

# Telecom, Datacom <br> \& <br> System Timing 

# Product Catalog 

PN 1003600

Revision 1.0.A
First printed October 1997

An ISO-9001 Registered Company

Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.

TriQuint and the TriQuint logo are registered trademarks of TriQuint, Inc. TriQuint product names are trademarks of TriQuint , Inc. All other trademarks are the property of their respective holders.

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.

## Table of Contents <br> Table of Contents

Overview Section 1
Telecommunications Products ..... Section 2
Section
Digital Switching Products ..... Section 3
Data Communications Products ..... Section 4
Section 4
Mixed Signal Products ..... Section 5
Section 5
System Timing Products Section 6
Application Notes Section 7
Sales and Distribution ..... Section 8

TQS

> SEMICONDUCTOR, INC.

## Section 1 - Overview

Product Summary ..... 1-3
Company Background ..... 1-6

## TaS

## Product Summary

## Telecommunications Products

| Part | Description | PLL Features | Low-Speed I/O | High-Speed I/O | Loopback | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TQ8101 | 622/155 Mb/s SONET/SDH <br> 8:1 Mux and 1:8 Demux | Includes $622 \mathrm{Mb} / \mathrm{s}$ transmit PLL | TTL | ECL | Yes | 2-3 |
| TQ8103 | $622 \mathrm{Mb} / \mathrm{SONET} / \mathrm{SDH}$ <br> Clock and Data Recovery | Includes $622 \mathrm{Mb} / \mathrm{s}$ PLL | TTL | ECL | - | 2-17 |
| TQ8105 | 622/155 Mb/s Enhanced SONET/SDH <br> 8:1 Multiplexer, 1:8 Demultiplexer, Framer, and PLL (single supply) | Includes $622 \mathrm{Mb} / \mathrm{s}$ transmit PLL | TTL | ECL or PECL | Yes | 2-27 |
| TQ8106 | TQ8105 with clock and data recovery | Includes $622 \mathrm{Mb} / \mathrm{s}$ CDR | TTL | ECL or PECL | Yes | 2-27 |

## Digital Switching Products

| Part | Description | Propagation Delay | 1/0 | Skew (max.) | Jitter | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TQ8015 | $1.25 \mathrm{~Gb} / \mathrm{s} /$ port $16 \times 16 \mathrm{ECL}$ Digital Crosspoint Switch | 2000 ps | ECL | 500 ps | 150 ps pk-pk | 3-3 |
| TQ8016 | $1.3 \mathrm{~Gb} / \mathrm{s} /$ port $16 \times 16 \mathrm{ECL}$ Digital Crosspoint Switch | 2000 ps | ECL | 400 ps |  | 3-11 |
| TQ8017 | $1.25 \mathrm{~Gb} / \mathrm{s} /$ port $16 \times 16$ PECL Digital Crosspoint Switch | 2000 ps | PECL | 500 ps | 150 ps pk-pk | 3-21 |
| TQ8025 | $2.5 \mathrm{~Gb} / \mathrm{s} /$ port $16 \times 16$ PECL Digital Crosspoint Switch | 2000 ps | PECL/CML | 200 ps | 100 ps pk-pk | 3-29 |
| TQ8032 | $800 \mathrm{Mb} / \mathrm{s} /$ port $32 \times 32$ ECL Digital Crosspoint Switch | 2300 ps | ECL | 500 ps | 150 ps pk-pk | 3-37 |
| TQ8033 | 1.5 Gb/s/port $64 \times 33$ PECL Digital Crosspoint Switch | 2500 ps | PECL | 150 ps | 150 ps pk-pk | 3-45 |

## Data Communications Products

| Part | Description | Page |
| :--- | :--- | :---: |
| GA9101, GA9102 | 266/200 Mbaud Fibre-Channel ESCON Transmitter and Receiver | $\mathbf{4 - 3}$ |
| GA9103 | 266 Mbaud Fibre-Channel Encoder/Decoder | $\mathbf{4 - 1 7}$ |
| TQ9303 | $531 / 1063$ Mbaud Fibre-Channel Encoder/Decoder | $\mathbf{4 - 3 5}$ |
| TQ9501, TQ9502 | $531 / 1063$ Mbaud Fibre-Channel Transmitter and Receiver | $\mathbf{4 - 6 1}$ |
| TQ9525 | 2.5 Gb/s 20-bit Transceiver | $\mathbf{4 - 7 7}$ |

## Product Summary (continued)

## Mixed Signal Products

| Part | Description | Page |
| :--- | :--- | :---: |
| TQ6122 | 1GS/s 8-Bit Digital-to-Analog Converter | $\mathbf{5 - 3}$ |
| TQ6124 | 1GS/s 14-Bit Digital-to-Analog Converter | $5-27$ |

## System Timing Products

## Eleven-Output Clock Buffers

| Part | Prop. Delay | Input Freq. | Output Freq. | Configuration | 1/0 | Skew (max.) | Jitter | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GA1085 | $\begin{aligned} & -350 \mathrm{ps} \pm 1000 \\ & (-\mathrm{MC} 1000) \end{aligned}$ | 24-105 MHz | $24-105 \mathrm{MHz}$ | $2 @ 1 / 2 x$ w/phase shift, 4@1x, 4@1/2x or 2@1x w/phase shift, | TTL <br> $\pm 30 \mathrm{~mA}$ <br> output drive | 150 ps <br> within group <br> - <br> 350 ps <br> group-group | 200 ps (max.) period-period - <br> 400 ps (max.) random | 6-3 |
| GA1086 | $\begin{aligned} & -350 \mathrm{ps} \pm 500 \\ & (-\mathrm{MC} 500) \\ & \text { or } \\ & -350 \mathrm{ps} \pm 1000 \\ & (- \text { MC1000 }) \end{aligned}$ | $30-67 \mathrm{MHz}$ | $15-67 \mathrm{MHz}$ | 9@1x, 1@1/2x | TTL <br> $\pm 30 \mathrm{~mA}$ <br> output drive | 250 ps within group | 75 ps (typ.) | 6-13 |
| GA1087 | $\begin{aligned} & -350 \mathrm{ps} \pm 500 \\ & (-\mathrm{MC} 500) \\ & \text { or } \\ & -350 \mathrm{ps} \pm 700 \\ & (-\mathrm{MC} 700) \\ & \hline \end{aligned}$ | $24-105 \mathrm{MHz}$ | $24-105 \mathrm{MHz}$ | $\begin{aligned} & 5 @ 1 x, 5 @ 1 / 2 x \\ & \text { or } \\ & 6 @ 2 x, 4 @ 1 x \end{aligned}$ | ```TTL \pm30 mA output drive``` | 150 ps <br> within group <br> 350 ps group-group | 200 ps (max.) <br> period-period <br> 400 ps (max.) <br> random | 6-25 |
| GA1088 | $\begin{aligned} & -350 \mathrm{ps} \pm 500 \\ & (-\mathrm{MC} 500) \\ & \text { or } \\ & -350 \mathrm{ps} \pm 700 \\ & (-\mathrm{MC} 700) \end{aligned}$ | 18-105 MHz | 18-105 MHz | $\begin{aligned} & 4 @ 1 x \text { w/phase shift, } \\ & 3 @ 1 x, 3 @ 1 / 2 x \\ & \text { or } \\ & 2 @ 1 x, 4 @ 2 x \text {, } \\ & 4 @ 2 x \text { w/phase shift } \\ & \hline \end{aligned}$ | TTL <br> $\pm 30 \mathrm{~mA}$ <br> output drive | 150 ps <br> within group <br> 350 ps <br> group-group | 200 ps (max.) <br> period-period <br> 400 ps (max.) <br> random | 6-35 |
| TQ1089 | $\begin{aligned} & -350 \mathrm{ps} \pm 700 \\ & (-\mathrm{MC} 700) \end{aligned}$ | $\begin{aligned} & 130-180 \mathrm{MHz} \\ & 65-90 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 130-180 \mathrm{MHz} \\ & 65-90 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 1 @ 1 x, 9 @ 1 / 2 x \\ & \text { or } \\ & 2 @ 2 x, 8 @ 1 x \end{aligned}$ | TTL <br> $\pm 30 \mathrm{~mA}$ <br> output drive | $150 \text { ps }$ <br> within group $350 \mathrm{ps}$ group-group | 200 ps (max.) <br> period-period <br> 400 ps (max.) <br> random | 6-71 |
| TQ1090 | $\begin{aligned} & -350 \mathrm{ps} \pm 700 \\ & (-\mathrm{MC} 700) \end{aligned}$ | $33-45 \mathrm{MHz}$ <br> $65-90 \mathrm{MHz}$ <br> $130-180 \mathrm{MHz}$ | $33-45 \mathrm{MHz}$ <br> $65-90 \mathrm{MHz}$ <br> $130-180 \mathrm{MHz}$ | $\begin{aligned} & 3 @ 1 x, 5 @ 1 / 2 x, 2 @ 2 x \\ & \text { or } \\ & 4 @ 1 x, 4 @ 2 x, 2 @ 4 x \end{aligned}$ | TTL <br> $\pm 30 \mathrm{~mA}$ <br> output drive | 150 ps <br> within group <br> 350 ps <br> group-group | 200 ps (max.) <br> period-period <br> 400 ps (max.) random | 6-81 |

# Product Summary (continued) 

## System Timing Products (continued)

## Six-Output Clock Devices

| Part | Prop. Delay | Input Freq. | Output Freq. | Configuration | 1/0 | Skew (max.) | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GA1110E | $\pm 1 \mathrm{~ns}$ | $\begin{aligned} & -20: 20 \mathrm{MHz} \\ & -25: 25 \mathrm{MHz} \\ & -33: 33 \mathrm{MHz} \\ & -40: 40 \mathrm{MHz} \\ & -50: 50 \mathrm{MHz} \end{aligned}$ | $20-50 \mathrm{MHz}$ | 6@1x W/phase shift | TTL <br> $\pm 24-\mathrm{mA}$ output drive | $1000 \text { ps }$ <br> within group | 6-45 |
| GA1210E | $\pm 1 \mathrm{~ns}$ | $\begin{aligned} & -20: 20 \mathrm{MHz} \\ & -25: 25 \mathrm{MHz} \\ & -33: 33 \mathrm{MHz} \\ & -40: 40 \mathrm{MHz} \\ & -50: 50 \mathrm{MHz} \end{aligned}$ | 20-100 MHz | $\begin{aligned} & \text { 2@1x, 4@2x } \\ & \text { or } \\ & \text { 2@1x, 2@2x, } \\ & \text { 2@1x wh/phase shift } \end{aligned}$ | $\begin{aligned} & \text { TTL } \\ & \pm 24 \text {-mA } \\ & \text { output drive } \end{aligned}$ | $\begin{aligned} & 1000 \mathrm{ps} \\ & \text { within group } \end{aligned}$ | 6-59 |

## High-Frequency Clock Generators

| Part | Input Freq. | Output Freq. | I/O | Jitter | Page |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TQ2059 | $20-35 \mathrm{MHz}$ | $200-350 \mathrm{MHz}$ | TTL/PECL | 30 ps (typ.) period-period | $\mathbf{6 - 9 1}$ |
| TQ2060 | $35-50 \mathrm{MHz}$ | $350-500 \mathrm{MHz}$ | TTL/PECL | 25 ps (typ.) period-period | $\mathbf{6 - 9 7}$ |
| TQ2061 | $25-35 \mathrm{MHz}$ | $500-700 \mathrm{MHz}$ | TTL/PECL | 25 ps (typ.) period-period | $\mathbf{6 - 1 0 3}$ |

## Wireless Communication Products and Foundry Services

For information on TriQuint's wireless communications products and foundry services, refer to the Wireless Communications Products Data Book.

## TQS

## Company Background

## Introduction

TriQuint Semiconductor designs, develops, manufactures and markets a broad range of highperformance analog and mixed-signal gallium arsenide (GaAs) integrated circuits (ICs) for the telecommunications, data communications, computing, and wireless communications markets.

TriQuint engineers apply the company's proprietary GaAs technology to produce high-performance, lowcost ICs that give customers a competitive edge in their product strategies.

Inherent physical properties allow electrons to move approximately five times faster in GaAs than in silicon. This enables GaAs ICs to operate at much higher frequencies than silicon ICs - or to perform as fast while using substantially less power. GaAs also provides more linear amplification, can receive weaker signals due to its low-noise characteristics, and can transmit strong clean signals at lower voltages.

The company's major markets are currently growing at $35-50 \%$ annually. End-user customers include Alcatel, Cisco Systems, Digital Equipment, Ericsson, DSC Communications, Hughes, IBM, Lucent Technologies, Motorola, Nortel, Panasonic, Philips, Qualcomm, Siemens and StorageTek.

## History

TriQuint Semiconductor was founded in 1985 at the Beaverton, Oregon, laboratories of Tektronix by a group who had undertaken the first GaAs research and development work in 1978.

Following a strong production-oriented approach from inception, TriQuint in 1988 became the first GaAs IC manufacturer to make the transition to 100 mm (4-inch) wafers.

In 1990, TriQuint was the first company to offer GaAs ICs in plastic packages for high-volume, low-cost radio frequency (RF) applications. That year the company also shipped its first space-qualified products for nonmilitary communication satellite applications.

In 1991, three pioneering GaAs semiconductor companies - Gazelle Microcircuits, Gigabit Logic and TriQuint - merged under the TriQuint Semiconductor name. The focus of the new company was communications - cellular and other wireless phones, satellite communications, the long-distance fiber optic telecommunications market and computer networking. This focus has enabled TriQuint to average 30-35\% annual growth.

TriQuint became a public company in December 1993, raising approximately $\$ 17$ million in its initial public offering. A follow-on stock offering in September 1995 raised a further $\$ 48$ million. TriQuint's stock trades under the symbol TQNT on NASDAQ.

In 1995, the overall growth rate increased to $50 \%$, with year-end revenues of approx. \$46 million. Strong growth continued during 1996, as revenues increased to approximately $\$ 60$ million.

Also in 1996, TriQuint launched its Total Quality Management initiative, called Continuous Process Improvement (CPI). Quality Improvement Teams are formed from natural work groups or across departments to address specific quality issues, improve processes and increase the value to customers of TriQuint's services and products. Teams work on clearly defined tasks, document and analyze problems and processes, test and implement solutions, then track progress and monitor results.

In the fourth quarter of 1996, TriQuint became the first semiconductor company to install the innovative management information system designed by SAP. This leading-edge software combines real-time manufacturing, financial and sales information in a totally integrated on-line system to improve business efficiency and productivity.

In January 1997, TriQuint started moving operations to the new 27 -acre corporate campus in Hillsboro. The 160,000 square foot complex includes a new wafer fabrication facility with greatly expanded production capability, with expanded sections for product testing and product and process development.

Output from the new facility is expected to meet anticipated demand though the year 2000. Additional space on the site will allow the company to further expand manufacturing operations in the future.

## Technology and Markets

TriQuint has organized its GaAs design and manufacturing operations into two divisions, both addressing high-growth market segments: telecommunications/data communications and wireless communications.

TriQuint's Telecom/Datacom Division is one of two product divisions in the company. It serves the longdistance fiber optic telecommunications market, and also provides specialized products for general computing and electronics industries.

Telecom/Datacom is meeting the rising demand for GaAs solutions resulting from the increased bandwidth needs of new communications technologies, such as "fiber to the curb," asynchronous transfer mode (ATM), multimedia on the Internet and wireless local loop.

Computing products supplied by this Division are primarily targeted at high-speed serial data communication. Standard products include high-performance transmission and switching devices, high-speed digital-to-analog convertors, and system timing components.

The Wireless Communications Division serves the fastgrowing markets for mobile telephones and computing. Wireless is moving to higher frequencies, requiring high-performance mobile phones. TriQuint's products and technology help meet the explosive global demand for portable, battery-powered communications devices.

Regulatory agencies around the world have created whole new communications markets by opening up additional frequencies for mobile telephony usage.

## TOS

Many leading manufacturers of high-frequency digital wireless communications devices are implementing TriQuint's integrated gallium arsenide MESFET technology in wide variety of communications applications. GaAs' superior linearity and noise performance provide higher signal fidelity. Other benefits include more gain at low voltages and better power efficiency for longer battery life.

The higher levels of RF integration possible with TriQuint's GaAs technology reduces overall system costs by shortening the design cycle and speeding product development.

As cellular handsets become smaller and retail prices continue to plunge, a GaAs RFIC can replace the 20-30 discretes found in earlier generations of analog cellular phones, providing better performance, lower cost, smaller size, ease of manufacturing and faster time to market.

## Manufacturing

TriQuint has recently relocated its manufacturing operations to an all new 160,000 square feet facility located on 27 acres in Hillsboro, Oregon. Fabrication facilities occupy 38,000 square feet and include 16,000 square feet of Class 10 clean room. The new facility will be capable of quadrupling current production rates by the year 2000. Product design, support and administrative offices are also located at the new site.

TriQuint's wafer fabrication facility produces 4 -inch wafers using the company's high-volume, low-cost ionimplanted metal semiconductor field effect transistor (MESFET) processes. The company also provides foundry and manufacturing services. All TriQuint's operations are ISO 9001 certified.

TriQuint works with a number of strategic assembly and packaging houses in the US and overseas to meet demand for product. All wafer and final product testing is done at the TriQuint test facilities, primarily on highvolume automatic test equipment and associated handlers.

## Partnerships

Since 1993, TriQuint has had a manufacturing partnership with Lucent Technologies, formerly AT\&T Bell Labs. Under a joint development agreement, TriQuint has rights to certain intellectual property of Lucent. As part of a manufacturing services agreement, TriQuint processes GaAs wafers for Lucent.

TriQuint has ongoing manufacturing partnerships with Cirrus Logic, Cellnet and Motorola and in 1996 signed new agreements with Philips Semiconductors and Qualcomm.

Under a wafer sourcing and technology sharing agreement with Philips Semiconductors, TriQuint will manufacture a new range of GaAs monolithic microwave integrated circuit (MMIC) power amplifiers compatible with all emerging digital cellular and cordless telephone standards.

The agreement with Qualcomm is to jointly develop RFICs for CDMA PCS phones, including an RF receive component critical for compliance with the IS-95 CDMA standard and other RF ICs for wireless local loop and the Globalstar satellite system. Products and Services

TriQuint's standard products include high-performance, low-cost digital, analog and mixed-signal GaAs RFICs used in communications systems. The company also provides application-specific and custom circuit
solutions for major communication system original equipment manufacturers.

## Telecommunications

TriQuint has a growing portfolio of products for broadband systems based on the system operation at synchronous optical network (SONET), synchronous digital hierarchy (SDH) and ATM standards. Typical functions include multiplexing and demultiplexing, clock generation and clock recovery.

Telecom and datacom applications include ATM, digital cross-connects, switch interfaces, wide area network (WAN) hubs and routers, SONET transmission and switching systems, workstations, servers, network interface cards, proprietary links and central office equipment.

TriQuint leads the market in low-jitter telecom products. Bellcore-compliant standard products at 622 Mbps provide unparalleled waveform fidelity with high edge rates, exceptionally wide eye openings and ultra-low jitter tolerance.

High quality mixed-signal phase-lock loop (PLL) technology enables TriQuint to produce telecommunications transceiver and serializer and deserializer chips with the best performance in the industry. These devices provide physical layer interfacing between industry-standard optoelectronic modules and industry-standard overhead processor and cellmapping products.

TriQuint is the world leader in crosspoint switches above 500 MHz , providing digital switching solutions with aggregate bandwidths of over 50 Gbps and channel bandwidths of up to 2.5 Gbps with standard crosspoint products.

In addition to telecom and datacom switches, TriQuint is a major supplier of switching products to the digital video market. Though operating at switching rates lower than maximum capacity, these products provide high video signal fidelity for greater design margins and higher-integrity data transfer.

The Telecom/Datacom Division's biggest market is SONET applications, where the company has established a strong market presence. TriQuint combines expertise in high-speed SONET circuit design with the proprietary process technology to deliver custom appli-cation-specific IC solutions.

## Data Communications

In the datacom market, TriQuint focuses on high-speed serial data communications, the preferred method for high-volume data transfer. Data communication chipsets are available for the new 1 Gbps Fibre Channel standard and for proprietary serial links.

A broad range of serial communications devices incorporating exceptionally low-jitter, high-frequency PLL technology perform the serialization, CDR and deserialization functions. These support the physical interface requirements of Fibre Channel, ESCON, Gigabit Ethernet and proprietary links. In addition, TriQuint offers encoder/decoder (ENDEC) products for complete point-to-point serial communication links.

Operating at data rates from $200 \mathrm{Mb} / \mathrm{s}$ to $2.50 \mathrm{~Gb} / \mathrm{s}$, standard datacom products are compatible with copper and optical media drivers from original equipment manufacturers.

Combining high-noise immunity with low-jitter data transmission and exceptional jitter tolerance, TriQuint's
phase lock loop technology allows increased transmission length over fiber and copper transmission media at the low bit error rates required for advanced digital communication. Typical applications are disk arrays, high-speed ribbon cable replacement, data acquisition systems and other inter-system communications.

TriQuint also manufactures system timing components to synthesize and distribute precise clock signals in high-performance digital computing systems.

These products provide very low clock skew and increased timing margins for high-speed systems, using low-jitter, controlled-delay PLL technology and clock distribution buffers compatible with very highfidelity transistor-transistor logic/complementary metal oxide semiconductor (TTL/CMOS) and positive emitter coupler logic (PECL).

TriQuint makes standard system timing products for designs based on Pentium ${ }^{\text {TM }}$, PowerPC ${ }^{\text {TM }}$ and Alpha AXP ${ }^{\text {TM }}$ processors serving applications from 20 MHz to 700 MHz . Applications include low-skew clock distribution, board-to-board clock synchronization, multiphase clocking and high-frequency clock generation.

## Wireless Communications

Standard products supplied to wireless communications markets worldwide serve as the essential building blocks for multi-purpose applications in RF and microwave systems.

TriQuint applies its GaAs design and manufacturing technologies to supply industry-standard products for PCS networks, analog and digital cellular phones, satellite communication, satellite receivers for TV broadcast, wireless transceivers for data networks, hand-held navigation systems based on the global
positioning satellite (GPS) standard, wireless local area networks (WLANs) and wireless modems.

TriQuint's wireless communications standard products focus on simplifying the complex requirements of RF front end design. These devices address the essentials of radio frequency applications - power amplification, frequency conversion and switching.

Signal amplification is important for both transmit and receive functions. A receiver must be able to amplify weak incoming signals without adding noise. Above 500 MHz , as frequency increases, TriQuint power amplifiers generate less noise than silicon, while the power-added efficiency of GaAs enables them to operate at lower supply voltages and at higher efficiency.

TriQuint's GaAs technologies add significant value to frequency conversion functions. Incoming RF signals are down-converted to lower frequencies for easier processing and processed signals are up-converted before transmission. TriQuint downconverter and upconverter ICs reduce inter-signal interference and provide superior signal power gain during conversion, especially at higher operating frequencies.

Switches route signals between receiver, transmitter and other processing devices. TriQuint's low-loss switches minimize the loss of signal quality and signal strength. Switching devices are frequency integrated with frequency converters, low-noise amplifiers and power amplifiers.

Among TriQuint's newest wireless standard products is a dual-mode RF power amplifier IC for mobile phones operating in most of the cellular and PCS standards; a low-voltage RFIC downconverter for cellular and PCS frequencies; a monolithic transmit/receive amplifier/ switch for spread-spectrum applications; a single-
supply single-pole double-throw (SPDT) RF switch; and dual-band products.

The company is also a world leader in foundry services to wireless markets, providing components for the global Groupe Speciale Mobile (GSM), DCS1800 and Personal Handyphone System (PHS) standards.

During 1996, TriQuint announced a total of 47 design wins in wireless handset applications involving 19 different customers. Most were for cellular and PCS applications and several were for wireless local loop systems, a new segment of the wireless communications market.

For more information on TriQUint's wireless communications products, refer to the Wireless Communications Products Data Book.

## Contract Manufacturing Services

Electronics companies often need to integrate the functions of proprietary RF or high-speed mixed-mode systems into custom ICs to improve manufacturability, minimize component insertions, achieve higher yields and reduce costs. Since 1985, TriQuint engineers have developed the design tools and manufacturing infrastructure to serve the special needs of customers who design and develop their own GaAs circuits.

Manufacturing services range from wafer fabrication to test engineering and plastic packaging. Complete postfabrication and product engineering services help customers better manage yields.

Expert staff guide customers through design to finished IC, providing full security for intellectual property while minimizing time to market. Design services include tools, training and support and referrals to design houses familiar with TriQuint's high-performance GaAs process technologies. Design tools include a digital and analog cell library of over 150 pre-designed components.

Several high-performance GaAs MESFET processes are available to implement IC designs. TriQuint's 1 -micron enhancement/depletion mode MESFET processes is widely used for RF and mixed analog/digital circuits, supporting RF applications up to X -band and digital circuits of LSI complexity.

Newly available is the TQTRx, a next-generation 0.6micron enhancement/depletion mode MESFET process that offers true integration of RF transmit and receive functions.

For more information on TriQUint's foundry services, refer to the Wireless Communications Products Data Book.

# Section 2 - Telecommunications Products 

TQ8101C SONET/SDH MDFP ..... 2-3
TQ8103 622 Mb/s Clock \& Data Recovery IC ..... 2-17
TQ8105/8106 SONET/SDH Transceiver/Transceiver with CDR ..... 2-27

The TQ8101C is a SONET/SDH transceiver that integrates Multiplexing, Demultiplexing, SONET/SDH Framing, clock synthesis PLL (MDFP), and loopback functions in a single monolithic integrated circuit. Implementation with the TQ8101C requires only a simple external RC loop filter and standard TTL and ECL power supplies. For optimal performance, the TQ8101C MDFP is packaged in a 68 -pin multilayer ceramic (MLC) surface-mount package with an integral CuW heat spreader. The TQ8101C provides an integrated solution for physical interfaces intended for use in STS-12/STM-4 ( $622.08-\mathrm{Mb} / \mathrm{s}$ ) and STS-3/STM-1 ( $155.52-\mathrm{Mb} / \mathrm{s}$ ) SONET/SDH systems.

The TQ8101C meets ANSI, Bellcore, and ITU requirements for a SONET/ SDH device. With a $51.84-\mathrm{MHz}$ reference clock, the phase-locked loop (PLL) provides $77.76-\mathrm{MHz}$ or $19.44-\mathrm{MHz}$ output for the multiplexer and $77.76-\mathrm{MHz}$ or $19.44-\mathrm{MHz}$ and $51.84-\mathrm{MHz}$ output for the demultiplexer.

Typical SONET/SDH system applications for the TQ8101C include:

- Transmission system transport cards
- Switch and cross-connect line cards
- Repeaters
- ATM physical layer interfaces
- Test equipment
- Add/drop multiplexers

Figure 1. Logical Application

*Contact PMC-Sierra for application note.

## TQ8101C

## 622/155 Mb/s SONET/SDH MDFP

## Features

- Byte-wide Multiplexing, Demultiplexing, Framing, and PLL (MDFP) in one device
- Choice of STS-12/STM-4 or STS-3/STM-1 transmission rates
- Configurable master or slave reference clock generation and PLL bypass for external clocking
- 77.76 MHz or 19.44 MHz output for the multiplexer; 77.76 MHz or 19.44 MHz and 51.84 MHz output for the demultiplexer
- External RC loop filter
- Pass-through mode and three loopback modes for enhanced filed diagnostics
- Frame-synchronous and bytealigned demultiplexer output, compliant with SONET and SDH
- Search, detect, and recovery of framing on out-of-frame input
- Standard TTL and differential or single-ended ECL I/O (except TXCK)
- Tristate TTL output for factory circuit-board testability
- 68-pin TriQuint MLC controlled-Z surface-mount package with integral heat spreader
- Dual-supply operation ( $+5 \mathrm{~V},-5.2 \mathrm{~V}$ )
- Low power dissipation (2.3W nom.)

Figure 2. TO8101C Block Diagram


Figure 3. TQ8101C Package-68-pin MLC


SEction (A) (A)

## TQ8101C

## Functional Description

Figure 2 shows a block diagram of the TQ8101C multiplexer, demultiplexer, framer, and PLL clock synthesizer (MDFP). The primary purpose of TQ8101C is to integrate the conversion of serial and parallel SONET/SDH data with bit alignment and clock synthesis in a single device.

## Multiplexing

Byte-wide input data on MXDT(7:0) ${ }^{1}$ is continuously strobed into the multiplexer on the rising edge of the multiplexer clock output, $\operatorname{MXCK}(2: 0) .{ }^{2}$ Any of these three MXCK pins may be used as a reference point for relative timing. (See Table 8 for setup, hold, and skew times. See Table 1 for clock selection options.)

Either an on-chip synthesized clock (see "PLL Clock Synthesis") or an external high-speed multiplexer
clock, MXHC, serializes the input data bytes. In the normal mode of operation, the serial data is then buffered as ECL-compatible output on TXDT. An ECL output is provided for the transmit clock, TXCK.

## Demultiplexing

As shown in Figure 4, The demultiplexer block converts incoming serial data on DXDTIN ${ }^{3}$. Byte-wide output data is presented on $\operatorname{DXDT}(7: 0)^{4}$ slightly after the falling edge of the output demultiplexer clock, DXCK. (See Table 8 for setup, hold, and skew times.)

The demultiplexer block also includes clock divider circuitry, which is used by the demultiplexer to control divide-by-8 output on DXCK. The MDFP provides a divide-by-3 or divide-by-12 output, DXRCK. (See Table 1 for mode selection options.)

Figure 4. Demultiplexer Functional Block


Notes: 1. MXDT(0) is defined as the least significant bit.
2. MXCK(2:0) nominally runs at 77.76 MHz in STS-12/STM-4 mode, and at 19.44 MHz in STS-3/STM-1 mode.
3. Internal signal. See Figure 5, "TQ8101C Loopback Modes."
4. DXDT (0) is defined as the least significant bit.

## Framing

The demultiplexer block (see Figure 2) includes a frame-detection and recovery block. Regardless of the state of the OOF input signal, this block takes DXSYNC high for one period of DXCK whenever it detects a pattern of three "A1" bytes followed by three "A2" bytes.

Frame recovery is initiated by the rising edge of the OOF input signal. The recovery process involves a search for a bit rotation that satisfies the three-"A1"-three-"A2" byte pattern specified for SONET/SDH. Once the pattern is found, DXSYNC goes high and the bit rotation is synchronized to the correct byte boundaries. No further byte boundary adjustments are made, regardless of "A1"-"A2" indication, unless they have been preceded by an 00F rising edge.

Figure 5. TQ8101C Loopback Modes


Split Loopback


## PLL Clock Synthesis

The PLL utilizes a monolithic voltage-controlled oscillator with a typical tuning constant of 50 to 100 MHz per volt on the TUNE input. This configuration provides jitter performance superior to other technologies. In a typical SONET/SDH application the TUNE input and charge pump output IOUT are connected and tied to $\mathrm{V}_{\mathrm{EE}}$ through a 600 -ohm resistor and $0.68-\mu \mathrm{F}$ capacitor.

## Loopback

The TQ8101C features four loopback modes: normal (pass-through), equipment loopback, split loopback, and facility loopback. Loopback modes are controlled by pins CNTL(3:0). Note that the loopback mode does not affect the latched selection of clock modes and rates. Note that the RXCK input is directly connected to the TXCK output in most loopback modes (see below).


Facility Loopback


## Control

The signals on pins CNTL(3:0) can be used to control the clock rate, clock mode, loopback scheme, and tristate pins. Also, the internal PLL high-speed clock may be disabled, allowing an external clock source to be used on the MXHCN and MXHCP pins.

Note that the NAND tree enable normally is used only for device testing of the $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ parameters.

At power-up or during initialization, CNTL(3) should be set to logic 1. During reset, all internal counters, dividers, and loopback states, and the phasefrequency detector, are reset or deactivated. Note that frame search is initiated only by a rising edge on OOF.

Table 1. Modes of Operation

| CNTL(3:0) | Modes of operation |
| :---: | :--- |
| 0 h | Reset |
| 1 h | Tristate all TTL outputs except DXRCK and MO |
| 2 h | NAND-tree test all TTL inputs except CNTL(3:0) |
| 3 h | DXRCK tristate |
| 4 h | Frame recovery disable |
| 5 h | Equipment loopback |
| 6 h | Facility loopback |
| 7 h | Split loopback |
| 8 h | Bypass, slave, internal VCO disabled, STS-3 rate |
| 9 h | Bypass, master, internal VCO disabled, STS-3 rate |
| Ah | Bypass, slave, internal VCO disabled, STS-12 rate |
| Bh | Bypass, master, internal VCO disabled, STS-12 rate |
| Ch | Normal, slave, internal VCO enabled, STS-3 rate |
| Dh | Normal, master, internal VCO enabled, STS-3 rate |
| Eh | Normal, slave, internal VCO enabled, STS-12 rate |
| Fh | Normal, master, internal VCO enabled, STS-12 rate |

Notes: - "Bypass" indicates the use of the external high-speed clock in lieu of the internal transmit PLL.

- "Normal" indicates use of the internal transmit PLL.
- "Master" derives PLL timing from the reference $51.84-M H z$ oscillator input, MXLRC
- "Slave" derives PLL timing from the demultiplexer clock input, RXCK.


## TQ8101C

## Table 2. Absolute Maximum Ratings

| Parameter | Symbol | Level | Minimum | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Positive supply | $\mathrm{V}_{\mathrm{CC}}$ | - | 0 | 7 | V |
| Negative supply | $\mathrm{V}_{\mathrm{EE}}$ | - | -7 | 0 | V |
| Output voltage | $\mathrm{V}_{0}$ | ECL | $\mathrm{V}_{\mathrm{EE}}-0.5$ | +0.5 | V |
| Output current | $\mathrm{I}_{0}$ | ECL | - | 40 | mA |
| Input voltage | $\mathrm{V}_{\mathrm{I}}$ | ECL | $\mathrm{V}_{\mathrm{EE}}-0.5$ | +0.5 | V |
| Input current | $\mathrm{I}_{1}$ | ECL | -1 | 1 | mA |
| Output voltage | $\mathrm{V}_{0}$ | TTL | -0.5 | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |
| Output current | $\mathrm{I}_{0}$ | TTL | - | 20 | mA |
| Input voltage | $\mathrm{V}_{\mathrm{I}}$ | TL | -0.5 | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |
| Input current | $\mathrm{I}_{\mathrm{I}}$ | TTL | -1 | 1 | mA |
| Junction temperature | $\mathrm{T}_{\mathrm{J}}$ | - | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $\mathrm{T}_{\mathrm{S}}$ | - | -65 | +175 | ${ }^{\circ} \mathrm{C}$ |

Table 3. Recommended Operating Conditions

| Parameter | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Positive supply | $\mathrm{V}_{\mathrm{CC}}$ | 4.75 | 5 | 5.25 | V |
| Negative supply | $\mathrm{V}_{\mathrm{EE}}$ | -5.5 | -5.2 | -4.75 | V |
| Operating ambient temperature | $\mathrm{T}_{\mathrm{O}}$ | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

## Table 4. Power Consumption

| Function | +5 V supply | -5.2 V supply | Unit |  |
| :--- | :---: | :---: | :---: | :---: |
| Nominal | 40 | 320 | mA |  |
| Max |  | 55 | 420 | mA |
|  |  |  |  |  |
| Parameter | Symbol | Level | Minimum | Maximum |
| Thermal resistance, junction-case | $\theta_{\mathrm{JC}}$ |  |  | 4 |

## TQ8101C

Figure 6. Pinout Diagram
(heat spreader side-top view)


Figure 7. Recommended Package Footprint


## TQ8101C

## Table 5. Signal Descriptions

| Pin | Signal | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | $V_{\text {EE }}$ |  | Negative power supply input (-5.2V) |
| 2 | GND |  | Ground |
| 3 | RXCKP | In | Receive bit-serial clock; differential ECL, positive |
| 4 | RXCKN | In | Receive bit-serial clock; differential ECL, negative |
| 5 | GND |  | Ground |
| 6 | RXDTN | In | Receive bit-serial data (MSB first); differential ECL, negative |
| 7 | RXDTP | In | Receive bit-serial data (MSB first); differential ECL, positive |
| 8 | GND |  | Ground |
| 9 | TXCK | Out | Transmit bit-serial clock; single-ended ECL level |
| 10 | TXDTP | Out | Transmit bit-serial data (MSB first); differential ECL, positive |
| 11 | GND |  | Ground |
| 12 | TXDTN | Out | Transmit bit-serial data (MSB first); differential ECL, negative |
| 13 | M0 | Out | NAND tree monitor output; TTL level |
| 14 | GND |  | Ground |
| 15 | OOF | In | Out of frame; TTL level; rising-edge initiated frame search |
| 16 | DXRCK | Tri Out | Demultiplexer reference clock; TTL level; 50-pF backplane driving capacity |
| 17 | GND |  | Ground |
| 18 | $V_{C C}$ |  | Positive power supply input ( +5.0 V ) |
| 19 | GND |  | Ground |
| 20 | DXDT7 | Tri Out | Demultiplexer byte-serial data (bit 7); TTL level |
| 21 | DXDT6 | Tri Out | Demultiplexer byte-serial data (bit 6); TTL level |
| 22 | GND |  | Ground |
| 23 | DXDT5 | Tri Out | Demultiplexer byte-serial data (bit 5); TTL level |
| 24 | DXDT4 | Tri Out | Demultiplexer byte-serial data (bit 4); TTL level |
| 25 | GND |  | Ground |
| 26 | DXDT3 | Tri Out | Demultiplexer byte-serial data (bit 3); TTL level |
| 27 | DXDT2 | Tri Out | Demultiplexer byte-serial data (bit 2); TTL level |
| 28 | GND |  | Ground |
| 29 | DXDT1 | Tri Out | Demultiplexer byte-serial data (bit 1); TTL level |
| 30 | DXDT0 | Tri Out | Demultiplexer byte-serial date (bit 0); TTL level |
| 31 | GND |  | Ground |
| 32 | DXCK | Tri Out | Demultiplexer byte-serial clock; TTL level |
| 33 | DXSYNC | Tri Out | Demultiplexer synchronization; TTL level |
| 34 | GND |  | Ground |

(Continues on next page)

## TQ8101C

Table 5. Signal Descriptions (continued)

| Pin | Signal | Type | Description |  |
| :--- | :--- | :--- | :--- | :---: |
| 35 | VEE |  | Negative power supply input (-5.2V) |  |
| 36 | GND | Ground |  |  |
| 37 | MXDT7 | In | Multiplexer byte-serial data (bit 7); TTL level |  |
| 38 | MXDT6 | In | Multiplexer byte-serial data (bit 6); TTL level |  |
| 39 | GND |  | Ground |  |
| 40 | MXDT5 | In | Multiplexer byte-serial data (bit 5); TTL level |  |
| 41 | MXDT4 | In | Multiplexer byte-serial data (bit 4); TTL level |  |
| 42 | GND |  | Ground |  |
| 43 | MXDT3 | In | Multiplexer byte-serial data (bit 3); TTL level |  |
| 44 | MXDT2 | In | Multiplexer byte-serial data (bit 2); TTL level |  |
| 45 | GND |  | Ground |  |
| 46 | MXDT1 | In | Multiplexer byte-serial data (bit 1); TTL level |  |
| 47 | MXDT0 | In | Multiplexer byte-serial data (bit 0); TTL level |  |
| 48 | GND |  | Ground |  |
| 49 | MXCK2 | Tri Out | Multiplexer byte-serial clock (bit 2); TTL level. See Table 1 for output rate. |  |
| 50 | MXCK1 | Tri Out | Multiplexer byte-serial clock (bit 1); TTL level. See Table 1 for output rate. |  |
| 51 | GND |  | Ground |  |
| 52 | VCC |  | Positive power supply input (+5.0V) |  |
| 53 | GND |  | Ground |  |
| 54 | MXCK0 | Tri Out | Multiplexer byte-serial clock (bit 0); TTL level. See Table 1 for output rate. |  |
| 55 | MXLRC | In | Multiplexer low-speed reference clock (51.84 MHz); TTL level |  |
| 56 | GND |  | Ground |  |
| 57 | MXHCN | In | Multiplexer high-speed reference clock (max. 640 MHz); differential ECL, negative |  |
| 58 | MXHCP | In | Multiplexer high-speed reference clock (max. 640 MHz); differential ECL, positive |  |
| 59 | GND |  | Ground |  |
| 60 | CNTL3 | In | Control (bit 3); TTL level |  |
| 61 | IOUT | Out | Tristate charge pump output (analog); connect to pin 63 |  |
| 62 | GND |  | Ground |  |
| 63 | TUNE | In | VCO tune (analog); connect to external loop filter and pin 61 |  |
| 64 | CNTL2 | In | Control (bit 2); TTL level |  |
| 65 | GND |  | Ground |  |
| 66 | CNTL1 | In | Control (bit 1); TTL level |  |
| 67 | CNTLO | In | Control (bit 0); TTL level |  |
| 68 | GND |  | Ground |  |
|  |  |  |  |  |

## TQ8101C

Table 6. DC Characteristics-ECL I/O ${ }^{(1)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Internal ECL reference | (2) | $V_{\text {REF }}$ | - | $0.26 \mathrm{~V}_{\mathrm{EE}}$ |  | mV |
| Common mode voltage | (3) | $V_{\text {com }}$ | -1500 | - | -1100 | mV |
| Differential voltage | (3) | $\mathrm{V}_{\text {DIFF }}$ | 200 | - | 1200 | mV |
| Input HIGH voltage | (4) | $\mathrm{V}_{\text {IH }}$ | -1100 | - | -400 | mV |
| Input LOW voltage |  | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\text {EE }}$ | - | -1500 | mV |
| Output HIGH voltage | (5) | $\mathrm{V}_{\text {OH }}$ | -1000 | 0 | -500 | mV |
| Output LOW voltage | (5) | $\mathrm{V}_{0 \mathrm{~L}}$ | $\mathrm{V}_{T T}-100$ | - | -1600 | mV |
| Input HIGH current | $\mathrm{V}_{\text {IH (MAX) }}$ | $\mathrm{I}_{\mathrm{H}}$ | - | - | 30 | mA |
| Input LOW current | $\mathrm{V}_{\text {IL (MIN) }}$ | $1 / 1$ | - | - | -30 | mA |
| Output HIGH current | (6) | $\mathrm{IOH}_{\mathrm{OH}}$ | 20 | 23 | 30 | mA |
| Output LOW current | (6) | 10 | -2 | 5 | 8 | mA |
| Input capacitance |  | $\mathrm{C}_{\text {IN }}$ | - | 3 | - | pF |
| Output capacitance |  | Cout | - | 3 | - | pF |
| ESD breakdown | (1) | $V_{\text {ESD }}$ | 500 | - | - | V |

Table 7. DC Characteristics-ITL I/O ${ }^{(1)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input HIGH voltage |  | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | - | $\mathrm{V}_{\text {c }}$ | V |
| Input LOW voltage |  | $\mathrm{V}_{\text {IL }}$ | 0 | - | 0.8 | V |
| Input HIGH current | $\mathrm{V}_{\mathrm{IH} \text { (maX) }}$ | $\mathrm{I}_{\mathrm{H}}$ | - | - | 100 | mA |
| Input LOW current | $\mathrm{V}_{\text {IL (MIN) }}$ | $\mathrm{I}_{\text {IL }}$ | -100 | - | - | mA |
| Output HIGH voltage | $\mathrm{I}_{\text {OH }}=3 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 | - | $\mathrm{V}_{\text {c }}$ | V |
| Output LOW voltage | $\mathrm{I}_{0 \mathrm{~L}}=-1 \mathrm{~mA}$ | $\mathrm{V}_{\text {OL }}$ | 0 | - | 0.4 | V |
| Tristate current |  | $\mathrm{l}_{02}$ | -100 | - | 100 | mA |
| Input capacitance |  | $\mathrm{C}_{\text {IN }}$ | - | 8 | - | pF |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | 10 | - | pF |
| ESD breakdown | (1) | $V_{\text {ESD }}$ | 1000 | - | - | V |

Notes (tables 6 and 7):

1. Specifications apply over recommended operating ranges.
2. Single-ended inputs
3. Differential inputs
4. $V_{\text {REF }}=-1300 \mathrm{mV}$
5. $R_{\text {LOAD }}=50$ ohms to $V_{T T}=-2.0 \mathrm{~V}$
6. Not tested; consistent with $V_{O H}$ and $V_{O L}$ tests

Table 8. AC Characteristics

| Parameter | Symbol | Minimum | Nominal | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RXCK clock period | $\mathrm{T}_{\mathrm{C}(\mathrm{RXCK})}$ | 1.6 | - | - | ns |
| MXHC clock period | $\mathrm{T}_{\mathrm{C} \text { (MXHC) }}$ | 1.6 | - | - | ns |
| TXCK clock period | $\mathrm{T}_{\text {C(TXCK) }}$ | 1.6 | - | - | ns |
| MXCK clock period | $\mathrm{T}_{\text {C(MXCK) }}$ | 12.8 | - | - | ns |
| DXCK clock period | $\mathrm{T}_{\text {C(DXCK) }}$ | 12.8 | - | - | ns |
| MXLRC clock period | $\mathrm{T}_{\text {C(MXTRC) }}$ | 18.87 | 19.29 | 19.61 | ns |
| DXRCK clock period | $\mathrm{T}_{\text {C(DXRCK) }}$ | 4.80 | 19.29 | - | ns |
| RXCK clock duty cycle | $\mathrm{T}_{\text {DC(RXCK) }}$ | 30 | 50 | 70 | \% |
| MXHC clock duty cycle | $\mathrm{T}_{\text {DC(MXHC) }}$ | 30 | 50 | 70 | \% |
| TXCK clock duty cycle | $\mathrm{T}_{\text {DC(TXCK) }}$ | 40 | 50 | 60 | \% |
| MXCK clock duty cycle | $\mathrm{T}_{\text {DC(MXCK) }}$ | 40 | 50 | 60 | \% |
| DXCK clock duty cycle | $\mathrm{T}_{\mathrm{DC}(\mathrm{DXCK})}$ | 40 | 50 | 60 | \% |
| MXLRC clock duty cycle | $\mathrm{T}_{\text {DC(MXIRC) }}$ | 30 | 50 | 70 | \% |
| DXRCK clock duty cycle | $\mathrm{T}_{\text {DC(DXRCK) }}$ | 40 | 50 | 60 | \% |
| High-speed rise/fall time ${ }^{1}$ (more than 79 MHz ) | $\mathrm{T}_{\mathrm{H}(\mathrm{R} / \mathrm{F})}$ | - | - | 320 | ps |
| Low-speed rise/fall time ${ }^{1}$ (less than 79 MHz ) | $\mathrm{T}_{\mathrm{L}(\mathrm{R} / \mathrm{F})}$ | - | - | 2.56 | ns |
| CNTL(2:0) Setup Time to CNTL(3) | $\mathrm{T}_{\text {S(CNTL) }}$ | 5500 | - | - | ps |
| CNTL(2:0) Hold Time to CNTL(3) | $\mathrm{T}_{\mathrm{H}(\mathrm{CNTL})}$ | 2000 | - | - | ps |
| RXDT setup time to RXCK | $\mathrm{T}_{\mathrm{S} \text { (RXDT) }}$ | 225 | - | - | ps |
| RXDT hold time to RXCK | $\mathrm{T}_{\mathrm{H}(\mathrm{RXDT})}$ | 125 | - | - | ps |
| 00F rising edge before A1 changes to A2 | $\mathrm{T}_{\text {(00FH) }}$ | 51.44 | - | - | ns |
| OOF pulse width | $\mathrm{T}_{\text {(00FPW) }}$ | 12.86 | - | - | ns |
| DXSYNC rising edge from parallel data output change from A1 to A2 | $\mathrm{T}_{\text {(DSYNC) }}$ | - | 25.72 | - | ns |
| DXSYNC pulse width | $\mathrm{T}_{\text {(DXSYNCPW) }}$ | 12.86 | - | - | ns |
| DXCK falling edge to valid parallel data output | $\mathrm{T}_{\mathrm{P} \text { (DXDT) }}$ | $\mathrm{T}_{\mathrm{C} \text { (RXCK) }}$ | $\mathrm{T}_{\mathrm{C}(\mathrm{RXCK})}+0.5$ | $\mathrm{T}_{\mathrm{C}(\text { RSCK })}+1.5$ | ns |
| MXDT(0:7) setup time to MXCK | $\mathrm{T}_{\text {S(MXDT) }}$ | 4500 | - | - | ps |
| MXDT(0:7) hold time to MXCK | $\mathrm{T}_{\mathrm{H}(\mathrm{MXDT})}$ | -2000 | - | - | ps |
| TXCK falling edge to TXDT | $\mathrm{T}_{\mathrm{P} \text { (TXDT) }}$ | - | - | 500 | ps |

Notes: 1. $20 \%$ to $80 \%$ of min $V_{\text {OH }}$ and max $V_{\text {OL }}$ levels.

## TQ8101C

Figure 8. Input Timing


Figure 9. Output Timing


## TQ8101C

Figure 10. Multiplexer Timing


MXDT(7:0)


TXCK


TXDT








Figure 11. Demultiplexer Timing


## SONET/SDH Considerations

## Jitter Tolerance

This measurement does not apply to the TQ8101C, since data is transmitted from the input parallel bus relative to a TQ8101C-generated clock output (MXCK[2:0]). The user must meet setup and hold time requirements in order to ensure that data tracking is maintained.

## Jitter Generation

By exploiting material characteristics, fully differential SCFL logic, and on-chip reactive elements, the TQ8101C typically has a jitter generation of 0.008 UI RMS (where 1 UI is $1 / 622.08 \mathrm{E} 06$ ) using recommended loop filter component values.

## Ordering Information

## TQ8101-M SONET/SDH MDFP

## Evaluation Board Please contact a TriQuint representative or the factory for availability and pricing.

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^0]The TQ8103 is a monolithic clock and data recovery（CDR）IC that receives NRZ data，extracts the high－speed clock，and presents the separated data and clock as its outputs．This device is designed specifically for SONET OC－12 and SDH STM－4 applications at $622 \mathrm{Mb} / \mathrm{s}$ ．

Its on－chip phase－locked loop（PLL）generates a stable $622.08 \mathrm{Mb} / \mathrm{s}$ reference based upon an external 38.88 MHz TTL reference．The PLL is based on a VCO constructed from integrated reactive components，which form a low－jitter，high－Q differential tank circuit．Both frequency－and phase－detect circuits reliably acquire and hold lock in worst－case SONET jitter conditions and scrambling patterns．The lock－detect circuitry signals when the CDR acquires frequency lock．

Typical SONET／SDH system applications for the TQ8103 include：
－Transmission system transport cards
－Switch and cross－connect line cards
－ATM physical layer interfaces
－Test equipment
－Add／drop multiplexers

Figure 1．Typical Application


## TQ8103

## 622 Mb／s Clock \＆Data Recovery

## Features

－Single－chip CDR circuit for $622 \mathrm{Mb} / \mathrm{s}$ data
－Exceeds Bellcore and ITU jitter tolerance maps
－Single－ended ECL input has loop－ through path for external 50 ohm termination to minimize stubs and reflections
－Clock and data outputs are differential ECL
－Provides complete high－speed OC－12／STM－4 solution when used with TQ8101 or TQ8105 Mux／Demux／Framer／PLL
－External loop filter requires simple passive network
－Maintains clock in absence of data
－28－pin leaded chip carrier
－Can be used with a high－speed external clock

Figure 2. TQ8103 Block Diagram


## Functional Description

The TQ8103 CDR integrates separate detectors for acquiring frequency lock and maintaining precise phase lock. When the CDR is locked onto an incoming NRZ data stream, its phase-detect circuitry compares the phase of the incoming NRZ data and the phase of the generated 622.08 MHz clock. When they differ, the resulting error signal nulls the phase difference and puts the generated 622.08 MHz clock back in phase with the incoming data. In this mode, the LOCK output is high.

The phase-detect circuit operates only when the incoming NRZ data transitions between states. SONET and SDH employ scrambling, which provides an average transition density of 50 percent; however, some data patterns can generate legitimate scrambled signals with a significant number of consecutive ones or zeros. The TQ8103 maintains lock over bit sequences of over 100 consecutive zeros or ones.

When the input data is lost or too many bit times occur without a transition, the PLL (which generates the 622.08 MHz clock) eventually drifts. The lock-detect circuit constantly compares the generated 622.08 MHz clock (divided by 16) and the external 38.88 MHz
reference. When the PLL drifts more than 2000 PPM from the reference, the LOCK output goes low.

The SEL input selects between the phase-detect and frequency-detect circuits. When the PLL drifts out of lock, taking SEL low reverses the drift by switching in the frequency-detect circuit. Connecting the LOCK output directly to the SEL input should ensure that frequency lock is maintained in the absence of data. It is recommended, however, that a low-pass filter be added between LOCK and SEL to allow for orderly transitions between these circuits. Once the PLL frequency is within 500 PPM of the reference, the LOCK output returns high. As the SEL input goes high, the phase-detect circuit again maintains lock to the incoming NRZ data.

The TQ8103 can also be used as a standalone 622.08 MHz frequency reference. When SEL is held low, the PLL utilizes only the frequency-detect circuit. The PLL locks onto the external 38.88 MHz reference to generate the desired 622.08 MHz output.

## Application Information

## Loop Filter Design

The TQ8103 requires an external loop filter. Care should be taken in the implementation of the filter. Good highfrequency design techniques should be used, with the loop filter being connected into the analog ground. The analog supply should be well filtered.

## Data Input Considerations

The serial data input line is a high-frequency ECL signal, and should be kept in a 50 ohm controlled impedance environment. Reflections on the serial input are minimized through the use of a separate loopback termination pin, SINO. A 50 ohm chip resistor between SINO and $V_{T T}$ minimizes stub length for the best signal quality. Another physical design consideration is to place the TQ8103 and its companion high-speed ICs as close as possible to the optics while observing good analog design practice on supply filtering and grounding.

## External Frequency Reference

The externally supplied 38.88 MHz CKREF input needs to have low jitter with fast rise and fall times. Typical applications will use a telecom crystal oscillator such as the Connor-Winfield S14R6-38.88. SONET requires frequency sources to be accurate to $\pm 20 \mathrm{ppm}$ over temperature, voltage, and aging. The CKREF input is a reference frequency for initial frequency lock and for the lock-detect circuit, so it can tolerate accuracies of up to $\pm 100 \mathrm{ppm}$.

Figure 3. External Loop Filter


## Jitter Tolerance

Jitter tolerance describes the ability of the CDR circuit to track timing variations (jitter) in the received signal. The Bellcore and ITU specifications allow the received optical signal to contain jitter. The amount of jitter that must be tolerated is a function of the frequency content of the jitter. The CDR must tolerate many unit intervals (bit times) of low-frequency jitter, but is not asked to tolerate large amounts of jitter at higher frequency. The performance shown in the "Typical Performance Data" section shows that the TQ8103 offers a wide margin over the specification limits.

Jitter tolerance is a system-level issue that is directly affected by the quality of the optics, the quality of the layout (and decoupling), and the specific implementation of the loop filter. The recommended loop filter, described above, has been chosen to provide a robust margin on jitter tolerance.

## TQ8103

Figure 4. TQ8103 Pinout


## Table 1. Signal Descriptions

| Pin | Signal | Type | Description |
| :---: | :---: | :---: | :---: |
| 1 | $V_{\text {DDA }}$ | Supply | Analog ground for VCO |
| 2 | $\mathrm{V}_{\text {EEA }}$ | Supply | Analog -5V supply for VC0 |
| 3 | $\mathrm{V}_{\text {CTL }}$ | Analog In | VCO control voltage input; connect to loop filter |
| 4 | OUCHP | Analog Out | Charge pump output; connect to loop filter |
| 5 | $V_{D D}$ | Supply | Ground ( OV ) |
| 6 | $V_{D D}$ | Supply | Ground ( OV ) |
| 7 | SINI | ECL In | Serial data input |
| 8 | SINO | ECL Term | Loopback of SINI for termination of serial data input; connect with 50 to V דT |
| 9 | $\mathrm{V}_{\text {EE }}$ | Supply | -5 V supply |
| 10 | $\mathrm{V}_{\text {REF }}$ | Analog | Optional reference voltage for single-ended ECL input |
| 11 | $\mathrm{V}_{\text {EE }}$ | Supply | -5 V supply |
| 12 | $\mathrm{D}_{\text {Out }}$ | ECL Out | Differential data output, complement |
| 13 | $\mathrm{D}_{\text {OUTP }}$ | ECL Out | Differential data output, true |
| 14 | CK ${ }_{\text {OUTN }}$ | ECL Out | Differential clock output, complement |

(Continued on next page)

Table 1. Signal Descriptions (continued)

| Pin | Signal | Type | Description |
| :--- | :--- | :--- | :--- |
| 15 | CK $_{\text {OuTP }}$ | ECL Out | Differential clock output, true |
| 16 | V $_{\text {DD }}$ | Supply | Ground (OV) |
| 17 | CKREF | TTL In | Reference clock input for frequency detect and lock detect |
| 18 | $\mathrm{~V}_{\text {DD }}$ | Supply | Ground (OV) |
| 19 | $\mathrm{~V}_{\text {CC }}$ | Supply | +5V supply |
| 20 | $\mathrm{~V}_{\text {EE }}$ | Supply | -5V supply |
| 21 | XTCKI | ECL In | External clock input; selected using SELCK |
| 22 | SELCK | TTL In | External clock select: low = internal VCO, high = XTCLK |
| 23 | LOCK | TTL Out | Lock-detect output |
| 24 | SEL | TTL In | Detection circuit select; low = frequency-detect, high = phase-detect |
| 25 | $\mathrm{~V}_{\text {CC }}$ | Supply | + +5V supply |
| 26 | $\mathrm{~V}_{\text {DD }}$ | Supply | Ground (OV) |
| 27 | $\mathrm{~V}_{\text {CC }}$ | Supply | +5V supply |
| 28 | $\mathrm{~V}_{\text {EE }}$ | Supply | -5V supply |

## Specifications

Table 2. Recommended Operating Conditions

| Parameter | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Positive supply | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5 | 5.5 | V |
| Negative supply | $\mathrm{V}_{\mathrm{EE}}$ | -5.5 | -5 | -4.75 | V |
| Termination voltage | $\mathrm{V}_{\mathrm{TT}}$ | -1.9 | -2.0 | -2.1 | V |
| Operating ambient temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 |  | 85 | ${ }^{\circ} \mathrm{C}$ |

Table 3. Power Consumption

| Parameter | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Positive supply current | $\mathrm{I}_{\mathrm{CC}}$ |  | 5 | mA |  |
| Negative supply current | $\mathrm{I}_{\mathrm{EE}}$ |  |  | 210 | mA |
| Thermal impedance | $\theta_{\mathrm{JA}}$ |  | 40 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Note: These values supersede the recommended operating conditions (Table 2) unless otherwise noted.

## TQ8103

Table 4. DC Characteristics-ECL I/O ${ }^{(1)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Internal ECL reference | $(2)$ | $\mathrm{V}_{\mathrm{REF}}$ |  | -1300 |  | mV |
| Input HIGH voltage | $(3)$ | $\mathrm{V}_{\mathrm{IH}}$ | -1100 |  | -700 | mV |
| Input LOW voltage | $(3,4)$ | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{TT}}$ |  | -1500 | mV |
| Output HIGH voltage | $(5)$ | $\mathrm{V}_{\mathrm{OH}}$ | -1000 | 0 | -700 | mV |
| Output LOW voltage | $(5)$ | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{\mathrm{TT}}$ |  | -1600 | mV |
| Input HIGH current | $(6)$ | $\mathrm{I}_{\mathrm{HH}}$ |  | 10 | $\mu \mathrm{~A}$ |  |

Table 5. DC Characteristics-TTL I/O ${ }^{(1)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input HIGH voltage |  | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| Input LOW voltage |  | $\mathrm{V}_{\mathrm{IL}}$ | 0 | 0.8 | V |  |
| Input HIGH current | $\mathrm{V}_{\mathrm{HH}(\mathrm{MAX})}$ | $\mathrm{I}_{\mathrm{HH}}$ |  | 100 | $\mu \mathrm{~A}$ |  |
| Input LOW current | $\mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}$ | $\mathrm{I}_{\mathrm{IL}}$ | -100 |  | $\mu \mathrm{~A}$ |  |
| Output HIGH voltage | $\mathrm{I}_{\mathrm{OH}}=3 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| Output LOW voltage | $\mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{OL}}$ | 0 |  | 0.4 | V |
| Input capacitance | $(6)$ | $\mathrm{C}_{\mathrm{IN}}$ |  | 8 | pF |  |
| Output capacitance | $(6)$ | $\mathrm{C}_{\text {OUT }}$ |  | 10 | pF |  |

Table 6. AC Characteristics ${ }^{(1)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock to data time | Figure 5 | $\mathrm{t}_{0}$ | 100 |  | 350 | ps |
| Data output rise/fall times | $(7)$ | $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ |  |  | 350 | ps |
| Clock output rise/fall times | $(7)$ | $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ |  |  | 300 | ps |
| TTL output rise/fall times | $(8)$ | $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ |  | 5 |  | ns |
| Acquire time | $(9)$ |  | 3 |  | ms |  |

Notes (Tables 4, 5, and 6):

1. Applies over recommended operating range
2. Single-ended inputs, $V_{E E}=-5 \mathrm{~V}$
3. $V_{R E F}=-1300 \mathrm{mV}$
4. $V_{\pi T}=-2.0 \mathrm{~V}$
5. $R_{\text {LOAD }}=50$ ohms to $V_{T T}=-2.0 \mathrm{~V}$
6. Not tested; consistent with $V_{O H}$ and $V_{O L}$ tests
7.50 ohm load, $20 \%$ to $80 \%$ levels
7. 20 pF load, 0.8 V to 2.0 V
8. With recommended loop filter

Figure 5. Clock-to-Data Timing


## TQ8103

## Table 7. Absolute Maximum Ratings

| Parameter | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Positive supply | $\mathrm{V}_{\mathrm{CC}}$ |  | 0 | 7 | V |
| Negative supply | $\mathrm{V}_{\mathrm{EE}}$ |  | -7 | 0 | V |
| Output voltage | $\mathrm{V}_{0}$ | ECL | $\mathrm{V}_{\mathrm{EE}} \sim 0.5$ | +0.5 | V |
| Output current | $\mathrm{I}_{0}$ | ECL | - | 40 | mA |
| Input voltage | $\mathrm{V}_{\mathrm{I}}$ | ECL | $\mathrm{V}_{\mathrm{EE}}-0.5$ | +0.5 | V |
| Input current | $\mathrm{I}_{1}$ | ECL | -1 | 1 | mA |
| Output voltage | $\mathrm{V}_{0}$ | TTL | -0.5 | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |
| Output current | $\mathrm{I}_{0}$ | TTL |  | 20 | mA |
| Input voltage | $\mathrm{V}_{\mathrm{I}}$ | TTL | -0.5 | $\mathrm{~V}_{\mathrm{CC}}+0.5$ | V |
| Input current | $\mathrm{I}_{\mathrm{I}}$ | TTL | -1 | 1 | mA |
| Junction temperature | $\mathrm{T}_{\mathrm{J}}$ |  | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $\mathrm{T}_{\mathrm{S}}$ |  | -65 | +175 | ${ }^{\circ} \mathrm{C}$ |
| Power dissipation | $\mathrm{P}_{\mathrm{D}}$ |  |  | 2 | W |

Notes: - If the device is subjected to the listed conditions, its reliability may be impaired.

- Beyond the listed conditions, the safety of the device cannot be guaranteed.


## Typical Performance Data

Figure 6. Jitter Tolerance


Figure 7. Output Eye Diagram with extracted clock


Table 8. Typical Performance Data

| Waveforms | 2012 |
| :--- | :--- |
| PRBS data pattern | $2^{-23}$ |
| RMS jitter | 7.855 ps |
| Peak-to-peak jitter | 55 ps |

## Mechanical Specifications

Figure 8. TQ8103 Package Dimensions


## Ordering Information

TQ8103-Q 622 Mb/s Clock \& Data Recovery IC in 28-pin MQuad Package
ETF-8103 Evaluation Board

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

A Principal Member of

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997


The TQ8105/TQ8106 are SONET/SDH transceivers that integrate multiplexing, demultiplexing, SONET/SDH framing, clock-synthesis PLL, and enhanced line and clock diagnostic functions into a single monolithic device. The TQ8106 is a pin-compatible upgrade of the TQ8105 that provides a Clock and Data Recovery (CDR) function. The TQ8105 and TQ8106 allow maximum flexibility in the selection of internal/external Clock and Data Recovery, Opto-Electronic (O/E) Module, and Reference Clock Sources.

On-chip PLLs use external RC-based loop filters to allow custom tailoring of loop response and support the wide range of reference clock frequencies found in SONET/SDH/ATM systems. For transmit clock synthesis or for CDR, the PLLs exceed ANSI, Bellcore, and ITU jitter specifications for systems when combined with industry-typical 0/E devices such as Sumitomo, AT\&T, HP, and AMP. The TQ8105/TQ8106 PLLs provide byte clocks and constant-rate 38.88 MHz and 51.84 MHz synthesized clock outputs, providing clocking for UTOPIA and other system busses. Transmit data may also be clocked into the devices with respect to the reference clock.

Operating from a single +5 V supply, the TQ8105/TQ8106 provides fully compliant functionality and performance, utilizing direct-connected PECL levels (differential or single-ended) for high-speed I/O. As compared to ACcoupled schemes, the direct-coupled connections reduce jitter and switching-level offsets due to data patterns. The TQ8105/TQ8106 can also provide direct connection to high-speed I/O utilizing ECL levels with a -5 V supply. Low-speed bus, control, and clock I/O utilize TTL levels. (An ECL/ PECL reference clock input is also provided; at 155.52 MHz the input should be only PECL/ECL.) Output TTL pins can be tristated and may also be configured for $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$ with a 3.3 V supply connection.

## TQ8105/8106

PRELIMINARY DATA SHEET

## SONET/SDH Transceivers

## Features

- Single-chip byte-wide Mux, Demux, Framer, and Tx clocksynthesis PLL with enhanced diagnostics
- TQ8106 includes monolithic Clock and Data Recovery
- SONET/SDH/ATM compliant for STS-12/STM-4 ( $622 \mathrm{Mb} / \mathrm{s}$ ) or STS-3/STM-1 ( $155 \mathrm{Mb} / \mathrm{s}$ ) rates
- 155.52, 77.76, 51.84, 38.88, or 19.44 MHz reference clock inputs with TTL, PECL, or ECL level
- 38.88 MHz and 51.84 MHz clock outputs for UTOPIA as well as byte clock rate (77.76 or 19.44 MHz)
- External RC-based loop filters
- Integrated loopbacks with enhanced line and reference clock diagnostics
- Direct-coupled standard PECL high-speed I/O with ECL option
- Clean TTL interface to PMC-Sierra devices
- 100-pin 14X14-mm JEDEC plastic package
- +5V-only supply for PECL I/O (-5.2V required for ECL I/O option)
- -40 to $+125^{\circ} \mathrm{C}$ case operating temperature


## TQ8105/TQ8106

The combination of a thermally enhanced 100-pin JEDEC metric plastic package, the low power dissipation of the device, and the wide casetemperature range permits operation without a heat sink in most designs.

The TQ8106 uses the same pinout as the TQ8105 and is reverse-compatible with it.

The TQ8105/TQ8106 provides comprehensive integrated loopback functionality and enhanced line and reference clock diagnostics required of SONET/SDH systems, minimizing additional external circuitry.

TQ8105/TQ8106 diagnostics include:

- Loss of Reference clock detector (LOR) output to indicate that the PLL Reference Clock is not toggling
- Lock indicator (RLOCK), which permits monitoring of the receiver clock frequency, flagging when the frequency drifts beyond approximately 500 ppm
- Loss of signal (LOS) detector output to indicate that the incoming data stream has no data transitions in 128-bit periods
- ECL/PECL input (NSOL) to allow LOS from an O/E module to force the data stream to all zeroes, eliminating the need for external glue logic

Figure 1. TQ8105 Block Diagram


Figure 2. TQ8106 Block Diagram


## TQ8105/TQ8106

## PRELIMINARY DATA SHEET



Table 1. Signal Descriptions (continues on next page)

| Pin | Signal | Function | Description |
| :---: | :--- | :--- | :--- |
| 1 | VNN | $-5.2 V /$ Ground | ECL/PECL section power |
| 2 | NC | No Connect | Do not connect |
| 3 | VPP | Ground/+5V | ECL/PECL Positive Supply (see Table 6B) |
| 4 | DVPP | Ground/+5V | ECL/PECL Driver Return (see Table 6B) |
| 5 | REFCKEN | ECL/PECL Input | Tx Ref. Clock or Bypass Clock, Complement |
| 6 | REFCKEP | ECL/PECL Input | Tx Ref. Clock or Bypass Clock, True |
| 7 | DVPP | Ground/+5V | ECL/PECL Driver Return (see Table 6B) |
| 8 | TXCKN | ECL/PECL Out | Transmit Clock, Complement |
| 9 | TXCKP | ECL/PECL Out | Transmit Clock, True |
| 10 | DVPP | Ground/+5V | ECL/PECL Driver Return (see Table 6B) |
| 11 | TXDN | ECL/PEL Out | Transmit Data, Complement |
| 12 | TXDP | ECL/PECL Out | Transmit Data, True |
| 13 | DVPP | Ground/+5V | ECL/PECL Driver Return (see Table 6B) |
| 14 | RXDN | ECL/PECL Input | Receive Data, Complement |
| 15 | RXDP | ECL/PECL Input | Receive Data, True |
| Note: | "*" indicates TQ8106-specific signal. |  |  |

## TQ8105／TQ8106

## Table 1．Signal Descriptions（continued）

| Pin | Signal | Function | Description |
| :---: | :---: | :---: | :---: |
| 16 | DVPP | Ground／＋5V | ECL／PECL Driver Return（see Table 6B） |
| 17 | RXCKP | ECL／PECL Input | Receive Clock，True（Ignored when CDR used） |
| 18 | RXCKN | ECL／PECL Input | Receive Clock，Complement（Ignored when CDR used） |
| 19 | DVPP | Ground／＋5V | ECL／PECL Driver Return（see Table 6B） |
| 20 | VPP | Ground／＋5V | ECL／PECL Positive Supply（see Table 6B） |
| 21 | NSOL | ECL／PECL Input | Loss of Signal－zeroes serial data in when low；RXBC＝TXCK／8 |
| 22 | VNN | －5．2V／Ground | ECL／PECL section power（see Table 6B） |
| 23 | NC／CDRFP1＊ | Analog Output | CDR Loop Filter Pin 1 －Charge Pump Out（ignored by TQ8105） |
| 24 | NC／CDRFP2＊ | Analog Input | CDR Loop Filter Pin 2 －VC0 Tune（ignored by TQ8105） |
| 25 | GND | GND | Core Ground |
| 26 | SVDD | $+5 \mathrm{~V}$ | Output Driver Internal Positive Supply |
| 27 | VDD | $+5 \mathrm{~V}$ | Core Positive Supply |
| 28 | CDRAVDD＊ | Analog＋5V | TQ8106 CDR Analog +5 V Supply （not connected if CDR not used；ignored by TQ8105） |
| 29 | VCC | ＋5V／＋3．3V | TTL Driver Positive Supply |
| 30 | RxBC | Tristate TTL Out | Demultiplexer Byte Clock |
| 31 | DGND | GND | TTL Driver Ground |
| 32 | DXSYNC | Tristate TTL Out | Frame Synchronization Signal |
| 33 | VCC | ＋5V／＋3．3V | TTL Driver Positive Supply |
| 34 | DXD0 | Tristate TTL Out | Demultiplexer Data Bit 0 （LSB） |
| 35 | DGND | GND | TTL Driver Ground |
| 36 | DXD1 | Tristate TTL Out | Demultiplexer Data Bit 1 |
| 37 | VCC | ＋5V／＋3．3V | TTL Driver Positive Supply |
| 38 | DXD2 | Tristate TTL Out | Demultiplexer Data Bit 2 |
| 39 | DGND | GND | TTL Driver Ground |
| 40 | DXD3 | Tristate TTL Out | Demultiplexer Data Bit 3 |
| 41 | VCC | ＋5V／＋3．3V | TTL Driver Positive Supply |
| 42 | DXD4 | Tristate TTL Out | Demultiplexer Data Bit 4 |
| 43 | DGND | GND | TTL Driver Ground |
| 44 | DXD5 | Tristate TTL Out | Demultiplexer Data Bit 5 |
| 45 | VCC | ＋5V／＋3．3V | TTL Driver Positive Supply |
| 46 | DXD6 | Tristate TTL Out | Demultiplexer Data Bit 6 |
| 47 | DGND | GND | TTL Driver Ground |
| 48 | DXD7 | Tristate TTL Out | Demultiplexer Data Bit 7 （MSB） |
| 49 | SVDD | $+5 \mathrm{~V}$ | Output Driver Internal Positive Supply |
| 50 | VDD | ＋5V | Core Positive Supply |
| 51 | NC／CDRGND＊ | GND | GND for TQ8106 to powerup CDR（ignored by TQ8105） |
| 52 | GND | GND | Core Ground |
| 53 | FRPWR | TTL Input | Framer Power Control（power on when high） |
| 54 | 00F | TTL Input | Out－of－Frame：Initiates Frame Search／Bit Alignment |
| 55 | VCC | ＋5V／＋3．3V | TTL Driver Positive Supply |
| 56 | LOS | Tristate TTL Output | Loss of Signal（high when＞ 128 bit periods without transitions） |
| 57 | DGND | GND | TTL Driver Ground |

[^1]
## TQ8105/TQ8106

PRELIMINARY DATA SHEET

## Table 1. Signal Descriptions (continued)

| Pin | Signal | Function | Description |
| :---: | :---: | :---: | :---: |
| 58 | CLRLOS | TTL Input | Active-high Clear LOS output |
| 59 | RLOCK | Tristate TTL Output | Receive Clock meets lock criteria when high |
| 60 | LBM1 | TTL Input | Loopback Mode Control (see Table 6B) |
| 61 | GND | GND | Core Ground |
| 62 | LBMO | TTL Input | Loopback Mode Control (see Table 6B) |
| 63 | VDD | +5V | Core Positive Supply |
| 64 | NOE | TTL Input | TTL tristate control (active low to enable) |
| 65 | GND | GND | Core Ground |
| 66 | NRESET | TTL Input | Global Reset (active low) |
| 67 | 0 C 3 | TTL Input | 0C3/0C12 Mode Select |
| 68 | MMS | TTL Input | Master/Slave Mode Control |
| 69 | CKSRC2 | TTL Input | Clock Source Select (see Table 6B) |
| 70 | CKSRC1 | TTL Input | Clock Source Select (see Table 6B) |
| 71 | CKSRCO | TTL Input | Clock Source Select (see Table 6B) |
| 72 | PH1 | TTL Input | TxBC Phase Select (see Table 6B) |
| 73 | PHO | TTL Input | TxBC Phase Select (see Table 6B) |
| 74 | VDD | +5V | Core Positive Supply |
| 75 | SVDD | +5V | Output Driver Internal Positive Supply |
| 76 | GND | GND | Core Ground |
| 77 | MXDO | TTL Input | Multiplexer Data Bit 0 (LSB) |
| 78 | MXD1 | TTL Input | Multiplexer Data Bit 1 |
| 79 | MXD2 | TTL Input | Multiplexer Data Bit 2 |
| 80 | MXD3 | TTL Input | Multiplexer Data Bit 3 |
| 81 | MXD4 | TTL Input | Multiplexer Data Bit 4 |
| 82 | MXD5 | TTL Input | Multiplexer Data Bit 5 |
| 83 | MXD6 | TTL Input | Multiplexer Data Bit 6 |
| 84 | MXD7 | TTL Input | Multiplexer Data Bit 7 (MSB) |
| 85 | VCC | +5V/+3.3V | TTL Driver Positive Supply |
| 86 | TxBC | Tristate TTL Out | Transmit Byte Clock |
| 87 | DGND | GND | TTL Driver Ground |
| 88 | SONETCK | Tristate TTL Out | 51.84 MHz Clock Output |
| 89 | VCC | +5V/+3.3V | TTL Driver Positive Supply |
| 90 | SDHCK | Tristate TTL Out | 38.88 MHz Clock Output |
| 91 | DGND | GND | TTL Driver Ground |
| 92 | LOR | Tristate TTL Out | Indicates Reference Clock is Absent |
| 93 | AGND | Analog Ground | VCO Analog Ground |
| 94 | FP2 | Analog Output | Transmit PLL Loop Filter, Charge Pump Out |
| 95 | FP1 | Analog Input | Transmit PLL Loop Filter, VCO Tune |
| 96 | AVDD | Analog +5V | VCO \& Filter Analog VDD Supply |
| 97 | VDD | +5V | Core Positive Supply |
| 98 | REFCKT | TTL Input | Tx Reference Clock or Bypass Clock |
| 99 | GND | GND | Core Ground |
| 100 | NC/NCDREN* | TTL Input | Internal Pull-up, Low $=$ CDR receiver clock; Float $=$ Pin 17/18 Rx Clk (ignored by TQ8105) (ignored by TQ8105) |

Note: "*" indicates TQ8106-specific signal.

## TQ8105/TQ8106

## Function Description

## PLL

The TQ8105 \& TQ8106 incorporate high-stability, lowjitter Phase Locked Loops (PLLs) running at 2488.32 MHz for the transmit side and, in the TQ8106, running at 1244.16 MHz for the clock recovery section. The PLLs use external surface mounted loop filters consisting of an RC network as shown in the diagrams that accompany the values shown in Table 2. Good analog design principles should be applied to the loop filter portions of the circuit to ensure the best jitter generation performance. To reduce cross-coupling of clocks, both CDR clocks and analog pins should be isolated from the transmit PLL clock and analog pins. An analog ground plane under the two capacitors and the resistor, along with guards around the filter pins is excellent practice, as is a well filtered analog supply (AVDD) and a clean analog ground (AGND). The loop filter values specified in this preliminary data sheet may change.

Reference clock sourcing can be through a variety of mechanisms. As shown in Table 3, the MMS pin determines whether the device operates in Master mode (where the PLL reference comes in on either a TTL or PECL/ECL pin), or a Slave mode (where the PLL reference is derived from the DEMUX high-speed line clock input). If the external reference clock pins are used, note that they are logical ORs and that the unused pin should be tied to (a) GND for unused REFCKT or (b) REFCKEN should be tied to VPP for TTL reference operation. The reference clock frequency can be selected from any number of values, as indicated in Table 3. Note that the PLL may be bypassed, allowing use of an external clock reference. See the note regarding high-speed I/O for PECL/ECL level selection.

Internal dividers determine the operating line rate, as shown in Table 3. The device is capable of operating at STM1/STS-3 or STM4/STS-12 rates. The transmit PLL provides the high performance and compliance with ITU/Bellcore requirements found in the first-generation TQ8101. Optionally, the TQ8106 receiver's CDR can be
disabled for backwards pin-compatibility with the TQ8105. For circuits not requiring the TQ8106's CDR, the CDR is disabled by floating NCDREN (pin 100). Further, the CDR section of the TQ8106 can be powered down by not connecting the CDRGND and CDRAVDD pins, reducing power consumption. If the TQ8106 CDR is not used, the CDR filter pins may be left unconnected.

The transmit PLL also provides constant-rate 38.88 MHz and 51.84 MHz TTL outputs which may be tristated. The 51.84 MHz output may also be derived from the high-speed receiver clock in Clock Source Mode 011 (see Table 3).

## Framer

The TQ8105 and TQ8106 provide a clean interface to devices from PMC-Sierra and others. The Out Of Frame (00F) input is a state (level) initiated event, rather than the edge-triggered event found on TriQuint's firstgeneration TQ8101 transceiver. When 00F is high, the TQ8105/TQ8106 initiates a frame search for a serial bit pattern that matches twelve A1s (three A1s in OC3 mode) followed by three A2s. If a match occurs, the device realigns byte boundaries and issues a logic high on the DXSYNC pin during the third A2. In the absence of 00F, the device will not realign byte boundaries, but will report any bit-level matching of twelve A1s (three A1s in OC3 mode) followed by three A2s as a DXSYNC pulse.

Framer circuit power may be switched off by a TTL low on the FRPWR pin, saving approximately 0.25 W . No further DXSYNC pulses will be issued, though bit alignment is preserved in the demux. Note that the 00F and FRPWR pins may be tied together, powering the framer only when a bit realignment is required (this is not recommended practice, however, due to the inrush currents that may result).

## Loopbacks

As part of the TQ8105 and TQ8106 on-chip diagnostics, four loopback modes are supported. These are selected by the dedicated pins LBM0 and LBM1, as shown in Table 3. The loopback modes are shown in Figure 5.

## Functional Description (continued)

## Enhanced Diagnostics

The TQ8105 and TQ8106 incorporate on-chip clock diagnostics, allowing fast, efficient fault detection and isolation at the systems level.

The LOR (Loss Of Reference) output goes high when the reference clock is absent. Note that this signal is not latched and is only high during the period which the reference clock is missing. A reference clock is required for the TQ8106 CDR to function correctly.

The NSOL (Loss of signal input, active low, PECL level) input allows the receiver to force zeroes onto the demux outputs. A TTL level signal may also be used for NSOL if the resistor network, shown in the applications section of this data sheet, is used. NSOL is useful when a Loss Of Signal occurs on the receive optics and a quieting of invalid data is desired. The receiver is clocked from the transmit clock when NSOL is active and the output RXBC clock is obtained from the transmit portion of the TQ8105/TQ8106. This ensures compatibility with devices, such as the PMC-Sierra S/UNI-622 and STTX components, which may contain dynamic registers that lose contents if clocks are removed. NSOL forces the CDR to lock to REFCLK, except when in slave mode.

The LOS (Loss Of Signal) output goes high whenever 128-bit periods occur without transitions on the data input to the demux. CLRLOS forces LOS low.

The RLOCK (Receiver LOCK) output goes low whenever the signal on RXCK or recovered clock drifts more than 500 ppm from the reference frequency. This output returns high whenever the frequency accuracy is within 100 ppm .

## Demux

The TQ8105/TQ8106 demultiplexer converts an NRZ PECL/ECL data input, at either $155 \mathrm{Mb} / \mathrm{s}$ or $622 \mathrm{Mb} / \mathrm{s}$, and its corresponding PECL/ECL clock into a byte-
parallel 78 MHz or 19 MHz tristatable TTL data bus. The timing is shown in Figures 6 through 8. See the previous "Framer" description for bit alignment details. The TQ8106 can recover both clock and data from an NRZ data stream, whereas the TQ8105 requires NRZ data and a recovered clock.

## Mux

The TQ8105/TQ8106 multiplexer converts a 78 MHz or 19 MHz byte-wide bus to a serial NRZ PECL/ECL data stream. The bytes are clocked into the device with the TXBC byte clock output. The timing is shown in Figures 6 through 8. Note that the TXBC output can be adjusted in 90 -degree phase increments to accommodate variations in interface requirements. See Table 3 for settings on the PH0 and PH1 pins controlling this function. Data may also be clocked into the TQ8105/ TQ8106 by a 77 MHz reference oscillator clock source, provided the data is within the timing limits shown in the timing diagram labelled "Reference Clock Based Transmit Timing." The TQ8105 and TQ8106 do not require the transmit latch found on earlier TQ8101 reference designs and are backwards compatible with designs that have the latch incorporated.

## High-Speed I/O and TTL Interfaces

The TQ8105 and TQ8106 contain unique circuitry that allows either PECL or ECL operation on its high-speed I/O. As a single +5 V supply component, the TQ8105 interfaces directly to TTL and PECL (Positive Emitter Coupled Logic). By providing an additional -5.2 V supply, the device's high-speed I/O becomes ECL, instead of PECL. The supply connections for PECL/ECL are shown in Table 6B.

The TTL outputs ( Vcc ) may be connected to either +5 V or +3.3 V supplies. True TTL may be obtained with the +5 V connection; clamped operation, when connected to +3.3 V ensures that maximum Voh levels do not exceed +3.3 V .

## TQ8105/T08106

## TQ8105/TQ8106 Design Notes

These design notes are provided to assist the circuit designer in achieving the highest possible performance and reducing design time. Unless noted otherwise, references to the TQ8105 apply equally to the TQ8106.

## Interfacing to PMC-Sierra Devices

The transmit timing of the TQ8105 is such that the PMC-Sierra byte outputs (POUT(0:7)) may be directly connected to the TQ8105 mux inputs (MXD(0:7)). The TQ8105 uses an Out-Of-Frame (OOF) input as a signal to reframe while high, allowing direct connection of the PM5355's 00F output to the TQ8105 00F input. The following summarizes connectivity between the devices.

| PM5355 | TQ8105/T08106 |
| :--- | :--- |
| POUT(0:7) | MXD(0:7) |
| PIN(0:7) | DXD(0:7) |
| 0OF | OOF |
| PICLK | RXBC |
| FPIN | DXSYNC |
| TCLK | TXBC |
| POP(0:5) | Any TQ8105 modes to be programmable |
| PIP(0:3) | Any TQ8105 diag outputs to be readable |

## Reference Design

A reference design (see Figure 4) and evaluation board are available from TriQuint. They incorporate a $1 \times 9$ or $2 \times 9$ fiber optic transceiver with or without clock recovery, the PM5355 PMC Sierra framer device, and a TQ8105 or TQ8106.

## Thermal Considerations

At 2.3 W , the TQ8105 requires a heat sink if operated in a still-air environment at either $70^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$ ambient air temperature. At 100 lfm , only the $85^{\circ} \mathrm{C}$ air temperature condition requires a heat sink. At 200 lfm and above, no heat sink is required. For example, a $1.1^{\prime \prime} \times 1.1^{\prime \prime} \times 0.6^{\prime \prime}$ standard pin-fin heat sink is appropriate for applications where a heat sink is necessary. To attach the sink, use
clips soldered to the board which accept a spring clip to cross and hold the heat sink. The holes in the board for the clips are at the corners of a $1.275^{\prime \prime} \times 1.5^{\prime \prime}$ rectangle.

## Power Supplies

Good decoupling practices should be observed, with a 0.1 uF decoupling capacitor at each supply pin, ideally on the component side of the board. Keep the analog supplies (Vdd and AVdd) pristine. Good design practice will isolate the supply groups using point grounding to tie supplies together (all grounds at a single point having multiple vias).

For the analog supply, flood copper under the loop filter on the component side of the board, tying the flood to the analog ground pin, with the point ground away from the filter and analog pin, so that any switching currents are kept away from these areas. If any switching power supply frequencies below 500 kHz are used in the system, use a supply filter on the analog supply pin. These practices help minimize the generation of jitter.

## High-Speed Connections

Connections to E/O modules (and ECL clock reference, if used) are direct-coupled PECL and need to be terminated with decoupled 50 ohms to 3 V at the receiving end of the 50 ohm transmission line. Ensure that each 50 ohm resistor (or Thevenin equivalent) has its own decoupling capacitor. Place the resistor at the end of a 50 ohm transmission line (use a controlled impedance layer), ideally with a minimal-length stub to either the resistor or the receiving device.

If there is no room for the resistor, use a minimallength stub to drop the signal at the receiving device pins, continue the 50 ohm transmission line to an area where the termination resistors can be placed, and terminate at the endpoint of that line. If in doubt, contact factory applications for assistance.

## TQ8105/TQ8106

Figure 4. Reference Design schematic.


Table 2A. TQ8105/TQ8106 Recommended Transmit Loop Filter Values
(Preliminary)

| Reference <br> Frequency <br> $(\mathrm{MHz})$ | Divide <br> Ratio | Resistor <br> Value R1 <br> (ohms) | Capacitor <br> Value C1 <br> $(\boldsymbol{\mu F})$ | Capacitor <br> Value C2 <br> $(\boldsymbol{p F})$ |
| :---: | :---: | :---: | :---: | :---: |
| 19.44 | 32 | 1200 | 0.082 | 82 |
| 38.88 | 16 | 620 | 0.15 | 150 |
| 51.84 | 12 | 470 | 0.22 | 220 |
| 77.76 | 8 | 300 | 0.33 | 330 |
| $155.52^{*}$ | 4 | 300 | 0.33 | 330 |

Note: *Internal divide by two on Reference

Table 2B. TQ8106 Recommended CDR Loop Filter Values
(Preliminary)

| Incoming <br> NRZ Data Rate <br> (Mbs) | Resistor <br> Value R2 <br> (ohms) | Capacitor <br> Value C3 <br> ( $\boldsymbol{\mu F}$ ) | Capacitor <br> Value C4 <br> ( $\boldsymbol{\mu F}$ ) |
| :---: | :---: | :---: | :---: |
| 155.52 | 22 | 68 | 0.015 |
| 622.08 | 91 | 4.7 | 0.001 |



Figure 5. Loopback Modes


## TQ8105/TQ8106

PRELIMINARY DATA SHEET

## Table 3. Mode Selection

| Signals | Mode |
| :---: | :---: |
| LBM(1:0) | Loopback: $00=$ Normal, $01=$ Equipment, $10=$ Facility, $11=$ Split |
| PH(1:0) | $00=0$ degrees delay, $01=90$ degrees delay, $10=180$ degrees delay, $11=270$ degrees delay |
| MMS | 1 = Master (use REFCKT/E as reference), $0=$ Slave (use receive clock as reference) |
| CKSRC(2:0) | Clock Source: $\quad 000=$ PLL bypass |
|  | $001=51.84 \mathrm{MHz}$ PLL reference, SONETCK \& SDHCK tristate |
|  | $010=155.52 \mathrm{MHz} \mathrm{PLL} \mathrm{reference}$ |
|  | $011=51.84 \mathrm{MHz} \mathrm{PLL} \mathrm{reference}, \mathrm{SONETCK=RXCK/12}, \mathrm{SDHCK=RXCK/16}$ |
|  | $100=77.76 \mathrm{MHz} \mathrm{PLL}$ reference |
|  | $101=51.84 \mathrm{MHz} \mathrm{PLL}$ reference |
|  | $110=38.88 \mathrm{MHz} \mathrm{PLL} \mathrm{reference}$ |
|  | 111 = 19.44 MHz PLL reference |
| OOF | 1 = Initiate frame search, $0=$ Do not permit reframing (see FRPWR pin in Table 1) |
| NSOL | $1=$ Pass receive data, $0=$ Force receive data to 0 |
| OC3 | 1 = Operate at STM1/STS-3 (or PLL bypass divided by 4), $0=0$ perate at STM4/STS-12/PLL bypass |
| NRESET | 1 = Normal operation, $0=$ Reset internal counters |
| NCDREN | 1 = TQ8105/CDR Off mode, $0=$ Enable CDR (TQ8106 only) |

Table 4. Absolute Maximum Ratings

| Parameter | Symbol | Level | Minimum | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positive supply | $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{DD}}, A \mathrm{~V}_{\text {DD }}$ | GND | 7 | V |  |
| Negative supply ( $\mathrm{V}_{\mathrm{PP}}=0 \mathrm{~V}$ ) | $\mathrm{V}_{\text {NN }}$ |  | -7 | GND | V |
| Output voltage | $V_{0}$ | ECL/PECL | $\mathrm{V}_{\mathrm{NN}}-0.5$ | $\mathrm{V}_{\mathrm{pp}}+0.5$ | V |
| Output current | $\mathrm{I}_{0}$ | ECL/PECL | - | 40 | mA |
| Input voltage | $V_{1}$ | ECL/PECL | $\mathrm{V}_{\mathrm{NN}}-0.5$ | $\mathrm{V}_{\mathrm{pp}}+0.5$ | V |
| Input current | 1 | ECL/PECL | -1 | 1 | mA |
| Output voltage | $\mathrm{V}_{0}$ | TTL | -0.5 | $\mathrm{V}_{\text {cc }}+0.5$ | V |
| Output current | $I_{0}$ | TTL | - | 100 | mA |
| Input voltage | $V_{1}$ | TTL | -0.5 | $\mathrm{V}_{\text {cc }}+0.5$ | V |
| Input current | 1 | TTL | -1 | 1 | mA |
| Biased Junction temperature | $\mathrm{T}_{\mathrm{J}}$ | - | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $\mathrm{T}_{\text {S }}$ | - | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |

## Table 5. Power Consumption

| Symbol | Function | Minimum | Typical | Maximum | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $I_{D D}$ | +5 V supply | - | TBD | TBD | I |
| $I_{C C}$ | $+5 \mathrm{~V} /+3 \mathrm{~V}$ supply | - | TBD | TBD | I |
| $\mathrm{I}_{\mathrm{PP}}$ | $+5 \mathrm{~V} / 0 \mathrm{~V}$ supply | - | TBD | TBD | I |
| $\mathrm{I}_{\mathrm{CC}}$ | $0 \mathrm{~V} /-5 \mathrm{~V}$ supply | - | TBD | TBD | I |
| $\mathrm{P}_{\mathrm{DF}}$ | Power dissipation, Framer on, TQ8106 CDR off | - | 1.9 | 2.3 | W |
| $\mathrm{P}_{\mathrm{D}}$ | Power dissipation, Framer off, TQ8106 CDR off | - | 1.7 | 2.1 | W |
| P | Power dissipation, Framer on, TQ8106 CDR on |  |  | 2.75 | W |

Table 6A. Recommended Operating Conditions

| Parameter | Symbol | Minimum | Typical | Maximum | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Positive supply | $\mathrm{V}_{\text {PP }}$ | 4.75 | 5.0 | 5.25 | V |
| Output Driver Positive Supply | $\mathrm{V}_{\text {CC }}$ | 3.0 |  | 5.25 | V |
| Negative supply (ECL mode only) | $\mathrm{V}_{\text {NN }}$ | -5.5 | -5.2 | -4.75 | V |
| Operating case temperature (see Figure 9) |  | -40 |  | 125 | ${ }^{\circ} \mathrm{C}$ |

Table 6B. Power Supply Connections

| Pin | +5V TTL/PECL 10 | +3.3V TTL/PECL 10 | +5V TTL/ECL 10 | +3.3V TTL/ECL 10 |
| :---: | :---: | :---: | :---: | :---: |
| VDD | +5V | +5V | +5V | +5V |
| SVDD | $+5 \mathrm{~V}$ | $+5 \mathrm{~V}$ | +5V | +5V |
| VCC | +5V | $+3.3 \mathrm{~V}$ | +5V | +3.3V |
| AVDD | Filtered +5 V | Filtered +5 V | Filtered +5 V | Filtered +5 V |
| CDRAVDD | Filtered +5 V | Filtered +5 V | Filtered +5 V | Filtered +5V |
| GND | OV (ground) | OV (ground) | OV (ground) | OV (ground) |
| AGND | OV (ground) | OV (ground) | OV (ground) | OV (ground) |
| CDRGND | OV (ground) | OV (ground) | OV (ground) | OV (ground) |
| VPP | +5V | +5V | OV (ground) | OV (ground) |
| VNN | OV (ground) | OV (ground) | -5.2V | -5.2V |

## TQ8105/TQ8106

PRELIMINARY DATA SHEET

Table 7. DC Characteristics-ECL/PECL I/O
(Specifications apply over recommended operating ranges).

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Internal ECL reference | Single-ended inputs | $V_{\text {REF }}$ | - | $0.26 \mathrm{~V}_{\mathrm{NN}}+0.74 \mathrm{~V}_{\mathrm{PP}}$ |  | mV |
| Common mode voltage | Differential inputs | $V_{\text {com }}$ | $\mathrm{V}_{\mathrm{PP}}-1500$ | - | $\mathrm{V}_{\mathrm{PP}}$ - 1100 | mV |
| Differential voltage | Differential inputs | $\mathrm{V}_{\text {DIFF }}$ | 200 | - | 1200 | mV |
| Input HIGH voltage | $V_{\text {REF }}=1300 \mathrm{mV}$ | $\mathrm{V}_{\text {IH }}$ | $\mathrm{V}_{\text {PP }}$ - 1050 | - | $\mathrm{V}_{\mathrm{PP}}-400$ | mV |
| Input LOW voltage |  | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{T T}$ | - | $\mathrm{V}_{\mathrm{PP}}-1550$ | mV |
| Output HIGH voltage | $\begin{aligned} & \mathrm{R}_{\text {LOAD }}=50 \text { ohms } \\ & \text { to } \mathrm{V}_{\mathrm{TI}}=\mathrm{V}_{\mathrm{PP}}-2.0 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\text {OH }}$ | $\mathrm{V}_{\text {PP }}-1000$ |  | $\mathrm{V}_{\mathrm{PP}}-600$ | mV |
| Output LOW voltage | $\begin{aligned} & \mathrm{R}_{\mathrm{LOAD}}=50 \text { ohms } \\ & \text { to } \mathrm{V}_{\mathrm{TI}}=\mathrm{V}_{\mathrm{PP}}-2.0 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{0}$ | $\mathrm{V}_{T T}$ | - | $\mathrm{V}_{\text {PP }}-1600$ | mV |
| Input HIGH current | $\mathrm{V}_{\text {IH(MAX }}$ | $\mathrm{I}_{\text {H }}$ | - | +130 | 335 | UA |
| Input LOW current | $\mathrm{V}_{\text {IL(MIN }}$ | $1 / 2$ | -265 | -130 | - | uA |
| Output HIGH current | (Not tested; consistent with $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ tests) | $\mathrm{I}_{\mathrm{OH}}$ | 20 | 23 | 30 | mA |
| Output LOW current | (Not tested; consistent with $V_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ tests) | 10 L | 0 | 5 | 8 | mA |
| Input capacitance |  | $\mathrm{CIN}_{\text {IN }}$ | - | - | TBD | pF |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | - | TBD | pF |
| ESD breakdown rating | (Design objective) | $V_{\text {ESD }}$ | Class I | - | - |  |

Table 8. DC Characteristics-TTL I/O
(Specifications apply over recommended operating ranges)

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Input HIGH voltage |  | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| Input LOW voltage |  | $\mathrm{V}_{\mathrm{IL}}$ | 0 | - | 0.8 | V |
| Input HIGH current | $\mathrm{V}_{\mathrm{IH}(\mathrm{MAX})}$ | $\mathrm{I}_{\mathrm{IH}}$ | - | - | 200 | uA |
| Input LOW current | $\mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}$ | $\mathrm{I}_{\mathrm{IL}}$ | -400 | -200 | - | uA |
| Output HIGH voltage | $\mathrm{I}_{\text {OH }}=50 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{OH}}$ | 2.4 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| Output LOW voltage | $\mathrm{I}_{\mathrm{OL}}=-20 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{OL}}$ | 0 | - | 0.4 | V |
| Tristate current |  | $\mathrm{I}_{\mathrm{OZ}}$ | -100 | - | 100 | uA |
| Input capacitance |  | $\mathrm{C}_{\text {IN }}$ | - | - | TBD | pF |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | - | TBD | pF |
| ESD breakdown rating | (Design objective) | $\mathrm{V}_{\text {ESD }}$ | Class | - | - |  |

Table 9. AC Characteristics
(Specifications apply over recommended operating ranges)

| Parameter | Symbol | Minimum | Nominal | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RXCK clock period | $\mathrm{T}_{\text {( } \mathrm{RXCK})}$ | 1.6 | - | - | ns |
| REFCKE clock period | $\mathrm{T}_{\text {C(REFCKE) }}$ | 1.6 | - | - | ns |
| TXCK clock period | $\mathrm{T}_{\text {(TXCK) }}$ | 1.6 | - | - | ns |
| REFCKT clock period | $\mathrm{T}_{\text {C(REFCKT) }}$ | 12.8 | - | - | ns |
| TXBC clock period | $\mathrm{T}_{\text {(TXBC) }}$ | 12.8 | - | - | ns |
| RXBC clock period | $\mathrm{T}_{\text {( } \mathrm{RXBC})}$ | 12.8 | - | - | ns |
| REFCKT/REFCKE clock duty cycle | $\mathrm{T}_{\text {C(REF) }}$ | 40 | - | 60 | \% |
| REFCKT to TXBC skew ${ }^{2,3,5}$ | $\mathrm{T}_{\text {SK(TXBC) }}$ | TBD |  | TBD |  |
| SONETCK clock period | $\mathrm{T}_{\text {C(SONETCK) }}$ | - | 19.29 | - | ns |
| RXBC clock duty cycle ${ }^{3,5}$ | $\mathrm{T}_{\text {DC(RXBC) }}$ | 40 | 50 | 60 | \% |
| TXBC clock duty cycle ${ }^{3,5}$ | $\mathrm{T}_{\text {DC( }}$ (TXBC) | 40 | 50 | 60 | \% |
| TXCK clock duty cycle ${ }^{6}$ | $\mathrm{T}_{\mathrm{DC}(\text { (TXCK) }}$ | 40 | 50 | 60 | \% |
| SONETCK clock duty cycle ${ }^{3,5}$ | $\mathrm{T}_{\text {DC(SONETCK) }}$ | 40 | 50 | 60 | \% |
| SDHCK clock duty cycle ${ }^{3,5}$ | $\mathrm{T}_{\mathrm{DC} \text { (SDHCK) }}$ | 40 | 50 | 60 | \% |
| RXCK clock duty cycle ${ }^{6}$ | $\mathrm{T}_{\mathrm{DC} \text { (RXCK) }}$ | 40 | 50 | 60 |  |
| High-speed rise/fall time ${ }^{4}$ ( $>79 \mathrm{MHz}$ ), Data | $\mathrm{T}_{\mathrm{H}(\mathrm{R} / \mathrm{F})}$ | - | - | 500 | ps |
| High-speed rise/fall time ${ }^{4}$ (>79 MHz), Clock | $\mathrm{T}_{\mathrm{H}(\mathrm{R} / \mathrm{F})}$ | - | - | 320 | ps |
| Low-speed rise/fall time ${ }^{1,3,5}$ ( $<79 \mathrm{MHz}$ ) | $\mathrm{T}_{\mathrm{L}(\mathrm{R} / \mathrm{F})}$ | - | - | 3 | ns |
| RXD setup time to RXCK ${ }^{6}$ (see Figure 6) | $\mathrm{T}_{\text {S(RXD) }}$ | 240 | - | - | ps |
| RXD hold time to RXCK ${ }^{6}$ (see Figure 6) | $\mathrm{T}_{\mathrm{H} \text { (RXD) }}$ | 20 | - | - | ps |
| OOF rising edge before A1 changes to A2 ${ }^{7}$ (see Figure 8) | $\mathrm{T}_{\text {(00FH) }}$ | 51.44 | - | - | ns |
| DXSYNC rising edge from parallel data output change from A1 to A2 ${ }^{7}$ | ${ }^{\text {(DSYNC) }}$ | - | 25.72 | - | ns |
| DXSYNC pulse width ${ }^{3,5,7}$ (see Figure 8) | $\mathrm{T}_{\text {(DXSYNCPW) }}$ | 11.0 | - | - | ns |
| RXBC falling edge to valid parallel data output ${ }^{3}$ (see Figure 7) | $\mathrm{T}_{\mathrm{P} \text { (DXD) }}$ | 0.5 |  | 1.0 | ns |
| MXD(0:7) setup time to TXBC ${ }^{2,3,5}$ (see Figure 6) | $\mathrm{T}_{\text {S(MXD) }}$ | 600 | - | - | ps |
| MXD(0:7) hold time to $\mathrm{TXBC}^{2,3,5}$ (see Figure 6) | $\mathrm{T}_{\mathrm{H}(\mathrm{MXD})}$ | 600 | - | - | ps |
| TXCK falling edge to TXD ${ }^{6}$ (see Figure 7) | $\mathrm{T}_{\text {P(TXD) }}$ | 200 | - | 400 | ps |

Notes: 1. At 0.8V/2.0V levels
4. $20 \% / 80 \%$ levels
2. With $\mathrm{PH}(1: 0)$ set to $00,18 \mathrm{pF}$ total loading
5. At 1.4V logic threshold level
3. TTL outputs test load $\left(V_{C C}=+5 \mathrm{~V}\right)$ :
6. Differential measurement
7. OC12 mode

## TQ8105/TQ8106

PRELIMINARY DATA SHEET

Figure 6. Input Timing


Figure 7. Output Timing


Figure 8. Demultiplexer Timing


Figure 9. Required Airflow for Operation without Heatsink


## TQ8105/TQ8106

Figure 10. Mechanical Package (100 pins, 14×14 mm)


.17 max.


## TQ8105/TQ8106

PRELIMINARY DATA SHEET

Ordering Information

| TQ8105 | SONET/SDH Transceiver |
| :--- | :--- |
| TQ8106 | SONET/SDH Transceiver with Clock and Data Recovery |
| ETF8105 | SONET/SDH Transceiver Evaluation Board |

## Reference Designs

The following products are available for 14-day loan to qualified customers:
ATM SONET/SDH Line Interface Module
Supports OC12c/STM-4 (622.08 Mbps) and OC-3c/STM-1 (155.52 Mbps)
RDB810x-yz Reference Design Circuit Board
$\boldsymbol{x}=\mathbf{5}$ for 8105 or $\mathbf{6}$ for 8106
$\boldsymbol{y}=\mathbf{S}$ for Single-mode, $\mathbf{M}$ for multi-mode, or $\mathbf{X}$ for no optical module
$z=\mathbf{3}$ for OC3 or $\mathbf{1 2}$ for OC12
Example: RDB8105-S12 is a TQ8105 configured for single-mode OC12
RDD-8105/6 Documentation Package

- Functional Partition Drawing Set, including block, state machine, and timing diagrams
- Schematics
- Programmable Logic Listings
- User's Manual / Product Specification
- PCB Artwork (all layers)
- Component Placement Drawing


## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:
$\begin{array}{ll}\text { Web: www.triquint.com } & \text { Tel: (503) 615-9000 } \\ \text { Email: sales@tqs.com } & \text { Fax: (503) 615-8900 }\end{array}$
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information
 shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 0.0.A October 1997

## TQ8105/TQ8106

PRELIMINARY DATA SHEET

## Section 3 — Digital Switching Products

TQ8015 $1.25 \mathrm{~Gb} / \mathrm{s} 16 \times 16$ ECL Crosspoint Switch ..... 3-3
TQ8016 1.3 Gb/s 16x16 ECL Crosspoint Switch ..... 3-11
TQ8017 1.25 Gb/s 16x16 PECL Crosspoint Switch ..... 3-21
TQ8025 2.5 Gb/s 16x16 PECL Crosspoint Switch ..... 3-29
TQ8032 $800 \mathrm{Mb} / \mathrm{s} 32 \times 32$ ECL Crosspoint Switch ..... 3-37
TQ8033 1.5 Gb/s 64x33 PECL Crosspoint Switch ..... 3-45

## TaSt)

```
SEMICONDUCTOR,INC.
```



The TQ8015 is a non-blocking $16 \times 16$ digital crosspoint switch capable of data rates greater than 1.25 Gigabits per second per port. Utilizing a fully differential internal data path and ECL I/O, the TQ8015 offers a high data rate with exceptional signal fidelity. The symmetrical switching and noise rejection characteristics inherent in differential logic result in low jitter and signal skew. The TQ8015 is ideally suited for digital video, data communications and telecommunication switching applications.

The non-blocking architecture uses 16 fully independent 16:1 multiplexers (see diagram on page 2), allowing each output port to be independently programmed to any input port. The switch is configured by sequentially loading each multiplexer's 4-bit program latch (OAO:3) with the desired input port address (IAO:3) and enabling the LOAD pin. When complete, the CONFIGURE pin is strobed and all new configurations are simultaneously transferred into the switch multiplexers. Data integrity is maintained on all unchanged data paths.

## Electrical Characteristics

|  | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Data Rate/Port | 1.25 |  | Gb/s |
| Jitter |  | 150 | ps peak-peak |
| Channel Propagation Delay |  | 2000 | ps |
| Ch-to-Ch Propagation Delay Skew |  | 500 | ps |

## TQ8015

1.25 Gigabit/sec 16x16 Digital ECL Crosspoint Switch


Typical output waveform with all channels driven

## Features

- >20 Gb/s aggregate BW
- $1.25 \mathrm{~Gb} / \mathrm{s} /$ port NRZ data rate
- Non-blocking architecture
- 500 ps delay match
- Differential ECL-level data

I/O; CMOS-level control inputs

- Low jitter and signal skew
- Fully differential data path
- Double buffered configuration latches
- 132-pin MQFP package


## Applications

## Telecom/Datacom Switching

Hubs and Routers
Video Switching

## T08015

Figure 1. TQ8015 architecture.


Table 1. Absolute Maximum Ratings ${ }^{5}$

| Symbol | Parameter | Absolute Max. Rating | Notes |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {STOR }}$ | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{CH}}$ | Junction (Channel) Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | 1 |
| Tc | Case Temperature Under Bias | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 2 |
| $\mathrm{V}_{\text {cc }}$ | Supply Voltage | 0 V to +7 V | 3 |
| $\mathrm{V}_{\text {EE }}$ | Supply Voltage | -7 V to 0 V | 3 |
| $V_{\text {TI }}$ | Load Termination Supply Voltage | $\mathrm{V}_{\text {EE }}$ to 0 V | 4 |
| $\mathrm{V}_{\mathrm{IN}}$ | Voltage Applied to Any ECL Input; Continuous | $\mathrm{V}_{\text {EE }}-0.5 \mathrm{~V}$ to +0.5 V |  |
| $\mathrm{I}_{1}$ | Current Into Any ECL Input; Continuous | $-1.0 \mathrm{~mA} \mathrm{to}+1.0 \mathrm{~mA}$ |  |
| $\mathrm{V}_{\mathrm{IN}}$ | Voltage Applied to Any CMOS Input; Continuous | -0.5 V to $\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$ |  |
| $1{ }_{1}$ | Current Into Any CMOS Input; Continuous | $-1.0 \mathrm{~mA} \mathrm{to}+1.0 \mathrm{~mA}$ |  |
| $V_{\text {OUT }}$ | Voltage Applied to Any ECL Output | $\mathrm{V}_{\text {EE }}-0.5 \mathrm{~V}$ to +0.5 V | 4 |
| lout | Current From Any ECL Output; Continuous | $-40 \mathrm{~mA}$ |  |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation per Output $\mathrm{P}_{\text {Out }}=\left(\right.$ GND $\left.-\mathrm{V}_{\text {Out }}\right) \times \mathrm{I}_{\text {Out }}$ | 50 mW |  |

Notes: 1. For die applications.
2. $T_{C}$ is measured at case top.
3. All voltages specified with respect to GND, defined as OV.
4. Subject to Iout and power dissipation limitations.
5. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur.

## T08015

## Table 2. Recommended Operating Conditions ${ }^{3}$

| Symbol | Parameter | Min | Typ | Max | Units | Notes |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Case Operating Temperature | 0 |  | 85 | ${ }^{\circ} \mathrm{C}$ | 1 |
| $\mathrm{~V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 |  | 5.5 | V |  |
| $\mathrm{~V}_{\mathrm{EE}}$ | Supply Voltage | -5.5 |  | -4.5 | V |  |
| $\mathrm{~V}_{\mathrm{TT}}$ | Load Termination Supply Voltage |  | -2.0 |  | V | 2 |
| $\mathrm{R}_{\mathrm{LOAD}}$ | Output Termination Load Resistance | 50 |  | $\Omega$ | 2 |  |
| $\Theta_{\mathrm{JC}}$ | Thermal Resistance Junction to Case |  | 7 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |  |

Notes: 1. $T_{C}$ measured at case top. Use of adequate heatsink is required.
2. The $V_{T T}$ and $R_{\text {LOAD }}$ combination is subject to maximum output current and power restrictions.
3. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

## Table 3. Pin Descriptions

| Signal | Name/Level | Description |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 to 115 , N10 to N15 | Data input true and complement. Differential ECL | Differential data input ports. |  |  |  |  |
| 00 to 015 , NOO to NO15 | Data output true and complement. Differential ECL | Differential data output ports. |  |  |  |  |
| IA0:3 | Input address, CMOS | Input port selection address that is written into the selected output port program latches (OAO:3). |  |  |  |  |
|  |  | IA3 | $1 \mathrm{~A}_{2}$ | IA1 | IAO | Input port |
|  |  | 0 | 0 | 0 | 0 | 0 |
|  |  | 0 | 0 | 0 | 1 | 1 |
|  |  | 0 | 0 | 1 | 0 | 2 |
|  |  | $i$ | 1 | : | : |  |


| OAO:3 | Output select address, CMOS | Output port selection address. Selects the output port program latches to which the input port selection address (IA0:3) is written. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OA3 | OA2 | OA1 | OAO | Output port |
|  |  | 0 | 0 | 0 | 0 | 0 |
|  |  | 0 | 0 | 0 | 1 | 1 |
|  |  | 0 | 0 | 1 | 0 | 2 |
|  |  | : | , | . | . | : |
|  |  | 1 | 1 | 1 | 1 | 15 |
| LOAD | CMOS | Enables the selected output port program latches while set 'high'. Latches the data when set to a 'low' level. |  |  |  |  |
| CONFIGURE | CMOS | Transfers the program latches data to the configuration latches and implements the switch changes while set 'high'. Latches the data when set to a 'low' level. |  |  |  |  |
| RESET | CMOS | Sets the switch into broadcast or pass-through configuration, overwriting existing configurations. |  |  |  |  |

## TQ8015

Table 4. DC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Max | Units | Test Cond. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | ECL Input Voltage High | -1100 | -500 | mV |  |  |
| $\mathrm{V}_{\text {IL }}$ | ECL Input Voltage Low | $\mathrm{V}_{T T}$ | -1500 | mV |  |  |
| $\mathrm{I}_{\mathrm{H}}$ | ECL Input Current High |  | +30 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IH}}=-0.7 \mathrm{~V}$ |  |
| If | ECL Input Current Low | -30 |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IL }}=-2.0 \mathrm{~V}$ |  |
| $V_{\text {ICM }}$ | ECL Input Common Mode Voltage | -1500 | -1100 | mV |  |  |
| $\mathrm{V}_{\text {IDIF }}$ | ECL Input Differential Voltage (pk-pk) | 400 | 1200 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | CMOS Input Voltage High | 3.5 | $\mathrm{V}_{\text {CC }}$ | V |  |  |
| $\mathrm{V}_{\text {IL }}$ | CMOS Input Voltage Low | 0 | 1.5 | V |  |  |
| $\mathrm{I}_{\mathrm{H}}$ | CMOS Input Current High |  | +100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$ |  |
| $I_{\text {IL }}$ | CMOS Input Current Low |  | -100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$ |  |
| $\mathrm{V}_{\text {OCM }}$ | ECL Output Common Mode | -1500 | -1100 | mV |  |  |
| $\mathrm{V}_{\text {ODIF }}$ | ECL Output Differential Voltage | 600 |  | mV |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | ECL Output Voltage High | -1000 | -600 | mV |  |  |
| $\mathrm{V}_{0 \mathrm{~L}}$ | ECL Output Voltage Low | $\mathrm{V}_{T T}$ | -1600 | mV |  |  |
| $\mathrm{I}_{\mathrm{OH}}$ | ECL Output Current High | 20 | 27 | mA |  |  |
| $\mathrm{I}_{0 \mathrm{~L}}$ | ECL Output Current Low | 0 | 8 | mA |  |  |
| $\mathrm{I}_{\text {CC }}$ | Power Supply Current (+) |  | 20 | mA |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current (-) |  | -950 | mA |  |  |

Notes: 1. Test conditions unless otherwise indicated: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \mathrm{~W}$ to $V_{T T}$.
Table 5. AC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  | Maximum Data Rate/Port |  | 1.25 | $\mathrm{~Gb} / \mathrm{s}$ | Notes |
|  | Jitter |  | 150 | $\mathrm{ps} \mathrm{pk}-\mathrm{pk}$ | 1,2 |
| $\mathrm{~T}_{1}$ | Channel Propagation Delay | 2000 | ps |  |  |
| $\mathrm{T}_{2}$ | Ch-to-Ch Propagation Delay Skew |  | 500 | ps |  |
| $\mathrm{T}_{3}$ | CONFIG to Data Out (Oi) Delay |  | 5 | ns |  |
| $\mathrm{~T}_{4}$ | LOAD Pulse Width | 7 |  | ns |  |
| $\mathrm{~T}_{5}$ | CONFIG Pulse Width | 7 | ns |  |  |
| $\mathrm{~T}_{6}$ | IAi to LOAD High Setup Time | 0 | ns |  |  |
| $\mathrm{~T}_{7}$ | LOAD to IAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{8}$ | OAi to LOAD High Setup Time | 0 |  | ns |  |
| $\mathrm{~T}_{9}$ | LOAD to OAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{10}$ | Load $\uparrow$ to CONFIG $\uparrow$ | 0 | ns |  |  |
| $\mathrm{~T}_{11}$ | RESET Pulse Width | 10 |  | ns |  |
| $\mathrm{~T}_{\mathrm{R}, \mathrm{F}}$ | Output Rise or Fall Time |  |  |  |  |

Notes: 1. Test conditions: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \mathrm{~W}$ to $V_{T T} ; E C L$ inputs: $V_{I H}=-1.1 \mathrm{~V} ; V_{I L}=-1.5 \mathrm{~V} ; C M O S$ inputs: $V_{I H}=3.5 \mathrm{~V}, V_{I L}=1.5 \mathrm{~V}$; $E C L$ outputs: $V_{O H} \geq-1.0 \mathrm{~V}, V_{O L} \leq-1.6 \mathrm{~V}$; ECL inputs rise and fall times $\leq 1 \mathrm{~ns}$; CMOS inputs rise and fall times $\leq 20$ ns. A bit error rate of $1 E-13$ BER or better for $2^{23}-1$ PRBS pattern, jitter and rise/fall times are guaranteed through characterization.
2. 1.2 Gb/s Non-Return-Zero (NRZ) data equivalent to 600 MHz clock signal.
3. Rise and fall times are measured at the $20 \%$ and $80 \%$ points of the transition from $V_{O L}$ max to $V_{O L}$ min.

Figure 2. Switch Configuration Timing


Figure 5. Reset Timing


Notes: 1. LOAD input must remain LOW to insure correct programming of the switch.
2. "Broadcast" is defined as data input 0 to all data outputs (0.. 15).
3. "Pass-through" is defined as data input 0 to data output 0 , data input 1 to data output 1 , and so on.

## TQ8015

## Typical Performance Data

Figure 4. Data Eye Closure
Percent RMS vs. Data Rate (typical)


Figure 6. RMS Jitter vs. Data Rate (typical)


Figure 5. Data Eye Closure
Time \& Amplitude vs Data Rate (typical)


## TQ8015

Figure 7. Package Pinout


Figure 8. Mechanical Dimensions (in inches)


## TQ8015-Q

### 1.25 16x16 Gb/s ECL Crosspoint Switch

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:
Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900

For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^2]
## SEMICONDUCTO



The TQ8016 is a $16 \times 16$ differential digital crosspoint switch capable of handling $1.3 \mathrm{Gbit} / \mathrm{s}$ data rate. The high data rate and exceptional signal fidelity is made possible with TriQuint's fully differential Source-Coupled FET Logic (SCFL) standard cells. The symmetrical switching characteristic inherent in differential logic results in low signal skew and crosstalk for maximum signal fidelity.

The user can independently configure any switch output to any input, including an input chosen by another output. To configure the switch, the 4-bit output address (OAO..3) is decoded to enable the loading of the 4-bit input selection data (IAO..3) on the rising edge of the LOAD signal. The process is repeated until all desired connections are programmed. By bringing the CONFIGURE signal high, the contents of the Output Select Latches are transferred in parallel to a second row of 4-bit latches (R2), causing the switch reconfiguration.

This double row architecture minimizes the time to completely reconfigure the switch since a new set of addresses can be loaded to the Output Select Latches (R1) while the switch is active (transmitting). At the time of reconfiguration, no data drop-out occurs for any output whose input connection does not change.

For applications which do not require synchronous configuration of the switch, the LOAD and CONFIGURE inputs may be tied together.

## Typical output waveform with all channels driven

## Features

- >1.3 Gigabit/sec data rate
- Non-blocking architecture
- $\pm 200$ ps delay match (one input to all outputs)
- ECL-level data inputs/outputs; CMOS-level control inputs
- Low crosstalk
- Fully differential data path
- Double row of output select latches minimizes reconfiguration time
- Available in 132-pin leaded chip carrier

Figure 1. TQ8016 Architecture


Table 1. Pin Descriptions

| Pin Name | Levels | Description |
| :--- | :--- | :--- |
| D0-D15 | ECL | Differential Data Inputs |
| D0-D15 | ECL | Differential Data Inputs |
| D0-D15 | ECL | Differential Data Inputs |
| $00-015$ | ECL | Differential Data Outputs |
| $00-015$ | ECL | Differential Data Outputs |
| IA0-IA3 | CMOS | Input Address |
| OA0-OA3 | CMOS | Output Address |
| CONFIGURE | CMOS | Switch Reconfiguration |

Figure 2. Pinout


Table 1. Pin Descriptions (continued)

| Pin Name | Levels | Description |
| :--- | :--- | :--- |
| RESET | CMOS | Configures the switch to Broadcast or Pass-Through modes, overwriting existing configurations. <br> Broadcast mode: All output ports are connected to data input port 0. <br> This mode is selected by applying a RESET "high" pulse with CONFIGURE held "Iow." <br> Pass-through mode: IO is connected to 00, I1 to 01, and so on. <br> This mode is selected by applying a RESET "high" pulse with CONFIGURE held "high." |
| LOAD | CMOS | Loads Input Address |
| GND | 0 V. | Ground Reference |
| VEE | -5 V. | Power Supply |
| VCC | +5 V. | Power Supply |

## TQ8016

## Table 2. Absolute Maximum Ratings ${ }^{4}$

| Symbol | Parameter | Absolute Max. Rating | Notes |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {STOR }}$ | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{J}}$ | Junction Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{C}}$ | Case Temperature Under Bias | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 1 |
| $V_{c c}$ | Supply Voltage | 0 V to +7 V | 2 |
| $\mathrm{V}_{\text {EE }}$ | Supply Voltage | -7 V to 0 V | 2 |
| $V_{T T}$ | Load Termination Supply Voltage | $\mathrm{V}_{\text {EE }}$ to 0 V | 3 |
| $V_{\text {IN }}$ | Voltage Applied to Any ECL Input; Continuous | $\mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V}$ to +0.5 V |  |
| 1 IN | Current Into Any ECL Input; Continuous | -1.0 mA to +1.0 mA |  |
| $\mathrm{V}_{\text {IN }}$ | Voltage Applied to Any TTL/CMOS Input; Continuous | -0.5 V to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$ |  |
| IN | Current Into Any TTL/CMOS Input; Continuous | -1.0 mA to +1.0 mA |  |
| $V_{\text {OUT }}$ | Voltage Applied to Any ECL Output | $\mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V}$ to +0.5 V | 3 |
| Iout | Current From Any ECL Output; Continuous | -40 mA |  |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation per Output $\mathrm{P}_{\text {OUT }}=\left(\right.$ GND $\left.-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {OUT }}$ | 50 mW |  |

Notes: 1. $T_{C}$ is measured at case top.
2. All voltages specified with respect to GND, defined as OV.
3. Subject to Iout and power dissipation limitations.
4. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified in the Recommended Operating Conditions table, below.

## Table 3. Recommended Operating Conditions ${ }^{3}$

| Symbol | Parameter | Min. | Typ. | Max. | Units | Notes |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Case Operating Temperature | 0 | 25 | 85 | ${ }^{\circ} \mathrm{C}$ | 1 |
| GND | Ground Reference Voltage |  | 0 |  | V |  |
| $\mathrm{~V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 |  | 5.5 | V |  |
| $\mathrm{~V}_{\text {EE }}$ | Supply Voltage | -5.5 |  | -4.5 | V |  |
| $\mathrm{~V}_{\text {TT }}$ | Load Termination Supply Voltage |  | -2.0 |  | V | 2 |
| $\mathrm{R}_{\text {LOAD }}$ | Output Termination Load Resistance |  | 50 |  |  | 2 |

Notes: 1. $T_{C}$ measured at case top. Use of adequate heatsink is required.
2. The $V_{T T}$ and $R_{\text {LOAD }}$ combination is subject to maximum output current and power restrictions.
3. Functionality and/or adherence to electrical specifications is not implied whenthe device is subjected to conditions that exceed, singularly or in combination, the operating ranges specified.

## TQ8016

Table 4. DC Characteristics ${ }^{1} T_{C}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, V_{C C}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{E E}=-5.5 \mathrm{~V}$ to $-4.5 \mathrm{~V}, G N D=0 \mathrm{~V}$, unless otherwise indicated.

| Symbol | Parameter | Min | Typ | Max | Units | Test Cond. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | ECL Input Voltage High | -1100 |  | -500 | mV |  |  |
| $\mathrm{V}_{\mathrm{IL}}$ | ECL Input Voltage Low | $V_{T T}$ |  | -1500 | mV |  |  |
| $I_{\text {IH }}$ | ECL Input Current High |  |  | +30 | uA | $\mathrm{V}_{\text {IH }}=0.7 \mathrm{~V}$ |  |
| IIL | ECL Input Current Low | -30 |  |  | uA | $\mathrm{V}_{\text {IL }}=-2.0 \mathrm{~V}$ |  |
| VICM | ECL Input Common Mode Voltage | -1500 |  | -1100 | mV |  |  |
| $V_{\text {IIIF }}$ | ECL Input Differential Voltage (P-P) | 400 |  | 1200 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | CMOS Input Voltage High | 3.5 |  | $\mathrm{V}_{C C}$ | V |  |  |
| $\mathrm{V}_{\text {IL }}$ | CMOS Input Voltage Low | 0 |  | 1.5 | V |  |  |
| $\mathrm{I}_{\mathrm{H}}$ | CMOS Input Current High |  |  | +100 | uA | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$ |  |
| $I_{1 L}$ | CMOS Input Current Low | -100 |  |  | uA | $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$ |  |
| $\mathrm{V}_{\text {OCM }}$ | ECL Output Common Mode | -1500 |  | -1100 | mV |  |  |
| $\mathrm{V}_{\text {ODIF }}$ | ECL Output Differential Voltage | 600 |  |  | mV |  |  |
| $\mathrm{V}_{\text {OH }}$ | ECL Output Voltage High | -1000 |  | -600 | mV |  |  |
| $\mathrm{V}_{\text {OL }}$ | ECL Output Voltage Low | $\mathrm{V}_{\mathrm{TT}}$ |  | -1600 | mV |  |  |
| $\mathrm{IOH}_{\mathrm{OH}}$ | ECL Output Current High | 20 | 23 | 27 | mA |  |  |
| $\mathrm{lOL}_{0}$ | ECL Output Current Low | 0 | 5 | 8 | mA |  |  |
| ICC | Power Supply Current |  | 15 | 20 | mA |  | 2 |
| $\mathrm{I}_{\text {EE }}$ | Power Supply Current |  | 730 | 950 | mA |  | 2 |

Notes: 1. Test conditions unless otherwise indicated: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \Omega$ to $V_{T T}$.
2. Positive current is defined as flowing into the device and negative current as flowing out of the device.
$I_{C C}$ typically flows into the device and $I_{E E}$ flows out of the device.
Table 5. AC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  | Maximum Data Rate/Port |  | 1.3 | $\mathrm{~Gb} / \mathrm{s}$ | Notes |
|  | Jitter |  | 150 | $\mathrm{ps} \mathrm{pk-pk}$ | 1,2 |
| $\mathrm{~T}_{1}$ | Channel Propagation Delay |  | 1200 | 2000 | ps |
| $\mathrm{T}_{2}$ | Ch-to-Ch Propagation Delay Skew |  | 400 | 500 | ps |
| $\mathrm{T}_{3}$ | CONFIG to Data Out (0i) Delay |  | 5 | ns |  |
| $\mathrm{~T}_{4}$ | LOAD Pulse Width | 7 |  | ns |  |
| $\mathrm{~T}_{5}$ | CONFIG Pulse Width | 7 |  | ns |  |
| $\mathrm{~T}_{6}$ | IAi to LOAD High Setup Time | 0 | ns |  |  |
| $\mathrm{~T}_{7}$ | LOAD to IAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{8}$ | OAi to LOAD High Setup Time | 0 |  | ns |  |
| $\mathrm{~T}_{9}$ | LOAD to OAi Low Hold Time | 3 |  | ns |  |
| $\mathrm{~T}_{10}$ | Load $\uparrow$ to CONFIG $\uparrow$ | 0 |  | ns |  |
| $\mathrm{~T}_{11}$ | RESET Pulse Width | 10 |  | ns |  |
| $\mathrm{~T}_{\mathrm{R}, \mathrm{F}}$ | Output Rise or Fall Time |  |  |  |  |

Notes: 1. Test conditions: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \mathrm{~W}$ to $V_{T T}$; ECL inputs: $V_{I H}=-1.1 \mathrm{~V} ; V_{I L}=-1.5 \mathrm{~V}$; CMOS inputs: $V_{I H}=3.5 \mathrm{~V}, V_{I L}=1.5 \mathrm{~V}$; ECL outputs: $V_{O H} \geq-1.0 \mathrm{~V}, V_{O L} \leq-1.6 \mathrm{~V}$; ECL inputs rise and fall times $\leq 1 \mathrm{~ns}$; CMOS inputs rise and fall times $\leq 20 \mathrm{~ns}$. A bit error rate of $1 E-13$ BER or better for $2^{23}-1$ PRBS pattern, jitter and rise/fall times are guaranteed through characterization.
2. 1.2 Gb/s Non-Return-Zero (NRZ) data equivalent to 600 MHz clock signal.
3. Rise and fall times are measured at the $20 \%$ and $80 \%$ points of the transition from $V_{O L}$ max to $V_{O L}$ min.

## TQ8016

Figure 3. Timing Diagram — Switch Configuration


Figure 4. Timing Diagram — Reset


Notes: 1. LOAD input must remain LOW to insure correct programming of the switch
2. "Broadcast" is defined as data input 0 to all data outputs ( $0 . .15$ ).
3. "Pass-through" is defined as data input 0 to data output 0 , data input 1 to data output 1 , etc.

Figure 5. AC Performance Measurements
(Percent Recoverable "Eye" vs. Frequency $16 \times 16$ )


## Typical Error-Free Area

The graph in Figure 5 shows the typical error-free area of a $2^{23}-1$ Pseudo-Random Bit Stream (PRBS) "eye" pattern. Data is provided for both time and voltage domains of the differential DINO to DOUTO data path for various data rates. An interference pattern was applied to all other inputs in parallel to induce worst-case cross talk.

For the time domain, Peak-to-Peak Jitter was measured at the eye crossing.

An error-free percentage value was computed using the following formula:
(Data_Period - PPJitter) $\times 100$ / Data_Period
Voltage values are referenced to an initial inner eye measurement at 400 MBs . Subsequent percentage values were computed using the following formula:
$\mathrm{V}_{\text {INNER }} \times 100$ / $\mathrm{V}_{\text {INNER }} @ 400 \mathrm{MBs}$

Table 6. Typical Differential Waveform Characteristics (OUT - $\overline{O U T}$ )

| Frequency | $1200 \mathrm{Mb} / \mathrm{s}$ |
| :--- | :--- |
| Fall Time $(20 \%-80 \%)$ | 195 ps |
| Rise Time $(20 \%-80 \%)$ | $1200 \mathrm{Mb} / \mathrm{s}$ |
| Jitter (peak-to-peak) | 40 ps |
| Time/division | 125 ps |
| Volts/division | 250 mV |

Figure 5. $1200 \mathrm{Mb} / \mathrm{s}$ Data "Eye" Pattern


Time/Div: 150 ps

Figure 6. Mechanical Dimensions


Bottom View



## Ordering Information

## TQ8016-M

### 1.3 Gb/s $16 \times 16$ ECL Crosspoint Switch

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997


The TQ8017 is a non-blocking $16 \times 16$ digital crosspoint switch capable of data rates greater than 1.25 Gigabits per second per port. Utilizing a fully differential internal data path and PECL I/0, the TQ8017 offers a high data rate with exceptional signal fidelity. The symmetrical switching and noise rejection characteristics inherent in differential logic result in low jitter and signal skew. The TQ8017 is ideally suited for digital video, data communications and telecommunication switching applications.

The non-blocking architecture uses 16 fully independent 16:1 multiplexers (see diagram on page 2), allowing each output port to be independently programmed to any input port. The switch is configured by sequentially loading each multiplexer's 4-bit program latch (OAO:3) with the desired input port address (IAO:3) and enabling the LOAD pin. When complete, the CONFIGURE pin is strobed and all new configurations are simultaneously transferred into the switch multiplexers. Data integrity is maintained on all unchanged data paths.

## Electrical Characteristics

|  | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Data Rate/port | 1.25 |  | $\mathrm{~Gb} / \mathrm{s}$ |
| Jitter |  | 150 | $\mathrm{ps} \mathrm{pk-pk}$ |
| Channel Propagation Delay |  | 2000 | ps |
| Ch-to-Ch Propagation Delay Skew |  | 500 | ps |

## TQ8017 <br> 1.25 Gigabit/sec 16x16 Digital PECL Crosspoint Switch



Typical output waveform with all channels driven

## Features

- >20 Gb/s aggregate BW
- $1.25 \mathrm{~Gb} / \mathrm{s} /$ port NRZ data rate
- Non-blocking architecture
- 500 ps delay match
- Differential PECL-level data I/O; Selectable CMOS/TTLlevel control inputs
- Low jitter and signal skew
- Fully differential data path
- Double-buffered configuration latches
- 132-pin MQFP package
- Single +5 V supply


## Applications

- Telecom/Datacom Switching
- Hubs and Routers
- Video Switching


## T08017

Figure 1. TQ8017 Architecture


## Table 1.AbsoluteMaximumRatings ${ }^{5}$

| Symbol | Parameter | Absolute Max. Rating | Notes |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {STOR }}$ | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{CH}}$ | Junction (Channel) Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | 1 |
| $\mathrm{T}_{\mathrm{C}}$ | Case Temperature Under Bias | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 2 |
| $\mathrm{V}_{\text {c }}$ | Supply Voltage | 0 V to +7 V | 3 |
| $\mathrm{V}_{T T}$ | Load Termination Supply Voltage | $\mathrm{V}_{\text {cc }}$ to 0 V | 4 |
| $\mathrm{V}_{\text {IN }}$ | Voltage Applied to Any PECL Input; Continuous | GND -0.5 V to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$ |  |
| 1 IN | Current Into Any PECL Input; Continuous | -1.0 mA to +1.0 mA |  |
| $\mathrm{V}_{\text {IN }}$ | Voltage Applied to Any TTL/CMOS Input; Continuous | -0.5 V to $\mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}$ |  |
| In | Current Into Any TTL/CMOS Input; Continuous | -1.0 mA to +1.0 mA |  |
| $\mathrm{V}_{\text {OUT }}$ | Voltage Applied to Any PECL Output | GND -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | 4 |
| I OUT | Current From Any PECL Output; Continuous | $-40 \mathrm{~mA}$ |  |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation per Output $\mathrm{P}_{\text {OUT }}=\left(\mathrm{GND}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {OUT }}$ | 50 mW |  |

Notes: 1. For die applications.
2. $T_{C}$ is measured at case top.
3. All voltages specified with respect to GND, defined as OV.
4. Subject to IOUT and power dissipation limitations.
5. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur.

Table 2. Recommended Operating Conditions ${ }^{4}$

| Symbol | Parameter | Min | Typ | Max | Units | Notes |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Case Operating Temperature | 0 |  | 85 | ${ }^{\circ} \mathrm{C}$ | 1,3 |
| $\mathrm{~V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 |  | 5.5 | V |  |
| $\mathrm{~V}_{\mathrm{TT}}$ | Load Termination Supply Voltage |  | $\mathrm{V}_{\mathrm{CC}}-2.0$ |  | V | 2 |
| $\mathrm{R}_{\text {LOAD }}$ | Output Termination Load Resistance | 50 |  | $\Omega$ | 2 |  |
| $\Theta_{\mathrm{JC}}$ | Thermal Resistance Junction to Case |  |  | 7 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |

Notes: 1. $T_{C}$ measured at case top. Use of adequate heatsink is required.
2. The $V_{T T}$ and $R_{L O A D}$ combination is subject to maximum output current and power restrictions.
3. Contact the Factory for extended temperature range applications.
4. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

## Table 3. Pin Descriptions



## TQ8017

Table 4. DC Characteristics ${ }^{1,2}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Max | Units | Test Cond. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | PECL Input Voltage High | $V_{C C}-1.1$ | $V_{C C}-0.5$ | V |  |  |
| $\mathrm{V}_{\mathrm{IL}}$ | PECL Input Voltage Low | $V_{T T}$ | $\mathrm{V}_{\text {CC }}-1.5$ | V |  |  |
| $I_{\text {IH }}$ | PECL Input Current High |  | +30 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}-0.7 \mathrm{~V}$ |  |
| IIL | PECL Input Current Low | -30 |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {CC }}-2.0 \mathrm{~V}$ |  |
| VICM | PECL Input Common Mode Voltage | $\mathrm{V}_{\text {CC }}-1.5$ | $\mathrm{V}_{\text {CC }}-1.1$ | V |  |  |
| $\mathrm{V}_{\text {IDIF }}$ | PECL Input Differential Voltage (pk-pk) | 400 | 1200 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | CMOS/TTL Input Voltage High | 3.5/2.0 | $\mathrm{V}_{\mathrm{CC}} \mathrm{N}_{\text {cC }}$ | V |  | 2 |
| $\mathrm{V}_{\text {IL }}$ | CMOS/TTL Input Voltage Low | 0/0 | 1.5/0.8 | V |  | 2 |
| $\mathrm{I}_{\mathrm{H}}$ | CMOS/TTL Input Current High |  | +200 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$ | 2 |
| $\mathrm{I}_{\text {IL }}$ | CMOS/TTL Input Current Low |  | -100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$ | 2 |
| $V_{\text {OCM }}$ | PECL Output Common Mode | $\mathrm{V}_{\text {CC }}-1.5$ | $V_{\text {CC }}-1.1$ | V |  |  |
| $\mathrm{V}_{\text {ODIF }}$ | PECL Output Differential Voltage | 600 |  | mV |  |  |
| $\mathrm{V}_{\text {OH }}$ | PECL Output Voltage High | $V_{C C}-1.0$ | $\mathrm{V}_{\text {CC }}-0.6$ | V |  |  |
| $\mathrm{V}_{0 \mathrm{~L}}$ | PECL Output Voltage Low | $\mathrm{V}_{T T}$ | $\mathrm{V}_{\text {CC }}-1.6$ | V |  |  |
| $\mathrm{IOH}_{\mathrm{OH}}$ | PECL Output Current High | 20 | 27 | mA |  |  |
| 10 L | PECL Output Current Low | 0 | 8 | mA |  |  |
| ICC | Power Supply Current (+) |  | 970 | mA |  |  |

Notes: 1. Test conditions unless otherwise indicated: $V_{T T}=V_{C C}-2.0 \mathrm{~V}, R_{L O A D}=50 \Omega$ to $V_{T T}$.
2. Input level is selected by the CNTRL LVL input. Tying CNTRL LVL to GND selects TTL levels, leaving CNTRL LVL OPEN selects CMOS levels.

Table 5. AC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Typ | Max | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | Maximum Data Rate/Port |  | 1.25 | $\mathrm{~Gb} / \mathrm{s}$ | Notes |
|  | Jitter |  | 150 | $\mathrm{ps} \mathrm{pk}-\mathrm{pk}$ | 1,2 |
| $\mathrm{~T}_{1}$ | Channel Propagation Delay | 2000 | ps | 1 |  |
| $\mathrm{~T}_{2}$ | Ch-to-Ch Propagation Delay Skew |  | 500 | ps |  |
| $\mathrm{T}_{3}$ | CONFIG to Data Out (Oi) Delay |  | 5 | ns |  |
| $\mathrm{~T}_{4}$ | LOAD Pulse Width | 7 |  | ns |  |
| $\mathrm{~T}_{5}$ | CONFIG Pulse Width | 7 | ns |  |  |
| $\mathrm{~T}_{6}$ | IAi to LOAD High Setup Time | 0 | ns |  |  |
| $\mathrm{~T}_{7}$ | LOAD to IAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{8}$ | OAi to LOAD High Setup Time | 0 | ns |  |  |
| $\mathrm{~T}_{9}$ | LOAD to OAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{10}$ | Load $\uparrow$ to CONFIG $\uparrow$ | 0 | ns |  |  |
| $\mathrm{~T}_{11}$ | RESET Pulse Width | 10 |  | ns |  |
| $\mathrm{~T}_{\mathrm{R}, \mathrm{F}}$ | Output Rise or Fall Time |  |  | ps |  |

Notes: 1. Test conditions: $V_{C C}=5.0 \mathrm{~V} ; V_{T T}=3.0 \mathrm{~V}, R_{L O A D}=50 \Omega$ to $V_{T T} ; P E C L$ inputs: $V_{I H}=3.9 \mathrm{~V} ; V_{I L}=3.5 \mathrm{~V} ; C M O S$ inputs: $V_{I H}=3.5 \mathrm{~V}$, $V_{I L}=1.5 \mathrm{~V}$; PECL outputs: $V_{O H} \geq 4.0 \mathrm{~V}, V_{O L} \leq 3.4 \mathrm{~V}$; PECL inputs rise and fall times $\leq 1 \mathrm{~ns} ; \mathrm{CMOS}$ inputs rise and fall times
$\leq 20$ ns. A bit error rate of $1 E-13$ BER or better for $2^{23}-1 P R B S$ pattern, jitter and rise/fall times are guaranteed through characterization.
2. $1.2 \mathrm{~Gb} / \mathrm{s}$ Non-Return-Zero (NRZ) data equivalent to 600 MHz clock signal.
3. Rise and fall times are measured at the $20 \%$ and $80 \%$ points of the transition from $V_{O L}$ max to $V_{O L}$ min.

Figure 2. Timing Diagram - Switch Configuration


Figure 3. Timing Diagram - Reset


Notes: 1. LOAD input must remain LOW to insure correct programming of the switch.
2. "Broadcast" is defined as data input 0 to all data outputs ( $0 . . .15$ ).
3. "Pass-through" is defined as data input 0 to data output 0 , data input 1 to data output 1 , etc.

## Typical Performance Data

Figure 4. Data Eye Closure
Percent RMS vs Data Rate (typical)


Figure 6. RMS Jitter vs. Data Rate (typical)


Figure 5. Data Eye Closure
Time \& Amplitude vs Data Rate (typical)


Figure 5. Package Pinout


## TQ8017

Figure 6. Mechanical Dimensions

## Bottom View



## Section A-A



## Ordering Information



Notes: 1. Part is symmetrical about the center axes.


PAD LaYOUT DETAIL

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997


The TQ8025 is a non-blocking $16 \times 16$ digital crosspoint switch capable of data rates greater than 2.5 Gigabits per second per port. Utilizing a fully differential internal data path and PECL/CML I/O, the TQ8025 offers an extremely high data rate with exceptional signal fidelity. The use of fully differential logic results in low crosstalk, jitter, and signal skew. The TQ8025 is ideally suited for digital video, data communications, telecommunication switching, and cross-connect applications.

The non-blocking architecture uses 16 fully independent 16:1 multiplexers which allow each output port to be independently programmed to any input port. The TQ8025 offers two programming options: a flexible port-by-port option and a fast configuration option.

Using the fast configuration option, all 16 switch ports are programmed within 100ns by serially loading four 16-bit input port selection words.
Two output pins (RADD0,1) are provided to drive an external RAM ( $n \times 4 \times 16$ bits) used to store the switch configuration. An Autoconfigure option automatically transfers the new configurations into the switch core. Autoconfiguration occurs after the last input selection word is clocked into the programming registers.

Data integrity is maintained on all unchanged data paths for both the port-by-port and fast configuration options.

## TQ8025

PRELIMINARY DATA SHEET

### 2.5 Gigabit/sec

 16x16 Digital Crosspoint Switch
## Features

- 16 PECL/CML fully differential (back-terminated) outputs
- >2.5 Gb/s data bandwidth per channel.
- >40 Gb/s aggregate bandwidth
- Non-blocking architecture
- <100 ns configuration time
- Autonomous control of external RAM for configuration data
- Low jitter and signal skew
- $\pm 100$ ps delay match (one input to all outputs)
- Fully differential data path
- 132-pin MLC package with heat spreader


## Applications

- SONET OC-48 data path
- Double-speed Fibre Channel
- Hubs and routers
- High-definition video switching
- Parallel processing


## TQ8025

## PRELIMINARY DATA SHEET

## Specifications

## Table 1. Absolute Maximum Ratings ${ }^{4}$

| Storage temperature | $\mathrm{T}_{\text {STORE }}$ | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- | :---: |
| Junction temperature | $\mathrm{T}_{\mathrm{CH}}$ | $150^{\circ} \mathrm{C}$ |
| Case temperature with bias ${ }^{1}$ | $\mathrm{~T}_{\mathrm{C}}$ | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |
| Supply voltage ${ }^{2}$ | $\mathrm{~V}_{\mathrm{CC}}$ | 0 V to +7.0 V |
| Voltage to any input ${ }^{2}$ | $\mathrm{~V}_{\mathrm{IN}}$ | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Voltage to any output ${ }^{2}$ | $\mathrm{~V}_{\text {OUT }}$ | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| ${\text { Current to any input }{ }^{2}}^{\text {Current from any output }{ }^{2}}$ | $\mathrm{I}_{\mathrm{IN}}$ | -1.0 mA to +1.0 mA |
| Power dissipation of output ${ }^{3}$ | $\mathrm{I}_{\text {OUT }}$ | 40 mA |

Notes: 1. $T_{C}$ is measured at the case top.
2. All voltages are measeured with respect to GND OV and are continuous.
3. $P_{\text {OUT }}=\left(V_{\text {CC }}-V_{\text {OUT }}\right) \times$ I OUT .
4. Absolute maximum ratings in this table are those beyond which the device's performance may be impaired and/or permanent damage may occur.

Table 2. Recommended Operating Conditions ${ }^{4}$

| Symbol | Parameter | Min | Typ | Max | Units | Notes |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Case Operating Temperature | 0 | - | 85 | ${ }^{\circ} \mathrm{C}$ | 1,3 |
| $\mathrm{~V}_{\mathrm{CC}}$ | Supply Voltage | 4.75 | - | 5.25 | V |  |
| $\mathrm{~V}_{\mathrm{T}}$ | Load Termination Supply Voltage |  | $\mathrm{V}_{\mathrm{CC}}-2.0$ |  | V |  |
| $\mathrm{I}_{\mathrm{CC}}$ | Current Positive Supply | - | - | 2.1 | A |  |
| $\mathrm{R}_{\mathrm{LOAD}}$ | Output Termination Load Resistance |  | 50 |  | $\Omega$ | 2 |
| $\Theta_{\mathrm{JC}}$ | Thermal Resistance Channel to Case |  |  | 5.9 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |

[^3]TQ8025
PRELIMINARY DATA SHEET
Table 3. DC Characteristics - CML I/O ${ }^{5}$

| Symbol | Description | Test Conditions | Min | Nom | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {COM }}$ | Common mode voltage | (Note 1) | $\mathrm{V}_{\text {CC }}-600$ | - | $\mathrm{V}_{\text {CC }}$ | mV |
| $\mathrm{V}_{\text {DIFF }}$ | Differential voltage | (Note 1) | 400 | - | 1200 | mV |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH voltage | (Note 2) |  | - | $\mathrm{V}_{\mathrm{CC}}$ | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW voltage |  | $\mathrm{V}_{\mathrm{CC}}-1100$ | - |  | mV |
| $\mathrm{V}_{\text {OH }}$ | Output HIGH voltage | (Note 3) | $\mathrm{V}_{\mathrm{CC}}-100$ | - | $\mathrm{V}_{\mathrm{CC}}$ | mV |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | (Note 3) | $\mathrm{V}_{\mathrm{CC}}-1100$ | - | $\mathrm{V}_{\mathrm{CC}}-600$ | mV |
| $\mathrm{I}_{\text {OH }}$ | Output HIGH current | (Note 3, 4) | 20 | 23 | 30 | mA |
| $\mathrm{I}_{\mathrm{OL}}$ | Output LOW current | (Note 3, 4) | 0 | 5 | 8 | mA |

Table 4. DC Characteristics — PECL I/O ${ }^{5}$

| Symbol | Description | Test Conditions | Min | Nom | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {COM }}$ | Common mode voltage | (Note 1) | $\mathrm{V}_{C C}-1500$ | - | $\mathrm{V}_{\mathrm{CC}}-1100$ | mV |
| $\mathrm{V}_{\text {DIFF }}$ | Differential voltage | (Note 1) | 400 | - | 1200 | mV |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH voltage | (Note 2) |  | - | $\mathrm{V}_{\text {CC }}-500$ | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW voltage |  | $\mathrm{V}_{\mathrm{CC}}-2100$ | - |  | mV |
| $\mathrm{V}_{\text {OH }}$ | Output HIGH voltage | (Note 3) | $\mathrm{V}_{\mathrm{CC}}-1100$ | - | $\mathrm{V}_{\text {CC }}-600$ | mV |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | (Note 3) | $\mathrm{V}_{\mathrm{CC}}-2100$ | - | $\mathrm{V}_{\mathrm{CC}}-1600$ | mV |
| $\mathrm{I}_{\text {OH }}$ | Output HIGH current | (Note 4) | 20 | 23 | 30 | mA |
| $\mathrm{I}_{\text {OL }}$ | Output LOW current | (Note 4) | 0 | 5 | 8 | mA |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance |  | - | - | TBD | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance |  | - | - | TBD | pF |
| VESD | ESD breakdown rating | (Note 5) | Class | - | - |  |

Table 5. DC Characteristics - TTL $/ /^{5}$

| Symbol | Description | Test Conditions | Min | Nom | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH voltage |  | 2.0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\text {IL }}$ | Input LOW voltage |  | 0 | - | 0.8 | V |
| $\mathrm{I}_{\text {IH }}$ | Input HIGH current | $\mathrm{V}_{(\text {IHMAX })}$ | - | - | 200 | UA |
| $\mathrm{I}_{\mathrm{IL}}$ | Input LOW current | $\mathrm{V}_{(\text {(LMIN })}$ | -400 | -200 | - | UA |
| $\mathrm{V}_{\text {OH }}$ | Output HIGH voltage | $\mathrm{I}_{\mathrm{OH}}=50 \mathrm{~mA}$ | 2.4 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$ | 0 | - | 0.4 | V |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance |  | - | - | TBD | pF |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance |  | - | - | TBD | pF |
| VESD | ESD breakdown rating | (Note 5) | Class I | - | - |  |

Notes (Tables 3, 4, and 5): 1. Differential inputs.
2. $V_{R E F}=1300 \mathrm{mV}$.
3. $R_{L O A D}=50$ ohms to $V_{T T}=V_{C C}-2.0 \mathrm{~V}$.
4. Not tested; consistent with $V_{O H}$ and $V_{O L}$ tests.
5. Specifications apply over recommended operating ranges.

## Table 6. AC Characteristics

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{PW}}$ | $\mathrm{D}(0: 15)$ minimum pulse width | (Note 1) | 360 | - | - | ps |
| $\mathrm{T}_{\mathrm{R} / \mathrm{F}}$ | $0(0: 15)$ rise/fall time $20-80 \%$ | (Note 1) | - | - | 150 | ps |
| $\mathrm{T}_{\mathrm{PD}}$ | $\mathrm{D}(0: 15), 0(0: 15)$ delay time | (Note 1) | - | - | 2.5 | ns |
| $\mathrm{~T}_{\text {SKEW }}$ | Path delay matching | (Note 1) |  | 300 |  | ps |
| $\mathrm{T}_{\text {JITTER }}$ | Jitter | (Note 2) | - | - | 75 | ps pk-pk |

Notes: 1. Minimum $V_{O H}$ to maximum $V_{O L}$ levels.
2. Crossing of (On)-(NOn) measured with $2^{23}-1$ PRBS, measured over extended time.

## Table 7 TQ8025 Timing

| Symbol | Parameter | Min. | Max. |
| :---: | :--- | :---: | :---: |
| T 1 | CLOCK low | 4 | Units |
| T 2 | CLOCK period | 20 | ns |
| T 3 | LOAD to RADD delay | 3 | ns |
| T 4 | Data input pulse width | 400 | ns |
| T 5 | LOAD to ADO setup time | 2 | ps |
| T6 | ADO to CLOCK setup time | 18 | ns |
| T 7 | CONFIG to Dout delay | 4 | ns |
| T8 | CONFIG pulse width | 10 | ns |
| T9 | ADDREN to RADD delay | 3 | ns |
| T10 | ADDREN to RADD tristate | 3 | ns |
| T11 | LOAD to READY delay | 3 | ns |
| T12 | RADD to READY delay | 3 | ns |
| T13 | Data in to Dout delay | 2 | ns |
| T14 | SAD/DAD setup to LOAD | ns |  |
| T15 | LOAD pulse width / time to CONFIG | 3 | ns |
|  |  | ns |  |

Figure 1. TQ8025 timing (LDMODE=1)


Figure 2. TQ8025 pinout - top view


## TQ8025

## Table 8. TQ8025 Pin Descriptions

| Signal | Name/Level | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { DIOOP-DI15P } \\ & \text { DION-DI15N } \end{aligned}$ | Data input true and complement Differential CML/PECL input | Differential data input ports. $\mathrm{VH}=0 \mathrm{~V}, \mathrm{VL}=-300 \mathrm{mV}$ max. <br> Internal 50 ohm terminations to VTT ( $\mathrm{CML}=0 \mathrm{~V}$;ECL $=-2.0 \mathrm{~V}$ ). |
| $\begin{aligned} & \hline \text { DOOP-DO15P, } \\ & \text { DOON-D015N } \end{aligned}$ | Data output true and complement Differential CML/PECL output | Differential data output ports. 600 mV min. differential swing. |
| AD00:15 | Input address; TTL input | Serial input address, LSB first in time; ADn programs output port n. |
| RADD0:1 | RAM address; TTL output, tristate | Used to generate address 0-3 during configure load from RAM. |
| ADDREN | Enable RADD0:2; TTL input | When low, enables RADD0:1; when high, forces RADD0:1 tristate. |
| CLOCK | Clock; TTL input | Controls cycle time of address generator and AUTOCONFIG. |
| AUTOCONFIG | Configure mode; TTL input | When high, internal CONFIGURE is automatically generated. |
| READY | READY; open-drain output | Indicates end of AUTOCONFIG or end of address LOAD cycle when high. Reset low by RESET-, CONFIG low, or LOAD rising. Requires external pullup to $\mathrm{V}_{\mathrm{Cc}}$. |
| LOAD | LOAD; TTL input | For LDMODE $=1$, ADDREN $=0$ : AUTOCONFIG=0, rising LOAD causes ADDRO:1 to generate RAM addresses, then READY is asserted after four clock ticks. For AUTOCONFIG=1, LOAD rising causes ADDR0:1 to generate addresses, causing an internal CONFIG to be generated, after which READY is asserted. For LDMODE=0, see SADO:3 and DADO:3. |
| CONFIGURE | CONFIGURE; PECL input Not internally terminated | Used to load address contents of internal address registers. Active LOW. Crosspoint will be configured within 4 ns (objective) of CONFIG falling low. |
| LDMODE | Load Mode; TTL input | When floated high, ADO-15 are used for configuration. When tied low, SADO-3 and DADO-3 are used for configuration. When AUTOCONFIG is disabled, and AD08-15 are ignored. |
| SADO:3 | Source Address; TTL inputs | When LDMODE is low, specifies input address to be connected to output port specified by DAD0:3. Latched by falling LOAD (LDMODE=0). |
| DAD0:3 | Destination Address; TTL input | When LDMODE is low, specifies output address to be connected to input port specified by SAD0:3. Latched by falling LOAD (LDMODE=0). |
| VCC, GND, VTT | +5V, Ground; Termination Voltage | Power and ground pins. <br> $V_{T T}=G N D$ for CML inputs; $V_{T T}=V_{C C}-2 V$ for PECL inputs. |
| RESET- | Reset; TTL Input | While low, programs all output ports to connect to input port 0 . Strobing CONFIG after reset restores user port programming if device power was stable since last user programming and during RESET-. Active low, schmitt triggered. |

## Figure 3. Mechanical Dimensions

## Bottom view



Section A-A


## Ordering Information

## TQ8025 <br> 2.5 Gb/s 16x16 PECL Crosspoint Switch

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:

## Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or ommisions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 0.1.A October 1997


The TQ8032 is a non-blocking $32 \times 32$ digital crosspoint switch capable of 800 Megabits per second per port data rates. Utilizing a fully differential internal data path and ECL I/O, the TQ8032 offers a high data rate with exceptional signal fidelity. The symmetrical switching and noise rejection characteristics inherent in differential logic result in low jitter and signal skew. The TQ8032 is ideally suited for digital video, data communications and telecommunication switching applications.

The non-blocking architecture uses 32 fully independent $32: 1$ multiplexers (see diagram on page 2), allowing each output port to be independently programmed to any input port. The switch is configured by sequentially loading each multiplexer's 5 -bit program latch (OAO:4) with the desired input port address (IAO:4) and enabling the LOAD pin. When complete, the CONFIGURE pin is strobed and all new configurations are simultaneously transferred into the switch multiplexers. Data integrity is maintained on all unchanged data paths.

Electrical Characteristics

|  | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Data Rate/Port | 800 |  | $\mathrm{Mb} / \mathrm{s}$ |
| Jitter |  | 150 | $\mathrm{ps} \mathrm{pk-pk}$ |
| Channel Propagation Delay | 2300 | ps |  |
| Ch-to-Ch Propagation Delay Skew |  | 500 | ps |

## TQ8032

800 Megabit/sec
32x32 Digital ECL Crosspoint Switch


Typical output waveform with all channels driven

## Features

- >25 Gb/s aggregate BW
- $800 \mathrm{Mb} / \mathrm{s} / \mathrm{port}$ NRZ data rate
- Non-blocking architecture
- 500 ps delay match
- Differential ECL-level data 1/0; Selectable CMOS/TTLlevel control inputs
- Low jitter and signal skew
- Fully differential data path
- Double buffered configuration latches
- 196-pin CQFP package


## Applications

- Telecom/Datacom Switching
- Hubs and Routers
- Video Switching


## TQ8032

Figure 1. Architecture


Table 2. Pin Descriptions

| Signal | Name/Level | Description |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 to I31, NIO to NI31 | Data input true and complement. Differential ECL | Differential data input ports. |  |  |  |  |
| 00 to 031, NOO to NO31 | Data output true and complement. Differential ECL | Differential data output ports. |  |  |  |  |
| IA0:4 | Input address. CMOS/TTL | Input port selection address that is written into the selected output port program latches (OAO:4). |  |  |  |  |
|  |  | IA4 | IA3 IA2 | IA1 | IAO | Input port |
|  |  | 0 | 00 | 0 | 0 | 0 |
|  |  | 0 | 00 | 0 | 1 | 1 |
|  |  | 0 | $0 \quad 0$ | 1 | $0$ | 2 |
|  |  | , | : : | : | : | : |
|  |  | 1 | 11 | 1 | 1 | 31 |
| OAO:4 CMOS/TTL | Output select address. | Output port selection address. Selects the output port program latches to which the input port selection address (IAO:4) is written. |  |  |  |  |
|  |  | OA4 | OA2 | OA1 OAO |  | Output port |
|  |  | 0 | 00 | 0 | 0 | 0 |
|  |  | 0 | 00 | 0 | $1$ | $1$ |
|  |  | 0 | 00 | 1 | 0 | 2 |
|  |  | : | - | : | ; | : |
|  |  | 1 | 11 | 1 | 1 | 31 |

## TQ8032

Figure 2. Package Pinout


Table 2. Pin Descriptions (continued)

| Signal | Name/Level | Description |
| :---: | :---: | :---: |
| LOAD | CMOS/TTL <br> Latches the data when set to a 'low' level. | Enables the selected output port program latches while set 'high'. |
| CONFIGURE | CMOS/TTL | Transfers the program latches data to the configuration latches and implements the switch changes while set "high." Latches the data when set to a "low" level. |
| RESET | CMOS/TTL | Puts the switch into Broadcast or Pass-Through configuration, overwriting existing configurations. <br> Broadcast mode: All output ports are connected to data input port 0. This mode is selected by applying a RESET "high" pulse with CONFIGURE held "low." Pass-through mode: 10 is connected to 00,11 to 01 , etc. This mode is selected by applying a RESET "high" pulse with CONFIGURE held "high." |
| CNTRL LVL | Input level control. GND/Open | Selects the input levels for the input address (IA0:4), output address(OAO:4), CONFIGURE, LOAD and RESET inputs. Inputs are configured for TTL when tied to GND and CMOS when left unconnected. |

## TQ8032

## Table 3. Absolute Maximum Ratings ${ }^{5}$

| Symbol | Parameter | Absolute Max. Rating | Notes |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {STOR }}$ | Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{CH}}$ | Junction (Channel) Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | 1 |
| $\mathrm{T}_{\mathrm{C}}$ | Case Temperature Under Bias | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 2 |
| $\mathrm{V}_{\text {CC }}$ | Supply Voltage | 0 V to +7 V | 3 |
| $\mathrm{V}_{\text {EE }}$ | Supply Voltage | -7 V to 0 V | 3 |
| $V_{T T}$ | Load Termination Supply Voltage | $\mathrm{V}_{\text {EE }}$ to 0 V | 4 |
| $\mathrm{V}_{\text {IN }}$ | Voltage Applied to Any ECL Input; Continuous | $\mathrm{V}_{\text {EE }}-0.5 \mathrm{~V}$ to +0.5 V |  |
| In | Current Into Any ECL Input; Continuous | -1.0 mA to +1.0 mA |  |
| $\mathrm{V}_{\text {IN }}$ | Voltage Applied to Any TTL/CMOS Input; Continuous | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |  |
| In | Current Into Any TTL/CMOS Input; Continuous | -1.0 mA to +1.0 mA |  |
| $\mathrm{V}_{\text {OUT }}$ | Voltage Applied to Any ECL Output | $\mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V}$ to +0.5 V | 4 |
| lout | Current From Any ECL Output; Continuous | -40 mA |  |
| $P_{D}$ | Power Dissipation per Output $\mathrm{P}_{\text {OUT }}=\left(\mathrm{GND}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {OUT }}$ | 50 mW |  |

Notes: 1. For die applications.
2. $T_{C}$ is measured at case top.
3. All voltages specified with respect to GND, defined as OV.
4. Subject to Iout and power dissipation limitations.
5. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur.

Table 4. Recommended Operating Conditions ${ }^{4}$

| Symbol | Parameter | Min | Typ | Max | Units | Notes |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Case Operating Temperature | 0 |  | 85 | ${ }^{\circ} \mathrm{C}$ | 1,3 |
| $\mathrm{~V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 |  | 5.5 | V |  |
| $\mathrm{~V}_{\mathrm{EE}}$ | Supply Voltage | -5.5 |  | -4.5 | V |  |
| $\mathrm{~V}_{\mathrm{TI}}$ | Load Termination Supply Voltage |  | -2.0 |  | V | 2 |
| $\mathrm{R}_{\mathrm{LOAD}}$ | Output Termination Load Resistance | 50 |  | $\Omega$ | 2 |  |
| $\Theta_{\mathrm{JC}}$ | Thermal Resistance Junction to Case |  |  | 2 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |

Notes: 1. $T_{C}$ measured at case top. Use of adequate heatsink is required.
2. The $V_{T T}$ and $R_{\text {LOAD }}$ combination is subject to maximum output current and power restrictions.
3. Contact the Factory for extended temperature range applications.
4. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

## TQ8032

Table 5. DC Characteristics ${ }^{1,2}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Max | Units | Test Cond. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | ECL Input Voitage High | -1100 | -500 | mV |  |  |
| $\mathrm{V}_{\text {IL }}$ | ECL Input Voltage Low | $V_{T T}$ | -1500 | mV |  |  |
| $\mathrm{I}_{\mathrm{H}}$ | ECL Input Current High |  | +30 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IH}}=-0.7 \mathrm{~V}$ |  |
| ILL | ECL Input Current Low |  | -30 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IL }}=-2.0 \mathrm{~V}$ |  |
| VICM | ECL Input Common Mode Voltage | -1500 | -1100 | mV |  |  |
| $\mathrm{V}_{\text {IDIF }}$ | ECL Input Differential Voltage (pk-pk) | 400 | 1200 | mV |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | CMOS/TTL Input Voltage High | 3.5/2.0 | $\mathrm{V}_{\text {cC }} / \mathrm{V}_{\text {c }}$ | V |  | 2 |
| $\mathrm{V}_{\text {IL }}$ | CMOS/TTL Input Voltage Low | 0/0 | 1.5/0.8 | V |  | 2 |
| $\mathrm{I}_{\mathrm{H}}$ | CMOS/TTL Input Current High |  | +100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$ | 2 |
| IIL | CMOS/TTL Input Current Low |  | -100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ | 2 |
| $V_{\text {OCM }}$ | ECL Output Common Mode | -1500 | -1100 | mV |  |  |
| $\mathrm{V}_{\text {ODIF }}$ | ECL Output Differential Voltage | 600 |  | mV |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | ECL Output Voltage High | -1000 | -600 | mV |  |  |
| $\mathrm{V}_{0 \mathrm{~L}}$ | ECL Output Voltage Low | $\mathrm{V}_{T T}$ | -1600 | mV |  |  |
| $\mathrm{I}_{\mathrm{OH}}$ | ECL Output Current High | 20 | 27 | mA |  |  |
| $\mathrm{I}_{0 \mathrm{~L}}$ | ECL Output Current Low | 0 | 8 | mA |  |  |
| ICC | Power Supply Current (+) |  | 20 | mA |  |  |
| $\mathrm{I}_{\text {EE }}$ | Power Supply Current (-) |  | -1950 | mA |  |  |

Notes: 1. Test conditions unless otherwise indicated: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50$ to $\mathrm{V} \pi$.
2. Input level is selected by the CNTRL_LVL input. Tieing CNTRL_LVL to GND selects TTL levels, leaving CNTRL_LVL OPEN selects CMOS levels.

Table 6. AC Characteristics ${ }^{1}$ - Within recommended operating conditions, unless otherwise indicated.

| Symbol | Parameter | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  | Maximum Data Rate/Port |  | 800 | $\mathrm{Mb} / \mathrm{s}$ | Notes |
|  | Jitter |  | 150 | $\mathrm{ps} \mathrm{pk-pk}$ | 1 |
| $\mathrm{~T}_{1}$ | Channel Progagation Delay |  | 2300 | ps |  |
| $\mathrm{T}_{2}$ | Channel-to-Channel Delay Skew | 500 | ps |  |  |
| $\mathrm{T}_{3}$ | CONFIG to Data Out (Oi) Delay |  | 5 | ns |  |
| $\mathrm{~T}_{4}$ | LOAD Pulse Width | 7 |  | ns |  |
| $\mathrm{~T}_{5}$ | CONFIG Pulse Width | 7 | ns |  |  |
| $\mathrm{~T}_{6}$ | IAi to LOAD High Setup Time | 0 | ns |  |  |
| $\mathrm{~T}_{7}$ | LOAD to IAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{8}$ | OAi to LOAD High Setup Time | 0 | ns |  |  |
| $\mathrm{~T}_{9}$ | LOAD to OAi Low Hold Time | 3 | ns |  |  |
| $\mathrm{~T}_{10}$ | Load $\uparrow$ to CONFIG $\uparrow$ | 0 | ns |  |  |
| $\mathrm{~T}_{11}$ | RESET Pulse Width | 10 |  | ns |  |
| $\mathrm{~T}_{\mathrm{R}, \mathrm{F}}$ | Output Rise or Fall Time |  |  |  |  |

Notes: 1. Test conditions: $V_{T T}=-2.0 \mathrm{~V}, R_{L O A D}=50 \mathrm{~W}$ to $V_{T \text {; }} ; E C L$ inputs: $V_{I H}=-1.1 \mathrm{~V} ; V_{L L}=-1.5 \mathrm{~V} ; C M O S$ inputs: $V_{I H}=3.5 \mathrm{~V}, V_{L L}=1.5 \mathrm{~V}$; ECL outputs: $V_{\text {OH }}-1.0 \mathrm{~V}, V_{O L}-1.6 \mathrm{~V}$; ECL inputs rise and fall times 1 ns ; CMOS inputs rise and fall times 20 ns .
A bit error rate of 1E-13 BER or better for $2^{23}-1$ PRBS pattern, jitter and rise/fall times are guaranteed through characterization.
2. $800 \mathrm{Mb} / \mathrm{s}$ Non-Return-Zero (NRZ) data equivalent to 400 MHz clock signal.
3. Rise and fall times are measured at the $20 \%$ and $80 \%$ points of the transition from $V_{O L}$ max to $V_{O L}$ min.

Figure 3. Timing Diagram - Switch Configuration


Note: 1. No data loss on unchanged paths

Figure 4. Timing Diagram - Reset


Notes: 1. LOAD input must remain LOW to insure correct programming of the switch.
2. "Broadcast" is defined as data input 0 to all data outputs ( $0 . .31$ ).
3. "Pass-through" is defined as data input 0 to data output 0 , data input 1 to data output 1, etc.

## Typical Performance Data

Figure 5. Jitter - Single Channel


Figure 6. Output Delay


## TQ8032

## Figure 7. Mechanical Dimensions

## Bottom View (marking up)



## Section A-A



Top View (marking down)


## Ordering Information

## TQ8032-M $\quad 800 \mathrm{Mb} / \mathrm{s} 32 \times 32$ ECL Crosspoint Switch

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Email: sales@tqs.com

Tel: (503) 615-9000
Fax: (503) 615-8900

For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997

SEMICONDUCTOR N SEMICONDUCTOR,INC.


The TQ8033 is a non-blocking $64 \times 33$ digital crosspoint switch capable of data rates greater than 1.5 Gigabits per second per port. Utilizing a fully differential internal data path and PECL I/O, the TQ8033 offers a high data rate with exceptional signal fidelity. The symmetrical switching and noise rejection characteristics inherent in differential logic result in low jitter and signal skew. The TQ8033 is ideally suited for digital video, data communications and telecommunication switching applications.

The non-blocking architecture uses 33 fully independent 64:1 multiplexers, allowing each output port to be independently programmed to any input port. Port 032 is provided to support diagnostic monitoring.

The switch is configured by sequentially addressing each output multiplexer (OADDO:4) and loading it's 6 -bit program latch with the desired input port address (IADD0:5) and then enabling the LOAD pin. When complete, the CONFIGURE pin is strobed and all new configurations are simultaneously transferred into the switch multiplexers. Data integrity is maintained on all unchanged data paths.

## TQ8033

PRELIMINARY DATA SHEET

### 1.5 Gbit/sec 64x33 Digital PECL Crosspoint Switch

## Features

- >1.5 Gb/s/port data bandwidth; $>50 \mathrm{~Gb} / \mathrm{s}$ aggregate bandwidth
- Fully differential data path with 64 inputs and 33 outputs
- Non-blocking architecture
- 150 ps delay match
- Differential PECL-level data I/O; TTL-level control inputs
- Low jitter and signal skew
- Double-buffered configuration latches
- Dedicated, programmable fullbandwidth monitor output for diagnostics
- 304-pin BGA package
- Single +5V supply


## Applications

- Telecom/Datacomm switching
- Hubs and routers
- Video switching


## TQ8033

## PRELIMINARY DATA SHEET

## Specifications

Specifications subject to change without notice.

## Table 1. Absolute Maximum Ratings ${ }^{4}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | $\mathrm{T}_{\text {store }}$ | -65 |  | Unit |
| Junction Temperature |  | $\mathrm{T}_{C H}$ | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Case Temperature w/bias | $(1)$ | $\mathrm{T}_{\mathrm{C}}$ | 0 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Supply Voltage | $(2)$ | $\mathrm{V}_{\text {DD }}$ | 0 | 85 | ${ }^{\circ} \mathrm{C}$ |
| Voltage to any input | $(2)$ | $\mathrm{V}_{\text {in }}$ | -0.5 | 7.0 | V |
| Voltage to any output | $(2)$ | $\mathrm{V}_{\text {out }}$ | -0.5 | $\mathrm{~V}_{\text {DD }}+0.5$ | V |
| Current to any input | $(2)$ | $\mathrm{I}_{\text {in }}$ | -1.0 | $\mathrm{~V}_{\text {DD }}+0.5$ | V |
| Current from any output | $(2)$ | $\mathrm{I}_{\text {out }}$ |  | 1.0 | mA |
| Power Dissipation of output | $(3)$ | $\mathrm{P}_{\text {out }}$ |  | 40.0 | mA |

Notes: 1. Tc is measured at case top.
2. All voltages are measured with respect to GND (OV) and are continuous.
3. Pout $=\left(V_{D D}-V_{\text {out }}\right) X I_{\text {out }}$.
4. Absolute maximum ratings, as detailed in this table, are the ratings beyond which the device's performance may be impaired and/or permanent damage to the device may occur.

## Table 2. Recommended Operating Conditions ${ }^{4}$

| Symbol | Parameter | Min | Typ | Max | Units | Notes |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Case Operating Temperature | 0 | - | 85 | ${ }^{\circ} \mathrm{C}$ | 1,3 |
| $\mathrm{~V}_{\mathrm{DD}}$ | Supply Voltage | 4.75 | - | 5.25 | V |  |
| $\mathrm{~V}_{\mathrm{TT}}$ | Load Termination Supply Voltage |  | $\mathrm{V}_{\mathrm{DD}}-2.0$ |  | V | 2 |
| $\mathrm{I}_{\mathrm{DD}}$ | Current positive supply | - | - | 3 | A |  |
| $\mathrm{R}_{\mathrm{LOAD}}$ | Output Termination Load Resistance |  | 50 |  | $\Omega$ | 2 |
| $\Theta_{\mathrm{JC}}$ | Thermal Resistance Junction to Case |  |  | 4 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |

Notes: 1. $T_{C}$ measured at case top. Use of adequate heatsink is required.
2. The $V_{T T}$ and $R_{\text {LOAD }}$ combination is subject to maximum output current and power restrictions.
3. Contact the Factory for extended temperature range applications.
4. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

Table 3. DC Characteristics-ECL/PECL I/O ${ }^{4,5}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Common mode voltage | $(1)$ | $\mathrm{V}_{\mathrm{COM}}$ | $\mathrm{V}_{\mathrm{DD}}-1500$ | - | $\mathrm{V}_{\mathrm{DD}}-1100$ | mV |
| Differential voltage | $(1)$ | $\mathrm{V}_{\mathrm{DIFF}}$ | 400 | - | 1200 | mV |
| Input HIGH voltage |  | $\mathrm{V}_{\mathrm{IH}}$ |  | - | $\mathrm{V}_{\mathrm{DD}}-500$ | mV |
| Input LOW voltage |  | $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{DD}}-2100$ | - |  | mV |
| Output HIGH voltage | $(3)$ | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{V}_{\mathrm{DD}}-1000$ |  | $\mathrm{~V}_{\mathrm{DD}}-600$ | mV |
| Output LOW voltage | $(3)$ | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{\mathrm{DD}}-2100$ | - | $\mathrm{V}_{\mathrm{DD}}-1600$ | mV |
| Output HIGH current | $(3)$ | $\mathrm{I}_{\mathrm{OH}}$ | 20 | 23 | 30 | mA |
| Output LOW current | $(3)$ | $\mathrm{I}_{\mathrm{OL}}$ | 0 | 5 | 8 | mA |
| Input capacitance |  | $\mathrm{C}_{\mathrm{IN}}$ | - | - | TBD | pF |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | - | TBD | pF |
| ESD breakdown rating |  | $\mathrm{V}_{\mathrm{ESD}}$ | Class | - | - |  |

Table 4. DC Characteristics-TTL I/O 4,5

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input HIGH voltage |  | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | - | $\mathrm{V}_{\mathrm{DD}}$ | V |
| Input LOW voltage |  | $\mathrm{V}_{\mathrm{IL}}$ | 0 | - | 0.8 | V |
| Input HIGH current | $\mathrm{V}_{\mathrm{IH}(\mathrm{MAX})}$ | $\mathrm{I}_{\mathrm{IH}}$ | - | - | 200 | uA |
| Input LOW current | $\mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}$ | $\mathrm{I}_{\mathrm{IL}}$ | -400 | -200 | - | uA |
| Input capacitance | $\mathrm{C}_{\mathrm{IN}}$ | - | - | TBD | pF |  |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | - | TBD | pF |
| ESD breakdown rating |  | $\mathrm{V}_{\mathrm{ESD}}$ | Class I | - | - |  |

Notes (Tables 3 and 4):

1. Differential inputs.
2. $V_{R E F}=1300 \mathrm{mV}$.
3. $R_{L O A D}=50$ ohms to $V_{T T}=V_{D D}-2.0 \mathrm{~V}$.
4. Specifications apply over recommended operating ranges.
5. Inputs are $D C$-biased to $V_{D D}-1.3 \mathrm{~V}$ with $4 \mathrm{~K} \Omega$ Thevenin input impedance.

## TQ8033

PRELIMINARY DATA SHEET

Table 5. AC Characteristics

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate/port |  |  | 1.5 |  |  | $\mathrm{~Gb} / \mathrm{s}$ |
| D0-63 minimum pulse width | $(1)$ | $\mathrm{T}_{\mathrm{pw}}$ | 670 | - | - | ps |
| 00-32 Rise/Fall time 20-80\% | $(1)$ | $\mathrm{T}_{\mathrm{rf}}$ | - | - | 300 | ps |
| Channel Propagation Delay (mean) | $(1)$ | $\mathrm{T}_{\mathrm{pd}}$ | - | - | 2.5 | ns |
| Ch-to-Ch Propagation Delay Skew | $(1)$ | $\mathrm{T}_{\text {skew }}$ |  |  | 150 | ps |
| 00-32 Jitter | $(2)$ | $\mathrm{T}_{\mathrm{jitter}}$ | - | 70 | 150 | ps |

Notes: 1. Min. $V_{O H}$ to max $V_{O L}$ levels
2. Crossing of (On)-(NOn) measured with $2^{23-1}$ PRBS, measured over extended time.

Figure 1. TQ8033 Timing Diagram


Note: No data loss on unchanged paths.

Table 6. Timing Specifications

| Symbol | Parameter | Minimum | Maximum | Unit |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{t}_{\text {sar }}$ | Address to Write Set-up time | 10 |  | ns |
| $\mathrm{t}_{\mathrm{har}}$ | Address to Write Hold Time | 5 | ns |  |
| $\mathrm{t}_{\mathrm{pwl}}$ | Min. Load pulse width | 7 | ns |  |
| $\mathrm{t}_{\mathrm{ldh}}$ | Load to Configure delay | 0 | ns |  |
| $\mathrm{t}_{\mathrm{pwc}}$ | Min. Configure pulse width | 7 |  | ns |
| $\mathrm{t}_{\text {dcf }}$ | Configure to Data Valid |  | 5 | ns |
| $\mathrm{t}_{\mathrm{pd}}$ | Data propagation delay |  | ns |  |

Figure 2. TQ8033 Pinout -Bottom View


Table 7. TQ8033 Pin Descriptions

| Signal | Type | Pin No. | Grid Ref. | Description |
| :---: | :---: | :---: | :---: | :---: |
| RESETIN | TTL Input | 162 | E20 | The active high chip level reset signal initializes all internal chip circuitry to a known state. |
| LOAD | TTL Input | 161 | C23 | Latch control for program data. LOAD enabled allows latches to take in new program data for a given output MUX. |
| CONFIGURE | TTL Input | 160 | D22 | Active high. Transfers configuration program data from program registers into the configure registers and multiplexers. If the configuration does not change, the data path will not be disturbed with CONFIGURE going active. |
| IADD0 | TTL Input | 159 | E21 | Input address LSB. This is the program data which sets which input an output is to be connected to. |
| IADD1 | TTL Input | 158 | D23 | Input address. |
| IADD2 | TTL Input | 157 | E22 | Input address. |
| IADD3 | TTL Input | 156 | F21 | Input address. |
| IADD4 | TTL Input | 155 | G20 | Input address. |
| IADD5 | TTL Input | 154 | E23 | Input address MSB. |
| OADD0 | TTL Input | 153 | F22 | Output address LSB. This is the address data which specifies which output is to be programmed. |

(Continued on next page)

## Table 7. TQ8033 Pin Descriptions (cont.)

| Signal | Type | Pin No. | Grid Ref. | Description |
| :---: | :---: | :---: | :---: | :---: |
| OADD1 | TTL Input | 152 | G21 | Output address. |
| OADD2 | TTL Input | 151 | H20 | Output address. |
| OADD3 | TTL Input | 150 | G22 | Output address. |
| OADD4 | TTL Input | 149 | H21 | Output address MSB. |
| VCS2_BIAS | Input | 2 | C1 | Used for internal biasing. Do not connect. |
| MONITOR_LD | TTL Input | 1 | E4 | Directly loads the Monitor output port for programming. The OADD bus and the LOAD pin are not used to program this port. Once this pin is enabled, the data on the IADD port is held in the program register for the monitor output. The CONFIGURE signal enables the program data for this port (as well as for all the others). |
| D0, ND0 | PECL Input | 163,164 | C20, D19 | High-speed input and complement. D0 and NDO are addressed by IADD = " 000000 "; D63 and ND63 are addressed by IADD $=$ " 111111 ". |
| D1, ND1 | PECL Input | 165,166 | A21, B20 | High-speed input and complement. |
| D2, ND2 | PECL Input | 167,168 | A20, B19 | High-speed input and complement. |
| D3, ND3 | PECL Input | 169, 170 | C18, D17 | High-speed input and complement. |
| D4, ND4 | PECL Input | 171, 172 | A19, B18 | High-speed input and complement. |
| D5, ND5 | PECL Input | 173,174 | C17, D16 | High-speed input and complement. |
| D6, ND6 | PECL Input | 175, 176 | B17, A17 | High-speed input and complement. |
| D7, ND7 | PECL Input | 177, 178 | C16, B16 | High-speed input and complement. |
| D8, ND8 | PECL Input | 179, 180 | C15, B15 | High-speed input and complement. |
| D9, ND9 | PECL Input | 181, 182 | D14, C14 | High-speed input and complement. |
| D10, ND10 | PECL Input | 183,184 | B14, A14 | High-speed input and complement. |
| D11, ND11 | PECL Input | 185, 186 | D13, C13 | High-speed input and complement. |
| D12, ND12 | PECL Input | 187, 188 | B13, A13 | High-speed input and complement. |
| D13, ND13 | PECL Input | 189, 190 | C12, B12 | High-speed input and complement. |
| D14, ND14 | PECL Input | 191, 192 | A11, B11 | High-speed input and complement. |
| D15, ND15 | PECL Input | 193, 194 | C11, D11 | High-speed input and complement. |
| D16, ND16 | PECL Input | 195,196 | A10, B10 | High-speed input and complement. |
| D17, ND17 | PECL Input | 197, 198 | C10, D10 | High-speed input and complement. |
| D18, ND18 | PECL Input | 199, 200 | B9, C9 | High-speed input and complement. |
| D19, ND19 | PECL Input | 201, 202 | B8, A7 | High-speed input and complement. |
| D20, ND20 | PECL Input | 205, 206 | D8, C7 | High-speed input and complement. |
| D21, ND21 | PECL Input | 207, 208 | B6, A5 | High-speed input and complement. |
| D22, ND22 | PECL Input | 209, 210 | D7, C6 | High-speed input and complement. |
| D23, ND23 | PECL Input | 211, 212 | B5, A4 | High-speed input and complement. |
| D24, ND24 | PECL Input | 213, 214 | B4, A3 | High-speed input and complement. |
| D25, ND25 | PECL Input | 215, 216 | D5, C4 | High-speed input and complement. |
| D26, ND26 | PECL Input | 3, 4 | D2, E3 | High-speed input and complement. |
| D27, ND27 | PECL Input | 5,6 | D1, E2 | High-speed input and complement. |
| D28, ND28 | PECL Input | 7,8 | F3, G4 | High-speed input and complement. |
| D29, ND29 | PECL Input | 9,10 | E1, F2 | High-speed input and complement. |

(Continued on next page)

## Table 7. TQ8033 Pin Descriptions (cont.)

| Signal | Type | Pin No. | Grid Ref. | Description |
| :---: | :---: | :---: | :---: | :---: |
| D30, ND30 | PECL Input | 11, 12 | G3, H4 | High-speed input and complement. |
| D31, ND31 | PECL Input | 13, 14 | G2, G1 | High-speed input and complement. |
| D32, ND32 | PECL Input | 49,50 | W2, Y1 | High-speed input and complement. |
| D33, ND33 | PECL Input | 51,52 | Y2, AA1 | High-speed input and complement. |
| D34, ND34 | PECL Input | 53, 54 | W4, Y3 | High-speed input and complement. |
| D35, ND35 | PECL Input | 55, 56 | AA4, Y5 | High-speed input and complement. |
| D36, ND36 | PECL Input | 57, 58 | AC3, AB4 | High-speed input and complement. |
| D37, ND37 | PECL Input | 59,60 | AC4, AB5 | High-speed input and complement. |
| D38, ND38 | PECL Input | 61,62 | AA6, Y7 | High-speed input and complement. |
| D39, ND39 | PECL Input | 63, 64 | AC5, AB6 | High-speed input and complement. |
| D40, ND40 | PECL Input | 65, 66 | AA7, Y8 | High-speed input and complement. |
| D41, ND41 | PECL Input | 67, 68 | AB7, AC7 | High-speed input and complement. |
| D42, ND42 | PECL Input | 69, 70 | AA8, AB8 | High-speed input and complement. |
| D43, ND43 | PECL Input | 71, 72 | AA9, AB9 | High-speed input and complement. |
| D44, ND44 | PECL Input | 73,74 | Y10, AA10 | High-speed input and complement. |
| D45, ND45 | PECL Input | 75,76 | AB10, AC10 | High-speed input and complement. |
| D46, ND46 | PECL Input | 77, 78 | Y11, AA11 | High-speed input and complement. |
| D47, ND47 | PECL Input | 79, 80 | AB11, AC11 | High-speed input and complement. |
| D48, ND48 | PECL Input | 81,82 | AA12, AB12 | High-speed input and complement. |
| D49, ND49 | PECL Input | 83, 84 | AC13, AB13 | High-speed input and complement. |
| D50, ND50 | PECL Input | 85, 86 | AA13, Y13 | High-speed input and complement. |
| D51, ND51 | PECL Input | 87, 88 | AC14, AB14 | High-speed input and complement. |
| D52, ND52 | PECL Input | 89, 90 | AA14, Y14 | High-speed input and complement. |
| D53, ND53 | PECL Input | 91,92 | AB15, AA15 | High-speed input and complement. |
| D54, ND54 | PECL Input | 93, 94 | AB16, AC17 | High-speed input and complement. |
| D55, ND55 | PECL Input | 97, 98 | Y16, AA17 | High-speed input and complement. |
| D56, ND56 | PECL Input | 99,100 | AB18, AC19 | High-speed input and complement. |
| D57, ND57 | PECL Input | 101, 102 | Y17, AA18 | High-speed input and complement. |
| D58, ND58 | PECL Input | 103, 104 | AB19, AC20 | High-speed input and complement. |
| D59, ND59 | PECL Input | 105, 106 | AB20, AC21 | High-speed input and complement. |
| D60, ND60 | PECL Input | 107, 108 | Y19, AA20 | High-speed input and complement. |
| D61, ND61 | PECL Input | 109, 110 | Y21, W20 | High-speed input and complement. |
| D62, ND62 | PECL Input | 111, 112 | AA23, Y22 | High-speed input and complement. |
| D63, ND63 | PECL Input | 113, 114 | Y23, W22 | High-speed input and complement. |
| Not Connected |  | 41 | T3 |  |
| Not Connected |  | 42 | U2 |  |
| Not Connected |  | 95 | AA16 |  |
| Not Connected |  | 96 | AB17 |  |
| Not Connected |  | 203 | C8 |  |
| Not Connected |  | 204 | B7 |  |

## TQ8033

PRELIMINARY DATA SHEET

## Table 7. TQ8033 Pin Descriptions (cont.)

| Signal | Type | Pin No. | Grid Ref. | Description |
| :---: | :---: | :---: | :---: | :---: |
| 00,NOO | PECL Output | 15,16 | H3, H2 | High-speed output and complement. OO and NOO are addressed by OADD = "00000". 031 and NO31 are addressed by OADD = "11111". |
| 01, N01 | PECL Output | 17,18 | J3, J2 | High-speed output and complement. |
| 02, NO2 | PECL Output | 19, 20 | K4, K3 | High-speed output and complement. |
| 03, N03 | PECL Output | 21, 22 | K2, K1 | High-speed output and complement. |
| 04, N04 | PECL Output | 23, 24 | L4, L3 | High-speed output and complement. |
| 05, N05 | PECL Output | 25, 26 | L2, L1 | High-speed output and complement. |
| 06, N06 | PECL Output | 27, 28 | M3, M2 | High-speed output and complement. |
| 07, N07 | PECL Output | 29, 30 | N1, N2 | High-speed output and complement. |
| 08, N08 | PECL Output | 31, 32 | N3, N4 | High-speed output and complement. |
| 09, N09 | PECL Output | 33, 34 | P1, P2 | High-speed output and complement. |
| 010, N010 | PECL Output | 35, 36 | P3, P4 | High-speed output and complement. |
| 011, N011 | PECL Output | 37, 38 | R2, R3 | High-speed output and complement. |
| 012, N012 | PECL Output | 39,40 | T2, U1 | High-speed output and complement. |
| 013, N013 | PECL Output | 43,44 | T4, U3 | High-speed output and complement. |
| 014, N014 | PECL Output | 45,46 | V2, W1 | High-speed output and complement. |
| 015, N014 | PECL Output | 47, 48 | U4, V3 | High-speed output and complement. |
| 016, N016 | PECL Output | 145,146 | J22, J21 | High-speed output and complement. |
| 017, N017 | PECL Output | 143, 144 | K21, K20 | High-speed output and complement. |
| 018, N018 | PECL Output | 141, 142 | K23, K22 | High-speed output and complement. |
| 019, N019 | PECL Output | 139, 140 | L21, L20 | High-speed output and complement. |
| 020, NO20 | PECL Output | 137, 138 | L23, L22 | High-speed output and complement. |
| 021, N021 | PECL Output | 135,136 | M21, M22 | High-speed output and complement. |
| 022, N022 | PECL Output | 133, 134 | N22, N23 | High-speed output and complement. |
| 023, N023 | PECL Output | 131,132 | N20, N21 | High-speed output and complement. |
| 024, N024 | PECL Output | 129, 130 | P22, P23 | High-speed output and complement. |
| 025, N025 | PECL Output | 127, 128 | P20, P21 | High-speed output and complement. |
| 026, N026 | PECL Output | 125,126 | R21, R22 | High-speed output and complement. |
| 027, N027 | PECL Output | 123, 124 | T21, T22 | High-speed output and complement. |
| 028, N028 | PECL Output | 121,122 | U22, U23 | High-speed output and complement. |
| 029, N029 | PECL Output | 119, 120 | U21, T20 | High-speed output and complement. |
| 030, N030 | PECL Output | 117, 118 | W23, V22 | High-speed output and complement. |
| 031, N031 | PECL Output | 115,116 | V21, U20 | High-speed output and complement. |
| 032, N032 | PECL Output | 147, 148 | H22, G23 | High-speed monitor output and complement. |

Figure 3. TQ8033 BGA Mechanical Dimensions

## Top view




Section A-A


Table 8. TQ8033 BGA Dimensions (in millimeters)

| Symbol | Parameter | Min. | Nom. | Max. |
| :---: | :--- | :---: | :---: | :---: |
| A | Overall thickness | 1.41 | 1.54 | 1.67 |
| $\mathrm{~A}_{1}$ | Ball Height | 0.56 | 0.63 | 0.70 |
| $\mathrm{~A}_{2}$ | Body thickness | 0.85 | 0.91 | 0.97 |
| D | Body size | 30.90 | 31.00 | 31.10 |
| $\mathrm{D}_{1}$ | Ball footprint | 27.84 | 27.94 | 28.04 |
| E | Body size | 30.90 | 31.00 | 31.10 |
| $\mathrm{E}_{1}$ | Ball footprint | 27.84 | 27.94 | 28.04 |
| b | Ball diameter | 0.60 | 0.75 | 0.90 |
| d | Distance encapsulation to balls |  | 0.6 |  |
| e | Ball pitch |  | 1.27 |  |
| ddd | Seating plane clearance | 0.15 | 0.30 | 0.35 |
| P | Encapsulation height | 0.20 | 0.30 | 0.35 |
| S | Solder ball placement | - | - | 0.00 |

## Ordering Information

### 1.5 Gbit/sec $64 \times 33$ PECL Crosspoint Switch

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:
$\begin{array}{ll}\text { Web: www.triquint.com } & \text { Tel: (503) 615-9000 } \\ \text { Email: sales@tqs.com } & \text { Fax: (503) 615-8900 }\end{array}$
For technical questions and additional information on specific applications:

## Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 0.1.A October 1997 SEMICONDUCTOR

## Section 4 - Data Communications Products

GA9101/9102 Transmitter/Receiver ..... 4-3
GA9103 Transmitter/Receiver ..... 4-17
TQ9303 Fibre Channel Encoder/Decoder ..... 4-35
TQ9501/9502 FC531/1063 Transmitter/Receiver ..... 4-61
TQ9525 $2.5 \mathrm{~Gb} / \mathrm{s} 20$-bit Transceiver ..... 4-77


TriQuint's GA9101 Transmitter and GA9102 Receiver, in conjunction with the GA9103 ENDEC, provide a comprehensive electrical and physical interface in compliance with the ANSI Fibre Channel Standard. In conjunction with a customer-supplied ENDEC, the GA9101 and GA9102 also provide a fully-compliant interface with the ESCON ${ }^{\text {TM }}$ standard. The GA9101/GA9102 chip set can also be used for local-area network applications operating at serial data rates of 194.4 Megabaud (payload at 155.52 Megabits/sec).

The Fibre Channel Specification is implemented as a standard I/O channel interface for either serial interconnection of peripherals to computers or for communication between computers. Fibre Channel links communicate over distances of up to 10 kilometers at baud rates from132.8125 Megabaud to 1.0625 Gigabaud. GA9101 and GA9102 chips are designed to operate at serial baud rates of 194.4, 200.0, and 265.625 Megabaud.

The Fibre Channel standard provides a variety of physical media and data rates to accommodate different cost/performance needs. The framing protocol also provides flexibility, so different implementations can use various features of the standard to optimize system performance. GA9101 and GA9102 Transmitter/Receiver chips are designed using a TriQuint-proprietary 0.7 micron One-Up ${ }^{\text {TM }}$ GaAs process. They interface either directly to an electrical medium or to a fiber-optic interface. The chips perform parallel-to-serial conversion, bit clock generation, receive clock/data recovery, and serial-to-parallel conversion.

Along with a fiber-optic module, this chip set will provide a complete FC-0 and FC-1 solution for a Fibre Channel data link. Additionally, the GA9101 and GA9102 can be used for serial SCSI, point-to-point serial communication, and other network applications.

## GA9101/ GA9102

## Fibre Channel Transmitter and Receiver

## Features

- Fully Fibre-Channel- and ESCON ${ }^{T M}$-compatible
- With fiber optics and ENDEC, makes a complete FC-0, FC-1 solution
- TTL-compatible 10-bit-wide data bus with 19.44, 20.00, or 26.5625 MHz byte clock
- Serial rate of 194.4, 200.0, or 265.625 Mbbaud with on-chip bit clock generation
- On-chip clock and data-recovery PLL .
- Automatic byte alignment to 8b/10b code
- Low power dissipation 700 mW per chip (typical)
- 28-pin surface-mount package


## GA9101/9102

The ESCON I/O interface provides an optical-fiber communication link between I/O devices and main storage of IBM or compatible computers implementing Enterprise Systems Architecture/390™ (ESA/390™ $)$. A customer-supplied ENDEC completes the interface by implementing the data and control encoding/decoding functions of the ESCON standard, and typically also provides CRC and parity generate/check functions.

The 10-bit data bus of the GA9101 and GA9102 chips interfaces with the GA9103 CMOS ENDEC chip, which provides data, ordered-set, and line-state encoding and decoding functions described in the Fibre Channel Physical Layer standard (FC_PH). In addition, it performs 32-bit CRC and parity generate/check functions.

## Functional Description - GA9101 Transmitter

The XMT PLL block synthesizes the reference bit clock, XBITCLK, which is derived from the transmit clock input, TXCLK. The frequency of TXCLK is 19.44, 20.00, or 26.5625 MHz , which is multiplied by 10 through an internal Phase-Locked Loop to obtain an XBITCLK of $194.4,200.0$, or 265.625 MHz , respectively. The XBITCLK provides the bit timing to the transmit path.

The INPUT REGISTER loads the 10-bit-wide input data, BTXDO..9, from the ENDEC on the positive edge of TXCLK. It sends the data out to the PARALLEL-TOSERIAL block.

The XMTLD signal strobes the 10 -bit-wide data into the PARALLEL-TO-SERIAL CONVERTER functional block.

This data is then serialized using the XBITCLK from the PLL block. During serialization, the most-significant bit, BTXD9, is transmitted first, followed by BTXD8 . . BTXDO. The serial data is sent out using the differential PECL driver. The LOOPEN input signal selects the transmit output as shown in the table. The unselected differential outputs are forced to a logic LOW state.

The SIG and SIGN differential PECL signals originate from the optical receiver and, when active, indicate the presence of input optical signals. SIGDET is an activeHIGH TTL signal derived from SIG and SIGN, through the PECL-to-TTL TRANSLATOR.

Figure 1. GA9101 Transmitter


## GA9101/9102

As required by the Fibre Channel standard, the GA9101/ GA9102 provide a Loopback mode for a system test at speed. When LOOPEN $=1$, the TLX and TLY outputs of the GA9101 are enabled and are transmitted to the RLX and RLY inputs of the local receiver. In the normal mode (LOOPEN $=0$ ), the TX and TY outputs of the transmitter are enabled.

## Functional Description - GA9102 Receiver

The MUX block receives its inputs from the RX, RY differential inputs and the looped transmit outputs connected to RLX and RLY. Its output goes to the CLOCK/DATA RECOVERY block. The MUX output is selected by the LOOPEN pin as outlined in Table 2.

## Table 2. Clock Recovery Input Selection

| LOOPEN | MUX Output |
| :---: | :---: |
| 0 | RX, RY |
| 1 | RLX, RLY |

The CLOCK/DATA RECOVERY (CDR) circuit recovers the clock information from the input data at serial transmission rates of 194.4, 200.0, or 265.625 Megabaud. The CDR block uses the REFCLK to aid in frequency acquisition of the recovered clock, called CLOCK, which is then used to retime the data,

Table 3. Transmit Output Selection

| LOOPEN | Tx Output |
| :---: | :---: |
| 0 | TX, TY |
| 1 | TLX, TLY |

removing any jitter components. If REFCLK is present, the initial receiver bit-synchronization time to valid incoming data is less than 200 microseconds. The receiver is guaranteed to have valid outputs 1 ms after valid REFCLK and serial data are applied. Once synchronized, if a phase discontinuity occurs in the incoming data, the receiver resynchronizes in less than 2500 bit times, (with $95 \%$ probability).

The recovered data is converted to a 10-bit data word by the SERIAL-TO-PARALLEL CONVERTER (SPC) logic. The CLOCK signal is used by the SPC and the RX CLOCK GENERATE blocks to provide the necessary bit timing.

The SERIAL-TO-PARALLEL CONVERTER block does the serial-to-parallel conversion. The parallel conversion is to 10 bits, which corresponds to the

Figure 2. GA9102 Receiver

undecoded byte output of the $8 \mathrm{~b} / 10 \mathrm{~b}$ coding scheme. The output of this block is sent to the OUTPUT REGISTER. The SPC also generates the SYNC signal upon receipt of a K28.5 byte, (001111 1010 or 110000 0101), provided the SYNCEN pin is HIGH. The SYNC signal is always LOW if SYNCEN is inactive. When the SYNCEN signal is LOW, the device retains the previous alignment for the incoming K28.5 byte. The SYNCEN signal is useful when the host decides to disable byte alignment to the incoming K28.5. Using this pin, the host may decide to align only under certain circumstances, such as power up or loss of word synchronization (see the GA9103 ENDEC data sheet). The SYNCEN pin can also be of use in non-FibreChannel applications where byte alignment to a different pattern may be done by the interfacing logic.

The RX CLOCK GENERATE block is used to generate the Receive Byte Clock, RXCLK. RXCLK is 19.44, 20.00, or 26.5625 MHz , corresponding to the serial baud rate of 194.4, 200.0, or 265.625 Megabaud, respectively. The RXCLK is realigned synchronous to the SYNC signal from the SERIAL-TO-PARALLEL CONVERTER. On power up, the RXCLK provides arbitrary alignment for the incoming data until the arrival of the first K28.5 byte while SYNCEN is HIGH.

The OUTPUT REGISTER takes in the 10-bit-wide output from the SERIAL-TO-PARALLEL CONVERTER block and generates output data BRXD0..9. BRXDO.. 9 interfaces to the ENDEC chip and can be strobed on the negative edge of RXCLK. The received bit sequence within each 10 bits of serial data is BRXD9 . . BRXD0.

Figure 3. System Block Diagram - Fibre Channel


## Specifications

Figure 4. TTL Test Load, RXCLK


Figure 5. TTL Test Load, All Other TLL Outputs

Figure 6. PECL Test Load


Table 4. Capacitance ${ }^{1}$

| Symbol | Description | Test Conditions | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{C}_{\mathbb{N}}$ | Input capacitance | $\mathbb{I N}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | Units |  |  |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 6 | 9 | pF |

Notes: 1. These parameters are not $100 \%$ tested, but are periodically sampled.

Table 5. Absolute Maximum Ratings ${ }^{1}$

| Symbol | Description | Test Conditions | Min. | Typ. | Max. |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{T}_{\text {storage }}$ | Storage Temperature | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\text {case }}$ | Case Temperature | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\text {CC }}{ }^{1}$ | Supply Voltage to ground | -0.5 | 7.0 | V |  |
| $\mathrm{~V}_{1}$ | DC Input voltage | -0.5 | $\mathrm{~V}_{\text {CC }}+0.5$ | V |  |
| $\mathrm{I}_{1}$ | DC Input current | -30 | +5 | mA |  |

Notes: 1. Exceeding the absolute maximum ratings may damage these devices.

Table 6. Operating Conditions ${ }^{1}$

| Parameter | Description | Min. | Typ. | Max. | Units |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | $5(-5 \%)$ | 5 | $5(+5 \%)$ | V |
| $\mathrm{T}_{\mathrm{A}}$ | Ambient Temperature | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{CC}}{ }^{2}$ | Power supply current |  | 115 | 160 | mA |

Notes: 1. Proper functionality is guaranteed under these conditions.
2. With $V_{C C}=$ Max, static.

## DC Characteristics (Over operating range unless otherwise specified)

Table 7. GA9101 Transmitter TTL Signals (BTXDO..9, TXCLK, SIGDET, LOOPEN)

| Symbol | Description | Test Conditions | Min. | Limits Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min} \quad \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathbb{I N}}{ }^{2}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}^{3} \end{aligned}$ | 2.4 | 3.7 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & \begin{array}{l} V_{C C}=\operatorname{Min} \quad I_{O L}=4 m A \\ V_{I N}=V_{I H} \text { or } V_{I L} I_{0 L}=8 \mathrm{~mA}^{3} \end{array} \end{aligned}$ |  | 0.2 | 0.5 | V |
| $\mathrm{IsC}^{4}$ | Output short-circuit current | $\mathrm{V}_{\text {CC }}=$ Max $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ | -15 |  | -100 | mA |
| ILL | Input LOW current | $\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IV }}=0.4 \mathrm{~V}$ |  |  | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  |  | 25 | $\mu \mathrm{A}$ |
| I, | Input HIGH current | $\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{V}_{\mathrm{H}}{ }^{5}$ | Input HIGH level | Guaranteed input logical HIGH voltage for all inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{5}$ | Input LOW level | Guaranteed input logical LOW voltage for all inputs |  |  | 0.8 | V |
| $V_{1}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| Notes: 1. Typical limits are: $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$. <br> 2. The TTL inputs could be high or low. <br> 3. These are absolute values with respect to device ground. <br> 4. No more than one output should be tested at a time. Duration of the short circuit should not exceed one |  |  |  |  |  |  |

Table 8. GA9101 Transmitter PECL Signals (TX, TY, TLX, TLY, SIG, SIGN)


Notes: 1. Typical limits are: $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. The TTL inputs could be HIGH or LOW.
3. The RXCLK signal has an $8 \mathrm{~mA} I_{O L}$. All other outputs have a $4 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$.
4. These are absolute values with respect to device ground.
5. No more than one output should be tested at a time. Duration of the short circuit should not exceed one second.

Table 9. GA9102 Receiver TTL Signals (BRXDO..g, RXCLK, SYNC, REFCLK, LOOPEN)

| Symbol | Description | Test Conditions | Min. | Limits <br> Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}{ }^{2}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}=-3.2 \mathrm{~mA}^{3} \end{aligned}$ | 2.4 | 3.7 |  | V |
| VoL | Output LOW voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}{ }^{2}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}=8 \mathrm{~mA}^{3} \end{aligned}$ |  | 0.2 | 0.5 | V |
| $\mathrm{ISC}^{5}$ | Output short-circuit current | $\mathrm{V}_{\text {CC }}=$ Max $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ | -15 |  | -120 | mA |
|  | Input LOW current | $\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  |  | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\text {CC }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  |  | 25 | $\mu \mathrm{A}$ |
| $I_{1}$ | Input HIGH current | $\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{V}_{\text {IH }}{ }^{4}$ | Input HIGH level | Guaranteed input logical HIGH voltage for all inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{4}$ | Input LOW level | Guaranteed input logical LOW voltage for all inputs |  |  | 0.8 | V |
| $\mathrm{V}_{1}$ | Input clamp voltage | $V_{\text {CC }}=\operatorname{Min} \quad \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| $\mathrm{I}_{\mathrm{CC}}$ | Power supply current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}$ |  | 150 | 180 | mA |

Notes: 1. Typical limits are: $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. The TTL inputs could be HIGH or LOW.
3. The RXCLK signal has an $8 \mathrm{~mA} I_{O L}$. All other outputs have a $4 \mathrm{~mA} I_{O L}$.
4. These are absolute values with respect to device ground.
5. No more than one output should be tested at a time. Duration of the short circuit should not exceed one second.

## GA9101/9102

Table 10. GA9102 Receiver PECL Signals (RX, RY, RLX, RLY)

| Symbol | Description | Test Conditions |  | Min. | $\begin{gathered} \text { Limits }^{1}{ }^{1} \\ \text { Typ. } \end{gathered}$ | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {IL }}$ | Input LOW current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}$ | $\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ | 0.5 |  |  | $\mu \mathrm{A}$ |
| $I_{\text {H }}$ | Input HIGH current | $V_{\text {CC }}=$ Max | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}-0.5 \mathrm{~V}$ |  |  | 250 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {IHS }}$ | Highest Input HIGH voltage | $V_{\text {CC }}=\mathrm{Min}$ |  |  |  | $\mathrm{V}_{\text {CC }}-0.5$ | V |
| $\mathrm{V}_{\text {ILS }}$ | Lowest Input LOW voltage | $V_{\text {CC }}=\mathrm{Max}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\text {DIF }}$ | Differential Input voltage | $V_{\text {CC }}=\mathrm{Min}$ |  | 0.4 |  | 1.2 | V |
| Vicm | Input Common Mode voltage | $V_{\text {CC }}=\mathrm{Min}$ |  | 2.8 |  | $\mathrm{V}_{\text {cc }}-0.7$ | V |

Notes: 1. Typical limits are: $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. The TTL inputs could be HIGH or LOW.
3. These are absolute values with respect to device ground.
4. No more than one output should be tested at a time. Duration of the short circuit should not exceed one second.

## AC Specifications

Table 11. AC Specifications-GA9101 Transmitter

| Parameter | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{1}$ | BTXD0.. 9 Setup Time | 2.50 |  |  | ns |
| $\mathrm{T}_{2}$ | BTXD0.. 9 Hold Time | 2.50 |  |  | ns |
| $\mathrm{T}_{3}$ | TXCLK Pulse Width HIGH | 15.00 |  |  | ns |
| $\mathrm{T}_{4}$ | TXCLK Pulse Width LOW | 15.00 |  |  | ns |
| $\mathrm{T}_{5}{ }^{1}$ | TXCLK Period (T) | 37.30 |  | 52.00 | ns |
| $\mathrm{T}_{6}$ | TX, TY, TLX, TLY Rise Time | 250 |  | 750 | ps |
| $\mathrm{T}_{7}$ | TX, TY, TLX, TLY Fall Time | 250 |  | 750 | ps |
| $\mathrm{T}_{8}$ | TX $\sim$ TY or TLX $\sim$ TLY Skew |  |  | 60 | ps |
| $\mathrm{T}_{9}{ }^{2}$ | $\begin{aligned} & \hline \text { TX , TY or TLX , TLY Output Jitter } \text { - Deterministic Jitter (DJ) } \\ & \text { - Random Jitter (RJ) } \\ & \hline \end{aligned}$ |  |  | 60 | ps |
|  |  |  |  | 275 | ps |
| $\mathrm{T}_{10}$ | Propagation Delay SIG, SIGN to SIGDET |  |  | 20 | ns |

Notes: 1. TXCLK period $=(10 /$ baud rate $) \pm 0.01 \%$, where baud rate is $194.4,200.0$, or 265.625 Mbaud.
2. These numbers are measured single-ended, using the High Gain Method @ 25 MHz .
3. The jitter numbers are for a BER of $10^{-12}$.

Figure 7. Bus Timing-GA9101 Transmitter


Figure 8. Serial Output Timing -GA9101


Figure 9. Serial Output Timing -GA9101


## GA9101/9102

Table 12. AC Specifications-GA9102 Receiver

| Parameter | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{21}$ | REFCLK Pulse width LOW | 15.00 |  |  | ns |
| $\mathrm{T}_{22}$ | REFCLK Pulse width HIGH | 15.00 |  |  | ns |
| $\mathrm{T}_{23}{ }^{1}$ | REFCLK Period | 37.30 |  | 52.00 | ns |
| $\mathrm{T}_{24}$ | BRXDO..9 Valid to RXCLK | $\mathrm{T}_{28} / 5$ |  |  | ns |
| $\mathrm{T}_{25}$ | BRXD0.. 9 Time from RXCLK | 2.00 |  |  | ns |
| $\mathrm{T}_{26}$ | RXCLK Pulse width LOW | ( $\mathrm{T}_{28} / 2$ ) -2.50 |  |  | ns |
| $\mathrm{T}_{27}$ | RXCLK Pulse width HIGH | ( $\mathrm{T}_{28} / 2$ ) -2.50 |  |  | ns |
| $\mathrm{T}_{28}{ }^{1}$ | RXCLK Period | 37.30 |  | 52.00 | ns |
| $\mathrm{T}_{29}$ | SYNC Valid to RXCLK | T28/5 |  |  | ns |
| $\mathrm{T}_{30}$ | SYNC Time from RXCLK | 2.00 |  |  | ns |
| $\mathrm{T}_{31}{ }^{2}$ | RX, RY, RLX, RLY Rise time |  |  | 1.50 | ns |
| $\mathrm{T}_{32}{ }^{2}$ | RX, RY, RLX, RLY Fall time |  |  | 1.50 | ns |
| $\mathrm{T}_{33}$ | RX ~ RY or RX $\sim$ RLY Skew |  |  | 1.50 | ns |
| $\mathrm{T}_{34}$ | RX, RY, RLX, RLY, Peak-to-peak input jitter ${ }^{3}$ | $0.07 * T_{28}$ |  |  | ns |

Notes: 1. REFCLK and RXCLK period $=(10 /$ baud rate $) \pm 0.01 \%$, where baud rate is $194.4,200.0$, or 265.625 Megabaud.
2. Measured at $V_{\text {DIFF }}=0.4 \mathrm{~V}$.
3. The jitter numbers are for a BER of $10^{-12}$.

Figure 10. Bus Timing-GA9102 Receiver


Table 13. Synchronization Times

| Description | Min. | Typ. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Power Up or application of REFCLK |  | 1 | ms |  |
| Application of valid data |  | 200 | $\mu \mathrm{~s}$ |  |
| Resynchronization after phase shift on data |  | 2500 | bit times |  |

Figure 11. Serial Input Timing -GA9102


## Pinouts

Figure 12. GA9101 and GA9102 Pinouts
The pinouts for the Transmitter and Receiver are arranged for easy interface to the ENDEC and optics.


## GA9101/9102

## Table 14. GA9101 Pin Definitions

| Symbol | Pin\# | I/O | aty. | Logic Level | Active | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TX, TY | 13,14 | OUTPUT | 2 | PECL | NRZ | Differential Serial Data Output |
| TLX, TLY | 16,17 | OUTPUT | 2 | PECL | NRZ | Diff. Serial Data Output, Loopback |
| SIGN, SIG | 9,10 | INPUT | 2 | PECL | HIGH | Optical Signal Present |
| BTXDO... | $7,6,3-1,28$, <br> $27,24-22$ | INPUT | 10 | TTL | HIGH | Transmit Data Input |
| TXCLK | 21 | INPUT | 1 | TTL | HIGH | Transmit/PLL Reference Clock <br> $(19.44$ to 26.5625 Mhz) |
| LOOPEN | 20 | INPUT | 1 | TTL | HIGH | Enable Loopback |
| SIGDET | 8 | OUTPUT | 1 | TTL | HIGH | Signal Detected |
| VCC | $5,19,26$ | INPUT | 3 | N/A | N/A | +5 Volt Supply |
| GND | $4,11,12$, | INPUT | 6 | N/A | N/A | Ground |
|  | $15,18,25$ |  |  |  |  |  |

## Table 15. GA9102 Pin Definitions

| Symbol | Pin \# | I/O | aty. | Logic Level | Active | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RX, RY | 17, 16 | INPUT | 2 | PECL | NRZ | Differential Serial Data Input |
| RLX, RLY | 14, 13 | INPUT | 2 | PECL | NRZ | Diff. Serial Data Input, Loopback |
| BRXDO.. 9 | $\begin{aligned} & \hline 7,6,3-1,28, \\ & 27,24-22 \\ & \hline \end{aligned}$ | OUTPUT | 10 | TTL | HIGH | Receive Output Data |
| RXCLK | 8 | OUTPUT | 1 | TTL | HIGH | Receive Clock |
| SYNC | 21 | OUTPUT | 1 | TTL | HIGH | Receive Byte Sync |
| LOOPEN | 10 | INPUT | 1 | TTL | HIGH | Enable Loopback |
| REFCLK | 9 | INPUT | 1 | TTL | HIGH | Oscillator Clock ( 19.44 to 26.5625 MHz ) |
| SYNCEN | 20 | INPUT | 1 | TTL | HIGH | Align to K28.5 |
| VCC | 5, 19, 26 | INPUT | 3 | N/A | N/A | +5 Volt Supply |
| GND | $\begin{aligned} & \hline 4,11,12, \\ & 15,18,25 \end{aligned}$ | INPUT | 6 | N/A | N/A | Ground |

## Packaging

Figure 15. 28-Pin MQuad J-leaded Package


## Ordering Information

## GA9101-2MC Transmitter <br> GA9102-2MC Receiver

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^4]Revision 1.0.A October 1997
$N \quad T$ SEMICONDUCTOR,INC.


TriQuint's GA9103 is one of the three devices of the FC-265 chip set designed to support the requirements of Fibre Channel Standard X3T9.3. The GA9103 is an encoder/decoder (ENDEC) integrated circuit which implements the 8b/10b encoding/decoding scheme for data, ordered sets and line states associated with the Fibre Channel Physical Level Standard (FC-PH). In addition, the CMOS ENDEC chip performs 32-bit CRC and parity generate/check functions. It interfaces to TriQuint's GA9101 and GA9102 Transmitter and Receiver, respectively, and to either the fabric or the device link protocol controller.

The FC-265 (GA9101, GA9102 and GA9103) provides a comprehensive electrical and physical interface for Fibre Channel. These chips are designed to operate at 265.625 Megabaud, one of the operating speeds specified by the standard.

The Fibre Channel provides a transport vehicle for the upper-layer Intelligent Peripheral Interface (IPI) and Small Computer System Interface (SCSI) command sets, the High-Performance Parallel Interface (HIPPI) data link layer, and other user-defined command sets. The Fibre Channel is capable of replacing the SCSI, IPI, and HIPPI physical interfaces with a protocol-efficient alternative that provides performance improvements in distance and/or speed.

IPI and SCSI commands and HIPPI data link operations may all be intermixed on the Fibre Channel. Proprietary and other command sets may also use and share the Fibre Channel. See Figure 2.

## GA9103

## 265 Mbaud Fibre Channel ENDEC

## Features

- For Fibre Channel, point-to-point, network, and SCSI applications
- With fiber optics, the FC-265 chip set provides a complete FC-0, FC-1 solution
- 8b/10b Encode/Decode of data, ordered sets, and line states
- TTL-compatible 10-bit-wide Transmitter/Receiver interface with 26.5625 MHz byte clock
- CRC and Parity Generate/Check
- Common chip for fabric and device adapters
- Multiplexed data/control 8-bit system interface
- 68-pin PLCC

The Fibre Channel is optimized for predictable transfers of large blocks of data such as those used in file transfers between processors (supercomputer, mainframe, super-mini, etc.), storage systems (disk and tape), communications, and output-only devices such as laser printers and raster-scan graphics terminals.

The Transmitter/Receiver chips, designed with TriQuint's proprietary 0.7 micron One-Up ${ }^{\text {TM }}$ GaAs process, interface either directly to the electrical medium or to the fiber-optic interface. The chips implement parallel-to-serial conversion, bit clock generation, receive clock/data recovery, and serial-to-parallel conversion.

The Fibre Channel protocol is simple and economical and enhances system throughput. The transmission medium is isolated from the control protocol so that implementation of point-to-point links, multi-drop buses, rings, crosspoint switches, or other special implementations may be made in a technology best suited to the usage environment. Fibre channel is organized into five layers as shown in Figure 1. With this standard, the user may communi-cate over distances up to 10 km at baud rates of 132.8125 Megabaud to 1.0625 Gigabaud. This standard will support links over coaxial and fiber-optic cables.

Along with a fiber-optic module, this chipset will provide complete $\mathrm{FC}-0$ and $\mathrm{FC}-1$ solutions for a Fibre Channel data link.

Figure 1. GA9103 ENDEC Block Diagram


## GA9103

Figure 2. Layers of Fibre Channel


## Functional Description

The GA9103 has an 8-bit inter-face to the host side and a 10-bit interface to the Transmitter (Tx) and the Receiver ( Rx ). The device has two major independent functional blocks, the ENCODE and the DECODE. The ENCODE block interfaces with the Tx and the DECODE with the Rx. Below are the details of the two functional blocks.

## Encode

The PARITY CHECK block compares the input odd parity with that of the incoming data, CTXDO.. 7 and CTXCO. If the number of ones in the input is an even number, CTXP will be HIGH. If the number of ones in the input data is odd, CTXP will be LOW. If there is a parity error, it is flagged through the PERR signal. In the passthrough mode (RAWTx=1), PERR is forced to zero.

The 32-bit Generate/Check CRC block either generates or checks the 32-bit CRC for the incoming 8-bit bus, CTXD0..7. The methodology, polynomials, and equations for the 32-bit CRC are the same as the FDDI's Frame Check Sequence, as adopted by Fibre Channel. A 32-bit CRC is computed for every frame and the computation begins after the receipt of the Start-ofFrame (SOF) ordered set and finishes one byte before
the End-of-Frame (EOF). The CRC corresponds to the ones complement of the remainder obtained by dividing the frame sequence polynomial $H(x)$ by the following generator polynomial:

$$
\begin{aligned}
G(X)= & X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11} \\
& +X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1
\end{aligned}
$$

The frame sequence polynomial is formed as follows: the bits of the frame are treated as a coefficient of a polynomial $D(x)$ of order $k$, where $k$ is one degree less than the total number of bits. The polynomial $H(x)$ is formed by multiplying $D(x)$ by $X^{32}$ and inverting the 32 terms of the resulting polynomial starting at the $X(k+32)$ term. The order of computation within a byte is made starting with the least-significant bit (CTXDO) and continuing through to the most-significant bit (CTXD7). The CRC is appended to the incoming data, starting with the most significant coefficient ( $\mathrm{X}^{31}$ ) and continuing through to the least-significant coefficient.

The CRC check is performed by checking the remainder at the end of the incoming frame against the expected value. If the incoming CRC is correct, the remainder should be "C704DD7B" (Hex), in the order of reception. If an error occurs, it is flagged by the TERR pin. In the pass-through mode, the CRC function is disabled. The Generate CRC function is enabled at the device interface and the Check CRC function is enabled at the fabric interface by means of the CTXC1 input signal. A logic HIGH on the CTXC1 pin indicates the Generate CRC function is selected, while a logic LOW indicates that the Check CRC is selected. When initiated, the Generate/Check CRC commences after the Start-ofFrame signal, and ends prior to the End-of-Frame signal. (See Figures 3 and 4.)

To start the computation of the 32-bit Generate CRC mode in the ENCODE block, the following conditions must be met: CTXC1 is HIGH, the previous encoded

## GA9103

word was Start-of-Frame (SOF), and the CTXCO signal goes from HIGH to LOW. The CRC computation is complete when the CTXCO signal goes back HIGH. The CTXCO signal must be HIGH for at least four byte clocks in order to append the CRC to the transmitted data. In the Generate CRC mode, the signal at the TERR pin (CRC Error) is LOW. The timing for the Generate CRC mode is shown in Figure 5. While the internal logic does check for parity during the CRC Append cycle, the four input bytes at CTXD0.. 7 are ignored.

To initiate the 32-bit Check CRC mode in the ENCODE block, the following state is required: the CTXCO signal goes from HIGH to LOW, the previous encoded ordered set was SOF, and CTXC1 is LOW. When the CTXCO signal goes back to HIGH, the CRC computation is complete. The computed value is compared to "C704DD7B" (Hex) to see if an error occurred. If there is a CRC error, it is flagged through the TERR pin going HIGH for one byte time at the End-of-Frame. The timing for the Check CRC mode is shown in Figure 6.

The 8b/10b and Ordered Set ENCODER encodes the data as per the Fibre Channel rules for encoding. The encoding of valid data and special characters are shown in Tables 1 and 2. The tables have two columns of encoded output based on the current Running Disparity ( $R_{D}$ ). The current Running Disparity may be positive or negative on power up, but on RESETN being activated, it is always negative. A new Running Disparity is calculated from the transmitted character. It is forced negative if: 1) $\operatorname{Sig}=1$, CTXC0 $=1$, and the Ordered Set encode is a primitive, such as R-Rdy, etc., or 2) when the link exits the diagnostic (RAW) mode. The ordered sets are then encoded according to Table 3. Each ordered set is four bytes wide.

The ordered set encoding procedure is as follows: the ENCODER looks at the CXTD0.. 7 signal inputs while the Ordered Set, CXTCO, signal is HIGH and encodes four
bytes, based on the contents of CTXD0..7. The contents of CTXD0.. 7 in the next three bytes are ignored. The fields within the first byte, CTXD0..7, of the word for the Ordered Set Encoding are shown in Figure 3. CTXD7 corresponds to the Cntl signal. The Cntl signal,

## Figure 3. Data Fields for Fibre Channel Ordered Set Encoding


when LOW, indicates Fibre Channel-defined ordered sets are being transmitted. When the Cntl signal is HIGH, undefined ordered sets are being transmitted. The Sig signal (CTXD6), when HIGH, indicates the Line State ordered set is being transmitted, and, when LOW, indicates an ordered set other than the Line State is being transmitted. SOF (CTXD5), when HIGH, indicates the Start-of-Frame ordered set is being transmitted, and EOF (CTXD4), when HIGH, indicates the End-of-Frame ordered set is being transmitted. Type (CTXD3..0) indicates the type of ordered sets within the SOF, EOF, Line States and Undefined categories that is being transmitted.

If PERR or TERR is HIGH within a frame, $E O F_{n}$ and $\mathrm{EOF}_{t}$ for that particular frame are transmitted as EOF $_{n i}$ (see Table 3). Similarly, if PERR or TERR is HIGH while $E O F_{\mathrm{dt}}$ is being transmitted, it is encoded as $E O F_{\mathrm{dt}}$, to indicate an invalid condition at the node.

The MUX selects between the 8b/10b ENCODER output and the data inputs, CTXD0..7. When the RAWTx input signal is HIGH, the inputs CTXD0..7, CTXP, and CTXCO are selected, and TERR $=0$. When the RAWTx input is LOW, the ENCODER output is selected. The output of the MUX is 10 bits wide and is clocked into the REGISTER using the transmit byte clock, TXCLK, from

## GA9103

the Transmitter chip, GA9101. The output of the REGISTER interface goes directly to the GA9101, the Transmitter I.C. of the FC-265.

The asynchronous RESETN input, when LOW, is used to clear all inter-nal state machine registers. It will take
up to five byte clocks to clear the internal state machines after the RESETN input goes back HIGH.

The bit ordering for transmission in the RAW mode is CTXD0..7, CTXP1 and CTXCO. It corresponds to mapping these signals to BTXD9..0, respectively.

Figure 4. CRC Error Timing


Figure 5. Generate CRC Mode Timing

" $n$ " is the data packet size. " $n$ " is divisible by 4
" d " is "don't care," but parity is checked.

Figure 6. Check CRC Mode Timing


Table 1. Valid Data Characters - Encoding

| $\begin{aligned} & \text { Data } \\ & \text { Byte } \end{aligned}$ | Bits |  | Current | RD - | Current | RD + | Data Byte | Bits |  | Current | RD - | Current | RD + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | HGF | EDCBA ${ }^{1}$ | abcdei | fghj ${ }^{2}$ | abcdei | fghj ${ }^{2}$ | Name | HGF | EDCBA ${ }^{1}$ | abcdei | fghj ${ }^{2}$ | abcdei | fghj ${ }^{2}$ |
| D0.0 | 000 | 00000 | 100111 | 0100 | 011000 | 1011 | D9.2 | 010 | 01001 | 100101 | 0101 | 100101 | 0101 |
| D1.0 | 000 | 00001 | 011101 | 0100 | 100010 | 1011 | D10.2 | 010 | 01010 | 010101 | 0101 | 010101 | 0101 |
| D2.0 | 000 | 00010 | 101101 | 0100 | 010010 | 1011 | D11.2 | 010 | 01011 | 110100 | 0101 | 110100 | 0101 |
| D3.0 | 000 | 00011 | 110001 | 1011 | 110001 | 0100 | D12.2 | 010 | 01100 | 001101 | 0101 | 001101 | 0101 |
| D4.0 | 000 | 00100 | 110101 | 0100 | 001010 | 1011 | D13.2 | 010 | 01101 | 101100 | 0101 | 101100 | 0101 |
| D5.0 | 000 | 00101 | 101001 | 1011 | 101001 | 0100 | D14.2 | 010 | 01110 | 011100 | 0101 | 011100 | 0101 |
| D6.0 | 000 | 00110 | 011001 | 1011 | 011001 | 0100 | D15.2 | 010 | 01111 | 010111 | 0101 | 101000 | 0101 |
| D7.0 | 000 | 00111 | 111000 | 1011 | 000111 | 0100 | D16.2 | 010 | 10000 | 011011 | 0101 | 100100 | 0101 |
| D8.0 | 000 | 01000 | 111001 | 0100 | 000110 | 1011 | D17.2 | 010 | 10001 | 100011 | 0101 | 100011 | 0101 |
| D9.0 | 000 | 01001 | 100101 | 1011 | 100101 | 0100 | D18.2 | 010 | 10010 | 010011 | 0101 | 010011 | 0101 |
| D10.0 | 000 | 01010 | 010101 | 1011 | 010101 | 0100 | D19.2 | 010 | 10011 | 110010 | 0101 | 110010 | 0101 |
| D11.0 | 000 | 01011 | 110100 | 1011 | 110100 | 0100 | D20.2 | 010 | 10100 | 001011 | 0101 | 001011 | 0101 |
| D12.0 | 000 | 01100 | 001101 | 1011 | 001101 | 0100 | D21.2 | 010 | 10101 | 101010 | 0101 | 101010 | 0101 |
| D13.0 | 000 | 01101 | 101100 | 1011 | 101100 | 0100 | D22.2 | 010 | 10110 | 011010 | 0101 | 011010 | 0101 |
| D14.0 | 000 | 01110 | 011100 | 1011 | 011100 | 0100 | D23.2 | 010 | 10111 | 111010 | 0101 | 000101 | 0101 |
| D15.0 | 000 | 01111 | 010111 | 0100 | 101000 | 1011 | D24.2 | 010 | 11000 | 110011 | 0101 | 001100 | 0101 |
| D16.0 | 000 | 10000 | 011011 | 0100 | 100100 | 1011 | D25.2 | 010 | 11001 | 100110 | 0101 | 100110 | 0101 |
| D17.0 | 000 | 10001 | 100011 | 1011 | 100011 | 0100 | D26.2 | 010 | 11010 | 010110 | 0101 | 010110 | 0101 |
| D18.0 | 000 | 10010 | 010011 | 1011 | 010011 | 0100 | D27.2 | 010 | 11011 | 110110 | 0101 | 001001 | 0101 |
| D19.0 | 000 | 10011 | 110010 | 1011 | 110010 | 0100 | D28.2 | 010 | 11100 | 001110 | 0101 | 001110 | 0101 |
| D20.0 | 000 | 10100 | 001011 | 1011 | 001011 | 0100 | D29.2 | 010 | 11101 | 101110 | 0101 | 010001 | 0101 |
| D21.0 | 000 | 10101 | 101010 | 1011 | 101010 | 0100 | D30.2 | 010 | 11110 | 011110 | 0101 | 100001 | 0101 |
| D22.0 | 000 | 10110 | 011010 | 1011 | 011010 | 0100 | D31.2 | 010 | 11111 | 101011 | 0101 | 010100 | 0101 |
| D23.0 | 000 | 10111 | 111010 | 0100 | 000101 | 1011 | D0.3 | 011 | 00000 | 100111 | 0011 | 011000 | 1100 |
| D24.0 | 000 | 11000 | 110011 | 0100 | 001100 | 1011 | D1.3 | 011 | 00001 | 011101 | 0011 | 100010 | 1100 |
| D25.0 | 000 | 11001 | 100110 | 1011 | 100110 | 0100 | D2.3 | 011 | 00010 | 101101 | 0011 | 010010 | 1100 |
| D26.0 | 000 | 11010 | 010110 | 1011 | 010110 | 0100 | D3.3 | 011 | 00011 | 110001 | 1100 | 110001 | 0011 |
| D27.0 | 000 | 11011 | 110110 | 0100 | 001001 | 1011 | D4.3 | 011 | 00100 | 110101 | 0011 | 001010 | 1100 |
| D28.0 | 000 | 11100 | 001110 | 1011 | 001110 | 0100 | D5.3 | 011 | 00101 | 101001 | 1100 | 101001 | 0011 |
| D29.0 | 000 | 11101 | 101110 | 0100 | 010001 | 1011 | D6.3 | 011 | 00110 | 011001 | 1100 | 011001 | 0011 |
| D30.0 | 000 | 11110 | 011110 | 0100 | 100001 | 1011 | D7.3 | 011 | 00111 | 111000 | 1100 | 000111 | 0011 |
| D31.0 | 000 | 11111 | 101011 | 0100 | 010100 | 1011 | D8.3 | 011 | 01000 | 111001 | 0011 | 000110 | 1100 |
| D0. 1 | 001 | 00000 | 100111 | 1001 | 011000 | 1001 | D9.3 | 011 | 01001 | 100101 | 1100 | 100101 | 0011 |
| D1.1 | 001 | 00001 | 011101 | 1001 | 100010 | 1001 | D10.3 | 011 | 01010 | 010101 | 1100 | 010101 | 0011 |
| D2. 1 | 001 | 00010 | 101101 | 1001 | 010010 | 1001 | D11.3 | 011 | 01011 | 110100 | 1100 | 110100 | 0011 |
| D3. 1 | 001 | 00011 | 110001 | 1001 | 110001 | 1001 | D12.3 | 011 | 01100 | 001101 | 1100 | 001101 | 0011 |
| D4.1 | 001 | 00100 | 110101 | 1001 | 001010 | 1001 | D13.3 | 011 | 01101 | 101100 | 1100 | 101100 | 0011 |
| D5.1 | 001 | 00101 | 101001 | 1001 | 101001 | 1001 | D14.3 | 011 | 01110 | 011100 | 1100 | 011100 | 0011 |
| D6.1 | 001 | 00110 | 011001 | 1001 | 011001 | 1001 | D15.3 | 011 | 01111 | 010111 | 0011 | 101000 | 1100 |
| D7.1 | 001 | 00111 | 111000 | 1001 | 000111 | 1001 | D16.3 | 011 | 10000 | 011011 | 0011 | 100100 | 1100 |
| D8. 1 | 001 | 01000 | 111001 | 1001 | 000110 | 1001 | D17.3 | 011 | 10001 | 100011 | 1100 | 100011 | 0011 |
| D9.1 | 001 | 01001 | 100101 | 1001 | 100101 | 1001 | D18.3 | 011 | 10010 | 010011 | 1100 | 010011 | 0011 |
| D10.1 | 001 | 01010 | 010101 | 1001 | 010101 | 1001 | D19.3 | 011 | 10011 | 110010 | 1100 | 110010 | 0011 |
| D11.1 | 001 | 01011 | 110100 | 1001 | 110100 | 1001 | D20.3 | 011 | 10100 | 001011 | 1100 | 001011 | 0011 |
| D12.1 | 001 | 01100 | 001101 | 1001 | 001101 | 1001 | D21.3 | 011 | 10101 | 101010 | 1100 | 101010 | 0011 |
| D13.1 | 001 | 01101 | 101100 | 1001 | 101100 | 1001 | D22.3 | 011 | 10110 | 011010 | 1100 | 011010 | 0011 |
| D14.1 | 001 | 01110 | 011100 | 1001 | 011100 | 1001 | D23.3 | 011 | 10111 | 111010 | 0011 | 000101 | 1100 |
| D15.1 | 001 | 01111 | 010111 | 1001 | 101000 | 1001 | D24.3 | 011 | 11000 | 110011 | 0011 | 001100 | 1100 |
| D16.1 | 001 | 10000 | 011011 | 1001 | 100100 | 1001 | D25.3 | 011 | 11001 | 100110 | 1100 | 100110 | 0011 |
| D17.1 | 001 | 10001 | 100011 | 1001 | 100011 | 1001 | D26.3 | 011 | 11010 | 010110 | 1100 | 010110 | 0011 |
| D18.1 | 001 | 10010 | 010011 | 1001 | 010011 | 1001 | D27.3 | 011 | 11011 | 110110 | 0011 | 001001 | 1100 |
| D19.1 | 001 | 10011 | 110010 | 1001 | 110010 | 1001 | D28.3 | 011 | 11100 | 001110 | 1100 | 001110 | 0011 |
| D20.1 | 001 | 10100 | 001011 | 1001 | 001011 | 1001 | D29.3 | 011 | 11101 | 101110 | 0011 | 010001 | 1100 |
| D21.1 | 001 | 10101 | 101010 | 1001 | 101010 | 1001 | D30.3 | 011 | 11110 | 011110 | 0011 | 100001 | 1100 |
| D22.1 | 001 | 10110 | 011010 | 1001 | 011010 | 1001 | D31.3 | 011 | 11111 | 101011 | 0011 | 010100 | 1100 |
| D23.1 | 001 | 10111 | 111010 | 1001 | 000101 | 1001 | D0.4 | 100 | 00000 | 100111 | 0010 | 011000 | 1101 |
| D24.1 | 001 | 11000 | 110011 | 1001 | 001100 | 1001 | D1.4 | 100 | 00001 | 011101 | 0010 | 100010 | 1101 |
| D25.1 | 001 | 11001 | 100110 | 1001 | 100110 | 1001 | D2.4 | 100 | 00010 | 101101 | 0010 | 010010 | 1101 |
| D26.1 | 001 | 11010 | 010110 | 1001 | 010110 | 1001 | D3.4 | 100 | 00011 | 110001 | 1101 | 110001 | 0010 |
| D27.1 | 001 | 11011 | 110110 | 1001 | 001001 | 1001 | D4.4 | 100 | 00100 | 110101 | 0010 | 001010 | 1101 |
| D28.1 | 001 | 11100 | 001110 | 1001 | 001110 | 1001 | D5.4 | 100 | 00101 | 101001 | 1101 | 101001 | 0010 |
| D29.1 | 001 | 11101 | 101110 | 1001 | 010001 | 1001 | D6.4 | 100 | 00110 | 011001 | 1101 | 011001 | 0010 |
| D30.1 | 001 | 11110 | 011110 | 1001 | 100001 | 1001 | D7.4 | 100 | 00111 | 111000 | 1101 | 000111 | 0010 |
| D31.1 | 001 | 11111 | 101011 | 1001 | 010100 | 1001 | D8.4 | 100 | 01000 | 111001 | 0010 | 000110 | 1101 |
| D0.2 | 010 | 00000 | 100111 | 0101 | 011000 | 0101 | D9.4 | 100 | 01001 | 100101 | 1101 | 100101 | 0010 |
| D1. 2 | 010 | 00001 | 011101 | 0101 | 100010 | 0101 | D10.4 | 100 | 01010 | 010101 | 1101 | 010101 | 0010 |
| D2.2 | 010 | 00010 | 101101 | 0101 | 010010 | 0101 | D11.4 | 100 | 01011 | 110100 | 1101 | 110100 | 0010 |
| D3.2 | 010 | 00011 | 110001 | 0101 | 110001 | 0101 | D12.4 | 100 | 01100 | 001101 | 1101 | 001101 | 0010 |
| D4.2 | 010 | 00100 | 110101 | 0101 | 001010 | 0101 | D13.4 | 100 | 01101 | 101100 | 1101 | 101100 | 0010 |
| D5.2 | 010 | 00101 | 101001 | 0101 | 101001 | 0101 | D14.4 | 100 | 01110 | 011100 | 1101 | 011100 | 0010 |
| D6. 2 | 010 | 00110 | 011001 | 0101 | 011001 | 0101 | D15.4 | 100 | 01111 | 010111 | 0010 | 101000 | 1101 |
| D7.2 | 010 | 00111 | 111000 | 0101 | 000111 | 0101 | D16.4 | 100 | 10000 | 011011 | 0010 | 100100 | 1101 |
| D8.2 | 010 | 01000 | 111001 | 0101 | 000110 | 0101 | D17.4 | 100 | 10001 | 100011 | 1101 | 100011 | 0010 |

Table 1. Valid Data Characters - Encoding (cont.)

| Data <br> Byte | Bits |  | Current | RD- | Current | RD + | DataByte |  |  | Current | RD - | Current | RD + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | HGF | EDCBA ${ }^{1}$ | abcdei | fghj ${ }^{2}$ | abcdei | fghj ${ }^{2}$ | Name | HGF | EDCBA ${ }^{1}$ | abcdei | fghj ${ }^{2}$ | abcdei | fghj ${ }^{2}$ |
| D18.4 | 100 | 10010 | 010011 | 1101 | 010011 | 0010 | D27.6 | 110 | 11011 | 110110 | 0110 | 001001 | 0110 |
| D19.4 | 100 | 10011 | 110010 | 1101 | 110010 | 0010 | D28.6 | 110 | 11100 | 001110 | 0110 | 001110 | 0110 |
| D20.4 | 100 | 10100 | 001011 | 1101 | 001011 | 0010 | D29.6 | 110 | 11101 | 101110 | 0110 | 010001 | 0110 |
| D21.4 | 100 | 10101 | 101010 | 1101 | 101010 | 0010 | D30.6 | 110 | 11110 | 011110 | 0110 | 100001 | 0110 |
| D22.4 | 100 | 10110 | 011010 | 1101 | 011010 | 0010 | D31.6 | 110 | 11111 | 101011 | 0110 | 010100 | 0110 |
| D23.4 | 100 | 10111 | 111010 | 0010 | 000101 | 1101 | D0.7 | 111 | 00000 | 100111 | 0001 | 011000 | 1110 |
| D24.4 | 100 | 11000 | 110011 | 0010 | 001100 | 1101 | D1.7 | 111 | 00001 | 011101 | 0001 | 100010 | 1110 |
| D25.4 | 100 | 11001 | 100110 | 1101 | 100110 | 0010 | D2.7 | 111 | 00010 | 101101 | 0001 | 010010 | 1110 |
| D26.4 | 100 | 11010 | 010110 | 1101 | 010110 | 0010 | D3.7 | 111 | 00011 | 110001 | 1110 | 110001 | 0001 |
| D27.4 | 100 | 11011 | 110110 | 0010 | 001001 | 1101 | D4.7 | 111 | 00100 | 110101 | 0001 | 001010 | 1110 |
| D28.4 | 100 | 11100 | 001110 | 1101 | 001110 | 0010 | D5.7 | 111 | 00101 | 101001 | 1110 | 101001 | 0001 |
| D29.4 | 100 | 11101 | 101110 | 0010 | 010001 | 1101 | D6.7 | 111 | 00110 | 011001 | 1110 | 011001 | 0001 |
| D30.4 | 100 | 11110 | 011110 | 0010 | 100001 | 1101 | D7.7 | 111 | 00111 | 111000 | 1110 | 000111 | 0001 |
| D31.4 | 100 | 11111 | 101011 | 0010 | 010100 | 1101 | D8.7 | 111 | 01000 | 111001 | 0001 | 000110 | 1110 |
| D0.5 | 101 | 00000 | 100111 | 1010 | 011000 | 1010 | D9.7 | 111 | 01001 | 100101 | 1110 | 100101 | 0001 |
| D1.5 | 101 | 00001 | 011101 | 1010 | 100010 | 1010 | D10.7 | 111 | 01010 | 010101 | 1110 | 010101 | 0001 |
| D2.5 | 101 | 00010 | 101101 | 1010 | 010010 | 1010 | D11.7 | 111 | 01011 | 110100 | 1110 | 110100 | 1000 |
| D3.5 | 101 | 00011 | 110001 | 1010 | 110001 | 1010 | D12.7 | 111 | 01100 | 001101 | 1110 | 001101 | 0001 |
| D4.5 | 101 | 00100 | 110101 | 1010 | 001010 | 1010 | D13.7 | 111 | 01101 | 101100 | 1110 | 101100 | 1000 |
| D5.5 | 101 | 00101 | 101001 | 1010 | 101001 | 1010 | D14.7 | 111 | 01110 | 011100 | 1110 | 011100 | 1000 |
| D6.5 | 101 | 00110 | 011001 | 1010 | 011001 | 1010 | D15.7 | 111 | 01111 | 010111 | 0001 | 101000 | 1110 |
| D7.5 | 101 | 00111 | 111000 | 1010 | 000111 | 1010 | D16.7 | 111 | 10000 | 011011 | 0001 | 100100 | 1110 |
| D8.5 | 101 | 01000 | 111001 | 1010 | 000110 | 1010 | D17.7 | 111 | 10001 | 100011 | 0111 | 100011 | 0001 |
| D9.5 | 101 | 01001 | 100101 | 1010 | 100101 | 1010 | D18.7 | 111 | 10010 | 010011 | 0111 | 010011 | 0001 |
| D10.5 | 101 | 01010 | 010101 | 1010 | 010101 | 1010 | D19.7 | 111 | 10011 | 110010 | 1110 | 110010 | 0001 |
| D11.5 | 101 | 01011 | 110100 | 1010 | 110100 | 1010 | D20.7 | 111 | 10100 | 001011 | 0111 | 001011 | 0001 |
| D12.5 | 101 | 01100 | 001101 | 1010 | 001101 | 1010 | D21.7 | 111 | 10101 | 101010 | 1110 | 101010 | 0001 |
| D13.5 | 101 | 01101 | 101100 | 1010 | 101100 | 1010 | D22.7 | 111 | 10110 | 011010 | 1110 | 011010 | 0001 |
| D14.5 | 101 | 01110 | 011100 | 1010 | 011100 | 1010 | D23.7 | 111 | 10111 | 111010 | 0001 | 000101 | 1110 |
| D15.5 | 101 | 01111 | 010111 | 1010 | 101000 | 1010 | D24.7 | 111 | 11000 | 110011 | 0001 | 001100 | 1110 |
| D16.5 | 101 | 10000 | 011011 | 1010 | 100100 | 1010 | D25.7 | 111 | 11001 | 100110 | 1110 | 100110 | 0001 |
| D17.5 | 101 | 10001 | 100011 | 1010 | 100011 | 1010 | D26.7 | 111 | 11010 | 010110 | 1110 | 010110 | 0001 |
| D18.5 | 101 | 10010 | 010011 | 1010 | 010011 | 1010 | D27.7 | 111 | 11011 | 110110 | 0001 | 001001 | 1110 |
| D19.5 | 101 | 10011 | 110010 | 1010 | 110010 | 1010 | D28.7 | 111 | 11100 | 001110 | 1110 | 001110 | 0001 |
| D20.5 | 101 | 10100 | 001011 | 1010 | 001011 | 1010 | D29.7 | 111 | 11101 | 101110 | 0001 | 010001 | 1110 |
| D21.5 | 101 | 10101 | 101010 | 1010 | 101010 | 1010 | D30.7 | 111 | 11110 | 011110 | 0001 | 100001 | 1110 |
| D22.5 | 101 | 10110 | 011010 | 1010 | 011010 | 1010 | D31.7 | 111 | 11111 | 101011 | 0001 | 010100 | 1110 |
| D23.5 | 101 | 10111 | 111010 | 1010 | 000101 | 1010 |  |  |  |  |  |  |  |
| D24.5 | 101 | 11000 | 110011 | 1010 | 001100 | 1010 |  |  |  |  |  |  |  |
| D25.5 | 101 | 11001 | 100110 | 1010 | 100110 | 1010 |  |  |  |  |  |  |  |
| D26.5 | 101 | 11010 | 010110 | 1010 | 010110 | 1010 |  |  |  |  |  |  |  |
| D27.5 | 101 | 11011 | 110110 | 1010 | 001001 | 1010 |  |  |  |  |  |  |  |
| D28.5 | 101 | 11100 | 001110 | 1010 | 001110 | 1010 | Ta |  | Spe | Cha | rs | ncod |  |
| D29.5 | 101 | 11101 | 101110 | 1010 | 010001 | 1010 |  |  |  |  |  |  |  |
| D30.5 | 101 | 11110 | 011110 | 1010 | 100001 | 1010 |  |  |  |  |  | Curr |  |
| D31.5 | 101 | 11111 | 101011 | 1010 | 010100 | 1010 |  |  | abai |  |  |  |  |
| D0.6 | 110 | 00000 | 100111 | 0110 | 011000 | 0110 |  |  | abcdei | $\text { fghj }{ }^{2}$ |  | abcdei | fghi ${ }^{2}$ |
| D1.6 | 110 | 00001 | 011101 | 0110 | 100010 | 0110 |  |  | 001111 | 0100 |  | 110000 | 1011 |
| D2.6 | 110 | 00010 | 101101 | 0110 | 010010 | 0110 |  |  | 001111 | 1001 |  | 110000 | 0110 |
| D3.6 | 110 | 00011 | 110001 | 0110 | 110001 | 0110 |  |  | 001111 | 0101 |  | 110000 | 1010 |
| D4.6 | 110 | 00100 | 110101 | 0110 | 001010 | 0110 |  |  | 001111 | 0011 |  | 110000 | 1100 |
| D5.6 | 110 | 00101 | 101001 | 0110 | 101001 | 0110 |  |  | $001111$ | $0010$ |  | $110000$ | $1101$ |
| D6.6 | 110 | 00110 | 011001 | 0110 | 011001 | 0110 |  |  | 001111 | 1010 |  | $110000$ | $\begin{aligned} & 0101 \\ & 1001 \end{aligned}$ |
| D7.6 | 110 | 00111 | 111000 | 0110 | 000111 | 0110 |  |  | 001111 | 0110 1000 |  | 110000 110000 | 1001 |
| D8.6 | 110 | 01000 | 111001 | 0110 | 000110 | 0110 |  |  | 111010 | 1000 |  | 000101 | 0111 |
| D9.6 | 110 | 01001 | 100101 | 0110 | 100101 | 0110 |  |  | 110110 | 1000 |  | 001001 | 0111 |
| D10.6 | 110 | 01010 | 010101 | 0110 | 010101 | 0110 |  |  | 101110 | 1000 |  | 010001 | 0111 |
| D11.6 | 110 | 01011 | 110100 | 0110 | 110100 | 0110 |  |  | 011110 | 1000 |  | 100001 | 0111 |
| D12.6 | 110 | 01100 | 001101 | 0110 | 001101 | 0110 |  |  |  |  |  |  |  |
| D13.6 | 110 | 01101 | 101100 | 0110 | 101100 | 0110 |  |  |  |  |  |  |  |
| D14.6 | 110 | 01110 | 011100 | 0110 | 011100 | 0110 |  |  |  |  |  |  |  |
| D15.6 | 110 | 01111 | 010111 | 0110 | 101000 | 0110 |  |  |  | respond | Data |  | $.0, i n$ |
| D16.6 | 110 | 10000 | 011011 | 0110 | 100100 | 0110 |  |  | rder. |  |  |  |  |
| D17.6 | 110 | 10001 | 100011 | 0110 | 100011 | 0110 |  |  | to be tr | mitted | follo | d by "b", |  |
| D18.6 | 110 | 10010 | 010011 | 0110 | 010011 | 0110 |  |  | bcdeifg |  |  |  |  |
| D19.6 | 110 | 10011 | 110010 | 0110 | 110010 | 0110 |  |  | cdeifg | in that | r, cor | pond to |  |
| D20.6 | 110 | 10100 | 001011 | 0110 | 001011 | 0110 |  |  | 9 . . BTX |  |  |  |  |
| D21.6 | 110 | 10101 | 101010 | 0110 | 101010 | 0110 |  |  |  |  |  |  |  |
| D22.6 | 110 | 10110 | 011010 | 0110 | 011010 | 0110 |  |  |  |  |  |  |  |
| D23.6 | 110 | 10111 | 111010 | 0110 | 000101 | 0110 |  |  |  |  |  |  |  |
| D24.6 | 110 | 11000 | 110011 | 0110 | 001100 | 0110 |  |  |  |  |  |  |  |
| D25.6 | 110 | 11001 | 100110 | 0110 | 100110 | 0110 |  |  |  |  |  |  |  |
| D26.6 | 110 | 11010 | 010110 | 0110 | 010110 | 0110 |  |  |  |  |  |  |  |

Table 3. Ordered Set Encoding - Fibre Channel

| Function | Cntl | Byte 1 Sig | SOF | EOF | C-Interface Signals (Mode: $\overline{\text { Raw }})$ Inputs (CTxD7..0) |  |  |  | BTx $D 9 . .0$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Byte 2 | Byte 3 | Byte 4 | Begin. RD | Output (four encoded bytes) Byte 1-Byte 2-Byte 3-Byte 4 |
| SOFn1 ${ }^{3}$ | 0 | 0 | 1 | 0 | 0001 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D23.1-D23.1) |
| SOFn2 | 0 | 0 | 1 | 0 | 0010 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D21.1-D21.1) |
| SOFn3 | 0 | 0 | 1 | 0 | 0011 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D22.1-D22.1) |
| SOFi1 | 0 | 0 | 1 | 0 | 0101 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D23.2-D23.2) |
| SOFi2 | 0 | 0 | 1 | 0 | 0110 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D21.2-D21.2) |
| SOFi3 | 0 | 0 | 1 | 0 | 0111 | $-{ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D22.2-D22.2) |
| SOFc1 | 0 | 0 | 1 | 0 | 1101 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D23.0-D23.0) |
| SOFf | 0 | 0 | 1 | 0 | 1000 | $-{ }^{1}$ | $-{ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D24.2-D24.2) |
| EOFn ${ }^{4,5}$ | 0 | 0 | 0 | 1 | 0000 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.6-D21.6) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.6-D21.6) |
| EOFt ${ }^{5}$ | 0 | 0 | 0 | 1 | 0100 | $-^{1}$ | - ${ }^{1}$ | $-^{1}$ | Neg | (K28.5-D21.4-D21.3-D21.3) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.3-D21.3) |
| EOFdt ${ }^{6}$ | 0 | 0 | 0 | 1 | 1100 | - ${ }^{1}$ | - ${ }^{1}$ | $-^{1}$ | Neg | (K28.5-D21.4-D21.4-D21.4) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.4-D21.4) |
| EOFa | 0 | 0 | 0 | 1 | 1001 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.7-D21.7) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.7-D21.7) |
| EOFni | 0 | 0 | 0 | 1 | 0001 | $-^{1}$ | - ${ }^{1}$ | $-^{1}$ | Neg | (K28.5-D10.4-D21.6-D21.6) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D10.5-D21.6-D21.6) |
| EOFdti | 0 | 0 | 0 | 1 | 1101 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D10.4-D21.4-D21.4) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D10.5-D21.4-D21.4) |
| Idle | 0 | 1 | 0 | 0 | 0000 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.5-D21.5) |
| R-Rdy | 0 | 1 | 0 | 0 | 0110 | - ${ }^{1}$ | $-^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D10.2-D10.2) |
| NOS | 0 | 1 | 0 | 0 | 1000 | $-^{1}$ | - ${ }^{1}$ | $-^{1}$ | Neg | (K28.5-D21.2-D31.5-D5.2) |
| OLS | 0 | 1 | 0 | 0 | 1001 | - ${ }^{1}$ | $-{ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.1-D10.4-D21.2) |
| LR | 0 | 1 | 0 | 0 | 1010 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D9.2-D31.5-D9.2) |
| LRR | 0 | 1 | 0 | 0 | 1011 | - ${ }^{1}$ | ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.1-D31.5-D9.2) |
| Undefined | 1 | 0 | 0 | 0 | 0000 | $\left(X Y_{B}\right)^{2}$ | $\left(\mathrm{XY} \mathrm{C}^{2}{ }^{2}\right.$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.0-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0001 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.1-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0010 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.2-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0011 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.3-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0100 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.4-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0101 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.5-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0110 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.6-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0111 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 28.7-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 1000 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 23.7-D X . Y_{B}-D X . Y_{C}-D X . Y_{D}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 1001 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 27.7-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 1010 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | $\left(\mathrm{K} 29.7-\mathrm{DX} . \mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 1011 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K30.7-DX. $\mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-$ DX. $\mathrm{Y}_{\mathrm{D}}$ ) |

Notes: 1. Don't Care (any value).
2. Outputs for the data characters in the ordered set must be encoded to the correct data values.
3. SOF - Start-of-frame delimiter.
4. EOF - End-of-frame delimiter.
5. Encoded as EOFni if TERR or PERR $=1$.
6. Encoded as EOFdti if TERR or PERR $=1$.

## GA9103

## Decode

The Decode block of the GA9103 is in the return path of a serial link from a remote transmitter to the host. It takes the encoded 10-bit data from the GA9102 (Rx) and decodes it into 8 -bit data for the host. The 10-bitwide input, BRXDO..9, is first clocked into the REGISTER, using the Receiver byte clock, RXCLK.

The 10b/8b DECODER decodes data and special characters according to Tables 1 and 2. Initially, the current Running Disparity is negative and each of the characters are decoded based on the received character. The DECODER also checks for the validity of received characters based on Tables 1 and 2.

The ERROR flag is set if there are code violations in any one of the four bytes of the word, or if the running disparity is in error. The ERROR signal is active for the entire duration of the word transmission, regardless of which byte was in error. The ERROR pin is also used to flag three other invalid conditions:

- A special character is detected in the second, third, or fourth character of a transmission word
- SYNC $=1$ when BRXDO.. 9 is not a K28.5
- An ordered set is received with improper beginning running disparity

Examples of improper running disparity are: 1) SOF with positive running disparity, and 2) EOF content specified for positive running disparity, but received with BRD-. See Table 5.

Four bytes of the received signal must be analyzed in order to perform the ORDERED SET DECODE. For the purpose of ordered set decoding, the SYNC signal is used to align the four bytes of information to generate a word. The ordered sets are decoded according to Table 5 (Ordered Set Decoding).

The ORDERED SET DECODE block generates the Data/Ordered Set signal, CRXSO, along with the 8-bit decoded ordered set. A periodic signal, RWSTART, is also generated from this block. The SYNC signal is used to generate RWSTART, which is HIGH on the first byte output, CRXD0..7, of every word.

RWSTART is initialized by RESETN, RAWRx, or if K28.5 is followed by three valid data bytes (DX. $\mathrm{Y}_{\mathrm{A}}$, $D X . Y_{B}$, and $\left.D X . Y_{C}\right)$. The relationship between ERROR, RXCLK, and RWSTART is shown in Figure 7.

Figure 7. ERROR Signal Timing

RXCLK


RWSTART


ERROR


The WSYNC signal from the ORDERED SET DECODE block is used to denote whether or not the link is wordsynchronized.

As shown in the WSYNC State Diagram in Figure 8, WSYNC $=0$ if the link loses word synchronization, is in a reset condition, or is in the "RAW" mode.

The link achieves word synchronization, (WSYNC = 1), only after three valid ordered sets are received without error and the first byte is a K28.5 character. Once synchronized, the link could lose synchronization if it receives a minimum of four invalid words within a consecutive set of seven words as per the sequence shown in the State Diagram.

During this sequence, the link can reacquire word synchronization (State 1) if it receives two consecutive valid words in each of the States as shown in the State Diagram. If RAWRx $=1, W S Y N C=0$.

If the ordered sets received correspond to a primitive sequence, the LINE STATE DECODER increments a counter using the SYNC signal. The primitive sequences, as defined by the Fibre Channel standard, are Offline State (OLS), Not-Operational State (NOS), Link Reset (LR), and Link Reset Response (LRR). These are transmitted to indicate a specific condition within a port.

Transmission of NOS indicates the port has detected a link failure condition. OLS indicates the port is preparing to either initialize, to go into the diagnostic mode, or to power down. LR is sent after a link timeout error has occurred or OLS is received. LRR is transmitted to recognize Link Reset.

If three consecutive ordered sets are received, the corresponding information is sent through CRXD0..7, according to the Ordered Set Decoding table (see Table 5).

Figure 8. WSYNC State Diagram


## GA9103

CRXS2 is active as long as one of the four possible line state signals, (OLS, NOS, LR, and LRR), is being received. Once active, CRXS2 remains active for the count of two line state ordered sets. On the third count, CRXS2 goes inactive and CRXS0 goes active. The proper line state output signals are flagged on CRXD0..7, as per Table 5. The figure below shows an example timing sequence for line states when RAWRx $=0$.

The fields within the first byte, CRXD0..7, of the word for Ordered Set Decoding are shown in Figure 9.

CRXD7 corresponds to the Cntl signal which, when logic LOW, indicates the Fibre Channel-defined ordered set has been received. When the Cntl signal is HIGH, it indicates a non-Fibre Channel (undefined) ordered set has been received.

Figure 9. Data Fields for Ordered Set Decoding


The Sig signal (CRXD6), when HIGH, indicates the Line State ordered set, IDLE or R_RDY, has been received, and when LOW, the Sig signal indicates an ordered set other than Line State has been received.

SOF (CRXD5), when HIGH, indicates the Start-of-Frame ordered set has been received and EOF (CRXD4), when HIGH, indicates the End-of-Frame ordered set.

Type (CRXD3..0) indicates the different types of ordered sets within the SOF, EOF, Line State and Undefined categories.

The CRC CHECK block performs a 32-bit Cyclic Redundancy Check on the received data. The CRC check begins after the Start-of-Frame Detect and finishes prior to End-of-Frame. CRC errors are flagged at the CRXS1 pin if RAWRx $=1$ and CRXS1 $=0$.

The RAW Rx mode is used whenever the 10-bit-wide input data to the receiver is to be passed through, undecoded, to the receive outputs, CRXD0..7, CRXP, and CRXSO. The MUX is used to choose between the decoded data/ordered set and the register output.

Figure 10. Example Timing Sequence for Line States


## GA9103

When the RAWRx input signal is active, the undecoded data is selected; otherwise, the decoded data/ordered set/line state is chosen.
and CRXSO, is an even number, CRXP will be HIGH. If the number of ones in the output, CRXDO.. 7 and CRXSO, is odd, CRXP will be LOW.

Table 4. MUX Selection

| RAW RX | CRXS2 | CRXSO | MUX Output |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | Decoded Data |
| 0 | 0 | 1 | Ordered set/line state |
| 0 | 1 | 0 | Decoded line state word |
| 1 | 0 | $X$ | Undecoded data* |

*Note: CRXSO is part of this data.

## Table 5. Ordered Set Decoding - Fibre Channel

| $\boldsymbol{R x}$ <br> Input | C-Interface Signals (Mode: $\overline{\text { Raw }}$ ) Outputs (CRXD7..0) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Byte 1 |  |  | Outputs (CRXD7..0) <br> Byte 2 |  |  |  | Byte 3 | Byte 4 |
|  | Cntl | Sig | SOF | EOF | Type | $B R_{D}{ }^{-2}$ | $B R_{D}+{ }^{3}$ |  |  |
| SOFn1 | 0 | 0 | 1 | 0 | 0001 |  | (B516) | $\left(37_{16}\right)$ | $\left(37_{16}\right)$ |
| SOFn2 | 0 | 0 | 1 | 0 | 0010 |  | (B5 ${ }_{16}$ ) | $\left(35_{16}\right)$ | $\left(35_{16}\right)$ |
| SOFn3 | 0 | 0 | 1 | 0 | 0011 |  | (B5 ${ }_{16}$ ) | $(3616)$ | $(3616)$ |
| SOFi1 | 0 | 0 | 1 | 0 | 0101 |  | (B5 ${ }_{16}$ ) | $\left(57_{16}\right)$ | $\left(57_{16}\right)$ |
| SOFi2 | 0 | 0 | 1 | 0 | 0110 |  | (B5 ${ }_{16}$ ) | ( $55{ }_{16}$ ) | ( $55_{16}$ ) |
| SOFi3 | 0 | 0 | 1 | 0 | 0111 |  | (B5 ${ }_{16}$ ) | ( 5616 ) | $\left(56_{16}\right)$ |
| SOFC1 | 0 | 0 | 1 | 0 | 1101 |  | (B5 ${ }_{16}$ ) | (17 ${ }_{16}$ ) | $\left(17_{16}\right)$ |
| SOFf | 0 | 0 | 1 | 0 | 1000 |  | (B5 ${ }_{16}$ ) | $(5816)$ | $\left(58{ }_{16}\right)$ |
| EOFn | 0 | 0 | 0 | 1 | 0000 | $\left(95_{16}\right)$ | (B5 ${ }_{16}$ ) | (D5 ${ }_{16}$ ) | ( $\mathrm{D}_{166}$ ) |
| EOFt | 0 | 0 | 0 | 1 | 0100 | (9516) | (B5 ${ }_{16}$ ) | $\left(75_{16}\right)$ | $\left(75_{16}\right)$ |
| EOFdt | 0 | 0 | 0 | 1 | 1100 | $\left(95_{16}\right)$ | ( $\mathrm{B5}_{16}$ ) | $\left(95_{16}\right)$ | $\left(95_{16}\right)$ |
| EOFa | 0 | 0 | 0 | 1 | 1001 | $\left(95_{16}\right)$ | ( $\mathrm{B} 5_{16}$ ) | ( $\mathrm{F5}_{16}$ ) | (F5 ${ }_{16}$ ) |
| EOFni | 0 | 0 | 0 | 1 | 0001 | $\left(8 \mathrm{~A}_{16}\right)$ | ( $\mathrm{AA}_{16}$ ) | (D5 ${ }_{16}$ ) | ( $\mathrm{D}_{166}$ ) |
| EOFdti | 0 | 0 | 0 | 1 | 1101 | (8A ${ }_{16}$ ) | $\left(\mathrm{AA}_{16}\right)$ | $\left(95_{16}\right)$ | $\left(95_{16}\right)$ |
| Idle | 0 | 1 | 0 | 0 | 0000 |  | (95 ${ }_{16}$ ) | $\left(\mathrm{B5}{ }_{16}\right)$ | $\left(B 5_{16}\right)$ |
| R_Rdy | 0 | 1 | 0 | 0 | 0110 |  | (95 ${ }_{16}$ ) | $\left(4 \mathrm{~A}_{16}\right)$ | (4A ${ }_{16}$ ) |
| NOS | 0 | 1 | 0 | 0 | 1000 |  | ( $55_{16}$ ) | $\left(\mathrm{BF}_{16}\right)$ | (45 ${ }_{16}$ ) |
| OLS | 0 | 1 | 0 | 0 | 1001 |  | $\left(35_{16}\right)$ | $\left(8 \mathrm{~A}_{16}\right)$ | ( $55_{16}$ ) |

(Continued on next page)

[^5]
## GA9103

Table 5. Ordered Set Decoding - Fibre Channel (continued)

| $\boldsymbol{R X}$ <br> Input | C-Interface Signals (Mode: $\overline{\text { Raw }}$ ) Outputs (CRXD7..0) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Byte 1 |  |  | Outputs (CRXD7..O) <br> Byte 2 |  |  |  | Byte 3 | Byte 4 |
|  | CntI | Sig | SOF | EOF | Type | $B R_{0}{ }^{2}$ | $B R_{D}+{ }^{3}$ |  |  |
| LR | 0 | 1 | 0 | 0 | 1010 |  | $\left(49_{16}\right)$ | $\left(\mathrm{BF}_{16}\right)$ | (49 ${ }_{16}$ ) |
| LRR | 0 | 1 | 0 | 0 | 1011 |  | $\left(95_{16}\right)$ | $\left(\mathrm{BF}_{16}\right)$ | $\left(49_{16}\right)$ |
| (K28.0-DX. $\left.\mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ | 1 | 0 | 0 | 0 | 0000 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K28.1-DX. $\mathrm{Y}_{\mathrm{B}}$-DX. $\left.\mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ | 1 | 0 | 0 | 0 | 0001 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K28.2-DX. $\mathrm{Y}_{\mathrm{B}}-$ DX. $\mathrm{Y}_{\mathrm{C}}-$ DX. $\mathrm{Y}_{\mathrm{D}}$ ) | 1 | 0 | 0 | 0 | 0010 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{c}\right)$ | $\left(X Y_{D}\right)$ |
| (K28.3-DX. $\left.\mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ | 1 | 0 | 0 | 0 | 0011 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K28.4-DX. $\mathrm{Y}_{\mathrm{B}}$-DX. $\mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}$ ) | 1 | 0 | 0 | 0 | 0100 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| $\left.\underline{(K 28.5-D X .} Y_{B}-D X . Y_{C}-D X . Y_{D}\right)^{1}$ | 1 | 0 | 0 | 0 | 0101 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K28.6-DX. $\left.\mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ | 1 | 0 | 0 | 0 | 0110 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K28.7-DX. $\mathrm{Y}_{\mathrm{B}}$-DX. $\mathrm{Y}_{\mathrm{C}}-$ DX. $\mathrm{Y}_{\mathrm{D}}$ ) | 1 | 0 | 0 | 0 | 0111 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| $\left(\mathrm{K} 23.7-\mathrm{DX} . Y_{B}-\mathrm{DX} . \mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ | 1 | 0 | 0 | 0 | 1000 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(\mathrm{XY} \mathrm{Y}_{\mathrm{D}}\right)$ |
| (K27.7-DX. $\mathrm{Y}_{\mathrm{B}}-$ DX. $\left.\mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}\right)$ | 1 | 0 | 0 | 0 | 1001 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K29.7-DX. $\mathrm{Y}_{\mathrm{B}}$-DX. $\mathrm{Y}_{\mathrm{C}}-\mathrm{DX} . \mathrm{Y}_{\mathrm{D}}$ ) | 1 | 0 | 0 | 0 | 1010 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(X Y_{D}\right)$ |
| (K30.7-DX. $\mathrm{Y}_{\mathrm{B}}$-DX. $\mathrm{Y}_{\mathrm{C}}$-DX. $\mathrm{Y}_{\mathrm{D}}$ ) | 1 | 0 | 0 | 0 | 1011 |  | $\left(X Y_{B}\right)$ | $\left(X Y_{C}\right)$ | $\left(\mathrm{XY} \mathrm{Y}_{\mathrm{D}}\right)$ |



Figure 11. System Block Diagram


## GA9103

## Table 6. Absolute Maximum Ratings

Exceeding the absolute maximum ratings may damage the device.

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply voltage to ground | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$ |
| DC input current | -30 mA to +5 mA |

## Table 7. Operating Conditions

(Proper functionality is guaranteed under these conditions.)

| Supply voltage | $5 \mathrm{~V} \pm 5 \%$ |
| :--- | :--- |
| Ambient temperature | 0 to $70^{\circ} \mathrm{C}$ |

Figure 12. TTL Test Load, TLL Outputs


Table 8. DC Characteristics
(Over operating range unless otherwise specified.)

| Symbol | Description | Test Conditions |  | Min. | Limits ${ }^{1}$ Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $V_{C C}=\operatorname{Min}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  | 3.6 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $V_{C C}=\operatorname{Min}$ | $\begin{aligned} & \mathrm{I}_{0 \mathrm{~L}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}{ }^{3}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  |  | 0.37 | V |
| $\mathrm{V}_{1 H^{2}}$ | Input HIGH level | Guaranteed voltage for | ut logical HIGH inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}{ }^{2}$ | Input LOW level | Guaranteed voltage for | ut logical LOW nputs |  |  | 0.8 | V |
| ILL | Input Leakage current | $V_{\text {CC }}=$ Max | $\mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -150 | -400 | $\mu \mathrm{A}$ |

Notes: 1. Typical limits are: $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.
3. $V_{I N}$, the TTL input, can be HIGH or LOW.

Table 9. AC Characteristics - ENCODE

| Parameter | Description | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | TXCLK Pulse Width HIGH | 15.00 |  | ns |  |
| T2 | TXCLK Pulse Width LOW | 15.00 | T3 -T1 |  | ns |
| T3 | TXCLK Period | 37.51 | 37.70 | 37.89 | ns |
| T4 | CTXD0..7; CTXP; CTXC0,1 Setup Time | 2.00 |  | ns |  |
| T5 | CTXD0..7; CTXP; CTXC0,1 Hold Time | 7.00 |  | ns |  |
| T6 | TXCLK $\uparrow$ to PERR, TERR | 3.50 |  | 17.00 | ns |
| T7 | TXCLK $\uparrow$ to BTXD0..9 | 5.00 | 19.00 | ns |  |
| T8 | ENCODE Latency | $2 * T 3+7$ | $3 * T 3+12$ | ns |  |

Figure 13. ENCODE Timing Diagram


Table 10. AC Characteristics - DECODE

| Parameter | Description | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T20 | RXCLK Pulse Width HIGH | (T22/2) - 3 |  |  | ns |
| T21 | RXCLK Pulse Width LOW | (T22/2) - 3 |  |  | ns |
| T22 | RXCLK Period | 37.51 | 37.70 | 37.89 | ns |
| T23 | BRXD0..9, SYNC Valid to RXCLK $\downarrow$ | 1.00 |  |  | ns |
| T24 | BRXD0..9, SYNC Valid from RXCLK $\downarrow$ | 8.00 |  |  | ns |
| T25 | CRXD0..7, CRXP, ERROR, CRXSO..2, RWSTART Valid to RXCLK $\uparrow$ | 4.70 |  |  | ns |
| T26 | CRXDO..7, CRXP, ERROR, CRXSO..2, RWSTART Valid from RXCLK $\uparrow$ | 18.25 |  |  | ns |
| T27 | CRXDO..7, CRXP, ERROR, CRXSO..2, RWSTART from RXCLK $\downarrow$ | 2.50 |  | 11.00 | ns |
| T28 | DECODE Latency | 6*T22 |  | $7 * T 22+10$ | ns |

Note: The DECODE functional block clocks off the negative edge of RXCLK.

Figure 14. DECODE Timing Diagram


Table 11. AC Characteristics - Miscellaneous

| Parameter | Description | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T29 | RESETN Pulse Width LOW | 10 |  |  | ns |

Figure 15. RESETN Timing Diagram


Figure 16. GA9103 Pinout


Table 12. Pin Definitions

| Symbol | 1/0 | Quantity | Logic Level | Active | Description | Pin \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CRXD0.. 7 | Output | 8 | TTL | HIGH | Receive Data Output | 59-57, 55-51 |
| CRXS0 | Output | 1 | TTL | HIGH | Receive Control | 60 |
| CRXS1 | Output | 1 | TTL | HIGH | Receive CRC Error | 61 |
| CRXS2 | Output | 1 | TTL | HIGH | Line State | 62 |
| BRXD0.. 9 | Input | 10 | TTL | HIGH | Receive Data Input | 37-39, 41-43, 45-48 |
| RXCLK | Input | 1 | TTL | HIGH | Receive Byte Clock | 36 |
| SYNC | Input | 1 | TTL | HIGH | Receive Byte Sync | 49 |
| TXCLK | Input | 1 | TTL | HIGH | Transmit Byte Clock | 33 |
| BTXD0..9 | Output | 10 | TTL | HIGH | Transmit Data Output | 20, 22-24, 26-28, 30-32 |
| CTXD0.. 7 | Input | 8 | TTL | HIGH | Transmit Data Input | 17-13, 11-9 |
| CTXC0 | Input | 1 | TTL | HIGH | Transmit Control | 18 |
| TERR | Output | 1 | TTL | HIGH | Transmit CRC Error | 5 |
| RWSTART | Output | 1 | TTL | HIGH | Start of Word | 66 |
| CTXC1 | Input | 1 | TTL | HIGH | Generate CRC | 19 |
| WSYNC | Output | 1 | TTL | HIGH | Word Synchronized | 64 |
| RAWTx | Input | 1 | TTL | HIGH | Raw Mode Transmit | 4 |
| RESETN | Input | 1 | TTL | LOW | System Reset | 2 |
| ERROR | Output | 1 | TTL | HIGH | Illegal Line Code or Disparity Received | 65 |
| PERR | Output | 1 | TTL | HIGH | Parity Error | 7 |
| CRXP | Output | 1 | TTL | HIGH | Odd Parity Output | 50 |
| CTXP | Input | 1 | TTL | HIGH | Odd Parity Input | 8 |
| RAWRx | Input | 1 | TTL | HIGH | Raw Mode Receive | 3 |
| VCC | Input | 5 | N/A | N/A | +5 Volt Supply | 6, 25, 34, 40,68 |
| GND | Input | 8 | N/A | N/A | Ground | 1, 12, 21, 29, 35, 44, 56, 63 |
| RESERVED |  | 1 |  |  |  | 67 |

## GA9103

Figure 17. 68-Pin Plastic Leaded Chip Carrier (PLCC)


## Ordering Information

## GA9103-ENDEC 265 MBaud Fibre Channel ENDEC

## Supporting Products

GA9101-2MC
Transmitter
GA9102-2MC
Receiver

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com
The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A Ocbober 1997

Figure 1. TQ9303 Block Diagram


The TQ9303 ENDEC (ENcoder/DECoder) implements 8b/10b encoding and decoding, ordered set encoding and decoding, and parity checking and generation as defined in the Fibre Channel Physical Signaling Interface Standard (FC-PH). The ENDEC fully implements the FC-1 layer of the Fibre Channel Standard. Implemented in a $0.8 \mu \mathrm{~m}$ CMOS process, the ENDEC also performs 32-bit CRC checking and generation as defined in the FC-2 layer of the Fibre Channel specification.

The TQ9303 ENDEC interfaces directly to TriQuint's FC-0 layer Fibre Channel Transmitter ( Tx ) and Receiver ( Rx ) chipsets at the speeds shown below:

| FC Rate | Transmitter | Receiver | Data Rate (Mbaud) |
| :--- | :---: | :---: | :---: |
| FC-266 | GA9101 | GA9102 | 194-266 |
| FC-531 | TQ9501 | TQ9502 | $500-625$ |
| FC-1063 | TQ9501 | TQ9502 | $1000-1250$ |

Triquint's Transmitter and Receiver devices are designed with TriQuint's proprietary 0.7 -micron GaAs process. The Tx and Rx interface directly to copper-based electrical media or to a fiber-optic module. The Transmitter performs parallel-to-serial conversion on the encoded data and generates the internal high-speed clock for the serial output data stream. The Receiver recovers the clock and data from the input serial stream, performs serial-to-parallel conversion, and detects and aligns on the K28.5 character.

## TQ9303

## Fibre Channel

 Encoder/Decoder
## Features

- Compliant with ANSI X3T11 Fibre Channel Standard
- Full implementation of Fibre Channel's FC-1 layer
- Interfaces directly with TriQuint's GA9101/GA9102 and TQ9501/TQ9502 FC-0 Fibre Channel chipsets
- Suitable for proprietary serial links (virtual ribbon cable)
- Implements $8 b / 10 b$ encoding and decoding
- Implements ordered set encoding and decoding
- Checks and generates 32-bit CRC and parity
- 10-bit TTL-compatible interface to Transmitter and Receiver
- 32-bit interface to the host
- Fully synchronous operation
- 160-pin PQFP

Fibre Channel provides a transport vehicle for Intelligent Peripheral Interface (IPI) and Small Computer System Interface (SCSI) upper layer command sets, HighPerformance Parallel Interface (HIPPI) data link layer, and other user-defined command sets. Fibre Channel replaces the SCSI, IPI, and HIPPI physical interfaces with a protocol-efficient alternative that provides performance improvements over distance and speed.

Fibre Channel is optimized for predictable transfers of large blocks of data such as those used in file transfers between processors (such as super computers, mainframes, and super minis), storage systems (such as disk and tape drives), communications devices, and outputonly devices (such as laser printers and raster scan
graphics terminals). The Fibre Channel protocol is implemented in hardware, making it simple, efficient, and robust.

The lower level physical interface is decoupled from the higher level protocol, allowing Fibre Channel to be configured with various topologies. Point-to-point, multi-drop bus, ring, and cross-point switch topologies are permitted in Fibre Channel, optimizing it for specific applications.

Fibre Channel supports distances up to 10 Km at baud rates of 132.8125 Mbaud to 1.0625 Gbaud. Coax and STP (Shielded Twisted Pair) are used at lower data rates and shorter distances, while fiber-optic cables are used for higher data rates and longer distances.

Figure 2. Ta9303 ENDEC Block Diagram


## TQ9303

## Functional Description

The TQ9303 may be divided into two independent functional sections: the Encoder and Decoder, as shown in Figure 2. The Encoder section describes the flow of data from the host to the transmitter. Conversely, the Decoder section describes the flow of data from the receiver to the host. Designed for fullduplex operation, the Encoder and Decoder will transmit and receive one at a time or simultaneously. The Encoder performs 8b/10b encoding of information from the host to the transmitter. The Decoder performs $10 \mathrm{~b} / 8 \mathrm{~b}$ decoding of information from the receiver to the host. The host interface is denoted by a letter C (as in $\underline{C T X P}$ ), and the transmit/receive interface is denoted by a letter B (as in $\underline{B}$ TXDO). Pins within the Encoder section are denoted with the letters TX (as in CTXP), and pins within the Decoder section are denoted with RX (as in CRXS1). At the host interface, the TQ9303 has a 32-bit transmit data bus and a 32-bit receive data bus, each with 4-bit parity and 8-bit control. The transmitter and receiver interfaces to the TQ9303 are 10-bit data buses. Table 5 includes all the pin descriptions. Detailed descriptions of the Encoder and Decoder sections follow.

## Encoder Section

The Encoder has several functional blocks: Parity Check, 32-Bit CRC, Ordered Set generator, 8b/10b Encoder, and Clock Generator. The Encoder section has two modes of operation: Normal mode and Raw mode. In the Normal mode, the Encoder section receives a word from the host interface, checks parity, calculates CRC, divides the word into bytes, encodes them using 8b/10b, and generates a 10-bit output, as illustrated in Figure 2. In the Raw mode, the Encoder section receives a word from the host interface without parity check, CRC check, or 8b/10b encoding.

The following is the encode sequence data flow:

1. Word input
2. Parity check
3. Word-to-half-word conversion
4. Ordered set encoding
5. 32-bit CRC check or generate
6. Muxing between ordered set, 32-bit CRC, and unchanged input
7. $8 \mathrm{~b} / 10 \mathrm{~b}$ encoding
8. Muxing between unchanged input and encoded word
9. Half-word-to-byte conversion
10. Byte output

## Parity Check Block

Parity check depends on the TXPENN (Transmit Parity ENable Not) input. TXPENN high ignores parity, while TXPENN low checks parity for each byte on the data bus, CTXD0..31. There are four parity bits (CTXPO..3), each bit corresponding to a byte of data, as follows: CTXPO to CTXD0..7, CTXP1 to CTXD8..15, CTXP2 to CTXD16..23, and CTXP3 to CTXD24..31. Control bit TXPMODE (Transmit Parity MODE) alters the normal meaning of CTXP3. TXPMODE low is the normal mode, where CTXP3 checks for parity for CTXD24..31. With TXPMODE high, CTXP3 checks for parity for CTXD24.. 31 and CTXCO. CTXCO is a control input which indicates whether CTXDO.. 31 is data or an ordered set. An ordered set is a Fibre Channel word where the most significant byte is composed of a valid special character, K28.5, as defined in the standard. Appendix A includes a table of valid special characters. The parity bits follow odd parity convention, where it is high if the number of ones is even and low if the number of ones is odd.

CTXPERR (Transmit Parity ERRor) is driven high when an error is detected in the parity check mode. When parity checking is disabled, CTXPERR is driven low. In Raw Mode transmit, where the data flow bypasses the parity check, 32-bit CRC, 8b/10b encoder, and ordered set encoder, CTXPERR is driven low.

## 32-Bit CRC Block

32-bit Cyclic Redundancy Checking (CRC) generates or checks CRC, depending on CTXC1. CTXC1 high generates CRC, while CTXC1 low checks CRC for the incoming frame. The CRC used in Fibre Channel is the same as FDDI's frame check sequence, where a 32bit CRC is computed for every frame, starting after SOF (Start Of Frame) and ending a byte before EOF (End Of Frame). The resulting 32-bit CRC is automatically inserted into the frame before EOF.

In the check CRC mode, CTXCERR (Transmit Crc ERRor) is driven high when a CRC error is detected.

In the generate CRC mode, CTXCERR is driven low. In Raw Mode transmit where the data flow bypasses the parity check, 32-bit CRC, 8b/10b encoder, and ordered set encoder, CTXCERR is driven low.

The Generate CRC mode timing diagrams are shown in Figure 3. CTXC1 is high for the entire frame, when generating CRC. CTXCO is high only for the duration of SOF, indicating that the input word (CTXD0..31) is an ordered set. Similarly, CTXCO is high for the duration of EOF, which is another ordered set. The 32-bit CRC block computes the CRC for data after SOF and before EOF. The resulting CRC is inserted between the last data word and EOF at the output (BTXDO..9).

The Check CRC mode timing diagrams are shown in Figure 4. CTXC1 is low for the whole frame when checking CRC. CTXCO is high only for the duration of SOF, indicating that the input word (CTXD0..31) is an ordered set. Similarly, CTXCO is high for the duration of EOF, another ordered set. 32-bit CRC begins after SOF

Figure 3. Generate CRC Mode TIming


Figure 4. Check CRC Mode TIming

and ends before EOF. CTXCERR remains low if the computed CRC matches the CRC input on CTXD0.. 31 . CTXCERR is driven high for one word cycle after the end of EOF.

If CTXC1 is high (generate CRC) then the ENDEC will add one word (the CRC) to the user's data frame before encoding the EOF. In this situation, when the user commands the ENDEC to encode an EOF, it is latched for one CTXCLK cycle while the ENDEC inserts the generated CRC in the data stream. Then the requested EOF is encoded. During the encoding of the EOF (that is, the one that was latched for encoding after the CRC was inserted) the ENDEC ignores the CTX inputs.

## Ordered Set Generator Block

An ordered set is a Fibre Channel word in which the first byte is a K28.5 special character, followed by valid data characters. Appendix B contains tables for the ordered set coding scheme. When CTXCO is high, the ordered set generator generates an ordered set from
the most significant byte of the input data, CTXD24..31. Although only the most significant byte of the input word is required for generating an ordered set, and lower order bits CTXDO.. 23 are "don't cares" for encoding the ordered set, parity checking is performed on the word. Valid word parity must be maintained to prevent parity errors.

If a parity or CRC error is detected within a frame, some EOF ordered sets are modified, indicating an invalid frame. Ordered sets EOF ${ }_{N}$ (EOF Normal) and $\mathrm{EOF}_{\mathrm{T}}$ (EOF Terminate) are modified to EOF NI (EOF Normal-Invalid).

Any ordered set can be sent or received. If the ordered set desired is not in the predefined set of Fibre Channel ordered sets, the user can create it using the "special" ordered set commands (see Appendix B). For instance, to send "K28.5, D0.0, D31.7, D0.0," the user would send 8500FF00h on CTXD0.. 31 while holding CTXC0 high. When receiving this same "special" ordered set

## TQ9303

(which does not correspond to any predefined Fibre Channel ordered set) the ENDEC will send the user the same value, 8500FFOOh, while holding CRXS0 high. It is up the the user to examine the second, third, and fourth bytes of "special" ordered sets to identify them.

## 8b/10b Encoder Block

The 8b/10b Encoder encodes 8-bit-wide data to 10-bitwide data to improve its transmission characteristics. The 8b/10b coding scheme maintains the signal DC balance by keeping the same number of ones and zeros for easier receiver designs, provides good transition density for improved clock recovery, and improves error checking. It also forces the correct running disparity when encoding line states, idles, or receiverready ordered sets. Appendix A contains the lookup tables for the 8b/10b coding scheme.

## Clock Generator Block

The Clock Generator generates word, half-word, and byte clocks required by other blocks in the Encoder. It uses BTXCKIN (a byte clock) from the transmitter as a reference clock. For example, using Fibre Channel data rates, BTXCKIN runs at 106.25 MHz using FC1063, 53.125 MHz using FC531, and 26.5625 MHz using FC266. The Clock Generator generates BTXCKOUT for clocking BTXDO..9. It also generates CTXWREF, a word clock used by the host to generate CTXCLK, which clocks the host I/O registers. CTXCLK runs at 25.5625 MHz using FC1063, 13.28125 MHz using FC531, and 6.640625 MHz using FC266.

## Raw Mode Transmit

In Raw Mode Transmit where TXRAW is high for the whole frame, the input data word bypasses the parity check, ordered set generator, CRC, and 8b/10b, and is directly converted to bytes of data. The word-to-byte mapping of input to output is listed in Table 1. Note that
in raw mode, a "raw" word may be inserted into the data flow at any time, although running disparity will be forced negative and the word sync detector state machine will reset.

## Proprietary Link Mode

The PL_IDLE (Proprietary Link IDLE) input can be used to simplify designs that do not have to conform to Fibre Channel standards. In such designs the CTXCO input is driven low (that is, grounded) and the PL_IDLE pin is used to distinguish data from nondata. The PL_IDLE pin controls a bit logic in front of the input registers of the CTXC0 and CTXD24.. 31 inputs. It was added to make it easier for users who aren't concerned with the Fibre Channel protocol, but simply want to control the transmission of data without habing to mux control information into their data paths in order to control the CTXD24.. 31 pins for ordered set control.

On the rising edge of CTXCLK on the first cycle of PL_IDLE going high, the input registers for CTXCO and CTXD24.. 31 are "jammed" with the value that would make the ENDEC encode an EOFa. As long as PL_IDLE is held high, these input registers are jammed with the value that would make the ENDEC encode an IDLE ordered set. If CTXC1 is low (check mode) CTXERR will properly reflect the validity of CRC contained in the user's data (assuming the user's data contains CRC), or it can be ignored if no CRC is used. If CTXC1 is high (generate mode), the ENDEC will insert CRC before encoding the EOFa followed by IDLEs. This creates a situation in which the user's data will begin as soon as PL_IDLE is dropped (with no preceding SOF); but it does not present a problem for the ENDEC, because the CRC blocks in both Rx and Tx halves are initialized by any ordered set. Thus, the IDLE ordered set that preceeds the user's data is sufficient to ensure proper CRC calculation.

Table 1. Raw Mode I/O Mapping

| TRANSMISSION ORDER | Bit | ENCODE: Word to Bytes |  | DECODE: Bytes to Word |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 39 | CTXCO | BTXD0 | BRXDO | CRXS0 |
|  | 38 | CTXP3 | BTXD1 | BRXD1 | CRXP3 |
|  | 37 | CTXD31 | BTXD2 | BRXD2 | CRXD31 |
|  | 36 | CTXD30 | BTXD3 | BRXD3 | CRXD30 |
| FIRST | 35 | CTXD29 | BTXD4 | BRXD4 | CRXD29 |
|  | 34 | CTXD28 | BTXD5 | BRXD5 | CRXD28 |
|  | 33 | CTXD27 | BTXD6 | BRXD6 | CRXD27 |
|  | 32 | CTXD26 | BTXD7 | BRXD7 | CRXD26 |
|  | 31 | CTXD25 | BTXD8 | BRXD8 | CRXD25 |
| FIRST SERIAL BIT IN TX/RX | 30 | CTXD24 | BTXD9 | BRXD9 | CRXD24 |
|  | 29 | CTXC1 | BTXD0 | BRXD0 | CRXS2 |
|  | 28 | CTXP2 | BTXD1 | BRXD1 | CRXP2 |
|  | 27 | CTXD23 | BTXD2 | BRXD2 | CRXD23 |
|  | 26 | CTXD22 | BTXD3 | BRXD3 | CRXD22 |
| SECOND | 25 | CTXD21 | BTXD4 | BRXD4 | CRXD21 |
|  | 24 | CTXD20 | BTXD5 | BRXD5 | CRXD20 |
|  | 23 | CTXD19 | BTXD6 | BRXD6 | CRXD19 |
|  | 22 | CTXD18 | BTXD7 | BRXD7 | CRXD18 |
|  | 21 | CTXD17 | BTXD8 | BRXD8 | CRXD17 |
|  | 20 | CTXD16 | BTXD9 | BRXD9 | CRXD16 |
|  | 19 | CTXRAWA | BTXD0 | BRXD0 | CRXS3 |
|  | 18 | CTXP1 | BTXD1 | BRXD1 | CRXP1 |
|  | 17 | CTXD15 | BTXD2 | BRXD2 | CRXD15 |
|  | 16 | CTXD14 | BTXD3 | BRXD3 | CRXD14 |
| THIRD BYTE | 15 | CTXD13 | BTXD4 | BRXD4 | CRXD13 |
|  | 14 | CTXD12 | BTXD5 | BRXD5 | CRXD12 |
|  | 13 | CTXD11 | BTXD6 | BRXD6 | CRXD11 |
|  | 12 | CTXD10 | BTXD7 | BRXD7 | CRXD10 |
|  | 11 | CTXD9 | BTXD8 | BRXD8 | CRXD9 |
| LAST SERIAL BIT IN TX/RX | 10 | CTXD8 | BTXD9 | BRXD9 | CRXD8 |
|  | 9 | CTXRAWB | BTXD0 | BRXDO | CRXS4 |
|  | 8 | CTXP0 | BTXD1 | BRXD1 | CRXPO |
|  | 7 | CTXD7 | BTXD2 | BRXD2 | CRXD7 |
| FOURTH BYTE | 6 | CTXD6 | BTXD3 | BRXD3 | CRXD6 |
|  | 5 | CTXD5 | BTXD4 | BRXD4 | CRXD5 |
|  | 4 | CTXD4 | BTXD5 | BRXD5 | CRXD4 |
|  | 3 | CTXD3 | BTXD6 | BRXD6 | CRXD3 |
|  | 2 | CTXD2 | BTXD7 | BRXD7 | CRXD2 |
|  | 1 | CTXD1 | BTXD8 | BRXD8 | CRXD1 |
|  | 0 | CTXD0 | BTXD9 | BRXD9 | CRXD0 |

## Proprietary Link Mode (continued)

When PL_IDLE is driven low, data words on CTXD0.. 31 are encoded just as in Fibre Channel operation. When PL_IDLE is driven high, the TQ9303 encodes one EOFa ordered set followed by IDLE ordered sets for as long as PL_IDLE remains high.

The EOFa ordered set is used to ensure proper running disparity. When using the PL_IDLE signal, IDLE ordered sets do not force proper running disparity. It is therefore necessary to transmit at least one word with PL_IDLE low followed by at least one word. with PL_IDLE high in order to guarantee proper running disparity.

Without proper running disparity, the receiver portion of the TQ9303 may flag the IDLE ordered sets as errors and prevent the word sync state machine from reaching the synchronized state as long as the running disparity is incorrect.

Without proper running disparity, the receiver portion of the TQ9303 may flag the IDLE ordered sets as errors and prevent the word sync state machine from reaching the synchronized state as long as the running disparity is incorrect.

The contents and parity of CTXD0.. 31 and CTXP0.. 3 are ignored during the word cycles when PL_IDLE is held high. If CTXC1 is low, then CRC checking will occur, which may cause the TXCERR signal to indicate an error, which can be ignored in proprietary designs. If CTXC1 is driven high, then the TQ9303 will generate a 32-bit CRC word during the first word cycle of PL_IDLE high. During the second word cycle of PL_IDLE high, the EOFa will be encoded followed by IDLE ordered sets. Therefore, at least two word cycles of PL_IDLE high between data bursts must be provided when using CRC generation (that is, CTXC1 high). When using CRC
generation, the CRXS1 signal is used to indicate CRC errors. When not using the CRC, CRXS1 should be ignored. For non-Fibre Channel designs making use of the PL_IDLE input, the CRXSO output can be used to distinguish received data from idle time.

## Decoder Section

The Decoder has several functional blocks: 10b/8b Decoder, Ordered Set Decoder, Word Sync Detector, Line State Decoder, 32-bit CRC Checker, Parity Generator, and Clock Generator.

The Decoder section has two modes of operation: the Normal mode and Raw mode. In the Normal mode, the Decoder section takes 10 bits of data from the Receiver output, decodes it using 10b/8b, decodes ordered sets, checks CRC, combines four bytes into a single word output, and generates parity. In the Raw mode, the Decoder section directly combines the bytes into words, bypassing 10b/8b decoding, ordered set decoding, CRC checking, and parity generation.

The following is the decode sequence data flow:

1. Byte Input
2. Byte-to-Half-Word Conversion
3. 10b/8b Decoding
4. Ordered Set Decoding
5. Line State Decoding
6. Word Sync Generation
7. 32-Bit CRC Checking
8. Muxing between Ordered Set, Unchanged Input, 10b/8b Decoded Input, and Status Bits
9. Half-Word-to-Word Conversion
10. Parity Generation
11. Word Output

## 10b/8b Decoder Block

The 10b/8b Decoder decodes the 10-bit input (BRXDO..9) into 8 bits, as defined by the Fibre Channel 8b/10b coding scheme. The 10b/8b Decoder drives the RXERROR (Receiver ERROR) high whenever errors are detected. There are three types of errors: invalid characters, invalid running disparities, and special characters that are not positioned in the most significant byte of a word. When the 10b/8b Decoder receives a BRXSYNC of 1 , it identifies the input data byte as a K28.5 character and realigns the data in the higher order byte of the half word. In Fibre Channel, K28.5 characters appear only in the most significant byte of a valid generated parity word. RXERROR remains high for the word cycle in which the error occurred.

## Ordered Set Decoder Block

The Ordered Set Decoder decodes the ordered sets from the 10b/8b Decoder output. It generates the decoded ordered set, which is then fed into the mux along with CRXSO. CRXSO is a status signal which is low for a data word and high for an ordered set. The ordered set decoding table is included in Appendix B.

## Word Sync Detector Block

The Word Sync Detector contains a state machine that monitors the number of valid ordered sets and errors received. The Word Sync Detector drives WRDSYNCN low to indicate that word synchronization on the link has been established. It drives WRDSYNCN high when word synchronization has been lost.

Figure 5 illustrates how word synchronization is established and lost. The state machine has five states: State 0 - Loss of Word Sync, State 1 - Word Sync Acquired, State 2-1st Invalid Word, State 3-2nd Invalid Word, and State 4 - 3rd Invalid Word. Upon RESET or Raw mode at State 0 , the initial condition of

Figure 5. Sync State Flow Diagram


WRDSYNCN is high. If the Word Sync Detector receives three consecutive ordered sets without errors, it acquires word synchronization and moves to State 1, where WRDSYNCN is driven low. If it receives an invalid word while in State 1, it moves to State 2 (1st Invalid Word). If the Word Sync Detector receives an invalid word while in State 2, it moves to State 3 (2nd Invalid Word). If, however, it receives two consecutive valid words, it moves back to State 1. This logic applies to State 3 and State 4. In State 4 (3rd Invalid Word) if the Decoder receives an invalid word, it moves to State 0 (Loss of Word Sync).

## Line State Decoder Block

The state machine that indicates line state status simply looks for three consecutive line state primitives (that is, three of a kind in a row) to achieve a particular Fibre Channel line state. Line states are used in link initialization protocol, as described in the Fibre Channel specification (FC-PH). A subset of the ordered sets, line states are Fibre Channel primitive sequences which provide information regarding the condition of the link. The following are the four line states:

- Off-Line State (OLS) indicates either an internal port failure or a transmitter power down/ diagnostics performance / initialization.
- Non-Operational State (NOS) signals a link failure.
- Link Reset (LR) recognizes the OLS and port reset conditions.
- Link Reset Response (LRR) recognizes a link reset. These line states are defined in Appendix B. The Line State Decoder generates CRXS2..3, the line state status bits which advise the host as to the state of the Sync State Machine, and CRXS4..5, the line state ID bits which signal the occurrance of certain primitive sequences. The status bits are shown in Tables 2 and 3.


## 32-Bit CRC Checker Block

The CRC Checker computes the 32-bit cyclic redundancy check on the received data. The CRC Error Status bit CRXS1 is driven high when an error is detected. In Raw mode, CRC is not checked, and CRXS1 is driven low.

## Table 2. Line State Status Output

| CRXS3 | CRXS2 | Line State Status |
| :---: | :---: | :--- |
| 0 | 0 | No State |
| 0 | 1 | Pending State |
| 1 | 0 | In State |
| 1 | 1 | Invalid Sequence |

## Parity Generator Block

Four parity bits (CTXPO..3) are generated by the Parity Generator. Each parity bit corresponds to a byte of data, as follows: CRXPO to CRXD0..7, CRXP1 to CRXD8..15, CRXP2 to CRXD16..23, and CRXP3 to CRXD24..31.

Control bit RXPMODE (Receive Parity MODE) alters the normal meaning of CRXP3. RXPMODE low is the normal mode, where CRXP3 generates parity for CRXD24..31. With RXPMODE high, however, CRXP3 generates parity for CRXD24.31 and CRXSO. CRXS0 is a control output that indicates whether CTXDO.. 31 is data or an ordered set.

The parity bits follow odd parity convention, where it is high if the number of ones is even and low if the number of ones is odd.

In Raw mode, the Parity Generator does not generate parity, and the output parity bits are mapped with the input data as shown in Table 1.

## Clock Generator Block

The Clock Generator generates word, half-word, and byte clocks required by other blocks in the Decoder. The Clock Generator uses the recovered clock, BRXCLK, generated by the TQ9502 Receiver. For example, using Fibre Channel data rates, BRXCLK (a byte clock) runs at 106.25 MHz using FC1063, 53.125 MHz using FC531, and 26.5625 MHz using FC266.

Table 3. Line State ID Output

| CRXS5 | CRXS4 | Line State ID |
| :---: | :---: | :--- |
| 0 | 0 | NOS - Non-Operational State |
| 0 | 1 | OLS - Off-Line State |
| 1 | 0 | LR - Link Reset |
| 1 | 1 | LRR - Link Reset Response |

The Clock Generator generates CRXCLK, a word clock, which is used for clocking the host I/O registers. The user may place the clock edge, CRXCLK, in four places relative to the word input, thereby giving the user control of setup and hold times. Clock edge placement is selected via control pins RXCKPH0 and RXCKPH1 (Receiver ClocK PHase). CRXCLK runs at 26.5625 MHz using FC1063 and 13.28125 MHz using FC531.

The Clock Generator also receives the BRXSYNC signal, which is used for byte alignment. The Receiver drives BRXSYNC high when detecting a K28.5 character.

## Raw Mode Receive

In Raw Mode Receive where RXRAW is high for the whole frame, the input data word bypasses the parity check, ordered set generator, 32-bit CRC, and 8b/10b encoder, and is directly converted to data words. The byte-to-word mapping of data is listed in Table 1.

Figure 6. Pinout


## Ta9303

## Table 4. Pin Names

| Pin | Description |
| :---: | :---: |
| 1 | CTXDO |
| 2 | VSS |
| 3 | BTXDO |
| 4 | BTXD1 |
| 5 | BTXD2 |
| 6 | VSS |
| 7 | BTXD3 |
| 8 | BTXD4 |
| 9 | VDD |
| 10 | BTXD5 |
| 11 | BTXD6 |
| 12 | VSS |
| 13 | BTXD7 |
| 14 | BTXD8 |
| 15 | BTXD9 |
| 16 | VSS |
| 17 | BTXCKIN |
| 18 | VSS |
| 19 | BTXCKOUT |
| 20 | VDD |
| 21 | BRXCLK |
| 22 | VSS |
| 23 | BRXD0 |
| 24 | BRXD1 |
| 25 | BRXD2 |
| 26 | BRXD3 |
| 27 | VDD |
| 28 | BRXD4 |
| 29 | BRXD5 |
| 30 | BRXD6 |
| 31 | BRXD7 |
| 32 | VSS |
| 33 | BRXD8 |
| 34 | BRXD9 |
| 35 | BRXSYNC |
| 36 | VDD |
| 37 | CRXD0 |
| 38 | CRXD1 |
| 39 | VSS |
| 40 | CRXD2 |


| Pin | Description |
| :---: | :---: |
| 41 | CRXD3 |
| 42 | VDD |
| 43 | CRXD4 |
| 44 | CRXD5 |
| 45 | VSS |
| 46 | CRXD6 |
| 47 | CRXD7 |
| 48 | CRXP0 |
| 49 | CRXD8 |
| 50 | VSS |
| 51 | CRXD9 |
| 52 | CRXD10 |
| 53 | CRXD11 |
| 54 | VDD |
| 55 | CRXD12 |
| 56 | CRXD13 |
| 57 | VSS |
| 58 | CRXD14 |
| 59 | CRXD15 |
| 60 | VSS |
| 61 | CRXP1 |
| 62 | CRXD16 |
| 63 | VSS |
| 64 | CRXD17 |
| 65 | CRXD18 |
| 66 | CRXD19 |
| 67 | VDD |
| 68 | CRXD20 |
| 69 | CRXD21 |
| 70 | VSS |
| 71 | CRXD22 |
| 72 | CRXD23 |
| 73 | CRXP2 |
| 74 | CRXD24 |
| 75 | VSS |
| 76 | CRXD25 |
| 77 | CRXD26 |
| 78 | VDD |
| 79 | CRXD27 |
| 80 | CRXD28 |


| Pin | Description |
| :---: | :---: |
| 81 | CRXD29 |
| 82 | CRXD30 |
| 83 | VSS |
| 84 | CRXD31 |
| 85 | CRXP3 |
| 86 | CRXSO |
| 87 | VDD |
| 88 | CRXS1 |
| 89 | CRXS2 |
| 90 | CRXS3 |
| 91 | VSS |
| 92 | CRXS4 |
| 93 | CRXS5 |
| 94 | RXERROR |
| 95 | WRDSYNCN |
| 96 | VSS |
| 97 | CRXCLK |
| 98 | VSS |
| 99 | RESETN |
| 100 | VDD |
| 101 | RXCKPH0 |
| 102 | RXCKPH1 |
| 103 | VSS |
| 104 | RXPMODE |
| 105 | VSS |
| 106 | RXRAW |
| 107 | TXRAW |
| 108 | TXPMODE |
| 109 | VSS |
| 110 | CTXWREF |
| 111 | TSTMODE |
| 112 | CTXCLK |
| 113 | PL_IDLE |
| 114 | TXPENN |
| 115 | CTXPERR |
| 116 | CTXCERR |
| 117 | CTXRAWB |
| 118 | CTXRAWA |
| 119 | CTXC1 |
| 120 | CTXCO |


| Pin | Description |
| :---: | :---: |
| 121 | CTXP3 |
| 122 | CTXD31 |
| 123 | CTXD30 |
| 124 | CTXD29 |
| 125 | CTXD28 |
| 126 | CTXD27 |
| 127 | CTXD26 |
| 128 | CTXD25 |
| 129 | CTXD24 |
| 130 | VSS |
| 131 | CTXP2 |
| 132 | CTXD23 |
| 133 | CTXD22 |
| 134 | VSS |
| 135 | CTXD21 |
| 136 | CTXD20 |
| 137 | CTXD19 |
| 138 | CTXD18 |
| 139 | CTXD17 |
| 140 | VDD |
| 141 | CTXD16 |
| 142 | CTXP1 |
| 143 | CTXD15 |
| 144 | CTXD14 |
| 145 | CTXD13 |
| 146 | CTXD12 |
| 147 | CTXD11 |
| 148 | CTXD10 |
| 149 | CTXD9 |
| 150 | VSS |
| 151 | CTXD8 |
| 152 | CTXP0 |
| 153 | CTXD7 |
| 154 | VDD |
| 155 | CTXD6 |
| 156 | CTXD5 |
| 157 | CTXD4 |
| 158 | CTXD3 |
| 159 | CTXD2 |
| 160 | CTXD1 |

## Table 5. Pin Descriptions

| Symbol | 1/0 | \# of 1/0 | Interface | Description | Pin Numbers |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BTXCKIN | 1 | 1 | Transmitter | Takes clock from Transmitter to generate BTXCKOUT. | 17 |
| BTXCKOUT | 0 | 1 | Transmitter | Used by Transmitter to clock in BTXDO..9. | 19 |
| BTXD0.. 9 | 0 | 10 | Transmitter | Data Output. | 3-5, 7, 8, 10, 11, 13-15 |
| CTXWREF | 0 | 1 | Host | Reference Word Clock which can be used in signaling the host to issue a CTXCLK. | 110 |
| CTXCLK | I | 1 | Host | Word Clock generated from CTXCLK to clock in/out host I/O registers. The following signals are latched by CTXCLK: CTXPO..3, CTXC0,1, CTXRAW, CTXPENN, CTXPMODE, CTXPERR, CTXCERR. | 112 |
| CTXCO | 1 | 1 | Host | High indicates CTXDO. 31 is an Ordered Set; Low indicates data. | 120 |
| CTXC1 | 1 | 1 | Host | High generates CRC; low checks CRC. | 119 |
| CTXD0.. 31 | 1 | 32 | Host | Transmit data output (CTXD31 = MSB; CTXD0 = LSB). | $\begin{aligned} & 1,160-155,153-151 \\ & 149-143,141,139-135 \\ & 133,132,129-122 \end{aligned}$ |
| CTXPO | 1 | 1 | Host | CTXD0.. 7 Odd Parity input. | 152 |
| CTXP1 | 1 | 1 | Host | CTXD8..15 Odd Parity input. | 142 |
| CTXP2 | 1 | 1 | Host | CTXD16..23 Odd Parity input. | 131 |
| CTXP3 | 1 | 1 | Host | CTXD24..31 and optional CTXC0 Odd Parity input. If TXPMODE is high, CTXP3 checks parity for CTXD24..31 and CTXCO. If TXPMODE is low, CTXP3 checks parity for CTXD24.. 31 only. | 121 |
| CTXRAWA | 1 | 1 | Host | Raw data bit 19. | 118 |
| CTXRAWB | 1 | 1 | Host | Raw data bit 9. | 117 |
| CTXPERR | 0 | 1 | Host | CTXPERR high indicates CTXD0.. 31 Parity Error. | 115 |
| CTXCERR | 0 | 1 | Host | CTXCERR high indicates CRC Error. When in CRC Check mode, CTXC1 is low. | 116 |
| TSTMODE | 1 | 1 | Host | Normally GND. HIGH state used by vendor to monitor delay and threshold. | 111 |
| TXRAW | 1 | 1 | Host | High selects Raw Transmit Data mode. | 107 |
| TXPENN | 1 | 1 | Host | Active Low Transmit Parity Enable; Tx checks Parity when low. | 114 |
| TXPMODE | 1 | 1 | Host | If TXPMODE is high, CTXP3 generates parity for CTXD24..31 and CTXCO. If TXPMODE is low, CTXP3 generates parity for CTXD24.. 31 only. | 108 |
| PL_IDLE | 1 | 1 | Host | Proprietary link idle control | 113 |
| BRXCLK | 1 | 1 | Receiver | Driven by RXCLK. Clocks data from BRXD0..9. | 21 |
| BRXD0.. 9 | 1 | 10 | Receiver | Receives RXD0.. 9 from Receiver. | 23-26, 28-31, 33, 34 |
| BRXSYNC | 1 | 1 | Receiver | SYNC. | 35 |
| CRXCLK | 0 | 1 | Host | CRXCLK latches CRXDO..31. | 97 |

(Continued on next page)

## TQ9303

## Table 5. Pin Descriptions (continued)

| Symbol | 1/0 | \# of I/O | Interface | Description | Pin Numbers |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CRXD0.. 31 | 0 | 32 | Host | Receive data output (CRXD31 $=$ MSB; CRXD0 $=$ LSB). | $\begin{aligned} & 37,38,40,41,43,44 \\ & 46,47,49,51-53,55 \\ & 56,58,59,62,64-66 \\ & 68,69,71,72,74 \\ & 76,77,79-82,84 \end{aligned}$ |
| CRXS0 | 0 | 1 | Host | High indicates CRXDO.. 31 is an Ordered Set; Low indicates data. | 86 |
| CRXS1 | 0 | 1 | Host | CRC error flag; high indicates a CRC error. | 88 |
| CRXS2,3 | 0 | 2 | Host | Line state status bits. State equivalent for CRXS3 and CRXS2 from left to right, respectively: <br> 00 - No State 01 -Pending <br> 10-State Rec. 11 - Bad Seq. | 89,90 |
| CRXS4,5 | 0 | 2 | Host | Line state ID bits. | 92,93 |
| CRXPO | 0 | 1 | Host | CRXD0..7 Odd Parity output. | 48 |
| CRXP1 | 0 | 1 | Host | CRXD8..15 Odd Parity output. | 61 |
| CRXP2 | 0 | 1 | Host | CRXD16..23 Odd Parity output. | 73 |
| CRXP3 | 0 | 1 | Host | CRXD24. 31 and optional CRXS01 Odd Parity output. If RXPMODE is high, CRXP3 generates Parity for CRXD24. 31 and CRXS0. If RXPMODE is low, CRXP3 generates Parity for CRXD24.. 31 only. | 85 |
| RXERROR | 0 | 1 | Host | Receive Error; high indicates invalid data from the Receiver. | 94 |
| RXRAW | 1 | 1 | Host | High selects Raw Receive Data mode. | 106 |
| WRDSYNCN | 0 | 1 | Host | Word Synchronization Status Flag; Low indicates Synchronization aqcuired. <br> Can be connected to SYNCEN on TQ9502/GA9102 Receiver. | 95 |
| RXPMODE | 1 | 1 | Host | Receiver Parity mode. If RXPMODE is high, CRXP3 generates Parity for CRXD24.. 31 and CRXSO. If RXPMODE is low, CRXP3 generates Parity for CRXD24. 31 only. | 104 |
| RXCKPH0,1 | 1 | 2 | Host | CRXCLK Phase Select pin. | 101,102 |
| RESETN | 1 | 1 | Host | Active low. | 99 |
| VDD | - | - | - | +5 Volt supply. | $\begin{aligned} & 9,20,27,36,42,54,67, \\ & 78,87,100,140,154 \end{aligned}$ |
| GND ( $\mathrm{V}_{\mathrm{SS}}$ ) | - | - | - | Ground. | $\begin{aligned} & \hline 2,6,12,16,18,22,32,39 \\ & 45,50,57,60,63,70,75, \\ & 83,91,96,98,103,105 \\ & 109,111,130,134,150 \end{aligned}$ |

Table 6. Absolute Maximum Ratings

| Parameter | Min. | Max. | Unit |
| :--- | :---: | :---: | :---: |
| Storage temperature | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| Ambient temperature | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| Supply voltage to ground | -0.5 | +7.0 | V |
| DC input voltage | -0.5 | $\mathrm{~V}_{\text {DD }}+0.5$ | V |
| DC input current | -30 | +5 | mA |
| Thermal resistance $\left(\theta_{\text {JC }}\right)$ |  | 5.6 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Note: Exceeding the absolute maximum ratings may damage the device.

## Table 7. Operating Conditions

| Parameter | Range | Unit |
| :--- | :---: | :---: |
| Supply voltage | $+5 \pm 5 \%$ | V |
| Ambient temperature | $0-70$ | ${ }^{\circ} \mathrm{C}$ |
| Power @ 125 MHz | 4.1 | W |
| Power @ DC | 0.3 | W |

Note: Proper functionality is guaranteed under these conditions.

## Table 8. DC Characteristics

| Symbol | Description | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output high voltage | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ | 3.6 |  |  | V |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output low voltage | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  | 0.37 | V |
| $\mathrm{~V}_{\mathrm{IH}}$ | Input high level | Guaranteed input logical high voltage <br> for all inputs | 2.0 |  |  | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Input low level | Guaranteed input logical low voltage <br> for all inputs |  |  | 0.8 | V |
| $\mathrm{I}_{\mathrm{IL}}$ | Input Leakage current | $\mathrm{V}_{\mathrm{DD}}=$ Max, $\mathrm{V}_{\mathrm{IN}}=0.40 \mathrm{~V}$ | -150 | -400 | $\mu \mathrm{~A}$ |  |

Notes: - Unless otherwise specified, these values apply ôver the recommended operating range.

- Typical limits are: $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
- Input levels ( $V_{I H}$ and $V_{I L}$ ) are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.
- $V_{I N}$, the TTL input, can be high or low.

TTL Test Load, TLL Outputs


## TQ9303

Table 9. AC Characteristics—Transmit (CTX) Timing

| Parameter | Description | Abs.Min. | Rel.Min. | Abs.Max. | Rel.Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | CTXCLK Pulse Width High | 12 | t+4 |  | 3t-4 | ns |
| T2 | CTXCLK Pulse Width Low | 12 | t + 4 |  | 3t-4 | ns |
| T3 | CTXCLK Period | 32 | 4 t |  | 4 t | ns |
| T4 | CTXD(0..31), CTXP(0..3), CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD, CTXCO, and CTXRAW-to-CTXCLK $\uparrow$ setup time | 1.9 |  |  |  | ns |
| T5 | CTXCLK $\uparrow$-to-CTXD (0..31), CTXP(0..3), CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD, CTXCO, and CTXRAW hold time | 0.9 |  |  |  | ns |
| T6 | CTXC0 and CTXC1-to-CTXCLK $\uparrow$ setup time | 0.8 |  |  |  | ns |
| T7 | CTXCLK $\uparrow$-to-CTXCO and CTXC1 hold time | 2 |  |  |  | ns |
| T8 | CTXCLK $\uparrow$-to-CTXCERR and CTXPERR Output | 2.5 |  | 15.5 |  | ns |

Notes:

- "t" represents one (1) BTXCKIN period.
- Minimum setup and hold times are based on a 30-pf load on all outputs and a $50 \%$ duty cycle on CTXCLK.

Figure 7. Transmit (CTX) Timing
CTXCLK

CTXD(0..31), СTXP(0..3), CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD, CTXCO, CTXRAW, PL_IDLE

CTXC1

CTXCERR, CTXPERR


Table 10. AC Characteristics-Transmit (BTX) Timing (1)

| Parameter | Description | Abs.Min. | Rel.Min. | Abs.Max. | Rel.Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| T 9 | BTXCKN Pulse Width High | 3.2 | 0.4 t |  | 0.6 t | ns |
| T 10 | BTXCKIN Pulse Width Low | 3.2 | 0.4 t |  | 0.6 t | ns |
| T 11 | BTXCKIN Period | 8 | t |  | t | ns |
| T 12 | BTXD(0..9)-to-BTXCKOUT $\uparrow$ setup time | $(2)$ | $(2)$ | $(2)$ | $(2)$ |  |
| T 13 | BTXCKOUT $\uparrow$-to-BTXD(0..9) hold time | $(2)$ | $(2)$ | $(2)$ | $(2)$ |  |

Notes: 1. "t" represents one (1) BTXCKIN period.
2. See Table 11, "Transmit (BTX) Timing Formulas," below.

Figure 8. Transmit (BTX) Timing


Table 11. Transmit (BTX) Timing Formulas

| Parameter | Formula | $\begin{aligned} & t=8 \mathrm{~ns} \\ & (125 \mathrm{MHz}) \\ & \hline \end{aligned}$ | $\begin{aligned} & t=9.41 \mathrm{~ns} \\ & (106.25 \mathrm{MHz}) \\ & \hline \end{aligned}$ | $\begin{aligned} & t=16 \mathrm{~ns} \\ & \text { ( } 62.5 \mathrm{MHz} \text { ) } \end{aligned}$ | $\begin{aligned} & t=18.821 \mathrm{~ns} \\ & (53.125 \mathrm{MHz}) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T12 | $\mathrm{d}^{*} \mathrm{t}-1.94 \mathrm{~ns}$ | $\begin{aligned} & 2.06 \mathrm{~ns} \\ & (1.8 \mathrm{~ns} \text { min. }) \end{aligned}$ | $\begin{aligned} & 2.76 \mathrm{~ns} \\ & (2.5 \mathrm{~ns} \text { min. }) \end{aligned}$ | 6.06 ns | 7.47 ns |
| T13 | $(1-d) * t-1.42 \mathrm{~ns}$ | $\begin{aligned} & 2.58 \mathrm{~ns} \\ & (3.4 \mathrm{~ns} \text { min. }) \end{aligned}$ | $\begin{aligned} & 3.28 \mathrm{~ns} \\ & (2.1 \mathrm{~ns} \text { min. }) \end{aligned}$ | 6.58 ns | 7.99 ns |

Note: "d" represents one (1) BTXCKIN duty cycle, $T 9$ / T11 or $T 9$ / $(T 9+T 10)$. The calculations given above are made with $d=0.5(50 \%)$. When BTXCKIN has other than a $50 \%$ duty cycle ( $d<>0.5$ ), $T_{\text {SETUP }}$ and $T_{\text {HOLD }}$ are affected by the shift in clock edges. The rising edge of BTXCKOUT is triggered by the falling edge of BTXCKIN; thus, if the BTXCKIN high time is 2 ns less than the BTXCKIN low time, then 1 ns must be subtracted from the setup times given abore, and 1 ns must be added to the hold times given above.

Table 12. AC Characteristics—Receive (BRX) Timing

| Parameter | Description | Abs.Min. | Rel.Min. | Abs.Max. | Rel.Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| T14 | BRXCLK Pulse Width High | 3.2 | 0.4 t |  | 0.6 t | ns |
| T15 | BRXCLK Pulse Width Low | 3.2 | 0.4 t | 0.6 t | ns |  |
| T16 | BRXCLK Period | 8 | t | t | ns |  |
| T17 | BRXD(0..9) and BRXSYNC-to-BTXCKOUT $\uparrow$ <br> setup time | 1.25 |  |  | ns |  |
| T18 | BRXCLK个-to-BRXD(0..9) and BRXSYNC <br> hold time | 0.25 |  |  | ns |  |

Note: " $t$ " represents one (1) BRXCLK period.

Figure 9. Receive (BRX) Timing
BRXCLK


BRXD(0..9), BRXSYNC


## TQ9303

Table 13. AC Characteristics—Receive (CRX) Timing (1)

| Parameter | Description | Abs.Min. | Rel. Min. | Abs.Max. | Rel. Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T9 | CRXCLK Pulse Width High | 13 | 2t-3 | 19 | $2 t+3$ | ns |
| T10 | CRXCLK Pulse Width Low | 13 | 2t-3 | 19 | $2 \mathrm{t}+3$ | ns |
| T11 | CRXCLK Period | 32 | 4 t |  | 4 t | ns |
| T12 | $\begin{aligned} & \text { CRXD* }{ }^{*} \text { CRXP** and CRXS*-to-CRXCLK } \uparrow \\ & \text { setup time } \end{aligned}$ | (2) | (2) | (2) | (2) |  |
| T13 | CRXCLKイ-to-CRXD*, CRXP*, and CRXS* hold time | (2) | (2) | (2) | (2) |  |

Notes: 1. "t" represents one (1) BRXCLK period.
2. See Table 14, "Receive (CRX) Timing Formulas," below.

Figure 10. Receive (CRX) Timing

CRXCLK


CRXD(0..31),
CRXP(0..3), RXERROR, WRDSYNCN


Table 14. Receive (CRX) Timing Formulas

| Parameter | RXCKPH(1:0) | Formula | $\begin{gathered} t=8 \mathrm{~ns} \\ (125 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} t=9.41 \mathrm{~ns} \\ (106.25 \mathrm{MHz}) \end{gathered}$ | $\begin{gathered} t=16 \mathrm{~ns} \\ (62.5 \mathrm{MHz}) \end{gathered}$ | $\begin{aligned} & t=18.821 \mathrm{~ns} \\ & (53.125 \mathrm{MHz}) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0:0 | $0.054 \mathrm{t}-0.94 \mathrm{~ns}$ | -0.47 ns | -0.39 ns | 0.00 ns | 0.16 ns |
|  | 0:1 | $1.054 \mathrm{t}-0.94 \mathrm{~ns}$ | 7.53 ns | 9.02 ns | 16.00 ns | 18.99 ns |
|  | 1:0 | $2.054 \mathrm{t}-0.94 \mathrm{~ns}$ | 15.53 ns | 18.43 ns | 32.00 ns | 37.81 ns |
|  | 1:1 | $3.054 \mathrm{t}-0.94 \mathrm{~ns}$ | 23.53 ns | 27.84 ns | 48.00 ns | 56.63 ns |
|  | 0:0 | $3.5 \mathrm{t}-0.07 \mathrm{~ns}$ | 28.07 ns | 33.01 ns | 56.07 ns | 65.95 ns |
|  | 0:1 | $2.5 \mathrm{t}-0.07 \mathrm{~ns}$ | 20.07 ns | 23.59 ns | 40.07 ns | 47.12 ns |
|  | 1:0 | $1.5 \mathrm{t}-0.07 \mathrm{~ns}$ | 12.07 ns | 14.18 ns | 24.07 ns | 28.30 ns |
|  | 1:1 | $0.5 \mathrm{t}-0.07 \mathrm{~ns}$ | 4.07 ns | 4.77 ns | 8.07 ns | 9.48 ns |

Table A-1. Valid Data Characters

| Data Byte Name | HGF | Bits EDCBA ${ }^{1}$ | Current abcdei | $\begin{aligned} & \text { RD - } \\ & \text { fghj }^{2} \end{aligned}$ | Current abcdei | $\begin{aligned} & \text { RD }+ \\ & \mathrm{fghj}{ }^{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0.0 | 000 | 00000 | 100111 | 0100 | 011000 | 1011 |
| D1.0 | 000 | 00001 | 011101 | 0100 | 100010 | 1011 |
| D2.0 | 000 | 00010 | 101101 | 0100 | 010010 | 1011 |
| D3.0 | 000 | 00011 | 110001 | 1011 | 110001 | 0100 |
| D4.0 | 000 | 00100 | 110101 | 0100 | 001010 | 1011 |
| D5.0 | 000 | 00101 | 101001 | 1011 | 101001 | 0100 |
| D6.0 | 000 | 00110 | 011001 | 1011 | 011001 | 0100 |
| D7.0 | 000 | 00111 | 111000 | 1011 | 000111 | 0100 |
| D8.0 | 000 | 01000 | 111001 | 0100 | 000110 | 1011 |
| D9.0 | 000 | 01001 | 100101 | 1011 | 100101 | 0100 |
| D10.0 | 000 | 01010 | 010101 | 1011 | 010101 | 0100 |
| D11.0 | 000 | 01011 | 110100 | 1011 | 110100 | 0100 |
| D12.0 | 000 | 01100 | 001101 | 1011 | 001101 | 0100 |
| D13.0 | 000 | 01101 | 101100 | 1011 | 101100 | 0100 |
| D14.0 | 000 | 01110 | 011100 | 1011 | 011100 | 0100 |
| D15.0 | 000 | 01111 | 010111 | 0100 | 101000 | 1011 |
| D16.0 | 000 | 10000 | 011011 | 0100 | 100100 | 1011 |
| D17.0 | 000 | 10001 | 100011 | 1011 | 100011 | 0100 |
| D18.0 | 000 | 10010 | 010011 | 1011 | 010011 | 0100 |
| D19.0 | 000 | 10011 | 110010 | 1011 | 110010 | 0100 |
| D20.0 | 000 | 10100 | 001011 | 1011 | 001011 | 0100 |
| D21.0 | 000 | 10101 | 101010 | 1011 | 101010 | 0100 |
| D22.0 | 000 | 10110 | 011010 | 1011 | 011010 | 0100 |
| D23.0 | 000 | 10111 | 111010 | 0100 | 000101 | 1011 |
| D24.0 | 000 | 11000 | 110011 | 0100 | 001100 | 1011 |
| D25.0 | 000 | 11001 | 100110 | 1011 | 100110 | 0100 |
| D26.0 | 000 | 11010 | 010110 | 1011 | 010110 | 0100 |
| D27.0 | 000 | 11011 | 110110 | 0100 | 001001 | 1011 |
| D28.0 | 000 | 11100 | 001110 | 1011 | 001110 | 0100 |
| D29.0 | 000 | 11101 | 101110 | 0100 | 010001 | 1011 |
| D30.0 | 000 | 11110 | 011110 | 0100 | 100001 | 1011 |
| D31.0 | 000 | 11111 | 101011 | 0100 | 010100 | 1011 |
| D0.1 | 001 | 00000 | 100111 | 1001 | 011000 | 1001 |
| D1. 1 | 001 | 00001 | 011101 | 1001 | 100010 | 1001 |
| D2.1 | 001 | 00010 | 101101 | 1001 | 010010 | 1001 |
| D3.1 | 001 | 00011 | 110001 | 1001 | 110001 | 1001 |
| D4.1 | 001 | 00100 | 110101 | 1001 | 001010 | 1001 |
| D5.1 | 001 | 00101 | 101001 | 1001 | 101001 | 1001 |
| D6.1 | 001 | 00110 | 011001 | 1001 | 011001 | 1001 |
| D7.1 | 001 | 00111 | 111000 | 1001 | 000111 | 1001 |
| D8.1 | 001 | 01000 | 111001 | 1001 | 000110 | 1001 |
| D9.1 | 001 | 01001 | 100101 | 1001 | 100101 | 1001 |
| D10.1 | 001 | 01010 | 010101 | 1001 | 010101 | 1001 |
| D11.1 | 001 | 01011 | 110100 | 1001 | 110100 | 1001 |
| D12.1 | 001 | 01100 | 001101 | 1001 | 001101 | 1001 |
| D13.1 | 001 | 01101 | 101100 | 1001 | 101100 | 1001 |
| D14.1 | 001 | 01110 | 011100 | 1001 | 011100 | 1001 |
| D15.1 | 001 | 01111 | 010111 | 1001 | 101000 | 1001 |
| D16.1 | 001 | 10000 | 011011 | 1001 | 100100 | 1001 |
| D17.1 | 001 | 10001 | 100011 | 1001 | 100011 | 1001 |
| D18.1 | 001 | 10010 | 010011 | 1001 | 010011 | 1001 |
| D19.1 | 001 | 10011 | 110010 | 1001 | 110010 | 1001 |
| D20.1 | 001 | 10100 | 001011 | 1001 | 001011 | 1001 |
| D21.1 | 001 | 10101 | 101010 | 1001 | 101010 | 1001 |
| D22.1 | 001 | 10110 | 011010 | 1001 | 011010 | 1001 |
| D23.1 | 001 | 10111 | 111010 | 1001 | 000101 | 1001 |
| D24.1 | 001 | 11000 | 110011 | 1001 | 001100 | 1001 |
| D25.1 | 001 | 11001 | 100110 | 1001 | 100110 | 1001 |
| D26.1 | 001 | 11010 | 010110 | 1001 | 010110 | 1001 |
| D27.1 | 001 | 11011 | 110110 | 1001 | 001001 | 1001 |
| D28.1 | 001 | 11100 | 001110 | 1001 | 001110 | 1001 |
| D29.1 | 001 | 11101 | 101110 | 1001 | 010001 | 1001 |
| D30.1 | 001 | 11110 | 011110 | 1001 | 100001 | 1001 |
| D31.1 | 001 | 11111 | 101011 | 1001 | 010100 | 1001 |
| D0.2 | 010 | 00000 | 100111 | 0101 | 011000 | 0101 |
| D1.2 | 010 | 00001 | 011101 | 0101 | 100010 | 0101 |
| D2.2 | 010 | 00010 | 101101 | 0101 | 010010 | 0101 |
| D3.2 | 010 | 00011 | 110001 | 0101 | 110001 | 0101 |
| D4.2 | 010 | 00100 | 110101 | 0101 | 001010 | 0101 |
| D5.2 | 010 | 00101 | 101001 | 0101 | 101001 | 0101 |
| D6.2 | 010 | 00110 | 011001 | 0101 | 011001 | 0101 |


| Data Byte Name | HGF | Bits EDCBA ${ }^{1}$ | Current abcdei | RD - <br> fghj ${ }^{2}$ | Current abcdei | RD + <br> fghj ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D7. 2 | 010 | 00111 | 111000 | 0101 | 000111 | 0101 |
| D8. 2 | 010 | 01000 | 111001 | 0101 | 000110 | 0101 |
| D9.2 | 010 | 01001 | 100101 | 0101 | 100101 | 0101 |
| D10.2 | 010 | 01010 | 010101 | 0101 | 010101 | 0101 |
| D11.2 | 010 | 01011 | 110100 | 0101 | 110100 | 0101 |
| D12.2 | 010 | 01100 | 001101 | 0101 | 001101 | 0101 |
| D13.2 | 010 | 01101 | 101100 | 0101 | 101100 | 0101 |
| D14.2 | 010 | 01110 | 011100 | 0101 | 011100 | 0101 |
| D15.2 | 010 | 01111 | 010111 | 0101 | 101000 | 0101 |
| D16.2 | 010 | 10000 | 011011 | 0101 | 100100 | 0101 |
| D17.2 | 010 | 10001 | 100011 | 0101 | 100011 | 0101 |
| D18.2 | 010 | 10010 | 010011 | 0101 | 010011 | 0101 |
| D19.2 | 010 | 10011 | 110010 | 0101 | 110010 | 0101 |
| D20.2 | 010 | 10100 | 001011 | 0101 | 001011 | 0101 |
| D21.2 | 010 | 10101 | 101010 | 0101 | 101010 | 0101 |
| D22.2 | 010 | 10110 | 011010 | 0101 | 011010 | 0101 |
| D23.2 | 010 | 10111 | 111010 | 0101 | 000101 | 0101 |
| D24.2 | 010 | 11000 | 110011 | 0101 | 001100 | 0101 |
| D25.2 | 010 | 11001 | 100110 | 0101 | 100110 | 0101 |
| D26.2 | 010 | 11010 | 010110 | 0101 | 010110 | 0101 |
| D27.2 | 010 | 11011 | 110110 | 0101 | 001001 | 0101 |
| D28.2 | 010 | 11100 | 001110 | 0101 | 001110 | 0101 |
| D29.2 | 010 | 11101 | 101110 | 0101 | 010001 | 0101 |
| D30.2 | 010 | 11110 | 011110 | 0101 | 100001 | 0101 |
| D31.2 | 010 | 11111 | 101011 | 0101 | 010100 | 0101 |
| D0.3 | 011 | 00000 | 100111 | 0011 | 011000 | 1100 |
| D1.3 | 011 | 00001 | 011101 | 0011 | 100010 | 1100 |
| D2.3 | 011 | 00010 | 101101 | 0011 | 010010 | 1100 |
| D3.3 | 011 | 00011 | 110001 | 1100 | 110001 | 0011 |
| D4.3 | 011 | 00100 | 110101 | 0011 | 001010 | 1100 |
| D5.3 | 011 | 00101 | 101001 | 1100 | 101001 | 0011 |
| D6.3 | 011 | 00110 | 011001 | 1100 | 011001 | 0011 |
| D7.3 | 011 | 00111 | 111000 | 1100 | 000111 | 0011 |
| D8.3 | 011 | 01000 | 111001 | 0011 | 000110 | 1100 |
| D9.3 | 011 | 01001 | 100101 | 1100 | 100101 | 0011 |
| D10.3 | 011 | 01010 | 010101 | 1100 | 010101 | 0011 |
| D11.3 | 011 | 01011 | 110100 | 1100 | 110100 | 0011 |
| D12.3 | 011 | 01100 | 001101 | 1100 | 001101 | 0011 |
| D13.3 | 011 | 01101 | 101100 | 1100 | 101100 | 0011 |
| D14.3 | 011 | 01110 | 011100 | 1100 | 011100 | 0011 |
| D15.3 | 011 | 01111 | 010111 | 0011 | 101000 | 1100 |
| D16.3 | 011 | 10000 | 011011 | 0011 | 100100 | 1100 |
| D17.3 | 011 | 10001 | 100011 | 1100 | 100011 | 0011 |
| D18.3 | 011 | 10010 | 010011 | 1100 | 010011 | 0011 |
| D19.3 | 011 | 10011 | 110010 | 1100 | 110010 | 0011 |
| D20.3 | 011 | 10100 | 001011 | 1100 | 001011 | 0011 |
| D21.3 | 011 | 10101 | 101010 | 1100 | 101010 | 0011 |
| D22.3 | 011 | 10110 | 011010 | 1100 | 011010 | 0011 |
| D23.3 | 011 | 10111 | 111010 | 0011 | 000101 | 1100 |
| D24.3 | 011 | 11000 | 110011 | 0011 | 001100 | 1100 |
| D25.3 | 011 | 11001 | 100110 | 1100 | 100110 | 0011 |
| D26.3 | 011 | 11010 | 010110 | 1100 | 010110 | 0011 |
| D27.3 | 011 | 11011 | 110110 | 0011 | 001001 | 1100 |
| D28.3 | 011 | 11100 | 001110 | 1100 | 001110 | 0011 |
| D29.3 | 011 | 11101 | 101110 | 0011 | 010001 | 1100 |
| D30.3 | 011 | 11110 | 011110 | 0011 | 100001 | 1100 |
| D31.3 | 011 | 11111 | 101011 | 0011 | 010100 | 1100 |
| D0.4 | 100 | 00000 | 100111 | 0010 | 011000 | 1101 |
| D1.4 | 100 | 00001 | 011101 | 0010 | 100010 | 1101 |
| D2.4 | 100 | 00010 | 101101 | 0010 | 010010 | 1101 |
| D3.4 | 100 | 00011 | 110001 | 1101 | 110001 | 0010 |
| D4.4 | 100 | 00100 | 110101 | 0010 | 001010 | 1101 |
| D5.4 | 100 | 00101 | 101001 | 1101 | 101001 | 0010 |
| D6.4 | 100 | 00110 | 011001 | 1101 | 011001 | 0010 |
| D7.4 | 100 | 00111 | 111000 | 1101 | 000111 | 0010 |
| D8.4 | 100 | 01000 | 111001 | 0010 | 000110 | 1101 |
| D9.4 | 100 | 01001 | 100101 | 1101 | 100101 | 0010 |
| D10.4 | 100 | 01010 | 010101 | 1101 | 010101 | 0010 |
| D11.4 | 100 | 01011 | 110100 | 1101 | 110100 | 0010 |
| D12.4 | 100 | 01100 | 001101 | 1101 | 001101 | 0010 |
| D13.4 | 100 | 01101 | 101100 | 1101 | 101100 | 0010 |

Notes: 1. "HGF, EDCBA" corresponds to data inputs CTXD7-CTXDO, in that order.
2. "abcdei, fghj" corresponds to BTXD9-BTXDO, in that order; "a" is to be transmitted first, followed by " $b$," "c,". . . "j."

Table A-1. Valid Data Characters (continued)

| Data Byte Name | HGF | Bits EDCBA ${ }^{1}$ | Current abcdel | $\begin{aligned} & \text { RD - } \\ & \text { fghj }{ }^{2} \end{aligned}$ | Current abcdei | $\begin{aligned} & \text { RD + } \\ & \text { fghj }{ }^{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D14.4 | 100 | 01110 | 011100 | 1101 | 011100 | 0010 |
| D15.4 | 100 | 01111 | 010111 | 0010 | 101000 | 1101. |
| D16.4 | 100 | 10000 | 011011 | 0010 | 100100 | 1101 |
| D17.4 | 100 | 10001 | 100011 | 1101 | 100011 | 0010 |
| D18.4 | 100 | 10010 | 010011 | 1101 | 010011 | 0010 |
| D19.4 | 100 | 10011 | 110010 | 1101 | 110010 | 0010 |
| D20.4 | 100 | 10100 | 001011 | 1101 | 001011 | 0010 |
| D21.4 | 100 | 10101 | 101010 | 1101 | 101010 | 0010 |
| D22.4 | 100 | 10110 | 011010 | 1101 | 011010 | 0010 |
| D23.4 | 100 | 10111 | 111010 | 0010 | 000101 | 1101 |
| D24.4 | 100 | 11000 | 110011 | 0010 | 001100 | 1101 |
| D25.4 | 100 | 11001 | 100110 | 1101 | 100110 | 0010 |
| D26.4 | 100 | 11010 | 010110 | 1101 | 010110 | 0010 |
| D27.4 | 100 | 11011 | 110110 | 0010 | 001001 | 1101 |
| D28.4 | 100 | 11100 | . 001110 | 1101 | 001110 | 0010 |
| D29.4 | 100 | 11101 | 101110 | 0010 | 010001 | 1101 |
| D30.4 | 100 | 11110 | 011110 | 0010 | 100001 | 1101 |
| D31.4 | 100 | 11111 | 101011 | 0010 | 010100 | 1101 |
| D0.5 | 101 | 00000 | 100111 | 1010 | 011000 | 1010 |
| D1.5 | 101 | 00001 | 011101 | 1010 | 100010 | 1010 |
| D2.5 | 101 | 00010 | 101101 | 1010 | 010010 | 1010 |
| D3.5 | 101 | 00011 | 110001 | 1010 | 110001 | 1010 |
| D4.5 | 101 | 00100 | 110101 | 1010 | 001010 | 1010 |
| D5.5 | 101 | 00101 | 101001 | 1010 | 101001 | 1010 |
| D6.5 | 101 | 00110 | 011001 | 1010 | 011001 | 1010 |
| D7.5 | 101 | 00111 | 111000 | 1010 | 000111 | 1010 |
| D8.5 | 101 | 01000 | 111001 | 1010 | 000110 | 1010 |
| D9.5 | 101 | 01001 | 100101 | 1010 | 100101 | 1010 |
| D10.5 | 101 | 01010 | 010101 | 1010 | 010101 | 1010 |
| D11.5 | 101 | 01011 | 110100 | 1010 | 110100 | 1010 |
| D12.5 | 101 | 01100 | 001101 | 1010 | 001101 | 1010 |
| D13.5 | 101 | 01101 | 101100 | 1010 | 101100 | 1010 |
| D14.5 | 101 | 01110 | 011100 | 1010 | 011100 | 1010 |
| D15.5 | 101 | 01111 | 010111 | 1010 | 101000 | 1010 |
| D16.5 | 101 | 10000 | 011011 | 1010 | 100100 | 1010 |
| D17.5 | 101 | 10001 | 100011 | 1010 | 100011 | 1010 |
| D18.5 | 101 | 10010 | 010011 | 1010 | 010011 | 1010 |
| D19.5 | 101 | 10011 | 110010 | 1010 | 110010 | 1010 |
| D20.5 | 101 | 10100 | 001011 | 1010 | 001011 | 1010 |
| D21.5 | 101 | 10101 | 101010 | 1010 | 101010 | 1010 |
| D22.5 | 101 | 10110 | 011010 | 1010 | 011010 | 1010 |
| D23.5 | 101 | 10111 | 111010 | 1010 | 000101 | 1010 |
| D24.5 | 101 | 11000 | 110011 | 1010 | 001100 | 1010 |
| D25.5 | 101 | 11001 | 100110 | 1010 | 100110 | 1010 |
| D26.5 | 101 | 11010 | 010110 | 1010 | 010110 | 1010 |
| D27.5 | 101 | 11011 | 110110 | 1010 | 001001 | 1010 |
| D28.5 | 101 | 11100 | 001110 | 1010 | 001110 | 1010 |
| D29.5 | 101 | 11101 | 101110 | 1010 | 010001 | 1010 |
| D30.5 | 101 | 11110 | 011110 | 1010 | 100001 | 1010 |
| D31.5 | 101 | 11111 | 101011 | 1010 | 010100 | 1010 |
| D0.6 | 110 | 00000 | 100111 | 0110 | 011000 | 0110 |
| D1.6 | 110 | 00001 | 011101 | 0110 | 100010 | 0110 |
| D2.6 | 110 | 00010 | 101101 | 0110 | 010010 | 0110 |
| D3.6 | 110 | 00011 | 110001 | 0110 | 110001 | 0110 |
| D4.6 | 110 | 00100 | 110101 | 0110 | 001010 | 0110 |
| D5.6 | 110 | 00101 | 101001 | 0110 | 101001 | 0110 |
| D6.6 | 110 | 00110 | 011001 | 0110 | 011001 | 0110 |
| D7.6 | 110 | 00111 | 111000 | 0110 | 000111 | 0110 |
| D8.6 | 110 | 01000 | 111001 | 0110 | 000110 | 0110 |
| D9.6 | 110 | 01001 | 100101 | 0110 | 100101 | 0110 |
| D10.6 | 110 | 01010 | 010101 | 0110 | 010101 | 0110 |
| D11.6 | 110 | 01011 | 110100 | 0110 | 110100 | 0110 |
| D12.6 | 110 | 01100 | 001101 | 0110 | 001101 | 0110 |
| D13.6 | 110 | 01101 | 101100 | 0110 | 101100 | 0110 |
| D14.6 | 110 | 01110 | 011100 | 0110 | 011100 | 0110 |
| D15.6 | 110 | 01111 | 010111 | 0110 | 101000 | 0110 |
| D16.6 | 110 | 10000 | 011011 | 0110 | 100100 | 0110 |
| D17.6 | 110 | 10001 | 100011 | 0110 | 100011 | 0110 |


| Data Byte Name | HGF | Bits EDCBA ${ }^{1}$ | Current abcdei | $\begin{aligned} & \text { RD - } \\ & \text { fghj }{ }^{2} \end{aligned}$ | Current abcdei | $\begin{aligned} & \text { RD + } \\ & \mathrm{fghj}^{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D18.6 | 110 | 10010 | 010011 | 0110 | 010011 | 0110 |
| D19.6 | 110 | 10011 | 110010 | 0110 | 110010 | 0110 |
| D20.6 | 110 | 10100 | 001011 | 0110 | 001011 | 0110 |
| D21.6 | 110 | 10101 | 101010 | 0110 | 101010 | 0110 |
| D22.6 | 110 | 10110 | 011010 | 0110 | 011010 | 0110 |
| D23.6 | 110 | 10111 | 111010 | 0110 | 000101 | 0110 |
| D24.6 | 110 | 11000 | 110011 | 0110 | 001100. | 0110 |
| D25.6 | 110 | 11001 | 100110 | 0110 | 100110 | 0110 |
| D26.6 | 110 | 11010 | 010110 | 0110 | 010110 | 0110 |
| D27.6 | 110 | 11011 | 110110 | 0110 | 001001 | 0110 |
| D28.6 | 110 | 11100 | 001110 | 0110 | 001110 | 0110 |
| D29.6 | 110 | 11101 | 101110 | 0110 | 010001 | 0110 |
| D30.6 | 110 | 11110 | 011110 | 0110 | 100001 | 0110 |
| D31.6 | 110 | 11111 | 101011 | 0110 | 010100 | 0110 |
| D0.7 | 111 | 00000 | 100111 | 0001 | 011000 | 1110 |
| D1.7 | 111 | 00001 | 011101 | 0001 | 100010 | 1110 |
| D2.7 | 111 | 00010 | 101101 | 0001 | 010010 | 1110 |
| D3.7 | 111 | 00011 | 110001 | 1110 | 110001 | 0001 |
| D4.7 | 111 | 00100 | 110101 | 0001 | 001010 | 1110 |
| D5.7 | 111 | 00101 | 101001 | 1110 | 101001 | 0001 |
| D6.7 | 111 | 00110 | 011001 | 1110 | 011001 | 0001 |
| D7.7 | 111 | 00111 | 111000 | 1110 | 000111 | 0001 |
| D8.7 | 111 | 01000 | 111001 | 0001 | 000110 | 1110 |
| D9.7 | 111 | 01001 | 100101 | 1110 | 100101 | 0001 |
| D10.7 | 111 | 01010 | 010101 | 1110 | 010101 | 0001 |
| D11.7 | 111 | 01011 | 110100 | 1110 | 110100 | 1000 |
| D12.7 | 111 | 01100 | 001101 | 1110 | 001101 | 0001 |
| D13.7 | 111 | 01101 | 101100 | 1110 | 101100 | 1000 |
| D14.7 | 111 | 01110 | 011100 | 1110 | 011100 | 1000 |
| D15.7 | 111 | 01111 | 010111 | 0001 | 101000 | 1110 |
| D16.7 | 111 | 10000 | 011011 | 0001 | 100100 | 1110 |
| D17.7 | 111 | 10001 | 100011 | 0111 | 100011 | 0001 |
| D18.7 | 111 | 10010 | 010011 | 0111 | 010011 | 0001 |
| D19.7 | 111 | 10011 | 110010 | 1110 | 110010 | 0001 |
| D20.7 | 111 | 10100 | 001011 | 0111 | 001011 | 0001 |
| D21.7 | 111 | 10101 | 101010 | 1110 | 101010 | 0001 |
| D22.7 | 111 | 10110 | 011010 | 1110 | 011010 | 0001 |
| D23.7 | 111 | 10111 | 111010 | 0001 | 000101 | 1110 |
| D24.7 | 111 | 11000 | 110011 | 0001 | 001100 | 1110 |
| D25.7 | 111 | 11001 | 100110 | 1110 | 100110 | 0001 |
| D26.7 | 111 | 11010 | 010110 | 1110 | 010110 | 0001 |
| D27.7 | 111 | 11011 | 110110 | 0001 | 001001 | 1110 |
| D28.7 | 111 | 11100 | 001110 | 1110 | 001110 | 0001 |
| D29.7 | 111 | 11101 | 101110 | 0001 | 010001 | 1110 |
| D30.7 | 111 | 11110 | 011110 | 0001 | 100001 | 1110 |
| D31.7 | 111 | 11111 | 101011 | 0001 | 010100 | 1110 |

Table A-2. Valid Special Characters

| Special Code Name | Current abcdei | $\underset{\text { fghj }}{\text { (2) }}$ | Current abcdei | $\underset{f g h j}{R D}+$ |
| :---: | :---: | :---: | :---: | :---: |
| K28.0 | 001111 | 0100 | 110000 | 1011 |
| K28.1 | 001111 | 1001 | 110000 | 0110 |
| K28.2 | 001111 | 0101 | 110000 | 1010 |
| K28.3 | 001111 | 0011 | 110000 | 1100 |
| K28.4 | 001111 | 0010 | 110000 | 1101 |
| K28.5 | 001111 | 1010 | 110000 | 0101 |
| K28.6 | 001111 | 0110 | 110000 | 1001 |
| K28.7 | 001111 | 1000 | 110000 | 0111 |
| K23.7 | 111010 | 1000 | 000101 | 0111 |
| K27.7 | 110110 | 1000 | 001001 | 0111 |
| K29.7 | 101110 | 1000 | 010001 | 0111 |
| K30.7 | 011110 | 1000 | 100001 | 0111 |

Notes: 1. "HGF, EDCBA" corresponds to data inputs CTXD7-CTXDO, in that order.
2. "abcdei, fghj" corresponds to BTXD9-BTXDO, in that order. " $a$ " is to be transmitted first, followed by " $b$, " " $c$," . . "j."

Table B-1. TQ9303 Encoding

| 32-Bit Word Encoder Input |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ordered Set | $\begin{aligned} & 31 \\ & \text { CntI } \end{aligned}$ | $\begin{aligned} & 30 \\ & \text { Sig } \end{aligned}$ | $\begin{gathered} 29 \\ S O F \end{gathered}$ | $\begin{gathered} 28 \\ E O F \end{gathered}$ | $\begin{aligned} & 27: 24 \\ & \text { Type } \end{aligned}$ | 23:16 | 15:8 | 7:0 | Beg. RD | Ordered Set Output |
| SOFn $1^{3}$ | 0 | 0 | 1 | 0 | 0001 | - | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D23.1-D23.1) |
| SOFn2 | 0 | 0 | 1 | 0 | 0010 | - | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D21.1-D21.1) |
| SOFn3 | 0 | 0 | 1 | 0 | 0011 | -1 | -1 | - ${ }^{1}$ | Neg | (K28.5-D21.5-D22.1-D22.1) |
| SOFi1 | 0 | 0 | 1 | 0 | 0101 | 1 | $-1$ | 1 | Neg | (K28.5-D21.5-D23.2-D23.2) |
| SOFi2 | 0 | 0 | 1 | 0 | 0110 | - ${ }^{1}$ | - 1 | - ${ }^{1}$ | Neg | (K28.5-D21.5-D21.2-D21.2) |
| SOFi3 | 0 | 0 | 1 | 0 | 0111 | - ${ }^{1}$ | -1 | $\sim^{1}$ | Neg | (K28.5-D21.5-D22.2-D22.2) |
| SOFC1 | 0 | 0 | 1 | 0 | 1101 | - | - ${ }^{1}$ | -1 | Neg | (K28.5-D21.5-D23.0-D23.0) |
| SOFf | 0 | 0 | 1 | 0 | 1000 | - ${ }^{1}$ | $-1$ | - ${ }^{1}$ | Neg | (K28.5-D21.5-D24.2-D24.2) |
| EOFn ${ }^{4,5}$ | 0 | 0 | 0 | 1 | 0000 | - ${ }^{1}$ | - | - | Neg | (K28.5-D21.4-D21.6-D21.6) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.6-D21.6) |
| EOFt ${ }^{5}$ | 0 | 0 | 0 | 1 | 0100 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.3-D21.3) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.3-D21.3) |
| EOFdt ${ }^{6}$ | 0 | 0 | 0 | 1 | 1100 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.4-D21.4) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.4-D21.4) |
| EOFa | 0 | 0 | 0 | 1 | 1001 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.7-D21.7) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D21.5-D21.7-D21.7) |
| EOFni | 0 | 0 | 0 | 1 | 0001 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D10.4-D21.6-D21.6) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D10.5-D21.6-D21.6) |
| EOFdti | 0 | 0 | 0 | 1 | 1101 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D10.4-D21.4-D21.4) |
|  |  |  |  |  |  |  |  |  | Pos | (K28.5-D10.5-D21.4-D21.4) |
| Idle ${ }^{7}$ | 0 | 1 | 0 | 0 | 0000 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D21.5-D21.5) |
| R-Rdy ${ }^{7}$ | 0 | 1 | 0 | 0 | 0110 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.4-D10.2-D10.2) |
| NOS ${ }^{7}$ | 0 | 1 | 0 | 0 | 1000 | - | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.2-D31.5-D5.2) |
| OLS ${ }^{7}$ | 0 | 1 | 0 | 0 | 1001 | - ${ }^{1}$ | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.1-D10.4-D21.2) |
| LR ${ }^{7}$ | 0 | 1 | 0 | 0 | 1010 | - ${ }^{1}$ | - ${ }^{1}$ | -1 | Neg | (K28.5-D9.2-D31.5-D9.2) |
| LRR ${ }^{7}$ | 0 | 1 | 0 | 0 | 1011 | -1 | - ${ }^{1}$ | - ${ }^{1}$ | Neg | (K28.5-D21.1-D31.5-D9.2) |
| Undefined | 1 | 0 | 0 | 0 | 0000 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.0-DX. $\mathrm{Y}_{\mathrm{B}}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 0001 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.1-DX. $\left.Y_{B}-D X . Y_{C}-D X . Y_{D}\right)$ |
| Undefined | 1 | 0 | 0 | 0 | 0010 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.2-DX. $\mathrm{Y}_{B}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 0011 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.3-DX. ${ }^{\text {B }}$-DX. $\mathrm{Y}_{C}-$ DX. $\mathrm{Y}_{\mathrm{D}}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 0100 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.4-DX. $\mathrm{Y}_{\mathrm{B}}-$ DX. $\mathrm{Y}_{\mathrm{C}}-$ DX. $\mathrm{Y}_{\mathrm{D}}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 0101 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.5-DX. $Y_{B}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 0110 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.6-DX. $\mathrm{Y}_{B}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 0111 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K28.7-DX. $\mathrm{Y}_{B}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 1000 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K23.7-DX. $\mathrm{Y}_{\mathrm{B}}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 1001 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K27.7-DX. $\mathrm{Y}_{\mathrm{B}}-\mathrm{DX} . \mathrm{Y}_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 1010 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K29.7-DX. $\mathrm{Y}_{\mathrm{B}}-D X . Y_{C}-D X . Y_{D}$ ) |
| Undefined | 1 | 0 | 0 | 0 | 1011 | $\left(X Y_{B}\right)^{2}$ | $\left(X Y_{C}\right)^{2}$ | $\left(X Y_{D}\right)^{2}$ |  | (K30.7-DX. $\mathrm{Y}_{\mathrm{B}}-D X . Y_{C}-D X . Y_{D}$ ) |

Notes: 1. Don't care (any value).
2. Outputs for the data characters in the ordered set must be encoded to the correct data values.
3. SOF - Start-of-frame delimiter.
4. EOF - End-of-frame delimiter
5. Encoded as EOF ${ }_{N 1}$ if TERR or PERR $=1$.
6. Encoded as EOF
7. Proper running disparity is forced before encoding these ordered sets.

## TQ9303

Table B-2. TQ9303 Decoding


Notes: 1. Valid for any unrecognized control sequence starting with "K28.5." Not valid for acquiring Word Sync.
2. $B R_{D}$-Beginning Running Disparity Negative.
3. $B R_{D}+$ Beginning Running Disparity Positive.

## Mechanical Specifications

Figure 11. TQ9303 PQFP Package Dimensions
(All dimensions are in millimeters)


## Ordering Information

## TQ9303-QC Fibre Channel Encoder/Decoder

## Supporting Products

TQ9501-MC 531/1063 Mbaud Transmitter

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^6]

TriQuint's Fibre Channel transmitter (TQ9501) and receiver (TQ9502) are part of the FC531/FC1063 (Fibre Channel 531 and 1063 Megabaud) chip set. In addition to the transmitter and receiver, TriQuint offers the ENcoder/ DECoder (TQ9303 ENDEC). The TQ9501, TQ9502, TQ9303 and a gigabit fiber optic module set provide a complete solution for Fibre Channel's FC0 and FC1 layers as well as partial support for the FC2 layer.

The TQ9501 and TQ9502 are designed in TriQuint's proprietary 0.7-micron GaAs process, enabling the transmitter and receiver to run at higher speeds and lower power than with conventional processes. The transmitter and receiver data interface has been selected to be 10 bits in order to conserve input/output power and to reduce pin count and package size. The transmitter performs the parallel-to-serial conversion and generates the internal high-speed clock for the serial output. The receiver performs serial-toparallel conversion, recovers the clock and data from the serial input, and detects the K28.5 character (Fibre Channel standard "SYNC" transmission character).

The TQ9303 ENDEC implements 8b/10b encoding and decoding, ordered set encoding and decoding, parity checking and generation, 32-bit CRC checking and generation, and word synchronization as defined in the Fibre Channel Physical and Signaling Interface Standard (FC-PH).

Fibre Channel provides a high-speed physical layer for Intelligent Peripheral Interface (IPI) and Small Computer System Interface (SCSI) upper-layer command sets, High-Performance Parallel Interface (HIPPI) data link layer, and other user-defined command sets. Fibre Channel replaces the SCSI, IPI and HIPPI physical interfaces with a higherspeed interface capable of driving longer distances.

## TQ9501/9502

## 531/1063 Mbaud Fibre Channel Transmitter and Receiver

## Features

- Compliant with ANSI X3T11 Fibre Channel Standard
- Operates at 531.125 Mbaud and 1.0625 Gigabaud (1.25 Gigabaud max)
- Low power dissipation (2.25 W, typical)
- Low jitter
- No external PLL components
- 10-bit TTL-compatible data bus
- Synchronous Data Bus Interface
- Direct interface to TQ9303 ENDEC
- Single +5 V supply
- 48-pin MQuad package

Fibre Channel is optimized for predictable transfers of large blocks of data, such as those used in file transfers between processors (super computer, mainframe, super-mini, etc.), storage systems (disk and tape), and output-only devices such as laser printers and raster scan graphics terminals.

The Fibre Channel protocol is implemented in hardware, making it simple, efficient and robust. The lower-level physical interface is decoupled from the higher-level protocol allowing the Fibre Channel to be configured with various topologies, including point-topoint, multi-drop bus, ring, and cross point switch.

Fibre Channel supports distances up to 10 Km at baud rates of 132.8125 Mbaud to 1.0625 Gbaud. Copper media such as Coax and STP (Shielded Twisted Pair) are used for shorter distances while fiber optic cables are used for longer distances.

Applications for the TQ9501 and TQ9502 include serial SCSI, IPI, HIPPI, point-to-point serial communication, ATM and other networking applications.

TriQuint offers two chip sets for Fibre Channel: the TQ9501 and TQ9502 chip set for 531.125 Mbaud and 1.0625 Gbaud, and the GA9101 and GA9102 chip set for the 265.625 Mbaud rate.

## Functional Description - TQ9501 Transmitter

The TQ9501 serializes a 10-bit TTL input into a differential PECL output. The TQ9501 is composed of an input register, a parallel-to-serial converter, a PLL clock generator, a differential output buffer and a PECL-to-TTL translator, as illustrated in Figure 1.

The self-contained PLL (Phase-Locked Loop) clock generator requires no external components. It generates an internal high-speed bit clock for the serial output, an internal byte clock for the parallel-to-serial converter and BYTECLK, based on REFCLK (REFerence CLock). BYTECLK is used by the TQ9303 ENDEC to generate TXCLK.

TXD0.. 9 are latched into the input register on the rising edge of TXCLK. The parallel-to-serial converter serializes the data into a differential PECL buffer. TXD9 is sent first and TXDO is sent last.

Figure 1. TQ9501 Transmitter


## TQ9501/TQ9502

Figure 2. TQ9502-Receiver


The LOOPEN (LOOP ENable) pin selects between the two differential output pairs, TLX and TLY, or TX and TY. LOOPEN $=1$ selects the differential output TLX and TLY, setting TX $=0$ and TY $=1$. Conversely, LOOPEN $=$ 0 selects TX and TY, setting TLX $=0$ and $T L Y=1$. This relationship is shown in Table 1.

The PECL-to-TTL translator block is a differential PECL-to-TTL translator. It is normally used for translating PECL signals generated by optical receivers to TTL signals to drive control circuitry.

Table 1. LOOPEN Configuration

| LOOPEN | Rx Input | Tx Output |
| :---: | :---: | :---: |
| 0 | RX, RY | TX,TY |
| 1 | RLX, RLY | TLX, TLY |

## TQ9501/TQ9502

## Functional Description - TQ9502 Receiver

The TQ9502 consists of a clock and data recovery circuit, a multiplexer, and a serial-to-parallel converter block, as shown in Figure 3. The multiplexer selects between the RX and RY inputs or the RLX and RLY inputs. Outputs RTX, RTY, RLTX and RLTY, not shown on Figure 3, are provided for $\mathrm{Fly}-\mathrm{By}^{\mathrm{TM}}$ termination, which allows termination resistors to be placed away from the chip. The multiplexer output is selected by the LOOPEN pin as shown in Table 1. The selected data goes to the CDR (Clock/Data Recovery) block.

The clock and data recovery block has two modes: clock recovery and frequency acquisition. In the clock input, it automatically switches to the frequency acquisition mode which causes the CDR to lock onto the REFCLK signal. This prevents the PLL from drifting away from the serial data rate and ensures that the CDR will properly lock onto the input serial data when it is reapplied.

The receiver synchronizes 1 ms after applying power, REFCLK and data. The receiver synchronizes $200 \mu \mathrm{~s}$ after applying valid data if power and REFCLK has already been applied. The output of this block is latched into the output register. When SYNCEN is high (SYNCronization ENable), the serial-to-parallel converter monitors the serial data for the K28.5 character. When it sees a K28.5, it realigns the 10-bit register to the K28.5 character and drives SYNC high.

The clock generate block also detects SYNC going high, and delays the phase of the output RXCLK to coincide with the new alignment. Some bits may be lost during
the realignment. When SYNCEN is low, SYNC is driven low and the serial-to-parallel converter ignores the K28.5 character.

The output register takes in the 10-bit-wide output from the Serial-to-Parallel Converter and drives the RXDO.. 9 outputs. RXDO.. 9 are strobed on the rising edge of RXCLK. CLKPOL $=1$ results in a longer setup time and shorter hold time than CLKPOL $=0$. The first serial bit is placed in RXD9 and the tenth bit is placed in RXDO.

## Fibre Channel Interface

Figure 3 illustrates a typical Fibre Channel physical layer block diagram using the TQ9501, TQ9502 and TQ9303 chip set. The interface between the host and ENDEC operates at 26.5625 MHz with a data width of 32-bits for the transmit path and a separate 32-bits for the receive path. The ENDEC performs the $8 \mathrm{~b} / 10 \mathrm{~b}$ encoding and decoding; ordered set encoding and decoding; parity checking and generation; 32-bit CRC checking and generation; and word synchronization.

The interface between the TQ9303 and the TQ9501/ TQ9502 operates at 531.25 or 106.250 MHz with an encoded data width of 10 -bits. The serial interface operates from 531.125 Mbaud or 1.0625 Gbaud respectively, which is connected to an optical, coaxial or twisted pair interface.

For additional information on the ENDEC, please refer to the TQ9303 data sheet.

## TQ9501/TQ9502

Figure 3. System Block Diagram - Fibre Channel


Note that the fast edge rates of the TQ9303 TX bus outputs can affect the stability of the TQ9501 PLL. These edge rates can be effectively "slowed" by adding some series resistance of from 90 to 250 ohms to the TX data bus lines (TXDO..9) as shown in Figure 4. Resistance should also be added to TXCLK to maintain the correct timing relationship with the data lines. The resistors should be placed near the TQ9303.

In cases where the line capacitance of the bus traces is less than 3 pF , it may also be necessary to add from $1-2$ pf of capacitance to each trace near the TQ9501.

The purpose is to slow the edge rates enough to prevent potential undershoot from disturbing the power supplies in the PLL circuitry of the TQ9501.

Figure 4. Adding resistance and capacitance to the TX data bus.


Table 2. Transmitter Pin Descriptions

| Symbol | Type | Description |
| :--- | :---: | :--- |
| TX, TY | 0 | Differential Transmitter Outputs connect to an optical transmitter, a coaxial interface or shielded twisted pair <br> interface. LOOPEN low selects TY and TX outputs. LOOPEN high drives TX low and TY high. |
| TLX, TLY | 0 | Loopback Differential Transmitter Outputs connect to the Receiver RLX and RLY inputs. LOOPEN high selects <br> TLY and TLX outputs. LOOPEN low drives TLX low and TLY high. |
| LOOPEN | I | Loopback Enable high selects the TLX and TLY as outputs. LOOPEN low selects the TX and TY as outputs. <br> REFCLK <br> The PLL multiplies the Reference Clock and generates the high sped clock for transmitting serial data. <br> REFCLK shall be equal to 1/40 of the baud rate. REFCLK shall have a frequency tolerance of 100 ppm to <br> guarantee clock and data recovery on the receiver. The REFCLK operating range is 25 MHz to 31.25 MHz. |
| BYTECLK | 0 | The ENDEC uses Byte Clock to synchronize to the Transmitter. The ENDEC generates TXCLK from BYTECLK <br> simplifying the synchronization between the Transmitter and ENDEC, as shown on Figure 7. |
| TXD0.9 | I | The Transmitter latches the 10 Encoded Data Bits at the rising edge of TXCLK. The Transmitter serially <br> sends TXD9 first and TXDO last. |
| TXCLK | I | The Transmitter Data Clock strobes TXD0..9 into the Transmitter. The ENDEC generates TXCLK from BYTECLK <br> simplifying the synchronization between the Transmitter and ENDEC. |
| SIG, SIGN | I | The Differential Signal Present are inputs to a PECL to TTL translator. The translator is typically used to <br> convert differential signals from a differential optical receiver output to TTL. The TTL equivalent of SIG and <br> SIGN is SIGDET. |
| SIGDET | Signal Detect is the output of the PECL to TTL translator. The translator is typically used to convert differential <br> signals from a differential optical receiver output to TTL. SIGDET is useful when implementing an OFC - Open <br> Fibre Control protocol where the link activity or optical receiver outputs are monitored continuously. |  |
| RATESEL | Rate Select is used to select between 531 Mbaud (RATESEL=VDD) and 1063 Mbaud (RATESEL=GND) <br> operation. |  |

Figure 5. Fly-By ${ }^{\text {TM }}$ Termination Schematic


## TQ9501/TQ9502

## Table 3. Receiver Pin Descriptions

| Symbol | Type | Description |
| :---: | :---: | :---: |
| RX, RY | 1 | The Receiver Differential Inputs connects to an optical, coaxial or shielded twisted pair interface. LOOPEN low selects the RX and RY inputs. LOOPEN high selects the RLX and RLY inputs. |
| RTX, RTY | 1 | The Receiver Differential Termination are used in Fly-By ${ }^{\text {TM }}$ termination. RX is internally connected to RTX and RY is internally connected to RTY. A termination circuit connects to RTX and RTY instead of RX and RY. With Fly-By ${ }^{\text {TM }}$ termination, the termination circuit can be located away from the Receiver instead of requiring termination directly at RX and RY. Both RTX and RTY must be terminated with a 50 chip resistor in series with 3V reference or Thevenin equivalent as shown in Figure 6. |
| RLX, RLY | 1 | The Looped Receiver Differential Inputs connect to the Transmitters TLX and TLY outputs providing a loop back path. LOOPEN high selects the RLX and RLY inputs. LOOPEN low selects the RX and RY inputs. |
| RLTX, RLTY | 1 | The Receiver Differential Termination are used in Fly-By ${ }^{\top M}$ termination. RLX is internally connected to RLTX and RLY is internally connected to RLTY. A termination circuit connects to RLTX and RLTY instead of RLX and RLY. With Fly-BY'M termination, the termination circuit can be located away from the Receiver instead of requiring termination directly at the RLX and RLY. Both RLTX and RLTY must be terminated with a 50 chip resistor in series with 3 V reference or Thevenin equivalent as shown on Figure 6. |
| LOOPEN | 1 | Loopback Enable high selects the RLX and RLY inputs. LOOPEN low selects the RX and RY inputs. |
| REFCLK | 1 | The Reference Clock provides the clock needed by the clock recovery circuit. The REFCLK frequency shall bE chosen to equal $1 / 40$ of the baud rate. REFCLK shall have a frequency tolerance of 100 ppm to guarantee clock and data recovery on the receiver. The receiver automatically locks onto the REFCLK during power-up and/or when no input signals are applied. This prevents the PLL from drifting away from the input data rate. The PLL automatically locks onto the input data stream when it is applied. The frequency range of REFCLK is 25 MHz to 31.25 MHz . |
| SYNCEN | 1 | When Sync Enable is high, the receiver searches for a K28.5 character from the input data stream and byte aligns the parallel register to this character as defined in the Fibre Channel standard. SYNCEN low disables byte alignment to a K28.5 character and drives SYNC low. The K28.5 character has a pattern of RXD9.. $0=0011111010$ or 1100000101 . Whenever the receiver detects the K28.5 pattern it byte aligns to this character and drives SYNC high for that byte cycle. SYNC is high only in byte cycle where a K28.5 character is present. |
| RXD0.. 9 | 0 | These are 10 Encoded Data Bits where the first bit received from the serial data stream is RXD9 and the last bit received is RXDO. The receiver generates RXCLK to strobe RXDO..9. |
| SYNC | 0 | If SYNCEN is high, Synchronization to K28.5 goes high for the byte clock cycle in which a K28.5 character is present on the RXD0.. 9 output. If SYNCEN is low then SYNC is always low. |
| RXCLK | 0 | Receiver Data Clock is the strobe for RXDO.. 9 and SYNC. The phase of RXCLK with respect to RXD0.. 9 and SYNC changes depending on CLKPOL. CLKPOL high provides a longer setup time and a shorter hold time while CLKPOL low provides a shorter setup time and a longer hold time. The frequency range of RXCLK is 50 MHz to 62.5 MHz in FC531 mode and 100 MHz to 125 MHz in FC1063 mode. |
| CLKPOL | 0 | Clock Phase or Polarity controls the phase of RXCLK with respect to RXD0.. 9 and SYNC. CLKPOL high provides a longer setup time and a shorter hold time while CLKPOL low provides a shorter setup time and a longer hold time. |
| RATESEL | 1 | Rate Select is used to select between 531 Mbaud (RATESEL=VDD) and 1063 Mbaud (RATESEL=GND) operation. |

## T09501/T09502

## Layout Guidelines

Multiple ground and power pins on the TQ9501/02 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. TriQuint recommends bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 7 shows the recommended power layout for the TQ9501/02. The bypass capacitors should be located on the same side of the board as the TQ9501/02. The $V_{D D}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple through-holes connect this small surface plane to an inner-layer ground plane. The capacitors are $0.1 \mu \mathrm{~F}$. TriQuint's test board uses X7R temperature-stable capacitors in 1206 SMD cases.

Table 4. Absolute Maximum Ratings

| Parameter | Range |
| :--- | :--- |
| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Case temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply voltage to ground | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $(\mathrm{V}$ DD $+0.5 \mathrm{~V})$ |
| DC input current | 30 mA to +5 mA |
| Package Thermal Resistance | $\theta j \mathrm{AA}=40^{\circ} \mathrm{C} \mathrm{WW} ; \theta c \mathrm{~A}=8{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die Junction Temperature | $\mathrm{Tj}=150^{\circ} \mathrm{C}$ |

Note: Stresses above those listed in Absolute Maximum Rating may cause permanent damage to the device. This is a stress-only rating and operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied.

Figure 7. Example Top Layer Layout of Power Pins (Not to scale)


Note: Series resistors and small capacitors may be needed for the TX data bus and clock lines. See the previous "Fibre Channel Interface" section in this datasheet for details.

## Table 5. Operating Conditions

| Parameter | Range |
| :--- | :---: |
| Supply voltage | $5 \mathrm{~V} \pm 5$ |
| Ambient temperature | 0 to $70^{\circ} \mathrm{C}$ |
| Note: | Proper functionality is guaranteed under these <br> operating conditions. |

Table 6. Test Loads

| Symbol | Description | Test Conditions | Min. | Typ. | Max. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance | $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 6 |  | pF |  |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 9 |  | pF |

Table 7. DC Characteristics-TQ9501 Transmitter TTL Signals
(TXDO..9, TXCLK, BYTECLK, LOOPEN, SIGDET, REFCLK, RATESEL)
(Over operating range unless otherwise specified)

| Symbol | Description | Test Conditions |  | Min. | Limits Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=M i n_{i n} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}^{3} \end{aligned}$ | 2.4 | 3.2 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}^{3} \end{aligned}$ |  | 0.2 | 0.5 | V |
| $\mathrm{ISC}^{4}$ | Output short-circuit current | $V_{D D}=$ Max | $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ | -15 |  | -120 | mA |
| $\mathrm{I}_{\text {IL }}$ | Input LOW current | $V_{D D}=$ Max | $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ |  |  | -400 | $\mu \mathrm{A}$ |
| $I_{\text {IH }}$ | Input HIGH current | $V_{D D}=M a x$ | $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  |  | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $V_{D D}=\mathrm{Max}$ | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{V}_{1 H^{5}}$ | Input HIGH level | Guaranteed input logical HIGH voltage for all inputs, $V_{D D}=$ Max |  | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{5}$ | Input LOW level | Guaranteed input logical LOW voltage for all inputs |  |  |  | 0.8 | V |
| $V_{1}$ | Input clamp voltage | $V_{D D}=$ Min | $\mathrm{I}_{1 \times}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| $l_{\text {DD }}$ | Power supply current | $\mathrm{V}_{\mathrm{DD}}=$ Max, static |  |  | 175 | 220 | mA |

Table 8. DC Characteristics-TQ9501 Transmitter PECL Signals (TX, TY, TLX, TLY, SIG, SIGN)

| Symbol | Description | Test Conditions | Min. | Limits Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $V_{D D}=$ Min PECL load | $V_{D D}-1.200$ |  | $V_{D D}-0.50$ | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $V_{\text {DD }}=$ Min PECL load | $V_{D D}-2.00$ |  | $\mathrm{V}_{\text {DD }}-1.60$ | V |
| $\mathrm{V}_{\text {CMO }}$ | Output common mode voltage |  | $\mathrm{V}_{\text {DD }}-1.60$ |  | $\mathrm{V}_{\text {DD }}-1.10$ | V |
| DV ${ }_{\text {OUT }}$ | Output differential voltage |  | 0.60 |  | 1.2 | V |
| $I_{\text {IL }}$ | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ |  |  | 200 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-0.5 \mathrm{~V}$ |  |  | 250 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {IHS }}$ | Highest input HIGH voltage | $V_{D D}=$ Min |  |  | $\mathrm{V}_{\text {DD }}-0.5$ | V |
| $V_{\text {ILS }}$ | Lowest input LOW voltage | $V_{D D}=$ Max | 2.4 |  |  | V |
| $\mathrm{V}_{\text {DIF }}$ | Differential input voltage | $V_{D D}=$ Min | 0.4 |  | 1.2 | V |
| VICM | Input common mode voltage | $V_{D D}=M i n$ | 2.8 |  | $\mathrm{V}_{\mathrm{DD}}-0.7$ | V |

Notes: 1. Typical limits are: $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. The TTL inputs could be HIGH or LOW.
3. The $I_{O L}$ and $I_{O H}$ specifications are valid only for the BYTECLK.
4. These are absolute values with respect to device ground.
5. No more than one output should be tested at a time. Duration of the short circuit should not exceed one second.

## TQ9501/TQ9502

Table 9. DC Characteristics-TQ9502 Receiver TTL Signals
( $\overline{\mathrm{RXDO}} . . \mathrm{g}$, RXCLK, SYNCEN, REFCLK, LOOPEN, SYNC, CLKPOL, RATESEL)
(Over operating range unless otherwise specified)

| Symbol | Description | Test Conditions | Min. | Limits ${ }^{1}$ Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \quad=-3.2 \mathrm{IA}^{3}=-1.6 \mathrm{~mA} \\ & \hline \end{aligned}$ | 2.4 | 3.2 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW voltage $V_{I N}{ }^{2}=V_{\text {HH }} \text { or } V_{\text {IL }}$ | $\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =\operatorname{Min} \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & =8 \mathrm{~mA}^{3} \end{aligned}$ | 0.2 | 0.5 | V |  |
| $\mathrm{ISC}^{5}$ | Output short-circuit current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ | -15 |  | -120 | mA |
| $I_{\text {IL }}$ | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  |  | -400 | $\mu \mathrm{A}$ |
| $I_{\text {IH }}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  |  | 25 | $\mu \mathrm{A}$ |
| $I_{1}$ | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{V}_{\text {IH }}{ }^{4}$ | Input HIGH level voltage for all inputs | Guaranteed input logical HIGH | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{4}$ | Input LOW level voltage for all inputs | Guaranteed input logical LOW |  |  | 0.8 | V |
| $\mathrm{V}_{1}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{DD}}=\operatorname{Min} \quad \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| $\mathrm{I}_{\mathrm{DD}}$ | Power supply current | $V_{D D}=\operatorname{Max}$, static |  | 280 | 350 | mA |

Table 10. DC Characteristics—TQ9502 Receiver PECL Signals (RX, RY, RTX, RTY, RLX, RLY, RLTX, RLTY)

| Symbol | Description | Test Conditions |  | Min. | Limits Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {IL }}$ | Input LOW current | $V_{\text {DD }}=$ Max | $V_{\text {IN }}=2.4 \mathrm{~V}$ | 0.5 |  | 200 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $V_{D D}=$ Max | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$ |  |  | 250 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {IHS }}$ | Highest input HIGH voltage | $V_{D D}=$ Max |  |  |  | $\mathrm{V}_{\text {D }}-0.50$ | V |
| $\mathrm{V}_{\text {ILS }}$ | Lowest input LOW voltage | $V_{D D}=\operatorname{Min}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\text {DIF }}$ | Differential input voltage | $V_{D D}=\operatorname{Min}$ |  | 0.4 |  | 1.2 | V |
| VICM | Input common mode voltage | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min}$ |  | 2.8 |  | $\mathrm{V}_{\mathrm{DD}}-0.7$ | V |

Notes: 1. Typical limits are: $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. The TTL inputs could be HIGH or LOW.
3. The $I_{O L}$ and $I_{O H}$ specifications are valid only for the RXCLK.
4. These are absolute values with respect to device ground.
5. No more than one output should be tested at a time. Duration of the short circuit should not exceed one second.

## TQ9501/TQ9502

Table 12. AC Specifications-TQ9501 Transmitter
Parameters with dual values refer to 531Mbaud/1063Mbaud operation respectively.

| Parameter | Description | Min. | Typ. | Max. |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{T}_{1}$ | REFCLK pulse width HIGH | 10.0 | Units |  |
| $\mathrm{T}_{2}$ | REFCLK pulse width LOW | 10.0 | ns |  |
| $\mathrm{~T}_{3}{ }^{1}$ | REFCLK period (T) | 32.0 | 40.0 | ns |
| $\mathrm{~T}_{4}$ | TXD 9..0 setup time | 2.0 | ns |  |
| $\mathrm{~T}_{5}$ | TXD 9..0 hold time | 2.0 | ns |  |
| $\mathrm{~T}_{6}$ | BYTECLK, TXCLK pulse width HIGH | $6.0 / 3.0$ | ns |  |
| $\mathrm{~T}_{7}$ | BYTECLK, TXCLK pulse width LOW | $6.0 / 3.0$ | ns |  |
| $\mathrm{~T}_{8}$ | BYTECLK, TXCLK period (T) | $16.0 / 8.0$ | ns |  |
| $\mathrm{~T}_{9}$ | TX, TY, TLX, TLY rise time | 100 | $20.0 / 10.0$ | $400 / 300$ |
| $\mathrm{~T}_{10}$ | TX, TY, TLX, TLY fall time | 100 | $400 / 300$ | ps |
| $\mathrm{T}_{11}$ | $\mathrm{TX} \sim$ TY or TLX $\sim$ TLY skew |  | $100 / 60$ | ps |
| $\mathrm{T}_{12}{ }^{3}$ | TX, TY or TLX, TLY output jitter - deterministic jitter (DJ) | random jitter (RJ) | $100 / 75$ | ps |

Notes: 1. REFCLK Tolerance $=(20 /$ baud rate $) \pm 0.01 \%$, for baud rate of 500 Mbaud to 625 Mbaud and $(40 /$ baud rate $) \pm 0.01 \%$, for baud rate of 1 Gbaud to 1.25 Gbaud.
2. baud time $=1 /$ baud rate
3. The jitter numbers are for a BER of $10^{-12}$.

Figure 8. Bus Timing - TQ9501 Transmitter


Figure 9. Serial Output Timing - TQ9501


## TQ9501/TQ9502

## Table 12. AC Specifications-TQ9502 Receiver

Parameters with dual values refer to 531Mbaud/1063Mbaud operation respectively.

| Parameter | Description |  | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{21}$ | REFCLK puise width LOW |  | 10.0 |  |  | ns |
| $\mathrm{T}_{22}$ | REFCLK pulse width HIGH |  | 10.0 |  |  | ns |
| $\mathrm{T}_{23}{ }^{1}$ | REFCLK period | 32.0 |  | 40.0 | ns |  |
| $\mathrm{T}_{24}$ | Setup Time RXD $0 . .9$ \& SYNC | CLKPOL=0 | 4.0/2.0 |  |  | ns |
|  |  | CLKPOL=1 | 12.0/6.0 |  |  | ns |
| $\mathrm{T}_{25}$ | Hold Time RXD $0 . .9$ \& SYNC | CLKPOL=0 | 8.0/4.0 |  |  | ns |
|  |  | CLKPOL=1 | 0 |  |  | ns |
| $\mathrm{T}_{26}{ }^{1}$ | RXCLK period |  | 16.0/8.0 |  | 20.0/10.0 | ns |
| $\mathrm{T}_{27}{ }^{1}$ | RXCLK pulse width HIGH |  | 6.0/4.0 |  |  | ns |
| $\mathrm{T}_{28}{ }^{1}$ | RXCLK puise width LOW |  | 6.0/4.0 |  |  | ns |
| $\mathrm{T}_{29}$ | RX, RY, RLX, RLY rise time |  |  |  | 0.4 baud time | ns |
| $\mathrm{T}_{30}$ | RX, RY, RLX, RLY fall time |  |  |  | 0.4 baud time | ns |
| $\mathrm{T}_{31}$ | RX ~ RY, RLX ~ RLY skew |  |  |  | 0.3 baud time | ns |
| $\mathrm{T}_{32}$ | RX, RY, RLX, RLY peak-to-peak input jitter |  |  |  | 0.7 baud time | ns |

Notes: 1. REFCLK Tolerance $=(20 / \mathrm{baud}$ rate $) \pm 0.01 \%$, for baud rate of 500 Mbaud to 625 Mbaud and $(40 / \mathrm{baud}$ rate $) \pm 0.01 \%$, for baud rate of 1 Gbaud to 1.25 Gbaud.
2. baud time $=1 /$ baud Rate
3. The jitter numbers are for a BER of $10^{-12}$.

## Table 13. Synchronization Times

| Description | Min. | Typ. | Max. |
| :--- | :---: | :---: | :---: |
| Power Up or application of REFCLK to receiver synchronization |  | Units |  |
| Application of valid data to receiver synchronization |  | 200 | ms |
| Receiver resynchronization after phase shift on data | 2500 | bit time |  |

Figure 10. Bus Timing - TQ9502 Receiver


## TQ9501/TQ9502

Figure 11. Serial Input Timing - TQ9502


Figure 12a. TTL Test Load,RXCLK


Figure 12b. TTL Test Load, All Other TLL Outputs


## TQ9501/TQ9502

Figure 13. Pinout for Transmitter


Table 14. Pin Definitions - TQ9501 Transmitter

| Symbol | Pin \# | 1/0 | \# Pins | Logic Type | Active | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TX, TY | 20, 21 | Output | 2 | PECL | NRZ | Differential serial data output |
| TLX, TLY | 25, 26 | Output | 2 | PECL | NRZ | Loopback differential serial data output |
| SIG, SIGN | 14, 16 | Input | 2 | PECL | HIGH | Differential optical signal present |
| TXCLK | 34 | Input | 1 | TTL | HIGH | Transmit clock |
| TXD $0 . .9$ | $\begin{gathered} 10,9,8,5,4 \\ 2,1,44,42,41 \\ \hline \end{gathered}$ | Input | 10 | TTL | HIGH | Transmit data input |
| LOOPEN | 30 | Input | 1 | TTL | HIGH | Enable loopback |
| SIGDET | 38 | Output | 1 | TTL | HIGH | Signal detect |
| REFCLK | 32 | Input | 1 | TTL | HIGH | Oscillator clock (25 to 31.25 MHz ) |
| BYTECLK | 37 | Output | 1 | TTL | HIGH | Byte clock |
| VDD | 6, 17, 29, 31, 35, 39 | - | 6 | - | - | +5 Volt Supply |
| GND | $\begin{gathered} \hline 7,18,23, \\ 28,33,40 \end{gathered}$ | - | 6 | - | - | Ground |
| NC | $\begin{gathered} 3,11,12,13,15 \\ 19,22,24,27,43 \end{gathered}$ | - | 10 | - | - | No Connect |
| RATESEL | 36 | Input | 1 | - | - | VDD (1) for 531Mbaud operation Ground (0) for 1063Mbaud operation |

Figure 14. Pinout for Receiver


Table 15. Pin Definitions - TQ9502 Receiver

| Symbol | Pin \# | I/O | \# Pins | Logic Type | Active | Description |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| RX, RY | 26,25 | 1 | 2 | PECL | NRZ | Differential serial data input |
| RLX, RLY | 21,20 | 1 | 2 | PECL | NRZ | Differential serial data input, loopback |
| RTX, RTY | 27,24 | 1 | 2 | PECL | NRZ | For fly-by termination |
| RLTX, RLTY | 22,19 | 1 | 2 | PECL | NRZ | For fly-by termination |
| RXD 0..9 | $8,5,4,2,1$, <br> $44,42,41,38,37$ | 0 | 10 | TTL | HIGH | Receive output data |
| RXCLK | 9 | 0 | 1 | TTL | HIGH | Receive clock |
| REFCLK | 14 | 1 | 1 | TTL | HIGH | Oscillator clock (25 MHz to 31.25 MHz) |
| SYNC | 36 | 0 | 1 | TTL | HIGH | Receive byte sync |
| SYNCEN | 12 | 1 | 1 | TTL | HIGH | Sync Enable or Align to K28.5 |
| LOOPEN | 16 | 1 | 1 | TTL | HIGH | Enable loopback |
| CLKPOL | 34 | 1 | 1 | TTL | LOW | RXCLK Clock Phase |
| VDD | $6,13,17,29$, <br> $31,35,39,43$ | - | 8 | - | - | +5V supply |
| GND | $3,7,11,15,18$, <br> $23,28,33,40$ | - | 9 | - | - | Ground |
| NC | 30,32 | - | 2 | - | - | No connect |
| RATESEL | 10 | 1 | 1 | - | - | VDD(1) for 531Mbaud operation |
|  |  |  |  |  |  |  |

Figure 15. 44-Pin MQuad J-leaded Package


## Ordering Information

TQ9501-MC FC531/1063 Transmitter

## TQ9502-MC

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

$$
\begin{array}{ll}
\text { Web: www.triquint.com } & \text { Tel: (503) 615-9000 } \\
\text { Email: sales@tqs.com } & \text { Fax: (503) 615-8900 }
\end{array}
$$

For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^7]

The TQ9525 is part of TriQuint's family of Datacom Transmission Products. The TQ9525 is a $2.5 \mathrm{~Gb} / \mathrm{s}$ transceiver which takes 20 -bit, $8 \mathrm{~B} / 10 \mathrm{~B}$ encoded data, serializes it and sends it out on a differential PECL data link. In addition it receives differential serial data, recovers the clock and deserializes the data, and presents it at the 20-bit receive data bus.

The TQ9525 receiver section performs frame alignment to the special Fibre Channel K28.5 "comma +" character. Maximum re-lock time due to a phase discontinuity is 100 bit periods. Receiver lock time following a Lock-to-Reference signal is 1 ms .

The TQ9525 offers selectable redundant high-speed PECL inputs and redundant high-speed PECL outputs with individual controls. Additionally, the TQ9525 offers the system designer multiple PECL and TTL reference clock inputs.

## TQ9525

ADVANCE INFORMATION DATA SHEET

### 2.5 Gigabit/sec 20-bit Transceiver

## Features

- $2.5 \mathrm{~Gb} / \mathrm{s}$ data rate
- Operates with single 5V supply
- 20-bit TTL transmit and receive busses
- Dual differential PECL serial output buffers with individual enable control
- Dual differential PECL serial input buffers with fly-by terminations
- Internal loopback capability
- Repeater mode to transmit retimed receive data
- TTL receive-PLL-lock to reference-clock function with 1 ms maximum lock time
- Maximum receive-phase discontinuity re-lock time of 100 bit periods
- Receive word alignment to first seven bits of $8 B / 10 B$ comma + character, with optional bypass
- Reference clock inputs selectable as dual TTL or dual differential PECL
- Optional use of separate 125 MHz TTL transmit-word clock input
- 125 MHz differential TTL receive-word clock outputs


## Circuit Descriptions

## PECL Serial Data Inputs

High-speed serial inputs require PECL levels and external input termination resistors which can be located away from the device through the use of the fly-by termination signal pins. There are two differential serial receive ports, selected through the use of the TTL input RXSEL. The optional PECL REFCLK inputs do not have fly-by termination pins.

## PECL Serial Data Outputs

High-speed serial outputs are PECL compatible with 50 -ohm pull-down resistors required to +3 V . All outputs are differential and require both true and complement to be terminated. If an output channel is not used, then the true and the compliment signals of that output may be left unterminated. Each set of serial outputs can be independently enabled by asserting the TTL input signals EN_TXA and EN_TX.

## Internal Loopback

The transceiver contains an internal loopback function that bypasses the external high speed serial ports and internally feeds serialized transmit data directly to the clock and data recovery section of the deserializer. During loopback, which is enabled by asserting the LOOPEN TTL input signal, the external serial receive ports is deselected, but serial transmit data is available at the enabled transmit ports.

## Repeat Mode

The transceiver contains a repeat function that retimes the received serial data using the internal clock and data recovery, and presents this data at the enabled transmit ports. This function is enabled by asserting the REPEAT TTL input signal. The repeat and loopback functions cannot be accessed simultaneously.

## TTL Receiver PLL Lock to Reference Clock

The receive section of the transceiver requires the use of a lock-to-reference-clock (NLCK_REF) input to acquire frequency lock. The maximum time required for frequency lock is 1 ms .

While the NLCK_REF function is asserted, the receive section locks to the selected REFCLK and provides receive-word clock output signals (RWCO and RWC1) that are in frequency lock with the reference clock input.

The NLCK_REF function is available at power-up, until a stable serial data stream is supplied to the device, or when the selected serial data stream has been absent or unstable in frequency for more than 50 bit times.

When NLCK_REF is deasserted, the receive section locks to the serial data stream supplied to the selected receive port, with a maximum lock time of 100 bit times, provided the frequency of the incoming bitstream is within 100 ppm of 20 times the frequency of the REFCLK signal.

## Receiver Phase Discontinuity Re-lock Time

Phase discontinuities in the serial data stream will not require assertion of the NLCK_REF input. Serial data phase discontinuities will cause a loss of data integrity at the parallel receive port for no more than 100 bit times. During re-acquisition of the serial data stream, the receive word clock signals remain active. Re-lock time can be minimized by applying a high switching-density data pattern such as 10101010101010101010.

## Receive Word Alignment

The receive section performs word alignment to the first seven-bit of the standard $8 \mathrm{~B} / 10 \mathrm{~B}$ comma + character. Word alignment may be enabled by asserting the TTL input signal EN_CDET. When word alignment occurs, RWCO and RWC1 are not slivered or truncated, but may be stretched, and the TTL output signal COM_DET is asserted. Word alignment causes the comma + character to be output on $\operatorname{RX}(0: 9)$.

## Table 1. Character Mapping Order

| Parallel TX Data | TX0 | TX1 | TX2 | TX3 | TX4 | TX5 | TX6 | TX7 | TX8 | TX9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parallel RX Data | RX0 | $\mathrm{RX1}$ | $\mathrm{RX2}$ | $\mathrm{RX3}$ | RX 4 | $\mathrm{RX5}$ | $\mathrm{RX6}$ | $\mathrm{RX7}$ | $\mathrm{RX8}$ | $\mathrm{RX9}$ |
| 8B/10B Position | a | b | c | d | e | i | f | g | h | j |
| Comma + | 0 | 0 | 1 | 1 | 1 | 1 | 1 | x | x | x |
| first Data Bit | t |  |  |  |  |  |  |  |  |  |

First Data Bit Transmitted

## TQ9525

ADVANCE INFORMATION DATA SHEET

## Transmit Bus Clock Modes

Parallel transmit data is presented to the transceiver on the 20-bit TTL bus TX( $0: 19$ ). The transmit data is clocked into the transceiver on the rising edge of the reference clock input or on the rising edge of TWC, dependent on the logical state of the TTL input signal CLKSELL. If CLKSEL is 0 , TWC is selected as the transmit data clock source. If CLKSEL is 1 , the reference clock input is selected as the transmit data clock source.

## Receive Bus Clocking

The parallel receive data is output from the transceiver on the 20 -bit TTL bus $\mathrm{RX}(0: 19)$. The transmit data is clocked into the host system using the TTL clock outputs RWCO and RWC1. RWCO and RWC1 are differential 125 MHz signals.

## Reference Clock Inputs

The reference clock input is a 125 MHz input signal used for Transmit clock generation and Receive frequency lock. There are two TTL reference clock inputs (REFCLKT1 and REFCLKT2) and two pairs of differential PECL reference clock inputs (REFCLKP1P/N and REFCLKP2P/N), which allow the use of redundant reference clocks in both TTL and PECL formats. The logical state of the TTL input signals REFSEL1 and REFSEL2 determine which reference clock inputs are selected. If REFSEL1 is 0 , the inputs with suffix 1 are selected; if REFSEL1 $=1$, the inputs with suffix 2 are selected. If REFSEL2 is 0 , the PECL inputs are selected; if REFSEL2 $=1$, the TTL inputs are selected.

## Signals

## Table 2. Signal Descriptions

| Signal | Type | Pin No. | Description |
| :---: | :---: | :---: | :---: |
| REFCLKT1 | TTL Input | 38 | TTL reference clock 1 input for transmit and receive PLLs. |
| REFCLKT2 | TTL Input | 39 | TTL reference clock 2 input for transmit and receive PLLs. |
| REFCLKP1P | PECL Input | 42 | Differential PECL reference clock 1 inputs for transmit and receive PLLs. |
| REFCLKP1N |  | 41 |  |
| REFCLKP2P | PECL Input | 45 | Differential PECL reference clock 2 inputs for transmit and receive PLLs. |
| REFCLKP2N |  | 44 |  |
| REFSEL1 | TTL Input | 34 | Selects reference clock inputs. If REFSEL1 $=0$, inputs with suffix 1 are selected. If REFSEL1 $=1$, inputs with suffix 2 are selected. |
| REFSEL2 | TTL Input | 35 | Selects reference clock inputs. If REFSEL2 $=0$, the PECL inputs are selected. If REFSEL2 $=1$, the TTL inputs selected. |
| TWC | TTL Input | 37 | Alternate clock input for parallel transmit data bus. |
| CLKSEL | TTL Input | 33 | Selects clock input for parallel transmit data. <br> If CLKSEL $=0$, transmit data is loaded on the rising edge of TWC. <br> If CLKSEL $=1$, transmit data is loaded on the rising edge of REFCLK. |
| RWCO | TTL Output | 61 | Differential clock outputs for parallel receive data bus. |
| RWC1 |  | 60 |  |

(Continued on next page)

## TQ9525

ADVANCE INFORMATION DATA SHEET

Figure 1. TQ9525 Pinout


Table 2. Signal Descriptions (continued)

| Signal | Type | Pin No. | Description |
| :--- | :--- | :--- | :--- |
| NLCK_REF | TTL Input | 56 | Active-low input used to force frequency lock of the receive PLL. <br> When asserted, the receive PLL locks to the selected reference clock signal. |
| LOOPEN | TTL Input | 55 | Bypasses the external high speed serial ports and internally feeds serialized <br> transmit data directly to the clock and data recovery section of the deserializer. <br> During locopback, external serial transmit ports are de-asserted, and external <br> serial receive ports are deselected. |
| EN_CDET | TTL Input | 57 | When asserted, enables word alignment of the receiver to the 8B/10B comma + <br> character. When de-asserted, word alignment is not performed. |

(Continued on next page)

## Table 2. Signal Descriptions (continued)

| Signal | Type | Pin No. | Description |
| :---: | :---: | :---: | :---: |
| COM_DET | TTL Output | 67 | Asserted when the receiver detects the 8B/10B comma + character and has realigned (if necessary) this character to the receive data outputs $\mathrm{RX}(0: 9)$. |
| RXSEL | TTL Input | 109 | Selects one of two high speed serial receive ports. If RXSEL $=0$, high speed receive port " $A$ " is selected. If RXSEL $=1$, high speed receive port " $B$ " is selected. |
| REPEAT | TTL Input | 30 | Enables the repeat function which retimes the received serial data using internal clock and data recovery, and presents this data at the enabled transmit ports. |
| TXA | PECL Output | 123 | Port "A" differential (true and complement) serial transmit outputs. |
| TYA |  | 122 |  |
| TXB | PECL Output | 118 | Port " B " differential (true and complement) serial transmit outputs. |
| TYB |  | 117 |  |
| EN_TXA | TTL Input | 126 | Enable input for port "A" differential (true and complement) serial transmit outputs. |
| EN_TXB | TTL Input | 125 | Enable input for port "B" differential (true and complement) serial transmit outputs. |
| RXA | PECL Input | 100 | Port "A" differential (true and complement) serial receive inputs. |
| RYA |  | 102 |  |
| RXA_T | PECL TERM | 99 | Port "A" differential (true and complement) serial receive termination outputs |
| RYA_T |  | 103 | used for fly-by termination. |
| RXB | PECL Input | 105 | Port "B" differential (true and complement) serial receive inputs. |
| RYB |  | 107 |  |
| RXB_T | PECL TERM | 104 | Port " B " differential (true and complement) serial receive termination outputs |
| RYB_T |  | 108 | used for fly-by termination. |
| TX(0:19) | TTL Input | 2-5, | Parallel transmit data bus. TX0 is the first bit transmitted on the serial port. |
|  |  | 8-11, |  |
|  |  | 14-17, |  |
|  |  | $20-23 \text {, }$ |  |
|  |  | 26-29 |  |
| RX(0:19) | TTL Output | 68-71, | Parallel receive data bus. RXO is the first bit received on the serial port. |
|  |  | 74-77, |  |
|  |  | 80-83, |  |
|  |  | 86-89, |  |
|  |  | 92-95 |  |
| Not Used |  | 49, 50, 51 | Connect these pins to $\mathrm{V}_{\mathrm{DD}}$. |
|  |  | 52, 110 |  |

## TQ9525

ADVANCE INFORMATION DATA SHEET

## Electrical Specifications

## Table 3. Absolute Maximum Ratings( ${ }^{(3)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | $T_{\text {store }}$ | -65 | Unit |  |
| Junction Temperature |  | $T_{C H}$ | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Case Temperature w/bias | (Note 1) | $\mathrm{T}_{\mathrm{C}}$ | 0 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Supply Voltage | (Note 2) | $\mathrm{V}_{\text {DD }}$ | 0 | TBD | ${ }^{\circ} \mathrm{C}$ |
| Voltage to any input | (Note 2) | $\mathrm{V}_{\text {in }}$ | -0.5 | 7.0 | V |
| Voltage to any output | (Note 2) | $\mathrm{V}_{\text {out }}$ | -0.5 | $\mathrm{~V}_{\mathrm{DD}}+0.5$ | V |
| Current to any input | (Note 2) | $\mathrm{I}_{\text {in }}$ | -1.0 | $\mathrm{~V}_{\mathrm{DD}}+0.5$ | V |
| Current from any output | (Note 2) | $\mathrm{I}_{\text {out }}$ |  | 1.0 | mA |

Notes: 1. Tc is measured at top of case.
2. All voltages are measured with respect to GND (OV) and are continuous.
3. Absolute maximum ratings in this table are those beyond which the device's performance may be impaired and/or permanent damage may occur.

Table 4. Recommended Operating Conditions-DC Characteristics, 0-85 ${ }^{\circ} \mathrm{C}$ Case

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Positive Supply | $V_{D D}$ | 4.75 | - | 5.25 | V |  |
| Current Positive supply |  | $\mathrm{I}_{\mathrm{DD}}$ | - | 1 | TBD | A |

## TQ9525

ADVANCE INFORMATION DATA SHEET

Table 5. DC Characteristics-ECL/PECL I/O ${ }^{(4)}$

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input <br> Common mode voltage | (Note 1) | $\mathrm{V}_{\text {COM }}$ | $\mathrm{V}_{\mathrm{DD}}-1500$ | - | $\mathrm{V}_{\mathrm{DD}}-1100$ | mV |
| Input <br> Differential voltage | (Note 1) | $\mathrm{V}_{\text {DIFF }}$ | 400 | - | 1200 | mV |
| Output HIGH voltage | (Note 2) | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{V}_{\mathrm{DD}}-1100$ |  | $\mathrm{~V}_{\mathrm{DD}}-600$ | mV |
| Output LOW voltage | (Note 2) | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{\mathrm{DD}}-2100$ | - | $\mathrm{V}_{\mathrm{DD}}-1500$ | mV |
| Input HIGH current | $\mathrm{V}_{\text {IHMAX }}$ | $\mathrm{I}_{\mathrm{IH}}$ | - | - | TBD | uA |
| Input LOW current | $\mathrm{V}_{\text {ILMMI }}$ | $\mathrm{I}_{\mathrm{IL}}$ | TBD | - | - | uA |
| Output HIGH current | (Note 3) | $\mathrm{I}_{\text {OH }}$ | 20 | 23 | 30 | mA |
| Output LOW current | (Note 3) | $\mathrm{I}_{\text {OL }}$ | 0 | 5 | 8 | mA |
| Input capacitance |  | $\mathrm{C}_{\mathrm{IN}}$ | - | TBD | - | pF |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | TBD | - | pF |

Table 6. DC Characteristics—TTL I/O (4)

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input HIGH voltage |  | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | - | VDD | V |
| Input LOW voltage |  | $\mathrm{V}_{\mathrm{IL}}$ | 0 | - | 0.8 | V |
| Input HIGH current | $\mathrm{V}($ (IHMAX $)$ | $\mathrm{I}_{\mathrm{IH}}$ | - | - | 200 | uA |
| Input LOW current | $\mathrm{V}($ (ILMIN $)$ | $\mathrm{I}_{\mathrm{IL}}$ | -400 | -200 | - | uA |
| Output HIGH voltage | $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{OH}}$ | 2.4 | - | VDD | V |
| Output LOW voltage | $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{OL}}$ | 0 | - | 0.4 | V |
| Output Available Current |  | $\mathrm{I}_{\mathrm{OAV}}$ | TBD | - | - | mA |
| Output Source Current |  | $\mathrm{I}_{\text {OSC }}$ | TBD | - | - | mA |
| Input capacitance |  | $\mathrm{C}_{\mathrm{IN}}$ | - | TBD | - | pF |
| Output capacitance |  | $\mathrm{C}_{\text {OUT }}$ | - | TBD | - | pF |

Notes (Tables 3 and 4):

1. Differential inputs must be used.
2. $R_{L O A D}=50$ ohms to $V_{T T}=V_{D D}-2.0 \mathrm{~V}$
3. Not tested; consistent with $V_{O H}$ and $V_{O L}$ tests.
4. Specifications apply over recommended operating ranges.

Table 7. AC Characteristics

| Parameter | Condition | Symbol | Minimum | Nominal | Maximum | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| REFCLK or TWC Period | (Note 1) | $\mathrm{T}_{\text {PERIOD_T }}$ | - | 8.00 | - | ns |
| RWC(0:1) Period |  | $\mathrm{T}_{\text {PERIOD_R }}$ | - | 8.00 | - | ns |
| Serial Output Rise/Fall time | (Note 2) | $\mathrm{T}_{\mathrm{R} / \mathrm{F}}$ | - | - | TBD | ps |
| TTL Output Rise/Fall Time | (Note 3) | $\mathrm{T}_{\mathrm{R} / \mathrm{F}}$ | 0.5 | - | 2.5 | ns |
| TX Random Jitter | (Note 4) | $\mathrm{T}_{\mathrm{RJ}}$ | - | - | 0.1 | Bit Times $^{(5)}$ |
| TX Deterministic Jitter | (Note 4) | $\mathrm{T}_{\mathrm{DJ}}$ | - | - | 0.1 | Bit Times $^{(5)}$ |
| RX Jitter Tolerance | (Note 4) | $\mathrm{T}_{\mathrm{RJT}}$ | - | - | TBD | Bit Times $^{(5)}$ |

Notes: 1. REFCLK must have a tolerance of 100 ppm or better. If TWC is used, it must be frequency-locked to REFCLK.
2. $20 \%-80 \%$ levels. $R_{L O A D}=50$ ohms to $V_{T T}=V_{D D}-2.0 \mathrm{~V}$
3. Min. $V_{I H}$ to max $V_{I L}$ levels. $C_{L O A D}=10 p F$
4. Peak-to-peak measurement.
5. One Bit Time $=400 \mathrm{ps} @ 2.50 \mathrm{~Gb} / \mathrm{s}$.

## Timing Specifications

Table 8. Transmit Interface Timing

| Symbol | Parameter | Minimum | Maximum | Unit |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{T}_{\text {SETUP-T }}$ | Data setup time to REFCLK/TWC rising edge | 2.0 |  | ns |
| $\mathrm{~T}_{\text {HOLD-T }}$ | Data hold time from REFCLK/TWC rising edge | 1.5 |  | ns |
| $\mathrm{~T}_{\text {DUTY-T }}$ | REFCLK/TWC duty cycle | 40 | 60 | $\%$ |

Table 9. Receive Interface Timing

| Symbol | Parameter | Minimum | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: |
| TSETUP-R | Data valid time before RWCO rising edge Data valid time before RWC1 falling edge | 3.0 |  | ns |
| THoLD-R | Data valid time after RWCO rising edge Data valid time after RWC1 falling edge | 1.5 |  | ns |
| T ${ }_{\text {DUTY-R }}$ | RWC(0:1) duty cycle | 40 | 60 | \% |
| TSKEW-R | Skew from RWCO rising edge to RWC1 falling edge |  | 1.0 | ns |
| TLOCK1-R | Application of REFCLK to de-assertion of NLCK_REF |  | 1.0 | ms |
| TLOCK2-R | Deassertion of NLCK_REF to bit synchronization (Frequency of incoming Bitstream within 100ppm of $20 \times$ Frequency of REFCLK) |  | 100 | Bit Times ${ }^{1}$ |
| TLOCK3-R | Re-lock after serial data phase discontinuity |  | 100 | Bit Times ${ }^{1}$ |

Notes: 1. One Bit Time $=400$ ps @ $2.50 \mathrm{~Gb} / \mathrm{s}$.

## Mechanical Package

Figure 2. TQ9525 Dimensions (128 pins, $14 \times 14 \mathrm{~mm}$, thermally enhanced)


Note: All dimensions in millimeters (mm).


## Ordering Information

## TQ9525 <br> $2.5 \mathrm{~Gb} / \mathrm{s} 20$-bit Transceiver

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com
The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or ommisions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.

## Ta9525

ADVANCE INFORMATION DATA SHEET

## Section 5 - Mixed Signal Products

TQ6122 1 Gs/s 8-bit Digital-to-Analog Convertor ..... 5-3
TQ6124 1 Gs/s 14-bit Digital-to-Analog Convertor ..... 5-27


TriQuint's TQ6122 GIGADACTM is a monolithic, 8-bit digital-to-analog converter capable of conversion rates to at least 1000 Megasamples/ second. The TQ6122 DAC may be used for display generation, waveform and signal synthesis, and video signal reconstruction. The TQ6122 features a 2:1 data MUX at the input for ease of interface and offers synchronous blanking capability for maximum ease of use in video applications. It drives complementary 1 V peak-to-peak swings into 50 -ohm loads; on-chip 50ohm reverse terminations provide extremely fast settling time.

Due to the inherently high speed of TriQuint's one-micron gate Enhancement / Depletion-mode gallium arsenide process, the TQ6122 offers guaranteed operation at clock rates of 1000 MHz , with typical room temperature conversion rates of $1.5 \mathrm{Gs} / \mathrm{s}$ without multiplexing and $1.3 \mathrm{Gs} / \mathrm{s}$ when using multiplexed inputs. The TQ6122 features output rise and fall times of $500 \mathrm{ps}(10 \%-90 \%)$, symmetric complementary output transitions, and glitch impulse values less than $10 \mathrm{pV} / \mathrm{sec}$. When used for sine wave synthesis, typical spurious and harmonic free dynamic range is 45 dBc .

The TQ6122 may be retrofitted into designs which currently use TriQuint's TQ6111, 2, 3, 4M DACs with minimal changes to power supply levels and input and output connections. The part is available in a 44-pin ceramic package or as unpackaged die.

## TQ6122

1 Gigasample/sec, 8-bit Digital-to-Analog Converter

## Features

- 1 Gs/s conversion rate
- 8-bit resolution
- DC differential non-linearity $1 / 2$ LSB (0.2\%)
- DC integral non-linearity 1 LSB (0.4\%)
- Settling time 2 ns to $0.4 \%$ (est.)
- Spurious-free dynamic range (SFDR) 45 dBc typical
- ECL-compatible inputs
- Synchronous blanking input
- 1.3 W power dissipation
- 44-pin multilayer ceramic package or unpackaged die


## Applications

- Display generation
- Waveform and signal synthesis
- Video signal reconstruction


## Specifications

Table 1. Absolute Maximum Ratings ${ }^{(1,2)}$

| Symbol | Description | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{\mathrm{GND}}, \mathrm{D}_{\mathrm{GND}}$ | Analog and digital ground | -2 |  | +2 | V |
| $\mathrm{V}_{\text {SS }}$ | Digital power | -7 |  |  | V |
| $V_{\text {AA }}$ | Analog power | -10 |  |  | V |
| $\mathrm{V}_{0}, \overline{V_{0}}$ (max) | Analog output (1 V F.S.) | -2.5 |  | +2.5 | V |
| $V_{1}$ (max) | Digital input levels | $\mathrm{V}_{\text {SS }}-0.5$ |  | +0.5 | V |
| $I_{1}$ (max) | Digital input currents | -1 |  | +1 | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power dissipation |  |  | 3.0 | W |
| $\mathrm{T}_{\mathrm{C}}$ | Case backside temperature | -65 |  | +135 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{S}}$ | Storage temperature | -65 |  | +150 | ${ }^{\circ} \mathrm{C}$ |

Notes: 1. Unless otherwise specified: $A_{G N D}=D_{G N D}=0 \mathrm{~V}, V_{S S}=V_{A A}=-5 \mathrm{~V}, V_{F S}=1 \mathrm{~V} p k-p k$, case temperature $=27^{\circ} \mathrm{C}$.
2. Exceeding the absolute maximum ratings may damage the device. The value shown for a particular parameter is determined with all other parameters at their nominal values.

Table 2. DC Characteristics ${ }^{(1)}$

| Symbol | Description | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {AA }}$ | Analog supply | Note 2 | -5.25 |  | -4.75 | V |
| $\mathrm{I}_{\text {AA }}$ | $\mathrm{V}_{\text {AA }}$ current | $\mathrm{V}_{\text {FS }}=1 \mathrm{Vpk}$-pk | 50 | 62 | 80 | mA |
| $\mathrm{V}_{\text {S }}$ | Digital supply | Note 2 | -5.5 |  | -4.5 | V |
| $\mathrm{I}_{\text {S }}$ | $\mathrm{V}_{\text {SS }}$ current |  | 145 | 200 | 265 | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power dissipation |  | 0.9 | 1.3 | 1.85 | W |
| $\mathrm{V}_{\text {ECLREF }}$ | ECL reference level | Note 3, Figure 1 | -1.5 | -1.3 | -1.1 | V |
| $l_{\text {ECLREF }}$ | ECL ref. input bias current | Note 3, Figure $1 \Delta \mathrm{~V}_{\text {ECLREF }}= \pm 0.2 \mathrm{~V}$ | V -5 | 0 | +5 | mA |
| Reclief | ECL ref. input resistance | Figure 1 |  | 50 |  |  |
| Ceclief | ECL ref. input capacitance |  |  | 2 |  | pF |
| $\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$ | Data input HIGH (ECL) | DC value ( $\mathrm{V}_{\text {ECLREF }}=-1.3 \mathrm{~V}$ ) | -1100 |  | -500 | mV |
| $\mathrm{V}_{\text {LL }}(\mathrm{DC})$ | Data input LOW (ECL) | DC value ( $\mathrm{V}_{\text {ECLREF }}=-1.3 \mathrm{~V}$ ) | $V_{\text {TT }}$ |  | -1500 | mV |
| $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CLKH}}(\mathrm{oc}), \\ & \mathrm{V}_{\mathrm{CLKH}}(\mathrm{oc}) \end{aligned}$ | Clock HIGH input | Differential clock, Note 4 | $\mathrm{V}_{\text {ECLREF }}+0.3$ |  | -0.7 | V |
| $\begin{aligned} & \hline \mathrm{V}_{\text {CLKL }}(\mathrm{Oc}), \\ & \mathrm{V}_{\text {CLKL }}(\mathrm{oc}) \\ & \hline \end{aligned}$ | Clock LOW input | Differential clock, Note 4 | $V_{T T}$ |  | $\mathrm{V}_{\text {ECLREF }}-0.3$ | V |
| $\mathrm{I}_{\text {in }}$ | Data, clock input bias current | $\mathrm{V}_{\text {IH }}=-800 \mathrm{mV}, \mathrm{V}_{\text {IL }}=-1800 \mathrm{mV}$ | -25 |  | +25 | uA |
| $\mathrm{C}_{\text {IN }}$ | Data, clock input capacitance | In multilayer ceramic package |  | 0.5 |  | pF |
| $\begin{aligned} & \hline V_{\text {OUT }} \text { (max), } \\ & V_{\text {OUT }} \text { (MAX) } \\ & \hline \end{aligned}$ | Maximum absolute output level | Note 5 |  |  | +1 | V |
| $\begin{aligned} & \hline V_{\text {OUT }} \text { (MIN), } \\ & V_{\text {OUT }} \text { (MIN) } \\ & \hline \end{aligned}$ | Minimum absolute output level | Note 5 | -1.5 |  |  | V |

Table 2. DC Characteristics ${ }^{(1)}$ (continued)

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {FS }}$ | Full-scale output swing | Data bits only, 0-0/1-1 input step $R_{L}=50 \text { load }$ | 0 | 1 | 1.125 | V pk-pk |
| $\mathrm{V}_{\text {ZS }}$ | Zero-scale offset | $\mathrm{V}_{\mathrm{FS}}=1 \mathrm{~V}$, no external offset, $V_{\text {BLANK_DISABLE }}=0 \mathrm{~V}$ |  | -35 |  | mV |
| D V $\mathrm{V}_{\text {LANK }}$ | Blanking interval | Blank input $=1$, Notes 6,7 | 9 | 10.4 | 12 | $\% \mathrm{~V}_{\text {FS }}$ |
| V BLANK_dISABLE | Blank current disable control | Blank current ON Blank current OFF |  | $\begin{aligned} & -5\left(V_{A A}\right) \\ & 0\left(A_{G N D}\right) \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {REF }}$ | $V_{\text {REF }}$ input voltage | $\mathrm{V}_{\text {FS }}=1 \mathrm{~V}$ peak-to-peak <br> $V_{\text {FS }}=0 \mathrm{~V}$ peak-to-peak | $\begin{gathered} \mathrm{V}_{\mathrm{AA}}+0.7 \\ \mathrm{~V}_{\mathrm{AA}}-1 \\ \hline \end{gathered}$ | $\mathrm{V}_{\text {AA }}+1.0$ | $\mathrm{V}_{\mathrm{AA}}+1.4$ | V |
| $\mathrm{V}_{\text {SENSE }}$ | $\mathrm{V}_{\text {SENSE }}$ output | $\mathrm{V}_{\text {FS }}=1 \mathrm{~V}$ peak-to-peak |  | $\mathrm{V}_{\text {AA }}+0.8$ | $\mathrm{V}_{\text {AA }}+1.1$ | V |
| $l_{\text {VREF }}$ | $V_{\text {REF }}$ input current | $\begin{aligned} & V_{\text {REF }}=V_{\text {AA }}+0.65 \\ & V_{\text {REF }}=V_{\text {AA }}+1.1 \end{aligned}$ | - | 10 | 1 | $\begin{aligned} & \hline \mathrm{uA} \\ & \mathrm{~mA} \end{aligned}$ |
| $I_{\text {REF }}$ | Ext. reference current output | $\mathrm{V}_{\text {S }}=1 \mathrm{~V}$ peak-to-peak | 2 | 2.5 | 5 | mA |
| $V_{\text {IREF }}$ | $\mathrm{I}_{\text {REF }}$ terminal voltage |  | -1.5 |  | +1 | V |
| $\mathrm{R}_{\text {OUT }}, \overline{\mathrm{R}_{\text {OUT }}}$ | $\mathrm{V}_{\text {OUT }}, \overline{\mathrm{V}_{\text {OUT }}}$ Output resistance Matching of $\mathrm{R}_{\text {OUT }}, \overline{\mathrm{R}_{\text {OUT }}}$ |  | 44 | $\begin{aligned} & 50 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & \hline 57 \\ & 2.5 \end{aligned}$ | \% |
| $\mathrm{Cout}^{\text {O }}$ | $\mathrm{V}_{\text {OUT }}, \overline{V_{\text {OUT }}}$ Output capacitance |  |  | 0.3 |  | pF |
|  | Resolution |  |  |  | 8 | Bits |
|  | Monotonicity |  | 8 |  |  | Bits |
| DNL | Differential non-linearity | ( $\pm 1 / 2$ LSB) |  |  | 0.2 | \% F.S. |
| INL | Integral non-linearity | $( \pm 1 \mathrm{LSB}$ ) |  |  | 0.4 | \% F.S. |
|  | Full-scale symmetry | $\mathrm{V}_{\text {FS }}=1 \mathrm{~V}$ peak-to-peak, Note 8 | -4 |  | +4 | mV |

Notes: 1. Unless otherwise specified: $V_{A A}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%, V_{T T}=-2 \mathrm{~V} \pm 5 \%, V_{F S}=1 \mathrm{Vpk}-\mathrm{pk}, T_{C A S E}=0$ to $+85^{\circ} \mathrm{C}$
2. See the "Power Supplies, Ground and Bypassing" section later in this datasheet for discussion of power supplies.
3. The ECL reference input establishes the switching point for the ECL line receivers used at the DATA, BLANK, and SELECT inputs. (See Figure 1.) I IELREF is the current required to change the internal ECLREF value by about $\pm 200 \mathrm{mV}$.
4. Values shown are for differential clock drive, and apply to both CLOCK and $\overline{C L O C K}$ inputs. For single-ended drive, the HIGH level should be at least $\left(V_{E C L R E F}+0.5\right)$ volts, but must not exceed -700 mV . The LOW level should be ( $V_{E C L R E F}-0.5$ ) volts, but must not go below $V_{T T}$, where $V_{T T}$ is the $E C L$ termination voltage (nominal $V_{T T}=-2 V$ ).
5. $V_{\text {OUT }}(M A X), \overline{V_{O U T}}(M A X), V_{\text {OUT }}(M I N), \overline{V_{O U T}}(M I N)$ represent the limits on the absolute output levels, including offset.
6. Blanking interval is the voltage change (as a percentage of the full-scale output swing) added to $V_{F S}$ when BLANK is asserted.
7. The BLANK DISABLE input turns OFF the blank current $\left(D V_{B L A N K}=0\right)$ when held at $A_{G N D}$, and turns it $O N$ when pulled to $V_{A A}$.
8. Full-scale symmetry is a measure of the balance between Vout and $\overline{V_{\text {OUT }}}$. For a full-scale input change ( $00000000 \rightarrow 1111111$ ), the change in $\overline{V_{\text {OUT }}}$ will match the change in V Vout to within $\pm 4 \mathrm{mV}$ (1 LSB @ 1 V peak-to-peak).
9. The VFS temperature coefficient is determined primarily by the external reference and loop control op amp.

Table 3. AC Characteristics ${ }^{(1,2)}$

| Symbol | Description | Test Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{F}_{\text {CLK (max) }}$ | Maximum clock frequency | Unmuxed operation | 1000 | 1500 |  |
|  |  | Muxed operation | 1000 | 1300 | MHz |
|  |  | MHz |  |  |  |
| $\mathrm{T}_{\text {RCLK, DATA }}$ | Clock, data input rise time | $20 \%$ to $80 \%$ |  | 300 | ps |
| $\mathrm{T}_{\text {FCLK, DATA }}$ | Clock, data input fall time | $20 \%$ to $80 \%$ | 300 | ps |  |
| $\mathrm{T}_{\text {WH }}$ | Duration of clock HIGH | Percentage of clock period | 40 | 50 | 60 |
| $\mathrm{~T}_{\text {WL }}$ | Duration of clock LOW | Percentage of clock period | 40 | 50 | 60 |
| $\mathrm{~T}_{\text {SETUP }}$ | Data, control setup time | See Figure 7 | $\%$ |  |  |
| $\mathrm{~T}_{\text {HOLD }}$ | Data, control hold time | See Figure 7 |  |  | ps |
| $\mathrm{T}_{\text {ROUT }}$ | Output rise time | $10 \%$ to $90 \%$ |  | ps |  |
| $\mathrm{T}_{\text {FOUT }}$ | Output fall time | $10 \%$ to $90 \%$ | 300 | ps |  |
| $\mathrm{T}_{\text {SETTLE }}$ | Output settling time | Within $\pm 0.4 \%$ of final value |  | 300 | ps |
|  | Glitch impulse |  | 2 | ns |  |

Notes: 1. Unless otherwise specified: $V_{A A}=-5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%, V_{F S}=1 \mathrm{~V} p-p, T_{C A S E}=0$ to $+85{ }^{\circ} \mathrm{C}$,
$V_{E C L}=-1.3 \mathrm{~V}, V_{I H}=-0.8 \mathrm{~V}, V_{I L}=-1.8 \mathrm{~V}$
2. Applies to packaged parts only.

Figure 1. ECL Reference Input Equivalent Circuit


Figure 2. Definition of $V_{I H}, V_{I L}$ for Data and BLANK Inputs


## TQ6122

Figure 3. Typical Digital Input Circuit (Including CLOCK Inputs)


Figure 4. $V_{\text {OUT }}, \overline{V_{\text {OUT }}}$, and Input Code Relationships for (A) Typical Instrumentation and (B) Video Configurations

## (A) TQ6122 Instrumentation DAC operation (1 V Full-Scale)

Blanking current is shunted to ground by tying BLANK DISABLE to $A_{G N D}$ and forcing BLANK $=0$.

|  | Input Code | $\boldsymbol{V}_{\text {out }}{ }^{(1)}$ | $\overline{\boldsymbol{V}_{\text {OUT }}}{ }^{(1)}$ |
| :--- | :--- | :--- | :--- |
| Full Scale | 11111111 | -0.996 V | 0.000 V |
| Full Scale -1 LSB | 11111110 | -0.992 V | -0.004 V |
| Half Scale + 1 LSB | 10000001 | -0.504 V | -0.492 V |
| Half Scale | 10000000 | -0.500 V | -0.496 V |
| Half Scale -1 LSB | 01111111 | -0.496 V | -0.500 V |
| Zero Scale +1 LSB | 00000001 | -0.004 V | -0.992 V |
| Zero Scale | 00000000 | 0.000 V | -0.996 V |

## (B) TQ6122 Video DAC Operation (0.679 V Full-Scale)

Blanking current is enabled by connecting BLANK DISABLE to $V_{A A}$.

|  | Input Code | $\boldsymbol{V}_{\text {out }}{ }^{(1)}$ | $\overline{\boldsymbol{V}_{\text {OUT }}}{ }^{(1)}$ |
| :--- | :--- | :--- | :--- |
| Full Scale | 11111111 | -0.679 V | -0.071 V |
| Full Scale -1 LSB | 11111110 | -0.676 V | -0.074 V |
| Half Scale +1 LSB | 10000001 | -0.343 V | -0.407 V |
| Half Scale | 10000000 | -0.341 V | -0.409 V |
| Half Scale -1 LSB | 01111111 | -0.338 V | -0.412 V |
| Zero Scale +1 LSB | 00000001 | -0.003 V | -0.747 V |
| Zero Scale | 00000000 | 0.000 V | -0.750 V |
| BLANK $=$ HIGH | $\mathrm{X} \ldots \ldots \mathrm{X}$ | -0.750 V | 0.000 V |

Notes: 1. All values shown for $V_{\text {out }}$ and $\overline{V_{\text {OUT }}}$ assume identical load resistors (RL1 and RL2 in Figure 5), and no externally imposed output offset voltage (Vos in Figure 5). Zero-scale offset is ignored.

Figure 5. Output Equivalent Circuit, Showing Terminated 50-ohm Transmission Line Loads


Figure 6. Definition of $T_{W H}$ and $T_{W L}$


Figure 7. TQ6122 Data and Control Timing


| Symbol | Description | Typical @ $25^{\circ}{ }^{\circ} \mathbf{C}$ | Unit |
| :--- | :--- | :---: | :---: |
| $\mathrm{T}_{\text {DS }}$ | Data setup time ${ }^{(1)}$ | 0 | ps |
| $\mathrm{T}_{\mathrm{DH}}$ | Data hold time $^{(2)}$ | +325 | ps |
| $\mathrm{T}_{\mathrm{SS}}$ | SELA setup time $^{(1,3)}$ | +350 | ps |
| $\mathrm{T}_{\mathrm{SH}}$ | SELA hold time ${ }^{(2,3)}$ | -100 | ps |

Notes: 1. Setup time is defined to be positive for data or control transitions occurring before the negative-going edge of the clock.
2. Hold time is defined to be positive for data or control transitions occurring after the negative-going edge of the clock.
3. While SELA does not strictly have a setup and hold time, it is convenient to express its allowed transition region limits in these terms.

## Mechanical Characteristics

The TQ6122 DAC is packaged in a proprietary 44-pin multilayer ceramic package which provides high-speed, controlled-impedance interconnects and integral power supply bypassing. The leads are set on 0.050 " centers, and are formed for gull-wing surface mounting. Figure 8 shows the pinout diagram of the packaged IC as seen from the top, opposite the cavity side; Figure 9 lists pin numbers, names and I/O levels. Figure 10 illustrates the pertinent dimensions of the package and Figure 11 shows the mounting footprint.

Since the TQ6122 dissipates on the order of 1.3 W , adequate heat sinking is essential for proper operation of the device. Figure 12 shows one possible heat sink arrangement based on a multi-finned "Top Hat" heat sink available from Thermalloy. An environment with a minimum of 100 fpm (feet per minute) of forced air cooling is assumed; >200 fpm is preferred.

## Figure 9. TQ6122 Pin Descriptions

| Pin | Signal | Interface Level (Typ.) |
| :---: | :---: | :---: |
| $\begin{aligned} & 1,11,12 \\ & 33,34,44 \end{aligned}$ | $\mathrm{V}_{\text {SS }}$ | -5V |
| 2 | $\overline{\text { B5 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 3 | $\overline{\text { B6 }}$ | $600 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ centered at -1.3 V @ DC |
| 4 | $\overline{\overline{B 7}}$ (MSB) | $600 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ centered at -1.3 V @ DC |
| 5 | BLANK | 600 mV pk-pk centered at -1.3 V @ DC |
| $\begin{aligned} & \hline 6,28, \\ & 37,40 \end{aligned}$ | $\mathrm{D}_{\text {GND }}$ | 0 V |
| 7 | SELA | 600 mV pk-pk centered at -1.3 V @ DC |
| 8 | - | No connection |
| 9 | CLOCK | 1 V pk-pk centered at -1.3V@ AC |
| 10 | CLOCK | 1 V pk-pk centered at -1.3 V @ AC |
| 13-15, 18 | $\mathrm{A}_{\text {GND }}$ | 0 V |
| 16 | $\overline{V_{\text {OUT }}}$ | 0 V to-1V |
| 17 | $V_{\text {OUT }}$ | -1 V to 0 V |
| 19 | BLANK | Enable $=\mathrm{V}_{\text {AA }} \quad\left(\mathrm{I}_{\text {BLANK }}=0 \mathrm{~N}\right)$ |
|  | DISABLE | Disable $=\mathrm{A}_{\text {GND }} \quad\left(\mathrm{l}_{\text {BLANK }}=0 \mathrm{FF}\right)$ |
| 20 | $\mathrm{V}_{\text {SENSE }}$ | $\mathrm{V}_{\mathrm{AA}}+0.8$, for $\mathrm{V}_{\mathrm{FS}}=1 \mathrm{Vpk}-\mathrm{pk}$ |

Figure 8. TQ6122 Pinout


Notes: 1. $A 7, B 7=M S B$ inputs
2. $N / C=$ no internal connection

| Pin | Signal | Interface Level (Typ.) |
| :---: | :---: | :---: |
| 21 | $\mathrm{V}_{\text {REF }}$ | $V_{A A}+1$, for $V_{F S}=1 \mathrm{~V} p k-p k$ |
| 22, 23 | $\mathrm{V}_{\text {A }}$ | $-5 \mathrm{~V}$ |
| 24 | $\mathrm{I}_{\text {ReF }}$ | 2.5 mA for $\mathrm{V}_{\mathrm{FS}}=1 \mathrm{~V} \mathrm{pk}$-pk |
| 25 | ECL REF | -1.3 V |
| 26 | $\overline{\mathrm{A} 0}$ (LSB) | 600 mV pk-pk centered at -1.3 V @ DC |
| 27 | $\overline{\text { A1 }}$ | $600 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ centered at -1.3 V @ DC |
| 29 | $\overline{\text { A2 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 30 | $\overline{\text { A3 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 31 | $\overline{\text { A4 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 32 | $\overline{\text { A5 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 35 | $\overline{\text { A6 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 36 | $\overline{\text { A7 ( }}$ (SB) | 600 mV pk-pk centered at -1.3 V @ DC |
| 38 | $\overline{\mathrm{BO}}$ ( LSB ) | 600 mV pk-pk centered at -1.3 V @ DC |
| 39 | $\overline{B 1}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 41 | $\overline{\text { B2 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 42 | $\overline{\text { B }}$ | 600 mV pk-pk centered at -1.3 V @ DC |
| 43 | $\overline{\text { B4 }}$ | 600 mV pk-pk centered at -1.3 V @ DC |

Figure 10. Package Dimensions


Figure 11. Mounting Footprint


Figure 12. Heat-Sink Mounting Arrangement (heat sink not included)


## Circuit Description

The TQ6122 DAC is based on a current-steering architecture in which weighted currents are switched by an array of differential-pair switches into either the $\mathrm{V}_{\text {OUT }}$ or $\overline{V_{O U T}}$ output, depending on the state of the input data and blanking bits. Essentially, the DAC is comprised of six circuit blocks: the input buffer, the data multiplexer, blanking logic, master/slave latch array with segment encode logic, differential-pair switches, and the current source array. (See figure on page 1.)

## Input Buffers

The input buffers compare the ECL data and control input signals with the ECLREF level, amplify the difference, and translate this signal to the logic levels used within the IC. By default, the ECL reference is set by an internal generator; however, for best performance and maximum noise margin over temperature, power supply, and device-to-device variations, the user should provide an external level. For general-purpose applications, a simple resistive divider between $D_{G N D}$ and $V_{T T}$ will suffice. For extreme environments or for maximum performance, the ECLREF level should be slaved to the centerpoint of the incoming data. Refer to the "Digital Inputs and Terminations" discussion later in this document for additional information.

Note that the data inputs are complemented to indicate that an increasing input value results in the $V_{\text {OUT }}$ level moving more negative.

## Data Multiplexer

The DAC makes provision for accepting data from either of two sources: from a single 8-bit-wide word at the full conversion rate, or from two 8-bit-wide halfspeed words which are multiplexed together inside the DAC under the control of the SELA input. In use, the SELA input is set HIGH to select the A-Word data and

LOW to select the B-Word. It is generally best to use the A -Word input when operating the DAC unmultiplexed, although the B-Word supports full-rate transfers.

## Blanking Logic

A separate BLANK input is included to allow the DAC to be used in video display applications. When asserted LOW, the BLANK input has no effect on the operation of the DAC, and the state of the input data words controls the positions of the current switches. When BLANK is asserted HIGH, however, all internal data bits and the internal blanking bit are synchronously forced HIGH at the next negative-going clock transition, causing the $V_{\text {OUT }}$ output to go to its most negative level. This level is the sum of the normal level associated with an input code of 11111111 plus the increment due to the blanking current being steered away from the $\overline{V_{O U T}}$ output to $\mathrm{V}_{\text {OUT }}$. See Figure 4 (B).

In order to provide more latitude in the timing of the BLANK signal, the BLANK input is sampled only when the A-Word is selected. When the B-Word is selected, the state of the BLANK input at the time the SELA control line goes LOW is held stable until SELA again goes HIGH. In situations where blanking is not used, it is important that the BLANK input be tied to a solid logic LOW to prevent accidental assertion of BLANK = HIGH. Note also that when the DAC is used in the unmultiplexed mode, the data should be brought in on the A-Word inputs, since with SELA = LOW (as would be the case for B-Word operation), a transient HIGH level at the BLANK input would never be cleared and the DAC would lock up.

The BLANK_DISABLE pin is normally tied to the $\mathrm{V}_{\mathrm{AA}}$ rail, allowing $I_{B L A N K}$ to flow to the differential-pair switch and then to the selected output. For applications which do not use blanking, however, the standing offset in the $\overline{V_{\text {OUT }}}$ output due to the unswitched

## TQ6122

blanking current would be undesirable. For cases such as these, the blanking current may be completely turned off by connecting the BLANK_DISABLE pin to $A_{\text {GND }}$.

## Master/Slave Latch With Encode Logic

A nine-wide master latch registers the data coming from the multiplexer and blanking logic. The latch outputs are then split into two groups. The top three bits are translated into a seven-level thermometer code by a binary-to- N -of-seven encoder, while the lower five data bits and the blanking bit are simply delayed. The seven encoder outputs and the six delayed data and blanking bits are re-registered in a slave latch to minimize skew, which, in turn, reduces the glitch impulse. Latch timing is set up such that the slave latch is in the "sample" mode when the input clock is LOW, meaning that the analog output is updated at the falling edge of the clock.

## Current Switches

The thermometer code outputs of the slave latch array drive seven switches, each of which steers a current equal to $1 / 8$ of the full-scale step amplitude. The five encoded data bits, on the other hand, switch currents
with effective binary weightings from $1 / 16$ of full scale down to $1 / 128$ of full scale. The blanking bit steers a current which is nominally $10.4 \%$ of the full-scale amplitude.

## Current-Source Array

The current-source array is the heart of the DAC from an analog standpoint, and is responsible for generating the segment, bit, and blanking currents. The maximum full-scale current $I_{F S}$ (less $I_{\text {BLANK }}$ ) is about 45 mA , providing a 1.125 volt maximum swing into the 50 ohm external load. The blanking current is nominally $10.4 \%$ of $\mathrm{I}_{\mathrm{FS}}$, corresponding to a 10 -unit IRE blanking interval of 71 mV when the full-scale output is set to 0.679 volt. The $I_{\text {REF }}$ current tracks $I_{\text {FS }}$, with a nominal value of 2.5 mA for $\mathrm{I}_{\mathrm{FS}}=40 \mathrm{~mA}$ (i.e., $6.25 \%$ of $\mathrm{I}_{\mathrm{FS}}$ ).

Figure 13 (A) illustrates the basic circuit of the currentsource array, which consists of a set of current sources ranging from the 5 mA segment currents to the binaryweighted current sources for the lower-order bits. The circuit design utilizes source degeneration, averaging, and linear gradient cancellation techniques to obtain matching consistent with up to 10-bit linearity.

Figure 13 (A). Current-Source Array Circuit — VSENSE -Based Control Method


The absolute value of the current-source array output is determined using an off-chip (silicon) reference generator and op amp in a feedback-loop arrangement. In Figure $13(\mathrm{~A})$, the drop across the source degeneration resistors is compared with the level set by the external reference. Under conditions of 1 V peak-to-peak full-scale output swing, the voltage between the $V_{\text {SENSE }}$ and $V_{A A}$ pins of the DAC will be in the range of 0.8 V to 1.1 V , with $\mathrm{V}_{\text {REF }}$ being in the range of 0.7 V to 1.4 V (i.e., $\mathrm{V}_{\text {REF }}$ may lie above or below $V_{\text {SENSE }}$ by several hundred millivolts). Note that, for this control method, the $I_{\text {REF }}$ terminal must be connected to ground.

An alternative means of controlling the current-source array output is shown in Figure 13(B), with the advantage that now the reference current is being sensed after flowing through a path identical to that of the bit and segment currents. Thus, any error which may have occurred due to leakage will be directly corrected. Here, the $\mathrm{V}_{\text {SENSE }}$ pin is left disconnected and the $I_{\text {REF }}$ current flows to ground through a stable
resistor. The value of the resistor should be chosen to drop about 1 volt under the desired operating conditions, but under no circumstances should the voltage at the $\mathrm{I}_{\text {REF }}$ pin be allowed to drop below -1.5 V , or the linear relationship between $\mathrm{I}_{\mathrm{REF}}$ and $\mathrm{I}_{\mathrm{FS}}$ will be degraded.

The primary limitation on the maximum output current is the adjustment range of $\mathrm{V}_{\text {SENSE }}$ : if the value of $\left\{V_{\text {SENSE }}-V_{\text {AA }}\right\}$ exceeds about 1.2 V , the bottom currentsource FETs begin to lose "headroom" by running up against the sources of the cascode transistors, causing the total current to begin limiting, as well as degrading, the linearity. If the designer is willing to accept somewhat degraded linearity and/or slightly higher power dissipation, $V_{A A}$ may be taken down to -6 volts or so, allowing $\mathrm{V}_{\text {REF }}$ to be adjusted to give $\left\{\mathrm{V}_{\text {SENSE }}\right.$ $\left.\mathrm{V}_{\mathrm{AA}}\right\}$ a maximum value of about 1.5 V . This translates to an output current of about 50 mA or 1.25 V peak-topeak into the load. Note that under these conditions, the device will not sustain any damage, but full-spec operation of the DAC is not guaranteed.

Figure 13 (B). Current-Source Array Circuit — I I


## TQ6122

## Application Information

Figure 14 illustrates the basic connection of the DAC, showing details for power supplies, data and clock inputs, and outputs terminated in 50-ohm transmission
line loads. Some issues relating to circuit board layout are also addressed.

Figure 14. Basic DAC Setup


Notes: 1. All resistors to $V_{T T}$ are 50 -ohm, $1 / 8$ Watt, surface-mount, mounted as close to the IC as possible.
2. All $V_{S S}$ and $V_{T T}$ capacitors are rated 15 V . All $V_{A A}$ capacitors are rated 25 V .
3. Use either surface-mount components or keep minimum-length leads on all resistors and capacitors.
4. For best noise isolation, the analog supply ( $V_{A A}$ ) and digital supply $\left(V_{S S}\right)$ should connect at only one point, via decoupling networks such as ferrite beads.
5. The input circuitry for $\overline{B O}-\overline{B 7}, B L A N K$, and SELA are the same as for $\overline{A 0}-\overline{A 7}$.
6. For questions regarding board layout, please contact the factory.

## Power Supplies, Ground and Bypassing

To minimize noise coupling, the digital and analog power supplies should be returned to a single-point ground, and power supply buses to the IC should have minimum impedance (power planes are best).

The supplies themselves should be well bypassed at high and low frequencies, which requires the use of several different parallel capacitors as shown. The values are not particularly critical; however, due to the fact that a capacitor looks inductive above its self-resonant frequency, one needs to use several different values in parallel, ranging from microfarads to nanofarads, in order to provide adequate wideband bypassing.

For best results, use leadless ceramic chip capacitors for bypassing, although leaded components will work satisfactorily if higher noise can be tolerated. A common ground plane has been found to give the best performance.

For best results and minimum noise, the digital and analog supplies should be physically separated on the circuit board. When using a common -5 V feed, the $V_{S S}$ and $V_{A A}$ planes should be isolated by ferrite beads (Fair-Rite P/N 2743001111 or equivalent) as shown in Figure 14. Using separate LM337MT regulators downstream of the ferrite beads will provide better isolation.

## Figure 15. External ECL Reference Generator

## Digital Inputs and Terminations

The TQ6122 DAC is designed to accept ECL logic levels at all data and control inputs. All ECL inputs, with the exception of the clock (see below), are single-ended and are compared to the ECL threshold reference of -1.3 Volts (nominal) in the input buffers of the DAC.

The ECL reference input equivalent circuit is shown in Figure 1. Several options are available to the user for externally setting the ECL reference level. The simplest option is that of a voltage divider between $D_{G N D}$ and $V_{T T}$, setting the ECL termination voltage as shown in Figure $15(\mathrm{~A})$. The nominal value for ECLREF is -1.3 V ; however, due to input offset variations among the input buffers or variations in $\mathrm{V}_{\mathrm{T} \text {, }}$, some adjustment above or below -1.3 V may give the best results.

A good way to settle ECLREF is to slave the ECL reference level to the center (switching) point of the input data signal. This may be accomplished in two ways: either use the $V_{B B}$ generator output of the device which is generating the ECL signals supplied to the DAC, or use an inverter with input and output connected together to generate a level equal to the switching threshold. See Figure 15 (B). Note that the ECLREF generator should be able to source and sink up to approximately 5 mA , since the input resistance is about 50 ohms, against an internal -1.3 V (nominal) voltage source. An additional op amp may be used to give more flexibility or more robust drive. See Figure 15 (C).


## Clock Input

In order to realize the full speed potential of the DAC, a clock with an input swing of at least 1 V peak-to-peak, nominally centered on -1.3 V , is required. The clock may be applied in either single-ended or differential fashion. Because a differential clock provides maximum speed and best control of the relationship between clock and output transitions, as well as minimum noise, it is the preferred solution. For single-ended clock drive, the customer must drive the unused CLOCK input with an external ECL reference level, which may be generated using a resistive divider or, for best results, an external inverter tied back on itself. See Figure 15.

## Input Line Termination

As shown in Figure 14, data, control, and clock inputs should be terminated in 50 ohms to $\mathrm{V}_{\mathrm{T}}$, consistent with good ECL practice. For best results, keep terminations physically small - surface-mount "chip" resistors work very well - and locate them as close to the IC as possible. The $\mathrm{V}_{T T}$ bus should also be locally bypassed to digital ground, using chip capacitors placed close to the terminations. The DAC offers good performance for $-2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{TT}} \leq-2 \mathrm{~V}$, where the use of $V_{T T}<-2 \mathrm{~V}$ may allow the designer to eke out the last bit of performance in a noisy or marginal drive-level environment.

## Current-Source Control Loop

As illustrated previously in Figure 13, and shown in detail in Figure 16, the bit current sources are controlled by placing them in a feedback loop which compares the drop across a current-sensing resistor with a stable reference. For nominal 1 Volt full-scale output swing, the $V_{\text {REF }}-t o-V_{A A}$ voltage will be in the 0.8 to 1 V range, and may be derived from a zener or, better still, a bandgap reference such as the 2.5 V Motorola MC1403A. The output of the bandgap
reference will have to be divided down before being applied to the control op amp, and some means should be provided to trim the output to compensate for $\mathrm{V}_{\text {OUT }}$ load resistor variations.

The op amp must have input common-mode and output drive ranges which extend down to within at least 0.5 Volt of the negative rail for maximum control range. For best noise immunity, both the reference generator and the op amp should share a point connection to the $\mathrm{V}_{\mathrm{AA}}$ rail, close to the DAC. The Motorola MC33071 op amp is suitable for this application. Standard linear design techniques should be used to minimize thermal drift and offset. Note that the temperature coefficient of the nichrome resistors used in the DAC is on the order of $+6 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Figure 16 shows a typical reference control loop circuit.

Fig. 16. Typical External Current-Source Control Loop


Figure 17 illustrates the relationship between control input $V_{\text {REF }}$ and the full-scale output swing. Note that the full-scale swing may be reduced below 0.25 V peak-topeak by pulling $V_{\text {REF }}$ below $V_{A A}$. However, this necessitates a separate negative supply for the control
op amp and reference generator, which may decrease the $\mathrm{V}_{\mathrm{AA}}$ supply rejection. In circuits which use different negative rails for the DAC $V_{A A}$ supply and the op amp, $V_{\text {REF }}$ should be clamped to no more than two diode drops below $\mathrm{V}_{\mathrm{AA}}$, and a current-limiting resistor should be included at either the op amp output or between its negative supply input and supply input. In the event of turn-on transients and large excursions in the op amp supply before $\mathrm{V}_{\mathrm{AA}}$ has settled out, these precautions will help prevent breakdown of circuitry within the DAC.

Figure 17. Typical $V_{\text {REF }}-$ to $^{-} V_{A A}$ Transfer Characteristics


## Full-Scale Output Adjust

The procedure for setting the full-scale output range is quite straightforward, and involves monitoring the output level(s) using a DVM. With the DAC connected to its actual $V_{\text {OUT }}$ and $\overline{V_{\text {OUT }}}$ load(s), the output is alternately switched between steady state zero- and full-scale levels, and the reference is adjusted until the desired full-scale transition amplitude is obtained. The clock must be running and the BLANK input set to " 0 ". Alternatively, for a DDS application, a spectrum analyzer or a power meter may be used to monitor the full-scale output power.

## Blanking Current Programming

The blanking current (IBLANK in Figure 13) is turned off by connecting the BLANK_DISABLE pin to $\mathrm{A}_{\mathrm{GND}}$ to divert the current away from the blank switch and the output of the DAC, and turned on by connecting BLANK_DISABLE to $\mathrm{V}_{\text {AA }}$.

## Output Equivalent Circuit

Figure 5 illustrates the equivalent circuit of the two DAC outputs. Each of the bit current sources is switched into either the $V_{\text {OUT }}$ or the $\overline{V_{\text {OUT }}}$ output, depending on the data stored in the slave latches. A pair of internal 50-ohm resistors are connected from $V_{\text {OUT }}$ and $\overline{V_{\text {OUT }}}$ to analog ground ( $A_{G N D}$ ), and provide reverse termination for the analog output transmission lines. Although in principle there is no restriction on the load impedance applied at the outputs, in practice, the best performance will be obtained when driving a 50 -ohm terminated transmission line. This is very important from a settling standpoint, since reflections from non-50-ohm loads will superimpose with new transitions and interfere with settling. The general rule for terminating the outputs is "the cleaner, the better."

## Output Zero-Scale Adjust

The output baseline, or "zero-scale" level, may be adjusted by returning the far-end termination resistors to a well-bypassed supply level other than ground. For this general situation, reference Figure 5, the instantaneous output voltages $\mathrm{V}_{\text {OUT }}$ and $\overline{V_{\text {OUT }}}$ are given by:

$$
\begin{gathered}
V_{\text {OUT }}=V_{\text {OS }}\left(\frac{R_{T 1}}{R_{L 1}+R_{T 1}}\right)-\left|I_{\text {OUT }}\right|\left(R_{L 1}| | R_{T 1}\right) \\
\overline{V_{\text {OUT }}}=V_{\text {OS }}\left(\frac{R_{T 2}}{R_{L 2}+R_{T 2}}\right)-\left|\overline{I_{\text {OUT }}}\right|\left(R_{L 2}| | R_{T 2}\right) \\
I_{\text {OUT }}=\left(\frac{\text { Digital Input }}{255}\right) I_{\mathrm{FS}} \\
\overline{I_{\text {OUT }}}=\left(1-\frac{\text { Digital Input }}{255}\right) I_{\mathrm{FS}}
\end{gathered}
$$

$I_{F S}=$ Summation of all individual bit currents Digital Input = Decimal equivalent of the binary input word

## TQ6122

For the case of $\mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{T} 1}=\mathrm{R}_{\mathrm{T} 2}=50$ ohms, $\mathrm{V}_{0 \mathrm{~S}}$ is attenuated by $50 \%$. An overriding factor in setting the output offset is the requirement that $\mathrm{V}_{\text {OUT }}$ and $\overline{\mathrm{V}_{\text {OUT }}}$ always remain within the device's output compliance range of -1.5 V to +1 V . Note also that in the case of the video application of the DAC, the value of the blanking current I IBLANK and the state of the BLANK input must be included in the expressions for $V_{O U T}$ and $\overline{V_{\text {OUT }}}$.

An alternative method of offsetting the output involves injecting an offset current at the output. This may be done using a current source in the form of either a resistor or a transistor as shown in Figure 18(A). The resistor has the advantage of minimizing perturbation of the transmission line impedance, with the

Figure 18(A). Alternate Output Offset Current Generators

disadvantage of requiring a large supply voltage. In general, a $1 / 8$ to $1 / 4 \mathrm{~W}$ carbon-composition resistor with a value of 500 to 1000 ohms will give good performance. Keep the lead lengths short when attaching to the circuit board and bypass the driven terminal of the resistors with a 1000 pF to $0.01 \mu \mathrm{~F}$ SMT (surfacemount) capacitor network to the ground plane.

A transistor current source, on the other hand, requires much less power supply overhead, but adds more capacitance to the transmission line. If a transistor is used, it should be a high- $F_{T}$ device with low $C_{C B}$ or $C_{D G}$ ( 0.5 pF , if possible) and installed with short leads.

Capacitive coupling provides a means of obtaining an output centered on 0 volts. However, simply adding a coupling capacitor at one (or both) of the outputs will cause the DC output level to exceed the -1.5 V output compliance limit. The way to circumvent this problem is to add an offset current between the DAC output and the coupling capacitor (as discussed above), or to add a low-loss 50 -ohm pad between the DAC and the capacitor, as shown in Figure 18(B). A "T" or " $\pi$ " attenuator topology is acceptable, having 1 dB to 3 dB of attenuation. The characteristic impedance must be consistent with the overall system impedance, typically 50 ohms. This approach works, although the lower limit on the output level tends to be very close to the -1.5 V compliance limit for 1 V full-scale output swings, so some care and verification will be required.

Figure 18(B). AC Coupling of Outputs


## Typical AC Performance

Figures 19 through 23 show typical AC performance of the TQ6122. Figures 19A and 19B illustrate the response of the DAC to an unmultiplexed counter input at $1 \mathrm{Gs} / \mathrm{s}$ and $1.5 \mathrm{Gs} / \mathrm{s}$, respectively. Blanking is enabled in both cases.

The small glitches appearing at $1 / 8$ of full-scale intervals are shown in more detail in Figure 22.

Figure 19 (A). Unmuxed Ramp at $1000 \mathrm{Ms} / \mathrm{s}$ with Blanking (Guaranteed, 0 to $+85^{\circ} \mathrm{C}$ )


Figure 19(B). Unmuxed Ramp at $1500 \mathrm{Ms} / \mathrm{s}$ with Blanking (Typical, $+25^{\circ} \mathrm{C}$ )


Figure 20(A). Muxed Ramp at $1000 \mathrm{Ms} / \mathrm{s}$ with Blanking

Multiplexed behavior is shown in Figure 20A and 20B, with a counter input muxed against fixed levels at $1000 \mathrm{Ms} / \mathrm{s}$ and at $1350 \mathrm{Ms} / \mathrm{s}$, respectively.

In Figure 20A, the ramp is muxed against a steady state mid-scale value, while in Figure 20B, the steady state input is 11111111 . The apparent droop in the top level in Figure 20B is an artifact of the sampler.

Figures 19A, 19B, and 20A show the effects of blanking, while in Figure 20B, the BLANK input is held LOW, demonstrating the repetitive nature of the waveform.


Note: In Figure 20(A), AO-A7 are switched, BO-B6 are LOW, B7is HIGH and BLANK is switched. In Figure 20(B), $A 0-A 7$ are switched, B0-B7 are HIGH, and BLANK is LOW.

Figure 20(B). Muxed Ramp at 1350 Ms/s with Blanking Disabled


Figure 21. Typical Full-Scale Transitions at $V_{\text {OUT }}$ and $\overline{V_{\text {OUT }}}\left(f_{\text {CLK }}=1000 \mathrm{MHz}\right)$


Figure 22. Typical Worst-Case Glitch Impulse ( $f_{\text {CLK }}=1000 \mathrm{MHz}$ )


Figure $23(\mathrm{~A})$ shows a $1 \mathrm{Gs} / \mathrm{s}, 58.6 \mathrm{MHz}$ sine wave, and Figure 23B shows its corresponding spectrum. The spurious-free dynamic range is 46 dBc , a typical value for the device.

In Figure 23(B), the DAC output is attenuated by 6 dB going into a spectrum analyzer.

Figure 23(A). Synthesized Sine Wave Output


Figure 23(B). Spectrum of a 58.5 MHz Sine Wave at $1 \mathrm{Gs} / \mathrm{s}$


Figure 24. Complex Modulated Sine Wave Pattern at $1000 \mathrm{Mb} / \mathrm{s}$

Figure 24 shows a modulated sine wave as an example of a more complex waveform.


Figure 25. Chip Dimensions, Topography, and Padout


DIE SIZE: $\mathbf{1 2 9}$ Mils $\times 111$ Mils ( $\mathbf{3 1 1 0 ~} \mu \mathrm{M} \times \mathbf{2 6 6 0} \mu \mathrm{M}$ )

Figure 26. Package Labelling (44-pin packaged version)
See Figures 10, 11 and 12 for package dimensions and heat-sink mounting information.


| Component | Material |
| :--- | :--- |
| Lead | Kovar |
| Lead Plating | Lead/tin alloy |

## Ordering Information

TQ6122-M
8-bit, 1 Gs/s DAC in 44-pin package
TQ6122-D
8 -bit, 1 Gs/s DAC, die only

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

## TQ6124

## 1 Gigasample/sec, 14-bit Digital-to-Analog Convertor

## Features

- 1 Gs/s aggregate BW
- 14-bit resolution
- RF front end
- ECL-compatible inputs
- 0.026\% DC differential non-linearity
- 0.035\% DC integral non-linearity
- SFDR: $52 \mathrm{dBc} @ F_{\text {OUt }}=75 \mathrm{MHz}$

$$
48 \mathrm{dBc} @ F_{\text {OUT }}=148 \mathrm{MHz}
$$

$$
45 \mathrm{dBc} @ F_{\text {OUT }}=199 \mathrm{MHz}
$$

- 1.4 W power dissipation
- 44-pin ceramic QFP package or die only


## Applications

## - Direct Digital Synthesis

- Pixel generation for workstations and high-end monitors
- Direct-generation of broadband video for cable TV
- High-speed arbitrary waveform generators


## Functional Description

The TQ6124 registers incoming bits in a master latch array. The value of the four most-significant bits is encoded into an n-of-15 thermometer code while the ten low-order bits pass though an equalizing delay stage. All 25 bits are re-registered in a 25 -wide slave latch array which drives a set of 25 differential pair switches. These switches steer the corresponding segment and bit currents into the true $\left(\mathrm{V}_{0}\right)$ and complementary ( $\mathrm{NV}_{0}$ ) outputs. This architecture minimizes glitch impulses by eliminating large mid-scale current transitions.

The most-significant bits generate the segment currents, which are of equal weight at $1 / 16$ of the fullscale output ( $l_{\text {FS }}$ ). The ten lower-order bits are divided into two subgroups. The three intermediate bits steer
binary-weighted currents of magnitude $\mathrm{I}_{\mathrm{FS}} / 32, \mathrm{I}_{\mathrm{FS}} / 64$ and $\mathrm{I}_{\mathrm{FS}} / 128$ to the outputs. The seven least-significant bits steer identical $\mathrm{I}_{\mathrm{FS}} / 128$ currents into a differential R-2R ladder to generate effective bit currents of $\mathrm{I}_{\mathrm{FS}} / 256$ to $\mathrm{I}_{\mathrm{FS}} / 16384$. The DAC output is the sum of the outputs of the segments and the low-order bits.

Clock and data inputs are ECL-compatible. The outputs are designed to operate into a 50 load, with internal reverse termination to ground being provided by the R-2R network.

External compensation is utilized to minimize the effects of device mismatch. An external op amp senses the sum of the segment, the intermediate bit, and the LSB currents.

Figure 2. TQ6124 Currents
Segments 1 thru 15


To switches for D0 thru D9


## TQ6124

## Electrical Specifications

Table 1. Recommended Operating Conditions

| Symbol | Parameter | Min. | Nom. | Max. | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $V_{S S}$ | Negative Power Supply | -5.25 | -5.0 | -4.75 | V |
| $\mathrm{~V}_{A A}$ | Analog Power Supply | -15.5 | -12 | -11.5 | V |
| $T_{C}$ | Case Temperature | -20 |  | 85 | ${ }^{\circ} \mathrm{C}$ |

## Table 2. DC Operating Characteristics

Unless otherwise specified, measured over Recommended Operating Conditions with balanced 50 loads, $V_{\text {FS }}=1.0 \mathrm{~V}$.

| Symbol | Parameter | Condition | Min. | Nom. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {AA }}$ | $\mathrm{V}_{\text {AA }}$ Supply Current |  |  | -75 | -90 | mA |
| $\mathrm{I}_{\text {SS }}$ | $\mathrm{V}_{\text {SS }}$ Supply Current |  |  | -285 | -450 | mA |
| $\mathrm{V}_{\text {REF }}$ | Reference Voltage |  | $\mathrm{V}_{\text {AA }}+2.5$ | $\mathrm{V}_{\text {AA }}+3.0$ | $\mathrm{V}_{\mathrm{AA}}+3.75$ | V |
| $\mathrm{I}_{\text {REF }}$ | Reference input current |  | -25 |  | 25 | mA |
| $\mathrm{V}_{\text {IH }}$ | ECL Input High Voltage | $V_{\text {EREF }}=-1.3 \mathrm{~V}$ | -1.1 |  | -0.6 | V |
| $\mathrm{V}_{\text {IL }}$ | ECL Input Low Voltage | $V_{\text {EREF }}=-1.3 \mathrm{~V}$ | -2.5 |  | -1.5 | V |
| $I_{1}$ | ECL Input Current |  | -25 |  | 25 | mA |
| $\mathrm{V}_{\text {EREF }}$ | ECL Reference Voltage | $V_{S S}=-5.0 \mathrm{~V}$ |  | -1.34 |  | V |
| $\mathrm{R}_{\text {EREF }}$ | ECL Reference Resistance |  |  | 400 |  | ohms |
| DNL | Differential non-linearity | (Note 2) | -0.05 | 0.026 | 0.05 | \%F.S. |
| INL | Integral non-linearity | (Note 2) | -0.05 | 0.035 | 0.05 | \%F.S. |
|  | Full-scale symmetry | (Note 1) | -8 | 2 | 8 | mV |
| $\mathrm{V}_{\text {FS }}$ | Full-scale output voltage | $\mathrm{R}_{\mathrm{L}}=50$ ohms |  | -1.0 | -1.125 | V |
| $\mathrm{R}_{\text {OUT }}$ | $\mathrm{V}_{0}, \mathrm{NV}_{0}$, output resistance |  | 44 | 50.9 | 57 | ohms |
|  | $\mathrm{R}_{\text {Out }}$ Matching |  | -2.5 | 0.15 | 2.5 | \% |
| $\mathrm{V}_{0}, \mathrm{NV}_{0}$ | Output Voltage |  | -1.125 |  | 0 | V |
| $\mathrm{V}_{\text {z }}$ | Zero Scale Voltage |  | -50 | -40 | 0 | mV |
| $\mathrm{V}_{\text {SENSE }}$ | Sense output voltage |  | $\mathrm{V}_{\mathrm{AA}}+2.5$ |  | $\mathrm{V}_{\mathrm{AA}}+3.75$ | V |
| $\theta_{\mathrm{JC}}$ | Thermal Impedance |  |  | 15 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Notes: 1. Full-scale symmetry is a measure of the balance between $V_{0}$ and $N V_{0}$. For a full-scale output transition, the change in $V_{0}$ will match the change in $N V_{0}$ to within the specified amount. Any imbalance in the output loads will affect symmetry.
2. Linearity can interpreted as 10 bits at $1 / 2$ LSB or as 11 bits at 1 LSB. The device is monotonic to 10 bits. Linearity is tested with the Mid_trim set for optimal DNL, with the LSB_trim pin open.

## Table 3. AC Operating Characteristics

Unless otherwise noted, measured over DC operating characteristics with balanced 50 loads, $\mathrm{V}_{\mathrm{FS}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, input rise and fall times 300 ps .

| Symbol | Parameter | Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\text {CLK }}$ | Clock Frequency |  | 50 |  | 1000 | MHz |
| $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | At full scale | $10 \%$ to $90 \%$ |  |  | 350 | ps |
| $\mathrm{t}_{\mathrm{DS}}$ | Data Setup Time |  | 200 |  |  | ps |
| $\mathrm{t}_{\mathrm{DH}}$ | Data Hold Time |  | 300 |  | ps |  |
| $\mathrm{t}_{\text {CLKHI }}$ | Clock High Time |  | 400 |  | ps |  |
| $\mathrm{t}_{\text {CLKLO }}$ | Clock Low Time |  | 400 |  | ps |  |
| SFDR $^{*}$ | Spurious free dynamic range | $\mathrm{F}_{\text {OUT }}=75 \mathrm{MHz}$ | 45 | 52 |  | dBC |
|  |  | $\mathrm{F}_{\text {OUT }}=148 \mathrm{MHz}$ | 45 | 52 | dBc |  |
|  |  | $\mathrm{F}_{\text {OUT }}=199 \mathrm{MHz}$ | 45 | 49 | dBC |  |

*Note: SFDR testing performed at $F_{C L K}=600 \mathrm{MHz}$ only.

Table 4. Absolute Maximum Ratings

| Symbol | Parameter | Min. | Max. | Unit |
| :--- | :--- | :---: | :---: | :---: |
| $V_{S S}$ | Digital Supply | -7.0 |  | V |
| $\mathrm{~V}_{\text {AA }}$ | Analog Supply | -16.0 |  | V |
| $\mathrm{~V}_{0}, \mathrm{NV}_{0}$ | Analog Output Voltage | -2.0 | 2.0 | V |
| $\mathrm{~V}_{1}$ | Digital Input Voltage | $\mathrm{V}_{\text {SS }}-0.5$ | +0.5 | V |
| I | Digital Input Current | -1.0 | +1.0 | mA |
| $\mathrm{~V}_{\text {REF }}$ | Reference Voltage | $\mathrm{V}_{\text {AA }}-2$ | 0 | V |
| $\mathrm{I}_{\text {REF }}$ | Reference Current | -1 | 1 | mA |
|  | Power Dissipation |  | 5 | W |
| $\mathrm{~T}_{\text {STG }}$ | Storage Temperature | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{J}}$ | Operating Junction Temperature |  | 150 | ${ }^{\circ} \mathrm{C}$ |

Note: Absolute Maximum Ratings are those beyond which the integrity of the device cannot be guaranteed. If the device is subjected to the limits in the absolute maximum ratings, its reliability may be impaired. The Electrical Specifications tables provide conditions for actual device operation.

## AC Timing

The low-going transition of CLK latches the data. Production SFDR testing is performed with the clock transitioning in the center of the data eye. The timing of the clock transition with respect to the data can improve SFDR performance. Systems working to optimize SFDR can 'tune' this phase relationship to optimize the desired characteristic.

## Operating Notes

## Current Source Control Loop

The full scale output voltage is set through the use of an external op amp, as shown in Figure 4. Nominal full scale output voltage can be achieved by using a voltage source. With this, control voltages on the op amp of

Figure 3. AC Timing Relationships

around $\mathrm{V}_{\mathrm{AA}}+3 \mathrm{~V}$ can be set. Adjusting the full scale output voltage can be achieved by toggling the inputs over full scale while adjusting the control voltage to achieve the desired level.

Figure 4. Adjusting the Full-Scale Output Voltage

## $\mathbf{V}_{\text {REF }}$ Adjustment Range

The output full scale voltage range can be set through the $V_{\text {REF }}$ input. Figure 5 shows the approximate relationship between $V_{\text {REF }}$ and $V_{\text {FS }}$.

Figure 5. Full-Scale Output Voltage vs. VREF


## Operating Notes (continued)

## Power Supplies

Optimized performance depends on clean supplies.
Utilize very low impedance negative supplies that are decoupled over a wide frequency range. The analog and digital grounds should be isolated at the chip, connecting to a single point ground on the circuit board.

## ECL Reference

The single-ended data inputs switch against an internal reference of -1.3 V (nominal). Variations among input
buffers, or in $\mathrm{V}_{T T}$, may benefit from adjustments in the reference. The ECL reference pin may be driven externally. Its equivalent load is 400 ohms to -1.3 V (nominal).

## Trim Adjustments

The external trim adjustments for the midrange bits and the LSBs is optional. Trimming is performed by monitoring the attribute of greatest concern (INL, DNL, Spurious levels) while minimizing the unwanted effects. Trim inputs should be left open if not used.

## Signals

Figure 6. TQ6124 Pinout


Table 5. Signal-Pin Descriptions

| Signal | Pin(s) | Description |
| :--- | :--- | :--- |
| DGND | $6,7,8,28,29,37,40$ | Ground connection for digital circuitry. |
| AGND | $13,15,18,19$ | Ground connection for analog circuitry. |
| $\mathrm{D}_{0}$ thru $\mathrm{D}_{13}$ | $30,31,32,35,36,38,39$, <br> $41,42,43,2,3,4,5$ | Data inputs. $\mathrm{D}_{0}$ is the least significant bit. ECL levels. |
| $\mathrm{V}_{0}$, NV $_{0}$ | 17,16 | True and complementary analog outputs. |
| CLK, NCLK | 9,10 | True and complementary clock inputs. ECL levels. |
| $\mathrm{I}_{\text {REF }}$ | 14 | Connect to AGND. Source of dummy currents in the switch array. |
| $\mathrm{V}_{\text {SENSE }}$ | 20 | Sense Output. |
| $\mathrm{V}_{\text {REF }}$ | 21 | Reference Input. |
| $\mathrm{V}_{\text {SS }}$ | $1,11,12,33,34,44$ | Digital negative power supply. |
| $\mathrm{V}_{\text {AA }}$ | $22,23,24$ | Analog negative power supply. |
| Mid_trim | 25 | Trim terminal for mid range bits. |
| LSB_trim | 26 | Trim terminal for LSB range bits. |
| ECLref | 27 | Optional ECL reference level adjustment. Thevinin equivalent is 1.3V |

## Typical Performance Data

The graph in Figure 7 shows representative performance data of spurious free dynamic range (SFDR) vs. output frequency performance measured from TQ6124 devices.

Data was collected at room temperature; note, however, that SFDR is not strongly dependendent on temperature. Optimum performance is obtained by utilizing as high a clock rate as practical.

Figure 7. SFDR vs. Output Frequency


## Packaging

Figure 8. 44-pin QFP Package Dimensions

Top View


## Section A-A



## Ordering Information

TQ6124-CM 1 GS/s 14-bit DAC in 44-pin ceramic QFP
TQ6124-CD 1 GS/s 14-bit DAC — die only
ETF6124 Engineering Test Fixture with TQ6124 device

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^8]
## Section 6 - System Timing Products

GA1085 11-Output Configurable Clock Buffer ..... 6-3
GA1086 111-Output Configurable Clock Buffer ..... 6-13
GA1087 11-Output Configurable Clock Buffer ..... 6-25
GA1088 11-Output Configurable Clock Buffer ..... 6-35
GA1110E Multi-Phase Clock Buffer ..... 6-45
GA1210E Clock Doubler/Two-Phase Generator ..... 6-59
TQ1089 11-Output Configurable Clock Buffer ..... 6-71
TQ1090 11-Output Configurable Clock Buffer ..... 6-81
TQ2059 High-Frequency Clock Generator ..... 6-91
TQ2060 High-Frequency Clock Generator ..... 6-97
TQ2061 High-Frequency Clock Generator ..... 6-103

Figure 1. Block Diagram


TriQuint's GA1085 is a configurable clock buffer which generates 11 outputs and operates over a wide range of frequencies-from 24 MHz to 105 MHz . The outputs are available at either $1 x$ and $2 x$ or at $1 x$ and $1 / 2 x$ the reference clock frequency, $\mathrm{f}_{\text {REF }}$. When one of the Group A outputs (Q4-Q8) is used as feedback to the PLL, all Group A outputs will be at $f_{\text {REF }}$, and all Group B (Q0-Q3) and Group C (Q9, Q10) outputs will be at $\frac{1}{2} \times f_{\text {REF }}$. When one of the Group B outputs is used as feedback to the PLL, all Group A outputs will be at $2 x_{\text {REF }}$ and all Group $B$ and Group $C$ outputs will be at $f_{\text {REF }}$. The Shift Select pins select the phase shift ( $-2 \mathrm{t},-\mathrm{t},+\mathrm{t}$ or +2 t ) for Group C outputs (Q9, Q10) with respect to REFCLK. The phase shift increment ( t ) is equivalent to the VCO's period ( $1 / \mathrm{f}_{\mathrm{Vco}}$ ).

A very stable internal Phase-Locked Loop (PLL) provides low-jitter operation. This completely self-contained PLL requires no external capacitors or resistors. The PLL's Voltage-Controlled Oscillator (VCO) has a frequency range from 280 MHz to 420 MHz . By feeding back one of the output clocks to FBIN, the PLL continuously maintains frequency and phase synchron-ization between the reference clock (REFCLK) and each of the outputs.

TriQuint's patented output buffer design delivers a very low output-to-output skew of 150 ps (max). The GA1085's symmetrical TTL outputs are capable of sourcing and sinking 30 mA .

## GA1085

## 11-Output Configurable Clock Buffer

## Features

- Wide frequency range: 24 MHz to 105 MHz
- Output configurations:

Four outputs at $f_{\text {REF }}$
Four outputs at $f_{\text {REF }} / 2$
Two outputs at $f_{\text {REF }} / 2$
with adjustable phase
or
Five outputs at $2 \times f_{\text {REF }}$ Three outputs at $f_{\text {REF }}$ Two outputs at $f_{\text {REF }}$ with adjustable phase

- Selectable Phase Shift: $-2 t,-t$, $+t$, and $+2 t\left(t=1 / f_{V C O}\right)$
- Low output-to-output skew: 150 ps (max) within a group
- Near-zero propagation delay: -350 ps $\pm 1000$ ps (max)
- TTL-compatible with 30 mA output drive
- 28-pin J-lead surface-mount package


## Functional Description

The core of the GA1085 is a Phase-Locked Loop (PLL) that continuously compares the reference clock (REFCLK) to the feedback clock (FBIN), maintaining a zero frequency difference between the two. Since one of the outputs (Q0-Q8) is always connected to FBIN, the PLL keeps the propagation delay between the outputs and the reference clock within $-350 \mathrm{ps} \pm 1000 \mathrm{ps}$.

The internal Voltage-Controlled Oscillator (VCO) has an operating range of 280 MHz to 420 MHz . The combination of the VCO and the Divide Logic enables the GA1085 to operate between 24 MHz and 105 MHz . The device features six divide modes: $\div 4, \div 5, \div 6, \div 8$, $\div 10$, and $\div 12$. The Frequency Select pins, F0 and F1, and the output used as feedback to FBIN set the divide mode as shown in Table 1.

The Shift Select pins, S0 and S1, control the phase shift of Q9 and Q10 relative to the other outputs. The user can select from four incremental phase shifts as shown in Table 2.

The phase-shift increment (t) is calculated using the following equation:

$$
t=\frac{1}{\left(f_{\text {REF }}\right)(n)}
$$

where $n$ is the divide mode.

In the test mode, the PLL is bypassed and REFCLK is connected directly to the Divide Logic block via the MUX, as shown in Figure 1. This mode is useful for debug and test purposes. The various test modes are outlined in Table 3. In the test mode, the frequency of the reference clock is divided by 4,5 , or 6 .

The maximum rise and fall time at the output pins is 1.4 ns. All outputs of the GA1085 are TTL-compatible with 30 mA symmetric drive and a minimum $\mathrm{V}_{\mathrm{OH}}$ of 2.4 V .

## Power-Up/Reset Synchronization

After power-up or reset, the PLL requires time before it achieves synchronization lock. The maximum time required for synchronization (TSYNC) is 500 ms .

## Table 1. Frequency Mode Selection

Feedback: Any Group A Output (Q4-Q8)

| Test | $\begin{gathered} \text { Select Pins } \\ \text { FO } \\ \hline \end{gathered}$ | F1 | Mode | Reference Clock Frequency Range | Output Frequency Range |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $\div 4$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ |
| 0 | 0 | 0 | $\div 5$ | $56 \mathrm{MHz}-84 \mathrm{MHz}$ | $56 \mathrm{MHz}-84 \mathrm{MHz}{ }^{1}$ | $28 \mathrm{MHz}-42 \mathrm{MHz}$ |
| 0 | 0 | 1 | $\div 6$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ |
| 0 | 1 | 1 | Not Used | N.A. | N.A. | N.A. |

Feedback: Any Group B Output (QO-Q3)

| Test | Select Pins FO | F1 | Mode | Reference Clock Frequency Range | Output Freq Group A: Q4-Q8 | ency Range <br> B: Q0-03, C: Q9-010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $\div 8$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ |
| 0 | 0 | 0 | $\div 10$ | $28 \mathrm{MHz}-42 \mathrm{MHz}$ | $56 \mathrm{MHz}-84 \mathrm{MHz}{ }^{1}$ | $28 \mathrm{MHz}-42 \mathrm{MHz}$ |
| 0 | 0 | 1 | $\div 12$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ |
| 0 | 1 | 1 | Not Used | N.A. | N.A. | N.A. |

Note: 1. This mode produces outputs with 40/60 duty cycle for Q4-Q8 only.

Table 2. Phase Shift Selection

| $\boldsymbol{S O}$ | $\boldsymbol{S 1}$ | Phase Difference (a9, Q10) |
| :---: | :---: | :---: |
| 0 | 0 | +2 t |
| 0 | 1 | +t |
| 1 | 0 | -t |
| 1 | 1 | -2 t |

Table 3. Test Mode Selection

| Test | FO | $F 1$ | Mode | Ref. Clock | Group A: Outputs Q4-08 | $\begin{gathered} \text { Groups B, C: } \\ \text { a0-a3, 09, a10 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\div 4$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \div 4$ | $\mathrm{f}_{\text {REF }} \div 8$ |
| 1 | 0 | 0 | $\div 5$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \div 5$ | $\mathrm{f}_{\text {REF }} \div 10$ |
| 1 | 0 | 1 | $\div 6$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \div 6$ | $\mathrm{f}_{\text {REF }} \times 12$ |
| 1 | 1 | 1 | - | - | - | - |

## Layout Guidelines

Multiple ground and power pins on the GA1085 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. TriQuint recommends bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 2 shows the recommended power layout for the GA1085. The bypass capacitors should be located on the same side of the board as the GA1085. The V $\mathrm{V}_{\mathrm{DD}}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple through-holes connect this small surface plane to an inner-layer ground plane. The capacitors (C1-C5) are $0.1 \mu \mathrm{~F}$. TriQuint's test board uses X7R temperaturestable capacitors in 1206 SMD cases.

Figure 2. Top Layer Layout of Power Pins (magnified approximately 3.3x)


## GA1085

## Absolute Maximum Ratings ${ }^{1}$

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied ${ }^{2}$ | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $(\mathrm{V}$ DD +0.5$) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

DC Characteristics $\quad\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Description | Test Conditions | Min ${ }^{3}$ | Typ | Max ${ }^{3}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OHT}}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} I_{O H}=-30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ | 2.4 | 3.4 |  | V |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} I_{O H}=-1 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ | 3.2 | 4.1 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\operatorname{Min} \mathrm{I}_{\mathrm{OL}}=30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  | 0.27 | 0.5 | V |
| $\mathrm{V}_{\mathrm{IH}}{ }^{4}$ | Input HIGH level | Guaranteed input logical HIGH voltage for all Inputs | 2.0 |  |  | V |
| $V_{\text {IL }}{ }^{4}$ | Input LOW level | Guaranteed input logical LOW voltage for all inputs |  |  | 0.8 | V |
| $\mathrm{I}_{1 /}$ | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -156 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{5}$ | Power supply current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$ |  | 119 | 160 | mA |
| $\mathrm{V}_{1}$ | Input clamp voltage | $V_{D D}=\operatorname{Min} \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}}{ }^{6}$ | Input capacitance | $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 |  | pF |

Notes:

1. Exceeding these parameters may damage the device.
2. Maximum ambient temperature with device not switching and unloaded.
3. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
4. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
5. This parameter is measured with device not switching and unloaded.
6. These parameters are not $100 \%$ tested, but are periodically sampled.

AC Characteristics $\quad\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 3) ${ }^{1}$ | Min Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {cPWH }}$ | CLK pulse width HIGH | Figure 4 | 3 | - | ns |
| $\mathrm{t}_{\text {cPWL }}$ | CLK pulse width LOW | Figure 4 | 3 | - | ns |
| $\mathrm{t}_{\mathrm{R}}$ | Input rise time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) |  | - - | 2.0 | ns |
| Output Clocks (00-010) |  |  |  |  |  |
| $\mathrm{t}_{0 \mathrm{R},} \mathrm{t}_{0}$ | Rise/fall time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) | Figure 4 | 350 - | 1400 | ps |
| $\mathrm{tpD}^{2}$ | CLK î to FBIN Î (GA1085-MC1000) | Figure 4 | -1350-350 | +650 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (within group) | Figure 5 | 60 | 150 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, aligned) | Figure 6 <br> (skew2 takes into account skew1) | - 75 | 350 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall <br> (group-to-group, non-aligned) | Figure 7 <br> (skew3 takes into account skew1, skew2) |  | 650 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-fall, fall-rise | Figure 8 <br> (skew4 takes into account skew3) | - - | 1200 | ps |
| $\mathrm{tcrc}^{4}$ | Duty-cycle Variation | Figure 4 | -1000 0 | +1000 | ps |
| $\mathrm{t}_{\mathrm{J} P}{ }^{5}$ | Period-to-Period Jitter | Figure 4 | 80 | 200 | ps |
| $\mathrm{t}_{\mathrm{JR}}{ }^{5}$ | Random Jitter | Figure 4 | - 190 | 400 | ps |
| $\mathrm{t}_{\text {SYNC }}{ }^{6}$ | Synchronization Time |  | - 10 | 500 | $\mu \mathrm{s}$ |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V$)$.
2. The PLL maintains alignment of CLK and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically 50/50. The delay $t_{P D}$ is measured at the 1.5 V level between CLK and FBIN.
3. Skew specifies the width of the window in which outputs switch, and is measured at 1.5 V .
4. This specification represents the deviation from $50 / 50$ on the outputs.
5. Jitter specifications refer to peak-to-peak value. $t_{J R}$ is the jitter on the output with respect to the reference clock. $t_{J p}$ is the jitter on the output with respect to the output's previous rising edge.
6. $t_{\text {SYNC }}$ is the time required for the PLL to synchronize; this assumes the presence of a CLK signal and a connection from one of the outputs to FBIN.

Figure 3. AC Test Circuit


## GA1085

## Switching Waveforms

Figure 3. General Timing


Figure 4. $\boldsymbol{t}_{\text {SKEW }}$


Figure 5. $\boldsymbol{t}_{\text {SKEW2 }}$

Group B


Figure 6. $\boldsymbol{t}_{\text {SKEW }}$
(For Group B Feedback)

(For Group A or B Feedback)


Note:" $n$ " is the phase-shift increment: $2 t, t,-t,-2 t$.

Figure 7. $\boldsymbol{t}_{\text {SKEW4 }}$
 $\frac{f=2 \times f_{\text {REF }}}{\text { Group } A}$

$t_{\text {SKEW4 }}=\left|\frac{\text { Period }}{2}-t_{2}\right|=\left|\frac{\text { Period }}{4}-t_{3}\right|=\left|\frac{\text { Period }}{4}-t_{4}\right|$

## GA1085

## 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions are in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :---: |
| 1 | GND | Ground | - |
| 2 | Q9 | Output Clock 9 (C1) | 0 |
| 3 | Q10 | Output Clock 10 (C2) | 0 |
| 4 | VDD | +5 V | - |
| 5 | GND | Ground | - |
| 6 | F0 | Frequency Select 0 | I |
| 7 | F1 | Frequency Select 1 | I |
| 8 | S0 | Shift Select 0 | I |
| 9 | REFCLK | Reference Clock | I |
| 10 | S1 | Shift Select 1 | I |
| 11 | FBIN | Feedback In | I |
| 12 | TEST | Test | I |
| 13 | VDD | +5 V | - |
| 14 | Q0 | Output Clock 0 (B1) | 0 |


| Pin\# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :---: |
| 15 | GND | Ground | - |
| 16 | Q1 | Output Clock 1 (B2) | 0 |
| 17 | Q2 | Output Clock 2 (B3) | 0 |
| 18 | VDD | +5 V | - |
| 19 | GND | Ground | - |
| 20 | Q3 | Output Clock 3 (B4) | 0 |
| 21 | Q4 | Output Clock 4 (A1) | 0 |
| 22 | VDD | +5 V | - |
| 23 | Q5 | Output Clock 5 (A2) | 0 |
| 24 | Q6 | Output Clock 6 (A3) | 0 |
| 25 | GND | Ground | - |
| 26 | VDD | +5 V | - |
| 27 | Q7 | Output Clock 7 (A4) | 0 |
| 28 | Q8 | Output Clock 8 (A5) | 0 |

## GA1085

## Output Characteristics

The IV characteristics, transition times, package characteristics, device and bond-wire characteristics for the GA1085 are described in Tables 4 through 9 and Figures 9 through 11.

Figure 9. $I_{O H}$ vs. $V_{O H}$


Table 4. $I_{O H}$ vs. $V_{O H}$

| $\boldsymbol{V}_{\mathrm{OH}}$ | $\boldsymbol{I}_{\mathrm{OH}} \min (\mathrm{mA})$ | $\boldsymbol{I}_{\mathrm{OH}} \max (\mathrm{mA})$ |
| :---: | :---: | :---: |
| 0.0 | -70 | -160 |
| 0.5 | -70 | -157 |
| 1.0 | -68 | -152 |
| 1.5 | -65 | -142 |
| 2.0 | -59 | -130 |
| 2.5 | -48 | -106 |
| 3.0 | -29 | -79 |
| 3.5 | 0 | -42 |
| 4.0 | 0 | 0 |
| 4.5 | 0 | 0 |
| 5.0 | 0 | 0 |
| 6.0 | 0 | 0 |
| 7.0 | 0 | 0 |
| 8.0 | 0 | 0 |
| 9.0 | 0 | 1 |
| 10.0 | 0 | 5 |

These output characteristics are provided for modelling purposes only. TriQuint does not guarantee the information in these tables and figures.

Figure 10. $I_{O L}$ vs. $V_{O L}$


Table 5. IOL vs. $V_{O L}$

| $\boldsymbol{V}_{\boldsymbol{O L}}$ | $\boldsymbol{I}_{\text {OL }} \boldsymbol{m i n}$ (mA) | $\boldsymbol{I}_{\text {OL }} \boldsymbol{m a x}$ (mA) |
| :---: | :---: | :---: |
| -2.5 | -145 | -435 |
| -2.0 | -135 | -410 |
| -1.5 | -115 | -350 |
| -1.0 | -90 | -265 |
| -0.5 | -40 | -120 |
| 0.0 | 0 | 0 |
| 0.5 | 37 | 97 |
| 1.0 | 49 | 140 |
| 1.5 | 53 | 155 |
| 2.0 | 54 | 157 |
| 2.5 | 54 | 159 |
| 3.0 | 54 | 160 |
| 3.5 | 54 | 160 |
| 4.0 | 54 | 160 |
| 4.5 | 54 | 160 |
| 5.0 | 54 | 160 |
| 10.0 | 54 | 160 |

Notes: 1. These are worst-case corners for process, voltage, and temperature.
2. Includes diode to ground current.

## GA1085

Table 6. Characteristics Above $V_{D D}$ and Below Ground

| Diode to GND <br> $\boldsymbol{V}$ |  | I(mA) |  |
| :---: | :---: | :---: | :---: |
| 0.0 | 0 | $\boldsymbol{V}$ | Diode Stack to VDD <br> I(mA) |
| -0.4 | 0 | 6.0 | 0 |
| -0.5 | 0 | 7.0 | 0 |
| -0.6 | -5 | 8.0 | 0 |
| -0.7 | -15 | 9.0 | 0 |
| -0.8 | -35 | 10.0 | 1 |
| -0.9 | -55 | 11.0 | 5 |
| -1.0 | -75 | 12.0 | 9 |
| -2.0 | -300 |  |  |
| -2.5 | -350 |  |  |
| -3.0 | -360 |  |  |

Note: TriQuint does not guarantee diode operation for purposes other than ESD protection.

Figure 11. Output Model


Table 7. Device and Bond-Wire Characteristics (Estimates)

| $\boldsymbol{L 1}$ | $\boldsymbol{C 1}$ |
| :---: | :---: |
| 2 nH | 10 pF |

Table 8. 28-Pin MQuad Package Characteristics

| $\mathbf{L 2}$ | $\mathbf{C 2}$ |
| :---: | :---: |
| 1.85 nH | 0.40 pF |

Table 9. Rise and Fall Times
(Into 0 pF, 50 Ohms to 1.5 V )

| Time (ns) $\quad T_{R} \min (V)$ | $T_{R} \max (V) \quad T_{F} \min (V)$ | $T_{F} \max (V)$ |
| :--- | :--- | :--- | :--- |


| 0.0 | 0.15 | 0.32 | 3.20 | 3.04 |
| :--- | :--- | :--- | :--- | :--- |
| 0.1 | 0.15 | 0.32 | 3.20 | 3.04 |
| 0.2 | 0.16 | 0.32 | 3.06 | 2.95 |
| 0.3 | 0.18 | 0.32 | 2.86 | 2.90 |
| 0.4 | 0.23 | 0.32 | 2.62 | 2.68 |
| 0.5 | 0.26 | 0.32 | 2.38 | 2.50 |
| 0.6 | 0.34 | 0.32 | 2.17 | 2.36 |
| 0.7 | 0.46 | 0.34 | 2.00 | 2.22 |
| 0.8 | 0.67 | 0.39 | 1.85 | 2.09 |
| 0.9 | 0.89 | 0.49 | 1.69 | 1.95 |
| 1.0 | 1.12 | 0.63 | 1.52 | 1.86 |
| 1.1 | 1.32 | 0.86 | 1.38 | 1.68 |
| 1.2 | 1.50 | 1.09 | 1.26 | 1.59 |
| 1.3 | 1.73 | 1.27 | 1.12 | 1.49 |
| 1.4 | 1.93 | 1.45 | 0.96 | 1.36 |
| 1.5 | 2.15 | 1.64 | 0.83 | 1.23 |
| 1.6 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.7 | 2.58 | 2.00 | 0.61 | 1.00 |
| 1.8 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.9 | 2.90 | 2.41 | 0.45 | 0.91 |
| 2.0 | 3.02 | 2.50 | 0.39 | 0.86 |
| 2.1 | 3.12 | 2.64 | 0.33 | 0.77 |
| 2.2 | 3.17 | 2.77 | 0.29 | 0.73 |
| 2.3 | 3.19 | 2.86 | 0.24 | 0.68 |
| 2.4 | 3.20 | 2.95 | 0.21 | 0.64 |

## GA1085

## Ordering Information

To order, please specify as shown below:

## GA1085-MC nnnn 11-Output Configurable Clock Buffer <br> $\left[\begin{array}{c}\square \text { Propagation delay skew: } 1000=-350 \mathrm{ps} \pm 1000 \mathrm{ps} \\ \text { Temperature range: Commercial }\left(0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}\right) \\ \text { Package: MQuad }\end{array}\right.$

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997

Figure 1. Block Diagram


TriQuint's GA1086 operates from 30 MHz to 67 MHz . This TTL-level clock buffer chip supports the tight timing requirements of high-performance microprocessors, with near zero input-to-output delay and very low pin-topin skew. The device offers 10 usable outputs synchronized in phase and frequency to a periodic clock input signal. One of the ten outputs is a onehalf clock output (CLK $\div 2$ ). With split termination, the GA1086 can be used to drive up to nineteen 15 pF loads, as shown in Figure 10.

The tight control over phase and frequency of the output clocks is achieved with a 400 MHz internal Phase-Locked Loop (PLL). By feeding back one of the output clocks to FBIN, the on-chip PLL continuously maintains synchronization between the input clock (CLK) and all ten outputs. Any drift or gradual variation in the system clock is matched and tracked at the ten outputs. The GA1086 output buffers are symmetric, each sourcing and sinking up to 30 mA of drive current. For diagnostic purposes, the device has a test mode which is used to test the device and associated logic by single-stepping through the control logic.

The GA1086 is fabricated using TriQuint's One-Up™ gallium arsenide technology to achieve precise timing control and to guarantee 100\% TTL compatibility. The output frequency makes this device ideal for clock generation and distribution in a wide range of high-performance microprocessor-based systems. Many other CISC- and RISC-based systems will also benefit from its tight control of skew and delay.

## GA1086

## 11-Output Clock Buffer

## Features

- Operates from 30 MHz to 67 MHz
- Pin-to-pin output skew of 250 ps (max)
- Period-to-period jitter: 75 ps (typ)
- Near-zero propagation delay: -350 ps $\pm 500$ ps or -350 ps $\pm 1000$ ps
- 10 symmetric, TTL-compatible outputs with 30 mA drive and rise and fall times of 1.4 ns (max)
- 28-pin J-lead surface-mount package
- Special test mode
- Meets or exceeds Pentium ${ }^{\text {rm }}$
- Typical applications include low-skew clock distribution for: - RISC- or CISC-based systems
- Multi-processor systems
- High-speed backplanes


## GA1086

## Functional Description

The GA1086 generates 10 outputs (Q1 - Q9 and FBOUT) which have the same frequency and zero phase delay relative to the reference clock input. In addition, there is one output ( $Q / 2$ ) that has $1 / 2$ the frequency of the reference clock. The GA1086 maintains frequency and zero phase delay using a Phase Detector to compare the output clock with the reference clock input. Phase deviations between the output clock and reference clock are continuously corrected by the PLL. Figure 1 shows a block diagram of the PLL, which consists of a Phase Detector, Voltage Controlled Oscillator (VCO), Divide Logic, Mux and Control Logic.

The Phase Detector monitors the phase difference between FBIN which is connected to FBOUT, and the reference clock (CLK). The Phase Detector adjusts the VCO such that FBIN aligns with CLK. The VCO has an operating range of 360 MHz to 402 MHz . The output clocks (Qn, FBOUT, and Q/2) are generated by dividing the VCO output.

The desired operating frequency determines the proper divide mode. There are 4 divide modes; $\div 12, \div 10, \div 8$ and $\div 6$. In each mode, the GA1086 operates across the frequency range listed in the Divide Mode Selection Table. The operating frequency is equivalent to the VCO frequency divided by the mode number.

Table 1 shows the input clock frequency (CLK), output clock frequency ( Qn ), $1 / 2$ output clock frequency ( $\mathrm{Q} / 2$ ),
control bit settings, divide mode and VCO range. FBOUT is fed back to FBIN and has the same frequency as the Qn outputs.

The GA1086 has a test mode that allows for single stepping of the clock input for testing purposes. With S2 HIGH, S1 LOW and S0 HIGH, the signal at the CLK input goes directly to the outputs, bypassing the PLL circuitry.

The maximum rise and fall time at the output pins is 1.4 ns . All outputs of the GA1086 are TTL-compatible with 30 mA symmetric drive and a minimum $\mathrm{V}_{\mathrm{OH}}$ of 2.4 V .

The GA1086-MC500 and GA1086-MC1000 are identical except for the propagation delay specification (see AC Characteristics table).

## Breaking the Feedback Loop

There is no requirement that the external feedback connection be a direct hardwire from an output pin to the FBIN pin. As long as the signal at FBIN is derived directly from the FBOUT pin and maintains its frequency, additional delays can be accommodated. The internal phase-locked loop will adjust the output clocks on the GA1086 to ensure zero phase delay between the FBIN and CLK signals.

Note: the signal at FBIN must be continuous, i.e. not a gated or conditional signal.

Table 1. Divide Mode Selection Table

| CLK | Qn | Q/2 | S2 | Control | S0 | Divide <br> Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $30-33 \mathrm{MHz}$ | $30-33 \mathrm{MHz}$ | $15-16.5 \mathrm{MHz}$ | 1 | 1 | 1 | $\div 12$ |
| $36-40 \mathrm{MHz}$ | $36-40 \mathrm{MHz}$ | $18-20 \mathrm{MHz}$ | 1 | 1 | 0 | $\div 10$ |
| $45-50 \mathrm{MHz}$ | $45-50 \mathrm{MHz}$ | $22.5-25 \mathrm{MHz}$ | 1 | 0 | 0 | $\div 8$ |
| $60-67 \mathrm{MHz}$ | $60-67 \mathrm{MHz}$ | $30-33.5 \mathrm{MHz}$ | 0 | 1 | 1 | $\div 6$ |
| TSTCLK | TSTCLK | TSTCLK/2 | 1 | 0 | 1 | - |

## GA1086

## Power-Up/Reset Synchronization

The GA1086 utilizes on-chip phase-locked loop (PLL) technology to maintain synchronization between inputs and outputs. Whenever the device is powered up, or the system clock (CLK) is reset, the phase-locked loop requires a synchronization time ( $\mathrm{t}_{\text {SYNC }}$ ) before lock is achieved. The maximum time required for synchronization is 500 ms .

## Typical Applications

The GA1086 is designed to satisfy a wide range of system clocking requirements. Following are two of the most common clocking bottlenecks which can be solved using the GA1086.

## 1) Low-Skew Clock Distribution / Clock Trees

The most basic bottleneck to clocking high-performance systems is generating multiple copies of a system clock, while maintaining low skew throughout the system.

- The GA1086 guarantees low skew among all clocks in the system by controlling both the input-tooutput delay and the skew among all outputs. In Figure 2, the worst-case skew from Output 1 to Output n, with reference to the system clock, is

Figure 2. Low-Skew Clock Distribution

obtained by summing the various skews. The skew between the outputs of the GA1086 (1) which drive the GA1086 (2) and the GA1086 (n) is summed with the propagation delay of the GA1086 (2 or n), the skew between the outputs of the GA1086 (2), and the skew between the outputs of the GA1086 (n). This results in a total skew of 1.75 ns ( 250 ps + $1000 p s+250 p s+250 p s)$.

## 2) Board-to-Board Synchronization

Many computing systems today consist of multiple boards designed to run synchronously. The skew associated with routing clocks across a backplane presents a major hurdle to maximizing system performance.

- The edge placement feature of TriQuint's configurable custom clock generator (GA1110E) operating at 33 MHz , coupled with the tightly controlled input/output delay of the GA1086, ensures all boards in the system are running synchronously.

Figure 3. Board-to-Board Synchronization
HOST
TARGETS


## GA1086

## Multi-Processor Systems

The GA1086 can be effectively used to distribute clocks in RISC- or CISC-processor-based systems. Its 10 outputs support both single- and multi-processor systems. Following are three representative configurations which show how the 10 outputs can be used to synchronize the operation of CPU cache and memory banks operating at different speeds.

Figure 4 depicts a 2-CPU system in which the processors and associated peripherals are operating at 66 MHz . Each of the nine outputs operating at 66 MHz are fully utilized to drive the appropriate CPU, cache, and memory control logic. The 33 MHz output is used to synchronize the operation of the slower memory bank to the rest of the system.

Figure 4. Clocking a Dual-CPU System


## Multi-Processor Systems (cont.)

Figure 5 shows a 4-processor system with various 33 MHz memory banks synchronized to the 66 MHz CPUs. The GA1110E, a custom device whose six outputs can be individually configured, (see GA1110E data sheet), is used as the clock source for
the GA1086 devices. This configuration gives the user 18 copies of the 66 MHz clock and 7 copies of the 33 MHz clock. By using the configurability of the GA1110E, the user can also specify and control the placement of the edges of the outputs of the GA1110E.

Figure 5. Generating Multiple Outputs


* Assumes maximum skew between Q9 and Q/2 is 1.2 ns . See AC specifications.


## GA1086

## Single-Processor Systems

Figure 6 is an example of a single-CPU system. The nine 66 MHz outputs of the GA1086 are used to drive the CPU and its related cache, the state machine, memory banks, and other general-purpose logic.

The table in Figure 5 also specifies the maximum pin-to-pin skew of various sets of outputs from the three clocking devices.

Please note that the GA1086s are series-terminated and that the feedback trace lengths for the two devices should be equal.

Figure 6. Clocking a Single-CPU System


## GA1086

## Parallel Termination of Outputs

The GA1086 can be terminated either in parallel or in series. If power dissipation is not of primary concern, then parallel termination can be the most effective mode of termination for the GA1086. An example of this termination is shown in Figure 7, along with the waveforms at an output pin and at the load. Note that
the Thevenin equivalent using two resistors and +5 V supply can replace the 65 ohms to 1.5 V .

Unused outputs must be terminated.

Figure 7. Parallel Termination


## Series Termination of Outputs

The alternative to parallel termination is series termination. For applications where overshoots and undershoots of the clock signal are a concern, it is best
to use balanced termination as shown in Figure 8. This could, however, slow the rise time of the pulses arriving at the destination.

Figure 8. Balanced Termination


## GA1086

If rise times are critical and if overshoots and undershoots can be tolerated, then unbalanced termination may be used. Reflections due to unbalanced termination can cause ringing at the load. The transmission line lengths, therefore, must be long enough to cause the ringing to occur only after the waveform has completely switched to either the LOW or the HIGH state, (the round trip). The propagation time of the output signals should be greater than the switching time for LOW to HIGH or HIGH to LOW.

To double the number of loads (devices) driven by the GA1086, split termination may be used. Examples of three types of series termination and the resulting waveforms, measured between 0.8 V and 2.0 V , are shown in Figures 9 and 10 for one of the outputs. Unused outputs must be terminated.

Figure 9. Unbalanced Termination


Figure 10. Split Unbalanced Termination


Note: Rise time at $Q_{t 1}$ is measured between 0.8 V and 2.0 V .

## GA1086

## Absolute Maximum Ratings

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $+\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$ |
| DC input current | -30 mA to +5 mA |

Caution: Damage to the device may occur if an output is shorted to ground or $V_{D D}$.

## DC Characteristics

(Supply voltage: $+5 \mathrm{~V} \pm 5 \%$ Ambient temp: $0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)^{1}$

| Symbol | Description | Test Conditions | Min | Limits ${ }^{2}$ <br> Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$ | 2.4 | 3.6 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & V_{D D}=M i n \quad I_{O L}=30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$ |  | 0.2 | 0.5 | V |
| $\mathrm{V}_{\mathrm{H}}{ }^{3}$ | Input HIGH level | Guaranteed input logical HIGH voltage for all inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{3}$ | Input LOW level | Guaranteed input logical LOW voltage for all inputs |  |  | 0.8 | V |
| IIL | Input LOW current | $\mathrm{V}_{\text {DD }}=\operatorname{Max} \quad \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -166 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDD}^{4}$ | Power supply current | $V_{D D}=M a x$ |  |  | 115 | 160 mA |
| $\mathrm{V}_{1}$ | Input clamp voltage | $V_{D D}=\operatorname{Min} \quad I_{1 N}=-18 \mathrm{~mA}$ |  | -0.62 | -1.2 | V |

## Capacitance ${ }^{1,5}$

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}}$ | Input capacitance | $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | pF |  |  |  |

Notes: 1. These values apply to both the GA1086-MC500 and GA1086-MC1000.
2. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
3. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
4. $I_{D D}$ is measured with outputs LOW and unloaded.
5. These parameters are not $100 \%$ tested, but are periodically sampled.

## AC Specifications

(Supply voltage: $+5 \mathrm{~V} \pm 5 \%$, Ambient temp: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )

Figure 11. Switching Waveforms
Buffer Configuration (FBIN = FBOUT)

|  | Input Clocks | Min | Typ | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{F}_{\mathrm{IN}}$ | CLK frequency | 30 | - | 67 | MHz |
| $\mathrm{t}_{\mathrm{CP}}$ | CLK period | 14.9 | - | 33 | ns |
| $\mathrm{t}_{\mathrm{CPW}}$ | CLK pulse width | 3.0 | - | - | ns |
| $\mathrm{t}_{\mathrm{IR}}$ | Input rise time $(0.8 \mathrm{~V}-2.0 \mathrm{~V})$ | - | - | 2.0 | ns |



Figure 12. AC Test Circuit


Notes: 1. The PLL maintains alignment of CLK and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically 50/50. The delay $t_{P D}$ is measured at the 1.5 V level between CLK and FBIN.
2. $t_{P D}$ and $t_{S K E W}$ are tested with an input clock having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V$)$.
3. The output skew is measured from the middle of the output window, $t_{w}$. The maximum skew is guaranteed across all voltages and temperatures.
4. $t_{w}$ specifies the width of the window in which outputs Q1-Q9 switch.
5. This specification represents the deviation from $50 / 50$ on the outputs; it is sampled periodically but is not guaranteed.
6. $t_{S Y N C}$ is the time required for the PLL to synchronize; this assumes the presence of a CLK signal and a connection from one of the outputs to FBIN.
7. Jitter is specified as a peak-to-peak value.

## GA1086

## 28－Pin MQuad J－Leaded Package Mechanical Specification

（All dimensions are in inches）


## 28－Pin MQuad Pin Description

| Pin \＃ | Pin Name | Description | $\mathbf{I / O}$ |
| :---: | :--- | :--- | :--- |
| 1 | GND | Ground | - |
| 2 | Q8 | Output Clock 8 | 0 |
| 3 | Q9 | Output Clock 9 | 0 |
| 4 | VDD | +5 V | - |
| 5 | GND | Ground | - |
| 6 | N／C | No Connect | - |
| 7 | N／C | No Connect | - |
| 8 | SO | Select 0 | I |
| 9 | CLK | Reference Clock | I |
| 10 | S1 | Select 1 | 1 |
| 11 | FBIN | Feedback In | I |
| 12 | S2 | Select 2 | I |
| 13 | VDD | +5 V | - |
| 14 | Q／2 | Half－Clock Out | 0 |


| Pin \＃ | Pin Name | Description | 1／0 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 15 | GND | Ground | － | 洏 |
| 16 | FBOUT | Feedback Clock | 0 | 究完 |
| 17 | Q1 | Output Clock 1 | 0 | ¢ |
| 18 | VDD | $+5 \mathrm{~V}$ | － |  |
| 19 | GND | Ground | － |  |
| 20 | Q2 | Output Clock 2 | 0 |  |
| 21 | Q3 | Output Clock 3 | 0 |  |
| 22 | VDD | $+5 \mathrm{~V}$ | － |  |
| 23 | Q4 | Output Clock 4 | 0 |  |
| 24 | Q5 | Output Clock 5 | 0 |  |
| 25 | GND | Ground | － |  |
| 26 | VDD | ＋5V | － |  |
| 27 | Q6 | Output Clock 6 | 0 |  |
| 28 | Q7 | Output Clock 7 | 0 |  |

## GA1086

## Layout Guidelines

Multiple ground and power pins on the GA1086 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. TriQuint recommends bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 13 shows the recommended power layout for the GA1086. The bypass capacitors should be located on the same side of the board as the GA1086. The $V_{D D}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple

## Ordering Information

To order, please specify as shown below:
through-holes connect this small surface plane to an inner-layer ground plane. The capacitors (C1-C5) are 0.1 mF. TriQuint's test board uses X7R temperaturestable capacitors in 1206 SMD cases.

Figure 13. Top Layer Layout of Power Pins
(Approx. 3.3x)


## GA1086-MC n...n <br> 11-Output Clock Buffer

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:
$\begin{array}{ll}\text { Web: www.triquint.com } & \text { Tel: (503) 615-9000 } \\ \text { Email: sales@tqs.com } & \text { Fax: (503) 615-8900 }\end{array}$
For technical questions and additional information on specific applications:

## Email: applications@tqs.com

[^9]

TriQuint's GA1087 is a configurable clock buffer which generates 11 outputs, operating over a wide range of frequencies - from 24 MHz to 105 MHz . The outputs are available at either $1 x$ and $2 x$ or at $1 x$ and $1 / 2 x$ the reference clock frequency, $\mathrm{f}_{\text {REF }}$. When one of the Group A outputs (Q5-Q10) is used as feedback to the PLL, all Group A outputs will be at $f_{\text {REF }}$, and all Group B outputs (Q0-Q4) will be at $1 / 2 \times f_{\text {REF }}$. When one of the Group B outputs is used as feedback to the PLL, all Group A outputs will be at $2 x f_{\text {REF }}$ and all Group B outputs will be at $f_{\text {REF }}$.

A very stable internal Phase-Locked Loop (PLL) provides low-jitter operation. Completely self-contained, this PLL requires no external capacitors or resistors. The PLL's voltage-controlled oscillator (VCO) has a frequency range from 280 MHz to 420 MHz . By feeding back one of the output clocks to FBIN, the PLL continuously maintains frequency and phase synchronization between the reference clock (REFCLK) and each of the outputs.

TriQuint's patented output buffer design delivers a very low output-tooutput skew of 150 ps (max). The GA1087's symmetrical TTL outputs are capable of sourcing and sinking 30 mA .

## GA1087

## 11-Output

Configurable Clock Buffer

## Features

- Wide frequency range: 24 MHz to 105 MHz
- Output configurations:
five outputs at $f_{\text {REF }}$ five outputs at $f_{\text {REF }} / 2$ or six outputs at $2 \times f_{\text {REF }}$ four outputs at $f_{\text {REF }}$
- Low output-to-output skew: 150 ps (max) within a group
- Near-zero propagation delay: -350 ps $\pm 500$ ps (max) or -350 ps $\pm 700$ ps (max)
- TTL-compatible with 30 mA output drive
- 28-pin J-lead surface-mount package


## Functional Description

The core of the GA1087 is a Phase-Locked Loop (PLL) that continuously compares the reference clock (REFCLK) to the feedback clock (FBIN), maintaining a zero frequency difference between the two. Since one of the outputs (Q0-Q8) is always connected to FBIN, the PLL keeps the propagation delay between the outputs and the reference clock within $-350 \mathrm{ps} \pm 500 \mathrm{ps}$ for the GA1087-MC500, and within $-350 \mathrm{ps} \pm 700$ ps for the GA1087-MC700.

The internal voltage-controlled oscillator (VCO) has an operating range of 280 MHz to 420 MHz . The combination of the VCO and the Divide Logic enables the GA1087 to operate between 24 MHz and 105 MHz .

The device features six divide modes: $\div 4, \div 5, \div 6, \div 8$, $\div 10$, and $\div 12$. The Frequency Select pins, F0 and F1,
and the output used as feedback to FBIN set the divide mode as shown in Table 1.

In the test mode, the PLL is bypassed and REFCLK is connected directly to the Divide Logic block via the MUX, as shown in Figure 1. This mode is useful for debug and test purposes. The various test modes are outlined in Table 2. In the test mode, the frequency of the reference clock is divided by 4,5 , or 6 .

The maximum rise and fall time at the output pins is 1.4 ns . All outputs of the GA1087 are TTL-compatible with 30 mA symmetric drive and a minimum $\mathrm{V}_{\mathrm{OH}}$ of 2.4 V .

## Power Up/Reset Synchronization

After-power-up or reset, the PLL requires time before it achieves synchronization lock. The maximum time required for synchronization (TSYNC) is 500 ms .

## Table 1. Frequency Mode Selection

Feedback: Any Group A Output (Q5-Q10)

| Test | Select Pins <br> FO | F1 | Mode | Reference Clock <br> Frequency Range | Group A: Q5-Q10 | Group B: Q0-Q4 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $\div 4$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ |
| 0 | 0 | 0 | $\div 5$ | $56 \mathrm{MHz}-84 \mathrm{MHz}$ | $56 \mathrm{MHz}-84 \mathrm{MHz}{ }^{1}$ | $28 \mathrm{MHz}-42 \mathrm{MHz}$ |
| 0 | 0 | 1 | $\div 6$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ |
| 0 | 1 | 1 | Not Used | N.A. | N.A. | $\mathrm{N} . \mathrm{A}$. |

Feedback: Any Group B Output (QO - Q4)

| Test | Select Pins <br> FO | F1 | Mode | Reference Clock <br> Frequency Range | Output Frequency Range <br> Group A: Q5-Q10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $\div 8$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | Group B: Q0-Q4 |
| 0 | 0 | 0 | $\div 10$ | $28 \mathrm{MHz}-42 \mathrm{MHz}$ | $56 \mathrm{MHz}-84 \mathrm{MHz}{ }^{1}$ | $28 \mathrm{MHz}-52 \mathrm{MHz}$ |
| 0 | 0 | 1 | $\div 12$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ |
| 0 | 1 | 1 | Not Used | $\mathrm{N} \cdot \mathrm{A}$. | $\mathrm{N} . \mathrm{A}$. | $\mathrm{N} . \mathrm{A}$. |

Notes: 1. This mode produces outputs with 40/60 duty cycle for Q5-Q10 only.

Table 2. Test Mode Selection

| Test | FO | F1 | Mode | Ref. Clock | Group B: Outputs Q0-04 | Group A: <br> Outputs Q5-010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | +4 | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \times 8$ | $\mathrm{f}_{\text {REF }} \div 4$ |
| 1 | 0 | 0 | +5 | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }}+10$ | $\mathrm{f}_{\text {REF }} \div 5$ |
| 1 | 0 | 1 | +6 | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }}+12$ | $\mathrm{f}_{\text {REF }} \div 6$ |
| 1 | , | 1 | - | - | - | - |

## Layout Guidelines

Multiple ground and power pins on the GA1087 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. TriQuint recommends bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 2 shows the recommended power layout for the GA1087. The bypass capacitors should be located on the same side of the board as the GA1087. The $V_{D D}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple through holes connect this small surface plane to an inner-layer ground plane. The capacitors (C1-C5) are 0.1 mF . TriQuint's test board uses X7R temperature-stable capacitors in 1206 SMD cases.

Figure 2. Top Layer Layout of Power Pins (approx. 3.3x)


## Absolute Maximum Ratings ${ }^{1}$

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied ${ }^{2}$ | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

DC Characteristics $\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{3}$

| Symbol | Description | Test Conditions | Min | $\begin{gathered} \text { Limits }^{4} \\ \text { Typ } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OHT}}$ | Output HIGH voltage | $\begin{array}{ll} V_{D D}=\operatorname{Min} & I_{O H}=-30 \mathrm{~mA} \\ V_{I N}=V_{I H} \text { or } V_{I L} \end{array}$ | 2.4 | 3.4 |  | V |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH voltage $V_{\text {IN }}$ | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-1 \mathrm{~mA} \\ & =V_{\mathrm{HH}} \text { or } V_{\mathrm{IL}} \end{aligned}$ | 3.2 | 4.1 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage $V_{I N}$ | $\begin{aligned} & V_{\mathrm{DD}}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{OL}}=30 \mathrm{~mA} \\ & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ |  | 0.27 | 0.5 | V |
| $\mathrm{V}_{\text {H }}{ }^{5}$ | Input HIGH level Voltage for all Inputs | Guaranteed input logical HIGH | 2.0 |  |  | V |
| $V_{\text {IL }}{ }^{5}$ | Input LOW level Voltage for all inputs | Guaranteed input logical LOW |  |  | 0.8 | V |
| $I_{\text {IL }}$ | Input LOW current | $V_{D D}=\operatorname{Max} \quad V_{I N}=0.40 \mathrm{~V}$ |  | -156 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| $I_{1}$ | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{6}$ | Power supply current | $V_{D D}=$ Max |  | 119 | 160 | mA |
| $V_{1}$ | Input clamp voltage | $V_{D D}=\operatorname{Min} \quad I_{1 N}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{N}^{3,7}}$ | Input capacitance | $\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 | pF |  |

Notes: 1. Exceeding these parameters may damage the device.
2. Maximum ambient temperature with device not switching and unloaded.
3. These values apply to both GA1087-MC500 and GA1087-MC700.
4. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
5. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
6. This parameter is measured with device not switching and unloaded.
7. These parameters are not $100 \%$ tested, but are periodically sampled.

## GA1087

AC Characteristics $\quad\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 3) ${ }^{\mathbf{1}}$ | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathrm{t}_{\text {CPWH }}$ | CLK pulse width HIGH | Figure 4 | 3 | -- | - |
| $\mathrm{t}_{\mathrm{CPWL}}$ | CLK pulse width LOW | Figure 4 | ns |  |  |
| $\mathrm{t}_{\text {IR }}$ | Input rise time $(0.8 \mathrm{~V}-2.0 \mathrm{~V})$ |  | - | -- | - |


| Symbol | Input Clock (Q0-Q10) | Test Conditions (Figure 3) ${ }^{1}$ | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{0 \mathrm{OR},{ }^{\text {O }} \text { OF }}$ | Rise/fall time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) | Figure 4 | 350 | - | 1400 | ps |
| $\mathrm{t}_{\mathrm{PD} 1}{ }^{2}$ | CLK Î to FBIN î (GA1087-MC500) | Figure 4 | -850 | -350 | +150 | ps |
| $\mathrm{t}_{\mathrm{PD} 2}{ }^{2}$ | CLK Î to FBIN İ (GA1087-MC700) | Figure 4 | -1050 | -350 | +350 | ps |
| $\mathrm{t}_{\text {SKEW } 1^{3}}{ }^{\text {a }}$ | Rise-rise, fall-fall (within group) | Figure 5 | - | 60 | 150 | ps |
| $\mathrm{t}_{\text {SKEW2 }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, aligned) | Figure 6 (skew2 takes into account skew1) | - | 75 | 350 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, non-aligned) | Figure 7 (skew3 takes into account skews1, 2) | - | - | 650 | ps |
| $\mathrm{t}_{\text {SKEW4 }}{ }^{3}$ | Rise-fall, fall-rise | Figure 8 (skew4 takes into account skew3) | - | - | 1200 | ps |
| $\mathrm{t}_{\mathrm{CYC}}{ }^{4}$ | Duty-cycle Variation | Figure 4 | -1000 | 0 | +1000 | ps |
| $\mathrm{t}_{\mathrm{JP}}{ }^{5}$ | Period-to-Period Jitter | Figure 4 | - | 80 | 200 | ps |
| $\mathrm{t}_{\mathrm{JR}}{ }^{5}$ | Random Jitter | Figure 4 | - | 190 | 400 | ps |
| $\mathrm{t}_{\text {SYNC }}{ }^{6}$ | Synchronization Time |  | - | 10 | 500 | $\mu \mathrm{S}$ |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V$)$.
2. The PLL maintains alignment of CLK and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary
while the output duty cycle is typically 50/50. The delay $t_{P D}$ is measured at the 1.5 V level between CLK and FBIN.
3. Skew specifies the width of the window in which outputs switch, and is measured at 1.5 V .
4. This specification represents the deviation from $50 / 50$ on the outputs.
5. Jitter specifications refer to peak-to-peak value. $t_{J R}$ is the jitter on the output with respect to the reference clock. $t_{J p}$ is the jitter on the output with respect to the output's previous rising edge.
6. $t_{\text {SYNC }}$ is the time required for the PLL to synchronize; this assumes the presence of a CLK signal and a connection from one of the outputs to FBIN.

Figure 3. AC Test Circuit


## GA1087

## Switching Waveforms

Figure 4. General Timing


Figure 5. $\boldsymbol{t}_{\text {SKEW1 }}$


Figure 6. $\boldsymbol{t}_{\text {SKEW2 }}$


Figure 7. tskew3 (For Group B Feedback)


Figure 8. $\boldsymbol{t}_{\text {SKEW4 }}$


## 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :---: |
| 1 | GND | Ground | - |
| 2 | Q9 | Output Clock 9 (A5) | 0 |
| 3 | Q10 | Output Clock 10 (A6) | 0 |
| 4 | VDD | +5 V | - |
| 5 | GND | Ground | - |
| 6 | F0 | Frequency Select 0 | I |
| 7 | F1 | Frequency Select 1 | I |
| 8 | GND | Ground | - |
| 9 | REFCLK | Reference Clock | I |
| 10 | GND | Ground | - |
| 11 | FBIN | Feedback In | I |
| 12 | TEST | Test | I |
| 13 | VDD | +5 V | - |
| 14 | Q0 | Output Clock 0 (B1) | 0 |


| Pin \# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :--- |
| 15 | GND | Ground |  |
| 16 | Q1 | Output Clock 1 (B2) |  |
| 17 | Q2 | Output Clock 2 (B3) |  |
| 18 | VDD | +5 V |  |
| 19 | GND | Ground |  |
| 20 | Q3 | Output Clock 3 (B4) |  |
| 21 | Q4 | Output Clock 4 (B5) |  |
| 22 | VDD | +5 V |  |
| 23 | Q5 | Output Clock 5 (A1) |  |
| 24 | Q6 | Output Clock 6 (A2) |  |
| 25 | GND | Ground |  |
| 26 | VDD | +5 V |  |
| 27 | Q7 | Output Clock 7 (A3) |  |
| 28 | Q8 | Output Clock 8 (A4) |  |

## GA1087

## Output Characteristics

The IV characteristics, transition times, package characteristics, device and bond wire-characteristics for the QA1087 are described in Tables 4 through 9 and Figures 9 through 11.

Figure 9. $I_{O H}$ vs. $V_{O H}$


Table 4. $I_{O H}$ vs. $V_{O H}$

| $\boldsymbol{V}_{\mathbf{O L}}$ | $\boldsymbol{I}_{\mathbf{O L}} \boldsymbol{\operatorname { m i n }}(\mathrm{mA})$ | $\boldsymbol{I}_{\mathbf{O L}} \max (\mathrm{mA})$ |
| :---: | :---: | :---: |
| 0.0 | -70 | -160 |
| 0.5 | -70 | -157 |
| 1.0 | -68 | -152 |
| 1.5 | -65 | -142 |
| 2.0 | -59 | -130 |
| 2.5 | -48 | -106 |
| 3.0 | -29 | -79 |
| 3.5 | 0 | -42 |
| 4.0 | 0 | 0 |
| 4.5 | 0 | 0 |
| 5.0 | 0 | 0 |
| 6.0 | 0 | 0 |
| 7.0 | 0 | 0 |
| 8.0 | 0 | 0 |
| 9.0 | 0 | 1 |
| 10.0 | 0 | 5 |

These output characteristics are provided for modeling purposes only. TriQuint does not guarantee the information in these tables and figures.

Figure 10. $I_{O L}$ vs. $V_{O L}$


Table 5. $I_{O L}$ vs. $V_{O L}$

| $\mathbf{V}_{\mathbf{O L}}$ | $\boldsymbol{I}_{\boldsymbol{O L}} \boldsymbol{m i n}(\mathbf{m A})$ | $\boldsymbol{I}_{\mathbf{O L}} \boldsymbol{m a x}(\mathbf{m A})$ |
| :---: | :---: | :---: |
| -2.5 | -145 | -435 |
| -2.0 | -135 | -410 |
| -1.5 | -115 | -350 |
| -1.0 | -90 | -265 |
| -0.5 | -40 | -120 |
| 0.0 | 0 | 0 |
| 0.5 | 37 | 97 |
| 1.0 | 49 | 140 |
| 1.5 | 53 | 155 |
| 2.0 | 54 | 157 |
| 2.5 | 54 | 159 |
| 3.0 | 54 | 160 |
| 3.5 | 54 | 160 |
| 4.0 | 54 | 160 |
| 4.5 | 54 | 160 |
| 5.0 | 54 | 160 |
| 10.0 |  |  |

## GA1087

Table 6. Above- $V_{D D}$ and Below-Ground Characteristics

| Diode to GND |  | Diode Stack to VDD |  |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{V}$ | $\boldsymbol{I}(\mathbf{m A})$ | $\boldsymbol{V}$ | $\boldsymbol{I}(\mathbf{m A})$ |
| 0.0 | 0 | 5.0 | 0 |
| -0.4 | 0 | 6.0 | 0 |
| -0.5 | 0 | 7.0 | 0 |
| -0.6 | -5 | 8.0 | 0 |
| -0.7 | -15 | 9.0 | 0 |
| -0.8 | -35 | 10.0 | 1 |
| -0.9 | -55 | 11.0 | 5 |
| -1.0 | -75 | 12.0 | 9 |
| -2.0 | -300 |  |  |
| -2.5 | -350 |  |  |
| -3.0 | -360 |  |  |

Note: $\quad$ TriQuint does not guarantee diode operation for purposes other than ESD protection.

Figure 11. Output Model


Table 7. Device and Bond-Wire Characteristics (Estimates)

| $L 1$ | $C 1$ |
| :---: | :---: |
| 2 nH | 10 pF |

Table 8. 28-Pin MQuad Package Characteristics

| $\boldsymbol{L 1}$ | $\boldsymbol{C 1}$ |
| :---: | :---: |
| 1.85 nH | 0.40 pF |

Table 9. Rise and Fall Times
(Into 0 pF, 50 Ohms to 1.5 V )
Time (ns) $\quad T_{R} \min (V) \quad T_{R} \max (V) \quad T_{F} \min (V) T_{F} \max (V)$

| 0.0 | 0.15 | 0.32 | 3.20 | 3.04 |
| :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.15 | 0.32 | 3.20 | 3.04 |
| 0.2 | 0.16 | 0.32 | 3.06 | 2.95 |
| 0.3 | 0.18 | 0.32 | 2.86 | 2.90 |
| 0.4 | 0.23 | 0.32 | 2.62 | 2.68 |
| 0.5 | 0.26 | 0.32 | 2.38 | 2.50 |
| 0.6 | 0.34 | 0.32 | 2.17 | 2.36 |
| 0.7 | 0.46 | 0.34 | 2.00 | 2.22 |
| 0.8 | 0.67 | 0.39 | 1.85 | 2.09 |
| 0.9 | 0.89 | 0.49 | 1.69 | 1.95 |
| 1.0 | 1.12 | 0.63 | 1.52 | 1.86 |
| 1.1 | 1.32 | 0.86 | 1.38 | 1.68 |
| 1.2 | 1.50 | 1.09 | 1.26 | 1.59 |
| 1.3 | 1.73 | 1.27 | 1.12 | 1.49 |
| 1.4 | 1.93 | 1.45 | 0.96 | 1.36 |
| 1.5 | 2.15 | 1.64 | 0.83 | 1.23 |
| 1.6 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.7 | 2.58 | 2.00 | 0.61 | 1.00 |
| 1.8 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.9 | 2.90 | 2.41 | 0.45 | 0.91 |
| 2.0 | 3.02 | 2.50 | 0.39 | 0.86 |
| 2.1 | 3.12 | 2.64 | 0.33 | 0.77 |
| 2.2 | 3.17 | 2.77 | 0.29 | 0.73 |
| 2.3 | 3.19 | 2.86 | 0.24 | 0.68 |
| 2.4 | 3.20 | 2.95 | 0.21 | 0.64 |

## Ordering Information

To order, please specify as shown below:

## GA1087-MC nnn 11-Output Configurable Clock Buffer <br> Propagation delay skew: <br> $500 \quad-350 \mathrm{ps} \pm 500 \mathrm{ps} \quad$ Note: All parts are marked <br> $700-350 \mathrm{ps} \pm 700 \mathrm{ps}$ as MC500. MC700 parts have a "2" added to the marking. <br> Temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial) <br> Package: MQuad

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^10]

TriQuint's GA1088 is a configurable clock buffer which generates 11 outputs, operating over a wide range of frequencies - from 18 MHz to 105 MHz . The outputs are available at either $1 x$ and $2 x$ or at $1 x$ and $1 / 2 x$ the reference clock frequency, $\mathrm{f}_{\text {REF }}$. When one of the Group A outputs (Q0Q2) is used as feedback to the PLL, all Group A outputs will be at $f_{\text {REF }}$, and all Group B (Q3-Q6) and Group C (Q7-Q10) outputs will be at $2 x f_{\text {REF }}$.
When one of the Group B outputs is used as feedback to the PLL, all Group A outputs will be at $1 / 2 \times f_{\text {REF }}$ and all Group B and Group C outputs will be at $f_{\text {REF }}$.

A very stable internal Phase-Locked Loop (PLL) provides low-jitter operation. This completely self-contained PLL requires no external capacitors or resistors. The PLL's voltage-controlled oscillator (VCO) has a frequency range from 280 MHz to 420 MHz . By feeding back one of the output clocks to FBIN, the PLL continuously maintains frequency and phase synchronization between the reference clock (REFCLK) and each of the outputs. The Shift Select pins select the phase shift ( $-2 \mathrm{t},-\mathrm{t}, 0$, or +t ) for Group C outputs (Q7-Q10) with respect to REFCLK. The phase shift increment $(\mathrm{t})$ is equivalent to the VCO's period ( $1 / \mathrm{fvco}$ ).

TriQuint's patented output buffer design delivers a very low output-tooutput skew of 150 ps (max). The GA1088's symmetrical TTL outputs are capable of sourcing and sinking 30 mA .

## GA1088

## 11-Output

Configurable Clock Buffer

## Features

- Wide frequency range: 18 MHz to 105 MHz
- Output configurations: three outputs at $1 / 2 f_{\text {REF }}$ three outputs at $f_{\text {REF }}$ four outputs at $f_{\text {REF }}$ with adjustable phase or two outputs at $f_{\text {REF }}$ four outputs at $2 x f_{\text {REF }}$ four outputs at $2 x f_{\text {REF }}$ with adjustable phase
- Selectable Phase Shift: $-2 t,-t, 0$, and $+t\left(t=1 / f_{V C O}\right)$
- Low output-to-output skew: 150 ps (max) within a group
- Near-zero propagation delay -350 ps $\pm 500$ ps (max) or -350 ps $\pm 700$ ps (max)
- TTL-compatible with 30 mA output drive
- 28-pin J-lead surface-mount package


## GA1088

## Functional Description

The core of the GA1088 is a Phase-Locked Loop (PLL) that continuously compares the reference clock (REFCLK) to the feedback clock (FBIN), maintaining a zero frequency difference between the two. Since one of the outputs ( $Q 0-Q 6$ ) is always connected to FBIN, the PLL keeps the propagation delay between the outputs and the reference clock within $-350 \mathrm{ps} \pm 500 \mathrm{ps}$ for the GA1088-MC500, and within $-350 \mathrm{ps} \pm 700 \mathrm{ps}$ for the GA1088-MC700.

The internal voltage-controlled oscillator (VCO) has an operating range of 280 MHz to 420 MHz . The combination of the VCO and the Divide Logic enables the GA1088 to operate between 18 MHz and 105 MHz . The device features six divide modes: $\div 4, \div 6, \div 8, \div 8$, $\div 12$, and $\div 16$. The Frequency Select pins, F0 and F1, and the output used as feedback to FBIN set the divide mode as shown in Table 1.

The Shift Select pins, S0 and S1, control the phase shift of the Group C outputs (Q7-Q10), relative to the other outputs. The user can select from four
incremental phase shifts as shown in Table 2 (Phase Selection). The phase-shift increment ( t ) is calculated using the following equation (where n is the divide mode):

$$
t=\frac{1}{\left(f_{\text {REF }}\right)(n)}
$$

In the test mode, the PLL is bypassed and REFCLK is connected directly to the Divide Logic block via the MUX, as shown in Figure 1. This mode is useful for debug and test purposes. The various test modes are outlined in Table 3. In the test mode, the frequency of the reference clock is divided by 4,6 , or 8 .

The maximum rise and fall time at the output pins is 1.4 ns . All outputs of the GA1088 are TTL-compatible with 30 mA symmetric drive and a minimum $\mathrm{V}_{\mathrm{OH}}$ of 2.4 V .

## Power Up/Reset Synchronization

After power up or reset, the PLL requires time before it achieves synchronization lock. The maximum time required for synchronization (TSYNC) is 500 ms .

## Table 1. Frequency Mode Selection

Feedback: Any Group A Output (Q0-Q2)

| Test | Select Pins <br> FO | F1 | Mode | Reference Clock <br> Frequency Range | Group A: Q0-Q2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Feedback: Any Group B Output (Q3-Q6)

| Test | Select Pins <br> FO | F1 | Mode | Reference Clock <br> Frequency Range | Output Frequency Range <br> Group A: Q0-Q2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | Not Used | N.A. | N.A. | N.A. |
| 0 | 1 | 0 | $\div 4$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ | $35 \mathrm{MHz}-50 \mathrm{MHz}$ | $70 \mathrm{MHz}-105 \mathrm{MHz}$ |
| 0 | 0 | 1 | $\div 6$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ | $24 \mathrm{MHz}-35 \mathrm{MHz}$ | $48 \mathrm{MHz}-70 \mathrm{MHz}$ |
| 0 | 1 | 1 | $\div 8$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ | $18 \mathrm{MHz}-26 \mathrm{MHz}$ | $35 \mathrm{MHz}-52 \mathrm{MHz}$ |

## GA1088

Table 2. Phase Selection

| SO | S1 | Phase Difference (Q9, Q10) |
| :---: | :---: | :---: |
| 0 | 0 | $+t$ |
| 1 | 0 | 0 |
| 0 | 1 | $-t$ |
| 1 | 1 | $-2 t$ |

Table 3. Test Mode Selection

| Test | FO | F1 | Mode | Ref. Clock | Group A: Outputs QO-Q2 | Group B,C Outputs Q3-010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 0 | 0 | not used | - | - | - |
| 1 | 1 | 0 | $\div 4$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \times 8$ | $\mathrm{f}_{\text {REF }} \div 4$ |
| 1 | 0 | 1 | $\div 6$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }}+12$ | $\mathrm{f}_{\text {REF }} \times 6$ |
| 1 | 1 | 1 | $\div 8$ | $\dagger_{\text {REF }}$ | $\mathrm{f}_{\text {REF }}+16$ | $\mathrm{f}_{\text {REF } \div} \times 8$ |

## Layout Guidelines

Multiple ground and power pins on the GA1088 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. TriQuint recommends bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 2 shows the recommended power layout for the GA1088. The bypass capacitors should be located on the same side of the board as the GA1088. The $V_{D D}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple throughholes connect this small surface plane to an inner-layer ground plane. The capacitors (C1-C5) are 0.1 mF . TriQuint's test board uses X7R temperature-stable capacitors in 1206 SMD cases.

Figure 2. Top Layer Layout of Power Pins (approx. 3.3x)


## Absolute Maximum Ratings ${ }^{1}$

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied ${ }^{2}$ | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

DC Characteristics $\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{3}$

| Symbol | Description | Test Conditions | Min | $\begin{gathered} \text { Limits }^{4} \\ \text { Typ } \end{gathered}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OHT}}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ | 2.4 | 3.4 |  | V |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | 3.2 | 4.1 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & \hline V_{D D}=\operatorname{Min} \quad I_{0 L}=30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ |  | 0.27 | 0.5 | V |
| $\mathrm{V}_{1{ }^{5}}$ | Input HIGH level | Guaranteed input logical HIGH Voltage for all Inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{5}$ | Input LOW level | Guaranteed input logical LOW Voltage for all inputs |  |  | 0.8 | V |
| IIL | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -156 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{6}$ | Power supply current | $V_{\text {DD }}=$ Max |  | 119 | 160 | mA |
| $V_{1}$ | Input clamp voltage | $V_{D D}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}} 3,7$ | Input capacitance | $\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | pF |  |  |

Notes: 1. Exceeding these parameters may damage the device.
2. Maximum ambient temperature with device not switching and unloaded.
3. These values apply to both GA1088-MC500 and GA1088-MC700.
4. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
5. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
6. This parameter is measured with device not switching and unloaded.
7. These parameters are not $100 \%$ tested, but are periodically sampled.

## GA1088

AC Characteristics $\quad\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 3) ${ }^{\mathbf{1}}$ | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{CPWH}}$ | CLK pulse width HIGH | Figure 4 | 3 | $\cdots$ | - | ns |
| $\mathrm{t}_{\mathrm{CPWL}}$ | CLK pulse width LOW | Figure 4 | 3 | $\cdots$ | - | ns |
| $\mathrm{t}_{\mathrm{RR}}$ | Input rise time $(0.8 \mathrm{~V}-2.0 \mathrm{~V})$ |  | - | - | 2.0 | ns |


| Symbol | Input Clock (Q0-Q10) | Test Conditions (Figure 3) ${ }^{1}$ | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {OR, }} \mathrm{t}_{\text {OF }}$ | Rise/fall time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) | Figure 4 | 350 | - | 1400 | ps |
| $\mathrm{t}_{\mathrm{PD} 1}{ }^{2}$ | CLK Î to FBIN î (GA1088-MC500) | Figure 4 | -850 | -350 | +150 | ps |
| $\mathrm{t}_{\mathrm{PD} 2}{ }^{2}$ | CLK î to FBIN Î (GA1088-MC700) | Figure 4 | -1050 | -350 | +350 | ps |
| $\mathrm{t}_{\text {SKEW } 1}{ }^{3}$ | Rise-rise, fall-fall (within group) | Figure 5 | - | 60 | 150 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, aligned) | Figure 6 (skew2 takes into account skew1) | - | 75 | 350 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, non-aligned | d) Figure 7 (skew3 takes into account skews1, 2) | - | - | 650 | ps |
| $\mathrm{t}_{\text {SKEW4 }}{ }^{3}$ | Rise-fall, fall-rise | Figure 8 (skew4 takes into account skew3) | - | - | 1200 | ps |
| $\mathrm{t}_{\mathrm{crc}}{ }^{4}$ | Duty-cycle Variation | Figure 4 | -1000 | 0 | +1000 | ps |
| $\mathrm{t}_{\text {JP }}{ }^{5}$ | Period-to-Period Jitter | Figure 4 | - | 80 | 200 | ps |
| $\mathrm{t}_{\mathrm{JR}}{ }^{5}$ | Random Jitter | Figure 4 | - | 190 | 400 | ps |
| $\mathrm{t}_{\text {SYNC }}{ }^{6}$ | Synchronization Time |  | - | 10 | 500 | $\mu \mathrm{S}$ |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V ).
2. The PLL maintains alignment of CLK and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically 50/50. The delay $t_{P D}$ is measured at the 1.5 V level between CLK and FBIN.
3. Skew specifies the width of the window in which outputs switch, and is measured at 1.5 V .
4. This specification represents the deviation from $50 / 50$ on the outputs.
5. Jitter specifications refer to peak-to-peak value. $t_{J R}$ is the jitter on the output with respect to the reference clock. $t_{J P}$ is the jitter on the output with respect to the output's previous rising edge.
6. $t_{S Y N C}$ is the time required for the PLL to synchronize; this assumes the presence of a CLK signal and a connection from one of the outputs to FBIN.

Figure 3. AC Test Circuit


## Switching Waveforms

Figure 4. General Timing


Figure 5. tskEw


Group B
Group B


Group C
Group C


Figure 6. $\boldsymbol{t}_{\text {SKEW2 }}$


Figure 7. $\boldsymbol{t}_{\text {SKEW }}$
(For Group A Feedback)

(For Group A or B Feedback)
Group $A$

Group C


Group B

Group C


Note: " $n$ " is the phase shift increment: $t, 0,-t, 2 t$.

Figure 8. $\boldsymbol{t}_{\text {SKEW4 }}$


## 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions are in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O | Pin \# | Pin Name | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GND | Ground | - | 15 | GND | Ground |
| 2 | Q9 | Output Clock 9 (C3) | 0 | 16 | Q1 | Output Clock 1 (A2) |
| 3 | Q10 | Output Clock 10 (C4) | 0 | 17 | Q2 | Output Clock 2 (A3) |
| 4 | VDD | +5 V | - | 18 | VDD | +5 V |
| 5 | GND | Ground | - | 19 | GND | Ground |
| 6 | F0 | Frequency Select 0 | 1 | 20 | Q3 | Output Clock 3 (B1) |
| 7 | F1 | Frequency Select 1 | 1 | 21 | Q4 | Output Clock 4 (B2) |
| 8 | SO | Shift Select 0 | 1 | 22 | VDD | +5V |
| 9 | REFCLK | Reference Clock | 1 | 23 | Q5 | Output Clock 5 (B3) |
| 10 | S1 | Shift Select 1 | 1 | 24 | Q6 | Output Clock 6 (B4) |
| 11 | FBIN | Feedback In | 1 | 25 | GND | Ground |
| 12 | TEST | Test | 1 | 26 | VDD | +5V |
| 13 | VDD | +5V | - | 27 | Q7 | Output Clock 7 (C1) |
| 14 | Q0 | Output Clock 0 (A1) | 0 | 28 | Q8 | Output Clock 8 (C2) |

## Output Characteristics

The IV characteristics, transition times, package characteristics, device and bond wire characteristics for the GA1088 are described in Tables 4 through 9 and Figures 9 through 11.

Figure 9. $I_{O H}$ vs. $V_{O H}$


Table 4. $I_{O H}$ vs. $V_{O H}$

| $\boldsymbol{V}_{\mathbf{O L}}$ | $\boldsymbol{I}_{\mathbf{O L}} \min (\mathrm{mA})$ | $\boldsymbol{I}_{\mathbf{O L}} \max (\mathrm{mA})$ |
| :---: | :---: | :---: |
| 0.0 | -70 | -160 |
| 0.5 | -70 | -157 |
| 1.0 | -68 | -152 |
| 1.5 | -65 | -142 |
| 2.0 | -59 | -130 |
| 2.5 | -48 | -106 |
| 3.0 | -29 | -79 |
| 3.5 | 0 | -42 |
| 4.0 | 0 | 0 |
| 4.5 | 0 | 0 |
| 5.0 | 0 | 0 |
| 5.5 | 40 | 120 |
| 6.0 | 90 | 265 |
| 6.5 | 115 | 350 |
| 7.0 | 135 | 410 |
| 7.5 | 145 | 435 |

These output characteristics are provided for modelling purposes only. TriQuint does not guarantee the information in these tables and figures.

Figure 10. $I_{O L}$ vs. $V_{0 L}$


Table 5. $I_{O L}$ vs. $V_{O L}$

| $\boldsymbol{V}_{\boldsymbol{O L}}$ | $\boldsymbol{I}_{\mathbf{O L}} \boldsymbol{m i n}(\mathrm{mA})$ | $\boldsymbol{I}_{\mathbf{O L}} \max (\mathrm{mA})$ |
| :---: | :---: | :---: |
| -2.5 | -145 | -435 |
| -2.0 | -135 | -410 |
| -1.5 | -115 | -350 |
| -1.0 | -90 | -265 |
| -0.5 | -40 | -120 |
| 0.0 | 0 | 0 |
| 0.5 | 37 | 97 |
| 1.0 | 49 | 140 |
| 1.5 | 53 | 155 |
| 2.0 | 54 | 157 |
| 2.5 | 54 | 159 |
| 3.0 | 54 | 160 |
| 3.5 | 54 | 160 |
| 4.0 | 54 | 160 |
| 4.5 | 54 | 160 |
| 5.0 | 54 | 160 |
| 10.0 | 54 | 160 |

Notes: 1. These are worst-case corners for process, voltage, and temperature.
2. Includes diode-to-ground current.

## GA1088

Table 6. Above- $V_{D D}$ and Below-Ground Characteristics

| Diode to GND |  | $\boldsymbol{I}(\mathbf{m A})$ | $\boldsymbol{v}$ |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{V}$ | 0 | 5.0 | $\boldsymbol{I}$ Diode Stack to VDD |
| 0.0 | 0 | 5.4 | 0 |
| -0.4 | 0 | 5.5 | 0 |
| -0.5 | -5 | 5.6 | 0 |
| -0.6 | -15 | 5.7 | 5 |
| -0.7 | -35 | 5.8 | 15 |
| -0.8 | -55 | 5.9 | 35 |
| -0.9 | -75 | 6.0 | 55 |
| -1.0 | -300 | 7.0 | 75 |
| -2.0 | -350 | 7.5 | 300 |
| -2.5 | -360 | 8.0 | 350 |
| -3.0 |  | 360 |  |

Note: TriQuint does not guarantee diode operation for purposes other than ESD protection.

Figure 11. Output ModeI


Table 7. Device and Bond-Wire Characteristics (Estimated)

| $L 1$ | $C 1$ |
| :---: | :---: |
| 2 nH | 10 pF |

Table 8. 28-Pin MQuad Package Characteristics

| L2 | C2 |
| :---: | :---: |
| 1.85 nH | 0.40 pF |

Table 9. Rise and Fall Times (Into 0 pF, 50 Ohms to 1.5 V )
$\begin{array}{llll}\text { Time (ns) } T_{R} \min (V) & T_{R} \max (V) & T_{F} \min (V) T_{F} \max (V)\end{array}$

| 0.0 | 0.15 | 0.32 | 3.20 | 3.04 |
| :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.15 | 0.32 | 3.20 | 3.04 |
| 0.2 | 0.16 | 0.32 | 3.06 | 2.95 |
| 0.3 | 0.18 | 0.32 | 2.86 | 2.90 |
| 0.4 | 0.23 | 0.32 | 2.62 | 2.68 |
| 0.5 | 0.26 | 0.32 | 2.38 | 2.50 |
| 0.6 | 0.34 | 0.32 | 2.17 | 2.36 |
| 0.7 | 0.46 | 0.34 | 2.00 | 2.22 |
| 0.8 | 0.67 | 0.39 | 1.85 | 2.09 |
| 0.9 | 0.89 | 0.49 | 1.69 | 1.95 |
| 1.0 | 1.12 | 0.63 | 1.52 | 1.86 |
| 1.1 | 1.32 | 0.86 | 1.38 | 1.68 |
| 1.2 | 1.50 | 1.09 | 1.26 | 1.59 |
| 1.3 | 1.73 | 1.27 | 1.12 | 1.49 |
| 1.4 | 1.93 | 1.45 | 0.96 | 1.36 |
| 1.5 | 2.15 | 1.64 | 0.83 | 1.23 |
| 1.6 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.7 | 2.58 | 2.00 | 0.61 | 1.00 |
| 1.8 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.9 | 2.90 | 2.41 | 0.45 | 0.91 |
| 2.0 | 3.02 | 2.50 | 0.39 | 0.86 |
| 2.1 | 3.12 | 2.64 | 0.33 | 0.77 |
| 2.2 | 3.17 | 2.77 | 0.29 | 0.73 |
| 2.3 | 3.19 | 2.86 | 0.24 | 0.68 |
| 2.4 | 3.20 | 2.95 | 0.21 | 0.64 |
| 2.5 | 3.20 | 2.99 | 0.19 | 0.59 |
| 2.6 | 3.20 | 3.02 | 0.17 | 0.55 |
| 2.7 | 3.20 | 3.02 | 0.16 | 0.53 |
| 2.8 | 3.20 | 3.04 | 0.16 | 0.50 |
| 2.9 | 3.20 | 3.04 | 0.15 | 0.45 |
| 3.0 | 3.20 | 3.04 | 0.15 | 0.41 |
| 3.1 | 3.20 | 3.04 | 0.15 | 0.40 |
| 3.2 | 3.20 | 3.04 | 0.15 | 0.37 |
| 3.3 | 3.20 | 3.04 | 0.15 | 0.36 |
| 3.4 | 3.20 | 3.04 | 0.15 | 0.32 |
| 3.5 | 3.20 | 3.04 | 0.15 | 0.32 |

## Ordering Information

To order, please specify as shown below:

## GA1088-MC nnn 11-Output Configurable Clock Buffer <br> Propagation delay skew: <br> $500-350 \mathrm{ps} \pm 500 \mathrm{ps} \quad$ Note: All parts are marked as $700-350 \mathrm{ps} \pm 700 \mathrm{ps} \quad$ MC500. MC700 parts have a "2" added to the marking. <br> Temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial) <br> Package: MQuad

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^11]Figure 1. Block Diagram


TriQuint's GA1110E is a low-skew TTL-level clock buffer chip with multiphase clock generation. It produces multiple clock outputs which are normally phase- and frequency-synchronized to a periodic clock input signal. It offers the user the additional flexibility to adjust the phase of the individual outputs in increments of $\pm 2.5 \mathrm{~ns}$. With the precise placement of output clock edges relative to a system clock input, the GA1110E can provide a complete system clocking solution.

The tight control over the phase and frequency of the output clocks is achieved with a 400 MHz internal phase-locked loop (PLL). By feeding back one of the output clocks (to FBIN), the on-chip PLL can continuously maintain synchronization between the input clock (CLKIN) and all six outputs. Any drift or gradual variation in the system clock will be matched and tracked at the six outputs.

The GA1110E offers the user fourteen different output clock configurations. Using the external feedback capability and the two select pins (S1 and S0), the desired phase relationships (among the 14 possibilities) of the output clocks may be chosen to best solve the system's clocking requirements. The output clock edges are "placed" in precise, digitally-controlled $\pm 2.5 \mathrm{~ns}$ increments relative to the input and feedback clock phase. The fourteen "phase-relationship" options are listed in Table 1 and example waveforms and block diagrams are shown in Figures 5 through 8.

## GA1110E

## Multi-Phase Clock Buffer

## Features

- Zero-propagation-delay clock buffer
- Output skew controlled to $\pm 250$ ps (typ.), $\pm 500$ ps (max.)
- Self-contained on-chip 400 MHz phase-locked loop (PLL)
- User-selectable phase shifting on the output clocks in 2.5 ns increments.
- Available in 20, 25, 33, 40 and 50 MHz versions
- High-drive, symmetric

TTL-compatible outputs with rise time of 1.0 ns

- Special test mode
- 130 mA operating current (typ.), 160 mA (max.)
- Standard 16-pin DIP and 28-pin surface-mount packages


## GA110E

The GA1110E is fabricated using TriQuint's One-Up ${ }^{\text {TM }}$ gallium arsenide technology to achieve precise timing control and to guarantee 100\% TTL-compatibility. The $20,25,33,40$ and 50 MHz input frequencies make this device ideal for clock distribution, phase adjustment, and clock skew control in a wide range of highperformance RISC- and CISC-based systems.

## Functional Description

The GA1110E TTL-level clock buffer/phase generator chip provides multiple outputs synchronized in phase and frequency to a periodic clock input. The chip utilizes two select pins and external feedback to allow the user to "phase-adjust" the outputs relative to the input clock. The phase adjustments can be made in increments of $t_{\mathrm{PH}}$; this value is given in the AC Characteristics table.

Table 1 enumerates the fourteen configurations available to the user. The first two columns specify the signal levels on the select pins S1 and S0. These are active-HIGH signals. The third column indicates which output ( $Q 0 . .5$ ) should be externally connected to the feedback input (FBIN) to achieve the desired phase relationship shown for a given configuration in the table. The last six columns specify the resulting phase relationship of each output to the user clock input (CLKIN). A negative value is the time by which the output rising edge precedes the input (CLKIN) rising edge, while a positive value is the time by which the output rising edge follows the input (CLKIN) rising edge.

Example: The system clocking requirements may specify several low-skew outputs, one early clock, one late clock, and one inverted clock.

Configuration 3 in Table 1 provides such a solution. With S1 = LOW, S0 = HIGH, and Q0 (or Q1 or Q4) connected back to FBIN, the required outputs will be generated. Q0, Q1 and Q4 will be phase-aligned to the input (CLKIN), Q3 will provide an early clock (by one $t_{P H}$, the phase-shift increment), Q2 will provide the late clock (by one $t_{P H}$ ), and Q5 will provide a phase-aligned, inverted copy of the input. The GA1110E's PLL will maintain these phase relationships continually, as shown in Figure 6.

Several of the operating configurations in Table 1 include inverted clock outputs. If the inverted clock is aligned to the input (i.e. exactly 180 degrees out of phase), the table entry reads as "I". If this inverted clock is also phase-shifted, the phase shift is relative to CLKIN and is specified as "l +t " or " $\mathrm{l}-\mathrm{t}$."

Example: Configuration 5 of the table corresponds to S1 = LOW, S0 = HIGH and Q3 connected to FBIN. In this case, Q3 is phase-aligned to the input clock (CLKIN), Q0, Q1 and Q4 are phase-delayed by one $t_{P H}, Q 2$ is phase-delayed by two $t_{P H} S$, and the Q5 output is an inverted copy of CLKIN, phase-delayed by one $t_{\text {PH }}$.

## Multiple-Chip Applications

Because of the tight input-output phase control, the GA1110E can be easily cascaded to build low-skew clock chains and clock trees. The problem of clock fanout can be solved with minimal skew between any two clocks in the chain. This can be done on a single circuit board, as well as across a backplane to maintain synchronization throughout multiple boards in a system.

## GA1110E

## Breaking the Feedback Loop

There is no requirement that the external feedback connection be a direct hardwire from an output pin to the FBIN pin. So long as the signal at FBIN is derived directly from one of the output pins and maintains its frequency, additional logic incorporating any delay whatsoever can be accommodated. The internal phaselocked loop will adjust the output clocks on the GA1110E to ensure zero phase-delay between the FBIN and CLKIN signals. This feature is extremely valuable in synchronizing ASICs to the system clock.

Caution: The signal at FBIN must be continuous (i.e. not a gated or conditional signal), and must be derived directly from one of the GA1110E's outputs.

## Power-Up/Reset Synchronization

The GA1110E utilizes on-chip phase-locked loop technology to maintain synchronization between inputs and outputs. Whenever the device is powered up, or the system clock (CLKIN) is reset, the phase-locked
loop requires a synchronization time ( $\mathrm{t}_{\mathrm{SYNC}}$ ) before lock is achieved. The maximum time required is specified in the AC Characteristics table.

For lock to occur, one of the outputs must always be connected (either directly or through additional ICs) to the FBIN input.

## Other TriQuint Clock Devices

TriQuint also offers the GA1210E, a low-skew TTL-level clock doubler. Using on-board PLL technology, the GA1210E generates multiple 2 X clock outputs from a single input at $20,25,33,40$, or 50 MHz . By feeding back one of the outputs, a typical delay of $\pm 250$ ps through the part is achieved. Skew across all six outputs is typically $\pm 250$ ps.

## GA110E

## GA1110E Test Mode

The GA1110E has a test mode which can be enabled if the test pin TO is HIGH. Under that condition, the clock signal from the test pin T 1 is used as the clock input to the configuration logic, instead of the output from the PLL. This mode can be used to test only the internal state machine and associated logic. Each speed type and configuration has a unique signature which is present at the output after " $n$ " number of input clock

Figure 2. Test Mode for the GA1110E-25 (Configuration 1)

pulses. [For the GA1110E-25 there will be one output clock cycle for every 16 input clock cycles from $t_{0}$.]

The figures below show the test mode and associated timing for Configuration 1 of the GA1110E-25. (See Configuration 1 in Table 1.) When powered up, the Q0 through $Q 5$ outputs can be in any state. It can take up to 16 clocks to get the outputs to the predetermined state at $\mathrm{t}_{0}$. The number of clock cycles at input T1 required for one output clock cycle is 20 for GA1110E20, 12 for the GA1110E-33, 10 for the GA1110E-40 and 8 for the GA1110E-50.

The test input clock at T1 can either be used to singlestep the outputs, or it can be clocked at rates up to 200 MHz . Please note that for the normal mode of operation, TO is LOW (GND) and T1 can be HIGH (VDD) or No Connect (N/C).

Figure 3. GA1110E-25 Test Mode Timing Waveform


Note: The above timing applies to the case when $S 1=S 0=0$ and $T 0=1$ (test mode).

## GA1110E

Table 1. Configuration Table

| Configuration Number | Select Pins |  | Output Fed Back to FBIN | Output Phase Shift (see Figure 4) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | S1 | SO |  | 00 | $Q 1$ | Q2 | Q3 | 04 | 05 |
| 1 | 0 | 0 | Q0..Q4 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | Q5 | 1 | 1 | 1 | 1 | 1 | 0 |
| 3 | 0 | 1 | Q0, Q1, Q4 | 0 | 0 | t | -t | 0 | 1 |
| 4 | 0 | 1 | Q2 | -t | -t | 0 | -2t | -t | 1-t |
| 5 | 0 | 1 | Q3 | t | t | 2 t | 0 | $t$ | 1+t |
| 6 | 0 | 1 | Q5 | 1 | 1 | 1+t | 1-t | 1 | 0 |
| 7 | 1 | 0 | Q0, Q2, Q3 | 0 | t | 0 | 0 | -t | -2t |
| 8 | 1 | 0 | Q1 | -t | 0 | -t | -t | -2t | -3t |
| 9 | 1 | 0 | Q4 | t | 2 t | t | t | 0 | -t |
| 10 | 1 | 0 | Q5 | 2 t | 3 t | 2 t | 2 t | t | 0 |
| 11 | 1 | 1 | Q0 | 0 | t | t | -t | -t | -2t |
| 12 | 1 | 1 | Q1, Q2 | -t | 0 | 0 | -2t | -2t | -3t |
| 13 | 1 | 1 | Q3, Q4 | t | 2 t | 2t | 0 | 0 | -t |
| 14 | 1 | 1 | Q5 | 2 t | 3 t | 3 t | t | t | 0 |

Notes: 1. " $t$ " represents $t_{\text {PH, }}$, the phase-shift increment specified on page 10.
2. A " 0 " phase implies the output is aligned to CLKIN.
3. A negative phase implies the output precedes CLKIN.
4. A positive phase implies the output follows CLKIN.
5. "I" implies an inverted version of CLKIN.

Figure 4. Legend
TABLE 1 ENTRY


CORRESPONDING WAVEFORMS*

* Each division represents one $\mathrm{t}_{\mathrm{PH}}$, the phase increment


## GA110E

## Configuration Examples

Following are four sample configurations corresponding to Table 1.

## Figure 5. Configuration 1



Figure 6. Configuration 3
$S 1=0 \quad S 0=1$
$\mathrm{FBIN}=\mathbf{Q 1}$


## Figure 7. Configuration 8



Figure 8. Configuration 14

$$
\begin{gathered}
S 1=1 \quad S 0=1 \\
\text { FBIN }=05
\end{gathered}
$$



## GA110E

## Typical Applications

The GA1110E is designed to satisfy a wide range of system clocking requirements. The following are four of the most common clocking bottlenecks which can be alleviated using the GA1110E. These applications are illustrated in Figures 9A through 9D.

## 1) Low-Skew Clock Distribution / Clock Trees

The most basic bottleneck to clocking high-performance systems is generating multiple copies of a system clock, while maintaining low skew throughout the system.

- The GA1110E guarantees low skew among all clocks in the system by controlling both the input-to-output delay and the skew among all outputs.


## 2) Board-to-Board Clock Synchronization

Many computing systems today consist of multiple boards and cards designed to run synchronously. The skew associated with routing clocks across a backplane presents a major hurdle to maximizing system performance.

- The tightly controlled input/output delay of the GA1110E ensures all boards in the system are running synchronously.
- The phase-shift feature on the device outputs can be used to compensate for the differing physical distances between multiple cards in a system.

Figure 9A. Low-Skew Clocks


Figure 9B. Board-to-Board Synchronization


## GA1110E

## Typical Applications (continued)

## 3) Leading and Lagging Edge Clock Generation

In synchronous or state machine designs where clocks must be sequential, or where metastability becomes a concern, tight edge placement of clock signals becomes a primary requirement.

- The GA1110E, using its phase-control feature, can guarantee by design that clock signals are sequential in as little as 2.5 ns increments.
- This enables pipelined logic which is unbalanced to be clocked in different phases, alleviating setup/hold time requirements.


## 4) Trace Delay / Loading Compensation

System designers often rely on various board layout techniques to compensate for signals driving different distances and/or loads.

- The GA1110E can selectively "place" clock edges ahead or behind in 2.5 ns increments to compensate for severe mismatches.
- Because the output skew is tightly controlled, outputs of the same phase can be wired together to increase drive capability on heavily loaded clock signals.

Figure 9C. Sequential Clock Signals


Figure 9D. Timing and Load Compensation


## GA110E

Figure 10. System Clocking Solutions

the solution to system clocking bottlenecks into the hands of designers themselves. The tight control on timing specifications is achievable through TriQuint's TTL-compatible One-Up process operating in the 400 MHz range.

Because TriQuint's 1000 -series clock devices have low-skew outputs and tightly controlled input-to-output delay, any one of the devices may be added into the clock chain and will operate synchronously with the rest of the system.

## Absolute Maximum Ratings

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $+\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$ |
| DC input current | $-30 \mathrm{~mA} \mathrm{to}+5 \mathrm{~mA}$ |

DC Characteristics (Supply voltage: $+5 \mathrm{~V} \pm 5 \%$ Ambient temp: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )


## Capacitance ${ }^{4}$

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}}$ | Input capacitance | $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 | pF |  |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 9 | pF |  |

Notes: 1. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. No more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{\text {out }}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not $100 \%$ tested, but are periodically sampled.

## GA110E

AC Characteristics (Supply voltage: $+5 \mathrm{~V} \pm 5 \%$; Ambient temp: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ )

|  | Description |  | $\begin{aligned} & -50 \\ & T y p \end{aligned}$ |  |  | $\begin{gathered} -40 \\ T y p \end{gathered}$ | Max |  | $\begin{gathered} -33 \\ T y p \end{gathered}$ | $\operatorname{Max}$ |  | $\begin{aligned} & -25 \\ & \text { Typ } \end{aligned}$ |  |  | $\begin{gathered} -20 \\ T y p \end{gathered}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{FiN}_{\text {I }}$ | CLKIN frequency ${ }^{1}$ | - | 50 | - | - | 40 | - | - | 33 | - | - | 25 | - | - | 20 | - | MHz |
| ${ }_{t}{ }_{\text {cP }}$ | CLKIN period | - | 20 | - | - | 25 | - | - | 30 | - | - | 40 | - | - | 50 | - | ns |
| $t_{\text {cpw }}$ | CLKIN pulse width | 5 | 10 | - | 6.25 | 12.5 | - | 7.5 | 15 | - | 10 | 20 | - | 12.5 | 25 | - | ns |
| $\mathrm{tiR}_{\text {R }} \mathrm{t}_{\text {IF }}$ | Input rise/fall time ( $20-80 \%$ ) | - | - | 3.0 | - | - | 3.0 | - | - | 3.0 | - | - | 3.0 | - | - | 3.0 | ns |
| $\mathrm{t}_{\text {OR, }} \mathrm{t}_{\text {OF }}$ | Output rise/fall time ( $80-20 \%$ ) | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 | ns |
| $t_{\text {R }}$ | Output rise time ( 0.8 V to 2.0 V ) | - | 0.5 | 1.5 | - | 0.5 | 1.5 | - | 0.5 | 1.5 | - | 0.5 | 1.5 | - | 0.5 | 1.5 | ns |
| $t_{\text {PO }}$ | CLKIN î to FBIN ${ }^{2}$ | - | $\pm 250$ | $\pm 1000$ | ps |
| $\dagger_{\text {SKEW }}$ | Output Skew ${ }^{3}$ | - | $\pm 250$ | $\pm 500$ | ps |
| $t_{w}$ | Output Window ${ }^{4}$ | - | 0.5 | 1.0 | - | 0.5 | 1.0 | - | 0.5 | 1.0 | - | 0.5 | 1.0 | - | 0.5 | 1.0 | ns |
| tPH | Phase-shift Increment ${ }^{5}$ | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | ns |
| ${ }_{\text {tcyc }}$ | Duty-cycle Variation ${ }^{6}$ | - | 1.0 | - | - | 1.0 | - | - | 1:0 | - | - | 1.0 | - | - | 1.0 | - | ns |
| ${ }^{\text {SYNC }}$ | Synchronization Time ${ }^{7}$ | - | 200 | 500 | - | 200 | 500 | - | 200 | 500 | - | 200 | 500 | - | 200 | 500 | $\mu \mathrm{S}$ |

Note: All AC specifications are measured with a $75 \Omega$ transmission line load terminated with $75 \Omega$ to 1.5 V . The skew specifications are guaranteed for equal loading at each output.

Figure 11. Switching Waveforms


Notes: 1. The max, min range on CLKIN frequency is $\pm 5 \%$.
2. The PLL maintains alignment of CLKIN and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically 50/50.
3. The output skew is measured from the middle of the output window. The maximum skew is guaranteed across all voltages and temperatures.
4. $t_{w}$ specifies the width of the window in which all outputs will switch.
5. This increment is a digitally generated fraction of $t_{C P}$ and will not vary with voltage or temperature The specifications for $t_{P H}$ given in the table are for $50,40,33,25$, and 20 MHz operation, respectively.
6. This specification represents the deviation from $50 / 50$ on the outputs; it is sampled periodically but is not guaranteed.
7. $t_{S Y N C}$ is the time required for the PLL to synchronize; this assumes the presence of a CLKIN signal and a connection from one of the outputs to FBIN.
8. All specifications for inverted outputs apply to the rising edge only.
9. The device is $A C$ tested only in the $S 0=S 1=0$ mode.

## GA1110E

## 28-Pin MQuad J-Leaded Package Mechanical Specifications

(All dimensions are in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: |
| 1 | N/C | No Connect | - |
| 2 | GND | Ground | - |
| 3 | TO | Test 0 | I $^{1}$ |
| 4 | N/C | No Connect | - |
| 5 | N/C | No Connect | - |
| 6 | SO | Select 0 | I |
| 7 | S1 | Select 1 | I |
| 8 | N/C | No Connect | - |
| 9 | FBIN | Feedback In | I |
| 10 | CLKIN | System Clock | I |
| 11 | N/C | No Connect | - |
| 12 | N/C | No Connect | - |
| 13 | T1 | Test 1 | I $^{1}$ |
| 14 | GND | Ground | - |


| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: |
| 15 | N/C | No Connect | - |
| 16 VDD | +5 V | - |  |
| 17 | Q0 | Output Clock 0 | 0 |
| 18 | N/C | No Connect | - |
| 19 | N/C | No Connect | - |
| 20 | Q1 | Output Clock 1 | 0 |
| 21 | Q2 | Output Clock 2 | 0 |
| 22 | Q3 | Output Clock 3 | 0 |
| 23 | Q4 | Output Clock 4 | 0 |
| 24 | Q5 | Output Clock 5 | 0 |
| 25 | N/C | No Connect | - |
| 26 | N/C | No Connect | - |
| 27 | VDD | +5 V | - |
| 28 | VDD | +5 V | - |

Note: 1. For normal operation, TO is GND and T1 is $V_{D D}$ or N/C (No Connect). For Test Mode, TO is HIGH and T1 is Clock Pulse(s).

## GA110E

## 16-Pin DIP Package Mechanical Specifications

(All dimensions in inches)


## 16-Pin DIP Pin Description

| Pin \# | Pin Name | Description | I/O | Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GND | Ground | - | 9 | GND | Ground | - |
| 2 | T0 | Test 0 | $1^{1}$ | 10 | Q0 | Output Clock 0 | 0 |
| 3 | SO | Select 0 | 1 | 11 | Q1 | Output Clock 1 | 0 |
| 4 | S1 | Select 1 | 1 | 12 | Q2 | Output Clock 2 | 0 |
| 5 | FBIN | Feedback In | 1 | 13 | Q3 | Output Clock 3 | 0 |
| 6 | CLKIN | System Clock | 1 | 14 | Q4 | Output Clock 4 | 0 |
| 7 | T1 | Test 1 | $1^{1}$ | 15 | Q5 | Output Clock 5 | 0 |
| 8 | VDD | +5V | - | 16 | VDD | $+5 \mathrm{~V}$ | - |

Note: 1. For normal operation, TO is GND and T1 is $V_{D D}$ or N/C. For Test Mode, TO is HIGH and T1 is Clock Pulse(s).

## Ordering Information

To order, please specify as below shown:


For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Email: sales@tqs.com
Tel: (503) 615-9000
Fax: (503) 615-8900
For technical questions and additional information on specific applications:

## Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997 SEMICON

Figure 1. Block Diagram


TriQuint's GA1210E is a low-skew TTL-level clock doubler chip. It produces multiple clock outputs, at precisely 2 X the input frequency, which are all phase-aligned to a periodic clock input signal. The GA1210E can generate clocks up to 100 MHz , making it an ideal solution for high-speed clock generation and routing.

The GA1210E guarantees precise clock control. The delay through the part is typically $\pm 250 \mathrm{ps}$. Skew at all six outputs is maintained to $\pm 250 \mathrm{ps}$, typically. When used with TriQuint's GA1110E multi-phase low-skew buffer, a complete system clocking solution can be achieved.

The capability to double clock signals while maintaining tight control over the phase and frequency of the output clocks is accomplished with the use of a 400 MHz internal phase-locked loop (PLL). By feeding back one of the 1 X frequency output clocks (to FBIN), the on-chip PLL can continuously maintain synchronization between the input clock (CLKIN) and all six outputs. Any drift or variation in the system clock will be matched and tracked at the six outputs of the GA1210E.

The GA1210E offers several different configurations to accommodate the designer's high-speed clocking requirements. In addition to providing 2 X outputs at $40-100 \mathrm{MHz}$ frequencies, the GA1210E can also be configured to generate non-overlapping two-phase clocks. The combination of high speed and a selectable two-phase capability makes it ideal for clocking state machine and pipeline logic.

## GA1210E

## Clock Doubler / Two-Phase Generator

## Features

- $2 X$ clock multiple generator
- Two-phase clock generator
- Zero propagation delay
- Output skew controlled to $\pm 250$ ps (typ) $\pm 500$ ps (max)
- Available in 20, 25, 33, 40 and 50 MHz versions
- High-drive, symmetric TTLcompatible outputs with rise time of 1.0 ns
- Self-contained on-chip 400 MHz phase-locked loop (PLL)
- Special test mode
- 130 mA operating current (typ), 160 mA (max)
- Standard 16-pin DIP and 28-pin surface-mount packages

The GA1210E is fabricated using TriQuint's One-Up™ gallium arsenide technology to achieve precise timing control and to guarantee 100\% TTL compatibility. The $20,25,33,40$, and 50 MHz input frequencies make this device ideal for high-speed clock generation and skew control in high-performance RISC- and CISC-based systems.

## Functional Description

The GA1210E TTL-level clock doubler and two-phase generator chip is capable of generating multiple 2 X outputs from a periodic clock input. Two control pins, EN2 and INV1, provide additional flexibility by selecting two-phase and inverted clocks, respectively.

Table 1 enumerates the four available sets of output clock configurations generated by the GA1210E. The first two columns represent the signal levels for the two control signals. EN2 is an active-HIGH signal which enables the two-phase clocking on outputs Q4 and Q5. INV1 is an active-LOW signal which inverts the Q1 output to provide a $\overline{1 X}$ clock output. The six columns-specify the resulting waveforms on each output; they are shown in detail in Figure 4.
Specifications for the phase and skew parameters associated with the output clocks are listed in the AC Characteristics table.

The GA1210E's primary function is to offer precisely phase-aligned, low-skew 2 X versions of the CLKIN input. Since the 2 X clocks are all synchronous to the input, high-frequency clocks can be generated locally. This relieves the difficulty of routing high-frequency clocks on a board or across a backplane. They can also be cascaded with other GA1210E devices to generate synchronous 4X clocks.

The GA1210E also has the capability to generate nonoverlapping two-phase clocks. By setting the EN2 pin HIGH, two-phase clocks are generated at outputs Q4 and Q5. This is ideal for state machines and other logic structures which can be optimized through two-phase clocking. The two-phase clocks are synchronous to the remaining outputs at 1 X and 2 X frequencies, providing maximum flexibility in board- and system-level clocking solutions.

In all configurations, the 1X clock must be fed back, either directly or indirectly, to the FBIN input, enabling the on-chip PLL to maintain phase and frequency synchronization.

## Multiple-Chip Applications

Because of the tight input-output phase control, the GA1210E can be easily cascaded to build low-skew clock chains and clock trees. The generation and distribution of high-speed clocks can be accomplished with minimal skew allowance, permitting the system designer to obtain maximum performance from the microprocessor and other high-speed circuits in their designs. When combined with TriQuint's GA1110E Iowskew, multi-phase clock buffer, a complete system clocking solution can be achieved. See Figure 5(Typical Applications).

## Breaking the Feedback Loop

There is no requirement that the external feedback connection be a direct hardwire from an output pin to the FBIN pin. So long as the signal at FBIN is derived directly from the Q0 output pin and maintains its frequency, additional logic incorporating any delay whatsoever can be accommodated. The internal phase-

## GA1210E

locked loop will adjust the output clocks on the GA1210E to ensure continuous phase alignment between the FBIN and CLKIN signals. This feature is extremely valuable in synchronizing ASICs to the system clock.

Caution: The signal at FBIN must be continuous (i.e. not a gated or conditional signal), and must be derived directly from one of the GA1210E's 1 X outputs.

## Power-Up/Reset Synchronization

The GA1210E utilizes on-chip phase-locked loop technology to maintain synchronization between inputs and outputs. Whenever the device is powered up, or the system clock (CLKIN) is reset, the phase-locked loop requires a synchronization time ( $\mathrm{t}_{\mathrm{SYNC}}$ ) before lock is achieved. The maximum time required is specified in the AC Characteristics table.

For lock to occur, the Q0 output must always be connected (either directly or through additional ICs) to the FBIN input.

## Table 1. Configuration Table

| EN2 | INV1 | Q0 | Q1 | Q2 | Q3 | Q4 | Q5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 X | 1 X | 2 X | 2 X | 2 X | 2 X |
| 0 | 1 | 1 X | 1 X | 2 X | 2 X | 2 X | 2 X |
| 1 | 0 | 1 X | 1 X | 2 X | 2 X | j 1 | j 2 |
| 1 | 1 | 1 X | 1 X | 2 X | 2 X | j 1 | j 2 |

Notes: 1. 1 X: The output clock is a phase-aligned $1 X$ copy of the CLKIN signal.
2. 1 X: The output clock is a $1 X$ copy of CLKIN, $180^{\circ}$ out of phase (i.e., inverted).
3. $2 X$ : The output clock is a phase-aligned $2 X$ frequency of the CLKIN signal.
4. j1, j2: The outputs are the first and second of two phases, synchronous to CLKIN.

## GA1210E Test Mode

The GA1210E has a test mode which can be enabled if the test pin T0 is HIGH. Under that condition, the clock signal from the test pin T 1 is used as the clock input to the configuration logic, instead of the output from the PLL. This mode can be used to test only the internal state machine and associated logic. Each speed type and configuration has a unique signature which is present at the output after " n " number of input clock pulses. (For the GA1210E-25 there will be one output clock cycle for every 16 input clock cycles from $\mathrm{t}_{0}$.) Figures 2 and 3 show the test mode and associated timing for Configuration 1.

When powered up, the Q0 through Q5 outputs can be in any state. It can take up to 16 clocks to get the outputs to the predetermined state at $\mathrm{t}_{0}$. The number of clock cycles at input T1 required for one output clock cycle is 20 for GA1210E-20, 12 for the GA1210E33,8 for the GA1210E-40 and 8 for the GA1210E-50. The test input clock at T1 can either be used to singlestep the outputs, or it can be clocked at rates up to 200 MHz . Please note that for the normal mode of operation, TO is LOW (GND) and T1 is HIGH (VD) or No Connect (N/C).

Figure 2. Test Mode for the GA1210E-25


## GA1210E

Figure 3. GA1210E-25 Timing in Test Mode
(Configuration 1)


Note: The above timing applies to the case when $S 1=S O=0$ and $T O=1$ (test mode).

Figure 4. Possible Configurations

## Configuration 1

$\overline{\text { INV1 }}=0$
EN2 = 0 FBIN $=\mathbf{0 0}$


Configuration 2


Configuration 3


## Configuration 4



## GA1210E

## Typical Applications

The GA1210E is designed to satisfy a wide range of system clocking requirements. It provides an ideal companion to the GA1110E multi-phase clock generator. Several application examples are illustrated below. frequency. performance.

## 1) High-Frequency Low-Skew Clock Generation

The GA1210E's basic capability is the generation of multiple phase-aligned, low-skew clocks at 2X the input

- The GA1210E guarantees low skew among all clocks in the system by controlling both the input-to-output delay and the skew among all six clock outputs.


## 2) Board-to-Board Clock Synchronization

Many computing systems today consist of multiple boards and cards designed to run synchronously. The skew associated with routing clocks across a backplane presents a major hurdle to maximizing system

- The tightly controlled input/output delay

Figure 5. Typical Applications

of the GA1210E ensures all
boards in the system are running synchronously.

- The GA1210E can be used with the GA1110E to route lower frequency clocks across a backplane; the low-frequency signal is then doubled on the target boards, enabling them to run synchronously with the host board.

TARGET


## 3) Two-Phase Clocking

The GA1210E can be configured to generate synchronous two-phase clocks.

- The two-phase clocks can be used for pipelined logic forms.
- Synchronous two-phase clocks can be used to eliminate metastability concerns by synchronizing asynchronous system inputs to the system clock.


## 4) Clock Trees and Clock Chains

Used alone or with the GA1110E, the GA1210E distributes multiple copies of high-frequency clocks to the various blocks of a system. All of the clock signals at all of the destinations will run synchronously.

- The controlled input-to-output delay allows long clock chains and trees


Figure 6. System Clocking Solutions


## Absolute Maximum Ratings

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $+\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$ |
| DC input current | -30 mA to +5 mA |

DC Characteristics (Supply voltage: $+5 \mathrm{~V} \pm 5 \%$ Ambient temp: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )

| Symbol <br> $\mathrm{V}_{\mathrm{OH}}$ | Description | Test Conditions |  |  | MinLimits ${ }^{1}$ <br> Typ |  | Max | $\frac{\text { Unit }}{V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} &=\operatorname{Min} \\ &=V_{I H} \text { or } V_{I I} \end{aligned}$ | $I_{O H}=-24 \mathrm{~mA}$ | 2.4 | 3.55 |  |  |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage |  | $\begin{aligned} & =\operatorname{Min} \\ = & V_{\text {IH }} \text { or } V_{H} \end{aligned}$ | $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ |  | 0.23 | 0.5 | V |
| $\mathrm{V}_{1 H}{ }^{2}$ | Input HIGH level |  | ranteed in age for all | put logical HIGH Inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}{ }^{2}$ | Input LOW level |  | ranteed in age for all | put logical LOW inputs |  |  | 0.8 | V |
| 1 IL | Input LOW current | $V_{D}$ | $=$ Max | $\mathrm{V}_{\mathrm{IN}}=0.40 \mathrm{~V}$ |  | -210 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH current | $V_{D}$ | $=$ Max | $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $V_{D}$ | $=$ Max | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{ISC}^{3}$ | Output short-circuit current | $V_{D}$ | $=$ Max | $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ |  | -80 |  | mA |
| $\mathrm{I}_{\mathrm{DD}}$ | Power supply current |  | $=$ Max |  |  | 130 | 160 | mA |
| $V_{1}$ | Input clamp voltage | $V_{D}$ | $=\mathrm{Min}$ | $\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$ |  | -0.62 | -1.2 | V |
| $\begin{aligned} & I_{\text {OLD }} \\ & I_{\text {OHD }} \end{aligned}$ | Dynamic switching current | $V_{\text {D }}$ | $\begin{aligned} & =\operatorname{Max} \\ & =\operatorname{Max} \end{aligned}$ | $\begin{aligned} & V_{O L D}=1.5 \mathrm{~V} \\ & V_{O H D}=1.5 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} 70 \\ -80 \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |

Capacitance ${ }^{4}$

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance | $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 | pF |  |
| $\mathrm{C}_{\text {OUT }}$ | Output capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 9 | pF |  |

Notes: 1. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. No more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{\text {out }}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not $100 \%$ tested, but are periodically sampled.

SEMICONDUCTOR

## GA1210E

AC Characteristics (Supply voltage: $+5 \mathrm{~V} \pm 5 \%$; Ambient temp: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ )

| Symbol | Description | Min | $\begin{aligned} & -50 \\ & T y p \\ & \hline \end{aligned}$ | Max | Min | $\begin{gathered} -40 \\ \text { Typ } \\ \hline \end{gathered}$ |  | Min | $\begin{aligned} & -33 \\ & T y p \\ & \hline \end{aligned}$ | Max | Min | $\begin{aligned} & -25 \\ & \text { Typ } \\ & \hline \end{aligned}$ | Max | Min | $\begin{aligned} & -20 \\ & \text { Typ } \\ & \hline \end{aligned}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FIN | CLKIN frequency ${ }^{1}$ | - | 50 | - | - | 40 | - | - | 33 | - | - | 25 | - | - | 20 | - | MHz |
| $\mathrm{t}_{\text {cP }}$ | CLKIN period | - | 20 | - | - | 25 | - | - | 30 | - | - | 40 | - | - | 50 | - | ns |
| $\mathrm{t}_{\text {CPW }}$ | CLKIN pulse width | 5 | 10 | - | 6.25 | 12.5 | - | 7.5 | 15 | - | 10 | 20 | - | 12.5 | 25 | - | ns |
| $\mathrm{t}_{\mathrm{IR}, \mathrm{t}_{\text {IF }}}$ | Input rise/fall time ( $20-80 \%$ ) | - | - | 3.0 | - | - | 3.0 | - | - | 3.0 | - | - | 3.0 | - | - | 3.0 | ns |
| $\mathrm{t}_{\text {OR, }} \mathrm{t}_{\text {OF }}$ | Output rise/fall time (80-20\%) | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 | ns |
| $t_{R}$ | Output rise time ( 0.8 V to 2.0 V ) | - | 0.5 | 1.5 | - | 0.5 | 1.5 | - | 0.5 | 1.5 | - | 0.5 | 1.5 | - | 0.5 | 1.5 | ns |
| $t_{\text {PD }}$ | CLKIN î to FBIN ${ }^{2}$ | - | $\pm 250$ | $\pm 1000$ | ps |
| $t_{\text {SKEW }}$ | Output Skew ${ }^{3}$ | - | $\pm 250$ | $\pm 500$ | ps |
| $t_{w}$ | Output Window ${ }^{4}$ | - | 0.5 | 1.0 | - | 0.5 | 1.0 | - | 0.5 | 1.0 | - | 0.5 | 1.0 | - | 0.5 | 1.0 | ns |
| $t_{\text {cyc }}$ | Duty-cycle Variation ${ }^{6}$ | - | 1.0 | - | - | 1.0 | - | - | 1.0 | - | - | 1.0 | - | - | 1.0 | - | ns |
| $\mathrm{t}_{\text {SYNC }}$ | Synchronization Time ${ }^{7}$ | - | 200 | 500 | - | 200 | 500 | - | 200 | 500 | - | 200 | 500 | - | 200 | 500 | $\mu \mathrm{s}$ |

Note: $\quad$ All AC specifications are measured with a $75 \Omega$ transmission line load terminated with $75 \Omega$ to 1.5 V . The skew specifications are guaranteed for equal loading at each output.

Figure 7. Switching Waveforms


Notes: 1. The min, max range on CLKIN frequency is $\pm 5 \%$
2. The PLL maintains alignment of CLKIN and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically 50/50.
3. The output skew is measured from the middle of the output window. The maximum skew is guaranteed across all voltages and temperatures.
4. $t_{W}$ specifies the width of the window in which all outputs will switch.
5. This specification represents the deviation from $50 / 50$ on the outputs; it is sampled periodically but is not guaranteed.
6. $t_{\text {SYNC }}$ is the time required for the PLL to synchronize; this assumes the presence of a CLKIN signal and a connection from one of the outputs to FBIN.
7. All specifications for inverted outputs apply to the rising edge only.
8. The device is $A C$ tested only in the $E N 2=0, \overline{I N V 1}=1$ mode.

## 28-Pin MQuad J-Leaded Package Mechanical Specifications

## (All dimensions are in inches)



## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: |
| 1 | N/C | No Connect | - |
| 2 | GND | Ground | - |
| 3 | T0 | Test 0 | I $^{1}$ |
| 4 | N/C | No Connect | - |
| 5 | N/C | No Connect | - |
| 6 | $\overline{\text { INV1 }}$ | Inverted Clocks | I |
| 7 | EN2 | 2-Phase Clocks | I |
| 8 | N/C | No Connect | - |
| 9 | FBIN | Feedback In | I |
| 10 | CLKIN | System Clock | I |
| 11 | N/C | No Connect | - |
| 12 | N/C | No Connect | - |
| 13 | T1 | Test 1 | I $^{1}$ |
| 14 | GND | Ground | - |


| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: |
| 15 | N/C | No Connect | - |
| 16 | VDD | +5 V | - |
| 17 | Q0 | Output Clock 0 | 0 |
| 18 | N/C | No Connect | - |
| 19 | N/C | No Connect | - |
| 20 | Q1 | Output Clock 1 | 0 |
| 21 | Q2 | Output Clock 2 | 0 |
| 22 | Q3 | Output Clock 3 | 0 |
| 23 | Q4 | Output Clock 4 | 0 |
| 24 | Q5 | Output Clock 5 | 0 |
| 25 | N/G | No Connect | - |
| 26 | N/C | No Connect | - |
| 27 | VDD | +5 V | - |
| 28 | VDD | +5 V | - |

Note: 1. For normal operation, TO is GND and T1 is VDD or N/C (No Connect). For Test Mode, TO is HIGH and T1 is Clock Pulse(s).

## GA1210E

## 16-Pin DIP Package Mechanical Specifications

(All dimensions in inches)


## 16-Pin DIP Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: |
| 1 | GND | Ground | - |
| 2 | T0 | Test 0 | $1^{1}$ |
| 3 | $\overline{\text { INV1 }}$ | Inverted Clock | I |
| 4 | EN2 | 2-Phase Clocks | I |
| 5 | FBIN | Feedback In | I |
| 6 | CLKIN | System Clock | I |
| 7 | T1 | Test 1 | $1^{1}$ |
| 8 | VDD | +5 V | - |


| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :---: | :---: |
| 9 | GND | Ground | - |
| 10 | Q0 | Output Clock 0 | 0 |
| 11 | Q1 | Output Clock 1 | 0 |
| 12 | Q2 | Output Clock 2 | 0 |
| 13 | Q3 | Output Clock 3 | 0 |
| 14 | Q4 | Output Clock 4 | 0 |
| 15 | Q5 | Output Clock 5 | 0 |
| 16 | VDD | +5 V | - |

Note: $\quad$ 1. For normal operation, TO is GND and T1 is VDD or N/C. For Test Mode, TO is HIGH and T1 is Clock Pulse(s).

## Ordering Information

To order, please specify as below shown:


## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

$$
\begin{array}{ll}
\text { Web: www.triquint.com } & \text { Tel: (503) 615-9000 } \\
\text { Email: sales@tqs.com } & \text { Fax: (503) 615-8900 }
\end{array}
$$

For technical questions and additional information on specific applications:

Email: applications@tqs.com

[^12]Figure 1. Block Diagram


TriQuint's TQ1089 is a configurable clock buffer which generates 11 outputs, operating over a wide range of frequencies from 65 MHz to 90 MHz and from 130 MHz to 180 MHz . The outputs are available at either 1 x and $2 x$ or at $1 x$ and $\frac{1}{2} x$ the reference clock frequency, $f_{\text {REF }}$. When one of the Group A outputs ( $\mathrm{Q} 0-\mathrm{Q8}$ ) is used as feedback to the PLL, all Group A outputs will be at $f_{\text {REF }}$, and all Group B outputs $(Q 9, Q 10)$ will be at $2 x f_{\text {REF }}$ . When one of the Group B outputs is used as feedback to the PLL, all Group A outputs will be at $1 / 2 \times f_{\text {REF }}$ and all Group B outputs will be at $f_{\text {REF }}$.

A very stable internal Phase-Locked Loop (PLL) provides low-jitter operation. This completely self-contained PLL requires no external capacitors or resistors. The PLL's Voltage-Controlled Oscillator (VCO) has a frequency range from 260 MHz to 360 MHz . By feeding back one of the output clocks to FBIN, the PLL continuously maintains frequency and phase synchronization between the reference clock (REFCLK) and each of the outputs.

TriQuint's patented output buffer design delivers a very low output-tooutput skew of 150 ps (max). The TQ1089's symmetrical TTL outputs are capable of sourcing and sinking 30 mA .

## TQ1089

## 11-Output Configurable Clock Buffer

## Features

- Wide frequency range: 65 MHz to 90 MHz and 130 MHz to 180 MHz
- Output configurations: eight outputs at $f_{\text {REF }}$ two outputs at $2 x f_{\text {REF }}$ or nine outputs at $1 / 2 \times f_{\text {REF }}$ one output at $f_{\text {REF }}$
- Low output-to-output skew: 150 ps (max) within a group
- Near-zero propagation delay -350 ps $\pm 500$ ps (max) or -350 ps $\pm 700$ ps (max)
- TTL-compatible with 30 mA output drive
- 28-pin J-lead surface-mount package
- Ideal for PowerPC ${ }^{\text {TM }}$-based designs


## TQ1089

## Functional Description

The core of the TQ1089 is a Phase-Locked Loop (PLL) that continuously compares the reference clock (REFCLK) to the feedback clock (FBIN), maintaining a zero frequency difference between the two. Since one of the outputs is always connected to FBIN, the PLL keeps the propagation delay between the outputs and the reference clock within $-350 \mathrm{ps} \pm 500 \mathrm{ps}$ for the TQ1089-MC500, and within -350 ps $\pm 700$ ps for the TQ1089-MC700.

The internal Voltage-Controlled Oscillator (VCO), has an operating range of 260 MHz to 360 MHz , as shown in Table 1. The combination of the VCO and the Divide Logic enables the TQ1089 to operate between 65 MHz and 90 MHz and from 130 MHz to 180 MHz .

In the test mode, the PLL is bypassed and REFCLK is connected directly to the Divide Logic block via the MUX, as shown in Figure 1. This mode is useful for debug and test purposes. The test mode is outlined in Table 2.

The maximum rise and fall time at the output pins is 1.4 ns. All outputs of the TQ1089 are TTL-compatible with 30 mA symmetric drive and a minimum $\mathrm{V}_{\mathrm{OH}}$ of 2.4 V .

## Power Up/Reset Synchronization

After power up or reset, the PLL requires time before it achieves synchronization lock. The maximum time required for synchronization (TSYNC) is 500 ms .

Table 1. Frequency Mode Selection

| Test | Output <br> Feedloack | Mode | Reference Clock <br> Frequency Range | Output Frequency Range <br> Group $A:$ Qo-a8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Group B | $\div 2$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ |
| 0 | Group A | $\div 4$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ |

Table 2. Test Mode Selection

| Test | Mode | Ref. Clock | Group $A$ <br> Outputs Q0-Q8 | Group $B$ <br> Outputs Q9, Q10 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\div 2$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \div 4$ | $\mathrm{f}_{\text {REF }} \div 2$ |

## Layout Guidelines

Multiple ground and power pins on the TQ1089 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. TriQuint recommends bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 2 shows the recommended power layout for the TQ1089. The bypass capacitors should be located on the same side of the board as the TQ1089. The $V_{D D}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple through holes connect this small surface plane to an inner-layer ground plane. The capacitors (C1-C5) are 0.1 mF . TriQuint's test board uses X7R temperature-stable capacitors in 1206 SMD cases.

Figure 2. Top Layer Layout of Power Pins
(Approx. 3.3x)


## Absolute Maximum Ratings ${ }^{1}$

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied ${ }^{2}$ | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $+\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

## DC Characteristics

$\left(V_{D D}=+5 V \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{3}$

| Symbol | Description | Test Conditions | Min | Limits ${ }^{4}$ <br> Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OHT }}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$ | 2.4 | 3.4 |  | V |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-1 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$ | 3.2 | 4.1 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O L}=30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$ |  | 0.27 | 0.5 | V |
| $\mathrm{V}_{1 H}{ }^{5}$ | Input HIGH level | Guaranteed input logical HIGH Voltage for all Inputs | 2.0 |  |  | V |
| $V_{\text {IL }}{ }^{5}$ | Input LOW level | Guaranteed input logical LOW Voltage for all inputs |  |  | 0.8 | V |
| $1 / 1$ | Input LOW current | $V_{D D}=M a x \quad V_{\text {IN }}=0.40 \mathrm{~V}$ |  | -156 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| $I_{1}$ | Input HIGH current | $V_{\text {DD }}=M a x \quad V_{I N}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{6}$ | Power supply current | $V_{D D}=$ Max |  | 119 | 170 | mA |
| $V_{1}$ | Input clamp voltage | $V_{D D}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}} 3,7$ | Input capacitance | $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 |  | pF |

Notes: 1. Exceeding these parameters may damage the device.
2. Maximum ambient temperature with device not switching and unloaded.
3. These values apply to both TQ1089-MC500 and TQ1089-MC700.
4. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
5. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
6. This parameter is measured with device not switching and unloaded.
7. These parameters are not $100 \%$ tested, but are periodically sampled.

## AC Characteristics

$\left(V_{D D}=+5 V_{ \pm} 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 3) ${ }^{1}$ | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {CPWH }}$ | CLK pulse width HIGH | Figure 4 | 3 | --- | - | ns |
| $\mathrm{t}_{\text {CPWL }}$ | CLK pulse width LOW | Figure 4 | 3 | --- | - | ns |
| $\mathrm{t}_{\text {IR }}$ | Input rise time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) |  | - | - | 2.0 | ns |
| Symbol | Output Clocks (00-Q10) | Test Conditions (Figure 3) ${ }^{1}$ | Min | Typ | Max | Unit |
| $\mathrm{t}_{0 \mathrm{R}, \mathrm{t}_{0}{ }_{\text {P }}}$ | Rise/fall time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) | Figure 4 | 350 | - | 1400 | ps |
| $\mathrm{t}_{\text {PD1 }}{ }^{2}$ | CLK $\uparrow$ to FBIN $\uparrow$ (TQ1089-MC500) | Figure 4 | -850 | -350 | +150 | ps |
| $\mathrm{t}_{\mathrm{PD} 2}{ }^{2}$ | CLK $\uparrow$ to FBIN $\uparrow$ (TQ1089-MC700) | Figure 4 | -1050 | -350 | +350 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (within group) | Figure 5 | - | 60 | 150 | ps |
| $\mathrm{t}_{\text {SKEW2 }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, aligned) | Figure 6 (skew2 takes into account skew1) | - | 75 | 350 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, non-aligned) | Figure 7 (skew3 takes into account skews1, 2) | - | - | 650 | ps |
| $\mathrm{t}_{\text {SKEW4 }}{ }^{3}$ | Rise-fall, fall-rise | Figure 8 (skew4 takes into account skew3) | - | - | 1200 | ps |
| $\mathrm{t}_{\mathrm{CYC}}{ }^{4}$ | Duty-cycle Variation | Figure 4 | -1000 | 0 | +1000 | ps |
| $\mathrm{t}_{\mathrm{JP}}{ }^{5}$ | Period-to-Period Jitter | Figure 4 | - | 80 | 200 | ps |
| $t_{J R}{ }^{5}$ | Random Jitter | Figure 4 | - | 190 | 400 | ps |
| $\mathrm{t}_{\text {SYNC }}{ }^{6}$ | Synchronization Time |  | - | 10 | 500 | $\mu \mathrm{s}$ |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V$)$.
2. The PLL maintains alignment of CLK and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically 50/50. The delay $t_{P D}$ is measured at the 1.5 V level between CLK and FBIN.
3. Skew specifies the width of the window in which outputs switch, and is measured at 1.5 V .
4. This specification represents the deviation from $50 / 50$ on the outputs.
5. Jitter specifications refer to peak-to-peak value. $t_{J R}$ is the jitter on the output with respect to the reference clock. $t_{J p}$ is the jitter on the output with respect to the output's previous rising edge.
6. $t_{S Y N C}$ is the time required for the PLL to synchronize; this assumes the presence of a CLK signal and a connection from one of the outputs to FBIN.

Figure 3. AC Test Circuit


## TQ1089

## Switching Waveforms

Figure 4. General Timing


Figure 5. $\boldsymbol{t}_{\text {SKEW }}$


Group B

Group B


Figure 6. $\boldsymbol{t}_{\text {SKEW2 }}$


## TQ1089

## 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions are in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | $\mathbf{I / O}$ |
| :---: | :--- | :--- | :---: |
| 1 | GND | Ground | - |
| 2 | Q9 | Output Clock 9 (B1) | 0 |
| 3 | Q10 | Output Clock 10 (B2) | 0 |
| 4 | VDD | +5 V | - |
| 5 | GND | Ground | - |
| 6 | GND | Ground | - |
| 7 | GND | Ground | - |
| 8 | GND | Ground | - |
| 9 | REFCLK | Reference Clock | 1 |
| 10 | GND | Ground | - |
| 11 | FBIN | Feedback In | I |
| 12 | TEST | Test | 1 |
| 13 | VDD | +5 V | - |
| 14 | Q0 | Output Clock 0 (A1) | 0 |


| Pin \# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :---: |
| 15 | GND | Ground | - |
| 16 | Q1 | Output Clock 1 (A2) | 0 |
| 17 | Q2 | Output Clock 2 (A3) | 0 |
| 18 | VDD | +5 V | - |
| 19 | GND | Ground | - |
| 20 | Q3 | Output Clock 3 (A4) | 0 |
| 21 | Q4 | Output Clock 4 (A5) | 0 |
| 22 | VDD | +5 V | - |
| 23 | Q5 | Output Clock 5 (A6) | 0 |
| 24 | Q6 | Output Clock 6 (A7) | 0 |
| 25 | GND | Ground | - |
| 26 | VDD | +5 V | - |
| 27 | Q7 | Output Clock 7 (A8) | 0 |
| 28 | Q8 | Output Clock 8 (A9) | 0 |

## TQ1089

## Output Characteristics

The IV characteristics, transition times, package characteristics, device and bond wire characteristics for the TQ1089 are describedin Tables 4 through 9 and Figures 9 through 11.

Figure 9. $I_{O H} v s . V_{O H}$


Table 4. $I_{O H}$ vs. $V_{O H}$

| $\boldsymbol{V}_{\mathbf{O H}}$ | $\boldsymbol{I}_{\mathbf{O H}} \boldsymbol{m i n}(\mathbf{m A})$ | $\boldsymbol{I}_{\text {OH }} \boldsymbol{m a x}(\mathbf{m A})$ |
| :---: | :---: | :---: |
| 0.0 | -70 | -160 |
| 0.5 | -70 | -157 |
| 1.0 | -68 | -152 |
| 1.5 | -65 | -142 |
| 2.0 | -59 | -130 |
| 2.5 | -48 | -106 |
| 3.0 | -29 | -79 |
| 3.5 | 0 | -42 |
| 4.0 | 0 | 0 |
| 4.5 | 0 | 0 |
| 5.0 | 0 | 0 |
| 5.5 | 40 | 120 |
| 6.0 | 90 | 265 |
| 6.5 | 115 | 350 |
| 7.0 | 135 | 410 |
| 7.5 | 145 | 435 |

These output characteristics are provided for modelling purposes only. TriQuint does not guarantee the information in these tables and figures.

Figure 10. IOL vs. VOL


Table 5. $I_{O L}$ vs. $V_{O L}$

| $\boldsymbol{V}_{\mathbf{O L}}$ | $\boldsymbol{I}_{\mathbf{O L}} \boldsymbol{m i n}(\mathbf{m A})$ | $\boldsymbol{I}_{\boldsymbol{O L}} \boldsymbol{\operatorname { m a x }}(\mathbf{m A})$ |
| :---: | :---: | :---: |
| -2.5 | -145 | -435 |
| -2.0 | -135 | -410 |
| -1.5 | -115 | -350 |
| -1.0 | -90 | -265 |
| -0.5 | -40 | -120 |
| 0.0 | 0 | 0 |
| 0.5 | 37 | 97 |
| 1.0 | 49 | 140 |
| 1.5 | 53 | 155 |
| 2.0 | 54 | 157 |
| 2.5 | 54 | 159 |
| 3.0 | 54 | 160 |
| 3.5 | 54 | 160 |
| 4.0 | 54 | 160 |
| 4.5 | 54 | 160 |
| 5.0 | 54 | 160 |
| 10.0 | 54 | 160 |

Table 6. Above- $V_{D D}$ and Below-Ground Characteristics

| Diode to GND |  |  |  |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{V}$ | $\boldsymbol{I}(\mathbf{m A})$ | Diode Stack to VDD |  |
| $\boldsymbol{V}$ |  |  |  |
| 0.0 | 0 | 5.0 | 0 |
| -0.4 | 0 | 5.4 | 0 |
| -0.5 | 0 | 5.5 | 0 |
| -0.6 | -5 | 5.6 | 5 |
| -0.7 | -15 | 5.7 | 15 |
| -0.8 | -35 | 5.8 | 35 |
| -0.9 | -55 | 5.9 | 55 |
| -1.0 | -75 | 6.0 | 75 |
| -2.0 | -300 | 7.0 | 300 |
| -2.5 | -350 | 7.5 | 350 |
| -3.0 | -360 | 8.0 | 360 |

Note: TriQuint does not guarantee diode operation for purposes other than ESD protection.

Figure 11. Output Model


Table 7. Device and Bond-Wire Characteristics (Estimated)

| $\boldsymbol{L 1}$ | $\boldsymbol{C 1}$ |
| :---: | :---: |
| 2 nH | 10 pF |

Table 8. 28-Pin MQuad Package Characteristics

| L2 | C2 |
| :---: | :---: |
| 1.85 nH | 0.40 pF |

Table 9. Rise and Fall Times
(Into O pF, 50 Ohms to 1.5 V )
$\begin{array}{lllll}\text { Time (ns) } & T_{R} \min (V) & T_{R} \max (V) & T_{F} \min (V) & T_{F} \max (V)\end{array}$

| 0.0 | 0.15 | 0.32 | 3.20 | 3.04 |
| :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.15 | 0.32 | 3.20 | 3.04 |
| 0.2 | 0.16 | 0.32 | 3.06 | 2.95 |
| 0.3 | 0.18 | 0.32 | 2.86 | 2.90 |
| 0.4 | 0.23 | 0.32 | 2.62 | 2.68 |
| 0.5 | 0.26 | 0.32 | 2.38 | 2.50 |
| 0.6 | 0.34 | 0.32 | 2.17 | 2.36 |
| 0.7 | 0.46 | 0.34 | 2.00 | 2.22 |
| 0.8 | 0.67 | 0.39 | 1.85 | 2.09 |
| 0.9 | 0.89 | 0.49 | 1.69 | 1.95 |
| 1.0 | 1.12 | 0.63 | 1.52 | 1.86 |
| 1.1 | 1.32 | 0.86 | 1.38 | 1.68 |
| 1.2 | 1.50 | 1.09 | 1.26 | 1.59 |
| 1.3 | 1.73 | 1.27 | 1.12 | 1.49 |
| 1.4 | 1.93 | 1.45 | 0.96 | 1.36 |
| 1.5 | 2.15 | 1.64 | 0.83 | 1.23 |
| 1.6 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.7 | 2.58 | 2.00 | 0.61 | 1.00 |
| 1.8 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.9 | 2.90 | 2.41 | 0.45 | 0.91 |
| 2.0 | 3.02 | 2.50 | 0.39 | 0.86 |
| 2.1 | 3.12 | 2.64 | 0.33 | 0.77 |
| 2.2 | 3.17 | 2.77 | 0.29 | 0.73 |
| 2.3 | 3.19 | 2.86 | 0.24 | 0.68 |
| 2.4 | 3.20 | 2.95 | 0.21 | 0.64 |

## Ordering Information

To order, please specify as shown below:


## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Email: sales@tqs.com

Tel: (503) 615-9000
Fax: (503) 615-8900

For technical questions and additional information on specific applications:

## Email: applications@tqs.com

[^13]Figure 1. Block Diagram


TriQuint's TQ1090 is a configurable clock buffer which generates 11 outputs, operating over a wide range of frequencies from 33 MHz to $45 \mathrm{MHz}, 65 \mathrm{MHz}$ to 90 MHz and 130 MHz to 180 MHz . The outputs are available at $1 x, 2 x$ and $4 x$, or at $\frac{1}{2} x, 1 x$ and $2 x$, or at $\frac{1}{4} x, \frac{1}{2} x$ and $1 x$ the reference clock frequency, $f_{\text {REF }}$.

When one of the Group A outputs (Q0-Q4) is used as feedback to the PLL, all Group A outputs will be at $f_{\text {REF }}$, all Group B outputs (Q5-Q8) will be at $2 \times f_{\text {REF }}$ and all Group C outputs $(Q 9, Q 10)$ will be at $4 \times f_{\text {REF }}$. When one of the Group B outputs is used as feedback to the PLL, all Group A outputs will be at $1 / 2 \times f_{\text {REF }}$, all Group B outputs will be at $f_{\text {REF }}$ and all Group $C$ outputs will be at $2 x f_{\text {REF }}$. When one of the Group C outputs is used as feedback to the PLL, all Group A outputs will be at $1 / 4 \times f_{\text {REF }}$, all Group B outputs will be at $1 / 2 \times f_{\text {REF }}$ and all Group $C$ outputs will be at $f_{\text {REF }}$.

A very stable internal Phase-Locked Loop (PLL) provides low-jitter operation. This completely self-contained PLL requires no external capacitors or resistors. The PLL's Voltage-Controlled Oscillator (VCO) has a frequency range from 260 MHz to 360 MHz . By feeding back one of the output clocks to FBIN, the PLL continuously maintains frequency and phase synchronization between the reference clock (REFCLK) and each of the outputs.

## TQ1090

## 11-Output Configurable Clock Buffer

## Features

- Wide frequency range: 33 MHz to 45 MHz 65 MHz to 90 MHz and 130 MHz to 180 MHz
- Output configurations: four outputs at $f_{\text {REF }}$ four outputs at $2 x f_{\text {REF }}$ two output at $4 x f_{\text {REF }}$ or five outputs at $1 / 2 \times f_{\text {REF }}$ three outputs at $f_{\text {REF }}$ two outputs at $2 x f_{\text {REF }}$
- Selectable Phase Shift: $-2 t,-t, 0,+t\left(t=1 / f_{v c o}\right)$
- Low output-to-output skew: 150 ps (max) within a group
- Near-zero propagation delay -350 ps $\pm 500$ ps (max) or -350 ps $\pm 700$ ps (max)
- TTL-compatible I/O with 30 mA output drive
- Ideal for Power PC ${ }^{\text {TM }}$ designs
- 28-pin J-lead surface-mount package

The phase relationship of the Group A outputs to Group $B$ and $C$ are controlled by the phase-select pins SO and $S 1$. The phase difference can be varied from $-2 \mathrm{t},-\mathrm{t}, 0$ or +t , where $\mathrm{t}=1 / \mathrm{fvco}$.

TriQuint's patented output buffer design delivers a very low output-to-output skew of 150 ps (max). The TQ1090's symmetrical TTL outputs are capable of sourcing and sinking 30 mA .

## Functional Description

The core of the TQ1090 is a Phase-Locked Loop (PLL) that continuously compares the reference clock (REFCLK) to the feedback clock (FBIN), maintaining a zero frequency difference between the two. Since one of the outputs is always connected to FBIN, the PLL keeps the propagation delay between the outputs and the reference clock within $-350 \mathrm{ps} \pm 500 \mathrm{ps}$ for the TQ1090-MC500, and within $-350 \mathrm{ps} \pm 700 \mathrm{ps}$ for the TQ1090-MC700.

The internal Voltage-Controlled Oscillator (VCO), has an operating range of 260 MHz to 360 MHz , as shown in Table 1. The combination of the VCO and the Divide Logic enables the TQ1090 to operate between 33 MHz and $45 \mathrm{MHz}, 65 \mathrm{MHz}$ and 90 MHz , and from 130 MHz to 180 MHz .

The Shift Select pins, S0 and S1, control the phase shift of the Group A outputs ( $Q 0-Q 4$ ), relative to the other outputs. The user can select from four incremental phase shifts as shown in Table 2 (Phase Selection). The phase shift increment ( $t$ ) is calculated using the following equation, where $n$ is the divide mode:

$$
t=\frac{1}{\left(f_{R E F}\right)(n)}
$$

In the test mode, the PLL is bypassed and REFCLK is connected directly to the Divide Logic block via the MUX, as shown in Figure 1. This mode is useful for debug and test purposes. The test mode is outlined in Table 3.

The maximum rise and fall time at the output pins is 1.4 ns. All outputs of the TQ1090 are TTL-compatible with 30 mA symmetric drive and a minimum $\mathrm{V}_{\mathrm{OH}}$ of 2.4 V .

## Power-Up/Reset Synchronization

After power-up or reset, the PLL requires time before it achieves synchronization lock. The maximum time required for synchronization (TSYNC) is 500 ms .

## Table 1. Frequency Mode Selection

|  | Output <br> Test <br> Feedback | Mode | Reference Clock <br> Frequency Range | Group A: Q0-Q4 | Output Frequency Range |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group B: Q5, Q08 | Group c: Q9, Q10 |  |  |  |  |  |  |
| 0 | Group A | $\div 8$ | $35 \mathrm{MHz}-45 \mathrm{MHz}$ | $35 \mathrm{MHz}-45 \mathrm{MHz}$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ |  |
| 0 | Group B | $\div 4$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $35 \mathrm{MHz}-45 \mathrm{MHz}$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ |  |
| 0 | Group C | $\div 2$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ | $35 \mathrm{MHz}-45 \mathrm{MHz}$ | $65 \mathrm{MHz}-90 \mathrm{MHz}$ | $130 \mathrm{MHz}-180 \mathrm{MHz}$ |  |

## TQ1090

Table 2. Phase Shift Selection

| SO | $\boldsymbol{S 1}$ | Phase Shift (Group A: Q0 - Q4) |
| :---: | :---: | :---: |
| 0 | 0 | +t |
| 1 | 0 | 0 |
| 0 | 1 | -t |
| 1 | 1 | -2 t |

Table 2. Test Mode Selection

| Test | Mode | Ref. Clock | Group $A$ <br> Outputs Q0-Q4 | Group $B$ <br> Outputs 05-Q18 | Group $C$ <br> Outputs 09-010 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\div 2$ | $\mathrm{f}_{\text {REF }}$ | $\mathrm{f}_{\text {REF }} \div 8$ | $\mathrm{f}_{\text {REF }} \div 4$ | $\mathrm{f}_{\text {REF }} \div 2$ |

## Layout Guidelines

Multiple ground and power pins on the TQ1090 reduce ground bounce. Good layout techniques, however, are necessary to guarantee proper operation and to meet the specifications across the full operating range. We recommend bypassing each of the $V_{D D}$ supply pins to the nearest ground pin, as close to the chip as possible.

Figure 2 shows the recommended power layout for the TQ1090. The bypass capacitors should be located on the same side of the board as the TQ1090. The $V_{D D}$ traces connect to an inner-layer $V_{D D}$ plane. All of the ground pins (GND) are connected to a small ground plane on the surface beneath the chip. Multiple through-holes connect this small surface plane to an inner-layer ground plane. The capacitors (C1-C5) are 0.1 mF . TriQuint's test board uses X7R temperaturestable capacitors in 1206 SMD cases.

Figure 2. Top Layer Layout of Power Pins
(approx. 3.3x)


Ta1090

## Absolute Maximum Ratings ${ }^{1}$

| Storage temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied ${ }^{2}$ | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $+\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

DC Characteristics
$\left(V_{D D}=+5 V \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{3}$

| Symbol | Description | Test Conditions | Min | Limits ${ }^{4}$ <br> Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OHT }}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$ | 2.4 | 3.4 |  | V |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH voltage | $\begin{aligned} & V_{D D}=\operatorname{Min} \quad I_{O H}=-1 \mathrm{~mA} \\ & V_{I N}=V_{\text {IH }} \text { or } V_{\mathrm{IL}} \end{aligned}$ | 3.2 | 4.1 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $\begin{aligned} & V_{D D}=M i n \quad I_{O L}=30 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{\mathrm{IL}} \end{aligned}$ |  | 0.27 | 0.5 | V |
| $\mathrm{V}_{1 H}{ }^{5}$ | Input HIGH level | Guaranteed input logical HIGH Voltage for all Inputs | 2.0 |  |  | V |
| $\mathrm{V}_{1 L}{ }^{5}$ | Input LOW level | Guaranteed input logical LOW Voltage for all inputs |  |  | 0.8 | V |
| 1 IL | Input LOW current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -156 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {H }}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{6}$ | Power supply current | $V_{D D}=$ Max |  | 119 | 170 | mA |
| $V_{1}$ | Input clamp voltage | $V_{D D}=\operatorname{Min} \quad \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}{ }^{3}$ | Input capacitance | $\mathrm{V}_{\mathbb{I N}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 |  | pF |

Notes: 1. Exceeding these parameters may damage the device.
2. Maximum ambient temperature with device not switching and unloaded.
3. These values apply to both TQ1089-MC500 and TQ1089-MC700.
4. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
5. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
6. This parameter is measured with device not switching and unloaded.
7. These parameters are not $100 \%$ tested, but are periodically sampled.

## AC Characteristics

( $V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 3) ${ }^{1}$ | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {CPWH }}$ | CLK pulse width HIGH | Figure 4 | 2 | --- | - | ns |
| $\mathrm{t}_{\text {cPWL }}$ | CLK pulse width LOW | Figure 4 | 2 | --- | - | ns |
| $\mathrm{t}_{\text {IR }}$ | Input rise time (0.8V-2.0V) |  | - | - | 2.0 | ns |
| Symbol | Output Clocks (Q0-Q10) | Test Conditions (Figure 3) ${ }^{1}$ | Min | Typ | Max | Unit |
| $\mathrm{t}_{0 \mathrm{OR},{ }^{\text {, }} \text { OF }}$ | Rise/fall time ( $0.8 \mathrm{~V}-2.0 \mathrm{~V}$ ) | Figure 4 | 350 | - | 1400 | ps |
| $\mathrm{t}_{\mathrm{PD} 1}{ }^{2}$ | CLK Î to FBIN Î (TQ1090-MC500) | Figure 4 | -850 | -350 | +150 | ps |
| $\mathrm{t}_{\mathrm{PD} 2}{ }^{2}$ | CLK Î to FBIN Î (TQ1090-MC700) | Figure 4 | -1050 | -350 | +350 | ps |
| $\mathrm{t}_{\text {SKEW }}{ }^{3}$ | Rise-rise, fall-fall (within group) | Figure 5 | - | 60 | 150 | ps |
| $\mathrm{t}_{\text {SKEW } 2}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, aligned) | Figure 6 (skew2 takes into account skew1) | - | 75 | 350 | ps |
| $\mathrm{t}_{\text {SKEW3 }}{ }^{3}$ | Rise-rise, fall-fall (group-to-group, non-aligned) | (skew3 takes into account skews1, 2) | - | - | 650 | ps |
| $\mathrm{t}_{\text {SKEW4 }}{ }^{3}$ | Rise-fall, fall-rise | (skew4 takes into account skew3) | - | - | 1200 | ps |
| $\mathrm{t}_{\mathrm{CYC}}{ }^{4}$ | Duty-cycle Variation | Figure 4 | -1000 | 0 | +1000 | ps |
| $\mathrm{t}_{\mathrm{JP}}{ }^{5}$ | Period-to-Period Jitter | Figure 4 | - | 80 | 200 | ps |
| $\mathrm{t}_{\text {JR }}{ }^{5}$ | Random Jitter | Figure 4 | - | 190 | 400 | ps |
| $\mathrm{t}_{\text {SYNC }}{ }^{6}$ | Synchronization Time |  | - | 10 | 500 | $\mu \mathrm{S}$ |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V$)$.
2. The PLL maintains alignment of CLK and FBIN at all times. This specification applies to the rising edge only because the input duty cycle can vary while the output duty cycle is typically $50 / 50$. The delay $t_{P D}$ is measured at the 1.5 V level between CLK and FBIN.
3. Skew specifies the width of the window in which outputs switch, and is measured at 1.5 V . Skew 1 is a subset of skew 2. Skew 2 is a subset of skew 3. Skew 3 is a subset of skew 4. Definition of skew terms:

| Rise-rise: | Skew between rising edges (low to high transitions). |
| :--- | :--- |
| Fall-fall: | Skew between falling edges (high to low transitions). |
| Rise-fall, fall-rise: | Skew between rising-to-falling and falling-to-rising edges. |
| Within a group: | Skew between outputs of the same group (for example, skew among Group A outputs) |
| Group-to-group: | Skew between outputs of any group (for example, skew between Group A to Group B outputs) |
| Aligned: | Skew between outputs that are in phase. |
| Non-aligned: | Skew between outputs that are not in phase. |

Figure 3. AC Test Circuit


## Switching Waveforms

Figure 4. General Timing


Figure 5. $\boldsymbol{t}_{\text {SKEW1 }}$


Group B

Group B

${ }^{\mathbf{t}}$ SKEW1 ${ }^{t_{\text {SKEW1 }}}$

Group C

Group C


Figure 6. $\boldsymbol{t}_{\text {SKEW2 }}$


## 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | $\mathbf{I / O}$ |
| :---: | :--- | :--- | :---: |
| 1 | GND | Ground | - |
| 2 | Q9 | Output Clock 9 (C1) | 0 |
| 3 | Q10 | Output Clock 10 (C2) | 0 |
| 4 | VDD | +5 V | - |
| 5 | GND | Ground | - |
| 6 | GND | Ground | - |
| 7 | GND | Ground | - |
| 8 | GND | Ground | - |
| 9 | REFCLK | Reference Clock | I |
| 10 | GND | Ground | - |
| 11 | FBIN | Feedback In | I |
| 12 | TEST | Test | I |
| 13 | VDD | +5 V | - |
| 14 | Q0 | Output Clock 0 (A1) | 0 |


| Pin \# | Pin Name | Description | $\mathbf{I / O}$ |
| :---: | :--- | :--- | :---: |
| 15 | GND | Ground | - |
| 16 | Q1 | Output Clock 1 (A2) | 0 |
| 17 | Q2 | Output Clock 2 (A3) | 0 |
| 18 | VDD | +5 V | - |
| 19 | GND | Ground | - |
| 20 | Q3 | Output Clock 3 (A4) | 0 |
| 21 | Q4 | Output Clock 4 (A5) | 0 |
| 22 | VDD | +5 V | - |
| 23 | Q5 | Output Clock 5 (B1) | 0 |
| 24 | Q6 | Output Clock 6 (B2) | 0 |
| 25 | GND | Ground | - |
| 26 | VDD | +5 V | - |
| 27 | Q7 | Output Clock 7 (B3) | 0 |
| 28 | Q8 | Output Clock 8 (B4) | 0 |

## Ta1090

## Output Characteristics

The IV characteristics, transition times, package characteristics, device and bond wire characteristics for the TQ1090 are describedin Tables 4 through 9 and Figures 9 through 11.

Figure 9. $I_{\mathrm{OH}}$ vs. $\mathrm{V}_{\mathrm{OH}}$


Table 4. $I_{O H}$ vs. $V_{O H}$

| $\boldsymbol{V}_{\mathbf{O H}}$ | $\boldsymbol{I}_{\mathbf{O H}} \boldsymbol{m i n}(\mathrm{mA})$ | $\boldsymbol{I}_{\mathbf{O H}} \max (\mathrm{mA})$ |
| :---: | :---: | :---: |
| 0.0 | -70 | -160 |
| 0.5 | -70 | -157 |
| 1.0 | -68 | -152 |
| 1.5 | -65 | -142 |
| 2.0 | -59 | -130 |
| 2.5 | -48 | -106 |
| 3.0 | -29 | -79 |
| 3.5 | 0 | -42 |
| 4.0 | 0 | 0 |
| 4.5 | 0 | 0 |
| 5.0 | 0 | 0 |
| 5.5 | 40 | 120 |
| 6.0 | 90 | 265 |
| 6.5 | 115 | 350 |
| 7.0 | 135 | 410 |
| 7.5 | 145 | 435 |

These output characteristics are provided for modelling purposes only. TriQuint does not guarantee the information in these tables and figures.

Figure 10. $I_{O L}$ vs. $V_{O L}$


Table 5. IOL vs. $V_{O L}$

| $\boldsymbol{V}_{\mathbf{O L}}$ | $\boldsymbol{I}_{\mathbf{O L}} \boldsymbol{m i n}(\mathbf{m A})$ | $\boldsymbol{I}_{\mathbf{O L}} \max (\mathbf{m A})$ |
| :---: | :---: | :---: |
| -2.5 | -145 | -435 |
| -2.0 | -135 | -410 |
| -1.5 | -115 | -350 |
| -1.0 | -90 | -265 |
| -0.5 | -40 | -120 |
| 0.0 | 0 | 0 |
| 0.5 | 37 | 97 |
| 1.0 | 49 | 140 |
| 1.5 | 53 | 155 |
| 2.0 | 54 | 157 |
| 2.5 | 54 | 159 |
| 3.0 | 54 | 160 |
| 3.5 | 54 | 160 |
| 4.0 | 54 | 160 |
| 4.5 | 54 | 160 |
| 5.0 | 54 | 160 |
| 10.0 | 54 | 160 |

Notes: 1. These are worst-case corners for process, voltage, and temperature.
2. Includes diode to ground current.

Table 6. Above-V $V_{D D}$ and Below-Ground Characteristics
Table 9. Rise and Fall Times
(Into $0 \mathrm{pF}, 50 \mathrm{Ohms}$ to 1.5 V )

| Diode to GND |  | Diode Stack to VDD |  |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{V}$ | $\boldsymbol{I}(\mathbf{m A})$ | $\mathbf{V}$ | $\boldsymbol{I}(\mathbf{m A})$ |
| 0.0 | 0 | 5.0 | 0 |
| -0.4 | 0 | 5.4 | 0 |
| -0.5 | 0 | 5.5 | 0 |
| -0.6 | -5 | 5.6 | 5 |
| -0.7 | -15 | 5.7 | 15 |
| -0.8 | -35 | 5.8 | 35 |
| -0.9 | -55 | 5.9 | 55 |
| -1.0 | -75 | 6.0 | 75 |
| -2.0 | -300 | 7.0 | 300 |
| -2.5 | -350 | 7.5 | 350 |
| -3.0 | -360 | 8.0 | 360 |

Note:
TriQuint does not guarantee diode operation for purposes other than ESD protection.

Figure 11. Output Model


Table 7. Device and Bond Wire Characteristics (Estimated)

| $\boldsymbol{L 1}$ | $\boldsymbol{C 1}$ |
| :---: | :---: |
| 2 nH | 10 pF |

Table 8. 28-Pin MQuad Package Characteristics

| L2 | C2 |
| :---: | :---: |
| 1.85 nH | 0.40 pF |


| Time (ns) $T_{R} \min (V)$ | $T_{R} \max (V)$ | $T_{F} \min (V)$ | $T_{F} \max (V)$ |
| :--- | :--- | :--- | :--- |


| 0.0 | 0.15 | 0.32 | 3.20 | 3.04 |
| :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.15 | 0.32 | 3.20 | 3.04 |
| 0.2 | 0.16 | 0.32 | 3.06 | 2.95 |
| 0.3 | 0.18 | 0.32 | 2.86 | 2.90 |
| 0.4 | 0.23 | 0.32 | 2.62 | 2.68 |
| 0.5 | 0.26 | 0.32 | 2.38 | 2.50 |
| 0.6 | 0.34 | 0.32 | 2.17 | 2.36 |
| 0.7 | 0.46 | 0.34 | 2.00 | 2.22 |
| 0.8 | 0.67 | 0.39 | 1.85 | 2.09 |
| 0.9 | 0.89 | 0.49 | 1.69 | 1.95 |
| 1.0 | 1.12 | 0.63 | 1.52 | 1.86 |
| 1.1 | 1.32 | 0.86 | 1.38 | 1.68 |
| 1.2 | 1.50 | 1.09 | 1.26 | 1.59 |
| 1.3 | 1.73 | 1.27 | 1.12 | 1.49 |
| 1.4 | 1.93 | 1.45 | 0.96 | 1.36 |
| 1.5 | 2.15 | 1.64 | 0.83 | 1.23 |
| 1.6 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.7 | 2.58 | 2.00 | 0.61 | 1.00 |
| 1.8 | 2.75 | 2.23 | 0.52 | 0.95 |
| 1.9 | 2.90 | 2.41 | 0.45 | 0.91 |
| 2.0 | 3.02 | 2.50 | 0.39 | 0.86 |
| 2.1 | 3.12 | 2.64 | 0.33 | 0.77 |
| 2.2 | 3.17 | 2.77 | 0.29 | 0.73 |
| 2.3 | 3.19 | 2.86 | 0.24 | 0.68 |
| 2.4 | 3.20 | 2.95 | 0.21 | 0.64 |
| 2.5 | 3.20 | 2.99 | 0.19 | 0.59 |
| 2.6 | 3.20 | 3.02 | 0.17 | 0.55 |
| 2.7 | 3.20 | 3.02 | 0.16 | 0.53 |
| 2.8 | 3.20 | 3.04 | 0.16 | 0.50 |
| 2.9 | 3.20 | 3.04 | 0.15 | 0.45 |
| 3.0 | 3.20 | 3.04 | 0.15 | 0.41 |
| 3.1 | 3.20 | 3.04 | 0.15 | 0.40 |
| 3.2 | 3.20 | 3.04 | 0.15 | 0.37 |
| 3.3 | 3.20 | 3.04 | 0.15 | 0.36 |
| 3.4 | 3.20 | 3.04 | 0.15 | 0.32 |
| 3.5 | 3.20 | 3.04 | 0.15 | 0.32 |

## Ordering Information

To order, please specify as shown below:

## TQ1090-MC nnn 11-Output Configurable Clock Buffer <br> Propagation delay skew: <br> $500-350 \mathrm{ps} \pm 500 \mathrm{ps}$ <br> Note: All parts are marked as MC500. MC700 parts have a "2" added to the marking. <br> Temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial) <br> Package: MQuad

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:

## Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997

Figure 1. Pinout Diagram


TriQuint's TQ2059 is a high-frequency clock generator. It utilizes a 20 MHz to 35 MHz TTL input to generate a 200 MHz to 350 MHz PECL output. The TQ2059 has a completely self-contained Phase-Locked Loop (PLL) running at 400 MHz to 700 MHz . This stable PLL allows for a low period-to-period output jitter of 120 ps (max), and enables tight duty-cycle control of $55 \%$ to 45\% (worst case).

The TQ2059 provides optional 200-ohm on-chip pull-down resistors which are useful if the output is AC-coupled to the device being driven. In order to use these resistors, pin 20 (PDR2) should be connected to pin 21 (QN), and pin 23 (PDR1) should be connected to pin 22 (Q).

Various test modes on the chip simplify debug and testing of systems by slowing the clock output or by bypassing the PLL.

## TQ2059

## High-Frequency Clock Generator

## Features

- Output frequency range: 200 MHz to 350 MHz
- One differential PECL output: 600 mV (min) swing
- Common-mode voltage: $V_{D D}-1.2 \mathrm{~V}$ (max), $V_{D D}-1.6 \mathrm{~V}$ (min)
- Period-to-period output jitter: 30 ps peak-to-peak (typ) 120 ps peak-to-peak (max)
- Reference clock input: 20 MHz to 35 MHz TTL-level crystal oscillator
- Self-contained loop filter


## sisnaoyd 9NIWII WELSAS

- Optional 200-ohm pull-down resistors for AC-coupled outputs
- +5 V power supply
- 28-pin J-lead surface-mount package
- Ideal for designs based on DEC Alpha AXP ${ }^{\text {TM }}$ processors

Figure 2. Simplified Block Diagram


Table 1. Mode Selection

| Mode | TEST1 | TEST2 | TESTIN ${ }^{1}$ | REFCLK ${ }^{2}$ | $\boldsymbol{Q}, \boldsymbol{Q N}$ |
| :--- | :---: | :---: | :--- | :--- | :--- |
| 1 (Test) | 0 | 0 | $\mathrm{f}_{\text {TESTCLK }}$ | "don't care" | $\mathrm{f}_{\text {TESTCLK }} \div 20$ |
| 2 (Test) | 0 | 1 | "don't care" | "don't care" | 0,1 |
| 3 (Test) | 1 | 0 | $\mathrm{f}_{\text {TESTCLK }}$ | "don't care" | $\mathrm{f}_{\text {TESTCLK }} \div 2$ |
| 4 (Bypass) | 1 | 1 | 0 | $\mathrm{f}_{\text {REFCLK }}$ | $\mathrm{f}_{\text {REFCLK }}$ |
| 5 (Normal) | 1 | 1 | 1 | $\mathrm{f}_{\text {REFCLK }}$ | $10 \times \mathrm{f}_{\text {REFCLK }}{ }^{3}$ |

Note: 1. In modes 1 and 3, TESTIN may be used to bypass the PLL. A clock input at TESTIN will be divided as shown.
2. REFCLK $=20 \mathrm{MHz}$ to 35 MHz .
3. $Q, Q N=200 \mathrm{MHz}$ to 350 MHz .

## Recommended Layout

(Not to scale)


## TQ2059

## Absolute Maximum Ratings

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied | $-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device.
The device should be operated only under the DC and AC conditions shown below.

DC Characteristics $\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{1}$

| Symbol | Description | Test Conditions | Min | Limits ${ }^{1}$ <br> Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OH }}$ | Output HIGH voltage | $V_{C C}=$ Min PECL load | $\mathrm{V}_{\text {CC }}-1.20$ |  | $V_{\text {CC }}{ }^{-0.50}$ | V |
| $\mathrm{V}_{0 \mathrm{~L}}$ | Output LOW voltage | $V_{\text {CC }}=$ Min PECL load | $\mathrm{V}_{\text {CC }}-2.00$ |  | $\mathrm{V}_{\text {CC }}{ }^{-1.60}$ | V |
| $\mathrm{V}_{\text {CMO }}$ | Output common mode voltage | PECL | $\mathrm{V}_{\text {CC }}-1.60$ |  | $\mathrm{V}_{\text {CC }}{ }^{-1.20}$ | V |
| V OUT | Output differential voltage | PECL | 0.6 |  | 1.2 | V |
| $\mathrm{V}_{\mathrm{H}}{ }^{2}$ | Input HIGH level | Guaranteed input logical HIGH Voltage for all inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{2}$ | Input LOW level | Guaranteed input logical LOW Voltage for all inputs |  |  | 0.8 | V |
| $I_{\text {IL }}$ | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -150 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.3 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{3}$ | Power supply current | $V_{D D}=$ Max |  | 85 | 120 | mA |
| $V_{1}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{DD}}=\operatorname{Min} \quad \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | Unit |  |  |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 6 | pF |  |

Notes: 1. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and include all overshoots due to system or tester noise.
3. This parameter is measured with device not switching and unloaded.
$A C$ Characteristics $\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions | Min | Typ | Max | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{CPWH}}$ | CLK pulse width HIGH | Figure 2 | 4 | - | - | ns |
| $\mathrm{t}_{\mathrm{CPWL}}$ | CLK pulse width LOW | Figure 2 | 4 | - | - | ns |
| $\mathrm{t}_{\mathrm{IR}}$ | Input rise time |  | - | - | 2.0 | ns |
|  | $(0.8 \mathrm{~V}-2.0 \mathrm{~V})$ |  |  |  |  |  |


| Symbol | Input Clock (REFCLK) | Test Conditions | Min | Typ | Max | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{OR},} \mathrm{t}_{0 \mathrm{~F}}$ | Rise/fall time $(20 \%-80 \%)$ | Figure 2 | 100 | 220 | 350 | ps |
| $\mathrm{t}_{\mathrm{CYC}}$ | Duty-cycle | Figure 2 | 45 | 50 | 55 | $\%$ |
| $\mathrm{t}_{\mathrm{JP}}{ }^{2}$ | Period-to-Period Jitter |  | - | 30 | 120 | ps |
| $\mathrm{t}_{\mathrm{SYNC}}{ }^{3}$ | Synchronization Time |  | - | 10 | 500 | $\mu \mathrm{~s}$ |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V ).
2. Jitter specification is peak to peak. Period-to-Period jitter is the jitter on the output with respect to the output's previous crossing.
3. $t_{S Y N C}$ is the time required for the PLL to synchronize and assumes the presence of a CLK signal.

## Figure 1

PECL Test Load

Figure 2



$$
\frac{t_{1}}{t_{2}} \times 100=55 \% \text { to } 45 \%
$$

## 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions in inches)


## 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :---: |
| 1 | NC | No Connect | - |
| 2 | NC | No Connect | - |
| 3 | NC | No Connect | - |
| 4 | NC | No Connect | - |
| 5 | NC | No Connect | - |
| 6 | NC | No Connect | - |
| 7 | GND | Ground | - |
| 8 | REFCLK | Reference Clock | I |
| 9 | TESTIN | Test Input | I |
| 10 | NC | No Connect | - |
| 11 | GND | Logic Ground | - |
| 12 | VDD | Logic VDD (+5 V) | - |
| 13 | NC | No Connect | - |
| 14 | TEST1 | Test Control 1 | I |


| Pin \# | Pin Name | Description | I/O |
| :---: | :--- | :--- | :---: |
| 15 | TEST2 | Test Control 2 | I |
| 16 | NC | No Connect | - |
| 17 | NC | No Connect | 0 |
| 18 | GND | Ground | - |
| 19 | EVDD | VDD for ECL Output (+5 V) | - |
| 20 | PDR2 | Pull-down Resistor 2 (200 $\Omega)$ | I |
| 21 | QN | Differential PECL Output ( - ) | 0 |
| 22 | Q | Differential PECL Output ( + ) | 0 |
| 23 | PDR1 | Pull-down Resistor 1 (200 $\Omega)$ | I |
| 24 | GND | Ground | - |
| 25 | AGND | Analog Ground | - |
| 26 | AVDD | Analog VDD ( +5 V ) | - |
| 27 | NC | No Connect | - |
| 28 | NC | No Connect | - |

## TQ2059

## Ordering Information

To order, please specify as shown below:

## TQ2059-MC High-Frequency Clock Generator <br> Temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial) <br> Package: 28-Pin MQuad

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997


Figure 1. Pinout Diagram


TriQuint's TQ2060 is a high-frequency clock generator. It utilizes a 35 MHz to 50 MHz TTL input to generate a 350 MHz to 500 MHz PECL output. The TQ2060 has a completely self-contained Phase-Locked Loop (PLL) running at 700 MHz to 1000 MHz . This stable PLL allows for a low period-to-period output jitter of 70 ps (max), and enables tight duty cycle control of $55 \%$ to $45 \%$ (worst case).

The TQ2060 provides optional 200 ohm on-chip pull-down resistors which are useful if the output is AC-coupled to the device being driven. In order to use these resistors, pin 20 (PDR2) should be connected to pin 21 (QN), and pin 23 (PDR1) should be connected to pin 22 (Q).

Various test modes on the chip simplify debug and testing of systems by slowing the clock output or by bypassing the PLL.

## TQ2060

## High-Frequency Clock Generator

## Features

- Output frequency range: 350 MHz to 500 MHz
- One differential PECL output: 600 mV (min) swing
- Common-mode voltage:
$V_{D D}-1.2 \mathrm{~V}$ (max),
$V_{D D}-1.6 \mathrm{~V}$ (min)
- Period-to-period output jitter: 25 ps peak-to-peak (typ) 70 ps peak-to-peak (max)
- Reference clock input: 35 MHz to 50 MHz TTL-level crystal oscillator
- Self-contained loop filter
- Optional 200-ohm pull-down resistors for AC-coupled outputs
- +5 V power supply
- 28-pin J-lead surface-mount package
- Ideal for designs based on DEC Alpha AXP ${ }^{T M}$ processors

Figure 2. Simplified Block Diagram


Table 1. Mode Selection

| Mode | TEST1 | TEST2 | TESTIN ${ }^{1}$ | REFCLK | Q Q $\boldsymbol{Q N}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1(Test) | 0 | 0 | $\mathrm{f}_{\text {TESTCLK }}$ | "don't care" | $\mathrm{f}_{\text {REFCLK }}{ }^{2} \div 20$ |
| 2 (Test) | 0 | 1 | "don't care" | "don't care" | 0,1 |
| 3 (Test) | 1 | 0 | $\mathrm{f}_{\text {TESTCLK }}$ | "don't care" | $\mathrm{f}_{\text {TESTCLK }} \div 2$ |
| 4 (Bypass) | 1 | 1 | 0 | $\mathrm{f}_{\text {REFCLK }}$ | $\mathrm{f}_{\text {REFCLK }}$ |
| 5 (Normal | 1 | 1 | 1 | $\mathrm{f}_{\text {REFCLK }}$ | $10 \times \mathrm{f}_{\text {REFCLK }}{ }^{3}$ |

Notes: 1. In modes 1 and 3, TESTIN may be used to bypass the PLL. A clock input at TESTIN will be divided as shown.
2. REFCLK $=35 \mathrm{MHz}$ to 50 MHz .
3. $Q, Q N=350 \mathrm{MHz}$ to 500 MHz .

Figure 3. Recommended Layout
(Not to scale)


## Table 2. Absolute Maximum Ratings

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied | $-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device.
The device should be operated only under the DC and AC conditions shown below.
Table 3. DC Characteristics $\left(V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{1}$

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $V_{\text {CC }}=$ Min PECL load | $\mathrm{V}_{\text {cc }}-1.20$ |  | $\mathrm{V}_{\text {cc }}-0.50$ | V |
| $\mathrm{V}_{0 \mathrm{~L}}$ | Output LOW voltage | $V_{\text {CC }}=$ Min PECL load | $\mathrm{V}_{\text {cc }}-2.00$ |  | $V_{\text {cc }}-1.60$ | V |
| $\mathrm{V}_{\text {CMO }}$ | Output common mode voltage | PECL | $\mathrm{V}_{\text {cc }}-1.60$ |  | $\mathrm{V}_{\text {CC }}-1.20$ | V |
| $\mathrm{V}_{\text {OUT }}$ | Output differential voltage | PECL | 0.6 |  | 1.2 | V |
| $\mathrm{V}_{\mathrm{HH}}{ }^{2}$ | Input HIGH level | Guaranteed input logical HIGH Voltage for all inputs | 2.0 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}{ }^{2}$ | Input LOW level | Guaranteed input logical LOW Voltage for all inputs |  |  | 0.8 | V |
| IIL | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \mathrm{V}_{\text {IN }}=0.40 \mathrm{~V}$ |  | -150 | -400 | $\mu \mathrm{A}$ |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\operatorname{Max} \mathrm{V}_{1 \text { IN }}=2.7 \mathrm{~V}$ |  | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \mathrm{V}_{1 \text { IN }}=5.3 \mathrm{~V}$ |  | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{3}$ | Power supply current | $V_{D D}=\mathrm{Max}$ |  | 85 | 120 | mA |
| $V_{1}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{DD}}=\operatorname{Min} \mathrm{I}_{1 / \mathrm{N}}=-18 \mathrm{~mA}$ |  | -0.70 | -1.2 | V |

## Table 4. Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 6 | pF |  |  |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 9 | pF |  |  |

Notes: 1. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and include all overshoots due to system or tester noise.
3. This parameter is measured with device not switching and unloaded.

Table 5. AC Characteristics ( $V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 5) | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{CPWH}}$ | CLK pulse width HIGH | Figure 5 | 4 | - | - | ns |
| $\mathrm{t}_{\mathrm{CPWL}}$ | CLK pulse width LOW | Figure 5 | 4 | - | - | ns |
| $\mathrm{t}_{\mathrm{IR}}$ | Input rise time $(0.8 \mathrm{~V}-2.0 \mathrm{~V})$ |  | - | - | 2.0 | ns |


| Symbol | Output Clock (Q, QN) | Test Conditions (Figures 4 \& 5) ${ }^{1}$ | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{0 \mathrm{R},} \mathrm{t}_{\mathrm{OF}}$ | Rise/fall time ( $20 \%$ - 80\%) | Figure 5 | 100 | 220 | 350 | ps |
| $\mathrm{t}_{\text {cyc }}$ | Duty-cycle | Figure 5 | 45 | 50 | 55 | \% |
| $\mathrm{t}_{\mathrm{JP}}{ }^{2}$ | Period-to-Period Jitter |  | - | 25 | 70 | ps |
| $\mathrm{tsyNC}^{3}$ | Synchronization Time |  | - | 10 | 500 | $\mu \mathrm{s}$ |

ivoies: i. Aiil measurements are tested with a REFCLK having a rise time of 0.5 ns ( 0.8 V to 2.0 V ).
2. Jitter specification is peak to peak. Period-to-Period jitter is the jitter on the output with respect to the output's previous crossing.
3. $t_{S Y N C}$ is the time required for the PLL to synchronize and assumes the presence of a CLK signal.

Figure 4. PECL Test Load


Figure 5. REFCLK and Q-QN Timing



$$
\frac{t_{1}}{t_{2}} \times 100=55 \% \text { to } 45 \%
$$

Figure 6. 28-Pin MQuad J-Leaded Package Mechanical Specification


Table 6. 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | $\mathbf{I / O}$ |
| :---: | :--- | :--- | :---: |
| 1 | NC | No Connect | - |
| 2 | NC | No Connect | - |
| 3 | NC | No Connect | - |
| 4 | NC | No Connect | - |
| 5 | NC | No Connect | - |
| 6 | NC | No Connect | - |
| 7 | GND | Ground | - |
| 8 | REFCLK | Reference Clock | I |
| 9 | TESTIN | Test Input | I |
| 10 | NC | No Connect | - |
| 11 | GND | Logic Ground | - |
| 12 | VDD | Logic VDD $(+5$ V) | - |
| 13 | NC | No Connect | - |
| 14 | TEST1 | Test Control 1 | I |


| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :--- | :---: |
| 15 | TEST2 | Test Control 2 | I |
| 16 | NC | No Connect | - |
| 17 | NC | No Connect | 0 |
| 18 | GND | Ground | - |
| 19 | EVDD | VDD for ECL Output ( +5 V) | - |
| 20 | PDR2 | Pull-down Resistor 2 $200 \Omega)$ | I |
| 21 | QN | Differential PECL Output ( - ) | 0 |
| 22 | Q | Differential PECL Output $(+)$ | 0 |
| 23 | PDR1 | Pull-down Resistor $1(200 \Omega)$ | 1 |
| 24 | GND | Ground | - |
| 25 | AGND | Analog Ground | - |
| 26 | AVDD | Analog VDD $(+5$ V) | - |
| 27 | NC | No Connect | - |
| 28 | NC | No Connect | - |

## TQ2060

## Ordering Informatinn

To order, please specify as shown below:

TQ2060-MC<br>High-Frequency Clock Generator<br>Temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial)<br>Package: 28-Pin MQuad

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^14]Revision 1.0.A October 1997


Figure 1. Pinout Diagram


TriQuint's TQ2061 is a high-frequency clock generator. It utilizes a 25 MHz to 35 MHz TTL input to generate a 500 MHz to 700 MHz PECL output. The TQ2061 has a completely self-contained Phase-Locked Loop (PLL) running at 500 MHz to 700 MHz . This stable PLL allows for a low period-to-period output jitter of 70 ps (max), and enables tight duty cycle control of $55 \%$ to 45\% (worst case).

The TQ2061 provides optional 200-ohm on-chip pull-down resistors which are useful if the output is AC -coupled to the device being driven. In order to use these resistors, pin 20 (PDR2) should be connected to pin 21 (QN), and pin 23 (PDR1) should be connected to pin 22 (Q).

Various test modes on the chip simplify debug and testing of systems by slowing the clock output or by bypassing the PLL.

## TQ2061

## High-Frequency Clock Generator

## Features

- Output frequency range: 500 MHz to 700 MHz
- One differential PECL output: 600 mV (min) swing
- Common-mode voltage:
$V_{D D}-1.2 \mathrm{~V}$ (max),
$V_{D D}-1.6 \mathrm{~V}$ (min)
- Period-to-period output jitter: 25 ps peak-to-peak (typ) 70 ps peak-to-peak (max)
- Reference clock input: 25 MHz to 35 MHz TTL-level crystal oscillator
- Self-contained loop filter
- Optional 200 pull-down resistors for AC-coupled outputs
- +5 V power supply
- 28-pin J-lead surface-mount package
- Ideal for designs based on DEC Alpha AXP ${ }^{T M}$ processors

Figure 2. Simplified Block Diagram


Table 1. Mode Selection

| Mode | TEST1 | TEST2 | TESTIN1 | REFCLK | Q, QN |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 (Test) | 0 | 0 | "don't care" | $\mathrm{f}_{\text {REFCLK }}$ | $\mathrm{f}_{\text {REFCLK }}{ }^{2}$ |
| 2 (Test) | 0 | 1 | "don't care" | "don't care" | 0,1 |
| 3 (Test) | 1 | 0 | $\mathrm{f}_{\text {TESTCLK }}$ | "don't care" | $\mathrm{f}_{\text {TESTCLK }}$ |
| 4 (Bypass) | 1 | 1 | 0 | $\mathrm{f}_{\text {RECCLK }}$ | $\mathrm{f}_{\text {REFCLK }}$ |
| 5 (Normal) | 1 | 1 | 1 | $\mathrm{f}_{\text {REFCLK }}$ | $20 \times \mathrm{f}_{\text {REFCLK }}{ }^{3}$ |

Notes: 1. In mode 3, TESTIN may be used to bypass the PLL.
2. REFCLK $=25 \mathrm{MHz}$ to 35 MHz .
3. $Q, Q N=500 \mathrm{MHz}$ to 700 MHz .

Figure 3. Recommended Layout
(Not to scale)


## TQ2061

## Table 2. Absolute Maximum Ratings

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature with power applied | $-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ |
| Supply voltage to ground potential | -0.5 V to +7.0 V |
| DC input voltage | -0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right) \mathrm{V}$ |
| DC input current | -30 mA to +5 mA |
| Package thermal resistance (MQuad) | $\theta_{\mathrm{JA}}=45^{\circ} \mathrm{C} / \mathrm{W}$ |
| Die junction temperature | $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ |

Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device.
The device should be operated only under the DC and $A C$ conditions shown below.

Table 3. DC Characteristics $\left(V_{D D}=+5 V \pm 5 \%, T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)^{1}$

| Symbol | Description | Test Conditions Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH voltage | $V_{\text {CC }}=$ Min PECL load $\quad V_{\text {CC }}-1.20$ |  | $V_{C C}-0.50$ | V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW voltage | $V_{C C}=$ Min PECL load $\quad V_{C C}-2.00$ |  | $V_{C C}-1.60$ | V |
| $V_{\text {CMO }}$ | Output common mode voltage | PECL $\quad V_{C C}-1.60$ |  | $V_{C C}-1.20$ | V |
| $\mathrm{V}_{\text {OUT }}$ | Output differential voltage | PECL 0.6 |  | 1.2 | V |
| $\mathrm{V}_{\text {IH }}{ }^{2}$ | Input HIGH level | Guaranteed input logical 2.0 HIGH Voltage for all inputs |  |  | V |
| $\mathrm{V}_{\text {IL }}{ }^{2}$ | Input LOW level | Guaranteed input logical LOW Voltage for all inputs |  | 0.8 | V |
| $I_{\text {IL }}$ | Input LOW current | $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} \mathrm{V}_{1 \mathrm{~N}}=0.40 \mathrm{~V}$ | -150 | -400 | $\mu \mathrm{A}$ |
| $I_{1 H}$ | Input HIGH current | $\mathrm{V}_{\text {DD }}=\operatorname{Max} \mathrm{V}_{1 \text { IN }}=2.7 \mathrm{~V}$ | 0 | 25 | $\mu \mathrm{A}$ |
| 1 | Input HIGH current | $\mathrm{V}_{\text {DD }}=$ Max $\mathrm{V}_{\text {IN }}=5.3 \mathrm{~V}$ | 2 | 1000 | $\mu \mathrm{A}$ |
| $\mathrm{IDDS}^{3}$ | Power supply current | $V_{D D}=$ Max | 85 | 120 | mA |
| $\mathrm{V}_{1}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{DD}}=\operatorname{Min} \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ | -0.70 | -1.2 | V |

Table 4. Capacitance

| Symbol | Description | Test Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{N}}$ | Input Capacitance | $\mathrm{V}_{\mathbb{I N}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 6 | pF |  |  |
| $\mathrm{C}_{\text {OUT }}$ | Output Capacitance | $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$ | 9 | pF |  |  |

Notes: 1. Typical limits are at $V_{D D}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and include all overshoots due to system or tester noise.
3. This parameter is measured with device not switching and unloaded.

## TQ2061

Table 5. AC Characteristics ( $V_{D D}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

| Symbol | Input Clock (REFCLK) | Test Conditions (Figure 5) | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{CPWH}}$ | CLK pulse width HIGH | Figure 5 | 4 | - | - | ns |
| $\mathrm{t}_{\text {CPWL }}$ | CLK pulse width LOW | Figure 5 | 4 | - | - | ns |
| $\mathrm{t}_{\mathrm{IR}}$ | Input rise time (0.8 V-2.0 V) |  | - | - | 2.0 | ns |
|  |  |  |  |  |  |  |
| Symbol | Output Clock (Q, QN) | Test Conditions (Figures 4 \& 5) |  |  |  |  |
| $\mathrm{t}_{\mathrm{OR}} \mathrm{t}_{\text {OF }}$ | Rise/fall time (20\% $-80 \%)$ | Min | Typ | Max | Unit |  |
| $\mathrm{t}_{\mathrm{CYC}}$ | Digure 5 | 100 | 220 | 350 | ps |  |
| $\mathrm{t}_{\mathrm{JP}}{ }^{2}$ | Puty-cycle | Figure 5 | 45 | 50 | 55 | $\%$ |
| $\mathrm{t}_{\mathrm{SYNC}}{ }^{3}$ | Synchronization Time |  | - | 25 | 70 | ps |

Notes: 1. All measurements are tested with a REFCLK having a rise time of $0.5 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.0 V$)$.
2. Jitter specification is peak to peak. Period-to-Period jitter is the jitter on the output with respect to the output's previous crossing.
3. $t_{\text {SYNC }}$ is the time required for the PLL to synchronize and assumes the presence of a CLK signal.

Figure 4. PECL Test Load


Figure 5. REFCLK and Q-QN Timing

$\frac{t_{1}}{t_{2}} \times 100=55 \%$ to $45 \%$

Figure 6. 28-Pin MQuad J-Leaded Package Mechanical Specification

(All dimensions in inches)

## Table 6. 28-Pin MQuad Pin Description

| Pin \# | Pin Name | Description | I/O |
| :---: | :---: | :--- | :---: |
| 1 | NC | No Connect | - |
| 2 | NC | No Connect | - |
| 3 | NC | No Connect | - |
| 4 | NC | No Connect | - |
| 5 | NC | No Connect | - |
| 6 | NC | No Connect | - |
| 7 | GND | Ground | - |
| 8 | REFCLK | Reference Clock | I |
| 9 | TESTIN | Test Input | I |
| 10 | NC | No Connect | - |
| 11 | GND | Logic Ground | - |
| 12 | VDD | Logic VDD $(+5$ V) | - |
| 13 | NC | No Connect | - |
| 14 | TEST1 | Test Control 1 | I |


| Pin\# | Pin Name | Description | I/O |
| :---: | :---: | :--- | :---: |
| 15 | TEST2 | Test Control 2 | I |
| 16 | NC | No Connect | - |
| 17 | NC | No Connect | 0 |
| 18 | GND | Ground | - |
| 19 | EVDD | VDD for ECL Output (+5 V) | - |
|  |  |  |  |
| 20 | PDR2 | Pull-down Resistor 2 $(200 \Omega)$ | I |
| 21 | QN | Differential PECL Output $(-)$ | 0 |
| 22 | Q | Differential PECL Output $(+)$ | 0 |
| 23 | PDR1 | Pull-down Resistor 1 $(200 \Omega)$ | 1 |
| 24 | GND | Ground | - |
| 25 | AGND | Analog Ground | - |
| 26 | AVDD | Analog VDD $(+5 \mathrm{~V})$ | - |
| 27 | NC | No Connect | - |

## Ordering Information

To order, please specify as shown below:

TQ2061-MC
High-Frequency Clock Generator

Temperature range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial)
Package: 28-Pin MQuad

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied 'or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997

## Section 7 - Application Notes

Making High-Speed Measurements ..... 7-3
Layout Principles for High-Speed Serial Data ..... 7-7
Termination Schemes for Fibre Channel Tx/Rx Interfaces ..... 7-11
Transmission Line Fundamentals ..... 7-17
Terminating Clock Lines ..... 7-21
Interfacing 5-Volt Clock Chips to 3-Volt ICs ..... 7-31
Part-to-Part Skew ..... 7-35
Clock Distribution Techniques Using the GA1110E ..... 7-43

TQS

## Making High-Speed Measurements

Much has been written about the critical nature of accurate high speed measurement. This application note is intended to be a supplement and aid in the process of making high-speed measurements quickly and accurately. Measurement of TriQuint ECL and PECL outputs are of particular interest, especially as they pertain to measurement in TriQuint's family of evaluation fixtures.

## ECL and PECL Outputs at TriQuint

The standard TriQuint ECL output device is essentially an "open" source follower circuit. Current flows out of the source from the drain which is at "ground."

A PECL or positive ECL output is also an "open" source follower circuit. Current flows out of the source from the drain which is connected, instead, to the Positive Vdd power supply.

Figure 1. ECL and PECL Outputs

Standard ECL differential output


Standard PECL differential output


## Measuring Differential ECL and PECL Outputs

To make single-ended measurements on differential outputs, attention should be given to the differential output interface. Both outputs must be terminated identically for optimum performance (the complement output should be terminated with an equivalent 50 ohms to -2 V ).

## ECL Terminators

ECL signals are normally offset from ground. Highfrequency test equipment generally provides a $50-\mathrm{ohm}$ termination to ground. Direct connection of such signals to this test equipment could result in damage to the equipment.

An ECL terminator provides the interface between the ECL output and the test and measurement equipment. It will offset and attenuate the signal such that the equipment remains protected. High-bandwidth ECL terminators allow signals with rise times as small as 100 ps to be attenuated and observed without distortion.

ECL terminator products are available from at least two sources, as listed in the following table.

| Vendor | Model \# |
| :--- | :---: |
| Picosecond Pulse Labs | 5620 |
| Cascade Microtech | ECL-T1 |

## High-Speed Measurements

## TriQuint Evaluation Fixtures

When observing signals from circuits fixtured in TriQuint evaluation fixtures, it is crucial that special care be taken to terminate adjacent signal paths through 50 ohms to "ground." This eliminates any energy which may inadvertently couple into and reflect back to the signal under observation. If this is not done, the effect can be a small but noticeable perturbation of the observed signal at a location equal to the electrical length of the neighboring signal path.

Figure 2 shows an example of the way an ECL output interfaces to the ECL terminator and the scope.
Figure 3 shows a setup for measuring PECL outputs.

All cables should be high-quality shielded 50-ohm type and cable lengths should be as short as is practical in the test lab environment.

Figure 2. Measuring ECL Outputs


Standard PECL
differential output


The ECL terminator should be connected directly to the 50 ohm scope input, and the scope should be a highbandwidth sampling scope. For example, to measure a 100 ps rise time, the bandwidth of the scope must be at least 5 GHz .

Figure 4. Typical Oscilloscope Image


## High-Speed Measurements

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:
$\begin{array}{ll}\text { Web: www.triquint.com } & \text { Tel: (503) 615-9000 } \\ \text { Email: sales@tqs.com } & \text { Fax: (503) 615-8900 }\end{array}$
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997

# Layout Principles for High-Speed Serial Data 

This application note provides information to aid in the design and layout of printed circuitry for highspeed serial link applications. These design principles will help achieve successful operation at high data transfer rates.

## Introduction

RF design principles must be factored into the design and implementation of systems that utilize high-speed serial archectures to transmit data at gigabit rates.

All high-speed data lines must be treated as controlled, constant-impedance transmission lines. They should be routed in a straight-line fashion as either stripline or microstrip signals.

The recommended method is to route data lines between power and ground layers (stripline). External layer routing (microstrip) is acceptable but stripline routing provides significant electromagnetic shielding which minimizes the radiative effects of the signals.

Skin effects have a much larger impact at these higher data rates. For this reason sharp bends, feed-through vias and any other sources of impedance discontinuity must be avoided if at all possible.

## High-Speed Signal Trace Characteristics

Trace width and lamination thickness are the large determining factors of trace impedance. Long narrow traces will be more more susceptible to impedance variations which will affect signal transmission quality. Wider traces will have less variation and therefore offer a higher transmission quality.

Trace separation must be considered to achieve a minimum radiating loop area for differential signal traces. This area is directly proportional to the trace separation. A trade-off has to be made between the need for minimum trace-to-trace capacitive coupling and the desired characteristic trace impedance.

Capacitive coupling and characteristic impedance are inversely affected by trace separation. The general rule for edge-to-edge spacing is 2.5 times the width of the trace. Another method for providing enhanced isolation between traces, for the purpose of minimizing crosstalk, is to run a ground trace between the traces of concern. This must be evaluated as to its impact on radiating emissions.

## Layout for High-Speed Data

## Signal Coupling

Signal coupling can have a substantial impact on the noise generated in a gigabit signal line. There are at least two sources of coupling: capacitive coupling occurs when traces are routed over the top of the trace in question; inductive coupling occurs when traces are routed closely parallel (side-by-side) to the trace in question.

Factors affecting the amount of coupling are the distance from the trace to the power planes, the spatial separation of the traces and the length of the parailielism.


The magnitude of the inductive coupling between two parallel traces is the ration of the spatial separation (Sd) to the distance (d) from the trace to the power / ground plane. The magnitude of the capacitive coupling between two overlapping traces is the ratio of the spatial separation (Sc) to the distance (d) from the trace to the power / ground plane.

If $\{S d / d\} \cong\{S c / d\} \cong 1$, then the coupling factor will be approximately $15 \%$ to $20 \%$ of the incident signal amplitude. If this ratio is increased to 2 , the coupling factor will be reduced to approximately $5 \%$ to $10 \%$. If this ratio is further increased to 3 , the coupling factor will again be reduced to approximately $2 \%$ to $5 \%$.

| Coupling Ratio | Coupling Energy |
| :---: | :---: |
| 1 | $15-20 \%$ |
| 2 | $5-10 \%$ |
| 3 | $2-5 \%$ |

All traces in a high speed design should be widely separated (ratio 3) to minimize the noise on a high speed signal trace.


## Signal Trace Crosstalk

Every high-speed signal will be imaged in the ground plane by an equal return current. This return current will flow in a path of smallest impedance (and usually shortest distance spatially) on its return to the signal source. Running the traces over a ground plane already reduces the crosstalk by about $90 \%$. The remaining $10 \%$ can be minimized by reducing the parasitic coupling capacitance mentioned above. The separation distance between traces determines the parasitic coupling capacitance.

There are two cases to be considered when thinking about crosstalk and there are several ways to handle these cases. The two cases are crosstalk between
unrelated signals and crosstalk in traces carrying a differential signal．For the case of differential signal traces，a ground trace which separates the differential traces can virtually eliminate differential crosstalk．For the case of unrelated signals，the parasitic capacitance and hence the spatial distance between traces is the only means of reducing the crosstalk．

## Impedance Discontinuities

Trace routing should be carefully planned to provide for a smooth circuit flow with minimal interruptions．Every impedance discontinuity is a source of both signal reflections and of radiated emissions．The control of these factors can be achieved by minimizing the number and severity of impedance discontinuities and sharp corners（i．e．sharper than 135 degrees）．


One common source of impedance discontinuity is a feed－through via．A feed－through via can add as much as 4 pF of parasitic capacitance unless the feed－ through via structure is designed to minimize excess capacitance．Carefully selected placement and routing of components in the layout can help to greatly minimize feed－through vias．

If feed－through vias are unavoidable in high frequency gigabit signal paths，the parasitic capacitance of the via should be minimized to avoid an impedance discontinuity in the controlled impedance path．This is done by a careful design of the feed－through via to make its charac－ teristic impedance look very similar to that of the trace． The following table shows the dimensional effect of the via on parasitic capacitance．

| Via Element | Low Cost Via | Recommended RF Via |
| :--- | :---: | :---: |
| Hole | $0.018^{\prime \prime}$ | $0.010^{\prime \prime}$ |
| Pad | $0.030^{\prime \prime}$ | $0.020^{\prime \prime}$ |
| Relief | $0.060^{\prime \prime}$ | $0.100^{\prime \prime}$ |
| Capacitance | $2-4 \mathrm{pF}$ | $1-2 \mathrm{pF}$ |

Another source of impedance discontinuity is the contact pad of a surface－mount device such as an AC coupling capacitor or a series terminating resistor．The effect on the impedance discontinuity can be minimized by distancing the closest＂ground＂plane from the contact pad．Routing of other signals through the areas where the ground plane has been altered must be avoided．

## Signal Trace Skin Effects

As serial link data rates approach $1 \mathrm{~Gb} /$ s，skin effects begin to dominate，making the surface area of the trace extremely important．

Skin depth is defined as the depth in a conductor at which the current is attenuated by a factor of $e$ （2．718295）from its surface value．The following table is a comparative chart of skin depths at various frequencies．

| Frequency | Skin Depth in mils |
| :--- | :---: |
| 1 KHz | 83 |
| 1 MHz | 2.6 |
| 10 MHz | 0.83 |
| 100 MHz | 0.26 |
| 1 GHz | 0.083 |

The skin depth $\delta$ is inversely proportional to the square root of the frequency. The distribution of current in the trace is exponential, dropping to very nearly zero after some 6 to 9 skin depths.

If the trace thickness is greater than ( $6 * \delta$ ) at the frequency of concern, the trace impedance will not
 change appreciably.

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com
Tel: (503) 615-9000
Email: sales@tqs.com
Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

[^15]
# Termination Schemes for Fibre Channel Tx/Rx Interfaces 


#### Abstract

Interfaces to TriQuint Fibre Channel transmitter and receiver devices can have a significant impact on the performance of the Fibre Channel Link in which they are placed. Careful design of these interfaces will eliminate the link as a problem source during the system debug phase. This application note discusses the various interfaces which need to be considered carefully during the system design and layout phases. Several termination schemes are shown to give a basic understanding of the types of schemes that are available.


## Introduction

TriQuint Fibre Channel devices are a very high-speed serial communication interface solution. Interfacing to these serial link chips is critical when the maximum transfer rate is desired. Fibre Channel Transmission rates are now commonly being implemented into systems with the intention of full-rate $1.063 \mathrm{~Gb} / \mathrm{s}$ operation. The link side of a Fibre Channel transmitter / receiver carries PECL-level data at rates between 1 and $1.25 \mathrm{~Gb} / \mathrm{s}$. Careful attention should be given to the design and layout of this link to avoid problems caused by improper termination impedance or voltage.

When interfacing to copper links or optical drivers, care must be taken to ensure that the interface to these devices is well matched, and that the impedance characteristics are maintained in order to minimize possible noise sources. Another important factor which must not be overlooked is the 10-bit TTL bus interface
between the transmitter / receiver and the Encoder / Decoder (ENDEC) to which they interface. Data rates at these interfaces can reach speeds as high as $125 \mathrm{Mb} / \mathrm{s}$. At these interfaces great care must be taken to make sure signals remain as noise-free as possible.

## The Transmitter I/O Interface

Normally, for a short link, the Transmitter (TX) is connected directly to either the copper link or to an optical driver device. For copper links, if the length of the link is greater than 20 feet, then a Line Driver Amplifier or equalized cable scheme is preferred. Interfacing circuitry should be such that the impedance seen looking out of the Transmitter is 50 ohms, with a termination voltage of 3 V .

The configurations shown in the figures on the following pages provide several examples of a balanced $50-\mathrm{ohm}$ interface, as well as a specific example in which a particular line driver is shown. The resistor network is constructed such that the output of the TX is terminated into +3 V . There is a $4: 1$ attenuation of the signal going to the Line Driver Amplifier and the impedance looking back from the Line Driver Amplifier is also 50 ohms.

In the case of the differential interface, the lines out of the Line Driver Amplifier are AC-coupled to the coaxial cable. For the single-ended case, the Complement line out of the Line Driver Amplifier is AC-coupled to a 50ohm resistor, which is tied to ground. The True side is

## Termination for Fibre Channel

AC-coupled to the coaxial cable. This applies to circuits in which just the TX is used as the driver.

## The Receiver I/O Interface

The Receiver interface is susceptible to losses along a copper link. These losses can be minimzed by using a Line Driver Amplifier at the receiver end of the link. When interfacing to the receiver it is important to note that a PECL receiver input wants to see a 50 -ohm source impedance. It is also important to ensure that
the input bias is set to the PECL logic threshold of +3.7 V . An AC-coupled signal then swings symmetrically about this threshold. The figure below shows a balanced 50 -ohm input termination scheme which sets the input level $(+3.68 \mathrm{~V})$ at or near the PECL logic threshold. If the link is single-ended, the True side of the Line Driver Amplifier is AC-coupled to ground and the Complement side of the Line Driver Amplifier is AC-coupled to the Link. If the Link is differential, then both sides of the link are AC-coupled to the Line Driver Amplifier.

Figure 1. Fibre Channel Transmitter Coaxial Interface


Figure 2. Fibre Channel Transmitter Coaxial Interface with Line Driver Amplifier


## Termination for Fibre Channel

Figure 3. Fibre Channel Receiver Coaxial Termination Interface


Figure 4. Fibre Channel Receiver Coaxial Interface with Line Driver Amplifier


## Termination for Fibre Channel

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems. Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.

## Transmission Line <br> Fundamentals

## Introduction

A knowledge of transmission lines is critical when designing high-speed systems. Signal edge rates define the transition point where simple traces become transmission lines. As CPU data rates increase, edge rates get faster to keep up with the increase in frequency, which, in turn, worsens the transmission line effects.

By correctly identifying transmission lines and by designing the printed circuit board to address transmission line effects, a designer can prevent problems before the boards are manufactured.

## Transmission Line Theory

A transmission line has a characteristic impedance $\left(Z_{0}\right)$ and propagation delay ( $t_{p_{0}}$ ), which is given by:

$$
\begin{align*}
& Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} \quad(\Omega)  \tag{1}\\
& t_{P O}=\sqrt{L_{0} C_{0}} \quad\left(\frac{p s}{\text { in. }}\right) \tag{2}
\end{align*}
$$

Where $\mathrm{C}_{0}=$ intrinsic capacitance $L_{0}=$ intrinsic inductance

The delay through the transmission line is given by:

$$
\begin{equation*}
t_{P D}=t_{P O}(\mathrm{ps} / \mathrm{in}) \times I \text { (inches) } \tag{3}
\end{equation*}
$$

The transmission line impedance decreases and the propagation delay increases with capacitive loading, as shown in Equations 4 and 5:

$$
\begin{align*}
& Z_{L}=\frac{Z_{0}}{\sqrt{1+\frac{C_{L}}{C_{0}}}}  \tag{4}\\
& t_{P L}=t(\Omega)  \tag{5}\\
& P O \sqrt{1+\frac{C_{L}}{C_{0}}}\left(\frac{p s}{i n .}\right)
\end{align*}
$$

where $Z_{L}=$ loaded impedance
$C_{L}=$ load capacitance
$t_{\text {PL }}=$ loaded propagation delay in $\mathrm{ps} / \mathrm{in}$

Whether or not a printed circuit board trace acts as a transmission line, exhibiting a characteristic impedance and propagation delay, depends upon the signal edge rates relative to the round-trip delay of the trace. Although faster signal frequencies tend to exacerbate transmission line effects, it is the signal edges, and not frequency, that define a transmission line.

A trace is determined to be a transmission line if it meets this criterion:

$$
\begin{equation*}
t_{R, F}<2 t_{P D} \quad(p s) \tag{6}
\end{equation*}
$$

Where $\quad t_{R, F}=$ edge rates, or rise and fall times in $p s$
$t_{\text {PD }}=$ one-way delay in ps
$2 t_{p D}=$ round-trip delay in $p s$

Where $\quad I=$ the length of the transmission line.

## Transmission Lines

If the edge rates of the signal are less than the roundtrip delay of the trace, the trace must be treated as a transmission line. For example, at what length will a trace having a propagation delay of 172 ps per inch begin exhibiting transmission line characteristics, assuming the signal has a minimum edge rate of 350 ps ?

The GA1085, for example, has a minimum output rise time $t_{0 R}$ and fall time $t_{0 F}$ of 350 ps . Substituting the edge rates into equation 6 yields the following:

$$
\begin{aligned}
& t_{R, F} \leq 2 t_{P D} \\
& t_{P D} \geq \frac{t_{R, F}}{2} \\
& I_{x} t_{P O} \geq \frac{t_{R, F}}{2} \\
& I \geq \frac{t_{R, F}}{2 t_{P O}} \\
& I \geq \frac{350 \mathrm{ps}}{2(172 \mathrm{ps} / \text { in })} \\
& I \geq 1.02 \text { inches }
\end{aligned}
$$

In this example, a trace longer than 1.02 inches is a transmission line. Traces shorter than 1.02 inches are not transmission lines and are treated as lumped loads.

## Microstrip Lines

The top and bottom signal layers of most printed circuit boards are microstrip lines. A microstrip line sits above a ground plane separated by a dielectric, as shown in Figure 1 The traces are copper and the dielectric is normally composed of resin epoxy fiberglass. The copper ground plane enables good impedance control. For a microstrip line, the characteristic impedance is given by the following equation:

$$
\begin{equation*}
Z_{0}=\frac{87}{\varepsilon_{r}+1.41} \ln \left(\frac{5.98 \mathrm{~h}}{0.8 \mathrm{w}+\mathrm{t}}\right)(\Omega) \tag{7}
\end{equation*}
$$

Where $\varepsilon_{r}=$ dielectric constant (FR-4/Glass $=4.1$ )
$\mathrm{t}=$ trace thickness ( $1 \mathrm{oz} .=0.0015^{\prime \prime}, 2 \mathrm{oz}=0.003$ ")
$\mathrm{w}=$ trace width (mils)
$\mathrm{h}=$ dielectric insulation (mils)

Figure 1. Microstrip Cross Section


The trace width (w) and height ( h ) are chosen to achieve the desired impedance.

The propagation delay for a microstrip line is given by:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{PO}}=84.75 \sqrt{0.475 \varepsilon_{\mathrm{r}}+0.67}\left(\frac{\mathrm{ps}}{\mathrm{in} .}\right) \tag{8}
\end{equation*}
$$

For example, a board with a dielectric constant of 4.1 will have a propagation delay given by:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{P} O}=84.75 \sqrt{0.475(4.1)+0.67}\left(\frac{\mathrm{ps}}{\mathrm{in} .}\right) \\
& \mathrm{t}_{\mathrm{P} O}=137\left(\frac{\mathrm{ps}}{\mathrm{in} .}\right)
\end{aligned}
$$

Note that the propagation delay depends solely on the material of the dielectric, and not upon the geometry.

## Strip Lines

Strip lines are found in the inner layer of the board, sandwiched between two ground planes, as shown in Figure 2. For a strip line, the characteristic impedance is given by:

$$
\begin{equation*}
\mathrm{Z}_{0}=\sqrt{\frac{60}{\varepsilon_{\mathrm{r}}}} \ln \left(\frac{4 \mathrm{~b}}{0.67 \pi \mathrm{w}\left(0.8+\frac{\mathrm{t}}{\mathrm{~W}}\right)}\right) \tag{9}
\end{equation*}
$$

Where $\quad \varepsilon_{r}=$ dielectric constant
$\mathrm{t}=$ trace thickness
w = trace width
$h=$ dielectric insulation
$\mathrm{b}=$ spacing between ground planes
Arriving at the desired impedance depends upon the correct combination of trace width ( w ), height ( h ), and ground plane spacing (b).

## Transmission Lines

Figure 2. Strip Line Cross Section


The propagation delay for strip lines is given by :

$$
\begin{equation*}
\mathrm{t}_{\mathrm{PO}}=84.75 \sqrt{\varepsilon_{\mathrm{r}}} \quad\left(\frac{\mathrm{ps}}{\mathrm{in} .}\right) \tag{10}
\end{equation*}
$$

It is interesting to note that signals move more slowly in a stripline than a microstrip for a given dielectric constant, which is apparent from comparing Equations 8 and 10.

## Reflections

Reflections are well understood transmission line effects. They are sometimes misidentified as ringing, because they exhibit similar characteristics. Reflections appear whenever a signal encounters a mismatch in impedance. The impedance mismatch may be the result of a difference in trace geometry, capacitive loading on the trace (described in Equation 4), or improperly terminated traces. The reflection coefficient is given by:

$$
\begin{equation*}
\rho=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}} \tag{11}
\end{equation*}
$$

Where $\quad \rho=$ reflection coefficient

$$
\begin{aligned}
& Z_{1}=\text { segment } 1 \text { impedance } \\
& Z_{2}=\text { segment } 2 \text { impedance }
\end{aligned}
$$

Figure 3 shows a step generator driving a transmission line. The output impedance of the step generator is $\mathrm{R}_{\text {OUt }}$. Various reflection coefficients are shown at Points $A$ and $B$ in the waveforms in Figure 4. When the reflection coefficient is zero, there are no reflections.

Figure 3. Impedance Mismatch


Figure 4. Reflection Waveforms
2) $Z_{2}=0$

1) $Z_{2}=\infty$

2) $Z_{2}=Z_{1}$
3) $Z_{2}=\frac{1}{2} Z_{1} \quad$ A

4) $Z_{1}=\frac{1}{2} Z_{2} \quad$ A


B


## Transmission Lines

## Daisy Chaining

The distributed capacitive loading on a trace as a result of daisy-chaining devices, shown in Figure 5, decreases the effective impedance of a trace, as described in Equation 5.

## Figure 5. Daisy Chaining



All of the transmission line segments in Figure 5 have an initial impedance of $Z_{0}$; the loaded impedance is $Z_{L}$.

As an example, assume the following:

$$
\left.\begin{array}{l}
\mathrm{Z}_{0}=70 \Omega \\
\mathrm{C}_{0}=5 \frac{\mathrm{pF}}{\mathrm{in} .} \\
\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\
\mathrm{~L}=1 \mathrm{inch}
\end{array}\right\}=5 \frac{\mathrm{pF}}{\mathrm{in.} .}
$$

Calculate $Z_{L}$ :

$$
\begin{aligned}
& Z_{L}=\sqrt{1+\frac{C_{L}}{C_{0}}} \\
& Z_{L}=\sqrt{1+\frac{5 \mathrm{pF} / \mathrm{in}}{2.5 \mathrm{pF} / \mathrm{in}}} \\
& Z_{L}=40 \Omega
\end{aligned}
$$

Calculate $\mathrm{t}_{\mathrm{PL}}$ :

$$
\begin{align*}
& t_{P L}=t_{P 0} \sqrt{1+\frac{C_{L}}{C_{0}}}\left(\frac{\mathrm{ps}}{\mathrm{in.}}\right)  \tag{5}\\
& \mathrm{t}_{\mathrm{PL}}=137 \mathrm{ps} / \mathrm{in} \sqrt{1+\frac{5 \mathrm{ps} / \mathrm{in}}{2.5 \mathrm{ps} / \mathrm{in}}} \\
& \mathrm{t}_{\mathrm{PL}}=237 \mathrm{ps} / \mathrm{in}
\end{align*}
$$

The impedance drops from 70 ohms to 40 ohms as a result of capacitive loading. While the propagation delay increases from 137 ps/in to 237 ps/in when loaded, changes in the characteristics of the line must be considered when driving multiple inputs along a trace.

## Summary

Do not overlook the importance of transmission line effects when designing high-speed systems. By knowing the trace impedance, the designer can properly terminate the line. Knowing the trace propagation delay enables the designer to effectively manage the timing requirements of the system.

## References

1. "Terminating Clock Lines," Joel Martinez, TriQuint Semiconductor, Inc., 1993
2. MECL System Design Handbook, Motorola, 1988
3. ECL in PS Design Guide, Motorola, 1991
[^16]
# Terminating Clock Lines 

## Introduction

The clock distribution circuitry is the heart of any system and requires special attention. Unterminated or improperly terminated lines may cause havoc in a system. Improper line termination results in uncontrolled reflections which can cause false triggering, induce Electro-Magnetic Interference (EMI) and generate noise in the system. The requirement for proper termination stems from the transmission line characteristics of traces in high-speed designs. Essentially, traces become transmission lines, exhibiting transmission line characteristics, (reflections, in particular).

## Clock Line Terminations

When does a signal trace require termination? A trace is considered a transmission line when the propagation delays associated with the trace exceed the signal edge rates (rise and fall times). The rule of thumb for determining the point at which a trace becomes a transmission line is given by:

$$
\begin{equation*}
t_{\text {RISE, FALL }}<2 t_{\text {PD }} \tag{1}
\end{equation*}
$$

Where $\quad t_{\text {RISE, FALL }}=$ edge rates, rise and fall times
$t_{P D}=$ one-way delay of the trace
$2 t_{P D}=$ round-trip delay of the trace
If the signal edge rates are less than the round-trip delay of a trace, the trace is a transmission line and requires termination to minimize reflections.

## Reflections

Reflections appear wherever a signal travelling through a trace encounters a mismatch or change in impedance. Figures 1 and 2 illustrate the principles of transmission line reflections. Assume that the trace is a transmission line with an impedance $Z_{0}$ and a propagation delay $t_{A B}$. The clock output voltage and impedance are $V_{\text {OUT }}$ and $R_{\text {OUT }}$, respectively. The load impedance is $R_{\text {IN }}$. The clock generates a step voltage which results in an initial voltage at Point $A$, given by:

$$
\begin{equation*}
V_{A O}=\frac{Z_{0}}{R_{\text {OUT }}+Z_{0}} V_{\text {OUT }} \tag{2}
\end{equation*}
$$

$V_{A O}$ is the resistor divider between the trace and the clock output impedance. The signal propagates toward Point $B$, where it encounters a change in impedance with respect to the load input. The impedance mismatch generates a reflection, which propagates toward Point A, as shown in Figure 2. The magnitude of the reflected signal is described by the reflection coefficient as shown below:

$$
\begin{equation*}
\rho_{B}=\frac{R_{\mathbb{N}}-Z_{0}}{R_{\mathbb{N}}+Z_{0}} \tag{3}
\end{equation*}
$$

With a reflection coefficient equal to one, the full amplitude ( 3.5 V ) is reflected back toward point A . In general, the input impedance of a device is much higher than its associated trace, resulting in a reflection coefficient near one.

When the reflected signal reaches point $A$, it encounters another impedance mismatch between the clock output

## Terminating Clock Lines

and the trace. The reflection coefficient at Point $A$ is given by:

$$
\begin{equation*}
\rho_{A}=\frac{R_{0 U T}-Z_{0}}{R_{O U T}+Z_{0}} \tag{4}
\end{equation*}
$$

The reflection coefficient at point $A$ is -0.74 . The reflected signal will have an amplitude of -2.57 V as it travels toward point B.

The lattice diagram illustrates how reflected signals bounce back and forth between Points A and B. With each successive reflection at Point $A$, the amplitude of the reflected signal gets smaller and eventually goes to zero.

The waveform at Point B shows the effect of reflections on an unterminated trace. The waveform oscillates for a long time before reaching the final value.

The step duration is equal to the trace round-trip delay. The longer the trace, the longer it will take for the signal to settle to its final value ( 4.0 V ).

Such a waveform generates system noise and may even cause false triggering of the device being driven. It is not uncommon to see voltages above 6 Volts on unterminated traces, as shown in Figure 3.

Figure 1. Unterminated Trace


Figure 2. Lattice Diagram: Unterminated

$$
\begin{aligned}
& V_{A O}=\frac{Z_{0}}{R_{\text {OUT }}+Z_{0}} V_{\text {OUT }} \\
& V_{A O}=\frac{100}{15+100}(4) \\
& V_{A O}=0.87(4) \\
& V_{A 0}=3.5 \text { Volts } \\
& V_{A 1}=3.5+3.5(1-0.74) \\
& V_{A 1}=4.41 \text { Volts } \\
& V_{A 2}=4.41-2.59(1-0.74) \\
& V_{A 2}=3.74 \text { Volts }
\end{aligned}
$$

## Terminating Clock Lines

Figure 3. Waveform - Unterminated


## Series Termination

Series termination, as shown in Figure 4, is the most common termination scheme used in clock distribution schemes. It consumes less power than other termination techniques and requires only a single resistor. The second example illustrates the use of series termination to minimize reflections. The series termination resistor
$\left(R_{T}\right)$ was chosen such that the reflection coefficient at Point $A$ is zero. The reflection coefficient at Point $B$ is one. The initial amplitude of the waveform is given by:

$$
\begin{equation*}
V_{A O}=V_{\text {OUT }} \frac{Z_{0}}{R_{\text {OUT }}+R_{T}+Z_{0}} \tag{5}
\end{equation*}
$$

Figure 4. Series Termination


| $R_{\text {OUT }}=$ Clock driver output impedance | $(10-20 \Omega)$ |  |
| :--- | :--- | :--- |
| $R_{I N}=$ Device input impedance | $(10 \mathrm{M} \Omega)$ | $\rho_{A}$ |
| $Z_{0}=$ Trace impedance | $(100 \Omega)$ |  |
| $R_{T}=$ Series resistance | $(85 \Omega)$ | $\rho_{B}=\frac{\left(R_{\text {OUT }}+R_{T}\right)-Z_{0}}{R_{0 U T}+R_{T}+Z_{0}}=0$ |
| $V_{\text {OUT }}=4$ Volts |  |  |

## Terminating Clock Lines

Figure 5. Lattice Diagram: Ideal Series Termination


Figure 6. Ideal Waveform


In this example, the initial amplitude of $V_{A}$ is 2 Volts, as shown in Figure 5. When the signal reaches Point $B$, where the reflection coefficient is one, the amplitude doubles to 4 Volts. The reflected signal with a 2-Volt amplitude reaches Point A , where the reflection coefficient is zero. The series termination value was chosen such that no reflection is generated at Point A.

The series termination value is given by the following:

Figure 6 depicts an ideal waveform. Since the output impedance of clock generator outputs varies from part to part and with temperature, it is impossible to choose a resistor value perfect for all cases. Calculating $R_{T}$ for the typical Rout, however, minimizes the reflection coefficient for the range of output impedance.

$$
\begin{equation*}
R_{T}=Z_{0}-R_{\text {OUT }} \tag{6}
\end{equation*}
$$

Where $Z_{0}=$ trace impedance
$\mathrm{R}_{\text {OUT }}=$ clock-driven output impedance (10-20 $\Omega$ )

## Exercise 1

A GA1087 is used to drive a 3 -inch trace. Will the trace require termination? If so, what resistor value is needed for series termination?

1. Determine if the trace is a transmission line:
a. Check the data sheet for minimum edge rates:

$$
\mathrm{T}_{0 \mathrm{R}, \mathrm{OF}}=350 \mathrm{ps}(\mathrm{~min})
$$

b. Estimate trace delay:
$T_{A B}=3$ inches $\times 172 \mathrm{ps} / \mathrm{inch}=516 \mathrm{ps}$

Note: 172 ps/inch is for board material with a dielectric constant of 4.1.
c. Check rule of thumb equation:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{OR}, \mathrm{OF}}<2 \mathrm{t}_{\mathrm{AB}} \\
& 350 \mathrm{ps}<2(516 \mathrm{ps})=\text { True }
\end{aligned}
$$

In this case, the trace is a transmission line. Had the equality been false, termination would not be required for the trace.
2. Determine clock output impedance. Use the $\mathrm{I}_{\mathrm{OL}}$ vs. $V_{O L}$ curves to determine the output Impedance. The slope of the curve at a specific operating point is the impedance. TriQuint's clock generators characteristically have output impedances in the 10 -ohm to 20 -ohm range. Choose:

$$
\mathrm{R}_{\mathrm{T}}=15 \Omega
$$

3. Use Time Domain Reflectometry (TDR) to determine trace impedance or calculate using the following equations:

Microstrip

$$
z_{0} \sqrt{\varepsilon_{r}+11 m\left(\frac{5.98}{0.8 w}\right)_{+}^{h}}
$$

Stripline

$$
\mathrm{z}_{0} \quad \frac{60}{\sqrt{\varepsilon_{\mathrm{r}}}} \ln \left(\frac{4 \mathrm{~b}}{0.67 \pi_{\mathrm{w}}\left(\frac{6}{\mathrm{~W}}\right.} . \mathrm{b}\right.
$$

Assume that $Z_{0}$ was measured:

$$
Z_{0}=87 \Omega
$$

4. Choose the value* of the series resistor.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{0}-\mathrm{R}_{\mathrm{S}} \\
& \mathrm{R}_{\mathrm{T}}=87-15 \\
& \mathrm{R}_{\mathrm{T}}=72 \Omega \approx 71.5 \Omega \text { (std. } 1 \% \text { resistor value) } \\
& \text { *See the Table at the end of this application note for } \\
& \text { standard resistor values. }
\end{aligned}
$$

## Advantages and Disadvantages of Series Termination

Because series termination does not require additional power, it is a good choice when power dissipation is a critical design concern. When driving CMOS inputs, the steady-state power at the output is near zero, since $I_{I H}$ (input HIGH current) and $\mathrm{I}_{\mathrm{IL}}$ (input LOW current) are negligible. Even TTL input currents are small; in the order of $10 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$.

With series termination, loads must be located at the end of the line as shown in Figure 7.

The daisy chaining of outputs in not allowed in seriesterminated lines. An example of an improperly daisychained termination scheme is shown in Figure 8.The amplitude of the waveform at $A, B$, and $C$ is one-half the steady-state value on the first wavefront. At point D, the reflection coefficient is one and the signal doubles and achieves steady state, as shown in Figure 9.

Figure 7. Series Termination (Loads Lumped at End)
 $2 \mathrm{~T}_{\mathrm{BD}} \ll \mathrm{T}_{\mathrm{OR}, \mathrm{OF}}$ $2 T_{B E} \ll T_{O R}, O F$

## Terminating Clock Lines

Figure 8. Daisy Chaining Outputs (Not Allowed)


Figure 9. Daisy Chain Waveforms

$\mathrm{T}=\mathrm{T}_{\mathrm{AB}}=\mathrm{T}_{\mathrm{BC}}=\mathrm{T}_{\mathrm{CD}}$

## Thevenin Termination

With Thevenin termination, the termination is located at the end of the trace as shown in Figure 10. The Thevenin equivalent of the two termination resistors are chosen to equal the trace impedance. For this example, the Thevenin voltage is chosen to equal 1.5 volts.

Reducing Equation 11:

$$
\begin{aligned}
& R_{\mathrm{T} 2}=0.3 R_{\mathrm{T} 1}+0.3 R_{\mathrm{T} 2} \\
& R_{\mathrm{T} 1}=\frac{0.7 R_{\mathrm{T} 2}}{0.3} \\
& R_{\mathrm{T} 1}=2.33 \mathrm{R}_{\mathrm{T} 2}
\end{aligned}
$$

Solving equations 10 and 11 :

$$
\begin{equation*}
\frac{1}{\mathrm{R}_{\mathrm{T} 1}}+\frac{1}{\mathrm{R}_{\mathrm{T} 1}}=\frac{1}{\mathrm{Z}_{0}} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\mathrm{R}_{\mathrm{T} 2}}{\mathrm{R}_{\mathrm{T} 1}+\mathrm{R}_{\mathrm{T} 2}}\right) 5 \mathrm{~V}=\mathrm{V}_{\mathrm{T}}=1.5 \tag{11}
\end{equation*}
$$

## Terminating Clock Lines

Substituting $2.33 \mathrm{R}_{\mathrm{T} 2}$ for $\mathrm{R}_{\mathrm{T} 1}$ in Equation 10 yields:

$$
\begin{aligned}
& \frac{1}{2.33 R_{T 1}}+\frac{1}{R_{T 1}}=\frac{1}{100} \\
& R_{T 2}=100\left(\frac{1}{2.33}+1\right) \\
& R_{T 2}=142 \Omega \approx 143 \Omega
\end{aligned}
$$

Substituting back into Equation 12 yields:

$$
\mathrm{R}_{\mathrm{T} 1}=332 \Omega
$$

Choosing $\mathrm{R}_{\mathrm{T} 1}$ and $\mathrm{R}_{\mathrm{T} 2}$ such that their Thevenin equivalent is equal to $Z_{0}$ yields a reflection coefficient of zero at $B$.

## Advantages and Disadvantages of Thevenin Termination

Daisy chaining is allowed for traces with Thevenin termination. Because the termination is located at the end of the trace, the voltage amplitude of the initial signal is higher than in a series-terminated case.

The Thevenin termination example illustrated in Figure 11 has an initial amplitude of 3.48 V , which exceeds TTL input requirements. The Thevenin resistor and voltage can be tuned to achieve the desired result. For example, if rise time and fall time symmetry is of primary importance, choose a Thevenin voltage
midway through the swing. A higher Thevenin voltage will result in a faster rise time, if desired.

The DC current requirement is a disadvantage because it requires additional power. The Thevenin termination load line should not violate the maximum $V_{O L}$ and minimum $\mathrm{V}_{\mathrm{OH}}$ requirements.

Figure 10. Thevenin Termination


| $\mathrm{R}_{\text {OUT }}$ | $=$ Clock output impedance | $(10-20 \Omega)$ |
| :--- | :--- | :--- |
| $\mathrm{R}_{\mathrm{IN}}$ | $=$ Device input impedance | $(10 \mathrm{M} \Omega)$ |
| $\mathrm{Z}_{0}$ | $=$ Trace impedance | $(100 \Omega)$ |
| $\mathrm{R}_{\mathrm{T} 1}$ | $=332 \Omega$ |  |
| $\mathrm{R}_{\mathrm{TO} 2}$ | $=143 \Omega$ |  |
| $\mathrm{R}_{\mathrm{T} 1} \\| \mathrm{R}_{\mathrm{T} 2}$ | $=100 \Omega$ |  |
| $\mathrm{Z}_{\mathrm{IN}}$ | $=10 \mathrm{M} \Omega \\| 100 \Omega \quad 100 \Omega$ |  |

Where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T} 1} \| \mathrm{R}_{\mathrm{T} 2}=\mathrm{Z}_{0} \\
& \frac{\mathrm{R}_{\mathrm{T} 2}}{\mathrm{R}_{\mathrm{T} 1}+\mathrm{R}_{\mathrm{T} 2}}(5 \mathrm{~V})=1.5 \mathrm{~V}
\end{aligned}
$$

Figure 11. Lattice Diagram - Thevenin Termination

$$
\begin{array}{ll} 
& \rho_{\mathrm{A}}=0 \\
V_{\text {A } 0}=\frac{Z_{0}}{R_{\text {OUT }}+Z_{0}} V_{\text {OUT }} & \mathbf{v}_{\text {A0 }} \\
V_{A 0}=\frac{100}{100+15}(4 \mathrm{~V}) & \\
V_{A 0}=3.48 \text { Volts }
\end{array}
$$

## Terminating Clock Lines

Figure 12 shows the IV curve of the clock driver with a load line of a Thevenin resistor of 100 ohms and a voltage of 1.5 V . The load line intersects $\mathrm{V}_{\mathrm{OL}}$ at 0.2 V , which is within specification.

## Parallel Termination

Parallel termination is similar to the Thevenin termination scheme, where $R_{T}=Z_{0}$ and $V_{T}=0$. The parallel termination load line should not violate the maximum $\mathrm{V}_{\mathrm{OL}}$ and minimum $\mathrm{V}_{\mathrm{OH}}$ requirements.

## AC Termination

AC termination blocks the DC current that exists in a parallel termination scheme. The resistor and capacitor values are given by:

$$
\begin{aligned}
& R_{T}=Z_{0} \\
& C_{T}=\frac{2 T_{A B}}{R_{T}}
\end{aligned}
$$

Choose the capacitor such that the RC time constant is twice the round-trip delay.

The advantage of AC termination is less power than Thevenin or parallel termination. The disadvantage is that additional components are required.

Figure 12. $I_{O L}$ vs. $V_{O L}$


Figure 13. Parallel Termination


Figure 14. AC Termination


## Summary

The choice of a termination scheme depends on the system's design requirements. The cleanest waveforms come from parallel or Thevenin terminated lines. Thevenin termination requires one more resistor than does parallel termination, but with Thevenin termination, the designer can set the Thevenin voltage higher to reduce rise time or lower to reduce fall time.

Series termination requires less power than parallel and Thevenin termination. A series termination is ideal when using clock devices with multiple outputs because it requires the least power dissipation of the four termination schemes. Series termination requires no DC current, therefore all the energy is used charging and discharging the capacitance on the line.

AC termination has low power at lower frequencies, but has only slightly lower power at higher frequencies, when compared to Thevenin termination.

## References

1. "Transmission Line Fundamentals," Joel Martinez, TriQuint Semiconductor, Inc., 1993
2. MECL System Design Handbook, Motorola, 1988
3. ECL in PS Design Guide, Motorola, 1991

Appendix 1. Standard 1\% Resistor Values

| 1\% Resistor Values (ohms) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 4.02 | 17.8 | 30 | 49.9 | 82.5 |
| 10 | 18 | 30.1 | 51 | 84.5 |
| 10.2 | 18.2 | 30.9 | 51.1 | 86.6 |
| 10.5 | 18.7 | 31.6 | 52.3 | 88.7 |
| 10.7 | 19.1 | 32.4 | 53.6 | 90.9 |
| 11 | 19.6 | 33 | 54.9 | 91 |
| 11.3 | 20 | 33.2 | 56 | 93.1 |
| 11.5 | 20.5 | 34 | 56.2 | 95.3 |
| 11.8 | 21 | 34.8 | 57.6 | 97.6 |
| 12 | 21.5 | 35.7 | 59 | 100 |
| 12.1 | 22 | 36 | 60.4 | 102 |
| 12.4 | 22.1 | 36.5 | 61.9 | 105 |
| 12.7 | 22.6 | 37.4 | 62 | 107 |
| 13 | 23.2 | 38.3 | 63.4 | 110 |
| 13.3 | 23.7 | 39 | 64.9 | 113 |
| 13.7 | 24 | 39.2 | 66.5 | 115 |
| 14 | 24.3 | 40.2 | 68 | 118 |
| 14.3 | 24.7 | 41.2 | 68.1 |  |
| 14.7 | 24.9 | 42.2 | 69.8 |  |
| 15 | 25.5 | 43 | 71.5 |  |
| 15.4 | 26.1 | 43.2 | 73.2 |  |
| 15.8 | 26.7 | 44.2 | 75 |  |
| 16 | 27 | 45.3 | 75.5 |  |
| 16.2 | 27.4 | 46.4 | 76.8 |  |
| 16.5 | 28 | 47 | 78.7 |  |
| 16.9 | 28.7 | 47.5 | 80.6 |  |
| 17.4 | 29.4 | 48.7 | 82 |  |

## Interfacing 5-Volt Clock Chips to 3-Volt ICs

Today's high performance microprocessors are migrating to 3 V operation in order to offer high speeds without excessive power dissipation. Many of the peripheral, memory, and support ICs needed to build a complete system are not yet available in 3 V versions. System designers are required to integrate both 3 V and 5 V devices in the same system. Interfacing the two types requires some careful design considerations.

Input threshold levels are the same for both 3 V and 5 V TTL devices ( $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$ ). 3 V devices, however, specify a maximum $\mathrm{V}_{I N}$ of $\mathrm{V}_{D D 3 V}+0.3 \mathrm{~V}$. For most 5 V output drivers, the maximum $\mathrm{V}_{\mathrm{OH}}$ level can exceed this limit, leading to potentially dangerous overdrive conditions. This limitation can be easily overcome when using TriQuint's 5 V clock chips with a modified Thevenin termination as presented in note.

Figure 1 shows the standard Thevenin parallel termination scheme. $\left(R_{1}+R_{2}\right)$ is chosen to equal the trace impedance $Z_{0}$. The ratio $R_{1} / R_{2}$ is chosen to

Figure 1. Standard Thevenin Parallel Termination

provide the proper Thevenin voltage $\left(\mathrm{V}_{T}\right)$ for termination. TriQuint's 10XX devices are rated to drive traces with impedance as low as $50 \Omega$, and use $\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$ for symmetrical rise and fall times. For these conditions, $\mathrm{R}_{1}=167 \Omega$ and $\mathrm{R}_{2}=71 \Omega$ ( $160 \Omega$ and $75 \Omega$ will work well when choosing common $5 \%$ resistor values).

Figure 2 shows a modified Thevenin parallel termination scheme. $\mathrm{R}_{2}$ from Figure 1 is divided into two resistors, $R_{2 a}$ and $R_{2 b}$, such that $R_{2}=R_{2 a}+R_{2 b}$. The idea is to attenuate the output's $V_{O H}$ level to the extent that the $V_{\text {DD3V }}+0.3 \mathrm{~V}$ limit on the 3 V IC's $\mathrm{V}_{\text {IN }}$ is not exceeded. Care must be taken to prevent $\mathrm{V}_{\text {IN }}$ from falling below the $\mathrm{V}_{\text {IHmax }}$ spec of 2.0 V . The following are reasonable targets:

- $\mathrm{V}_{\text {INmin }}=2.4 \mathrm{~V}$ (Standard $\mathrm{V}_{\text {OHmin }}$ for TTL I/O. This provides 0.4 V guardband to $\mathrm{V}_{\text {IHmax }}$ of 2.0 V ).
- $\mathrm{V}_{\text {INmax }}=\mathrm{V}_{\text {DD3V }}+0.3 \mathrm{~V}=3.3 \mathrm{~V}$ ( 3 V TTL spec is $V_{D D 3 V}=3.0$ to 3.6 V . The worst case is for $\mathrm{V}_{\text {DD3Vmin }}$, which is 3.0 V . $\mathrm{V}_{\mathrm{DD} 3 \mathrm{~V}}+0.3 \mathrm{~V}$ then is 3.3 V ).

Figure 2. Modified Thevenin Parallel Termination


## Interfacing 5V Clocks to 3V ICs

In order to guarantee compliance with the above constraints, the output buffer's characteristics must be well defined for best and worst cases over all process, $V_{D D}$, and temperature conditions. TriQuint provides this information for clock chips in the product's data sheet. The $\mathrm{V}_{\mathrm{OH}} \mathrm{I}-\mathrm{V}$ characteristics for the 10XX devices are reproduced below in Figure 3.

The solid line defines the "weakest" output characteristic. This represents the "slow" process corner, low temperature, and $\mathrm{V}_{\mathrm{DD} 5 \mathrm{~V}}=4.75 \mathrm{~V}$. The dashed line represents the "strongest" output characteristics, representing the "fast" process corner, high temperature, and $\mathrm{V}_{\mathrm{DD5V}}=5.25 \mathrm{~V}$.

Figure 3. V $V_{\text {OH }}$ I-V Characteristics for 10XX Devices

> V_oh (Volts)


The min and max values of Voh can be determined for any load by superimposing the load line on the $\mathrm{I}-\mathrm{V}$ graph. Figure 4 shows this for the case of $\mathrm{Z}_{0}=50 \Omega$ and $\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$.

Figure 4. Determining $V_{\text {OHmin }} / V_{\text {OHmax }}$


We now have enough information to determine the values of $R_{2 a}$ and $R_{2 b}$ :

$$
\begin{aligned}
& V_{\mathbb{N}_{\min }}=\left(R_{2 b} / 71 \Omega\right) * V_{\text {OUTmin }} \\
& R_{2 a}+R_{2 b}=71 \Omega
\end{aligned}
$$

$$
2.4 \mathrm{~V}=\left(\mathrm{R}_{2 \mathrm{~b}} / 71 \Omega\right) * 3 \mathrm{~V}
$$

$$
\mathrm{R}_{2 \mathrm{~b}}=57 \Omega(56 \Omega \text { will work well })
$$

$$
\left.\mathrm{R}_{2 \mathrm{a}}=71 \Omega-57 \Omega=14 \Omega \text { (13 } \Omega \text { will work well }\right)
$$

We can check $\mathrm{V}_{\mathrm{INmax}}$ to be sure we won't exceed 3.3 V :

$$
V_{!!!\max }=\left(R_{2 b} / R_{2}\right) * V_{\text {OUITmax }}=(0.8) * 3.9 \mathrm{~V}=3.2 \mathrm{~V}
$$

This indicates that we have 100 mV margin for ALL process/temperature/ $\mathrm{V}_{\mathrm{DD}}$ corners, even the unlikely event $V_{D D 5 V}=5.25 \mathrm{~V}$ and $V_{D D 3 V}=3.0 \mathrm{~V}$.

The equations for use with any Thevenin parallel termination scheme can be summarized as follows:
(1) $R_{1} \| R_{2}=Z_{0}$
$Z_{0}=$ trace impedance
(2) $R_{2} * V_{D D 5 V} /\left(R_{1}+R_{2}\right)=V T$
$V_{D D 5 V}=5 \mathrm{~V}$ supply value;
$V_{T}=$ Thevenin termination voltage
(3) $R_{2}=R_{2 a}+R_{2 b}$
(4) $V_{I N \min }=R_{2 b} * V_{\text {OUTmin }} / R_{2}$
$V_{\text {OUTmin }}$ from I-V curves;
$V_{\text {INmin }}=2.4 \mathrm{~V}$ for $\mathrm{V}_{\text {IHmax }}=2.0 \mathrm{~V}$
(5) $V_{\text {INmax }}=R_{2 b} * V_{\text {OUTmax }} / R_{2}$
$V_{\text {OUTmax }}$ from I-V curves
(1) and (2) are used to determine $R_{1}$ and $R_{2}$.
(3) and (4) are used to determine $R_{2 a}$ and $R_{2 b}$.
(5) is used to verify $\mathrm{V}_{I N \max }$ is less than $\mathrm{V}_{\mathrm{DD} 3 \mathrm{~V} \min }+0.3 \mathrm{~V}$.

Table 1 provides a number of solutions for $\mathrm{V}_{T}=1.5 \mathrm{~V}$ and various values of $Z_{0}$.

Table 1. Termination Resistor Values*

| $\boldsymbol{Z}_{\boldsymbol{o}}(\Omega)$ | $\boldsymbol{R}_{\mathbf{1}}(\boldsymbol{\Omega})$ | $\boldsymbol{R}_{\mathbf{2 a}}(\boldsymbol{\Omega})$ | $\boldsymbol{R}_{\mathbf{2 b}}(\boldsymbol{\Omega})$ |
| :---: | :---: | :---: | :---: |
| 50 | 160 | 13 | 56 |
| 55 | 180 | 15 | 62 |
| 60 | 200 | 18 | 68 |
| 65 | 220 | 20 | 75 |
| 70 | 240 | 22 | 75 |
| 75 | 240 | 24 | 82 |

*Rounded to the nearest $5 \%$ standard value.
This scheme is useful for interfacing to both 5 V and 3 V CMOS inputs. 5 V CMOS inputs often require $\mathrm{V}_{\mathrm{INmin}} \geq 3.0 \mathrm{~V}$. The same clock chip can drive this input on a separate output by using the standard termination scheme shown in Figure 1. Both outputs remain identically loaded, thus minimizing skew between them.

[^17]
## Part-to-Part Skew

Part-to-part skew (tskewpp) is important for system designs utilizing two or more clock chips where the outputs must be synchronized. A statistical study shows that $t_{\text {SKEWPP }}$ can be much less than calculated from worst-case conditons. This data is presented in this application note to show system designers techniques for applying the information to their designs.

## Definition

$t_{S K E W P P}$ refers to the time difference between the rising edge of outputs on two different devices.

Figures 1 and 2 show two methods for configuring multiple PLL clock devices in the same system. Figure 1 shows two devices configured in a parallel manner, where skew can be represented as:

$$
\begin{equation*}
\mathrm{t}_{\text {SKEWPP }}=2 * \mathrm{t}_{\text {SKEW } 1}+\left|\mathrm{t}_{\text {PD1 }}-\mathrm{t}_{\text {PD2 }}\right| . \tag{1}
\end{equation*}
$$

Figure 2 shows two devices configured in a cascade manner, where skew can be represented as:

$$
\begin{equation*}
t_{\text {SKEW }}=2 * t_{\text {SKEW } 1}+\left|t_{\text {PD2 }}\right| \tag{2}
\end{equation*}
$$

The data presented here initially ignores the 2 * tSKEW1 term in calculating $\mathrm{t}_{\text {SKEW PP }}$ for both methods, to make the data more tractable. Trace lengths are adjusted carefully in Figure 2 in order to recenter the skew between devices to 0 ps . Methods for accounting for output skew and jitter are presented later in this application note.

Figure 1. Parallel Configuration


Figure 2. Cascade Configuration


## Part-to-Part Skew

## Skew Distributions

Figures 3 and 4 show standard distributions plotted with $\mathrm{t}_{\text {SKEWPP }}$ distributions. Since the $\mathrm{t}_{\text {SKEWPP }}$ distribution is very nearly a standard distribution in nature, it can be characterized to a large extent by its sigma value. At mean +/-3 sigma, more than $99.7 \%$ of the distribution falls within this range.

Figure 4 is not just the right half of Figure 3 in this example. It represents a distibution in which the absolute value of a parameter is plotted. This can be thought of as "folding" Figure 3 in half, or the addition of the left and right halves of Figure 3. This is the case, for example, when the skew between any two outputs is plotted as an absolute value. Table 1 shows the error rates for various ranges in increments of sigma.

Figure 3. Two-Sided Normal Distribution for $\boldsymbol{t}_{\text {SKEwPP }}$


Figure 4. One-Sided Normal Distribution for $\boldsymbol{t}_{\text {SKEWPP }}$


Table 1. Error Rates for Standard Distributions

| Range | \% distribution within range | Error rate |
| :--- | :--- | :--- |
| 1 sigma | 68.3 | 32 in 100 |
| 2 sigma | 95.40 | 5 in 100 |
| 3 sigma | 99.730 | 3 in 1000 |
| 4 sigma | 99.99367 | 6 in $10^{5}$ |
| 5 sigma | 99.9999426 | 6 in $10^{7}$ |
| 6 sigma | 99.999999802 | 2 in $10^{9}$ |
| 7 sigma | 99.999999999742 | 3 in $10^{12}$ |

Figure 5. It PD1 $^{-}$- PDD2 Histogram for 10XX-500 Devices


Figure 6. It ${ }_{P D 1}$ - $t_{P D 2}$ I Histogram for 10XX-1000 Devices


Sigma $=$ 252ps ITPD1 - TPD21 (ps)

10XX-1000 devices

## Part-to-Part Skew

## How Much is Enough?

It is not a simple matter to determine how many sigma is "safe" to use for design calculations. It will be different for each system design. One factor to consider is the number of systems to be built. The more systems, the more conservative the designer should be.

As an example, consider a design targeted for 10,000 units. At 5 sigma, the failure rate is 0.6 ppm . This says that there is a one in 167 chance that one of the 10,000 units will fail (a pretty consevative number for most applications). If failures can be caught during system test, more aggressive values can be designed in. In some situations, more conservative values may be necessary. These and other factors must be considered early in the design process. It is up to the system designer to determine how much guardband is necessary for the system.

For 10XX-500 devices, 5 sigma is $\sim 1070 \mathrm{ps}$ for I tpD1 $-t_{\text {PD2 } 2}$. For 10XX-1000 devices, the 5 sigma value is 1260 ps. Making worst case calculations based on data sheet parameters, one would get 1000 ps for 10XX-500 devices, and 2000 ps for 10XX-1000 devices. So, no savings is realized for 10XX-500 devices, but 750 ps can be trimmed off worst case I tpD1 - $\mathrm{t}_{\text {PD2 }}$ I calculations for 10XX-1000 devices. For the 10XX-500 devices, $t_{\text {SKEw }}$ would not ever exceed 1000 ps , as these would be downgraded to 10XX-1000 devices at TriQuint's final test.

## 

As mentioned earlier, the overall $\mathrm{t}_{\text {SKEWPP }}$ is actually composed of two additional components, output skew and jitter. Output skew has been characterized to have the distributions shown in Figures 7 and 8 for the 10XX devices (excluding the GA1086).

Figure 7. Same Group Output Skew ( $\boldsymbol{t}_{\text {SKEW }}$ ) Histogram


SKEW1 (ps)
Sigma $=\mathbf{2 1 p s}$
10XX devices

## Part-to-Part Skew

Figure 8. Group to Group Output Skew (tskewz) Histogram


Sigma $=56 \mathrm{ps}$

In determining tskewpp, output skew is statistically $^{\text {sed }}$ summed with ( $t_{\text {PD1 }}-t_{P D 2}$ ) by taking the square root of the sum of the squares:

$$
\begin{equation*}
\mathrm{t}_{\text {SKEWPP }}=\left(\left(\mathrm{t}_{\text {PD1 } 1}-\mathrm{t}_{\text {PD2 } 2}\right)^{2}+2 *\left(\mathrm{t}_{\text {SKEW }}(10 \mathrm{r} 2)\right)^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

Jitter cannot be treated statistically as an additional component to the overall skew. Jitter provides us information on the variation of edge placement with time, and is not directly related to the operating corner. The best way to include jitter is to add a peak-to-peak jitter number to the $\mathrm{t}_{\text {SKEW }}$ number.

An overall formula for $t_{\text {SKEWPP }}$ that includes jitter can be written as:

$$
\begin{equation*}
\mathrm{t}_{\text {SKEWPP }}\left(\left(\mathrm{t}_{\text {PD } 1}-\mathrm{t}_{\text {PD2 } 2}\right)^{2}+2 *\left(\mathrm{t}_{\text {SKEW }}(10 \mathrm{or} 2)^{2}\right)^{1 / 2}+\mathrm{t}_{\mathrm{JR}}\right. \tag{4}
\end{equation*}
$$

SKEW2 (ps)

$$
\begin{aligned}
5 \text { sigma }_{\text {SKEWPP }} & =\left((1000)^{2}+2 *(105)^{2}\right)^{1 / 2}+400 \\
& =1411 \mathrm{ps}(\text { for } 10 X X-500 \text { devices }) \\
5 \text { sigma }_{\text {SKEWPP }} & =\left((1260)^{2}+2 \star(105)^{2}\right)^{1 / 2}+400 \\
& =1669 \mathrm{ps} \text { (for } 10 \mathrm{XX}-1000 \text { devices) }
\end{aligned}
$$

## Cascade Configuration

The second method for configuring multiple devices shown in Figure 2 is useful only for PLL devices. In this case, it is the distribution of $t_{P D}$ that is important, not the $t_{P D}$ difference, as was the case in the method of Figure 1. The $t_{p D}$ distributions for Triquint's 10XX devices are shown in Figures 9 and 10.

Note that in Figure 2, the $t_{P D}$ offset value of -350 ps is added to device B's feedback path. This essentially recenters the tpD distribution about 0 ps from the perspective of the outputs.

## Part-to-Part Skew

Because the distribution of $t_{P D}$ is not very tight, a statistical approach is helpful only in reducing the $\mathrm{t}_{\text {SKEW(10r2) }}$ parameter. In addition, the $\mathrm{t}_{\text {PD }}$ histograms
do not closely match the standard distribution, so the statisical methodology using $t_{\text {pD }}$ is less accurate.

Figure 9. Propagation Delay Histogram (10XX-500 Devices)


Figure 10. Propagation Delay Histogram (10XX-1000 Devices)


## Part-to-Part Skew

The random jitter $\mathrm{t}_{\mathrm{JR}}$ of device B increases by up to $50 \%$ in the cascade configuration. The jitter of device A does not figure into the calculation of $\mathrm{t}_{\text {SKEwPP }}$ since all the outputs of device A jitter together. However, the full peak-to-peak jitter of device B must be accounted for.

An equation for determining $\mathrm{t}_{\text {SKEWPP }}$ for cascaded devices is given by:

$$
\begin{equation*}
\left.\mathrm{t}_{\text {SKEWPP }}=\left(\mathrm{t}_{\text {PD }}\right)^{2}+2 *\left(\mathrm{t}_{\text {SKEW }(10 \mathrm{or} 2)}\right)^{2}\right)^{1 / 2}+1.5 * \mathrm{t}_{\mathrm{JR}} \tag{5}
\end{equation*}
$$

where the 1.5 factor accounts for the (up to) $50 \%$ increase in jitter of device B.

## $t_{\text {SKEWPP }}$ Tables

Table 2 uses equation (4) to calculate $\mathrm{t}_{\text {SKEWPP }}$ for various sigmas. The first two columns use $\mathrm{t}_{\text {SKEW }} 1$ which gives the $t_{\text {SKEWPP }}$ between outputs from the feedback groups. The third and fourth columns use $\mathrm{t}_{\text {SKEW2 }}$ in place of $\mathrm{t}_{\text {SKEW }}$ in equation (4) for the more general case of skew between any output of device A to any output of device B. Worst case calculations based on data sheet parameters are also shown for comparison.

Table 3 uses equation (5) to calculate $\mathrm{t}_{\text {SKEW }}$ for various sigmas. The format is the same as for Table 2.

Table 2. $t_{\text {SKEWPP }}$ (ParalleI Device Configuration as in Figure1)

| Range | $t_{\text {SKEWPP }}$ (using Skew 1) |  | $t_{\text {SKEWPP }}$ (using $t_{\text {SKEW2 }}$ ) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 10XX-500 devices | 10XX-1000 devices | 10XX-500 devices | 10XX-1000 devices |
| 1 sigma | 616 ps | 654 | 628 | 664 |
| 2 sigma | 832 | 907 | 856 | 928 |
| 3 sigma | 1048 | 1161 | 1085 | 1192 |
| 4 sigma | 1264 | 1415 | 1313 | 1457 |
| 5 sigma | 1411 | 1669 | 1476 | 1721 |
| 6 sigma | 1416 | 1922 | 1507 | 1985 |
| 7 sigma | 1421 | 2176 | 1543 | 2249 |
| Worst case* | 1700 | 2700 | 2100 | 3100 |

*Worst case calculation uses the following equation:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{SKEWPP}}=\left(\mathrm{t}_{\text {PDmax }}-\mathrm{t}_{\text {PDmin }}\right)+2 * \mathrm{t}_{\mathrm{SKEW}(1 \text { or } 2)}+\mathrm{t}_{\mathrm{JR}} \tag{6}
\end{equation*}
$$

## Part-to-Part Skew

Table 3. $\boldsymbol{t}_{\text {SKEWPP }}$ (Cascade Device Configuration Shown in Figure 2

| Range | Skew ${ }_{p p}$ (using Skew 1) 10XX-500 devices | $\text { 1) } t_{10 X X-1000 \text { devices }}^{t_{\text {SKEWPP }}(u s)}$ | KEEW2) 10XX-500 devices | 10XX-1000 devices |
| :---: | :---: | :---: | :---: | :---: |
| 1 sigma | 786 ps | 838 | 783 | 849 |
| 2 sigma | 935 | 1076 | 966 | 1098 |
| 3 sigma | 1103 | 1314 | 1149 | 1347 |
| 4 sigma | 1114 | 1551 | 1192 | 1596 |
| 5 sigma | 1122 | 1611 | 1238 | 1676 |
| 6 sigma | 1131 | 1616 | 1290 | 1707 |
| 7 sigma | 1141 | 1621 | 1347 | 1743 |
| Worst Case* | 14500 | 1900 | 1800 | 2300 |

Worst case calculation uses the following equation:

$$
\begin{equation*}
\mathrm{t}_{\text {SKEWPP }}=\left(\mathrm{t}_{\text {PDmax }}-\mathrm{t}_{\text {PDmin }}\right)+2 * \mathrm{t}_{\text {SKEW }(1 \text { or } 2)}+1.5 * \mathrm{t}_{\mathrm{JR}} \tag{7}
\end{equation*}
$$

## Summary

$\mathrm{t}_{\text {SKEWPP }}$ is important in systems where several clock devices are required with synchronous outputs. It is shown to be composed of several parameters: $t_{\text {pD }}$, $\mathrm{t}_{\text {SKEW (1or2) }}$, and $\mathrm{t}_{\mathrm{JR}}$.

A statistical approach has been shown for determining $\mathrm{t}_{\text {SKEWPP }}$ based on characterization data. A significant savings can be realized, even for the most conservative designs. For most cases, a cascade configuration realizes the lowest achievable $\mathrm{t}_{\text {SKEWPP }}$ for the PLL clock devices discussed here.

[^18]Revision 1.0.A October 1997

## Clock Distribution Techniques

## System Performance and Clock Skew

Clock skew is defined as the time difference between the "ideal" and the "actual" edge of the clock, directly impacting the system bandwidth. The typical clock skew in today's high-performance system is on the order of 5 ns . As system performance increases and CPU clocks reach frequencies of 50 MHz and higher, a 5 ns skew becomes a significant limiting factor. The performance penalty, as a function of CPU frequency, "F", for a skew delay of "D" nanoseconds, can be described by the following formula:

$$
\text { Performance penalty }=\left(10^{-9}\right) \times F \times D \times 100 \%
$$

The graph representing the linear relationship above for a skew delay of 5 ns is depicted in Figure 1. As is evident from the figure, the performance penalty for a 25 MHz CPU is $12.5 \%$, but for a 50 MHz CPU, it is $25 \%$. Obviously, this is a serious problem that must be overcome.

Clock skew is a function of many different variables, including the number of loads per clock buffer output, trace length, temperature, power supply voltages, the relative phase difference between the clock outputs, the input-to-output delay of the clock buffers, and mismatch of equivalent ICs. Each of the parameters can vary from one section of the system to the next. To reduce the overall clock skew in the system, it is necessary to minimize the effects of each of the variables above. In later sections we will show how this can be accomplished by using the GA1110E.

## GA1110E Functional Description

The functional block diagram of TriQuint's GA1110E, a Low-Skew TTL Clock Buffer, is shown in Figure 2. The GA1110E produces multiple clock outputs synchronized in phase and frequency to a periodic clock input. The chip has two select pins and an external feedback path to allow the user to phase adjust the outputs, Q0-Q5,

Figure 2. GA1110E - Functional Block Diagram

relative to the input clock, CLKIN. The phase can be adjusted in increments of $t_{\text {PH }}$, as specified in the AC characteristics of the data sheet.

The tight control over the phase and frequency of the output clocks is assured by a 400 MHz internal PhaseLocked Loop (PLL). The feedback loop from one of the output clocks, Q0-Q5, to FBIN helps the on-chip PLL to continuously maintain synchronization between the input clock (CLKIN) and all six outputs. The GA1110E offers the user an option of 14 different output clock configurations. Using the external feedback capability and the two select pins, (S1 and S0), the desired phase relationships of the output clocks can be chosen to best solve the system's clocking requirements. (Refer to the GA1110E data sheet for additional details.)

The delay between the input CLKIN and any of the fedback outputs, Q0-Q5, is restricted to between $\pm 250 \mathrm{ps}$ (typical) $\pm 1000 \mathrm{ps}$ (maximum). The skew between any two outputs is typically $\pm 250 \mathrm{ps} \pm 500 \mathrm{ps}$ (maximum).

## GA1110E Applications

The need to control clock skew normally arises out of a need to negate the skew inadvertently produced by functional partitioning and circuit implementation of a design. Listed below are six typical applications that demand rigid control over clock skews:

1. Clock distribution between boards
2. Clock distribution within a board
3. Clock distribution in very fast state machine designs
4. Balancing of trace lengths
5. Synchronization of device output clock to system clock
6. Fast de-metastabilization in synchronizers.

Each of these applications is discussed in the following pages. Corresponding to these applications, superior solutions using TriQuint's GA1110E are also described.

Figure 3. Clock Distribution Between Boards


## Clock Distribution Between Boards

A typical implementation of clock distribution between boards is shown in Figure 3. As an example, assume that a system using a 25 MHz clock is designed using three boards: Board 1, Board 2, and Board 3. Assume also that Board 1 takes in the system clock directly; a clock buffer, BO, on Board 1 supplies the system clock to the clock buffers, B1 and B2, on the other two boards; and the skew budget between boards is 5 ns . Let " 10 " be the input-to-output delay and the relative output skew of buffer BO . Time " t 1 " is the sum of the input trace length delay to Board 2, the input-to-output úelay and the reiative outiput skew of Bi . Tinite " iz " is the sum of the input trace length delay to Board 3 , the input-to-output delay, and the relative output skew of B2.

For this case, it is imperative that " $\mathrm{t} 0+\mathrm{t} 1$ " or " $\mathrm{t} 0+\mathrm{t} 2$ " be consistently within the 5 ns window. Using current silicon solutions, this is a complex and difficult goal to achieve because: 1) the designer must define a multidimensional envelope for the skew around the power supply, operating temperatures, and worst-case loading of the clock signals, and 2 ) the production flow must
manage the accuracy of components used, to stay within the envelope. For a 25 MHz system, this skew budget of 5 ns would still imply a $12.5 \%$ performance penalty.

Since TriQuint's GA1110E provides a symmetric 24 mA drive with $\mathrm{a} \pm 250 \mathrm{ps}$ typical input-to-output delay and $\mathrm{a} \pm 250 \mathrm{ps}$ typical skew between outputs, it is ideal for distributing clocks between boards in the example represented by Figure 3.

The clock interconnection using the GA1110E is shown in Figure 4. It is ascumed that the Board 1 to Board 2 trace delay is 2.5 ns , and the Board 1 to Board 3 trace delay is 5 ns . On Board 1 , the GA1110E is configured as per the data sheet Configuration \#7, wherein output Q0 is fed back through the FBIN input of the PLL, and the select pins, S1 and S0, are configured for " 1 " and " 0 ", respectively. This configuration utilizes the edge placement capability in discrete increments of 2.5 ns for a 25 MHz input clock. The Q4 output provides a 2.5 ns early edge, and it compensates for the trace length delay of 2.5 ns . Similarly, the Q5 output provides a 5 ns

Figure 4. Clock Distribution Between Boards using the GA1110E

early edge, and compensates for the trace length delay of 5 ns. Hence, the GA1110E output on Board 2 and Board 3 will be synchronized to the 25 MHz system clock, with a typical skew of $\pm 1.5 \mathrm{~ns}$ and a maximum skew of $\pm 4 \mathrm{~ns}$ (maximum input-to-output delay and relative output skew at Board $1+$ the maximum input-to-output delay and relative output skew at Boards 2 or 3). With this implementation, the performance penalty will be reduced to within $10.0 \%$ for a 25 MHz system.

## Clock Distribution Within a Board

An example of clock distribution strategy within a board is shown in Figure 5. In this design, the system clock branches out from the center of the board. An input from a crystal oscillator at twice the required frequency is used, and this clock is fed into a TTL-toECL translator (TET). The output of the translator is shaped into a system clock with a $50 \%$ duty cycle by a divide-by-2 circuit. This, in turn, is buffered by a set of line drivers that feed the system clock to the four corners of the board via differential transmission lines.

The differential transmission lines are used to minimize the effect of common mode noise in the system. The clock is received at the four corners by differential receivers (LR), and is converted back to TTL levels with the help of ECL-to-TTL translators (ETT). The outputs of the ETT are distributed to the TTL loads with careful balancing of the number of loads and trace lengths for each, in order to minimize the skew. This method of clock distribution is known as "star distribution", and is typically used to minimize the skew between different sections of a large board.

The major disadvantage of this solution is that it needs TTL-to-ECL translators, dual power supplies in a TTL environment, buffers, differential receivers, differential transmission lines, and terminating resistors. This results in a total of 16 Dual-Inline Packages which could use up as much as $8 \%$ of the total board space available for a 200 -IC board. Moreover, this configuration would still not guarantee a skew in the 23 ns range over the full temperature and voltage range.

Figure 5. 33 MHz Clock Distribution Within a Board


## Clock Distribution Techniques

Since the GA1110E fulfills the dual requirements of low input-to-output delay and low skew between outputs, it can be effectively used to distribute the system clock within a board. In addition, the output of the GA1110E is symmetrical, even though the input may not be. This method of distribution provides a very reliable, simple and economical solution using only four components with consistent performance over full operating conditions. GA1110Es can be configured in clock trees with a typical skew of less than $\pm 500$ ps per stage.

A typical clock distribution strategy to replace the "star configuration" on a board using the GA1110E is shown in Figure 6. In this figure, four GA1110E chips (Buffers A, B, C, and D) are used on a board to provide the clock distribution. Buffer A takes in the 33 MHz system clock and distributes it to Buffers B, C, D, and to a few of the clock loads on the board. Each of the buffer outputs can source and sink up to a maximum of 24 mA . In this
example, for Buffer A , the S 1 and SO select pins are chosen to be " 1 " and " 0 ", respectively, and the Q1 output is used as the feedback input. This wiring corresponds to Configuration \#8, mentioned in the data sheet. In this configuration, five of the outputs precede the rising edge of the input clock. Q0, Q2 and Q3 precede it by $2.5 \mathrm{~ns}, \mathrm{Q} 4$ by 5 ns , and Q5 by 7.5 ns . As depicted in Figure 6, the Q3, Q4, and Q5 outputs compensate for $2.5 \mathrm{~ns}, 5.0 \mathrm{~ns}$, and 7.5 ns of trace delays, respectively. Buffers B, C, and D have their select pins, S1 and S0, grounded and the QO output is fed back to the FBIN input, corresponding to Configuration \#1 in the data sheet. These theree huffers provide op aligneod outputs; and therefore are used for shorter distance applications where the delay due to the trace lengths and the loads are negligible.

Clock distribution using the GA1110E, as described above, provides a very reliable, simple, economical

Figure 6. Clock Distribution Within a Board using the GA1110E


## Clock Distribution Techniques

solution, using fewer components and providing better performance than any traditional solutions. GA1110Es can be connected in a tree fashion, with less than 2.0 ns of skew in each stage. For the clock distribution shown in Figure 6, assume the trace length delays from Buffer A to Buffer B, Buffer C, and Buffer D are exactly $2.5 \mathrm{~ns}, 7.5 \mathrm{~ns}$, and 5 ns , respectively. Under these conditions, the total clock skew on the board at any point is typically $\pm 1.5 \mathrm{~ns}$ and is $\pm 4 \mathrm{~ns}$ worst case, (consisting of two clock buffer skews). As discussed previously, an equivalent solution using a mix of TTL/ ECL would take nearly four times as many packages, would need careful balancing of trace lengths, and would result in a very involved board layout and a larger skew.

## Balancing Trace Lengths

As mentioned in the previous section, a common method to limit the skew between different clock signals is to balance the number of loads per clock buffer output and the trace lengths to each of the loads. In this situation, 74AS1808 or 74AS1804 drivers are typically used, and the outputs are carefully balanced with respect to the trace lengths and number of loads, as shown in Figure 7. The clock buffer has four outputs, with each output driving six loads over identical lengths, "L1". To achieve this, extra care is taken in laying out the board. In spite of this, the skew parameters continue to be susceptible to propagation delays of the AS parts, variations in temperature and the power supply. As an alternative, imprecise delay lines could be used to improve the performance of the system. Though active delay lines can be effective for a narrow range of operations, they are not stable over wide temperature and power supply variations.

Since the GA1110E provides outputs whose relative edges can be precisely controlled, it can be used to effectively compensate for varying trace lengths on its
output signals. This simplifies the task of laying out the board. An example of the compensation for trace length delays is shown in Figure 8. In this example, the GA1110E operates as per Configuration \#8, defined in the data sheet. For a 50 MHz clock input, the phase increment $\mathrm{t}_{\mathrm{PH}}$, as per the GA1110E data sheet is 2.5 ns . Hence Q0 and Q2 will have 2.5 ns early edges and can be used to compensate for trace delays of 2.5 ns . For other cases of varying trace lengths, the GA1110E can be appropriately configured.

Figure 7. Clock Distribution using Trace Length Balancing


Figure 8. Clock Compensation for Trace Length Variations


## Synchronous Output Clock

The fourth area requiring controlled clock skew is in applications in which a device's output clock is intended to be synchronous to a system clock. In such applications, the delay of the clock through the device will reduce the timing margin available for the rest of the system to interface to the device. For example, an ASIC may have its output signals be a function of its output clock, which is an internally buffered and delayed version of the system clock; whereas the rest of the circuits on a board are clocked by the system clock. In such a case, it is necessary to make the ūutpuit ciouck of the ÂSiC syncibrorious to tilie sysiem clock, to ensure better timing margins for other parts interfacing to the ASIC.

An example of such an application using the GA1110E is shown in Figure 9. Here, one of the outputs from the GA1110E is fed into the ASIC, and the ASIC's output clock is then fed back through the FBIN pin. S1 and S0 are configured to provide the appropriate early or late edge to compensate the delay through the internal buffer of the ASIC. This simple loopback connection synchronizes the output clock of the ASIC to the system clock.

## Clock Distribution in Fast State Machines

A fifth application requiring a rigid control of clock skew is in high-speed state machine designs.

Quite often, a section of the state machine is slower than the rest of the design and becomes the limiting factor for overall performance. To overcome this, the clock to the slower stages can be delayed in precise increments. With delay lines, the delay cannot be guaranteed over temperature, voltage, or trace length. For a high-speed state machine design such as this, the GA1110E's ability to do precise edge placements of clocks becomes invivaluable.

Figure 10 shows an example of a two-stage state machine operating at 40 MHz . Suppose the delay through the first stage is 18 ns and the delay through the second stage is 22.5 ns . If the setup time required for the flip-flop is 5 ns , one would need to use a 27.5 ns clock for the state machine, which translates into either a two-clock cycle or a "wait state." By using the GA1110E, however, the clock to the first stage can be delayed by 2.5 ns and thus meet the setup time requirement of the two stages.

Figure 9. Synchronizing the Device Clock to the System Clock


Note: $\quad$ S1 and SO are chosen depending upon the delay within the ASIC. The Early/Late output will match the internal delay within the ASIC.

Figure 10. Application of the GA1110E in State Machine Design


Figure 11. Application of the GA1110E in De-Metastabilization


## Fast De-Metastabilization in Synchronizers

The sixth application for clock control arises in fast demetastabilization of asynchronous events. Normally, this is accomplished by clocking the events in two stages. If the clock period is less than the time required for de-metastabilization, it may be prudent to delay the clock in fixed increments to the second stage, resolving the metastability faster than incurring an extra clock delay. This staggering of the clocks can be implemented using the GA1110E as shown in Figure 11.

## Conclusion

This application note presents various clock distribution-related problems frequently encountered by the design community. TriQuint offers simple solutions to relatively complex clock problems using the versatility of the GA1110E. The GA1110E not only solves clock distribution problems, but it also offers consistent and predictable performance over the full standard commercial operating ranges.

## Clock Distribution Techniques

## Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000
Email: sales@tqs.com Fax: (503) 615-8900
For technical questions and additional information on specific applications:
Email: applications@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
Revision 1.0.A October 1997

## Section 8 - Sales and Distribution

Sales Representatives - North America ..... 8-3
Sales Representatives - International ..... 8-7
Distributors - North America ..... 8-8
TriQuint Semiconductor Inc. - Area Sales Offices ..... 8-11

## Sales Representatives - North America

## ALABAMA

## Concord Component Reps, Inc.

190 Lime Quarry Road, Suite 102
Madison, AL 35758
(205) 772-8883 Fax (205) 772-8262

E-Mail: jeannie@us3.global.ibmmail.com

## ARIZONA

Oasis Sales, Inc.
301 E Bethany Home Road, \#A135
Phoenix, AZ 85012
(602) 277-2714 Fax (602) 263-9352

E-Mail: shelleyp@oasissales.com

## ARKANSAS

## Mil-Rep Associates

1755 N. Collins Boulevard, Suite 215
Richardson, TX 75080
(972) 644-6731 Fax (972) 644-8161

E-mail: rshed@earthlink.net

## CALIFORNIA (Northern)

## RF Associates North, Inc.

(Wireless products only) 1277 Borregas Avenue Sunnyvale, CA 94089 (408) 752-7000 Fax (408) 752-7015 E-Mail: robrfan@ricochet.net www.rfan.com

## Paragon Technical

1740 Technology Drive, Suite 110
San Jose, CA 95110
(415) 562-3634 Fax (415) 598-0361

E-Mail: groff@slip.net

## CALIFORNIA (Southern)

## Centaur Corporation

(Digital products only) 17802 Sky Park Circle, Suite 100 Irvine, CA 92614 (714) 261-2123 Fax (714) 261-2905

E-Mail: Arlenemo@oal.com
26635 Agoura Rd., Suite 101
Calabasas, CA 91302
(818) 878-5800 Fax (818) 878-5818

E-Mail: Arlenemo@oal.com
3914 Murphy Canyon Road, Suite 125
San Diego, CA 92123
(619) 278-4950 Fax (619) 278-0649

E-Mail: Arlenemo@oal.com

## S\&S Technology

(Wireless products only)
17130 Devonshire St., Suite 202
Northridge, CA 91325
(818) 366-2866 Fax (818) 366-2486

E-Mail: Lwstilley@aol.com
33021 Seawatch
Dana Point, CA 92629
(714) 661-4619 Fax (714) 661-6097

E-Mail: tcirillo@msn.com
1760 Oliver Avenue
San Diego, CA 92109
(619) 484-2996 Fax (619) 484-3144

E-Mail: cgerwig156@aol.com
2692 Main Way Dr.
Rossmoor, CA 90720
(310) 431-7000 Fax (310) 431-0285

E-Mail:Tritacco@msn.com

## CANADA

## Electrosource

230 Galaxy Boulevard
Rexdale, Ontario, Canada M9W 5RB
(417) 675-4490 Fax (416) 675-6871

6875 Royal Oak Ave
Burnaby, BC Canada V5J 4J3
(604) 435-2533 Fax (604) 435-2538

2635 37th Ave NE Suite 245
Calgary, Alberta Canada T1Y 526
(403) 735-6230 Fax (403) 735-0599

300 March Road, Suite 203
Kanata, Ontario Canada K2k 2E2
(613) 592-3214 Fax (613) 592-4256

6600 Trans Canada Hwy Suite 420
Pointe Claire, Quebec Canada H9R 452
(514) 630-7486 Fax (514) 630-742

## COLORADO

Elcom, Inc.
12200 E Briarwood Avenue, Suite 175
Englewood, CO 80112
(303) 792-3330 Fax (303) 792-2221

E-Mail: info@elcom-Inc.com www.elcom-inc.com

## CONNECTICUT

## Focus Sales, Inc.

(Digital products only)
645 County Street, Unit 6
Taunton. MA 02780
(800) 933-2771 Fax (508) 823-4692

E-Mail: focussales@mcimail.com
www.focussalesinc.com

## Stone Components

(Wireless products only) 8 Frost St.
Natick, MA 01760
(508) 875-3266 Fax (508) 875-0537

E-Mail: sc2@ix.netcom.com

## Ascor

40 Commerce Place
Suite 202
Hicksville, NY 11801
(516) 939-6161 Fax (516) 939-6174

## DELAWARE

## Nexus Technology Sales

200 Lakeside Drive, Suite 236
Horsham, PA 19044
(215) 675-9600 Fax (215) 675-9604

E-Mail: nexuspa@aol.com

## FLORIDA

## Dyne-A-Mark Corporation

742 Penguin Ave NE
Palm Bay, FL 32907
(407) 725-7470 Fax (407) 984-2718

E-Mail: swdamc@interserv.com
508 Paim Dr.
Largo, FL 33770
(813) 586-3778 Fax (813) 586-3863

E-Mail: swdamc@interserv.com
500 Winderley Place, Suite 100
Maitland, FL 32751
(407) 660-1661 Fax (407) 660-9407

E-Mail: swdamc@interserv.com
3351 NW 55th Street
Ft. Lauderdale, FL 33309
(954) 485-3500 Fax (954) 485-6555

E-Mail: swdamc@interserv.com

## Sales Representatives — North America (continued)

## GEORGIA

Concord Component Reps, Inc. 6825 Jimmy Carter Boulevard, Suite 1303 Norcross, GA 30071
(770) 416-9597 Fax (770) 441-0790

E-Mail: jeannie@us3.global.ibmmail.com

## IDAHO

Elcom, Inc.
12200 E Briarwood Avenue, Suite 175
Englewood, CO 80112
(303) 792-3330 Fax (303) 792-2221

E-Mail: info@elcom-Inc.com www.elcom-inc.com

## ILLINOIS (Northern)

## Oasis Sales

1101 Tonne Road
Elk Grove Village, IL 60007
(847) 640-1850 Fax (847) 640-9432

E-Mail: phodapp@oasis-sales.com

## ILLINOIS (Southern)

Central Tech Sales
4 Holly Lane
Florissant, MO 63033
(314) 831-4069 Fax (314) 839-4686

E-Mail: klynch0514@aol.com

## INDIANA

Applied Data Management
P.O. Box 213

Batesville, IN 47006-0213
(317) 257-8949 Fax (513) 579-8510

E-Mail: 73561.1365@compuservice.com

## Applied Data Management

639 South Main St.
Chelsea, MI 48118
(313) 475-0523 Fax (313) 475-0329

E-Mail: 73561.1365@compuservice.com

## IOWA

## Oasis Sales Corp.

4905 Lakeside Drive NE, Suite 203
Cedar Rapids, IA 52402
(319) 377-8738 Fax (319) 377-8803

E-Mail: phodapp@oasis-sales.com

## KANSAS

Central Tech Sales
4 Holly Lane
Florissant, MO 63033
(314) 831-4069 Fax (314) 839-4686

E-Mail: klynch0514@aol.com

## KENTUCKY

Applied Data Management
435 Dayton Street
Cincinnati, OH 45214
(513) 579-8108 Fax (513) 579-8510

E-Mail: 73561.1365@compuservice.com

## I OU!S!ANA

## Mil-Rep Associates

13810 Champion Forest Dr., Suite 145
Houston, TX 77069
(281) 444-2557 Fax (281) 444-2751

## MAINE

Focus Sales, Inc.
(Digital products only)
645 County Street, Unit 6
Taunton, MA 02780
(800) 933-2771 Fax (508) 823-4692

E-Mail: focussales@mcimail.com www.focussalesinc.com

## Stone Components

(Wireless products only)
8 Frost St.
Natick, MA 01760
(508) 875-3266 Fax (508) 875-0537

E-Mail: sc2@ix.netcom.com

## MARYLAND

New Era Sales
890 Airport Park Road, Suite 103
Glen Burnie, MD 21061
(410) 761-4100 Fax (410) 761-2981

E-Mail: brucenes@aol.com

## MASSACHUSETTS

Focus Sales, Inc.
(Digital products only)
645 County Street, Unit 6
Taunton, MA 02780
(800) 933-2771 Fax (508) 823-4692

E-Mail: focussales@mcimail.com
www.focussalesinc.com

## Stone Components

(Wireless products only)
8 Frost St.
Natick, MA 01760
(508) 875-3266 Fax (508) 875-0537

E-Mail: sc2@ix.netcom.com

## MICHIGAN

Applied Data Management
639 South Main Street
Chelsea, MI 48118
(313) 741-9292 Fax (313) 741-9292

E-Mail: 73561.1365@compuservice.com

## MINNESOTA

Oasis Sales Corporation
4620 West 77th Street, Suite 100
Edina, MN 55435
(612) 841-1088 Fax (612) 841-1103

E-Mail: phodapp@oasis-sales.com

## MISSISSIPPI

Concord Component Reps, Inc.
190 Lime Quarry Road, Suite 102
Madison, AL 35758
(205) 772-8883 Fax (205) 772-8262

E-Mail: jeannie@us3.global.ibmmail.com

## MISSOURI

## Central Tech Sales

4 Holly Lane
Florissant, MO 63033
(314) 831-4069 Fax (314) 839-4686

E-Mail: klynch0514@aol.com

## MONTANA

Elcom, Inc.
12200 E Briarwood Avenue, Suite 175
Englewood, CO 80112
(303) 792-3330 Fax (303) 792-2221

E-Mail: info@elcom-Inc.com
www.elcom-inc.com

## NEBRASKA

## Central Tech Sales

4 Holly Lane
Florissant, MO 63033
(314) 831-4069 Fax (314) 839-4686

E-Mail: klynch0514@aol.com

## Sales Representatives — North America (continued)

NEVADA (Northern)
RF Associates North, Inc.
(Wireless products only)
1277 Borregas Avenue
Sunnyvale, CA 94089
(408) 752-7000 Fax (408) 752-7015

E-Mail: robrfan@ricochet.net www.rfan.com

Paragon Technical
1740 Technology Drive, Suite 110
San Jose, CA 95110
(415) 562-3634 Fax (415) 598-0361

E-Mail: groff@slip.net
NEVADA (Southern)
Oasis, Sales Inc.
301 E Bethany Home Rd., Suite A-135
Phoenix, AZ 85012
(602) 277-2714 Fax (602) 263-9352

E-Mail: phodapp@oasis-sales.com

## NEW HAMPSHIRE

Focus Sales, Inc.
(Digital products only)
645 County Street, Unit 6
Taunton, MA 02780
(800) 933-2771 Fax (508) 823-4692

E-Mail: focussales@mcimail.com
www.focussalesinc.com

## Stone Components

(Wireless products only)
8 Frost St.
Natick, MA 01760
(508) 875-3266 Fax (508) 875-0537

E-Mail: sc2@ix.netcom.com
NEW JERSEY (Northern)
ASCOR Electronics, Inc.
40 Commerce Place, Suite 202
Hicksville, NY 11801
(516) 939-6161 Fax (516) 939-6174

E-Mail: ascorelec@aol.com

## NEW JERSEY (Southern)

Nexus Technology Sales
200 Lakeside Drive, Suite 236
Horsham, PA 19044
(215) 675-9600 Fax (215) 675-9604

E-Mail: nexuspa@aol.com

## NEW MEXICO

Nelco Electronix
3240 C Juan Tabo Blvd. NE
Albuquerque, NM 87111
(505) 293-1399 Fax (505) 293-1011

E-Mail: nelco@swcp.com

## NEW YORK

ASCOR Electronics, Inc.
40 Commerce Place, Suite 202
Hicksville, NY 11801
(516) 939-6161 Fax (516) 939-6174

E-Mail: ascorelec@aol.com
Tri-Tech Electronics
1043 Front Street
Binghamton, NY 13905
(607) 722-3580 Fax (607) 722-3774

E-Mail: tritech@eznet.net
349 West Commercial St., Suite 2585
E. Rochester, NY 14445
(716) 385-6500 Fax (716) 385-7655

E-Mail: tritech@eznet.net

## NORTH CAROLINA

New Era Sales, Inc.
1215 Jones Franklin Road, Suite 201
Raleigh, NC 27606-3351
(919) 859-4400 Fax (919) 859-6167

E-Mail: brucenes@aol.com
NORTH DAKOTA
Oasis Sales Corporation
7805 Telegraph Road, Suite 210
Bloomington, MN 55438
(612) 941-1917 Fax (612) 941-5701

E-Mail: phodapp@oasis-sales.com

## OHIO

Applied Data Management
435 Dayton Street
Cincinnati, OH 45214
(513) 579-8108 Fax (513) 579-8510

E-Mail: 73561.1365@compuservice.com 277 Shelton Blvd.
East Lake, OH 44095
(216) 946-6812 Fax (216) 946-6812

E-Mail: 73561.1365@compuservice.com

## OKLAHOMA

## Mil-Rep Associates

1755 N. Collins Blvd., Suite 215
Richardson, TX 75080
(972) 644-6731 Fax (972) 644-8161

E-mail: rshed@earthlink.net

## OREGON

Thorson Pacific, Inc.
9600 SW Oak Street, Suite 320
Portland, OR 97223
(503) 293-9001 Fax (503) 293-9007

E-Mail: info@thorsonor.com

## PENNSYLVANIA (Western)

Applied Data Management
435 Dayton Street
Cincinnati, OH 45214
(513) 579-8108 Fax (513) 579-8510

E-Mail: 73561.1365@compuservice.com

## PENNSYLVANIA (Eastern)

Nexus Technology Sales
200 Lakeside Drive, Suite 236
Horsham, PA 19044
(215) 675-9600 Fax (215) 675-9604

E-Mail: nexuspa@aol.com

## PUERTO RICO

Dyne-A-Mark
500 Winderley Place, Suite 100
Maitland, FL 32751
(407) 660-1661 Fax (407) 660-9407

E-Mail: swdamc@interserv.com

## RHODE ISLAND

Focus Sales, Inc.
(Digital products only) 645 County Street, Unit 6
Taunton, MA 02780
(800) 933-2771 Fax (508) 823-4692

E-Mail: focussales@mcimail.com www.focussalesinc.com

## Stone Components

(Wireless products only) 8 Frost St.
Natick, MA 01760
(508) 875-3266 Fax (508) 875-0537

E-Mail: sc2@ix.netcom.com

## Sales Representatives — North America (continued)

## SOUTH CAROLINA

## New Era Sales, Inc.

1215 Jones Franklin Road, Suite 201
Raleigh, NC 27606-3351
(919) 859-4400 Fax (919) 859-6167

E-Mail: brucenes@aol.com

## SOUTH DAKOTA

Oasis Sales Corporation
7805 Telegraph Road, Suite 210
Bloomington, MN 55438
(612) 941-1917 Fax (612) 941-5701

E-Mail: phodapp@oasis-sales.com

## TENALESEE

Concord Component Reps
190 Lime Quarry Road, Suite 102
Madison, AL 35758
(205) 772-8883 Fax (205) 772-8262

E-Mail: jeannie@us3.global.ibmmail.com

## TEXAS

Mil-Rep Associates
1755 N. Collins Blvd., Suite 215
Richardson, TX 75080
(972) 644-6731 Fax (972) 644-8161

E-Mail: rshed@earthlink.net
13810 Champion Forest Dr., Suite 145
Houston, TX 77069
(281) 444-2557 Fax (281) 444-2751

E-Mail: skhart@swbell.net
9009 Mountain Ridge Drive, Suite 230
Austin, TX 78759
(512) 346-6331 Fax (512) 346-1975

E-Mail: teaneyk@aol.com

## Nelco Electronix

(EI Paso, Texas Only)
742 Moffat Drive
El Paso, TX 79912
(915) 833-7300 Fax (915) 833-1771

E-Mail: nelco@swcp.com
UTAH
Elcom, Inc.
3349 S. Main Street
Salt Lake City, UT 84115
(801) 486-7775 Fax (801) 486-7773

E-Mail: info@elcom-inc.com
www.elcom-inc.com

## VERMONT

Focus Sales, Inc.
(Digital products only)
645 County Street, Unit 6
Taunton, MA 02780
(800) 933-2771 Fax (508) 823-4692

E-Mail: focussales@mcimail.com
www.focussalesinc.com

## Stone Components

(Wireless products only)
8 Frost St.
Natick, MA 01760
(508) 875-3266 Fax (508) 875-0537

E-Mail: sc2@ix.netcom.com

## VIRGINIA

New Era Sales
1711 Milton Road
Charlottesville, VA 22902
(804) 979-4997

E-Mail: nighnes@aol.com

## WASHINGTON

Thorson Pacific, Inc.
14575 Bel-Red Road, Suite 102
Bellevue, WA 98007
(425) 603-9393 Fax (425) 603-9380

E-Mail: thorsonwa@aol.com
WASHINGTON, DC

## New Era Sales

890 Airport Park Road, Suite 103
Glen Burnie, MD 21061
(410) 761-4100 Fax (410) 761-2981

E-Mail: brucenes@aol.com

## WEST VIRGINHA

## New Era Sales

890 Airport Park Road, Suite 103
Glen Burnie, MD 21061
(410) 761-4100 Fax (410) 761-2981

E-Mail: brucenes@aol.com

## WISCONSIN

Oasis Sales Corporation
1305 N Barker Road
Brookfield, WI 53005
(414) 782-6660 Fax (414) 782-7921

E-Mail: phodapp@oasis-sales.com

## WYOMING

Elcom, Inc.
12200 E Briarwood Avenue, Suite 175
Englewood, CO 80112
(303) 792-3330 Fax (303) 792-2221

E-Mail: info@elcom-Inc.com
www.elcom-inc.com

## Sales Representatives — International

## BELGIUM/LUXEMBOURG

## Nijkerk N.V. / S.A.

Noorderlaan 111
B-2030 Antwerpen. Belgium
+32 35448112 Fax +32 35449901
E-mail: ne@nijkerk.beCANADA

## CANADA

(See Sales Representatives - North America)

## DENMARK

Wyle Ginsbury Electronics A/S
Lerhoej 15
DK-2880 Bagsvaerd Denmark
+45 44446666 Fax +45 44446669
E-mail: ginsdk@datashopper.dk

## GERMANY/AUSTRIA

## Metronik

Leohardsweg 2
D-82002 Unterhaching
Germany
+49 89-61108-152 Fax +49 89-61108-155

## HONG KONG AND CHINA

MEMEC (Asia Pacific) Ltd.
Unique Hong Kong Office
Unit 3607, Tower 1, Metroplaza
Hing Fong Road, Kwai Fong, N.T.
Hong Kong
852-2410 2778 Fax 852-2370 3247
E-mail: panson@memec-asiapacific.com
Unique Beijing Office
Rm 593, Pana Tower, 128 Zhichun Road Haidan District, Beijing, China 100086 86-10-6262 8869 Fax 86-10-6262 8890

Unique Shanghai Office
Room 2361, West Building, Jin Jiang Hotel
59 Mao Ming Road South
Shanghai, China 200020
86-21-6258 2582 Ext. 2361
Fax 86-21-6445 0186
Unique Chengdu Office
Room 2008, Tong Mei Mansion
No. 76, Section 1, Jianshe North Road, Chengdu, Sichuan, China
86-28-339-6639
86-28-339 6631

MEMEC (Asia Pacific) Ltd. (continued)

Unique Shenzen Office
Room 705, Bao Hua Building
Hua Qiang North Road
Shenzen, China
86-755-323 0460
86-755-323 0471

## ISRAEL

RDT Components Ltd.
ATIDIM, Nevah Sharet
P.O. Box 58013

Tel-Aviv 61580 Israel
+972 36450707 Fax +972 3492413
Email:mron@rdt.co.it

## ITALY

MicroElit S.P.A.
Via Sardegna, 1
I-20146 Milano, Italy
+39 24817900 Fax +39 24813594
Via Marchesse, 10
I-00141 Roma, Italy +39686894323 Fax +39668275270

## JAPAN

Macnica, Inc.
Hakusan High-Tech Park 1-22-2 Hakusan, Midori-ku Yokohama-city, 226 Japan 81459396140 Fax 81459396141
E-Mail: yoy@cg.macnica.co.jp
5-11-8 Nishinakashima, Yodogawa-ku Osaka-city, 532 Japan
8163000810 Fax 8163000848
E-Mail: yoy@cg.macnica.co.jp
1-14-13 Aoi, Higashi-ku
Nagoya-city, 461 Japan
81529334541 Fax 81529334542
E-Mail: yoy@cg.macnica.co.jp
4-2-10 Odori
Utsunomiza-city, 320 Japan
81286275231 Fax 81286275274
E-Mail: yoy@cg.macnica.co.jp

## KOREA

MEMEC (Asia Pacific) Ltd.
Unique Korea Branch
708-10 Daeha Building, 7/F
\#14-11, Yoido-Dong,
Yougdeungpo-Ku,
Seoul, Korea
82-2 7866540 Fax 82-2 7866542
E-mail: essin@memec-korea.com

## MEXICO

(See Distributors - North America)

## NETHERLANDS

## Nijkerk Electronika B.V

Drentestraat 7, 1083HK Amsterdam PO Box 7920, 1008 AC Amsterdam
The Netherlands
+31 205041424 Fax +31 206423948
E-Mail: ne@nijkerk.nl www.nijkerk.nl
Semiconductor Sales Department
+31 20504 1435TAIWAN
Jeritronics Ltd.
7F, No. 267, Sec. 3
Cheng-Teh Road
Taipei, Taiwan
88625851636 Fax 88625864736
E-Mail: jeritron@tpts1.seed.net.tw

## UNITED KINGDOM

Pronto Electronic Systems, Ltd.
City Gate House, 399-425 Eastern Ave. Gants Hill, llford
Essex, United Kingdom IG26LR +441815546222 Fax +441815183222
E-Mail: 100126.2424@compuserve.com

## Distributors - North America

ALABAMA
Nu Horizons Electronics4825 University Square, Suite 8
Huntsville, AL 35816
(205) 722-9330 Fax (205) 722-9348
E-Mail: sales@nuhorizons.com
www.nuhorizons.com

## Insight Electronics

4835 University Square, Suite 19
Huntsville, AL 35816
(205) 830-1222 Fax (205) 830-1225
E-Mail: marc-lampert@ins.memec.com www.ikn.com

## ARIZONA

## Insight Electronics

1515 W University Drive, Suite 103 Tempe, AZ 85281 (602) 829-1800 Fax (602) 967-2658
E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons

4651 S. Lakeshore Drive, Suite 4 Tempe, AZ 85282
(602) 730-8500 Fax (602) 730-1780

## CALIFORNIA

Nu Horizons Electronics 4360 View Ridge Avenue, Suite B
San Diego, CA 92123
(619) 576-0088 Fax (619) 576-0990
E-Mail: sales@nuhorizons.com www.nuhorizons.com
2070 Ringwood Avenue
San Jose, CA 95131
(408) 434-0800 Fax (408) 434-0935
E-Mail: sales@nuhorizons.com www.nuhorizons.com
13900 Alton Parkway, Suite 123 Irvine, CA 92618 (714) 470-1011 Fax (714) 470-1104
E-Mail: sales@nuhorizons.com www.nuhorizons.com
850 Hampshire Rd., Suite R
Thousand Oaks, CA 91361
(805) 370-1515 Fax (805) 370-1525
E-Mail: sales@nuhorizons.com www.nuhorizons.com

## Insight Electronics <br> 9980 Huennekens Street

San Diego, CA 92121
1 (800) 677-6011 Fax (619) 677-3151
E-Mail: marc-lampert@ins.memec.com www.ikn.com

2 Venture Plaza, Suite 340
Irvine, CA 92618
(714) 727-3291 Fax (714) 727-1804

E-Mail: marc-lampert@ins.memec.com www.ikn.com

4333 Park Terrace Drive, Suite 101 Westlake Village, CA 91361
(818) 707-2101 Fax (818) 707-0321

E-Mail: marc-lampert@ins.memec.com www.ikn.com

2460 N. First St., Suite 170
San Jose, CA 95131
(408) 526-2100 Fax (408) 526-0250

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## CANADA

Insight Electronics
560-1212 31st Avenue NE
Calgary, Alberta Canada T2E 7T1
(403) 250-8822 Fax (403) 250-8851

E-Mail: marc-lampert@ins.memec.com www.ikn.com

955 Boulevard St. Jean, Suite 301
Pointe Claire, Canada H9R 5K3
(514) 428-0060 Fax (514) 428-0070

E-Mail: marc-lampert@ins.memec.com www.ikn.com

240 Catherine St., Suite 405
Ottawa, Ontario, Canada K2P 2G8
(613) 233-1799 Fax (613) 233-2843

E-Mail: marc-lampert@ins.memec.com www.ikn.com

141-6151 Westminster Hwy. Richmond, BC, Canada V7C 4V4 (604) 270-3232 Fax (604) 270-3356

E-Mail: marc-lampert@ins.memec.com www.ikn.com

1 Eva Road, Suite 107
Etobicoke, Ontario, Canada M9C $4 Z 5$
(416) 622-7006 Fax (416) 622-5155

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## COLORADO

## Insight Electronics

2 Inverness Drive East, Suite 102
Englewood, CO 80112
(303) 649-1800 Fax (303) 649-1818

E-Mail: marc-lampert@ins.memec.com
www.ikn.com

## CONNECTICUT

## Insight Electronics

16 W. Johnson Aveune, Suite 202
Cheshire, CT 06410
(203) 272-5843 Fax (203) 272-5853

E-Mail: marc-lampert@ins.memec.com
www.ikn.com

## FLORIDA

## Insight Electronics

6400 Congress Ave., Suite 1600
Boca Raton, FL 33487
(561) 997-2540 Fax (561) 997-2542

E-Mail: marc-lampert@ins.memec.com www.ikn.com

600 North Lake Boulevard, Suite 250
Altamonte Springs, FL 32701
(407) 834-6310 Fax (407) 834-6461

E-Mail: marc-lampert@ins.memec.com www.ikn.com

17757 US Hwy 19 N, Suite 520
Clearwater, FL 34624
(813) 524-8850 Fax 813 532-4252

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

600 S North Lake Boulevard, Suite 210
Altamonte Springs, FL 32701
(407) 831-8008 Fax (407) 831-8862

E-Mail: sales@nuhorizons.com
www.nuhorizons.com
3421 NW 55th Street
Ft. Lauderdale, FL 33309
(954) 735-2555 Fax (954) 735-2880

E-Mail: sales@nuhorizons.com
www.nuhorizons.com

## Distributors — North America (continued)

## GEORGIA

Insight Electronics
3005 Breckinridge, Suite 210-A
Duluth, GA 30136
(770) 717-8566 Fax (770) 717-8588

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

100 Pinnacle Way, Suite 155
Norcross, GA 30071
(770) 416-8666 Fax (770) 416-9060

E-Mail: sales@nuhorizons.com www.nuhorizons.com

## IDAHO

Nu Horizons
16399 Franklin Road
Nampa, ID 83687
(208) 465-0818 Fax (208) 465-0883

## ILLINOIS

Insight Electronics
1365 Wiley Road, Suite 142
Schaumburg, IL 60173
(847) 885-9700 Fax (847) 885-9701

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## INDIANA

Insight Electronics
4656 W. Jefferson, suite 200
Fort Wayne, IN 46804
(219) 436-4250 Fax (219) 436-4515

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## KANSAS

Insight Electronics
8700 Monrovia, Suite 310
Lenexa, KS 66215
(913) 492-0408 Fax (913) 492-0708

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## MARYLAND

Insight Electronics
6325 Woodside Ct. \#130
Columbia, MD 21046
(410) 381-3131 Fax (410) 381-3141

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

8965 Guilford Road, Suite 160
Columbia, MD 21046
(410) 995-6330 Fax (410) 995-6332

E-Mail: sales@nuhorizons.com www.nuhorizons.com

## MASSACHUSETTS

Insight Electronics
25 Corporate Drive, Suite 175
Burlington, MA 01803
(617) 270-9400 Fax (617) 270-3279

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

19 Corporate Place
107 Audubon Road, Bldg. 1
Wakefield, MA 01880
(617) 246-4442 Fax (617) 246-4462

E-Mail: sales@nuhorizons.com
www.nuhorizons.com

## MEXICO

## Insight Electronics

Prol. Americas 1612 6t0 piso
Col. Country Club
Guadalajara, Jalisco C.P. MEXICO 44610
0115235789242 Fax 0115236789243
E-Mail: marc-lampert@ins.memec.com www.ikn.com

Reforma 10 col. Centro
World Trade Center Montecito \#38
Piso 19, OFNA Col. Napoles
CP. 03810 Mexico City.DF
0115254880119 Fax 0115284880179
E-Mail: marc-lampert@ins.memec.com www.ikn.com

Rio Guadalquivir 322 OTE
Colonia Del Vall, San Pedro
Garza Garcia, NL MEXICO CP66220
0115283566490 Fax 0115283569495
E-Mail: marc-lampert@ins.memec.com
www.ikn.com

## MICHIGAN

Insight Electronics
802 E Grand River, Suite 101
Brighton, MI 48116
(810) 229-7710 Fax (810) 229-6435

E-Mail: marc-lampert@ins.memec.com www.ikn.com

Insight Electronics (continued)
1545 N. Riviera
Stevensville, MI 49127
(616) 429-1410 Fax (616) 429-7730

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## MINNESOTA

Insight Electronics
5353 Gamble Drive, Suite 330
St. Louis Park, MN 55416
(612) 525-9999 Fax (612) 525-9998

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

10907 Valley View Rd.
Eden Praire, MN 55344
(612) 942-9030 Fax (612) 942-9144

E-Mail: sales@nuhorizons.com
www.nuhorizons.com
MISSOURI
Insight Electronics
1001 Craig Road, Suite 260
St. Louis, MO 63146
(314) 872-2182 Fax (314) 872-2169

E-Mail: marc-lampert@ins.memec.com www.ikn.com

NEW JERSEY
Insight Electronics
2 Eves Drive, Suite 208
Marlton, NJ 08053
(609) 985-5556 Fax (609) 985-5895

E-Mail: marc-lampert@ins.memec.com www.ikn.com

115 Rt. 46, Suite F-1000
Mountain Lakes, NJ 07046
(201) 316-6040 Fax (201) 335-1495

E-Mail: marc-lampert@ins.memec.com www.ikn.com

Nu Horizons Electronics
18000 Horizon Way, Suite 200
Mt. Laurel, NJ 08054
(609) 231-0900 Fax (609) 231-9510

E-Mail: sales@nuhorizons.com www.nuhorizons.com

## Distributors — North America (continued)

Nu Horizons Electronics (continued) 39 US Route 46 Pine Brook, NJ 07058 (201) 882-8300 Fax (201) 882-8398<br>E-Mail: sales@nuhorizons.com www.nuhorizons.com

## NEW YORK

Insight Electronics
1373 Veterns Memorial Hwy. Hauppauge, NY 11788 (516) 761-0960 Fax (516) 244-1570 E-Mail: marc-lampert@ins.memec.com www.ikn.com

190 Linden Oaks Dr. Rochester, NY 14625 (716)383-4271 Fax (716)383-4279 E-Mail: marc-lampert@ins.memec.com WWW:www.ikn.com

Nu Horizons Electronics
70 Maxess Road
Melville, NY 11747
(516) 396-5000 Fax (516) 396-5050

E-Mail: sales@nuhorizons.com www.nuhorizons.com

333 Metro Park Rochester, NY 14623
(716) 292-0777 Fax (716) 292-0750

E-Mail: sales@nuhorizons.com www.nuhorizons.com

## NORTH CAROLINA

## Insight Electronics

811 Spring Forest Rd. Suite 1000
Raleigh, NC 27609
(919) 873-9922 Fax (919) 873-9050

E-Mail: marc-lampert@ins.memec.com www.ikn.com

Nu Horizons Electronics
2920 Highwood Blvd., Suite 125
Raleigh, NC 27604
(919) 954-0500 Fax (919) 954-0545

E-Mail: sales@nuhorizons.com www.nuhorizons.com

## OHIO

Insight Electronics
9700 Rockside Road, Suite 105
Valley View, OH 44125
(216) 520-4333 Fax (216) 520-4322

E-Mail: marc-lampert@ins.memec.com www.ikn.com

4130 Linden Avenue, Suite 238
Dayton, OH 45432
(937) 253-7501 Fax (937) 253-7586

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

ZZUŪ̄̄ Enterprise E. Parkway
Twinsburg, OH 44087
(216) 963-9933 Fax (216) 963-9944

E-Mail: sales@nuhorizons.com www.nuhorizons.com

OKLAHOMA
Insight Electronics
4150 S. 100th East Avenue, Suite 200G
Tulsa, OK 74146
(918) 655-4664 Fax (918) 665-4665

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## OREGON

Insight Electronics
8705 SW Nimbus Avenue, Suite 200
Beaverton, OR 97008
(503) 644-3300 Fax (503) 641-4530

## PENNSYLVANIA

Insight Electronics
365 N. Cottage Road, Suite D
Mercer, PA 16137
(412) 662-2707 Fax (412) 662-2708

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons Electronics

18000 Horizon Way, Suite 200
Mt. Laurel, NJ 08054
(215) 557-6450 Fax (609) 231-9510

E-Mail: sales@nuhorizons.com www.nuhorizons.com

## TEXAS

Insight Electronics
1778 Plano Road, Suite 210
Richardson, TX 75081
(972) 783-0800 Fax (972) 680-2402

E-Mail: marc-lampert@ins.memec.com
www.ikn.com
11500 Metric Boulevard, Suite 215
Austin, TX 78758
(512) 719-3090 Fax (512) 719-3091

E-Mail: marc-lampert@ins.memec.com www.ikn.com

10777 Westheimer, Suite 1100
Houston, TV 77042
(713) 260-9614 Fax (512) 260-9602

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Nu Horizons

2081 Hutton Drive, Suite 119
Carrollton, TX 75006
(214) 488-2255 Fax (214) 488-2265
(800) 200-1586

E-Mail: sales@nuhorizons.com www.nuhorizons.com
7801 North Lamar, Suite F-29
Austin, TX 78752
(512) 467-2292 Fax (512) 467-2466

E-Mail: sales@nuhorizons.com
www.nuhorizons.com

## UTAH

## Insight Electronics

4455 S. 700 E., Suite 301
Salt Lake City, UT 84107
(801) 288-9001 Fax (801) 288-9195

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## VIRGINIA

Insight Electronics
6325 Woodside Ct., Suite 130
Columbia, MD 21046
(410) 381-3131 Fax (410) 381-3141

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## Distributors — North America (continued)

## WASHINGTON

Insight Electronics
12002 115th Avenue NE
Kirkland, WA 98034
(206) 820-8100 Fax (206) 821-2976

E-Mail: marc-lampert@ins.memec.com www.ikn.com

WASHINGTON, DC
Nu-Horizons
8965 Guilford Road, Suite 160
Columbia, MD 21046
(301) 621-8244 Fax (401) 995-6332

E-Mail: sales@nuhorizons.com www.nuhorizons.com

WISCONSIN
Insight Electronics
10855 W Potter Road, \#14
Wauwatosa, WI 53226
(414) 258-5338 Fax (414) 258-5360

E-Mail: marc-lampert@ins.memec.com www.ikn.com

## TriQuint Semincoductor, Inc. - Area Sales Offices

Asia Pacific Sales Office
George Sanders 2300 NE Brookwood Parkway Hillsboro, OR 97214
(503) 615-9115 Fax (503) 615-8901

E-Mail: george_sanders@tqs.com
European Sales Office
Graham Teague
Birkenweg 6
Bachmehring
D-83549 Eiselfing
West Germany
++49 807193504
Fax ++49 807193505
E-Mail:100446.2405@compuserve.com

Major Accounts
Mike Zyla
1637 Oakwood Drive, Suite S-419
Penn Valley, PA 19072
(610) 668-6781 Fax (610) 668-6782

E-Mail: mikez@tqs.com
Northeast Area Sales Office
Mark Lewis
International Trade Center
500 International Drive
Mount Olive, NJ 07828
(201) 426-8436 Fax (201) 426-8450

E-Mail: markl@tqs.com

Northwest Area Sales Office
George Herrmann
1999 S. Bascom Avenue, Suite 700
Campbell, CA 95008
(408) 879-2662 Fax (408) 879-2322

E-Mail: georgeh@tqs.com
Southwest Area Sales Office
Greg Peck
2250 East Imperial Highway, Suite 200
El Segundo, CA 90245
(310) 648-6681 Fax (310) 648-6687

E-Mail: gregp@tqs.com

Note: We try our best to keep this listing accurate and up to date, however phone numbers, addresses, and even company partnerships do change over time. If you should encounter any difficulties, please feel free to contact TriQuint at (503) 615-9000.

# TriQuint SEMICONDUCTOR 

2300 N.E. Brookwood Parkway<br>Hillsboro, Oregon 97124<br>phone (503) 615-9000<br>fax (503) 615-8900<br>www.triquint.com


[^0]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^1]:    Note：＂＊＂indicates TQ8106－specific signal．

[^2]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^3]:    Notes: 1. $T_{C}$ measured at case top. Use of adequate heatsink is required.
    2. The $V_{T T}$ and $R_{L O A D}$ combination is subject to maximum output current and power restrictions.
    3. Contact the Factory for extended temperature range applications.
    4. Functionality and/or adherence to electrical specifications is not implied when the device is subjected to conditions that exceed, singularly or in combination, the operating range specified.

[^4]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.

[^5]:    Notes: 1. Valid for any unrecognized control sequence starting with 'K28.5'. Not valid for acquiring Word Sync.
    2. $B R_{D}$-Beginning Running Disparity Negative.
    3. $B R_{D}+$ Beginning Running Disparity Positive

[^6]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^7]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^8]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^9]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^10]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^11]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^12]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^13]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^14]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.

[^15]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^16]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^17]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.
    Revision 1.0.A October 1997

[^18]:    The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.
    Copyright © 1997 TriQuint Semiconductor, Inc. All rights reserved.

