.3			$\checkmark$			
			$1 \mathrm{C}=10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{F}_{\mathrm{F}}=20 \mathrm{~mA}$				0.3				
$\mathrm{r}_{10}$	Input-to-Output Internal Resistance		$\mathrm{V}_{\text {in-out }}= \pm 1 \mathrm{k}$	See Not		$10^{11}$	$10^{12}$	$10^{11}$	$10^{12}$	$\Omega$			
$\mathrm{C}_{\text {io }}$	Input-to-Output Capacitance		$\mathrm{V}_{\text {in-out }}=0$,	$\mathrm{f}=1 \mathrm{MH}$	See Note 3		2.5		2.5	pF			

NOTE 3: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	TIL102	TIL103	UNIT
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Phototransistor Operation	$\begin{aligned} & V_{C C}=20 \mathrm{~V}, I_{B}=0, \quad I C(o n)=5 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \text { See Test Circuit A of Figure } 1 \end{aligned}$	3	6	$\mu \mathrm{s}$
${ }_{\text {t }}$	Fall Time			3	6	
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Photodiode $V_{C C}=20 \mathrm{~V}, I_{E}=0, \quad I C($ on) $=50 \mu \mathrm{~A}$,   Operation $R_{L}=100 \Omega$, See Test Circuit $B$ of Figure 1		150	150	$\mu \mathrm{s}$
${ }_{\text {t }}$	Fall Time			150	150	

## TYPES TIL102, TIL103 <br> OPTO-COUPLERS

## PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input pulse for:
${ }^{\mathrm{I}} \mathrm{C}(\mathrm{on})=5 \mathrm{~mA}$ (Test Circuit A) or
${ }^{I} \mathrm{C}(\mathrm{on})=50 \mu \mathrm{~A}$ (Test Circuit B)


TEST CIRCUIT A PHOTOTRANSISTOR OPERATION


VOLTAGE WAVEFORMS


TEST CIRCUIT B PHOTODIODE OPERATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, duty cycle. $\approx 1 \%$. For Test Circuit A, $\mathrm{t}_{\mathrm{w}}=100 \mu \mathrm{~s}$. For Test Circuit B, $\mathrm{t}_{\mathrm{w}}=1 \mu \mathrm{~s}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{f}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

TIL 102
COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE


FIGURE 2

TIL 103 COLLECTOR CURRENT

COLLECTOR-EMITTER VOLTAGE


NOTE 4: This parameter was measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{1 0 0} \mu \mathrm{s}$, duty cycle $=\mathbf{1 \%}$.

## TYPES TIL102, TIL103 OPTO-COUPLERS

TYPICAL CHARACTERISTICS
NORMALIZED ONSTATE COLLECTOR CURRENT ${ }^{\dagger}$
vs


FREE-AIRTEMPERATURE


FIGURE 4
PHOTOTRANSISTOR COLLECTOR CURRENT
INPUT-DIODE FORWARD CURRENT


TIL102


Normalized to value at $T_{A}=25^{\circ} \mathrm{C}$
FIGURE 5

# NOT RECOMMENDED FOR NEW DESIGN 

FOR NEW DESIGN, USE 4N22, 4N23, or 4N24

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 4.5 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)


NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ free-alr temperature at the rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. In these devices, a significant portion of the total dissipation is in the input diode. $\mathrm{P}_{\mathrm{T}}=\mathrm{V}_{\mathrm{CE}}{ }^{\mathrm{I}_{\mathrm{C}}}+\mathrm{V}_{\mathrm{F}} \mathrm{I}_{\mathrm{F}}$.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		$\begin{array}{\|c\|} \hline \text { TEST } \\ \text { FIGURE } \end{array}$	TEST CONDITIONS		TIL107			TIL108			UNIT	
		MIN			TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{C}(0 n)$	On-State Collector Current		A	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$ 。	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	0.5	1		1.6	2		mA
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,		$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$	1.6	4		5	7			
1 C (off)	Off-State Collector Current	B	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=0$			25			25	nA	
$V_{C E}$ (sat)	Collector-Emitter   Saturation Voltage	C	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$,	$I^{\prime} \mathrm{C}=125 \mu \mathrm{~A}$			0.3			0.3	V	
$V_{F}$	Input-Diode Static Forward Voltage	D	$I_{F}=15 \mathrm{~mA}$				1.5			1.5	V	
rio	Input-to-Output Internal Resistance		$\mathrm{V}_{\text {in-out }}= \pm 1 \mathrm{kV}$			$>1013$			$>10^{13}$		$\Omega$	
$c_{i o}$	Input-to-Output Internal Capacitance		$V_{\text {in-out }}=100 \mathrm{~V}, \mathrm{f}=50 \mathrm{MHz}$			0.4			0.4		pF	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST FIGURE	TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d}}$	Delay Time	$E$	$\mathrm{V}_{\mathrm{CC}}=35 \mathrm{~V}$,	$\mathrm{I} C\left(\begin{array}{l}\text { on }\end{array}=500 \mu \mathrm{~A}\right.$,	$R_{L}=1 \mathrm{k} \Omega$		3.0		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}$	Rise Time						5.0		$\mu \mathrm{s}$
$t_{\text {s }}$	Storage Time						0.5		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time						5.0		$\mu \mathrm{s}$

TYPICAL CHARACTERISTICS

TIL107
ON-STATE COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE


TIL108
ON-STATE COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE


NOTE 3: This parameter must be measured using pulse techniques. $t_{p}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

## TYPES TIL107, TIL108 <br> OPTO-COUPLERS



NOTE 3: This parameter must be measured using pulse techniques. $t_{p}=\mathbf{3 0 0} \boldsymbol{\mu s}$, duty cycle $\leqslant \mathbf{2 \%}$.

## TYPES TIL107, TIL108 OPTO-COUPLERS



NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant \mathbf{1 0 0} \mathrm{ns}, \mathrm{t}_{\mathrm{w}}=50 \mu \mathrm{~s}$, duty cycle $\approx 50 \%$.


POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

## COMPATIBLE WITH STANDARD DTL AND TTL INTEGRATED CIRCUITS

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Phototransistor
- High Direct-Current Transfer Ratio
- High-Voltage Electrical Isolation . . . 1.5-kV or 2.5-kV Rating
- Plastic Dual-In-Line Package
- High-Speed Switching: $\mathrm{t}_{\mathrm{r}}=5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=5 \mu \mathrm{~s}$ Typical
mechanical data


#### Abstract

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering conditions. Unit weight is approximately 0.52 grams.



absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Input-to-Output Voltage: TIL111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 1.5 \mathrm{kV}$
TIL114, TIL116, TIL117 $\pm 2.5 \mathrm{kV}$
Collector-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 V
Collector-Emitter Voltage (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Emitter-Collector Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Emitter-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input-Diode Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $3 V$
Input-Diode Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) . . . . 100 mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature:
Infrared-Emitting Diode (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mW
Phototransistor (See Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mW
Total, Infrared-Emitting Diode plus Phototransistor (See Note 5) . . . . . . . . . . . . . . . 250 mW
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 10 Seconds . . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$
NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Derate linearty to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

# TYPES TIL111, TIL114, TIL116, TIL117 OPTO-COUPLERS 

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER		TEST CONDITIONS	$\begin{aligned} & \hline \text { TIL111 } \\ & \text { TIL114 } \end{aligned}$			TIL116			TIL117			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$\begin{array}{ll} I_{C}=10 \mu A, & I_{E}=0, \\ I_{F}=0 & \end{array}$	70			70			70			V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage		$\begin{array}{ll} I_{C}=1 \mathrm{~mA}, & I_{B}=0, \\ I_{F}=0 \end{array}$	30			30			30			$v$	
$V$ (BR)EBO	Emitter-Base   Breakdown Voltage		$\begin{aligned} & I_{E}=10 \mu A, \quad I_{C}=0, \\ & I_{F}=0 \end{aligned}$	7			7			7			V	
$I_{R}$	Input Diode Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	10			10			10			$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{C}$ (on)	On-State   Collector   Current	Phototransistor Operation	$\begin{aligned} & V_{C E}=0.4 \mathrm{~V}, \quad I_{F}=16 \mathrm{~mA}, \\ & I_{B}=0 \end{aligned}$	27			25			59			mA	
			$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & I_{B}=0 \end{aligned}$											
		Photodiode Operation	$\begin{aligned} & V_{C B}=0.4 \mathrm{~V}, \quad I_{F}=16 \mathrm{~mA}, \\ & I_{E}=0 \end{aligned}$	7	20		720			720			$\mu \mathrm{A}$	
${ }^{\prime}$ C(off)	Off-State   Collector   Current	Phototransistor Operation	$\begin{array}{ll} V_{C E}=10 . V, & I_{F}=0, \\ I_{B}=0 \end{array}$		1	50		1	50		1	50	nA	
		Photodiode Operation	$\begin{aligned} & \mathrm{V}_{C B}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$		0.1	20		0.1	20		0.1	20		
$h_{\text {FE }}$	Transistor Static   Forward Current   Transfer Ratio		$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=10 \mathrm{~mA}, \\ & I_{F}=0 \end{aligned}$	100	300					200	550			
			$\begin{aligned} & \mathrm{V}_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \\ & I_{\mathrm{F}}=0 \end{aligned}$				100							
$V_{F}$	Input Diode Static Forward Voltage		$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		1.2	1.4					1.2	1.4	V	
			$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$					1.25	1.5					
$V_{C E}($ sat $)$	Collector-Emitter Saturation Voltage		$\begin{array}{ll} I_{C}=2 \mathrm{~mA}, & I_{F}=16 \mathrm{~mA}, \\ I_{B}=0 & \\ \end{array}$		0.25								V	
			$\begin{aligned} & I_{C}=2.2 \mathrm{~mA}, \quad I_{F}=15 \mathrm{~mA}, \\ & I_{B}=0 \end{aligned}$					0.25	0.4					
			$\begin{aligned} & I_{C}=0.5 \mathrm{~mA}, \quad I_{F}=10 \mathrm{~mA}, \\ & I_{B}=0 \end{aligned}$								0.25	0.4		
rı0	Input-to-Output Internal Resistance		$V_{\text {in-out }}= \pm 1.5 \mathrm{kV}$ for TIL111, $\pm 2.5 \mathrm{kV}$ for all others,   See Note 6	$10^{11}$			$10^{11}$			$10^{11}$			$\Omega$	
$\mathrm{C}_{\text {io }}$	Input-to-Output   Capacitance		$\begin{aligned} & \mathrm{V}_{\text {in-out }}=0, \quad \mathrm{f}=1 \mathrm{MHz}, \\ & \text { See Note } 6 \end{aligned}$		1	1.3		1	1.3		1	1.3	pF	

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	$\begin{aligned} & \text { TIL111 } \\ & \text { TIL114 } \end{aligned}$			TIL116			TIL117			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Phototransistor Operation		$\begin{array}{ll} V_{C C}=10 \mathrm{~V}, & I C(\text { on })=2 \mathrm{~mA}, \\ R_{L}=100 \Omega, \end{array}$   See Test Circuit A of Figure 1		5	10		5	10		5	10	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time				5	10		5	10		5	10		
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Photodiode Operation	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \quad \mathrm{I} C(o n)=20 \mu \mathrm{~A}, \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \end{aligned}$   See Test Circuit B of Figure 1		1			1			1		$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{f}}$	Fall Time				1			1			1			

## TYPES TIL111, TIL114, TIL116, TIL117 OPTO-COUPLERS

## PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT A PHOTOTRANSISTOR OPERATION

Adjust amplitude of input pulse for:
$\mathrm{I} C(o n)=2 \mathrm{~mA}$ (Test Circuit A) or
$\mathrm{IC}(o n)=20 \mu \mathrm{~A}$ (Test Circuit B)


VOLTAGE WAVEFORMS


TEST CIRCUIT B PHOTODIODE OPERATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, duty $\mathbf{c y c l e} \approx 1 \%$, $\mathrm{t}_{\mathrm{w}}=100 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS


## TYPICAL CHARACTERISTICS

TIL111, TIL114
COLLECTOR CURRENT
VS COLLECTOR-EMITTER VOLTAGE


TIL117
COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE


TIL116
COLLECTOR CURRENT
vs COLLECTOR-EMITTER VOLTAGE


RELATIVE ON-STATE COLLECTOR CURRENT vs
FREE-AIR TEMPERATURE


NOTES: 7. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.
8. These parameters were measured using pulse techniques. $t_{w}=1 \mathrm{~ms}$, duty cycle $\leqslant 2 \%$.

## TYPES TIL111, TIL114, TIL116, TIL117 OPTO-COUPLERS

## TYPICAL CHARACTERISTICS



NOTE 7: These parameters were measured using pulse techniques. $t_{w}=1 \mathrm{~ms}$, duty cycle $\leqslant \mathbf{2 \%}$

## - Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Phototransistor

- High Direct-Current Transfer Ratio
- Base Lead Provided for Conventional Transistor Biasing (TIL112, TIL115)
- High-Voltage Electrical Isolation . . . 1.5-kV or 2.5-kV Rating
- Plastic Dual-In-Line Package
- High-Speed Switching: $\mathrm{t}_{\mathrm{r}}=2 \mu \mathrm{~s}, \mathrm{tf}_{\mathrm{f}}=2 \mu \mathrm{~s}$ Typical
mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)


[^9]
## TYPES TIL112, TIL115, TIL118

OPTO-COUPLERS
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	TIL112			TIL115			TIL118			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base   Breakdown Voltage			$\begin{array}{ll} I_{C}=10 \mu A, & I_{E}=0, \\ I_{F}=0 \end{array}$	30			30						V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage		$\begin{aligned} & I_{C}=1 \mathrm{~mA}, \quad I_{B}=0, \\ & I_{F}=0 \end{aligned}$	20			20			20			V	
$V$ (BR)EBO	Emitter-Base   Breakdown Voltage		$\begin{aligned} & I_{E}=10 \mu \mathrm{~A}, \quad I_{C}=0, \\ & I_{F}=0 \end{aligned}$	4			4						V	
$V$ (BR)ECO	Emitter-Collector Breakdown Voltage		$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{F}}=0$							4			V	
${ }^{\prime} \mathrm{C}(\mathrm{on})$	On-State   Collector   Current	Phototransistor Operation	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ \mathrm{I}_{\mathrm{B}}=0 \end{array}$	0.2	2		0.2	2		1	2		mA	
		Photodiode Operation	$\begin{array}{ll} V_{C B}=5 \mathrm{~V}, \quad I_{F}=10 \mathrm{~mA}, \\ I_{E}=0 & \\ \end{array}$	2	10		2	10					$\mu \mathrm{A}$	
${ }^{\text {I }}$ (off)	Off-State   Collector   Current	Phototransistor   Operation	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{I}_{\mathrm{B}}=0 \end{aligned}$		1	100		1	100		1	100	A	
		Photodiode Operation	$\begin{array}{ll} V_{C B}=5 \mathrm{~V}, & \mathrm{I}_{\mathrm{F}}=0, \\ \mathrm{I}_{\mathrm{E}}=0 \end{array}$		0.1	50		0.1	50					
$h_{\text {FE }}$	Transistor Static Forward Current Transfer Ratio		$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=10 \mathrm{~mA}, \\ & I_{F}=0 \end{aligned}$		200		50	200						
$V_{F}$	Input Diode Static Forward Voltage		$I_{F}=10 \mathrm{~mA}$		1.2	1.5		1.2	1.5		1.2	1.5	V	
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage		$\begin{array}{ll} I_{C}=2 \mathrm{~mA}, \quad I_{F}=50 \mathrm{~mA}, \\ I_{B}=0 \end{array}$			0.5			0.5			0.5	V	
${ }^{10}$	Input-to-Output Internal Resistance		$\begin{aligned} & V_{\text {in-out }}= \pm 1.5 \mathrm{kV}, \\ & \text { See Note } 6 \end{aligned}$	$10^{11}$						$10^{11}$			$\Omega$	
			$\begin{aligned} & V_{\text {in-out }}= \pm 2.5 \mathrm{kV}, \\ & \text { See Note } 6 \end{aligned}$				$10^{11}$							
$\mathrm{C}_{\text {io }}$	Input-to-Output   Capacitance		$\begin{aligned} & V_{\text {in-out }}=0, \quad f=1 \mathrm{MHz}, \\ & \text { See Note } 6 \end{aligned}$		1	2		1	2		1	2	pF	

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together. $t$ References to the base are not applicable for the TIL118.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	TIL112			TIL115			TIL118			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$t_{r}$	Rise Time	Phototransistor Operation		$\begin{array}{ll} V_{C C}=10 \mathrm{~V}, & I C(\text { on })=2 \mathrm{~mA}, \\ R_{L}=100 \Omega, & \end{array}$   See Test Circuit A of Figure 1		2	15		2	15		2	15	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time				2	15		2	15		2	15		
${ }_{t}$	Rise Time	Photodiode Operation	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \quad \mathrm{I} C(o n)=20 \mu \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \end{aligned}$   See Test Circuit B of Figure 1		1			1					$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{f}}$	Fall Time				1			1						

# TYPES TIL112, TIL115, TIL113 OPTO-COUPLERS 

## PARAMETER MEASUREMENT INFORMATION



NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{duty} \mathrm{cyc}$ le $\approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS


NOTES: 7. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.
8. These parameters were measured using pulse techniques $\mathrm{t}_{\mathrm{w}}=1 \mathrm{~ms}$, duty cycle $\leqslant 2 \%$.

TYPICAL CHARACTERISTICS


NOTE 8: These parameters were measured using pulse techniques. $\mathbf{t}_{w}=1 \mathrm{~ms}$, duty cycle $\leqslant 2 \%$.

# - Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Darlington-Connected Phototransistor <br> - High Direct-Current Transfer Ratio . . . 300\% Minimum at 10 mA <br> - High-Voltage Electrical Isolation . . . 1500-Volt Rating <br> - Plastic Dual-In-Line Package <br> - Typical Applications Include Remote Terminal Isolation, SCR and Triac Triggers, Mechanical Relays, and Pulse Transformers 

mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an $n$ - $p$-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no-deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Input-to-Output Voltage ..... $\pm 1.5 \mathrm{kV}$
Collector-Base Voltage (TIL113) ..... 30 V
Collector-Emitter Voltage (See Note 1) ..... 30 V
Emitter-Collector Voltage ..... 7 V
Emitter-Base Voltage (TIL113) . ..... 7 V
Input-Diode Reverse Voltage ..... 3 V
Input-Diode Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) ..... 100 mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature:
infrared-Emitting Diode (See Note 3) ..... 150 mW
Phototransistor (See Note 4) ..... 150 mW
Total (Infrared-Emitting Diode plus Phototransistor, See Note 5) ..... 250 mW
Storage Temperature Range ..... $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}$ ( $1 / 16$ Inch) from Case for 10 Seconds ..... $260^{\circ} \mathrm{C}$
NOTES: 1. This value applies when the base-emitter diode is open-circuited.2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## TYPES TIL113, TIL119

OPTO-COUPLERS
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			TIL113			TIL119			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX							
	Collector-Base   Breakdown Voltage				$I_{C}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	30						V
$V$ (BR)CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}$,	$\mathrm{I}_{8}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	30			30			V			
$V$ (BR)EBO	Emitter-Base   Breakdown Voltage	$I_{E}=10 \mu \mathrm{~A}$,	${ }^{1} \mathrm{C}=0$,	$\mathrm{I}_{\mathrm{F}}=0$	7						V			
$V$ (BR)ECO	Emitter-Collector Breakdown Voltage	$I_{E}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{F}}=0$					7			V			
IC(on)	On-State   Collector Current	$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$I_{F}=10 \mathrm{~mA}$	30	100			160		mA			
		$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$					30						
${ }^{\text {I }}$ (off)	Off-State   Collector Current	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{I}_{\mathrm{F}}=0$			100			100	nA			
$h_{\text {FE }}$	Transistor Static Forward Current Transfer Ratio	$V_{C E}=1 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}, I_{F}=0$		15,000									
$V_{F}$	Input Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$					1.5			1.5	V			
$V_{C E}$ (sat)	Collector-Emitter	$\mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$			1				V			
	Saturation Voltage	$\mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{F}}=10$							1				
rıo	Input-to-Output   Internal Resistance	$V_{\text {in-out }}= \pm 1.5 \mathrm{kV}$, See Note 6			$10^{11}$			$10^{11}$			$\Omega$			
$\mathrm{Cio}_{\text {i }}$	Input-to-Output   Capacitance	$V_{\text {in-out }}=0$,	$\mathrm{f}=1 \mathrm{MH}$	See Note 6		1	1.3		1	1.3	pF			

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.
${ }^{\dagger}$ References to the base are not applicable to the TIL119.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature


## PARAMETER MEASUREMENT INFORMATION



NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leq 15 \mathrm{~ns}, \mathrm{duty}$ cycle $\approx 1 \%$, $t_{w}=500 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 20 \mathrm{pF}$.

> TYPES TIL113, TIL119 OPTO-COUPLERS

## TYPICAL CHARACTERISTICS



[^10]
## TYPES TIL113, TIL119

## OPTO-COUPLERS

TYPICAL CHARACTERISTICS

INPUT DIODE FORWARD CONDUCTION CHARACTERISTICS


FIGURE 8

RELATIVE COLLECTOR-EMITTER SATURATION VOLTAGE
vs
FREE-AIR TEMPERATURE


FIGURE 6

TIL113
TRANSISTOR STATIC FORWARD CURRENT TRANSFER RATIO

COLLECTOR CURRENT


Figure 7

## GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR

- Photon Coupling for Isolator Applications
- High Overall Current Gain . . . 1.0 Typ (TIL121)
- High-Gain, High-Voltage Transistor ... $V_{(B R) C E O}=35 \mathrm{~V}$ Min
- High-Voltage Electrical Isolation . . 1-kV Rating
- Stable Over Wide Temperature Range
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)



## TYPES TIL120, TIL121 <br> OPTO-COUPLERS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TIL120			TIL121			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$I_{C}=1 \mathrm{~mA}, \quad I_{F}=0$	35			35			V
$\mathrm{V}_{\text {(BR)ECO }}$ Emitter-Collector Breakdown Voltage	$I_{E}=100 \mu A, \quad I_{F}=0$	7			7			V
$\mathrm{I}_{\mathrm{R}} \quad$ Input Diode Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$			100			100	$\mu \mathrm{A}$
IC(on) On-State Collector Current	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	2.5	6		5	10		mA
IC(off) Off-State Collector Current	$\mathrm{V}_{C E}=20 \mathrm{~V}, \quad 1 \mathrm{I}_{\mathrm{F}}=0$		6	100		6	100	nA
	$\begin{array}{ll} V_{C E}=20 \mathrm{~V}, & I_{F}=0, \\ T_{A}=100^{\circ} \mathrm{C} & \\ \hline \end{array}$		4			4		$\mu \mathrm{A}$
$V_{F} \quad$ Input Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$			1.3			1.3	V
Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}, \quad \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$			0.3				V
	$I_{C}=10 \mathrm{~mA}, \quad I_{F}=20 \mathrm{~mA}$						0.3	
$\mathrm{rio}_{\text {io }} \quad$ Input-to-Output Internal Resistance	$\mathrm{V}_{\text {in-out }}= \pm 1 \mathrm{kV}$, See Note 3	$10^{11}$	$10^{12}$		$10^{11}$	$10^{12}$		$\Omega$
$\mathrm{C}_{\text {io }} \quad$ Input-to-Output Capacitance	$V_{\text {in-out }}=0, \quad f=1 M H z,$   See Note 3		2.5			2.5		pF

NOTE 3: These parameters are measured between both input diode leads shorted together and both phototransistor leads shorted together.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		TIL120			TIL 121			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
$\mathrm{tr}_{\mathrm{r}}$	Rise Time			$\begin{array}{ll} V_{C C}=20 \mathrm{~V}, & I_{C(0 n)}=5 \mathrm{~mA} \\ R_{\mathrm{L}}=100 \Omega, & \text { See Figure } 1 \\ \hline \end{array}$			3	20		6	20	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time		3			20		6	20			

# TYPES TIL120, TIL121 <br> OPTO-COUPLERS 

## PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT

Adjust amplitude of input pulse for $\mathrm{IC}($ on $)=5 \mathrm{~mA}$


VOLTAGE WAVEFORMS

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, duty $\mathrm{cycle} \approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{c}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS


NOTE 4: This parameter was measured using pulse techniques. $t_{w}=100 \mu \mathrm{~s}$, duty cycle $=1 \%$.

## TYPES TIL120, TIL121 <br> OPTO-COUPLERS

TYPICAL CHARACTERISTICS


NOTE 5: Thase parameters were measured in the test circuit of Figure 1 with $R_{L}$ varied between $40 \Omega$ and $10 \mathrm{k} \Omega$.

## COMPATIBLE WITH STANDARD DTL AND TTL INTEGRATED CIRCUITS

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Phototransistor
- High Direct-Current Transfer Ratio
- High-Voltage Electrical Isolation . . 5000-V Rating
- Plastic Dual-In-Line Package
- High-Speed Switching: $t_{r}=2 \mu s, t_{f}=2 \mu s$ Typical
- Typical Applications Include Remote Terminal Isolation, SCR and Triac Triggers, Mechanical Relays, and Pulse Transformers


## mechanical data

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Input-to-Output Voltage ..... $\pm 5 \mathrm{kV}$
Collector-Base Voltage ..... 70 V
Collector-Emitter Voltage (See Note 1) ..... 30 V
Emitter-Collector Voltage ..... 7 V
Emitter-Base Voltage ..... 7 V
Input-Diode Reverse Voltage ..... 3 V
Input-Diode Continuous Forward Current ..... 100 mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature: Infrared-Emitting Diode (See Note 2) ..... 150 mW
Phototransistor (See Note 3) ..... 150 mW
Total, Infrared-Emitting Diode plus Phototransistor (See Note 4) ..... 250 mW
Storage Temperature Range ..... $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 10 Seconds ..... $260^{\circ} \mathrm{C}$

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## TYPES TIL124, TIL125, TIL126 <br> OPTO-COUPLERS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	TIL124			TIL125			TIL126			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$V_{\text {(BR)CBO }}$	Collector-Base   Breakdown Voltage			$\begin{aligned} & I_{C}=10 \mu A, \quad I_{E}=0, \\ & I_{F}=0 \end{aligned}$	70			70			70			V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Vol tage		$\begin{aligned} & I_{C}=1 \mathrm{~mA}, \quad I_{B}=0, \\ & I_{F}=0 \end{aligned}$	30			30			30			V	
$V_{\text {(BR)EBO }}$	Emitter-Base   Breakdown Voltage		$\begin{aligned} & I_{E}=10 \mu A, \quad I_{C}=0, \\ & I_{F}=0 \end{aligned}$	7			7			7			V	
$I_{R}$	Input Diode Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$			10			10			10	$\mu \mathrm{A}$	
IC(on)	On-State   Collector   Current	Phototransistor Operation	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, I_{F}=10 \mathrm{~mA}, \\ & I_{B}=0 \end{aligned}$	1	3		2	5		5	9		mA	
		Photodiode Operation	$\begin{aligned} & \mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	5	20		5	20		5	20		$\mu \mathrm{A}$	
${ }^{1} \mathrm{C}$ (off)	Off-State   Collector   Current	Phototransistor Operation	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, I_{F}=0 \\ & I_{B}=0 \end{aligned}$		1	50		1	50		1	50	nA	
		Photodiode Operation	$\begin{aligned} & V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$		0.1	20		0.1	20		0.1	20		
$h_{\text {FE }}$	Transistor Static Forward Current Transfer Ratio		$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=10 \mathrm{~mA}, \\ & I_{F}=0 \end{aligned}$		100		100	200		100	550			
$V_{F}$	Input Diode Static Forward Voltage		$I_{F}=10 \mathrm{~mA}$		1.2	1.4		1.2	1.4		1.2	1.4	V	
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage		$\begin{aligned} & I_{C}=1 \mathrm{~mA}, \quad I_{F}=10 \mathrm{~mA}, \\ & I_{B}=0 \end{aligned}$		0.25	0.4		0.25	0.4		0.25	0.4	V	
rio	Input-to-Output Internal Resistance		$\begin{aligned} & V_{\text {in-out }}=500 \mathrm{~V}, \\ & \text { See Note } 5 \end{aligned}$	$10^{11}$			$10^{11}$			$10^{11}$			$\Omega$	
$C_{i o}$	Input-to-Output Capacitance		$\begin{aligned} & \mathrm{V}_{\text {in-out }}=0, \quad \mathrm{f}=1 \mathrm{MHz}, \\ & \text { See Note } 5 \end{aligned}$		1	1.3		1	1.3		1	1.3	pF	

NOTE 5: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	$\begin{array}{\|l\|} \hline \text { UNIT } \\ \hline \mu_{5} \end{array}$
$\mathrm{t}_{\mathrm{r}}$	Rise Time	Phototransistor Operation	$V_{C C}=10 \mathrm{~V}, I_{C(o n)}=2 \mathrm{~mA}, R_{\mathrm{L}}=100 \Omega$   See Test Circuit A of Figure 1		2	9	
$\mathrm{t}_{\mathrm{f}}$	Fall Time				2	9	
$\mathrm{tr}_{\mathrm{r}}$	Rise Time	Photodiode   Operation $V_{C C}=10 \mathrm{~V}, \mathrm{I} C(o n)=20 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,   See Test Circuit $B$ of Figure 1			1		$\mu \mathrm{s}$
$\mathrm{tf}_{f}$	Fall Time				1		

## PARAMETER MEASUREMENT INFORMATION




VOLTAGE WAVEFORMS


TEST CIRCUIT B PHOTODIODE OPERATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega$, $t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{duty}$ cycle $\approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 12 \mathbf{n s}, R_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant \mathbf{2 0} \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS



NOTES: 6. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.
7. These parameters were measured using pulse techniques. $t_{w}=1 \mathbf{m s}$, duty cycle $\leqslant \mathbf{2 \%}$.

## TYPES TIL124. TIL125. TIL126 OPTO-COUPLERS

## TYPICAL CHARACTERISTICS



NOTE 7: These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=1 \mathbf{m s}$, duty cycle $\leqslant \mathbf{2 \%}$.

- Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N-P-N Darlington-Connected Phototransistor
- High Direct-Current Transfer Ratio . . . 300\% Minimum at 10 mA
- High-Voltage Electrical Isolation . . . 5000-Volt Rating
- Plastic Dual-In-Line Package
- Typical Applications Include Remote Terminal Isolation, SCR and Triac Triggers, Mechanical Relays, and Pulse Transformers
mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.
(
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Injut-to-Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 5 \mathrm{kV}$
Collector-Base Voltage (TIL127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Collector-Emitter Voltage (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Emitter-Collector Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Emitter-Base Voltage (TIL127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input-Diode Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V
Input-Diode Continuous Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature:
Infrared-Emitting Diode (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . 150 mW
Phototransistor (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mW
Total (Infrared-Emitting Diode plus Phototransistor, See Note 4) . . . . . . . . . . . . . 250 mW
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $\mathbf{1 5 0}^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 10 Seconds . . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$
NOTES: 1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate lineariy to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate tinearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

# TYPES TIL127, TIL128 OPTO-COUPLERS 

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature


Note 5: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.
${ }^{\top}$ References to the base are not applicable to the TIL 128.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature


## PARAMETER MEASUREMENT INFORMATION



NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 15 \mathrm{~ns}, \mathrm{duty} \mathrm{cycle} \approx 1 \%$, $t_{w}=500 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 20 \mathrm{pF}$.

## TYPES TIL127, TIL128 OPTO-COUPLERS

```
COLLECTOR CURRENT vs COLLECTOR-EMITTER VOLTAGE
```



FIGURE 2

COLLECTOR CURRENT
vs INPUT-DIODE FORWARD CURRENT


FIGURE 4

COLLECTOR CURRENT
vs COLLECTOR-EMITTER VOLTAGE


FIGURE 3

OFF-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE


FIGURE 5

NÓTE 6: Pulse operation of input diode is required for operation beyond limits shown by dotted line.

## TYPES TIL127, TIL128 OPTO-COUPLERS



NOTE 7: This parameter was measured using pulse techniques. $t_{w}=1 \mathrm{~ms}$, duty cycle $\leqslant \mathbf{2 \%}$.

## UL LISTED - FILE \# E65805

- GaAs-Diode Infrared Source Optically Coupled to a Silicon N-P-N Phototransistor
- Direct-Current Transfer Ratio . . 10\% to 50\%
- Plug-In Replacements for TIL111 Series
- High-Voltage Electrical Isolation . . . 2500 V RMS (3535 V Peak)
mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Unit weight is approximately 0.52 grams.


[^11]electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature


NOTE 5: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		MIN TYP	MAX	UNIT
$t_{r}$ Rise Time	Phototransistor Operation	$V_{C C}=10 \mathrm{~V}, \quad I_{C(o n)}=2 \mathrm{~mA},$   See Test Circuit A of Figure 1	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	2	9	$\mu \mathrm{s}$
$i_{f}$ Fall Time				2	9	
$t_{r}$ Rise Time	Photodiode Operation	$V_{C C}=10 \mathrm{~V}, \quad I_{C(o n)}=20 \mu \mathrm{~A},$   See Test Circuit B of Figure 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,	1		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$ Fall Time				1		

PARAMETER MEASUREMENT INFORMATION


NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 15 \mathrm{~ns}$, duty cycle $\approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r}<12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant \mathbf{2 0} \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

## TYPICAL CHARACTERISTICS

COLLECTOR CURRENT
vs
INPUT-DIODE FORWARD CURRENT

figure 2

## TYPES TIL153, TIL154, TIL155 <br> OPTO-COUPLERS



## TYPES TIL153, TIL154, TIL155

 OPTO-COUPLERS
## TYPICAL CHARACTERISTICS



NOTE 6: These parameters were measured using pulse techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{1} \mathbf{m s}$, duty cycle $\mathbf{< 2 \%}$

## UL LISTED - FILE \# E65805

- GaAs-Diode Light Source Optically Coupled to a Silicon N-P-N Darlington-Connected Phototransistor
- High Direct-Current Transfer Ratio . . . 300\% Minimum at 10 mA
- Plug-In Replacement for TIL113 \& TIL119
- High-Voltage Electrical Isolation . . . 2500 V RMS (3535 V Peak)
mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon darlington-connected phototransistor mounted on a 6 -lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high humidity conditions. Unit weight is approximately 0.52 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Input-to-Output RMS Voltage (See Note 1) 2500 V
Collector-Base Voltage (TIL156) ..... 30 V
Collector-Emitter Voltage (See Note 2) ..... 30 V
Emitter-Collector Voltage ..... 7 V
Emitter-Base Voltage (TIL156) ..... 7 V
Input-Diode Reverse Voltage ..... 3 V
Input-Diode Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) ..... 100 mA
Continuous Phototransistor Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4) ..... 150 mW
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}$ ( $1 / 16$ Inch) from Case for 10 Seconds ..... $260^{\circ} \mathrm{C}$
NOTES: 1. This rating applies for sine-wave operation at 50 or 60 Hz . Service capability is verified by testing in accordance with UL requirements.

2. This value applies when the base-emitter diode is open-circuited.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temper ature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Texas Instruments<br>INCORPORATED<br>POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES TIL156, TIL157
OPTO-COUPLERS

## electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			TIL156			TIL157			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX							
$V_{\text {(BR) }}$ CBO	Collector-Base   Breakdown Voltage				${ }^{\prime} C=10 \mu A$.	$I_{E}=0$.	$I_{F}=0$	30						V
$V$ (BR)CEO	Collector-Emitter   Breakdown Voltage	$I^{\prime}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$I_{F}=0$	30			30			V			
$V_{\text {(BR)EBO }}$	Emitter-Base   Breakdown Voltage	$I_{E}=10 \mu A$,	$\mathrm{I}^{\prime}=0$.	$\mathrm{IF}_{\mathrm{F}}=0$	7						V			
V(BR)ECO	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$,	$I_{F}=0$					7			V			
IC(on)	On-State   Collector Current	$\mathrm{V}_{C E}=1 \mathrm{~V}$,	$I_{B}=0$,	$I_{F}=10 \mathrm{~mA}$	30	100					mA			
		$\mathrm{V}_{\text {CE }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$					$30 \quad 160$						
${ }^{\text {I }}$ (off)	Off-State   Collector Current	$\mathrm{V}_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$	$i^{\prime}=0$			100			100	nA			
hfe	Transistor Static   Forward Current   Transfer Ratio	$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}$.	$I_{C}=10 \mathrm{~mA}, I_{F}=0$		15,000									
$V_{F}$	Input Diode Static Forward Voltage	$I_{F}=10 \mathrm{~mA}$					1.5			1.5	V			
VCE(sat)	Collector-Emitter Saturation Voltage	$I^{\prime} \mathrm{C}=125 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	$\mathrm{IF}_{F}=50 \mathrm{~mA}$	1						V			
		$I^{\prime} \mathrm{C}=10 \mathrm{~mA}$,	$I_{F}=10 \mathrm{~mA}$							1				
rio	Input-to-Output Internal Resistance	$\mathrm{V}_{\text {in-out }}=500 \mathrm{~V}$.	See Note 5		$10^{11}$			$10^{11}$			$\Omega$			
$\mathrm{c}_{\text {io }}$	Input-to-Output Capacitance	$v_{\text {in-out }}=0$,	$f=1 M$	See Note 5			1.3		1	1.3	pF			

Note 5: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.
t References to the base are not applicable to the TIL157.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		TIL156			TIL157			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
$\mathrm{t}_{\mathrm{r}}$	Rise Time			$V_{C C}=15 \mathrm{~V}$, IC(on) $=125 \mathrm{~mA}$,   $R_{L}=100 \mathrm{~s}$, See Figure 1		300				.		$\mu \mathrm{s}$
$t_{1}$	Fall Time		300									
${ }_{t}{ }_{r}$	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{~s} . \end{aligned}$	$I C(o n)=2.5 \mathrm{~mA},$   See Figure 1					300		$\mu s$		
$t_{f}$	Fall Time							300				


 $t_{w}=500 \mu \mathrm{~s}$.
b. The output wavetorm is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geq 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant \mathbf{2 0} \mathbf{p F}$.

FIGURE 1-SWITCHING TIMES

## TYPES TIL156, TIL157 OPTO-COUPLERS

TYPICAL CHARACTERISTICS


NOTE 6: Pulse operation of input diode is required for operation beyond limits shown by dotted line.

TYPES TIL156, TIL157
OPTO-COUPLERS

TYPICAL CHARACTERISTICS

TIL156
TRANSISTOR STATIC FORWARD CURRENT TRANSFER RATIO COLLECTOR CURRENT


FIGURE 7

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS


NOTE 7: This parameter was measured using pulse techniques. $t_{w}=1 \mathbf{m s}$, duty cycle $\mathbf{<} \mathbf{2 \%}$.

# OPTO-COUPLERS IN CIRCUITS 

Howard T. Russell

There are many situations in which information must be transmitted between switching circuits electrically isolated from each other. This isolation has been commonly provided by relays, isolation transformers, and line drivers and receivers. There is, however, another device that can be used quite effectively to solve these problems. This device is the opto-coupler. The need for the opto-coupler is most prominent in areas where high voltage and noise isolation, as well as small size, are considered important. By coupling two systems together with the transmission of radiant energy (photons), the necessity for a common ground is eliminated - the main purpose of the opto-coupler - and the systems can be effectively isolated.

Four Texas Instruments opto-coupler devices, the TIL102, TIL103, TIL 107, and TIL108, are discussed in this report. How these devices can be used in various circuits to provide proper isolation in many systems will be a key part of this discussion. There are many circuit applications for opto-couplers: however, the ones offered in this report are just several which can be of special use. Complete specifications for these devices are not included here but are available in data-sheet form.

## DESCRIPTION OF AN OPTO-COUPLER

Basically, a Texas Instruments opto-coupler consists of a GaAs (gallium arsenide) infrared-emitting diode (IRED) as the input stage and a silicon $n-p \cdot n$ phototransistor as the output stage. The coupling medium between diode and sensor is either an infrared-transmitting ("IR") glass, as used in the TIL102/TIL103, or simply a gas-filled gap, as used in the TIL107/TIL108. Photons emitted from the diode (emitter) have wavelengths of about 0.9 microns. The sensor transistor responds most efficiently to photons having this same wavelength. Consequently. the input and output devices are spectrally matched for optimum transfer characteristics.

Equivalent circuits for the TIL102/TIL103 and TIL107/TILI 108 are shown in Figures 1 and 2. For both families of devices, a current source between the collector and base of the sensor is used to represent the virtual base current generated by incident photons striking the base. This base current is proportional to the amount of radiation emitted from the diode. The collector-base and base-emitter


FIGURE 1. Terminal Connections and Equivalent Circuit for the TILI02/TIL103


FIGURE 2. Terminal Connections and Equivalent Circuit for the TIL107/TILI08
junction capacitances are shown for both devices since they are used to determine the rise and fall times of the output

## OPTO-COUPLERS IN CIRCUITS

current waveform. Because a relatively large transistor base area is necessary for increased sensor efficiency, the collector-base junction capacitance is fairly large.

## CHARACTERISTICS OF AN OPTO-COUPLER

To fully utilize the advantages offered by an optocoupler, it is necessary that the circuit designer become aware of some of its characteristics. The difference in characteristics between the families is attributed mainly to the difference in construction.

The characteristics most useful to the designer are as follows:

1. High-voltage isolation. High-voltage isolation between the inputs and outputs is obtained by the physical separation between emitter and sensor. This isolation is possibly the most important advantage of the opto-coupler. These devices can withstand large potential differences, depending on the type of coupling medium and construction of the package. The IR glass separating the emitter and sensor in the TIL102/TIL103 has an isolation capability of 1000 V . In the TIL107/TIL108, the gas-filled (nitrogen) gap limits the breakdown to 1000 V . For both devices, the leakage resistance is greater than $10^{12} \Omega$.
2. Noise isolation. Electrical noise in digital signals received at the input of the opto-coupler is isolated from the output by the coupling medium. Since the input is a diode, common-mode noise is rejected. Noise immunity for both devices is less than 1.0 V from anode to cathode.
3. Current gain. The current gain (output current/ input current) of an opto-coupler is largely determined by the efficiency of the $\mathrm{n} \cdot \mathrm{p} \cdot \mathrm{n}$ sensor and by the type of transmission medium used. For the TIL103, the current gain is greater than unity, which in many cases eliminates the need for current amplifiers in the output. However, both the TIL102/TIL103 and TIL107/TIL108 have output current levels that are compatible with inputs of digital integrated circuits such as 54/74 TTL and DTL. Figures 3 and 4 show typical input-to-output current relationships.
4. Small size. The dimensions of these devices enable them to be used on standard printed-wiring boards. The TIL102 and TIL103 are built in a metal can similar to a transistor package while the TIL107 and TIL108 are made into a doubleflanged package similar to two TO-18 transistor packages end to end. The physical dimensions of these packages are shown in Figures 5 and 6.

These are some of the prime characteristics of an opto-coupler that can be used effectively to isolate two systems. Other characteristics, such as high speed (which


FIGURE 3. Typical Input/Output Current Relationship for the TIL102/TIL103


FIGURE 4. Typical Input/Output Current Relationship for the TLL107/TIL108
enable opto-couplers to be of advantage in solid-state relays) and wide operating temperature range, are discussed in Texas Instruments Bulletin CB-1 16 (available upon request).

## Texas Instruments

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265


FIGURE 5. Dimensions of the TIL102/TIL103


FIGURE 6. Dimensions of the TIL107/TIL108

## TYPICAL CIRCUIT APPLICATIONS

The characteristics and advantages of an opto-coupler enable the designer to use it in a wide range of circuit applications. Important among the applications of an opto-coupler are those involving 54/74 TTL and similar digital integrated-circuit families. As was mentioned previously, an opto-coupler has output currents compatible with both DTL and TTL inputs. This compatibility enables it to be especially attractive as an interface element between digital systems. The device is particularly beneficial in applications where high voltage differences may exist between systems. However, it is not limited only to digital applications, as shown by the following examples.

Driving 54/74 TTL
An effective method of coupling an opto-coupler to TTL circuitry is by using a Schmitt trigger that has an output level compatible with standard TTL devices. By coupling any of the Texas Instruments opto-couplers to the SN7413, as shown in Figure 7, the isolated signal at the input can be converted to TTL logic levels. Noise immunity is provided by the coupler as well as by the threshold level of the SN7413.

The opto-coupler can also be employed as part of a Schmitt trigger circuit that utilizes discrete components. Because the output of the opto-coupler is a transistor, it

(a) NÓN-INVERTING FUNCTION

(b) INVERTING FUNCTION

FIGURE 7. Schmitt Trigger Coupling Opto-Coupler to 54/74 TTL Inputs
can be used as the input stage to the trigger as shown in Figure 8. For this circuit, regeneration or positive feedback is provided by the coupled emitters of T1 and T2. The output of this circuit is non-inverting and is compatible with TTL logic.

Another Schmitt trigger utilizing discrete components that makes use of the base connection of the TIL102/TIL103 is shown in Figure 9. In this circuit, positive feedback is provided from the collector of T2 to the base of T1. Resistor R1 limits the base current to T1 and keeps the device off when there is no signal at the emitter. As with the circuit in Figure 8, the output of this circuit is non-inverting and compatible with TTL levels.

## Transmission-Line Isolator

By using an opto-coupler between two systems coupled by a transmission line, effective line isolation can be achieved. Figure 10 shows a typical interface system using TTL integrated circuitry coupled by a twisted-pair

## OPTO-COUPLERS IN CIRCUITS



Opto-Coupler with Discrete-Component Schmitt Trigger for Driving 54f74 TTL


FIGURE 9. TIL102/TILL103 in a Schmitt Trigger for Driving 54/74 TTL


FIGURE 10. Typical Transmission Line Isolator
line. The SN75450B is the input stage driving the transmission line and emitter of the opto-coupler. The IRED requires about 20 mA during "turnon", which is well below the maximum current rating of the transistor. At the receiving end of the line, the phototransistor is coupled to an SN7413 for fast pulse generation. The output of this system is a non-inverted pulse. However, by rearranging the opto-coupler and the SN7413 as shown in Figure 7(a), the output may be inverted.

As simple as it seems, employing an opto-coupler this way provides isolation for both noise and high voltage. An isolation transformer or relay could accomplish the task, but it would not be as fast as the opto-coupler. Also, a line driver and receiver combination could be used to eliminate the noise and increase the speed, but it would be very ineffective if there were high potential differences between the input and output.

## Solid-State Relay

Through the use of transistor circuits, mechanical relays are slowly being replaced by solid-state relays. In some cases, the solid-state relay (SSR) offers distinct advantages over its mechanical counterpart. For example, an SSR has the advantage that it has neither moving parts nor fragile wires and it has faster switching speeds and longer operating life. However, one disadvantage of an SSR is that it generally has a lower degree of input/output isolation than a mechanical relay. To overcome this disadvantage in the SSR, an opto-coupler can be used as the isolating input stage as shown in the block diagram in Figure 11. The control stage may consist of discrete transistors or integrated circuits, while the output stage consists of high-power switching devices.


FIGURE 11. Typical Solid-State Relay Using an Opto-Coupler

A simple isolated latch circuit, which is somewhat of an SSR, is shown in Figure 12. The output of the opto-coupler is used to fire the SCR that provides power to the load. To turn off the load current, the supply voltage $V_{C C 2}$ must be removed.

## Isolated Chopper Circuit

Chopper circuits that use mechanical relays suffer from a speed problem as well as switching transients at the


FIGURE 12. Solid-State Latch Using a TIL107/TIL108
load. By using bipolar transistors or FETs as series and shunt switching elements, the speed may be improved; but capacitive coupling to the switching circuitry may still produce transient "spikes" on the output signal. By using an opto-coupler to switch the input signal as shown in Figure 13, the switching circuitry can be isolated from the .output, thereby reducing output "spikes". The use of two couplers in the configuration shown allows chopping of either positive or negative input signals with a frequency of one-half that of the input to the flip-flop. The SN72741 operational amplifier is used to increase the output signal with a gain of $\mathrm{R}_{2} / \mathrm{R}_{1}$.


FIGURE 13. Chopper Circuit Using.Opto-Couplers

## Pulse Amplifiers

Pulse amplification, as well as isolation, can be achieved by using an opto-coupler with a pulse amplifier. The circuit shown in Figure 14 uses an isolator with an SN72741 operational amplifier to amplify the pulse appearing at the anode of the IRED. The gain of this circuit is


FIGURE 14. Isolated Pulse Amplifier Using Opto-Coupler and SN72741 Operational Amplifier
controlled by the feedback resistor RF. An amplifier employing discrete components and that uses the TIL102/TIL103 as part of the current feedback pair is shown in Figure 15. The feedback resistor $\mathrm{R}_{1}$ controls the current gain as well as the output d-c level.

Figure 16 shows an opto-coupler with a voltagefeedback amplifier that has a gain of $1+R_{2} / R_{1}$. This type of amplifier offers high input impedance, which will not load the emitter of the sensor transistor.


FIGURE 15. Discrete-Component Pulse Amplifier with TIL102/TIL103.


FIGURE 16. Voltage-Feedback Pulse Amplifier with Opto-Coupler

## OPTO-COUPLERS

## OPTO-COUPLERS

The opto-coupler is designed as the solid-state replacement for mechanical relays and pulse transformers. Functionally, the opto-coupler is similar to its older mechanical counterpart because it offers a high degree of isolation between a pair of input and output terminals. However, unlike the older mechanical devices that transfer signals by magnetic coupling, opto-couplers transfer signals by a photoncoupling process. Briefly, opto-couplers are the logical choice over mechanical relays and pulse transformers because they offer:

For relay functions:

- Faster operating speeds
- Positive (no bounce) action
- Insensitiveness to vibration and shock
- Long life as there are no moving contacts to wear or pit
- Wide operating temperature range as there are no moving contacts to stick
- Small size
- Compatibility with DTL and TTL integrated circuits

For transformer functions:

- Frequency response from dc to 100 kHz
- Lower coupling capacitance for better common-mode rejection
- Small size
- Improved shock and vibration resistance


## OPTO-COUPLER CONFIGURATION

The input stage of an opto-coupler consists of a highly efficient GaAs (gallium arsenide) infrared-emitting diode. When forward biased at a relatively low current level, the infrared-emitting diode emits photons that have an optical wavelength in the near-infrared region of about $0.9 \mu \mathrm{~m}$.

The output stage of an opto-coupler consists of a Si (silicon) phototransistor. This radiation-sensitive device responds most efficiently to optical wavelengths in the
$0.9-\mu \mathrm{m}$ region. Hence, the photon-coupled input and output stages are spectrally matched for optimum input-tooutput transfer ratio.

Several types of opto-couplers are presently offered by Texas Instruments as standard products. These devices differ primarily in the types of emitters and phototransistors used and in the method used to obtain electrical isolation. Figure 1 shows the outline drawings for both the TIL102/TIL103 and the TIL107/TIL108 opto-couplers. Note that both series of devices consist of the input-stage emitter and the output-stage phototransistor. However, the TIL102/T1L 103 is constructed with a thin layer of infraredtransmitting glass between the input and output stages while the TIL107/TIL108 uses an air gap to attain higher electrical isolation.


FIGURE' Ia. Details of TIL102/TIL103
Construction


FIGURE Ib. Details of TIL107/TIL108
Construction

Regardless of whether an air gap or IR-transmitting glass is used to separate the input and output terminals, the operating characteristics are basically the same. When an input signal (forward bias current) is applied to the infrared-emitting diode, photons are absorbed in the phototransistor, thus providing conduction between the output terminal leads. Figure 2 indicates schematically how the input and output stages of the TIL102/TIL103 and TIL107/TIL108 are arranged.


FIGURE 2a. TIL102/TIL103 Input and Output Terminal Connections


FIGURE 2b. TIL107/TIL108 Input and Output
Terminal Connections

## UNIQUE ADVANTAGES OF THE OPTO-COUPLER

Aside from the fact that opto-couplers are of solidstate construction and possess no moving contacts, which would eventually freeze or wear out, they offer several other unique advantages.

## Small Size

As shown in Figure 3, the TIL102/TIL103 devices are packaged in modified TO-78 cases, which allows the user to mount devices in medium-density applications. The TIL107/TIL108 devices are enclosed in a doubled-flanged package with a diameter similar to that of a standard TO-18 device. Close-proximity mounting into printed circuit boards is attainable, and both packages are hermetically sealed to allow operation under extreme environmental conditions.


FIGURE: 3a. Mechanical Data of TIL102/TIL103

## High-Voltage Electrical Isolation

The voltage-isolation characteristic of opto-couplers allows the user to transmit signals between two or more terminals within a system when large voltage potential differences exist. The TIL102/TIL103 series and TIL107/TIL108 series are capable of isolating up to 1000 volts. Since physical packaging usually limits voltage isolation capabilities, the package can be modified to attain several thousand volts isolation with multimegohm leakage resistance and picofarad coupling-capacitance.


FIGURE 3b. Mechanical Data of TIL107/TIL108

High Gain
As outlined in Table I, the TIL102 and TIL103 have typical input-to-output current ratios of 0.6 and 1.5 , respectively. Since the TIL103 has a gain factor greater than 1, the need for amplifiers behind the opto-coupler output stage is eliminated. While the TIL107/TIL108 devices have typical current gain ratios of approximately 0.1 and 0.2 , respectively, both are designed to operate with input and output currents that are compatible with standard DTL and TTL integrated circuits. Figure 4 outlines typical output currents for various input current levels.

## High Speed

Table II outlines the typical switching characteristics for the TIL102/TIL103 and TIL107/TIL108 series of opto-couplers at $25^{\circ} \mathrm{C}$ case temperature. Note that the rise, fall, delay, and storage times for these solid-state optocouplers are measured in microseconds. Thus, they are typically 1000 times faster than conventional mechanical relays, which have switching speeds in the millisecond range.

## Wide Operating - Temperature Range

The GaAs input diode and the Si phototransistor have temperature coefficients that offset each other. An increase in temperature will cause the GaAs emitter to emit fewer photons while the phototransistor will increase in sensitivity. On the other hand, at low temperatures the efficiency of the GaAs emitter increases and more photons are emitted, but the phototransistor sensitivity decreases.

## OPTO-COUPLERS

For this reason, the overall current gain of the opto-coupler is fairly stable over a wide temperature range. Figure 5 a shows typical relative output of the TIL102/TIL103 series while Figure 5 b shows the typical relative output current for the TIL107/TIL108 series. Note that both sets of characteristic curves show input versus output currents over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range. This operating-range stability offers the user a wide degree of flexibility for applications which involve MIL-Spec temperatures.

Opto-couplers are also valuable for coupling either analog or digital signals between terminals in a system. Since ground looping problems are avoided when optocouplers are used, spurious noise from circulating ground currents is eliminated. In addition, the d-c isolation characteristic of opto-couplers will allow signal transfer, despite the fact that large voltage potential differences may exist between the various terminals of a system.

DEVICE	TEST CONDITIONS	INPUT CURRENT	TYPICAL OUTPUT CURRENT
TIL102	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	$I_{F}=10 \mathrm{~mA}$	6 mA
TILI03	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	$I_{F}=10 \mathrm{~mA}$	15 mA
		$I_{F}=15 \mathrm{~mA}$	1 mA
TIL107	$V_{C E}=5 \mathrm{~V}$	$I_{F}=35 \mathrm{~mA}$	4 mA
		$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	2 mA
TIL108	$V_{C E}=5 \mathrm{~V}$	$I_{F}=35 \mathrm{~mA}$	7 mA



DEVICE	TEST CONDITIONS	TYPICAL dELAY TIME	TYPICAL RISE TIME	TYPICAL Storage time	TYPICAL FALL TIME
TIL102	$V_{C C}=20 \mathrm{~V}, \mathrm{IC}($ on $)=$	$0.5 \mu \mathrm{~s}$	$3 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$3 \mu \mathrm{~s}$
TIL. 103	$5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	$0.5 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$
TIL 107	$V_{C C}=35 \mathrm{~V}, \mathrm{I}_{\text {C(on) }}=$	$3 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
TIL108	$500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$3 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$

Texas Instruments
INCORPORATED

## OPTO-COUPLERS



FIGURE Sa. Relative Output Current versus
Temperature for TIL102/TIL103


FIGURE 5b. Relative Output Current versus Temperature for TIL 107/TIL 108

# Sensor/Emitter Arrays 

SENSOR-EMITTER ARRAYS QUICK REFERENCE GUIDE

DEVICE	TYPE	POWER OUTPUT MIN @ $I_{F}=50 \mathrm{~mA}$	$\begin{gathered} V_{F} \text { MAX } \\ @ \\ I_{F}=50 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{L}} \mathrm{MIN} \\ \text { @ } \\ \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}} \\ @ \\ \mathbf{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ \mathbf{V}_{\mathrm{CE}}=5 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c\|} \hline V_{C E} \text { (sat) } \\ \text { TYP @ } \\ I_{C}=2 \mathrm{~mA} \\ I_{F}=50 \mathrm{~mA} \\ \hline \end{array}$	FEATURES
TIL131	Nine-element gallium arsenide IRED array	0.4 mW	1.5 V		$\cdots$		Nine TIL23's mounted on p-c board for paper tape readers
TIL132	Nine-element phototransistor array			2 mA			Nine LS600's mounted on p-c board for paper tape readers
TIL133	Nine-channel IREDphototransistor pair				$\begin{gathered} 2.5 \mathrm{~mA} \\ \text { to } \\ 10 \mathrm{~mA} \\ \hline \end{gathered}$	0.4 V	Consists of a TIL131 and a TIL132 with guaranteed channel performance
TIL134	Twelveelement gallium arsenide IRED array	0.4 mW	1.5 V				Twelve TIL23's mounted on $6,4-\mathrm{mm}$ ( 0.250 -inch) centers. For reading punched cards
TIL135	Twelve-element phototransistor array		- .	2 mA			Twelve LS600's mounted on $6,4-\mathrm{mm}$ ( 0.250 -inch) centers in double-sided p-c board
TIL136	Twelve-channel IREDphototransistor pair			$\cdots$	$\begin{gathered} 2.5 \mathrm{~mA} \\ \text { to } \\ 10 \mathrm{~mA} \\ \hline \end{gathered}$	0.4 V	Consists of a TIL134 and TIL. 135 with guaranteed channel performance


DEVICE	TYPE	ON-STATE COLLECTOR CURRENT			OFF-STATECOLLECTOR CURRENT		FEATURES
		$\begin{aligned} & \hline \text { MIN } \\ & \text { IC(on) } \end{aligned}$	$\begin{aligned} & @ \\ & \mathbf{I}_{\mathbf{F}} \end{aligned}$	$\begin{gathered} \text { @ } \\ \mathbf{v}_{\mathbf{C E}} \end{gathered}$	$\begin{aligned} & \hline \text { MAX } \\ & \text { ICloff) } \end{aligned}$	$\begin{gathered} \text { @ } \\ \mathrm{v}_{\mathrm{CE}} \end{gathered}$	
TIL138	One-channel transmissive assembly	$\begin{aligned} & 1.6 \mathrm{~mA} \\ & 0.4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mA} \\ & 15 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~V} \\ & 0.5 \mathrm{~V} \end{aligned}$	25 nA	30 V	A TIL32 gallium arsenide IRED and a TIL78 phototransistor mounted in a plastic housing
TIL139	One-channel reflective assembly	$10 \mu A^{\dagger}$	40 mA	5 V	25 nA	30 V	A TIL32 and a TIL78 mounted in a plastic housing
TIL143	One-channel transmissive assembly	$200 \mu \mathrm{~A}$	20 mA	10 V	100 nA	10 V	Standard dual-in-line pin spacing
TIL. 144		$50 \mu \mathrm{~A}$	20 mA	10 V	100 nA	10 V	
TIL145	One-channel transmissive assembly	2 mA	16 mA	1 V	100 nA	5 V	High-gain darlington phototransistor. Standard dual-in-line pin spacing
TIL146		1.6 mA	50 mA	1 V	100 nA	5 V	
TIL147	One-channel transmissive assembly	4 mA	20 mA	5 V	100 nA	10 V	Standard dual-in-line pin spacing
TIL148		1 mA	20 mA	5 V	100 nA	10 V	
TIL149	One-channel reflective assembly	$100 \mu \mathrm{~A} \ddagger$	40 mA	5 V	100 nA	15 V	A TIL32 and a phototransistor similar to TIL78 in a plastic housing

${ }^{\dagger}$ Reflective surface is Eastman Kodak (or equivalent) neutral white paper with $\mathbf{9 0 \%}$ diffuse reflectance placed $3,81 \mathrm{~mm}$ ( 0.150 inch) from read head.
$\ddagger$ Reflective surface is $0,025-\mathrm{mm}$ ( 0.001 -inch) thick aluminum foil, typical of beginning of tape/end-of-tape strips on magnetic tape surface, placed $\mathbf{3 , 8 1} \mathrm{mm}$ ( 0.150 inch ) from read head.

DEVICE	TYPE	VOH   MIN	$V_{\text {OL }}$   MAX	ICC   MAX	
	12-channel integrated	2.4 V	0.4 V	410 mA	TTL/DTL-compatible output levels. TIL142 has plug-in   connector
TIL142	2.4 V	0.4 V	410 mA		

For other arrays, see the following sections in this book: Photodetectors, Infrared Emitters, and Light-Emitting Diodes.

# TYPES TIL131 THRU TIL133 <br> 9-ELEMENT ARRAYS AND 9-CHANNEL PAIR 



## TIL131 . . 9-ELEMENT GALLIUM ARSENIDE IRED ARRAY <br> TIL132 . . . 9-ELEMENT PHOTOTRANSISTOR ARRAY <br> TIL133 . . . 9.CHANNEL PAIR

- Center-to-Center Spacing of $\mathbf{2 , 5 4} \mathbf{~ m m}$ ( $\mathbf{0 . 1 0 0}$ Inch) Inch for Tape Reading
- Reliable Solid-State Components
- IRED's Eliminate Lamp-Filament-Sag Problems
- Spectrally Matched for Improved Performance
- Printed Circuit Board Construction Allows Precise Alignment
description
The TIL131 is an array of nine TIL23 gallium arsenide infrared-emitting diodes mounted in a printed circuit board. The TIL132 is an array of nine selected LS600 phototransistors. The TIL133 is a pair of selected arrays comprising a TIL131 and TIL132 and offering guaranteed channel performance.
mechanical data
The printed circuit board material is glass-base NEMA standard FR-4, class $11,0.6 \cdot \mathrm{~kg} / \mathrm{m}^{2}\left(2 \cdot \mathrm{oz} / \mathrm{ft}{ }^{2}\right)$ copper clad on each side. The approximate weight of the TIL131 and TIL. 132 is 3.7 grams each.



## TYPES TIL131 THRU TIL133

9-ELEMENT ARRAYS AND 9-CHANNEL PAIR

TIL131 absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . . . . . . . 100 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Soldering Temperature (10 Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

TIL131 operating characteristics of each element at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{P}_{\mathrm{O}}$	Radiant Power Output	$I_{F}=50 \mathrm{~mA}$	0.4		1	mW
$\lambda_{p}$	Wavelength at Peak Emission			930		nm
$\Delta \lambda$	Spectral Bandwidth			50		nm
$\theta^{\mathrm{HI}}$	Half-Intensity Beam Angle			$35^{\circ}$		
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage			1.25	1.5	V

TIL 132 absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V
Emitter-Collector Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) . . . . . . . . . 50 mW
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Soldering Temperature ( 10 Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
NOTE 2: Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TIL132 electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual element characteristics

PARAMETER	TEST CONDITIONS		MIN	TYP MAX	UNIT
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	$\mathrm{E}_{\mathrm{e}}=0$	50		V
$\mathrm{V}_{\text {(BR)ECO }}$ Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,	$\mathrm{E}_{\mathrm{e}}=0$	7		V
ID Dark Current	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$,	$E_{\text {e }}=0$		100	nA
IL Light Current	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3	2	12	mA
$\mathrm{V}_{\mathrm{CE}}$ (sat) Collector-Emitter Saturation Voltage	$\mathrm{I}^{\prime} \mathrm{C}=0.4 \mathrm{~mA}$,	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3		0.15	V

element matching characteristics

|  | PARAMETER | TEST CONDITIONS | MIN TYP MAX | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\frac{I_{L} \text { min }}{I_{\text {max }}}$ | Light Current Matching Factor | $V_{C E}=5 \mathrm{~V}, \quad \mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3 | 0.5 |  |

NOTE 3: Irradiance ( $E_{e}$ ) is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

## TYPES TIL131 THRU TIL133 9-ELEMENT ARRAYS AND 9-CHANNEL PAIR

TIL133 absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Maximum ratings of TIL131 and TIL132 apply.
TIL133 electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
${ }^{\prime}$	Output Collector Current	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	2.5	4	10	mA
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{I}^{\prime}=2 \mathrm{~mA}$		0.4	0.7	V

TIL133 switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{r}}$	Rise Time	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & I C(o n)=2 \mathrm{~mA}, \\ R_{L}=100 \Omega, & \text { See Figure } 1 \end{array}$		1.5		$\mu \mathrm{s}$
${ }_{\text {t }}$	Fall Time			1.5		$\mu \mathrm{s}$

${ }^{\dagger}$ These parameters are measured at a lens-to-lens distance of 0.100 inch .


NOTES: A. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, duty $\mathrm{cycle} \approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
B. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

COUPLING CHARACTERISTICS


FIGURE 2

## TYPES TIL131 THRU TIL133

## 9-ELEMENT ARRAYS AND 9-CHANNEL PAIR

## TYPICAL CHARACTERISTICS

TIL131


FIGURE 3

TIL131
RELATIVE PHOTON INTENSITY ANGULAR DISPLACEMENT


FIGURE 5
TIL132
NORMALIZED LIGHT CURRENT
ANGULAR DISPLACEMENT


FIGURE 7

TIL131


FIGURE 4

TIL13
CHANGE IN WAVELENGTH OF PEAK INTENSITY


FIGURE 6
TIL132
DARK CURRENT FREE-AIR TEMPERATURE


FIGURE 8

NOTE 4: These parameters were measured using pulse techniques $\mathbf{t}_{\mathbf{w}}=0.04 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.

## TYPES TIL134 THRU TIL136 12-ELEMENT ARRAYS AND 12-CHANNEL PAIR

## TIL134 . . . 12-ELEMENT GALLIUM ARSENIDE IRED ARRAY <br> TIL135. . . 12-ELEMENT PHOTOTRANSISTOR ARRAY <br> TIL 136 . . . 12-CHANNEL PAIR

- Center-to-Center Spacing of $\mathbf{6 , 3} \mathbf{~ m m}$ ( 0.250 Inch) for Tape Reading
- Reliable Solid-State Components
- IRED's Eliminate Lamp-Filament-Sag Problems
- Spectrally Matched for Improved Performance
- Printed Circuit Board Construction Allows Precise Alignment


## description

The TIL134 is an array of twelve TIL23 gallium arsenide infrared-emitting diodes mounted in a printed circuit board. The TIL135 is an array of twelve selected LS600 phototransistors. The TIL. 136 is a pair of selected arrays comprising a TIL134 and TIL135 and offering guaranteed channel performance.
mechanical data
The printed circuit board material is glass-base NEMA standard FR-4, class $11,0,6-\mathrm{kg} / \mathrm{m}^{2}\left(2-\mathrm{oz} / \mathrm{ft}{ }^{2}\right)$ copper clad on each side. The approximate weight of the TIL134 and TIL135 is 8.5 grams each.


## TYPES TIL134 THRU TIL136 <br> 12-ELEMENT ARRAYS AND 12-CHANNEL PAIR

## TIL 134 absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . . . . . . . 100 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Soldering Temperature (10 Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

TIL134 operating characteristics of each element at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Po	Radiant Power Output	$I_{F}=50 \mathrm{~mA}$	0.4		1	mW
$\lambda_{p}$	Wavelength at Peak Emission			0.93		$\mu \mathrm{m}$
$\Delta \lambda$	Spectral Bandwidth			500		A
${ }^{\theta} \mathrm{HI}$	Half-Intensity Beam Angle			$35^{\circ}$		
$V_{F}$	Static Forward Voltage			1.25	1.5	V

TIL135 absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)


NOTE 2: Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TIL 135 electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature
individual element characteristics

PARAMETER		TEST CONDITIONS		MIN	TYP MAX	UNIT
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	$E_{\text {e }}=0$	50		V
V (BR)ECO	Emitter-Collector Breakdown Voltage	$I_{E}=100 \mu \mathrm{~A}$,	$E_{\text {e }}=0$	7		V
1 D	Dark Current	$\mathrm{V}_{C E}=30 \mathrm{~V}$,	$E_{e}=0$		100	nA
IL	Light Current	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3	2	12	mA
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}^{\prime}=0.4 \mathrm{~mA}$,	$\mathrm{E}_{\mathrm{e}}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3		0.15	V

element matching characteristics

PARAMETER		TEST CONDITIONS		MIN	TYP MAX	UNIT
$\frac{I_{L} \text { min }}{I_{\text {max }}}$	Light Current Matching Factor	$V_{C E}=5 \mathrm{~V}$,	$E_{e}=20 \mathrm{~mW} / \mathrm{cm}^{2}$, See Note 3	0.5		

NOTE 3: Irradiance ( $E_{\mathbf{e}}$ ) is the radiant power per unit ares Incident upon a surface. For this measurement the source is an unfiltered tungsten linear-filament lamp operating at a color temperature of 2870 K .

## TYPES TIL134 THRU TIL136 12-ELEMENT ARRAYS AND 12-CHANNEL PAIR

TIL136 absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted) Maximum ratings of TIL134 and TIL135 apply.

TIL136 electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
${ }^{1}$	Output Collector Current	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	2.5	4	10	mA
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{I}^{\prime}=2 \mathrm{~mA}$		0.4	0.7	V

TIL136 switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

tThese parameters are measured at a lens-to-lens distance of 0.100 inch.


NOTES: $A$. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}$, duty $\mathrm{cyc} / \mathrm{e} \approx 1 \%$, $t_{w}=100 \mu \mathrm{~s}$.
B. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 12 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 20 \mathrm{oF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS


FIGURE 2

## TYPES TIL134 THRU TIL136

## 12-ELEMENT ARRAYS AND 12-CHANNEL PAIR

TYPICAL CHARACTERISTICS

TIL134
FORWARD CONDUCTION CHARACTERISTICS


FIGURE 3

TIL134
RELATIVE PHOTON INTENSITY ANGULAR DISPLACEMENT


FIGURE 5
TIL135
NORMALIZED LIGHT CURRENT ANGULAR DISPLACEMENT


FIGURE 7


FIGURE 4

TIL134
Change in wavelengit of peak intensity


FIGURE 6
TIL135
DARK CURRENT


FIGURE 8

NOTE 4: These parameters were measured using pulse techniques $\mathbf{t}_{\mathbf{w}} \mathbf{= 0 . 0 4} \mathbf{m s}$, duty cycle $\leqslant 10 \%$.

## OPTOELECTRONIC MODULE FOR TRANSMISSIVE SENSING APPLICATIONS

## - Compatible With Standard DTL and TTL Integrated Circuits

- High-Speed Switching . . . $\mathrm{t}_{\mathrm{r}}=1.5 \mu \mathrm{~s}, \mathrm{tf}_{\mathrm{f}}=1.5 \mu \mathrm{~s}$ Typical
- Designed for Base or Side Mounting
- For Sensing Applications such as Shaft Encoders, Sector Sensors, Level Indicators, and Beginning-of-Tape/End-of-Tape Indicators


## mechanical data

The assembly consists of a TIL32 gallium arsenide infrared-emitting diode and a TIL78 n-p-n silicon phototransistor mounted in a molded ABS ${ }^{\dagger}$ plastic housing. The assembly will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Total assembly weight is approximately 1.5 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Source Reverse Voltage ..... 2 V
Source Continuous Forward Current (See Note 1) ..... 40 mA
Sensor Collector-Emitter Voltage ..... 50 V
Sensor Emitter-Collector Voltage ..... 7 V
Sensor Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) ..... 50 mW
Storage Temperature Range ..... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}$ ( $1 / 16$ Inch) from Assembly for 5 Seconds ..... $240^{\circ} \mathrm{C}$

[^12]
## TYPE TIL138 <br> SOURCE AND SENSOR ASSEMBLY

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text {t }}$	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{F}}=0$	50			$V$
$\mathrm{V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{F}}=0$	7			$\checkmark$
IC(off)	Off-State Collector Current	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$, $I_{F}=0$			25	nA
IC(on)	On-State Collector Current	$\mathrm{V}_{C E}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	0.4	1		mA
		$\mathrm{V}_{\text {CE }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$	1.6	4		
$V_{F}$	Input-Diode Static Forward Voltage	$I_{F}=15 \mathrm{~mA}$		1.15	1.5	V
		$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$		1.2		

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP	MAX	UNIT
$t_{\text {d }}$	Delay Time	$\begin{aligned} & V_{C C}=30 \mathrm{~V} \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$	${ }^{\prime} C(o n)=500 \mu \mathrm{~A},$   See Figure 1		3		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}}$	Rise Time				1.5		$\mu \mathrm{s}$
$\mathrm{t}_{\mathbf{s}}$	Storage Time				0.5		$\mu \mathrm{s}$
$\mathrm{tf}_{f}$	Fall Time				15		$\mu \mathrm{s}$

${ }^{\dagger}$ Stray irradiation outside the range of device sensitivity may be present. A satisfactory condition has been achieved when the parameter being measured approaches a value which cannot be altered by further irradiation shielding.


## OPTOELECTRONIC MODULE FOR REFLECTIVE SENSING APPLICATIONS

- Adaptable for Printed Circuit Board Mounting
- Designed for Sensing Applications such as Line Finders, Batch Counters, Level Indicators, and Beginning-of-Tape/End-of-Tape Indicators


## mechanical data

The assembly consists of a TIL32 gallium arsenide infrared-emitting diode and a TIL78 n-p-n silicon phototransistor mounted in a molded $\mathrm{ABS}^{\dagger}$ plastic housing. The assembly will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Total assembly weight is approximately $\mathbf{1 . 2}$ grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Source Reverse Voltage ..... 2 V
Source Continuous Forward Current (See Note 1) ..... 40 mA
Sensor Collector-Emitter Voltage ..... 50 V
Sensor Emitter-Collector Voltage ..... 7 V
Sensor Continuous Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) ..... 50 mW
Storage Temperature Range ..... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm (1/16 Inch) Inch from Assembly for 5 Seconds ..... $240^{\circ} \mathrm{C}$

NOTES: 1. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.73 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

2. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.91 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ ABS thermoplastics are derived from acrylonitrile, butadiene, and styrene.

## electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text {t }}$			MIN	TYP	MAX	UNIT
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{F}}=0$		50			
$V_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{F}}=0$		7			V
IC(off)	Off-State Collector Current	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F}}=0$				25	nA
${ }^{\prime} \mathrm{C}$ (on)	On-State Collector Current	$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	See Note 3	10	125		$\mu \mathrm{A}$
		$V_{C E}=5 \mathrm{~V}$,	$I_{F}=40 \mathrm{~mA}$	See Note 4	5	60		
		$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	See Note 5	100	1100		
$V_{F}$	Input-Diode Static Forward Voltage	$I_{F}=40 \mathrm{~mA}$				1.2	1.6	V

${ }^{\dagger}$ Stray irradiation outside the range of device sensitivity may be present. A satisfactory condition has been achieved when the parameter being measured approaches a value which cannot be altered by further irradiation shielding.
NOTES: 3. Reflective surface is Eastman Kodak (or equivalent) neutral white paper with $90 \%$ diffuse reflectance placed $3,81 \mathrm{~mm}$ ( 0.150 inch ) from read head.
4. Reflective surface is Mylar $\ddagger$ (or equivalent) magnetic tape placed $3,81 \mathrm{~mm}$ ( 0.150 inch) from read head.
5. Reflective surface is aluminum foil typical of beginning-of-tape/end-of-tape strips. It is $0,026 \mathrm{~mm}$ ( 0.001 inch) thick and placed $3,81 \mathrm{~mm}$ ( $\mathbf{0 . 1 5 0}$ inch) from read head.
$\ddagger$ Trademark of E. I. duPont de Nemours, Inc.

- Center-to-Center Channel Spacing of 2,77 mm (0.109 Inch), Except $6,35 \mathrm{~mm}$ ( 0.250 Inch) Between Channels 6 and 7, to be Compatible with Paper Tape Vertical-Format Unit Requirements For Line Printers
- Spectrally Matched, Hermetically Sealed Sensors and Emitters Similar to TIL604 and TIL23 with a Proven Reliability History
- Proprietary Design $\dagger$ Eliminates Aperture Holes in the Plastic Housing Preventing Dust Problems
- TTL Compatible Output-Fan-Out to 10 Standard Series 54/74 Loads
- Design Goal of 100,000 Hours Operation through Component Selection and Production Testing of Internal Nodes
- Printed-Board Construction Allows Precise Alignment of Emitters and Sensors
description
The TIL141 and TIL142 are 12-channel integrated optical readers for paper tape such as Burroughs 10020717, IBM 429754, or the equivalent. Each consists of 12 TIL23 infrared-emitting diodes (IRED's), 12 TIL604 phototransistors, two SN74 14 hex Schmitt-trigger inverters, and the appropriate load resistors. Metal-film resistors are used to ensure maximum stability. The TIL141 has $177,8-\mathrm{mm}$ ( 7 -inch) wire leads for soldering directly into the circuit. The TIL 142 has a plug-in connector.

Each infrared-emitting diode transmits through the open-air gap of the tape slot to a phototransistor that drives one of the Schmitt-trigger inverters. An obstruction (transmissivity $\leqslant 15 \%$ ) in the gap between an IRED and its phototransistor will cause a high output while a clear gap will cause a low output. Data holes in the tape should have a minimum width of $1,52 \mathrm{~mm}$ ( 0.060 inch ).

functional diagram

${ }^{\dagger}$ Patent pending

## TYPES TIL141, TIL142 12-CHANNEL INTEGRATED OPTICAL READERS

## mechanical data

The plastic housing is soluble in chlorinated hydrocarbons and ketones. Methanol or isopropanol are'recommended as cleaning agents. Device performance characteristics remain stable when operated under high-humidity conditions.


## Texas Instruments

INCORPORATED
POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

## TYPES TIL141, TIL142 12-CHANNEL INTEGRATED OPTICAL READERS

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)


NOTE 1: Voltage values are with respect to both ground terminals connected together.
recommended operating conditions

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP $\ddagger$	MAX	UNIT
$\mathrm{V}_{\mathrm{OH}}$	High-Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}^{\mathrm{OH}}=-800 \mu \mathrm{~A}$	2.4	3.4		V
$\mathrm{V}_{\mathrm{OL}}$	Low-Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.2	0.4	V
los	Short-Circuit Output Current ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	-18		-55	mA
${ }^{\prime} \mathrm{CC}$	Supply Current	Total, All Outputs High	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		254	290	mA
		Total, All Outputs Low			360	410	
		Average Per Channel	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, DataRate $\leqslant 10 \mathrm{kHz}$, 50\% Duty Cycle		26		

${ }^{\dagger}$ Not more than one output should be shorted at a time.
$\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

## OPTOELECTRONIC ENCODER ASSEMBLIES FOR TRANSMISSIVE SENSING APPLICATIONS

- Compatible With Standard DTL and TTL Integrated Circuits
- High-Speed Switching . . . $\mathrm{t}_{\mathrm{r}}=5 \mu \mathrm{~s}, \mathrm{tf}_{\mathrm{f}}=5 \mu \mathrm{~s}$ Typical
- For Counting, Speed Control, Position Sensing, Beginning-of-Tape/End-of-Tape Sensing, and High-Voltage Isolation
- Designed for Base Mounting-Standard 7,6 mm (0.300-Inch) Dual-In-Line Pin Spacing
- PC Board or Bracket Mounting
- Contains Gallium Arsenide Infrared Émitter and Silicon Phototransistor
- Designed to be Interchangeable with Monsanto MCT8 and MCT81


## mechanical data

Each assembly consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted in a housing made of $40 \%$ glass-filled polyphenylene sulphide plastic. The assembly will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Total assembly weight is approximately 1.5 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Source Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $3 V$
Source Continuous Forward Current (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Source Peak Forward Current (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A
Sensor Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Sensor Emitter-Collector Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Sensor Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) . . . . . . . . . . 100 mW
Source-to-Sensor Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 4.5 \mathrm{kV}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16$ Inch $)$ from Assembly for 5 Seconds . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$
NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for $\mathrm{t}_{\mathrm{w}} \leqslant 1 \mu \mathrm{~s}, \mathrm{PRR} \leqslant 300$ pps.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## TYPES TIL143, TIL144 SOURCE AND SENSOR ASSEMBLIES

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	TIL143			TIL144			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$I_{C}=100 \mu A, I_{F}=0$	30			30			V
$\mathrm{V}_{\text {(BR)ECO }}$ Emitter-Collector Breakdown Voltage	$I_{E}=100 \mu A, I_{F}=0$	5			5			V
ICloff) Off-State Collector Current	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$		5	100		5	100	$n A^{*}$
IC(on) On-State Collector Current	$V_{C E}=10 \mathrm{~V}, I_{F}=20 \mathrm{~mA}$	200	250		50	100		$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{F}} \quad$ Input-Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$		1.35	1.7		1.35	1.7	V

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{r}}$	Rise Time	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \\ & R_{L}=100 \Omega \text {, See Figure } 1 . \end{aligned}$		5		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}}$	Fall Time			5		$\mu 5$

${ }^{\dagger}$ Stray irradiation outside the range of device sensitivity may be present. A satisfactory condition has been achieved when the parameter being measured approaches a value that cannot be altered by further irradiation shielding.

## PARAMETER MEASUREMENT INFORMATION



NOTE: The input pulse is supplied by a generator having the following characteristics: $\quad Z_{\text {out }}=50 \Omega, \quad t_{r} \leqslant 100 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leqslant \mathbf{1 0 0} \mathrm{ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}$, duty cycle $\approx 2 \%$.

VOLTAGE WAVEFORMS

FIGURE 1-SWITCHING TIMES

## HIGH-GAIN OPTOELECTRONIC ENCODER ASSEMBLIES FOR TRANSMISSIVE SENSING APPLICATIONS

## - Compatible With Standard DTL and TTL Integrated Circuits

- High Current Transfer Ratio . . . 0.125 Min (TIL145)
- For Counting, Speed Control, Position Sensing, Beginning-of-Tape/End-of-Tape Sensing, and High-Voltage Isolation
- Designed for Base Mounting-Standard 7,6 mm (0.300-Inch) Dual-In-Line Pin Spacing
- PC Board or Bracket Mounting
- Contains Gallium Arsenide Infrared Emitter and Silicon Darlington Phototransistor
- Designed to be Interchangeable with Monsanto MCA8 and MCA81
mechanical data
Each assembly consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon darlington phototransistor mounted in a housing made of $40 \%$ glass-filled polyphenylene sulphide plastic. The assembly will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Total assembly weight is approximately 1.5 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Source Reverse Voltage ..... 3 V
Source Continuous Forward Current (See Note 1) ..... 50 mA
Source Peak Forward Current (See Note 2) ..... 3 A
Sensor Collector-Emitter Voltage ..... 30 V
Sensor Emitter-Collector Voltage ..... 5 V
Sensor Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) ..... 100 mW
Source-to-Sensor Voltage ..... $\pm 4.5 \mathrm{kV}$
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}$ ( $1 / 16$ Inch) from Assembly for 5 Seconds ..... $260^{\circ} \mathrm{C}$
NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

2. This value applies for $t_{w} \leqslant 1 \mu \mathrm{~s}$, PRR $\leqslant 300 \mathrm{pps}$.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## TYPES TIL145, TIL146

SOURCE AND DARLINGTON SENSOR ASSEMBLIES
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	TIL145			TIL146			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage		$I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	30			30			V
$V_{\text {(BR) }}$ ECO	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	5			5			V	
${ }^{1}$ Coff)	Off-State Collector Current	$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$		5	100		5	100	nA	
${ }^{\text {I C }}$ (on)	On-State Collector Current	$\mathrm{V}_{C E}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$	2	5					mA	
		$\mathrm{V}_{C E}=1 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$				1.6	4			
$V_{F}$	Input-Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$		1.35	1.7		1.35	1.7	V	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP MAX	UNIT
$\mathrm{tr}_{\mathrm{r}}$	Rise Time	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{I}^{\text {C }}$ (on) $=500 \mu \mathrm{~A}$,		3	ms
$t_{f}$	Fall Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, See Figure 1		2.5	ms

${ }^{\dagger}$ Stray irradiation outside the range of device sensitivity may be present. A satisfactory condition has been achieved when the parameter being measured approaches a value that cannot be altered by further irradiation shielding.

## PARAMETER MEASUREMENT INFORMATION



NOTE: The input pulse is supplied by a generator having the following characteristics: $\quad Z_{\text {out }}=50 \Omega, \quad t_{r} \leqslant 10 \mu \mathrm{~s}$, $\mathrm{t}_{\mathrm{f}} \leqslant 10 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{w}}=10 \mathrm{~ms}$, duty cycle $\approx 50 \%$.

VOLTAGE WAVEFORMS
FIGURE 1-SWITCHING TIMES

## TYPES TIL147, TIL148 SOURCE AND SENSOR ASSEMBLIES

## OPTOELECTRONIC ASSEMBLIES FOR TRANSMISSIVE SENSING APPLICATIONS

- Compatible with Standard DTL and TTL Integrated Circuits
- High-Speed Switching: $\mathrm{t}_{\mathrm{r}}=5 \mu \mathrm{~s}, \mathrm{tf}_{\mathrm{f}}=5 \mu \mathrm{~s}$ Typical
- Designed for Base Mounting . . . Fits Standard Dual-In-Line-Package Socket
- For Sensing Applications such as Shaft Encoders, Sector Sensors, Level Indicators, and Beginning-of-Tape/End-of-Tape Indicators
- Hermetically Sealed Phototransistor and Infrared-Emitting Diode
- $0,63-\mathrm{mm}$ ( 0.025 -inch) Aperture Slit Provides High On/Off Resolution
- High Current Transfer Ratio . . . 0.2 Min (TIL147)
mechanical data
Each assembly consists of a gallium arsenide infrared-emitting diode of the TIL23 family and an n-p-n silicon phototransistor of the TIL601 family mounted in a housing made of $40 \%$ glass-filled polyphenylene sulphide plastic. The assembly will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Total assembly weight is approximately $\mathbf{1 . 5}$ grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Source Reverse Voltage ..... 3 V
Source Continuous Forward Current (See Note 1) ..... 100 mA
Sensor Collector-Emitter Voltage ..... 30 V
Sensor Emitter-Collector Voltage ..... 5 V
Sensor Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) ..... 50 mW
Source-to-Sensor Voltage ..... $\pm 2 \mathrm{kV}$
Storage Temperature Range ..... $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm ( $1 / 16$ Inch) Inch from Assembly for 5 Seconds ..... $260^{\circ} \mathrm{C}$

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## TYPES TIL147, TIL148 <br> SOURCE AND SENSOR ASSEMBLIES

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	TIL147		TIL148		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$I_{C}=100 \mu A, I_{F}=0$	30		30		V
V(BR)ECO Emitter-Collector Breakdown Voltage	$I_{E}=100 \mu A, I_{F}=0$	5		5		V
IC(off) Off-State Collector Current	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$		100		100	nA
IC(on) On-State Collector Current	$\mathrm{V}_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	4		1		mA
$V_{F}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1.3		1.3	V
	${ }^{1} \mathrm{~F}=50 \mathrm{~mA}$		1.7		1.7	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN $\quad$ TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{r}}$	Rise Time	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \quad \mathrm{IC}(\mathrm{On})=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$,	5	$\mu_{\mathrm{s}}$	
$\mathrm{t}_{\mathrm{f}}$	Fall Time	See Figure 1			

tStray irradiation outside the range of device sensitivity may be present. A satisfactory condition has been achieved when the parameter being measured approaches a value which cannot be altered by further irradiation shielding.

## PARAMETER MEASUREMENT INFORMATION



NOTE: The input pulse is supplied by a generator having the following characteristics: $\quad Z_{\text {out }}=50 \Omega, \quad \tau_{r} \leqslant 100 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leqslant 100 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}$, duty cycle $\approx 2 \%$.

VOLTAGE WAVEFORMS

## OPTOELECTRONIC MODULE FOR REFLECTIVE SENSING APPLICATIONS

- Adaptable for Printed Circuit Board Mounting
- Designed for Sensing Applications such as Line Finders, Batch Counters, Level Indicators, and Beginning-of-Tape/End-of-Tape Indicators


## mechanical data

The assembly consists of a TIL32 gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor similar to TIL78 mounted in a molded ABS ${ }^{\dagger}$ plastic housing. The assembly will withstand soldering temperature with no deformation and device performance characteristics remain stable when operated in high-humidity conditions. Total assembly weight is approximately 0.9 grams.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Source Reverse Voltage ..... 2 V
Source Continuous Forward Current (See Note 1) ..... 40 mA
Sensor Collector-Emitter Voltage ..... 30 V
Sensor Emitter-Collector Voltage ..... 7 V
Sensor Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) ..... 50 mW
Storage Temperature Range ..... o $85^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm (1/16 Inch) Inch from Assembly for 5 Seconds ..... $240^{\circ} \mathrm{C}$
NOTES: 1. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.73 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.2. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.91 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^13]
## TYPE TIL149

## SOURCE AND SENSOR ASSEMBLY

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	30			V
V(BR)ECO	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{E}=100 \mu \mathrm{~A}, I^{\prime}=0$	7			V
IC(off)	Off-State Collector Current	$\mathrm{V}_{C E}=15 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=0$			100	nA
${ }^{\text {I }}$ (on)	On-State Collector Current	$V_{C E}=5 \mathrm{~V}, \quad I_{F}=40 \mathrm{~mA}$, See Note 3	25	275		$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{F}}$	Input-Diode Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=\mathbf{4 0} \mathrm{mA}$		1.2	1.6	V

${ }^{\dagger}$ Stray irradiation outside the range of device sensitivity may be present. A satisfactory condition has been achieved when the parameter being measured approaches a value that cannot be altered by further irradiation shielding.
NOTE 3: Reflective surface is aluminum foll typical of beginning-of-tape/end-of-tape strips. It is $0,026 \mathrm{~mm}(0.001$ inch) thick and placed $3,81 \mathrm{~mm}(0,150 \mathrm{inch})$ from the read head.

# OPTOELECTRONIC READ HEAD FOR PUNCHED CARDS AND TAPE 

# OPTOELECTRONIC READ HEAD FOR PUNCHED CARDS AND TAPE 

Winston Veazey

Because optical punched-tape readers employing filament lamps are faster, quieter, smaller, less complex, and have fewer moving parts than older mechanical readers, optical systems have dominated the reader market since shortly after their introduction. While these optical systems perform relatively well, they still have disadvantages stemming mainly from filament aging. A better system, one eliminating filament-related problems and offering several other advantages, is a completely solid-state read head. Recent advances in optoelectronics technology have made such a read head technically and economically feasible. This report discusses the design, advantages and applications of a completely solid-state head comprised of Texas Instruments infrared-emitting diodes (IRED's) and phototransistors.

## INTERFACE WITH PERIPHERAL EQUIPMENT

The solid-state read head presents no problem interfacing with peripheral equipment. Standard size tapes are employed allowing continued use of existing tape equipment and software. Data outputs can be either serial or parallel and will depend on the associated electronics. The output levels will be determined by the channel amplifiers. Present-day IRED's are compatible with DTL, TTL, and MOS integrated circuits and discrete systems. Appropriate circuits allow compatibility with telephone levels where necessary. Other interface circuits can include Tl series SN75107.SN75110 line drivers and receivers. Where electrical isolation is needed, TI series TIL107/ TIL108 opto-couplers are suitable. System noise, primarily noise caused from circulating ground currents, is eliminated with use of the opto-couplers. These devices are also TTL compatible.

## COMPARISON WITH FILAMENT LAMPS

Solid-state infrared emitters have several important advantages over filament lamps used in read heads. One of the most important factors is increased reliability-the IRED's lifetime should be many times the life of the best filament lamp. In addition to the probable lifetime advan. tage, IRED's eliminate problems related to the filament as
the lamp ages, such as filament sag. When the filament sags, light focuses incorrectly on the tape or card holes and consequently, errors in reading occur. Several methods have been used to try to overcome this disadvantage. One method has been to use the lamp at a very high intensity. This increased intensity produces enough light on the sensors and tends to minimize the effects of the sagging filament, but it results in shorter lamp life and difficulty in adjusting the threshold level for low-opacity tapes and cards. Another effort to solve the problem has been to use spring tension on the filament. This type of lamp incorporating spring tension is expensive and mechanical resonance problems sometimes occur. By using IRED's, the problems associated with filaments can be eliminated and this appears to be one of the most desirable benefits of an all-solid-state read head.

Because IRED's are much more vibration resistant than filament lamps, they have stability over a wide range of environmental conditions which is another advantage IRED's have compared to filament lamps. The TIL23/ TIL24 emitters have temperature characteristics which are opposite to those of the LS600/TIL601 sensors, and consequently, when used as a pair, the TIL23/LS600 devices give stable outputs over a wide temperature range. Table 1 shows a comparison between tungsten lamps and IRED's when used with a phototransistor sensor. It shows variation in output current of the phototransistor as a function of several parameters and illustrates the superior overall stability of IRED's compared to the stability of tungsten-filament lamps. This stability results in much easier adjustment of the circuit and much more stable operating conditions.

IRED's require much lower power than the filament lamp resulting in much less heat dissipation in the head. Some filament lamps require as much as 15 watts of power as compared to less than $1 / 2$ watt for nine IRED's. Because most of this power is dissipated as heat in the system, poor efficiency results. Since the required power is low, a relatively simple current driver/regulator can be utilized, with the necessary components in the driver being small and of low power. A discussion of the required circuitry appears later in this report.

## OPTOELECTRONIC READ HEAD FOR PUNCHED CARDS AND TAPE

Table 1. Comparison Between Tungsten Lamps and Infrared-Emitting Diodes, Showing Variation in Output Current of Phototransistor

Spread Due To	Tungsten   Lamp	IRED
Temperature $0-75^{\circ} \mathrm{C}$	$3: 1$	$1.5: 1$
Supply voltage $\pm 5 \%$	$1.6: 1$	$1.1: 1$
Aging 10,000 hours	$2: 1$	$1.5: 1$
Close match	$8: 1$	$4: 1$
Total spread	$77: 1$	$10: 1$

The small size of IRED's is another advantage. Because of its small size, the emitter can be placed in close proximity to the sensors, thus reducing the effect of any extraneous light which could cause reading errors. The LS600 phototransistors and TIL23/24 infrared emitters are in packages suitable for mounting on printed circuit boards. This packaging permits easy mounting on printed circuit boards. Moreover, the physical compatibility eliminates any need for fiber optics, focus rods, or external lens to focus the radiant energy on the sensors. In addition, there is no need for amplifier compensation, which is often necessary when the infrared source is shorter than the tape or card width. The optical compatibility is illustrated in Figure 1. This graph shows the spectrum response of tungsten filament lamps, GaAs IRED's, Si sensors, and the human eye. GaAs emitters emit in the near-infrared region, their peak output wavelength being very near that of Si sensors (phototransistors) resulting in efficient coupling between the devices.


FIGURE 1. Relative Spectral Characteristics

## PHYSICAL CHARACTERISTICS

In the design of an optical solid-state read head, the mechanical configuration is very important. The sensor output, hence circuit requirements, are heavily dependent on the optical coupling characteristics. Representative coupling characteristics for TIL24 and LS600 devices are shown in Figure 2. This chart indicates that typical TIL24/LS600 device pairs are available which have outputs


FIGURE 2. TIL24/LS600 Coupled Pairs. Expected Output Current for 50 mA Input Current.
of 2 mA at a lens-to-lens spacing of $1 / 4$ inch. These output levels are high enough to allow versatility in the amplifier/ interface. Since the mechanical aspects of the system influence electrical output, much consideration should be given to the mechanical design. An important criterion related to electrical output is the system's contrast ratio. The contrast ratio is the ratio of "hole" output current to "no-hole" output current of the phototransistor. For a good electrical design, this ratio should be as high as possible. Current ratios of $50: 1$ should make the required circuit design relatively simple. On the other hand, a low contrast ratio provides only a narrow range for the threshold level, making circuit design more difficult. Among the factors that affect the current ratio are 1) IRED and sensor parameters, 2) lens-to-lens spacing of the IRED's and sensors, 3 ) placement of the tape or card between device pairs, 4) use of an aperture plate between pairs of devices, 5) tape opacity, and 6) optical crosstalk between channels. These factors are interrelated and will
affect current ratios. Each individual application will, to a certain extent, dictate some of the above factors. To get optimum results, use of device pairs rendering adequate output currents, an opaque aperature plate, high-opacity tape, and a tube for each channel to prevent optical crosstalk are desired. Using an opaque aperture plate between the IRED's and phototransistors is probably the single most important factor in obtaining high contrast ratios for low-opacity tapes. Contrast ratios versus IRED current for various types of tape with several lens-to-lens spacings are shown in Figure 3. The data was taken using an aperture plate with holes of 0.035 -inch diameter and having a separate tube for each channel to eliminate crosstalk. It is apparent that the oiled paper tapes are least desirable from a current ratio standpoint. This is to be expected since oiled paper tapes are the least opaque of the tapes commonly used in the industry. The graphs indicate that it is possible. to obtain contrast ratios of $50: 1$ or greater for oiled-paper tapes when using an aperture plate.

Good performance should result if the mechanical design insures adequate coupling when the tape or card is to be read. This involves the relative physical alignment concerning the IRED's, sensors, aperture plate, and the tape or card being read.

## CIRCUIT REQUIREMENTS

The many different tape and card reader applications can dictate various circuit requirements because of some specific mechanical or electrical restraint. It would be difficult, if not impossible, to try to design a circuit that would meet all requirements for all types of punched tape or card readers. However, some of the general problems that might be encountered in designing the circuitry necessary for a reader will be examined.

Many of the factors that affect the physical configuration influence the phototransistor output current that, in turn, determines the channel amplifiers and related circuitry. The amplifiers must be capable of differentiating between "hole" and "no-hole" currents and producing the level of output necessary to interface with peripheral equipment.

With sufficient sensor output currents, the devices can be compatible with TTL and DTL integrated circuits. Figure 4a represents one method by which phototransistors can be used with TTL. The sensor must be capable of sinking 1.6 milliamps at 0.8 volts to ensure a low level at the input of the gate. The SN7413 is a Schmitt trigger type of NAND gate-its output will switch when the input reaches a set level, regardless of the rise time of the input signal. The result is clean, positive, and fast switching at the output without any oscillations, which might otherwise appear at the output during the switching time. Use of the Schmitt trigger is desirable because typical TTL and DTL integrated circuits require inputs to switch in much less than one microsecond for clean outputs during rise and fall times and the switching times of typical phototransistors are greater than one microsecond.


FIGURE 3. Different Contrast Ratios of White Oiled Paper, Black Paper, and Metallized Mylar Tape at Various Currents of TIL24/LS600 Coupled Pairs

Additional versatility can be obtained by making the amplifier much more sensitive. A simple circuit for achieving this is shown in Figure 4-b. The additional transistor gives another stage of amplification, increasing the sensitivity by approximately the hFE of the transistor.

For increased versatility with the use of integrated circuits, the system can be designed so that only one Schmitt trigger is necessary, that being for the strobe amplifier. To use this technique effectively, the aperture hole for the strobe channel should be smaller than the holes for all the other channels. This size differential allows the data channel outputs to stabilize before the strobe amplifier

## OPTOELECTRONIC READ HEAD FOR PUNCHED CARDS AND TAPE



FIGURE 4. Schmitt Trigger Channel Amplifiers
triggers. If any oscillations occur during the switching times of the data channel amplifiers, they will no longer be present when the strobe channel amplifier switches.

Integrated circuits other than the SN7413 can be used for the channel amplifiers. Circuits illustrating the use of several different devices are shown in Figure 5. The circuit shown in Figure 5-a uses only one gate of an SN7404 package. The sensor must be capable of sinking 1.6 mA at 0.8 volts-if not, the SN74L04 ensures operation for a maximum sink current of 0.18 mA at 0.8 volts. The circuit in Figure 5-b makes use of a feedback resistor to provide faster switching-the output is inverted from that of Figure $5-\mathrm{a}$. Figures $5-\mathrm{c}$ and $5-\mathrm{d}$ show circuits which can be used where radiant energy levels may not be sufficient to ensure $1.6-\mathrm{mA}$ sensor current. Both have stages of gain for amplification before the gate. It should be noted that these circuits may have oscillations at the outputs during switching.

Other circuits can be designed to meet necessary requirements of channel amplifiers. Even if discrete


FIGURE 5. Other Channel Amplifiers Using Integrated Circuits

# OPTOELECTRONIC READ HEAD FOR PUNCHED CARDS AND TAPE 

components are used, it is desirable to use a Schmitt trigger arrangement to provide clean and positive switching at a predictable level.

The IRED's can be driven from a current source or voltage source, either in series or parallel. The most desirable method will be dependent on the system. In general, it is simpler and more efficient to drive the IRED's in series from a constant-current source. Series connection ensures the same current through all the IRED's and thus tends to maintain a more uniform output. In addition, with the series connection, only two leads out of the IRED array are necessary. For parallel connection of IRED's, a current-limiting resistor in series with each IRED must be used because of the difference in forward voltage drop of the devices.

Figure 6 illustrates a circuit to drive the IRED's in series from a constant-current source that regulates variations in IRED voltages and supply voltage. The IRED current is determined by $\left(\mathrm{V}_{\mathrm{Z}}-0.7\right) \mathrm{R} 1$, where $\mathrm{V}_{\mathrm{Z}}$ is the zener voltage. The zener diode voltage will be determined primarily by the supply voltage and the number of IRED's in series.


FIGURE 6. LED Driver/Regulator

## DESCRIPTION OF A SOLID-STATE READ HEAD IN AN ACTUAL APPLICATION

An off-the-shelf punched tape reader was bought and modified by replacing the read head and channel amplifiers. The tape reader was of the optical type with a filament lamp and photodiodes. Nine elements of LS600 phototransistors mounted on a small printed circuit board replaced the original photodiode array. This sensor array was mounted so that the phototransistor lenses were 150 mils from the tape. Since the LS600's and TIL24's have identical packages, they were mounted on similar printed circuit boards. The IRED's (TIL24's) were placed

150 mils from the tape resulting in a Iens-to-lens spacing of 300 mils. An aperture plate with 0.045 -inch channel holes and 0.035 -inch strobe hole was used. The IRED's were driven at 10 milliamps each from the circuit shown in Figure 7. Because the tape reader only had +6 and +28 volts available, 28 volts was used.


FIGURE 7. IRED Driver/Regulator Used in System
The modified reader has nine parallel outputs, one for each of the eight data channels, and one for the strobe channel. Figure 8 illustrates the schematic for the channel amplifiers that were used. The SN7413 Schmitt trigger eliminates oscillations at the output during switching. To set the threshold level the collector resistor and base resistor can be adjusted. These resistor values are partially dependent on the "hole" and "no-hole" currents of the phototransistor. It may have been desirable to use IRED's and phototransistors that were matched (have outputs that are within a given range for a set input). This would have simplified the adjustment of the amplifiers by ensuring uniformity among the channels. Using matched devices is more desirable for lower contrast ratios, since the adjustment for these is more critical. Figures 3 and 4 show the typical contrast ratios that were achieved.

Since the tape reader has been used in a visual display system that requires slow strobe rates, speed of operation of this reader has not been a prime consideration.

## SUMMARY

Optical punched tape and card readers have captured a large share of the reader market because of their many advantages over the older mechanical readers. This success, coupled with a reduction in prices of electronic components, has made the all-solid-state read head economically, as well as technically, practical and beneficial. A read head

## OPTOELECTRONIC READ HEAD FOR PUNCHED CARDS AND TAPE



FIGURE 8. Channel Amplifier Used in System
consisting of infrared-emitting diodes and phototransistors presents no problem with respect to being used with existing peripheral equipment. IRED's provide several important advantages over filament lamps for use in read heads: (1) IRED's have longer life and inherently eliminate the problems associated with filament sag due to aging, resulting in higher overall reliability. (2) IRED's possess a higher degree of environmental stability, including temperature and vibration stability. (3) IRED's have very low
power requirements, dissipating less heat and having higher electrical efficiency. (4) The IRED's small size enables them to be placed in close proximity to the sensors, making the system smaller and less affected by extraneous radiation.

Physical configuration is very important in the performance of the overall system. The circuit requirements are dependent on the coupling characteristics of the IRED's and sensors. A high contrast ratio ("hole" current to "nohole" current) is desirable for simplicity in the circuit design. The use of an aperture plate between IRED's and sensors and elimination of optical crosstalk between channels are two factors which will help in achieving a high contrast ratio, especially for low opacity tapes.

Phototransistors can be compatible with integrated circuits. A Schmitt trigger integrated circuit (SN7413) allows simplicity in channel amplifier design to achieve clean and positive switching. A simple current source/ regulator will suffice to drive the IRED's. Driving the IRED's in series from a constant-current source provides uniformity in radiant-energy output.

A standard optical tape reader was modified by replacing the read head and channel amplifiers. TIL24's and LS600's were used for the IRED's and sensors respectively and a SN7413 Schmitt trigger NAND gate was used in the channel amplifiers. With an aperture plate, contrast ratios for various types of tapes ranged from $40: 1$ to $500,000: 1$.

# Light-Emitting Diodes 

QUICK REFERENCE GUIDE LIGHT-EMITTING DIODES

LIGHT-EMITTING DIODES QUICK REFERENCE GUIDE

DEVICE	COLOR	LENS	BR	ESS	PACKAGE ${ }^{\dagger}$(LAMP SIZE)	FEATURES
			MIN (m	$F(\mathrm{~mA})$		
5082-4550	Yellow	Diffused	1	10	$\begin{aligned} & \mathrm{CL}-10 \\ & (\mathrm{~T} 1 \% / 4) \end{aligned}$	Direct replacements for Hewlett-Packard parts
5082-4555	Yellow	Diffused	2.2	10		
5082-4650	Red	Diffused	1	10		
5082-4655	Red	Diffused	3	10		
5082-4950		Diffused	1	20		
5082-4955	Green	Diffused	2.2	20		
TIL209A	Red	Diffused	0.5	20	$\begin{aligned} & \text { CL-9 } \\ & \text { (T1) } \end{aligned}$	-
TIL211	Green	Diffused	0.8	25		
TIL212-1	Yellow	Diffused	0.8	20		
TIL212-2	Yellow	Diffused	2.1	20		
TIL216-1	Red	Diffused	2.1	20		
TIL216-2	Red	Diffused	6	20		
TIL220	Red	Diffused	0.8	20	CL-10	
TIL221	Red	Clear	1	20	(T1\%)	
TIL224-1	Yellow	Diffused	2.1	20	$\begin{aligned} & \text { CL-10 } \\ & \text { (T1 } \% \text { ) } \end{aligned}$	High intensity
TIL224-2	Yellow	Diffused	6	20		
TIL227-1	Yellow	Clear	6	20		
TIL227-2	Yellow	Clear	15	20		
TIL228-1	Red	Diffused	2.1	20		
TIL228-2	Red	Diffused	6	20		
TIL231-1	Red	Clear	6	20		
TIL231-2	Red	Clear	15	20		
TIL232-1	Green	Diffused	0.5	20	CL-9	
TIL232-2	Green	Diffused	1.3	20	(T1)	
TIL234-1	Green	Diffused	0.8	20	$\begin{aligned} & \text { CL-10 } \\ & \text { (T1 } 3 / 4 \text { ) } \end{aligned}$	High intensity
TIL234-2	Green	Diffused	2.1	20		
TIL236-1	Green	Clear	6	20		
TIL236-2	Green	Clear	15	20		
$\begin{aligned} & \text { TIL261 thru } \\ & \text { TIL270 } \end{aligned}$	Red	Diffused	$0.5 \ddagger$	25	CL-25	One-element thru ten-element arrays
$\begin{aligned} & \text { TIL271 thru } \\ & \text { TIL280 } \end{aligned}$	Green	Diffused	$0.8 \ddagger$	25		
$\begin{aligned} & \text { TIL281 thru } \\ & \text { TIL290 } \\ & \hline \end{aligned}$	Yellow	Diffused	$0.8 \ddagger$	25		

†The following accessories are available: panel mounting bushings TILM1 for CL-9 (T1) and TILM2 for CL-10 (T1 $1 / 4$ ), mounting clip and lens cover TILM3 for CL-10 (T1 $1 /$ ).
$\ddagger$ Output per element.

# TYPES 5082-4550, 5082-4555, 5082-4650, 5082-4655, 5082-4950, 5082-4955 GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES <br> BULLETIN NO. DL-S 12669, SEPTEMBER 1978 

## YELLOW, RED, OR GREEN LIGHT SOURCES

- 90-Degree Viewing Angle
- Rugged Construction
- Solid-State Reliability
- Compatible with DTL and TTL Circuitry
- Versatile Mounting in PCB, Panel, or Socket
- Replacements for Popular Hewlett-Packard

DEVICE   TYPE	SOURCE	LENS   MATERIAL
$5082-4550$	Yellow	Diffused yellow
plastic		

mechanical data
These devices are similar in size to lamp style $\mathrm{T} 13 / 4$ and may be panel mounted using mounting clip TILM2 (formerly TIL220MC) or clip and lens combination TILM3Y, TILM3R, or TILM3G.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Reverse Voltage at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ Inch) from Case for 3 Seconds . . . . . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to 10 mA at $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.53 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^14]| PARAMETER |  | TEST CONDITIONS | YELLOW |  |  |  |  |  | RED |  |  |  |  |  | GREEN |  |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5082-4550 | 5082-4555 |  |  | 5082-4650 |  |  | 5082-4655 |  |  | 5082-4950 |  |  | 5082-4955 |  |  |  |
|  |  | MIN | TYP | MAX |  |
| Iv | Luminous Intensity |  | $I_{F}=10 \mathrm{~mA}$ | 1 |  |  | 2.2 |  |  | 1 |  |  | 3 |  |  |  |  |  |  |  |  | mcd |
|  |  |  | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 2.2 |  |  |  |
| $\lambda_{p}$ | Wavelength at | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 583 |  |  | 583 |  |  | 635 |  |  | 635 |  |  |  |  |  |  |  |  | nm |  |
|  | Peak Emission | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |  |  |  |  |  |  |  |  |  |  |  |  | 565 |  |  | 565 |  |  |  |  |
| ${ }^{\theta} \mathrm{HI}$ | Half-Intensity Beam Angle |  | $90^{\circ}$ |  |  |  |  |
| $V_{F}$ | Forward Voltage | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |  |  | 3 |  |  | 3 |  |  | 3 |  |  | 3 |  |  |  |  |  |  | V |  |
|  |  | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 |  |  | 3 |  |  |
| IR | Static Reverse Voltage | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ |  |  | 100 |  |  | 100 |  |  | 100 |  |  | 100 |  |  | 100 |  |  | 100 | $\mu \mathrm{A}$ |  |

## TYPE TIL209A <br> GALLIUM ARSENIDE PHOSPHIDE LIGHT-EMITTING DIODE

BULLETIN NO. DL-S 12024, JUNE 1973-REVISED SEPTEMBER 1978

## DESIGNED TO EMIT VISIBLE RED LIGHT WHEN FORWARD BIASED

- Recommended for Application in Visual Indicators, Alpha-Numeric Displays, and Built-In Diagnostics
- High Brightness with Solid-State Reliability
- Compatible with Most TTL and DTL Circuits
- Ideal as Fault or Trouble Indicator
- Filled-Epoxy Lens Provides Diffused Source
- Ideal for Socket, Printed Circuit Board, and 1.6-mm (1/16-Inch) Panel Mounting Techniques
mechanical data

This device has a red molded filled-epoxy body.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . 3 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . . . . . . . 40 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature 1,6 mm (1/16 Inch) from Case for 5 Seconds . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Iv	Luminous Intensity (See Note 2)	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	500			$\mu \mathrm{cd}$
$\lambda_{p}$	Wavelength at Peak Emission	$I_{F}=20 \mathrm{~mA}$	630	650	670	nm
$V_{F}$	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1.6	2	V
${ }^{\prime} \mathrm{R}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		0.1		$\mu \mathrm{A}$

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.53 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.

TYPE TIL209A
GALLIUM ARSENIDE PHOSPHIDE LIGHT-EMITTING DIODE

TYPICAL CHARACTERISTICS


NOTE 2: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.

## YELLOW, RED, OR GREEN HIGH-INTENSITY LIGHT SOURCES

- Good Viewing Angles
- Rugged Construction
- Solid-State Reliability
- Compatible with DTL and TTL Circuitry
- Versatile Mounting in PCB, Panel, or Socket

DEVICE	DESCRIPTION
TIL212	Yellow source   Diffused yellow plastic body
TIL216	Red source   Diffused red plastic body
TIL232	Green source   Diffused green plastic body

mechanical data

These devices are similar in size to lamp style T1 and may be panel-mounted using mounting clip TILM1 (formerly TIL209MC).

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Continuous Forward Current (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for $\mathrm{t}_{\mathrm{w}}=1 \mu \mathrm{~s}, \mathrm{PRR}=300 \mathrm{~Hz}$.

## TYPES TYPES TIL212, TIL216, TIL232 <br> GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$v$	$I_{F}=20 \mathrm{~mA}$	TIL212-1	0.8			med
		TIL212-2	2.1			
		TIL216-1	2.1			
		TIL216-2	6			
		TIL232-1	0.5			
		TIL232-2	1.3			
Wavelength at Peak Emission	$I_{F}=20 \mathrm{~mA}$	TIL212		580		nm
		TIL216		620		
		TIL232		560		
${ }^{\theta} \mathrm{HI}$ Half-Intensity Beam Angle	$I_{F}=20 \mathrm{~mA}$			$60^{\circ}$		
$V_{F}$ Static Forward Voltage	$I_{F}=20 \mathrm{~mA}$				3.2	V
IR Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$				100	$\mu \mathrm{A}$

NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on llumination) eye-response curve.

TYPICAL CHARACTERISTICS


FIGURE 1

RELATIVE LUMINOUS INTENSIJY
ANGULAR DISPLACEMENT


FIGURE 2

## TYPES TIL220, TIL221 <br> GALLIUM ARSENIDE PHOSPHIDE LIGHT-EMITTING DIODES

## DESIGNED TO EMIT VISIBLE RED LIGHT WHEN FORWARD BIASED

- Recommended for Panel Mounted Visual Indicators
- High Brightness with Solid-State Reliability
- Compatible with Most TTL and DTL Circuits
- Leads Are Designed to be Wire-Wrapped
- Filled-Epoxy Lens Provides Diffused Source (TIL220)
- Clear Epoxy Lens Provides Pin-Point Source (TIL221)
mechanical data
TIL220 has a red molded filled-epoxy body. TIL221 has a colorless clear molded epoxy body.

absolute maximum ratings

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER.	TEST CONDITIONS	TIL220			TIL221			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
$I_{v}$ Luminous Intensity (See Note 2)	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	800			1000			$\mu \mathrm{cd}$
$\lambda_{p}$ Wavelength at Peak Emission	$1_{F}=20 \mathrm{~mA}$	630	650	670	630	650	670	nm
$V_{F}$ Static Forward Voltage	$I_{F}=20 \mathrm{~mA}$		1.6	2		1.6	2	V
$\mathrm{I}_{\mathrm{R}}$ Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		0.1			0.1		$\mu \mathrm{A}$

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
2. The package is capable of dissipating whatever power ( $V_{F} \times I_{F}$ ) is developed at any level of forward current at or below the rated amount. Typical junction-to-free-air thermal resistance, $\mathrm{R}_{\theta \mathrm{JA}}$, is $230^{\circ} \mathrm{C} / \mathrm{W}$.
3. Luminous intensity is measured with a light sensor and filter combination that approximates the CiE (International Commission on Illumination) eye-response curve.

## TYPES TIL220, TIL221 <br> GALLIUM ARSENIDE PHOSPHIDE LIGHT-EMITTING DIODES

TYPICAL CHARACTERISTICS


NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve.

## YELLOW HIGH-INTENSITY LIGHT SOURCES

- Good Viewing Angles
- Rugged Construction
- Solid-State Reliability
- Long Life
- Compatible with DTL and TIL Cicruitry
- Versatile Mounting in PCB,

DEVICE	DESCRIPTION
TIL224	Yellow source   Diffused yellow plastic body   Medium-angle emission   General-purpose indicator applications
	Yellow source   Colorless clear plastic body   Narrow-angle emission   Point source applications

## description

These devices are similar in size to lamp style $\mathrm{T} 1^{3 / 4}$ and may be panel mounting using mounting clip TILM2 (formerly TIL220MC), or clip and lens combination TILM3Y.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Continuous Forward Current (See Note 1)										
Peak Forward Current (See Note 2)										
Operating Temperature Range										
Storage Temperature Range										

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for $t_{w}=1 \mu \mathrm{~s}, \operatorname{PRR}=300 \mathrm{~Hz}$.

## TYPES TIL224, TIL227 <br> GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Iv	Luminous Intensity (See Note 3)	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	TIL224-1	2.1			mod
			TIL224-2	6			
			TIL227-1	6			
			TIL227-2	15			
$\lambda_{p}$	Wavelength at Peak Emission	$I_{F}=20 \mathrm{~mA}$			580		nm
$\theta_{\text {Hi }}$	Half-Intensity Beam Angle	$I_{F}=20 \mathrm{~mA}$	TIL224		$60^{\circ}$		
			TIL227		$25^{\circ}$		
$V_{F}$	Static Forward Voltage	$I_{F}=20 \mathrm{~mA}$				3.2	V
$\mathrm{I}_{\mathrm{R}}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$.				100	$\mu \mathrm{A}$

NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Ilfumination) eve-response curve.

TYPICAL CHARACTERISTICS

FORWARD CURRENT
vs
FORWARD VOLTAGE


FIGURE 1

RELATIVE LUMINOUS INTENSITY
vs
ANGULAR DISPLACEMENT


FIGURE 2

## RED HIGH-INTENSITY LIGHT SOURCES

- Good Viewing Angles
- Rugged Construction
- Solid-State Reliability
- Long Life
- Compatible with DTL and TIL Circuitry
- Versatile Mounting in PCB, Panel, or Socket

DEVICE	DESCRIPTION
TIL228	Red source   Diffused red plastic body   Medium-angle emission   General-purpose indicator applications
	Red source   Colorless clear plastic body  

mechanical data
These devices are similar in size to lamp style $\mathrm{T} 13 / 4$ and may be panel mounted using mounting clip TILM2 (formerly TIL220MC), or clip and lens combination TILM3R.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$$
\begin{aligned}
& \text { Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 5 \mathrm{~V} \\
& \text { Continuous Forward Current (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . } 50 \mathrm{~mA} \\
& \text { Peak Forward Current (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1 \text { A } \\
& \text { Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . }-55^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\
& \text { Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . }-55^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\
& \text { Lead Temperature } 1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch}) \text { From Case for } 3 \text { Seconds . . . . . . . . . . . . . . . . . . } 260^{\circ} \mathrm{C}
\end{aligned}
$$

NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for $\mathrm{t}_{\mathrm{w}}=1 \mu \mathrm{~s}, \mathrm{PRR}=300 \mathrm{~Hz}$.

## TYPES TIL228, TIL231 <br> GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{I}_{\mathrm{v}}$	Luminous Intensity (See Note 3)	$I_{F}=20 \mathrm{~mA}$	TIL228-1	2.1			mcd
			TIL228-2	6			
			TIL231-1	6			
			TIL231-2	15			
$\lambda_{p}$	Wavelength at Peak Emission	$I_{F}=20 \mathrm{~mA}$			620		$n m$
$\theta \mathrm{HI}$	Half-Intensity Beam Angle	$I_{F}=20 \mathrm{~mA}$	TIL228		$60^{\circ}$		
			TIL231		$25^{\circ}$		
$V_{F}$	Static Forward Voltage	$I_{F}=20 \mathrm{~mA}$				3.2	V
$I_{R}$	Static Reverse Current	$V_{R}=5 \mathrm{~V}$				100	$\mu \mathrm{A}$

NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.

## TYPICAL CHARACTERISTICS



## GREEN HIGH-INTENSITY LIGHT SOURCES

- Good Viewing Angles
- Rugged Construction
- Solid-State Reliability
- Compatible with DTL and TIL Circuitry
- Versatile Mounting in PCB, Panel, or Socket

DEVICE	DESCRIPTION
TIL234	Green source                  Diffused green plastic body   Medium-angle emission   General-purpose indicator applications   TIL236Green source         Colorless clear plastic body   Narrow-angle emission   Point source applications

mechanical data
These devices are similar in size to lamp style $\mathrm{T} 13 / 4$ and may be panel mounted using mounting clip TILM2 (formerly TIL220MC), or clip and lens combination TILM3G.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)


NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for $t_{w}=1 \mu \mathrm{~s}, \mathrm{PRR}=300 \mathrm{~Hz}$.

## TYPES TIL234, TIL236 <br> GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Iv	Luminous Intensity (See Note 3)	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	TIL234-1	0.8			
			TIL234-1	2.1			mod
			TIL236-1	6			
			TIL236-2	15			
$\lambda_{p}$	Wavelength at Peak Emission	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$			560		nm
${ }^{\theta} \mathrm{HI}$	Half-Intensity Beam Angle	$I_{F}=20 \mathrm{~mA}$	TIL234		$60^{\circ}$		
			TIL236		$25^{\circ}$		
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$				3.2	V
$\mathrm{I}_{\mathrm{R}}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$				100	$\mu \mathrm{A}$

NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the ClE (international Commission on llumination) eye-response curve.

TYPICAL CHARACTERISTICS


## TYPES TIL261 THRU TIL270 GALLIUM ARSENIDE LIGHT-EMITTING DIODES

BULLETIN NO. DL-S 12228, NOVEMBER 1974

## DESIGNED TO EMIT VISIBLE RED LIGHT WHEN FORWARD BIASED

- Recommended for Applications in Visual Indicators, Alphanumeric Displays, and No/Yes Instrumentations
- Single Element or Arrays from 2 to 10 Elements
- Center-to-Center Spacing of 2,54 mm (0.100 Inch)

TYPE NUMBER	TIL261	TIL262	TIL263	TIL264	TIL265	TIL266	TIL267	TIL268	TIL269	TIL270
NUMBER OF ELEMENTS	1	2	3	4	5	6	7	8	9	10

mechanical data

Each device has a red molded filled epoxy body with silver-plated leads.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature
3 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . . . . . . . 40 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ below Seating Plane for 3 Seconds . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$I_{V}$	Luminous Intensity	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	500			$\mu \mathrm{cd}$
$\frac{I_{V} \text { min }}{I_{V} \text { max }}$	Luminous Intensity Matching Factor		0.4			
$\lambda_{p}$	Wavelength at Peak Emission		630	650	670	nm
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage			1.6	2	V
$I_{\text {R }}$	Static Reverse Current	$V_{R}=3 \mathrm{~V}$		0.1	100	$\mu \mathrm{A}$

NOTE 1: Derate lineariy to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.73 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.

## TYPES TIL271 THRU TIL280 GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES

BULLETIN NO. DL-S 12233, NOVEMBER 1974-REVISED SEPTEMBER 1978

## DESIGNED TO EMIT GREEN LIGHT WHEN FORWARD BIASED

- Recommended for Applications in Visual Indicators, Alphanumeric Displays, and No/Yes Instrumentations
- Single Element or Arrays from 2 to 10 Elements
- Center-to-Center Spacing of 2,54 mm (0.100 Inch)

TYPE NUMBER	TIL271	TIL272	TIL273	TIL274	TIL275	TIL276	TIL277	TIL278	TIL279	TIL280
NUMBER OF ELEMENTS	1	2	3	4	5	6	7	8	9	10

mechanical data
Each device has a green molded filled epoxy body with silver-plated leads.


NOTE 1: Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.55 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## Texas Instruments

INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

## TYPES TIL281 THRU TIL290 GALLIUM PHOSPHIDE LIGHT-EMITTING DIODES

BULLETIN NO. DL-S 12363, MARCH 1976-REVISED SEPTEMBER 1978

## DESIGNED TO EMIT YELLOW LIGHT WHEN FORWARD BIASED

- Recommended for Applications in Visual Indicators, Alphanumeric Displays, and No/Yes Instrumentations
- Single Element or Arrays from 2 to 10 Elements
- Center-to-Center Spacing of 2,54 mm (0.100 Inch)

TYPE NUMBER	TIL281	TIL282	TIL283	TIL284	TIL285	TIL286	TIL287	TIL288	TIL289	TIL290
NUMBER OF ELEMENTS	1	2	3	4	5	6	7	8	9	10

mechanical data
Each device has a yellow molded filled epoxy body with silver-plated leads.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 3 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . . . . . . . 30 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Temperature $1.6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ below Seating Plane for 3 Seconds . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$I_{v}$	Luminous Intensity	$I_{F}=20 \mathrm{~mA}$	500			$\mu \mathrm{cd}$
$\frac{I_{v} \min }{I_{v} \max }$	Luminous Intensity Matching Factor		0.4			
$\lambda_{p}$	Wavelength at Peak Emission		572.5	580	587.5	nm
$V_{F}$	Static Forward Voltage			2.4	3	V
$\mathrm{I}_{\mathrm{R}}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		0.1	100	$\mu \mathrm{A}$

NOTE 1: Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.55 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## FORMERLY TIL209MC

## FOR LIGHT-EMITTING DIODES SIMILAR IN SIZE TO LAMP STYLE T1

## installation instructions

The bushing can be mounted in any panel having a thickness up to 2 mm ( $5 / 64$ inch). To mount the bushing, drill a hole of diameter $5,2 \mathrm{~mm}$ (13/64 or 0.205 inch ) and remove the extruded burr. Insert the bushing through the front of the panel. While holding the bushing in place, insert the LED from the rear of the panel until the LED snaps into place.

## mechanical data



## FORMERLY TIL220MC <br> FOR LIGHT-EMITTING DIODES SIMILAR IN SIZE TO LAMP STYLE T1 3/4

## installation instructions

This mounting bushing can be mounted in any panel having a thickness up to $3.2 \mathrm{~mm}(0.125$ inch). To mount the bushing, drill a hole of diameter $6,8 \mathrm{~mm}(17 / 64 \mathrm{inch})$ and remove the extruded burr. Insert the bushing through the front of the panel. While holding the bushing in place, insert the LED from the rear of the panel until the LED snaps into place. The orientation of the flat side of the LED, which denotes the cathode lead, must be noted prior to insertion. After the LED is seated with its mounting flange snapped in the slot, push the lock collar over the rear side of the bushing until seated flush with the panel.

## mechanical data



POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

## TYPES TILM3C, TILM3G, TILM3R, TILM3Y LED PANEL MOUNTING CLIPS AND LENS COVERS

- Combines Mounting Clip and Refracting Lens
- TILM3C Clear
- Enhances Appearance of Panels and Systems
- TILM3G Green
- Easily Installed
- TILM3R Red
- Choice of Colors
- TILM3Y

Yellow

This new combination mounting clip and lens cover reduces installation time for panel mounted LED's and gives systems with LED's an expensive panel indicator appearance. Choice of color is specified by the complete part number.
mechanical data
MLL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
installation instructions

Mount from front of panel in $6,4-\mathrm{mm}$ (1/4-inch) hole. Collar accepts panel thickness from 1.6 to 3.2 mm ( $1 / 16$ to $1 / 8$ inch). Mounting can be on $9,6-\mathrm{mm}(3 / 8$-inch) centers. Mounting hole should be deburred but not chamfered.

Snap the TILM3 into the mounting hole. While holding it tight to the panel, insert the LED into the collar from the back.


The following Texas Instruments T1 $1 / 4$ size LED's are suitable for TILM3 mounting.

	Medium Viewing	Point
Color	Angle	Source
Yellow	TIL224	TIL227
Red	TIL228	TIL231
Green	TIL234	TIL236

# OPTOELECTRONIC FAULT INDICATOR FOR LOGIC CIRCUITS 

## OPTOELECTRONIC FAULT INDICATOR FOR LOGIC CIRCUITS

Roland Windecker

Before the invention of the transistor, most switching functions were performed by electro-mechanical relays. Today these functions are performed largely by integrated circuits because of their versatility, speed, size, reliability, and other features. The relay did have one attractive feature, however, that the integrated circuit does not have: that is, the logic state of the relay could easily be determined by simply looking at the contact mechanism. Since semiconductor switches do not have such a built-in indicator, usually meters or oscilloscopes are used to determine the state of an output when troubleshooting is necessary. In some cases, the number of outputs to be monitored, the fact that a gate circuit does not appear at one of the circuit-board terminals, or simply that test equipment is not always readily available, may make the use of such methods impractical. It is the purpose of this application report to suggest the use of visible-light-emitting diodes (VLED's) as indicators in such cases, and to provide information that should be helpful in their application.

## VLED CHARACTERISTICS

The VLED is a diode that emits visible light when forward biased. A single-crystal compound of gallium, arsenic, and phosphorous is used for the semiconductor element, and the color of the emitted light (red, $6500 \AA$ ) is obtained by controlling the phosphorous concentration. Data sheets describing Tl VLED devices are available and give most of the information of interest to the design engineer planning to employ the diode as a fault indicator. One parameter that is particularly significant for this application is the relationship between forward current and emitted light. This relationship is nearly linear, but since the eye views light level in a logarithmic way, the intensity is usually plotted on a logarithmic scale as shown in Figure 1. In this graph, the light level is normalized so the information given in Table 1 is included as a rough guide for selecting current needed for a particular application.

Another point of interest is that the emitting wafer appears larger to the eye than its actual dimensions, which are about $0.01 \times 0.01$ inch. This effect is due in part to the lens used in the package, but is also due to an illusion that occurs because of the brilliance of the small spot.

Table 1. Relative Light Intensity Versus Current

Forward   Current (mA)	Diode Light Intensity in Normal   Room Lighting
0.4	Light is definitely visible.   1.0   5.0
10.0	Light is easily seen.   Light is sufficient to attract the attention   of a casual observer.   Light is easily seen from a distance of   twenty feet.

RELATIVE LUMINOUS INTENSITY vs
FORWARD CURRENT


FIGURE 1. Luminous Intensity Versus Forward
Current for a Typical TI VLED (TIL209A)

## OPTOELECTRONIC FAULT INDICATOR FOR LOGIC CIRCUITS

## APPLICATIONS

The output of any integrated circuit in a computer or control system is a possible application for the VLED as a fault indicator. Obviously, only a limited number of these outputs need to be monitored, and the engineer designing maintainability into the system has the responsibility for deciding where the use of the indicator would be most effective. Outputs that normally cycle between high and low logic levels are prime candidates for this type of indicator. A VLED powered by the output of a flip-flop for example, can be adjusted to glow dimly during normal operation. When a fault occurs causing the output to be held high or low, the VLED will either glow more brightly or be off altogether, thereby revealing the state of the output. Similarly, a VLED powered by the output of a shift register can be used to indicate if the information is circulating normally (medium light intensity), is locked high (no light), or is locked low (full brilliance).

The use of the VLED to monitor command signals in computer or control systems is another possible application. The strobe signal from a keyboard or tape reader, for example, can be monitored by using a VLED at the output gate. Similarly, command signals used to control the flow of information between pieces of equipment can be monitored so that when trouble occurs, the fault can be isolated quickly.

In addition to computer and control system applications, VLED's can be powered directly by integrated-circuit outputs for other purposes, such as training personnel to understand logic circuits, helping the design engineer develop complex logic circuits, and reading outputs of test consoles used to diagnose and trouble shoot computer systems.

## TYPICAL CIRCUITS

## TTL Integrated Circuits

The circuit shown in Figure 2 can be used to monitor the output of a $54 / 74$ TTL integrated circuit or similar

Table 2

$I_{\mathrm{D}}(\mathrm{mA})$	0.5	1	2	4	6	8	10	14
$R(\mathrm{k} \Omega)$	6.5	3.2	1.6	0.8	0.51	0.39	0.30	
Fan-Out	9	9	8	7	6	5	3	1



FIGURE 2. Circuit used to Monitor Gate of TTL IC

Table 3

$I_{D}(\mathrm{~mA})$	10	15	20	25	30	40	45
$R(\Omega)$	309	200	160	125	100	73	62
$F_{\text {gn-Out }}$	33	20	17	14	11	5	1



## FIGURE 3. Circuit Used to Monitor Gate of a TTL IC Operating at 5 kHz with $5 \%$ Duty Cycle

logic circuits. Table 2 gives values for the limiting resistor required and includes the fan-out that must not be exceeded when the added lamp load is taken into account. This chart is based on the assumption that the TTL gate can sink 16 mA and that 1.6 mA is required by each of the driven TTL gates. If a high-current buffer (SN7440) is used as the TTL gate, 48 mA is available, and the expanded chart given in Table 3 is applicable. When very large currents are required for the indicator, a gate-transistor combination such as the SN75450B can be used. The circuit shown in Figure 3 was used to monitor a gate operating at 5 kHz with a $5 \%$ duty cycle. Resistor R2 is used to limit the diode current to a safe value when the gate output is held high due to a fault condition. The bypass capacitor increases the light level above that normally seen with a $5 \%$ duty cycle.

The fault indicator shown in Figure 1 emits light when the output is low and is dark when the output is high. If the inverse response is required, that is, light when the out put is high and no light when the output is low, the circuit shown in Figure 4 can be used. Table 4 gives corresponding series resistance and gate output voltage. Fan-out is not affected by this configuration, but care must be used in limiting the current to a level that does not reduce the output voltage below the recommended level.

## DTL Integrated Circuits

The VLED can be used to indicate trouble with DTL integrated circuits as well as with TTL. Figure 5 and Table 5 illustrate the use of a VLED to monitor a 4 -input NAND gate, type SN15830.

## OPTOELECTRONIC FAULT INDICATOR FOR LOGIC CIRCUITS

Table 4

$I_{D}(\mathrm{~mA})$	0.3	0.5	0.75	1.0	1.5
$R(\mathrm{k} \Omega)$	6.9	3.9	2.5	1.7	1.3
$V_{\mathrm{OH}}(\mathrm{V})$	3.62	3.6	3.52	3.5	3.46



FIGURE 4. Fault Indicator Circuit That Emits Light When Output is High and is Dark When Output is Low

Table 5

$I_{D}(\mathrm{~mA})$	0.5	1	2	4	6	8	10
$R(\Omega)$	6700	3200	1600	800	520	380	290
Fan-Out	8	7	7	5	4	2	1



FIGURE 5. VLED Monitoring an SN15830. 4-Input NAND Gate

Table 6

$I D(\mathrm{~mA})$	0.8	1.6	2.0
$R 1(\Omega)$	1400	700	500
$R 2(\Omega)$	1000	510	330



FIGURE 6. VLED Monitoring Output of SN10102 OR/NOR Gate

## ECL Integrated Circuits

Since the voltage swing at the output of an ECL gate is approximately 0.8 volts $(-1.7 \mathrm{~V}$ to $-0.9 \mathrm{~V})$, the application of the VLED across an active output is not recommended. Since many of the ECL gates have more than one output, it is possible to use one of these for the VLED while using the remaining outputs in the logic circuits. The VLED affects the remainder of the circuit only in that its current contributes to the power dissipation in the ECL chip. Figure 6 shows a VLED monitoring the output of an SN10102 OR/NOR gate.

## ADDITIONAL APPLICATIONS

The circuits presented here are intended to suggest a variety of configurations for applying the VLED as a fault indicator and to illustrate the simplicity of such circuits when used on integrated circuit gates. If a few basic limitations are kept in mind, such as the maximum continuous current and maximum reverse breakdown, the VLED is a very easy device to apply. The reliability and long life eliminate the need to provide for frequent replacement, and its small size and low power dissipation allow the user to concentrate a large number of the indicators in a relatively small area.

## Displays

## QUICK REFERENCE GUIDE DISPLAYS

SINGLE-DIGIT DISPLAYS QUICK REFERENCE GUIDE

DEVICE	TYPE OF CHARACTER(S)	CHARACTER HEIGHT mm (INCHES)	COLOR   OF DISPLAY	PACKAGE	REMARKS
$\begin{aligned} & 5082-7730 \\ & 5082-7731 \\ & 5082-7736 \\ & 5082-7740 \end{aligned}$	7-segment	7.6 (0.300)	Red	Plastic dual-in-line	Direct replacements for Hewlett-Packard parts
$\begin{aligned} & \text { TIL302 } \\ & \text { TIL303 } \end{aligned}$	7-segment	6,9 (0.270)	Red	14-lead dual-in-line plastic	TIL302-left decimal. TIL303-right decimal
TIL304	Polarity and overflow unit	6,9 (0.270)	Red	14-lead dual-   in-line plastic	Right decimal
TIL305	$\begin{gathered} 5 \times 7 \\ \text { alphanumeric } \end{gathered}$	7.6 (0.300)	Red	14-lead dual-   in-line plastic	Left decimal
TIL306   TIL307   TIL308   TIL309	7-segment	6,9 (0.270)	Red	16-lead dual-in-line plastic	TIL306 and TIL308-left decimal TIL307 and TIL309-right decimal
TIL311	Hexadecimal	6,9 (0.270)	Red	14-lead dual-in-line plastic	Logic includes latch, decoder, and driver Left and right decimals
$\begin{aligned} & \text { TIL312 } \\ & \text { TIL313 } \end{aligned}$	7-segment	7,6 (0.300)	Red	14-lead dual-in-line plastic	TIL312 has common anode, right and left decimals TIL313 has common cathode, right decimal only
$\begin{aligned} & \text { TIL321A } \\ & \text { TIL322A } \end{aligned}$	7-segment	12.7 (0.500)	Red	10-lead dual-in-line plastic	Right decimal. TIL321A is common-anode. TIL322A is common-cathode
TIL327	Polarity and overflow unit	7,6 (0.300)	Red	14-lead dual-in-line plastic	Left decimal
TIL330A	Polarity and overflow unit	12.7 (0.500)	Red	10-lead dual-   in-line plastic	Left decimal
TIL360	7-segment	2,6 (0.100)	Red	16-lead dual-   in-line plastic	6-digit display, each digit having right decimal

[^15]
## QUICK REFERENCE GUIDE DISPLAYS

MULTIDIGIT DISPLAYS QUICK REFERENCE GUIDE

DEVICE	TYPE OF   CHARACTERS	CHARACTER   HEIGHT   mm (INCHES)	COLOR	NUMBER   OF   DIGITS	REMARKS
TIL393-6	7-segment	$2,6(0.102)^{\dagger}$	Red	6	Lens mounted on an 18-tab printed circuit board.
TIL393-8	7-segment	$2,6(0.102)^{\dagger}$	Red	8	Otherwise same as TIL393-6.
TIL393-9	7-segment	$2,6(0.102)^{\dagger}$	Red	9	Otherwise same as TIL393-6.
TIL804	7-segment	$6,9(0.270)$	Red	12	
TIL807   TIL808	7-segment	$7,6(0.300)$	Red	2	TIL807 common anode, TIL808 common cathode.   No decimal.
TIL829   TIL830   TIL831   TIL832   TIL833   TIL834	7-segment	$12,7(0.500)$	Red	4	Multidigit timer displays with colon, alarm, degree,   and PM indicator options. Applications include   12- and 24-hour clocks.
TIL835   TIL836	7-segment	$12,7(0.500)$	Red	$31 / 2$	TIL835 common anode   TIL836 common cathode
TIL837   TIL838	7-segment	$6,9(0.270)$	Red	5	Common-cathode numeric displays. TIL837 right   decimal, TIL838 no decimal.
TIL839   TIL840   TIL841   TIL842	7-segment	$12,7(0.500)$	Red	2	Displays with multiplex or continuous operation   TIL839, TIL842 common anode   TIL840, TIL841 common cathode

${ }^{\dagger}$ Height of magnified character

## SOLID-STATE RED DISPLAYS

- 7,62-mm (0.300-Inch) Character Height
- Wide Viewing Angle
- High Contrast
- Continuous Uniform Segments
- Categorized for Uniformity of Luminous Intensity among Units within Each Category


## absolute maximum ratings

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point . . . . . . . . . . . . . 6 V
Peak Forward Current at (or below) $50^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point 150 mA
Average Forward Current at (or below) $50^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2),
Each Segment or Decimal Point 25 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ below Seating Plane for 3 Seconds . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$
operating characteristics of each segment or decimal point at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{aligned} & 5082-7730 \\ & 5082-7731 \\ & 5082-7736 \end{aligned}$			5082-7740			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Average Luminous Intensity per Segment (See Note 3)	$\begin{aligned} & I_{F}=100 \mathrm{~mA}, \\ & \text { Duty cycle }=10 \% \end{aligned}$				50	200		$\mu \mathrm{cd}$
	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	100350						
Segment-to-Segment Luminous Intensity Ratio	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	<1.5:1			<1.5:1			
$\lambda_{p} \quad$ Wavelength at Peak Emission		655			655			nm
$\lambda_{\mathbf{d}} \quad$ Dominant Wavelength (See Note 4)		640			640			nm
$\Delta \lambda \quad$ Spectral Bandwidth		20			20			nm
$V_{F}$ Static Forward Voltage		1.62				1.6	2	V
$a^{\text {VF }}$ Temperature Coefficient of Forward Voltage		-2.0			-2.0			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
IR Static Reverse Current	$V_{R}=6 \mathrm{~V}$	10			10			$\mu \mathrm{A}$

mechanical data

The display chips are mounted on a header and this assembly is then molded within an electrically nonconductive plastic case. To optimize device performance, materials are used that are limited to certain solvents for cleaning operations. It is recommended that only Freon ${ }^{\dagger}$ TF, isopropanol, or water be used.
5082-7730

COMMON ANODE,
LEFT DECIMAL

COMMON ANODE,
RIGHT DECIMAL
${ }^{\dagger}$ Trademark of E.I. duPont de Nemours, Inc.
NOTES: 1. This average value applies for any $10-\mathrm{ms}$ period.
2. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ free-a ir temperature at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on fllumination) eye-response curve.
4. The dominant wavelength is derived from the CIE Chromaticity Diagram and is the single wavelength that defines the color of the emitted light.


# TYPES TIL302, TIL303, TIL304 NUMERIC DISPLAYS 

## SOLID-STATE VISIBLE DISPLAY FAMILY WITH RED TRANSPARENT PLASTIC ENCAPSULATION

- $6,9-\mathrm{mm}$ ( 0.270 -Inch) Character Height
- High Luminous Intensity
- Low Power Requirements
- Sign, Overflow, Left or Right Decimal Capability
- Wide Viewing Angle
- Compatible with Most TTL and DTL Circuits
- Each Unit Visually Checked for Uniformity of Elements
mechanical data
The display chips are mounted on a header and this assembly is then cast within a red, electrically nonconductive, transparent plastic compound. Multiple displays may be mounted on $11,43-\mathrm{mm}(0.450$-inch) centers.



## TYPES TIL302, TIL303, TIL304 NUMERIC DISPLAYS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTE 1: This value applies for PRR $\geqslant 60 \mathrm{~Hz}$, duty cycle $\leqslant 10 \%$.
operating characteristics of each segment at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TIL302, TIL303		TIL304		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
$\mathrm{I}_{V} \quad$ Luminous Intensity (See Note 2)	$I_{F}=20 \mathrm{~mA}$	100	275	100	275	$\mu \mathrm{cd}$
$\lambda_{\mathrm{p}} \quad$ Wavelength at Peak Emission		640	660680	640	660680	nm
$\Delta \lambda$ Spectral Bandwidth			20		20	nm
$\mathrm{V}_{\mathrm{F}}$ Static Forward Voltage		3	3.43 .8	3	3.438	V
$\alpha$ VF Average Temperature Coefficient of Static Forward Voltage	$\begin{aligned} & I_{F}=20 \mathrm{~mA}, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		-2.7		-2.7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{R}} \quad$ Static Reverse Current	$V_{R}=6 \mathrm{~V}$		100		100	$\mu \mathrm{A}$
C Anode-to-Cathode Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		85		85	pF

operating characteristics of decimal point at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Iv Luminous Intensity (See Note 2)	$I_{F}=20 \mathrm{~mA}$	40	110	$\mu \mathrm{cd}$
$\lambda_{\text {p }} \quad$ Wavelength at Peak Emission		645	665685	nm
$\Delta \lambda$ Spectral Bandwidth			20	nm
$\mathrm{V}_{\mathrm{F}} \quad$ Static Forward Voltage		1.5	$1.65 \quad 2$	V
$\alpha$ VF Average Temperature Coefficient of Static Forward Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		-1.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{R}} \quad$ Static Reverse Current	$V_{R}=3 \mathrm{~V}$		100	$\mu \mathrm{A}$
C Anode-to-Cathode Capacitance	$V_{R}=0, \quad f=1 \mathrm{MHz}$		120	pF

NOTE 2: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve.

## TYPES TIL302, TIL303, TIL304 <br> NUMERIC DISPLAYS

## TYPICAL CHARACTERISTICS

RELATIVE SPECTRAL CHARACTERISTICS


FIGURE 1

RELATIVE LUMINOUS INTENSITY


RELATIVE LUMINOUS INTENSITY
vs
FREE-AIR TEMPERATURE


FORWARD CONDUCTION CHARACTERISTICS



NOTES: A. R1 and R2 are selected for desired brightness.
B. SN74L.47 may be used in place of SN7447A in applications where segment forward current will not exceed 20 mA .

FUNCTION TABLE
SN7447A

$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	INPUTS						BI/RBO ${ }^{+}$	SEGMENTS							NOTE
	LT	RBI	D	C	B	A		a	b	c	d	e	1	$g$	
0	H	H	L	L	L	L	H	ON	ON	ON	ON	ON	ON	OFF	1
1	H	X	L	L	L	H	H	OFF	ON	ON	OFF	OFF	OFF	OFF	1
2	H	$x$	L	L	H	L	H	ON	ON	OFF	ON	ON	OFF	ON	1
3	H	$x$	L	L	H	H	H	ON	ON	ON	ON	OFF	OFF	ON	1
4	H	X	L	H	L	L	H	OFF	ON	ON	OFF	OFF	ON	ON	1
5	H	X	L	H	L	H	H	ON	OFF	ON	ON	OFF	ON	ON	1
6	H	x	L	H	H	$L$	H	OFF	OFF	ON	ON	ON	ON	ON	1
7	H	X	L	H	H	H	H	ON	ON	ON	OFF	OFF	OFF	OFF	1
8	H	X	H	L	L	L	H	ON	1						
9	H	$x$	H	L	L	H	H	ON	ON	ON	OFF	OFF	ON	ON	1
10	H	$x$	H	L	H	L	H	OFF	OFF	OFF	ON	ON	OFF	ON	1
11	H	X	H	L	H	H	H	OFF	OFF	ON	ON	OFF	OFF	ON	1
12	H	X	H	H	L	L	H	OFF	ON	OFF	OFF	OFF	ON	ON	1
13	H	$x$	H	H	L	H	H	ON	OFF	OFF	ON	OFF	ON	ON	1
14	H	X	H	H	H	L	H	OFF	OFF	OFF	ON	ON	ON	ON	1
15	H	X	H	H	H	H	H	OFF	1						
BI	X	X	X	X	X	X	L	OFF	2						
RBI	H	L	L	L	L	L	L	OFF	3						
LT	L	x	X	x	x	$\times$	H	ON	4						

$H=$ high level (logic 1 in positive logic), $L=$ low leve! (logic 0 in positive logic), $X=$ irrelevant.
${ }^{\dagger} \mathrm{BI} / \mathrm{RBO}$ is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of any other input.
3. When the ripple-blanking input (RBI) and inputs $A, B, C$, and $D$ are at a low logic level with the lamp test input high, all segment outputs are off and the ripple-blanking output (RBO) of the decoder goes to a low leval (response condition).
4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segments are illuminated.


The TIL303 and TIL304 are used in this application to make a three-digit display with sign, which is capable of $100 \%$ overrange (" 1 " plus three digits). The decimal point is located via an external range switch. The clear function will blank the overflow digit and reset the three digits to zero. Following resetting, input pulses will be counted, decoded, and displayed.


NOTES: A. R1 and R2 are selected for desired brightness.
B. Grounding of any of these lines will illuminate the associated function.
$\vee . . v_{c c}$ bus

## SOLID-STATE VISIBLE DISPLAY WITH RED TRANSPARENT PLASTIC ENCAPSULATION

- 7,62-mm ( 0.300 -Inch) Character Height
- High Luminous Intensity
- Low Power Requirements
- Wide Viewing Angle
- $5 \times 7$ Array with X-Y Select and Decimal
- Compatible with USASCII and EBCDIC Codes
mechanical data
The display chips are mounted on a header and this assembly is then cast within a red, electrically nonconductive, transparent plastic compound. Multiple displays may be mounted on $11,43 \cdot \mathrm{~mm}$ ( 0.450 -inch).



## TYPE TIL305

## 5 X 7 ALPHANUMERIC DISPLAY

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

operating characteristics of each diode at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{I}_{\mathrm{v}} \quad$ Luminous Intensity (See Note 2)	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	40	110	$\mu \mathrm{cd}$
$\lambda_{p} \quad$ Wavelength at Peak Emission		640	660680	nm
$\Delta \lambda$ Spectral Bandwidth			20	nm
$\mathrm{V}_{\mathrm{F}}$ Static Forward Voltage		1.5	1.652	V
${ }^{\alpha}$ VF Average Temperature Coefficient of Static Forward Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		-1.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
IR Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		10	$\mu \mathrm{A}$
C Anode-to-Cathode Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		80	pF

NOTES: 1. This average value applies for any $1-\mathrm{ms}$ period.
2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve.

## TYPICAL CHARACTERISTICS



FIGURE 1

RELATIVE LUMINOUS INTENSITY vs FREE-AIR TEMPERATURE

figure 2

## TYPICAL CHARACTERISTICS

## RELATIVE LUMINOUS INTENSITY

vs

FORWARD CURRENT


FIGURE 3

FORWARD CONDUCTION CHARACTERISTICS


FIGURE 4

## TYPICAL APPLICATION DATA

Figure 5 illustrates a typical interface circuit between a character generator such as the TMS 4710 and a single TIL305 alphanumeric display. The TMS 4710 is programmed to display upper and lower case alphanumeric characters with USASCII coding on the inputs of the character generator.

The SN7490 and SN7442 multiplex the rows at a rate determined by the clock pulse rate supplied to the SN7490. The BCD count of the SN7490 is also used to select the proper row information from the TMS 4710 through inputs AO, A1, and A2. The eight count from the SN7490 resets the counter to zero through the $R_{0}$ inputs. USASCII code information is applied to inputs A3 through A9 of the TMS 4710. Figure 6 illustrates the character that will be displayed by the TIL305 after all rows have been strobed.

Since the basic ROM chip has a block layout of $8 \times 8$, it is necessary to blank some of the TMS 4710 outputs for the $5 \times 7$ display. Row 1 of the $8 \times 8$ array, corresponding to row address 000 on A0, A1, and A2, is blanked. Note that row 1 of the TIL305 must be driven by output 2 of the SN7442 to pick up the first active row addressed as 001 on the row address lines.

## TYPE TIL305

## 5 X 7 ALPHANUMERIC DISPLAY

## TYPICAL APPLICATION DATA

The TMS 4710 has TTL-compatible inputs and outputs, therefore level-shifting circuitry is not required. Its outputs can not drive the display directly, so discrete transistors are used to supply the aditional LED drive current. Additional information on the TMS 4710 can be found in the basic TMS 4700 data sheet in The Semiconductor Memory Data Book for Design Engineers.

Usually the application requires more than one TIL305. Since the character generator is normally the most expensive part of the system, a substantial cost savings can be realized by using a single character generator and storing its information in additional memory. Since time is required to store and transfer the data, the LED duty cycle may decrease and additional peak current will be required to maintain display brightness.


Figure 5
TYPICAL APPLICATION DATA
RESULTANT DISPLAYS USING TMS4710 WITH USASC11 CODED INPUTS


A3	L
	A4
A5	H
A6	H
A7	L
	A8
A9	$H$



$エ$	$\Gamma$	$I$	$\Gamma$	$\Gamma$	$I$	$I$


$L$
$L$
$H$
$L$
$H$
$L$
$H$


$H$
$L$
$H$
$L$
$H$
$L$
$H$


$L$
$H$
$H$
$L$
$H$
$L$
$H$


$H$
$H$
$H$
$L$
$H$
$L$
$H$



A3	L
A4	L
A5	L.
A6	H
A7	H
A8	L
A9	H



A3	L
A4	L
	H
A5	
A6	L
A7	L
A8	H
A9	H



TYPICAL APPLICATION DATA
RESULTANT DISPLAYS USING TMS4710
WITH USASC11 CODED INPUTS








## TYPES TIL306, TIL307 <br> NUMERIC DISPLAYS WITH LOGIC

## SOLID-STATE DISPLAYS WITH INTEGRAL TTL MSI CIRCUIT CHIP FOR USE IN ALL SYSTEMS WHERE THE DATA TO BE DISPLAYED IS THE PULSE COUNT

- 6,9-mm (0.270-Inch) Character Height - Easy System Interface
- High Luminous Intensity
- TIL306 Has Left Decimal
- TIL307 Has Right Decimal
- Wide Viewing Angle
- Internal TTL MSI Chip and Counter, Latch, Decoder, and Driver
- Constant-Current Drive for Light-Emitting Diodes
mechanical data
The display chips and TTL MSI chip are mounted on a header and this assembly is then cast within a red, electrically nonconductive, transparent plastic compound. Multiple displays may be mounted on $11,43-\mathrm{mm}$ ( 0.450 -inch) centers.

234
TEXAS Instruments



## TYPES TIL306, TIL307 NUMERIC DISPLAYS WITH LOGIC

## description

These internally-driven seven-segment light-emitting-diode (LED) displays contain a BCD counter, a four-bit latch, and a decoder/LED driver in a single 16 -pin package. A description of the functions of the inputs and outputs of these devices follows:

FUNCTION	PIN No.	DESCRIPTION
CLEAR INPUT	12	When low, resets and holds counter at 0 . Must be high for normal counting.
CLOCK INPUT	15	Each positive-going transition will increment the counter provided that the circuit is in the normal counting mode (serial and parallel count enable inputs low, clear input high).
PARALLEL COUNT ENABLE INPUT (PCEI)	9	Must be low for normal counting mode. When high, counter will be inhibited. Logic level must not be changed when the clock is low.
SERIAL COUNT ENABLE INPUT (SCEI)	10	Must be low for normal counting mode, also must be low to enable maximum count output to go low. When high, counter will be inhibited and maximum count output will be driven high. Logic level must not be changed when the clock is low.
MAXIMUM COUNT OUTPUT	7	Will go low when the counter is at 9 and serial count enable input is low. Will return high when the counter changes to 0 and will remain high during counts 1 through 8 . Will remain high (inhibited) as long as serial count enable input is high.
LATCH STROBE INPUT	5	When low, data in latches follow the data in the counter. When high, the data in the latches are held constant, and the counter may be operated independently.
LATCH OUTPUTS ( $Q_{A}, Q_{B}, Q_{C}, Q_{D}$ )	4, 1, 2, 3	The BCD data that drives the decoder can be stored in the 4-bit latch and is available at these outputs for driving other logic and/or processors. The binary weights of the outputs are: $Q_{A}=1, Q_{B}=2, Q_{C}=4, Q_{D}=8$.
DECIMAL POINT INPUT	13	Must be high to display decimal point. The decimal point is not displayed when this input is low or when the display is blanked.
BLANKING INPUT   (BI)	14	When high, will blank (turn off) the entire display and force RBO low. Must be low for normal display. May be pulsed to implement intensity control of the display.
RIPPLE-BLANKING INPUT   (RBI)	6	When the data in the latches is BCD 0 , a low input will blank the entire display and force the RBO low. This input has no effect if the data in the latches is other than 0 .
RIPPLE-BLANKING OUTPUT (RBO)	11	Supplies ripple-blanking information for the ripple-blanking input of the next decade. Provides a low if BI is high, or if RBI is low and the data in the latches is $B C D 0$; otherwise, this output is high. This pin has a resistive pull-up circuit suitable for performing a wire-AND function with any open-collector output. Whenever this pin is low the entire display will be blanked; therefore, this pin may be used as an active-low blanking input.

The TTL MSI circuits contain the equivalent of 86 gates on a single chip. Logic inputs and outputs are completely TTL/DTL compatible. The buffered inputs are implemented with relatively large resistors in series with the bases of the input transistors to lower drive-current requirements to one-half of that required for a standard Series 54/74 TTL input. The serial-carry input, actually two internal loads, is rated as one standard series 54/74 load.

## TYPES TIL306, TIL307

## NUMERIC DISPLAYS WITH LOGIC

## description (continued)

The logic outputs, except RBO, are active pull-up, and the latch outputs $Q_{A}, Q_{B}, Q_{C}$, and $Q_{D}$ are each capable of driving three standard Series $54 / 74$ loads at a low logic level or six loads at a high logic level while the maximum-count output is capable of driving five Series 54/74 loads at a low logic level or ten loads at a high logic level. The RBO node with passive pull-up serves as a ripple-blanking output with the capability to drive three Series 54/74 loads.

The LED driver outputs are designed specifically to maintain a relatively constant on-level current of approximately seven milliamperes through each LED segment and decimal point. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. Maximum clock frequency is typically 18 megahertz and power dissipation is typically 600 milliwatts with all segments on.
The display format is as follows:


The displays may be interconnected to produce an $n$-digit display with the following features:

- Ripple-blanking input and output for blanking leading or trailing zeroes
- Floating-decimal-point logic capability
- Overriding blanking for suppressing entire display or pulse-modulation of LED brightness
- Dual count-enable inputs for parallel look-ahead and serial ripple logic to build high-speed fully synchronous, multidigit counter systems with no external logic, minimizing total propagation delay from the clock to the last latch output
- Provision for ripple-count cascading between packages
- Positive-edge-triggered synchronous BCD counter
- Parallel BCD data outputs available to drive logic processors or remote slaved displays simultaneously with data being displayed
- Latch strobe input allows counter to operate while a previous data point is displayed
- Reset-to-zero capability with clear input.
absolute maximum ratings over operating case temperature range (unless otherwise noted)

> Supply Voltage, VCC (See Note 1): Continuous
> Nonrepetitive Peak, $t_{w} \leqslant 100 \mathrm{~ms}$ 7 V

Input Voltage (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Operating Case Temperature Range (See Note 2) . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ NOTES: 1. Voltage values are with respect to network ground terminal.
2. Case temperature is the surface temperature of the plastic encapsulant measured directly over the integrated circuit. Forced-air cooling may be required to maintain this temperature.
recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply Voltage, $\mathrm{V}_{\text {CC }}$			4.75	5	5.25	V
Normalized Fan-Out from Each Output, N (to Series 54/74 Integrated Circuits)	Low Logic Level	$\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}, \mathrm{RBO}$			3	
		Maximum Count			5	
	High Logic Level	RBO			3	
		$\mathrm{a}_{A}, \mathrm{o}_{\mathrm{B}}, \mathrm{a}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}}$			6	
		Maximum Count			10	
Clock Pulse Width, $\mathrm{t}_{\text {w }}$ (clock)		High Logic Level	25			ns
		Low Logic Level	55			
Clear Pulse Width, ${ }_{\text {w }}$ (clear)			25			ns
Latch Strobe Pulse Width, $\mathrm{t}_{\text {w }}$ (latch strobe)			45			ns
Setup Time, $\mathrm{t}_{\text {setup }}$ (See Note 3)		Serial Carry and Parallel Carry	30			ns
		Clear Inactive State	60			

NOTE 3: Minimum setup time is the interval immediately preceding the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.

## TYPES TIL306, TIL307 NUMERIC DISPLAYS WITH LOGIC

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER			TEST CONDITIONS	MIN	TYP $\ddagger$ MAX	UNIT
Iv	Luminous Intensity (See Note 4)	Figure日	$V_{C C}=5 \mathrm{~V}$	700	1200	$\mu \mathrm{cd}$
		Decimal Point		40	70	$\mu \mathrm{cd}$
$\lambda_{p}$	Waveléngth at Peak Emission		V CC $=5 \mathrm{~V}$, See Note 5	640	$660 \quad 680$	nm
$\Delta \lambda$	Spectral Bandwidth		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, See Note 5		20	nm
$V_{\text {IH }}$	High-Level Input Voltage			2		V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage				0.8	V
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5	V
VOH	High-Level Output Voltage	RBO	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-120 \mu \mathrm{~A}$	2.4		V
		$\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{IOH}=-240 \mu \mathrm{~A}$			
		Maximum Count	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$			
VOL	Low-Level Output Voltage (See Note 6)	$\mathrm{O}_{A}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}, \mathrm{RBO}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, 1 \mathrm{OL}=4.8 \mathrm{~mA}$	0.4		V
		Maximum Count	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}^{\text {OL }}=8 \mathrm{~mA}$			
11	Input Current at Maximum Input Voltage		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$		1	mA
IIH	High-Level Input Current	Serial Carry	$V_{C C}=5.25 \mathrm{~V}, V_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
		RBO Node		-0.12	-0.5	mA
		Other Inputs			20	$\mu \mathrm{A}$
IIL	Low-Level Input Current	Serial Carry	$V_{C C}=5.25 \mathrm{~V}, V_{1}=0.4 \mathrm{~V}$		-1.6	mA
		RBO Node			-1.5 -2.4	
		Other Inputs			-0.8	
Ios	Short-Circuit Output Current	$\mathrm{O}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$	-9	-27.5	mA
		Maximum Count		-15	-55	
ICC	Supply Current		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$, See Note 5		$120 \quad 200$	mA

\#All typical values are at $V_{C C}=5 \mathrm{~V}$.
NOTES: 4. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on tllumination) eye-response curve
5. These parameters are measured with all LED segments and the decimal point on.
6. This parameter is measured with the display blanked
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TC}=25^{\circ} \mathrm{C}$

PARAMETER §	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$					12	18		MHz
tPLH	Serial Look-Ahead	Maximum Count	$C_{L}=15 \mathrm{pF}$   See Figure 1	$\mathrm{R}_{\mathrm{L}}=560 \Omega$,		12		
tPHL						23		
tPLH	Clock	Maximum Count				26		ns
tPHL						29		ns
tPLH	Clock	$\mathrm{a}_{A}, \mathrm{a}_{B}, \mathrm{a}_{C}, \mathrm{a}_{D}$	$C_{L}=15 \mathrm{pF},$   See Figure 1	$R_{L}=1.2 \mathrm{k} \Omega$,		28		ns
tPHL						38		
tpHL	Clear	$\mathrm{O}_{A}, \mathrm{a}_{B}, \mathrm{O}_{C}, \mathrm{Q}_{\mathrm{D}}$				57		ns

$\S_{f_{\text {max }}} \equiv$ Maximum clock frequency
${ }^{\text {tp }}$ LH $\equiv$ Propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ Propagation delay time, high-to-low-level output


NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. All diodes are 1 N3064.

LOAD CIRCUIT-FIGURE 1

## TYPICAL APPLICATION DATA

This application demonstrates how the displays may be cascaded for N -bit display applications. It features:
Synchronous, look-ahead counting
Ripple blanking for leading zeros
Overriding blanking for total suppression or intensity modulation of display
Direct parallel clear
Latch strobe permits counter to acquire data for the next display while viewing current display.
For other counter configurations, see Counting Circuits Using TIL306 and TIL308 LED's on page 257.

the serial carry input of the least-significant digit is normally grounded; however, it may be used as a count-enable control for the entire counter (high to disable, low to count) provided the logic level on this pin is not changed while the clock line is low or false counting may result.

## SOLID-STATE VISIBLE DISPLAYS WITH INTEGRAL TTL MSI CIRCUIT CHIP FOR USE IN ALL SYSTEMS REQUIRING A DISPLAY OF BCD DATA

- $6,9-\mathrm{mm}$ (0.270-Inch) Character Height
- TIL308 Has Left Decimal
- TIL309 Has Right Decimal mechanical data
- Easy System Interface
- Wide Viewing Angle
- Internal TTL MSI Chip with Latch, Decoder, and Driver
- Constant-Current Drive for Light-Emitting Diodes

The display chips and TTL MSI chip are mounted on a header and this assembly is then cast within a red, electrically nonconductive, transparent plastic compound. Multiple displays may be mounted on $11,43-\mathrm{mm}(0.450$-inch) centers.



Texas Instruments

## TYPES TIL308，TIL309 <br> NUMERIC DISPLAYS WITH LOGIC

## description

These internally－driven seven－segment light－emitting－diode（LED）displays contain a five－bit latch and a decoder／LED driver in a single 16 －pin package．A description of the functions of the inputs and outputs of these devices follows：

FUNCTION
LATCH STROBE INPUT 5

DESCRIPTION
When low，the data in the latches follow the data on the latch inputs． When high，the data in the latches are held constant and are unaffected by new data on the latch inputs．
LATCH DATA INPUTS $15,10,6,7,12$ $A, B, C, D, D P$

LATCH OUTPUTS $4,1,2,3,14$
$Q_{A}, Q_{B}, Q_{C}, Q_{D}, Q_{D P}$

BLANKING INPUT 11

LED TEST INPUT
Data on these inputs are entered into the latches under the control of the latch strobe input．The binary weights of the inputs are：$A=1, B=2$ ， $C=4, D=8$ ．$D P$ is decimal point latch data input．
The BCD data that drives the decoder is stored in the five latches and is available at these outputs．The binary weights of the outputs are： $\mathbf{Q}_{A}=1$ ， $Q_{B}=2, Q_{C}=4, Q_{D}=8 . Q_{D P}$ is decimal point latch output．
When low，will blank（turn off）the entire display．Must be high for normal operation of the display．
When low，will turn on the entire display，overriding the data in the latches and the blanking input．Must be high for normal operation of the display．

FUNCTION TABLE

FUNCTION	LATCH INPUTS						BLANKING INPUT	$\begin{aligned} & \text { LED } \\ & \text { TEST } \end{aligned}$	LATCH OUTPUTS					DISPLAY	
	D	C	B	A	DP	STROBE			OD	$\mathrm{O}_{\mathrm{C}}$	$\mathrm{O}_{\mathrm{B}}$	$\mathbf{O}_{\mathbf{A}}$	$\mathrm{Q}_{\mathrm{DP}}$	TIL308	TIL309
0	L	L	L	L	L	L	H	H	L	L	L	L	L	$\square$	$\square$
1	L．	L	L	H	H	L	H	H	L	L	L	H	H	1	1.
2	L	L	H	L	L	L	H	H	L	L	H	L	L	■	口
3	L	L	H	H	H	L	H	H	L	L	H	H	H	$\exists$	$\exists$ 。
4	L	H	L	L	L	L	H	H	L	H	L	L	L	4	4
5	L	H	L	H	H	L	H	H	L	H	L	H	H	5	5
6	L	H	H	L	L	L	H	H	L	H	H	L	L	$\square$	$\square$
7	L	H	H	H	H	L	H	H	L	H	H	H	H	7	7.
8	H	L	L	L	L	L	H	H	H	L	L	L	L	E	$\square$
9	H	L	L	H	H	L	H	H	H	L	L	H	H	$\square$	$\square$.
A	H	L	H	L	$L$	L	H	H	H	L	H	L	L	ค	H
MINUS SIGN	H	L	H	H	H	L	H	H	H	L	H	H	H	－	－
C	H	H	L	L	L	$L$	H	H	H	H	L	L	L	$[$	L
BLANK	H	H	L	H	H	$L$	H	H	H	H	L	H	H		
E	H	H	H	L	L	L	H	H	H	H	H	L	L	$E$	$E$
F	H	H	H	H	H	L	H	H	H	H	H	H	H	$F$	F．
BLANK	X	X	X	$x$	X	X	L	H	x	$x$	$x$	$x$	X		
LED TEST	X	X	X	X	X	X	X	L	X	X	X	X	X	$\square$	$日$.

## TYPES TIL308, TIL309

## NUMERIC DISPLAYS WITH LOGIC

## description (continued)

The TTL MSI circuits contain the equivalent of 78 gates on a single chip. Logic inputs and outputs are completely TTL/DTL compatible. The buffered inputs are implemented with relatively large resistors in series with the bases of the input transistors to lower drive-current requirements to one-half of that required for a standard Series 54/74 TTL input.

Some of the additional features of these displays are as follows:

- Latched BCD and decimal point logic outputs provided to drive logic processors simultaneously with the displayed data
- Minimum number of inputs required . . . 4-line BCD plus decimal point
- Overriding blanking for suppressing entire display or for pulse-modulation of LED brightness
- LED test input to simultaneously turn on all display segments and decimal point
- Can be operated in a real-time mode or latched-update-only mode by use of the latch strobe input
- Displays numbers 0 thru 9 as well as A, C, E, F, or minus sign
- Can be blanked by entry of BCD 13 or by use of the blanking input
- Decimal point controlled independently with decimal-point latch
- Constant-current-source TTL-LED interface for optimum performance.

The latch outputs except $Q_{D P}$ are active pull-up, and each one, except $O_{D P}$, is capable of driving three standard Series 54/74 loads. The LED driver outputs are designed specifically to maintain a relatively constant on-level current of approximately seven milliamperes through each LED segment and decimal point. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. Power dissipation is typically 575 milliwatts with all segments on.

## absolute maximum ratings over operating case temperature range (unless otherwise noted)

Supply Voltage, VCC (See Note 1): Continuous . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Nonrepetitive Peak, $\mathrm{t}_{\mathrm{w}} \leqslant 100 \mathrm{~ms}$. . . . . . . . . . . . . . . . 7 V
Input Voltage (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Operating Case Temperature Range (See Note 2) . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $8^{\circ}{ }^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
NOTES: 1. Voltage values are with respect to network ground terminal.
2. Case temperature is the surface temperature of the plastic encapsulant measured directly over the integrated circuit. Forced-air cooling may be required to maintain this temperature.
recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply Voltage, $\mathrm{V}_{\text {CC }}$			4.75	5	5.25	V
Normalized Fan-out from each output, $N$ (to Series 54/74 Integrated Circuits)	Low Logic Level	$Q_{\text {DP }}$			1	
		$\mathrm{O}_{A}, \mathrm{O}_{B}, \mathrm{O}_{C}, \mathrm{a}_{\mathrm{D}}$			3	
	High Logic Level	$Q_{\text {DP }}$			3	
		$\mathrm{Q}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$			6	
Latch Strobe Pulse Width, ${ }_{\text {w }}$			45			ns
Setup Time, $\mathrm{t}_{\text {setup }}$ (See Note 3)			60			ns
Hold Time, thold (See Note 4)			0			ns

NOTES: 3. Minimum setup time is the interval immediately preceeding the positive-going transition of the latch strobe during which interval the data to be latched must be maintained at the latch inputs to ensure its recognition.
4. Minimum hold time is the interval immediately following the positive-going transition of the latch strobe during which interval the data to be latched must be maintained at the latch inputs to ensure its continued recognition.

## TYPES TIL308, TIL309 NUMERIC DISPLAYS WITH LOGIC

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
Iv	Luminous Intensity (See Note 5)	Figure $B$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	700	1200		$\mu \mathrm{cd}$
		Decimal Point		40	70		
$\lambda p$	Wavelength at Peak Emission		$V_{C C}=5 \mathrm{~V}$, See Note 6	640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth		$V_{C C}=5 \mathrm{~V}$, See Note 6		20		nm
$V_{\text {IH }}$	High-Level Input Voltage			2			V
$V_{\text {IL }}$	Low-Leval Input Voltage					0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
VOH High-Level Output Voltage		$Q_{\text {DP }}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-120 \mu \mathrm{~A}$	2.4			V
		$\mathrm{a}_{A}, \mathrm{a}_{B}, \mathrm{a}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-240 \mu \mathrm{~A}$				
V OL Low-Level Output Voltage (See Note 7)		$\mathrm{O}_{\mathrm{DP}}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0.4			$\checkmark$
		$\mathrm{O}_{A}, \mathrm{O}_{B}, \mathrm{O}_{C}, \mathrm{O}_{D}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4.8 \mathrm{~mA}$				
$1 /$	Input Current at Maximum Input Voltage		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IH }}$	High-Level Input Current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IL	Low-Level Input Current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$			-0.8	mA
IOS Short-Circuit Output Current		$\mathrm{O}_{A}, \mathrm{o}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{o}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	-9		-27.5	mA
		$Q_{\text {DP }}$		-1		-3.2	
Icc	Supply Current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs at 0 V		115	180	mA

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
NOTES: 5. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve
6. These parameters are measured with all LED segments and the decimal point on
7. This parameter is measured with the display blanked.
switching characteristics, $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{TC}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	A, B, C, D, DP	$\mathrm{a}_{A}, \mathrm{a}_{B}, \mathrm{a}_{C}, \mathrm{a}_{\mathrm{D}}, \mathrm{a}_{D P}$	$C_{L}=15 \mathrm{pF},$   See Figure 1	$\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega$,	35			ns
tPHL						40		ns

${ }^{\text {tPLH }} \equiv$ Propagation delay time, low-to-high-level output
$t_{P H L} \equiv$ Propagation delay time, high-to-low-level output

## PARAMETER MEASUREMENT INFORMATION



NOTES: $A . C_{L}$ includes probe and jig capacitance.
B. All diodes are 1N3064
C. Measurements made with latch strobe input grounded

LOAD CIRCUIT-FIGURE 1

## TYPICAL CHARACTERISTICS

RELATIVE SPECTRAL CHARACTERISTICS


FIGURE 2


## SOLID-STATE VISIBLE HEXADECIMAL DISPLAY WITH INTEGRAL TTL CIRCUIT TO ACCEPT, STORE, AND DISPLAY 4-BIT BINARY DATA

- $7,62-\mathrm{mm}$ ( $0.300 \cdot$ Inch) Character Height
- High Brightness
- Left-and-Right-Hand Decimals
- Separate LED and Logic Power Supplies May Be Used
- Wide Viewing Angle
- Internal TTL MSI Chip with Latch, Decoder, and Driver
- Operates from 5-Volt Supply
- Constant-Current Drive for Hexadecimal Characters
- Easy System Interface


## mechanical data

The display chips and TTL MSI chip are mounted on a header and this assembly is then cast within a red, electrically nonconductive, transparent plastic compound. Multiple displays may be mounted on $11,43 \mathrm{~mm}$ ( 0.450 inch) centers.


## TYPE TIL311

HEXADECIMAL DISPLAY WITH LOGIC
description
This hexadecimal display contains a four-bit latch, decoder, driver, and $4 \times 7$ light-emitting-diode (LED) character with two externally-driven decimal points in a 14 -pin package. A description of the functions of the inputs of this device follows.

## FUNCTION

LATCH STROBE INPUT

BLANKING INPUT

LATCH DATA INPUTS
(A, B, C, D)
,DECIMAL POINT $\quad 4,10$ CATHODES

LED SUPPLY 1

LOGIC SUPPLY (VCC)
COMMON GROUND 7

14
PIN NO.
5 8

3, 2, 13, 12

都

7

## DESCRIPTION

When low, the data in the latches follow the data on the latch data inputs. When high, the data in the latches will not change. If the display is blanked and then restored while the enable input is high, the previous character will again be displayed.

When high, the display is blanked regardless of the levels of the other inputs. When low, a character is displayed as determined by the data in the latches. The blanking input may be pulsed for intensity modulation.

Data on these inputs are entered into the latches when the enable input is low. The binary weights of these inputs are $A=1, B=2, C=4, D=8$.
These LEDs are not connected to the logic chip. If a decimal point is used, an external resistor or other current-limiting mechanism must be connected in series with it.

This connection permits the user to save on regulated $V_{C C}$ current by using a separate LED supply, or it may be externally connected to the logic supply (VCC).

Separate $\mathrm{V}_{\mathrm{CC}}$ connection for the logic chip.
This is the negative terminal for all logic and LED currents except for the decimal points.

The LED driver outputs are designed to maintain a relatively constant on-level current of approximately five milliamperes through each of the LED's forming the hexadecimal character. This current is virtually independent of the LED supply voltage within the recommended operating conditions. Drive current varies slightly with changes in logic supply voltage resulting in a change in luminous intensity as shown in Figure 2. This change will not be noticeable to the eye. The decimal point anodes are connected to the LED supply; the cathodes are connected to external pins. Since there is no current limiting built into the decimal point circuits, this must be provided externally if the decimal points are used.

The resultant displays for the values of the binary data in the latches are as shown below.


## TYPE TIL311 <br> HEXADECIMAL DISPLAY WITH LOGIC

## functional block diagram


absolute maximum ratings over operating case temperature range (unless otherwise noted)
Logic Supply Voltage, VCC (See Note 1) ..... 7 V
LED Supply Voltage (See Note 1) ..... 7 V
Input Voltage (Pins 2, 3, 5, 8, 12, 13; See Note 1) ..... 5.5 V
Decimal Point Current ..... 20 mA
Operating Case Temperature Range (See Note 2) ..... $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range ..... $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ..... $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to common ground terminal.
2. Case temperature is the surface temperature of the plastic encapsulant measured directly over the integrated circuit. Forced-air cooling may be required to maintain this temperature.
recommended operating conditions


NOTES: 3. Minimum setup time is the interval immediately preceding the positive-going transition of the latch strobe input during which interval the data to be displayed must be maintained at the latch data inputs to ensure its recognition
4. Minimum hold time is the interval immediately following the positive-going transition of the latch strobe input during which interval the data to be displayed must be maintained at the latch data inputs to ensure its continued recognition.
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER			TEST CONDITIONS		MIN TYP. MAX   35 100			$\begin{array}{\|l\|} \hline \text { UNIT } \\ \hline \mu \mathrm{cd} \end{array}$
	Luminous Intensity (See Note 4)	Average Per Character LED	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} .$ $\text { See Note } 5$	$V_{\text {LED }}=5 \mathrm{~V}$				
		Each decimal	$I_{F(D P)}=5 \mathrm{~mA}$		35	100		$\mu \mathrm{cd}$
$\lambda_{p}$	Wavelength at Peak Emission		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & V_{\text {LED }}=5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{F}}(\mathrm{DP})=5 \mathrm{~mA}, & \text { See Note } 6 \end{array}$		640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth					20		nm
$V_{\text {IH }}$	High-Level Input Voltage				2			V
$V_{\text {IL }}$	Low-Level Input Voltage						0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
1	Input Curirent at Maximum Input Voltage		$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{1} \mathrm{H}$	High-Level Input Current		$V_{C C}=5.5 \mathrm{~V}$,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-Level Input Current		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICC	Logic Supply Current		$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \quad V_{\text {LED }}=5.5 \mathrm{~V}, \\ & I_{\mathrm{F}(\mathrm{DP})}=5 \mathrm{~mA}, \\ & \text { All inputs at } 0 \mathrm{~V} \end{aligned}$			60	90	mA
ILED	LED Supply Current					45	90	mA

NOTES: 4. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.
5. This parameter is measured with displayed, then again with $F$ displayed.
6. These parameters are measured with . displayed.

## TYPICAL CHARACTERISTICS



FIGURE 1


FIGURE 2


FIGURE 3

## SOLID-STATE VISIBLE DISPLAYS WITH RED CHARACTERS

- $7,62-\mathrm{mm}(0.300$-inch) Character Height
- Continuous Uniform Segments
- Wide Viewing Angle
- High Contrast
- Categorized for Uniformity of Luminous Intensity among Units within Each Category


## mechanical data



## TYPES TIL312, TIL313, TIL327 NUMERIC DISPLAYS

## mechanical data (continued)

The display chips are mounted on a header and this assembly is then molded within an electrically' nonconductive plastic case. To optimize device performance, materials are used that are limited to certain solvents for cleaning operations. It is recommended that only Freon $\mathrm{TF}^{\dagger}$, isopropanol, or water be used. For high contrast, the displays have a black body.

## absolute maximum ratings

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point . . . . . . . . . . . . 3 V
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature,
Each Segment or Decimal Point
150 mA
Average Forward Current at (or below) $\mathbf{~ 5 ~}^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2),

- ch Segment or Decimal Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA

Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-\mathbf{2 5}^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm ( $1 / 16$ Inch) Below Seating Plane for 5 Seconds . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
NOTES: 1. This average value applies for any $\mathbf{1 0} \mathbf{- m s}$ period.
2. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
operating characteristics of each segment or decimal point at $25^{\circ} \mathrm{C}$ free air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT   $\mu \mathrm{cd}$	
	Luminous Intensity (See Note 3)	Segment	$I_{F}=20 \mathrm{~mA}$   per segment	250	800			
Iv		Decimal Point			300			
Segment-to-Segment   Luminous Intensity Ratio				<1.5:1				
$\lambda_{\mathrm{p}}$	Wavelength at Peak Emission			640	655	680	nm	
$\Delta \lambda$	Spectral Bandwidth				20		nm	
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage			$I_{F}=10 \mathrm{~mA}$	1.5	1.7	2	V
IR	Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		$<10$		$\mu \mathrm{A}$	

NOTE 3: Luminous intensity is measured with alight sensor and filer combination that approximates the CIE (International Commission on lliumination) eye-response curve.

[^16]
## SOLID-STATE DISPLAYS WITH RED CHARACTERS

- $\mathbf{1 2 , 7}-\mathrm{mm}(0.500-$ Inch $)$ Character Height
- Continuous Uniform Segments
- High Contrast
- Categorized for Uniformity of Luminous Intensity among Units within Each Category
- Low Power Requirements
mechanical data



## TYPES TIL321A, TIL322A,TIL330A <br> NUMERIC DISPLAYS

## mechanical data (continued)

The display chips are mounted on a header and this assembly is then molded within an electrically nonconductive plastic case. To optimize device performance, materials are used that are limited to certain solvents for cleaning operations. It is recommended that only Freon $\dagger$ TF, isopropanol, or water be used. For high contrast, the displays have a black body.

## absolute maximum ratings

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point . . . . . . . . . . . . . 3 V Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature,
Each Segment or Decimal Point

$$
200 \mathrm{~mA}
$$

Average Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2),
Each Segment or Decimal Point
25 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature $1.6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ Below Seating Plane for 5 Seconds . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
NOTES: 1. This average value applies for any $10-\mathrm{ms}$ period.
2. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
operating characteristics of each segment or decimal point at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT   $\mu \mathrm{cd}$
	Luminous Intensity (See Note 3)	Segment	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	250	600		
IV		Decimal Point			200		
	Segment-to-Segment   Luminous Intensity Ratio				1.5:1		
$\lambda_{p}$	Wavelength at Peak Emission			640	655	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.7	2	V
$\mathrm{I}_{\mathrm{R}}$	Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		<10		$\mu \mathrm{A}$

NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on llumination) eye-response curve.

[^17]
## SOLID-STATE MULTIPLE SEVEN-SEGMENT VISIBLE DISPLAY WITH RIGHT-HAND DECIMALS

- 2,54-mm (0.100) Character Height
- High Luminous Intensity
- Low Power Requirements
- Wide Viewing Angle
- 4,3-mm (0.172-Inch) Character-to-Character Spacing Constant with End-to-End Stacking of Devices


## description

This multidigit display is intended for use under pulsed conditions by enabling each of the characters sequentially and enabling the desired segments and/or right-hand decimal point in phase with the character enabling pulse. The pulse rate is kept high enough so that to the eye the light from each character appears to be constant. Two or more of these devices may be stacked end-to-end to provide additional characters with constant spacing between characters. When additional characters are enabled by the same pulse sequence, the peak current in each segment or decimal may be increased to maintain character brightness despite the lower duty cycle for each character. The modifications shown in the product options section of this data sheet, are available to form various combinations.

## mechanical data

The digit and decimal chips are mounted on a lead-frame assembly which is then cast within a red, electrically nonconductive, transparent plastic compound. Character-to-character spacing is maintained when multiple displays are mounted end-to-end.


## TYPE TIL360 <br> MULTIDIGIT NUMERIC DISPLAY

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point . . . . . . . . . . . . 2 V
Peak Forward Current, Each Segment or Decimal Point (See Note 1) . . . . . . . . . . . . . . . . 150 mA
Average Forward Current, Each Segment or Decimal Point (See Note 2) . . . . . . . . . . . . . . 10 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
operating characteristics of each segment or decimal at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Iv Luminous Intensity (See Note 3)	Segment	$I_{F}=10 \mathrm{~mA}$	48	96		$\mu \mathrm{cd}$
	Decimal Point		42	84		
$\lambda_{\mathrm{p}}$ Wavelength at Peak Emission			640	660	680	nm
$\Delta \lambda$. Spectral Bandwidth				20		nm
$\mathrm{V}_{\mathrm{F}}$ Static Forward Voltage				1.65	2	V

NOTES: 1. This value applies for $P R R \geqslant 100 \mathrm{~Hz}$, duty cycle $\leqslant 1 / 15$.
2. This value applies for a maximum averaging time of 10 ms .
3. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eve-response curve.
schematic


## TYPE TIL360 MULTIDIGIT NUMERIC DISPLAY

## TYPICAL CHARACTERISTICS



FIGURE 1

FORWARD CONDUCTION CHARACTERISTICS


FIGURE 3

RELATIVE RADIANT INTENSITY
vs
FREE-AIR TEMPERATURE


FIGURE 2
AVERAGE LUMINOUS INTENSITY (PER SEGMENT) vs
PEAK FORWARD CURRENT


FIGURE 4

## PRODUCT OPTIONS

Texas Instruments can supply multidigit displays that are variations of the TIL360. These special devices can be arranged in various configurations, two of which are illustrated in Figures A and B . To describe the displays, digit positions are numbered 1 through 6 , left to right.


In the device shown in Figure B, digit positions 5 and 6 are not used and no connections should be made to pins 6 and 11.


FIGURE C

Figure $C$ illustrates the use of a pair of devices to display eight digits with $E$ for minus sign and error indication.


FIGURE D
Figure $D$ illustrates the use of a pair of devices to display ten digits with $E$ for minus sign and error indication.
In addition to the devices shown, other configurations are available on a contract basis.

## TYPE TIL360 <br> MULTIDIGIT NUMERIC DISPLAY

## TYPICAL APPLICATION DATA

Figure E shows decoder driver circuitry that can interface the TIL360 six-digit display with TTL logic. It also shows a multiplex circuit used to turn each digit on in sequence at a one-sixth duty cycle.

The BCD code, generated by the user's specific logic circuitry and applied as input to the SN7447, will be decoded into a seven-segment output. This output drives p-n-p transistors which supply current to operate p-n junction segments of the display.

The $\mathbf{3 3 0}$-ohm resistor in series with each segment limits the peak current to nine milliamperes. The display brightness may be controlled by selection of the resistor value.

Multiplexing or strobing the digits sequentially is accomplished by use of the SN7490 counter and SN7442 4-to-10-line decoder. After counting to 6 the output from the SN7442 resets the SN7490 to zero, thus giving a duty cycle of one-sixth.


Resistor values are in ohms.

FIGUREE

## SOLID-STATE RED DISPLAYS FOR CALCULATOR APPLICATIONS

- 2,6-mm (0.102-Inch) Magnified Image
- Seven-Segment Digits, Right-Hand Decimal Points
- Common-Cathode Configuration for Multiplex Applications
- 5,1-mm (0.200-Inch) Digit-to-Digit Spacing

TYPE	NUMBER   OF DIGITS
TIL393-6	6
TIL393-8	8
TIL393-9	9

## description

These multidigit displays are intended for use under pulsed conditions by enabling the common cathode of each digit sequentially and enabling the desired segment anode and/or right-hand-decimal point anode in phase with the character-enabling pulse. The pulse rate is kept high enough so that the light from each character appears to the eye to be constant.
absolute maximum ratings over operating free-air temperature range


NOTE 1: This average value applies for any $\mathbf{1 0} \mathbf{- m s}$ period.
operating characteristics of each segment or decimal at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
Iv(pk)	Peak Luminous Intensity (See Note 2)	Segment	$\begin{aligned} & I_{F M}=10 \mathrm{~mA}, \\ & \mathrm{t}_{\mathrm{w}}=5 \mathrm{~ms}, \\ & \text { PRR }=100 \mathrm{~Hz} \end{aligned}$	200	600		$\mu \mathrm{cd}$
		Decimal		200	600		
$\lambda_{p}$	Wavelength at Peak Emission			640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage				1.7	2.1	V

NOTE 2: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.


## TIL393-8




## TYPES TIL393-6, TIL393-8, TIL393-9 CALCULATOR NUMERIC DISPLAYS

mechanical data

The GaAsP monolithic chips (one for each digit) are mounted on a printed-circuit board. A clear plastic lens is attached to the p-c board providing protection for the chips and resulting in a magnified digit image of $2,6 \mathrm{~mm}(0.102$ inch $)$. The same lens is used for all three types.

The display may be mounted by use of a lead-frame assembly on $2,54-\mathrm{mm}$ ( 0.100 -inch) centers with the pins soldered into the p-c board holes, or by insertion into a p-c board edge connector. A rosin-core $60 / 40 \mathrm{tin} / \mathrm{lead}$ wire solder or a low-temperature deactivating flux with solid-core 60/40 solder can be used for hand-soldering operations.

Chlorinated hydrocarbon solvents must not be used for cleaning as the plastic lens may be damaged. Methanol, isopropanol, ethanol, Freon ${ }^{\dagger}$ TP-35, or Freon ${ }^{\dagger}$ TE-35 solvents may be used with caution. Time must be allowed for the solvent to evaporate from beneath the display lens.

${ }^{\dagger}$ Make no external connection to tab 2 of TIL393-8.母Make no external connection to tab 2, 4, or 18 of TIL393-6.

NOTES: a. All linear dimensions are in millimeters and parenthetically in inches.
b. The true-position tab spacing is $2,54 \mathrm{~mm}$ ( 0.100 inch ) between centerlines. Each tab centerline is located within $0,26 \mathrm{~mm}$ ( 0.010 inch ) of its true position relative to tab 1 .
c. Total viewing angle is the angle that encompasses all the lines of sight along which the digit is legible within a given plane.

[^18]
## TYPE TIL804 12-DIGIT NUMERIC DISPLAY

## SOLID-STATE COMMON-CATHODE RED DISPLAY WITH RIGHT-HAND DECIMAL POINTS <br> - 6.9-mm (0.270-Inch) Character Height <br> - Multiplex Operation - Minimum Pin Connections <br> - High Luminous Intensity <br> - Wide Viewing Angle <br> - Viewing Distance up to 4.5 Meters (15 Feet) <br> applications

- Digital Frequency Read-Out
- Calculators
- Instrumentation Displays
- Data Terminals


## description

This multidigit display is formed by mounting and bonding LED chips on a printed circuit board. Individual reflectors are used over the LED chips on each digit to form the segments. A diffuser placed over the reflectors results in a uniformly bright segment with a high contrast ratio.

The anodes of all like-positioned segments are connected together on the printed circuit board and brought out to a common pad connection. This type of configuration requires a minimum number of pad connections, but it requires that the display be used in a multiplexed mode. Each character is enabled sequentially by its cathode line and the desired segment and decimal anodes are enabled in phase with the cathode enabling pulse.

A peak current of 96 milliamperes is recommended for normal operating conditions at a duty cycle of $8.3 \%$ to obtain adequate display brightness. The pulse rate should be high enough so that the light from each character appears constant. A minimum pulse rate of 60 hertz can be used; however, rates of one kilohertz to ten kilohertz are recommended.


POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

# TYPE TIL804 <br> 12-DIGIT NUMERIC DISPLAY 

## mechanical data

The display may be mounted by soldering the pads directly to another printed-circuit board, by use of a lead-frame assembly on 0.100 -inch centers with the pins soldered into the p-c board holes, or by insertion into a p-c board edge connector. A rosin-core $60 / 40 \mathrm{tin} / l e a d$ solder, or a solid-core $60 / 40$ solder with a low-temperature deactivating flux can be used for hand-soldering operations. Soldering temperature of each pad should not exceed $230^{\circ} \mathrm{C}$ for five seconds. Care should be exercised to keep the temperature of the plastic cover below $100^{\circ} \mathrm{C}$ as higher temperatures or direct contact of a hot soldering iron with the plastic could cause distortion or deformation of the character appearance.

Flux clean up using chlorinated hydrocarbon solvents should be avoided as they may damage the plastic parts. Methanol, isopropanol, ethanol, or Freon ${ }^{\dagger}$ TP- 35 may be used with caution. Solvents can leave residues that may blur or obstruct the image.


## product options

Texas Instruments Incorporated can supply multidigit displays that are variations of the basic 12-digit TIL804. Options include fewer digits or decimal points than 12 each and a choice of location of the omitted digits or decimal points. Fewer than eight digits are not recommended in order to be effective from the standpoints of cost and physical size. For custom arrangements contact your Tl field office or Optoelectronics Marketing at the following address:

Texas Instruments Incorporated
Optoelectronics Marketing
P.O. Box 225012

Dallas, Texas 75265
Phone: (214) 238-3821
†Trademark of E.I. du Pont de Nemours, Inc.

## TYPE TIL804

## 12-DIGIT NUMERIC DISPLAY

- absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTES: 1. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Figures 1 and 2.
2. This average value applies for any 10 millisecond period.

PEAK FORWARD CURRENT PER SEGMENT OR DECIMAL POINT

VS
FREE-AIR TEMPERATURE


AVERAGE FORWARD CURRENT PER SEGMENT OR DECIMAL POINT
vS
FREE-AIR TEMPERATURE

operating characteristics of each segment or decimal at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
IV	Luminous Intensity (See Note 3)	Segment	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	100	150		$\mu \mathrm{cd}$
		Decimal		50	100		
$\lambda_{p}$	Wavelength at Peak Emission			640	655	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
VFM	Peak Forward Voltage		$I_{F}=20 \mathrm{~mA}$		1.7	2.1	$V$

NOTE 3: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve.

## TYPE TIL804 <br> 12-DIGIT NUMERIC DISPLAY

## TYPICAL APPLICATION DATA

Each digit of the display is connected in a common-cathode configuration and the anodes of like-positioned segments of all digits are connected together for multiplex operation. Normal operation of each digit is $8.3 \%(1 / 12)$ duty cycle or less, except on custom devices with fewer digits. For example, a device with eight digits might be operated at $12.5 \%$ $(1 / 8)$ duty cycle.

Figure 3, below, shows a typical interface circuit between the TIL804 and a TMS 1200 microcomputer. The typical conditions shown are intended as a guide only. These conditions will give a bright display easily read under high ambient light conditions as would be found in an office or laboratory; that is, 25 to 50 foot candles. If a brighter display is required, the average and peak currents through the segments could be increased.

Note that the display is to be operated under multiplexed conditions only.

TYPICAL CONDITIONS
$V_{C C}=5 \mathrm{~V}$
$V_{C E}$ (sat) $(2 \mathrm{~N} 5449)=0.2 \mathrm{~V}$
$V_{C E(s a t)}($ TIS143) $=1.0 \mathrm{~V}$
$V_{F(L E D)}=1.8 \mathrm{~V}$
IFM $=96 \mathrm{~mA}$
Duty $\mathrm{Cycle}=8.3 \%$
$R_{L}=21 \Omega$

FIGURE 3

$$
R_{L}=\frac{V_{D D}-V_{C E(\text { sat)(2N5449) }}-V_{C E(\text { sat })(T I S 143)}-V_{F(L E D)}}{I_{F M}}
$$

## TYPES TIL807, TIL808 2-DIGIT NUMERIC DISPLAYS

## DUAL SOLID-STATE RED DISPLAYS

- 7,62-mm ( $0.300-$ Inch) Character Height
- Seven-Segment Display for Numeric Applications
- Low Power Requirements
- High Contrast Ratio
- Plug-In Dual-In-Line Package
- Rugged Construction
- Wide Viewing Angle - Unmagnified Characters


## description

These 2-digit displays may be operated in the continuous mode or pulsed with a duty cycle of $50 \%$ or lower. For continuous operation from a 12 -volt supply, a 1000 -ohm resistor in series with each segment will provide satisfactory brightness at normal ambient light conditions. Segment selection for numerals may be controlled directly by the channel-selector switch or by decoder/driver circuits.
mechanical data
These displays are formed by mounting light-emitting-diode chips on a lead frame. A filled cavity is used over each chip to form individual uniform segments.


NOTES: a. All dimensions are in millimeters and parenthetically in inches.
b. Each pin centerline is located within $0.26(0.010)$ of its true position (T.P.).
c. The spacing between row centerlines is measured at the seating plane.

Copyright © 1978 by Texas Instruments Incorporated

## TYPES TIL807, TIL808 2-DIGIT NUMERIC DISPLAYS

## absolute maximum ratings

> Reverse Voltage over Operating Free-Air Temperature Range, Each Segment $3 V$
> Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment (See Figure 1) . . . . . 150 mA
> Average Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment (See Note 1) . . . . . 25 mA
> Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
> Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
> Lead Temperature $1.6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ below Seating Plane for 5 Seconds . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$

NOTE 1: This average applles for any $10-\mathrm{ms}$ period. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ (see Figure 2).

recommended operating conditions over operating free-air temperature range

> Steady-State Forward Current at $100 \%$ Duty Cycle, Each Segment . . . . . . . . . . . . . . . . . 10 mA Pulsed Forward Current at $50 \%$ Duty Cycle, Each Segment . . . . . . . . . . . . . . . . . . . 20 mA
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature range

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IV	Luminous Intensity (See Note 2)	$t_{F}=20 \mathrm{~mA}$	250	600		$\mu \mathrm{cd}$
	Segment-to-Segment Luminous Intensity Ratio		1.5:1			
$\lambda_{p}$	Wavelength at peak emission		640	655	670	nm
$\Delta \boldsymbol{\lambda}$	Spectral Bandwidth			20		nm
$V_{F}$	Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.7	2	V
$\mathrm{I}_{\mathrm{R}}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		<10		$\mu \mathrm{A}$

NOTE 2: Luminous intensity is measured with a light sensor and filter combination that approximates the ClE (International Commission on Illumination) eye-response curve.

## TYPES TIL829 THRU TIL834 MULTIDIGIT TIMER DISPLAYS

## 3 1/2- AND 4-DIGIT SOLID-STATE RED DISPLAYS WITH INTEGRAL COLON, ALARM, AM/PM, AND TEMPERATURE-INDICATOR OPTIONS

- Continuous Uniform Segments
- High-Contrast Characters
- $\quad 12.7-\mathrm{mm}$ ( 0.500 -inch) Character Height
- Wide Viewing Angle


Unused segments may or may not be omitted.


Copyright © 1978 by Texas Instruments Incorporated

## TYPES TIL829 THRU TIL834 MULTIDIGIT TIRAER DISPLAYS

## description

This multidigit display is intended for use under pulsed conditions by enabling each of the character cathodes sequentially and enabling the desired segments or indicator anodes in phase with the character-enabling pulse. The pulse rate is kept high enough so that the light from each character appears to the eye to be constant.

## absolute maximum ratings

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Indicator
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature,
Each Segment or Indicator
200 mA
Average Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1),
Each Segment or Indicator 25 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Terminal Temperature for 5 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
NOTE 1: This average value applies for any $10-\mathrm{ms}$ period. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
operating characteristics of each segment or indicator at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
$I_{v}$	Luminous   Intensity   (See Note 2)	Average per Segment, Each Digit	$I_{F}=20 \mathrm{~mA}$   per segment and indicator	240	600		$\mu \mathrm{cd}$
		Each Colon Segment and Indicator		95	240		
	Segment-to-Segment   Luminous Intensity Ratio			1.5: 1			
$\lambda_{\mathrm{p}}$	Wavelength at Peak Emission			640	655	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$V_{F}$	Static Forward Voltage		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.7	2	V

NOTE 2: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.

## mechanical data

The displays are formed by placing a one-piece reflector assembly within a red transparent plastic case that is attached to a printed-circuit board that contains the light-emitting-diode chips. To optimize device performance, materials are used that are limited to certain solvents for cleaning operations. It is recommended that only Freon ${ }^{\dagger} \mathrm{TF}$, isopropanol, or water be used.


Trademark of E.I. du Pont de Nemours, Inc.

## TYPES TIL835, TIL836 MULTIDIGIT NUMERIC DISPLAYS

## 3½-DIGIT SOLID-STATE RED NUMERIC DISPLAYS DESIGNED FOR INSTRUMENTATION AND DIGITAL PANEL METER APPLICATIONS

- 12,7-mm (0.500-Inch) Character Height
- Wide Viewing Angle
- High Contrast
- TIL835 . . . Common Anode
- TIL836 . . . Common Cathode


## description

These multidigit displays are formed by placing a one-piece reflector assembly within a red transparent plastic case attached to a printed circuit board. The light-emitting-diode chips are directly mounted and bonded to the printed circuit board under the appropriate segment.

The $\pm 1$ digit has individual segment lines separate from the other digits, which have their like-positioned segments connected together. The $\pm 1$ segments can therefore be driven directly or connected to other segments for multiplex operation. This arrangement allows these displays to be used with all digital panel meter chip sets presently available.

The pulse rate for multiplex operation must be kept high enough to make the light from each character appear to be constant. A minimum pulse rate of 100 hertz can be used, however, rates of one kilohertz to 10 kilohertz are recommended.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature,
Each Segment, Sign, or Decimal Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA
Average Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free Air Temperature (See Note 1),
Each Segment, Sign, or Decimal Point 25 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Terminal Temperature for 5 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
Note 1: This average value applles for any $10-\mathrm{ms}$ period. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## TYPES TIL835, TIL836 MULTIDIGIT NUMERIC DISPLAYS

operating characteristics of each segment or indicator at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
Iv	Luminous   Intensity   (See Note 2)	Average per   Segment or Sign,   Each Digit	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & \text { per segment, } \\ & \text { sign, and } \\ & \text { decimal point } \end{aligned}$	240	600		$\mu \mathrm{cd}$
		Each Decimal   Point		95	240		
Segment-to-Segment   Luminous Intensity Ratio				1.5:1			
$\lambda_{0}$	Wavelength at Peak Emission			640	655	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$V_{F}$	Static Forward Voltage		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.7	2	V

NOTE 2: Luminous Intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on llfumination) eye-response curve.

## mechanical data

The display may be mounted by soldering the pads directly to another printed-circuit board, by use of a lead-frame assembly on $2,54-\mathrm{mm}(0.100$-inch) centers with the pins soldered into the p-c board holes, or by insertion into a p-c board edge connector. A rosin-core $60 / 40 \mathrm{tin} / \mathrm{lead}$ solder, or a solid-core $60 / 40$ solder with a low-temperature deactivating flux can be used for hand-soldering operations. Soldering temperature of each pad should not exceed $230^{\circ} \mathrm{C}$ for five seconds. Care should be exercised to keep the temperature of the plastic cover below $100^{\circ} \mathrm{C}$ as higher temperatures or direct contact of a hot soldering iron with the plastic could cause distortion or deformation of the character appearance.

Flux clean up using chlorinated hydrocarbon solvents should be avoided as they may damage the plastic parts. Methanol, isopropanol, ethanol, or Freon ${ }^{\dagger}$ TP-35 may be used with caution. Solvents can leave residues that may blur or obstruct the image.


[^19]
## TYPES TIL835, TIL836 <br> MULTIDIGIT NUMERIC DISPLAYS

## TYPICAL APPLICATION DATA

Figure 1 shows typical interface circuitry between the TIL835 and TL500C-TL502C analog-to-digital converter. Note that the minus-sign terminal (pad 19) is connected to the D-segment line and the plus-sign terminal (pad 18) to the E -segment line.

Resistors R1 through R8 limit each segment-line current to approximately 50 milliamperes. This value may be increased or reduced as required to change the display brightness as long as the maximum ratings of the display and the TL502 are observed. Transistors O 1 through $\mathrm{O4}$ provide necessary additional drive current to the digit enable lines.

For information regarding maximum ratings and pin assignments, see the TL502C data sheet.


FIGURE 1-TL502C-TO-TIL835 INTERFACE CIRCUITRY

## TYPES TIL837, TIL838 5-DIGIT NUMERIC DISPLAY

BULLETIN NO. DL-S 12625, JULY 1978

## SOLID-STATE RED DISPLAYS WITH OPTIONAL DECIMAL POINT

- $\mathbf{6 , 9 - m m}$ ( 0.270 -Inch) Character Height
- Multiplex Operation - Minimum Pin Connections
- High Luminous Intensity
- Wide Viewing Angle
- Viewing Distance up to 5 Meters (15 Feet)
- TIL837 . . . Right-Hand Decimals
- TIL838 . . . No Decimals


## description

These 5 -digit displays are designed for easy viewing at as much as 5 meters ( 15 feet) under high ambient light conditions like those found in laboratories, offices, and classrooms. All segment and decimal cathodes for a given digit are tied to a common connection. The anodes of corresponding segments of each digit and of the decimals are also connected together. This type of configuration requires a minimum number of pad connections, but it requires that the display be used in a multiplexed mode. Each character is enabled sequentially by its cathode line and the desired segment and decimal anodes are enabled in phase with the cathode enabling pulse.

These displays are formed by mounting and bonding LED chips on a printed circuit board. Individual reflectors are used over the LED chips on each digit to form the segments. A diffuser placed over the reflectors results in a uniformly bright segment with a high contrast ratio.


POST OFFICE BOX 225012 - DALLAS, TEXAS 75265
mechanical data
The display may be mounted by soldering the pads directly to another printed-circuit board, by use of a lead-frame assembly on $2,54-\mathrm{mm}$ ( $0.100-\mathrm{inch}$ ) centers with the pins soldered into the p-c board holes, or by insertion into a p-c board edge connector. A rosin-core $60 / 40 \mathrm{tin} / \mathrm{lead}$ solder, or a solid-core $60 / 40$ solder with a low-temperature deactivating flux can be used for hand-soldering operations. Soldering temperature of each pad should not exceed $230^{\circ} \mathrm{C}$ for five seconds. Care should be exercised to keep the temperature of the plastic cover below $100^{\circ} \mathrm{C}$ as higher temperatures or direct contact of a hot soldering iron with the plastic could cause distortion or deformation of the character appearance.

Flux clean up using chlorinated hydrocarbon solvents should be avoided as they may damage the plastic parts. Methanol, isopropanol, ethanol, or Freon ${ }^{\dagger}$ TP- 35 may be used with caution. Solvents can leave residues that may blur or obstruct the image.


NOTES: a. All linear dimensions are in millimeters and parenthetically in inches.
b. The true-position tab spacing is $\mathbf{2 , 5 4} \mathbf{~ m m}(0.100 \mathrm{inch})$ between centerlines. Each pad centerline is located within $0,127(0,005)$ of its true position.
c. Dimensions associated with the digit segments and decimal points are nominal.

[^20]
# TYPES TIL837, TIL838 5-DIGIT NUMERIC DISPLAY 

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


PEAK FORWARD CURRENT PER SEGMENT OR DECIMAL POINT
vs
FREE-AIR TEMPERATURE


AVERAGE FORWARD CURRENT PER SEGMENT OR DECIMAL POINT
.vs
FREE-AIR TEMPERATURE

operating characteristics of each segment or decimal at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
IV	Luminous Intensity (See Note 3)	Segment	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	100	150		$\mu \mathrm{cd}$
		Decimal			100		
$\lambda_{p}$	Wavelength at Peak Emission			640	655	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$V_{\text {FM }}$	Peak Forward Voltage				1.7	2	V

NOTES: 1. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Figures 1 and 2.
2. These values apply for any 10 -millisecond period.
3. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.

## TYPES TIL837, TIL838 <br> 5-DIGIT NUMERIC DISPLAY

## TYPICAL APPLICATION DATA

Each digit of the display is connected in a common-cathode configuration and the anodes of corresponding segments of all digits are connected together for multiplex operation. Normal operation of each digit is $20 \%$ duty cycle or less.

Figure 3, below, shows a typical interface circuit between the TIL837/TIL838 and a TMS1000 microcomputer. The typical conditions shown are intended as a guide only. These conditions will give a bright display easily read under high ambient light conditions as would be found in an office or laboratory; that is, 270 to 540 lumens per square meter ( 25 to 50 foot-candles). If a brighter display is required, the average and peak currents through the segments could be increased.

A peak current of 40 milliamperes is recommended for normal operating conditions at a duty cycle of $20 \%$ to obtain adequate display brightness. The pulse rate should be high enough so that the light from each character appears constant. A minimum pulse rate of 60 hertz can be used; however, rates of one kilohertz to ten kilohertz are

$R_{L}=\frac{V_{C C}-V_{C E(\text { sat })(2 N 5449)}-V_{C E(\text { sat })}(T I S 143)-V_{F(L E D)}}{I_{F M}}$

FIGURE 3

TYPICAL CONDITIONS
$V_{C C}=5 \mathrm{~V}$
$V_{C E}($ sat $)(2 N 5449)=0.2 \mathrm{~V}$
$V_{C E}$ (sat) $(T I S 143)=1.0 \mathrm{~V}$
$V_{F(L E D)}=1.8 \mathrm{~V}$ at 40 mA
$I_{F M}=40 \mathrm{~mA}$
Duty Cycle $=20 \%$
$R_{L}=50 \Omega$

## RED DUAL SOLID-STATE DISPLAYS WITH RIGHT-HAND DECIMAL POINTS

## - $\mathbf{1 2 . 7}-\mathrm{mm}$ ( $\mathbf{0 . 5 0 0}$-Inch) Character Height

- Continuous Uniform Segments
- Wide Viewing Angle
- For TV Channel Indicator and Other 2-Digit Applications

OPERATION	COMMON   ANODE	COMMON   CATHODE
MULTIPLEX	TIL839	TIL840
CONTINUOUS	TIL842	TIL841

## description

These red displays offer options to fit almost any requirement for a 2-digit format. The TIL839 and TIL840 are designed to operate in the multiplex mode whereby each digit is enabled alternately by its common line with selected segment signals present in phase with the enabling pulse. This arrangement requires the minimum number of connections. The TIL841 and TIL842 have independent connections for each segment (except for the common line) and may be operated continuously.


## TYPES TIL839 THRU TIL842 <br> 2-DIGIT NUMERIC DISPLAYS

## absolute maximum ratings

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point . . . . . . . . . . . . . 3 V Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature, Each Segment or Decimal Point . . . . 200 mA Average Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1),

Each Segment or Decimal Point
25 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $\mathbf{8 5}^{\circ} \mathrm{C}$
Terminal Temperature for 5 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
NOTE 1: This average value applies for any $10-\mathrm{ms}$ period. Derate linearly to 10 mA at $85^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
operating characteristics of each segment or decimal point at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	$\frac{\text { UNIT }}{\mu \mathrm{cd}}$
Iv	Luminous Intensity (See Note 2)	Segment	$I_{F}=20 \mathrm{~mA}$	240	600		
		Decimal			240		
	Segment-to-Segment Luminous Intensity Ratio				1.5:1		
$\lambda_{p}$	Wavelength at Peak Emission			640	655	680	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$V_{F}$	Static Forward Voltage		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.7	2	V
$I_{\text {R }}$	Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		10		$\mu \mathrm{A}$

NOTE 2: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.
mechanical data
The displays are formed by placing a reflector assembly within a red transparent plastic case that is attached to a printed-circuit board that contains the light-emitting-diode chips. To optimize device performance, materials are used that are limited to certain solvents for cleaning operations. It is recommended that only Freon ${ }^{\dagger}$ TF, isopropanol, or water be used.


## TIXL311 HEXADECIMAL LED DISPLAY

by Bruce E. Aldridge

The TIL311 is designed to store and display decimal and hexadecimal data. The device consists of an MSI logic chip to perform logic and storage functions plus a light emitting diode (LED) display in a single 14 -pin dual in-line package. It accepts parallel 8-4-2-1 data on four input lines and displays the corresponding decimal or hexadecimal character on a 4-by- 7 dot matrix. Figure 1 illustrates the hexadecimal character representation for the decimal numbers 0 through 15 . The logic levels are designed to be


FIGURE 1. TIL311 Hexadecimal Character Configuration

TTL compatible: a high level is 2 V to 5 V , a low level is 0 V to 0.8 V .

The block diagram in Figure 2 shows the major sections of the TIL311; latches, decoder, current driver, and LED display. The inputs are DATA, LATCH STROBE, BLANKING, and DP. DATA is parallel 8-4-2-1 coded data. When LATCH STROBE is low, the data in the latches follow the data inputs. When LATCH STROBE goes high, the data on the input lines at strobe time is stored in the latches.

The 4-bit code is decoded and the required diodes are turned on via the constant-current drivers to display the proper character.

The LED display contains two decimal points: one to the left and one to the right of the character. A low input to one of the DP inputs will turn that decimal point on.

BLANKING must be low to display the character. When BLANKING goes high, the character is turned off regardless of the inputs. The BLANKING input does not change the data stored in the latches. BLANKING may be pulsed to intensity-modulate the display. The apparent brightness of the display is proportional to the duty cycle of the modulating signal, assuming a frequency high enough to avoid visible flicker. For example, at 1 kHz , a $50 \%$ duty


FIGURE 2. TIL311 Hexadecimal Display Block Diagram

## TIL311 HEXADECIMAL LED DISPLAY



FIGURE 3. TIL311 Used As Counter Display


## FIGURE 4. Discrete Light Display for a 16-Bit Register

cycle would cause an apparent brightness of $50 \%$ of the steady-state brightness.

Figure 3 illustrates the use of the TIL311 as a decimal display. The JK flip-flops are connected as a count-by-ten counter and represent one decade position in a multidecade counter. The four $Q$ outputs of the four flip-flops furnish the data inputs to the TIL311. Normally LATCH STROBE will be held high so that the display does not follow the counting. When counting is complete for a given time base, LATCH STROBE is pulsed with a negative-going pulse. The new data is then transferred from the decade counter into the latches and displayed.

Another application for the TIL311 is to display register information on computer control panels and service panels. Figure 4 illustrates the use of discrete lights to display the contents of a 16 -bit register. The length of the display can easily lead to errors in interpretation of the
data. Figure 5 illustrates the use of the TIL311 to display the same data in the same 16 -bit register. The 16 register positions are divided into four 4-bit groups. The four bits in each group provide the inputs to each of four TIL311 displays. The resulting four hexadecimal character display provides a more concise interpretation of the register data.


FIGURE 5. Hexadecimal Display for a 16-Bit Register

# COUNTING CIRCUITS USING TIL306 AND TIL308 LEDs 

## COUNTING CIRCUITS <br> USING TIL306 AND TIL308 LEDs

by<br>Bert Kehren<br>and<br>Bruce Aldridge

Digital instruments have experienced a constant evolution since 1960. Counters that once occupied several inches of rack space in a 19 -inch rack have been replaced by units the size of a text book with performance characteristics surpassing the older models. A major contribution to these changes is the continued advances in solid-state devices: integrated circuits have replaced the tubes and transistors and light-emitting diodes (LEDs) have replaced the incandescent displays.

Texas Instruments has introduced a new product that simplifies further the design of sy stems utilizing counters or digital read-outs. By combining an IC chip to perform the logic function and an LED display in a single 16 -pin dual
in-line package, Texas Instruments has provided the designer a device that reduces the complexity of his system without reducing flexibility of design. Two of these devices are the TIL306 and TIL308. The TIL306 and TIL308 have decimal points to the left side of the character. The TIL307 and TIL309 have decimal points to the right side of the character, but are otherwise identical to the TIL306 and TIL308, respectively. They can be combined to count, store, and display data in multiple decade positions.

## CIRCUIT DESCRIPTION

The TIL306, as shown in Figure 1, consists of four major sections: counter, latches, decoder/driver, and LED display.


FIGURE 1. Functional Block Diagram of TIL306

The counter is connected as a synchronous counter. This configuration takes advantage of the minimal propogation delay to give maximum speed capability. Inputs to the counter are CLEAR, CLOCK, SERIAL CARRY, and PARALLEL CARRY. The counter and its inputs generate an output, MAX COUNT. Additional connections are LATCH STROBE, BLANKING, RIPPLE BLANKING, RBO, DECIMAL POINT and LOGIC OUTPUTS. All inputs and outputs are designed to be TTL compatible. A high level is a minimum of 2 V and a low level is a maximum of 0.8 V . A low input to CLEAR will reset the counter to zero independently of any other input. As long as the input remains low the counter remains at zero. A high is required to allow the counter to count.

The CLOCK input is the signal to be counted. With an input the counter will advance from 0 to 9 . At a count of 9 the counter automatically resets to 0 with the next pulse. The counter changes state on the positive-going edge of the clock pulse. The clock pulse to the counter is controlled by SERIAL CARRY and PARALLEL CARRY.

The MAX COUNT output goes low when the counter reaches a count of 9 , and then goes high when the counter progresses to 0 on the next clock input. This output can be connected to the CLOCK input of the next decade position for asynchronous operation or to the SERIAL CARRY


FIGURE 2. Functional Block Diagram of TIL308

A high on BLANKING inhibits the driver and gates and blanks the LED display. For normal operation, the BLANKING input must be low.

A low on RIPPLE BLANKING blanks the display if the latch flip-flops contain a count of zero. This combination also forces the RBO NODE to go low. By connecting the RBO NODE of one decade position to the RIPPLE BLANKING input of the next decade position, zero suppression can be achieved. This is discussed in detail in a later portion of this report, Counter Circuit Description. The RBO NODE has a resistor pullup, which allows this output to be used as an input. A low level applied to RBO will blank the LED display independently of other input.

The TIL. 308 looks physically identical to the TIL306. However, the TIL306 contains a counter section: the TIL308 does not. The TIL308 accepts 8-4-2-1 BCD code from external sources, stores it in latches, and displays the stored character by means of an LED display. As shown in Figure 2, the TIL308 consists of the three major sections: latch, decoder/driver, and LED display.

The inputs and outputs, designed to be TTL compatible, consist of DATA INPUTS, DATA OUTPUTS, LATCH STROBE, BLANKING, and LED TEST.

The BCD data and decimal point on the DATA INPUT lines are transferred into the latch flip-flops when LATCH STROBE is low. The BCD data and decimal point data stored in the latches are available at DATA OUTPUT. With LATCH STROBE high the DATA INPUT lines can change without effecting the data stored in the latches.

BLANKING must be high to display the data stored in the latches. When BLANKING goes low, the decoder drivers are inhibited and LED display is turned off. The data stored in the latches are not effected by BLANKING.

LED TEST can be used to test the LED display. A low to LED TEST will override all other signals and turn all of the LEDs on. LED TEST does not change the status of the latches.

With the basic operation of the circuits outlined, two typical interconnection methods are shown in Figure 3 and 4. Figure 3 shows the TIL306 connected in the synchronous mode. Figure 4 shows the TIL306 in the asynchronous mode. The asynchronous mode will be used in the following example of a counter.


FIGURE 3. TIL 306 Interconnections for SynchronousCount Mode and High-Order-Zero Suppression.


FIGURE 4. TIL 306 Interconnections for Asynchronous-Counting Mode and Low-Order-Zero Suppression.

## COUNTER CIRCUIT DESCRIPTION

The counter is a major constituent in digital instruments. Digital voltmeters, frequency counters, event counters, and period counters all have a circuit in common. very much like the one shown in Figure 4.

The circuit to be discussed in detail in this report incorporates both the TIL306 and the TIL308. One of the limiting factors of the TIL306 is that the counter typically does not count faster than 18 MHz . Combining the TIL306 with a TIL308 and feeding the TIL308 from a high-speed counter expands the system to a much higher frequency. Figure 5 shows a BCD counter capable of working at 100 MHz . The circuit consists of two SN74S112 Schottky


FIGURE 5. 100 MHz Decade Counter Using Texas Intruments Schottky TTL Logic and A TIL308 Display.

TTL circuits and one SN74S11 Schottky TTL circuit. This configuration results in an asynchronous BCD counter capable of dividing a $100 \cdot \mathrm{MHz}$ signal down to 10 MHz . The speed is a result of Texas Instruments Schottky TTL devices that allow flip-flops to toggle in excess of 100 MHz . The Q outputs of the four flip-flops are fed into one TIL308, resulting in a decade with readout. The following decade position consists of a TIL306, which is capable of handling the 10 MHz rate. This circuit can be expanded even further by preceeding the Schottky counter stage with an ECL counter stage. ECL IC flip.flops with a $400-\mathrm{MHz}$ toggle rate and discrete built ECL flip-flops with a toggle rate of 800 MHz are possible. Figure 6 shows a block diagram of a stage which is capable of counting up to 800 MHz . Since ECL levels do not coincide with TTL levels, an ECL-TTL converter is necessary. The output of the converter will drive the TIL308 without any interference caused by switching speed problems.


FIGURE 6. $800-\mathrm{MHz}$ Decade Counter Using ECL Logic and A TIL308 Display.


A

TIL306 devices shows a big empty surface in the middle of the board and considerably fewer interconnects to the display. The cost savings resulting from using such a counter are quite obvious.

Figure 9 is a photo of a $100-\mathrm{MHz}$ counter using seven TIL306 devices and two TIL308 devices. A compact assembly technique reduced the total size.


FIGURE 7. Nine-Digit Counter


B
FIGURE 8. Two Counters with Identical Performance. Counter (A) Uses TIL 306 Devices; Counter (B) Dves not. Note how many less Components are Needed in the Counter Using TIL306 Devices.

Figure 7 is a block diagram representation of a nine-digit readout, consisting of an ECL decade counter with a TIL308 display and a Schottky TTL decade counter with a TIL308 display, as just described, and seven TIL306 devices. Part count is minimal, and the complexity of the PC Board is minimized.

Figure 8 is a photo of two counters with identical performance illustrating the difference in component count between a conventional counter consisting of SN7490, SN7475, and SN7447 TTL integrated circuits, resistors, with a display using TIL302 devices, and a counter using TIL306 devices. Both counters are specified to operate up to 15 MHz using a six-digit readout. The counter using


FIGURE 9. A Portable $100-\mathrm{MHz}$ Counter Using Seven TIL306 Devices.

## Texas Instruments <br> INCORPORATED

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

Figure 10 shows all of the basic circuit boards and components used in the counter shown in Figure 9 and shown schematically in Figure 12. The upper board is timebase. The center board is control. The bottom board is counter and display.


FIGURE 10. The Three Basic Circuit Boards of the Portable Counter.
in Figure 5 and seven TIL306 devices. This counter is capable of measuring frequencies up to 100 MHz and time with 10 -nanosecond resolution. Again minimum part count and simplicity have been the major objectives. The unit is universal and the counter can be expanded into other functions by adding circuits to the basic building block.




FIGURE 11. The Three Basic Circuit Boards Fastened Together into A Compact, High-Density Unit


FIGURE 12. Schematic of A Frequency and Time Counter

Figure 11 shows the assembly technique for high density component packing. The total size is 1.2 inches high, 1.2 inches deep and 4.25 inches wide. This counter can be incorporated in a lightweight and portable instrument. Total power dissipation is 9 watts.

Figure 12 shows a complete schematic of a frequency and time counter incorporating the $100-\mathrm{MHz}$ stage shown

The counter has three main functional sections: timebase, control, and counter.

The top part of Figure 12 is the time base. A $10-\mathrm{MHz}$ oscillator is formed using two SN74H04 TTL high-speed inverters. The output is coupled through a third inverter to
isolate the oscillator from the rest of the circuit. Capacitor C 1 is a coarse adjust and capacitor C 2 is a fine adjust. C2 should be a piston capacitor to allow finer resolution during adjustment. For more accurate requirements, a separate oscillator in a temperature-controlled oven with AGC circuitry can replace this circuit. The output of the oscillator is fed into a divider chain consisting of eight SN7490 decade dividers. Timing signals from 10 MHz to 0.1 Hz are generated and switch selectable as the time base. In the middle of the schematic in Figure 10 is the control circuit. The purpose of the control circuit is to gate the counter, and to generate latch strobe, and reset signals.

The input of $\mathrm{F} / \mathrm{F} 1$ is the time base signal in the frequency measuring mode or the unknown time period in the time measuring mode.

With all circuits reset, the $\bar{Q}$ output of $F / F 2$ holds a high level at the JK inputs of $F / F 1$. With a pulse coming into the $F / F 1$, $Q$ of $F / F 1$ changes from 0 to 1 on the negative-going edge. This 1 is applied to the first stage of the counter, allowing it to count. F/F2 does not change state since it changes only on a negative-going edge. With the next pulse to the clock input of $\mathrm{F} / \mathrm{F} 1, \mathrm{~F} / \mathrm{F} 1$ changes state on the negative-going edge, changing the Q output from logical 1 to logical zero. This negative-going transition sets $\mathrm{F} / \mathrm{F} 2$ and at the same time stops the counter from counting. With F/F2 set, $\bar{Q}$ of F/F2 is a 0 . A 0 at the JK inputs of F/F1 inhibits change with any additional pulses coming into its clock input. The $Q$ output of $F / F 2$ is connected to the input of a monostable multivibrator, $1 / 2$ SN74123. This multivibrator generates a short positive-going pulse at the $\mathbf{Q}$ output. The pulse width is determined by the RC combination R6C5 and is set in this application to 150 nanoseconds. The output signal is inverted and applied to the Latch Strobe inputs of the TIL306 and TIL308 devices. This pulse transfers the data from the counters into the latches to be displayed.

The $\overline{\mathrm{Q}}$ of $\mathrm{F} / \mathrm{F} 2$ is connected to the JK inputs of $\mathrm{F} / \mathrm{F} 1$ and also through a resistor to transistor T1. During counting operation $\bar{Q} 2$ is high,r turning T 1 on and preventing C 4 from charging. At the end of the count cycle, the $\overline{\mathrm{Q}} 2$ is low, turning T1 off. The capacitor C4 begins charging through resistors R4 and R5. R4 is adjustable and allows a variation in the display time. R5 prevents the charging current and the current through T1 from
exceeding 1 mA when R4 is turned to zero. Once the charge across C 4 reaches the firing potential of the unijunction, $\mathbf{T} 2$, the unijunction generates a positive pulse at Base 2, which is coupled into the monostable multivibrator, SN74123. The positive pulse determined by R7C6, 150 nanoseconds wide, is inverted by an inverter, 1/6 of SN74H04, and applied to the reset input of the TIL306 devices, the four $F / F s$ of the first counter stage, and the two F/Fs in the control section. With F/F1 and F/F2 reset the JK inputs are reset to a high level by F/F2 and the circuit is again ready to handle the incoming signal.

The bottom part of the schematic in Figure 10 shows the counter section. The first stage is made up of two SN74S112, one SN74S11, and one TIL308. The two SN74S 112 circuits and one SN74S11 circuit form a decade counter consisting of four flip.flops and one gate. Schottky TTL devices are used because of the speed requirement. If only a $70-\mathrm{MHz}$ counting rate is required, this circuit could be a single SN74196 circuit. The $\overline{\mathbf{Q}}$ output of the fourth F/F is connected to the clock input of the first TIL306. The maximum count of the TIL306 is connected to the clock input of the next TIL306. This operation is the asynchronous mode, which is acceptable for counter purposes.

The counter is controlled by the two inputs to the first $F / F$ of the first decade. The clock input is the unknown frequency in the frequency mode, or the known time pulses from the time base in the time-measuring mode. The JK inputs are connected to the Q output of the control F/F. This signal gates the counter. As already explained, a high level to the JK inputs allows the $\mathrm{F} / \mathrm{F}$ to change state on a negative edge of a pulse applied to the clock input. With the JK inputs low, the clock input does not affect the F/F.

To complete the operation of the counter, the Latch Strobe and the Reset are applied to the circuit as shown. S3 allows choosing between suppression or displaying of zeroes to the left of the most significant digit. With the switch closed, a ground is applied to the ripple blanking input of the most significant digit. If this digit is a zero, the display is blanked and the ripple blanking output goes zero. This output is connected to the next digit and the process repeated until all leading zeroes are suppressed. If switch S3 is opened the high-order zeroes are displayed. All that is necessary for operation of the counter now is to provide a power supply and a signal to be counted.

## Hermetic Displays

## QUICK REFERENCE GUIDE

 HERMETIC DISPLAYSHERMETIC DISPLAYS
QUICK REFERENCE GUIDE

DEVICE	TYPE OF   CHARACTER(S)	CHARACTER   HEIGHT   mm (INCHES)	COLOR   OF   DISPLAY	PACKAGE	REMARKS
4N41	7-segment	$6,9(0.270)$	Red	14-lead   hermetically   sealed dual-   in-line	Formerly TIL501. Electrically and mechanically interchangeable   with TIL302
TIL504	$5 \times 7$   alphanumeric	$7,6(0.300)$	Red	14-lead   hermetically   sealed dual-   in-line	Electrically interchangeable with TIL305

## HERMETICALLY SEALED SOLID-STATE VISIBLE DISPLAY (FORMERLY TIL501)

- Withstands Severe Environmental Conditions
- Left-Hand Decimal
- Wide Viewing Angle
- Compatible with Most TTL and DTL Circuits
- Each Unit Checked for Uniformity of Elements
*mechanical data

The display is mounted on a ceramic header, which is then hermetically sealed to a glass cover. Multiple displays may be mounted on $11,4-\mathrm{mm}$ ( 0.450 -inch) centers.


[^21]
## TYPE 4N41

## 7-SEGMENT NUMERIC DISPLAY

## *absolute maximum ratings

Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature:
Each Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Decimal Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V
Peak Forward Current at (or below) $70^{\circ} \mathrm{C}$ Free-Air Temperature, (See Note 1)
Each Segment or Decimal Point 200 mA
Average Forward Current at (or below) $70^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 2 and 3):
Each Segment or Decimal Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ Below the Seating Plane for 10 Seconds . . . . . . . . . . . $260^{\circ} \mathrm{C}$
NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $6.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. These average values apply for any $10-\mathrm{ms}$ period.
3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rates of $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for each segment or decimal point and $8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for the total device.
*operating characteristics of each segment at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Luminous Intensity (See Note 4)	$I_{F}=20 \mathrm{~mA}$	200	700		Mcd
$\lambda_{p}$	Wavelength at Peak Emission		640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth			20		nm
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage		3	3.4	3.8	V
$\alpha$ VF	Average Temperature Coefficient of Static Forward Voltage	$\begin{aligned} & T_{F}=20 \mathrm{~mA}, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \end{aligned}$		-2.7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$I_{R}$	Static Reverse Current	$V_{R}=6 \mathrm{~V}$			100	$\mu \mathrm{A}$
C	Anode-to-Cathode Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad f=1 \mathrm{MHz}$		85		pF

*operating characteristics of decimal point at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{I}_{\mathrm{v}}$	Luminous Intensity (See Note 4)	$I_{F}=20 \mathrm{~mA}$	100	350		$\mu \mathrm{cd}$
$\lambda_{p}$	Wavelength at Peak Emission		640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth			20		nm
$V_{F}$	Static Forward Voltage		1.5	1.65	2	V
$\alpha$ VF	Average Temperature Coefficient of Static Forward Voltage	$\begin{aligned} & I_{F}=20 \mathrm{~mA}, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \end{aligned}$		-1.4		$m V /{ }^{\circ} \mathrm{C}$
$I_{R}$	Static Reverse Current	$V_{R}=3 \mathrm{~V}$			100	$\mu \mathrm{A}$
C	Anode-to-Cathode Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		120		pF

NOTE 4: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve.

[^22]
## TYPICAL CHARACTERISTICS



## 7-SEGMENT NUMERIC DISPLAY

TYPICAL APPLICATION DATA


NOTES: A. R1 and R2 are selected for desired brightness.
B. SN74L47 may be used in place of SN7447A in applications where segment forward current will not exceed 20 mA , or SN74LS47 may be used for current up to 24 mA . An alternate font is available in the SN74247 and SN74LS247. For use below $0^{\circ} \mathrm{C}$ and/or above $70^{\circ} \mathrm{C}$, substitute parts from the 54 Family.

## FUNCTION TABLE

SN7447A, SN74L47, SN74LS47

DECIMAL OR FUNCTION	INPUTS						BI/RBO ${ }^{+}$	SEGMENTS							NOTE
	LT	RBI	D	C	B	A		a	b	c	d	e	$f$	$g$	
0	H	H	L	L	L	L	H	ON	ON	ON	ON	ON	ON	OFF	1
1	H	X	L	L	L	H	H	OFF	ON	ON	OFF	OFF	OFF	OFF	1
2	H	$x$	L	L	H	L	H	ON	ON	OFF	ON	ON	OFF	ON	1
3	H	X	L	L	H	H	H	ON	ON	ON	ON	OFF	OFF	ON	1
4	H	X	L	H	L	L	H	OFF	ON	ON	OFF	OFF	ON	ON	1
5	H	$x$	L	H	L	H	H	ON	OFF	ON	ON	OFF	ON	ON	1
6	H	$\times$	L	H	H	L	H	OFF $\ddagger$	OFF	ON	ON	ON	ON	ON	1
7	H	$x$	L	H	H	H	H	ON	ON	ON	OFF	OFF	OFF	OFF	1
8	H	X	H	L	L	L	H	ON	1						
9	H	x	H	L	L	H	H	ON	ON	ON	OFF $\ddagger$	OFF	ON	ON	1
10	H	X	H	L	H	L	H	OFF	OFF	OFF	ON	ON	OFF	ON	1
11	H	$x$	H	L	H	H	H	OFF	OFF	ON	ON	OFF	OFF	ON	1
12	H	X	H	H	L	L	H	OFF	ON	OFF	OFF	OFF	ON	ON	1
13	H	X	H	H	L	H	H	ON	OFF	OFF	ON	OFF	ON	ON	1
14	H	x	H	H	H	L	H	OFF	OFF	OFF	ON	ON	ON	ON	1
15	H	x	H	H	H	H	H	OFF	1						
BI	X	X	X	X	X	X	L	OFF	2						
RBI	H	L	L	L	L	$L$	L	OFF	3						
LT	L	$\times$	$\times$	X	X	X	H	ON	4						

$H=$ high level (logic 1 in positive logic), $L=$ low level (logic 0 in positive logic), $X=$ irrelevant.
$\dagger$ BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).
$\ddagger$ These segments would be on if the SN74247 or SN 74 LS 247 were used.
NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
2. When a low logic level is applied directly to the blanking input ( BI ), all segment outputs are off regardless of any other input

When the ripple-blanking input (RBI) and inputs $A, B, C$, and $D$ are at a low logic level with the lamp test input high, all segment outputs are off and the ripple-blanking output (RBO) of the decoder goes to a low level (response condition).
4. When the blanking input/ripple blanking output ( $B 1 / R B O$ ) is open or held high and a low is applied to the lamp-test input, all segments are illuminated.

ALTERNATE FONT
SN7447A, SN74L47, SN74LS47
SN74247, SN74LS247


## HERMETICALLY SEALED SOLID-STATE VISIBLE DISPLAY

- Electrically Interchangeable with TIL305 with Same Pin Connections
- 7,6-mm (0.300-inch) Character Height
- High Luminous Intensity
- Low Power Requirements
- Each Unit Checked for Uniformity of Elements
- Withstands Severe Environmental Conditions
- Left-Hand Decimal
- Wide Viewing Angle
- Compatible with Most TTL and DTL Circuits
mechanical data
The display is mounted on a ceramic header which is then hermetically sealed to a glass cover. Multiple displays may be mounted on $12,7-\mathrm{mm}$ ( 0.500 -inch) centers.


```
PIN 1 COLUMN 2
PIN 2 ROW 1
PIN 3 ROW 3
```

PIN 4 ROW 4
PIN 5 COLUMN 1
PIN 6 NO INTERNAL CONNECTION
PIN 7 DECIMAL
PIN 8 COLUMN 3
PIN 9 ROW 7
PIN 10 ROW 6
PIN 11 ROW 5
PIN 12 ROW 2
PIN 13 COLUMN 5
PIN 14 COLUMN 4

NOTES: a. All dimensions are in millimeters and parenthetically in inches.
b. Vertical and horizontal spacing between centerlines of rows and columns is nominally $1,27 \mathrm{~mm}(0.050$ inch).
c. The true-position pin spacing is $2,54 \mathrm{~mm}(0.100 \mathrm{inch})$ between centerlines. Each centerline is located within $0,26 \mathrm{~mm}$ ( 0.010 inch ) of its true longitudinal position relative to pins 4 and 11.
d. Lead dimensions are not controlled above the seating plane.

## TYPE TIL504

5 X 7 ALPHANUMERIC DISPLAY
absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Free-Air Temperature3 V
Peak Forward Current at (or below) $70^{\circ} \mathrm{C}$ free-air temperature, Each Diode (See Note 1) . . . . . . . . 100 mA Average Forward Current at (or below) $70^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 2 and 3):
Each Diode 20 mA
Total 400 mA
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $\mathbf{1 2 5}^{\circ} \mathrm{C}$
operating characteristics of each diode at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	L.uminous Intensity (See Note 4)	$I_{F}=10 \mathrm{~mA}$	80	150		$\mu \mathrm{cd}$
$\lambda_{p}$	Wavelength at Peak Emission		640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth			20		nm
	Static Forward Voltage		1.5	1.65	2	V
$\alpha$ VF	Average Temperature Coefficient of Static Forward Voltage	$\begin{aligned} & T_{F}=10 \mathrm{~mA}, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \end{aligned}$		-1.4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{R}}$	Static Reverse Current	$V_{R}=3 \mathrm{~V}$			100	$\mu \mathrm{A}$
C	Anode-to-Cathode Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		80		pF

NOTES: 1. Derate to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for any $\mathbf{2 5 0}-\mu$ s period.
3. Derute linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rates of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for each diode and $13.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for the total device.
4. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission and Illumination) eye-response curve.

## TYPICAL CHARACTERISTICS

RELATIVE SPECTRAL CHARACTERISTICS


FIGURE 1

RELATIVE LUMINOUS INTENSITY
vs
FREE-AIR TEMPERATURE


## TYPE TIL504 <br> 5 X 7 ALPHANUMERIC DISPLAY

## TYPICAL CHARACTERISTICS

RELATIVE LUMINOUS INTENSITY

## vs

FORWARD CURRENT


FIGURE 3
FORWARD CONDUCTION CHARACTERISTICS


## TYPICAL APPLICATION DATA

The TIL504 is used as a single character display in the application illustrated in Figure 5. The character displayed is a function of the logic input lines 1 through 7 and the blanking input. A low-logic-level voltage applied to the blanking input will inhibit the display.

The five columns of the TIL504 are scanned with a $20 \%$ duty cycle. The sequencing is controlled by the unijunction transistor oscillator, SN7496 shift register, and one of the SN7416 hex inverter/buffer drivers that are used to invert and feed the outputs back to the serial input to form a ring counter.

The outputs of the ring counter are used to drive the column drivers (A5T2907's) and the column select inputs of the read-only memory after being inverted through another SN7416.

The logic inputs 1 through 7 are inverted with another SN7416 to make the inputs compatible with positive logic and Series 54/74 levels.

If the coding at the inputs 1 through 7 is USASCII, a TMS4103JC or TMS4103NC read-only memory may be used to display the alpha-numeric characters per Figure 6. If the coding is EBCDIC, then a TMS4179JC or TMS4179NC will display the alpha-numeric characters per Figure 7. The TMS4103 and TMS4179 are pin-for-pin replacements in this circuit. Other codes may be used with a custom TMS4100 read-only memory.

## TYPE TIL504

5 X 7 ALPHANUMERIC DISPLAY

TYPICAL APPLICATION DATA


FIGURE 5

Resistor values are in ohms.
V... vac bus.

# TYPE TIL504 $5 \times 7$ ALPHANUMERIC DISPLAY 

## TYPICAL APPLICATION DATA RESULTANT DISPLAYS <br> USING TMS4103JC OR TMS4103NC WITH USASCII CODED INPUTS

 figure 6

```
TYPICAL APPLICATION DATA
RESULTANT DISPLAYS
USING TMS4179JC OR TMS4179NC
 WITH EBCDIC CODED INPUTS
```



|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $-\cos a$ |  |  |  |



1
0
1
0
0
1
1




$\qquad$



## SOLID-STATE VISIBLE HEXADECIMAL DISPLAY WITH <br> INTEGRAL TTL CIRCUIT TO ACCEPT STORE, AND DISPLAY 4-BIT BINARY DATA

- Electrically Interchangeable with TIL311
- 7,62-mm (0.300-Inch) Character Height
- Left-and-Right-Hand Decimals
- Separate LED and Logic Power Supplies May Be Used
- Easy System Interface
- Wide Viewing Angle
- Internal TTL MSI Chip with Latch, Decoder, and Driver
- Operates from 5-Volt or 6-Volt Supply
- Constant-Current Drive for Hexadecimal Characters
- Withstands Severe Environmental Conditions
mechanical data
The display and TTL MSI chip are mounted on a ceramic header which is then hermetically sealed to a glass window. Multiple displays may be mounted on $12,7-\mathrm{mm}$ ( $0.500-\mathrm{inch}$ ) centers.



## Texas Instruments

## description

This hexadecimal display contains a four-bit latch, decoder, driver, and $4 \times 7$ light-emitting-diode (LED) character with two externally-driven decimal points in a 14 -pin package. A description of the functions of the inputs of this device follows.

## FUNCTION

LATCH STROBE INPUT

BLANKING INPUT

LATCH DATA INPUTS
(A, B, C, D)
DECIMAL POINT
CATHODES

LED SUPPLY 1

LOGIC SUPPLY (VCC) 14
COMMON GROUND 7
8

PIN NO.
DESCRIPTION

When low, the data in the latches follow the data on the latch data inputs. When high, the data in the latches will not change. If the display is blanked and then restored while the enable input is high, the previous character will again be displayed.
$3,2,13,12$

4, 10
will again de aisplayed.

When high, the display is blanked regardless of the levels of the other inputs. When low, a character is displayed as determined by the data in the latches. The blanking input may be pulsed for intensity modulation.
Data on these inputs are entered into the latches when the enable input is low. The binary weights of these inputs are $A=1, B=2, C=4, D=8$.
These LEDs are not connected to the logic chip. If a decimal point is used, an external resistor or other current-limiting mechanism must be connected in series with it.
This connection permits the user to save on regulated $V_{C C}$ current by using a separate LED supply, or it may be externally connected to the logic supply ( $\mathrm{V}_{\mathrm{CC}}$ ).
Separate $V_{C C}$ connection for the logic chip.
This is the negative terminal for all logic and LED currents except for the decimal points.

The LED driver outputs are designed to maintain a relatively constant on-level current of approximately five milliamperes through each of the LED's forming the hexadecimal character. This current is virtually independent of the LED supply voltage within the recommended operating conditions. Drive current varies with changes in logic supply voltage resulting in a change in luminous intensity as shown in Figure 2. The decimal point anodes are connected to the LED supply; the cathodes are connected to external pins. Since there is no current limiting built into the decimal point circuits, this must be provided externally if the decimal points are used.
The TTL MSI chip is specially designed with a wider supply voltage range than standard Series 54/74 circuits so that it will operate from either a five-volt or a six-volt power supply.

The resultant displays for the values of the binary data in the latches are as shown below.


## TYPE TIL505 hexadecimal display with logic

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTE 1: Voltage values are with respect to common ground terminal.
recommended operating conditions


NOTES: 2. The minimum setup time is the interval immediately preceding the positive-going transition of the latch strobe input during which interval the data to be displayed must be maintained at the latch data inputs to ensure its recognition.
3. The minimum hold time is the interval immediately following the positive-going transition of the latch strobe input during which interval the data to be displayed must be maintained at the latch data inputs to ensure its continued recognition.

## TYPE TIL505

HEXADECIMAL DISPLAY WITH LOGIC
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
Iv	Luminous Intensity (See Note 4)	Average Per Character LED	$V_{C C}=5 \mathrm{~V},$ $\text { See Note } 5$	$\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V},$	35	100		$\mu \mathrm{cd}$
		Each decimal	$I_{F}(D P)=5 \mathrm{~mA}$		35	100		$\mu \mathrm{cd}$
$\lambda_{p}$	Wavelength at Peak Emission		$\begin{array}{ll} \hline V_{C C}=5 \mathrm{~V}, & V_{\text {LED }}=5 \mathrm{~V}, \\ \mathrm{IF}(\mathrm{DP})=5 \mathrm{~mA}, & \text { See Note } 6 \\ \hline \end{array}$		640	660	680	nm
$\Delta \lambda$	Spectral Bandwidth					20		nm
$V_{\text {IH }}$	High-Level Input Voltage				2			V
$V_{\text {IL }}$	Low-Level Input Voltage						0.8	V
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$1 /$	Input Current at Maximum Input Voltage		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current		$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-Level Input Current		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICC	Logic Supply Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{LED}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}(\mathrm{DP})}=5 \mathrm{~mA}, \\ & \text { All inputs at } \mathrm{O} \mathrm{~V} \end{aligned}$			60	90	mA
ILED	LED Supply Current					45	90	mA

NOTES: 4. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commision on Itlumination) eye-response curve.
5. This parameter is measured with
displayed, then again with
E. displayed.
6. These parameters are measured with

Fi. displayed.
TYPICAL CHARACTERISTICS


FIGURE 1


FIGURE 2


FIGURE 3

## TYPE TIL506 <br> NUMERIC DISPLAY WITH LOGIC

BULLETIN NO. DL-S 12225, NOVEMBER 1974-REVISED SEPTEMBER 1978

## HERMETICALLY SEALED SOLID-STATE SEVEN-SEGMENT VISIBLE DISPLAY WITH TTL DECODER/DRIVER

- Withstands Military Environmental Conditions
- 7,62-mm ( $0.300-$ Inch $)$ Character Height
- Internal TTL MSI Chip with Decoder and Driver
- BCD Four-Line Input
- Wide Viewing Angle
- High Luminous Intensity
- Left-Hand Decimal
- Constant-Current Drive for Light-Emitting Diodes
- Compatible with Most TTL and DTL Circuits


## mechanical data

The display and TTL logic chip are mounted on a ceramic header which is then hermetically sealed to a glass lid. Multiple displays may be mounted on $15,9-\mathrm{mm}$ ( 0.625 -inch) centers.


## description

The TIL506 contains a seven-segment numeric display with left-hand decimal and a TTL MSI BCD-to-seven-segment decoder and driver. It accepts four-line binary-coded-decimal (BCD) input in negative logic and displays the decimal number in a seven-segment format. Invalid inputs are automatically blanked (see function table). A low-logic-level voltage ( $\leqslant 0.8 \mathrm{~V}$ ) at the decimal point input turns on the decimal independently of the BCD inputs. The decimal point, as well as each segment, is driven by a constant current from the logic chip. Varying the LED supply voltage will not significantly affect the brightness of the display. The brightness may be controlled by pulse width modulation of the BCD inputs alternating between a valid code and an invalid code (e.g. all inputs low).

## TYPE TIL506

## NUMERIC DISPLAY WITH LOGIC

FUNCTION TABLE

FUNCTION	DATA INPUTS					DISPLAY
	$\overline{\text { D }}$	$\overline{\mathbf{C}}$	$\bar{B}$	$\overline{\mathbf{A}}$	$\overline{\mathrm{DP}}$	
0	H	H	H	H	H	$\square$
1	H	H	H	L	L	1
2	H	H	L.	H	H	ロ
3	H	H	L	L	L	$\exists$
4	H	L	H	H	H	4
5	H	L	H	L	L	■
6	H	L	L	H	H	$\square$
7	H	L	L	L	L	7
8	L	H	H	H	H	$\square$
9	L	H	H	L	L	$\square$
BLANK	L	H	L	H	H	
BLANK	L.	H	L	L	L	-
BLANK	L	L	H	H	H	
BLANK	L	L	H	L	L	-
BLANK	L	L.	L	H	H	
BLANK	L	L	$L$	$L$	L	-

$H=$ high logic level, $L=$ low logic level
$\overline{\mathrm{DP}}$ input has arbitrarily been shown activated (low) on every other line of the table.
functional block diagram


## TYPE TIL506 NUMERIC DISPLAY WITH LOGIC

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

```
Logic Supply Voltage, VCC (See Note 1)7 V
```

LED Supply Voltage, VLED, at (or below) $70^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) ..... 5.5 V
Data Input Voltage ..... 5.5 V
Operating Free-Air Temperature Range ..... $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to the ground terminal.
2. For operation above $70^{\circ} \mathrm{C}$ free-air temperature, refer to LED Supply Voltage Derating Curve, Figure 1.

## recommended operating conditions



Operating Free-Air Temperature, $T_{A}$

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{I}_{\mathrm{v}}$	Luminous Intensity (See Note 3)	Figure $B$	$V_{C C}=5 \mathrm{~V},$   See Note 4	$\mathrm{V}_{\text {LED }}=4.6 \mathrm{~V}$,	700			
		Decimal Point			40			
$\lambda_{p}$	Wavelength ${ }^{\text {at }}$ Peak Emission				640	655	670	nm
$\Delta \lambda$	Spectral Bandwidth					20		nm
$V_{1 H}$	High-Level Input Voltage				2			V
$V_{\text {IL }}$	Low-Level Input Voltage						0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$1 /$	Input Current at Maximum Input Voltage		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\mathrm{IH}}$	High-Level Input Current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low-Level Input Current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8	mA
ICC	Logic Supply Current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\text {LED }}=5 \mathrm{~V}$,			75	mA
ILED	LED Supply Current		DP at 5 V ,	Other inputs at 0 V			160	mA

NOTES: 3. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve
4. These parameters were measured with all LED segments and the decimal point on.

## HERMETICALLY SEALED SOLID-STATE VISIBLE DISPLAY WITH INTEGRAL TTL COLUMN DRIVERS

- Withstands Military Environmental Conditions
- 7,6-mm (0.300-Inch) Character Height
- Integral D-Type Flip-Flop Column Drivers and Series Limiting Resistors
- Wide Viewing Angle
- Compatible with Most TTL and DTL Circuits
- High Luminous Intensity
- Left Decimal
mechanical data
The display and TTL logic chip are mounted on a ceramic header which is then hermetically sealed to a glass window. Multiple displays may be mounted on $12,2-\mathrm{mm}$ ( 0.480 -inch) centers.


The TIL507 is a $5 \times 7$ matrix of light-emitting diodes plus a decimal point. The device includes an IC logic chip similar to SN54174 containing six D-type flip-flops that can transfer data from a character generator to the five columns of the matrix and the decimal point. The chip also includes six cathode column drivers with series-limiting resistors.

The rows are strobed by sequentially applying a positive voltage to each row input. As each row is strobed the data set up at column inputs are transferred to the column drivers on the rising edge of each clock pulse. A high column input causes the LED to turn on. After the minimum hold time requirement has been satisfied, the column data inputs may change whether the clock is high or low.


## TYPE TIL507

## $5 \times 7$ ALPHANUMERIC DISPLAY WITH LOGIC

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

tVoltage may be reduced to 0 V to control intensity of the display.
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{I}_{\mathrm{v}}$	Luminous Intensity (See Note 2)		$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	40	110		$\mu \mathrm{cd}$
	Wavelength at Peak Emission		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {LED }}=4 \mathrm{~V}$	640	655	670	nm
$\Delta \lambda$	Spectral Bandwidth				20		nm
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage			2			V
$V_{\text {IL }}$	Low-Level Input Voltage					0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {IH }}$	High-Level Input Current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$			150	$\mu \mathrm{A}$
IIL	Low-Leve! Input Current		$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$			-1	mA
Irow	Row Input Current	Row 1 thru Row 6	See Note 3		500	800	
		Row 7			600	1000	mA
${ }^{\text {c C }}$	Logic Supply Current				45	65	

NOTES: 2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve
3. Maximum values of row input current and logic supply current are stated for $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {row }}=5 \mathrm{~V}$. Typical values are stated for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {row }}=4 \mathrm{~V}$. All column data inputs are high.

## SOLID-STATE THREE-CHARACTER 5 X 7 ALPHANUMERIC DISPLAY IN A HERMETIC PACKAGE

- Meets Hermeticity Requirement of MIL-STD-883
- Large Characters . . . 12,7-mm (0.5-Inch) High
- Displays Stackable on 43,2-mm (1.7-Inch) Centers
- Wide Viewing Angle
- Pins Fit Navy WS6157/1 Series Sockets
- TTL Shift Register with Serial Input Minimizes Input Pins
- Shift Register Serial Data Output to Serially Address Several Packages
- TTL Compatible
- Integrated Resistors and a Capacitor
mechanical data
The displays and logic chips are mounted on a substrate which is then hermetically sealed to a glass lid. All external metal parts are gold plated. The pins are designed for reliable interconnection with the Navy WS6157/1 Series sockets, which can be purchased from Masterite Industries, Torrance, California (028-Series). The pins are keyed to prevent inserting the display into the socket upside-down. Character-to-character spacing is maintained when multiple displays are mounted on $43,2-\mathrm{mm}$ (1.7-inch) centers.



## TYPE TIL560

## ALPHANUMERIC DISPLAY WITH LOGIC

## description

This alphanumeric display contains three 35 -bit ( $5 \times 7$ ) characters. It is suitable for exhibiting all characters in the USASCII code using a standard MOS character generator. Two SN54164 8-bit shift-register chips are integrated to allow a single pin for entering column data. Only the first 15 bits are used. In typical operation, data for a given row are entered serially into the register and shifted from right to left. Hence, the bit for the left-hand column is entered first. Then the row-anode terminal is pulsed high and each LED corresponding to a low column data bit turns on. Following this, column data for the next row are entered.

A serial data output pin is available for connecting $N$ display modules serially so that 3 N characters can be operated off one data line. The maximum value for $N$ depends on the row refresh rate and the clock frequency.

An internal resistor in series with each shift register output used controls the light-emitting diode (LED) current. The resistor value is matched to the LED chips to control light intensity, but, in no case is the LED peak current greater than 12 milliamperes. An $0.02-\mu \mathrm{F}$ capacitor is included in each display module to filter out transients caused by the power supply and the TTL circuits.

A description of the functions of the inputs and the output of the TIL560 follows:

FUNCTION
ROW ANODES
$(1,2,3,4,5,6,7)$

PIN NO.
$23,25,20,18,17,27,16$ When high, these inputs supply current to the LED chips in that row for which the column input data bit is low.

This input is used to enter column data, left-hand column first, into the display. A low level corresponds to turning the LED on while a high level blocks the row input current from the LED.

The column data entered at the data input is shifted one bit to the left on each low-to-high transition of the clock input.

To operate more than one display module serially, this output is connected to the data input of the module to the left. Otherwise, this output should be left open.

This is the positive terminal for the power supply to the shift. registers. The internal capacitor is connected between VCC and ground.

These are the negative terminals for $\mathrm{V}_{\mathrm{CC}}$ and the row, data, and clock inputs. They should be externally connected together.

## reliability testing

Every display is subjected to the following tests according to MIL-STD-883: pre-cap visual inspection, Method 2010, Condition B; temperature cycling, Method 1010, Condition B except that the high temperature is $100^{\circ} \mathrm{C}$; and a leak test, Method 1014, Conditions B and C.

## TYPE TIL560 <br> ALPHANUMERIC DISPLAY WITH LOGIC

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTE 1: Voltage values are with respect to both ground pins externally connected together.
recommended operating conditions


Row Anode Voltage, Vrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Input Voltage (Data and Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

## TYPE TIL560 <br> ALPHANUMERIC DISPLAY WITH LOGIC

operating characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
$I_{v}$	Luminous Intensity (See Note 2)		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & V_{\text {row }}=5 \mathrm{~V}, \\ f_{\text {row }}=500 \mathrm{~Hz}, & \text { Row Duty Cycle }=1 / 7, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$		3.5	7	11	$\mu \mathrm{cd}$
$\lambda_{p}$	Wavelength at Peak Emission				630	650	670	nm
$\Delta \boldsymbol{\lambda}$	Spectral Bandwidth					30		nm
$V_{\text {IH }}$	High-Level Input Voltage				2			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage						0.8	V
$V_{\text {IK }}$	Input Clamp Voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$I_{1}=-12 \mathrm{~mA}$			-1.5	V
$\mathrm{V}_{\mathrm{OH}}$	High-Level Output Voltage		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-40 \mu \mathrm{~A}$	2.4			V
VOL	Low-Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V},$   One row input a	$\begin{aligned} & \mathrm{IOL}=1.6 \mathrm{~mA}, \\ & \mathrm{t} 4.5 \mathrm{~V} \end{aligned}$			0.4	V
11	Input Current at Maximum Input Voltage		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
${ }_{1} \mathbf{H}$	High-Level Input Current	Data	$V_{C C}=5.5 \mathrm{~V}, \quad V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
		Clock					80	
IIL	Low-Level Input Current	Data	$V_{C C}=5.5 \mathrm{~V}, \quad V_{1}=0.4 \mathrm{~V}$				-1.6	mA
		Clock					-3.2	m
Ios	Short-Circuit Output Current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-9.		-27.5	mA
Irow	Row Input Current		See Note 3			126	170	mA
ICC	Logic Supply Current		See Note 3			74	108	mA

NOTES: 2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on lllumination) eye-response curve.
3. Maximum values of row input current and logic supply current are stated for $V_{C C}=5.5 V, V_{\text {row }}=5.5 V$. Typical values are stated for $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {row }}=5 \mathrm{~V}$.

TYPICAL CHARACTERISTICS


# Special <br> Electro-optical Components 

## QUICK REFENCE GUIDE ELECTRO-OPTICAL COMPOMENTS

## AVALANCHE PHOTODIODES

FOR VISIBLE LIGHT		FOR INFRARED	
DEVICE	FEATURES	DEVICE	FEATURES
TIED83, TIED84	0.010 -inch ${ }^{2}$ and 0.030 -inch ${ }^{2}$ active areas	TIED55, TIED56	Active area is 0.010 inch dia
		TIED59	Case isolated for shielding
TIED85, TIED86	See Note 1	TIED69	Active area is 0.060 inch dia
		TIED87, TIED88, TIED89	See Note 1
		TIED451	See Note 2

## OTHER PHOTODIODES

DEVICE	
TIED80	Typical rise time $=15 \mathrm{~ns}$, active area diameter $=0.100$ inch
TIED82	Quadrant geometry, typical rise time $=15 \mathrm{~ns}$, active-area diameter $=0.650$ inch
TIED98	High resistivity, typical rise time $=45 \mathrm{~ns}$, active-area diameter $=0.040$ inch

AVALANCHE PHOTODETECTOR MODULES

DEVICE	FEATURES
TIED90, TIED91, TIED92, TIED93	Optimized for high-speed detection of visible light
TIED94, TIED95, TIED96, TIED97	Optimized for high-speed detection of near-infrared radiation
TIED452	For near-infrared wavelengths. See Note 2

AMPLIFIERS

DEVICE	FEATURES		
TIEF150, TIEF151, TIEF152	Designed for use with photodiodes	DEVICE	

FIBER-OPTIC ASSEMBLIES*

SOURCE	CABLE	DETECTOR
TXES475, TXES476	TXEF402	TXED453

INFRARED-EMITTING DIODES

DEVICE	POWER OUTPUT		$\begin{aligned} & { }^{\theta} \mathbf{H I} \\ & \text { TYP } \end{aligned}$	$V_{F}$		$\begin{gathered} \lambda_{p} \\ \text { TYP } \\ \mu \mathrm{m} \\ \hline \end{gathered}$	FEATURES
	$\begin{aligned} & \text { MIN } \\ & \text { mW } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}} \\ & \mathrm{~mA} \end{aligned}$		$\begin{gathered} \text { MAX } \\ V \end{gathered}$	$\begin{aligned} & I_{F} \\ & m A \end{aligned}$		
TIES06	0.6	500	$115^{\circ}$	2.3	500	0.91	0.0075-inch-dia emitting area
TIES12	40	300	$130^{\circ}$	2	300	0.93	
TIES13	20	300	$130^{\circ}$	2	300	0.93	0.036-inch-dia hemispherical dome emitting area
TIES13A	30	300	$130^{\circ}$	2	300	0.93	
TIES14	60	1000	$130^{\circ}$	2	1000	0.93	
TIES15	30	1000	$130^{\circ}$	2	1000	0.93	0.072-inch-dia hemispherical dome emitting area
TIES16A	100	2000	$150{ }^{\circ}$	2	2000	0.93	
TIES16B	200	2000	$150^{\circ}$	2	2000	0.93	0.072-inch-dia dome emitting area
TIES16C	350	3000	$150^{\circ}$	2.2	3000	0.94	
TIES27	15	300	$135^{\circ}$	2.2	300	0.93	Stud header with epoxy lens
TIES35	0.9	50	$135^{\circ}$	2	50	0.91	0.018-inch-dia dome emitting area
TIES36	1	50	$25^{\circ}$	2	50	0.91	Pill package with built-in reflector
TXES37	50	1000	$180^{\circ}$			0.94	
TIES471	0.5	50	$130^{\circ}$	2	50	0.91	See Note 2

NOTES: 1. The photodiode and the reference diode have matched breakdown characteristics.
2. For connection to fiber-optic bundle termination.

- For information on new fiber-optic-assembly products, see page 401.


## TYPES TIED55, TIED56 <br> SILICON AVALANCHE PHOTODIODES

BULLETIN NO. DL-S 10606, JUNE 1968-REVISED DECEMBER 1977

## OPTIMIZED FOR HIGH-SPEED DETECTION OF NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL55, TIXL56)

- Useful from Audio to Microwave Frequencies
- Typical Photocurrent Gain of $>600$
- Active Area of $5 \times 10^{-4} \mathrm{~cm}^{2}$ (Diameter $=10 \mathrm{Mils}$ )
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz
- Typical System Noise Equivalent Power of $10^{-12} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ at 1 GHz
- Pill-Package design allows mounting in Coaxial and Stipline Microwave Structures


## description

The TIED55 and TIED56 are high-speed, high-resistivity photodiodes. They are designed to operate in the reverse-voltage avalanche region just below the breakdown voltage. This results in a photocurrent signal gain of a magnitude dependent on the reverse voltage. The signal gain ahead of the input noise of typical amplifiers provides for enhancement of the signal-to-noise ratio in most optical receiver systems.
mechanical data
Each device is in a hermetically sealed package with a glass lens or window. The outline of the TIED56 is similar to TO-18.

absolute maximum ratings
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) 100 mW
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Soldering Temperature for 3 Minutes (TIED55) ..... $240^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds (TIED56) ..... $300^{\circ} \mathrm{C}$

[^23]
## TYPES TIED55, TIED56 <br> SILICON AVALANCHE PHOTODIODES

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS§		MIN	TYP	MAX	UNIT
Breakdown Voltage, $\mathrm{V}_{(\mathrm{BR})}$		$I_{R}=100 \mu \mathrm{~A}$,	$E_{\text {e }}=0$	155	170	185	V
Dark Current ${ }^{\ddagger}$	Bulk	$M=100$,	$E_{e}=0$		5	30	pA
	Surface				0.8	10	nA
Temperature Coefficient of Breakdown Voltage		$I_{R}=100 \mu \mathrm{~A},$   See Note 2	$E_{e}=0,$		200		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Photocurrent Gain at Avalanche Noise Threshold, MT		$\lambda=0.9 \mu \mathrm{~m}$,	See Note 3	200	>600		
Total Capacitance, $\mathrm{C}_{\mathrm{T}}$		$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$		1.2	3	pF
Series Resistance		$\mathrm{f}=0.9 \mathrm{GHz}$			50		$\Omega$
Gain-Bandwidth Product ${ }^{\dagger}$		$\mathrm{f}_{\text {mod }}=1 \mathrm{GHz}$,	$\lambda=6328 \AA$		80		GHz
Radiant Responsivity, $\mathrm{Re}_{\mathrm{e}}$		$\begin{aligned} & \lambda=0.9 \mu \mathrm{~m}, \\ & \mathrm{f}_{\mathrm{mod}}=15 \mathrm{MHz} . \end{aligned}$	$\begin{aligned} & \mathrm{M}=100, \\ & \Phi_{\mathrm{e}} \leqslant 0.1 \mathrm{~mW} \end{aligned}$	15	20		A/W

${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain
Dark current is the sum of surface current and gain $M$ times the bulk current
$\S_{E_{e}}$ is the incident radiant power per unit area.
NOTES: 2. Temperature coefficient is determined by the formula:

$$
\text { Temperature coefficient }=\frac{V_{(B R)} @ 125^{\circ} \mathrm{C}-V_{(B R)} @-55^{\circ} \mathrm{C}}{125^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Figure 1 . Radiant flux is as required to give a photocurrent of 0.1 nA rms at $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$.

## TYPICAL CHARACTERISTICS



BIBLIOGRAPHY: Biard, J.R. and W.N. Shaunfield: A Model of the Avalanche Photodiode, IEEE Transactions on Electron Devices, vol. ED-14, no. 5, pp. 233-238, May 1967.

# OPTIMIZED FOR HIGH-SPEED DETECTION OF NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL59) 

- Isolated Case for Shielding
- Useful from Audio to Microwave Frequencies
- Minimum Photocurrent Gain of 200
- Active Area of $4.5 \times 10^{-3} \mathbf{~ c m}^{2}$ (Diameter $=\mathbf{3 0}$ Mils)
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz
- Typical System Noise Equivalent Power of $2 \times 10-13 \mathrm{~W} / \sqrt{\mathrm{Hz}}$ at $\mathbf{3 0} \mathbf{~ M H z}$ Bandwidth


## description

The TIED59 is a high-speed, high-resistivity photodiode. It is designed to operate in the reverse-voltage avalanche region just below the breakdown voltage. This results in photocurrent signal gain of a magnitude dependent on the reverse voltage. The signal gain ahead of the input noise of typical amplifiers provides for enhancement of the signal-to-noise ratio in most optical receiver systems. The TIED59 is similar to TIED56 except that it has a larger active area making it more useful in lens systems with small f-numbers or where focusing is a problem.

## mechanical data

The device is in a hermetically sealed welded case similar to, but slightly shorter than, JEDEC TO-39. The window is borosilicate galss. Its nominal dimensions are: diameter, 0.305 inch; thickness, 0.060 inch; and distance from front surface of the window to the active area, 0.085 inch.

absolute maximum ratings

$$
\begin{aligned}
& \text { Continuous Power Dissipation at (or below) } 25^{\circ} \mathrm{C} \text { Case Temperature (See Note 1) . . . . . . . . . . } 100 \mathrm{~mW} \\
& \text { Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \text { Lead Temperature } 1 / 16 \text { Inch from Case for } 10 \text { Seconds . . . . . . . . . . . . . . . . . . . . . . } 300^{\circ} \mathrm{C}
\end{aligned}
$$

## TYPE TIED59

SILICON AVALANCHE PHOTODIODE
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS§		MIN	TYP	MAX	UNIT
Breakdown Voltage, $\mathrm{V}_{(\mathrm{BR})}$		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$,	$\mathrm{E}_{\mathrm{e}}=0$	155	170	185	V
Dark Current $\ddagger$	Bulk	$M=100$,	$E_{\text {e }}=0$		60	150	pA
	Surface				2	20	nA
Temperature Coefficient of Breakdown Voltage		$I_{R}=100 \mu A,$   See Note 2	$E_{e}=0,$		200		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Photocurrent Gain at Avalanche Noise Threshold, MT		$\lambda=0.9 \mu \mathrm{~m}$,	See Note 3	200	$>600$		
Total Capacitance, $\mathrm{C}_{\mathrm{T}}$		$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$		8.5	12	pF
Series Resistance		$f=0.9 \mathrm{GHz}$			5		$\Omega$
Gain-Bandwidth Product ${ }^{\dagger}$		$f_{\text {mod }}=1 \mathrm{GHz}$,	$\lambda=6328$ A		80		GHz
Radiant Responsivity, $\mathrm{R}_{\mathrm{e}}$		$\begin{aligned} & \lambda=0.9 \mu \mathrm{~m}, \\ & f_{\text {mod }}=15 \mathrm{MHz}, \\ & \hline \end{aligned}$	$\begin{aligned} & M=100, \\ & \Phi_{\mathrm{e}}<0.1 \mathrm{~mW} \end{aligned}$	15	20		A/W

OTES: 2. Temperature coefficient is determined by the formula:

$$
\text { Temperature coefficient }=\frac{V_{(B R)}{ }^{@} 125^{\circ} \mathrm{C}-V_{(\mathrm{BR})}{ }^{@}}{125^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Figure 1. Radiant flux is as required to give a photocurrent of $0.1 \mathrm{nA} \mathrm{rms} \mathrm{at} \mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is blased for maximum obtainable gain.
$\ddagger$ Dark current is the sum of surface current and gain M times the bulk current. $\S_{\mathrm{E}_{\mathrm{e}}}$ is the incident radiant power per unit area.
TYPICAL CHARACTERISTICS


figuale 2


FIGURE 3


OTAL CAPACITANCE

Figure 4

## OPTIMIZED FOR HIGH-SPEED DETECTION OF NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL69)

## - Useful from Audio to Microwave Frequencies

- Typical Photocurrent Gain of $>600$
- Active Area of $1.8 \times 10^{-2} \mathrm{~cm}^{2}$ (Diameter $=60 \mathrm{Mils}$ )
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz
- Typical System Noise Equivalent Power of $2 \times 10^{-13} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ at $30-\mathrm{MHz}$ Bandwidth with TIEF151 Amplifier


## description

The TIED69 is a high-speed, high-resistivity photodiode. It is designed to operate in the reverse-voltage avalanche region just below the breakdown voltage. This results in a photocurrent signal gain of a magnitude dependent on the reverse voltage. The signal gain ahead of the input noise of typical amplifiers provides for enhancement of the signal-to-noise ratio in most optical receiver systems. The TIED69 is similar to the TIED56 and TIED59 except that it has a larger active area.

## mechanical data

The device is in a hermetically sealed welded case similar to, but slightly shorter than, JEDEC TO-39. The window is borosilicate glass. Nominal lens dimensions are: diameter, 0.305 inch; thickness, 0.060 inch; and distance from front surface of the window to the active area, 0.075 inch.


## absolute maximum ratings

> Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . . 100 mW Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.

## TYPE TIED69

SILICON AVALANCHE PHOTODIODE
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS§		MIN	TYP	MAX	UNIT
Breakdown Voltage, $\mathrm{V}_{(\mathrm{BR})}$		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$,	$\mathrm{E}_{\mathrm{e}}=0$	155	170	185	V
Dark Current $\ddagger$	Bulk	$M=100$,	$E_{e}=0$		140	700	pA
	Surface				3.5	40	nA
Temperature Coefficient of Breakdown Voltage		$I_{R}=100 \mu \mathrm{~A},$   See Note 2	$E_{e}=0,$		200		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Photocurrent Gain at Avalanche Noise Threshold, MT		$\lambda=0.9 \mu \mathrm{~m}$,	See Note 3	200	>600		
Total Capacitance, $\mathrm{C}_{T}$		$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$		30	45	pF
Series Resistance		$\mathrm{f}=0.9 \mathrm{GHz}$			5		$\Omega$
Gain-Bandwidth Product ${ }^{\dagger}$		$\mathrm{f}_{\text {mod }}=1 \mathrm{GHz}$,	$\lambda=6328$ \&		80		GHz
Radiant Responsivity, $\mathrm{R}_{\mathrm{e}}$		$\begin{aligned} & \lambda=0.9 \mu \mathrm{~m}, \\ & \mathrm{f}_{\mathrm{mod}}=15 \mathrm{MHz}, \end{aligned}$	$\begin{aligned} & \mathrm{M}=100, \\ & \Phi_{\mathrm{e}} \leqslant 0.1 \mathrm{~mW} \end{aligned}$	15	20		A/W

NOTES: 2. Temperature coefficient is determined by the formula:

$$
\text { Temperature coefficient }=\frac{V_{(B R)} @ 125^{\circ} \mathrm{C}-V_{(B R)} @-55^{\circ} \mathrm{C}}{125^{\circ} \mathrm{C}-\left(-55^{\circ}\right)}
$$

3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Figure 1 Radiant flux is as required to give a photocurrent of 0.1 nA rms at $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$.
${ }^{\top}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain
$\ddagger$ Dark Current is the sum of surface current and gain $M$ times the bulk current.
$\S_{\mathrm{E}_{e}}$ is the incident radiant power per unit area.

## TYPICAL CHARACTERISTICS



FIGURE 1


PHOTOCURRENT GAIN
vs


TOTAL CAPACITANCE
vs
REVERSE VOLTAGE


FIGURE 4

## TYPE TIED80 <br> SILICON PHOTODIODE

bulletin no. dL-S 11562, NOVEMBER 1971-REVISED DECEMBER 1977

## DESIGNED FOR DETECTION OF VISIBLE AND NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL80)

- Typical Responsivity . . . 0.6 A/W at $0.9 \mu \mathrm{~m}$
- Active Area of $5 \times 10^{-2} \mathbf{c m}^{2}$ (Diameter $=100 \mathrm{Mils}$ )
- Rise and Fall Time . . . 15 ns Typ at $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$
- Dark Current . . . 15 nA Typ at $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$
- Low Capacitance . . . 4.5 pF Typ at $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$


## description

The TIED80 is a high-speed silicon photodiode. The device is designed to operate in a reverse-bias mode to provide low capacitance with high speed and high responsivity. The device utilizes a guard-ring structure to provide excellent low noise characteristics.

## mechanical data

The TIED80 is in a hermetically sealed welded case similar to, but shorter than, JEDEC TO-5. The window is made of borosilicate glass with a nominal thickness of 0.050 inch. A 0.100 -inch-diameter aperature located approximately 0.030 inch from the surface of the active area prevents extraneous illumination and provides a plane for focusing. Approximate weight is 1.2 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)


NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## TYPE TIED80 SILICON PHOTODIODE

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature


NOTE 2: Irradiance $\left(E_{e}\right)$ is the radiant power per unit area Incident on a surface.
switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS		TYPICAL	UNIT
$\mathrm{t}_{\mathrm{r}}$	Rise Time	$I_{L}=200 \mu \mathrm{~A}, \quad R_{L}=50 \Omega,$   See Note 3 and Figure 1	$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	15	ns
			$V_{R}=15 \mathrm{~V}$	50	
$\mathrm{t}_{\mathrm{f}}$			$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	15	ns
	all Time		$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$	50	

NOTE 3: Input irradiance is supplied by a pulsed GaAs laser ( $\lambda=0.9 \mu \mathrm{~m}$ ). Rise and fall times are shorter for $1.06-\mu \mathrm{m}$ irradiation.

## PARAMETER MEASUREMENT INFORMATION




VOLTAGE WAVEFORM

NOTES: a. Incident irradiation is adjusted for $I_{L}=200 \mu \mathrm{~A}$.
b. The output waveform is monitored on a oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega$.

FIGURE 1-SWITCHING TIMES

## SILICON PHOTODIODE

## TYPICAL CHARACTERISTICS



NOTES: 2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area Incident on a surface.
3. Input ir radiance is supplied by a pulsed $G a A s$ laser $(\lambda=0.9 \mu \mathrm{~m})$. Rise and fall times are shorter for $1.06-\mu \mathrm{m}$ irradiation.

## DESIGNED FOR LASER ALIGNMENT AND GUIDANCE SYSTEMS (FORMERLY TIXL82)

- Quadrant Geometry . . . For Alignment and Tracking Applications
- Active Area of $2.1 \mathbf{~ c m}^{2}$ (Diameter $=650$ Mils)
- Rise and Fall Times . . 7 ns Typ at $1.06 \mu \mathrm{~m}$ Wavelength
- Dark Current . . . 100 nA Type per Quadrant
- Radiant Responsivity . . . 0.34 A/W Typ at $\lambda=1.06 \mu \mathrm{~m}, 0.68 \mathrm{~A} / \mathrm{W}$ Typ at $\lambda=0.9 \mu \mathrm{~m}$
- Sensitive to Wavelengths from $0.60 \mu \mathrm{~m}$ to $1.06 \mu \mathrm{~m}$
description

The TIED82 is a high-speed, quadrant-geometry, high-resistivity silicon photodiode. It is a precision device designed specifically for application in laser alignment and guidance systems. A guard-ring structure is utilized to provide excellent low-noise characteristics, while operation in the fully depleted mode results in high speed and high radiant responsivity. Crosstalk between any two quadrants is less than five percent. Antireflection (AR) coatings on the window and the photodiode surface, normally peaked for $1.06 \mu \mathrm{~m}$ wavelength, can be adjusted to customer specification.
mechanical data

The hermetic package is a precision gold-plated brass case with an epoxy-sealed, AR-coated 0.040 -inch-thick glass window. The window is limited by a flat-black aperature ring to a clear diameter of 0.80 inch. Approximate weight is 45 grams.

The center of the active area is located within a radial distance of 0.001 inch from the center of the circle defined by the outer diameter of the case. Oriented as shown, the vertical quadrant separator line is parallel to a line passing through the center of the case and through the mounting hole center within a tolerance of $1^{\circ}$. The surface of the active area is located $0.100 \pm 0.010$ inch below the top surface of the case (surface $A$ in the outline drawing) and coplanar with surface $B$ with in $\pm 0.010$ inch.


POST OFFICE BOX 225012 - OALLAS, TEXAS 75265

## TYPE TIED82 <br> QUADRANT-GEOMETRY SILICON PHOTODIODE

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)
Forward Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 V
Continuous Power Dissipation per Quadrant at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . 500 mW
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature $1 / 16 \mathrm{inch}$ from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to 125 mW at $100^{\circ} \mathrm{C}$ case temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature, each quadrant (see note 2)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{(\text {BR })}$	Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, ~ \mathrm{E}_{\mathrm{e}}=0$,	See Note 3	250			V
ID	Dark Current	$V_{R}=180 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0$,	See Note 3		100	1000	nA
$\mathrm{C}_{\text {T }}$	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=180 \mathrm{~V}, \mathrm{f}=1 \mathrm{M}$			15	20	pF
$\mathrm{R}_{\mathrm{e}}$	Radiant Responsivity	$V_{R}=180 \mathrm{~V}, \lambda=0.9$	mod $=400 \mathrm{~Hz}$		0.68		A/W
		$\mathrm{V}_{\mathrm{R}}=180 \mathrm{~V}, \lambda=1.06$	mod $=400 \mathrm{~Hz}$		0.34		
	Crosstalk ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{R}}=180 \mathrm{~V}$				0.05	

NOTES: 2. During tests of each quadrant, the other quadrants should be connected to the guard ring as shown in the switching circuit, Figure 1, except for the breakdown voltage and crosstalk measurements. For the measurement of breakdown voltage, the quadrant outputs are connected in parallel. For crosstalk, the outputs from the illuminated quadrant and one dark quadrant are read while the remaining quadrants are connected to the guard ring.
3. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident on a surface.
${ }^{\dagger}$ This is the response of the one dark quadrant relative to one illuminated quadrant.
switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS		MIN TYP	MAX	UNIT
${ }_{t}$	Rise Time	$\begin{aligned} & V_{R}=180 \mathrm{~V}, \quad I_{\mathrm{L}}=20 \mu \mathrm{~A}, \\ & \text { See Figure } 1 \end{aligned}$	$\lambda=0.9 \mu \mathrm{~m}$	15		ns
			$\lambda=1.06 \mu \mathrm{~m}$	7		ns
${ }_{\text {t }}$	Fall Time		$\lambda=0.9 \mu \mathrm{~m}$	15		ns
			$\lambda=1.06 \mu \mathrm{~m}$	7		

PARAMETER MEASUREMENT INFORMATION


NOTES: a. Input irradiance is supplied by a pulsed $G$ aAs laser $(\lambda=0.9 \mu \mathrm{~m})$. Incident irradiation is adjusted for $\mathbf{1}_{\mathrm{L}}=20 \mu \mathrm{~A}$.
b. The output waveform is monitored on a oscilloscope with the following characteristics: $t_{r} \leqslant 2.5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega$.

TYPICAL CHARACTERISTICS ${ }^{\dagger}$

teach quadrant was measured independently, but the characteristics apply as well to each quadrant when all are operated simultaneously.

## TYPES TIED83, TIED84 <br> SILICON AVALANCHE PHOTODIODES

# OPTIMIZED FOR HIGH-SPEED DETECTION OF VISIBLE LIGHT (FORMERLY TIXL83, TIXL84) 

- Useful from Audio to Microwave Frequencies
- Typical Photocurrent Gain of $>600$
- Choice of Active Areas:
$5 \times 10^{-4} \mathrm{~cm}^{2}$ (Dia. $=10 \mathrm{Mils}$ ) for TIED83
$45 \times 10^{-4} \mathrm{~cm}^{2}(\mathrm{Dia} .=30 \mathrm{Mils})$ for TIED84
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz
- Typical System Noise Equivalent Power Spectral Density of $2 \times 10^{-13} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ at 30 MHz Bandwidth
- TIED84 Has Isolated Case for Shielding


## description

The TIED83 and TIED84 are high-speed photodiodes intended for engineering evaluation. They are designed to operate in the reverse-voltage avalanche region just below the breakdown voltage. This results in a photocurrent signal gain of a magnitude dependent on reverse voltage. The signal gain ahead of the input noise of typical amplifiers provides for enhancement of the signal-to-noise ratio in most optical receiver systems. The TIED83 and TIED84 are similar to the TIED56 and TIED59, respectively, except that they are optimized for high-speed detection of visible light.
mechanical data
The devices are in hermetically sealed packages with windows of borosilicate glass.

The outline for the TIED83 is similar to JEDEC TO-18 except for the window. The nominal dimensions for the window of the TIED83 are: diameter, 0.155 inch; thickness, 0.045 inch; and distance from front surface of the window to the active area, 0.140 inch.

The outline for the TIED84 is similar to, but slightly shorter than, JEDEC TO-39. The nominal dimensions for the window of the TIED84 are: diameter, 0.305 inch; thickness, 0.050 inch; and distance from front surface of the window to the active area, 0.085 inch.


[^24]
## TYPES TIED83, TIED84 SILICON AVALANCHE PHOTODIODES

## absolute maximum ratings

> Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . . 100 mW Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS§	TIED83			YIED84			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Breakdown Voltage, $\mathrm{V}_{\text {(BR) }}$			$I_{R}=100 \mu \mathrm{~A}, ~ E_{\mathrm{e}}=0$	80	100	120	80	100	120	V
Dark Current $\ddagger$	Bulk	$M=100, \quad E_{e}=0$		10	30		80	150	pA	
	Surface			5	15		10	30	nA	
Temperature Coefficient of Breakdown Voltage		$I_{R}=100 \mu \mathrm{~A}, \quad \mathrm{E}_{\mathrm{e}}=0,$   See Note 2		120			120		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Photocurrent Gain at   Avalanche Noise Threshold, $M_{T}$		$\lambda=6328$ A, See Note 3	200	$>600$		200	>600			
Total Capacitance, $\mathrm{C}_{\mathrm{T}}$		$\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		4	6		17	25	pF	
Series Resistance		$\mathrm{f}=0.9 \mathrm{GHz}$		25			5		$\Omega$	
Gain-Bandwidth Product ${ }^{\dagger}$		$\mathrm{f}_{\text {mod }}=1 \mathrm{GHz}, \lambda=6328 \AA$		80			80		GHz	
Radiant Responsivity, $\mathrm{R}_{\mathrm{e}}$		$\begin{aligned} & \lambda=6328 \AA, \quad M=100, \\ & f_{\mathrm{mod}}=15 \mathrm{GHz}, \quad \Phi_{\mathrm{e}} \leqslant 0.1 \mathrm{~mW} \end{aligned}$	20	25		20	25		A/W	

NOTES: 2. Temperature coefficient is determined by the formula:
Temperature coefficient $=\frac{\mathrm{V}_{(\mathrm{BR})} @ 125^{\circ} \mathrm{C}-\mathrm{V}_{(\mathrm{BR})} @-55^{\circ} \mathrm{C}}{125^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}$
3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Figure 1. Radiant flux is as required to give a photocurrent of 0.1 nA rms at $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.
$\ddagger$ Dark current is the sum of surface current and gain $M$ times the bulk current.
$\S_{E}$ is the incident radiant power per unit area.

## TYPES TIED83, TIED84

SILICON AVALANCHE PHOTODIODES

TYPICAL CHARACTERISTICS


RADIANT RESPONSIVITY
vs
WAVELENGTH


FIGURE 3

TOTAL CAPACITANCE
vs
REVERSE VOLTAGE


FIGURE 4

## OPTIMIZED FOR HIGH-SPEED DETECTION OF VISIBLE LIGHT (FORMERLY TIXL85, TIXL86)

- Photodiode and Reference Diode with Matched Breakdown Characteristics
- Both Diodes Mounted on Common Ceramic but Isolated Electrically
- Choice of Active Areas of Photodiode:
$5 \times 10^{-4} \mathrm{~cm}^{2}($ Diameter $=10 \mathrm{Mils})$ for TIED85
$45 \times 10^{-4} \mathrm{~cm}^{2}($ Diameter $=30 \mathrm{Mils})$ for TIED86
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz


## description

These diode pairs consist of an avalanche photodiode (APD) and a small reference diode that have been manufactured together to ensure close matching of both the breakdown voltages and the temperature coefficients of the two diodes. This makes it possible to build a temperature-compensating bias circuit that will hold the avalanche gain constant over wide temperature variations.
mechanical data

Each diode pair is in a hermetically sealed welded case similar to, but slightly shorter than, JEDEC TO-12. The window is borosilicate glass. Its dimensions are: diameter, 0.305 inch; thickness, 0.060 inch; and distance from front surface of the window to the active area, 0.075 inch.


[^25]
## TYPES TIED85, TIED86 <br> SILICON AVALANCHE PHOTODIODE/REFERENCE DIODE PAIRS

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS§	TIED85			TIED86			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Breakdown Voltage, V (BR)	Photodiode		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$	80	100	120	80	100	120	V
	Reference Diode	80		100	120	80	100	120		
Temperature Coefficient of Breakdown Voltage	Photodiode	$I_{R}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$,	90	120	150	90	120	150		
	Reference Diode	See Note 2	90	120	150	90	120	150	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Breakdown Voltage Matching,$V_{\text {(BR)APD }}-V_{\text {(BR)REF }}$		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$		0	$\pm 10$		0	$\pm 10$	V	
Temperature Coefficient of Operating Voltage Matching		See Figure 5		+2	$\begin{array}{r} +6 \\ -2 \end{array}$		+2	$\begin{aligned} & +6 \\ & -2 \end{aligned}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Dark Current, $\mathrm{ID}^{\ddagger}$	Bulk	$M=100, \quad E_{e}=0$		10	30		80	150	pA	
	Surface			5	15		10	30	nA	
Photocurrent Gain at   Avalanche Noise Threshold, $\mathrm{M}_{\mathrm{T}}$		$\lambda=6328$ A, See Note 3	200	> 600		200	> 600			
Total Capacitance, $\mathrm{C}_{\boldsymbol{T}}$	Photodiode	$\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0$,		4	6		17	25	pF	
	Reference Diode	$f=1 \mathrm{MHz}$		4			4		pF	
Series Resistance		$f=0.9 \mathrm{GHz}, \mathrm{E}_{\mathrm{e}}=0$		25			5		$\Omega$	
Gain-Bandwidth Product ${ }^{\dagger}$		$\mathrm{f}_{\text {mod }}=1 \mathrm{GHz}, \lambda=6328$ A		80			80		GHz	
Radiant Responsivity, $\mathrm{R}_{\mathrm{e}}$		$\begin{array}{\|l\|} \lambda=6328 \AA, \quad M=100, \\ f_{\text {mod }}=15 M H z, \Phi_{e} \leqslant 0.1 \mathrm{~mW} \end{array}$	20	25		20	25		A/W	

NOTES: 2. Temperature coefficient is determined by the formula:

$$
\text { Temperature coefficient }=\frac{V_{(B R)} @ 125^{\circ} \mathrm{C}-V_{(B R)} @-65^{\circ} \mathrm{C}}{125^{\circ} \mathrm{C}-\left(-65^{\circ} \mathrm{C}\right)}
$$

3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Figure 1 . Radiant flux is as required to give a photocurrent of 0.1 nA rms at $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.
Dark Current is the sum of surface current and gain $M$ times the bulk current
$\S_{E_{e}}$ is the incident radiant power per unit area.

## TYPICAL CHARACTERISTICS <br> SIGNAL POWER AND NOISE POWER

vs
PHOTOCURRENT GAIN


Log of Photocurrent Gain, M
figure 1

## TYPES TIED85, TIED86 SILICON AVALANCHE PHOTODIODE/REFERENCE DIODE PAIRS

## TYPICAL CHARACTERISTICS



## Texas Instruments <br> INCORPORATED

## TYPES TIED85, TIED86 SILICON AVALANCHE PHOTODIODE/REFERENCE DIODE PAIRS

TYPICAL APPLICATION DATA


FIGURE 6-BLOCK DIAGRAM OF TEMPERATURE COMPENSATING BIAS CIRCUIT


FIGURE 7-SUGGESTED CIRCUIT

## OPTIMIZED FOR HIGH-SPEED DETECTION OF NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL87, TIXL88, TIXL89)

- Photodiode and Reference Diode with Matched Breakdown Characteristics
- Both Diodes Mounted on Common Ceramic but Isolated Electrically
- Choice of Active Areas of Photodiode:
$5 \times 10^{-4} \mathrm{~cm}^{2}$ (Diameter $=10 \mathrm{Mils}$ ) for TIED87
$45 \times 10^{-4} \mathrm{~cm}^{2}$ (Diameter $=30$ Mils) for TIED88
$180 \times 10^{-4} \mathrm{~cm}^{2}$ (Diameter $=60$ Mils) for TIED89
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz


## description

These diode pairs consist of an avalanche photodiode (APD) and a small reference diode that have been manufactured together to ensure close matching of both the breakdown voltages and the temperature coefficients of the two diodes. This makes it possible to build a temperature-compensating bias circuit that will hold the avalanche gain constant over wide temperature variations.
mechanical data

Each diode pair is in a hermetically sealed welded case similar to, but slightly shorter than, JEDEC TO-12. The window is borosilicate glass. Its dimensions are: diameter, 0.305 inch; thickness, 0.060 inch; and distance from front surface of the window to the active area, 0.075 inch.


## absolute maximum ratings

Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature, Each Diode (See Note 1) . . . . 50 mW
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$

NOTE 1: Derate lineariy to $125^{\circ} \mathrm{C}$ case temperature at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.

## TYPES TIED87, TIED88, TIED89

SILICON AVALANCHE PHOTODIODE/REFERENCE DIODE PAIRS
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS§	TIED87			TIED88			TIED89			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
Breakdown Voltage, $\mathrm{V}_{(B R)}$	Photodiode		$I_{R}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$	155	170	185	155	170	185	155	170	185	V
	Reference Diode	155		170	185	155	170	185	155	170	185		
Temperature Coefficient of Breakdown Voltage	Photodiode	$I_{R}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0,$   See Note 2	170	200	230	170	200	230	170	200	230	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Reference Diode		170	200	230	170	200	230	170	200	230		
Breakdown Voltage Matching,$V_{(B R) A P D}-V_{(B R) R E F}$		$I_{R}=100 \mu A, E_{e}=0$		0	$\pm 10$		0	$\pm 10$		0	$\pm 10$	V	
Temperature Coefficient of Operating Voltage Matching		See Figure 5		+2	$\begin{aligned} & +6 \\ & -2 \end{aligned}$		+2	$\begin{aligned} & +6 \\ & -2 \end{aligned}$		+2	$\begin{aligned} & +6 \\ & -2 \end{aligned}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Dark Current, ID ${ }^{\ddagger}$	Bulk	$M=100, \quad E_{e}=0$		5	30		60	150		140	700	pA	
	Surface			0.8	10		2	20		3.5	40	nA	
Photocurrent Gain at Avalanche Noise Threshold, $M_{T}$		$\begin{array}{\|l} \lambda=0.9 \mu \mathrm{~m}, \\ \text { See Note } 3 \\ V_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{E}_{\mathrm{e}}=0, \\ \mathrm{f}=1 \mathrm{MHz} \\ \hline \end{array}$	200	$>600$		200	$>600$		200	$>600$			
Total Capacitance, $\mathrm{C}_{\mathbf{T}}$	Photodiode			2.5	4		9	30		30	45	pF	
	Reference Diode			3			3			3			
Series Resistance		$\mathrm{f}=0.9 \mathrm{GHz}, \mathrm{E}_{\mathrm{e}}=0$		50			5			5		$\Omega$	
Gain-Bandwidth Product ${ }^{\dagger}$		$\mathrm{f}_{\mathrm{mod}}=1 \mathrm{GHz}, \lambda=6328 \AA$		80			80			80		GHz	
Radiant Responsivity, $\mathrm{R}_{\mathrm{e}}$		$\begin{array}{rl} \lambda=0.9 \mu \mathrm{~m}, \quad M & M=100, \\ f_{\text {mod }}=15 \mathrm{MHz}, \Phi_{\mathrm{e}} \leqslant 0.1 \mathrm{~mW} \end{array}$	15	20		15	20		15	20		A/W	

NOTES: 2. Temperature coefficient is determined by the formula:

$$
\text { Temperature coefficient }=\frac{v_{(B R)} @ 125^{\circ} \mathrm{C}-v_{(B R)} @-65^{\circ} \mathrm{C}}{125^{\circ} \mathrm{C}-\left(-65^{\circ} \mathrm{C}\right)}
$$

3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Figure 1. Radiant flux is as required to give a photocurrent of $0.1 \mathrm{nA} \mathrm{rms} \mathrm{at} \mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.
$\ddagger$ Dark Current is the sum of surface current and gain $M$ times the bulk current.
$\S_{E_{g}}$ is the incident radiant-power per unit area.

## TYPICAL CHARACTERISTICS

SIGNAL POWER AND NOISE POWER
vs


Log of Photocurrent Gain, M
figure 1

## Texas Instruments

INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

## TYPES TIED87, TIED88, TIED89 SILICON AVALANCHE PHOTODIODE/REFERENCE DIODE PAIRS

TYPICAL CHARACTERISTICS


TOTAL CAPACITANCE OF PHOTODIODE vs
REVERSE VOLTAGE


FIGURE 4

RADIANT RESPONSIVITY
vs
WAVELENGTH


FIGURE 3

REVERSE VOLTAGE AT CONSTANT CURRENT AND CONSTANT AVALANCHE GAIN vs
CASE TEMPERATURE


## TYPES TIED87, TIED88, TIED89 <br> SILICON AVALANCHE PHOTODIODE/REFERENCE DIODE PAIRS

## TYPICAL APPLICATION DATA



FIGURE 6-BLOCK DIAGRAM OF TEMPERATURE COMPENSATING BIAS CIRCUIT


FIGURE 7-SUGGESTED CIRCUIT

## OPTIMIZED FOR HIGH-SPEED DETECTION OF VISIBLE LIGHT (FORMERLY TIXL90 thru TIXL93)

## - Complete Sensitive Optical Receivers

- Choice of Active Areas:
$5 \times 10^{-4} \mathrm{~cm}^{2}$ (Diameter $\left.=10 \mathrm{Mils}\right)$ or
$45 \times 10^{-4} \mathrm{~cm}^{2}$ (Diameter $\left.=30 \mathrm{Mils}\right)$

ACTIVE AREA	NOMINAL BANDWIDTH	
DIAMETER	20 MHz	50 MHz
10 mils	TIED90	TIED92
30 mils	TIED91	TIED93

- Choice of Demodulation Bandwidths . . . 20 MHz or 50 MHz Typ
- Typical Responsivities from 0.15 to $0.61 \mathrm{mV} / \mathrm{mW}$ at $0.63 \mu \mathrm{~m}$
- Typical NEP Spectral Densities from 0.12 to $0.34 \mathrm{pW} / \sqrt{\mathrm{Hz}}$
- Automatic Temperature Compensating Bias Circuit
- Low Power Consumption
- Low Phase Shift
description
The TIED90 through TIED93 avalanche photodetector modules are complete optical receivers optimized for detection of low-level light signals. The high sensitvity and high speed of these devices make them ideally suited for laser range finders and optical communicators. These units contain an antireflection-coated silicon avalanche photodiode (APD), a temperature-sensing voltage reference diode, a low-noise, high-frequency, thick-film amplifier, and a constant-avalanche-gain regulator circuit. An internal resistor sets the avalanche gain of the module ( $M=200$ nominal for TIED90 and TIED92, $M=100$ nominal for TIED91 and TIED93). The gain may be increased by externally connecting a resistor (usually greater than $400 \mathrm{k} \Omega$ ) between the remote gain control ( pin H ) and ground (pin E).
These devices are mechanically interchangeable with the TIED94 through TIED97 near-infrared detectors. The wide range of choices allows the designer of an optoelectronic system to choose a detector that will best fit his complete system needs, and the interchangeability of all the different models provides for ease of detector change for different system requirements.
mechanical data
The modules are housed in a finished aluminum case approximately two inches in diameter and 1.3 inches in length, including connector pins. A one-inch-diameter by 0.188 -inch-long threaded ( 32 threads/inch) portion of the case front facilitates mounting into the optical system. A flat window of borosilicate glass 0.060 -inch thick and 0.300 -inch in diameter is centered in the front of the housing. The avalanche photodiode is centered approximately 0.075 -inch behind the front surface of the window. A five-pin plug on the rear of the module provides for the electrical connections. Total weight of the complete module is approximately 65 grams.



## TYPES TIED90 THRU TIED93 <br> SILICON AVALANCHE PHOTODETECTOR MODULES

operational block diagram

schematic

absolute maximum ratings over operating case temperature range (unless otherwise noted)


NOTE 1: All voltage values are with respect to pin E (GND) unless otherwise noted.

## TYPES TIED90 THRU TIED93 SILICON AVALANCHE PHOTODETECTOR MODULES

electrical connections to plug, P1 (see schematic)

PIN	DESCRIPTION	POWER REQUIRED
A	Signal Output	
B	Amplifier Supply	$15 \pm 3 \mathrm{~V}, 20 \mathrm{~mA}$ max
D	Avalanche Bias Supply	$-140 \pm 10 \mathrm{~V}, 1 \mathrm{~mA} \mathrm{max}$
E	Ground	
H	Remote Gain Control ${ }^{\dagger}$	

tNormally open. A resistor connected between pins E and $H$ raises the avalanche gain of the APD.'
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TIED90			TIED91			TIED92			TIED93			UNIT	
		MIN	TYP	MAX												
$\mathrm{R}_{\mathrm{e}}$	Radiant Responsivity		$\begin{aligned} & \Phi_{\mathrm{e}}=30 \mathrm{nW}, \\ & \lambda=0.63 \mu \mathrm{~m}, \\ & f_{\bmod }=15 \mathrm{MHz}, \\ & R_{\mathrm{L}}=50 \Omega \end{aligned}$	0.40 .61			0.2	0.3		0.2	0.3		0.1	0.15		$\mathrm{mV} / \mathrm{nW}$
M	Avalanche Gain	200			100			200			100					
$\Delta M / M$	APD Gain Variation over   Rated Operating Temperature   Range (See Note 2)	$\pm 5 \pm 15$			\%											
$V_{n}$	Broadband Noise Voltage	$\begin{aligned} & \Phi_{\mathrm{e}}=0, \\ & R_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$		410615			460690			400600			450675			$\mu \mathrm{V}$
$P_{n}$	Noise Equivalent Power   Spectral Density   (See Note 3)	$\lambda=0.63 \mu \mathrm{~m}$		0.120 .2			$0.27 \quad 0.4$			0.150 .25			$0.34 \quad 0.5$			$\mathrm{pW} / \sqrt{\mathrm{Hz}}$
$B_{m}$	Module Demodulation Bandwidth $\ddagger$	See Note 4	15	20		15	20		40	50		40	50		MHz	
$\mathrm{v}_{0}$	Maximum RMS Output Voltage	$R_{L}=50 \Omega$	100			100			100			100			mV	
$z_{0}$	Amplifier Output Impedance	$\mathrm{f}=20 \mathrm{kHz}$			15					2	15		2		$\Omega$	

NOTES: 2. Gain variation, $\Delta M / M$, is determined by the formula: $\pm \Delta M / M=\frac{M @ 60^{\circ} \mathrm{C}-M @-40^{\circ} \mathrm{C}}{M @ 60^{\circ} \mathrm{C}+\mathrm{M} @-40^{\circ} \mathrm{C}} \times 100 \%$.
3. $P_{n}=\frac{V_{n}}{R_{e} \sqrt{\pi B_{m} / 2}}$, where $V_{n}=$ broadband rms noise voltage and equivalent noise bandwidth $\Delta f=\pi B_{m} / 2$.
4. Since the gain-bandwidth product of the $A P D$ is approximately 100 GHz , the module demodulation bandwidth can be determined from electrical bandwidth measurements performed on the module amplifier. The input signal level to the amplifier is $5 \mu \mathrm{~A}$.
$\ddagger$ For these modules, the lewer end of the bandwidth is 3.5 kHz .

## TYPICAL CHARACTERISTICS



## TEXAS Instruments <br> INCORPORATED

## TYPES TIED94 THRU TIED97 SILICON AVALANCHE PHOTODETECTOR MODULES

## OPTIMIZED FOR HIGH-SPEED DETECTION OF NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL94 thru TIXL97)

- Complete Sensitive Optical Receivers
- Choice of Active Areas:

$$
\begin{aligned}
& 5 \times 10^{-4} \mathrm{~cm}^{2} \text { (Diameter }=10 \mathrm{Mils} \text { ) or } \\
& 45 \times 10^{-4} \mathrm{~cm}^{2} \text { (Diameter }=30 \mathrm{Mils} \text { ) }
\end{aligned}
$$

| ACTIVE AREA |
| :---: | :---: | :---: |
| DIAMETER |$|$| NOMINAL BANDWIDTH |  |
| :---: | :---: |
|  |  |
| 10 mils |  |
| $\mathbf{~ T I E D Z}$ |  |
| 30 mils |  |

- Choice of Demodulation Bandwidths . . . 20 MHz or 50 MHz Typ
- Typical Responsivities from 0.11 to $0.47 \mathrm{mV} / \mathrm{mW}$ at $0.9 \mu \mathrm{~m}$
- Typical NEP Spectral Densities from 0.15 to $0.43 \mathrm{pW} / \sqrt{\mathrm{Hz}}$
- Automatic Temperature Compensating Bias Circuit
- Low Power Consumption
- Low Phase Shift


## description

The TIED94 through TIED97 avalanche photodetector modules are complete optical receivers optimized for detection of low-level near-infrared signals. The high sensitivity and high speed of these devices make them ideally suited for laser range finders and optical communicators. These units contain an antireflection-coated silicon avalanche photodiode (APD), a temperature-sensing voltage reference diode, a low-noise high-frequency thick-film amplifier, and a constant-avalanche-gain regulator circuit. An internal resistor sets the avalanche gain of the module ( $M=200$ nominal for TIED94 and TIED96, $\mathrm{M}=\mathbf{1 0 0}$ nominal for TIED95 and TIED97). The gain may be increased by externally connecting a resistor (usually greater than $400 \mathrm{k} \Omega$ ) between the remote gain control ( pin H ) and ground (pin E ).

These devices are mechanically interchangeable with the TIED90 through TIED93 visible light detectors. The wide range of choices allows the designer of an optoelectronic system to choose a detector that will best fit his complete system needs, and the interchangeability of all the different models provides for ease of detector change for different system requirements.
mechanical data
The modules are housed in a finished aluminum case approximately two inches in diameter and 1.3 inches in length, including connector pins. A one-inch-diameter by 0.188 -inch-long threaded ( 32 threads/inch) portion of the case front facilitates mounting into the optical system. A flat window of borosilicate glass 0.060 -inch thick and 0.300 -inch in diameter is centered in the front of the housing. The avalanche photodiode is centered approximately 0.075 -inch behind the front surface of the window. A five-pin plug on the rear of the module provides for the electrical connections. Total weight of the complete module is approximately 65 grams.


## TYPES TIED94 THRU TIED97 <br> SILICON AVALANCHE PHOTODETECTOR MODULES

operational block diagram

schematic

absolute maximum ratings over operating case temperature range (unless otherwise noted)

> Amplifier Supply Voltage, VAA (See Note 1)
> Avalanche Bias Supply Voltage, VDD (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . -240 V
> Operating Case Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
> Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to pin E (GND) unless otherwise noted.

TYPES TIED94 THRU TIED97
SILICON AVALANCHE PHOTODETECTOR MODULES
electrical connections to plug, P1 (see schematic)

PIN	DESCRIPTION	POWER REQUIRED
A	Signal Output	
B	Amplifier Supply	$15 \pm 3 \mathrm{~V}, 20 \mathrm{~mA} \mathrm{max}$
D	Avalanche Bias Supply	$-220 \pm 20 \mathrm{~V}, 1 \mathrm{~mA} \mathrm{max}$
E	Ground	
H	Remote Gain Control ${ }^{\dagger}$	

${ }^{\dagger}$ Normally open. A resistor connected between pins E and $H$ raises the avalanche gain of the APD.
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TIED94		TIED95		TIED96		TIED97		UNIT	
		MIN	TYP MAX									
$\mathrm{R}_{\mathrm{e}}$	Radiant Responsivity		$\begin{aligned} & \Phi_{\mathrm{e}}=50 \mathrm{nW}, \\ & \lambda=0.9 \mu \mathrm{~m}, \\ & f_{\mathrm{mod}}=15 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	0.3	0.47	0.16	0.24	0.15	0.23	0.07	0.11	$\mathrm{mV} / \mathrm{nW}$
M	Avalanche Gain			200		100		200		100		
$\Delta M / M$	APD Gain Variation over   Rated Operating Temperature   Range (See Note 2)	$\pm 5 \pm 15$			$\pm 5 \pm 15$		$\pm 5 \pm 15$		$\pm 5 \pm 15$	\%		
$V_{n}$	Broadband Noise Voltage	$\begin{aligned} & \Phi_{\mathrm{e}}=0, \\ & R_{\mathrm{L}}=50 \Omega \end{aligned}$			400600		385580		400600		415625	$\mu \mathrm{V}$
$P_{n}$	Noise Equivalent Power Spectral Density (See Note 3)	$\lambda=0.9 \mu \mathrm{~m}$	0.150 .25		$0.29 \quad 0.5$		0.200 .3		0.430 .65		$\mathrm{pW} / \sqrt{\mathrm{Hz}}$	
$B_{m}$	Module Demodulation Bandwidth $\ddagger$	See Note 4	15	20	15	20	40	50	40	50	MHz	
$\mathrm{V}_{0}$	Maximum RMS Output Voltage	$R_{L}=50 \Omega$	100		100		100		100		mV	
$z_{0}$	Amplifier Output Impedance	$\mathrm{f}=20 \mathrm{kHz}$		$4 \quad 15$		415		215		215	$\Omega$	

NOTES: 2. Gain variation, $\Delta M / M$, is determined by the formula: $\pm \Delta M / M=\frac{M @ 60^{\circ} \mathrm{C}-\mathrm{M} @-40^{\circ} \mathrm{C}}{M @ 60^{\circ} \mathrm{C}+\mathrm{M} @-40^{\circ} \mathrm{C}} \times 100 \%$.
3. $P_{n}=\frac{V_{n}}{R_{g} \sqrt{\pi B_{m} / 2}}$, where $V_{n}=$ broadband rms noise voltage and equivalent noise bandwidth $\Delta f=\pi B_{m} / 2$.
4. Since the gain-bandwidth product of the APD is approximately 100 GHz , the module demodulation bandwidth can be determined from electrical bandwidth measurements performed on the module amplifier. The input signal level to the amplifier is $5 \mu \mathrm{~A}$
$\ddagger$ For these modules, the lower end of the bandwidth is 3.5 kHz .
TYPICAL CHARACTERISTICS

## DESIGNED FOR DETECTION OF VISIBLE AND NEAR-INFRARED RADIANT ENERGY (FORMERLY TIXL98)

- Wide Spectral Bandwidth
- Typical Radiant Responsivity . . 0.5 A/W at $0.9 \mu \mathrm{~m}$
0.27 A/W at $0.56 \mu \mathrm{~m}$
- Active Area of $8 \times 10^{-3} \mathrm{~cm}^{2}$ (Diameter $=40 \mathrm{Mils}$ )
- Low Capacitance . . . 2 pF Typ at $\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$
- Dark Current . . . 2 nA Typ at $V_{R}=25 \mathrm{~V}$


## description

The TIED98 is a high-performance silicon photodiode designed to operate in a reverse-bias mode. High-resistivity silicon is used to provide high $0.9-\mu \mathrm{m}$ responsivity and low capacitance at low voltage. The device has a guard-ring structure to minimize active-area dark current and to provide excellent low-noise characteristics.

## mechanical data

The device is in a hermetically sealed welded case similar to, but slightly shorter than, JEDEC TO-39. The window is borosilicate glass. Its nominal dimensions are: diameter, 0.305 inch; thickness, 0.050 inch; and distance from front surface of the window to the active area, 0.100 inch.

absolute maximum ratings
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . . 100 mW Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature


NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Irradiance $\left(E_{e}\right)$ is the radiant power per unit area incident on a surface.
3. Break down voltage is measured with the photodiode and guard-ring cathodes connected together.
4. Dark current of the photodiode is measured in a circuit similar to the switching circuit (Figure 1). A current meter (with a full-scale voltage drop of 1 mV maximum) replaces the TiEF151 and measures the dark current of the photodiode cathode with the guard-ring cathode at ground.

## TYPE TIED98

## HIGH-RESISTIVITY SILICON PHOTODIODE

switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS	TYPICAL	UNIT
$\mathrm{tr}_{\mathrm{r}}$	Rise Time	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{R}}=25 \mathrm{~V}_{:} \\ & \text {See Figure } 1 \end{aligned}$	45	ns
$t_{f}$	Fall Time		45	ns

PARAMETER MEASUREMENT INFORMATION


NOTES: a. Input irradiance is supplied by a pulsed GaAs Infrared emitter, $\mathrm{t}_{\mathbf{w}}<\mathbf{2 0 0} \mathbf{n s}, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \lambda=0.9 \mu \mathrm{~m}$. Incident irradiation is adjusted for $I_{L}=10 \mu A$.
b. The output waveform is monitored on a oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$.

FIGURE 1-SWITCHING TIMES

## TYPICAL CHARACTERISTICS



## TYPE TIED451 <br> SILICON AVALANCHE PHOTODIODE

BULLETIN NO. DL-S 12125, JULY 1974-REVISED DECEMBER 1977

## DESIGNED FOR FIBER-OPTIC APPLICATIONS (FORMERLY TIXL451)

- Useful from Audio to Microwave Frequencies
- Active Area of $4.5 \times 10^{-3} \mathbf{~ c m}^{2}$ (Diameter $=30 \mathrm{Mils}$ )
- Isolated Panel-Mounting Case
- Optimized for Near-Infrared Sources
- Typical Photocurrent Gain of $>600$
- Typical Gain-Bandwidth Product ${ }^{\dagger}$ of 80 GHz
- Typical System Noise Equivalent Power of $2 \times 10-13 \mathrm{~W} / \sqrt{\mathrm{Hz}}$ over $\mathbf{3 0}-\mathrm{MHz}$ Bandwidth description

The TIED451 is a high-speed photodiode intended for use with fiber-optic bundles. This device is designed to operate in the avalanche region to provide gain for excellent low-noise performance over wide bandwidths. The TIED451 is electrically similar to TIED59.

## mechanical data

The device is in an anodized-aluminum threaded case filled with clear epoxy. The active area of the avalanche photodiode ( $4.5 \times 10^{-3} \mathrm{~cm}^{2}$ ) is nominally 0.020 inch below the flat, outer surface of the epoxy window, the index of refraction of which is 1.49 . The mounting of the detector near the outer surface of the window and the threading of the case allow the user to couple effectively to a variety of fiber-optic bundles using available standard or custom-made adapters. This package can be panel mounted with a set of hex nuts supplied with the device.

absolute maximum ratings
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . 100 mW
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$

NOTE 1: Derste linearly to 65 mW at $60^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

## TYPE TIED451

## SILICON AVALANCHE PHOTODIODE

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS§	MIN	TYP	MAX	UNIT
Breakdown Voltage, V(BR)		$I_{R}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$	155	170	185	V
Dark Current ${ }^{\ddagger}$	Bulk	$M=100, \quad E_{e}=0$		60	150	pA
	Surface			2	20	nA
Temperature Coefficient of Breakdown Voltage		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{e}}=0$, See Note 2		200		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Photocurrent Gain at Avalanche Noise Threshold, MT		$\lambda=0.9 \mu \mathrm{~m}, \quad$ See Note 3	200	>600		
Total Capacitance, $\mathrm{C}_{T}$		$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		8.5	12	pF
Series Resistance		$\mathrm{f}=0.9 \mathrm{GHz}$		5		$\Omega$
Gain-Bandwidth Product ${ }^{\dagger}$		$\mathrm{f}_{\text {mod }}=1 \mathrm{GHz}, \lambda=6328$ A		80		GHz
Radiant Responsivity, $\mathbf{R e}_{\mathbf{e}}$		$\lambda=0.9 \mu \mathrm{~m}, \quad \mathrm{M}=100, \mathrm{f}_{\bmod }{ }^{-15 M H z}$	15	20		ANW

NOTES: 2. Temperature coefficient is determined by the formula:

$$
\text { Temperature coefficient }=\frac{V_{(B R)} @ 125^{\circ} \mathrm{C}-\mathrm{V}_{(\mathrm{BR})} @-55^{\circ} \mathrm{C}}{125^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

3. Gain $M_{T}$ is measured at the reverse voltage at which the noise deviates from the theoretical linear characteristic. See Fgiure 1. Radiant flux is as required to give a photocurrent of 0.1 nA rms at $\mathrm{V}_{R}=40 \mathrm{~V}$.
$\dagger$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.
$\ddagger$ Dark current is the sum of surface current and gain $M$ times the bulk current.
$\$_{E_{0}}$ is the incident radiant power per unit area
TYPICAL CHARACTERISTICS


## TYPE TIED452 SILICON AVALANCHE-PHOTODIODE FIBER-OPTIC RECEIVER RAODULE

## COMPLETE FIBER OPTIC RECEIVER (FORMERLY TIXL452)

- Designed for $0.6-\mu \mathrm{m}$ to $1.06-\mu \mathrm{m}$ Wavelengths
- Active Area of $4.5 \times 10^{-3} \mathrm{~cm}^{2}$ (Diameter $=30 \mathrm{Mils}$ )
- Bandwidth Extends from DC to 50 MHz Typical
- Typical Responsivity with $0.9-\mu \mathrm{m}$ Radiation Is $200 \mathrm{mV} / \mu \mathrm{W}$
- Typical System Noise Equivalent Power with $0.9-\mu \mathrm{m}$ Radiation Is $2 \times 10^{-13} \mathrm{~W} / \sqrt{\mathrm{Hz}}$
- Small Cylindrical Shape, 2-Inch Diameter by 1.58-Inch Length
- Automatically Regulated Avalanche-Gain Bias Circuit


## description

The TIED452 is a complete avalanche photodetector module designed for use with fiber-optic bundles. The unit contains a silicon avalanche photodiode (APD), a temperature-sensing voltage reference diode, a low-noise, high-frequency, thin-film amplifier, and a regulated avalanche-gain bias circuit. The avalanche gain is internally fixed at 125. The high sensitivity of these devices makes them ideally suited for use in fiber-optic communications or data links employing LED or IRED transmitters such as the TIES472.
mechanical data
The TIED452 consists of a TIED59/TIED451 photodetector chip and TIED451 fiber-optic package matched with a reference diode and an electronics section. A finished aluminum housing protects the electronics and provides threads for mounting to the system. The active area of the avalanche photodiode ( $\left.4.5 \times 10^{-3} \mathrm{~cm}^{2}\right)$ is nominally 0.020 inch below the flat, outer surface of the epoxy window, the index of refraction of which is 1.49 . The mounting of the detector near the outer surface of the window and the threading of the case allow the user to couple effectively to a variety of fiber-optic bundles using available standard or custom-made adapters.

The five-pin plug on the rear of the module provides for the electrical connections. Total weight of the complete module is approximately 65 grams.


## TYPE TIED452 <br> SILICON AVALANCHE-PHOTODIODE FIBER-OPTIC RECEIVER MODULE

absolute maximum ratings over operating case temperature range (unless otherwise noted)


NOTE 1: All voltage values are with respect to pin E(GND).
electrical connections to plug P1 (see schematic)

PIN	DESCRIPTION	POWER REQUIRED
A	Signal Output	
B	Amplifier Supply	$8.5 \pm 0.5 \mathrm{~V}, 20 \mathrm{~mA}$ max
D	Voltage Supply For Diode-Bias Circuit	$\mathrm{MIN}^{\dagger}$ to $-230 \mathrm{~V}, 2 \mathrm{~mA} \mathrm{max}$
E	Ground	
H	Make No External Connection	

${ }^{\dagger}$ The minimum required value of diode-bias-circult supply voltage is supplied with other data for each individual module.
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature, $\mathrm{R}_{\mathrm{L}}=50 \Omega, M=125$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Module Responsivity, $\mathrm{R}_{\mathrm{m}}$	$\mathrm{f}=3 \mathrm{kHz}, \lambda=0.9 \mu \mathrm{~m}$	75	$\mathrm{mV} / \mu \mathrm{W}$
	$\mathrm{f}=3 \mathrm{kHz}, \lambda=1.06 \mu \mathrm{~m}$	20	
Noise Equivalent Power, NEP (Sc3 Note 2)	$\lambda=0.9 \mu \mathrm{~m}$	0.5	$\mathrm{pW} / \sqrt{\mathrm{Hz}}$
	$\lambda=1.06 \mu \mathrm{~m}$	1.5	
APD Gain Variation over Operating Temperature Range, $\triangle M / M$	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	$\pm 15 \%$	
Module Demodulation Bandwidth (3-dB), $\mathrm{Bm}^{\text {§ }}$		40	MHz
Amplifier Output Impedance, $\mathrm{z}_{0}$	$\mathrm{f}=20 \mathrm{kHz}$	10	$\Omega$

NOTE 2: $N E P=\frac{V_{n}}{R_{m} \sqrt{\Delta f}}$, where $V_{n}=$ broadband output noise voltage and $\Delta f=B_{m} \pi / 2$.
$\S$ For this module, the bandwidth extends from dc to the upper cutoff frequency.
module schematic

operational block diagram


TYPICAL CHARACTERISTICS


# SERIES TXED453 FIBER-OPTIC SILICON DETECTOR ASSEMBLY 

BULLETIN NO. DL-S 12604, APRIL 1978

## DETECTOR ASSEMBLY DESIGNED FOR FIBER-OPTIC APPLICATIONS

- High-Resistivity Silicon Photodiode
- Integral Du Pont Company PFX-PIR140 Plastic Fiber-Optic Cable*
- AMP Incorporated Standard Fiber-Optic Cable Connector ${ }^{\dagger}$
- Compatible With Texas Instruments TXES475 and TXES476 Source Assemblies, and TXEF402 Cable Assembly
- Low Capacitance . . . 2 pF Typ at $\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$
- Dark Current . . . 2 nA Typ at $\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$


## description

Series TXED453 fiber-optic detector assemblies each consist of an optical detector, an integral fiber-optic cable, and a connector termination. The optical detector is a high-performance silicon photodiode designed to operate in a reverse-bias mode. High-resistivity silicon is used to provide good responsivity at 0.79 micrometers, and low capacitance at low voltage. The detector has a guard-ring structure to minimize active-area dark current and to provide excellent low-noise characteristics. The integral fiber-optic cable is Du Pont Company type PFX-PIR140* infrared-transmitting plastic fiber-optic cable. It has a maximum attenuation of 350 decibels per kilometer at 0.79 micrometers and has a calculated material numerical aperture of 0.53 . The core diameter of 0.37 millimeters for the single plastic optical fiber is also suitable for coupling to various commercially available 7 - and 19 -strand glass fiber bundles. The input end of the integral fiber-optic cable is terminated in an AMP Incorporated type 1-530530-0 ${ }^{\dagger}$ standard fiber-optic cable connector. A compatible bulkhead-mount feed-through connector (type 530570-1 $\dagger$ ) is also supplied.

## mechanical data

The photodiode is in an epoxy-filled case similar to, but slightly shorter than, JEDEC TO-5 outline. The fiber-optic cable has an outer jacket diameter of 1.9 millimeters, and optical fiber cladding and core diameters of 0.40 millimeters and 0.37 millimeters, respectively. Various integral fiber-optic cable lengths are available. The part number for the fiber-optic detector assembly is designated by the basic type number followed by C and three digits corresponding to the length in centimeters. For example, TXED453C025 has an integral fiber-optic cable that is $\mathbf{2 5}$ centimeters long.


ALL LINEAR DIMENSIONS ARE IN INCHES AND PARENTHETICALLY IN MILLIMETERS. INCH DIMENSIONS GOVERN.

[^26]
## SERIES TXED453 <br> FIBER-OPTIC SILICON DETECTOR ASSEMBLY

absolute maximum ratings
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1)
Operating Case Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature $1 / 16 \operatorname{lnch}(1,6 \mathrm{~mm})$ From Case for 5 Seconds . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS		TXED453C025			TXED453C050			TXED453C100			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
$V_{(B R)}$	Breakdown Voltage			$I_{R}=100 \mu \mathrm{~A},$   See Note 2	$E_{e}=0,$	50	100		50	100		50	100		V
${ }^{1}$ D	Photodiode Dark Current	$V_{R}=25 \mathrm{~V} .$   See Note 3	$E_{e}=0,$		2	10		2	10		2	10	nA		
$\mathrm{C}_{T}$	Total Capacitance	$\begin{aligned} & V_{R}=12 \mathrm{~V}, \\ & E_{\mathrm{e}}=0 \\ & \hline \end{aligned}$	$f=1 \mathrm{MHz},$		2	3		2	3		2	3	pF		
$\mathrm{R}_{\mathrm{e} \text { (d) }}$	Detector Radiant Responsivity	$\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$,	$\lambda=0.79 \mu \mathrm{~m}$		0.5			0.5			0.5		A/W		
$\mathrm{R}_{\mathrm{e}}(\mathrm{a})$	Detector Assembly   Radiant Responsivity	$\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$,	See Note 4	0.25	0.30		0.23	0.28		0.2	0.25		A/W		
${ }_{\text {t }}^{\text {r }}$	Rise Time ${ }^{\dagger}$	See Figure 1	$\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$		60			60			60		ns		
			$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$		45			45			45				
			$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$		35			35			35				

${ }^{\dagger}$ The fall time is approximately equal to the rise time.
NOTES: 1. Derate linearly to 55 mW at $70^{\circ} \mathrm{C}$ at the rate of $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Breakdown voltage is measured with the photodiode and guard-ring cathodes connected together. Irradiance ( $\mathrm{E}_{\mathrm{e}}$ ) is the radiant power per unit area incident on the surface.
3. Dark current of the photodiode is measured in a circuit similar to that used for the switching time measurements (Figure 1). A current meter replaces the TIEF150 and measures the dark current of the photodiode cathode with the guard-ring cathode at ground. The current meter should not drop more than 1 mV at the rated current
4. This measurement is made with the optical input of the detector assembly attached to the optical output of a TXES476CO25 fiber-optic GaAlAs source assembly with peak emission wavelength of $0.79 \mu \mathrm{~m}$. The detector assembly radiant responsivity $\mathrm{R}_{\mathrm{e}(\mathrm{a})}$ is defined as the detector current output divided by $P_{O}$, which is the source assembly radiant power output. This parameter includes the connector coupling loss.

## SERIES TXED453 <br> FIBER-OPTIC SILICON DETECTOR ASSEMBLY

 $t_{w} \leqslant 200 \mathrm{~ns}, \mathrm{t}_{\mathbf{r}} \leqslant 25 \mathrm{~ns}$. Incident irradiation is adjusted for a detector output current of approximately $10 \mu \mathrm{~A}$.
b. The output waveform is monitored on a cathode ray oscilloscope with the following characteristics: $\mathbf{Z}_{\text {in }}=\mathbf{5 0} \boldsymbol{\Omega}, \mathrm{t}_{\mathbf{r}}<\mathbf{2 . 5}$ ns. $\mathbf{T h e}$ measured risetime is corrected for the risetime of the optical source.

FIGURE 1-SWitching times
TYPICAL CHARACTERISTICS


FIGURE 2


Figure 3

DETECTOR RADIANT RESPONSIVITY


## OPTOELECTRONIC INTERFACE CIRCUITS FOR APPLICATIONS SUCH AS LASER RANGEFINDERS AND OPTICAL COMMUNICATIONS (FORMERLY TIXL150, TIXL151, TIXL152)

- Designed for Current Sources such as Photodiodes and Photomultiplier Tubes
- Transimpedance Circuit Provides Output Voltage Linearly Proportional to Input Current
- Typical Frequency Responses from DC to $100 \mathrm{MHz}, 50 \mathrm{MHz}$, and 20 MHz
- Typical Equivalent Input Noise Current Spectral Densities of $8.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}, 4.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $3 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low Input Impedance for Tolerance of High Input Capacitance
- Low Output Impedance for Loads as Small as $\mathbf{5 0}$ Ohms $\ddagger$
- Single Supply of 4 to 6 Volts
mechanical data
The device is in a hermetically sealed welded case similar to but shorter than JEDEC TO-12.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$\dagger$ Equivalent input noise current is defined as broadband rms output valtage divided by $\mathrm{z}_{\mathrm{f}}$ and by the square root of noise bandwidth. The noise bandwidth is $\pi / 2$ times the signal bandwidth measured between the frequencies at which response is down 3 dB with a high-frequency rolloff of $6 \mathrm{~dB} /$ octave.
$\ddagger$ Capacitive coupling is required for load resistances smaller than 1000 ohms to minimize disturbance of the amplifier bias.


## TYPES TIEF150, TIEF151, TIEF152 <br> LOW-NOISE HIGH-SPEED TRANSIMPEDANCE AMPLIFIERS

## electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{VCC}=5.8 \mathrm{~V}$

PARAMETER	TEST CONDITIONS§	TIEF150			TIEF151			TIEF152			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
In Equivalent Input Noise Current ${ }^{\dagger}$	$R_{L}=50 \Omega$, See Note 1		8.5	10		4.5	7		3	5.5	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathbf{z f f}_{\text {f }} \quad$ Forward Transfer Impedance	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=20 \mathrm{kHz}$	0.8	1.0		2.8	4		8	12		$\mathrm{k} \Omega$
$\mathbf{z i f}_{\mathbf{i}}$ Input Impedance	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=20 \mathrm{kHz}$		35	70		100	140		300	500	$\Omega$
$\mathrm{z}_{0}$ Output Impedance	$\mathrm{l}_{\text {in }}=0, \quad \mathrm{f}=20 \mathrm{kHz}$		0.5	5		2	10		4	12	$\Omega$
$V_{0} \quad \begin{aligned} & \text { Maximum RMS Output } \\ & \text { Voltage } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=\mathbf{5 0} \Omega, \mathrm{f}=\mathbf{2 0} \mathrm{kHz}$	100			100			100			mV
B Bandwidth ( -3 dB )	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	90	100		40	50		12	20		MHz
$V_{10}$ Quiescent Input Voltage	Input open		0.7			0.7			0.7		V
VoQ Quiescent Output Voltage	Input open		0.8			0.8			0.8		V
ICC Supply Current	Input open		4	6		4	6		4	7	mA

${ }^{\dagger}$ Equivalent input noise current is defined as broadband rms output voltage divided by $z_{f}$ and by the square root of noise bandwidth. The noise bandwidth is $\pi / 2$ times the signal bandwidth measured between the frequencies at which response is down 3 dB with a $h i g h$-frequency roll-off of $6 \mathrm{~dB} /$ octave.
§ Óutput coupling capacitance $=1 \mu \mathrm{~F}, \mathrm{~V}_{\text {CC }}$ bypass capacitance $=0.01 \mu \mathrm{~F}$.
NOTE 1: Equivalent input noise current is determined using a post-amplifier with response down $\mathbf{3} \mathbf{~ d B ~ a t ~} 10 \mathrm{kHz}$ and 150 MHz . Therefore, the overall signal bandwidth is equal to the bandwidth of the device under test.
schematic


VALUE APPROXIMATELY EQUAL TO $\mathbf{z}_{f}$

Resistor values shown are nominal
typical application

AVALANCHE
BIAS
Adjust for desired


TYPICAL PERFORMANCE FOR $M=100, \lambda=0.9 \mu \mathrm{~m}$
$R_{\theta}=2.3 \times 10^{5} \mathrm{~V} / \mathrm{W}$
$\mathrm{NEP}=2 \times 10^{-13} \mathrm{~W} / \sqrt{\mathrm{Hz}}$
$f_{\text {lower }}=3 \mathrm{kHz}$
$f_{\text {upper }}=50 \mathrm{MHz}$

## SERIES TXEF402 <br> FIBER-OPTIC CABLE ASSEMBLY

BULLETIN NO. DL-S 12603, APRIL 1978

## CABLE ASSEMBLY DESIGNED FOR FIBER-OPTIC APPLICATIONS

- Cable Lengths Available from 1 Meter to 50 Meters
- Maximum Attenuation of $\mathbf{3 5 0} \mathrm{dB} / \mathrm{km}$ at $0.79 \mu \mathrm{~m}$
- Du Pont Company PFX-PIR140 Plastic Fiber-Optic Cable*
- AMP Incorporated Standard Fiber-Optic Cable Connector ${ }^{\dagger}$
- Compatible With Texas Instruments TXES475 and TXES476 Source Assemblies, and TXED453 Detector Assembly


## description

Series TXEF402 fiber-optic cable assemblies each consist of a fiber-optic cable and a connector termination on each end. The cable is Du Pont Company PFX-PIR140* infrared-transmitting plastic fiber-optic cable. It has a maximum attenuation of 350 decibels per kilometer at 0.79 micrometers and has a calculated material numerical aperture of 0.53 . The effective attenuation increases slightly for optical sources with a broad emission spectral bandwidth. Each end of the cable is terminated in an AMP Incorporated type $1-530530-0^{\dagger}$ standard fiber-optic connector. A compatible bulkhead-mount feed-through connector (type 530570-1 ${ }^{\dagger}$ ) is also supplied for one end.

## mechanical data

The fiber-optic cable has an outer jacket diameter of 1.9 millimeters, and optical fiber cladding and core diameters of 0.40 millimeters and 0.37 millimeters, respectively. Fiber-optic cables are available in 1 - to 50 -meter lengths. The part number for the fiber-optic cable assembly is designated by the basic series type followed by $M$ and three digits corresponding to the length in meters. For example, TXEF402M020 has a length of 20 meters.


ALL DIMENSIONS ARE NOMINAL AND ARE SHOWN IN INCHES AND PARENTHETICALLY IN MILLIMETERS.

## absolute maximum ratings

$$
\text { Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }-20^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}
$$

[^27]
## optical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYPE	MIN	TYP	MAX
Cable Assembly   Transmittance   (See Note 1)	$\lambda_{\mathrm{p}}=0.79 \mu \mathrm{~m},$   See Figure 1	TXEF402M001	0.32	0.5	
		TXEF402M003	0.26	0.4	
		TXEF402M006	0.2	0.3	
		TXEF402M010	0.12	0.2	
		TXEF402M020	0.045	0.07	
		TXEF402M030	0.02	0.03	
		TXEF402M040	0.008	0.012	
		TXEF402M050	0.003	0.005	

NOTE 1: The cable assembly transmittance ratio is defined as $\tau=\mathrm{I}_{\mathbf{2}} / \mathrm{I}_{1}$, where $\mathrm{I}_{2}$ is the detector current output for a complete fiber-optic data link that includes the cable assembly, and $I_{1}$ is the detector current output for the same fiber-optic data link not including the cable assembly. This parameter includes the connector coupling loss, which is typically 4 dB and corresponds to $40 \%$ radiant power transmittance.


FIGURE 1-CABLE ASSEMBLY TRANSMITTANCE TEST

## CHARACTERISTICS AT $25^{\circ} \mathrm{C}$



NOTE 2: Data courtesy of E. 1. du Pont de Nemours and Company. Measurements are made with a monochromator.

## TYPE TIESO6 GALLIUM ARSENIDE INFRARED-EMITTING DIODE

## DESIGNED TO EMIT NEAR-INFRARED RADIANT ENERGY WHEN FORWARD BIASED (FORMERLY TIXL06)

- Spectrally Matched to Silicon Sensors . . . Peak Emission at $0.91 \mu \mathrm{~m}$
- Circular, Consistent-Size, Flat Emitting Areas . . . 7.5 Mils Diameter
- Recommended for Precision Optical Alignment, Communication, and Photographic Film Annotation
- Stud-Mounted Package for Convenient Mounting and Heat-Sinking
mechanical data
This device is in a hermetically sealed package with a flat glass window in the top of the case. The cathode is in electrical contact with the case and adjacent solder lug. The anode is in electrical contact with the stud, which is insulated from the case by a glass-to-metal seal.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Stud Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Stud Temperature (See Note 1) . . . . . . . . . . . 500 mA
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Solder Lug Temperature for 10 Seconds (See Note 2) . . . . . . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ stud temperature

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
PO	Radiant Power Output	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$	0.6	1.2		mW
$\lambda_{p}$	Wavelength at Peak Emission			0.91		$\mu \mathrm{m}$
$\Delta \lambda$	Spectral Bandwidth			250		A
${ }^{\boldsymbol{\theta}} \mathrm{H} \mathrm{l}$.	Half-Intensity Beam Angle			$115^{\circ}$		
$V_{F}$	Static Forward Voltage			1.7	2.3	V

NOTES: 1. Derate linearly to $125^{\circ} \mathrm{C}$ stud temperature at the rate of $5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path between the stud and emitting element.

## TYPE TIESO6

GALLIUM ARSENIDE INFRARED-EMITTING DIODE

TYPICAL CHARACTERISTICS


figure 2

figure 3

RELATIVE PHOTON INTENSITY

figure 5


FIGURE 4


FIGURE 6

## DESIGNED TO EMIT NEAR-INFRARED RADIANT ENERGY WHEN FORWARD BIASED (FORMERLY TIXL12, TIXL13, TIXL14, TIXL15)

- High Output . . . 60 mW Min at $25^{\circ} \mathrm{C}$ for the TIES14
- High Output Efficiency . . . $\mathbf{1 0 \%}$ Min at $25^{\circ} \mathrm{C}$ for the TIES12
- Hemispherically Shaped Chips with Diameters of 36 Mils for the TIES12, TIES13, and TIES13A, 72 Mils for the TIES14 and TIES15
- Spectrally Matched to Silicon Sensors . . . Peak Emission at $0.93 \mu \mathrm{~m}$
- Stud-Mounted Package for Convenient Mounting and Heat Sinking
mechanical data
The devices are in hermetically sealed packages with a flat glass window in the top of the case. The cathode is in electrical contact with the case and adjacent solder lug. The anode is in electrical contact with the stud, which is insulated from the case by a glass-to-metal seal. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path between the stud and emitting element.

absolute maximum ratings
TIES12
TIES13 TIES14 TIES13A TIES15

operating characteristics at $25^{\circ} \mathrm{C}$ stud temperature

	PARAMETER	TEST CONDITIONS	TYPE	MIN	TYP	MAX	UNIT
Po	Radiant Power Output	TIES12,   TIES13 and   TIES13A: $I_{F}=300 \mathrm{~mA}$	TIES12	40	50		mW
			TIES13	20	25		
			TIES13A	30	35		
			TIES14	60	75		
			TIES15	30	50		
$\lambda_{p}$	Wavelength at Peak Emission	TIES14 and   TIES15: $I_{F}=1 \mathrm{~A}$	All		0.93		$\mu \mathrm{m}$
$\Delta \lambda$	Spectral Bandwidth		All		450		
$\theta_{\mathrm{HI}}$	Half-Intensity Beam Angle		All		$130^{\circ}$		
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage		All		1.4	2	V

NOTE 1: Derate linearly to $100^{\circ} \mathrm{C}$ stud temperature at the rate of $4 \mathrm{~mA} \mathcal{F}^{\circ} \mathrm{C}$ for the TIES12, TIES13, and TIES13A, 13.3 mAF C for the TIES14 and TIES15.

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

## DESIGNED TO EMIT NEAR-INFRARED RADIANT ENERGY WHEN FORWARD BIASED (FORMERLY TIXL16A, TIXL16B, TIXL16C)

- High Output Power . . . $\mathbf{1 0 0}$ to $\mathbf{3 5 0} \mathbf{m W}$ Min at $\mathbf{2 5 ^ { \circ }} \mathbf{C}$
- Hemispherically Shaped 72-Mil-Diameter Chip
- Stud Mounting for Convenient Heat Sinking
- Open Construction to Allow Flexibility in Optical Design
mechanical data

These diodes are mounted on copper stud headers to provide efficient heat sinking. The anodes are in electrical contact with the copper stud. The cathode leads are varnished 0.01 -inch copper wires secured to the studs by metalized ceramic insulators. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path to the emitting element.

absolute maximum ratings

	TIES16A TIES16B	TIES16C
Reverse Voltage at $25^{\circ} \mathrm{C}$ Stud Temperature	2 V	2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Stud Temperature (See Note 1)	2 A	3A
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to	$100^{\circ} \mathrm{C}$
Lead Temperature $1 / 4$ Inch from Ceramic Insulator for 5 Seconds	$\longleftarrow 230$	${ }^{\circ} \mathrm{C} \longrightarrow$

operating characteristics at $25^{\circ} \mathrm{C}$ stud temperature

PARAMETER	TEST CONDITIONS	TIES16A			TIES16B			TIES16C			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Po Radiant Power Output	$I_{F}=2 A$ for TIES16A   and TIES168,   3 A for TIES16C	100	150		200	230		350	400		mW
$\lambda_{p}$ Wavelength at Peak Emission			0.93			0.93			0.94		$\mu \mathrm{m}$
$\Delta \lambda$ Spectral Bandwidth			450			450			450		A
${ }^{\boldsymbol{\theta}} \mathrm{HI}$ Half-Intensity Beam Angle			$150^{\circ}$			$150^{\circ}$			$150^{\circ}$		
$V_{F}$ Static Forward Voltage			1.6	2		1.6	2		1.8	2.2	V

NOTE: 1. Derate Inearly to $100^{\circ} \mathrm{C}$ stud temperature at the rate of $26.7 \mathrm{~mA} \rho^{\circ} \mathrm{C}$ for TIES 16 A and TIES $16 \mathrm{~B}, 40 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for TIES16C.

## DESIGNED TO EMIT NEAR-INFRARED RADIANT ENERGY WHEN FORWARD BIASED (FORMERLY TIXL27)

- High Output Power . . . 15 mW Min at $25^{\circ} \mathrm{C}$
- Spectrally Matched to Silicon Sensors . . .Peak Emission at $0.93 \mu \mathrm{~m}$
- Stud Mounting for Convenient Heat Sinking
- Recommended for Precision Optical Alignment, Industrial Controls, and Optical Communications
mechanical data
The device is encapsulated and mounted on a stud header. The cathode is in electrical contact with the solder lug. The anode is in electrical contact with the stud, which is insulated from the case by a glass-to-metal seal. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path between stud and emitting element.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Stud Temperature
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Stud Temperature (See Note 1) . . . . . . . . . . . 300 mA
Storage Temperature Range $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
Solder Lug Temperature for 10 Seconds
$240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ stud temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Po	Radiant Power Output	$I_{F}=300 \mathrm{~mA}$	15	20		mW
$\lambda_{p}$	Wavelength at Peak Emission			0.93		$\mu \mathrm{m}$
$\Delta \lambda$	Spectral Bandwidth			450		$\AA$
$\theta_{\mathrm{HI}}$	Half-Intensity Beam Angle			$135^{\circ}$		
$V_{F}$	Static Forward Voltage			1.7	2.2	V

NOTE 1: Derate linearly to $70^{\circ} \mathrm{C}$ stud temperature at the rate of $6.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS


FIGURE 1

RELATIVE POWER OUTPUT
stud temperature


FIGURE 2


FIGURE 3

## CHANGE IN WAVELENGTH OF PEAK INTENSITY



FIGURE 4


FIGURE 5

NOTE 2: These curves nave been normalized to the ourput at $I_{F}=\mathbf{3 0 0} \mathrm{mA}, \mathrm{T}_{\text {stud }}=25^{\circ} \mathrm{C}$.

## TYPE TIES35 <br> GALLIUM ARSENIDE INFRARED-EMITTING DIODE

BULLETIN NO. DL-S 12211, NOVEMBER 1974-REVISED DECEMBER 1977

## DESIGNED TO EMIT NEAR INFRARED RADIANT ENERGY WHEN FORWARD BIASED (FORMERLY TIXL35)

- High Speed, High Efficiency
- Hemispherically Shaped 18-Mil-Diameter Chip
- Stud Mounting for Convenient Heat Sinking
mechanical data
The cathode is in electrical contact with the case and adjacent solder lug. The anode is in electrical contact with the stud, which is insulated from the case by a glass-to-metal seal. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path between the stud and emitting element. The window can is not sealed to the header

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Stud Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Stud Temperature (See Note 1) . . . . . . . . . . . 200 mA
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Solder Lug Temperature for 10 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ stud temperature (without window can in place)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{P}_{\mathrm{O}}$	Radiant Power Output	$I_{F}=50 \mathrm{~mA}$	900	1200		$\mu \mathrm{W}$
$\lambda_{p}$	Wavelength at Peak Emission			0.91		$\mu \mathrm{m}$
$\Delta \lambda$	Spectral Bandwidth			300		A
${ }^{\theta}{ }_{\mathrm{HI}}$	Half-Intensity Beam Angle			$135^{\circ}$		
$V_{F}$	Static Forward Voltage			1.5	2	V
$\mathrm{t}_{\mathrm{r}}$	Radiant Pulse Rise Time ${ }^{\dagger}$	$\begin{aligned} & \text { IFM }=50 \mathrm{~mA}, \quad \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}, \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		15		ns

${ }^{\dagger}$ Radiant pulse rise time is the time required for a change in rac power output from $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$ of its peak value for a step change in current.
NOTE 1: Derate linearly to 50 mA at $100^{\circ} \mathrm{C}$ stud temperature at the rate of 2.0 mA$)^{\circ} \mathrm{C}$.

## TYPE TIES36 GALLIUM ARSENIDE INFRARED-EMITTING DIODE

bulletin no. DL-S 12212, NOVEMBER 1974-REVISED DECEMBER 1977

DESIGNED TO EMIT NEAR-INFRARED RADIANT ENERGY WHEN FORWARD BIASED (FORMERLY TIXL36)

- Hemispherically Shaped 18-Mil-Diameter Chip
- Built-In Reflector
- Fast Rise Time, High Efficiency
mechanical data

The reflector cavity is filled with clear epoxy.

absolute maximum ratings
Reverse Voltage at $25^{\circ} \mathrm{C}$ Case Temperature2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . . . 150 mA
Storage Temperature Range $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
Soldering Temperature for 10 Seconds $240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{PO}_{0}$	Radiant Power Output	$I_{F}=50 \mathrm{~mA}$	1			mW
$\lambda_{p}$	Wavelength at Peak Emission			0.91		$\mu \mathrm{m}$
$\Delta \lambda$	Spectral Bandwidth			300		$\AA$
${ }^{\boldsymbol{H}} \mathrm{HI}$	Half-Intensity Beam Angle			$25^{\circ}$		
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage			1.5	2	V
$\mathrm{t}_{\mathrm{r}}$	Radiant Pulse Rise Time ${ }^{\dagger}$	$\begin{aligned} & I_{F M}=50 \mathrm{~mA}, \quad t_{W}=100 \\ & f=100 \mathrm{kHz} \end{aligned}$		15		ns

${ }^{\dagger}$ Radiant pulse rise time is the time required for a change in radiant power output from $\mathbf{1 0 \%}$ to $90 \%$ of its peak value for a step change in current.
NOTE 1: Derate linearly to 60 mA at $70^{\circ} \mathrm{C}$ case temperature at the rate of $2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## DESIGNED TO EMIT NEAR-INFRARED <br> RADIATION WHEN FORWARD BIASED

- High Output Power . . . 50 mW Min at $25^{\circ} \mathrm{C}$
- Spectrally Matched to Silicon Sensors
- Convenient Heat Sinking, Low Thermal Impedance
- Recommended for Precision Optical Alignment, Industrial Controls, and Optical Communications


## mechanical data

The device is encapsulated and mounted on a kovar heat sink. The cathode connection is the lead wire. The anode is in electrical contact with the heat sink. Soldered connections should not be made directly to the heat sink because of the low-thermal-resistance path between it and the GaAs emitting chip.


## absolute maximum

Reverse Voltage at $25^{\circ} \mathrm{C}$ Case Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . . . . . 1 A
Operating Case Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
Cathode Lead Temperature $1 / 2$ Inch ( 12.7 mm ) from Case for 10 Seconds . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PO. Radiant Power Output	$I_{F}=1 \mathrm{~A}$	50	65		mW
$\lambda_{p} \quad$ Wavelength at Peak Emission			0.94		$\mu \mathrm{m}$
$\Delta \lambda$ Spectral Bandwidth			45		nm
${ }^{\theta} \mathrm{HI}$ Half-Intensity Beam Angle			$180^{\circ}$		
$\mathrm{V}_{\mathrm{F}}$ Static Forward Voltage			1.5		$v$

NOTE 1: Derate linearly to $70^{\circ} \mathrm{C}$ case temperature at the rate of $22.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## TYPE TXES37

## GALLIUM ARSENIDE INFRARED-EMITTING DIODE

## CHARACTERISTICS



Figure 1

$\lambda-W$ welength- $\mu \mathrm{m}$
figure 2

TYPICAL CHANGE IN WAVELENGTH OF PEAK INTENSITY


FIGURE 3


FIGURE 4


FIGURE 5

## DESIGNED FOR FIBER-OPTIC APPLICATIONS (FORMERLY TIXL471)

- Hemispherically Shaped 18-Mil Diameter Chip
- Peak Emission at $0.91 \mu \mathrm{~m}$
- Typical Rise Time of 15 ns


## description

The TIES471 is a high-speed infrared-emitting diode intended for use with fiber-optic bundles. Typical radiant power coupled through fiber-optic bundles is sufficient signal for compatible silicon avalanche photodiodes such as the TIED451.

## mechanical data

The gallium arsenide hemispherically shaped chip is mounted in the threaded connector and is encapsulated in epoxy to provide a flat, clear window at the top of the case. The index of refraction of the window is 1.49 . The surface of the active area is nominally 0.020 inch below the front surface of the epoxy. The package can be panel mounted with the set of hex nuts supplied with the device.


## absolute maximum ratings

NOTES: 1. This value applies for $\mathrm{t}_{\mathrm{w}} \leqslant 100 \mu$, duty cycle $\leqslant 50 \%$.
2. Derate linearly to 60 mA at $70^{\circ} \mathrm{C}$ case temperature at the rate of $2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## TYPE TIES471

GALLIUM ARSENIDE INFRARED-EMITTING DIODE

## operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Po Radiant Power Output	$I_{F}=50 \mathrm{~mA}$	0.5	1		mW
$\lambda_{p} \quad$ Wavelength at Peak Emission			0.91		$\mu \mathrm{m}$
$\Delta \lambda$ Spectral Bandwidth			230		A
$\theta_{\text {HI }} \quad$ Half-Intensity Beam Angle			$130^{\circ}$		
$\mathrm{V}_{\mathrm{F}}$ Static Forward Voltage			1.35	1.8	V
$\mathbf{t r}_{\mathbf{r}} \quad$ Radiant Pulse Rise Time ${ }^{\boldsymbol{\dagger}}$	$\begin{aligned} & I_{F M}=50 \mathrm{~mA}, \quad \mathrm{t}_{\mathrm{W}}=100 \mathrm{~ns}, \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		15		ns

t Radiant puise rise time is the time required for a change in radiant power output from $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$ of its peak value for a step change in current.

## TYPICAL CHARACTERISTICS



FIGURE 1
FIGURE 2


FIGURE 3


FIGURE 4

NOTE 3: These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{1 0 0} \mu \mathrm{s}$, duty cycle $\mathbf{< 5 0 \%}$.

## COMPLETE FIBER-OPTIC TRANSMITTER (FORMERLY TIXL472)

- Hemispherically Shaped 18-Mil-Diameter Gallium Arsenide Source for Improved Coupling to Fiber-Optic Bundles
- Peak Emission at $0.91 \mu \mathrm{~m}$ for Optimum Match to Silicon Detectors such as the TIED452 Avalanche Photodetector Module
- TTL-Compatible Inputs, Active-Low Enable, and Single 5-V Power Supply
- Typical Rise Time of 15 ns


## description

The TIES472 is a complete fiber-optic transmitter module designed for use with fiber-optic bundles. The unit contains a high-speed gallium-arsenide infrared-emitting diode (IRED), and a high-speed, high-efficiency integrated current driver. Two TTLcompatible inputs are provided. The IRED will be on only when the signal input, $A$, is high while the enable input, $E$, is low. If the value of the external current-setting resistor is less than 6 ohms and the signal input is continuously high or open, provision should be made for the enable input to also be high or open to avoid excess IRED power dissipation.

## FUNCTION TABLE

INPUT		IRED
$\bar{E}$	$A$	
OPEN	$X$	OFF
H	X	OFF
L	L	OFF
L	H	ON

$\mathrm{H}=$ high level
$L$ = low level
$X=$ irrelevant

The IRED is hemispherically shaped to couple more light into the fiber-optic bundles. A complete digital fiber-optic link can be formed using this module, a fiber-optic bundle, and a TIED452 avalanche photodetector module. Adapters are available to make the module compatible with commercially available fiber-optic connectors.

## mechanical data

The TIES472 consists of a TIES471 gallium arsenide IRED matched with a TTL-compatible electronic drive circuit and is packaged in a finished aluminum housing. The housing, measuring 2 inches by 1.5 inches maximum, protects the electronics section and provides threads for mounting to the system. The hemispherically shaped IRED chip is mounted in the extended, threaded portion of the module and is encapsulated in epoxy to provide a flat, clear window. The index of refraction of the window is 1.49 . The active area surface is nominally 0.020 inch below the front surface of the epoxy.

The five-pin plug on the rear of the module provides for the electrical connections. Total weight of the complete module is approximately 50 grams.


## TYPE TIES472 <br> TTL-COMPATIBLE FIBER-OPTIC TRANSMITTER MODULE

module schematic

operational block diagram


The wiring to the external current-setting resistor, $\mathbf{R}_{\mathbf{C}}$, should be as short as possible and twisted or preferably shielded to avoid radiation of $r$-f interference to surrounding equipment. Rc should be noninductive (carbon composition is suitable). For power dissipation calculations the continuous current through $R_{C}$ can be taken from Figure 4.

## TYPE TIES472 <br> TTL-COMPATIBLE FIBER-OPTIC TRANSMITTER MODULE

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)


NOTE 1: All voltage values are with raspect to pin E (GND).
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature, $\mathrm{V}_{\mathbf{A A}}=5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
PO Radiant Power Output		$R_{C}=34 \Omega\left(I_{F} \approx 50 \mathrm{~mA}\right)$	0.5	1	mW
Wavelength at Peak Emission				0.91	$\mu \mathrm{m}$
Spectral Bandwidth				230	A
Half-Intensity Beam Angle				$130^{\circ}$	
Radiant Pulse Rise Time ${ }^{\text {t }}$		$\begin{aligned} & t_{F M}=100 \mathrm{~mA}, t_{w}=100 \mathrm{~ns}, \\ & f=100 \mathrm{kHz} \end{aligned}$		1520	ns
High-Level Input Voltage			2		V
Low-Level Input Voltage				0.8	V
Input Current at Maximum Input Voltage	Input A	$V_{1}=5.5 \mathrm{~V}$		2	mA
	Enable E			1	
High-Level Input Current	Input A	$V_{1}=2.4 \mathrm{~V}$		80	$\mu \mathrm{A}$
	Enable $\bar{E}$			40	
Low-Level Input Current	Input A	$V_{1}=0.4 \mathrm{~V}$		-3.2	mA
	Enable E			-1.6	

${ }^{\dagger}$ Radiant pulse rise time required for a change in radiant power output from $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$ of its peak value for a step change in current. The pulse source should have a $50-\Omega$ output impedance.

TTL-COMPATIBLE FIBER-OPTIC TRANSMITTER MODULE

TYPICAL CHARACTERISTICS


RADIANT POWER OUTPUT
vs FORWARD CURRENT OF IRED


FIGURE 3

RELATIVE RADIANT INTENSITY vs ANGULAR DISPLACEMENT


FORWARD CURRENT OF IRED
vs
VALUE OF EXTERNAL CURRENT-SETTING RESISTOR


FIGURE 4

NOTE 3: These parameters must be measured using pulse techniques. $t_{w}=100 \mu \mathrm{~s}$, duty cycle $\leqslant 50 \%$.

# SERIES TXES475, TXES476 FIBER-OPTIC GALLIUM ALUMINUM ARSENIDE SOURCE ASSEMBLY 

BULLETIN NO. DL-S 12605, APRIL 1978

## SOURCE ASSEMBLY DESIGNED FOR FIBER-OPTIC APPLICATIONS

- High-Efficiency GaAIAs Infrared-Emitting Diode
- $0.79-\mu \mathrm{m}$ Emission for Good Optical Fiber Transmission
- Integral Du Pont Company PFX-PIR140 Plastic Fiber-Optic Cable*
- AMP Incorporated Standard Fiber-Optic Cable Connector ${ }^{\dagger}$
- Compatible With Texas Instruments TXED453 Detector Assembly and TXEF402 Cable Assembly
description
- Rise Time . . . 20 ns Typ


#### Abstract

Series TXES475 and TXES476 fiber-optic source assemblies each consist of an optical source, an integral fiber-optic cable, and a connector termination. The optical source is a GaAlAs infrared-emitting diode (surface-emitting type) with a peak emission wavelength of 0.79 micrometers. The integral fiber-optic cable is Du Pont Company type PFX-PIR140* infrared-transmitting plastic fiber-optic cable. It has a maximum attenuation of 350 decibels per kilometer at 0.79 micrometers and has a calculated material numerical aperture of 0.53 . The broad emission spectral bandwidth of the optical source slightly increases the effective attenuation. The core diameter of 0.37 millimeters for the single plastic optical fiber is also suitable for coupling to various commercially available 7 - and 19 -strand glass fiber bundles. The output end of the integral fiber-optic cable is terminated in an AMP Incorporated type $1-530530-0^{\dagger}$ standard fiber-optic cable connector.


## mechanical data

The infrared emitting diode is in an epoxy-filled case similar to, but slightly shorter than, JEDEC TO-5 outline. A coined header is used to increase the thermal dissipation capability. The fiber-optic cable has an outer jacket diameter of 1.9 millimeters, and optical fiber cladding and core diameters of 0.40 millimeters and 0.37 millimeters, respectively. Various integral fiber-optic cable lengths are available. The part number for the fiber-optic source assembly is designated by the basic type number followed by C and three digits corresponding to the length in centimeters. For example, TXES475C025 has an integral fiber-optic cable that is 25 centimeters long.

absolute maximum ratings

$$
\text { Reverse Voltage at } 25^{\circ} \mathrm{C} \text { Case Temperature }
$$

Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) . . . . . . . . . . . 100 mA
Operating Case Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature $1 / 16 \operatorname{lnch}(1,6 \mathrm{~mm})$ from Case for 5 Seconds . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
NOTE 1: Derate linearly to 55 mA at $70^{\circ} \mathrm{C}$ at the rate of $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

* A product of E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898
†A product of AMP Incorporated, Harriskurg, Pennsylvania 17105
operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST	TXES475C025			TXES475C050			TXES475C100			TXES476C025			TXES476C050			TXES476C100			UNIT	
		MIN	TYP	MAX																		
${ }^{P} \mathrm{C}$	Radiant Power Coupled into Fiber		${ }^{\prime} \mathrm{F}=100 \mathrm{~mA} *$	130			130			130			210			210			210			$\mu \mathrm{W}$
$\mathrm{P}_{0}$	Source Assembly   Radiant Power Output	80		120		70	110		60	100		160	200		150	190		130	170		$\mu \mathrm{W}$	
$\lambda_{p}$	Wavelength at Peak Emission	0.76		0.79	0.81	0.76	0.79	0.81	0.76	0.79	0.81	0.76	0.79	0.81	0.76	0.79	0.81	0.76	0.79	0.81	$\mu \mathrm{m}$	
$\Delta \lambda$	Spectral Bandwidth			0.04			0.04			0.04			0.04			0.04			0.04		$\mu \mathrm{m}$	
${ }^{\theta} \mathrm{HI}$	Half-Intensity Beam Angle			$50^{\circ}$																		
$\mathrm{V}_{\mathrm{F}}$	Static Forward Voltage			1.6	2		1.6	2		1.6	2		1.6	2		1.6	2		1.6	2	V	
C	Capacitance	$\begin{aligned} & V_{F}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$		120			120			120			120			120			120		pF	
$\mathrm{t}_{\mathrm{r}}$	Radiant Pulse Rise Time ${ }^{\dagger}$	$I_{F}=100 \mathrm{~mA},$   See Figure 1		20			20			20			20			20			20		ns	

*Recommended operating condition is $I_{F}=100 \mathrm{~mA}$ with a maximum duty cycle of $\mathbf{5 0 \%}$.
${ }^{\dagger}$ The radiant pulse fall time is approximately equal to the rise time.

NOTES: a. The input current waveform is supplied by a pulse generator with the following characteristics: $Z_{o}=50 \Omega, t_{w} \leqslant 200 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}$.
b. The output waveform is monitored on a cathode ray oscilloscope with the following characteristics: $\mathrm{z}_{\mathrm{in}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}$.
FIGURE 1-SWITCHING TIMES

# EFFICIENT HIGH-POWER GaAs INFRARED SOURCES 

## EFFICIENT HIGH-POWER GaAs SOURCES

The Gailium Arsenide (GaAs) hemispherical source is an amphoteric Si-doped solution-grown infrared-emitting diode (IRED). It offers the highest optical power available in noncoherent infrared sources, together with increased quantum efficiency. The outputs of the TIES I2-TIES 16 series of IRED's range from 20 mW to 350 mW at their respective forward bias currents.

These infrared sources are capable of meeting applicable Mil-Std tests and find applications in optical communications.
This report presents basic information necessary to fully utilize these high-optical-power-output and high-efficiency infrared sources.

Topics discussed include:

## Theory of Operation

Device Performance

Series Resistance
Forward Voltage
Optical Power
Spectral Distribution
Radiant Intensity
Thermal Impedance
Frequency Response
Package Configuration and Design
Typical GaAs Infrared Source Circuits

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES

## THEORY OF OPERATION

The high-power GaAs IRED's, TIES 12 through TIES 16 are 36 -mil or $72-\mathrm{mil}$ diameter hemispherically shaped emitters. A mesa is formed on the base of the hemisphere to define the solution-grown P-N junction.

When the P-N junction is forward biased, electrons from the $N$ region are injected into the $P$ region and radiant quanta (photons) are generated through recombination. This radiant energy is emitted in the near-infrared region.

The hemispherical dome structure provides a substantial increase in radiant source quantum efficiency from that of flat-geometry sources.

The radiant source quantum efficiency $\left(\eta_{\mathrm{S}}\right)$ is defined by the equation

$$
\begin{equation*}
\eta_{\mathrm{S}}=\frac{\mathrm{q} \mathrm{~N}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{F}}} \tag{1}
\end{equation*}
$$

where
$\mathrm{q}=$ the electronic charge
$\mathrm{N}_{\mathrm{S}}=$ the external photon rate
$\mathrm{IF}=$ the forward current

It is clear from equation (1) that any increase in $\mathrm{N}_{\mathrm{s}}$ would mean an increase in efficiency.

When the ratio of the junction radius to the dome radius is equal to the sine of the critical angle, that is, when

$$
\begin{equation*}
\sin \theta_{\mathrm{c}}=\frac{\mathrm{r}_{\mathrm{j}}}{\mathrm{R}_{\mathrm{o}}} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{\mathrm{c}} & =\text { critical angle } \\
\mathrm{r}_{\mathrm{j}} & =\text { the junction radius } \\
\mathrm{R}_{\mathrm{O}} & =\text { the dome radius }
\end{aligned}
$$

all the radiation reaching the surface of the hemisphere will make an angle less than $\theta_{c}$ with the normal to the surface.

Under these conditions total internal reflection is eliminated. The external photon rate $\left(N_{s}\right)$ is maximized, increasing efficiency of the device.

## DEVICE PERFORMANCE

## CURRENT-VOLTAGE CHARACTERISTICS

At normal operating conditions, the diode current I depends on the junction voltage $V_{j}$ as

$$
\begin{aligned}
& \qquad I=I_{0} \exp \left[\left(q \mathrm{~V}_{\mathrm{j}}-\mathrm{E}_{\mathrm{g}}\right) / \mathrm{nkT}\right] \\
& \text { where } \\
& \begin{aligned}
\mathrm{I}_{\mathrm{O}} & =\text { a constant } \\
\mathrm{q} & =\text { electron charge }\left(1.6 \times 10^{-19} \text { coulomb }\right) \\
\mathrm{V}_{\mathrm{j}} & =\text { junction voltage } \\
\mathrm{E}_{\mathrm{g}} & =\text { bandgap energy }\left(1.44 \mathrm{eV} \text { for GaAs at } 25^{\circ} \mathrm{C}\right) \\
\mathrm{n} & =\text { a constant } \\
\mathrm{k} & =\text { Boltzmann's constant }\left(1.3807 \times 10^{-}-23 \text { joules }\right) \\
\mathrm{T} & =\text { temperature (kelvins })
\end{aligned}
\end{aligned}
$$

Table I

Series Resistance $\left(\mathbf{T}=\mathbf{2 5}{ }^{\circ} \mathbf{C}\right)$			
Device Type	Min $\mathbf{r}(\Omega)$	Typical $\mathbf{r}(\Omega)$	Max $\mathbf{r}(\Omega)$
TIES12, 13	0.75	0.90	1.05
TIES14, 15, 16	0.13	0.17	0.21

The parameter n generally equals 2 at low currents and equals 1 at high currents. The junction voltage $\mathrm{V}_{\mathrm{j}}$ is related to the applied voltage V as

$$
\begin{aligned}
& V_{j} \\
&=V-I r_{\mathrm{S}} \\
& \text { where } \\
& r_{\mathrm{S}} \\
&=\text { diode series resistance. }
\end{aligned}
$$

The differential resistance is equal to

$$
\mathrm{r}=\frac{\mathrm{dV}}{\mathrm{dI}}=\frac{\mathrm{nkT}}{\mathrm{qI}}+\mathrm{r}_{\mathrm{S}}
$$

At high currents, the series resistance $r_{S}$ dominates the current-voltage characteristic as shown in Figures 1. 2. and 3. Table I lists the values of series resistance determined from the current-voltage characteristics.

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES



FIGURE 1. Forward Voltage vs Forward Current for TIES12 and TIES13

The current-voltage characteristic changes slightly with temperature. At constant current, the diode voltage varies because of the temperature dependence of both the bandgap energy and the series resistance. The diode voltage is shown as a function of temperature in Figures 4, 5, and 6. Typical values of the voltage temperature coefficient $\Delta \mathrm{V} / \Delta \mathrm{T}$ are listed in Table II.


FIGURE 2. Forward Voltage vs Forward Current for TIES14 and TIESI5

Table II

Device Type	$\Delta V / \Delta T$
TIES12, 13	$-\mathbf{1 . 5} \mathbf{~ m V} /{ }^{\circ} \mathrm{C}$
TIES14, 15,16	$-\mathbf{1 . 2} \mathrm{mV} /{ }^{\circ} \mathrm{C}$

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES



FIGURE 3. Forward Voltage vs Forward Current for TIES16


FIGURE 4. Forward Voltage vs Heat Sink Temperature for TIES12 and TIES13


FIGURE 5. Forward Voltage vs Heat Sink Temperature for TIES14 and TIES15


FIGURE 6. Forward Voltage vs Heat Sink Temperature for TIES16

## OPTICAL POWER

The optical power generated by GaAs infrared sources is nearly a linear function of the forward bias current when operated above low currents and below the maximum rated current.

The optical power becomes more linear with the bias current as the temperature is decreased. Table III shows the observed $\Delta \mathrm{P}_{\mathrm{o}} / \Delta \mathrm{I}$ in the linear operating region.

## Table III

Device Type	$\Delta \mathbf{P}_{\mathrm{o}} / \Delta!(\mathrm{mW} / \mathrm{mA})$
TIES 12,13	0.2
TIES 14,15	0.1
TIES 16	0.15

Decreasing the temperature will cause the diode to become more efficient and thereby increase the optical power for any given forward bias current. Therefore, by the use of cooling equipment, the optical power can be increased above the rated powers, if space and external power requirements permit. The bias current can safely be increased to the level above which additional bias current does not increase optical power.

Optical power as a function of temperature and bias current is presented in Figures 7,8, and 9.


FIGURE 7. Optical Power Output vs Heat Sink Temperature for TIES12


FIGURE 8. Optical Power Output vs Heat Sink
Temperature for TIES 14

An approximation that can be used when designing with IRED's is the optical power will increase by a factor of 2 when the temperature is decreased by $80^{\circ} \mathrm{C}$. The optical power will decrease by half when the temperature is increased by $80^{\circ} \mathrm{C}$. The reference of unity optical power is the optical power observed at $25^{\circ} \mathrm{C}$.

The TIES16B has been operated at liquid nitrogen temperature $\left(-196^{\circ} \mathrm{C}\right)$, and the observed optical power as a function of bias current is shown in Figure 10.

Power Efficiency: The power efficiency of GaAs IRED's is defined as the optical power divided by the input current-voltage product. The power efficiency is a function of current.

Figures 11,12 , and 13 present the power efficiency capabilities of the GaAs solution grown devices. Figure 14 presents the power efficiency of the TIES16B at liquid nitrogen temperature $\left(-196^{\circ} \mathrm{C}\right)$.

The maximum value of the TIES 12 -TIES 16 series is slightly below the maximum recommended bias current rating.

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES



FIGURE 9. Optical Power Output-Heat Sink Temperature for TIES16B


FIGURE 10. Average Optical Power vs Forward Current for TIES16B at $25^{\circ} \mathrm{C}$ and $-196^{\circ} \mathrm{C}$


FIGURE 11. Power Efficiency vs Forward Current for TIES12


FIGURE 12. Power Efficiency vs Forward Current for TIES14 and TIES15 at $25^{\circ} \mathrm{C}$


FIGURE 13. Power Efficiency vs Forward Current for TIES16B at $25^{\circ} \mathrm{C}$


FIGURE 14. Power Efficiency vs Forward Current for TIES16B at $25^{\circ} \mathrm{C}$ and $-196^{\circ} \mathrm{C}$

## SPECTRAL DISTRIBUTION

The typical spectral distribution for the GaAs solution-grown infrared sources is presented in Figures 15, 16 , and 17.

The peak wavelength $\left(\lambda_{p}\right)$ is a function of bias current and temperature. Table IV presents typical peak wavelength and bandwidths (half power points).

Table IV

Device Type	$\lambda_{p}(\AA)$	$\Delta \lambda(\AA)$
TIES 12, 13	9300	450
TIES 14, 15	9300	450
TIES 16	9300	450

For TIES12-TIES16 series an average change of $3 \AA /{ }^{\circ} \mathrm{C}$ has been measured over the temperature of $-50^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$. The bandwidth remains nearly constant in this temperature range.

Relative Intensity: Polar plots of typical relative intensity versus angular displacement are presented in Figures 18 and 19. Figure 20 presents what a reflector can do in aiding the designer when a narrow beam is required.


FIGURE 15. Typical Spectral Distribution for TIES12


FIGURE 16. Typical Spectral Distribution for TIES14

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES



FIGURE 17. Typical Spectral Distribution for TIESI6


FIGURE 18. Relative Intensity vs Angular Displacement for TIES 12, 13, 14, and 15


FIGURE 19. Relative Intensity vs Angular Displacement for TIES16


FIGURE 20. Beam Pattern for TIES16 with Reflector

## RADIANT INTENSITY

Radiant intensity is defined as radiant flux per unit solid angle in a given direction and is measured as watts/steradian.

One steradian is the solid angle subtended at the center of a sphere by a portion of the surface area equal to the square of the radius of the sphere. There are $4 \pi$ steradians in a complete sphere. Radiant intensity can be measured in the following manner. Radiant energy from a source is beamed into an aperture of area $A$. The radiant flux at the aperture is measured by a detector.


The radiant intensity ( $I_{e}$ ) is given approximately by the following equation, for large $R$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{e}}=\mathrm{W} / \mathrm{sr}=\frac{\mathrm{P}_{0}}{\mathrm{~A} / \mathrm{R}^{2}} \tag{6}
\end{equation*}
$$

where
$\mathrm{P}_{\mathrm{O}}=$ optical power at detector
$I_{e}=$ radiant intensity
A = aperture area
$R=$ distance from source to detector
Typical values of radiant intensity are presented in Table V for the TIES12-TIES16 series at their rated bias currents.

Table V

Device Type	Radiant Intensity (mW/sr)
TIES12	14
TIES13	7
TIES13A	10
TIES14	21
TIES15	14
TIES16A	32
TIES16B	46
TIES16C	80

## THERMAL RESISTANCE

The thermal resistance (in ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ) can be defined as the temperature difference between two points or regions divided by the power dissipation under conditions of thermal equilibrium.

It is a difficult parameter to calculate accurately but can be measured with a reasonable degree of accuracy. The junction temperature ( $\mathrm{T}_{\mathrm{J}}$ ) call be approximated by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{P} \cdot \mathrm{R}_{0 \mathrm{JHI}}+\mathrm{T}_{\mathrm{H}} \mathrm{~S} \tag{7}
\end{equation*}
$$

where

$$
P=\text { power input }
$$

$\mathrm{R}_{0}$ JHS $=$ junction-to-theat-sink thermal resistance
$\mathrm{T}_{\text {IIS }}=$ heat-sink temperature

The method used to measure thermal resistance depends on the fact that the voltage across the P-N junction at a fixed forward current varies inversely and almost linearly with the temperature.

In practice, the diodes to be measured are first calibrated in an oven at a constant $5 . \mathrm{mA}$ current by plotting forward voltage drops at several temperatures. This gives a $\mathrm{V}_{\mathrm{F}}-\mathrm{T}_{\mathrm{J}}$ calibration curve for each diode.

Each diode is then placed on a constant temperature heatsink and connected to the thermal resistance test set. The test set contains circuitry for interrupting the d.c. currents for periods of $100-\mu \mathrm{s}$ at about one-percent duty cycle. During the $100-\mu$ s period, a $5-\mathrm{mA}$ calibrating current is applied to the diode and the forward voltage is measured.

The temperature corresponding to this voltage is read from the $\mathrm{V}_{\mathrm{F}}-\mathrm{T}_{\mathrm{J}}$ calibration curve. By taking power and temperature readings at several current levels, a plot of junction temperature versus applied power may be obtained as shown in Figures 21, 22, and 23.

## FREQUENCY RESPONSE

Frequency response depends on the type technology and packaging techniques used.

The frequency response curves are shown in Figure 24. These curves were obtained by forward biasing the diodes at 50 mA and modulating the d.c. bias with a 10 mA peak-to-peak sine wave signal. The output of the emitters were detected with a high speed detector. Measured values of the rise and fall times of the output of the diode, as detected by the high speed detector are 250 nanoseconds and 300 nanoseconds respectively.

The frequency response of the TIES12-TIES16 series is lower than the response of other Texas Instruments IREDs.

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES



FIGURE 21. Thermal Resistance Characteristic for TIES12 and TIES13


FIGURE 22. Thermal Resistance Characteristic for TIES14 and TIES15

## PACKAGE CONFIGURATION AND DESIGN

The TIES 12 -TIES 16 series of IRED's are 36 -mil or $72 \cdot \mathrm{mil}$ diameter hemispherically shaped emitters (Figure 25). A mesa is formed on the base of the hemisphere to define the solution-grown P-N junction.

An alloyed P-type ohmic contact is applied to the top of the mesa. A N-type contact is applied to the surrounding area.

The TIES12-TIES15 series are mounted in a window package which has a 6.32 stud as the anode contact and a solder lug as the cathode contact. The series are normally hermetically sealed but may be left unsealed at customer request.

The TIES16A, TIES16B, and TIES16C are mounted on a heavier stud package with no can. This provides a wider emission angle.


FIGURE 23. Thermal Resistance Characteristic for TIES16A, TIES16B, and TIES16C


FIGURE 24. Frequency Response Characteristic for TIES12, TIES14, and TIES16 (A, B, C)

The TIES12 and TIES13 devices have 36 -mil-diameter hemispheres with rated optical powers of 40 mW and 20 mW at 300 mA forward bias current.

The TIES14-TIES15 devices have 72 -mil-diameter hemispheres with rated optical powers of 60 mW and 30 mW at 1 ampere forward bias current.

The TIES16A and TIES16B devices have 72-mil diameter hemispheres with rated optical powers of 100 and 200 mW at 2 amperes forward bias current while the TIES 16C is selected to give 350 mW at 3 amperes.

The TIES 12, 13, 14, 15 are capable of passing environmental tests in accordance with the following Mil-Std procedures:

Thermal shock:
Mil-Std-750A, method 1056.1, condition A.
Acceleration:
Mil-Std-750A, method 2006 at a level of $15,000 \mathrm{G}$ 's, $\mathrm{Y}_{1}$ $\& Y_{2}$ axis.
Hermetic Seal:
Mil-Std-202, method 112, condition $C$, except the leakage rate shall not exceed $50 \times 10^{-8} \mathrm{ATM} \mathrm{CC} / \mathrm{sec}$.
Solderability:
Mil-Std-750A, method 2026 as appropriate with solder lug.
Vibration-Variable Frequency:
Mil-Std-750A, method 205630 G's.
Mechanical Shock:
Mil-Std-202, method 213 sawtooth pulse at 100G's.
Moisture Resistance (non-operating):
Mil-Std-750A, method 1021, except that lead fatigue test shall be omitted.

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES

TIES12, TIES13, TIES14, TIES15
P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES


NOTES: a. Torque between stud and can or lug must be avoided. Flats are provided on the stud for tightening to heat sink.
b. The orientation of the lug in relation to the stud flats is not controlled.
c. All dimensions are in inches and parenthetically in millimeters. Inch dimensions govern.

The devices are in hermetically sealed packages with a flat glass window in the top of the case. The cathode is in electrical contact with the case and adjacent solder lug. The anode is in electrical contact with the stud, which is insulated from the case by a glass-to-metal seal. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path between the stud and emitting element.

FIGURE $25 A$.

TYPE TIES16A, TIES16B, TIES16C
P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES


The diode is mounted on a copper stud header to provide efficient heat sinking. The anode is in electrical contact with the copper stud. The cathode lead is a varnished 0.01 -inch copper wire secured to the stud by a metalized ceramic insulator. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path to the emitting element.

## EFFICIENT HIGH-POWER GaAs INFRARED SOURCES

## TYPICAL GaAs INFRARED SOURCE CIRCUITS

For best performance sources should be biased from a current source rather than a voltage source. A simple method is to place a resistor in series with a voltage power supply to approximate a current source.

Proper heat sinking is also required to insure that excessive heating does not occur and cause power output of the diodes to decrease.

Typical circuits using infrared sources are shown in Figure 26. These circuits call serve as building blocks for more sophisticated and optimum circuits.


FIGURE 26. Typical GaAs Infrared Source Circuits

## SUGGESTED FURTHER READING

Biard et al, "Optoelectronics as Applied to Functional Electronic Blocks", Proceedings of the IEEE, Vol. 52, No. 12, December 1964, Ppp. 1529-1 536.

Millman and Halkias, "Electronic Devices and Circuits", McGraw-Hill, pp. 132-133.

Shortley and Williams, "Elements of Physics", Prentice-Hall, pp. 437439.

## TIES27 GaAs NONCOHERENT INFRARED SOURCE

## TIES27 GaAs NONCOHERENT INFRARED SOURCE

The TIES27 GaAs noncoherent infrared source is essentially a solution-grown P-N junction. The output of the device is 15 mW minimum with 20 mW being typical at the rated forward current. The device emits in the near-infrared region.

This report presents basic information necessary to utilize this high-power, low-cost industrial IR source. Included in this discussion are the theory of operation, device performance including forward voltage, optical power, spectral distribution, radiance, radiant intensity, thermal impedance, pulse-mode operation and optical design considerations plus typical mechanical specification and application data.

## THEORY OF OPERATION

The TIES27 GaAs noncoherent infrared source is a solution grown P-N junction in the shape of an 18 -mil-square chip. The chip is mounted on a stud header and encapsulated in an epoxy dome.

When the P-N junction is forward biased, electrons from the N -region are injected into the P -region and radiant quanta (photons) are generated through recombination. The radiant energy emitted is in the near-infrared region.

A flat-geometry GaAs source emitting into air has a critical angle that can be described by:

$$
\begin{equation*}
\operatorname{Sin} \theta_{c}=\frac{N_{1}}{N_{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& N_{1}=\text { index of refraction of air }=1 \\
& N_{2}=\text { index of refraction of } \mathrm{GaAs}=3.6 \\
& \theta_{c}=\text { critical angle }=16.1^{\circ} .
\end{aligned}
$$

Any radiant energy generated that strikes the surface of the chip at an angle greater than the critical angle will not escape but will be reflected internally. This is shown in Figure 1.


FIGURE 1. Angle of Light Determines if it Escapes or is Reflected Internally

The critical angle of the TIES27 chip has been changed by placing epoxy on the chip. Since the index of refraction of the epoxy is 1.5 , the critical angle changes from $16.1^{\circ}$ to $24.6^{\circ}$. The improvement factor can be calculated as follows:

$$
\begin{equation*}
\alpha=\frac{1-\operatorname{Cos} \theta_{2}}{1-\operatorname{Cos} \theta_{1}}=\frac{1-\operatorname{Cos} 24.6^{\circ}}{1-\operatorname{Cos} 16.1^{\circ}}=2.31 \tag{2}
\end{equation*}
$$

The improvement factor is valid only when the radiant energy that is emitted from the $\mathrm{P}-\mathrm{N}$ junction can be transmitted through the epoxy and into the air.

The external quantum efficiency of the device can be described as the ratio of optical current output (photons per second) divided by forward input current.

$$
\begin{equation*}
\eta_{\mathrm{S}}=\frac{\mathrm{I}_{\phi}}{\mathrm{I}_{\mathrm{F}}} \tag{3}
\end{equation*}
$$

## TIES27 GaAs NONCOHERENT INFRARED SOURCE

## DEVICE PERFORMANCE

## Forward Voltage

At a constant temperature, the voltage change as a function of current can be predicted from equation (4):

$$
\begin{equation*}
\Delta V_{F}=\frac{n K T}{q} \log e \frac{I F 1}{I F 2} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{V}_{\mathrm{F}} & =\text { forward voltage } \\
\mathrm{I}_{\mathrm{F}} & =\text { forward current } \\
\frac{\mathrm{KT}}{\mathrm{q}} & \approx 26 \mathrm{mV} \\
\mathrm{n} & =\text { constant }
\end{aligned}
$$

The value of $n$ ranges from 1 to 3 for the TIES27 with $n$ being larger at small forward bias currents. Exact values for n may be obtained by characterizing the diode under the operating conditions to which it will be exposed.

The typical distribution of the forward voltage at the rated current of 300 mA will range from 1.3 volts to a maximum of 2.2 volts.

## Optical Power

The TIES27 generates an optical output power of 15 mW minimum. The optical output power approximates a linear function of the forward bias current when operated above a few milliamperes and at or below the maximum specified forward current. Figure 2 shows relative optical power versus forward drive current.

The optical output power can be described by Equation (5):

$$
P_{o}=I_{\phi} E
$$

where

$$
\begin{align*}
& \mathrm{I}_{\phi}=\text { optical output current }=\eta_{\mathrm{S}} \mathrm{I} \mathrm{~F}  \tag{5}\\
& \mathrm{E}=\frac{1.24}{\lambda_{\mathrm{p}}}
\end{align*}
$$

$$
\lambda_{\mathrm{p}}=\text { peak wavelength in micrometers }
$$

The optical power of the TIES27 varies inversely with temperature. A typical curve of optical output power versus temperature is shown in Figure 3.

## Spectral Distribution

The distribution of emission wavelengths of the TIES27 is narrow; half-power wavelengths are typically separated by 450 angstroms. The peak wavelength ranges


FIGURE 2. Relative Optical Power versus Forward Ditive Current for TIES27. $T=25^{\circ} \mathrm{C}$.


FIGURE 3. Relative Photon Intensity versus Case Temperature
from 9300 to 9450 angstroms when operated at rated forward current ( 300 mA ) at $25^{\circ} \mathrm{C}$ stud temperature. The peak wavelength ( $\lambda_{\mathrm{p}}$ ) is a function of forward bias current and temperature. The change in wavelength of peak intensity versus case (stud) temperature is shown in Figure 4.

## TIES27 GaAs NORCOHERENT INFRARED SOURCE



FIGURE 4. Change in Wavelength of Peak Intensity versus Case (Stud) Temperature. $I_{F}=300 \mathrm{~mA}$.

## Radiance

Radiance ( $\mathrm{L}_{\mathrm{e}}$ ) is defined as radiant intensity emitted per unit area. In the case of the TIES27, the radiance can be calculated by using Equations (5) - (8):

$$
\begin{equation*}
\mathrm{P}_{\mathrm{o}}=\mathrm{I}_{\phi} \mathrm{E} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{I}_{\phi}=\text { optical output current }=\eta_{\mathrm{s}} \mathrm{I} \mathrm{~F} \\
& \mathrm{E}=\frac{1.24}{\lambda_{\mathrm{p}}} \\
& \lambda_{\mathrm{p}}=\text { peak wavelength in micrometers. } \\
& \mathrm{L}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{o}} / \Omega}{\mathrm{A}} \tag{6}
\end{align*}
$$

where

$$
\mathrm{P}_{\mathrm{o}}=\text { total optical power }
$$

$\Omega=$ solid angle of emission in steradians

$$
\mathrm{A}=\text { Area of active region in } \mathrm{cm}^{2} .
$$

For the TIES27 (active area is $18 \times 18$ mils),

$$
\begin{align*}
\mathrm{A} & =(0.018 \times 2.54)^{2} \mathrm{~cm}^{2}=2.09 \times 10^{-3} \mathrm{~cm}^{2}  \tag{7}\\
\mathrm{~L}_{\mathrm{e}} & =\frac{\left(15 \times 10^{-3} \mathrm{~W}\right) /(2 \pi \mathrm{sr})}{2.09 \times 10^{-3} \mathrm{~cm}^{2}}  \tag{8}\\
& =1.14 \mathrm{~W} \cdot \mathrm{sr}^{-1} / \mathrm{cm}^{2}
\end{align*}
$$

It should be pointed out that this is the worst case because the TIES27 does not emit uniformly into $2 \pi$ steradians but into a solid angle less than $2 \pi$.

## Radiant Intensity

The radiant intensity of an isotropic radiator is equal in all directions, therefore, the radiant intensity is equal to

$$
\begin{equation*}
\mathrm{I}_{\mathrm{e}}=\frac{\mathrm{P}}{2 \pi} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{e}}=\text { radiant intensity }(\mathrm{W} / \mathrm{sr}) \\
& \mathrm{P}=\text { total optical power }(\mathrm{W})
\end{aligned}
$$

However, most GaAs infrared emitters are not perfect isotropic radiators and the radiant intensity is higher on the optical axis or within a few degrees of the optical axis. Figure 5 shows a typical intensity pattern for the TIES27.

## Thermal Resistance

The thermal resistance of the TIES27 is typically in the range of $12^{\circ} \mathrm{C} / \mathrm{W}$. The chip is mounted directly to the stud which when heatsinked properly can be approximated to the first order as an infinite heatsink. It is important to note that the thermal resistance is a very difficult parameter to determine and measured values from different groups of processed material may have a wide distribution.

## Pulse Mode Operation

The TIES27 is capable of being pulsed at relatively high peak currents. The limiting factor, as it is in most pulsed mode applications, is the interfaces and not the P-N junction-the power density gets so large in the bonding wire or the contact pad that catastrophic failures occur. For example, a 1 -mil gold wire that is 0.5 inches long has a power density of approximately $4200 \mathrm{~W} / \mathrm{cm}^{3}$ with 300 mA flowing through it. However, by increasing the current to 1 amp , the power density increases to approximately $47,000 \mathrm{~W} / \mathrm{cm}^{3}$.

## TIES27 GaAs NONCOHERENT INFRARED SOURCE



FIGURE 5. A Typical Intensity Pattern for the TIES 27
There are tradeoffs that must be considered when operating in the pulse mode such as duty cycle, repetition rate, and peak current. The peak current can be approximated with reasonable accuracy by using

$$
\begin{equation*}
\mathrm{I}_{\mathrm{FM}}=\left(\mathrm{I}_{\mathrm{F}} \max \right) / \mathrm{D}=\mathrm{I}_{\mathrm{F} \max }\left(\frac{\mathrm{~T}}{\mathrm{t}}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{I}_{\mathrm{FM}} & =\text { maximum peak current } \\
\mathrm{I}_{\mathrm{F}} \mathrm{max} & =\text { maximum-rated continuous forward } \\
& \text { current } \\
\mathrm{D} & =\text { duty cycle } \\
\mathrm{T} & =\text { period of frequency } \\
\mathrm{t} & =\text { diode "on" time }
\end{aligned}
$$

However, careful judgement should be used to ensure that the peak current does not exceed a level that will cause the bonding wires to open. The TIES27 should not be exposed to peak pulses of current greater than 4 amperes with an appropriate duty cycle. Figure 6 shows typical peak power


FIGURE 6. Typical Peak Power of TIES 27 at 10 kHz with Various Peak Current Levels at Various Duty Cycles
obtained when the device was operated at a frequency of 10 kHz with current levels of 1 ampere, 2 amperes and 4 amperes at respective duty cycles of $50 \%, 25 \%$, and $12.5 \%$ - higher current pulses than equation (10) defines.

## Optical Design Considerations

Since the TIES27 emits into such a large pattern (approximately $2 \pi$ steradians), it is necessary to use some form of optics to collect and direct that portion of the optical power that will be used.

The amount of optical power collected can be determined quickly once the optics have been defined. The following is an example that illustrates the effect of the f-number of the lens on the power transmitted.

f IS FOCAL LENGTH
FIGURE 7. Typical Optical Collection Configuration

## TIES27 GaAs NONCOHERENT INFRARED SOURCE

$$
\begin{align*}
& \mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\mathrm{o}}\left(\frac{\Omega_{\mathrm{c}}}{\Omega_{\mathrm{e}}}\right) \eta_{\mathrm{t}}=  \tag{11}\\
& \quad \mathrm{P}_{\mathrm{o}}\left(\frac{2 \pi(1-\cos \theta)}{2 \pi}\right) \eta_{\mathrm{t}}
\end{align*}
$$

where
$P_{t}=$ optical power transmitted in the beam of the collection optics.
$P_{o}=$ the total radiated optical power.
$\Omega_{c}=$ the solid angle of collection in steradians.
$\Omega_{\mathrm{e}}=$ the solid angle of emission in steradians.
$\eta_{\mathrm{t}}=$ the transmission efficiency of the lens.
$\theta=$ the half angle of the collection cone.
Table 1

$\mathrm{f}-$   number	0   $\left.{ }^{\circ}\right)$	$1-\operatorname{Cos} \theta$	$\mathrm{P}_{\mathrm{t}}$   $(\mathrm{mW})$
1.0	26.6	0.1	1.5
1.4	19.6	0.06	0.8
2.0	14.0	0.03	0.45
2.8	10.2	0.02	0.3
4.0	7.0	0.01	0.15

## TYPICAL APPLICATION DATA

Figure 8 shows an economical approach for modulating a TIES27. This circuit features excellent bandwidth as well as high peak currents. Figures 9,10 , and 11 show the performance data for the circuit shown in Figure 8.

## MECHANICAL DATA

The device is encapsulated and mounted on a stud header. The cathode is in electrical contact with the solder lug. The anode is in electrical contact with the stud, which is insulated from the case by a glass-to-metal seal. Soldered connections should not be made directly to the stud because of the low-thermal-resistance path between stud and emitting element.


FIGURE 8. An Economical Circuit for Modulating a TIES27


FIGURE 9. Maximum Frequency for Circuit in Figure 8


FIGURE 10. Frequency Response of IRED
in Circuit of Figure 8

## TIES27 GaAs NONCOHERENT INFRARED SOURCE



FIGURE 11. Intensity versus Input Power for Circuit in Figure 8 When it is Used with an f/1.6 Lens Which has a 29-Millimeter Diameter

## HIGH-RESISTIVITY SILICON PHOTODIODES

## INTRODUCTION

Texas Instruments high-resistivity silicon photodiodes provide outstanding performance in the visible and nearinfrared regions of the electromagnetic spectrum. These photodiodes ususally have a large active area and operate at a high reverse bias. The principal characteristics of these devices are

- High speed at near-IR wavelengths
- Good responsivity at $1.06 \mu \mathrm{~m}$
- Large output signal
- Dark current relatively independent of reverse bias

The principal applications for these photodiodes include the following:

- Laser Guidance Systems
- Optical Proximity Fuzes
- Laser Distance-Measuring Systems
- Laser Detection and Optical Alignment in LongRange Optical Communications
- High-Speed Character Recognition Equipment


## HIGH-RESISTIVITY SILICON PHOTODIODE STRUCTURE

The basic structure of a high-resistivity silicon photodiode is shown in Figure 1. This is a planar diffused diode with an $\mathrm{N}+$ guard-ring and is operated in a reverse-bias mode. The outstanding features of this structure are the following:

- High reliability due to silicon-nitride-passivated planar-diffused junction
- High signal-to-noise ratio due to anti-reflection coating on the detector element and low dark current resulting from the $\mathrm{N}+$ guard ring
- Simplified optical systems as a result of large areas. Active areas up to 0.650 -inch diameter are available in standard products.
- Flexibility in system design. Single or multiple detector elements on a single substrate are available in standard and custom-designed packages.
- Wide depletion region at relatively low voltages due to the use of high-resistivity silicon
- Low capacitance and good responsivity at $1.06 \mu \mathrm{~m}$ because of the wide depletion width.
- High speed as a result of all hole-electron pairs being generated in the high-field drift region.


FIGURE 1-BASIC STRUCTURE OF THE HIGH-RESISTIVITY SILICON PHOTODIODE

## ELECTRICAL CHARACTERISTICS

Typical characteristics for high-resistivity silicon photodiode detectors at $25^{\circ} \mathrm{C}$ and 150 V reverse bias are:

- Responsivity ( $\mathrm{A} / \mathrm{W}$ )
0.34 at $1.06 \mu \mathrm{~m}$
0.68 at $0.9 \mu \mathrm{~m}$
0.20 at $0.6 \mu \mathrm{~m}$
0.02 at $0.4 \mu \mathrm{~m}$
- Rise and Fall Times $\approx 7 \mathrm{~ns}$ at $1.06 \mu \mathrm{~m}$
- Capacitance $\approx 35 \mathrm{pF} / \mathrm{cm}^{2}$
- Dark Current $<1 \mu \mathrm{~A} / \mathrm{cm}^{2}$
- Crosstalk between elements in detector arrays $<1$ percent

Figure 2 is a graph of responsivity versus wavelength for a typical detector.

## HIGH-RESISTIVITY SILICON PHOTODIODES



FIGURE 2-RELATIVE SPECTRAL RESPONSE CURVE

These devices have a maximum operating voltage greater than 300 volts, well in excess of the voltage required for full depletion. A plot of the typical dark current versus reverse voltage is shown in Figure 3. Dark current versus temperature and the effect of temperature on the responsivity at $0.9 \mu \mathrm{~m}$ and at $1.06 \mu \mathrm{~m}$ are shown in Figure 4.

A capacitance versus reverse voltage plot of a detector is shown in Figure 5. Note that the detector capacitance becomes independent of the voltage when the detector is fully depleted.


FIGURE 3-DARK CURRENT VERSUS REVERSE VOLTAGE


FIGURE 4-DARK CURRENT AND RADIANT RESPONSIVITY VERSUS TEMPERATURE


FIGURE 5-CAPACITANCE VERSUS REVERSE VOLTAGE

## HIGH-RESISTIVITY PHOTODIODE

 DETECTOR OPERATIONThe basic operation of a high-resistivity photodiode is illustrated in Figure 6. When a reverse bias is applied to the diode, the depletion region expands, and a high field is formed within the detector. The conditions shown in Figure 6 are for a reverse bias of about 100 volts. The electron-hole pairs that are created in the depletion region by the incoming electromagnetic radiation have a high drift velocity, which results in fast and efficient collection. The use of high-resistivity silicon allows a wide depletion width and low capacitance at moderate voltages. The depletion region expands to the back contact at a reverse bias of about 150 volts. Good responsivity at longer wavelengths requires a wide depletion region because of the low absorption coefficient of silicon at these wavelengths.

The basic electrical model for these detectors operated under a reverse bias is shown in Figure 7.

Texas Instruments is currently engaged in the volume production of these detectors (Figure 8) to military specifications and is actively pursuing various development programs for both commercial and military applications.

ELECTRON CREATED IN NON-DEPLETED
REGION MUST DIFFUSE TO THE DEPLETION


FIGURE 6-BASIC OPERATION OF THE HIGH-RESISTIVITY SILICON PHOTODIODE

where 1 = photoelectric current generated
$C_{D}=$ diode capacitance
rD = diode differential resistance
rs = diode series resistance, and
$\mathrm{R}_{\mathrm{L}}=$ load resistor

FIGURE 7-BASIC ELECTRICAL MODEL FOR THE HIGH-RESISTIVITY SILICON PHOTODIODE OPERATING IN REVERSE-BIAS MODE

The generated current I, in amperes, is given by

$$
I=R_{e} P A
$$

where $\quad R_{e}=$ responsivity in amperes/watt
$\mathrm{P}=$ power of incident radiation in watts $/ \mathrm{cm}^{2}$, and $A=$ junction area in $\mathrm{cm}^{2}$.


- Plastic Dual-In-Line and Metal-Case 200-mil Pin-Circle Packages Available
- High-Power GaAlAs Infrared Sources, $\lambda_{p}=790 \mathrm{~nm}$
- High-Speed GaAIAs Infrared Sources, $\lambda_{p}=850 \mathrm{~nm}$
- High-Speed Low-Voltage Silicon PIN Diodes
- DuPont PFX-PIR140 Plastic Fiber Used for Source Outputs, Detector Inputs, and Cable Assembles
- Standard AMP Incorporated Fiber-Optic Connectors
- Low-Cost Lead-Frame Assembly for Plastic-Package Sources and Detectors


## INTRODUCTION

Texas Instruments offers three types of assemblies for fiberoptic data link applications: source assemblies, detector assemblies, and cable assemblies. The source and detector assemblies have integral fiber-optic cables for optimum coupling of radiant energy. All assemblies incorporate the DuPont Company PFX-PIR140 infrared-transmitting plastic fiber-optic cable and are terminated in AMP Incorporated fiber-optic connectors or ferrules. The fiber-optic cable has an outer jacket diameter of 1.9 mm ( 0.075 inch) and optical fiber cladding and core diameters of 0.40 mm ( 0.016 inch) and 0.37 mm ( 0.015 inch ), respectively. The source and detector assemblies can also be coupled to large-corediameter glass fibers or to 7-and 19 -strand glass-fiber bundles. The assembly part number is designated by the basic series type followed by " C " or " M " and three digits corresponding to the cable length in centimeters or meters, respectively. Assemblies are available with various fiberoptic cable lengths. An example of a part number designation is TXES476C025.


Figure 1. Basic Fiber-Optic Components

## DEVICE PACKAGING

Source and detector assemblies are available in metal-case packages and plastic packages. For the metal-case packages, the electro-optical device is in an epoxy-filled case similar to but slightly shorter than JEDEC TO-5 outline. A coin header is used for the emitter to increase thermal dissipation capability. For the plastic package, lead-frames with the mounted devices are assembled in a premolded plastic case, which is epoxy filled to produce a solid assembly. The six-lead dual-in-line package configuration is suitable for PC board mounting. Leads are on $2,54-\mathrm{mm}$ ( 0.100 -inch) centers for insertion in $7,62-\mathrm{mm}(0.300$-inch) center mounting-hole rows. The low profile package is $8,9 \mathrm{~mm}$ ( 0.35 inch) high, $12,2 \mathrm{~mm}$ ( 0.48 inch) wide, and $15,2 \mathrm{~mm}$ ( 0.60 inch) long. The integral fiber-optic cable exits from the package parallel to the PC board. The plastic package has a unique internal design that enables simple, precise self-alignment of the optical fiber relative to the emitter or detector chip.

## FIBER TERMINATIONS

Two types of fiber terminations are available for the source and detector assemblies. One is the AMP Optimate ${ }^{\dagger}$ singleposition fiber-optic connector (AMP P/N 1-530530-0). This connector is also used for the cable assemblies. A compatible bulkhead-mount splice bushing (AMP P/N 530570-1) is supplied with each detector and cable assembly. The second type fiber termination is a ferrule (AMP P/N 1-226953-0) with appropriate crimp ring and spring, which is compatible with the AMP Optimate multiple-position fiber-optic connectors designed for PC board applications.

## FIBER-OPTIC ASSEMBLIES

## SOURCE ASSEMBLIES

Two basic types of GaAlAs emitters are used for fiber-optic source assemblies. The high-power emitter has a peakemission wavelength of 790 nm for optimum transmission through plastic fibers and a radiant risetime of 20 ns . The high-speed emitter has a radiant risetime of 10 ns and a peak-emission wavelength of 850 nm . All source assemblies are characterized by the radiant power output $\mathrm{P}_{\mathrm{O}}$ from the end of the integral fiber-optic cable. $\mathrm{P}_{\mathrm{O}}$ at 100 mA is as high as $200 \mu \mathrm{~W}$ for the high-power emitter and $80 \mu \mathrm{~W}$ for the high-speed emitter.

ASSEMBLY SERIES	PACKAGE	TYPICAL RADIANT POWER OUTPUT, $\mathrm{PO}^{\dagger}$	TERMINATION ${ }{ }^{\text { }}$	$\begin{aligned} & \text { STANDARD } \\ & \text { CABLE } \\ & \text { LENGTHS }(\mathrm{cm}) \end{aligned}$	FEATURES
TXES475*	Metal case	$120 \mu \mathrm{~W}$	A	25,50,100	High-power sources with 20 -ns risetime, $\lambda_{p}=790 \mathrm{~nm}$
TXES476*	Metal Case	$200 \mu \mathrm{~W}$	A	25,50,100	
TXES478	Plastic DIP	$100 \mu \mathrm{~W}$	A	25,50,100	
TXES479	Plastic DIP	$200 \mu \mathrm{~W}$	A	25,50,100	
TXES480	Plasitc DIP	$100 \mu \mathrm{~W}$	B	5,10,25	
TXES481	Plastic DIP	$200 \mu \mathrm{~W}$	B	5,10,25	
TXES485	Metal case	$50 \mu \mathrm{~W}$	A	25,50,100	High-speed sources with 10 -ns risetime,$\lambda_{p}=850 \mathrm{~nm}$
TXES486	Metal case	$80 \mu \mathrm{~W}$	A	25,50,100	
TXES488	Plastic DIP	$40 \mu \mathrm{~W}$	A	25,50,100	
TXES489	Plastic DIP	$80 \mu \mathrm{~W}$	A	25,50,100	
TXES490	Plastic DIP	$40 \mu \mathrm{~W}$	B	5,10,25	
TXES491	Plastic DIP	$80 \mu \mathrm{~W}$	B	5,10,25	

. See data sheet on page 375.
${ }^{\dagger}$ Radiant power output is shown for the $25-\mathrm{cm}$ cable length only.
$\ddagger_{A} \equiv$ AMP Optimate single-position fiber-optic connector.
$B \equiv$ Ferrule for AMP Optimate multiple-position fiber-optic connector


Figure 2. Plastic Dual-In-Line Package for Source and Detector Assemblies


Figure 3. Source and Detector Assemblies on Microprocessor PC Board

Driving the input of the source is easily accomplished with standard circuits. The IRED in the on-condition of 100 mA forward current has a typical forward voltage of 1.6 V . Junction capacitance at 0 V is typically 120 pF . Diode series resistance is in the range of 1.5 to $6 \Omega$. Since the radiant power output is approximately proportional to the input drive current, the ideal drive circuit would be a current source. Due to the low impedance of the IRED, a current source can be approximated by a voltage source and a series resistance as shown in Figure 4. The forward drive current, IF, can be approximated by

$$
\begin{equation*}
I_{F}=\frac{V_{S}-1.6}{R_{S}} \tag{1}
\end{equation*}
$$

where
$\mathrm{V}_{\mathrm{S}}=$ source voltage
$R_{S}=$ series limiting resistor
Another technique commonly used is to to drive the IRED directly from a TTL peripheral driver IC as shown in Figure 5. Either a series or shunt switch can be used. The shunt switch provides a relatively constant load to the supply thereby reducing need for bypass capacitors to eliminate circuit crosstalk; however, the circuit consumes more power. The drive current is also determined by equation (1) with $V_{S}=V_{C C}$. Drive current for the series circuit B can be determined by

$$
\begin{equation*}
\mathrm{I}_{\mathrm{F}}=\frac{V_{C C}-V_{C E}(\mathrm{sat})-1.6}{R_{S}} \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
V_{C C} & =\text { supply voltage } \\
V_{C E}(\text { sat }) & =\text { output collector saturation voltage. }
\end{aligned}
$$

The recommended operating condition for the source assemblies at $25^{\circ} \mathrm{C}$ case temperature is a peak forward current of 100 mA with a duty cycle of 50 percent maximum. A $50-\mathrm{mA}$ average diode current maximizes IRED lifetime and minimizes IRED heating. For continuous operation, a factor-of-2 increase in diode current from 50 mA to 100 mA increases the radiant power output by a factor of 1.9. A slight saturation effect occurs at high currents (pulsed or continuous) due to current crowding effects in the emitter chip, and higher junction temperature due to higher average currents decreases the device efficiency.


Figure 4. Source Drive Circuit

(a) Series Switch

(b) Shunt Switch

Figure 5. TTL Drive Circuit (a) Series Switch
(b) Shunt Switch

## FIBER-OPTIC ASSEMBLIES

## DETECTOR ASSEMBLIES

Two basic types of silicon photodiodes are used for fiberoptic detector assemblies. The photodiodes are designed to operate in the reverse-bias mode. High-resistivity silicon is used to provide good responsivity and low capacitance at low voltage. A new high-performance photodiode is fully depleted at 5 V and has risetimes of 8 ns at 5 V and 3 ns at 25 V . The detector has a built-in identical reference diode for dark-current circuit compensation at high temperatures. Also available is a lower-speed photodiode with a risetime that varies from 60 ns at 12 V to 35 ns at 50 V . All detector assemblies are characterized in terms of radiant responsivity
 $\mathrm{R}_{\mathrm{e}}(\mathrm{a})$ referenced to the power incident on the input end of the integral fiber optic cable. Typically, $R_{e(a)}$ is $0.3 \mathrm{~A} / \mathrm{W}$.

ASSEMBLY   SERIES	PACKAGE	TYPICAL   RESPONSIVITY $\dagger$,   Re $\left._{\text {e }}\right)$	TERMINATION $\ddagger$	STANDARD   CABLE   LENGTHS $(\mathrm{cm})$	FEATURES
TXED453*	Metal case	$0.3 \mathrm{~A} / \mathrm{W}$	A	$25,50,100$	$\mathrm{t}_{\mathbf{r}}=35 \mathrm{~ns}$ typ @ 50 V
TXED454	Metal Case	$0.3 \mathrm{~A} / \mathrm{W}$	A	$25,50,100$	$\mathrm{t}_{\mathbf{r}}=8 \mathrm{~ns}$ typ @ 5 V
TXED455	Plastic DIP	$0.3 \mathrm{~A} / \mathrm{W}$	A	$25,50,100$	Integral reference diode
TXED456	Plastic DIP	$0.3 \mathrm{~A} / \mathrm{W}$	B	$5,10,25$	

*See data sheet on page 351.
${ }^{\dagger}$ Responsivity is specifled for $25-\mathrm{cm}$ cable length only
$\ddagger A \equiv A M P$ Optimate single-position fiber-optic connector
$B \equiv$ Ferrule for AMP Optimate multiple-position fiber-optic connector
Most detector circuits operate with voltage sources and voltage-responding circuits. The designer must choose an effective way to convert photodiode current to voltage. The easiest conversion is done with a simple resistor circuit as shown in Figure 6.

$$
\begin{equation*}
V_{O}=I_{O} R_{L} \tag{3}
\end{equation*}
$$

However, the value of $\mathrm{R}_{\mathrm{L}}$ must be low to avoid limiting the frequency response with a large time constant. The $10 \%$ to $90 \%$ circuit rise time may be found by the formula:

$$
\begin{equation*}
\operatorname{tr}_{\mathrm{r}}(\mathrm{c})=2.2 \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{T}} \tag{4}
\end{equation*}
$$

where $\mathrm{C}_{\boldsymbol{T}}=$ Photodetector capacitance
The total risetime resulting from the detector risetime and circuit risetime is expressed by:

$$
t_{r}(t)=\sqrt{t_{r}^{2}+t_{r}(c)^{2}}
$$



Figure 6. Simple Receiver Circuit

Another expression of frequency response is the $3-\mathrm{dB}$ bandwidth B:

$$
\begin{equation*}
B=\frac{0.35}{\operatorname{tr}_{r}(t)} \tag{5}
\end{equation*}
$$

A circuit that overcomes the limitations of the simple resistor technique makes use of an operational amplifier in the transimpedance mode as shown in Figure 7. The output voltage $\mathrm{V}_{\mathrm{O}}$ is also given by Equation 3 except that $\mathrm{R}_{\mathrm{L}}$ becomes $\mathrm{Z}_{\mathrm{T}}$, the amplifier transimpedance. The effective load on the detector is low and the output impedance of the circuit is also low, allowing it to drive a relatively high capacitance.

Another transimpedance circuit that should be considered for use with detector assemblies is the TIEF152 transimpedance amplifier designed for use with photodiodes. The transimpedance is typically $12 \mathrm{k} \Omega$, and the $3-\mathrm{dB}$ bandwidth is typically 20 MHz . Input impedance is typically $300 \Omega$, and output impedance is about $4 \Omega$.

Another important consideration in the design of fiberoptic data links is noise. Receiver noise is a function of the shot noise of the photodiode dark current and the thermal noise of $R_{L}$ (or $Z_{T}$ ). Because high-performance detectors usually have very low values of dark current, the thermal noise is often the dominant factor.

The equivalent input noise current density is typically $3 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ for the TIEF 152 (see the TIEF152 data sheet). The noise bandwidth is equal to $\pi / 2$ times the $3-\mathrm{dB}$ bandwidth. Thus, the total noise current is 17 nA . To achieve a signal-to-noise ratio of 15 , the detector output (amplifier input) current must be 225 nA . Since the transimpedance is $12 \mathrm{k} \Omega$, the amplifier output signal voltage should be 3 mV . Additional amplification will still be required to achieve the threshold voltages required by most voltage comparators used for digital transmission systems.

In general, longer data links can be accomplished by limiting the amplifier bandpass. Narrower bandwidths provide less noise, so that the detector output current (and input power) can be lower without degrading the signal-to-noise ratio. Lower required input power allows for more attenuation in the cable for a given source output level.


Figure 7. Detector and Operational Amplifier


Figure 8. Detector and TIEF152 Transimpedance Amplifier

## FIBER-OPTIC ASSEMBLIES

## CABLE ASSEMBLIES

The TXEF402-series fiber-optic cable assemblies consist of a length of DuPont Company PFX-PIR140 infrared-transmitting plastic fiber-optic cable with each end terminated with an AMP Optimate single-position fiber-optic connector. Cable lengths of one meter ( 3.3 ft ) to 50 meters ( 165 ft ) are available. The fiber optic cable has a calculated numerical aperture of 0.53 .

Computed relative transmission values are shown in Figure 9 as a function of peak-emission wavelength for on-axis radiation from a GaAlAs source. The effective attenuation is equal to $380 \mathrm{~dB} / \mathrm{km}$ at $\lambda_{p}=790 \mathrm{~nm}$ and $620 \mathrm{~dB} / \mathrm{km}$ at $\lambda_{p}=850 \mathrm{~nm}$. The attenuation of nonaxial higher-order modes may be higher.

The cable assemblies are characterized by the transmittance $\tau$, which accounts for the combined effects of attenuation losses and interface losses.


Figure 9.

ASSEMBLY*	LENGTH   (METERS)	T (TYPICAL)   $@ 790 \mathrm{~nm}$	T (TYPICAL)   $@ 850 \mathrm{~nm}$
TXEF402M001	1	0.50	0.45
TXEF402M003	3	0.40	0.33
TXEF402M006	6	0.30	0.20
TXEF402M010	10	0.20	0.11
TXEF402M020	20	0.07	0.022
TXEF402M030	30	0.03	0.0055
TXEF402M040	40	0.012	0.0013
TXEF402M050	50	0.005	0.0003

*See data sheet on page 357.


CABLE ASSEMBLY TRANSMITTANCE $=\tau=\frac{l_{2}}{l_{1}}$
CABLE ASSEMBLY INSERTION LOSS IN DECIBELS $=10$ LOG $\frac{l_{2}}{I_{1}}$
Figure 10. Cable Assembly Transmittance Test

## FIBER-OPTIC DATA-LINK PERFORMANCE

A complete fiber-optic data link formed from the various assemblies can easily be implemented and the performance predicted. The detector current output, $l_{0}$, for a complete data link is given by:

$$
\mathrm{I}_{\mathrm{O}}=\mathrm{P}_{\mathrm{O}} \tau \mathrm{R}_{\mathrm{e}(\mathrm{a})}
$$

where
$\mathrm{P}_{\mathrm{O}}=$ source assembly radiant power output
$\tau=$ cable assembly transmittance
$\mathrm{R}_{\mathrm{e}(\mathrm{a})}=$ detector assembly radiant responsivity.
For applications requiring longer distance, higher frequency, or higher temperatures than can be achieved with plastic fiber, the use of low-loss glass or plastic-clad silica or large-core glass fibers is required. The low-loss graded-index fiber ( $<10 \mathrm{~dB} / \mathrm{km}$ ) has a typical core diameter of $0,06 \mathrm{~mm}$ that requires. expensive, small-area high-radiance optical sources and precision optical connectors. Its numerical aperture is about 0.2 . For long-distance or very-high-frequency applications this type of fiber is essential, but it may not be the optimum choice for short- and medium-distance applications. The plastic-clad silica fibers and large-core glass fibers generally have properties between those of the plastic fiber and the low-loss glass fiber. The core diameter is typically $0,20 \mathrm{~mm}$, the numerical aperture is 0.3 , and the attenuation is 10 to $50 \mathrm{~dB} / \mathrm{km}$. The disadvantages of this type of fiber compared to plastic fibers are that it is more difficult to terminate and more brittle, and has a larger bend radius and smaller core diameter.

For medium-distance links greater than 50 to 70 meters, a hybrid data link can be constructed using cable assemblies incorporating the plastic-clad silica fibers or large-core glass fibers with source and detector assemblies incorporating the plastic fiber ( $0,37-\mathrm{mm}$ core diameter). For long cable lengths, the additional coupling loss due to the area mismatch at the source-to-cable connection is more than compensated for by the lower attenuation of the glass. There is no additional coupling loss at the cable-to-detector connection. The hybrid approach enables the use of the lower-cost sources, lower-cost connectors, and the achievement of more reproducible coupling losses.


Figure 11.


Figure 12.

## FIBER-OPTIC ASSEMBLIES

NEW PRODUCTS AVAILABLE FIRST QUARTER '79

## TRANSMITTER AND RECEIVER IC'S

FOR FIBER-OPTIC DATA LINKS

SBP9962
TRANSMITTER IC

SBP9963
RECEIVER IC

- Converts 8 Parallel Data Lines to Encoded Serial Data
- Single 5-Volt Power Supply
- 1-Megabit-per-Second Serial Data Rate
- Expandable to 16 Bits
- $I^{2} L$ Technology
- 20-Pin DIP
- Converts Serial Output of PIN Photodiode to 8 Parallel Data Lines
- 1- $\mu \mathrm{A}$ Input Sensitivity
- Single 5-Volt Power Supply
- Expandable to 16 Bits
- 20-Pin DIP


## LOW-COST FIBER-OPTIC DATA LINK


|


[^0]:    Texas Instruments
    INCORPORATED

[^1]:    High-reliability versions (TIL23HR, TIL24HR, TIL25HR) arc also available.
    ҒOutput per element
    For additional infrared emitters, see the Special Electro-optical Components section of this book.

[^2]:    ${ }^{\dagger}$ This curve normalized to output at $I_{F}=35 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^3]:    ${ }^{\dagger}$ Radiant intensity is calculated from $\mathrm{I}_{\mathrm{e}}=\mathrm{P}_{\mathrm{O}} / 2 \pi\left(1-\cos 0.5 \theta_{\mathrm{HI}}\right)$. One sterdian is the solid angle at the center of a sphere subtended by a portion of the surface area equal to the square of the radius of the sphere. There are $4 \pi$ steradians in a complete sphere.
    $\ddagger$ Radiant pulse rise time is the time required for a change in radiant intensity from $10 \%$ to $90 \%$ of its peak value for a step change in current; radiant pulse fall time is the time required for a change in radiant intensity from $90 \%$ to $10 \%$ of its peak value for a step change in current. NOTE 1: Derate linearly to $150^{\circ} \mathrm{C}$ case temperature at the rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

[^4]:    ${ }^{t}$ Radiant intensity is calculated from $l_{e}=P_{O} / 2 \pi\left(1-\cos 0.5 \theta_{\mathrm{H}}\right)$. One steradian is the solid angle at the center of a sphere subtended by a portion of the surface area equal to the square of the radius of the sphere. There are $4 \pi$ steradians in a complete sphere.
    $\ddagger$ Radiant pulse rise time is the time required for a change in radiant power output from $10 \%$ to $90 \%$ of its peak value for a step change in current; radiant pulse fall time is the time required for a change in radiant power output from $90 \%$ to $10 \%$ of its peak value for a step change in current.
    NOTE 1: Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.53 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

[^5]:    ${ }^{\dagger}$ Radiant intensity is measured over 0.01 steradian on the mechanical axis. One steradian is the solid angle at the center of a sphere subtended by a portion of the surface area equal to the square of the radius of the sphere. There are $4 \pi$ steradians in a complete sphere.
    $\ddagger$ Radiant pulse rise time is the time required for a change in radiant power output from $10 \%$ to $90 \%$ of its peak value for a step change in current; radiant pulse fall time is the time required for a change in radiant power output from $\mathbf{9 0 \%}$ to $10 \%$ of its peak value for a step change in current.
    NOTES: 1. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
    2. This value applies for $\mathrm{t}_{\mathrm{w}} \leqslant 10 \mu \mathrm{~s}, \mathrm{f} \leqslant 1 \mathrm{kHz}$. See Figure 1 .
    3. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=10 \mathrm{~ms}$, duty cycle $\leq 1 \%$.

[^6]:    ${ }^{\dagger}$ High-reliability versions (TIL601HR thru TIL604HR) are also available.
    $\ddagger$ Each element.
    § Not recommended for new design.
    For additional photodetectors, see Special Electro-optical Components section of this book.

[^7]:    *absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
    Input-to-Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 1 \mathrm{kV}$
    Collector-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V
    Collector-Emitter Voltage (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V
    Emitter-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V
    Input Diode Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 V
    Input Diode Continuous Forward Current at (or below) $65^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) . . . . 40 mA
    Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
    Peak Diode Current (See Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1A
    Continuous Transistor Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4) . . . . 300 mW
    Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
    Lead Temperature $1,6 \mathrm{~mm}$ ( $1 / 16 \mathrm{Inch}$ ) from Case for 10 Seconds . . . . . . . . . . . . . . . . . $240^{\circ} \mathrm{C}$
    NOTES: 1. This value applies with the emitter-base diode open-circuited and the input-diode current equal to zero.
    2. Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
    3. This value applies for $\mathrm{t}_{w} \leqslant 1 \mu_{\mathrm{s}}$, PRR $\leqslant 300$ pps.
    4. Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    *JEDEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.

[^8]:    *JEDEC registered data

[^9]:    NOTES: 1. This value applies when the base-emitter diode is open-circuited.
    2. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
    3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    5. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^10]:    NOTE 7: Pulse operation of input diode is required for operation beyond limits shown by dotted line.

[^11]:    absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
    Input-to-Output RMS Voltage (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . 2500 V
    Collector-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 V
    Collector-Emitter Voltage (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
    Emitter-Collector Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
    Emitter-Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
    Input-Diode Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V
    Input-Diode Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) . . . . 100 mA
    Continuous Phototransistor Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4) . . . 150 mW
    Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
    Lead Temperature $1.6 \mathrm{~mm}(1 / 16 \mathrm{Inch})$ from Case for 10 Seconds . . . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$
    NOTES: 1. This rating applies for sinewave operation at 50 or 60 Hz . Service capability is verified by testing in accordance with UL requirements,
    2. This value applles when the base-emitter diode is open-circuited.
    3. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
    4. Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^12]:    NOTES: 1. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.73 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
    2. Derate linearly to $80^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.91 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    ${ }^{\dagger}$ ABS thermoplastics are derived from acrylonitrile, butadiene and styrene.

[^13]:    ${ }^{\dagger}$ ABS thermoplastics are derived from acrylonitrile, butadiene, and styrene.

[^14]:    POST OFFICE BOX 225012 • DALLAS, TEXAS 75265
    TEXAS INSTRUMENTS

[^15]:    ${ }^{\dagger}$ Height of magnified character

[^16]:    †Trademark of E.i. duPont de Nemours, Inc.

[^17]:    ${ }^{\dagger}$ Trademark of E.I. duPont de Nemours, Inc.

[^18]:    ${ }^{\dagger}$ Trademark of E.l. duPont de Nemours, Inc.

[^19]:    †Trademark of E.I. du Pont de Nemours, Inc

[^20]:    ${ }^{\dagger}$ Trademark of E.I. du Pont de Nemours, Inc.

[^21]:    *JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

[^22]:    * JEDEC registered data

[^23]:    NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    ${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.

[^24]:    ${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is blased for maximum obtainable gain.

[^25]:    absolute maximum ratings
    Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature, Each Diode (See Note 1) . . . . . 50 mW
    Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
    Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$
    NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ case temperature at the rate of $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    ${ }^{\dagger}$ Gain-bandwidth product is the gain times the frequency of measurement when the diode is biased for maximum obtainable gain.

[^26]:    *A product of E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898
    ${ }^{\dagger}$ A product of AMP Incorporated, Harrisburg, Pennsylvania 17105

[^27]:    *A product of E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898
    tA product of AMP Incorporated, Harrisburg, Pennsylvania 17105

