

Z380[™] Microprocessor Unit

Microprocessor Solutions for Datacommunications and Computer Peripheral Applications

User's Manual

Z380™ Microprocessor Unit

User's Manual

PREFACE

Thank you for your interest in the Z380[™] CPU (Central Processing Unit) and its associated family of products. This Technical Manual describes programming and operation of the Z380[™] Superintegration[™] Core CPU, which is found in the Z380 MPU (Microprocessor Processing Unit), and future products built around Z380[™] CPU core. For the external interface and detailed descriptions of the on-chip peripherals for each Superintegration device, please refer to individual product specifications.

This Technical manual consists of the following Sections:

1. Z380[™] Architectural Overview

Chapter 1 is an introductory section covering the key features and giving an overview of the architecture of the device.

2. Address Spaces

Chapter 2 explains the address spaces the Z380 CPU can handle. Also, this chapter includes a brief description of the on-chip registers.

3. Native/Extended Mode, Word/Long Word Mode of Operation, and Decoder Directives

This chapter provides a detailed explanation on the Z380's unique features, operation modes, and the Decoder Directives.

4. Addressing Modes and Data Types

Chapter 4 describes the Addressing mode and data types which the Z380 can handle.

5. Instruction Set

Chapter 5 contains an overview of the instruction set; as well as a detailed instruction-by-instruction description in alphabetical order.

6. Interrupts and Traps

Chapter 6 explains the interrupts and traps features of the Z380.

7. Reset

Chapter 7 describes the Reset function.

8. Z380 Benchmark Appnote

9. Z380 Questions & Answers

Appendix A

Appendix A covers the Z380's instruction format.

Appendix B

Appendix B contains all Z380 instructions sorted in Alphabetical Order.

Appendix C

Appendix C contains all Z380 instructions sorted in Numerical Order.

Appendix D

The Tables in Appendix D lists all the Z380 instructions in instruction affected by Native/Extended mode and Word/Long Word mode.

Appendix E

The Tables in Appendix E lists all the Z380 instructions in instruction affected by DDIR IM (Immediate Decoder Directives) mode.

Index

A to Z listing of Z380[™] User's Manual key words and phrases.

Superintegration[™] Products Guide

Description of product offerings by market niche.

Literature Guide

A complete list of Zilog's literature.

Zilog's Sales Offices Representatives & Distributors

A complete list of Zilog's Sales Offices, Representatives & Distributors.

This manual assumes the reader has a basic knowledge of CPU based system architectures and software development systems, such as the use of the text editor, and invoking the assembler/ compiler. Also, knowledge of the Z80[®] CPU architecture is desirable.

Table of Contents

2380°° Architoctural Overview

Mode of Operations and S Decoder Directives

Addressing Modes and Data Types

Instruction Set

laterrupts and traps

Nesot

2330^m Benchmark Appnote

2330[™] Questions & Answers

· · ·

TABLE OF CONTENTS

Chapter 1 Z380[™] Architectural Overview

1.1		lotion		
1.2	CPU A	vrchitecture	1-3	
	1.2.1	Modes of Operation	1-2	
		1.2.1.1 Native Mode and Extended Mode		
		1.2.1.2 Word or Long Word Mode		
	1.2.2	Address Spaces	1-3	
	1.2.3	Data Types	1-4	
	1.2.4	Addressing Modes		
	1.2.5	Instruction Set		
	1.2.6	Exception Conditions	1-4	
1.3	Benefi	ts of the Architecture	1-5	
	1.3.1	High Throughput	1-5	
	1.3.2	Linear Memory Address Space		
	1.3.3	Enhanced Instruction Set with 16-Bit and 32-Bit Manipulation Capability		
	1.3.4	Faster Context Switching	1-6	
1.4	Summ	ary		

Chapter 2 Address Spaces

2.1	Introduction	
2.2	CPU Register Space	
	2.2.1 Primary and Working Registers	2-3
	2.2.2 Index Registers	
	2.2.3 Interrupt Register	
	2.2.4 Program Counter	
	2.2.5 R Register	
	2.2.6 Stack Pointer	
2.3	CPU Control Register Space	2-4
2.4	Memory Address Space	
2.5	External I/O Address Space	
2.6	On-Chip I/O Address Space	

Chapter 3 Native/Extended Mode, Word/Long Word Mode of Operations and Decoder Directives

3.1	Introduction	3-1
3.2	Decoder Directives	3-2
3.3	Native Mode and Extended Mode	3-2
3.4	Word and Long Word Mode of Operation	3-3
	C	

Chapter 4	Address	sing Modes and Data Types	
4.1	Instruct	tion	4-1
4.2	Addres	sing Mode Descriptions	
	4.2.1	Register (R, RX)	4-1
	4.2.2	Immediate (IM)	4-1
	4.2.3	Indirect Register (IR)	
	4.2.4	Direct Address (DA)	
	4.2.5	Indexed (X)	
	4.2.6	Program Counter Relative Mode (RA)	
	4.2.7	Stack Pointer Relative Mode (SR)	1-6
4.3		/pes	
4.5	Dala Ij	/pes	
.			
Chapter 5			~ .
5.1		ction	
5.2		sor Flags	
	5.2.1	Carry Flag (C)	
	5.2.2	Add/Subtract Flag (N)	
	5.2.3	Parity/Overflow (P/V)	
	5.2.4	Half-Carry Flag (H)	
	5.2.5	Zero Flag (Z)	
	5.2.6	Sign Flag (S)	
	5.2.7	Condition Codes	
5.3	Select I	Register	
	5.3.1	IY Bank Select (IYBANK)	
	5.3.2	IY or IY' Register Select (IY')	
	5.3.3	IX Bank Select (IXBANK)	
	5.3.4	IX or IX' Register Select (IX')	5-4
	5.3.5	Main Bank Select (MAINBANK)	5-4
	5.3.6	BC/DE/HL or BC'/DE'/HL' Register Select (ALT)	5-4
	5.3.7	Extended Mode (XM)	5-4
	5.3.8	Long Word Mode (LW)	
	5.3.9	Interrupt Enable Flag (IEF)	
	5.3.10	Interrupt Mode (IM)	
	5.3.11	Lock (LCK)	
	5.3.12	AF or AF' Register Select (AF')	
5.4		tion Execution and Exceptions	
	5.4.1	Instruction Execution and Interrupts	
	5.4.2	Instruction Execution and Trap	
5.5	Instruct	tion Set Functional Groups	
	5.5.1	8-Bit Load/Exchange Group	
	5.5.2	16-Bit and 32-Bit Load, Exchange, SWAP and PUSH/POP Group	
	5.5.3	-	
	5.5.4	8-Bit Arithmetic and Logical Group	
	5.5.5	16-Bit Arithmetic Operation	
	5.5.6	8-Bit Manipulation, Rotate and Shift Group	
	5.5.7	16-Bit Manipulation, Rotate and Shift Group	
	5.5.8	Program Control Group	
	5.5.9	External Input/Output Instruction Group	
	5.5.10	Internal I/O Instruction Group	
	5.5.11	CPU Control Group	
	0.0.11		

[®]ZiL05

	5.6 5.7	5.5.12 Decoder Directives 5-17 Notation and Binary Encoding 5-17 Execution Time 5-18	7		
Ch	anter 6	Interrupts and Traps			
GI	6.1	Interrupts and Traps	1		
	6.2	Interrupts			
	0.2	6.2.1 Interrupt Priority Ranking			
		6.2.2 Interrupt Control			
		6.2.2.1 IEF1, IEF2			
		6.2.2.2 I, I Extend			
		6.2.2.3 Interrupt Enable Register			
		6.2.2.4 Assigned Vectors Base Register6-3	3		
		6.2.2.5 Trap and Break Register			
	6.3	Trap Interrupt 6-6	õ		
	6.4	Nonmaskable Interrupt	5		
	6.5	Interrupt Response for Maskable Interrupt on /INT06-6	5		
		6.5.1 Interrupt Mode 0 Response for Maskable Interrupt /INT0	5		
		6.5.2 Interrupt Mode 1 Response for Maskable Interrupt /INTO	5		
		6.5.3 Interrupt Mode 2 Response for Maskable Interrupt /INT0	5		
		6.5.4 Interrupt Mode 3 Response for Maskable Interrupt /INT0	5		
	6.6	Assigned Interrupt Vectors Mode for Maskable Interrupts /INT3-/INT1	3		
	6.7	RETI Instruction	3		
Ch	apter 7	Pasat			
CII	7.1	Introduction	1		
	1.1				
	Z380™	Benchmark Appnote	1		
	7380™ (Questions and Answers	1		
2000 Questions and Answers					
Ap	pendix /				
	Z380™	CPU Instruction Formats A-1	ł		
Ap	pendix	В			
Z380 [™] Instructions in Alphabetic OrderB-1					
۸n	pendix	^			
Λþ		⊂ Instruction in Numeric OrderC-1	1		
Appendix D					
	Instructions Affected by Native/Extended Mode, and Long Word ModeD-1				
Appendix E					
•		tions Affected by DDIR IM Instructions E-1	I		

[®]ZiL005

ndex A through ZI-1
Superintegration™ Products GuideS-1
. iterature Guide Ordering InformationL-1
/ilog's Sales Offices Representatives & Distributors Z-1

FIGURES

Chapter 1		
Figure 1-1.	Z380 [™] CPU Register Architecture	1-2
Chapter 2		
Figure 2-1.	Register File Organization (Z380 [™] MPU)	2-2
Figure 2-2.	Bit/Byte Ordering Conventions	2-5
Chapter 3		
Figure 3-1.	Z380™ CPU Operation Modes	3-1
Chapter 5		
Figure 5-1.	Flag Register	5-3
	Select Register	
Chapter 6		
Figure 6-1.	Interrupt Enable Register	6-3
Figure 6-2.	Assigned Vectors Base Register	6-3
Figure 6-3.	Trap and Break Register	6-4

TABLES

Chapter 2		
Table 2.1	I/O Addressing Options	. 2-6
Chapter 5		
Table 5-1.	Condition Codes	. 5-1
Table 5-2.	8-Bit Load Group Instructions	
Table 5-3.	8-Bit Load Group Allowed Source/Destination Combinations	
Table 5-4.	16-Bit and 32-Bit load, Exchange, PUSH/POP Group Instructions	. 5-1
Table 5-5.	Supported Sours and Destination Combination for 16-Bit and 32-Bit Exchange Instructions	. 5-1
Table 5-6.	Supported Source and Destination Combination for 16-Bit and 32-Bit Load Instructions	
Table 5-7.	Supported Operand for PUSH/POP Instructions	.5-2
Table 5-8.	Block Transfer and Search Group	
Table 5-9.	Supported Source/Destination for 8-Bit Arithmetic and Logic Group	
Table 5-10.	16-Bit Arithmetic Operation	. 5-4
Table 5-11.	Bit Set/Reset/Test, Rotate and Shift Group	
Table 5-12.	16-Bit Rotate and Shift Group	. 5-5
Table 5-13.	Program Control Group Instructions	.5-6
Table 5-14.	External I/O Group Instructions	5-14
Table 5-15.	Internal I/O Instruction Group	
Table 5-16.	CPU Control Group	5-16
Table 5-17.	Decoder Directive Instructions	5-17
Table 5-18.	Execution Time	5-18
Chapter 6 Table 6-1. Table 6-2. Table 6-3. Table 6-4.	Interrupt Priority Ranking Interrupt Flags and Registers Operation Effects on IEF1 and IEF2 Assigned Interrupt Vectors	. 6-1 . 6-1
Chapter 7 Table 7-1.	Effect of a Reset on Z380 [™] CPU and Related I/O Registers	. 7-2
Appendix A		
Table A-1.	Format 1 Instructions Encodings	A-2
Table A-2.	Format 2 Instructions Encodings,	
Table A-3.	Format 3 Instructions Encodings	
Table A-4.	Format 4 Instructions Encodings	A-2
Appendix E		
Table E-1.	Valid with DDIR IB in EM	.E-1
Table E-2.	Valid with DDIR IB	
Table E-3.	Valid with DDIR IB in LW	.E-1
Table E-4.	Valid with DDIR IB	
Table E-5.	Valid with DDIR IW in EM	
Table E-6.	Valid with DDIR IW	
Table E-7.	Valid with DDIR IW in LW	
Table E-8.	Valid with DDIR IW	.E-5

Z380[™] Architectural Overview \blacksquare

Address Spaces | 2

Elove of Crossiens and Elove Decoder Directives

Instruction Sot

Interrupts and Traps

Resei

0

Z330[™] Questions & Answers

USER'S MANUAL

CHAPTER 1 Z380[™] ARCHITECTURAL OVERVIEW

1.1 INTRODUCTION

The Z380 CPU incorporates advanced architectural features that allow fast and efficient throughput and increased memory addressing capabilities while maintaining Z80[®] CPU and Z180[®] MPU object-code compatibility. The Z380 CPU core provides a continuing growth path for present Z80- or Z180[®]-based designs and offers the following key features:

- Full Static CMOS Design with Low Power Standby Mode Support
- DC to 18 MHz Operating Frequency @ 5 Volts V_{cc}
- DC to 10 MHz Operating Frequency @ 33 Volts V_{cc}
- Enhanced Instruction Set that Maintains Object-Code Compatibility with Z80 and Z180 Microprocessors
- 16-Bit (64K) or 32-Bit (4G) Linear Address Space
- 16-Bit Internal Data Bus
- Two Clock Cycle Instruction Execution (Minimum)
- Multiple On-Chip Register Files (Z380 MPU has Four Banks)
- BC/DE/HL/IX/IY Registers are Augmented by 16-Bit Extended Registers (BCz/DEz/HLz/IXz/IYz), PC/SP/I Registers are Augmented by Extended Registers (PCz/ SPz/Iz) for 32-Bit Addressing Capability.
- Newly Added IX' and IY' Registers with Extended Registers (IXz'/IYz')
- Enhanced Interrupt Capabilities, Including 16-Bit Vector
- Undefined Opcode Trap for Full Z380 CPU Instruction Set

The Z380 CPU, an enhanced version of the Z80 CPU, retains the Z80 CPU instruction set to maintain complete binary-code compatibility with present Z80 and Z180 codes. The basic addressing modes of the Z80 microprocessor have been augmented with Stack Pointer Relative loads and stores, 16-bit and 24-bit Indexed offsets, and increased Indirect register addressing flexibility, with all of the addressing modes allowing access to the entire 32-bit address space. Significant additions have been made to the instruction set incorporating 16-bit arithmetic and logical operations, 16-bit I/O operations, multiply and divide, a complete set of register-to-register loads and exchanges, plus 32-bit load and exchange, and 32-bit arithmetic operation for address calculation.

The basic register file of the Z80 microprocessor is expanded to include alternate register versions of the IX and IY registers. There are four sets of this basic Z80 microprocessor register file present in the Z380 MPU, along with the necessary resources to manage switching between the different register sets. All of the register pairs and index registers in the basic Z80 microprocessor register file are expanded to 32 bits.

The Z380 CPU expands the basic 64 Kbyte Z80 and Z180 address space to a full 4 Gbyte (32-bit) address space. This address space is linear and completely accessible to the user program. The external I/O address space is similarly expanded to a full 4 Gbyte (32-bit) range, and 16-bit I/O, both simple and block move are included. A 256 byte-wide internal I/O space has been added. This space will be used to access on-chip I/O resources on future Superintegration implementation of this CPU core.

Figure 1-1 provides a detailed description of the basic register architecture of the Z380 CPU with the size of the register banks shown at four each, however, the Z380 CPU architecture allows future expansion of up to 128 sets of each.

1.1 INTRODUCTION (Continued)

	4 S	4 Sets of Registers	
		F	7
BCz	В	С	1
DEz	D	E]
HLz	Н	L	
IXz	IXU	IXL	
lYz	IYU	IYL	μ
	A'	F'	
BCz'	B'	C'	
DEz'	D'	E'	
HLz'	H'	Ľ	
IXz'	IXU'	IXL']
IYz'	IYU'	IYL'	ԴԻ

	R
İz	

SPz	SP
PCz	PC

Figure 1-1.	Z380™	CPU	Register	Architecture
-------------	-------	-----	----------	--------------

1.2 CPU ARCHITECTURE

The Z380 CPU is a binary-compatible extension of the Z80 CPU and the Z180 CPU architecture. High throughput rates are achieved by a high clock rate, high bus bandwidth, and instruction fetch/execute overlap. Communicating to the external world through an 8-bit or 16-bit data bus, the Z380 CPU is a full 32-bit machine internally, with a 32-bit ALU and 32-bit registers.

1.2.1 Modes of Operation

To maintain compatibility with the Z80/Z180 CPU while having the capability to manipulate 4 Gbytes of memory address range, the Z380 CPU has two bits in the Select Register (SR) to control the modes of operation. One bit controls the address manipulation mode: Native mode or Extended mode; and the other bit controls the data manipulation mode: Word mode or Long Word mode. In result, the Z380 CPU has four modes of operation. On reset, the Z380 CPU is in Native/Word mode, which is compatible to the Z80/Z180's operation mode. For details on this subject, refer to Chapter 3, "Native/Extended Mode, Word/Long Word Mode of Operation, and Decoder Directive Instructions."

1.2.1.1 Native Mode and Extended Mode

The Z380 CPU can operate in either Native or Extended mode, as controlled by a bit in the Select Register (SR). In Native mode (the Reset configuration), all address manipulations are performed modulo 65536 (216). In this mode, the Program Counter (PC) only increments across 16 bits, all address manipulation instructions (increment, decrement, add, subtract, indexed, stack relative, and PC relative) only operate on 16 bits, and the Stack Pointer (SP) only increments and decrements across 16 bits. The PC high-order word is left at all zeros, as the high-order words of the SP and the I register. Thus, Native mode is fully compatible with the Z80 CPU's 64 Kbyte address mode. It is still possible to address memory outside of 64 Kbyte address space for data storage and retrieval in Native mode, however, since direct addresses, indirect addresses, and the high-order word of the SP, I, and the IX and IY registers may be loaded with non-zero values. Executed code and interrupt service routines must reside in the lowest 64 Kbytes of the address space.

In Extended mode, however, all address manipulation instructions operate on 32 bits, allowing access to the entire 4 Gbyte address space of the Z380 CPU. In both Native and Extended modes, the Z380 drives all 32 bits of the address onto the external address bus; only the width of the manipulated addresses distinguishes Native from Extended mode. The Z380 CPU implements one instruction to allow switching from Native to Extended mode (SETC XM); however, once in Extended mode, only Reset will return the Z380 CPU to Native mode. This restriction applies because of the possibility of "misplacing" interrupt service routines or vector tables during the transition from Extended mode back to Native mode.

1.2.1.2 Word or Long Word Mode

In addition to Native and Extended mode, which are specific to memory space addressing, the Z380 CPU can operate in either Word or Long Word mode specific to data load and exchange operations. In Word mode (the Reset configuration), all word load and exchange operations manipulate 16-bit quantities. For example, only the loworder words of the source and destination are exchanged in an exchange operation, with the high-order words unaffected.

In the Long Word mode, all 32 bits of the source and destination are exchanged. The Z380 CPU implements two instructions plus decoder directives to allow switching between Word and Long Word mode; SETC LW (Set Control Long Word) and RESC LW (Reset Control Long Word) perform a global switch, while DDIR W, DDIR LW and their variants are decoder directives that select a particular mode only for the instruction that they precede.

Note that all word data arithmetic (as opposed to address manipulation arithmetic), rotate, shift, and logical operations are always in 16-bit quantities. They are not controlled by either the Native/Extended or Word/Long Word selections. The exceptions to the 16-bit quantities are, of course, those multiply and divide operations with 32-bit products or dividends.

All word Input/Output operations are performed on 16-bit values, regardless of Word/Long Word operation.

1.2.2 Address Spaces

Addressing spaces in the Z380 CPU include the CPU register, the CPU control register, the memory address, on-chip I/O address, and the external I/O address. The CPU register space is a superset of the Z80 CPU register set, and consists of all of the registers in the CPU register file. These CPU registers are used for data and address manipulation, and are an extension of the Z80 CPU register set, with four sets of this extended Z80 CPU register set present in the Z380 CPU. Access to these registers is specified in the instruction, with the active register set selected by bits in the Select Register (SR) in the CPU control register space.

1.2.2 Address Spaces (Continued)

Each register set includes the primary registers A, F, B, C, D, E, H, L, IX, and IY, as well as the alternate registers A', F', B', C', D', E', H', L', IX', and IY'. Also, IX, IX', IY, and IY' registers are accessible as two byte registers, each named as IXU, IXL, IXU' IXL', IYU, IYL, IYU', and IYL'. These byte registers can be paired B with C, D with E, H with L, B' with C', D' with E', and H' with L' to form word registers, and these word registers are extended to 32 bits with the "z" extension to the register. This register extension is only accessible when using the register as a 32-bit register (in the Long Word mode) or when swapping between the most-significant and least-significant word of a 32-bit register using SWAP instructions. Whenever an instruction refers to a word register, the implicit size is controlled by Word or Long Word mode. Also included are the R. I. and SP registers, as well as the PC.

The Select Register (SR) determines the operation of the Z380 CPU. The contents of this register determine the CPU operating mode, which register bank will be used, the interrupt mode in effect, and so on.

The Z380 CPU's memory address space is linear 4 Gbytes. To keep compatibility with the Z80 CPU memory addressing model, it has two control bits to change its operation modes—Native or Extended, Word or Long Word.

The Z380 CPU architecture also distinguishes between the memory and I/O addressing space and, therefore, requires specific I/O instructions. Furthermore, I/O addressing space is subdivided into the on-chip I/O address space and the external I/O addressing space. External I/O addressing space in the Z380 CPU is 32 bits long, and internal I/O addressing space is 8-bits long. There are separate sets of I/O instructions for each I/O addressing space.

Some of the Internal I/O registers are used to control the functionality of the device, such as to program/read status of Trap, Assigned Vector Base address, enabling of interrupts, and to get Chip version ID.

For details on this topic, refer to Chapter 2, "Address Spaces."

1.2.3 Data Types

Many data types are supported by the Z380 CPU architecture. The basic data type is the 8-bit byte, which is also the basic addressable memory element. The architecture also supports operations on bits, BCD (Binary Coded Decimal) digits, words (16 bits or 32 bits), byte strings and word strings. For details on this topic, refer to Section 4.3, "Data Types."

1.2.4. Addressing Modes

Addressing modes are used by the Z380 CPU to calculate the effective address of an operand needed for execution of an instruction. Seven addressing modes are supported by the Z380 CPU. Of these seven, one is an addition to the Z80 CPU addressing modes (Stack Pointer Relative) and the remaining six modes are either existing or extensions to Z80 CPU addressing modes.

- Register
- Immediate
- Indirect Register
- Direct Address
- Indexed
- Program Counter Relative
- Stack Pointer Relative

All addressing modes are available on the 8-bit load, arithmetic, and logical instructions; the 8-bit shift, rotate, and bit manipulation instructions are limited to the registers and Indirect register addressing modes. The 16-bit loads on the addressing registers support all addressing modes except Index, while other 16-bit operations are limited to the Register, Immediate, Indirect Register, Index, Direct Address, and PC Relative addressing modes.

For details on this subject, refer to Chapter 4, "Addressing Modes and Data Types."

1.2.5. Instruction Set

The Z380 CPU instruction set is an expansion of the Z80 instruction set; the enhancements include support for additional addressing modes for the Z80 instructions as well as the addition of new instructions. The Z380 CPU instruction set provides a full complement of 8-bit, 16-bit, and 32-bit operation, including multiplication and division.

For details on this subject, refer to Chapter 5, "Instruction Set."

1.2.6 Exception Conditions

The Z380 CPU supports three types of exceptions (conditions that alter the normal flow of program execution); interrupts, traps, and resets.

Interrupts are asynchronous events typically triggered by peripherals requiring attention. The Z380 CPU interrupt structure has been significantly enhanced by increasing the number of interrupt request lines and by adding an efficient means for handling nested interrupts. The Z380 CPU has five interrupt lines. These are: Nonmaskable Interrupt line (/NMI) and Maskable interrupt lines (/INT0, /INT1, /INT2, and /INT3). Interrupt requests on /INT3-/INT1

1

⊗ Zilæ

are handled by a newly added interrupt handing mode, "Assigned Vectored Mode," which is a fixed vectored interrupt mode similar in interrupt handling to the Z180's interrupts from on-chip peripherals. For handling interrupt requests on the /INTO line, there are four modes available:

- 8080 compatible (Mode 0), in which the interrupting device provides the first instruction of the interrupt routine.
- Dedicated interrupts (Mode 1), in which the CPU jumps to a dedicated address when an interrupt occurs.
- Vectored interrupt mode (Mode 2), in which the interrupting peripheral device provides a vector into a table of jump address.
- Enhanced vectored interrupt mode (Mode 3), wherein the CPU expects 16-bit vector, instead of 8-bit interrupt vectors in Mode 2.

The first three modes are compatible with Z80 interrupt modes; the fourth mode provides more flexibility.

Traps are synchronous events that trigger a special CPU response when an undefined instruction is executed. It can be used to increase system reliability, or used as a "software trap instruction."

Hardware resets occur when the /RESET line is activated and override all other conditions. A /RESET causes certain CPU control registers to be initialized.

For details on this subject, refer to Chapter 6, "Interrupts and Traps."

1.3 BENEFITS OF THE ARCHITECTURE

The Z380 CPU architecture provides several significant benefits, including increased program throughput achieved by higher bus bandwidth (16-bit wide bus), reduction to two clocks/basic machine cycle (vs four clocks/cycle on the Z80 CPU), prefetch cue, access to the larger linear addressing space, enhanced instructions/new addressing mode, data/address manipulation in 16/32 bits, and faster context switching by utilizing multiple register banks.

1.3.1 High Throughput

Very high throughput rates can be achieved with the Z380 CPU, due to the basic machine cycle's reduction to two clocks/cycle from four clocks/cycle on the Z80 CPU, fine tuned four staged pipeline with prefetch cue. This well designed pipeline and prefetch cue are both totally transparent to the user, thus maximizing the efficiency of the pipeline all the time. The Z380 CPU implemented onto the Z380 MPU is configured with a 16-bit wide data bus, which doubles the bus bandwidth. These architectural features result in two clocks/instructions execution minimum, three clocks/instruction on average. The high clock rates (up to 40 MHz) achievable with this processor. Make the overall performance of the Z380 CPU more than ten times that of the Z80.

1.3.2 Linear Memory Address Space

Z380 CPU architecture has 4 Gbytes of linear memory address space. The Z80 CPU architecture allows 64 Kbytes of memory addressing space. This was more than sufficient when the Z80 CPU was first developed. But as the technology improved over time, applications started to demand more complicated processing, multitasking, faster processing, etc., with the high level language needed to develop software. As a result, 64 Kbytes of memory addressing space is not enough for some Z80 CPU based applications. In order to handle more than 64 Kbytes of memory, the Z80 CPU requires a Memory Banking scheme, or MMU (Memory Management Unit), like the Z180 MPU or Z280 MPU. These provide the overhead to access more than 64 Kbytes of memory.

The Z380 CPU architecture allows access to a full 4 Gbytes (2^{32}) of memory addressing space as well as 4 Gbytes of I/O addressing area, without using a Memory Banking scheme, or MMU.

1.3.3. Enhanced Instruction Set with 16-Bit and 32-Bit Manipulation Capability

The Z380 CPU instruction set is 100% upward compatible to the Z80 CPU instruction set; that is all the Z80 instructions have been preserved at the binary level. New instructions added to the Z380 CPU include:

- Less restricted operand source/destination combinations.
- More flexible register exchange instructions.
- Stack Pointer Relative addressing mode.

1.3.3. Enhanced Instruction Set with 16-Bit and 32-Bit Manipulation Capability (Continued)

- DDIR (Decoder Directive Instructions) to enhance addressing capability to cover 4 Gbytes of memory space, as well as data manipulation capability.
- Jump relative/Call relative instructions with 8-bit, 16-bit, or 24-bit displacement.
- Full complements of 16-bit arithmetic instructions.
- 32-bit manipulate instructions for address manipulation.

These new instructions help to compact the code, as well as shorten the program's overall execution speed.

For details on this subject, refer to Chapter 5, "Instruction Set."

1.3.4 Faster Context Switching

The Z380 CPU architecture allows multiple sets of register banks for AF/AF', BC/DE/HL, BC'/DE'/HL', IX/IX', IY/IY' register pairs (including each register's Extended portion). When doing context switching, by exceptional condition (trap or interrupts) or by subroutine/procedure calls, the CPU has to save the contents of the registers currently in use, along with the current CPU status.

Traditionally in the Z80 CPU architecture, this is done by saving the contents of the register into memory, usually using push/pop instructions or the auxiliary register file. Register contents are then restored when the process is finished.

With the Z380 CPU's multiple register banks, saving the contents of the working register set currently in use is just a matter of an instruction to change the field in the Select Register, which allows fast context switching.

1.4 SUMMARY

The Z380 CPU is a high-performance 16-bit Central Processing Unit Superintegration[™] core. Code-compatible with the Z80 CPU, the Z380 CPU architecture has been expanded to include features such as multiple register banks, 4 Gbytes of linear memory addressing space, and efficient handling of nested interrupts. The benefits of this architecture, including high throughput rates, code density, and compiler efficiency, greatly enhance the power and versatility of the Z380 CPU. Thus, the Z380 CPU provides both a growth path for existing Z80-based designs and a powerful processor for applications and the products to be developed around this CPU core.

[⊗]ZiLŒ

itable of Contenis

2950^m Arshhoefural Overview

Address Spaces 2

Mode of Apendions and Ca Decoder Directives

Addreesing Modes and Data Types

Instruction Set

Interrupts and Traps

Reset

Z380™ Benchmark Appnote

Z380^m Questions & Answers

USER'S MANUAL

CHAPTER 2

ADDRESS SPACES

2.1 INTRODUCTION

ASILOS

The Z380 CPU supports five address spaces corresponding to the different types of locations that can be addressed and the method by which the logical addresses are formed. These five address spaces are:

- CPU Register Space. This consists of all the register addresses in the CPU register file.
- CPU Control Register Space. This consists of the Select Register (SR).
- Memory Address Space. This consists of the addresses of all locations in the main memory.

- External I/O Address Space. This consists of all external I/O ports addresses through which peripheral devices are accessed.
- On-Chip I/O Address Space. This consists of all internal I/O port addresses through which peripheral devices are accessed. Also, this addressing space contains registers to control the functionality of the device, giving status information.

2.2 CPU REGISTER SPACE

The Z380 register file is illustrated in Figure 2-1. Note that this figure shows the configuration of the register on the Z380 CPU, and the number of the register files may vary on future Superintegration devices. The Z380 CPU contains abundant register resources. At any given time, the program has immediate access to both primary and alternate registers in the selected register set. Changing register sets is a simple matter of an LDCTL instruction to program the Select Register (SR).

The CPU register file is divided into five groups of registers (an apostrophe indicates a register in the auxiliary registers).

- Four sets of Flag and Accumulator registers (F, A, F', A')
- Four sets of Primary and Working registers (B, C, D, E, H, L, B', C', D', E', H', L')

- Four sets of Index registers (IX, IY, IX', IY')
- Stack Pointer (SP)
- Program Counter, Interrupt register, Refresh register (PC, I, R)

Register addresses are either specified explicitly in the instruction or are implied by the semantics of the instruction.

2

2.2 CPU REGISTER SPACE (Continued)

	4 S	ets of Registers
		F
BCz	В	С
DEz	D	E
HLz	Н	L
IXz	IXU	IXL
lYz	IYU	IYL -
	A'	F'
BCz'	B'	C'
DEz'	D'	E'
HLz'	H'	Ľ
IXz'	IXU'	IXL'
	IYU'	IYL'

	R
lz	I

SPz	SP
PCz	PC

Figure 2-1. Register File Organization (Z380 MPU)

2.2.1 Primary and Working Registers

The working register set is divided into two register files: the primary file and the alternate file (designated by prime (')). Each file contains an 8-bit accumulator (A), a Flag register (F), and six 8-bit general-purpose registers (B, C, D, E, H, and L) with their Extended registers. Only one file can be active at any given time, although data in the inactive file can still be accessed by using EX R, R' instructions for the byte-wide registers, EX RR, RR' instructions for register pairs (either in 16-bit or 32-bit wide depending on the LW status). Exchange instructions allow the programmer to exchange the active file with the inactive file. The EX AF, AF', EXX, or EXALL instructions changes the register files in use. Upon reset, the primary register file in register set 0 is active. Changing register sets is a simple matter of an LDCTL instruction to program SR.

The accumulator is the destination register for 8-bit arithmetic and logical operations. The six general-purpose registers can be paired (BC, DE, and HL), and are extended to 32 bits by the extension to the register (with suffix "z"; BCz/DEz/HLz), to form three 32-bit general-purpose registers. The HL register serves as the 16-bit or 32-bit accumulator for word operations. Access to the Extended portion of the registers is possible using the SWAP instruction or word Load instructions in Long Word operation mode.

The Flag register contains eight status flags. Four can be individually used for control of program branching, two are used to support decimal arithmetic, and two are reserved. These flags are set or reset by various CPU operations. For details on Flag operations, refer to Section 5.2, "Flag Register."

2.2.2. Index Registers

The four index registers, IX, IX', IY, and IY', are extended to 32 bits by the extension to the register (with suffix "z"; IXz/IYz), to form 32-bit index registers. To access the Extended portion of the registers use the SWAP instruction or word Load instructions in Long Word operation mode. These Index registers hold a 32-bit base address that is used in the index addressing mode.

Only one register of each can be active at any given time, although data in the inactive file can still be accessed by using EX IX, IX' and EX IY, IY' (either in 16-bit or 32-bit wide depending on the LW bit status). Index registers can also function as general-purpose registers with the upper and lower bytes of the lower 16 bits being accessed individually. These byte registers are called IXU, IXU', IXL, and IXL' for the IX and IX' registers, and IYU, IYU', IYL, and IYL' for the IY and IY' registers.

Selection of primary or auxiliary Index registers can be made by EXXX, EXXY, or EXALL instructions, or programming of SR. Upon reset, the primary registers in register set 0 is active. Changing register sets is a simple matter of an LDCTL instruction to program SR.

2.2.3. Interrupt Register

The Interrupt register (I) is used in interrupt modes 2 and 3 for /INT0 to generate a 32-bit indirect address to an interrupt service routine. The I register supplies the upper 24 or 16 bits of the indirect address and the interrupting peripheral supplies the lower eight or 16 bits. In Assigned Vectors mode for /INT3-/INT1, the upper 16 bits of the vector are supplied by the I register; bits 15-9 are supplied from the Assigned Vector Base register, and bits 8-0 are the assigned vector unique to each of /INT3-/INT1.

2.2.4. Program Counter

The Program Counter (PC) is used to sequence through instructions in the currently executing program and to generate relative addresses. The PC contains the 32-bit address of the current instruction being fetched from memory. In Native mode, the PC is effectively only 16 bits long, since the upper word [PC31-PC16] of the PC is forced to zero, and when carried from bit 15 to bit 16 (Lower word [PC15-PC0] to Upper word [PC31-PC16]) are inhibited in this mode. In Extended mode, the PC is allowed to increment across all 32 bits.

2.2.5. R Register

The R register can be used as a general-purpose 8-bit read/write register. The R register is not associated with the refresh controller and its contents are changed only by the user.

2.2.6. Stack Pointer

The Stack Pointer (SP) is used for saving information when an interrupt or trap occurs and for supporting subroutine calls and returns. Stack Pointer relative addressing allows parameter passing using the SP. The SP is 16 bits wide, but is extended by the SPz register to 32 bits wide.

2.2.6 Stack Pointer (Continued)

Increment/decrement of the Stack Pointer is affected by modes of operation (Native or Extended). In Native mode, the stack operates in modulo 2¹⁶, and in Extended mode, it operates in modulo 2³². For example, SP holds 0001FFFEH, and does the Word size Pop operation. After the operation,

SP holds 00010000H in Native mode, and 00020000H in Extended mode. In either case, SPz can be programmed to set Stack frame. This is done by the Load- to-Stack pointer instructions in Long Word mode.

2.3. CPU CONTROL REGISTER SPACE

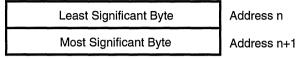
The CPU control register space consists of the 32-bit Select Register (SR). The SR may be accessed as a whole or the upper three bytes of the SR may be accessed individually as YSR, XSR, and DSR. In addition, these upper three bytes can be loaded with the same byte value. The SR may also be PUSHed and POPed and is cleared to zeros on Reset. For details on this register, refer to Chapter 5.3, "Select Register."

2.4 MEMORY ADDRESS SPACE

The memory address space can be viewed as a string of 4 Gbytes numbered consecutively in ascending order. The 8-bit byte is the basic addressable element in the Z380 MPU memory address space. However, there are other addressable data elements: bits, 2-byte words, byte strings, and 4-byte words.

The size of the data element being addressed depends on the instruction being executed as well as the Word/Long Word mode. A bit can be addressed by specifying a byte and a bit within that byte. Bits are numbered from right to left, with the least significant bit being 0, as illustrated in Figure 2-2.

The address of a multiple-byte entity is the same as the address of the byte with the lowest memory address in the entity. Multiple-byte entities can be stored beginning with


either even or odd memory addresses. A word (either 2byte or 4-byte entity) is aligned if its address is even; otherwise it is unaligned. Multiple bus transactions, which may be required to access multiple-byte entities, can be minimized if alignment is maintained.

The format of multiple-byte data types is also shown in Figure 2-2. Note that when a word is stored in memory, the least significant byte precedes the more significant byte of the word, as in the Z80 CPU architecture. Also, the lower-addressed byte is present on the upper byte of the external data bus.

Bits within a byte:

	7	6	5	4	3	2	1	0
--	---	---	---	---	---	---	---	---

16-bit word at address n:

32-bit word at address n:

D7-0 (Least Significant Byte)	Address n
D15-8	Address n+1
D23-16	Address n+2
D31-24 (Most Significant Byte)	Address n+3

Memory addresses: Even address (A0=0) Odd address (A0=1) Least Significant Byte Most Significant Byte 9 8 6 15 14 13 10 7 3 2 12 11 5 4 1 0

2.5. EXTERNAL I/O ADDRESS SPACE

External I/O address space is 4 Gbytes in size and External I/O addresses are generated by I/O instructions except those reserved for on-chip I/O address space accesses. It

can take a variety of forms, as shown in Table 2.1. An external I/O read or write is always one transaction, regardless of the bus size and the type of I/O instruction.

		Addre	ss Bus	
I/O Instruction	A31-A24	A23-A16	A15-A8	A7-A0
IN A, (n)	0000000	0000000	A7-A0	n
IN dst,(C) INA(W) dst,(mn)	BC31-B24 00000000	BC23-B16 00000000	BC15-B8 m	BC7-B0 n
DDIR IB INA(W) dst,(Imn)	0000000		m	n
DDIR IW INA(W) dst,(klmn) Block Input	k BC31-B24	l BC23-B16	m BC15-B8	n BC7-B0
OUT (n),A OUT (C),dst	00000000 BC31-B24	00000000 BC23-B16	A7-A0 BC15-B8	n BC7-B0
OUTA(W) (mn),dst	0000000	0000000	m	n
DDIR IB OUTA(W) (Imn),dst	00000000	!	m	n
DDIR IW OUTA(W) (klmn),dst Block Output	k BC31-B24	I BC23-B16	m BC15-B8	n BC7-B0

Table 2-1. I/O Addressing Options

2.6. ON-CHIP I/O ADDRESS SPACE

The Z380 CPU has the on-chip I/O address space to control on-chip peripheral functions of the Superintegration[™] version of the devices. A portion of its interrupt functions are also controlled by several on-chip registers, which occupy an on-chip I/O address space. This on-chip I/O address space can be accessed only with the following reserved on-chip I/O instructions which are identical to the Z180 original I/O instructions to access Page 0 I/O addressing area.

INO	R,(n)	OTIM
IN0	(n)	OTIMR
OUT0	(n),R	OTDM
TSTIO	n	OTDMR

When one of these I/O instructions is executed, the Z380 MPU outputs the register address being accessed in a pseudo-transaction of two BUSCLK cycles duration, with the address signals A31-A8 at zero. In the pseudo-transactions, all bus control signals are at their inactive state.

The following four registers are assigned to this addressing space as a part of the Z380 CPU core:

Register Name	Internal I/O Address
Interrupt Enable Register	17H
Assigned Vector Base Register	18H
Trap and Break Register	19H
Chip Version ID Register	OFFH

The Chip Version ID register returns one byte data, which indicates the version of the CPU, or the specific implementation of the Z380 CPU based Superintegration device. Currently, the value 00H is assigned to the Z380 MPU, and other values are reserved.

For the other three registers, refer to Chapter 6, "Interrupts and Traps."

Also, the Z380 MPU has registers to control chip selects, refresh, waits, and I/O clock divide to Internal I/O address 00H to 10H. For these registers, refer to the Z380 MPU Product specification (DC-3003-01).

7980°° Architectural Overview

3

میں ا

Address Spaces

Mode of Operations and Decoder Directives

Addressing Modes and Data Types

instruction Set

Interrepis and Trops

liesel

2330^m Benchmark Apparte

Z280[™] Questions & Answers

.

USER'S MANUAL

CHAPTER 3 NATIVE EXTENDED MODE, WORD/LONG WORD MODE OF OPERATIONS AND DECODER DIRECTIONS

3.1 INTRODUCTION

The Z380[™] CPU architecture allows access to 4 Gbytes (2³²) of memory addressing space, and 4G locations of I/O. It offers 16/32-bit manipulation capability while maintaining object-code compatibility with the Z80 CPU. In order to implement these capabilities and new instruction sets, it has two modes of operation for address manipulation (Native or Extended mode), two modes of operation for data manipulation (Word or Long Word mode), and a special set of new Decoder Directives.

On Reset, the Z380 CPU defaults in Native mode and Word mode. In this condition, it behaves exactly the same as the Z80 CPU, even though it has access to the entire 4 Gbytes of memory for data access and 4G locations of I/O space,

access to the newly added registers which includes Extended registers and register banks, and the capability of executing all the Z380 instructions.

As described below, the Z380 CPU can be switched between Word mode and Long Word mode during operation through the SETC LW and RESC LW instructions, or Decoder Directives. The Native and Extended modes are a key exception— it defaults up in Native mode, and can be set to Extended mode by the instruction. Only Reset can return it to Native mode. Figure 3-1 illustrates the relation-ship between these modes of operation.

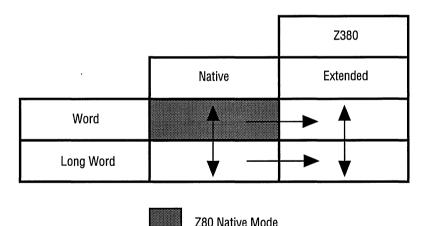


Figure 3-1. Z380[™] CPU Operation Modes

For the instructions which work with the DDIR instructions, refer to Appendix D and E.

3.2 DECODER DIRECTIVES

The Decoder Directive is not an instruction, but rather a directive to the instruction decoder. The instruction decoder may be directed to fetch an additional byte or word of immediate data or address with the instruction, as well as tagging the instruction for execution in either Word or Long Word mode. Since the Z80 CPU architecture's addressing convention in the memory is "least significant byte first, followed by more significant bytes," it is possible to have such instructions to direct the instruction decoder to fetch additional byte(s) of address information or immediate data to extend the instruction.

All eight combinations of the two options are supported, as shown below. Instructions which do not support decoder directives are assembled by the instruction decoder as if the decoder directive were not present.

ddir W ddir IB,W ddir IW,W ddir IB ddir LW ddir IB,LW ddir IB,LW ddir IW,LW	Word mode Immediate byte, Word mode Immediate Word, Word mode Immediate byte Long Word mode Immediate byte, Long Word mode Immediate Word, Long Word mode
DDIR IW	Immediate Word

The IB decoder directive causes the decoder to fetch an additional byte immediately after the existing immediate data or direct address, and in front of any trailing opcode bytes (with instructions starting with DD-CB or FD-CB, for example).

Likewise, the IW decoder directive causes the decoder to fetch an additional word immediately after the existing immediate data or direct address, and in front of any trailing opcode bytes.

Byte ordering within the instruction follows the usual convention; least significant byte first, followed by more significant bytes. More-significant immediate data or direct address bytes not specified in the instruction are read as all zeros by the processor.

The W decoder directive causes the instruction decoder to tag the instruction for execution in Word mode. This is useful while the Long Word (LW) bit in the Select Register (SR) is set, but 16-bit data manipulation is required for this instruction.

The LW decoder directive causes the instruction decoder to tag the instruction for execution in Long Word mode. This is useful while the LW bit in the SR is cleared, but 32bit data manipulation is required for this instruction.

3.3 NATIVE MODE AND EXTENDED MODE

The Z380 CPU can operate in either Native or Extended mode, as a way to manipulate addresses.

In Native mode (the Reset configuration), the Program Counter only increments across 16 bits, and all stack Push and Pop operations manipulate 16-bit quantities (two bytes). Thus, Native mode is fully compatible with the Z80 CPU's 64 Kbyte address space and programming model. The extended portion of the Program Counter (PC31-PC15) is forced to 0 and program address location next to 0000FFFFH is 00000000H in this mode. This means in Native mode, program have to reside within the first 64 Kbytes of the memory addressing space.

In Extended mode, however, the PC increments across all 32 bits and all stack Push and Pop operations manipulate 32-bit quantities. Thus, Extended mode allows access to the entire 4 Gbyte address space. In both Native and Extended modes, the Z380 CPU drives all 32 bits of the address onto the external address bus; only the PC increments and stack operations distinguish Native from Extended mode.

Note that regardless of Native or Extended mode, a 32-bit address is always used for the data access. Thus, for data reference, the complete 4 Gbytes of memory area may be accessed. For example:

LD BC, (HL)

uses the 32-bit address value stored in HL31-HL0 (HLz and HL) as a source location address. However, on Reset, the HL31-HL16 portion (HLz) initializes to 00H. Unless HLz is modified to other than 00H, operation of this instruction is identical to the one with the Z80 CPU. Modifying the extended portion of the register is done either by using a 32-bit load instruction (in Long Word mode, or with DDIR LW instructions), or using a 16-bit load instruction with SWAP instructions. The Z380 CPU implements one instruction to switch to Extended mode from Native mode; SETC XM (set Extended mode) places the Z380 CPU in Extended mode.

Once in Extended mode, only Reset can return it to Native mode. On Reset, the Z380 is in Native mode. Refer to Sections 4 and 5 for more examples.

3.4 WORD AND LONG WORD MODE OF OPERATION

The Z380 CPU can operate in either Word or Long Word mode. In Word mode (the Reset configuration), all word operations manipulate 16-bit quantities, and are compatible with the Z80 CPU 16-bit operations. In the Long Word mode, all word operations can manipulate 32-bit quantities. Note that the Native/Extended and Word/Long Word selections are independent of one another, as Word/Long Word pertains to data and operand address manipulation only. The Z380 CPU implements two instructions and two decoder directives to allow switching between these two modes; SETC LW (Set Long Word) and RESC LW (Reset Long Word) perform a global switch, while DDIR LW and DDIR W are decoder directives that select a particular mode only for the instruction that they precede.

Examples:

1. Effect of Word mode and Long Word mode

DDIR W LD BC, (HL)

Loads BC15-BC0 from the location (HL) and (HL+1), and BCz (BC31-BC16) remains unchanged.

DDIR LW LD BC, (HL)

Loads BC31-BC0 from the locations (HL) to (HL+3).

2. Immediate data load with DDIR instructions

DDIR IW,LW LD HL,12345678H Loads 12345678H into HL31-HL0.

DDIR IB,LW LD HL,123456H

Loads 00123456H into HL31-HL0. 00H is appended as the Most significant byte as HL31-HL24.

DDIR LW LD HL,1234H

Loads 00001234H into HL31-HL0. 0000H is appended as the HL31-HL16 portion.

	eile of Gool Lies	*
Protiff fram	kaaddeel offentier	
	ia hata siyuwar	

1

27.

4

har wich ang 12 - Eada serikeeri'd islaast . 2Î

Addressing Modes and Data Types

Energian for the
Sheorada sana daya
1983. Journally Volumys
and Manggaran (Manggara

[©]Silæ

USER'S MANUAL

CHAPTER 4 Addressing Modes and Data Types

4.1 INSTRUCTION

An instruction is a consecutive list of one or more bytes in memory. Most instructions act upon some data; the term operand refers to the data to be operated upon. For Z380[™] CPU instructions, operands can reside in CPU registers, memory locations, or I/O ports (internal or external). The method used to designate the location of the operands for an instruction are called addressing modes. The Z380 CPU supports seven addressing modes; Register, Immediate, Indirect Register, Direct Address, Indexed, Program Counter Relative Address, and Stack Pointer Relative. A wide variety of data types can be accessed using these addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the addressing modes for the Z380 CPU. Each description explains how the operand's location is calculated, indicates which address spaces can be accessed with that particular addressing mode, and gives an example of an instruction using that mode, illustrating the assembly language format for the addressing modes.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction processes data taken from one of the 8-bit registers A, B, C, D, E, H, L, IXU, IXL, IYU, IYL, one of the 16-bit registers BC, DE, HL, IX, IY, SP, or one of the special byte registers I or R.

Storing data in a register allows shorter instructions and faster execution that occur with instructions that access memory.

Instruction			
OPERATION	REGISTER	\rightarrow	OPERAND

The operand value is the contents of the register.

The operand is always in the register address space. The register length (byte or word) is specified by the instruction opcode. In the case of Long Word register operation, it is specified either through the SETC LW instruction or the DDIR LW decoder directive.

Example of R mode:

- 1. Load register in Word mode.
 - DDIR W ;Next instruction in Word mode LD BC,HL ;Load the contents of HL into BC

Defens instruction	<u>BCz</u>	BC	<u>HLz</u>	<u>HL</u>
Before instruction execution After instruction	1234	5678	9ABC	DEF0
execution	1234	DEF0	9ABC	DEF0

2. Load register in Long Word mode.

DDIR LW ;Next instruction in Long Word mode LD BC,HL ;Load the contents of HL into BC

	<u>BCz</u>	BC	<u>HLz</u>	<u>HL</u>
Before instruction execution After instruction	1234	5678	9ABC	DEF0
execution	9ABC	DEF0	9ABC	DEF0

4.2.2 Immediate (IM)

When the Immediate addressing mode is used, the data processed is in the instruction.

The Immediate addressing mode is the only mode that does not indicate a register or memory address as the source operand.

4.2.2 Immediate (IM) (Continued)

Instruction OPERATION OPERAND

The operand value is in the instruction

Immediate mode is often used to initialize registers. Also, this addressing mode is affected by the DDIR Immediate Data Directives to expand the immediate value to 24 bits or 32 bits.

Example of IM mode:

1. Load immediate value into accumulator LD A,55H ;Load hex 55 into the accumulator.

	A
Before instruction execution	12
After instruction execution	55

Load 24-bit immediate value into HL register DDIR IB, LW ;next instruction is in Long Word mode, with ;an additional immediate data LD HL, 123456H ;load HLz, and HL with constant 123456H

This case, the Z380 CPU appends 00H as a MSB byte.

	<u>HLz</u>	<u>HL</u>
Before instruction execution	0987	6543
After instruction execution	<u>00</u> 12	3456

4.2.3 Indirect Register (IR)

In Indirect Register addressing mode, the register specified in the instruction holds the address of the operand.

The data to be processed is in the location specified by the BC, DE, or HL register (depending on the instruction) for memory accesses, or C register for I/O.

Memory or					
Instruction			Register		I/O Port
OPERATION	REGISTER	\rightarrow	Address	\rightarrow	OPERAND

The operand value is the contents of the location whose address is in the register.

Depending on the instruction, the operand specified by IR mode is located in either the I/O address space (I/O instruction) or memory address space (all other instructions).

Indirect Register mode can save space and reduce execution time when consecutive locations are referenced or one location is repeatedly accessed. This mode can also be used to simulate more complex addressing modes, since addresses can be computed before data is accessed.

The address in this mode is always treated as a 32-bit mode. After reset, the contents of the extend registers (registers with "z" suffix) are initialized as 0's; hence, these instructions will be executed just as for the Z80/Z180.

Example of IR mode:

1. Load accumulator from the contents of memory pointed by (HL)

LD A, (HL) ;Load the accumulator with the data ;addressed by the contents of HL

	Α	HLz,F	IL
Before instruction execution After instruction execution	0F	12345	678
	0B	12345	678
Memory location	12345	678	0B

4.2.4 Direct Address (DA)

When Direct Address mode is used, the data processed is at the location whose memory or I/O port address is in the instruction.

Instruction		Memory or
OPERATION		I/O Port
ADDRESS	\rightarrow	OPERAND

The operand value is the contents of the location whose address is in the instruction.

Depending on the instruction, the operand specified by DA mode is either in the I/O address space (I/O instruction) or memory address space (all other instructions).

This mode is also used by Jump and Call instructions to specify the address of the next instruction to be executed. (The address serves as an immediate value that is loaded into the program counter.)

Also, DDIR Immediate Data Directives are used to expand the direct address to 24 or 32 bits. Operand width is affected by LW bit status for the load and exchange instructions.

Example of DA mode:

1. Load BC register from memory location 00005E22H in Word mode

_

LD BC, (5E22H) ;Load BC with the data in address ;00005E22H

Before instruction execution	<u>BC</u> 1234
After instruction execution	0301
Memory location	00005E22

 Memory location
 00005E22
 01

 00005E23
 03

2. Load BC register from memory location 12345E22H in Word mode

DDIR IW	;extend direct address by one word
LD BC, (12345E22H)	;Load BC with the data in address
	;12345E22H

Before instruction execution After instruction execution	<u>BC</u> 1234 0301
Memory location	12345E22 12345E23

3. Load BC register from memory location 12345E22H in Long Word mode

01 03

DDIR IW,LW ;extend direct address by one word, ;and operation in Long Word LD BC, (12345E22H) ;Load BC with the data in address ;12345E22H

Before instruction execution	1234	5678	
After instruction execution	0705	0301	
Memory location	12345E 12345E 12345E 12345E 12345E	23 24	01 03 05 07

4.2.5 Indexed (X)

When the Indexed addressing mode is used, the data processed is at the location whose address is the contents of IX or IY in use, offset by an 8-bit signed displacement in the instruction.

The Indexed address is computed by adding the 8-bit two's complement signed displacement specified in the instruction to the contents of the IX or IY register in use, also specified by the instruction. Indexed addressing allows random access to tables or other complex data structures where the address of the base of the table is known, but the particular element index must be computed by the program.

The offset portion can be expanded to 16 or 24 bits, instead of eight bits by using DDIR Immediate Data Directives (DDIR IB for 16-bit offset, DDIR IW for 24-bit offset).

Note that computation of the effective address is affected by the operation mode (Native or Extended). In Native mode, address computation is done in modulo 216, and in Extended mode, address computation is done in modulo 232

Instruction			REGISTER	MEMORY
OPERATION REGISTER \rightarrow	ADDRESS	$\rightarrow +$	OPERAND	
DISPLACEMENT				1

Example of X mode:

Load accumulator from location (IX-1) in Native mode 1.

	,, issume it is in	<u>IXz</u>	<u>_IX</u>			
LD A, (IX-1)	;contents of the ;whose address ;the contents of	;Load into the accumulator the ;contents of the memory location ;whose address is one less than ;the contents of IX ;Assume it is in Native mode				

After instruction execution	23	0001
Memory location	0001FFFF	23

Before instruction execution

Address calculation: In Native mode, 0FFH encoding in		0000
the instruction is sign extended to a 16-bit value before the	+	FEFE
address calculation, but calculation is done in modulo 2 ¹⁶		FFFF
and does not take into account the index register's		
extended portion.		

01

0001

0000

0000

⊗ Zilos

2.	Load a SETC LD	ccumulator fro XM A, (IX-1)	;Set Ex ;Load i ;conter ;whose	tended mode tended mode nto the accumu the of the memore address is one ntents of IX	lator the ry locatio	on	
	After in	instruction exec struction execut y location		A 01 23 0000FFFF	IXz 0001 0001 23	_ IX 0000 0000	
the inst addres	ruction is s calcula kes into	ation: In Extende s sign extended ation, but calcula account the in	to a 32-b ation is d	it value before th lone in modulo 2	10 2 ³²	+	00010000 <u>EEEEEEE</u> 0000FFFF

4.2.6 Program Counter Relative Mode (RA)

The Program Counter Relative Addressing mode is used by certain program control instructions to specify the address of the next instruction to be executed (specifically, the sum of the Program Counter value and the displacement value is loaded into the Program Counter). Relative addressing allows reference forward or backward from the current Program Counter value; it is used for program control instructions such as Jumps and Calls that access constants in the memory.

As a displacement, an 8-bit, 16-bit, or 24-bit value can be used. The address to be loaded into the Program Counter is computed by adding the two's complement signed displacement specified in the instruction to the current Program Counter.

Also, in Native mode,

Instruction	PC		MEMORY
OPERATION	ADDRESS	→ +	OPERAND
DISPLACEMEN	٨T	↑	

Example of RA mode:

1. Jump relative in Native mode, 8-bit displacement

JR \$-2 ;Jumps to the location ;(Current PC value) – 2 ;'\$' represents for current PC value ;This instruction jumps to itself. ;since after the execution of this instruction, ;PC points to the next instruction.

Note that computation of the effective address is affected by the mode of operation (Native or Extended). In Native mode, address computation is done in modulo 2¹⁶, and the PC Extend (PC31-PC16) is forced to 0 and will not affect this portion. In Extended mode, address computation is done is modulo 2³², and will affect the contents of PC extend if there is a carry or borrow operation.

1000

FFFF

FFFF

4.2.6 Program Counter Relative Mode (RA) (Continued)

	PCz	PC
Before instruction execution	0000	1000
After instruction execution	0000	OFFE

Address calculation: In Native mode, -2 is encoded as OFEH in the instruction, and it is sign extended to a 16-bit + value before added to the Program Counter. Calculation is done in modulo 2¹⁶ and does not affect the Extended portion of the Program Counter.

2. Jump relative in Extended mode, 16-bit displacement

SETC	XM	;Put it in Extended mode of operation
JR	\$-5000H	;Jumps to the location
		;(Current PC value) – 5000H
		\$ stands for current PC value
		;This instruction jumps to itself.

	PCz	<u>PC</u>	
Before instruction execution	1959	0807	
After instruction execution	1958	B80B	

Address calculation: Since this is a 4-byte instruction, the PC value after fetch but before jump taking place is:

	19590807
+	00000004
	1959080B

The displacement portion, –5000H, is sign extended to a 32-bit value before being added to the Program Counter. Calculation is done in modulo 2³² and affects the Extended portion of the Program Counter.

+ <u>FFFFB000</u> 1958B80B

4.2.7 Stack Pointer Relative Mode (SR)

For Stack Pointer Relative addressing mode, the data processed is at the location whose address is the contents of the Stack Pointer, offset by an 8-bit displacement in the instruction.

The Stack Pointer Relative address is computed by adding the 8-bit two's complement signed displacement specified in the instruction to the contents of the SP, also specified by the instruction. Stack Pointer Relative addressing mode is used to specify data items to be found in the stack, such as parameters passed to procedures.

Offset portion can be expanded to 16 or 24 bits by using DDIR immediate instructions (DDIR IB for a 16-bit offset, DDIR IW for a 24-bit offset).

~ ~

Note that computation of the effective address is affected by the operation mode (Native or Extended). In Native mode, address computation is done in modulo 2¹⁶, meaning computation is done in 16-bit and does not affect upper half of the SP portion for calculation (wrap around within the 16-bit). In Extended mode, address computation is done in modulo 2³².

Also, the size of the data transfer is affected by the LW mode bit. In Word mode, transfer is done in 16 bits, and in Long Word mode, transfer is done in 32 bits.

Instruction	SP		
OPERATION	ADDRESS		MEMORY
DISPLACEMENT		+	OPERAND

Example of SR mode:

1. Load HL from location (SP – 4) in Native mode, Word mode

LD HL, (SP-4) ;Load into the HL from the ;contents of the memory location ;whose address is four less than ;the contents of SP. ;Assume it is in Native/Word mode.

Before instruction execution After instruction execution	<u>HLz</u> 1234 EFCD	_ HL 5678 AB89	<u>SPz</u> 07FF 07FF	<u>SP</u> 7F00 7F00
Memory location	07FF7I 07FF7I		89 AB	

Address calculation: In Native mode, FCH (-4 in Decimal) encoding in the instruction is sign extended to a 16-bit value before the address calculation. Calculation is done in modulo 2¹⁶ and does not take into account the Stack Pointer's extended portion. 7F00 <u>EFEC</u> 7EFC

4.2.7 Stack Pointer Relative Mode (SR) (Continued)

2.	Load HL from location (SETC XM DDIR LW LD HL, (SP-4)	In Éxi; opera; Load; conte; whos;	 - 4) in Extended mode, Long Word mo In Extended mode operate next instruction in Long Word mo Load into the HL from the contents of the memory location whose address is four less than the contents of SP. 							
	Before instruction exe After instruction exect									
	Memory location	07FF7 07FF7 07FF7 07FF7	EFD	89 AB CD EF						

Address calculation: In Extended mode, FCH (–4 in Deci-		07FF7F00
mal) encoding in the instruction is sign extended to a 32-	+	FFFFFFC
bit value before the address calculation, and calculation is		07FF7EFC
done in modulo 2 ³² .		

3. Load HL from location (SP + 10000H) in Extended mode, Long Word mode

SETC	XM	;In Extended mode,
DDIR	IW,LW	operate next instruction in Long Word mode;
		;with a word immediate data.
LD HL, (SP+10000)	;Load into the HL from the
		;contents of the memory location
		;whose address is 10000H more than
		;the contents of SP.

Before instruction exe After instruction exec		<u>HLz</u> 1234 EFCD	_ HL 5678 AB89	<u>SPz</u> 07FF 07FF	<u>SP</u> 7F00 7F00
Memory location	08007 08007 08007 08007	F01 F02	89 AB CD EF		

Address calculation: In Extended mode, 010000H encoding in the instruction is sign extended to a 32-bit value + before the address calculation, and calculation is done in modulo 2³². 07FF7F00 <u>00010000</u> 08007F00

⊗ Zilos

4.3 DATA TYPES

The Z380 CPU can operate on bits, binary-coded decimal (BCD) digits (four bits), bytes (eight bits), words (16 bits or 32 bits), byte strings, and word strings. Bits in registers can be set, cleared, and tested.

The basic data type is a byte, which is also the basic accessible element in the register, memory, and I/O address space. The 8-bit load, arithmetic, logical, shift, and rotate instructions operate on bytes in registers or memory. Bytes can be treated as logical, signed numeric, or unsigned numeric value.

Words are operated on in a similar manner by the word load, arithmetic, logical, and shift and rotate instructions.

Operation on 2-byte words is also supported. Sixteen-bit load and arithmetic instructions operate on words in registers or memory; words can be treated as signed or unsigned numeric values. I/O reads and writes can be 8-bit or 16-bit operations. Also, the Z380 CPU architecture supports operation in Long Word mode to handle a 32-bit address manipulation. For that purpose, 16-bit wide registers originally on the Z80 have been expanded to 32 bits wide, along with the support of the arithmetic instruction needed for a 32-bit address manipulation.

Bits are fully supported and addressed by number within a byte (see Figure 2-2). Bits within byte registers or memory locations can be tested, set, or cleared. Operation on binary-coded decimal (BCD) digits are supported by Decimal Adjust Accumulator (DAA) and Rotate Digit (RLD and RRD) instructions. BCD digits are stored in byte registers or memory locations, two per byte. The DAA instruction is used after a binary addition or subtraction of BCD numbers. Rotate Digit instructions are used to shift BCD digit strings in memory.

Strings of up to 65536 (64K) bytes of Byte data or Word data can be manipulated by the Z380 CPU's block move, block search, and block I/O instructions. The block move instructions allow strings of bytes/words in memory to be moved from one location to another. Block search instructions provide for scanning strings of bytes/words in memory to locate a particular value. Block I/O instructions allow strings of bytes or words to be transferred between memory and a peripheral device.

Arrays are supported by Indexed mode (with 8-bit, 16-bit, or 24-bit displacement). Stack is supported by the Indexed and the Stack Pointer Relative addressing modes, and by special instructions such as Call, Return, Push, and Pop.

٩

helder and a second

All a shirt and share and share a grader

Instruction Set

6

Z599⁷⁷⁷ Denelante's Agamado

ZDER^M CINERALS & AMOLICIES

.

[®]ZiLŒ

USER'S MANUAL

CHAPTER 5 INSTRUCTION SET

5.1 INTRODUCTION

The Z380[™] CPU instruction set is a superset of the Z80 CPU and the Z180 MPU; the Z380 CPU is opcode compatible with the Z80 CPU/Z180 MPU. Thus, a Z80/Z180 program can be executed on a Z380 CPU without modification. The instruction set is divided into 12 groups by function:

- 8-Bit Load/Exchange Group
- 16/32-Bit Load, Exchange, SWAP and Push/Pop Group
- Block Transfers, and Search Group
- 8-Bit Arithmetic and Logic Operations
- 16/32-Bit Arithmetic Operations
- 8-Bit Bit Manipulation, Rotate and Shift Group
- 16-Bit Rotates and Shifts

- Program Control Group
- Input and Output Operations for External I/O Space
- Input and Output Operations for Internal I/O Space
- CPU Control Group
- Decoder Directives

This chapter describes the instruction set of the Z380 CPU. Flags and condition codes are discussed in relation to the instruction set. Then, the interpretability of instructions and trap are discussed. The last part of this chapter is a detailed description of each instruction, listed in alphabetical order by mnemonic. This section is intended as a reference for Z380 CPU programmers. The entry for each instruction contains a complete description of the instruction, including addressing modes, assembly language mnemonics, and instruction opcode formats.

5.2 PROCESSOR FLAGS

The Flag register contains six bits of status information that are set or cleared by CPU operations (Figure 5-1). Four of these bits are testable (C, P/V, Z, and S) for use with conditional jump, call, or return instructions. Two flags are not testable (H and N) and are used for binary-coded decimal (BCD) arithmetic.

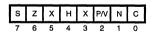


Figure 5-1. Flag Register

The Flag register provides a link between sequentially executed instructions, in that the result of executing one instruction may alter the flags, and the resulting value of the flags can be used to determine the operation of a subsequent instruction. The program control instructions, whose operation depends on the state of the flags, are the Jump, Jump Relative, subroutine Call, Call Relative, and subroutine Return instructions; these instructions are referred to as conditional instructions.

& Siraz

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the operation being performed. For add instructions that generate a carry and subtract instruction generating a borrow, the Carry flag is set to 1. The Carry flag is cleared to 0 by an add that does not generate a carry or a subtract that generates no borrow. This saved carry facilitates software routines for extended precision arithmetic. The multiply instructions use the Carry flag to signal information about the precision of the result. Also, the Decimal Adjust Accumulator (DAA) instruction leaves the Carry flag set to 1 if a carry occurs when adding BCD quantities.

For rotate instructions, the Carry flag is used as a link between the least significant and most significant bits for any register or memory location. During shift instructions, the Carry flag contains the last value shifted out of any register or memory location. For logical instructions the Carry flag is cleared. The Carry flag can also be set and complemented with explicit instructions.

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BCD arithmetic. Since the algorithm for correcting BCD operations is different for addition and subtraction, this flag is used to record when an add or subtract was last executed, allowing a subsequent Decimal Adjust Accumulator instruction to perform correctly. See the discussion of the DAA instruction for further information.

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending on the operation being performed.

For signed arithmetic, this flag, when set to 1, indicates that the result of an operation on two's complement numbers has exceeded the largest number, or less than the smallest number, that can be represented using two's complement notation. This overflow condition can be determined by examining the sign bits of the operands and the result.

The P/V flag is also used with logical operations and rotate instructions to indicate the parity of the result. The of bits set to 1 in a byte are counted. If the total is odd, this flag is reset indicates odd parity (P = 0). If the total is even, this flag is set indicates even parity (P = 1).

During block search and block transfer instructions, the P/ V flag monitors the state of the Byte Count register (BC). When decrementing the byte counter results in a zero value, the flag is cleared to 0; otherwise the flag is set to 1. During Load Accumulator with I or R register instruction, the P/V flag is loaded with the IEF2 flag. For details on this topic, refer to Chapter 6, "Interrupts and Traps."

When a byte is inputted to a register from an I/O device addressed by the C register, the flag is adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to 0 depending on the carry and borrow status between bits 3 and 4 of an 8-bit arithmetic operation and between bits 11 and 12 of a 16-bit arithmetic operation. This flag is used by the Decimal Adjust Accumulator instruction to correct the result of an addition or subtraction operation on packed BCD data.

5.2.5 Zero Flag (Z)

The Zero flag (Z) is set to 1 if the result generated by the execution of certain instruction is a zero.

For arithmetic and logical operations, the Zero flag is set to 1 if the result is zero. If the result is not zero, the Zero flag is cleared to 0.

For block search instructions, the Zero flag is set to 1 if a comparison is found between the value in the Accumulator and the memory location pointed to by the contents of the register pair HL.

When testing a bit in a register or memory location, the Zero flag contains the complemented state of the tested bit (i.e., the Zero flag is set to 1 if the tested bit is a 0, and vice-versa).

For block I/O instructions, if the result of decrements B is zero, the Zero flag is set to 1; otherwise, it is cleared to 0. Also, for byte inputs to registers from I/O devices addressed by the C register, the Zero flag is set to 1 to indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most significant bit of the result. When the Z380 CPU performs arithmetic operation on signed numbers, binary two's complement notation is used to represent and process numeric information. A positive number is identified by a 0 in the most significant bit. A negative number is identified by a 1 in the most significant bit.

When inputting a byte from an I/O device addressed by the C register to a CPU register, the Sign flag indicates either positive (S = 0) or negative (S = 1) data.

5.2.7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags are used to control the operation of the conditional instructions. The operation of these instructions is a function of the state of one of the flags. Special mnemonics called condition codes are used to specify the flag setting to be tested during execution of a conditional instruction; the condition codes are encoded into a 3-bit field in the instruction opcode itself. Table 5-1 lists the condition code mnemonic, the flag setting it represents, and the binary encoding for each condition code.

Condition Cod	Condition Codes for Jump, Call, and Return Instructions											
Mnemonic	Meaning	Flag Setting	Binary Code									
NZ	Not Zero*	Z = 0	000									
Z	Zero*	Z = 1	001									
NC	No Carry*	$\mathbf{C} = 0$	010									
С	Carry*	C = 1	011									
NV	No Overflow	V = 0	100									
PO	Parity Odd	V = 0	100									
V	Overflow	V = 1	101									
PE	Parity Even	V = 1	101									
NS	No Sign	S = 0	110									
Р	Plus	S = 0	110									
S	Sign	S = 1	111									
М	Minus	S = 1	111									

Table 5-1. Condition codes

*Abbreviated set

Condition Code Mnemonic	es for Jump Relative a Meaning	and Call Relative Instructio Flag Setting	ns Binary Code	
 NZ	Not Zero	Z = 0	100	
Z	Zero	Z = 1	101	
NC	No Carry	C = 0	110	
С	Carry	C = 1	111	

5.3 SELECT REGISTER

The Select Register (SR) controls the register set selection and the operating modes of the Z380 CPU. The reserved bits in the SR are for future expansion; they will always read as zeros and should be written with zeros for future compatibility. Access to this register is done by using the newly added LDCTL instruction. Also, some of the instructions like EXX, IM p, and DI/EI change the bit(s). The SR was shown in Figure 5-2.

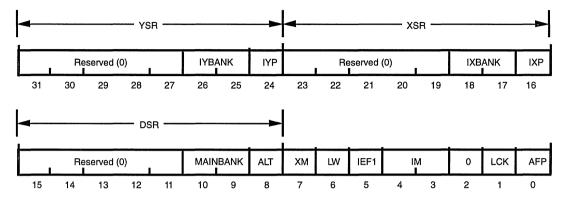


Figure 5-2. Select Register

5.3.1. IY Bank Select (IYBANK)

This 2-bit field selects the register set to be used for the IY and IY' registers. This field can be set independently of the register set selection for the other Z380 CPU registers. Reset selects Bank 0 for IY and IY'.

5.3.2. IY or IY' Register Select (IY')

This bit controls and reports whether IY or IY' is the currently active register. IY is selected when this bit is cleared, and IY' is selected when this bit is set. Reset clears this bit, selecting IY.

5.3.3. IX Bank Select (IXBANK)

This 2-bit field selects the register set to be used for the IX and IX' registers. This field can be set independently of the register set selection for the other Z380 CPU registers. Reset selects Bank 0 for IX and IX'.

5.3.4. IX or IX' Register Select (IX')

This bit controls and reports whether IX or IX' is the currently active register. IX is selected when this bit is cleared, and IX' is selected when this bit is set. Reset clears this bit, selecting IX.

5.3.5. Main Bank Select (MAINBANK)

This 2-bit field selects the register set to be used for the A, F, BC, DE, HL, A', F', BC', DE', and HL' registers. This field can be set independently of the register set selection for the other Z380 CPU registers. Reset selects Bank 0 for these registers.

5.3.6. BC/DE/HL or BC'/DE'/HL' Register Select (ALT)

This bit controls and reports whether BC/DE/HL or BC'/DE'/ HL' is the currently active bank of registers. BC/DE/HL is selected when this bit is cleared, and BC'/DE'/HL' is selected when this bit is set. Reset clears this bit, selecting BC/DE/HL.

5.3.7. Extended Mode (XM)

This bit controls the Extended/Native mode selection for the Z380 CPU. This bit is set by the SETC XM instruction. This bit can not be reset by software, only by Reset. When this bit is set, the Z380 CPU is in Extended mode. Reset clears this bit, and the Z380 CPU is in Native mode.

5.3.8. Long Word Mode (LW)

This bit controls the Long Word/Word mode selection for the Z380 CPU. This bit is set by the SETC LW instruction and cleared by the RESC LW instruction. When this bit is set, the Z380 CPU is in Long Word mode; when this bit is cleared the Z380 CPU is in Word mode. Reset clears this bit. Note that individual Word load and exchange instructions may be executed in either Word or Long Word mode using the DDIR W and DDIR LW decoder directives.

5.3.9. Interrupt Enable Flag (IEF)

This bit is the master Interrupt Enable for the Z380 CPU. This bit is set by the EI instruction and cleared by the DI instruction, or on acknowledgment of an interrupt request. When this bit is set, interrupts are enabled; when this bit is cleared, interrupts are disabled. Reset clears this bit.

5.3.10. Interrupt Mode (IM)

This 2-bit field controls the interrupt mode for the /INT0 interrupt request. These bits are controlled by the IM instructions (00 = IM 0, 01 = IM 1, 10 = IM 2, 11 = IM 3). Reset clears both of these bits, selecting Interrupt Mode 0.

5.3.11. Lock (LCK)

This bit controls the Lock/Unlock status of the Z380 CPU. This bit is set by the SETC LCK instruction and cleared by the RESC LCK instruction. When this bit is set, no bus requests will be accepted, providing exclusive access to the bus by the Z380 CPU. When this bit is cleared, the Z380 CPU will grant bus requests in the normal fashion. Reset clears this bit.

5.3.12. AF or AF' Register Select (AF')

This bit controls and reports whether AF or AF' is the currently active pair of registers. AF is selected when this bit is cleared, and AF' is selected when this bit is set. Reset clears this bit, selecting AF.

5.4 INSTRUCTION EXECUTION AND EXCEPTIONS

Three types of exception conditions—interrupts, trap, and Reset—can alter the normal flow of program execution. Interrupts are asynchronous events generated by a device external to the CPU; peripheral devices use interrupts to request service from the CPU. Trap is a synchronous event generated internally in the CPU by executing undefined instructions. Reset is an asynchronous event generated by outside circuits. It terminates all current activities and puts the CPU into a known state. Interrupts and Traps are discussed in detail in Chapter 6, and Reset is discussed in detail in Chapter 7. This section examines the relationship between instructions and the exception conditions.

5.4.1 Instruction Execution and Interrupts

When the CPU receives an interrupt request, and it is enabled for interrupts of that class, the interrupt is normally processed at the end of the current instruction. However, the block transfer and search instructions are designed to be interruptible so as to minimize the length of time it takes the CPU to respond to an interrupt. If an interrupt request is received during a block move, block search, or block I/O instruction, the instruction is suspended after the current iteration. The address of the instruction itself, rather than the address of the following instruction, is saved on the stack, so that the same instruction is executed again when the interrupt handler executes an interrupt return instruction. The contents of the repetition counter and the registers that index into the block operands are such that, after each iteration, when the instruction is reissued upon returning from an interrupt, the effect is the same as if the instruction were not interrupted. This assumes, of course, that the interrupt handler preserves the registers.

5.4.2 Instruction Execution and Trap

The Z380 MPU generates a Trap when an undefined opcode is encountered. The action of the CPU in response to Trap is to jump to address 0000000H with the status bit(s) set. This response is similar to the Z180 MPU's action on execution of an undefined instruction. The Trap is enabled immediately after reset, and it is not maskable. This feature can be used to increase software reliability or to implement "extended" instructions. An undefined opcode can be fetched from the instruction stream, or it can be returned as a vector in an interrupt acknowledge transaction in Interrupt mode 0.

Since it jumps to address 00000000H, it is necessary to have a Trap handling routine at the beginning of the program if processing is to proceed. Otherwise, it behaves just like a reset for the CPU. For a detailed description, refer to Chapter 6.

5.5 INSTRUCTION SET FUNCTIONAL GROUPS

This section presents an overview of the Z380 instruction set, arranged by functional groups. (See Section 5.5 for an explanation of the notation used in Tables 5-2 through 5-11).

5.5.1 8-Bit Load/Exchange Group

This group of instructions (Table 5-2) includes load instructions for transferring data between byte registers, transferring data between a byte register and memory, and loading immediate data into byte register or memory. For the supported source/destination combinations, refer to Table 5-3. An Exchange instruction is available for swapping the contents of the accumulator with another register or with memory, as well as between registers. Also, exchange instructions are available which swap the contents of the register in the primary register bank and auxiliary register bank.

The instruction in this group does not affect the flags.

Instruction Name	Format	Note	
Exchange with Accumulator	EX A,r EX A,(HL)		
Exchange r and r'	EX r,r'	r=A, B, C, D, E, H or L	
Load Accumulator	LD A,src	See Table 5-3	
	LD dst,A	See Table 5-3	
Load Immediate	LD dst,n	See Table 5-3	
	LD (HL),n	See Table 5-3	
Load Register (Byte)	LD R,src	See Table 5-3	
	LD R,(HL)	See Table 5-3	
	LD dst,R	See Table 5-3	
	LD (HL),R	See Table 5-3	

Table 5-2. 8-Bit Load Group Instructions

Table 5-3. 8-Bit Load Group Allowed Source/Destination Combinations

Dist.	A	В	C	D	Ε	H	L	IXH	IXL	IYH	IYL	n	(nn)	(BC)	(DE)	(HL)	(IX+d)	(IY+d)
A B C D	イイイ	イイイ	イイイ	イイイ	オオオオ	イイイ	イイイ	オイイ	インシン	オオオ	イイイ	オイイ	\checkmark	1	\checkmark	イイイ	イイイ	イイイ
E H L IXH	イイイ	イイイ	イイイ	イイイ	イイイイ	√ √ √ √	イイイ	ام ا	ار ا	1	1	イイイ				オオ	イイ	イン
IXL IYH IYL (BC)	イイイ	オイ	イイ	イイ	オオオ			V	V	√ √	$\sqrt[]{}$	\checkmark \checkmark						
(DE) (HL)	√ √	V	1	V	V	\checkmark	\checkmark					1						
(nn) (IX+d) (IY+d)	$\sqrt[n]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$					$\sqrt[]{}$						

Note: $\sqrt{}$ are supported combinations.

Source

5.5.2 16-Bit and 32-Bit Load, Exchange, SWAP, and PUSH/POP Group

This group of load, exchange, and PUSH/POP instructions (Table 5-4) allows one or two words of data (two bytes equal one word) to be transferred between registers and memory.

The exchange instructions (Table 5-5) allow for switching between the primary and alternate register files, exchanging the contents of two register files, exchanging the contents of an addressing register with the top word on the stack. For possible combinations of the word exchange instructions, refer to Table 5-5. The 16-bit and 32-bit loads include transfer between registers and memory and immediate loads of registers or memory. The Push and Pop stack instructions are also included in this group. None of these instructions affect the CPU flags, except for EX AF, AF'.

Table 5-6 has the supported source/destination combination for the 16-bit and 32-bit load instructions. The transfer size, 16-bit or 32-bit, is determined by the status of LW bit in SR, or by DDIR Decoder Directives. PUSH/POP instructions are used to save/restore the contents of a register onto the stack. It can be used to exchange data between procedures, save the current register file on context switching, or manipulate data on the stack, such as return addresses. Supported sources are listed in Table 5-7.

Swap instructions allows swapping of the contents of the Word wide register (BC, DE, HL, IX, or IY) with its Extended portion. These instructions are useful to manipulate the upper word of the register to be set in Word mode. For example, when doing data accesses, other than 00000000H-0000FFFFH address range, use this instruction to set "data frame" addresses.

This group of instructions is affected by the status of the LW bit in SR (Select Register), and Decoder Directives which specifies the operation mode in Word or Long Word.

Instruction Name	Format	Note
Exchange Word/Long Word Registers Exchange Byte/Word Registers with Alternate Bank	EX dst,src EXX	See Table 5-5
Exchange Register Pair with Alternate Bank	EX RR,RR'	RR = AF, BC, DE, or HL
Exchange Index Register with Alternate Bank	EXXX	
	EXXY	
Exchange All Registers with Alternate Bank	EXALL	
Load Word/Long Word Registers	LD dst,src	See Table 5-6
	LDW dst.src	See Table 5-6
POP	POP dst	See Table 5-7
PUSH	PUSH src	See Table 5-7
Swap Contents of D31-D16 and D15-D0	SWAP dst	dst = BC, DE, HL, IX, or IY

Table 5-4. 16-Bit and 32-Bit Load, Exchange, PUSH/POP Group Instructions

Table 5-5. Supported Source and Destination Combination for 16-Bit and 32-Bit Exchange Instructions

		1	Source		
Destination	BC	DE	HL	IX	IY
BC	\checkmark	1	1	1	
BC DE		\checkmark	\checkmark	\checkmark	
HL			\checkmark	\checkmark	
IX				\checkmark	
(SP)		\checkmark	\checkmark	\checkmark	

Note: $\sqrt{}$ are supported combinations. The exchange instructions which designate IY register as destination are covered by the other combinations. These Exchange Word instructions are affected by Long Word mode.

5.5.2 16-Bit and 32-Bit Load, Exchange, SWAP and PUSH/POP Group (Continued)

Destination	Sour			IV	1)/	0.0		(411.5	(1)(, , , ,)	(1)(
Destination	BC	DE	HL	IX	IY	SP	nn	(nn)	(BC)	(DE)	(HL)	(IX+a)	(11+0)	(SP+d)
BC	L	L	L	L	Ľ		IL	IL	L	L	L	IL	IL	IL
DE	L	L	L	L	L		IL	IL	L	L	L	IL	IL	IL
HL	L	L	L	L	L		IL	IL	L	L	L	IL	IL	IL
IX	L	L	L		L		IL	IL	L	L	L		IL	IL
IY	Ľ	L	L	L			IL	IL	L	L	L	IL		IL
SP			L	L	L		IL	IL						
(BC)	L	L	L	L	L		ILW							
(DE)	L	L	L	L	L		ILW							
(HL)	L	L	L	L	L		ILW							
(nn)	IL	IL	IL	IL	IL	IL								
(IX+d)	IL	IL	IL		IL									
(IY+d)	IL	IL	IL	IL										
(SP+d)	IL	IL	IL	IL	IL									

Table 5-6. Supported Source and Destination Combination for 16-Bit and 32-Bit Load Instructions.

Note: The column with the character(s) are the allowed source/destination combinations. The combination with "L" means that the instruction is affected by Long Word

mode, "I" means that the instruction is can be used with DDIR Immediate instruction. Also, "W" means the instruction uses the mnemonic of "LDW" instead of "LD".

Table 5-7. Supported Operand for PUSH/POP I	Instructions
---	--------------

	AF	BC	DE	HL	IX	IY	SR	nn
PUSH	1	1	1	1		1	1	1
POP	\checkmark							

Note: These PUSH/POP instructions are affected by Long Word mode of operations.

5.5.3 Block Transfer and Search Group

This group of instructions (Table 5-8) supports block transfer and string search functions. Using these instructions, a block of up to 65536 bytes of byte, Word, or Long Word data can be moved in memory, or a byte string can be searched until a given value is found. All the operations can proceed through the data in either direction. Furthermore, the operations can be repeated automatically while decrementing a length counter until it reaches zero, or they can operate on one storage unit per execution with the length counter decremented by one and the source and destination pointer register properly adjusted. The latter form is useful for implementing more complex operations in software by adding other instructions within a loop containing the block instructions.

Various Z380 CPU registers are dedicated to specific functions for these instructions—the BC register for a counter, the DEz/DE and HLz/HL registers for memory pointers, and the accumulator for holding the byte value being sought. The repetitive forms of these instructions are interruptible; this is essential since the repetition count can be as high as 65536. The instruction can be interrupted after any interaction, in which case the address of the instruction itself, rather than next one, is saved on the stack. The contents of the operand pointer registers, as well as the repetition counter, are such that the instruction can simply be reissued after returning from the interrupt without any visible difference in the instruction execution.

In case of Word or Long Word block transfer instructions, the counter value held in the BC register is decremented by two or four, depending on the LW bit status. Since exiting from these instructions will be done when counter value gets to 0, the count value stored in the BC registers has to be an even number (D0 = 0) in Word mode transfer, and a multiple of four in Long Word mode (D1 and D0 are both 0). Also, in Word or Long Word Block transfer, memory pointer values are recommended to be even numbers so the number of the transactions will be minimized.

Note that regardless of the Z380's operation mode, Native or Extended, memory pointer increment/decrement will be done in modulo 2³². For example, if the operation is LDI and HL31-HL0 (HLz and HL) hold 0000FFFF, after the operation the value in the HL31-HL0 will be 0010000.

Table 5-8. Block Transfer and Search Group

Instruction Name	Format
Compare and Decrement	CPD
Compare, Decrement and Repeat	CPDR
Compare and Increment	CPI
Compare, Increment and Repeat	CPIR
Load and Decrement	LDD
Load, Decrement and Repeat	LDDI
Load and Increment	LDI
Load, Increment and Repeat	LDIR
Load and Decrement in Word/Long Word	LDDW
Load, Decrement and Repeat in Word/Long V	/ord
· · · · ·	LDDRW
Load and Increment in Word/Long Word	LDIW
Load, Increment and Repeat in Word/Long We	ord
,	LDIRW

5.5.4 8-bit Arithmetic and Logical Group

This group of instructions (Table 5-9) perform 8-bit arithmetic and logical operations. The Add, Add with Carry, Subtract, Subtract with Carry, AND, OR, Exclusive OR, and Compare takes one input operand from the accumulator and the other from a register, from immediate data in the instruction itself, or from memory. For memory addressing modes, follows are supported—Indirect Register, Indexed, and Direct Address—except multiplies, which returns the 16-bit result to the same register by multiplying the upper and lower bytes of one of the register pair (BC, DE, HL, or SP).

The Increment and Decrement instructions operate on data in a register or in memory; all memory addressing modes are supported. These instructions operate only on the accumulator—Decimal Adjust, Complement, and Negate. The final instruction in this group, Extend Sign, sets the CPU flags according to the computed result.

The EXTS instruction extends the sign bit and leaves the result in the HL register. If it is in Long Word mode, HLz (HL31-HL16) portion is also affected.

The TST instruction is a nondestructive AND instruction. It ANDs "A" register and source, and changes flags according to the result of operation. Both source and destination values will be preserved.

Instruction Name	Format	src/ dst	A	В	C	D	Ē	н	L	IXH	IXL	IYH	IYL	n	(HL)	(IX+d)	(IY+x)
Add With Carry (Byte) Add (Byte) AND Compare (Byte)	ADC A,src ADD A,src AND [A,]src CP [A,]src	STC STC STC STC STC	イイイイ	イイイ	イイイイ	イイイ	オオオ	イイイイ	イイイイ	イイイ	\checkmark \checkmark \checkmark \checkmark	イイイ	イイイ	イイイイ	イイイ	オオオ	オオオ
Complement Accumulator Decimal Adjust Accumulator Decrement (Byte) Extend Sign (Byte)	CPL [A] DAA DEC dst EXTS [A]	dst dst dst dst	イイイ	1	√	1	1	V	V	1	V	V	√	\checkmark	V	V	V
Increment (Byte) Multiply (Byte) Negate Accumulator OR	INC dst MLT src NEG [A] OR [A,]src	dst Note 1 dst src	イ イ イ	√ √	ا ا	√	√ √		√ √	√	√	√ √	√ √	۲ ۷	√ √	√ √	√ √
Subtract with Carry (Byte) Subtract (Byte) Nondestructive Test Exclusive OR	SBC A,src SUB [A,]src TST dst XOR [A,]src	SIC SIC SIC SIC	オオオ	イイイ	イイイ	イイイ	オオオ	イイイ	イイイ	$\sqrt[n]{\sqrt{1}}$	$\sqrt[n]{}$	√ √ √	イ イ イ	オイイイ	イイイ	イ イ イ	√ √ √

Table 5-9. Supported Source/Destination for 8-Bit Arithmetic and Logic Group

Note 1: dst = BC, DE, HL, or SP.

5.5.5 16-Bit Arithmetic Operation

This group of instructions (Table 5-10) provide 16-bit arithmetic instructions. The Add, Add with Carry, Subtract, Subtract with Carry, AND, OR, Exclusive OR, and Compare takes one input operand from an addressing register and the other from a 16-bit register, or from the instruction itself; the result is returned to the addressing register. The 16-bit Increment and Decrement instructions operate on data found in a register or in memory; the Indirect Register or Direct Address addressing mode can be used to specify the memory operand.

The remaining 16-bit instructions provide general arithmetic capability using the HL register as one of the input operands. The word Add, Subtract, Compare, and signed and unsigned Multiply instructions take one input operand from the HL register and the other from a 16-bit register, from the instruction itself, or from memory using Indexed or Direct Address addressing mode. The 32-bit result of a multiply is returned to the HLz and HL (HL31-HL0). The unsigned divide instruction takes a 16-bit dividend from the HL register and a 16-bit divisor from a register, from the instruction, or memory using the Indexed mode. The 16-bit quotient is returned in the HL register and the 16-bit reminder is returned to the HLz (HL31-HL16). The Extend Sign instruction takes the contents of the HL register and delivers the 32-bit result to the HLz and HL registers. The Negate HL instruction negates the contents of the HL register.

Except for Increment, Decrement, and Extend Sign, all the instructions in this group set the CPU flags to reflect the computed result.

	Farmed	src/			•					()	(1)(-1)	/////	
Instruction Name	Format	dst	BC	DE	HL	SP	IX	IY	nn	(nn)	(IX+d)	(IY+a)	
Add With Carry (Word)	ADC HL,src	src	\checkmark	\checkmark	\checkmark	\checkmark							
	ADCW [HL],src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Add (Word)	ADD HL,src	src	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			Х
	ADD IX,src	src	\checkmark	\checkmark		\checkmark	\checkmark						Х
	ADD IY,src	src	\checkmark	\checkmark		\checkmark		\checkmark					Х
	ADDW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Add to Stack Pointer	ADD SP,nn	src							\checkmark				Х
AND Word	ANDW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Complement Accumulator	CPLW [HL]	dst			\checkmark								
Compare (Word)	CPW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Decrement (Word)	DEC[W] dst	dst	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					Х
Divide Unsigned	DIVUW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Extend Sign (Word)	EXTSW [HL]	dst			\checkmark								
Increment (Word)	INC[W] dst	dst	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					Х
Multiply Word Signed	MULT [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Multiply Word Unsigned	MULTUW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Negate Accumulator	NEGW [A]	dst			\checkmark								
OR Word	ORW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Subtract with Carry (Word)	SBC HL,src	src	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			
	SBCW [HL],src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Subtract (Word)	SUB HL,(nn)	src								\checkmark			Х
	SUBW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Subtract from Stack Pointer	SUB SP,nn	src							\checkmark				Х
Exclusive OR	XORW [HL,]src	src	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	

Table 5-10. 16-Bit Arithmetic Operation

Note: that the instructions with "X" at the rightmost column is affected by Extended mode. These operate across all the 32 bits in Modulo 2³² for address calculation.

5.5.6 8-Bit Manipulation, Rotate and Shift Group

Instructions in this group (Table 5-11) test, set, and reset bits within bytes, and rotate and shift byte data one bit position. Bits to be manipulated are specified by a field within the instruction. Rotate can optionally concatenate the Carry flag to the byte to be manipulated. Both left and right shifting is supported. Right shifts can either shift 0 into bit 7 (logical shifts), or can replicate the sign in bits 6 and 7 (arithmetic shifts). All these instructions, Set Bit and Reset Bit, set the CPU flags according to the calculated result; the operand can be a register or a memory location specified by the Indirect Register or Indexed addressing mode.

The RLD and RRD instructions are provided for manipulating strings of BCD digits; these rotate 4-bit quantities in memory specified by the Indirect Register. The low-order four bits of the accumulator are used as a link between rotation of successive bytes.

Instruction Name	Format	Α	В	С	D	Е	Н	L	(HL)	(IX+d)	(IY+d)
Bit Test Reset Bit Rotate Left Rotate Left Accumulator	BIT dst RES dst RL dst RLA	イイイイ	イイイ	オオオ	イイイ	イイ	イン	\checkmark \checkmark \checkmark	\checkmark \checkmark	イイイ	オオオ
Rotate Left Circular Rotate Left Circular (Accumulator) Rotate Left Digit Rotate Right	RLC dst RLCA RLD RR dst	イイイ	ار ا	لا ا	-√ √	√ √	ل ا	√ √	√	۲ ۲	1
Rotate Right Accumulator Rotate Right Circular Rotate Right Circular (Accumulator) Rotate Right Digit	RRA RRC dst RRCA RRD	イイイ	V	V	~	1	V	V	1	V	1
Set Bit Shift Left Arithmetic Shift Right Arithmetic Shift Right Logical	SET dst SLA dst SRA dst SRL	イイイ	イイイ	イイイ	イイイ	イイイ	イイイ	イイイ	イイイ	イイイ	イイイ

Table 5-11. Bit Set/Reset/Test, Rotate and Shift Group

5.5.7 16-Bit Manipulation, Rotate and Shift Group

Instructions in this group (Table 5-12) rotate and shift word data one bit position. Rotate can optionally concatenate the Carry flag to the word to be manipulated. Both left and right shifting is supported. Right shifts can either shift 0 into

bit 15 (logical shifts), or can replicate the sign in bits 14 and 15 (arithmetic shifts). The operand can be a register pair or memory location specified by the Indirect Register or Indexed addressing mode, as shown below.

	Destination										
Instruction Name	Format	BC	DE	HL	IX	IΥ	(HL)	(HL)	(IX+d)	(IY+d)	
Rotate Left Word	RLW dst	1		\checkmark	1		\checkmark		$\overline{\mathbf{A}}$		
Rotate Left Circular Word	RLCW dst	\checkmark	\checkmark								
Rotate Right Word	RRW dst	\checkmark	\checkmark								
Rotate Right Circular Word	RRCW dst	\checkmark	\checkmark								
Shift Left Arithmetic Word	SLAW dst	\checkmark	\checkmark								
Shift Right Arithmetic Word	SRAW dst	\checkmark									
Shift Right Logical Word	SRLW	\checkmark									

Table 5-12. 16-Bit Rotate and Shift Group.

5.5.8 Program Control Group

This group of instructions (Table 5-13) affect the Program Counter (PC) and thereby control program flow. The CPU registers and memory are not altered except for the Stack Pointer and the Stack, which play a significant role in procedures and interrupts. (An exception is Decrement and Jump if Non-Zero [DJNZ], which uses a register as a loop counter.) The flags are also preserved except for the two instructions specifically designed to set and complement the Carry flag.

The Set/Reset Condition flag instructions can be used with Conditional Jump, conditional Jump Relative, Conditional Call, and Conditional Return instructions to control the program flow.

The Jump and Jump Relative (JR) instructions provide a conditional transfer of control to a new location if the processor flags satisfy the condition specified in the instruction. Jump Relative, with an 8-bit offset (JR e), is a two byte instruction that jumps any instructions within the range -126 to +129 bytes from the location of this instruction. Most conditional jumps in programs are made to locations only a few bytes away; the Jump Relative, with an 8-bit offset, exploits this fact to improve code compactness and efficiency. Jump Relative, with a 16-bit offset (JR [cc,]ee), is a four byte instruction that jumps any instructions within the range -32765 to +32770 bytes from the location of this instruction, and Jump Relative, with a 24-bit offset (JR [cc,] eee), is a five byte instruction that jumps any instructions within the range -8388604 to +8388611 bytes from the location of this instruction. By using these Jump Relative instructions with 16-bit or 24-bit offsets allows to write relocatable (or location independent) programs.

Call and Restart are used for calling subroutines; the current contents of the PC are pushed onto the stack and the effective address indicated by the instruction is loaded

into the PC. The use of a procedure address stack in this manner allows straightforward implementation of nested and recursive procedures. Call, Jump, and Jump Relative can be unconditional or based on the setting of a CPU flag.

Call Relative (CALR) instructions work just like ordinary Call instructions, but with Relative address. An 8-bit, 16bit, or 24-bit offset value can be used, and that allows to call procedure within the range of -126 to +129 bytes (8-bit offset;CALR [cc,]e), -32765 to +32770 bytes (16-bit offset; CALR [cc,]ee), or -8388604 to +8388611 bytes (JR [cc,] eee) are supported. These instructions are really useful to program relocatable programs.

Jump is available with Indirect Register mode in addition to Direct Address mode. It can be useful for implementing complex control structures such as dispatch tables. When using Direct Address mode for a Jump or Call, the operand is used as an immediate value that is loaded into the PC to specify the address of the next instruction to be executed.

The conditional Return instruction is a companion to the call instruction; if the condition specified in the instruction is satisfied, it loads the PC from the stack and pops the stack.

A special instruction, Decrement and Jump if Non-Zero (DJNZ), implements the control part of the basic Pascal FOR loop which can be implemented in an instruction. It supports 8-bit, 16-bit, and 24-bit displacement.

Note that Jump Relative, Call Relative, and DJNZ instructions use modulo 2¹⁶ in Native mode, and 2³² in Extended mode for address calculation. So it is possible that the Z380 CPU can jump to an unexpected address.

Instruction Name	Format	nn	(PC+d)	(HL)	(IX)	(IY)
Call	CALL cc,dst	√				
Complement Carry Flag	CCF					
Call Relative	CALR cc,dst		\checkmark			
Decrement and Jump if Non-zero	DJNZ dst		\checkmark			
Jump	JP cc,dst	1				
	JP dst			\checkmark	\checkmark	\checkmark
Jump Relative	JR cc,dst		\checkmark			
Return	RET cc					
Restart	RST p	\checkmark				
Set Carry Flag	SCF					

Table 5-13. Program Control Group Instructions

5.5.9 External Input/Output Instruction Group

This group of instructions (Table 5-14) are used for transferring a byte, a word, or string of bytes or words between peripheral devices and the CPU registers or memory. Byte I/O port addresses transfer bytes on D7-D0 only. These 8bit peripherals in a 16-bit data bus environment must be connected to data line D7-D0. In an 8-bit data bus environment, word I/O instructions to external I/O peripherals should not be used; however, on-chip peripherals which is external to the CPU core and assigned as word I/O device can still be accessed by word I/O instructions.

The instructions for transferring a single byte (IN, OUT) can transfer data between any 8-bit CPU register or memory address specified in the instruction and the peripheral port specified by the contents of the C register. The IN instruction sets the CPU flags according to the input data; however, special instructions restricted to using the CPU accumulator and Direct Address mode and do not affect the CPU flags. Another variant tests an input port specified by the contents of the C register and sets the CPU flags without modifying CPU registers or memory.

The instructions for transferring a single word (INW, OUTW) can transfer data between the register pair and the peripheral port specified by the contents of the C register. For Word I/O, the contents of B, D, or H appear on D7-D0 and

the contents of C, E, or L appear D15-D7. These instructions do not affect the CPU flags.

Also, there are I/O instructions available which allow to specify 16-bit absolute I/O address (with DDIR decoder directives, a 24-bit or 32-bit address is specified) is available. These instructions do not affect the CPU flags.

The remaining instructions in this group form a powerful and complete complement of instructions for transferring blocks of data between I/O ports and memory. The operation of these instructions is very similar to that of the block move instructions described earlier, with the exception that one operand is always an I/O port whose address remains unchanged while the address of the other operand (amemory location) is incremented or decremented. In Word mode of transfer, the counter (i.e., BC register) holds the number of transfers, rather than number of bytes to transfer in memory-to-memory word block transfer. Both byte and word forms of these instructions are available. The automatically repeating forms of these instructions are interruptible, like memory-to-memory transfer.

The I/O addresses output on the address bus is dependant on the I/O instruction, as listed in Table 2-1.

5.5.9 External Input/Output Instruction Group (Continued)

Instruction Name	Format	
Input Input Accumulator Input to Word-Wide Register Input Byte from Absolute Address	IN dst,(C) IN A,(n) INW dst,(C) INAW A,(nn)	dst=A, B, C, D, E, H or L dst=BC, DE or HL
Input Word from Absolute Address Input and Decrement (Byte) Input and Decrement (Word) Input, Decrement, and Repeat (Byte)	INAW HL,(nn) IND INDW INDR	
Input, Decrement, and Repeat (Word) Input and Increment (Byte) Input and Increment (Word) Input, Increment, and Repeat (Byte)	INDRW INI INIW INIR	
Input, Increment, and Repeat (Word) Output Output Accumulator Output from Word-Wide Register	INIRW OUT (C),src OUT (n),A OUTW (C), src	src = A, B, C, D, E, H, L, or n src = BC, DE, HL, or nn
Output Byte from Absolute Address Output Word from Absolute Address Output and Decrement (Byte) Output and Decrement (Word)	OUTAW (nn),A OUTAW (nn),HL OUTD OUTDW	
Output, Decrement, and Repeat (Byte) Output, Decrement, and Repeat (Word) Output and Increment (Byte) Output and Increment (Word) Output, Increment, and Repeat (Byte) Output, Increment, and Repeat (Word)	OTDR OTDRW OUTI OTIW OTIR OTIRW	

5.5.10 Internal I/O Instruction Group

This group (Table 5-15) of instructions is used to access on-chip I/O addressing space on the Z380 CPU. This group consists of instructions for transferring a byte from/ to Internal I/O locations and the CPU registers or memory, or a blocks of bytes from the memory to the same size of Internal I/O locations for initialization purposes. These instructions are originally assigned as newly added I/O instructions on the Z180 MPU to access Page 0 I/O addressing space. There is 256 Internal I/O locations, and all of them are byte-wide. When one of these I/O instructions is executed, the Z380 MPU outputs the register address being accessed in a pseudo transaction of two BUSCLK durations cycle, with the address signals A31-A8 at 0. In the pseudo transactions, all bus control signals are at their inactive state.

The instructions for transferring a single byte (IN0, OUT0) can transfer data between any 8-bit CPU register and the Internal I/O address specified in the instruction. The IN0 instruction sets the CPU flags according to the input data; however, special instructions which do not have a destina-

tion in the instruction with Direct Address (INO (n)), do not affect the CPU register, but alters flags accordingly. Another variant, the TSTIO instruction, does a logical AND to the instruction operand with the internal I/O location specified by the C register and changes the CPU flags without modifying CPU registers or memory.

The remaining instructions in this group form a powerful and complete complement of instructions for transferring blocks of data from memory to Internal I/O locations. The operation of these instructions is very similar to that of the block move instructions described earlier, with the exception that one operand is always an Internal I/O location whose address also increments or decrements by one automatically, Also, the address of the other operand (a memory location) is incremented or decremented. Since Internal I/O space is byte-wide, only byte forms of these instructions are available. Automatically repeating forms of these instructions are interruptible, like memory-tomemory transfer.

Instruction Name Format								
	Format							
Input from Internal I/O Location	IN0 dst,(n)	dst=A, B, C, D, E, H or L						
Input from Internal I/O Location(Nondestructive)	INO (n)							
Test I/O	TSTIO n							
Output to Internal I/O Location	OUT0 (n),src	src=A, B, C, D, E, H or L						
Output to Internal I/O and Decrement	OTDM							
Output to Internal I/O and Increment	OTIM							
Output to Internal I/O, Decrement and Repeat	OTDMR							
Output to Internal I/O, Increment and Repeat	OTIMR							

Table 5-15. Internal I/O Instruction Group

Currently, the Z380 CPU core has the following registers as a part of the CPU core:

Register Name	Internal I/O address	
Interrupt Enable Register	16H	
Assigned Vector Base Register	17H	
Trap Register	18H	
Chip Version ID Register	OFFH	

Chip Version ID register returns one byte data, which indicates the version of the CPU, or the specific implementation of the Z380 CPU based Superintegration device. Currently, the value 00H is assigned to the Z380 MPU, and other values are reserved. Also, the Z380 MPU has registers to control chip selects, refresh, waits, and I/O clock divide to Internal I/O address 00H to 10H. For these register, refer to Z380 MPU Product specification.

For the other three registers, refer to Chapter 6, "Interrupt and Trap."

5.5.11 CPU Control Group

The instructions in this group (Table 5-16) act upon the CPU control and status registers or perform other functions that do not fit into any of the other instruction groups. These include two instructions used for returning from an interrupt service routine. Return from Nonmaskable Interrupt (RETN) and Return from Interrupt (RETI) are used to pop the Program Counter from the stack and manipulate the Interrupt Enable Flag (IEF1 and IEF2), or to signal a reset to the Z80 peripherals family.

The Disable and Enable Interrupt instructions are used to set/reset interrupt mask. Without a mask parameters, it disables/enables maskable interrupt globally. With mask data, it enables/disables interrupts selectively.

HALT and SLEEP instructions stop the CPU and waits for an event to happen, or puts the system into the power save mode.

Bank Test instructions reports which register file, primary or alternate bank, is in use at the time, and reflect the status into a flag register. For example, this instruction is useful to implement the recursive program, which uses the alternate bank to save a register for the first time, and saves registers into memory thereafter.

Mode Test instructions reports the current mode of operation, Native/Extended, Word/Long Word, Locked or not. This instruction can be used to switch procedures depending on the mode of operation.

Load Accumulator from R or I Register instructions are used to report current interrupt mask status. Load from/to register instructions are used to initialize the I register.

Load Control register instructions are used to read/write the Status Register, set/reset control bit instructions and to set/reset the control bits in the SR.

The No Operation instruction does nothing, and can be used as a filler, for debugging purposes, or for timing adjustment.

Instruction Name	Format		
Bank Test	BTEST		
Disable Interrupt	DI [mask]		
Enable Interrupt	El [mask]		
HALT ' '	HALT		
Interrupt Mode Select	a MI		
Load Accumulator from I or R Register	LD A,src		
Load I or R Register from Accumulator	LD dst.A		
Load I Register from HL Register	LD[W] HL,I		
Load HL Register from I Register	LD[W] HL,I		
Load Control	LDCTL dst.src		
Mode Test	MTEST		
No Operation	NOP		
Return from Interrupt	RETI		
Return from Nonmaskable Interrupt	RETN		
Reset Control Bit	RESC dst	dst=LCK, LW	
Set Control Bit	SETC dst	dst=LCK, LW, XM	
Sleep	SLP		

Table 5-16. CPU Control Group

5.5.12 Decoder Directives

The Decoder Directives (Table 5-17) are a special instructions to expand the Z80 instruction set to handle the Z380's 4 Gbytes of linear memory addressing space. For details on this instruction, refer to Chapter 3.

Table 5-17. Decoder Directive Instructions

DDIR W	Word Mode
DDIR IB,W	Immediate Byte, Word Mode
DDIR IW,W	Immediate Word, Word Mode
DDIR IB	Immediate Byte
DDIR LW	Long Word Mode
DDIR IB,LW	Immediate Byte, Long Word Mode
DDIR IW,LW	Immediate Word, Long Word Mode
DDIR IW	Immediate Word

5.6 NOTATION AND BINARY ENCODING

The rest of this chapter consists of a detailed description of the Z380 CPU instructions, arranged in alphabetical order by mnemonic. This section describes the notational conventions used in the instruction descriptions and the binary encoding for register fields within the instruction's operation codes (opcodes).

The description of each instruction begins on a new page. The instruction mnemonic and name are printed in bold letters at the top of each page to enable the reader to easily locate a desired description. The assembly language syntax is then given in a single generic form that covers all the variants of the instruction, along with a list of applicable addressing modes. This is followed by a description of the operation performed by the instruction in "pseudo Pascal" fashion, a detailed description, a listing of all the flags that are affected by the instruction, and illustrations of the opcodes for all variants of the instruction.

Symbols. The following symbols are used to describe the instruction set.

- n An 8-bit constant
- nn A 16-bit constant
- d An 8-bit offset. (two's complement)
- src Source of the instruction
- dst Destination of the instruction
- SR Select Register
- R Any register. In Word operation, any register pair. Any 8-bit register (A, B, C, D, E, H, or L) for Byte operation.
- IR Indirect register
- RX Indexed register (IX or IY) in Word operation, IXH, IXL, IYH, or IYL for Byte operation.
- SP Current Stack Pointer
- (C) I/O Port pointed by C register
- cc Condition Code
- [] Optional field
- () Indirect Address Pointer or Direct Address

Assignment of a value is indicated by the symbol " \leftarrow ". For example,

dst ← dst + src

indicates that the source data is added to the destination data and the result is stored in the destination location.

The symbol " \leftrightarrow " indicates that the source and destination is swapping. For example,

 $dst \leftrightarrow src$

indicates that the source data is swapped with the data in the destination; after the operation, data at "src" is in the "dst" location, and data in "dst " is in the "src" location.

The notation "dst (b)" is used to refer to bit "b" of a given location, "dst(m-n)" is used to refer to bit location m to n of the destination. For example,

HL(7) specifies bit 7 of the destination. and HL(23-16) specifies bit location 23 to 16 of the HL

register.

Flags. The F register contains the following flags followed by symbols.

- S Sign Flag
- Z Zero Flag
- H Half Carry Flag
- P/V Parity/Overflow Flag
- N Add/Subtract Flag
- C Carry Flag

5.6 NOTATION AND BINARY ENCODING (Continued)

Condition Codes. The following symbols describe the condition codes.

Z	Zero*
NZ	Not Zero*
С	Carry*
NC	No Carry*
S	Sign
NS	No Sign
NV	No Overflow
V	Overflow
PE	Parity Even
PO	Parity Odd
Ρ	Positive
М	Minus

*Abbreviated set

Field Encoding. For opcode binary format in the Tables, use the following convention:

For example, to get the opcode format on the instruction LD (IX+12h), C

First, find out the entry for "LD (XY+d),R". That entry has a opcode format of

11 y11 101 01 110 -r- \leftarrow d \rightarrow

5.7 EXECUTION TIME

Table 5-18 details the execution time for each instruction encoding. All execution times are for instruction execution only. Clock cycles required for fetch and decode are not included because most of the time the clocks required for these operations occur in parallel with execution of the previous instruction(s).

r in the execution time column indicates a memory read operation. The time required for a read operation is shown in the Table 5-18 below.

w in the execution time column indicates a memory write operation. The time required for a write operation is shown in the Table 5-18 below.

On the bottom of the each instruction, there are the field encodings, if applicable. For the cases which call out "per convention," then use the following encoding:

r Rea 000 В 001 С 010 D E 011 Н 100 101 L 111 А

To form the opcode, first, look for the "y" field value for IX register, which is 0.

Then find "r" field value for the C register, which is 001. Replace "y" and "r" field with the value from the table, replace "d" value with the real number. The results being:

<u>76 543 210</u>	<u>HEX</u>
11 011 101	DD
01 110 001	71
00 010 010	21

i in the execution time column indicates an I/O read operation. The time required for a read operation is shown in the Table 5-18 below.

o in the execution time column indicates an I/O write operation. The time required for a write operation is shown in the Table 5-18 below.

All entries in the table below assume no wait states. The number of wait states per operation must be added to these numbers.

Table 5-18. Execution Time								
Operation	Byte	Word	Word	Long	Long	Long	Long	Long
Sequence	В	W	B/B	W/W	W/B/B	B/W/B	B/B/W	B/B/B/B
Memory Read	3-4	3-4	5-6	5-6	7-8	7-8	7-8	9-10
Memory Write	0-1	0-1	2-3	2-3	4-5	4-5	4-5	6-7
Internal I/O Read	3-4	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Internal I/O Write	0-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1X External I/O Read	4-5	4-5	N/A	N/A	N/A	N/A	N/A	N/A
1X External I/O Write	1-2	1-2	N/A	N/A	N/A	N/A	N/A	N/A
2X External I/O Read	9-11	9-11	N/A	N/A	N/A	N/A	N/A	N/A
2X External I/O Write	1-3	1-3	N/A	N/A	N/A	N/A	N/A	N/A
4X External I/O Read	17-21	17-21	N/A	N/A	N/A	N/A	N/A	N/A
4X External I/O Write	1-5	1-5	N/A	N/A	N/A	N/A	N/A	N/A
6X External I/O Read	25-31	25-31	N/A	N/A	N/A	N/A	N/A	N/A
6X External I/O Write	1-7	1-7	N/A	N/A	N/A	N/A	N/A	N/A
8X External I/O Read	33-41	33-41	N/A	N/A	N/A	N/A	N/A	N/A
8X External I/O Write	1-9	1-9	N/A	N/A	N/A	N/A	N/A	N/A

Note: Units are in Clocks. "N/A" is not applicable for that particular transaction.

5

ADC ADD WITH CARRY (BYTE)

ADC A,src src = R, RX, IM, IR, X

Operation: $A \leftarrow A + src + C$

The source operand together with the Carry flag is added to the accumulator and the sum is stored in the accumulator. The contents of the source is unaffected. Two's complement addition is performed.

Flags:

- S: Set if the result is negative; cleared otherwise Z: Set if the result is zero; cleared otherwise
- H: Set if there is a carry from bit 3 of the result: cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if both operands cleared otherwise
- N: Cleared
- C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	ADC A,R	10001-r-	2	
RX:	ADC A,RX	11y11101 1000110w	2	
IM:	ADC A,n	11001110 — n—	2	
IR:	ADC A,(HL)	10001110	2+r	
X:	ADC A,(XY+d)	11y11101 10001110d	4+r	I

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

ADC ADD WITH CARRY (WORD)

	ADC HL,src	dst = HL src = BC, DE, H	IL, SP			
Operation:	HL(15-0) ← HL(15	5-0) + src(15-0) + C	C			
		ter. The contents of		d to the HL register and the sum is re unaffected. Two's complement		
Flags:	 Set if the result is negative; cleared otherwise Z: Set if the result is zero; cleared otherwise H: Set if there is a carry from bit 11 of the result; cleared otherwise V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise N: Cleared C: Set if there is a carry from the most significant bit of the result; cleared otherwise 					
Addressing Mode R:		on Format	Execute Time 2	Note		

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

ADCW ADD WITH CARRY (WORD)

ADCW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) \leftarrow HL(15-0) + src(15-0) + C

The source operand together with the Carry flag is added to the HL register and the sum is stored in the HL register. The contents of the source are unaffected. Two's complement addition is performed.

Flags:

- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
- H: Set if there is a carry from bit 11 of the result; cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise
- N: Cleared
- C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	ADCW [HL,]R	11101101 100011rr	2	
RX:	ADCW [HL,]RX	11y11101 10001111	2	
IM:	ADCW [HL,]nn	11101101 10001110 -n(low)- n(high)-	2	
X:	ADCW [HL,](XY+d)	11y11101 11001110d	4+r	1

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: 0 for IX, 1 for IY

ADD ADD (BYTE)

ADD A,src	src = R.	RX.	IM.	IR.)	K
-----------	----------	-----	-----	-------	---

Operation: $A \leftarrow A + src$

The source operand is added to the accumulator and the sum is stored in the accumulator. The contents of the source are unaffected. Two's complement addition is performed.

- Flags:
- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
- H: Set if there is a carry from bit 3 of the result; cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise
- N: Cleared
- C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	ADD A,R	10000-r-	2	
RX:	ADD A,RX	11y11101 1000010w	2	
IM:	ADD A,n	11000110	2	
IR:	ADD A,(HL)	10000110	2+r	
Х:	ADD A,(XY+d)	11y11101 10000110 ——d—	4+r	I

- Field Encodings: r: per convention
 - y: 0 for IX, 1 for IY
 - w: 0 for high byte, 1 for low byte

1

ADD ADD (WORD)

	ADD dst,src	dst = HL; src = BC, DE, HL, SP, DA or dst = IX; src = BC, DE, IX, SP or		
Operation:	If (XM) then begin dst(31-0) ← dst(3 end else begin dst(15-0) ← dst(1 end			
	contents of the source the length of the ope	s added to the destination and the sum is store e are unaffected. Two's complement addition rand is controlled by the Extended/Native m anipulation of an address by the instruction.	is performed. Note	that
Flags:	V: Unaffected N: Cleared	carry from bit 11 of the result; cleared other carry from the most significant bit of the resu		е
Addressing Mode R:	Syntax ADD HL,R	Instruction Format 00rr1001	Execute Time 2	Note X

к:	ADD HL,R	00rr1001		2	X
RX:	ADD XY,R	11y11101 00rr1001		2	Х
DA:	ADD HL,(nn)	11101101 11000110 -n(low)-	n(high)-	2+r	I, X

 Field Encodings:
 rr:
 00 for BC, 01 for DE, 10 for register to itself, 11 for SP

 y:
 0 for IX, 1 for IY

ADD ADD TO STACK POINTER (WORD)

	ADD SP,src src = IM			
Operation:	end else begin	SP(31-0) + src(31-0) SP(15-0) + src(15-0)		
	•	dded to the SP register and the sum is stored in the ng or allocating space on the stack. Two's comple	•	
Flags:	V: Unaffected N: Cleared	y from bit 11 of the result; cleared otherwise y from the most significant bit of the result; cleared	d otherwise	
Addressing Mode IM:	Syntax ADD SP,nn	Instruction Format 11101101 10000010 -n(low)n(high)	Execute Time 2	Note I, X

ADDW

Z380[™] User's Manual

ADD (WORD)

ADDW [HL,]src

src = R, RX, IM, X

Operation: HL(15-0) \leftarrow HL(15-0) + src(15-0)

The source operand is added to the HL register and the sum is stored in the HL register. The contents of the source are unaffected. Two's complement addition is performed.

Flags:

S: Set if the result is negative; cleared otherwise

- Z: Set if the result is zero; cleared otherwise
- H: Set if there is a carry from bit 11 of the result; cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise
- N: Cleared
- C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	ADDW [HL,]R	11101101 100001rr	2	
RX:	ADDW [HL,]RX	11y11101 10000111	2	
IM:	ADDW [HL,]nn	11101101 10000110 -n(low)- n(high)-	2	
X:	ADDW [HL,](XY+d)	11y11101 11000110 —d—	4+r	I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: 0 for IX, 1 for IY

.

AND AND (BYTE)

AND [A,]src src = R, RX, IM, IR, X

Operation: A ← A AND src

A logical AND operation is performed between the corresponding bits of the source operand and the accumulator and the result is stored in the accumulator. A 1 is stored wherever the corresponding bits in the two operands are both 1s; otherwise a 0 is stored. The contents of the source are unaffected.

Flags:

- S: Set if the most significant bit of the result is set; cleared otherwise
 - Z: Set if all bits of the result are zero; cleared otherwise
 - H: Set
 - P: Set if the parity is even; cleared otherwise
 - N: Cleared
 - C: Cleared

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	AND [A,]R	10100-r-	2	
RX:	AND [A,]RX	11y11101 1010010w	2	
IM:	AND [A,]n	11100110n	2	
IR:	AND [A,](HL)	10100110	2+r	
X:	AND [A,](XY+d)	11y11101 10100110d	4+r	I

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

[®]Silæ

ANDW AND (WORD)

	ANDW [HL,]src src :	= R, RX, IM, X		
Operation:	HL(15-0) ← HL(15-0) AN	ND src(15-0)		
	and the HL register and the	rformed between the corresponding bits of the result is stored in the HL register. A 1 is stored operands are both 1s; otherwise a 0 is stople.	ored wherever the	e
Flags:	 S: Set if the most significan Z: Set if all bits of the result H: Set P: Set if the parity is even; of N: Cleared C: Cleared 			
Addressing Mode R: RX: IM: X:	Syntax ANDW [HL,]R ANDW [HL,]RX ANDW [HL,]nn ANDW [HL,](XY+d)	Instruction Format 11101101 101001rr 11y11101 10100111 1110110110100110 n(low)- n(high)- 11y11101 11100110d	Execute Time 2 2 2 4+r	Note

 Field Encodings:
 rr:
 00 for BC, 01 for DE, 11 for HL

 y:
 0 for IX, 1 for IY

BIT **BIT TEST**

BIT b,dst dst = R, IR, X

Operation: $Z \leftarrow NOT dst(b)$

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if the specified bit is 0, otherwise the Zero flag is cleared to 0. The contents of the destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruction; this field contains the binary encoding for the bit number to be tested. The bit number b must be between 0 and 7.

- Flags:
- S: Unaffected
 - Z: Set if the specified bit is zero; cleared otherwise
 - H: Set
 - V: Unaffected
 - Cleared N:
 - C: Unaffected

Addressing			Execu	te
Mode	Syntax	Instruction Format	Time	Note
R:	BIT b,R	11001011 01bbb-r-	2	
IR:	BIT b,(HL)	11001011 01bbb110	2+r	
Х:	BIT b,(XY+d)	11y11101 11001011d 01bbb110	4+r	I

- Field Encodings: r: per convention

 - y: 0 for IX, 1 for IY

BTEST BANK TEST

BTEST

Operation:

 $\begin{array}{rcl} S & \leftarrow & SR(16) \\ Z & \leftarrow & SR(24) \\ V & \leftarrow & SR(0) \\ C & \leftarrow & SR(8) \end{array}$

The Alternate Register bits in the Select Register (SR) are transferred to the flags. This allows the program to determine the state of the machine.

Flags:

- S: Set if the alternate bank IX is in use; cleared otherwise
- Z: Set if the alternate bank IY is in use; cleared otherwise
- H: Unaffected
- V: Set if the alternate bank AF is in use; cleared otherwise
- N: Unaffected

,

C: Set if the alternate bank of BC, DE and HL is in use; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	BTEST	11101101 11001111	2	

CALL CALL

	CALL [cc,]dst	dst =	DA
Operation:	if (cc is TRUE) then be if (XM) then begin SP (SP)	egin ← ←	SP - 4 PC(7-0)
	(SP+1)	←	PC(15-8)
	(SP+2)	←	PC(23-16)
	(SP+3)	\leftarrow	PC(31-24)
	PC(31-0)	\leftarrow	dst(31-0)
	else begin		
	SP	\leftarrow	SP - 2
	(SP)	\leftarrow	PC(7-0)
	(SP+1)	\leftarrow	PC(15-8)
	PC(15-0) end	\leftarrow	dst(15-0)
	end		

A conditional Call transfers program control to the destination address if the setting of a selected flag satisfies the condition code "cc" specified in the instruction; an Unconditional Call always transfers control to the destination address. The current contents of the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the first instruction byte following the Call instruction. The destination address is then loaded into the PC and points to the first instruction of the called procedure. At the end of a procedure a Return instruction (RET) can be used to return to the original program.

Each of the Zero, Carry, Sign, and Overflow Flags can be individually tested and a call performed conditionally on the setting of the flag.

The operand is not enclosed in parentheses with the CALL instruction.

Flags: S: Unaffected

- Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing	g		Execute	
Mode	Syntax	Instruction Format	Time	Note
DA:	CALL CC, addr	11-cc100 -a(low)a(high)	note	I, X
	CALL addr	11001101 -a(low)a(high)	4+w	I, X

 Field Encodings:
 cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V, 110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

CALR CALL RELATIVE

	CALR [cc,]dst	dst =	RA
Operation:	if (cc is true) then beg	in	
	dst	←	SIGN EXTEND dst
	if (XM) then begin		
	SP	←	SP - 4
	(SP)	←	PC(7-0)
	(SP+1)	←	PC(15-8)
	(SP+2)	←	PC(23-16)
	(SP+3)	←	PC(31-24)
	PC(31-0)	\leftarrow	PC(31-0) + dst(31-0)
	end		. ,
	else begin		
	SP	\leftarrow	SP - 2
	(SP)	\leftarrow	PC(7-0)
	(SP+1)	\leftarrow	PC(15-8)
	PC(15-0)	\leftarrow	PC(15-0) + dst(15-0)
	end		
	end		

end

A conditional Call transfers program control to the destination address if the setting of a selected flag satisfies the condition code "cc" specified in the instruction; an unconditional call always transfers control to the destination address. The current contents of the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the first instruction byte following the Call instruction. The destination address is then loaded into the PC and points to the first instruction of the called procedure. At the end of a procedure a RETurn instruction is used to return to the original program. These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two's complement displacement from the PC to permit calls within the range of -126 to +129 bytes, -32,765 to +32,770 bytes or -8,388,604 to +8,388,611 bytes from the location of this instruction.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call performed conditionally on the setting of the flag.

Flags:	S:	Unaffected

- Z: Unaffected
 - H: Unaffected
 - .V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
RA:	CALR CC, addr	11101101 11-cc100 —disp—	note	Х
	CALR addr	11101101 11001101 —disp—	4+w	Х
	CALR CC,addr	11011101 11-cc100 -d(low)d(high)	note	Х
	CALR addr	11011101 11001101 -d(low)d(high)	4+w	Х
	CALR CC,addr	11111101 11-cc100 -d(low)d(mid)d(high)	note	Х
	CALR addr	11111101 11001101 -d(low)d(mid) -d(high)	4+w	Х

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V, 110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

CCF COMPLEMENT CARRY FLAG

CCF

Operation: $C \leftarrow NOT C$

The Carry flag is inverted.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: The previous state of the Carry flag
 - V: Unaffected
 - N: Cleared
 - C: Set if the Carry flag was clear before the operation; cleared otherwise

Addressing			Execute
Mode	Syntax CCF	Instruction Format 00111111	Time Note 2

CP COMPARE (BYTE)

CP [A,]src src = R, RX, IM, IR, X

Operation: A - src

The source operand is compared with the accumulator and the flags are set accordingly. The contents of the accumulator and the source are unaffected. Two's complement subtraction is performed.

Flags:

- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
 - H: Set if there is a borrow from bit 4 of the result; cleared otherwise
 - V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the result is of the same sign as the source; cleared otherwise
 - N: Set
 - C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing Mode	Syntax	Instruction Format	Execute Time	Note
R:	CP [A,]R	10111-r-	2	
RX:	CP [A,]RX	11y11101 1011110w	2	
IM:	CP [A,]n	11111110 — n-	2	
IR:	CP [A,](HL)	10111110	2+r	
X:	CP [A,](XY+d)	11y11101 10111110d	4+r	I

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

CPW COMPARE (WORD)

	CPW [HL,]	src	src = R, I	RX, IM, X					
Operation:	HL(15-0) -	src(15-0)							
		f the HL reg				d the flags a ed. Two's cc			
Flags:	Z: Set i H: Set i V: Set i resu N: Set	f arithmetic o It is of the sa	s zero; clea porrow from overflow oc ame sign as	ared otherw n bit 12 of th curs, that is s the source	ise e result; c , if the ope e; cleared	leared other rands are of otherwise bit of the res	differe	Ū	
Addressing Mode R: RX: IM: X:	Syntax CPW [HL,] CPW [HL,] CPW [HL,] CPW [HL,]	RX nn	-	Instruction 11101101 1 11y11101 1 11y11101 1 11y11101 1 11y11101 1	011111rr 01111111 0111110 -	n(low)- n(hig —d—	gh)-	Execute Time 2 2 2 4+r	Note
Field Encodin	igs: rr: y:		BC, 01 for K, 1 for IY	DE, 11 for H	ΗL				

Ę

CPD COMPARE AND DECREMENT (BYTE)

CPD

Operation:	A - (HL) if (XM) then be	egin	
	HL(31-0) end	~	HL(31-0) - 1
	else begin		
	HL(15-0) end	←	HL(15-0) - 1
	BC(15-0)	←	BC(15-0) - 1

This instruction is used for searching strings of byte data. The byte of data at the location addressed by the HL register is compared with the contents of the accumulator and the Sign and Zero flags are set to reflect the result of the comparison. The contents of the accumulator and the memory bytes are unaffected. Two's complement subtraction is performed. Next the HL register is decremented by one, thus moving the pointer to the previous element in the string. The BC register, used as a counter, is then decremented by one.

Flags:

- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero, indicating that the contents of the accumulator and the memory byte are equal; cleared otherwise
- H: Set if there is a borrow from bit 4 of the result; cleared otherwise
- V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
- N: Set
- C: Unaffected

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	Note	
	CPD	11101101 10101001	3+r	Х	

CPDR

COMPARE, DECREMENT AND REPEAT (BYTE)

CPDR **Operation:** Repeat until (BC=0 OR match) begin A - (HL) if (XM) then begin HL(31-0) HL(31-0) - 1 ←end else begin HL(15-0) HL(15-0) - 1 end BC(15-0) BC(15-0) - 1 end

This instruction is used for searching strings of byte data. The bytes of data starting at the location addressed by the HL register are compared with the contents of the accumulator until either an exact match is found or the string length is exhausted becuase the BC register has decremented to zero. The Sign and Zero flags are set to reflect the result of the comparison. The contents of the accumulator and the memory bytes are unaffected. Two's complement subtraction is performed.

After each comparison, the HL register is decremented by one, thus moving the pointer to the previous element in the string.

The BC register, used as a counter, is then decremented by one. If the result of decrementing the BC register is not zero and no match has been found, the process is repeated. If the contents of the BC register are zero at the start of this instruction, a string length of 65,536 is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value at the start of this instruction is pushed onto the stack so that the instruction can be resumed.

Flags:

- S: Set if the last result is negative; cleared otherwise
 - Z: Set if the last result is zero, indicating a match; cleared otherwise
 - H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
 - V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
 - N: Set
 - C: Unaffected

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	Note	
	CPDR	11101101 10111001	(3+r)n	Х	

CPI **COMPARE AND INCREMENT (BYTE)**

CPI	
-----	--

Operation:	A - (HL) if (XM) then beg HL(31-0) end else begin HL(15-0)	~	HL(31-0) + 1 HL(15-0) + 1		
	end BC(15-0)	\leftarrow	BC(15-0) - 1		
	addressed by th and Zero flags a and the memory HL register is in	ne HL re are set to / bytes a cremer	d for searching strings of egister is compared with t o reflect the result of the c are unaffected. Two's cor nted by one, thus moving as a counter, is then de	he contents of the ac omparison. The cont nplement subtractio the pointer to the ne	ccumulator and the Sign tents of the accumulator in is performed. Next the
Flags:	Z: Set if the re- byte are equal; H: Set if there	sult is zo cleared is a boo sult of d	negative; cleared otherw ero, indicating that the co d otherwise rrow from bit 4 of the res decrementing BC is not	ontents of the accun ult; cleared otherwi	se
Addressing Mode	Syntax CPI		uction Format 1101 10100001	Execute Time 3+r	Note X

CPIR COMPARE, INCREMENT AND REPEAT (BYTE)

CPIR **Operation:** Repeat until (BC=0 OR match) begin A - (HL) if (XM) then begin HL(31-0) HL(31-0) + 1 end else begin HL(15-0) HL(15-0) + 1 4 end BC(15-0) BC(15-0) - 1 end

This instruction is used for searching strings of byte data. The bytes of data starting at the location addressed by the HL register are compared with the contents of the accumulator until either an exact match is found or the string length is exhausted becuase the BC register has decremented to zero. The Sign and Zero flags are set to reflect the result of the comparison. The contents of the accumulator and the memory bytes are unaffected. Two's complement subtraction is performed.

After each comparison, the HL register is incremented by one, thus moving the pointer to the next element in the string. The BC register, used as a counter, is then decremented by one. If the result of decrementing the BC register is not zero and no match has been found, the process is repeated. If the contents of the BC register are zero at the start of this instruction, a string length of 65,536 is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value at the start of this instruction is pushed onto the stack so that the instruction can be resumed.

Flags:

- S: Set if the last result is negative; cleared otherwise
- Z: Set if the last result is zero, indicating a match; cleared otherwise
- H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
- V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
- N: Set
- C: Unaffected

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	Note	
	CPIR	11101101 10110001	(3+r)n	х	

CPL COMPLEMENT ACCUMULATOR

CPL [A]

Operation: A \leftarrow NOT A

The contents of the accumulator are complemented (one's complement); all 1s are changed to 0 and vice-versa.

- Flags: S: Unaffected Z: Unaffected H: Set
 - V: Unaffected
 - N: Set
 - C: Unaffected

Addressing			Execute	
Mode	Syntax CPL [A]	Instruction Format 00101111	Time N 2	ote

CPLW COMPLEMENT HL REGISTER (WORD)

CPLW [HL]

Operation: HL(15-0) \leftarrow NOT HL(15-0)

The contents of the HL register are complemented (ones complement); all 1s are changed to 0 and vice-versa.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: Set
 - V: Unaffected
 - N: Set
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	CPLW [HL]	11011101 00101111	2	

DAA DECIMAL ADJUST ACCUMULATOR

DAA

The accumulator is adjusted to form two 4-bit BCD digits following a binary, two's complement addition or subtraction on two BCD-encoded bytes. The table below indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC, DEC, NEG).

Operation	C Before DAA	Hex Value Upper Digit (Bits 7-4)	H Before DAA	Hex Value Lower Digit (Bits 3-0)	Number Added to Byte	C After DAA	H After DAA
	0	0-9	0	0-9	00	0	0
	0	0-8	0	A-F	06	0	1
ADD	0	0-9	1	0-3	06	0	0
ADC	0	A-F	0	0-9	60	1	0
INC	0	9-F	0	A-F	66	1	1
(N=0)	0	A-F	1	0-3	66	1	0
	1	0-2	0	0-9	60	1	0
	1	0-2	0	A-F	66	1	1
	1	0-3	1	0-3	66	1	0
SUB							
SBC	0	0-9	0	0-9	00	0	0
DEC	0	0-8	1	6-F	FA	0	1
NEG	1	7-F	0	0-9	A0	1	0
(N=1)	1	6-F	1	6-F	9A	1	1

Flags:

S: Set if the most significant bit of the result is set; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: See table above

P: Set if the parity of the result is even; cleared otherwise

N: Not affected

C: See table above

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	DAA	00100111	3	

DDIR DECODER DIRECTIVE

DDIR mode mode = W or LW, IB or IW

Operation: None, decoder directive only

This is not an instruction, but rather a directive to the instruction decoder.

The instruction decoder may be directed to fetch an additional byte or word of immediate data or address with the instruction, as well as tagging the instruction for execution in either Word or Long Word mode. All eight combinations of the two options are supported, as shown in the encoding below. Instructions which do not support decoder directives are assembled by the instruction decoder as if the decoder directive were not present.

The IB decoder directive causes the decoder to fetch an additional byte immediately after the existing immediate data or direct address, and in front of any trailing opcode bytes (with instructions starting with DD-CB or FD-CB, for example).

Likewise, the IW decoder directive causes the decoder to fetch an additional word immediately after the existing immediate data or direct address, and in front of any trailing opcode bytes.

Byte ordering within the instruction follows the usual convention; least significant byte first, followed by more significant bytes. More-significant immediate data or direct address bytes not specified in the instruction are taken as all zeros by the processor.

The W decoder directive causes the instruction decoder to tag the instruction for execution in Word mode. This is useful while the Long Word (LW) bit in the Select Register (SR) is set, but 16-bit data manipulation is required for this instruction.

The LW decoder directive causes the instruction decoder to tag the instruction for execution in Long Word mode. This is useful while the LW bit in the SR is cleared, but 32-bit data manipulation is required for this instruction.

- Flags:
- Z: Unaffected

Unaffected

S:

- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing Mode	Synt DDIF	a x R mode	Instruction Format 11w11101 110000im	Execute Time 0	Note
Field Encodi	ngs:	wim: 000 W 001 IB,W 010 IW,W 011 IB 100 LW 101 IB,LW 110 IW,LW 111 IW	Word mode Immediate byte, Word mode Immediate word, Word mode Immediate byte Long Word mode Immediate byte, Long Word mode Immediate word, Long Word mode Immediate word		

DEC **DECREMENT (BYTE)**

DEC dst dst = R, RX, IR, X

Operation: dst ← dst – 1

S:

The destination operand is decremented by one and the result is stored in the destination. Two's complement subtraction is performed.

Flags:

- Set if the result is negative; cleared otherwise Set if the result is zero; cleared otherwise
- Z: H:
- Set if there is a borrow from bit 4 of the result; cleared otherwise
- Set if arithmetic overflow occurs, that is, if the destination was 80H; cleared otherwise V: N: Set
- Unaffected C:

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	DEC R	00-r-101	note	
RX:	DEC RX	11y11101 0010w101	2	
IR:	DEC (HL)	00110101	2+r+w	
X:	DEC (XY+d)	11y11101 00110101d—-	4+r+w	1
		-		

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

Note: 2 for accumulator, 3 for any other register

DEC[W] DECREMENT (WORD)

DEC[W]	dstdst =	R, RX
--------	----------	-------

Operation: if (XM) then begin dst(31-0) ← dst(31-0) - 1 end else begin dst(15-0) ← dst(15-0) - 1 end

> The destination operand is decremented by one and the result is stored in the destination. Two's complement subtraction is performed. Note that the length of the operand is controlled by the Extended/Native mode selection, which is consistent with the manipulation of an address by the instruction.

- Flags:
- S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	DEC[W] R	00rr1011	2	Х
RX:	DEC[W] RX	11y11101 00101011	2	Х

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP y: 0 for IX, 1 for IY

DI DISABLE INTERRUPTS

DI [n]

Operation:	if (n is present) then	begin	
	for i=1 to 4 begi	า	
	if $(n(i) = 1)$ the function of the second	nen begin	
	IER(i-1)	←	0
	end		
	end		
	if (n(0) = 1) then	begin	
	SR(5)	\leftarrow	0
	end		
	end		
	else begin		
	SR(5)	←	0
	end		

If an argument is present, disable the selected interrupts by clearing the appropriate enable bits in the Interrupt Enable Register, and then clear the Interrupt Enable Flag (IEF1) in the Select Register (SR) if the least-significant bit of the argument is set, disabling maskable interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 0, disabling maskable interrupts.

Note that during execution of this instruction the maskable interrupts are not sampled.

- Flags:
- S: Unaffected Z: Unaffected
 - Z: Unaffected
 - H: Unaffected V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	DĪ	11110011	2	
	DI n	11011101 11110011n	2	

DIVUW DIVIDE UNSIGNED (WORD)

DIVUW [HL,]src src = R, RX, IM, X

Operation: $HL(15-0) \leftarrow HL / src$ $HL(31-16) \leftarrow remainder$

The contents of the the HL register (dividend) are divided by the source operand (divisor) and the quotient is stored in the lower word of the HL register; the remainder is stored in the upper word of the HL register. The contents of the source are unaffected. Both operands are treated as unsigned, binary integers. There are three possible outcomes of the DIVUW instruction, depending on the division and the resulting quotient:

Case 1: If the quotient is less than 65536, then the quotient is left in the HL register, the Overflow and Sign flags are cleared to 0, and the Zero flag is set according to the value of the quotient.

Case 2: If the divisor is zero, the HL register is unchanged, the Zero and Overflow flags are set to 1, and the Sign flag is cleared to 0.

Case 3: If the quotient is greater than or equal to 65536, the HL register is unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.

Flags:

- Z: Set if the quotient or divisor is zero; cleared otherwise
- H: Unaffected

Cleared

S:

- V: Set if the divisor is zero or if the computed quotient is greater than or equal to 65536; cleared otherwise
- N: Unaffected
- C: Unaffected

Addressing			Execu	te
Mode	Syntax	Instruction Format	Time	Note
R:	DIVUW [HL,]R	11101101 11001011 101110rr	20	
RX:	DIVUW [HL,]RX	11101101 11001011 1011110y	20	
IM:	DIVUW [HL,]nn	11101101 11001011 10111111 -n(low)n(high)	20	
Х:	DIVUW [HL,](XY+d)	11y11101 11001011 — d— 10111010	22+r	1
7.1	Diron [n2,](// ra)			•

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: 0 for IX, 1 for IY

DJNZ DECREMENT AND JUMP IF NON-ZERO

	DJNZ	dst	dst = F	ł٨
--	------	-----	---------	----

Operation:

В	←-	B-1
If (B <> 0) then begin		
dst	←	SIGN EXTEND dst
if (XM) then begin		
PC(31-0)	←	PC(31-0) + dst(31-0)
end		
else begin		
PC(15-0)	\leftarrow	PC(15-0) + dst(15-0)
end		
end		

The B register is decremented by one. If the result is non-zero, then the destination address is calculated and then loaded into the Program Counter (PC). Control then passes to the instruction whose address is pointed to by the PC. When the B register reaches zero, control falls through to the instruction following DJNZ. This instruction provides a simple method of loop control.

The destination address is calculated using Relative addressing. The displacement in the instruction is added to the PC; the PC value used is the address of the instruction following the DJNZ instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two's complement displacement from the PC to permit jumps within a range of -126 to +129 bytes, -32,765 to +32,770 bytes, or -8.388,604 to +8.388,611 bytes from the location of this instruction.

Flags:

S: Unaffected

- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

		Execute	
Syntax	Instruction Format	Time	Note
DJNZ addr	00010000 —disp—	note	Х
DJNZ addr	11011101 00010000 -d(low)d(high)	note	Х
DJNZ addr	11111101 00010000 -d(low)d(mid)d(high)	note	Х
	DJNZ addr DJNZ addr	DJNZ addr 00010000 —disp— DJNZ addr 11011101 00010000 -d(low)d(high)	SyntaxInstruction FormatTimeDJNZ addr00010000 —disp—noteDJNZ addr11011101 00010000 -d(low)d(high)note

3 if branch not taken, 4 if branch taken Note:

EI ENABLE INTERRUPTS

El [n]

Operation: if (n is present) then begin for i=1 to 4 begin if (n(i) = 1) then begin IER(i-1) ← end end if (n(0) = 1) then begin SR(5) 4 end end else begin SR(5) ← end

If an argument is present, enable the selected interrupts by setting the appropriate enable bits in the Interrupt Enable Register, and then set the Interrupt Enable Flag (IEF1) in the Select Register (SR) if the least-significant bit of the argument is set, enabling maskable interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 1, enabling maskable interrupts.

1

1

1

Note that during the execution of this instruction and the following instruction, maskable interrupts are not sampled.

- Flags: S: Unaffected Z: Unaffected
 - Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	E	11111011	2	
	Eln	11011101 11111011 —n——	2	

EX EXCHANGE ACCUMULATOR/FLAG WITH ALTERNATE BANK

EX AF,AF'

Operation: $SR(0) \leftarrow NOT SR(0)$

Bit 0 of the Select Register (SR), which controls the selection of primary or alternate bank for the accumulator and flag register, is complemented, thus effectively exchanging the accumulator and flag registers between the two banks.

S: Value in F' Z: Value in F'

- H: Value in F'
- V: Value in F'
- N: Value in F'
- C: Value in F'

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	EX AF,AF'	00001000	3	

EX

EXCHANGE ADDRESSING REGISTER WITH TOP OF STACK

EX (SP),dst

dst = HL, IX, IY

Operation: if (LW) then begin

 $\begin{array}{ccc} (SP+3) \leftrightarrow & dst(31-24) \\ (SP+2) \leftrightarrow & dst(23-16) \\ end \\ (SP+1) & \leftrightarrow & dst(15-8) \\ (SP) & \leftrightarrow & dst(7-0) \end{array}$

The contents of the destination register are exchanged with the top of the stack. In Long Word mode this exchange is two words; otherwise it is one word.

Flags: S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected

C: Unaffected

Addressing Mode	Syntax	Instruction Format	Execute Time	Note
R:	EX (SP),HL	11100011	3+r+w	L
	EX (SP),XY	11y11101 11100011	3+r+w	L

Field Encodings: y: 0 for IX, 1 for IY

EX EXCHANGE REGISTER (WORD)

EX dst,src dst = R, RX src = R, RX Operation: if (LW) then begin dst(31-0) \leftrightarrow src(31-0) end else begin dst(15-0) \leftrightarrow src(15-0) end

The contents of the destination are exchanged with the contents of the source.

Flags:

- S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected
- C: Unaffected

Addressing Mode	Syntax	Instruction Format	Execute Time	Note
R:	EX BC,DE	11101101 00000101	3	L
	EX BC,HL	11101101 00001101	3	L
	EX DE,HL	11101011	3	L
RX:	EX R,RX	11101101 00rry011	3	L
	EX IX,IY	11101101 00101011	3	L

 Field Encodings:
 rr:
 00 for BC, 01 for DE, 11 for HL

 y:
 0 for IX, 1 for IY

EX EXCHANGE REGISTER WITH ALTERNATE REGISTER (BYTE)

EX dst,src src = R

Operation: dst \leftrightarrow src

The contents of the destination are exchanged with the contents of the source, where the destination is a register in the primary bank and the source is the corresponding register in the alternate bank

Flags: S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected

Addressing Mode R:	Syntax EX R.R'	Instruction Format	Execute Time	Note
н:	EX R,R	1100101100110-r-	3	

Field Encoding: r: per convention

5

EX EXCHANGE REGISTER WITH ALTERNATE REGISTER (WORD)

	EX dst,src	src = I	R, RX		
Operation:	if (LW) then b dst(31-0) end else begin dst(15-0) end	\leftrightarrow	src(31-0) src(15-0)		
		a word re	stination are exchanged wit gister in the primary bank ar bank.		
Flags:	S: Unaffec Z: Unaffec H: Unaffec V: Unaffec N: Unaffec C: Unaffec	ted ted ted ted			
Addressing Mode R: RX:	Syntax EX R,R' EX RX,RX'	1	nstruction Format 1101101 11001011 001100 1101101 11001011 001101	Execute ⁻ Time 3 3	Note L L

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: 0 for IX, 1 for IY

EX EXCHANGE WITH ACCUMULATOR

EX A,src src = R, IR

Operation: dst \leftrightarrow src

The contents of the accumulator are exchanged with the contents of the source.

- Flags:
- Z: Unaffected

S:

H: Unaffected

Unaffected

- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	EX A,R	11101101 00-r-111	3	
IR:	EX A,(HL)	11101101 00110111	3+r+w	

Field Encodings: r: per convention

EXALL EXCHANGE ALL REGISTERS WITH ALTERNATE BANK

EXALL

Bits 8, 16, and 24 of the Select Register (SR), which control the selection of primary or alternate bank for the BC, DE, HL, IX, and IY registers, are complemented, thus effectively exchanging the BC, DE, HL, IX, and IY registers between the two banks.

Flags:

S: Unaffected

- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing Mode

Syntax
EXALL

Instruction Format 11101101 11011001

Execute Time 3

Note

EXTS EXTEND SIGN (BYTE)

	EXTS [A]		
Operation:	L if (A(7)=0) then begin H ["] 00h	←	A
	if (LW) then begin HL(31-16) end end	←	0000h
	else begin H FFh if (LW) then begin HL(31-16) end end	←	FFFFh
	sign-extended to 16 bi	its and t ected.	or, considered as a signed, two's con he result is stored in the HL register This instruction is useful for conver perands.
Flags:	S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected		

omplement integer, are er. The contents of the ersion of short signed

- Fla
- Unaffected C:

Addressing

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	EXTS [A]	11101101 01100101	3	L

EXTSW EXTEND SIGN (WORD)

EXTSW [HL]

The contents of the low word of the HL register, considered as a signed, two's complement integer, are sign-extended to 32 bits in the HL register. This instruction is useful for conversion of 16-bit signed operands into 32-bit signed operands.

Flags:

S: Unaffected

- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	EXTSW [HL]	11101101 01110101	3	

EXX EXCHANGE REGISTERS WITH ALTERNATE BANK

EXX

Operation: SR(8) \leftarrow NOT SR(8)

Bit 8 of the Select Register (SR), which controls the selection of primary or alternate bank for the BC, DE, and HL registers, is complemented, thus effectively exchanging the BC, DE, and HL registers between the two banks.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	EXX	11011001	3	

EXXX EXCHANGE IX REGISTER WITH ALTERNATE BANK

EXXX

Operation: SR(16) \leftarrow NOT SR(16)

Bit 16 of the Select Register (SR), which controls the selection of primary or alternate bank for the IX register, is complemented, thus effectively exchanging the IX register between the two banks.

Flags:

S: Unaffected

- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	Note	
	EXXX	11011101 11011001	3		

EXXY EXCHANGE IY REGISTER WITH ALTERNATE BANK

EXXY

Operation: $SR(24) \leftarrow NOT SR(24)$

Bit 24 of the Select Register (SR), which controls the selection of primary or alternate bank for the IY register, is complemented, thus effectively exchanging the IY register between the two banks.

.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	EXXY	11111101 11011001	3	

HALT HALT

HALT

Operation: CPU Halts

The CPU operation is suspended until either an interrupt request or reset request is received. This instruction is used to synchronize the CPU with external events, preserving its state until an interrupt or reset request is accepted. After an interrupt is serviced, the instruction following HALT is executed. While the CPU is halted, memory refresh cycles still occur, and bus requests are honored. When this instruction is executed the signal /HALT is asserted and remains asserted until an interrupt or reset request is accepted.

- Flags: S:
 - S: Unaffected Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	HALT	01110110	2	

IM INTERRUPT MODE SELECT

	IM p p = 0, 1, 2	2, 3		
Operation:	SR(4-3) ← p			
		e of operation is set to one of four mo des for responding to interrupts). The egister (SR).		
Flags:	S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected			
Addressing Mode	Syntax IM p	Instruction Format 11101101 010pp110	Execute Time 4	Note
	00 (14			

Field Encodings: pp: 00 for Mode 0, 01 for Mode 3, 10 for Mode 1, 11 for Mode 2

IN INPUT (BYTE)

IN dst,(C) dst = R

Operation: dst \leftarrow (C)

The byte of data from the selected peripheral is loaded into the destination register. During the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags:

- S: Set if the input data is negative; cleared otherwise
 - Z: Set if the input data is zero; cleared otherwise
 - H: Cleared
 - P: Set if the input data has even parity; cleared otherwise
 - N: Cleared
 - C: Unaffected

Addressing			Execute	ute	
Mode	Syntax	Instruction Format	Time	Note	
R:	IN R,(C)	11101101 01-r-000	2+i		

Field Encodings: r: per convention

INW INPUT (WORD)

INW dst,(C) dst = R

Operation: dst(15-0) \leftarrow (C)

The word of data from the selected peripheral is loaded into the destination register. During the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Set if the input data is negative; cleared otherwise

- Z: Set if the input data is zero; cleared otherwise
 - H: Cleared
- P: Set if the input data has even parity; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	INW R,(C)	11011101 01rrr000	2+i	

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

IN INPUT ACCUMULATOR

IN A,(n)

Operation: $A \leftarrow (n)$

S:

The byte of data from the selected peripheral is loaded into the accumulator. During the I/O transaction, the 8-bit peripheral address from the instruction is placed on the low byte of the address bus, the contents of the accumulator are placed on address lines A15-A8, and the high-order address lines are all zeros.

Flags:

- Z: Unaffected
- H: Unaffected

Unaffected

- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	IN A,(n)	11011011 ——n—	3+i	

IN0 INPUT (FROM PAGE 0)

IN0 dst,(n) dst = R

Operation: dst \leftarrow (n)

The byte of data from the selected on-chip peripheral is loaded into the destination register. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the address bus while this internal read is occurring. The peripheral address is placed on the low byte of the address bus and zeros are placed on all other address lines. When the second opcode byte is 30h no data is stored in a destination; only the flags are updated.

Flags:	S:	Set if the input data is negative; cleared otherwise
--------	----	--

- Z: Set if the input data is zero; cleared otherwise
- H: Cleared
- P: Set if the input data has even parity; cleared otherwise
- N: Cleared
- C: Unaffected

		Execute	
Syntax	Instruction Format	Time	Note
IN0 R,(n)	11101101 00 -r- 000n	3+i	
INO (n	11101101 00110000n	3+i	
	INO R,(n)	INO R,(n) 11101101 00 -r- 000	Syntax Instruction Format Time IN0 R,(n) 11101101 00 -r- 000 -n- 3+i

Field Encodings: r: per convention

INA INPUT DIRECT FROM PORT ADDRESS (BYTE)

INA A,(nn)

Operation: A \leftarrow (nn)

The byte of data from the selected peripheral is loaded into the accumulator. During the I/O transaction, the peripheral address from the instruction is placed on the address bus. Any bytes of address not specified in the instruction are driven on the address lines as all zeros.

Flags:

- S: Unaffected Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INA A,(nn)	11101101 11011011 -n(low)n(high)	3+i	1

INAW INPUT DIRECT FROM PORT ADDRESS (WORD)

INAW HL,(nn)

Operation: HL(15-0) \leftarrow (nn)

The word of data from the selected peripheral is loaded into the HL register. During the I/O transaction, the peripheral address from the instruction is placed on the address bus. Any bytes of address not specified in the instruction are driven on the address lines as all zeros.

- Flags:
- S: Unaffected Z: Unaffected
 - H: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INAW HL,(nn)	11111101 11011011 -n(low)n(high)	3+i	I

INC INCREMENT (BYTE)

INC dst dst = R, RX, IR, X

Operation: dst ← dst + 1

The destination operand is incremented by one and the sum is stored in the destination. Two's complement addition is performed.

Flags:

- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
- H: Set if there is a carry from bit 3 of the result; cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if the destination was 7FH; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing	.	. .	Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	INC R	00-r-100	note	
RX:	INC RX	11y11101 0010w100	2	
IR:	INC (HL)	00110100	2+r+w	
X:	INC (XY+d)	11y11101 00110100 ——d—	4+r+w	I

- Field Encodings: r: per convention y: 0 for IX, 1 for IY
 - w: 0 for high byte, 1 for low byte
- Note: 2 for accumulator, 3 for any other register

INC[W] INCREMENT (WORD)

	INC[W] dst	lst = R, RX		
Operation:	if (XM) then begir dst(31-0) < end else begin dst(15-0) ← end			
	Two's compleme	pperand is incremented by one and the s nt addition is performed. Note that the len /Native mode selection, which is consistent istruction.	gth of the operand is	controlled
Flags:	S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected			
Addressing Mode R: RX:	Syntax INC[W] R INC[W] RX	Instruction Format 00rr0011 11y11101 00100011	Execute Time 2 2	Note X X
Field Encodir	ngs: rr: 00 for BC y: 0 for IX, 1	2, 01 for DE, 10 for HL, 11 for SP I for IY		

-

IND **INPUT AND DECREMENT (BYTE)**

IND

B

Operation:

(HL) \leftarrow (C) ← B-1 HL ← HL – 1

This instruction is used for block input of strings of data. During the I/O transaction the 32bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the B register, used as a counter, is decremented by one. The HL register is then decremented by one, thus moving the pointer to the next destination for the input.

Flags:

- Unaffected S: Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected
- Unaffected V:
- N: Set
- Unaffected C:

Addressing			Execute	
Mode	Syntax	Instruction Format	Time N	Note
	IND	11101101 10101010	2+i+w	

INDW INPUT AND DECREMENT (WORD)

INDW

 $\begin{array}{rcl} \textbf{Operation:} & (HL) & \leftarrow & (DE) \\ & BC(15\text{-}0) & \leftarrow & BC(15\text{-}0)-1 \\ & HL & \leftarrow & HL-2 \end{array}$

This instruction is used for block input of strings of data. During the I/O transaction the 32bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the BC register, used as a counter, is decremented by one. The HL register is then decremented by two, thus moving the pointer to the next destination for the input.

Flags: S: Unaffected

. .

- Z: Set if the result of decrementing BC is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set

.

C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INDW	11101101 11101010	2+i+w	

5

INDR INPUT, DECREMENT AND REPEAT (BYTE)

INDR

Operation:

- repeat until (B=0) begin (HL) \leftarrow (C) B \leftarrow B - 1
 - $\begin{array}{rrrr} B & \leftarrow B-1 \\ HL & \leftarrow HL-1 \\ end \end{array}$

This instruction is used for block input of strings of data. The string of input data from the selected peripheral is loaded into memory at consecutive addresses, starting with the location addressed by the HL register and decreasing. During the I/O transaction the 32-bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A15-A8 are not useable as part of a fixedport address.

First the byte of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the B register, used as a counter, is decremented by one. The HL register is then decremented by one, thus moving the pointer to the next destination for the input. If the result of decrementing the B register is 0, the instruction is terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of the execution of this instruction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected

- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing
Mode

Syntax
INDR

Instruction Format
11101101 10111010

Execute Time n X (2+i+w)

Note

INDRW INPUT, DECREMENT AND REPEAT (WORD)

Ewa avaka

INDRW

- Operation:
- $\begin{array}{rl} \text{repeat until (BC=0) begin} \\ (\text{HL}) & \leftarrow & (\text{DE}) \\ \text{BC}(15\text{-}0) & \leftarrow & \text{BC}(15\text{-}0) 1 \\ \text{HL} & \leftarrow & \text{HL} 2 \\ \text{end} \end{array}$

This instruction is used for block input of strings of data. The string of input data from the selected peripheral is loaded into memory at consecutive addresses, starting with the location addressed by the HL register and decreasing. During the I/O transaction the 32-bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. First the word of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the BC register, used as a counter, is decremented by one. The HL register is then decremented by two, thus moving the pointer to the next destination for the input. If the result of decrementing the BC register is 0, the instruction is terminated, otherwise the sequence is repeated. If the BC register contains 0 at the start of the execution of this instruction, 65536 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected

- Z: Set if the result of decrementing BC is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INDRW	11101101 11111010	n X (2+i+w)	

INI INPUT AND INCREMENT (BYTE)

INI

Operation:

 $\begin{array}{rcl} (\text{HL}) & \leftarrow & (\text{C}) \\ \text{B} & \leftarrow & \text{B}-1 \\ \text{HL} & \leftarrow & \text{HL}+1 \end{array}$

This instruction is used for block input of strings of data. During the I/O transaction the 32bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A15-A8 are not useable as part of a fixed port address.

First the byte of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the B register, used as a counter, is decremented by one. The HL register is then incremented by one, thus moving the pointer to the next destination for the input.

Flags: S: Unaffected

- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INI	11101101 10100010	2+i+w	

INIW INPUT AND INCREMENT (WORD)

INIW

Operation:

 $\begin{array}{rcl} (\text{HL}) & \leftarrow & (\text{DE}) \\ \text{BC}(15\text{-}0) & \leftarrow & \text{BC}(15\text{-}0)-1 \\ \text{HL} & \leftarrow & \text{HL}+2 \end{array}$

This instruction is used for block input of strings of data. During the I/O transaction the 32-bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the BC register, used as a counter, is decremented by one. The HL register is then incremented by two, thus moving the pointer to the next destination for the input.

Flags: S: Unaffected

- Z: Set if the result of decrementing BC is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INIW	11101101 11100010	2+i+w	

INIR INPUT, INCREMENT AND REPEAT (BYTE)

INIR

Operation:

 $\begin{array}{rl} \mbox{repeat until (B=0) begin} \\ (HL) &\leftarrow (C) \\ B &\leftarrow B-1 \\ HL &\leftarrow HL+1 \\ \mbox{end} \end{array}$

This instruction is used for block input of strings of data. The string of input data from the selected peripheral is loaded into memory at consecutive addresses, starting with the location addressed by the HL register and increasing. During the I/O transaction the 32-bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A(15-8) are not useable as part of a fixedport address.

First the byte of data from the selected peripheral is loaded into the memory location addressed by the HL register. Then the B register, used as a counter, is decremented by one. The HL register is then incremented by one, thus moving the pointer to the next destination for the input. If the result of decrementing the B register is 0, the instruction is terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of the execution of this instruction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected

- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	INIR	11101101 10110010	n X (2+i+w)	

INIRW

INIRW

:

n X (2+i+w)

INIRW INPUT, INCREMENT AND REPEAT (WORD)

Operation:	(HL)	5-0) ←	egin (DE) BC(15-0) – 1 HL + 2	ι	
	selected location a	peripheral is addressed by	s loaded into memory at	s of data. The string of inp consecutive addresses, asing. During the I/O trans	starting with the
	addresse one. The destinatio terminate	ed by the HL HL register on for the inp ed, otherwise	register. Then the BC reginster. Then the BC reginster incremented by ut. If the result of decremented by the result of the r	wheral is loaded into the r ster, used as a counter, is two, thus moving the po enting the BC register is 0, I. If the BC register contain re input.	decremented by inter to the next the instruction is
	Counter	value at the st		ecution of the basic operati ed before the interrupt requ d.	
Flags:	Z: Set H: Un V: Un N: Set	affected affected	of decrementing BC is ze	ro; cleared otherwise	
Addressing Mode	Syntax	1	Instruction Format	Execute Time	Note

11101101 11110010

JP JUMP

JP [cc,]dst dst = IR, DA **Operation:** if (cc is TRUE) then begin if (XM) then begin PC(31-0) dst(31-0) 4 end else begin PC(15-0) dst(15-0) ← end end

> A conditional jump transfers program control to the destination address if the setting of a selected flag satisfies the condition code "cc" specified in the instruction; an unconditional jump always transfers control to the destination address. If the jump is taken, the Program Counter (PC) is loaded with the destination address; otherwise the instruction following the Jump instruction is executed.

> Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump performed conditionally on the setting of the flag.

> When using DA mode with the JP instruction, the operand is not enclosed in parentheses.

Flags:

S: Unaffected Unaffected

- Z: H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addroseina

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
IR:	JP (HL)	11101001	2	Х
	JP (XY)	11y11101 11101001	2	Х
DA:	JP CC,addr	11-cc010 -a(low)a(high)	2	I, X
	JP addr	11000011 -a(low)a(high)	2	I, X

Field Encodings: y: 0 for IX, 1 for IY

cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO/NV, 101 for PE/V, 110 for P/NS,111 for M/S

JR JUMP RELATIVE

JR [cc.]dst dst = RA**Operation:** if (cc is TRUE) then begin dst ← SIGN EXTEND dst if (XM) then beain PC(31-0) PC(31-0) + dst(31-0)**6**----end else begin PC(15-0) PC(15-0) + dst(15-0)4 end end

A conditional Jump transfers program control to the destination address if the setting of a selected flag satisfies the condition code "cc" specified in the instruction; an unconditional Jump always transfers control to the destination address. Either the Zero or Carry flag can be tested for the conditional Jump. If the jump is taken, the Program Counter (PC) is loaded with the destination address; otherwise the instruction following the Jump Relative instruction is executed.

The destination address is calculated using relative addressing. The displacement in the instruction is added to the PC value for the instruction following the JR instruction, not the value of the PC for the JR instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two's complement displacement from the PC to permit jumps within a range of -126 to +129 bytes, -32,765 to +32,770 bytes, or -8,388,604 to +8,388,611 bytes from the location of this instruction.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
RA:	JR CC,addr	001cc000 —disp—	2	Х
	JR addr	00011000 — disp—	2	Х
	JR CC,addr	11011101 001cc000 -d(low)d(high)	2	Х
	JR addr	11011101 00011000 -d(low)d(high)	2	Х
	JR CC,addr	11111101 001cc000 -d(low)d(mid)d(high)	2	Х
	JR addr	11111101 00011000 -d(low)d(mid)d(high)	2	Х

Field Encodings: cc: 00 for NZ, 01 for Z, 10 for NC, 11 for C

LD LOAD ACCUMULATOR

LD dst,src

dst = Asrc = R, RX, IM, IR, DA, X or dst = R, RX, IR, DA, X src = A

Operation: dst ← src

The contents of the source are loaded into the destination.

Flags:

S: Unaffected Z: Unaffected H: Unaffected V: Unaffected

- N: Unaffected
- C: Unaffected

Load into Accunulator

Addressing	9		Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD A,R	01111-r-	2	
RX:	LD A,RX	11y11101 0111110w	2	
IM:	LD A,n	00111110n	2	
IR:	LD A,(HL)	0111110	2+r	
	LD A,(IR)	000a1010	2+r	
DA:	LD A,(nn)	00111010 -n(low)n(high)	3+r	I
X:	LD A,(XY+d)	11y11101 01111110 ——d—	4+r	I

Load from Accunulator . . .

Addressing			Execute	
Mode Syntax		Instruction Format	Time	Note
R:	LD Rd,A	01-r-111	2	
RX:	LD RX,A	11y11101 0110w111	2	
IR:	LD (HL),A	01110111	3+w	
	LD (IR),A	000a0010	3+w	
DA:	LD (nn),A	00110010 -n(low)n(high)	4+w	l I
X:	LD (XY+d),A	11y11101 01110111d	5+w	I

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

a: 0 for BC, 1 for DE

.

LD LOAD IMMEDIATE (BYTE)

LD dst,n dst = R, RX, IR, X

Operation: dst \leftarrow n

The byte of immediate data is loaded into the destination.

- Flags: S:
 - Z: Unaffected
 - H: Unaffected

Unaffected

- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD R,n	00-r-110 ——n—	2	
RX:	LD RX,n	11y11101 0010w110n	2	
IR:	LD (H́L),n	00110110n	3+w	
X:	LD (XY+d),n	11y11101 00110110dn	5+w	I

Field Encodings: r:

r: per convention y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

5

Execute

LD LOAD IMMEDIATE (WORD)

LD dst,nn dst = R, RX

Operation:

if (LW) then begin dst(31-0) ← end else begin

else begin dst(15-0) ← nn end

The word of immediate data is loaded into the destination.

nn

Flags:

Unaffected Unaffected

S:

- Z: Unaffected H: Unaffected
- H: Unaffected V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing

7.aan 0000mig			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD R,nn	00rr0001 -n(low)n(high)	2	I, L
RX:	LD RX,nn	11y11101 00100001 -n(low)n(high)	2	I, L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL

y: 0 for IX, 1 for IY

LDW LOAD IMMEDIATE (WORD)

	LDW dst,nn ds	t = IR	
Operation:	if (LW) then begin dst(31-0) ← end else begin dst(15-0) ← end	nn	
	The word of imme	diate data is loaded into the destination.	
Flags:	S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected		
Addressing Mode IR:	Syntax LDW (IR),nn	Instruction Format 11101101 00pp0110 -n(low)n(high)	ExecuteTimeNote3+wI, L

Field Encodings: pp: 00 for BC, 01 for DE, 11 for HL

î

LD LOAD REGISTER (BYTE)

LD dst,src	dst = R
	src = R, RX, IM, IR, X
or	
	dst = R, RX, IR, X

src = R

Operation: dst ← src

The contents of the source are loaded into the destination.

Flags:	
i lugo.	

S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected

C: Unaffected

Load into Register

Addressing	_		Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD Rd,Rs	01-rd-rs	2	
RX:	LD Rd,RX	11y11101 01-ra10w	2	
	LD RXa,RXb	11y11101 0110a10b	2	
IM:	LD R,n	00-r-110n	2	
IR:	LD R,(HL)	01-r-110	5+w	
X:	LD R,(XY+d)	11y11101 01-r-110 ——d—	7+w	I

Load from Register

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
RX:	LD RX,Rs	11y11101 0110w-ra	2	
	LD RXa,RXb	11y11101 0110a10b	2	
IR:	LD (HL),R	01110-r-	3+w	
X:	LD (XY+d),R	11y11101 01110-r- ——d—	5+w	I

Field Encodings: r: per convention

rd: per convention

rs: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

ra: per convention, for A, B, C, D, E only

a: destination, 0 for high byte, 1 for low byte

b: source, 0 for high byte, 1 for low byte

LD[W] LOAD REGISTER (WORD)

LD[W] dst,src dst = R src = R, RX, IR, DA, X, SR or dst = R, RX, IR, DA, X, SR src = R

The contents of the source are loaded into the destination.

Flags:

- S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected
- C: Unaffected

Load into Register

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD Rd,Rs	11rs1101 00rd0010	2	L
RX:	LD R,RX	11y11101 00rr1011	2	L
IR:	LD R,(IR)	11011101 00rr11ri	2+r	L
	LD RX,(IR)	11y11101 00ri0011	2+r	L
DA:	LD HL,(nn)	00101010 -n(low)n(high)	3+r	I, L
	LD R,(nn)	11101101 01ra1011 -n(low)n(high)	3+r	I, L
	LD RX,(nn)	11y11101 00101010 -n(low)n(high)	3+r	I, L
Х:	LD R,(XY+d)	11y11101 11001011 d 00rr0011	4+r	I, L
	LD IX,(IY+d)	11111101 11001011 d 00100011	4+r	I, L
	LD IY,(IX+d)	11011101 11001011d 00100011	4+r	I, L
SR:	LD R,(SP+d)	11011101 11001011 d 00rr0001	4+r	I, L
	LD RX,(SP+d)	11y11101 11001011 ——d— 00100001	4+r	I, L

LD[W] LOAD REGISTER (WORD)

Load from Re Addressing	Execute			
Mode	Syntax	Instruction Format	Time	Note
RX:	LD RX,R	11y11101 00rr0111	2	L
	LD IX,IY	11011101 00100111	2	L
	LD IY,IX	11111101 00100111	2	L
IR:	LD (IR),RR	11111101 00rr11ri	3+w	L
	LD (IR),RX	11y11101 00ri0001	3+w	L
DA:	LD (nn),HL	00100010 -n(low)n(high)	4+w	I, L
	LD (nn),R	11101101 01ra0011 -n(low)n(high)	4+w	I, L
	LD (nn),RX	11y11101 00100010 -n(low)n(high)	4+w	I, L
X:	LD (XY+d),R	11y11101 11001011 d 00rr1011	5+w	ł, L
	LD (IY+d),IX	11111101 11001011d 00101011	5+w	I, L
	LD (IX+d),IY	11011101 11001011 — d— 00101011	5+w	I, L
SR:	LD (SP+d),R	11011101 11001011 d 00rr1001	5+w	I, L
	LD (SP+d),XY	11y11101 11001011 ——d— 00101001	5+w	I, L

Field Encodings:	rs:	01 for DE, 10 for BC, 11 for HL
	rd:	00 for BC, 01 for DE, 11 for HL
	y:	0 for IX, 1 for IY
	rr:	00 for BC, 01 for DE, 11 for HL
	ri:	00 for BC, 01 for DE, 11 for HL

ra: 00 for BC, 01 for DE, 10 for HL

LD LOAD STACK POINTER

LD dst,src dst = SP src = R, RX, IM, DA or dst = DA src = SP

The contents of the source are loaded into the destination.

- Flags:
- S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected
- C: Unaffected

Load into Stack Pointer

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD SP,HL	11111001	2	L
RX:	LD SP,RX	11y11101 11111001	2	L
IM:	LD SP,nn	00110001 -n(low)n(high)	2	I, L
DA:	LD SP,(nn)	11101101 01111011 -n(low)n(high)	3+r	I, L

Field Encodings: y: 0 for IX, 1 for IY

Load from Stack Pointer Execute Addressing Execute Mode Syntax Instruction Format Time Note DA: LD (nn),SP 111011011110011 -n(low)- -n(high) 4+w I, L

LD LOAD FROM I OR R REGISTER (BYTE)

LD dst,src dst = A src = I, R

Operation: dst ← src

The contents of the source are loaded into the accumulator. The contents of the source are not affected. The Sign and Zero flags are set according to the value of the data transferred; the Overflow flag is set according to the state of the interrupt enable. Note that if an interrupt occurs during execution of either of these instructions the Overflow flag reflects the prior state of the interrupt enable. Also note that the R register does not contain the refresh address and is not modified by refresh transactions.

Flags:

- S: Set if the data loaded into the accumulator is negative; cleared otherwise
- Z: Set if the data loaded into the accumulator is zero; cleared otherwise

H: Cleared

- V: Set when loading the accumulator if interrupts are enabled; cleared otherwise
- N: Cleared
- C: Unaffected

Addressin	g		Execute	
Mode	Syntax	Instruction Format	Time	Note
	LD A,I	11101101 01010111	2	
	LD A,R	11101101 01011111	2	

LD LOAD INTO I OR R REGISTER (BYTE)

LD dst,src	dst = I, R
	src = A

Operation: dst ← src

The contents of the accumulator are loaded into the destination. Note that the R register does not contain the refresh address and is not modified by refresh transactions.

- Flags:S:UnaffectedZ:Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD I,A	11101101 01000111	2	
	LD R,A	11101101 01001111	2	

LD[W] LOAD I REGISTER (WORD)

	LD[W] dst,src	dst = HL src = I OR dst = I src = HL
Operation:	if (LW) then begin dst(31-0) ← end else begin dst(15-0) ← end	src(31-0) src(15-0)
	The contents of the sou	urce are loaded into the destination

Flags:

- Unaffected S:
- Z: Unaffected H:
- Unaffected
- V: Unaffected
- N: Unaffected C: Unaffected

Load from I Register

Addressing Mode R:	Syntax LD[W] HL,I	Instruction Format 11011101 01010111	Execute Time 2	Note ∟
Load into I	•		Execute	

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LD[W] I,HL	11011101 01000111	2	L

LDCTL LOAD CONTROL REGISTER (BYTE)

	LDCTL dst,src	dst = DSR, XSR, YSR src = A, IM or dst = A src = DSR, XSR, YSR or
		dst = SR src = A, IM
Operation:	if (dst = SR) then begin	

The contents of the source are loaded into the destination.

Flags:	S:	Unaffected
	Z:	Unaffected
	H:	Unaffected
	V:	Unaffected
	N:	Unaffected
	C:	Unaffected

Load into Control Register

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LDCTL SR,A	11011101 11001000	4	
	LDCTL Rd,A	11qq1101 11011000	4	
IM:	LDCTL SR,n	11011101 11001010n	4	
	LDCTL Rd,n	11qq1101 11011010 ——	4	

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

Load from Co Addressing	ntrol Register		Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LDCTL A,Rs	11qq1101 11010000	2	

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

LDCTL LOAD FROM CONTROL REGISTER (WORD)

	LDC	CTL dst,src		dst = HL src = SR		
Operation:	else	W) then beg dst(31-0) end begin dst(15-0) end	(src(31-0) src(15-0)		
	The	contents of	he Sel	ect Register (SR) are loaded into the H	L register.	
Flags:	S: Z:: V: C:	Unaffected Unaffected Unaffected Unaffected Unaffected Unaffected	k k k k			
Load from Cor Addressing	ntrol	Register			Execute	
Mode R:		ntax CTL HL,SR		Instruction Format 11101101 11000000	Time 2	Note ∟

LDCTL LOAD INTO CONTROL REGISTER (WORD)

	LDCTL dst,src		dst = SR src = HL
Operation:	if (LW) then bey dst(31-16) end else begin	0	HL(31-16)
	dst(31-24) dst(23-16) end		HL(15-8) HL(15-8)
	dst(15-8) dst(0)	$\stackrel{\leftarrow}{\leftarrow}$	HL(15-8) HL(0)

The contents of the HL register are loaded into the Select Register (SR). If Long Word mode is not in effect the upper byte of the HL register is copied into the three most significant bytes of the select register. This instruction does not modify the mode bits in the SR. There are dedicated instructions to modify the mode bits.

Flags:

- S: Unaffected Z: Unaffected
 - H: Unaffected
 - V: Unaffected
- N: Unaffected
- C: Unaffected

Load from Control Register

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	LDCTL SR,HL	11101101 11001000	4	L

LDD LOAD AND DECREMENT (BYTE)

LDD

Operation:

 $\begin{array}{rcl} (\text{DE}) & \leftarrow & (\text{HL}) \\ \text{DE} & \leftarrow & \text{DE} - 1 \\ \text{HL} & \leftarrow & \text{HL} - 1 \\ \text{BC}(15\text{-}0) & \leftarrow & \text{BC}(15\text{-}0) - 1 \end{array}$

This instruction is used for block transfers of strings of data. The byte of data at the location addressed by the HL register is loaded into the location addressed by the DE register. Both the DE and HL registers are then decremented by one, thus moving the pointers to the preceeding elements in the string. The BC register, used as a counter, is then decremented by one.

Flags:

- S: Unaffected
- Z: Unaffected
- H: Cleared
- V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	LDD	11101101 10101000	3+r+w	

LDDW LOAD AND DECREMENT (WORD)

LDDW

Operation:	if (LW) then be	gin	
	(DE)	←	(HL)
	(DE+1)	←	(HL+1)
	(DE+2)	←	(HL+2)
	(DE+3)	←	(HL+3)
	DE	←	DE – 4
	HL	\leftarrow	HL – 4
	BC(15-0)	←	BC(15-0) – 4
	end		
	else begin		
	(DE)	\leftarrow	(HL)
	(DE+1)	\leftarrow	(HL+1)
	DE	\leftarrow	DE – 2
	HL	←	HL – 2
	BC(15-0) end	←	BC(15-0) – 2

This instruction is used for block transfers of words of data. The word of data at the location addressed by the HL register is loaded into the location addressed by the DE register. Both the DE and HL registers are then decremented by two or four, thus moving the pointers to the preceeding words in the array. The BC register, used as a byte counter, is then decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even, transferring an even number of bytes, or the operation is undefined.

Flags:

- S: Unaffected Z: Unaffected
- H: Cleared
- V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	LDDW	11101101 11101000	3+r+w	L

LDDR LOAD, DECREMENT AND REPEAT (BYTE)

LDDR

Operation:

repeat until BC=0 begin (DE) \leftarrow (HL)

	`	('''''')
DE	←	DE – 1
HL	←	HL – 1
BC(15-0)	←	BC(15-0) – 1
end		

This instruction is used for block transfers of strings of data. The bytes of data at the location addressed by the HL register are loaded into memory starting at the location addressed by the DE register. The number of bytes moved is determined by the contents of the BC register. If the BC register contains zero when this instruction is executed, 65,536 bytes are transferred. The effect of decrementing the pointers during the transfer is important if the source and destination strings overlap with the source string starting at a lower memory address. Placing the pointers at the highest address of the strings and decrementing the pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value of the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

FI	ags:	

- S: Unaffected
- Z: Unaffected
- H: Cleared
- V: Cleared
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	LDDR	11101101 10111000	n X (3+r+w)	

LDDRW LOAD, DECREMENT AND REPEAT (WORD)

LDDRW

Operation:	repeat until (BC=0) be if (LW) then begin (DE) (DE+1) (DE+2) (DE+3) DE HL BC(15-0)	egin ↓↓↓↓↓↓ ↓↓↓↓	(HL) (HL+1) (HL+2) (HL+3) DE – 4 HL – 4 BC(15-0) – 4
	end else begin (DE) (DE+1) DE HL BC(15-0) end end	$\uparrow \uparrow \uparrow \uparrow \uparrow$	(HL) (HL+1) DE – 2 HL – 2 BC(15-0) – 2

This instruction is used for block transfers of strings of data. The words of data at the location addressed by the HL register are loaded into memory starting at the location addressed by the DE register. The number of words moved is determined by the contents of the BC register contains zero when this instruction is executed, 65,536 words are transferred. The effect of decrementing the pointers during the transfer is important if the source and destination strings overlap with the source string starting at a lower memory address. Placing the pointers at the highest address of the strings and decrementing the pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value of the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

- Flags:
- S: Unaffected Z: Unaffected
 - H: Cleared
 - V: Cleared
 - N: Cleared
 - C: Unaffected

Addressing Mode

Syntax LDDRW Instruction Format 11101101 11111000

Execute	
Time	Note
nX(3+r+w)	L

LDI LOAD AND INCREMENT (BYTE)

LDI

Operation:

 $\begin{array}{rcl} (\text{DE}) & \leftarrow & (\text{HL}) \\ \text{DE} & \leftarrow & \text{DE} + 1 \\ \text{HL} & \leftarrow & \text{HL} + 1 \\ \text{BC}(15\text{-}0) & \leftarrow & \text{BC}(15\text{-}0) - 1 \end{array}$

This instruction is used for block transfers of strings of data. The byte of data at the location addressed by the HL register is loaded into the location addressed by the DE register. Both the DE and HL registers are then incremented by one, thus moving the pointers to the next elements in the string. The BC register, used as a counter, is then decremented by one.

Flags:

- Unaffected
- Z: Unaffected
- H: Cleared
- V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
- N: Cleared

S:

C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	LDI	11101101 10100000	3+r+w	

LDIW LOAD AND INCREMENT (WORD)

LDIW

Operation:	if (LW) then be	gin	
	(DE)	\leftarrow	(HL)
	(DE+1)	\leftarrow	(HL+1)
	(DE+2)	\leftarrow	(HL+2)
	(DE+3)	\leftarrow	(HL+3)
	DE	\leftarrow	DE + 4
	HL	\leftarrow	HL + 4
	BC(15-0)	\leftarrow	BC(15-0) – 4
	end		
	else begin		
	(DE)	\leftarrow	(HL)
	(DE+1)	\leftarrow	(HL+1)
	DE	\leftarrow	DE + 2
	HL	\leftarrow	HL + 2
	BC(15-0) end	~	BC(15-0) – 2

This instruction is used for block transfers of words of data. The word of data at the location addressed by the HL register is loaded into the location addressed by the DE register. Both the DE and HL registers are then incremented by two or four, thus moving the pointers to the succeeding words in the array. The BC register, used as a byte counter, is then decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even, transferring an even number of bytes, or the operation is undefined.

Flags: S: Unaffected

. .

- Z: Unaffected
- H: Cleared
- V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	LDIW	11101101 11100000	3+r+w	L

LDIR LOAD, INCREMENT AND REPEAT (BYTE)

LDIR

Operation:

repeat until (BC=0) begin				
(DE)	←	(HL)		
DE	←	DE + 1		
HL	\leftarrow	HL + 1		
BC(15-0)	\leftarrow	BC(15-0) – 1		
end				

This instruction is used for block transfers of strings of data. The bytes of data at the location addressed by the HL register are loaded into memory starting at the location addressed by the DE register. The number of bytes moved is determined by the contents of the BC register. If the BC register contains zero when this instruction is executed, 65,536 bytes are transferred. The effect of incrementing the pointers during the transfer is important if the source and destination strings overlap with the source string starting at a higher memory address. Placing the pointers at the lowest address of the strings and incrementing the pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value of the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

- Flags:
- S: Unaffected
- Z: Unaffected
- H: Cleared
- V: Cleared
- N: Cleared
- C: Unaffected

		Execute	
Syntax	Instruction Format	Time	Note
LDIR	11101101 10110000	3+r+w	
	Syntax LDIR		Syntax Instruction Format Time

LDIRW LOAD, INCREMENT AND REPEAT (WORD)

LDIRW

Operation:	repeat until (BC=0) b if (LW) then begin (DE) (DE+1) (DE+2) (DE+3) DE HL BC(15-0)	•	(HL) (HL+1) (HL+2) (HL+3) DE + 4 HL + 4 BC(15-0) – 4
	end else begin (DE) (DE+1) DE	$\downarrow \downarrow \downarrow$	(HL) (HL+1) DE + 2
	HL BC(15-0) end end	\downarrow	HL + 2 BC(15-0) – 2

This instruction is used for block transfers of strings of data. The words of data at the location addressed by the HL register are loaded into memory starting at the location addressed by the DE register. The number of words moved is determined by the contents of the BC register contains zero when this instruction is executed, 65,536 words are transferred. The effect of incrementing the pointers during the transfer is important if the source and destination strings overlap with the source string starting at a higher memory address. Placing the pointers at the lowest address of the strings and incrementing the pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value of the start of this instruction is save before the interrupt request is accepted, so that the instruction can be properly resumed.

- Flags:
- S: Unaffected Z: Unaffected
 - H: Cleared
 - V: Cleared
 - N: Cleared
 - C: Unaffected

Addressing Mode

Syntax 1DIRW Instruction Format 11101101 11110000 Execute Time (3+r+w)n

Note

MLT MULTIPLY UNSIGNED (BYTE)

MLT R src = R

Operation: $R(15-0) \leftarrow R(7-0) \times R(15-8)$

The contents of the upper byte of the source register are multiplied by the contents of the lower byte of the source register and the product is stored in the source register. Both operands. Both operands are treated as unsigned, binary integers.

- Flags: S:
 - S: Unaffected Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	MLT R	11101101 01rr1100	7	

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

Mode

MTEST MODE TEST

MTEST

← SR(7) **Operation:** S Ζ \leftarrow SR(6) С \leftarrow SR(1) The three mode control bits in the Select Register (SR) are transferred to the flags. This allows the program to determine the state of the machine. S: Set if Extended mode is in effect; cleared otherwise Flags: Z: Set if Long word mode is in effect; cleared otherwise H: Unaffected Unaffected V: N: Unaffected Set if Lock mode is in effect; cleared otherwise C: Addressing Execute Syntax Instruction Format Time Note

MTEST	11011101 11001111	2	

MULTW MULTIPLY (WORD)

MULTW [HL,]src src = R, RX, IM, X

Operation: HL(31-0) \leftarrow HL(15-0) x src(15-0)

The contents of the HL register are multiplied by the source operand and the product is stored in the HL register. The contents of the source are unaffected. Both operands are treated as signed, two's complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set to indicate that the upper word of the HL register is required to represent the result; if the Carry flag is cleared, the product can be correctly represented in 16 bits and the upper word of the HL register merely holds sign-extension data.

Flags:

- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
- H: Unaffected
- V: Cleared
- N: Unaffected
- C: Set if the product is less than -32768 or greater than or equal to 32768; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	MULTW [HL,]R	11101101 11001011 100100rr	10	
RX:	MULTW [HL,]RX	11101101 11001011 1001010y	10	
IM:	MULTW [HL,]nn	11101101 11001011 10010111 -n(low)n(high)	10	
X:	MULTW [HL,](XY+d)	11y11101 11001011 d 10010010	12+r	I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: 0 for IX, 1 for IY

MULTUW MULTIPLY UNSIGNED (WORD)

	MULTUW [HL,]src	src = R, RX, IM, X		
Operation:	HL(31-0) ← HL(15-0)) x src(15-0)		
		register are multiplied by the source operand and the contents of the source are unaffected. Both contary integers.		
	indicate that the upper w	e HL register are overwritten by the result. The Carry ord of the HL register is required to represent the resu uct can be correctly represented in 16 bits and the u olds zero.	It; if the Carry	
Flags:	H: Unaffected V: Cleared N: Unaffected	zero; cleared otherwise is greater than or equal to 65536; cleared otherwise		
Addressing Mode R: RX: IM: X:	Syntax MULTUW [HL,]R MULTUW [HL,]RX MULTUW [HL,]nn MULTUW [HL,](XY+d)	Instruction Format 11101101 11001011 100110rr 11101101 11001011 1001110y 11101101 11001011 10011111 -n(low)n(high) 11y11101 11001011d 10011010	Execute Time 11 11 11 13+r	Note
Field Encodir	ngs: rr: 00 for BC, 01 for	r DE, 11 for HL		

 Field Encodings:
 rr:
 00 for BC, 01 for DE, 11 for HL

 y:
 0 for IX, 1 for IY

NEG [A]

Operation: $A \leftarrow -A$

The contents of the accumulator are negated, that is replaced by its two's complement value. Note that 80h is replaced by itself, because in two's complement representation the negative number with the greatest magnitude has no positive counterpart; for this case, the Overflow flag is set to 1.

Flags:

- S: Set if the result is negative; cleared otherwise Z: Set if the result is zero; cleared otherwise
- H: Set if there is a borrow from bit 4 of the result; cleared otherwise
- V: Set if the content of the accumulator was 80h before the operation; cleared otherwise
- N: Set
- C: Set if the content of the accumulator was not 00h before the operation; cleared if the content of the accumulator was 00h

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	NEG [A]	11101101 01000100	2	

NEGW **NEGATE HL REGISTER (WORD)**

NEGW [HL]

Operation: HL(15-0) ← -HL(15-0)

> The contents of the HL register are negated, that is replaced by its two's complement value. Note that 8000h is, replaced by itself, because in two's complement representation the negative number with the greatest magnitude has no positive counterpart; for this case, the Overflow flag is set to 1.

Flags:

- S: Set if the result is negative; cleared otherwise Z: Set if the result is zero; cleared otherwise
- H: Set if there is a borrow from bit 4 of the result; cleared otherwise
- V: Set if the content of the HL register was 8000h before the operation; cleared otherwise N: Set
- C: Set if the content of the HL register was not 0000h before the operation; cleared if the content of the HL register was 0000h

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	NEGW [HL]	11101101 01010100	2	

NOP NO OPERATION

NOP

Operation: None

No operation.

- Flags:
- S: Unaffected Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing

Mode	Syntax	Instruction Format	Time	Note
	NOP	0000000	2	

Execute

OR OR (BYTE)

				••• (
	OR [A,]src	src = R, RX, IM, IR, X		
Operation:	$A \leftarrow A OR src$			
	and the accumula either of the corre	ation is performed between the correspo tor and the result is stored in the accum sponding bits in the two operands is 1; surce are unaffected.	ulator. A 1 bit is stored	wherever
Flags:	Z: Set if all bits H: Cleared	ost significant bit of the result is set; clea s of the result are zero; cleared otherwis arity is even; cleared otherwise		
Addressing Mode R: RX: IM: IR: X:	Syntax OR [A,]R OR [A,]RX OR [A,]n OR [A,](HL) OR [A,](XY+d)	Instruction Format 10110-r- 11y11101 1011010w 11110110n 10110110 11y11101 10110110	Execute Time 2 2 2 2+r 4+r	Note

Field Encodings: r: per convention y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

Zilos

ORW **OR (WORD)**

ORW [HL,]src src = R, RX, IM, X **Operation:** HL(15-0) \leftarrow HL(15-0) OR src(15-0) A logical OR operation is performed between the corresponding bits of the source operand and the HL register and the result is stored in the HL register. A 1 bit is stored wherever either of the corresponding bits in the two operands is 1; otherwise a 0 bit is stored. The contents of the source are unaffected. S: Flags: Set if the most significant bit of the result is set; cleared otherwise Z: Set if all bits of the result are zero; cleared otherwise H: Cleared P٠ Set if the parity is even; cleared otherwise N: Cleared Cleared C Execute

Addressing

		EXecute	
Syntax	Instruction Format	Time	Note
ORW [HL,]R	11101101 101101rr	2	
ORW [HL,]RX	11y11101 10110111	2	
ORW [HL,]nn	11101101 10110110 -n(low) -n(high)-	2+r	
ORW [HL,](XY+d)	11y11101 11110110 — d—	4+r	I
	ORW [HL,]R ORW [HL,]RX ORW [HL,]nn	ORW [HL,]R 11101101 101101rr ORW [HL,]RX 11y11101 10110111 ORW [HL,]nn 11101101 10110110 -n(low) -n(high)-	Syntax Instruction Format Time ORW [HL,]R 11101101 101101rr 2 ORW [HL,]RX 11y11101 10110111 2 ORW [HL,]nn 11101101 1011010-n(low) -n(high)- 2+r

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: 0 for IX, 1 for IY

OTDM OUTPUT DECREMENT MEMORY

OTDM

Operation: (C) \leftarrow (HL)

 $C \leftarrow C-1$ $B \leftarrow B-1$ $HL \leftarrow HL-1$

This instruction is used for block output of strings of data to on-chip peripherals. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the address bus and the write data will appear on the data bus while this internal write is occurring. The peripheral address is placed on the low byte of the address bus and zeros are placed on all other address lines. The byte of data from the memory location addressed by the HL register is loaded to the on-chip I/O port addressed by the C register. The C register, holding the port address, is decremented by one to select the next output port. The B register, used as a counter, is then decremented by one. The HL register is then decremented by one, thus moving the pointer to the next source for the output.

Flags:

- S: Set if the result of decrementing B is negative; cleared otherwise
- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared otherwise
- P: Set if the result of the decrement of the B register is even; cleared otherwise
- N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie
- C: Set if there is a borrow from the most significant bit during the decrement of the B register; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OTDM	11101101 10001011	2+r+o	

OTDMR OUTPUT, DECREMENT MEMORY REPEAT

OTDMR

Operation:

repeat until (B=0) begin (C) \leftarrow (HL) C \leftarrow C - 1 B \leftarrow B - 1 HL \leftarrow HL - 1 end

This instruction is used for block output of strings of data to on-chip peripherals. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the address bus and the write data will appear on the data bus while this internal write is occurring. The peripheral address is placed on the low byte of the address bus and zeros are placed on all other address lines. The byte of data from the memory location addressed by the HL register is loaded to the on-chip I/O port addressed by the C register. The C register, holding the port address, is decremented by one to select the next output port. The B register, used as a counter, is then decremented by one. The HL register is then decremented by one. The HL register is then decremented by one to select the output. If the result of decrementing the B register is 0, the instruction is terminated, otherwise the output sequence is repeated. Note that if the B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags:

•

S: Cleared

- Z: Set H: Cleared
- P: Set
- P: Set
- N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise

.

C: Cleared

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	Note	
	OTDMR	11101101 10011011	2+r+o		

OTDR OUTPUT, DECREMENT AND REPEAT (BYTE)

Evenue

OTDR

Operation:

repeat until (B=0) begin $B \leftarrow B - 1$ (C) \leftarrow (HL) HL \leftarrow HL - 1 end

This instruction is used for block output of strings of data. The string of output data is loaded into the selected peripheral from memory at consecutive addresses, starting with the location addressed by the HL register and decreasing. During the I/O transaction the 32-bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A(15-8) are not useable as part of a fixed port address. The decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then decremented by one, thus moving the pointer to the next source for the output. If the result of decrementing the B register is 0, the instruction is terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected

- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing			LACCULC	
Mode	Syntax	Instruction Format	Time	Note
	OTDR	11101101 10111011	2+r+o	

OTDRW **OUTPUT, DECREMENT AND REPEAT (WORD)**

OTDRW

Operation:

repeat until (BC=0) begin BC(15-0) BC(15-0) - 1 ← (DE) ← (HL) HL HL – 2 ← end

This instruction is used for block output of strings of data. The string of output data is loaded into the selected peripheral from memory at consecutive addresses, starting with the location addressed by the HL register and decreasing. During the I/O transaction the 32bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then decremented by two, thus moving the pointer to the next source for the output. If the result of decrementing the BC register is 0, the instruction is terminated, otherwise the sequence is repeated. If the BC register contains 0 at the start of the execution of this instruction, 65536 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags:

- S: Unaffected
 - Z: Set if the result of decrementing B is zero; cleared otherwise
 - H: Unaffected
 - V: Unaffected
 - N: Set
 - C: Unaffected

Addressing

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OTDRW	11101101 11111011	2+r+o	

OTIM **OUTPUT INCREMENT MEMORY**

OTIM

1 + 1

Operation:	(C) ← (HL)
	$C \leftarrow C+1$
	B ← B-1
	$HL \leftarrow HL + $

This instruction is used for block output of strings of data to on-chip peripherals. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the address bus and the write data will appear on the data bus while this internal write is occurring. The peripheral address is placed on the low byte of the address bus and zeros are placed on all other address lines. The byte of data from the memory location addressed by the HL register is loaded to the on-chip I/O port addressed by the C register. The C register, holding the port address, is incremented by one to select the next output port. The B register, used as a counter, is then decremented by one. The HL register is then incremented by one, thus moving the pointer to the next source for the output.

Flags:

- S: Set if the result of decrementing B is negative; cleared otherwise
 - Z: Set if the result of decrementing B is zero; cleared otherwise
 - H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared otherwise
 - P: Set if the result of the decrement of the B register is even; cleared otherwise
 - N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise
 - Set if there is a borrow from the most significant bit during the decrement of the B C: register; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OTIM	11101101 10000011	2+r+o	

OTIMR OUTPUT, INCREMENT MEMORY REPEAT

OTIMR

Operation:

repeat until (B=0) begin (C) \leftarrow (HL) C \leftarrow C + 1 B \leftarrow B - 1 HL \leftarrow HL + 1 end

This instruction is used for block output of strings of data to on-chip peripherals. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the address bus and the write data will appear on the data bus while this internal write is occurring. The peripheral address is placed on the low byte of the address bus and zeros are placed on all other address lines. The byte of data from the memory location addressed by the HL register is loaded to the on-chip I/O port addressed by the C register. The C register, holding the port address, is incremented by one to select the next output port. The B register, used as a counter, is then decremented by one. The HL register is then incremented by one, thus moving the pointer to the next source for the output. If the result of decrementing the B register is 0, the instruction is terminated, otherwise the output sequence is repeated. Note that if the B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags:

S: Cleared Z: Set

- H: Cleared
- P: Set
- N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie
- C: Cleared

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OTIMR	11101101 10010011	2+r+o	

OTIR OUTPUT, INCREMENT AND REPEAT (BYTE)

OTIR

Operation: repeat until (B=0) begin

 $\begin{array}{rcl} B & \leftarrow & B-1 \\ (C) \leftarrow & (HL) \\ HL \leftarrow & HL+1 \\ end \end{array}$

This instruction is used for block output of strings of data. The string of output data is loaded into the selected peripheral from memory at consecutive addresses, starting with the location addressed by the HL register and increasing. During the I/O transaction the 32-bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A(15-8) are not useable as part of a fixed port address. The decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then incremented by one, thus moving the pointer to the next source for the output. If the result of decrementing the B register is 0, the instruction is terminated, otherwise the sequence is repeated. If the B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected

- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected
- V: Unaffected
- N: Set
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OTIR	11101101 10110011	2+r+o	

OTIRW OUTPUT, INCREMENT AND REPEAT (WORD)

OTIRW

Operation:

repeat until (BC=0) begin				
BC(15-0)	←	BC(15-0) – 1		
(DE)	\leftarrow	(HL)		
HL	\leftarrow	HL + 2		
end				

This-instruction is used for block output of strings of data. The string of output data is loaded into the selected peripheral from memory at consecutive addresses, starting with the location addressed by the HL register and increasing. During the I/O transaction the 32-bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then incremented by two, thus moving the pointer to the next source for the output. If the result of decrementing the BC register is 0, the instruction is terminated, otherwise the sequence is repeated. If the BC register contains 0 at the start of the execution of this instruction, 65536 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program Counter value at the start of this instruction is saved before the interrupt request is accepted, so that the instruction can be properly resumed.

Flags:

.

- S: Unaffected
 - Z: Set if the result of decrementing B is zero; cleared otherwise
 - H: Unaffected
 - V: Unaffected
 - N: Set
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OTIRW	11101101 11110011	2+r+o	

OUT OUTPUT (BYTE)

OUT (C),src src = R, IM

Operation: (C) \leftarrow src

The byte of data from the source is loaded into the selected peripheral. During the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	OUT (C),R	11101101 01 -r- 001	3+0	
IM:	OUT (C),n	11101101 01110001 —n—	3+0	

Field Encodings: r: per convention

OUTW OUTPUT (WORD)

OUTW (C),src src = R, IM

Operation: (C) \leftarrow src(15-0)

The word of data from the source is loaded into the selected peripheral. During the I/O transaction, the contents of the 32-bit BC register are placed on the address bus.

- Flags: S: Unaffected
 - Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	OUTW (C),R	11011101 01rrr 001	2+o	
IM:	OUTW (C),nn	11111101 01111001 -n(low)n(high)	2+0	

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

OUT OUTPUT ACCUMULATOR

01	IT	(n)	Δ
ΟC	1	(III)	,~

Operation: (n) \leftarrow A

The byte of data from the accumulator is loaded into the selected peripheral. During the I/O transaction, the 8-bit peripheral address from the instruction is placed on the low byte of the address bus, the contents of the accumulator are placed on address lines A(15-8), and the high-order address lines are all zeros.

- Flags:
- Z: Unaffected

S:

H: Unaffected

Unaffected

- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OUT (n),A	11010011n	3+0	

OUT0 **OUTPUT (TO PAGE 0)**

OUT0 (n),src src = R

Operation: (n) \leftarrow src

The byte of data from the source register is loaded into the selected on-chip peripheral. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the address bus and the write data will appear on the data bus while this internal write is occurring. The peripheral address is placed on the low byte of the address bus and zeros are placed on all other address lines.

Flags:

S: Unaffected

- Z: Unaffected
- H: Unaffected V:
- Unaffected
- N: Unaffected
- Unaffected C:

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	OUTO (n),R	11101101 00-r-001 ——-n—		3+0

Field Encodings: r: per convention

OUTA OUTPUT DIRECT TO PORT ADDRESS (BYTE)

OUT (nn),A

Operation: $(nn) \leftarrow A$

The byte of data from the accumulator is loaded into the selected peripheral. During the I/O transaction, the peripheral address from the instruction is placed on the address bus. Any bytes of address not specified in the instruction are driven on the address lines are all zeros.

- Flags:S:UnaffectedZ:Unaffected
 - H: Unaffected V: Unaffected
 - N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	OUTA (nn),A	11101101 11010011 -n(low)n(high)	2+o	I

Note

OUTAW OUTPUT DIRECT TO PORT ADDRESS (WORD)

OUT (nn),HL

Operation: $(nn) \leftarrow HL(15-0)$

S:

The word of data from the HL register is loaded into the selected peripheral. During the I/O transaction, the peripheral address from the instruction is placed on the address bus. Any bytes of address not specified in the instruction are driven on the address lines are all zeros.

- Flags:
- Z: Unaffected
- H: Unaffected

Unaffected

- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	1
	OUTAW (nn),HL	11111101 11010011 -n(low)n(high)	2+o	1

OUTD OUTPUT AND DECREMENT (BYTE)

OUTD

Operation: $B \leftarrow B - 1$

 $(C) \leftarrow (HL)$ HL \leftarrow HL - 1

This instruction is used for block output of strings of data. During the I/O transaction the 32-bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A15-A8 are not useable as part of a fixed port address. The decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then decremented by one, thus moving the pointer to the next source for the output.

Execute

Flags:

- Z: Set if the result of decrementing B is zero; cleared otherwise
- H: Unaffected

Unaffected

- V: Unaffected
- N: Set

S:

C: Unaffected

Addressing

Mode	Syntax	Instruction Format	Time	
	OUTD	11101101 10101011	2+r+o	

Note

OUTDW OUTPUT AND DECREMENT (WORD)

OUTDW

 $\begin{array}{rcl} \textbf{Operation:} & BC(15\text{-}0) & \leftarrow & BC(15\text{-}0) \text{-} 1 \\ (DE) & \leftarrow & (HL) \\ HL & \leftarrow & HL \text{-} 2 \end{array}$

This instruction is used for block output of strings of data. During the I/O transaction the 32bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then decremented by two, thus moving the pointer to the next source for the output.

Flags:

- Z: Set if the result of decrementing BC is zero; cleared otherwise
- H: Unaffected

Unaffected

- V: Unaffected
- N: Set

S:

C: Unaffected

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	•	Note
	OUTDW	11101101 11101011	2+r+o		

OUTI OUTPUT AND INCREMENT (BYTE)

OUTI

Operation:

 $\begin{array}{rrrr} \mathsf{B} & \leftarrow & \mathsf{B-1} \\ (\mathsf{C}) \leftarrow & (\mathsf{HL}) \\ \mathsf{HL} \leftarrow & \mathsf{HL+1} \end{array}$

This instruction is used for block output of strings of data. During the I/O transaction the 32bit BC register is placed on the address bus. Note that the B register contains the loop count for this instruction so that A15-A8 are not useable as part of a fixed port address. The decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then incremented by one, thus moving the pointer to the next source for the output.

Execute

- Flags:
- S: Unaffected
 - Z: Set if the result of decrementing B is zero; cleared otherwise
 - H: Unaffected
 - V: Unaffected
 - N: Set
 - C: Unaffected

Addressing

Mode	Syntax	Instruction Format	Time	Note
	OUTI	11101101 10100011	2+r+o	

OUTIW **OUTPUT AND INCREMENT (WORD)**

OUTIW

Operation: BC(15-0) ← BC(15-0) -1 (DE) HL.

 \leftarrow (HL) \leftarrow HL + 2

This instruction is used for block output of strings of data. During the I/O transaction the 32bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. The word of data from the memory location addressed by the HL register is loaded into the selected peripheral. The HL register is then incremented by two, thus moving the pointer to the next source for the output.

Flags:

- Z: Set if the result of decrementing BC is zero; cleared otherwise
- H٠ Unaffected
- V: Unaffected

Unaffected

- N٠ Set
- C: Unaffected

Addressing Mode

Syntax OUTIW

S:

Instruction Format 11101101 11100011 Execute Time 2+r+o

Note

POP POP ACCUMULATOR

lst = AF

Operation:

 $\begin{array}{rcl} \mathsf{F} & \leftarrow & (\mathsf{SP}) \\ \mathsf{A} & \leftarrow & (\mathsf{SP+1}) \\ \mathsf{SP} & \leftarrow & \mathsf{SP+2} \\ \mathsf{if} (\mathsf{LW}) \ \mathsf{then} \ \mathsf{begin} \\ & \mathsf{SP} \ \leftarrow & \mathsf{SP+2} \\ & \mathsf{end} \end{array}$

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into the destination in ascending byte order from ascending address memory locations. For this instruction, the Flag register is the least significant byte, followed by the Accumulator. The SP is then incremented by two (by four in the Long Word mode). Note that in the Long Word mode only one word is read from memory, although the SP is in fact incremented by four.

Flags:

- S: Loaded from (SP) Z: Loaded from (SP)
- H: Loaded from (SP)
- V: Loaded from (SP)
- N: Loaded from (SP)
- N. Loaded from (SP)
- C: Loaded from (SP)

Addressing Mode

Syntax POP AF Instruction Format

Execute	
Time	Note
2+r	L

POP POP CONTROL REGISTER

POP dst dst = SR

Operation:	if (LW) then beg dst(6-0) dst(15-8) dst(23-16) dst(31-24) SP end	${\leftarrow}$	(SP) (SP+1) (SP+2) (SP+3) SP + 4
	else begin dst(6-0) dst(15-8) dst(23-16) dst(31-24) SP end	$\uparrow \uparrow \uparrow \uparrow \uparrow$	(SP) (SP+1) (SP+1) (SP+1) SP + 2

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into the destination in ascending byte order from ascending address memory locations. The SP is then incremented by two (by four in the Long Word mode). Note that when not in the Long Word mode the most significant byte read from memory is also written to the two most significant bytes of the SR. Also note that the XM bit is unaffected by this instruction.

Flags:

S: Unaffected

- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected

C:	Unaffected
----	------------

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	POP SR	11101101 11000001	3+r	L

POP **POP REGISTER**

	POP dst	dst = R, RX	
Operation:	if (LW) then beg dst(7-0) dst(15-8) dst(23-16) dst(31-24) SP end	$\begin{array}{ll} \leftarrow & (SP) \\ \leftarrow & (SP+1) \\ \leftarrow & (SP+2) \end{array}$	
	else begin dst(7-0) dst(15-8) SP end	← (SP) ← (SP+1) ← SP + 2	

--- .

. _ _..

The contents of the memory location addressed by the Stack Pointer (SP) are loaded into the destination in ascending byte order from ascending address memory locations. The SP is then incremented by two (by four in the Long Word mode).

Flags:	S:	Unaffected

- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing

Addressing		Execute		
Mode	Syntax	Instruction Format	Time	Note
R:	POP R	11rr 0001	1+r	L
RX:	POP RX	11y11101 11100001	1+r	L

Field Encodings:	rr:	00 for BC, 01 for DE, 10 for HL
	y:	0 for IX, 1 for IY

PUSH PUSH ACCUMULATOR

PUSH src src = AF

Operation:

if (LW) then begin SP \leftarrow SP - 4

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source is loaded into the memory locations addressed by the SP in ascending byte order in ascending address memory locations. For this instruction, the Flag register is the least significant byte, followed by the Accumulator. The other two bytes written in the Long Word mode are all zeros. The Flag register and Accumulator are unaffected.

E.c. a.uka

- Flags:
- S: Unaffected 7: Unaffected
- Z: Unaffected H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

		_
Add	ress	ing

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	PUSH AF	11110101	3+w	L

PUSH PUSH CONTROL REGISTER

PUSH src src = SR

if (LW) then begin **Operation:**

		005	
	SP	←	SP - 4
	(SP)	←	src(7-0)
	(SP+1)	\leftarrow	src(15-8)
	(SP+2)	\leftarrow	src(23-16)
	(SP+3)	\leftarrow	src(31-24)
	end		
else	e begin		
	SP	←	SP - 2
	(SP)	\leftarrow	src(7-0)
	(SP+1)	←	src(15-8)
	end		

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source is loaded into the memory locations addressed by the SP in ascending byte order in ascending address memory locations. The contents of the source are unaffected.

Flags:	S:	Unaffected
	Z:	Unaffected
	H:	Unaffected

- V: Unaffected
- Unaffected N:
- Unaffected C:

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	PUSH SR	11101101 11000101	3+w	L

Execute

PUSH PUSH IMMEDIATE

PUSH src

Operation: i

 $\begin{array}{rcl} \text{if (LW) then begin} \\ & SP & \leftarrow & SP - 4 \\ & (SP) & \leftarrow & \operatorname{src}(7\text{-}0) \\ & (SP+1) & \leftarrow & \operatorname{src}(15\text{-}8) \\ & (SP+2) & \leftarrow & \operatorname{src}(23\text{-}16) \\ & (SP+3) & \leftarrow & \operatorname{src}(31\text{-}24) \\ & \text{end} \\ \end{array}$

src = IM

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source is loaded into the memory locations addressed by the SP in ascending byte order in ascending address memory locations.

-		
E	l a n	ie •
	ay	э.

- S: Unaffected
- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Add	ressing
71000	locomg

Mode	Syntax	Instruction Format	Time	Note
IM:	PUSH nn	11111101 11110101 -n(low)n(high)	3+w	I, L

PUSH **PUSH REGISTER**

src = R, RXPUSH src if (LW) then begin

Operation:

SP ← SP - 4 (SP) \leftarrow src(7-0) $(SP+1) \leftarrow src(15-8)$ $(SP+2) \leftarrow src(23-16)$ $(SP+3) \leftarrow src(31-24)$ end else begin \leftarrow SP - 2 SP (SP) ← src(7-0) $(SP+1) \leftarrow src(15-8)$ end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source is loaded into the memory locations addressed by the SP in ascending byte order in ascending address memory locations. The contents of the source are unaffected.

Flags:	S:	Unaffected
	Z:	Unaffected

- H: Unaffected
- Unaffected V:
- Unaffected N:
- C: Unaffected

Addressing Mode	Syntax	Instruction Format	Execute Time	Note	
R:	PUSH R	11rr0101	3+w	L	
RX:	PUSH RX	11y11101 11100101	3+w	L	

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL y: 0 for IX, 1 for IY

RES RESET BIT

RES b, dst dst = R, IR, X

Operation: dst(b) \leftarrow 0

The specified bit b within the destination operand is cleared to 0. The other bits in the destination are unaffected. The bit to be reset is specified by a 3-bit field in the instruction; this field contains the binary encoding for the bit number to be cleared. The bit number b must be between 0 and 7.

- Flags:
- S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	RES b,R	11001011 10bbb -r-	2	
IR:	RES b,(HL)	11001011 10bbb110	2+r	
х:	RES b,(XY+d)	11y11101 11001011 ——d— 10bbb110	4+r	I

Field Encodings: r: per convention

RESC RESET CONTROL BIT

	RESC mode mod	de = LCK, LW		
Operation:	if (mode = LCK) then $SR(1) \leftarrow 0$ end else begin $SR(6) \leftarrow 0$ end	n begin		
	enabling external bu instruction has been	mode (LCK), the LCK bit (bit 1) in the Sele is requests. Note that these requests can executed, and that one or more of the succe or decoding before this instruction has be	not be granted until aft eeding instructions ma	ter the
		Word mode (LW), the LW bit (bit 6) in the ng 16-bit words, all word load operations		ng 16-
Flags:	S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected C: Unaffected			
Addressing Mode	Syntax RESC mode	Instruction Format 11mm1101 11111111	Execute Time 4	Note

Field Encodings: mm: 01 for LW, 10 for LCK

RET RETURN

RET [cc]

Operation:

if (cc is TRUE) then be if (XM) then begin	0	
PC(7-0)	←	(SP)
PC(15-8)	←	(SP+1)
PC(23-16)	←	(SP+2)
PC(31-24)	\leftarrow	(SP+3)
SP	\leftarrow	SP + 4
end		
else begin		
PC(7-0)	\leftarrow	(SP)
PC(15-8)	\leftarrow	(SP+1)
SP	\leftarrow	SP + 2
end		
end		

This instruction is used to return to a previously executing procedure at the end of a procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry, Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code "cc" encoded in the instruction; if the condition is not satisfied, the instruction following the Return instruction is executed, otherwise a value is popped from the stack and loaded into the Program Counter (PC), thereby specifying the location of the next instruction to be executed. For an unconditional return, the return is always taken and a condition code is not specified.

This instruction is also used to return to a previously executing procedure at the end of a procedure entered by an interrupt in the assigned vectors mode, if Z80 family peripherals are used external to the Z380 MPU.

Flags:

- S: Unaffected Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RET CC	11-cc000	note	Х
	RET	11001001	2+r	Х

- Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO/NV, 101 for PE/V, 110 for P/NS, 111 for M/S
- Note: 2 if CC is false, 2+r if CC is true

RETB RETURN FROM BREAKPOINT

Operation: PC (31-0) \leftarrow SPC (31-0)

This instruction is used to return to a previously executing procedure at the end of a breakpoint. The contents of the Shadow Program Counter (SPC), which holds the address of the next instruction of the previously executing procedure, are loaded into the Program Counter (PC).

Note that maskable interrupts (if IEF1 is set) and non-maskable interrupt are enabled after the instruction following RETB is executed.

- Flags: S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RETB	11101101 01010101	2	

RETI **RETURN FROM INTERRUPT**

RETI

Operation:

if (XM) then be	gin	
PC(7-0)	\leftarrow	(SP)
PC(15-8)	\leftarrow	(SP+1)
PC(23-16)	\leftarrow	(SP+2)
PC(31-24)	←	(SP+3)
SP	\leftarrow	SP + 4
end		
else begin		
PC(7-0)	\leftarrow	(SP)
PC(15-8)	\leftarrow	(SP+1)
SP	\leftarrow	SP + 2
end		

This instruction is used to return to a previously executing procedure at the end of a procedure entered by an interrupt. The contents of the location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC), thereby specifying the location of the next instruction to be executed. A special sequence of bus transactions is performed when this instruction is executed in order to control Z80 family peripherals; see the description of the external interface for more details.

Flags:

- S: Unaffected
- Z: Unaffected
- H: Unaffected
- V: Unaffected
- Unaffected N:
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RETI	11101101 01001101	2+r	Х

RETN **RETURN FROM NONMASKABLE INTERRUPT**

RETN

Operation:	if (XM) then be	gin	
	PC(7-0)	\leftarrow	(SP)
	PC(15-8)	←	(SP+1)
	PC(23-16)	\leftarrow	(SP+2)
	PC(31-24)	\leftarrow	(SP+3)
	SP	\leftarrow	SP + 4
	end		
	else begin		
	PC(7-0)	\leftarrow	(SP)
	PC(15-8)	\leftarrow	(SP+1)
	SP	\leftarrow	SP + 2
	end		
	IEF1	\leftarrow	IEF2

This instruction is used to return to a previously executing procedure at the end of a procedure entered by a nonmaskable interrupt. The contents of the location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC), thereby specifying the location of the next instruction to be executed. The previous setting of the interrupt enable bit is restored by execution of this instruction.

- Flags:
- S: Unaffected Z: Unaffected
 - H: Unaffected
 - V: Unaffected
 - N: Unaffected
 - C: Unaffected

Δdd	ressing
Auu	ressing

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RETN	11101101 01000101	2+r	Х

RL ROTATE LEFT (BYTE)

RL dst

dst = R, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ dst(0) & \leftarrow & C \\ C & \leftarrow & dst(7) \\ dst(n+1) & \leftarrow & tmp(n) \mbox{ for } n = 0 \mbox{ to } 6 \end{array}$

The contents of the destination operand are concatenated with the Carry flag and together they are rotated left one bit position. Bit 7 of the destination operand is moved to the Carry flag and the Carry flag is moved to bit 0 of the destination.

Flags:

- S: Set if the most significant bit of the result is set; cleared otherwise
 - Z: Set if the result is zero; cleared otherwise
 - H: Cleared
 - P: Set if parity of the result is even; cleared otherwise
 - N: Cleared
 - C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	RL R	11001011 00010-r-	2	
IR:	RL (HL)	11001011 00010110	2+r	
Х:	RL (XY+d)	11y11101 11001011 ——d— 00010110	4+r	I I

Field Encodings: r: per convention

RLW ROTATE LEFT (WORD)

RLW dst dst = R, RX, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ dst(0) & \leftarrow & C \\ C & \leftarrow & dst(15) \\ dst(n+1) & \leftarrow & tmp(n) \text{ for } n = 0 \text{ to } 14 \end{array}$

The contents of the destination operand are concatenated with the Carry flag and together they are rotated left one bit position. The most significant bit of the destination operand is moved to the Carry flag and the Carry flag is moved to bit 0 of the destination.

- S: Set if the most significant bit of the result is set; cleared otherwise
 - Z: Set if the result is zero; cleared otherwise
 - H: Cleared
 - P: Set if parity of the result is even; cleared otherwise
 - N: Cleared
 - C: Set if the bit rotated from the most significant bit was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	RLW R	11101101 11001011 000100rr	2	
RX:	RLW RX	11101101 11001011 0001010y	2	
IR:	RLW (HL)	11101101 11001011 00010010	2+r	
Х:	RLW (XY+d)	11y11101 11001011d 00010010	4+r	1

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

RLA ROTATE LEFT (ACCUMULATOR)

RLA

Operation:

tmp ← A A(0) ← C С ← A(7) $A(n+1) \leftarrow tmp(n)$ for n = 0 to 6

The contents of the accumulator are concatenated with the Carry flag and together they are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and the Carry flag is moved to bit 0 of the accumulator.

Flags:

. . .

- S: Unaffected Unaffected
- Z: H: Cleared
- Unaffected P:
- Cleared
- N:
- Set if the bit rotated from bit 7 was a 1; cleared otherwise C:

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RLA	00010111	2	

RLC ROTATE LEFT CIRCULAR (BYTE)

RLC dst dst = R, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(7) \\ dst(0) & \leftarrow & tmp(7) \\ dst(n+1) & \leftarrow & tmp(n) \mbox{ for } n=0 \mbox{ to } 6 \end{array}$

The contents of the destination operand are rotated left one bit position. Bit 7 of the destination operand is moved to the bit 0 position and also replaces the Carry flag.

	destination oper	and is moved to the bit 0 position and also rep	places the Carry	flag.
Flags:	Z: Set if the res H: Cleared P: Set if parity of N: Cleared	st significant bit of the result is set; cleared ot ult is zero; cleared otherwise of the result is even; cleared otherwise rotated from bit 7 was a 1; cleared otherwise	herwise	
Addressing Mode R: IR: X:	Syntax RLC R RLC (HL) RLC (XY+d)	Instruction Format 11001011 00000-r- 11001011 00000110 11y11101 11001011d 00000110	Execute Time 2 2+r 4+r	Note
Field Encodin	igs: r: per conv	vention		

RLCW ROTATE LEFT CIRCULAR (WORD)

RLCW dst	dst =	R.	RX.	IR.	х
	uoi –	,	,	,	<i>·</i> · ·

Operation:

tmp ← dst С ← dst(15) dst(0) \leftarrow tmp(15) \leftarrow tmp(n) for n = 0 to 14 dst(n+1)

The contents of the destination operand are rotated left one bit position. The most significant bit of the destination operand is moved to the bit 0 position and also replaces the Carry flag.

Flags:

- Set if the most significant bit of the result is set; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
- H: Cleared

S:

- P: Set if parity of the result is even; cleared otherwise
- N: Cleared
- Set if the bit rotated from the most significant bit was a 1; cleared otherwise C:

Ad	dres	ssing

Addressing Mode	Syntax	Instruction Format	Execute Time	Note
R:	RLCW R	11101101 11001011 000000rr	2	
RX:	RLCW RX	11101101 11001011 0000010y	2	
IR:	RLCW (HL)	11101101 11001011 00000010	2+r	
X:	RLCW (XY+d)	11y11101 11001011 ——d— 00000010	4+r	l I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

RLCA ROTATE LEFT CIRCULAR (ACCUMULATOR)

RLCA

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & A \\ C & \leftarrow & A(7) \\ A(0) & \leftarrow & tmp(7) \\ A(n+1) & \leftarrow & tmp(n) \text{ for } n = 0 \text{ to } 6 \end{array}$

The contents of the accumulator are rotated left one bit position. Bit 7 of the accumulator is moved to the bit 0 position and also replaces the Carry flag.

Flags:	S:	Unaffected
--------	----	------------

- Z: Unaffected
- H: Cleared
- P: Unaffected
- N: Cleared
- C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Addressing		Exec		te	
Mode	Syntax	Instruction Format	Time	Note	
	RLCA	00000111	2		

RLD ROTATE LEFT DIGIT

RLD

Operation:

tmp(3-0)	← A(3-0)
A(3-0)	← dst(7-4)
dst(7-4)	← dst(3-0)
dst(3-0)	← tmp(3-0)

The low digit of the accumulator is logically concatenated to the destination byte whose memory address is in the HL register. The resulting three-digit quantity is rotated to the left by one BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer digits between successive bytes of the string. This is analogous to the use of the Carry flag in multiple-precision shifting using the RL instruction.

Flags:

S: Set if the accumulator is negative after the operation; cleared otherwise

- Z: Set if the accumulator is zero after the operation; cleared otherwise
- H: Cleared
- P: Set if the parity of the accumulator is even after the operation; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format		Note
	RLD	11101101 01101111	3+r	

RR ROTATE RIGHT (BYTE)

ł

Operation:	$\begin{array}{rcl} tmp & \leftarrow & ds \\ dst(7) & \leftarrow & C \\ C & \leftarrow & ds \\ dst(n) & \leftarrow & tm \end{array}$				
	they are rotate	of the destination operand a cd right one bit position. Bit Carry flag is moved to bit 7	0 of the destination ope	, ,	0
Flags:	Z: Set if the H: Cleared P: Set if pa N: Cleared	arity of the result is even; c	nerwise leared otherwise		
Addressing Mode R: IR:	Syntax RR R RR (HL)	Instruction Format 11001011 00011-r- 11001011 00011110		Execute Time 2 2+r	Note

4+r

Field Encodings: r: per convention

RR (XY+d)

X:

RR dst

dst = R, IR, X

RRW ROTATE RIGHT (WORD)

RRW dst dst = R, RX, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(0) \\ dst(15) \leftarrow & C \\ dst(n) & \leftarrow & tmp(n+1) \mbox{ for } n=0 \mbox{ to } 14 \end{array}$

The contents of the destination operand are concatenated with the Carry flag and together they are rotated right one bit position. Bit 0 of the destination operand is moved to the Carry flag and the Carry flag is moved to the most significant bit of the destination.

Flags:

S: Set if the most significant bit of the result is set; cleared otherwise

- Z: Set if the result is zero; cleared otherwise
- H: Cleared
- P: Set if parity of the result is even; cleared otherwise
- N: Cleared
- C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	RRW R	11101101 11001011 000110rr	2	
RX:	RRW RX	11101101 11001011 0001110y	2	
IR:	RRW (HL)	11101101 11001011 00011010	2+r	
X:	RRW (XY+d)	11y11101 11001011d 00011010	4+r	l

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

RRA **ROTATE RIGHT (ACCUMULATOR)**

	RRA		
Operation:	$\begin{array}{rcl} tmp & \leftarrow \\ A(7) & \leftarrow \\ C & \leftarrow \\ A(n) & \leftarrow \end{array}$	С	
	rotated right	s of the accumulator are concatenated with one bit position. Bit 0 of the accumulator is r d to bit 7 of the accumulator.	, , ,
Flags:	S: Unaffe Z: Unaffe H: Cleare P: Unaffe N: Cleare C: Set if	ected ed ected	otherwise
Addressing Mode	Syntax RRA	Instruction Format 00011111	Execute Time Note 2

RRC ROTATE RIGHT CIRCULAR (BYTE)

RRC dst dst = R, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(0) \\ dst(7) & \leftarrow & tmp(0) \\ dst(n) & \leftarrow & tmp(n+1) \mbox{ for } n = 0 \mbox{ to } 6 \end{array}$

The contents of the destination operand are rotated right one bit position. Bit 0 of the destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags:

- S: Set if the most significant bit of the result is set; cleared otherwise
 - Z: Set if the result is zero; cleared otherwise
 - H: Cleared
 - P: Set if parity of the result is even; cleared otherwise
 - N: Cleared
 - C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing Mode	Syntax	Instruction Format	Execute Time	Note
R:	RRC R	11001011 00001-r-	2	
IR:	RRC (HL)	11001011 00001110	2+r	
X:	RRC (XY+d)	11y11101 11001011d 00001110	4+r	I

Field Encodings: r: per convention

RRCW ROTATE RIGHT CIRCULAR (WORD)

	RRCW dst ds	t = R, RX, IR, X		
Operation:	$\begin{array}{rrrr} tmp & \leftarrow & dst \\ C & \leftarrow & dst(0) \\ dst(15) \leftarrow & tmp(0) \\ dst(n) & \leftarrow & tmp(n+1) \end{array}$			
		e destination operand are rotated right one d is moved to the most significant bit position a		
Flags:	Z:Set if the restH:ClearedP:Set if parity cN:Cleared	st significant bit of the result is set; cleared c ult is zero; cleared otherwise of the result is even; cleared otherwise rotated from bit 0 was a 1; cleared otherwise		
Addressing Mode R: RX: IR: X:	Syntax RRCW R RRCW RX RRCW (HL) RRCW (XY+d)	Instruction Format 11101101 11001011 000010rr 11101101 11001011 0000110y 11101101 11001011 00001010 11y11101 11001011	Execute Time 2 2 2+r 4+r	Note
			771	·

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

RRCA ROTATE RIGHT CIRCULAR (ACCUMULATOR)

RRCA

Operation:

 $\begin{array}{rcl} \text{tmp} & \leftarrow & \text{A} \\ \text{C} & \leftarrow & \text{A}(0) \end{array}$

 $A(7) \leftarrow tmp(0)$

 $A(n) \leftarrow tmp(n+1)$ for n = 0 to 6

The contents of the accumulator are rotated right one bit position. Bit 0 of the accumulator is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Unaffected

- Z: Unaffected
 - H: Cleared
 - P: Unaffected
 - N: Cleared
 - C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RRCA	00001111	2	

RRD ROTATE RIGHT DIGIT

RRD

Operation:	tmp(3-0)	←	A(3-0)
-	A(3-0)	←	dst(3-0)
	dst(3-0)	←	dst(7-4)
	dst(7-4)	←	tmp(3-0)

The low digit of the accumulator is logically concatenated to the destination byte whose memory address is in the HL register. The resulting three-digit quantity is rotated to the right by one BCD digit (four bits). The upper digit of the source is moved to the lower digit of the source; the lower digit of the source is moved to the lower digit of the accumulator, and the lower digit of the accumulator is moved to the upper digit of the source. The upper digit of the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the right a string of BCD digits, thus dividing it by a power of ten. The accumulator serves to transfer digits between successive bytes of the string. This is analogous to the use of the Carry flag in multiple-precision shifting using the RR instruction.

Flags: S: Set if the accumulator is negative after the operation; cleared otherwise

- Z: Set if the accumulator is zero after the operation; cleared otherwise
- H: Cleared
- P: Set if the parity of the accumulator is even after the operation; cleared otherwise
- N: Cleared
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	RRD	11101101 01100111	3+r	

RST RESTART

RST address

Operation:

 $\begin{array}{rcl} \text{if (XM) then begin} \\ & & SP & \leftarrow & SP - 4 \\ & & (SP) & \leftarrow & PC(7-0) \\ & & (SP+1) & \leftarrow & PC(15-8) \\ & & (SP+2) & \leftarrow & PC(23-16) \\ & & (SP+3) & \leftarrow & PC(31-24) \\ & & \text{end} \\ & \text{else begin} \end{array}$

else	e begin		
	SP	←	SP - 2
	(SP)	←	PC(7-0)
	(SP+1)	←	PC(15-8)
	end		
PC		← ;	address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a constant address encoded in the instruction. Execution then begins at this address. The restart instruction allows for a call to one of eight fixed locations as shown in the table below. The table also indicates the encoding of the address used in the instruction encoding. (The address is in hexadecimal, the encoding in binary.)

Execute

Address	t encoding
00000008h	001
00000010h 00000018h	010 011
00000020h	100
00000028h 00000030h 00000038h	101 110 111
00000000000	111

Unaffected

Flags:

Z:	Unaffected
H:	Unaffected
V:	Unaffected
N:	Unaffected

S:

C: Unaffected

Addressing

		Excourto	
Syntax	Instruction Format	Time	Note
RST address	11-t-111	4+w	Х
		· · · · · · · · · · · · · · · · · · ·	Syntax Instruction Format Time

Field Encodings: 000 for 00h, 001 for 08h, 010 for 10h, 011 for 18h, 100 for 20h, 101 for 28h, 110 for 30h, 111 for 38h

SBC SUBTRACT WITH CARRY (BYTE)

SBC A,src src = R, RX, IM, IR, X

Operation: $A \leftarrow A - src - C$

The source operand together with the Carry flag is subtracted from the accumulator and the difference is stored in the accumulator. The contents of the source are unaffected. Two's complement subtraction is performed.

Flags:

- S: Set if the result is negative; cleared otherwise
 - Z: Set if the result is zero; cleared otherwise
 - H: Set if there is a borrow from bit 4 of the result; cleared otherwise
 - V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the result is of the same sign as the source; cleared otherwise
 - N: Set
 - C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	SBC A,R	10011-r-	2	
RX:	SBC A,RX	11y11101 1001110w	2	
IM:	SBC A,n	11011110n	2	
IR:	SBC A,(HL)	10011110	2+r	
X:	SBC A,(XY+d)	11y11101 10011110 ——d—	4+r	I

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

SBC SUBTRACT WITH CARRY (WORD)

Operation:	HL(15-0) ←	src = BC, DE, HL, SP HL(15-0) - src(15-0) - C	
	difference is st	erand together with the Carry flag is sub ored in the HL register. The contents of obtraction is performed.	5
Flags:	Z: Set if the H: Set if then V: Set if arith result is c N: Set	result is negative; cleared otherwise result is zero; cleared otherwise re is a borrow from bit 12 of the result; metic overflow occurs, that is, if the op of the same sign as the the source; cle re is a borrow from the most significant	erands are of different signs and the ared otherwise
Addressing Mode R:	Syntax SBC HL,R	Instruction Format 11101101 01rr0010	Execute Time Note 2
Field Encodin	gs: rr: 00 for E	BC, 01 for DE, 10 for HL, 11 for SP	

SBCW SUBTRACT WITH CARRY (WORD)

SBCW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) ← HL(15-0) - src(15-0) - C

The source operand together with the Carry flag is subtracted from the HL register and the difference is stored in the HL register. The contents of the source are unaffected. Two's complement subtraction is performed.

- S: Set if the result is negative; cleared otherwise Z: Set if the result is zero; cleared otherwise
- H: Set if there is a borrow from bit 12 of the result; cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the result is of the same sign as the source; cleared otherwise
- N: Set
- C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

		Execute	
Syntax	Instruction Format	Time	Note
SBCW [HL,]R	11101101 100111rr	2	
SBCW [HL,]RX	11y11101 10011111	2	
SBCW [HL,]nn	11101101 10011110 -n(low) -n(high)-	2	
SBCW [HL,](XY+d)	11y11101 11011110d	4+r	I
	SBCW [HL,]R SBCW [HL,]RX SBCW [HL,]nn	SBCW [HL,]R 11101101 100111rr SBCW [HL,]RX 11y11101 10011111 SBCW [HL,]nn 11101101 10011110 -n(low) -n(high)-	Syntax Instruction Format Time SBCW [HL,]R 11101101 100111rr 2 SBCW [HL,]RX 11y11101 10011111 2 SBCW [HL,]nn 11101101 10011110 -n(low) -n(high)- 2

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

SCF SET CARRY FLAG

SCF

Operation: $C \leftarrow 1$

The Carry flag is set to 1.

Flags:

- S: Unaffected Z: Unaffected
- H: Cleared
- V: Unaffected
- N: Cleared
- C: Set

Addressing

Mode	Syntax	Instruction Format	Time	Note
	SCF	00110111	2	

Execute

SET SET BIT

SET b, dst dst = R, IR, X

Operation: dst(b) \leftarrow 1

The specified bit b within the destination operand is set to 1. The other bits in the destination are unaffected. The bit to be set is specified by a 3-bit field in the instruction; this field contains the binary encoding for the bit number to be set. The bit number b must be between 0 and 7.

- Flags: S: Unaffected Z: Unaffected H: Unaffected V: Unaffected N: Unaffected
 - C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	SET b,R	11001011 11bbb -r-	2	
IR:	SET b,(HL)	11001011 11bbb110	2+r	
Х:	SET b,(XY+d)	11y11101 11001011 ——d— 11bbb110	4+r	1
Field Encodi	ngs: r:	per convention		
	y:	0 for IX, 1 for IY		

5

SETC SET CONTROL BIT

SETC mode mode = LCK, LW, XM

Operation:

 $\begin{array}{rl} \text{if (mode = LCK) then begin} \\ & SR(1) & \leftarrow & 1 \\ & \text{end} \\ \\ \text{else if (mode = LW) then begin} \\ & SR(6) & \leftarrow & 1 \\ & \text{end} \\ \\ \\ \text{else begin} \\ & SR(7) & \leftarrow & 1 \\ & \text{end} \end{array}$

When setting Lock mode (LCK), the LCK bit (bit 1) in the Select Register (SR) is set to 1, disabling external bus requests. Note that bus requests are not disabled until after this instruction has been executed, and that one or more of the succeeding instructions may also have been fetched for decoding before this instruction has been executed.

When setting Long Word mode (LW), the LW bit (bit 6) in the SR is set to 1, selecting 32-bit words. When using 32-bit words, all word load instructions transfer 32 bits.

When setting Extended mode (XM), the XM bit (bit 7) in the SR is set to 1, selecting addresses modulo 4,294,967,296 (32 bits) as opposed to addresses modulo 65536 (16 bits) in Native mode. In Extended mode CALL and RETurn instructions save and restore 32 bit PC values to and from the stack, and the PC pushed to the stack in response to an interrupt is 32 bits. In Extended mode, address manipulation instructions such as INCrement, DECrement, ADD, and Jump Relative (JR) employ 32-bit addresses. Note that it is not possible to exit from Extended mode except via reset.

Esse subs

Flags:

- S: Unaffected Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	SETC mode	11mm1101 11110111	4	

Field Encodings: mm: 01 for LW, 10 for LCK, 11 for XM

SLA SHIFT LEFT ARITHMETIC (BYTE)

SLA dst dst = R, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(7) \\ dst(0) & \leftarrow & 0 \\ dst(n+1) & \leftarrow & tmp(n) \mbox{ for } n=0 \mbox{ to } 6 \end{array}$

The contents of the destination operand are shifted left one bit position. Bit 7 of the destination operand is moved to the Carry flag and zero is shifted into bit 0 of the destination.

Flags:	S:	Set if the most significant bit of the result is set; cleared otherwise
--------	----	---

- Z: Set if the result is zero; cleared otherwise
- H: Cleared
- P: Set if parity of the result is even; cleared otherwise
- N: Cleared
- C: Set if the bit shifted from bit 7 was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	SLA R	11001011 00100-r-	2	
IR:	SLA (HL)	11001011 00100110	2+r	
Х:	SLA (XY+d)	11y11101 11001011 ——d— 00100110	4+r	I

Field Encodings: r: per convention

SLAW SHIFT LEFT ARITHMETIC (WORD)

SLAW dst	dst = R.	RX, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ dst(0) & \leftarrow & 0 \\ C & \leftarrow & dst(15) \\ dst(n+1) & \leftarrow & tmp(n) \mbox{ for } n = 0 \mbox{ to } 14 \end{array}$

The contents of the destination operand are shifted left one bit position. The most significant bit of the destination operand is moved to the Carry flag and zero is shifted into bit 0 of the destination.

Flags:

- S: Set if the most significant bit of the result is set; cleared otherwise
 - Z: Set if the result is zero; cleared otherwise
 - H: Cleared
 - P: Set if parity of the result is even; cleared otherwise
 - N: Cleared
 - C: Set if the bit shifted from the most significant bit was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	SLAW R	11101101 11001011 001000rr	2	
RX:	SLAW RX	11101101 11001011 0010010y	2	
IR:	SLAW (HL)	11101101 11001011 00100010	2+r	
X:	SLAW (XY+d)	11y11101 11001011 ——d— 00100010	4+r	I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

SLP SLEEP

SLP

Operation: if (STBY not enabled) then CPU Halts

else

Z380 enters Standby mode

With Standby mode disabled, this instruction is interpreted and executed as a HALT instruction.

With Standby mode enabled, executing this instruction causes all device operation to stop, thus minimizing power dissipation. The /STNBY signal is asserted to indicate this Standby mode status. /STNBY remains asserted until an interrupt or reset request is accepted, which causes the device to exit Standby mode. If the option is enabled, an external bus request also causes the device to exit the Standby mode.

Flags:

- S: Unaffected Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute		
Mode	Syntax	Instruction Format	Time	Note	
	SLP	11101101 01110110	2		

SRA SHIFT RIGHT ARITHMETIC (BYTE)

SRA dst dst = R, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(0) \\ dst(7) & \leftarrow & tmp(7) \\ dst(n) & \leftarrow & tmp(n+1) \mbox{ for } n=0 \mbox{ to } 6 \end{array}$

The contents of the destination operand are shifted right one bit position. Bit 0 of the destination operand is moved to the Carry flag and bit 7 remains unchanged.

Flags:

S: Set if the result is negative; cleared otherwise

- Z: Set if the result is zero; cleared otherwise
- H: Cleared
- P: Set if parity of the result is even; cleared otherwise
- N: Cleared
- C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing	0	la chuachtan Ecuarach	Execute	Note
Mode	Syntax	Instruction Format	Time	Note
R:	SRA R	11001011 00101-r-	2	
IR:	SRA (HL)	11001011 00101110	2+r	
X:	SRA (XY+d)	11y11101 11001011d 00101110	4+r	I

Field Encodings: r: per convention

SRAW SHIFT RIGHT ARITHMETIC (WORD)

	SRAW dst d	st = R, RX, IR, X			
Operation:	$\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(0) \\ dst(15) \leftarrow & tmp(1) \\ dst(n) & \leftarrow & tmp(n) \end{array}$				
		the destination operand are shifted right one and is moved to the Carry flag and the mo			
Flags:	 Set if the result is negative; cleared otherwise Z: Set if the result is zero; cleared otherwise H: Cleared P: Set if parity of the result is even; cleared otherwise N: Cleared C: Set if the bit shifted from bit 0 was a 1; cleared otherwise 				
Addressing Mode R: RX: IR: X:	Syntax SRAW R SRAW RX SRAW (HL) SRAW (XY+d)	Instruction Format 11101101 11001011 001010rr 11101101 11001011 0010110y 11101101 11001011 00101010 11y11101 11001011	Execute Time 2 2 2+r 4+r	Note	
Field Encodin	as: rr: 00 for BC	, 01 for DE, 11 for HL			

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

SRL SHIFT RIGHT LOGICAL (BYTE)

SRL dst dst = R, IR, X

Operation:

 $\begin{array}{rcl} tmp & \leftarrow & dst \\ C & \leftarrow & dst(0) \\ dst(7) & \leftarrow & 0 \\ dst(n) & \leftarrow & tmp(n+1) \mbox{ for } n=0 \mbox{ to } 6 \end{array}$

The contents of the destination operand are shifted right one bit position. Bit 0 of the destination operand is moved to the Carry flag and zero is shifted into bit 7 of the destination.

Evenute

Flags: S:

- Z: Set if the result is zero; cleared otherwise
- H: Cleared

Cleared

- P: Set if parity of the result is even; cleared otherwise
- N: Cleared
- C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing

Mode	Syntax	Instruction Format	Time	Note
R:	SRL R	11001011 00111-r-	2	
IR:	SRL (HL)	11001011 00111110	2+r	
X:	SRL (XY+d)	11y11101 11001011d 00111110	4+r	1

Field Encodings: r: per convention

SRLW SHIFT RIGHT LOGICAL (WORD)

SRLW dst dst = R, RX, IR, X

Operation:	tmp	←	dst

 $\begin{array}{rcl} C & \leftarrow & dst(0) \\ dst(15) & \leftarrow & 0 \\ dst(n) & \leftarrow & tmp(n+1) \text{ for } n = 0 \text{ to } 14 \end{array}$

The contents of the destination operand are shifted right one bit position. Bit 0 of the destination operand is moved to the Carry flag and zero is shifted into the most significant bit of the destination.

Flags:	S:	Cleared
riays.	υ.	Cleared

- Z: Set if the result is zero; cleared otherwise
- H: Cleared
- P: Set if parity of the result is even; cleared otherwise
- N: Cleared
 - C: Set if the bit shifted from bit 0 was a 1; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	SRLW R	11101101 11001011 001110rr	2	
RX:	SRLW RX	11101101 11001011 0011110y	2	
IR:	SRLW (HL)	11101101 11001011 00111010	2+r	
X:	SRLW (XY+d)	11y11101 11001011 d 00111010	4+r	1

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

,

y: 0 for IX, 1 for IY

SUB SUBTRACT (BYTE)

SUB A,src src = R, RX, IM, IR, X

Operation: $A \leftarrow A - src$

The source operand is subtracted from the accumulator and the difference is stored in the accumulator. The contents of the source are unaffected. Two's complement subtraction is performed.

Flags:

- S: Set if the result is negative; cleared otherwise
- Z: Set if the result is zero; cleared otherwise
- H: Set if there is a borrow from bit 4 of the result; cleared otherwise
- V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the result is of the same sign as the source; cleared otherwise
- N: Set
- C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
R:	SUB A,R	10010-r-	2	
RX:	SUB A,RX	11y11101 1001010w	2	
IM:	SUB A,n	11010110n	2	
IR:	SUB A,(HL)	10010110	2+r	
х:	SUB A,(XY+d)	11y11101 10010110 ——d—	4+r	I

Field Encodings: r: per convention

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

SUB SUBTRACT (WORD)

	SUB HL,src	src = [A		
Operation:	if (XM) then be HL(31-0) end else begin HL(15-0) end	~ →	HL(31-0) - src(31-0) HL(15-0) - src(15-0)		
	HL register. Th performed. No	ie conter te that th	subtracted from the HL register and the nts of the source are unaffected. Two's e length of the operand is controlled b sistent with the manipulation of an add	s complement subtr y the Extended/Nati	action is ve mode
Flags:	V: Unaffect N: Set	ed re is a b ed	orrow from bit 12 of the result; cleared orrow from the most significant bit of tl		herwise
Addressing Mode DA:	Syntax SUB HL,(nn)		truction Format 101101 11010110 -n(low)n(high)	Execute Time 2+r	Note I, X

SUB SUBTRACT FROM STACK POINTER (WORD)

Operation:

if (XM) then begin SP(31-0) ← SP(31-0) – src(31-0) end else begin SP(15-0) ← SP(15-0) – src(15-0) end

The source operand is subtracted from the SP register and the difference is stored in the SP register. This has the effect of allocating or deallocating space on the stack. Two's complement subtraction is performed.

Flags:

- S: Unaffected Z: Unaffected
 - H: Set if there is a borrow from bit 12 of the result; cleared otherwise
 - V: Unaffected
 - N: Set
 - C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
IM:	SUB SP,nn	11101101 10010010 -n(low)n(high)	2	I, X

SUBW SUBTRACT (WORD)

	SUBW [HL,]src	src = R, RX, IM, X		
Operation:	HL(15-0) ← HL(⁻	15-0) - src(15-0)		
	•	is subtracted from the HL register and the c tents of the source are unaffected. Two's co		
Flags:	 Z: Set if the resul H: Set if there is a V: Set if arithmetic result is of the N: Set 	t is negative; cleared otherwise t is zero; cleared otherwise a borrow from bit 12 of the result; cleared oth c overflow occurs, that is, if the operands are same sign as the source; cleared otherwise a borrow from the most significant bit of the r	of different signs a	
Addressing Mode R: RX: IM: X:	Syntax SUBW [HL,]R SUBW [HL,]RX SUBW [HL,]nn SUBW [HL,](XY+d)	11101101 10010110 -n(low)- n(high)-	Execute Time 2 2 2 2 2+r	Note

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

SWAP SWAP UPPER REGISTER WORD WITH LOWER REGISTER WORD

SWAP src src = R, RX

Operation: $src(31-16) \leftrightarrow src(15-0)$

The contents of the most significant word of the source are exchanged with the contents of the least significant word of the source.

- Flags:
- S: Unaffected
- Z: Unaffected
- H: Unaffected
- V: Unaffected
- N: Unaffected
- C: Unaffected

Addressing			Execute	
Mode	Syntax	Instruction Format	Time No	te
R:	SWAP R	11101101 00rr1110	2	
RX:	SWAP RX	11y11101 00111110	2	
	00 (

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL y: 0 for IX, 1 for IY

TST TEST (BYTE)

	TST src	src = R, IM, IR		
Operation:	A AND src			
	and the acc	D operation is performed between the correspon umulator. The contents of both the accumulator a is are modified as a result of this instruction.	•	•
Flags:	Z: Set if H: Set		ed otherwise	
Addressing Mode R: IM: IR:	Syntax TST R TST n TST (HL)	Instruction Format 11101101 00-r-100 11101101 01100100n 11101101 00110100	Execute Time 2 2 2+r	Note
Field Encodin		convention		

Field Encodings: r: per convention

TSTIO TEST I/O PORT

TSTIO src src = IM

Operation: (C) AND src

A logical AND operation is performed between the corresponding bits of the source and the contents of the I/O location. The contents of both the I/O location and the source are unaffected; only the flags are modified as a result of this instruction. No external I/O transaction will be generated as a result of this instruction, although the I/O address will appear on the adress bus while the internal read is occurring. The peripheral address in the C register is placed on the low byte of the address bus and zeros are placed on all other address lines.

Flags:

- S: Set if the most significant bit of the result is set; cleared otherwise
 - Z: Set if all bits of the result are zero; cleared otherwise
 - H: Set
 - P: Set if the parity is even; cleared otherwise
 - N: Cleared
 - C: Cleared

Addressing			Execute	
Mode	Syntax	Instruction Format	Time	Note
	TSTIO n	11101101 01110100n	3+i	

XOR **EXCLUSIVE OR (BYTE)**

Operation:	$A \leftarrow A XOR s$	SrC	
	source operand stored wherever	JSIVE OR operation is performed betw and the accumulator and the result is the corresponding bits in the two oper ontents of the source are unaffected.	stored in the accumulator. A 1 bit is
Flags:	Z: Set if all b H: Cleared	most significant bit of the result is set; its of the result are zero; cleared other parity is even; cleared otherwise	
Addressing Mode R:	Syntax XOR [A,]R	Instruction Format	Execute Time Note 2

src = R, RX, IM, IR, X

Addres

Addressenig			Excourc	
Mode	Syntax	Instruction Format	Time	Note
R:	XOR [A,]R	10101-r-	2	
RX:	XOR [A,]RX	11y11101 1010110w	2	
IM:	XOR [A,]n	11101110 — n—	2	
IR:	XOR [A,](HL)	10101110	2+r	
X:	XOR [A,](XY+d)	11y11101 10101110d	4+r	1

Field Encodings: r: per convention

XOR [A,]src

y: 0 for IX, 1 for IY

w: 0 for high byte, 1 for low byte

Execute

XORW EXCLUSIVE OR (WORD)

XORW [HL,]src src = R, RX, IM, X

Operation: HL(15-0) \leftarrow HL(15-0) XOR src(15-0)

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the source operand and the HL register and the result is stored in the HL register. A 1 bit is stored wherever the corresponding bits in the two operands are different; otherwise a 0 bit is stored. The contents of the source are unaffected.

Flags:

S: Set if the most significant bit of the result is set; cleared otherwise

- Z: Set if all bits of the result are zero; cleared otherwise
- H: Cleared
- P: Set if the parity is even; cleared otherwise
- N: Cleared
- C: Cleared

Addressing

Additooonig			EXCOULD	
Mode	Syntax	Instruction Format	Time	Note
R:	XÖRW [HL,]R	11101101 101011rr	2	
RX:	XORW [HL,]RX	11y11101 10101111	2	
IM:	XORW [HL,]nn	11101101 10101110 -n(low) -n(high)-	2	
X:	XORW [HL,](XY+d)	11y11101 11101110d	4+r	I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

$\langle \! \! \rangle$	Z	
-------------------------	---	--

|--|

2000^m ErefficeEurol Sverviuw

Address Spasses

, Í

12

17:

Wede of Operations and Souther Souther Directives

Addressing Modes and Data Types

lostriczen Ser 🕴 🖇

Interrupts and Traps 6

n soul

Zoor Prestance & Lakenselo

USER'S MANUAL

CHAPTER 6 INTERRUPTS AND TRAPS

6.1 INTRODUCTION

Exceptions are conditions that can alter the normal flow of program execution. The Z380[™] CPU supports three kinds of exceptions; interrupts, traps, and resets.

Interrupts are asynchronous events generated by a device external to the CPU; peripheral devices use interrupts to request service from the CPU. Traps are synchronous events generated internally in the CPU by a particular condition that can occur during the attempted execution of an instruction—in particular, when executing undefined instructions. Thus, the difference between Traps and Interrupts is their origin. A Trap condition is always reproducible by re-executing the program that created the Trap, whereas an Interrupt is generally independent of the currently executing task. A hardware reset overrides all other conditions, including Interrupts and Traps. It occurs when the /RESET line is activated and causes certain CPU control registers to be initialized. Resets are discussed in detail in Chapter 7.

The Z380 MPU's Interrupt and Trap structure provides compatibility with the existing Z80 and Z180 MPU's with the following exception—the undefined opcode Trap occurrence is with respect to the Z380 instruction set, and its response is improved (vs the Z180) to make Trap handling easier. The Z380 MPU also offers additional features to enhance flexibility in system design.

6.2 INTERRUPTS

Of the five external Interrupt inputs provided, one is assigned as a Nonmaskable Interrupt, /NMI. The remaining inputs, /INT3-/INT0, are four asynchronous maskable Interrupt requests.

The Nonmaskable Interrupt; (NMI) is an Interrupt that cannot be disabled (masked) by software. Typically NMI is reserved for high priority external events that need immediate attention, such as an imminent power failure. Maskable Interrupts are Interrupts that can be disabled (masked) through software by cleaning the appropriate bits in the Interrupt Enable Register (IER) and IEF1 bit in the Select Register (SR).

All of these four maskable Interrupt inputs (/INT3-/INT0) are external input signals to the Z380 CPU core. The four Interrupt enable bits in the Interrupt Enable Register determine (IER; Internal I/O address: 17H) which of the requested Interrupts are accepted. Each Interrupt input has a fixed priority, with /INT0 as the highest and /INT3 as the lowest.

The Enable Interrupt (EI) instruction is used to selectively enable the maskable Interrupts (by setting the appropriate bits in the IER register and IEF1 bit in the SR register) and the Disable Interrupt instruction is used to selectively disable interrupts (by clearing appropriate bits in the IER, and/or clearing IEF1 bit in the SR register). When an Interrupt source has been disabled, the CPU ignores any request from that source. Because maskable Interrupt requests are not retained by the CPU, the request signal on a maskable Interrupt line must be asserted until the CPU acknowledges the request.

When enabling Interrupts with the EI instruction, all maskable Interrupts are automatically disabled (whether previously enabled or not) for the duration of the execution of the EI instruction and the instruction immediately following.

Interrupts are always accepted between instructions. The block move, block search, and block I/O instructions can be interrupted after any iteration.

The Z380 CPU has four selectable modes for handling externally generated Interrupts, using the IM instruction. The first three modes extend the Z80 CPU Interrupt Modes to accommodate the Z380 CPU's additional Interrupt inputs in a compatible fashion. The fourth mode allows more flexibility in interrupt handling.

6.2 INTERRUPTS (Continued)

In an Interrupt acknowledge transaction, address outputs A31-A4 are driven to logic 1. One output among A3-A0 is driven to logic 0 to indicate the maskable interrupt request being acknowledged. If /INT0 is being acknowledged, A3-A1 are at logic 1 and A0 is at logic 0.

For the maskable Interrupt on /INT0 input, Interrupt Modes 0 through 3 are supported. Modes 0, 1, and 2 have the same schemes as those in the Z80 and Z180 MPU's. Mode 3 is similar to mode 2, except that 16-bit Interrupt vectors are expected from the I/O devices. Note that 8-bit and 16-bit I/O devices can be intermixed in this mode by having external pull-up resistors at the data bus signals D15-D8, for example.

The external maskable Interrupt requests /INT3-/INT1 are always handled in an assigned Interrupt vectors mode regardless of the current Interrupt Mode (IM3-IM0) in effect.

As discussed in the CPU Architecture section, the Z380 MPU can operate in either the Native or Extended mode. In Native mode, pushing and popping of the stack to save and retrieve interrupted PC values in Interrupt handling are done in 16-bit sizes, and the Stack Pointer rolls over at the 64 Kbyte boundary. In Extended mode, the PC pushes and pops are done in 32-bit sizes, and the Stack Pointer rolls over at the 4 Gbyte memory space boundary. The Z380

MPU provides an Interrupt Register Extension, whose contents are always output as the address bus signals A31-A16 when fetching the starting addresses of service routines from memory in Interrupt Modes 2, 3, and the assigned vectors mode. In Native mode, such fetches are automatically done in 16-bit sizes and in Extended mode, in 32-bit sizes. These starting addresses should be evenaligned in memory locations. That is, their least significant bytes should have addresses with AO = 0.

6.2.1 Interrupt Priority Ranking

The Z380 MPU assigns a fixed priority ranking to handle its Interrupt sources, as shown in Table 6-1.

Table 6-1.	Interrupt	Priority	v Ranking
	mitoriapt	1 110116	, ita

Priority	Interrupt Sources
Highest	Trap (undefined opcode)
-	/NMI
	/INTO
	/INT1
	/INT2
Lowest	/INT3

6.2.2 Interrupt Control

The Z380 MPU's flags and registers associated with Interrupt processing are listed in Table 6-2. As discussed in the Chapter 1, "CPU Architecture," some of these registers reside in the on-chip I/O address space, and can be accessed only with reserved on-chip I/O instructions.

Names	Mnemonics	Access Methods
Interrupt Enable Flags	IEF1,IEF2	El and DI Instructions
Interrupt Register		LD I.A and LD A.I Instructions
Interrupt Register Extension	Iz	LD I,HL and LD HL,I Instructions
		(Accessing both Iz and I)
Interrupt Enable Register	IER	On-chip I/O Instructions, Address 17H
		EI and DI Instruction
Assigned Vectors Base and Trap Register	AVBR	On-Chip I/O Instructions, Address 18H
Trap and Break Register	TRPBK	On-Chip I/O Instructions, Address 19H

Table 6-2. Interrupt Flags and Registers

6.2.2.1 IEF1, IEF2

IEF1 controls the overall enabling and disabling of all onchip peripheral and external maskable Interrupt requests. If IEF1 is at logic 0, all such Interrupts are disabled. The purpose of IEF2 is to correctly manage the occurrence of /NMI. When /NMI is acknowledged, the state of IEF1 is copied to IEF2 and then IEF1 is cleared to logic 0. At the end of the /NMI interrupt service routine, execution of the Return From Nonmaskable Interrupt instruction, RETN, automatically copies the state of IEF2 back to IEF1. This is a means to restore the Interrupt enable condition existing before the occurrence of /NMI. Table 6-3 summarizes the states of IEF1 and IEF2 resulting from various operations.

Table 6-3. Operation Effects on IEF1 and IEF2

Operation	IEF1	IEF2	Comments
/RESET	0	0	Inhibits all interrupts except Trap and /NMI.
Trap	0	0	Disables interrupt nesting.
/NMI	0	IEF1	IEF1 value copied to IEF2, then IEF1 is cleared.
RETN	IEF2	NC	Returns from /NMI service routine.
/INT3-/INT0	0	0	Disables interrupt nesting.
RETI	NC	NC	Returns from Interrupt service routine, Z80 I/O device.
RET	NC	NC	Returns from service routine, or returns from Interrupt service routine for a non-Z80 I/O device.
EI	1	1	
DI	0	0	
LD A,I or LD R,I	NC	NC	IEF2 value is copied to P/V Flag.
LD HL,I or LD HL,R	NC	NC	

(NC = No Change)

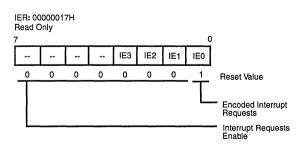
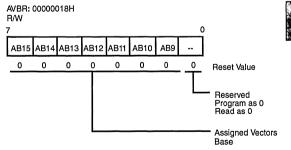
6.2.2.2 I, I Extend

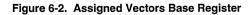
The 8-bit Interrupt Register and the 16-bit Interrupt Register Extension are cleared during reset.

6.2.2.3 Interrupt Enable Register

D7-D4 Reserved Read as 0, should write to as 0. D3-D0 IE3-IE0 (Interrupt Request Enable Flags)

These flags individually indicate if /INT3, /INT2, /INT1, or /INT0 is enabled. Note that these flags are conditioned with the Enable and Disable Interrupt instructions (with arguments) (See Figure 6.1).

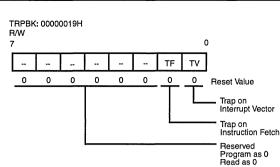




Figure 6-1. Interrupt Enable Register

6.2.2.4 Assigned Vectors Base Register

D7-D1 AB15-AB9 (Assigned Vectors Base). The Interrupt Register Extension, Iz, together with AB15-AB9, define the base address of the assigned Interrupt vectors table in memory space (See Figure 6-2).

D0 Reserved. Read as 0, should write to as 0.


⊗ ZiLŒ

6.2.2.5 Trap and Break Register

D7-D2 Reserved. Some of these bits are reserved for development support functions. Read as 0, should write to as 0.

D1 TF (Trap on Instruction Fetch). TF goes active to logic 1 when an undefined opcode fetched in the instruction stream is detected. TF can be reset under program control by writing it with a logic 0. However, it cannot be written with a logic 1.

D0 TV (Trap on Interrupt Vector). TV goes active to logic 1 when an undefined opcode is returned as a vector in an Interrupt acknowledge transaction in mode 0. TV can be reset under program control by writing it with a logic 0. However, it cannot be written with a logic 1 (See Figure 6-3).

6.3 TRAP INTERRUPT

The Z380 MPU generates a Trap when an undefined opcode is encountered. The Trap is enabled immediately after reset, and it is not maskable. This feature can be used to increase software reliability or to implement "extended" instructions. An undefined opcode can be fetched from the instruction stream, or it can be returned as a vector in an Interrupt acknowledge transaction in Interrupt Mode 0. When a Trap occurs, the Z380 MPU operates as follows.

- The TF or TV bit in the Assigned Vectors Base and Trap Register goes active, to indicate the source of the undefined opcode.
- If the undefined opcode was fetched from the instruction stream, the starting address of the Trap causing the instruction is pushed onto the stack. (Note that the starting address of decoder directive(s) preceding an instruction encoding is considered the starting address of the instruction.)

If the undefined opcode was a returned Interrupt vector, the interrupted PC value is pushed onto the stack.

- 3. The states of IEF1 and IEF2 are cleared.
- 4. The Z380 MPU commences to fetch and execute instructions from address 00000000H.

Note that instruction execution resumes at address 0, similar to the occurrence of a reset. Testing the TF and TV bits in the Assigned Vectors Base and Trap Register will distinguish the two events. Even if Trap handling is not in place, repeated restarts from address 0 is an indicator of possible illegal instructions at system debugging.

6.4 NONMASKABLE INTERRUPT

The Nonmaskable Interrupt Input /NMI is edge sensitive, with the Z380 MPU internally latching the occurrence of its falling edge. When the latched version of /NMI is recognized, the following operations are performed.

- 1. The Interrupted PC (Program Counter) value is pushed onto the stack. The size of the PC value pushed onto the stack depends on Native (one word) or Extended mode (two words) in effect.
- 2. The state of IEF1 is copied to IEF2, then IEF1 is cleared.
- 3. The Z380 MPU commences to fetch and execute instructions from address 00000066H.

6.5 INTERRUPT RESPONSE FOR MASKABLE INTERRUPT ON /INTO

The transactions caused by the Maskable Interrupt on /INT0 are different depends on the Interrupt Mode in effect at the time when the interrupt has been accepted, as described below.

6.5.1 Interrupt Mode 0 Response for Maskable Interrupt /INT0

This mode is similar to the 8080 CPU Interrupt response mode. During the Interrupt acknowledge transaction, the external I/O device being acknowledged is expected to output a vector onto the upper portion of the data bus, D15-D8. The Z380 MPU interprets the vector as an instruction opcode. IEF1 and IEF2 are reset to logic 0, disabling all further maskable interrupt requests. Note that unlike the other interrupt responses, the PC is not automatically pushed onto the stack. Typically, a Restart instruction (RST) is used, since the Restart opcode is only one byte long, meaning that the interrupting peripheral needs to supply only one byte of information. For this case, it pushes the interrupted PC (Program Counter) value onto the stack and resumes execution at a fixed memory location. Alternatively, a 3-byte call to any location can be executed.

Note that a Trap occurs if an undefined opcode is supplied by the I/O device as a vector.

6.5.2 Interrupt Mode 1 Response for Maskable Interrupt /INT0

In Interrupt Mode 1, the Z380 CPU automatically executes a Restart to a fixed location (00000038H) when an interrupt occurs. An Interrupt acknowledge transaction is generated, during which the data bus contents are ignored by the Z380 MPU. The interrupted PC value is pushed onto the stack. The size of the PC value pushed onto the stack is depends on Native (one word) or Extended mode (two words) in effect. The IEF1 and IEF2 are reset to logic 0 so as to disable further maskable interrupt requests. Instruction fetching and execution restarts at memory location 00000038H.

6.5.3 Interrupt Mode 2 Response for Maskable Interrupt /INT0

Interrupt Mode 2 is a vectored Interrupt response mode, wherein the interrupting device identifies the starting location of service routine using an 8-bit vector read by the CPU during the Interrupt acknowledge cycle.

During the Interrupt acknowledge transaction, the external I/O device being acknowledged is expected to output a vector onto the upper portion of the data bus, D15-D8. The interrupted PC value is pushed onto the stack and IEF1 and IEF2 are reset to logic 0 so as to disable further maskable interrupt requests. The size of the PC value pushed onto the stack is depends on Native (one word) or Extended mode (two words) in effect. The Z380 MPU then reads an entry from a table residing in memory and loads it into the PC to resume execution. The address of the table entry is composed of the I Extend (Iz) contents as A31-A16, the I Register contents as A15-A8 and the vector supplied by the I/O device as A7-A0. Note that the table entry is effectively the starting address of the interrupt service routine designed for the I/O device being acknowledged, and the table composing of starting addresses for all the Interrupt Mode 2 service routines can be referred to as the Interrupt Mode 2 vector table. Each table entry should be word-sized if the Z380 MPU is in the Native mode and Long Word-sized if in the Extended mode, in either case evenaligned (least significant byte with address A0 = 0), meaning 128 different vectors can be used in the Native mode, and 64 different vectors can be used in Extended mode.

6.5.4 Interrupt Mode 3 Response for Maskable Interrupt /INT0

Interrupt Mode 3 is similar to mode 2 except that a 16-bit vector is expected to be placed on the data bus D15-D0 by the I/O device during the Interrupt acknowledge transaction. The interrupted PC is pushed onto the stack. The size of the PC value pushed onto the stack depends on the

6.5.4 Interrupt Mode 3 Response for Maskable Interrupt /INT0 (Continued)

Native (one word) or Extended mode (two words) in effect. IEF1 and IEF2 are reset to logic 0 so as to disable further maskable Interrupt requests. The starting address of the service routine is fetched and loaded into the PC to resume execution, from memory location with an address composed of the I Extend contents as A31-A16 and the vector supplied by the I/O device as A15-A0. Again the starting

address of the service routine is word-sized if the Z380 MPU is in Native mode and Long Word-sized if in the Extended mode, in either case even-aligned, meaning 32768 different vectors can be used in the Native mode, and 16384 different vectors can be used in the Extended mode.

6.6 ASSIGNED INTERRUPT VECTORS MODE FOR MASKABLE INTERRUPTS /INT3-/INT1

Regardless of the Interrupt Mode in effect, interrupts on /INT3-/INT1 is always handled by the Assigned Interrupt Mode. This mode is similar to the interrupt handling on the Z180's /INT1 or /INT2 line. When the Z380 MPU recognizes one of the external maskable Interrupts /INT3-/INT1, it generates an Interrupt acknowledge transaction which is different than that for /INTO. The Interrupt acknowledge transaction for /INT3-/INT1 has the I/O bus signal /INTACK active, with /M1 /IORQ, /IORD, and /IOWR inactive. The interrupted PC value is pushed onto the stack. The size of the PC value pushed onto the stack is depends on the Native (one word) or Extended mode (two words) in effect. IEF1 and IEF2 are reset to logic 0, disabling further maskable Interrupt requests. The starting address of an Interrupt service routine is fetched from a table entry and loaded into the PC to resume execution. The address of the table entry is composed of the I Extend contents as A31-A16, the AB bits of the Assigned Vectors Base Register as A15-A9, and

an assigned interrupt vector specific to the request being recognized as A8-A0. The assigned vectors are defined in Table 6-4. If the Z380 CPU is in Extended mode, all four bytes of the data stored in the Assigned vector location will be used as a new PC value. If the Z380 CPU is in Native mode, only two bytes of data from the LS Byte will be used as a new PC value.

Table 6-4. Assigned Interrupt Vectors

Interrupt Source	Assigned Interrupt Vector	
/INT1	00H	
/INT2	04H	
/INT3	08H	

6.7 RETI INSTRUCTION

The Z80 family I/O devices are designed to monitor the Return from Interrupt opcodes in the instruction stream (RETI — EDH, 4DH), signifying the end of the current Interrupt service routine. When detected, the daisy chain within and among the device(s) resolves and the appropri-

ate Interrupt-under-service condition clears. The Z380 MPU "reproduces" the opcode fetch transactions on the I/O bus when the RETI instruction is executed. Note that the Z380 MPU outputs the RETI opcodes onto both portions of the data bus (D15-D8 and D7-D0) in the transactions.

Table of Boston Co

2030^m Argangangal de switse

Fugress Sbrace

La enclare d'élaite de la caracter d

Addreesing Modes and Data types

hestracion Set 5

12

7

laderanjako enel järijet

Reset

7850" Banelanark Appuete

2009^m gerschas 2 Arouver

USER'S MANUAL

CHAPTER 7 RESET

7.1 INTRODUCTION

The Z380 CPU is placed in a dormant state when the /RESET input is asserted. All its operations are terminated, including any interrupt, bus request, or bus transaction that may be in progress. On the Z380 MPU, the IOCLK goes Low on the next BUSCLK rising edge and enters into the BUSCLK divided-by-eight mode. The address and data buses are tri-stated, and the bus control signals are driven to their inactive states. The effect of /RESET on the Z380 CPU and related internal I/O registers is depicted in Table 7-1.

The /RESET input may be asynchronous to BUSCLK, though it is sampled internally at BUSCLK's falling edges. For proper initialization of the Z380 CPU, V_{DD} must be within operating specifications and the CLK input must be stable for more than five cycles with /RESET held Low.

The Z380 CPU proceeds to fetch the first instruction 3.5 BUSCLK cycles after /RESET is deasserted, provided such deassertion meets the proper setup and hold times with reference to the falling edge of BUSCLK. On the Z380 MPU implementation, with the proper setup and hold times being met, IOCLK's first rising edge is 11.5 BUSCLK cycles after the /RESET deassertion, preceded by a minimum of four BUSCLK cycles when IOCLK is at Low.

Note that if /BREQ is active when /RESET is deasserted, the Z380 MPU would relinquish the bus instead of fetching its first instruction. IOCLK synchronization would still take place as described before.

Requirements to reset the device, and the initial state after reset might be different depending on the particular implementation of the Z380 CPU on the individual Superintegration version of the device. For /RESET effects and requirements, refer to the individual product specification.

Register	Reset Value	Comments
Program Counter	0000000	PCz, PC
Stack Pointer	0000000	SPz, SP
I R	000000	Iz, I
Select Register	0000000	Register Bank 0 Selected: AF, Main Bank, IX, IY Native Mode Maskable Interrupts Disabled, in Mode 0 Bus Request Lock-Off
A and F Registers		Register Banks 3-0: A, F, A', F' Unaffected
Register Extensions	0000	Register Bank 0: BCz, DEz, HLz, IYz, BCz', DEz', HLz', IYz' (All "non-extended" portions unaffected.) Register Bank 3-1 Unaffected.
I/O Bus Control Register 0	00	IOCLK = BUSCLK/8
Interrupt Enable Register	01	/INTO Enabled
Assigned Vector Base Register	00	
Trap and Break Register	00	

Table 7-1. Effect of a Reset on Z380 CPU and Related I/O Registers

Line Shefferser, bu olfedit Gerfferstilt rollerett , 42, 5 , 42, 5 Askinosethy hioles and then Types heredon dus É.S. la barrido da El Cregas - Cr

Z380[™] Benchmark Appnote

8

CONTRACTOR & ALCORD

ZILOS Z380[™] BENCHMARKING

This application note compares the performance and program memory requirements among the new 16-bit CPU from Zilog Z80380 and several competing processors, including the Intel 80186, 80960 and Motorola 68020 and CPU32.

INTRODUCTION

Zilog's new Z380[™] Central Processing Unit is a high performance CPU engine designed to meet today's application requirements. The Z380 CPU incorporates advanced architectural features that allow fast and efficient throughput and increased memory addressing capability while maintaining Z80[®]/Z180[®] object code compatibility.

The Z380 CPU is an enhanced version of the Z80 CPU. The Z80 instruction set has been retained, adding a full compliment of 16-bit arithmetic and logical operations, multiply and divide, a complete set of register-to-register loads and exchanges, plus 32-bit load and exchange, and 32-bit arithmetic operations for address calculations.

The addressing modes of the Z80 have been enhanced with Stack pointer relative loads and stores, 16-bit and 24-bit indexed offsets, and more flexible indirect register addressing. All of the addressing modes allow access to the entire 32-bit addressing space.

The register set of the Z80 microprocessor is expanded to 32 bits, and has been replicated four times to allow for fast context switching among tasks in a dedicated control environment.

The following are the key features of the Z380:

- Full static CMOS design with low power standby mode support
- 32-bit internal data paths and ALU
- 16-bit (64K) or 32-bit (4G) linear addressing space
- 16-bit internal data bus
- Two clock cycle minimum instruction execution
- Two clock cycle Memory bus
- Programmable I/O bus protocols and clock rates
- Four banks of 32-bit registers
- Enhanced interrupt capabilities, including 16-bit vectors and four external Interrupt inputs
- Undefined opcode trap for full Z380 CPU instruction set

The Z380 block diagram is shown in Figure 1. For a detailed description of the Z380 please refer to the Z380 Technical Manual, DC #8297-00, and the Z380 Preliminary Product Specification DC #6003-02 from Zilog.

INTRODUCTION (Continued)

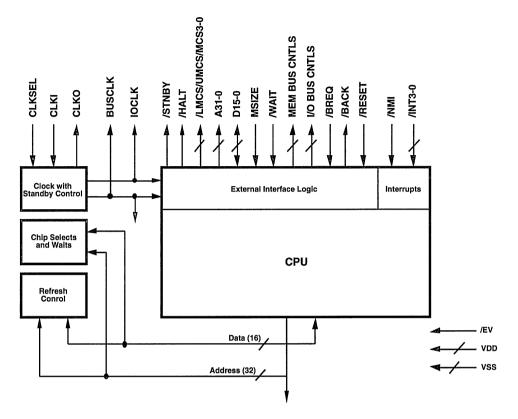


Figure 1. Z380 Functional Block Diagram

BENCHMARKS AMONG EMBEDDED PROCESSORS

In response to a recent microprocessor selection process by a major customer, Zilog's Datacom Marketing group compared the performance and program memory requirements among the new Z80380 and several competing processors, including the Intel 80186 and 80960 and the Motorola 68020 and CPU32. (The CPU32 is the heart of the Motorola's 803xx series of integrated products.)

METHOD

Benchmarking consisted of selecting four code fragments judged to be typical of embedded applications, coding the four fragments in assembly language for each of the four processors, and calculating the execution time for each fragment on each processor, at 16, 25, and 40 MHz clock rates as applicable to each.

The results were then tabulated in a spreadsheet that first normalized them to the figure for the 25 MHz 80380, and then averaged the normalized values for memory code size and execution time, as well as an overall "figure of merit".

The code fragments were called "I/O Loop", "Signed Byte Handling". "Multiply/Accumulate". and "Interrupt". Since the execution time for I/O Loop is a function of the number of times through the loop, and because it was felt to be the most typical of user requirements, it was counted twice toward the composite performance and merit figures, once for a single iteration and once for eight times through the loop. Finally, a fifth performance category was included, the time required for memory-to-memory block movement of data. This made six performance values that were averaged with four program-size values for the overall Figure of Merit, an imbalance that "felt right" in terms of the way we think many users view the value of an embedded microprocessor.

ASSUMPTIONS

Because execution time can be a complex matter for today's pipelined processors, our benchmarks made several assumptions that simplified performance evaluation. The most presumptive was that the memory on all processors was fast enough that there would be NO WAIT STATES. (In many cases this would mandate fast Static RAM rather than larger, more economical Dynamic RAM, which makes sense for some applications but not others.)

A second assumption was that all operands were ALIGNED to the natural boundaries for their size: data accessed 16 bits at a time was located at an address that was a multiple of two bytes, while data to be accessed 32 bits at a time was located at an address that's a multiple of 4 bytes. This characteristic can be guaranteed by many high-levellanguage compilers, and is questionable only for the Block Move operations. For processors that include a cache (the 68020 and 80960), the timing was calculated such that the first access to each instruction was a cache miss, and any subsequent accesses were cache hits. In other words, we assumed that these code fragments were not part of a central loop, but were executed in response to specific events that were sufficiently infrequency that the code was superseded in the cache between events.

INSTRUCTION TIMING

For the 80186, we allowed Intel their stated timing assumption "With a 16-Bit Bus Interface Unit, the 80186 has sufficient bus performance to ensure that an adequate number of pre-fetched bytes will reside in the queue most of the time." (16-32 Bit Embedded Processors 1990, pp. 1-50, 1-118). The following 80186 listings include a column of the number of clocks for each instruction, taken directly from the referenced data book.

Motorola's CPU32 User Manual includes several figures for each instruction and addressing mode, which have to be combined with each other and with those for the following instruction, to determine execution times. The symbols Cea, Hea, and Tea represent the total number of clocks to fetch or calculate an Effective Address, and how many of these represent Header clocks that can be overlapped with subsequent operations, and Tail clocks that can be overlapped with subsequent operations. Similarly, the symbols Cop, Hop, and Top represent the total number of clocks needed to execute the instruction, and how many of these are Header clocks and Tail clocks. The total was computed by the formula:

Cea - min (Tea, Hop) + Cop - min (Top, Hea [next instruction])

For instructions containing two effective addresses the formula is:

Cea1 - min (Tea1, Hea2) + Cea2 - min (Tea2, Hop) + Cop - min (Top, Hea [next instruction])

Each following 680x0 code fragment is followed by a spreadsheet that performs these calculations for the CPU32.

For the 68020, Motorola gives three timing figures for each instruction. Best Case (BC) is the number of clocks the instruction takes if it is in the cache and enjoys the maximum possible degree of overlap with the preceding and following instructions. Cache case (CC) is the number of clocks is the instruction is in the cache but has no overlap with other instructions. Worst case (WC) is when the instruction is not in the cache and has no overlap with other instructions.

The 68020 User Manual includes quite a few pages that define these three timings for all the possible instruction variants, but then notes that there is no way to use these

values to arrive at actual execution times! Since CC-BC is the maximum possible instruction overlap, we decided to count the first execution of an instruction as a cache miss with an "average" amount of overlap:

first execution = WC - (CC-BC)/2

while subsequent executions of an instructions were counted as a cache hit with an average amount of overlap: subsequent execution = (CC+BC)/2

Each following 680x0 code fragment is followed by a spreadsheet that performs these calculations for the 68020.

For the 80960, an actual clock-by-clock analysis of processor activity was done, and is shown by a spreadsheet that follows the listing of each 960 code fragment. In these charts:

F represents a code fetch operation on the external bus, F2 is the second fetch of a 2-word instruction on the external bus,

CF is a Cache Fetch,

D is a Decode operation,

EA is an Effective Address calculation,

A on B stands for the Address cycle for a data word on the external bus.

D on B stands for the Data cycle for a data word on the external bus

W is an extra clock (wait state) the author decided would be needed for a data write on the external bus,

X is any other kind of execution cycle, e.g., storing a value in a register

It's probable that these charts don't sufficiently account for limits on the number of instructions that can be pending in similar states simultaneously, and that as a result we made the 80960KA look slightly better than it should.

For the 80380, execution times were derived in two steps. First we simply added up the execution times listed in the User Manual, as for the 80186. Then the architect of the 380 analyzed the instruction flow, similarly to what was done for the 960, and added a few extra clocks for pipeline stalls and non-overlap between the Bus Interface Unit and Execution Unit. Because of this, perceptive readers may notice that the clocks shown for individual 80380 instructions don't always add up to the total execution figures.

DESCRIPTION OF THE CODE FRAGMENTS

I/O Loop

This code fragment reads received data, two bytes at a time, from a 16C30 Universal Serial Controller (USC), and stores the data in a memory buffer for each frame. The USC is the successor to Zilog's popular SCC, and has a 32-byte FIFO capacity. First, each sequence sets up whatever registers are needed to access the USC, the memory buffer, and a current pointer into the buffer named "rxi".

At the start of each loop, the code reads the number of bytes currently in the receive FIFO, from the MSbyte of a USC register called RICR. It also reads a 16-bit status register called RCSR.

IF there are no bytes left in the FIFO, the code exits from the fragment. If there is one byte in the RxFIFO, the code checks the status to see if the byte is either the last one of a frame, or is the byte at which a Receive Overrun condition occurred. If neither of these is the case, the code leaves the byte in the RxFIFO for the future, and exits from the fragment. Otherwise, or if there are two or more bytes in the FIFO, the code:

- 1. ensures that no interrupt can occur between the following steps,
- 2. reads two bytes from the FIFO via the USC register called RDR

(the USC will only provide one if there's only one in the FIFO)

- stores the data in memory at the address in the pointer "rxi",
- 4. increments rxi by 2,
- 5. stores rxi back in memory, and
- 6. enables interrupts to occur again.

After these operations the code tests the status obtained earlier from RCSR, and if the data just stored didn't represent the end of a frame, it goes back to the start of the loop described above. The following code calls an end-offrame-handling subroutine called "_Handle_RxStatus"_this part of the fragment counts toward the code memory required but not toward the execution time, because a frame ends only once in many executions of the loop.

Signed Byte Handling

This code fragment originally came from a customer code in the hard disk field. It examines three 8-bit variables in memory called NORM, Q, and K2. Actually NORM can range from -256 to +255 and is implemented as a 16-bit variable. It computes an eight-bit result in any of six ways, depending on the sign of NORM and how it compares to that of Q, as described in the comments at the top of each page of code.

First the code may access some or all or the three input variables and/or set up registers to point to one or more of them. Then it tests the sign of NORM, branching to the second "half" of the code fragment if it's positive. In each "half", the code compares NORM and Q and branches around in a tree-structured fashion to compute the result dictated by relative values of NORM and Q.

To evaluate the overall execution time of the fragment, we computed the execution time for each of the six result cases, and averaged them.

This may be the least clear code fragment as to its cosmic purpose, but it is a reasonable example of the kind of decision-tree processing that's typical of many I/O handling and control systems.

Multiply/Accumulate

This code fragments is also taken from a customer code in a hard-disk application. It uses four 16-bit input values in memory, CURSEC, POSN_ERR, S_GRAT, and K_GRAT, plus two memory tables of 16-bit values called S_TABLE and C_TABLE, each as large as the largest possible values of CURSEC. From these the code extracts S_TABLE (CURSEC) and saves the result in a memory variable S_VALUE, and similarly extracts C_TABLE (CUSEC) and saves it in K_VALUE. The code also multiplies each value by POSN_ERR, scales/divides each result by 64, and adds the results into memory variables S_ACCUM and K_ACCUM respectively, Finally it calculates R_CP= (S_VALUE*S_GRAT + K_VALUE*KGRAT) /32.

This code includes four 16x16 multiplications and 32-bit scale/shift operations. For all the processors except the CPU32, the fragment is coded to loop back once to minimize memory requirements, by taking advantage of the similarity of the computations for the "S" and "K" values.

Interrupt

These code fragments service a "receive status" interrupt from a Zilog 16C30 Universal Serial Controller (USC). The actual code size and execution time are reduced from a full-blown ISR, by evaluating for the case of a "Receive Overrun" event, and by isolating the details of handling an End of Frame event in a separate subroutine. This is done to emphasize the interrupt overhead for each processor, including interrupt latency, interrupt processing, context saving and restoring, and returning to the interrupted process.

Each code fragment saves register values and any other necessary contest info, then sets up a base address for the USC, clears the Interrupt Pending (IP) for Receive Status interrupts, and reads 16-bit status from the USC register RCSR. Then, if the overrun status bit is set, it writes two "command bytes" called "Enter Hunt Mode" and "Purge Rx" to USC registers. (These operations count are counted toward execution time.)

Next, if the status bit indicating the end of a frame is set, the code calls a subroutine to handle this condition. Neither the call nor the subroutine are counted toward execution time.

Next the code reads and writes several USC register to ready the device for future interrupts. Finally it restores the context and returns to the interrupted program.

The 80960KA does more operations automatically in hardware before and after the execution of the interrupt service routine proper, than do the other processors. The time to perform these operations were not specified in the Intel literature available to us, so the time was estimated in the first and last column of the execution chart, based on the time to do similar functional under software control.

Block Move Sequences

The "block move" sequences for all the processors are shown on one sheet. The 8096KA has no special instruction for this operation, but its Load and Store Quad Register instruction each handle 16 bytes per execution. The CPU32 has no special instruction either, but its two-word prefetch queue is capable of holding the two-instruction loop shown, so that no instruction fetches are needed for the duration of the block move, only data cycles. For 68020 we used the average of the Best Case and Cache Case, i.e., a cache hit with an "average" amount of instruction overlap.

Both the 80186 and 80380 have instructions intended for this purpose. The evaluation for 380 assumes that the global Longword (LW) control bit is set so that each iteration includes two 16-bit reads and two 16-bit writes.

SUMMARY

The final chart below summarizes and combines the memory requirements and execution times for each code fragment on the various processors clock speeds. The 80186 doesn't come in 25 or 40 MHz versions, so only 16 MHz results are shown. The CPU32, 68020, and 80960KA are shown for 16 and 25 MHz. The 80380 is shown for 16, 25, and 40 MHz clocking. In each case this includes the highest clock speed shown in the latest literature we could obtain for each processor family.

In all cases, the 80960KA has by far the largest code size, but makes up for it by needing the fewest clocks to execute. The 80186 has the smallest average code size, but makes up for that by being the slowest device for all cases except Block Move, for which it edged out the CPU32 to escape the cellar.

The CPU32 proved exemplary at the Multiply/Accumulate fragment, having the smallest code size and running second to the 80960KA for the faster execution time (even outperforming its 32-bit relative the 68020, due to its early-exit Booth multiplier). In the other cases it tended to run second-last to the 80960 in code size and to the 80186 in execution time.

The 68020 had the same code sizes as the CPU32 and improved on the CPU32's execution times, but perhaps not by enough to overcome the higher system costs of a 32-bit bus and memory subsystem

The Zilog 80380 typically ran close to the 80186 in code density and minimizing program size, as might be expected from an older architecture that was created when memory was more expensive than today. Perhaps more surprisingly, it finished second to the 80960KA in execution clocks most cases, and counting its faster clock rate ran competitively to the 960KA in total execution time.

When looking at a the normalized program size and execution time values in the summary table, remember that smaller values are better, and that a value less than 1 means that processor/clock rate combination is better than a 80380 at 25 MHz.

SUMMARY (Continued)

Of course there's something a little out of line about including the 80960KA in this comparison, which

* costs far more than any of the other processors,

* entails added system-level expense because of its 32-bit data path and required memory width (also true of the 68020), and

* requires special "block transfer" memory design techniques

In fact, Intel has another member of its 80960 that is more like the other processors herein, the 8096KA. This device has a 16-bit data bus like the 80380 and 80186, and a more compact package that lowers its cost into a more competitive range. Unfortunately we were unable to obtain any timing information for the 80960SA in the time frame required for this benchmarking. However, we did find an Intel brochure that allows the 80960SA to participate in these results in a small way. It showed a "Dhrystone" (fixed point) figure for the 80960SA of 12145, compared to 19740 for the 960KA. Multiplying the performance figures for the 960KA by 19740/12145 (smaller is better in our figures while larger is better for the Dhrystone) yielded the results shown in the third-last and last lines. For the last line that combines code size and execution time into a final figure of Merit, only the execution time values were scaled by Intel's Dhrystone results.

To wrap up, considering both code density and execution time for these code fragments, the new Zilog 80380 blows away other 16-bit processors including the 80960SA, and comes out about equal to the much more expensive 32-bit 80960KA if skewed by one speed grade (25 MHz 380 vs. 16 MHz 960, 40 MHz 380 vs. 25 MHz 960).

I/O LOOP: 80186

- ; the following 80x86 code reads data from a Zilog 16C30 USC ; this code is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only ; this version assumes that the USC is in I/O space

Bytes	Clks
-------	------

3	8	MOV AX, WORD PTR DS:_rxi+	-2			
2	2	MOV ES,AX				
4	9	MOV DI,WORD PTR DS:_rxi				
		16U_lp:				
З	4*	MOV DX,uscBase+RICR+1				
1	8*	IN AL,DX	; get hi byte of RICR			
2	2*	SHR AL,1	; anything to do?			
2	3*	MOV DL,RCSR	; RICR hi byte to RDR word			
1	8*	IN AX,DX	; get status			
2	4/13*	JNZ RxPoll16U_hav	; around if not			
2	4/13	JNC RxPoll16U_end	; go if more than one byte			
2	3	TEST AL,12H	; rxBound or overrun?			
2	4/13	JZ RxPoll16U_end	; ignore one byte if neither			
	RxPoll ⁻	16U_hav:				
1	2*	CLI				
1	14*	INSW	; store word in rx area			
4	12*	MOV WORD PTR DS:_rxi,DI	; store rxi			
1	2*	STI				
2	3*	TEST AL,10H	; rxBound?			
2 2 2	13*	JZ RxPoll16U_lp	; around if not			
2		MOV DL,CCR	; 16 or 32-bit			
1		IN AL,DX ; RSBs in use?				
2		MOV DL,RDR				
2		TEST AL,0C0H				
2 2 2 2		JNZ RxPoll16U_rsb	; go if so			
2	2 MOV DL,RCSR					
	RxPoll16U_rsb:					
1		IN AX,DX	; read status again if no RSBs			
2		AND AL,0FDH	; leave overrun to int level			
1	PUSH AX		; argument is status			
1	CLI					
З	call near ptr _Handle_RxStatus					
2		ADD SP,2				
1		STI				
2		JMP RxPoll16U_lp	; and loop			
RxPoll16U_end:						

61 60+80N

[®] ZiLŒ

I/O LOOP: 680X0

- ; the following 680x0 code reads data from a USC
- ; this code is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; this version assumes that rxi variable is in first 64 Kbytes

Bytes Clks (CPU32)

4	8	MOVE.L r	xi,A1	; address in rcv area				
6	10	MOVE.L #	#uscBase+ICR,A2	; address of ICR in USC				
	RxPoll16U_lp:							
6	11	CMP.B #1,RICR-	-ICR(A2)	; <> 1 byte in RxFIFO?				
4	7		RCSR-ICR(A2),D0	; get status				
2	4/10	BHI RxPoll16	U_hav	; around if > 1 byte				
2	4/10	BLO RxPoll16	U_end	; nothing to do if < 1 byte				
4	5	AND.B #\$12,D0		; 1 byte: RxBound or overrun?				
2	4/10	BZ RxPoll16	U_end	; ignore 1 byte if neither				
	RxPoll	16U_hav:						
4	9	BCLR #7,(A2)		; disable interrupts				
4	8		RDR-ICR(A2),(A1)+	2 serial bytes to Rx area				
4	8		A1,rxi	; store rx pointer				
4	9	BSET #7,(A2)		; re-enable ints				
4	5	AND.B #\$10,D0		; RxBound?				
2	4/10	BZ RxPoll16	U_lp	; loop if not				
2			#\$C0,D0					
4		AND.B CCR+1-I	CR(A2),D0	; RSBs in use?				
2		BNZ RxPoll16	U_rsb	; around if so				
4		MOVE.W F	RCSR-ICR(A2),D0	; take status from RCSR if not				
2		BRA RxPoll11						
	RxPoll	RxPoll16U rsb:						
4		MOVE.W F	RDR-ICR(A2),D0	; take status from RDR				
	RxPoll	16U_call:						
4		BCLR #1,D0						
2			D0,-(SP)					
4		BCLR #7,(A2)		; disable interrupts				
4			_RxStatus	; call the RxBound subroutine				
2		ADDQ #2,SP						
4		BSET #7,(A2)		; enable interrupts				
2		BRA RxPoll16	U_lp	; and loop				
	RxPoll	16U_end:		·				

92

- 50+77*N clocks (CPU32) 56+48*N clocks (68020)

[⊗]ZiLOG

I/O LOOP: CPU32

Bytes	Clks	Source	Hop	Тор	Cop	LW	Hea1	Tea1	Cea1	Hea2	Tea2	Cea2
4	8	"MOVE.L rxi,A1"	0	2	4	2	1	3	5			
6	10	"MOVE.L #uscBase+ICR,A2"	2	4	8	2	1	3	5			
	18	subtotal: start										
6	11	"Ip: CMP.B #1,RICR-ICR(A2)"	0	3	5	0	1	3	5	1	1	3
4	7	"MOVE.W RCSR-ISR(A2),D0"	0	0	2	0	1	3	5			
2	10	BHI hav (taken)	2	-2	8	0	0	0	0			
	4	BHI hav (not taken)	2	0	4	0	0	0	0			
2	10	BLO end (taken)	2	-2	8	0	0	0	0			
	4	BLO end (not taken)	2	0	4	0	0	0	0			
4	5	"AND.B #\$12,D0"	0	0	2	0	1	1	3			
2	10	BZ end (taken)	2	-2	8	0	0	0	0			
	32	subtotal: exit										
	4	BZ end (not taken)	2	0	4	0	0	0	0			
4	9	"hav: BCLR #7,(A2)"	1	2	8	Ō	1	1	3			
4	8	"MOVE.W RDR-ICR(A2),(A1)+"	2	2	6	0	1	3	5			
4	8	"MOVE.L A1,rxi"	1	5	7	2	1	1	3			
4	9	"BSET #7,(A2)"	1	2	8	Ō	1	1	3			
4	5	"AND.B #\$10,D0"	0	0	2	Ō	1	1	3			
2	10	BZ lp (taken)	2	-2	8	Ō	0	Ó	0			
_	77	subtotal: loop	-	_	-	-	-	-	-			
	4	BZ lp (not taken)	2	0	4	0	0	0	0			
2		"MOVEQ #\$C0,D0"	_	-		-	-	-				
4		"AND.B CCR+1-ICR(A2),D0"										
2		BNZ rsb										
4		"MOVE.W RCSR-ISR(A2),D0"										
2		BRA call										
4		"rsb: MOVE.W RDR-ICR(A2),D0"										
4		"BCLR #1,D0"										
2		"MOVE.W D0,-(SP)"										
4		"BCLR #7,(A2)"										
4		JSR _Handle_RxStatus										
2		"ADDQ #2.SP"										
4		"BSET #7,(A2)"										
2		BRA Ip										
		end:										

92 50+N*77

total

[®]ZiL05

I/O LOOP: 68020

Bytes	Source	BC	CC	WC	1st	subs	
4	"MOVE.L rxi,A1"	3	6	8	6.5	4.5	
6	"MOVE.L #uscBase+ICR,A2"	0	5	6	3.5	2.5	
	subtotal: start		_			_	31
5	"Ip: CMP.B #1,RICR-ICR(A2)"	3	7	10	8	5	
4 <u>2</u>	"MOVE.W RCSR-ISR(A2),D0"	3 3	7 6	9	7 7.5	5	
2	BHI hav (taken) BHI hav (not taken)	5 1	0 4	9 5	7.5 3.5	4.5 2.5	
2	BLO end (taken)	3	6	9	7.5	4.5	
-	BLO end (not taken)	1	4	5	3.5	2.5	
4	"AND.B #\$12,D0"	O	4	6	4	2	
2	BZ end (taken)	3	6	9	7.5	4.5	
	subtotal: exit						24.8
	BZ end (not taken)	1	4	5	3.5	2.5	
1	"hav: BCLR #7,(A2)"	7	8	9	8.5	7.5	
1	"MOVE.W RDR-ICR(A2),(A1)+"	6	8	11	10	7	
	"MOVE.L A1,rxi"	5	6	9	8.5	5.5	
	"BSET #7,(A2)"	7	8	9	8.5	7.5	
	"AND.B #\$10,D0"	0	4	6	4	2	
2	BZ lp (taken)	3	6	9	7.5	4.5	
	subtotal: loop						48.5
	BZ lp (not taken)	1	4	5	3.5	2.5	
-	"MOVEQ #\$C0,D0"						
ļ	"AND.B CCR+1-ICR(A2),D0"						
	BNZ rsb						
	"MOVE.W RCSR-ISR(A2),D0"						
	BRA call "rsb: MOVE.W RDR-ICR(A2),D0"						
	"BCLR #1,D0" "MOVE W. DO. (SP)"						
	"MOVE.W D0,-(SP)" "BCLR #7,(A2)"						
	JSR _Handle_RxStatus						
	"ADDQ #2,SP"						
	"BSET #7,(A2)"						
2	BRA Ip						
	end:						
2	total						56+48N

8

[©]ZiL005

I/O LOOP: 80380

- ; the following Z380 code reads data from a Zilog 16C30 USC.
- ; this code is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; this code assumes that the global LW and XM bits are set
- ; and that the USC is in a 16-bit-addressed I/O space

3 1	2 2	LD LD	DE,uscBase+RDR B,D	
3	2 8	LD	•	: 32-bit address in variable
3		16U_lp:	HL,(rxi)	, 32-bit address in variable
4	6*	INA	A,(uscBase+RICR+1)	; get hi byte of RICR
2	0 2*	SRL	A (USCBASE+NICH+T)	
2	2 6*	INA		; byte count to word count
4 2	-		A,(uscBase+RCSR)	; get status, no CC change
	2/6*	JR	NZ,RxPoll16U_hav	
2	2/6	JR	NC,RxPoll16U_end	
3	2	TST	12H	; RxBound or overrun?
2	2/6	JR	Z,RxPoll16U_end	
		16U_hav	:	
1	2*	DI		
2	7*	INIW	<i>i</i>	; 16 bits from RDR to buffer
3	6*	LD	(rxi),HL	; store address in buffer
1	2*	El		
3	2*	TST	10H	
2	6*	JR	Z,RxPoll16U_lp	
2		LD	C,CCR	
2		IN	A,(C)	
1			LD C,E	; get status from RDR if RSBs
3		TST	0C0H	; RSBs in use?
2		JR	NZ,RxPoll16U_rsb	; around if so
2		LD	C,RCSR	; get status from RCSR if not
	RxPoll [*]	16U_rsb	:	-
2		INW	HL,(C)	; status word from RSB or RCSR
2		RES	1,L	; leave overrun to int level
1		DI		
2		PUSH	HL	
3		CALL	Handle_RxStatus	
1		INC	SP	
1		INC	SP	
1		EI		
2		JR	RxPoll16U_lp	
	16U_end			

- _
- 65
 - 41+53N (corrected for pipeline stalls)

I/O LOOP: 80960KA

- # the following 80960KA code reads data from a Zilog 16C30 USC
- # this code is not warranted to be correct nor operative, and is
- # intended for performance benchmarking purposes only
- # this code assumes the rxi variable is in the first 4K bytes

Bytes

8	lda	uscBase+ICR,r3	# address in USC
4	ld	rxi,r4	# buffer address from variable
4	ldob	(r3),r7	# get Isbyte of ICR
4	clrbit	7,r7,r8	
	RxPoll16U_lp:		
4 `	ldob	RICR+1-ICR(r3),r5 # get hi byt	te of RICR
4	ldos	RCSR-ICR(r3),r6	# get status
4	cmpo	1,r5	
4	bg	RxPoll16U_hav	# around if more than 1 byte
4	bl	RxPoll16U_end	# nothing to do if no bytes
4	and	0x12,r6,r7	# 1 byte: EOF or overrun?
4	cmpot		# ignore 1 byte if not
	RxPoll16U_hav	/:	
4	stob	r8,(r3)	# clear MIE, disable ints
4	ldos	RDR-ICR(r3),r9	# get 16 bits from USC
4	stos	r9,(r4)	# store in memory
4	addo	2,r4	# increment address
4	st	r4,rxi	# save address
4	stob	r7,(r3)	# set MIE, enable ints
4	bbc	4,r6,RxPoll16U_lp	# loop if not EOF
4	Idob	CCR+1-ICR(r3),r9	# get CCR hi byte
4	bbs	7,r9,RxPoll16U_rsb	# RSB's in use?
4	bbs	6,r9,RxPoll16U_rsb	# around if so
4	ldos	RCSR-ICR(r3),g0	# take status from RCSR if not
4	b	RxPoll116U_call	
	RxPoll16U_rsb		
4	ldos	RDR-ICR(r3),g0	# take status from RDR if so
	RxPoll16U_cal		
4	clrbit	2,g0	# hide the overrun bit
4	stob	r8,(r3)	# clear MIE, disable ints
4	bal	_Handle_RxStatus	# call the RxBound subroutine
4	stob	r7,(r3)	# set MIE, enable ints
4	b	RxPoll16U_lp	# and loop
	RxPoll16U_end	d:	

120 55 + 24N (see spreadsheet)

										. 60800r								
	ld	ldob	clrbit	Idob	Idos	стро	bg	Ы	and	cmpobe	stob	Idos	stos	addo	st	stob	bbc	
F																		
F																		
F																		
F																		
D/F2	1										1				1			
EA															1			
		F																
		D															-	
	AonB	ΕA							<u> </u>									
	DonB																	
	X		F															
	<u>^</u>		F															
			F				1		ļ									
		l	D	F											<u> </u>		<u> </u>	
				D	F													
						F												
		AonB			EA	D												
		DonB									1							
		Х		AonB			1		1								1	
	1		X1	DonB						1				1			1	1
	1		X2	X			F	1	1		1	1		1	1		1	1
	1			1			F			1	1	1	<u> </u>	1	1		1	1
	1		<u> </u>				F		+									
								F										
							EA		F									
							X	U	D	F								
							<u>^</u>		<u> </u>	D								
					Aoni		-			<u> </u>								
					Don	<u>в</u>		<u> </u>	-									
					X			<u> </u>			F							
		I		L		Х		ļ			F					1		
											F							
	1											F					1	
											EA	D	F		1			
	1											EA	D	F				
	1					1					Aoni	B	EA	D	1			
		1	1				1	1	1		Don			X	1		1	1
	1		1	1		1	1	1			W	1		1	1	1	1	
	1	1		+		1	+	1		1		Aon	8	1	1		1	1
		1	1	+			+	1		+		Don		1	+			+
							+	1				X	Ť		F			
		<u> </u>		+				+		+					F		+	
	+							+	+	+					F			+
										+		<u> </u>	+			-		+
						+										F		+
					ļ	ļ				+			1		EA	D	F	
L		ļ	 		ļ							1	Aon			EA		
	<u> </u>	1						-	1				Don				EA	
47 cl	locks to	o start	1	1									W	!		<u> </u>	Х	
				CF										Ì	Aor	ìВ		
				D											Dor	ηВ	1	
				EA	D	CF	1	1					1	1		Aon	в	
	1			1	EA	D	CF	1		1		1	1	1		Don		
	1				1	1		CF		1	-		1	1		W	1	
	1	1		AonE	3		1	D	1	1			1	1		1	1	1
	.	1		DonE		+	+	1-	-	1			+			1	1	
	+		1		Aon	B	+								.	+		
		+	+	<u>^</u>			V						+				+	+
					Don		x											

I/O Loop: 80960KA

I/O Loop: 80960KA

i		1	1	X		1			CF		1	1	Ī	ĺ		
									D	CF		1				
				1		1			EA	D	CF	CF				
				1					Aon	EA	D	D				
									Doni	3	EA	iX				
	_								W							
										Aon		1	CF			
	_									Don	3		D			
										Х						
		1	L	L		1					Aoni		I	CF	L	
					1						Don	B		D		
											W					
													Aor		CF	
		_											Dor	ιВ	D	
24 cloo	cks per rep	beat										1	W		X	
		_	CF		<u> </u>									Aoni		
			D	CF										Don	B	
			EA	D	CF							ĺ		W		
					D	CF						I				
			DonE	3		D	CF									
		İ		Aon			D									
				Don	в	X				Ì		i				
							X									
9 clock	ks to get o	ut										1				F

SIGNED BYTE HANDLING: 80186

; the following 80186 code handles signed bytes. ; there are 3 signed byte variables in memory, Q, K2, and NORM. ; Actually NORM can range from -256 to +255, so we test the ; MSbyte of a 16-bit NORM but use only the LSbyte otherwise. ; The result is as follows ; if NORM < 0 then : if NORM > -Q then result := NORM

- else if NORM > Q then result := -2*K2-NORM
- else result := Q K2

else if NORM <= Q then result := NORM

else if NORM <= -Q then result := 2*K2-NORM

; Routines can leave the result wherever is most convenient.

- ; this code is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; this code assumes

3	8 MOV	AL,BYTE PTR Q	; get variable
4	12 MOV	HL,K2	; address of variable
4	9 MOV	BX,WORD PTR NORM	; get variable
2	3 OR	BX,BX	; test if NORM positive
2	4/13 JS	npos	; around if so
2	3 NEG	AL	; -Q
2	3 CMP	AL,BL	; -Q-NORM
3	4/13 JS	rnorm	; go if -Q-NORM<0, NORM>-Q
2	3 NEG	AL	; Q
2	3 CMP	AL,BL	; Q-NORM
2	4/13 JS	m2k2	; go if Q-NORM<0, NORM>Q
2	10 SUB	AL,(HL)	; Q - K2
2	14 JMP	SHORT next	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 m2k2:	MOV AL,(HL)	; K2
2	3 NEG	AL	; -K2
2	14 JMP	SHORT dmn	
2	2 rnorm:	MOV AL,BL	; NORM
2	14 JMP	SHORT next	
2	3 npos: CMP	AL,BL	; Q-NORM
2	4/13 JS	rnorm	; go if Q-NORM>=0, NORM<=Q
2	3 NEG	AL	; -Q
2	3 CMP	AL,BL	; -Q-NORM
2	4/13 JNS	p2k2	; go if -Q-NORM>=0, NORM<=-Q
2	3 ADD	AL,(HL)	; K2 - Q
2	14 JMP	SHORT next	
2	12 p2k2:	MOV AL,(HL)	; K2
3	3 dmn: ADD	AL,AL	; +- 2K2
2	3 SUB	AL,BL	; +- 2K2 - NORM
	next:		
63	NORM (pos)		
	NORM (neg)		
	2*K2-NORM		
	-2*K2-NORM	96	
	K2-Q 75		
	Q-K2 76		
	average	78.67	

SIGNED BYTE HANDLING: 680X0

- ; the following 680x0 code handles signed bytes.
- ; there are 3 signed byte variables in memory, Q, K2, and NORM.
- ; Actually NORM can range from -256 to +255, so we test the
- ; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
- ; The result is as follows
- ; if NORM < 0 then
 - if NORM > -Q then result := NORM
 - else if NORM > Q then result := -2*K2-NORM
 - else result := Q K2
- else if NORM <= Q then result := NORM
- else if NORM <= -Q then result := 2*K2-NORM
 - else result := K2 Q
- ; Routines can leave the result wherever is most convenient.
- ; this code is not warranted to be correct nor operative, and
- ; is intended for performance benchmarking purposes only.
- ; this code assumes that all variables are in the first 64K
- ; bytes of memory

Bytes Clks (CPU32)

4 4 2	7 7 4/10	MOVE.B MOVE.W BPL.S	Q,D0 NORM,D1 npos	; get variable ; get variable ; around if positive
2	2	NEG.B	D0	; -Q
2 2 2 2 2 2 2 2 2 2	2	CMP.B	D1,D0	; -Q-NORM
2	4/10	BMI.S	rnorm D0	; go if -Q-NORM<0, NORM>-Q
2	2 2	NEG.B CMP.B	D0 D1,D0	; Q : Q-NORM
2	2 4/10	BMI.S	m2k2	; go if Q-NORM<0, NORM>Q
4	7	SUB.B	K2,D0	; Q - K2
2	10	BRA.S	next	
2 4	7 m2k2:	MOVE.B	K2,D0	; K2
2	2	NEG.B	DO	;-K2
2 2 2 2 2 2 2 2 2 2	10	BRA.S	dmn	
2	2 rnorm:	MOVE.B	D1,D0	; NORM
2	10	BRA.S	next	
2	2 npos:	CMP.B	D1,D0	; Q-NORM
2	4/10	BPL	rnorm D0	; go if Q-NORM>=0, NORM<=Q
2	2 2	NEG.B CMP.B	D0 D1,D0	; -Q : -Q-NORM
2	2 4/10	BPL.S	p2k2	; go if -Q-NORM>=0, NORM<=-Q
4	7	ADD.B	K2,D0	; K2 - Q
2	10	BRA.S	next	,
4	7 p2k2:	MOVE.B	K2,D0	; K2
2	2 dmn:	ADD.B	D0,D0	; +- 2K2
2	2	SUB.B	D1,D0	; +- 2K2 - NORM
	next:			
64		2 68020	s) 40	
	48 44	NORM (pos NORM (neg		
	55	2*K2-NORM		
	63	-2*K2-NOR		
	55	K2-Q	48	
	51	Q-K2	46	
	52.67 a	average	45.92	

8

SIGNED BYTE HANDLING: CPU32

Bytes	Ciks	Source	Нор	Тор	Cop	Hea1	Tea1	Cea1	Hea2	Tea2	Cea2
4 4 2	7 7 10 4	 move.b Q,D0" move.w NORM,D1" bpl.s npos (taken) bpl.s npos (not taken) 	0 0 2 2	0 0 -2 0	2 2 8 4	1 1 0 0	3 3 0 0	5 5 0 0			
2 2 2 2	2 2 10 4 2	neg.b D0 " cmp.b D1,D0" bmi.s rnorm (taken) bmi.s rnorm (not taken) neg.b D0	0 0 2 2 0	0 0 -2 0 0	2 2 8 4 2	0 0 0 0	0 0 0 0 0	0 0 0 0 0			
2 2 4	2 10 4 7	" cmp.b D1,D0" bmi.s m2k2 (taken) bmi.s m2k2 (not taken) " sub.b k2,d0"	0 2 2 0	0 -2 0 0	2 8 4 2	0 0 0 1	0 0 0 3	0 0 0 5			
2 4 2 2 2	10 7 2 10 2	bra.s next "m2k2: move.b K2,d0" neg.b D0 bra.s dmn "rnorm: move.b D1,D0"	2 0 0 2 0	-2 0 0 -2 0	8 2 2 8 2	0 1 0 0 0	0 3 0 0 0	0 5 0 0 0			
2 2 2 2	10 2 10 4 2	bra.s next "npos: cmp.b D1,D0" bpl rnorm (taken) bpl rnorm (not taken) neg.b D0	2 0 2 2 0	-2 0 -2 0 0	8 2 8 4 2	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0			
2 2 4 2	2 10 4 7 10	" cmp.b D1,D0" bpl.s p2k2 (taken) bpl.s p2k2 (not taken) " add.b K2,D0" bra.s next	0 2 2 0 2	0 -2 0 0 -2	2 8 4 2 8	0 0 0 1 0	0 0 0 3 0	0 0 0 5 0			
4 2 2 64	7 2 2 48 44	"p2k2: move.b k2,d0" "dmn: add.b d0,d0" "sub.b d1,d0" next: NORM (pos) NORM (neg)	0 0 0	0 0 0	2 2 2	1 0 0	3 0 0	5 0 0			
	55 63 55 51 52.67	2*K2-NORM -2*K2-NORM K2-Q Q-K2 average									

SIGNED BYTE HANDLING: 68020

Bytes	Ciks	Source	BC	CC	WC
4	6.5	"move.b Q,DO"	3	6	8
4	6.5	"move.w NORM,D1"	3	6	8
2	7.5	bpl.s npos (taken)	3	6	9
	3.5	bpl.s npos (not taken)	1	4	5
2	2	neg.b D0	0	2	3
2	2	"cmp.b D1,D0"	0	2	3
2	7.5	bmi.s rnorm (taken)	3	6	9
	3.5	bmi.s rnorm (not taken)	1	4	5
2	2	neg.b D0	0	2	3
2	2	"cmp.b D1,D0"	0	2	3
2	7.5	bmi.s m2k2 (taken)	3	6	9
	3.5	bmi.s m2k2 (not taken)	1	4	5
4	7.5	"sub.b k2,d0"	3	6	9
2	7.5	bra.s next	3	6	9
4	6.5	"m2k2: move.b K2,d0"	3	6	8
2	2	neg.b D0	0	2	3
2	7.5	bra.s dmn	3	6	9
2	2	"rnorm: move.b D1,D0"	0	2	3
2	7.5	bra.s next	3	6	9
2	2	"npos: cmp.b D1,D0"	0	2	3
2	7.5	bpl rnorm (taken)	3	6	9
	3.5	bpl rnorm (not taken)	1	4	5
2	2	neg.b D0	0	2	3
2	2	"cmp.b D1,D0"	0	2	3
2	7.5	bpl.s p2k2 (taken)	3	6	9
	3.5	bpl.s p2k2 (not taken)	1	4	5
4	7.5	"add.b K2,D0"	3	6	9
2	7.5	bra.s next	3	6	9
4	6.5	"p2k2: move.b k2,d0"	3	6	8
2	2	"dmn: add.b d0,d0"	0	2	3
2	2	"sub.b d1,d0"	0	2	3
		next:			
64	39.5	NORM (pos)			
	37.5	NORM (neg)			
	48	2*K2-NORM			
	55.5	-2*K2-NORM			
	48.5	K2-Q			
	46.5	Q-K2			
	45.92	average			

8

SIGNED BYTE HANDLING: 80380

- ; the following Z380 code handles signed bytes.
- ; there are 3 signed byte variables in memory, Q, K2, and NORM.
- ; Actually NORM can range from -256 to +255, so we test the
- ; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
- ; The result is as follows
- ; if NORM < 0 then
- if NORM > -Q then result := NORM
- else if NORM > Q then result := -2*K2-NORM
- else result := Q K2
- ; else if NORM <= Q then result := NORM
- else if NORM <= -Q then result := 2*K2-NORM
 - else result := K2 Q
- ; Routines can leave the result wherever is most convenient.
- ; this code is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; this code assumes the global LW bit is cleared

	s Ciks			
By 3 4 3 1 2 2 1 3 2 1 3 1 2 1 2 2 1 2 1 2 1 3 2 1 3 1 2 1 1 1 1	s Ciks 6 2 6 2/6 2 2/6 2 2/6 6 6 6 m2k2: 2 2/6 6 6 2 rnorm: 6 2 npos: 2/6 2 2 2/6 6 6 6 6 6 6 2 npos: 2/6 2 2 2 2	LD LD R J R C J P R C J P SU J R D G J R C J P R C J P SU J R D G J R C J P A D R D D A SU	A,(Q) HL,K2 BC,(NORM) B,B Z,npos A A,C S,rnorm A A,C S,m2k2 A,(HL) next A,(HL) A dmn A,C next A,C NS,rnorm A A,C NS,rnorm A A,C NS,rnorm A A,C NS,p2k2 A,(HL) next A,(HL) next A,C NS,p2k2 A,(HL) next A,C	; get variable ; address of variable ; get variable ; test if NORM positive ; around if so ; -Q ; -Q-NORM ; go if -Q-NORM<0, NORM>-Q ; Q ; Q-NORM ; go if Q-NORM<0, NORM>Q ; Q - K2 ; K2 ; -K2 ; NORM ; Q-NORM ; go if Q-NORM>=0, NORM<=Q ; -Q ; -Q ; -Q-NORM ; go if -Q-NORM>=0, NORM<=-Q ; K2 ; K2 - Q ; K2 ; +- 2K2 ; +- 2K2 ; +- 2K2 ; +- 2K2 - NORM
_	next:			,
52	Norm (Norm (2*K2-N0 -2*K2-N0 K2-Q Q-K2	neg) DRM	36 38 46 50 44 42	
	average	!	42.67	

SIGNED BYTE HANDLING: 80960KA

# there # Actu	ollowing 80960KA code handles signed bytes. are 3 signed byte variables in memory, Q, K2, and NORM. ally NORM can range from -256 to +255, so we test the yte of a 16-bit NORM but use only the LSbyte otherwise.
	result is as follows
# 1110 # if	NORM < 0 then
# 11	if NORM > -Q then result := NORM
#	else if NORM > Q then result := -2*K2-NORM
#	else result := Q - K2
# else i	f NORM <= Q then result := NORM
#	else if NORM <= -Q then result := 2*K2-NORM
#	else result := K2 - Q
# Dave	and each locus the result wherever is most converient

Routines can leave the result wherever is most convenient.

this code is not warranted to be correct nor operative, and is

intended for performance benchmarking purposes only

Bytes ID

8	В	ldib	Q,r4	# get variable
8	С	ldis	NORM,r3	# get variable
8	D	ldib	K2,r5	# get variable
4	Е	subi	r4,0,r6	# make -Q
4	F	bbc	8,r3,npos	# around if NORM non-negative
4	G	cmpibgt	r3,r6,next	<pre># result=NORM if NORM>-Q</pre>
4	Н	cmpibgt	r3,r4,m2k2	# go if NORM>Q
4	1	subi	r5,r4,r3	# result = Q - K2
4	J	b	next	
4	K m2k2:	sub	r5,0,r5	# -K2
4	L p2k2:	add	r5,r5,r5	
4	M	sub	r3,r5,r3	
4	Ν	b	next	
4	O npos:	cmpible	r3,r4,next	<pre># result=NORM if NORM<=Q</pre>
4	Р	cmpible	r3,r6,p2k2	# go if NORM<=-Q
4	Q	subi	r4,r5,r3	# result = K2-Q
	next:			

— 76

6	26	NORM (pos)	see attached chart
	26	NORM (neg)	
	36	2*K2-NORM	
	37	-2*K2-NORM	
	29	K2-Q	
	30	Q-K2	
	30.67	average	

8

Signed Byte Handling: 80960KA

	ldib	Idis	ldib	subi	bbc	cmpibgt	cmpibat	subi	b	sub	add	sub	b	cmpible	cmpible	subi	next
1	F	Idio		5401	000	common		5461	-	540		540	-	ompible	ompible	500	
2	F										<u> </u>						
3	F											<u> </u>					
4	D/F2																
		F															
6	<u> </u>	D/F2															
	AonB																
	DonB																
	X		F														
10			F														
11			F					•* •	i				1				<u> </u>
12			D/F2								1	<u> </u>		<u> </u>		1	
13				F												1	
14				D	F												<u> </u>
15	1	AonE		X	D												<u> </u>
16		DonE															
17			AonB		1				1		+	1	1			1	<u> </u>
18		· · · · · · · · · · · · · · · · · · ·	DonE		x				†		<u> </u>	1	<u>† </u>			1	<u> </u>
19			X		<u> </u>	F	begin cas		RM (nea)		+	1				1
20		1			1	F			1			1	1			1	<u>† </u>
21						F					1					1	<u>+</u>
22					1	D	F		1		1	1	1	1		1	1
23	1					X		F				1					
24						X		D	F		+		1				+
25					1	x			D			+	1				
26					1	X	end case	NOR		ea)		<u> </u>	1				<u> </u>
19			X			F	begin cas	e -2*	k2-nc	m	+						<u> </u>
20						F				1	<u> </u>						<u> </u>
21						F			1	<u> </u>		1		1			<u> </u>
22						D	F				1					1	
23						x	D	F						1		1	
24			1			X	-	D	F				+			1	
25		1			1	X			D			1				1	1
26					1		x					1	1	1			
27		<u> </u>					X										1
28		1					X						1			·†	+
29							x										
30		1	1							F		1					+
31			1		1	1				F		+	+			1	+
32		1	1			1	1	1	1	F	1		1		1	1	1
33		1	1		1		1		+	D	F	+			1	1	1
34		1	1		1	1	-			x	D.	F	1	1	1		1
35	1	1	1		1	1	1	1	1	x	1	D	F	1	1		1
36		1			1	1		1		<u> </u>	x	1	D				1
37		1	1		1		end case	-2*K	2-NO	RM	<u> </u>	x	x		1		1
19		1	x	1		F	begin cas	se Q-l	K2	1		- <u> ``</u>	† `	1		1	+
20		1	1			F			T	+	1	1	+		1	1	+
21		1	1	1	1	F	1	+			1			1		1	1
22		1		1		D	F		+			1			1		1
23			1	1	-	x	D	F	+			1			1		+
24		1		1		X		D	F	1		1	1			1	1
25		1	1	+		X	1	1-	D		-	1		1	1		1
26		1	1				x	1	1-	+					+	1	+
27		1	+	+	1		x	+	+						1	1	+
28			1	-			x	+									<u>†</u>
29			1		+	+	<u>^</u>	x		1			+				
<u> </u>		1	1	1			1	<u></u>	1	1			1		1		1

Signed Byte Handling: 80960KA

301			>	< X	en	d case C	2-K2	1	ī		1	
19	begin case	NORM(pos)						1	F			1
20		T T T T							F			+1
21									F			1-1
22									D	F		
23									X	D	F	
24									X		D	F
25						_			X			
26	end case I	NORM(pos)							X			
19	begin case	2*K2-NORM							F			
20									F			1.
21									F			
22						-			D	F		
23									X	D	F	
24									X		D	F
25									X			
26										X		
27									-	X		
28										X		
29									1	X		
30						F	1					1
31						F						
32					-	F						
33						D	F					
34						X	D	F				
35						X		D				
36	end case	2*k2-NORM					X	X				
19	begin case	e K2-Q							F			
20									F			
21									F			
22							1		D	F		1
23							1	1	X	D	F	
24							1	1	X		D	
25									X			
261				<u> </u>			-			X		
27	1						1			X		1
28										Х		1
29	end case	K2-Q					1				X	1

MULTIPLY/ACCUMULATE: 80186

; this 80186 code performs a 16-bit multiply/accumulate: ; several 16-bit variables pre-exist in memory, including ; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition, ; two tables S_TABLE and C_TABLE are of a size equal to ; the possible range of values of CURSEC. .16-bit results ; of this calculation in memory include S_VALUE, K_VALUE, ; R_CP, and two accumulators S_ACCUM and K_ACCUM: ; S_VALUE := S_TABLE(CURSEC) ; K_VALUE := C_TABLE(CURSEC) ; S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64) ; K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)

; R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32

; to optimize memory accessing, all routines may assume

- ; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
- ; K_ACCUM are consecutive in memory in whatever order is
- ; optimal for their instruction set, while CURSEC. POSN_ERR,
- ; S_TABLE, and C_TABLE are at unrelated locations. R_CP
- ; can be in either place.

; the order in this version in S_VALUE, S_ACCUM, S_GRAT, K_VALUE, ; K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is

; intended for performance benchmarking purposes only

; this code assumes all the variables are in the DS segment

4 2 4	9 2 9	MOV SHL MOV	SI,WORD PTR CURSEC SI,1 AX,S_TABLE[SI]	; get S_VALUE from table
4 3	9 4=24	MOV	BX,S_VALUE	; start pointer into variables
2	12 lp:	MOV	[BX],AX	; save VALUE
2	2	MOV	BP,AX	; save in register
4	42	IMUL	AX,WORD PTR POSN_ERR	; AX:=LS16, DX:=MS16
З	11	'SHR	AX,6	; divide LS16 by 64
2	2	SHL	DX,1	
2	2	SHL	DX,1	
2	3	OR	AH,DL	; divide by 64
1	3	INC	BX	
1	3	INC	BX	
2	10	ADD	WORD PTR [BX],AX	
1	3	INC	BX	
1	3	INC	BX	
2	9	MOV	AX,[BX]	; get GRAT

& Silæ

2	36	IMUL	AX,BP	; times VALUE
1	3	INC	BX	
1	3	INC	BX	
3	3=150	CMP	BL,K_VALUE MOD 256	
2	4/13	JNE	kdone	; around if K group done
2 2 4 2	2 2 9 14=27	MOV MOV JMP	CX,DX DI,AX AX,C_TABLE[SI] Ip	; save MS16 of product ; save LS16 of product ; get K_VALUE from table ; go back and do K group
2	3 kdone	: ADD	AX,DI	; add S_VALUE*S_GRAT to K
2	3	ADC	DX,CX	
3	10	SHR	AX,5	
3	8	SHL	DX,3	
2	3	or	AH,DL	; divide by 32
3	9=36	Mov	WORD PTR R_CP,AX	
72	404 (24-	+150+4+2	7+150+13+36)	

MULTIPLY/ACCUMULATE: 680X0

- ; this 680x0 code performs a 16-bit multiply/accumulate:
- ; several 16-bit variables pre-exist in memory, including
- ; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
- ; two tables S_TABLE and C_TABLE are of a size equal to
- ; the possible range of values of CURSEC. 16-bit results
- ; of this calculation in memory include S_VALUE, K_VALUE,
- ; R_CP, and two accumulators S_ACCUM and K_ACCUM:
- ; S_VALUE := S_TABLE(CURSEC)
- ; K_VALUE := C_TABLE(CURSEC)
- ; S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
- ; K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
- ; R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32

; to optimize memory accessing, all routines may assume

- ; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
- ; K_ACCUM are consecutive in memory in whatever order is
- ; optimal for their instruction set, while CURSEC. POSN_ERR,
- ; S_TABLE, and C_TABLE are at unrelated locations. R_CP
- ; can be in either place.

; the order in this version is S_VALUE, S_ACCUM, S_GRAT,

; K_VALUE, K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is

; intended for performance benchmarking purposes only

; the size/clocks figures assume all data is in the first

; 64K bytes

Bytes Clks (CPU32)

4 6 4 2 2 4 2 2 2 6 2 2 4 2 2 2 2 2	7 5 5 2 3 1 6 7 29 5 2 31 6 7 29 2 6 4	MOVE.W MOVE.W MOVE.W MOVE.W MULS.W ASR.L ADD.W MULS.W MOVE.W MOVE.W MOVE.W MOVE.W MOVE.W MULS.W ASR.L ADD.W MULS.W ADD.L ASR.L MOVE.W	CURSEC,D0 S_TABLE(D0.W*2),D1 S_VALUE,A0 D1,(A0)+ D1,D2 POSN_ERR,D1 #6,D1 D1,(A0)+ (A0)+,D2 C_TABLE(D0.W*2),D1 D1,(A0)+ D1,D0 POSN_ERR,D1 #6,D1 D1,(A0)+ (A0)+,D0 D2,D0 #5,D0 D0,(A0)+	; get S_VALUE from table ; start pointer into variables ; store S_VALUE ; copy it ; divide by 64 ; add into accumulator ; S_GRAT*S_VALUE ; get K_VALUE from table ; store K_VALUE ; copy it ; divide by 64 ; add into accumulator ; K_GRAT*K_VALUE ; S_GRAT*S_VALUE + K_GRAT*K_VALUE ; /32 ; save that in R_CP
 54		clocks (CPU32) clocks (68020)		

MULTIPLY/ACCUMULATE: CPU32

Bytes	Clks	Source	Нор	Тор	Сор	Hea1	Tea1	Cea1
4	7	"MOVE.W CURSEC,D0"	0	0	2	1	3	5
6	10	"MOVE.W S_TABLE(D0.W*2),D1"	0	0	2	2	2	8
4	5	"LEA S_VALUE,A0"	0	0	2	1	1	3
2	5	"MOVE.W D1,(A0)+"	1	1	5	0	0	0
2	2	"MOVE.W D1,D2"	0	0	2	0	0	0
4	31	"MULS.W POSN_ERR,D1"	0	0	26	1	3	5
2	6	"ASR.L #6,D1"	4	0	6	0	0	0
2	7	"ADD.W D1,(A0)+"	0	3	5	1	1	3
2	29	"MULS.W (A0)+,D2"	0	0	26	1	1	3
6	10	"MOVE.W C_TABLE(D0.W*2),D1"	0	0	2	2	2	8
2	5	"MOVE.W D1,(A0)+"	1	1	5	0	0	0
2	2	"MOVE.L D1,D0"	0	0	2	0	0	.0
4	31	"MULS.W POSN_ERR,D1"	0	0	26	1	3	5
2	6	"ASR.L #6,D1"	4	0	6	0	0	0
2	7	"ADD.W D1,(A0)+"	0	3	5	1	1	3
2	29	"MULS.W (A0)+,D0"	0	0	26	1	1	3
2	2	"ADD.L D2,D0"	0	0	2	0	0	0
2	6	"ASR.L #5,D0"	4	0	6	0	0	0
2	4	"MOVE.W D0,(A0)+"	1	1	5	0	0	0

54 204

MULTIPLY/ACCUMULATE: 68020

Bytes	Clks	Source	BC	СС	wc
4	6.5	"MOVE.W CURSEC,D0"	3	6	8
6	9.5	"MOVE.W S_TABLE(D0.W*2),D1"	4	9	12
4	6.5	"LEA S_VALUE,A0"	з.	6	8
2	5	"MOVE.W D1,(A0)+"	4	4	5
2	2	"MOVE.W D1,D2"	0	2	3
4	32.5	"MULS.W POSN_ERR,D1"	28	31	34
2	4.5	"ASR.L #6,D1"	3	6	6
2	9.5	"ADD.W D1,(A0)+"	7	8	10
2	31	"MULS.W (A0)+,D2"	29	31	32
6	9.5	"MOVE.W C_TABLE(D0.W*2),D1"	4	9	12
2	5	"MOVE.W D1,(A0)+"	4	4	5
2	2	"MOVE.L D1,D0"	0	2	3
4	32.5	"MULS.W POSN_ERR,D1"	28	31	34
2	4.5	"ASR.L #6,D1"	3	6	6
2	9.5	"ADD.W D1,(A0)+"	7	8	10
2	31	"MULS.W (A0)+,D0"	29	31	32
2	2	"ADD.L D2,D0"	0	2	3
2	4.5	"ASR.L #5,D0"	3	6	6
2	5	"MOVE.W D0,(A0)+"	4	4	5

54 212.5

_

MULTIPLY/ACCUMULATE: 80380

; this 80380 code performs a 16-bit multiply/accumulate:
; several 16-bit variables pre-exist in memory, including
; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to
; the possible range of values of CURSEC. 16-bit results
; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S_ACCUM and K_ACCUM:
; S_VALUE := S_TABLE(CURSEC)
; K_VALUE := C_TABLE(CURSEC)
; S_ACCUM := S_ACCUM + ((K_VALUE*POSN_ERR)/64)
; K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
; R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32
; to optimize memory accessing, all routines may assume
; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
; K_ACCUM are consecutive in memory in whatever order is

; optimal for their instruction set, while CURSEC. POSN_ERR,

; S_TABLE, and C_TABLE are at unrelated locations. R_CP

; can be in either place.

; the order in this version in S_VALUE, S_ACCUM, S_GRAT, K_VALUE, ; K_ACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is

; intended for performance benchmarking purposes only

; this code assumes that the global LW and XM bits are cleared.

4	6	LD	IX,(CURSEC)	
2	2	ADD	IX,IX	
2 5	2	DDIR	IB	
	8	LD	HL,(IX+S_TABLE)	; get S_VALUE from table
2	2	DDIR	IB	
2 5	8	LD	IY,(IX+C_TABLE)	; get K_VALUE from table
3	2=35	LD	DE,S_VALUE	; start pointer into variables
2	3 lp:	LD	(DE),HL	; save VALUE in memory
2	2	LD	İX,HL	; save in reg
4	6	LD	BC,(POSN_ERR)	-
3	10	MULTW	HL,BC	; VALUE * POSN_ERR (16x16=32)
2	2	DDIR	LW	
1	2	ADD	HL,HL	
2	2	DDIR	LW	
1	2	ADD	HL,HL	
1	2	LD	A,H	
2	2	SWAP	HL	
1	2	LD	H,L	
1	2	LD	L,A	; 16 bit product/64
1	2	INC	DE	
1	2	INC	DE	
2	6	LD	BC,(DE)	; get accum
1	2	ADD	HL,BC	; add
2	3	LD	(DÉ),HL	; save accum
			· //	· · · · · · · · ·

MULTIPLY/ACCUMULATE: 80380 (Continued)

Bytes	Clks			
1	2	INC	DE	
1	2	INC	DE	
2	6	LD	HL,(DE)	; get GRAT
1	2	INC	DE	
1	2 2 2		DE	
2 3	2 10	LD MULTW	BC,IX BC	; retrieve value ; GRAT*VALUE
2	2		A,K_VALUE MOD 256	, GRAT VALUE
1	2	CP	A,E	
2	2/6=89	JR	NZ,kdone	; around if K group done
_	_,		· · · · · · · · · · · · · · · · · · ·	,
2	2	DDIR	LW	
2	3	EX	HL,IY	; HL:=K_VALUE, IY:=S_VALUE*S_GRAT
-				
2	6=11	JR	lp	; and go do K group
2	2 kdone:	DDIR	LW	
2	2 100110.	ADD	HL,IY	; S_VALUE*S_GRAT + K_VALUE*K_GRAT
2	2	DDIR	LW	
1	2	ADD	HL,HL	
2	2 2	DDIR	LW	
1	2 2	ADD	HL,HL	
2	2	DDIR	LW	
1	2 2 2	ADD	HL,HL	; 32-bit left shift 3
1	2	LD	A,H	
2	2	SWAP	HL	
1	2	LD	H,L	
1 3	2 6=30	LD LD	L,A (R_CP),HL	; sum div 32 ; save that
<u>з</u>	0=30	LU	(n_ur),nl	, save mai

254 (35+89+11+89+30) 95

,

,

MULTIPLY/ACCUMULATE: 80960KA

this 80960 code performs a 16-bit multiply/accumulate:
several 16-bit variables pre-exist in memory, including
CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
two tables S_TABLE and C_TABLE are of a size equal to
the possible range of values of CURSEC. 16-bit results
of this calculation in memory include S_VALUE, K_VALUE,
R_CP, and two accumulators S_ACCUM and K_ACCUM:
S_VALUE := S_TABLE(CURSEC)
K_VALUE := C_TABLE(CURSEC)
S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32
to optimize memory accessing, all routines may assume
that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,

- # K_ACCUM are consecutive in memory in whatever order is
- # optimal for their instruction set, while CURSEC. POSN_ERR,
- # S_TABLE, and C_TABLE are at unrelated locations. R_CP
- # can be in either place.

the order in this version is S_VALUE, S_ACCUM, S_GRAT, # K_VALUE, K_ACCUM, K_GRAT, R_CP.

this code is not warranted to be correct nor operative, and is # intended for performance benchmarking purposes only

Bytes

ID

<u> </u>					
8	В		ldos	CURSEC,r3	# get variables
8	С		ldis	POSN_ERR,r4	Ĵ.
8	D		ldis	S_TABLE[r3*2],r5	<pre># get S_VALUE from table</pre>
8	Е		lda	S_VALUE,r6	# start pointer into variables
4	F		mov	r6,r12	# copy that
4	G	lp:	muli	r4,r5,r7	# S_VALUE*POSN_ERR
4	Н		stis	r5,0(r6)	# save S_VALUE
4	1		ldis	2(r6),r8	# get accum
4	J		ldis	4(r6),r9	# get S_GRAT
4	К		shri	6,r7,r7	# divide by 64
4	L		addi	r7,r8,r8	# accumulate
4	М		muli	r5,r9,r9	# S_VALUE*S_GRAT
4	Ν		stis	r8,2(r6)	# save accum
4	0		cmpibne	r6,r12,kdone	
4	Ρ		addi	6,r6	
8	Q		ldis	C_TABLE[r3*2],r5	<pre># get K_VALUE from table</pre>
4	R		mov	r9,r13	
4	S		b	lp	
4	Т	kdone:	addi	r13,r9,r9	#S_VALUE*S_GRAT + K_VALUE*K_GRAT
4	U		shri	5,r9,r9	# divide by 32
4	V		stis	r9,6(r6)	# save in R_CP

104 92 (see chart)

Multiply/Accumulate: 80960KA

	Idos	Idic	Idic	Ida	mov	mulii	otio	Idia	Idia	chri i	oddi	muli	ctic	cmpibne	oddi	Idic	mov	h	addi	chri	stic
1	F	iuis	luis	iua	mov	mun	sus	lais	lais	snn	8001	muii	SUS	cinpione	auui	uis	mov	U I	auur	SIII	505
	F																				
2	F																	-			
4	F2/D																				
5		F																			
6		F2/D																			
7	AonB	EA																			
8	DonB																				
9	X		F																		
10			F																		
11			F																		
12			F2/D)																	
13			EA	F																	
<u>1</u> 4			I	F2/	<u>D</u>																
15	L	AonE		EA																	
16		DonE		X															ļ		ļ
17		X	Aon		ļ														ļ		
18			Don	B	-				L		 	ļ							ļ		
19			X		F														ļ		
20					F	<u> </u>															
21 22					F	F	 	mult	l inlu é		0007		16 hi4	data							
22					D X		F	muit		me b	ased	on typ	10 01	uala	+						
24						x	D	F													
25						x -	EA														
26						x	Aon					<u> </u>						-			
27						x	DonE														
28						x	W	, 										-	<u>+</u>		
29			1		1	x			F				1		+			+			†
30			1		1	x		<u> </u>	F				1		1			+	1	1	
31		1			1	x		<u> </u>	F						1		1	+			
32		1	1		1	x	1		D	F		+	1		1		1	1	1	1	
33		1	i	1	1	X	1	1	1		F		1			1	1	1	1	1	1
34		1	1	1	1	X	1		1	EA		F			1	1		1	1	1	
35			1		1	X	i	Aon	B		1	10		1			1	1			
36		1	1	1		X	1	Don		1	1		1	1		1					
37						X	1	X	Aon	B			I	1							
38						Х			Don	В	1										
39									Х	X		X	F								
40		1								Х		X	F								
41											X	X	F						1		<u> </u>
42			1		ļ							X		F		1		1			I
43			1	I	1					I		X	EA	D	F			-	1		ļ
44			1							1		Х	1	X	D	F		-			
45	5			1			1	L	1	<u> </u>		X	Aon			D	1				l
46	5		<u> </u>	<u> </u>				 				X	Don	X			<u> </u>				
47	<u>' </u>						<u> </u>	<u> </u>				X		X	X						
48	<u>s</u>											X				F2		+		-	
49		+										X				F2					
50	<u>, 1</u>								ļ			X				F2					
51	<u> </u>			+								X				EA		+-			
52	2									+		X		l			D	F	F		
53		÷										X				10-5-	X				
54	+	<u>.</u>	+			ICF.										Aon	<u> </u>	X	+		
55						CF										Don		+			
56	21		1	1	1	D	CF	1		1	1		1	<u> </u>		X			1	1	1

Multiply/Accumulate: 80960KA

57	X	D	CF		1	1	1	1	-	1	1					
58	X	EA		CF		1				<u> </u>	1	1				
59	X	AonE		D	CF	1				1						
60	X	DonE			D	CF										
61	X	W			1	D	CF	1								
62	X		Aonf	3	-	1	D									
63	X	1	Doni	в			1									
64	X		X	Aon	B	1										
65	X			Don	в								1			
66	X			X	1								1			
67	X				1			1								
68	X												1			
69	X					1										
70	X		1	1									1			
71	X										1					
72					X		X									
73					X		Х									
74			1		1	X	Х									
75							X									
76							X						Τ			
77		1				1	X	CF				1				
78		1					X	D	CF							
79			1				X	EA	D							
80							X	Aon	Х							
81					1		X	Don	Х							
82							X	W	X				1			
83							X		X							
84					1		X		X			T				
85							X							CF		
86							X							D	F	
87														Х	D	F
88						1									Х	
89															Х	
90															Х	AonB
91									1	1			1			DonB
92					1	1	1		1	1			1	1		W

⊗ Zilæ

INTERRUPT: 80186

- ; This 80186 code handles Rx Status interrupts from a 16C30.
- ; It is evaluated for an overrun condition, so that End Of
- ; Frame processing, which is handled by a separate subroutine,
- ; doesn't count toward the totals.
- ; It is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; It assumes the USC is in a 24-bit addressed memory space
- ; and that the hardware includes byte/word addressing
- ; hardware (i.e., an environment like the IUSC/AT Starter Kit)

•				
	55	(interru	ipt latency per in	tel 186 Hardware Ref Man p.9-22)
	rxStInt:			
	; save	register		
1	36	PUSHA	A	
	; begir		ng the interrupt	
4	13		AX,uscBase/16	5
2 5	2	MOV	ES,AX	; address of USC to ES
5	14			DCCR,clrIP+RS_IP ; clear IP
4	11	MOV	AX,ES:RCSR	; get status
2	3	TEST	AL,rxOver	
2	4	JZ	noOver	; around if no overrun
	; hand	le Rx ov	errun	
5	14	MOV	BYTE PTR ES:F	RCSR+1,EnterHuntMode ; force Hunt
5	18	OR		CCAR+1,PurgeRx ; purge Rx command
	; hand	le RxBo	und (end of fram	ie)
2	3 noOv	er:TEST	AL,rxBound	
2 3	13	JZ	noEOF	
3		CALL	NEAR PTR pro	cEOF
	; clear	interrup	ot hardware	
2	3 noEC	F: AND	AL,0F6H	
4	11	MOV	BYTE PTR ES:F	RCSR,AL ; unlatch status bits we saw
4	10	MOV	AL,ES:RICR	; get IA bits
5	14	MOV		RICR,0 ; clear them
4	11	MOV	ES:RICR,AL	; rearm them
5	14	MOV	BYTE PTR ES:[DCCR+1,clrIUS+RS_IUS; clear IUS
	; resto	re regist	ters, dismiss inte	rrupt and return
1	51	POPA		
1	28	IRET		
—				
63	328			

INTERRUPT: 680X0

- ; This 680x0 code handles Rx Status interrupts from a 16C30.
- ; It is evaluated for an overrun condition, so that End Of
- ; Frame processing, which is handled by a separate subroutine,
- ; doesn't count toward the totals.
- ; It is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; It assumes the USC is in a 24-bit addressed memory space
- ; and that the hardware includes byte/word addressing
- ; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks (CPU32)

	_				
	32 inte	errupt (p	er CPU32 ref ma	ın p.8-27)	
	rxStInt	:		, ,	
	; save	register	'S		
4	73	•		SP) : could	l save less, but we don't
	: begi		ng the interrupt	, ,	
6	7	LEA	uscBase.A0		
6	10		.B #clrIP+RS_IP	DCCR(A0)	: clear IP
4	7		.W RCSR(A0),DO		,
4	4	BTST	#rxOv,D0		
2	4	BEQ		; around if not	
_	: hand	lle Rx ov		,	
6	10			ode.RCSR+1(A0)) ; force Rx into Hunt
6	12	OR.B			purge Rx command
-			und (end of fram		p = : g = : = = :
4	4	BTST		-,	
2	10	BZ		: around if no E	Ind of Frame
4		BSR	procEOF	,	ubr if so
	: clear	interrur	ot hardware	,	
4		DF: AND		0	; mask status
4	6	MOVE	.B DO,RCSR(A0)		
4	7		.B RICR(A0),DO		
4	6		RICR(A0)		
4	6		.B DO, RICR(AO)		
6	10		.B #clrIUS+RS_I))
	: resto		dismiss interrup		,
4	74		M.L (SP)+,A0-6/[
2	26	RTE			
	_				
80	313 clo	ocks (CF	PU32)		
		ocks (68	,		
		、	,		

[⊗] ZiLŒ

.

INTERRUPT: 68020

Bytes	Clks	Source	BC	CC	WC	
	48	interrupt	41	41	48	
4	55.5	"MOVEM.L A0-6/D0-7,-(SP)"	52	55	57	
6	6.5	"LEA uscBase,A0"	3	6	8	
6	5	"MOVE.B #clrIP+RS_IP,DCCR(A0)"	3	7	7	
4	7	"MOVE.W RCSR(A0),D0"	3	7	9	
4	3.5	"BTST #rxOv,D0"	1	4	5	
2	3.5	BEQ noOver (not taken)	1	4	5	
6	5	"MOVE.B #EnterHuntMode,RCSR+1(A0)"	3	7	7	
6	11.5	"OR:B #PurgeRx,CCAR+1(A0)"	6	9	13	
4	3.5	"BTST #rxBnd,D0"	1	4	5	
2	7.5	BZ noEOF (taken)	3	6	9	
4		BSR procEOF				
4	4	"AND.B #\$F6,D0"	0	4	6	
4	6	"MOVE.B D0,RCSR(A0)"	3	5	7	
4	7	"MOVE.B RICR(A0),D0"	3	7	9	
4	8.5	CLR.B RICR(A0)	5	6	9	
4	6	"MOVE.B DO,RÍCR(A0)"	3	5	7	
6	5	"MOVE.B #clrIUS+RS_IUS,DCCR+1(A0)"	3	7	7	
4	71	"MOVEM.L (SP)+,A0-6/D0-7"	70	70	71	
2	23.5	RTE	20	21	24	

80 287.5

INTERRUPT: 80380

- ; This 380 code handles Rx Status interrupts from a 16C30.
- ; It is evaluated for an overrun condition, so that End Of
- ; Frame processing, which is handled by a separate subroutine,
- ; doesn't count toward the totals.
- ; It is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only
- ; It assumes the USC is in a 24-bit addressed memory space
- ; and that the hardware includes byte/word addressing
- ; hardware (i.e., an environment like the IUSC/AT Starter Kit)

		errupt tim	ne)	
	rxStInt:			
		registers		
2	2	DDIR	LW	
2	6	PUSH		; save old control settings
3	4	LDCTL	SR,intBank	; one reg bank dedicated
				; for unnested interrupts
	; begir	n handlin	ig the interrupt	
2	2	DDIR	IB	
5	4	LD	IX,uscBase	; set 24-bit address of USC
4	6	LD	(IX+DCCR),clrl	P+RS_IP ; clear IP bit
4	7	LD	BC,(IX+RCSR)	; get status
2	2	BIT	rxOv,C	
2	2/6	JR	Z,noOver	; around if no overflow flag
	; hand	le Rx ove	errun	
4	6	LD	(IX+RCSR+1),E	EnterHuntMode ; force Rx hunt mode
3	7	LD	A,(IX+CCAR+1)
2 3	2	OR	A,PurgeRx	
3	6	LD		A; issue purge Rx command
	; hand	le RxBou	und (End of Fran	ne)
2	2/6 noC	Dver:BIT		
3	2	CALL	NZ,procEOF	; call End of Frame procedure
	; clear	interrup	t hardware	
2	2	AND	C,0F6H	
2 3 3	6	LD	(IX+RCSR),C	; unlatch status bits we saw
	7	LD	A,(IX+RICR)	; get IA bits
4	6	LD	(IX+RICR),0	; drop IA bits
3	6	LD	(IX+RICR),A	
4	6	LD		clrIUS+RS_IUS ; clear IUS
	; resto	re regist	ers, dismiss inte	rrupt and return
2	2	DDIR	LW	
2	8	POP	SR	
2	8	RETI		
66	133			

INTERRUPT: 80960KA

- ; This 80960KA code handles Rx Status interrupts from a 16C30.
- ; It is evaluated for an overrun condition, so that End Of
- ; Frame processing, which is handled by a separate subroutine,
- ; doesn't count toward the totals.
- ; It is not warranted to be correct nor operative, and is
- ; intended for performance benchmarking purposes only

; It assumes the hardware includes byte/word addressing

; hardware (like the IUSC/AT Starter Kit)

Bytes ID

—				
	B # interrupt (est per c	lescription pp.8-	5,6, 80960KA prog ref man)
				gister set not avail)
	rxStInt:			с ,
	# save registe	rs not an	oplicable	
	# begin handl			
8	C	lda	uscBase,r3	# set address of USC
4	D	lda	clrIP+RS_IP,r4	
4	E	stob		# clear IP
4	F	ldos	RCSR(r3),r5	
4	G	bbc		# around if no overrun
	# handle Rx o	verrun		
4	Н	lda	EnterHuntMode	e,r4
4	1	stob	r4,RCSR+1(r3)	# force Rx into Hunt Mode
4	J	ldob	CCAR+1(r3),r4	
4	К	lda	PurgeRx,r6	
4	L	or	r6,r4,r4	
4	Μ	stob	r4,CCAR+1(r3)	# issue Purge Rx command
	# handle RxBo	und (end	d of frame)	
4	N noOve	r: bbc	rxBnd,r5,noEO	F# around if no RxBound
4	0	call	procEOF	# handle the End of Frame
	# clear interrup			
4	P noEOF	: andnc	ot 9,r5,r5	# mask status
4	Q	stob		# unlatch status bit we saw
4	R	ldob	RICR(r3),r4	# save arm bits
4	S	mov		# make a zero
4	Т	stob		
4	U	stob		# rearm
4	V	lda		
4	W	stob	r6,DCCR+1(r3)	# clear IUS
	# dism	niss interi	rupt and return	
4	Х	ret		
	Y (plus hardw	are end-	of-interrupt sequ	ience)

92 123 clocks (per attached chart)

Interrupt: 80960KA

74							_	_	_					v			-			_	1		
71											W			X									
72														Х		F							
73																F							
74	1										_					F							
75																D	F						
76									-							EA	D	F					
77	1																X	D	F				
78	1	<u> </u>													AonB				D				
79	<u> </u>														DonB		^		EA				
80																			EA.	<u> </u>			
															W				I				———
81							L									AonB			L				
82				L											1	DonB				1	1		
83															1	x		AonE	3		1		
84	1																	DonE	3				
85							1								1			W	1		1	1	
86	1																			F		<u> </u>	
87	1		 									<u> </u>			<u> </u>	<u> </u>		+		F	+		
88																				F			
					I		L	ļ							ļ		<u> </u>	ļ	ļ		l		
89			L													I	I		L	D	F	-	
90	1																			EA	D.		
91																				X	EA	D	F
92		1						l	1										AonE	3			
93			1				1								1				Doni		1		
94	1						 	<u> </u>								t			W				
95	+			<u> </u>	<u> </u>					<u> </u>					<u> </u>					<u> </u>	Ann	-	
96				<u> </u>	<u> </u>																AonB		
		-		<u> </u>	<u> </u>					L							<u> </u>		<u> </u>		DonE		
97								1							1			1		1	W	X	
98																						X	
99					1	1											Γ	1				X	
100	1					1			1		1			1					1			X	
101	1	<u> </u>						<u> </u>	<u>+</u>		1					1	1			1		X	
102	-		-														+	+			1	X	
103	+									<u> </u>		<u> </u>								+		Îx -	
												L	L	I	<u> </u>	<u> </u>	<u> </u>	1		1	+	<u> ^</u>	
104	-				ļ		1				resto	e antr	metk	c controls	strom	int rec	ord			ļ		1	A
105																		1	1				A
106					1												1						Α
107						1					resto	re proc	:ess	controis f	from in	t recor	d						Ρ
108	1		1		1		1	1			1	1	1		T	1	1	1		1	1		P
109	1	1	1	1	1	1	1		1	1	1				1	1	1	1	1	1	1	1	P
110	+	1	1		+	1	1		1		000		ntion	record		+	1		+	+	+		R
111	1	1		+	+	+			i –	+	1000	- Journ	1		i		+		+				R
	+	+		+			+	+	+				+			+			+	+	+		
112		+	I		1	1	-	<u> </u>	<u> </u>	ļ	ļ	I				I		1				+	R
113	1	I			-	1	1	1	1								1	-	1			1	R
114	1	1																					R
115									1	1	1							1					R
116	1	1		1	1	1	1	1		1	1		1	1	1		1	1	1	1		1	R
117	1	1	1	<u> </u>	+	+	1	1	1	1	1	<u> </u>	<u> </u>	1	1	1	+	+	1	1		1	R
118	+	+	1			+	+		+	+	dealle		te free	me, remo						+		+	IS
			+								OCEIK	x: 5130	at II a	ine, remo	JVE RX		econ	<u>u</u>		+	+	+	_
119	1							<u> </u>		I	1	- · · ·		ļ		1						+	IS
120	1	1			1	1			1						1					1			IS
121	i											1											is
122		1	1	1	i	1	1		1		switc	h baci	c to fo	ormer sta	ck	1						1	os
123	+	1	1	1-	1	1	1	1	1	1	1	T	T		T	1	1	1	1	1		1	os
1201			<u>.</u>	1		1	1		1	1	1	1	1		1	1	1	1	1	1		1	

BLOCK MOVE CALCULATIONS

80960 lp16:	KA ldq subi stq addi addi cmpib	(r3),r8 16,r5,r r8,(r4) 16,r3,r 16,r4,r ge	3		# 5	bytes =	1.25 cl	ocks/by	te				
	MOVE DBRA = Cea1-I 2 - 0	D0,LP MIN(Tea 0 0	+3- 0	+Cea2-I	Hop 2 6 MIN(Tea +8 - +10 -	Top 4 0 2,Hop)+ 4 1	Cop 8 10 -Cop-MI = 8 = 9 17	Hea1 1 N(Top,ł	Tea1 0 H??[next]	Cea1 2)	Hea2 1	Tea2 C 1	Cea2 3
17/4 b	ytes = 4	.25 cloc	ks/byte										
68020: lp:	MOVE	.L D0,LP	(A0)+,	(A1)+	BC 7 3	CC si 7 6	7 4.5 						
11.5/4	bytes =	2.875 c	locks/by	te			11.5						
80380:	LDIRW	I		3+5+3	= 11 clc	ocks/4 b <u>y</u>	ytes = 2	.75 cloc	:ks/byte				
80186:	MOVS	W		8 cloci	ks/2 byte	es = 4 cl	ocks/by	te					

Summary of Benchmarks

Normalized to 25MHz 80380)									
Proc	i 80186	CPU32	CPU32	68020	68020	Z380	Z380	Z380	80960KA	80960KA
clock rate, MHz	16	16	25	16	25	16	25	40	16	25
clk period, nS	62.5	62.5	40	62.5	40	62.5	40	25	62.5	40
I/O Loop (bytes)	61	92	92	92	92	65	65	65	120	120
Bytes, Z380=1	0.94	1.42	1.42	1.42	1.42		1.00	1.00	1.85	1.85
I/O Loop (formula)			50+77*N		56+48N				56+24*N	
I/O Loop (clks @ N=1)	140	127	127	104	104	94	94	94	80	80
I/O Loop (nS @ N=1)	8750	7938	5080	6500	4160	5875	3760	2350		3200
nS, N=1, 25MHz Z380=1	2.33	2.11	1.35	1.73	1.11	1.56	1.00	0.63	1.33	0.85
I/O Loop (clks @ N=8)	700	666	666	440	440	465	465	465		248
I/O Loop (nS @ N=8)	43750	41625	26640	27500	17600	29063	18600	11625	15500	9920
nS, N=8, 25MHz Z380=1	2.35	2.24	1.43	1.48	0.95	1.56	1.00	0.63	0.83	0.53
signed bytes (bytes)	63	64	64	64	64	52	52	52	76	76
bytes, Z380=1	1.21	1.23	1.23	1.23	1.23	1.00	1.00	1.00	1.46	1.46
signed bytes (clks)	79	53	53	46	46	43	43	43		31
signed bytes (nS)	4917	3292	2107	2875	1840	2667	1707	1067	1917	1227
nS, 25MHz Z380=1	2.88	1.93	1.23	1.68	1.08	1.56	1.00	0.63	1.12	0.72
multiply/accum (bytes)	72	54	54	54	54	95	95	95		104
bytes (Z380=1)	0.76	0.57	0.57	0.57	0.57	1.00	1.00			1.09
multiply/accum (clks)	404	204	204	212	212		254	254	92	92
multiply/accum (nS)	25250	12750		13250	8480		10160	6350		3680
nS, 25MHz Z380=1	2.49	1.25	0.80	1.30	0.83	1.56	1.00	0.63	0.57	0.36
interrupt (bytes)	63	80	80	80	80	66	66	66	92	92
bytes (Z380=1)	0.95	1.21	1.21	1.21	1.21	1.00	1.00	1.00	1.39	1.39
interrupt (clks)	328	313	313	288	288	133	133	133	123	123
interrupt (nS)	20500	19563	12520	18000	11520	8313	5320	3325	7688	4920
nS, 25MHz Z380=1	3.85	3.68	2.35	3.38	2.17	1.56	1.00	0.63	1.45	0.92
Block move, clks/byte	4.00	4.25	4.25	2.875	2.875	2.75	2.75	2.75	1.25	1.25
Block move, nS/byte	250	266	170	180	115	172	110	69	78	50
nS, 25MHz Z380=1	2.27	2.41	1.55	1.63	1.05	1.56	1.00	0.63	0.71	0.45
Bytes, ave of Z380=1	0.97	1.11	1.11	1.11	1.11	1.00	1.00	1.00	1.45	1.45
nS, ave of 25 MHz Z380=1	2.70	2.27	1.45	1.87	1.20	1.56	1.00	0.63	1.00	0.64
est for 80960SA*									1.63	1.04
ave of all 25MHz Z380=1	2.00	1.81	1.31	1.56	1.16	1.34	1.00	0.78	1.18	0.96
est for 80960SA*	1								1.56	1.20
	T				-					
* 80960SA times estimated	per intel's [Dhrystone f	igures: 197	740 for KA	12145 for	SA	1		1	

Table	04	60	MIC.	nîs
-------	----	----	------	-----

2880^m Architectural Overview

11

Address Spaces

Mode of Operations and Decoder Directives

Instruction Set

Interrupts and Traps

Reset

Z380[™] Questions & Answers 9

USER'S MANUAL

Z380™ QUESTIONS AND ANSWERS

GENERAL OVERVIEW

- **Q:** What is currently assigned as the value in the Chip ID version register?
- A: Currently the value 00H is assigned to the Z380 MPU, and other values are reserved. Note that the internal I/O address for this register is 0FFH.
- **Q:** Can data be accessed in the memory space beyond the 64K boundary in Native mode?
- A: Yes. The Z380 in Native/Word mode behaves exactly like the Z80, but has access to the entire 4 Gbytes of memory for data and 4G locations of I/O space because the upper 16 bits of all CPU registers (except the PC) are still accessable to the software using new Z380 instructions. Note that the program must reside within the first 64K of memory because the upper word of the PC is not accessable in Native mode and is always all zeros in this mode.
- Q: Z380 is binary code compatible with which processor?
- A: The Z80 and Z180. Please note that the Z380 is not binary code compatible with the Z280.
- Q: What are the two modes that Z380 can operate in?
- A: The Z380 can operate in Native mode or Extended mode. In Native mode all of the address manipulations operate on 16-bit quantities whereas in Extended mode all of the address manipulations operate on 32-bit quantities.
- **Q:** What are the specifics of the Z380 PC in Extended mode?
- A: In extended mode the PC increments across all 32 bits since the entire 4G Byte of addressing capability is in use.

- **Q:** How would one determine during a memory read, whether or not the cycle is instruction fetch or data?
- **A:** There is a Fetch signal available in the PGA version that goes active during an instruction fetch.
- **Q:** What are the Interrupt acknowledge and I/O transactions timings relative to?
- A: All of the Interrupt Acknowledge and I/O transactions are in reference to the I/O clock which is a program controlled divided-down version of the BUSCLK.
- **Q:** How can the Z380 return from Extended to Native mode of operation?
- A: Hardware Reset is the ONLY way that one can go back to Native mode.
- **Q:** Is the Z380 an Intel based architecture or Motorola based?
- A: The Z380, being compatible with the original Z80, is Intel based. Intel based means the memory organization is the "LSbyte first followed by MSbytes" whereas the Motorola architecture has "MSbyte first followed by LSbytes".

MEMORY CHIP SELECTS AND WAIT STATE GENERATORS

- **Q:** How many wait states can be inserted using the onchip Wait State Generator on Z380?
- A: Up to 14 Wait states can be inserted in each of 6 different memory areas. There is one wait state generator for each of the six Chip Select signals for addressing Lower, Upper and Midrange memory sections.
- **Q:** How would a user disable the memory chip selects and their associated wait state Generators?
- A: These can be enabled or disabled by writing a single register, the Memory Selects Master Enable Register (MSMER) at internal I/O address 00000010H.
- **Q:** How are the Chip Select signals resolved if the memory areas are programmed to overlap?
- A: The /LMCS signal takes precedence over the /UMCS signal, which in turn takes precedence over the /MCS3-/MCS0 signals.

& Silæ

RESET

- **Q:** What is the effect of the reset on the Z380?
- A: Reset will cause the address and data lines to float. All of the control lines will go to the inactive state.
- **Q:** What is the status of the memory chip select signals during Reset?
- A: They are all tri-stated, since the Address bus is tristated.
- Q: Will reset affect all of the registers on Z380?
- A: Not all of the registers are effected by Reset. CPU registers are not affected by Reset. Please refer to Product spec DC#6003-02 page 102 for the effect of Reset on Z380 CPU and related I/O registers.
- **Q:** How long do one need to have the /RESET line active for proper operation?
- A: The /RESET line must be kept Low for a minimum of 10 BUSCLK cycles. The /RESET signal does not need to be synchronized to BUSCLK.
- Q: When is the /RESET signal be internally by the CPU?
- A: The /RESET input signal may be asynchronous to BUSCLK, though it is sampled internally by the falling edge of BUSCLK. For proper initialization of the MPU V_{DD} must be within operating specification and BUSCLK must be stable for more than 10 cycles with /RESET held low.
- Q: Does the /RESET input include a Schmitt-trigger buffer?
- A: Yes. The /RESET input on Z380 includes a Schmitttrigger buffer to facilitate power-on reset generation through a simple RC network.

- **Q:** How are the devices external to the Z380 MPU that are clocked by IOCLK affected by /RESET pulse width?
- **A:** This depends on the specific device, but in general they will require a /RESET pulse width that spans several IOCLK cycles for proper initialization.
- **Q:** How many BUSCLK cycles after the deassertion of /RESET will the Z380 proceed to fetch the first instruction?
- A: The first memory read, for an instruction fetch, will start 3.5 BUSCLK cycles after the deassertion of /RESET, providing that the proper setup and hold times are met with respect to the BUSCLK falling edge.
- **Q:** When is the first IOCLK rising edge after deassertion of /RESET signal?
- A: The first rising edge of IOCLK occurs 11.5 BUSCLK cycles after the deassertion of /RESET, providing that the proper setup and hold times are met with respect to the BUSCLK falling edge. This first rising edge on IOCLK is proceeded by a minimum of 4 BUSCLK cycles where IOCLK is Low.
- **Q:** What happens if the /BREQ signal is active when /RESET is deasserted?
- A: In this case the Z380 will relinquish the bus instead of fetching the first instruction, but the IOCLK synchronization will still take place as it normally does.

REFRESH TRANSACTIONS

- **Q:** What will happen if the Z380 cannot provide refresh transactions when it relinquishes the system bus, because of a bus request via /BREQ?
- A: The number of missed refresh requests are accumulated in a counter and when the Z380 regains the system bus, the missed refresh transactions will be performed.
- **Q:** What is the maximum number of missed Refresh requests that can be counted?
- A: The maximum number of missed refresh requests that can be accumulated is 255. Any missed refresh requests over this maximum will be lost.

- **Q:** Can you disable the refresh function on the Z380?
- A: Yes. Unlike the Z80, with the Z380 you can disable the whole refresh mechanism. This is controlled by a bit in Refresh Register 2 (RFSHR2) at internal I/O address 00000015H. Note that the refresh mechanism is disabled by hardware Reset.
- **Q:** How would the user defines the interval between the Refresh requests to the External interface logic?
- A: The interval is controlled by the Refresh Register 0 (RFSHR0) at internal I/O address 00000013H. A value "n" in this register will specify request intervals to be 4n BUSCLK periods. If this register is programmed with all zeros the period will be 1024 BUSCLK periods. Note that small values of "n" will result in the refresh mechanism taking substantial portions of the bus bandwidth, and if wait states are used, a small enough value for "n" will lock up the Z380 because requests will be coming faster than they are occurring on the bus.

POWER DOWN MODE

- **Q:** What are the status of the output drivers when the CPU is in power down situation?
- **A:** When the Z380 is without the power the output drivers appear to be in a high impedance state.
- **Q:** How many ways are available to exit the Standby mode?
- A: One can exit standby mode by: /BREQ, /RESET, /NMI, or /INT0-3. Note that /BREQ can be disabled as a Standby mode exit condition with a bit in the Standby Mode Control Register (SMCR) at internal I/O address 00000016H. Also, /INT0-3 will only cause an exit from the Standby mode if interrupts were globally enabled (with the IEF1 flag) when the Standby mode was entered.
- **Q:** How could a user select the warm-up time appropriate for the crystal being used?
- A: The WM2-WM0 bits in the Standby Mode Control Register (SMCR) at internal I/O address 00000016H control the warm-up time for the crystal oscillator when exiting the Standby mode.
- **Q:** If the Standby mode option is not enabled, how does the Z380 interpret the SLP (Sleep) instruction?
- A: In this case the SLP instruction is interpreted and executed identically to the HALT instruction, stopping the Z380 from further instruction execution.
- Q: In the above case what would happen to /HALT signal?
- A: In this case the /HALT signal goes to active (Low) to indicate that the Z380 is in the Halt state.

MEMORY INTERFACING

- Q: What is the function of the /MSIZE signal?
- A: This is an input from addressed memory location indicating whether the memory is byte-wide (Low) or word-wide (High).
- **Q:** During bus cycles where /MSIZE is Low (indicating a byte-wide bus) are the /BHEN and /BLEN signals valid?
- A: If /MSIZE is Low during a transaction, /BHEN and /BLEN no longer have any meaning. For byte-wide memories, the /BHEN and /BLEN signals should be combined into a single enable, if necessary.
- **Q:** How will the data being transferred if /MSIZE is low?
- A: The addressed memory should be connected to D15-D8, and an additional memory transaction will automatically be generated to complete a word size data transfer.
- **Q:** Which portion of the data bus does the Z380 write or read with /BHEN Low?
- A: /BHEN Low indicates that D15-D8 is being used to transfer data.
- **Q:** Which portion of the data bus does the Z380 write or read with /BLEN Low?
- A: /BLEN Low indicates that D7-D0 is being used to transfer data.
- **Q:** How would the interface be designed for a byte-wide memory module?
- A: Attach the memory module to D15-D8. The memory module should assert /MSIZE Low during the memory transaction when it is accessed. The Z380 will generate an additional transaction to complete the word read or write.
- Q: Why is the data on the data bus called "byte swapped"?
- A: On the data bus, the lower significant byte of an "even aligned" word is placed on D15-D8, and the higher significant byte is placed on D7-D0.

- Q: What does an "even aligned" word mean?
- **A:** This means that the lower significant byte has an "even" address (A0=0), and its higher significant byte has the next higher address (A0=1).
- **Q:** How would the interface be designed for a word-wide memory module?
- A: Attach the "even" addressed byte of a word-wide memory to D15-D8. Attach the "Odd" addressed byte of a word-wide memory to D7-D0.

Q:	Describe the memory access to byte-wide module.
A:	

	/BHEN	/BLEN	A0	D15-D8	D7-D0
Byte Read (Even)	0	1	0	Byte	Ignore
Read (Odd)	1	0	1	Byte	Ignore
Write (Odd)	0.	1	0	Byte	Byte
Write (Even)	1	0	1	Byte	Byte

Q: Describe the memory access to a word-wide module. **A:**

(Aligned)	/BHEN	/BLEN	A0	D15-D8	D7-D0
Word Read	0	0	0	LSByte	MSByte
Write	0	0	0	LSByte	MSByte

	/BHEN	/BLEN	A0	D15-D8	D7-D0
Byte Read (Even)	0	1	0	Byte	Ignore
Read (Odd)	1	0	1	Ignore	Byte
Write (Odd)	0	1	0	Byte	Byte
Write (Even)	1	0	1	Byte	Byte

⊗ Ziloos

INTERRUPT SECTION

- **Q:** What is the state of the IEF1 and IEF2 flags after execution of the DI (Disable Interrupt) instruction for the Z380?
- A: Both IEF1 and IEF2 are set to zero by the DI instruction.
- Q: What are the specifics of /INT0 Mode 3 for the Z380?
- A: Mode 3 is similar to Mode 2 (as in the Z180 or Z80) except that a 16-bit interrupt vector is expected from the peripherals.
- **Q:** How can the user take advantage of INT0 mode 3 with 8-bit I/O devices?
- A: All of the upper 8 bits of the data bus need to be pulled either High or Low with external resistors.
- **Q:** How many clocks are required for the Interrupt sequence in Interrupt mode 2 on the Z380?
- A: With no wait states and a 1X I/O bus, the time from /INTO assertion to the start of first service routine instruction fetch (Interrupt Mode 2) is 18 clocks.

- **Q:** Is there a problem with interrupt vectors in Extended mode?
- A: In Extended mode the Interrupt Vector in Interrupt Mode 2 has the two least significant bits both "0". This can cause a problem when connecting to Z80/Z8500 peripherals if the vector includes status from those devices. This is because most of these devices modify the vector starting with the bit just after the leastsignificant bit. Thus in certain cases this bit may be returned as a "1" from the interrupting device.
- **Q:** How would the user access the Iz register (the Interrupt Register Extension)?
- A: The LD I,HL and LD HL,I instructions (in Long Word mode) will transfer 32 bits to or from the I register.

⊗ Zilæ

Appendix A	Α
	,1 ,1 V V. C V
	ب بر می در است از می می می
Maskayadan Chifi akukovy	6) 6) 6)
litatukto trada	ан неракарада – те 1 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3
zestt sere eigetz reststate reststate reststate	jana maren e Sana Jana Sana Sana Sana Sana Sana Sana Sana S

,

[©]Silæ

capability as explained in Chapter 3.

USER'S MANUAL

Four formats are used to generate the machine language bit encoding for the Z380 CPU instructions. Also, the Z380 CPU has eight Decoder Directives which work as a special escape sequence to the certain instructions, to expand its

The bit encoding of the Z380 CPU instructions are partitioned into bytes. Every instructions encoding contains one byte dedicated to specifying the type of operation to be performed; this byte is referred to as the instruction's operation code, or opcode. Besides specifying a particular operation, opcode typically include bit encoding specifying the operand addressing mode for the instruction and identifying any general purpose registers used by the instruction. Along with the opcode, instruction encoding may include bytes that contain an address, displacement, and/or immediate value used by the instruction, and special bytes called "escape codes" that determine the meaning of the opcode itself.

By themselves, one byte opcode would allow the encoding of only 256 unique instructions. Therefore, special "escape codes" that precede the opcode in the instruction encoding are used to expand the number of possible instructions. There are two types of escape codes; addressing mode and opcode. Escape codes for the Z80 original instructions are one bytes in length, and the escape codes used to expand the Z380 instructions are one or two bytes in length.

These instruction formats are differentiated by the opcode escape value used. Format 1 is for instructions without an opcode escape byte(s), Format 2 is for instructions with an opcode escape byte. Format 3 is for instructions whose opcode escape byte has the value 0CBH, and Format 4 is for instructions whose escape bytes are 0ED, followed by 0CBH.

APPENDIX A Z380[™] CPU Instruction Formats

For the opcode escape byte, the Z380 CPU uses 0DDH and 0FDH as well, which on the Z80 CPU, these are used only as an address escape byte.

In Format 2 and 4, the opcode escape byte immediately precedes the opcode byte itself.

In Format 3, a 1-byte displacement may be between the opcode escape byte and opcode itself. Opcode escape bytes are used to distinguish between two different instructions with the same opcode bytes, thereby allowing more than 256 unique instructions. For example, the 01H opcode, when alone, specifies a form of a Load Register Word instruction; when proceeded by 0CBH escape code, the opcode 01H specifies a Rotate Left Circular instruction.

Format 3 instructions with DDIR Immediate data Decoder Directives, 1 to 3 bytes of displacement is between the opcode escape byte and opcode itself.

Format 4 instructions are proceeded by 0EDH, 0CBH, and a opcode. Optionally, with immediate word field follows.

Addressing mode escape codes are used to determine the type of encoding for the addressing mode field within an instruction's opcode, and can be used in instructions with and without opcode escape value. An addressing mode escape byte can have the value of ODDH or OFDH. The addressing mode escape byte, if present, is always the first byte of the instruction's machine code, and is immediately followed by either the opcode (Format 1), or the opcode escape byte (Format 2 and 3). For example, the 46H opcode, when alone, specifies a Load B register from memory location pointed by (HL) register; when proceeded by the ODDH escape byte, the opcode 46H specifies a Load B register from the memory location pointed by (IX+d). The four instruction formats are shown in Tables A-1 through A-4. Within each format, several different configurations are possible, depending on whether the instruction involves addressing mode escape bytes, addresses, displacements, or immediate data. In Table A-1 through A-4,

the symbol "A.esc" is used to indicate the presence of an addressing mode escape byte, "O.esc" is used to indicate the presence of an opcode escape byte, "disp." is an abbreviation for displacement and "addr." is an abbreviation for address.

Table A-1. Format 1 Instructions Encodings

	Instructio	on Format	Assembly	Hexadecimal		
A.esc A.esc A.esc	Opcode Opcode Opcode Opcode Opcode Opcode Opcode	2-byte Address 1-byte Displacement Immediate 2-byte Address 1-byte Displacement Immediate	LD A,C LD A,(addr) DJNZ addr LD E,n LD IX,(addr) LD A, (IX+d) LD IX,nn	79 3A addr (L) addr (H) 10 disp 1E n DD 2A addr (L) addr (H) DD 7E disp DD 21 n(L) n(H)		
A.esc	Opcode	1-byte Displacement Immediate	LD (IY+d),n	FD 36 d n		

Note: "A.esc" is an addressing mode escape byte, and either 0DDH or 0FDH.

Table A-2. Format 2 Instructions Encodings

	Instructio	on Format	Assembly	Hexadecimal
	Opcode		LD A,C	79
O.esc	Opcode	Immediate (1 byte)	TST n	ED 64 n
O.esc	Opcode	Immediate (2 bytes)	LD (BC),nn	ED 06 n(L) n(H)
O.esc	Opcode	Address (2 bytes)	LD BC, (addr)	ED 4B addr (L) addr (H)
O.esc	Opcode	Displacement (1 byte)	CALR e	ED CD e
O.esc	Opcode	Displacement (2 bytes)	JR ee	DD 18 d(L) d(H)
O.esc	Opcode	Displacement (3 bytes)	JR eee	FD 18 d(L) d(M) d(H)

Note: "O.esc" is an opcode escape byte, and either 0DDH, 0EDH or 0FDH.

Table A-3. Format 3 Instruction Encoding

Press				
	CB	Opcode	RLC (HL)	CB 06
A.esc	CB	1 Byte Displacement Opcode	RLC (IX+d)	DD CB d 06

Note: "A.esc" is an addressing mode escape byte, and either 0DDH or 0FDH.

Table A-4. Format 4 Instruction Encoding

ED	CB	Opcode	RRCW BC	ED CB 08
	00	opcoue		
ED	CB	Opcode Immediate	MULTW nn	ED CB 97 n(L) n(H)
LU	00	Opcode ininediale		

	. 1
	у ма 3 ма 2 ма
Appendix B	В
lyonna. The second second second second second second second second second second second second second second s	
Lygg-sealtr fr	2 2 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4
All Manager and All Mana	
	a constant constant constant demonstration d
signate data a secondar a secondar a secondar a secondar a secondar a secondar a secondar a secondar a secondar Secondar a secondar a s	
ilioneteuro duide	
zeeffft seies sigeffi sevintinsernist stohtdit S	

.

USER'S MANUAL

APPENDIX B Z380[™] INSTRUCTIONS IN ALPHABETIC ORDER

This Appendix contains a quick reference guide when programming.

It has the Z380 instructions sorted by alphabetic order.

The column "Mode" indicates whether the instruction is affected by DDIR immediate Decoder Directives, Extended mode or Native mode of operation, and Word or Long Word

mode of operation; "I" means the instruction can be used with DDIR IM to expand its immediate constant, "X" means that the operation of the instruction is affected by the XM status bit, and "L" means that the instruction is affected by LW status bit, or can be used with DDIR LW or DDIR W. The Native/Extended modes, Word/Long Word modes and Decoder Directives are discussed in Chapter 3 in this manual.

Source	Code N	Mode	Obje	ct Code		Source	Code	Mode	Obje	ct Code	
ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC	A,(HL) A,(IX+12H) A,(IY+12H) A,A A,B A,C A,D A,E A,L A,IXL A,IXL A,IXL A,IXL A,IXU A,IYL A,IYU A,L HL,BC HL,DE HL,HL HL,SP (IX+12H) (IY+12H) 1234H BC DE HL HL,(IX+12H) HL,(IY+12H) HL,(IY+12H) HL,1234H HL,BC HL,DE HL,HL HL,IX A,(IX+12H) A,(IX+12H) A,12H A,A B A,C A,B A,C A,B A,C A,B A,C A,B A,C A,B	Mode 	8E DD FD 8F 88 98 A 88 CD DD FD DD DD DD DD DD DD DD DD DD DD DD	8E 12 8E 12 8D 8C 8D 8F 8D 8F 8D 8F 8F 8F 8F 8F 8F 8F 8F 8F 86 12 12 12	12	ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD	HL,SP IX,BC IX,DE IX,IX IX,SP IY,DE IY,IY IY,SP SP,1234H (IX+12H) (IY+12H) 1234H BC DE HL HL,(IX+12H) HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,1234H HL,121 HL,121 IX IY (IX+12H) (IX+12H) 12H A A,(IX+12H) 12H A,(IX+12H) 12H A,(IX+12H) A,12H A,A A,B A,C A,D A,E A,H A,IXL A,IYU A,IYU) I	39 DD DD D F F F E D F E E E D F E E E E D F E E E D F D F	Ct Code 09 19 29 39 09 19 29 39 09 19 29 39 82 34 C6 12 86 37 C6 12 86 87 84	12 12 12
		I X X X		85 84 85 84 C6 34	12						

Source	Code	Mode	Obje	ct Code		Source	Code	Mode	Objec	t Code	
AND AND ANDW ANDW ANDW ANDW ANDW ANDW	IYU L (IX+12H) (IY+12H) 1234H BC DE HL		FD A5 DD FD ED ED ED ED	A4 E6 12 E6 12 A6 34 A4 A5 A7	12	BIT BIT BIT BIT BIT BIT BIT	3,D 3,E 3,H 3,L 4,(HL) 4,(IX+12H) 4,(IY+12H) 4,A	1	CB CB CB CB CB DD FD CB	5A 5B 5C 5D 66 CB 12 66 CB 12 66 67	
ANDW ANDW ANDW ANDW ANDW ANDW ANDW	HL,(IX+12H HL,(IY+12H HL,1234H HL,BC HL,DE HL,HL HL,HL HL,IX		DD FD ED ED ED ED DD FD	E6 12 E6 12 A6 34 A4 A5 A7 A7 A7	12	BIT BIT BIT BIT BIT BIT BIT	4,B 4,C 4,D 4,E 4,H 4,L 5,(HL)	l	CB CB CB CB CB CB CB CB DD	60 61 62 63 64 65 65 6E CB 12 6E	
ANDW ANDW BIT BIT BIT BIT BIT	HL,IY IX IY 0,(HL) 0,(IX+12H) 0,(IY+12H) 0,A 0,B	 	DD FD CB DD FD CB CB	A7 A7 46 CB 12 CB 12 47 40	46 46	BIT BIT BIT BIT BIT BIT	5,(IX+12H) 5,(IY+12H) 5,A 5,B 5,C 5,D 5,E 5,H	1	FD CB CB CB CB CB CB	CB 12 6E 6F 68 69 64 6A 68 6C 65	
BIT BIT BIT BIT BIT BIT BIT BIT	0,C 0,D 0,E 0,H 0,L 1,(HL) 1,(IX+12H) 1,(IY+12H) 1,A	1	CB CB CB CB CB CB DD FD CB	41 42 43 44 45 4E CB 12 CB 12 4F	4E 4E	BIT BIT BIT BIT BIT BIT BIT BIT	5,L 6,(HL) 6,(IX+12H) 6,A 6,B 6,C 6,D 6,E	1	CB CB DD FD CB CB CB CB CB	6D 76 CB 12 76 CB 12 76 77 70 71 72 73	
BIT BIT BIT BIT BIT BIT BIT BIT	1,B 1,C 1,D 1,E 1,H 1,L 2,(HL) 2,(IX+12H) 2,(IY+12H) 2,A	1	CB CB CB CB CB CB CB CB DD FD CB	48 49 4A 4B 4C 4D 56 CB 12 CB 12 57	56 56	BIT BIT BIT BIT BIT BIT BIT BIT	6,H 6,L 7,(HL) 7,(IX+12H) 7,(IY+12H) 7,A 7,B 7,C 7,D 7,E	1	CB CB DD FD CB CB CB CB CB	74 75 7E CB 12 7E CB 12 7E 7F 78 79 7A 7B	
BIT BIT BIT BIT BIT BIT BIT BIT BIT	2,B 2,C 2,D 2,E 2,H 2,L 3,(HL) 3,(IX+12H) 3,(IY+12H) 3,A 3,B 3,C	1	CB CB CB CB CB CB CB CD FD CB CB CB	50 51 52 53 54 55 55 CB 12 CB 12 CB 12 5F 58 59		BIT BIT CALL CALL CALL CALL CALL CALL CALL CAL	7,H 7,L 1234H C,1234H M,1234H NC,1234H NZ,1234H P,1234H PE,1234H V, 1234H PO,1234H PO,1234H	X X X X X X X X	CB CD CD CC CD CC CC C4 F4 EC E4 E4	7C 7D CF 34 12 34 12	

⊗ Ziloos

B

Source Code	Mode	Object Code	Source Code	Mode	Object Code
DEC IY DEC IYL DEC IYU DEC L DEC SP DECW BC DECW DE DECW HL DECW IX DECW IY DECW SP DI 1FH DI DIVUW (IX+12H)	X X X X X X X X X X	Pbject Code FD 2B FD 2D FD 2D FD 25 2D - 3B - 0B - 3B - 0B - 2D 2B 2B - DD 2B FD 2B DD 2B FD 2B 3B - DD CB PD 2B FD 2B SB - DD CB PD CB ED CB <	EX BC,BC' EX BC,DE EX BC,IX EX BC,IX EX BC,IY EX C,C' EX D,D' EX DE,DE' EX DE,IX EX DE,IX EX DE,IX EX DE,IY EX E,E' EX H,I' EX IX,IY' EX IX,IY'		Object Code ED CB 30 ED 05 - ED 00 - ED 08 - ED 08 - ED 08 - ED 08 - ED 31 - CB 32 - ED CB 31 ED CB 31 ED 13 - ED 13 - ED 33 - ED 33 - ED 28 - ED 28 - ED 65 - ED 65 - ED 75 - ED 75 - ED 76 - FD 12 - ED 46 - ED 50 - ED 48

Source Code	Mode	Object Code	Source Code	Mode	Object Code
INC B		04	JR C,12H	X	38 12
INC BC	Х	03	JR NC,123456H	X	FD 30 56 34 12
INC C INC D		0C 14	JR NC,1234H JR NC,12H	X X	DD 30 34 12 30 12
INC D INC DE	х	13	JR NZ,123456H	x	FD 20 56 34 12
INC E	~	10 1C	JR NZ,1234501	X	DD 20 34 12
INC H		24	JR NZ,12H	x	20 12
INC HL	Х	23	JR NZ,12H	X	20 12
INC IX	X	DD 23	JR Z,123456H	Х	FD 28 56 34 12
INC IXL		DD 2C	JR Z,1234H	Х	DD 28 34 12
INC IXU		DD 24	JR Z,12H	Х	28 12
INC IY	Х	FD 23	LD (1234H),A	I	32 34 12
INC IYL		FD 2C	LD (1234H),BC		ED 43 34 12
INC IYU	L	FD 24	LD (1234H),DE		ED 53 34 12 22 34 12
INC INC SP	X	2C 33	LD (1234H),HL LD (1234H),HL	L L	22 34 12 ED 63 34 12
INCW BC	x	03	LD (1234H),HL LD (1234H),IX		DD 22 34 12
INCW DE	X	13	LD (1234H),IX		FD 22 34 12
INCW HL	X	23	LD (1234H),SP	I L	ED 73 34 12
INCW IX	Х	DD 23	LD (BC),A		02
INCW IY	Х	FD 23	LD (BC),BC	L	FD 0C
INCW SP	Х	33	LD (BC),DE	L	FD 1C
IND		ED AA	LD (BC),HL	L	FD 3C
INDR		ED BA	LD (BC),IX	L	DD 01
INDRW		ED FA	LD (BC),IY	L	FD 01
		ED EA	LD (DE),A		12 FD 0D
INI INIR		ED A2 ED B2	LD (DE),BC LD (DE),DE	L	FD 1D
INIRW		ED F2	LD (DE), HL	L	FD 3D
INIW		ED E2	LD (DE),IX	L	DD 11
INW BC,(C)		DD 40	LD (DE),IY	Ĺ	FD 11
INW DE,(C)		DD 50	LD (HL),12H		36 12
INW HL,(C)		DD 78	LD (HL),A		77
JP (HL)	Х	E9	LD (HL),B		70
JP (IX)	Х	DD E9	LD (HL),BC	L	FD OF
JP (IY)	X	FD E9	LD (HL),C		71
JP 1234H	IX	C3 34 12	LD (HL),D		72 FD 1F
JP C,1234H JP M,1234H		DA 34 12 FA 34 12	LD (HL),DE LD (HL),E	L	FD 1F 73
JP NC,1234H	I X	D2 34 12	LD (HL),H		74
JP NZ,1234H	i X	C2 34 12	LD (HL),HL	L	FD 3F
JP NS,1234H	i X	F2 34 12	LD (HL),IX	Ľ	DD 31
JP NV,1234H	ΙX	E2 34 12	LD (HL),IY	L	FD 31
JP P,1234H	I X	F2 34 12	LD (HL),L		75
JP PE,1234H	ΙX	EA 34 12	LD (IX+12H),34H	I	DD 36 12 34
JP PO,1234H	IX	E2 34 12	LD (IX+12H),A	1	DD 77 12
JP S,1234H	IX	FA 34 12	LD (IX+12H),B		DD 70 12
JP V,1234H	IX	E2 34 12	LD (IX+12H),BC		DD CB 12 0B
JP Z,1234H	IX	CA 34 12	LD (IX+12H),C		DD 71 12
JR 123456H JR 1234H	X	FD 18 56 34 12	LD (IX+12H),D		DD 72 12 DD 73 12
JR 1234H JR 12H	X X	DD 18 34 12 18 12	LD (IX+12H),E LD (IX+12H),DE	I I L	DD 73 12 DD CB 12 1B
JR C,123456H	x	FD 38 56 34 12	LD (IX+12H),DE	· -	DD 74 12
JR C,1234H	X	DD 38 34 12	LD (IX+12H),HL	i L	DD CB 12 3B
	~~			· •	

Sou	rce Code	Mode	Object Code	Sou	Irce Code	Mode		Object C	ode	
LD LD LD LD LD LD LD LD LD	(IX+12H),IY (IX+12H),L (IY+12H),34H (IY+12H),A (IY+12H),B (IY+12H),BC (IY+12H),C (IY+12H),D (IY+12H),DE		DD CB 12 2B DD 75 12 FD 36 34 12 FD 77 12 FD 70 12 FD CB 12 0B FD 71 12 FD 72 12 FD CB 12 1B		BC,(1234H) BC,(BC) BC,(DE) BC,(HL) BC,(IX+12H) BC,(IY+12H) BC,(SP+12H) BC,1234H BC,BC			ED 4B DD 0C DD 0D DD 0F DD CB FD CB DD CB 01 34 ED 02	34 12 12 12 12	12 03 03 01
LD LD LD LD LD	(IY+12H),E (IY+12H),H (IY+12H),HL (IY+12H),IX (IY+12H),IX (IY+12H),L	 L L L	FD 73 12 FD 74 12 FD CB 12 3B FD CB 12 2B FD 75 12	LD LD LD LD LD	BC,DE BC,HL BC,IX BC,IY C,(HL)			DD 02 FD 02 DD 0B FD 0B 4E		
LD LD LD LD LD LD LD	(SP+12H),BC (SP+12H),DE (SP+12H),HL (SP+12H),HL (SP+12H),IX (SP+12H),IX (SP+12H),IY A,(1234H) A,(BC) A,(DE)	L L L L	DD CB 12 09 DD CB 12 19 DD CB 12 39 DD CB 12 29 FD CB 12 29 FD CB 12 29 3A 34 12 0A 1A		C,(IX+12H) C,(IY+12H) C,12H C,A C,B C,C C,D C,E	 		DD 4E FD 4E 0E 12 4F 48 49 4A 4B	12 12	
	A,(HL) A,(IX+12H) A,(IY+12H) A,12H A,A A,B A,O	 	7E DD 7E 12 FD 7E 12 3E 12 7F 78 78		C,H C,IXL C,IXU C,IYL C,IYU C,L			4C DD 4D DD 4C FD 4D FD 4C 4D		
	A,C A,D A,E A,H A,IXL A,IXU A,IXU A,IYL A,IYU A,L A,R B,(HL) B,(IX+12H) B,(IY+12H) B,12U	1	79 7A 7B 7C ED 57 DD 7D DD 7C FD 7D FD 7C FD 7C 7D ED 5F 46 DD 46 12 FD 46 12 FD 46 12 60 12		D,(HL) D,(IX+12H) D,(IY+12H) D,12H D,A D,B D,C D,D D,E D,H D,IXL D,IXL D,IXU D,IYL D,IYU			56 DD 56 FD 56 16 12 57 50 51 52 53 54 DD 55 DD 54 FD 55 FD 54 55	12 12	
	B,B B,C		47 40 41		DE,(BC) DE,(DE)	I	L L L	ED 5B DD 1C DD 1D	34	12
LD LD LD LD LD LD LD LD	B,D B,E B,H B,IXL B,IXU B,IYL B,IYU B,L		42 43 44 DD 45 DD 44 FD 45 FD 44 45		DE,(HL) DE,(IX+12H) DE,(IY+12H) DE,(SP+12H) DE,1234H DE,BC DE,BC DE,DE DE,HL			DD 1F DD CB FD CB DD CB 11 34 ED 12 DD 12 FD 12	12 12 12 12	13 13 11

[®] Zilos

Sou	rce Code	Mode	Object Code	Source Code	Mode	Object Code
	DE,IX DE,IY E,(IX+12H) E,(IX+12H) E,(IY+12H) E,12H E,A E,B E,C E,D E,C E,D E,E E,H E,L E,IXL E,IYU E,IYU E,IYL E,IYU	L L	DD 1B FD 1B 5E DD 5E 12 FD 5E 12 1E 12 5F 58 59 5A 59 5A 59 5A 50 DD 5D FD 5C DD 5D FD 5D FD 5D FD 5D	LD IX,HL LD IX,IY LD IXL,12H LD IXL,A LD IXL,B LD IXL,C LD IXL,C LD IXL,C LD IXL,E LD IXL,IXL LD IXL,IXU LD IXU,12H LD IXU,A LD IXU,A LD IXU,B LD IXU,C LD IXU,E LD IXU,IXL	L	DD 37 DD 27 DD 2E 12 DD 6F DD 68 DD 69 DD 6A DD 6B DD 6D DD 6C DD 6C DD 26 12 DD 67 DD 60 DD 61 DD 62 DD 63 DD 65
000000000000000000000000000000000000000	H,(HL) H,(IX+12H) H,(IY+12H) H,12H H,A H,B H,C H,D H,E H,H H,L (1234H) HL,(1234H) HL,(1234H) HL,(1234H) HL,(BC) HL,(HL) HL,(IX+12H) HL,(IX+12H) HL,(IX+12H) HL,(IX+12H) HL,(ISP+12H) HL,(SP+12H) HL,1234H HL,BC HL,DE HL,HL HL,I HL,IX		66 DD 66 DD 66 FD 66 12 26 26 12 67 60 61 62 63 64 65 2A 2A 34 12 DD 3C DD 3D DD 3F `DD CB 12 33 DD CB 12 31 21 34 12 DD 32 2D DD 32 2D DD 32 2D DD 38 38	LD IXU,IXU LD IXU,IXU LD IY,(1234H) LD IY,(BC) LD IY,(DE) LD IY,(HL) LD IY,(IX+12H) LD IY,(SP+12H) LD IY,SP+12H) LD IY,BC LD IY,BC LD IY,BC LD IY,HL LD IY,L2H LD IYL,12H LD IYL,A LD IYL,B LD IYL,C LD IYL,E LD IYL,E LD IYL,IYL LD IYL,IYL LD IYL,12H LD IYL,2H LD IYL,2H LD IYL,2H LD IYL,2H LD IYL,12H LD IYL,2H LD IYL,2H LD IYL,2H LD IYL,2H LD IYL,2H LD IYL,2H LD IYL,2H LD IYU,2 LD		DD 64 FD 2A 34 12 FD 03
	HL,IX HL,IX I,A I,HL IX,(1234H) IX,(BC) IX,(DE) IX,(HL) IX,(IY+12H) IX,(SP+12H) IX,1234H IX,BC IX,DE		FD 3B ED 47 DD 47 DD 2A 34 12 DD 03 DD 13 DD 33 FD CB 12 23 DD CB 12 21 DD 21 34 12 DD 07 DD 17	LD IYU,E LD IYU,IYL LD IYU,IYU LD L,(HL) LD L,(IX+12H) LD L,(IY+12H) LD L,12H LD L,12H LD L,A LD L,B LD L,C LD L,C	1	FD 63 FD 65 FD 64 6E DD 6E 12 FD 6E 12 2E 12 6F 68 69 6A 6B

B

Source C	ode N	lode	Object Code		Source C	ode	Mode	Object (Code	1	
LD LD LD LD LD LD	L,H L,L R,A SP,(1234H) SP,1234H SP,HL		6C 6D ED 4F ED 7B 34 31 34 12 F9	12	MULTW MULTW MULTW MULTW MULTW MULTW	(IX+12H) (IY+12H) 1234H BC DE HL	1	DD CB FD CB ED CB ED CB ED CB ED CB	12 12 97 90 91 93	92 92 34	12
LD LD LDCTL LDCTL LDCTL LDCTL LDCTL LDCTL LDCTL LDCTL	SP,IX SP,IY A,DSR A,XSR A,YSR DSR,01H DSR,A HL,SR SR,01H SR,A SR,01H	L	DD F9 FD F9 ED D0 DD D0 FD D0 ED DA 01 ED D8 ED C0 DD CA 01 DD C8		MULTW MULTW MULTW MULTW MULTW MULTW MULTW MULTW MULTW	HL,(IX+12H HL,(IY+12H HL,1234H HL,BC HL,DE HL,HL HL,IX HL,IY IX IY		DD CB FD CB ED CB ED CB ED CB ED CB ED CB ED CB ED CB ED CB ED CB ED CB	12 12 97 90 91 93 94 95 94 95	92 92 34	12
LDCTL LDCTL LDCTL LDCTL LDCTL LDCTL LDD LDDR	SR,HL XSR,01H XSR,A YSR,01H YSR,A	L	ED C8 DD DA 01 DD D8 FD DA 01 FD D8 ED A8 ED B8		NEG NEGW NEGW NOP OR OR	A HL (HL) (IX+12H)	1	ED 44 ED 44 ED 54 ED 54 00 B6 DD B6	12		
LDDRW LDDW LDI LDIR LDIRW LDIW	(50) 400 411		ED F8 ED E8 ED A0 ED B0 ED F0 ED E0	10	OR OR OR OR OR	(IY+12H) 12H A A,(HL) A,(IX+12H) A,(IY+12H)		FD B6 F6 12 B7 B6 DD B6 FD B6	12 12 12		
LDW LDW LDW LDW MLT MLT MLT MLT MLT MTEST	(BC),1234H (DE),1234H (HL),1234H HL,I I,HL BC DE HL SP	ΙL	ED 06 34 ED 16 34 ED 36 34 DD 57 DD 47 ED 4C ED 5C ED 6C ED 7C DD CF	12 12 12	OR OR OR OR OR OR OR OR OR OR	A,12H A,A A,B A,C A,D A,E A,H A,IXL A,IXL A,IXU A,IYL		F6 12 B7 B0 B1 B2 B3 B4 DD B5 DD B4 FD B5			
MULTUW MULTUW MULTUW MULTUW MULTUW MULTUW	(IY+12H) 1234H BC DE		DD CB 12 FD CB 12 ED CB 9F ED CB 98 ED CB 99 ED CB 99 ED CB 98 DD CB 12 FD CB 12 ED CB 9F	9A 9A 9A 9A	OR OR OR OR OR OR OR OR	A,IYU A,L B C D E H IXL IXU		FD B4 B5 B0 B1 B2 B3 B4 DD B5 DD B4			
MULTUW MULTUW MULTUW MULTUW MULTUW MULTUW	HL,BC HL,DE HL,HL HL,IX HL,IY IX		ED CB 98 ED CB 99 ED CB 9B ED CB 9C ED CB 9C ED CB 9C ED CB 9C ED CB 9D ED CB 9C ED CB 9C ED CB 9C		OR OR ORW ORW ORW ORW	IYL IYU L (IX+12H) (IY+12H) 1234H BC	1	FD B5 FD B4 B5 DD F6 FD F6 ED B6 ED B4	12 12 34	12	

⊗ Zilos

Source	Code	Mode	e Object Code	Source Code	Mode	Object Code
ORW ORW ORW ORW ORW ORW ORW	DE HL HL,(IX+12H) HL,(IY+12H) HL,1234H HL,BC HL,DE HL,DE HL,HL	 	ED B5 ED B7 DD F6 12 FD F6 12 ED B6 34 12 ED B4 ED B5 ED B7	PUSH AF PUSH BC PUSH DE PUSH HL PUSH IX PUSH IY PUSH SR RES 0,(HL)		F5 C5 D5 E5 DD E5 FD E5 ED C5 CB 86
ORW ORW ORW OTDM OTDMR OTDR OTDRW OTIM	HL,IX HL,IY IX IY		DD B7 FD B7 DD B7 FD 87 ED 88 ED 98 ED 88 ED 88 ED FB ED 83	RES 0,(IX+12H) RES 0,(IY+12H) RES 0,A RES 0,B RES 0,C RES 0,D RES 0,E RES 0,H RES 0,L	1	DD CB 12 86 FD CB 12 86 CB 87 CB 80 CB 81 CB 82 CB 83 CB 84 CB 85
OTIMR OTIR OTIRW OUT OUT OUT OUT OUT	(12H),A (C),12H (C),A (C),B (C),C (C),D		ED 93 ED B3 ED F3 D3 12 ED 71 12 ED 79 ED 41 ED 49 ED 51	RES 1,(HL) RES 1,(IX+12H) RES 1,(IY+12H) RES 1,A RES 1,B RES 1,C RES 1,D RES 1,E RES 1,H RES 1,H		CB 8E DD CB 12 8E FD CB 12 8E CB 8F CB 88 CB 89 CB 8A CB 8B CB 8C CB 8C
OUT OUT OUT OUT0 OUT0 OUT0 OUT0 OUT0 OUT	(C),E (C),H (C),L (12H),A (12H),B (12H),C (12H),C (12H),E (12H),E (12H),H (12H),L		ED 59 ED 61 ED 69 ED 39 12 ED 01 12 ED 09 12 ED 11 12 ED 19 12 ED 21 12 ED 29 12	RES 1,L RES 2,(HL) RES 2,(IX+12H) RES 2,(IY+12H) RES 2,A RES 2,B RES 2,C RES 2,D RES 2,E RES 2,H	1	CB 8D CB 96 DD CB 12 96 FD CB 12 96 CB 97 CB 90 CB 91 CB 92 CB 93 CB 94
OUTA OUTAW OUTD OUTDW OUTI OUTIW OUTW OUTW	(1234H),A (1234H),HL (C),1234H (C),BC (C),DE		ED D3 34 12 FD D3 34 12 ED AB ED EB ED A3 ED E3 FD 79 34 12 DD 41 DD 51	RES 2,L RES 3,(HL) RES 3,(IX+12H) RES 3,A RES 3,A RES 3,B RES 3,C RES 3,D RES 3,E	l l	CB 95 CB 9E DD CB 12 9E FD CB 12 9E CB 9F CB 98 CB 99 CB 9A CB 9B
OUTW POP POP POP POP POP POP PUSH	(C),HL AF BC DE HL IX IY SR 1234H	L L L L L L	DD 79 F1 C1 D1 E1 DD E1 FD E1 ED C1 FD F5 34 12	RES 3,H RES 3,L RES 4,(HL) RES 4,(IX+12H) RES 4,A RES 4,A RES 4,A RES 4,C RES 4,D		CB 9C CB 9D CB A6 DD CB 12 A6 FD CB 12 A6 CB A7 CB A0 CB A1 CB A2

B

Source Code	Mode	Object Code	Source Code	Mode	Object Code
RES 4,E RES 4,H RES 4,L RES 5,(HL) RES 5,(IX+12H) RES 5,(IY+12H) RES 5,A RES 5,B RES 5,C		CB A3 CB A4 CB A5 CB AE DD CB 12 AE FD CB 12 AE CB AF CB A8 CB A9	RL A RL B RL C RL D RL E RL H RL H RL L RLA RLA RLC (HL)		CB 17 CB 10 CB 11 CB 12 CB 13 CB 13 CB 14 CB 15 17 CB 06
RES 5,D RES 5,E RES 5,H RES 5,L RES 6,(HL) RES 6,(IX+12H) RES 6,(IY+12H) RES 6,A RES 6,B		CB AA CB AB CB AC CB AC CB B6 DD CB 12 B6 FD CB 12 B6 CB B7 CB B0	RLC(IX+12H)RLC(IY+12H)RLCARLCBRLCCRLCDRLCERLCHRLCL	I I	DD CB 12 06 FD CB 12 06 CB 07 CB 00 CB 01 CB 02 CB 03 CB 04 CB 05
RES 6,C RES 6,D RES 6,E RES 6,L RES 7,(HL) RES 7,(IX+12H) RES 7,A RES 7,B		CB B1 CB B2 CB B3 CB B4 CB B5 CB BE DD CB 12 BE FD CB 12 BE CB BF CB B8	RLCA RLCW (HL) RLCW (IX+12H) RLCW (IY+12H) RLCW BC RLCW DE RLCW HL RLCW IX RLCW IY RLD	1	07 ED CB 02 DD CB 12 02 FD CB 12 02 ED CB 00 ED CB 01 ED CB 03 ED CB 04 ED CB 05 ED 6F
RES 7,C RES 7,D RES 7,E RES 7,H RES 7,L RESC LCK RESC LW reserved RET C	×	CB B9 CB BA CB BB CB BC CB BD ED FF DD FF ED 55 D8	RLW (HL) RLW (IX+12H) RLW (IY+12H) RLW BC RLW DE RLW HL RLW IX RLW IX RLW IY RR (HL)	1	ED CB 12 DD CB 12 12 FD CB 12 12 ED CB 10 ED CB 11 ED CB 13 ED CB 14 ED CB 15 CB 1E
RET M RET NC RET NS RET NV RET NZ RET P RET PE RET PO RET S	× × × × × × × ×	F8 D0 F0 E0 C0 F0 E8 E0 F8	RR (IX+12H) RR (IY+12H) RR A RR B RR C RR D RR D RR E RR H RR H RR L	I	DD CB 12 1E FD CB 12 1E CB 1F CB 18 CB 19 CB 1A CB 1B CB 1C CB 1D
RET V RET Z RET RETI RETN RL (HL) RL (IX+12H) RL (IY+12H)		E8 C8 C9 ED 4D ED 45 CB 16 DD CB 12 16 FD CB 12 16	RRA RRC (HL) RRC (IX+12H) RRC (IY+12H) RRC A RRC B RRC B RRC C RRC D RRC D RRC E	 	1F CB 0E DD CB 12 0E FD CB 12 0E CB 0F CB 08 CB 09 CB 0A CB 0B

Source Code	Mode	Object Code	Source Code Mod	le Object Code
RRC H RRC L RRCA RRCW (HL) RRCW (IX+12H) RRCW (IY+12H) RRCW BC RRCW DE RRCW DE RRCW HL RRCW IX RRCW IY	1	CB OC CB OD OF ED ED CB 0A DD CB 12 0A FD CB 12 0A ED CB 09 ED CB 0B ED CB 0C ED CB 0C ED CB 0C ED CB 0D	SBCW HL,(IY+12H) SBCW HL,1234H SBCW HL,BC SBCW HL,DE SBCW HL,HL SBCW HL,IX SBCW HL,IX SBCW IX SBCW IX SBCW IY SCF SET 0,(HL)	FD DE 12 ED 9E 34 12 ED 9C ED 9D ED 9F DD 9F FD 9F DD 9F FD 9F 37 CB C6
RRU (HL) RRW (HL) RRW (IX+12H) RRW (IY+12H) RRW BC RRW DE RRW HL RRW HL RRW IX RRW IY RST 00H	I I X	ED CB 0D ED 67 ED CB 1A DD CB 12 1A FD CB 12 1A ED CB 18 ED CB 19 ED CB 18 ED CB 10 ED CB 10 ED CB 10 CB 10 CC ED CB 10 CC ED CB 10 CC ED CB 10 CC ED CB 10 CC ED CB 10 CC ED CC ED CB 10 CC ED CC ED	SET 0,(IX+12H) SET 0,(IX+12H) SET 0,(IY+12H) SET 0,A SET 0,B SET 0,C SET 0,C SET 0,C SET 0,E SET 0,H SET 0,L SET 1,(HL)	CB C6 FD CB 12 C6 FD CB 12 C6 CB C7 CB C0 CB C1 CB C2 CB C3 CB C4 CB C5 CB CE
RST 08H RST 10H RST 18H RST 20H RST 28H RST 30H RST 38H SBC A,(IX+12H)	X X X X X X X	CF D7 DF E7 EF F7 FF 9E DD 9E 12	SET 1,(IX+12H) I SET 1,(IY+12H) I SET 1,A SET 1,B SET 1,C SET 1,D SET 1,E SET 1,H SET 1,L	DD CB 12 CE FD CB 12 CE CB CF CB C3 CB C9 CB CA CB CB CB CC CB CC CB CD
SBC A,(IY+12H) SBC A,12H SBC A,A SBC A,B SBC A,C SBC A,C SBC A,D SBC A,E SBC A,H SBC A,H SBC A,IXL SBC A,IXU SBC A,IYL	I	FD 9E 12 DE 12 9F 98 99 9A 9B 9C DD 9D DD 9C FD 9D	SET 2,(HL) SET 2,(IX+12H) I SET 2,(IY+12H) I SET 2,A SET 2,B SET 2,C SET 2,C SET 2,D SET 2,E SET 2,H SET 2,L SET 3,(HL)	CB D6 DD CB 12 D6 FD CB 12 D6 CB D7 CB D0 CB D1 CB D2 CB D3 CB D4 CB D5 CB DE
SBC A,IYU SBC A,L SBC HL,BC SBC HL,DE SBC HL,HL SBC HL,SP SBCW (IX+12H) SBCW (IY+12H) SBCW 1234H SBCW BC	1	FD 9C 9D ED 42 ED 52 ED 62 ED 72 DD DE 12 FD DE 12 ED 9E 34 12 ED 9C	SET 3,(IX+12H) I SET 3,(IY+12H) I SET 3,A SET 3,B SET 3,C SET 3,D SET 3,E SET 3,H SET 3,L SET 4,(HL)	DD CB 12 DE FD CB 12 DE CB DF CB D8 CB D9 - - CB DA - - CB DB - - CB DC - - CB DD - - CB E6 - -
SBCW DE SBCW HL SBCW HL,(IX+12H)	ED 9D ED 9F DD DE 12	SET 4,(IX+12H) I SET 4,(IY+12H) I SET 4,A	DD CB 12 E6 FD CB 12 E6 CB E7

& Silas

B

Source Code	Mode	Object Code	Source Code M	lode Object Code
SET 4,B SET 4,C SET 4,D SET 4,E SET 4,H SET 4,L SET 5,(HL) SET 5,(IX+12) SET 5,(IY+12) SET 5,A		CB E0 CB E1 CB E2 CB E3 CB E4 CB E5 CB EE DD CB 12 EE FD CB 12 EE CB EF	SLAW HL SLAW IX SLAW IY SLP SRA (HL) SRA (IX+12H) I SRA (IY+12H) I SRA A SRA B SRA B SRA C	ED CB 23 ED CB 24 ED CB 25 ED 76 CB 2E DD CB 12 2E FD CB 12 2E CB 2F CB 28 CB 29
SET 5,B SET 5,C SET 5,D SET 5,E SET 5,H SET 5,L SET 6,(HL) SET 6,(IX+12I) SET 6,(IY+12I) SET 6,A		CB E8 CB E9 CB EA CB EB CB EC CB ED CB F6 DD CB 12 F6 FD CB 12 F6 CB F7 CB F0	SRA D SRA E SRA H SRA L SRAW (HL) SRAW (IX+12H) I SRAW (IY+12H) I SRAW BC SRAW DE SRAW DE SRAW HL SRAW IX	CB 2A CB 2B CB 2C CB 2D ED CB 2A DD CB 12 2A FD CB 12 2A ED CB 28 ED CB 29 ED CB 2B ED CB 22 ED CB 2A ED CB 2C ED CB 2A ED CB 2B ED CB 2C ED
SET 6,B SET 6,C SET 6,E SET 6,H SET 6,L SET 7,(HL) SET 7,(IX+12I) SET 7,A SET 7,B		CB FU CB F1 CB F2 CB F3 CB F4 CB F5 CB FE DD CB 12 FE FD CB 12 FE CB FF CB FF CB F8	SRAW IX SRAW IY SRL (HL) SRL (IX+12H) I SRL (IY+12H) I SRL A SRL B SRL B SRL C SRL D SRL D SRL E SRL H	ED CB 2C ED CB 2D CB 3E DD CB 12 3E FD CB 12 3E CB 3F CB 38 CB 39 CB 3A CB 38 CB 38 CB 39 CB 3A CB 38 CB 32
SET 7,C SET 7,D SET 7,E SET 7,H SET 7,L SETC LCK SETC LW SETC LW SETC XM SLA (HL) SLA (IX+12H)		CB F9 CB FA CB FB CB FC CB FC ED F7 DD F7 FD F7 CB 26 DD CB 12 26	SRL L SRLW (HL) SRLW (IX+12H) I SRLW (IY+12H) I SRLW BC SRLW DE SRLW HL SRLW IX SRLW IY SUB A,(HL)	CB 3D ED CB 3A DD CB 12 3A FD CB 12 3A ED CB 38 ED CB 39 ED CB 3B ED CB 3C ED CB 3D 96
SLA (IY+12H) SLA A SLA B SLA C SLA D SLA E SLA H SLA L SLAW (HL) SLAW (IX+12H) SLAW (IY+12H) SLAW BC SLAW DE	1	FD CB 12 26 CB 27 - - CB 20 - - CB 21 - - CB 22 - - CB 23 - - CB 24 - - CB 25 - - ED CB 22 - DD CB 12 22 FD CB 12 22 ED CB 20 - ED CB 20 - ED CB 20 - ED CB 21 -	SUB A,12H SUB A,A SUB A,(IX+12H) SUB A,(IY+12H) SUB 12H SUB A,B SUB A,C SUB A,I SUB A,IXL SUB A,IXU SUB A,IYL	D6 12 97 DD 96 12 FD 96 12 D6 12 90 91 92 93 94 DD 95 DD 94 FD 95

⊗ Ziloos

Source Code Mode	Object Code	Source Code Mode	Object Code
SUB A,IYU SUB A,L HL,(1234H) I X SUB SP,1234H I X SUBW SP,1234H I X SUBW SP,1234H I X SUBW I234H SUBW I234H SUBW BC SUBW DE SUBW DE SUBW HL SUBW HL SUBW HL SUBW HL,(IX+12H) I SUBW HL,1234H SUBW HL,1234H SUBW HL,1234H SUBW HL,DE SUBW HL,DE SUBW HL,DE SUBW HL,IX SUBW HL,IX SUBW IX SUBW IX SUBW IX SWAP <td>FD 94 95 SUB ED D6 34 12 ED 92 34 12 DD D6 12 12 ED 96 34 12 ED 96 34 12 ED 96 34 12 ED 96 34 12 ED 97 DD D6 12 FD D6 12 12 ED 96 34 12 ED 96 34 12 ED 97 DD 12 ED 96 34 12 ED 96 34 12 ED 97 DD 97 DD 97 97 DD 97 FD 97 97 97 97 DD 97 5 5 12 ED 3E 12 12 ED 3E 12 14 ED</td> <td>XOR A,IYL XOR A,IYU XOR A,L XOR B XOR C XOR D XOR E XOR IXL XOR IXL XOR IXL XOR IYU XOR IXU XORW IXU XORW IXIX XORW IZIX XORW HL,(IX+12H) XORW HL,IX XORW HL,IX XORW HL,IX XORW HL,IX X</td> <td>FDADFDACADAAA9AAABACDDADDDADDDACFDADDDEE12EDACADDDEE12EDACEDACEDACEDACEDACEDACEDACEDAFDDEEEDACEDAFEDAFEDAFFDAFFDAFFDAFFDAFFDAFFDAF</td>	FD 94 95 SUB ED D6 34 12 ED 92 34 12 DD D6 12 12 ED 96 34 12 ED 96 34 12 ED 96 34 12 ED 96 34 12 ED 97 DD D6 12 FD D6 12 12 ED 96 34 12 ED 96 34 12 ED 97 DD 12 ED 96 34 12 ED 96 34 12 ED 97 DD 97 DD 97 97 DD 97 FD 97 97 97 97 DD 97 5 5 12 ED 3E 12 12 ED 3E 12 14 ED	XOR A,IYL XOR A,IYU XOR A,L XOR B XOR C XOR D XOR E XOR IXL XOR IXL XOR IXL XOR IYU XOR IXU XORW IXU XORW IXIX XORW IZIX XORW HL,(IX+12H) XORW HL,IX XORW HL,IX XORW HL,IX XORW HL,IX X	FDADFDACADAAA9AAABACDDADDDADDDACFDADDDEE12EDACADDDEE12EDACEDACEDACEDACEDACEDACEDACEDAFDDEEEDACEDAFEDAFEDAFFDAFFDAFFDAFFDAFFDAFFDAF
TST D TST E TST H TST L TSTIO 12H	ED 14 ED 1C ED 24 ED 2C ED 74 12		
XOR (HL) XOR (IX+12H) I XOR (IY+12H) I XOR 12H XOR A	AE DD AE 12 FD AE 12 EE 12 AF		
XOR A,(HL) XOR A,(IX+12H) I XOR A,(IY+12H) I XOR A,12H I XOR A,12H I XOR A,6 I XOR A,0 I XOR A,0 I XOR A,12 I	AE DD AE 12 FD AE 12 EE 12 AF A8 A9 AA A9 AA AB AC DD AD DD AC		

	r
	- 144 - A.C.
	, 14, 5,,
Appendix C	C
a second and a second and a second and a second	
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
maakestakaansi ekkuis siemaari	
Ligateliano dellate	
eechte ceus zegais zeprosaate zepratitzete é	$\left\{ \begin{array}{ccc} & \mathcal{O} & \mathcal{O} & \mathcal{O} & \mathcal{O} \\ & $

[®]ZiLŒ

USER'S MANUAL

APPENDIX C Z380[™] Instruction in Numeric Order

The following Appendix has the Z380 instructions sorted by numeric order.

The column "Mode" indicates whether the instruction is affected by DDIR immediate Decoder Directives, Extended mode or Native mode of operation, and Word or Long Word Mode of operation; "I" means the instruction can be used with DDIR IM to expand its immediate constant, "X" means

that the operation of the instruction is affected by the XM status bit, and "L" means that the instruction is affected by LW status bit, or can be used with DDIR LW or DDIR W. The Native/Extended modes, Word/Long Word modes and Decoder Directives are discussed in Chapter 3 in this manual.

⊗ Ziloos

Object Code	Source Code	Mode	Object Code	Source Code	Mode
00 34 12 02 34 12 03 03 03 04 05 06 05 06 12 07 08 09 08 09 00 08 09 00 00 12 11 11 34 12 12 11 34 12 13 12 13 14 15 16 12 17 18 12 19 1A 1B 12 11 1B 12 12 12 16 12 17 18 1B 1B 1C 1D 1E 12 12 23 20 12 23 23 23 24 25 26 26 12 27 28 12 29 12 29 12 13	NOP LD BC,1234H LD (BC),A INC BC INCW BC INC B DEC B LD B,12H RLCA EX EX AF,AF' ADD HL,BC LD A,(BC) DEC BC DEC BC DEC BC DEC BC DEC BC DEC BC DEC C DEC C DEC C DEC C DEC C INC D DEC D INC D INC D INC D INC D INC D DEC D INC D DEC D INC E	I L X X X X X X X X X X X X X X X X X X X	2F 30 12 31 34 12 32 34 12 33 34 35 36 12 37 38 12 39 3A 34 12 39 3A 34 12 39 3A 34 12 38 30 32 32 34 35 36 12 37 38 42 39 34 42 43 44 45 46 47 48 49 4A 48 49 4A 48 49 4A 48 49 4A 48 49 4A 48 49 4A 48 49 4A 48 49 4A 48 49 4A 48 55 56 57 58 59 5A 5B	$\begin{array}{c} CPL \\ JR & NC, 12H \\ LD & SP, 1234H \\ LD & (1234H), A \\ INC & SP \\ INC & (HL) \\ DEC & (HL) \\ DEC & (HL) \\ LD & (HL), 12H \\ SCF \\ JR & C, 12H \\ ADD & HL, SP \\ LD & A, (1234H) \\ DEC & SP \\ DECW & SP \\ INC & A \\ DEC & A \\ LD & A, 12H \\ CCF \\ LD & B, B \\ LD & B, C \\ LD & B, B \\ LD & B, C \\ LD & B, B \\ LD & B, C \\ LD & B, B \\ LD & B, C \\ LD & B, B \\ LD & B, C \\ LD & B, B \\ LD & B, C \\ LD & B, B \\ LD & B, C \\ LD & B, C \\ LD & B, C \\ LD & B, C \\ LD & C \\ LD & C \\ $	Mode
29 2A 34 12 2B 2C 2D 2E 12 2F	ADD HL,HL LD HL,(1234H) DEC HL DECW HL INC L DEC L LD L,12H CPL A		58 5C 5D 5E 5F 60 61 62	LD E,E LD E,H LD E,L LD E,(HL) LD E,A LD H,B LD H,C LD H,D	

⊗2ilos

Object Code	Source Code	Mode	Object Code	Source Code	Mode
63	LD H,E		99	SBC A,C	
64	LD H,H		9A	SBC A,D	
65	LD H,L		9B	SBC A,E	
66	LD H,(HL)		9C	SBC A,H	
67	LD H,A		9D	SBC A,L	
68	LD L,B		9E	SBC A,(HL)	
69	LD L,C		9F	SBC A,A AND A,B	
6A 6B	LD L,D		A0 A0	AND A,B AND B	
6C	LD L,E LD L,H		A0 A1	AND A,C	
6D	LD L,L		A1	AND C	
6E	LD L,(HL)		A2	AND A,D	
6F	LD L,A		A2	AND D	
70	LD (HL),B		A3	AND A,E	
71	LD (HL),C		A3	AND E	
72	LD (HL),D		A4	AND A,H	
73	LD (HL),E		A4	AND H	
74	LD (HL),H		A5	AND A,L	
75	LD (HL),L		A5	AND L	
76	HALT		A6	AND (HL)	
77	LD (HL),A		A6	AND À,(HL)	
78	LD A,B		A7	AND A	
79	LD A,C		A7	AND A,A	
7A	LD A,D		A8	XOR A,B	
7B	LD A,E		A8	XOR B	
7C	LD A,H		A9	XOR A,C	
7D	LD A,L		A9	XOR C	
7E	LD A,(HL)		AA	XOR A,D	
7F	LD A,A		AA	XOR D	
80	ADD A,B		AB	XOR A,E XOR E	
81 82	ADD A,C ADD A,D		AB AC	XOR E XOR A,H	
83	ADD A,D ADD A,E		AC	XOR A,H XOR H	
84	ADD A,E ADD A,H		AD	XOR A,L	
85	ADD A,L		AD	XOR L	
86	ADD A,(HL)		AE	XOR (HL)	
87	ADD A,A		AE	XOR A,(HL)	
88	ADC A,B		AF	XOR A	
89	ADC A,C		AF	XOR A,A	
8A	ADC A,D		BO	OR A,B	
8B	ADC A,E		BO	OR B	
8C	ADC A,H		B1	OR A,C	
8D	ADC A,L		B1	OR C	
8E	ADC A,(HL)		B2	OR A,D	
8F	ADC A,A		B2	OR D	
90	SUB A,B		B3	OR A,E	
91	SUB A,C		B3	OR E	
92	SUB A,D		B4	OR A,H	
93	SUB A,E		B4	OR H	
94	SUB A,H		B5	OR A,L	
95	SUB A,L		B5	OR L	
96	SUB A,(HL)		B6	OR (HL)	
97 98	SUB A,A SBC A,B		B6 B7	OR A,(HL) OR A	
30	SBC A,B			OR A	

Object Code	Source Code	Mode	Object Code	Source Code	Mode
B7 B8 B8 B9 B9 BA BA BA BB BC BC BD BD BC BD BD BE BF BF C0 C1 C2 34 12 C3 34 12 C3 34 12 C3 34 12 C5 C6 12 C7 C8 C9 CA 34 12 C5 C6 12 C7 C8 C9 CA 34 12 C5 C6 12 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA 34 12 C5 C6 C1 C7 C8 C9 CA C8 00 CB 01 CB 02 CB 03 CB 04 CB 05 CB 06 CB 07 CB 08 CB 00 CB 00 CB 01 CB 02 CB 03 CB 04 CB 05 CB 06 CB 07 CB 08 CB 09 CB 00 CB 00 CB 00 CB 01 CB 02 CB 03 CB 04 CB 05 CB 06 CB 07 CB 08 CB 09 CB 07 CB 08 CB 07 CB 08 CB 07 CB 08 CB 09 CB 07 CB 08 CB 11 CB 11 CB 12 CB 13 CB 14 CB 15 CB 16 CB 17 CB 18 CB 19 CB 07 CB 08 CB 19 CB 07 CB 08 CB 19 CB 07 CB 08 CB 19 CB 07 CB 08 CB 19 CB 07 CB 08 CB 07 CB 08 CB 07 CB 08 CB 19 CB 07 CB 08 CB 19 CB 07 CB 08 CB 19 CB CB CB CB CB CB CB CB CB CB	OR A,A CP A,B CP B CP A,C CP A,C CP A,C CP A,C CP A,C CP A,D CP A,D CP A,L CP E CP A,H CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L CP A,L POPBCJP $NZ,1234H$ JP $Z,1234H$ PUSHBCADD $A,12H$ RST00HRET Z RET Z JP $Z,1234H$ PUSHBCADD $A,12H$ RST00HRET Z RET Z JP $Z,1234H$ RLCBRLCCRLCDRLCLRLCLRRCBRRCCRRCBRRCLRRCLRRCLRLBRLCRLBRLLRLHRLLRLHRLCRRBRRBRRB </td <td>X L I X L I X L X X I X</td> <td>$\begin{array}{c} CB & 1A \\ CB & 1B \\ CB & 1B \\ CB & 1C \\ CB & 1D \\ CB & 1D \\ CB & 1E \\ CB & 21 \\ CB & 22 \\ CB & 23 \\ CB & 24 \\ CB & 25 \\ CB & 26 \\ CB & 27 \\ CB & 28 \\ CB & 29 \\ CB & 24 \\ CB & 25 \\ CB & 20 \\ CB & 22 \\ CB & 22 \\ CB & 23 \\ CB & 22 \\ CB & 23 \\ CB & 22 \\ CB & 23 \\ CB & 22 \\ CB & 23 \\ CB & 30 \\ CB & 31 \\ CB & 22 \\ CB & 33 \\ CB & 34 \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 34 \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 31 \\ CB & 42 \\ CB & 43 \\ CB & 41 \\ CB & 42 \\ CB & 43 \\ CB & 44 \\ CB & 45 \\ CB & 45 \\ CB & 44 \\ CB & 45$</td> <td>$\begin{array}{cccccccc} RR & D \\ RR & E \\ RR & H \\ RR & L \\ RR & (HL) \\ RR & A \\ SLA & B \\ SLA & C \\ SLA & D \\ SLA & E \\ SLA & L \\ SLA & L \\ SLA & L \\ SLA & C \\ SLA & A \\ SRA & B \\ SRA & C \\ SRA & D \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & L \\ SRA & A \\ SRA & B \\ SRA & C \\ SRA & L \\ SRA & A \\ SRA & E \\ SRA & L \\ SRA & A \\ SRA & E \\ SRA & L \\ SRA & A \\ SRA & E \\ SRA & L \\ SRA & A \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & A \\ BIT & C, C \\ SRL & B \\ SRL & C \\ SRL & C \\ SRL & B \\ SRL & C \\ SR$</td> <td></td>	X L I X L I X L X X I X	$ \begin{array}{c} CB & 1A \\ CB & 1B \\ CB & 1B \\ CB & 1C \\ CB & 1D \\ CB & 1D \\ CB & 1E \\ CB & 21 \\ CB & 22 \\ CB & 23 \\ CB & 24 \\ CB & 25 \\ CB & 26 \\ CB & 27 \\ CB & 28 \\ CB & 29 \\ CB & 24 \\ CB & 25 \\ CB & 20 \\ CB & 22 \\ CB & 22 \\ CB & 23 \\ CB & 22 \\ CB & 23 \\ CB & 22 \\ CB & 23 \\ CB & 22 \\ CB & 23 \\ CB & 30 \\ CB & 31 \\ CB & 22 \\ CB & 33 \\ CB & 34 \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 34 \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 35 \\ CB & 37 \\ CB & 38 \\ CB & 39 \\ CB & 3A \\ CB & 31 \\ CB & 42 \\ CB & 43 \\ CB & 41 \\ CB & 42 \\ CB & 43 \\ CB & 44 \\ CB & 45 \\ CB & 45 \\ CB & 44 \\ CB & 45 $	$\begin{array}{cccccccc} RR & D \\ RR & E \\ RR & H \\ RR & L \\ RR & (HL) \\ RR & A \\ SLA & B \\ SLA & C \\ SLA & D \\ SLA & E \\ SLA & L \\ SLA & L \\ SLA & L \\ SLA & C \\ SLA & A \\ SRA & B \\ SRA & C \\ SRA & D \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & L \\ SRA & A \\ SRA & B \\ SRA & C \\ SRA & L \\ SRA & A \\ SRA & E \\ SRA & L \\ SRA & A \\ SRA & E \\ SRA & L \\ SRA & A \\ SRA & E \\ SRA & L \\ SRA & A \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & C \\ SRA & B \\ SRA & A \\ BIT & C, C \\ SRL & B \\ SRL & C \\ SRL & C \\ SRL & B \\ SRL & C \\ SR$	

Mode

Object Code Source Code Mode Object Code Source Code CB 51 BIT 2,C CB 68 67 RES 0.A CB 53 BIT 2,L CB 68 89 RES 1.D CB 54 BIT 2,L CB 86 RES 1.E CB 55 BIT 2,L CB 86 RES 1.E CB 56 BIT 2,L CB 86 RES 1.H CB 56 BIT 2,L CB 86 RES 1.H CB 56 BIT 3,B CB 86 RES 1.H CB 56 BIT 3,L CB 90 RES 2,D CB 55 BIT 3,A CB 93 RES 2,L CB 66 BIT 4,L CB 94 RES 3,L	Object Code	Source Code	Mada	Object Code	Souro	o Codo
CB 52 BIT 2,D CB 88 RES 1,B CB 53 BIT 2,H CB 84 RES 1,D CB 55 BIT 2,L CB 86 RES 1,L CB 55 BIT 2,L CB 86 RES 1,H CB 57 BIT 2,A CB 86 RES 1,H CB 58 BIT 3,C CB 87 RES 1,A CB 56 BIT 3,C CB 90 RES 2,B CB 56 BIT 3,C CB 91 RES 2,C CB 56 BIT 3,A CB 92 RES 2,L CB 57 BIT 3,A CB 96 RES 2,L CB 66 BIT 4,C CB 97 RES 2,A CB 66 BIT 4,C CB 98 RES 3,L CB	Object Code	Source Code	Mode		Sourc	
CB 53 BIT 2,E CB 68 99 RES 1,C CB 55 BIT 2,L CB 68 RES 1,E CB 56 BIT 2,L CB 68 RES 1,L CB 56 BIT 2,L CB 80 RES 1,L CB 56 BIT 2,L CB 80 RES 1,L CB 56 BIT 3,C CB 80 RES 1,A CB 56 BIT 3,C CB 90 RES 2,B CB 56 BIT 3,C CB 91 RES 2,C CB 56 BIT 3,L CB 92 RES 2,L CB 56 BIT 3,L CB 93 RES 2,L CB 66 BIT 4,B CB 96 RES 3,L CB 66 BIT 4,L CB 96 RES 3,L	CB 51					
CB 54 BIT 2,L CB 8A RES 1,E CB 55 BIT 2,(HL) CB 8B RES 1,I CB 56 BIT 2,(HL) CB 8C RES 1,(HL) CB 53 BIT 3,C CB 8B RES 1,(HL) CB 54 BIT 3,C CB 90 RES 2,A CB 55 BIT 3,C CB 90 RES 2,C CB 55 BIT 3,L CB 93 RES 2,C CB 56 BIT 3,(HL) CB 94 RES 2,I CB 56 BIT 3,(A CB 96 RES 2,(HL) CB 66 BIT 4,D CB 98 RES 3,D CB 66 BIT 4,L CB 99 RES 3,C CB 66 BIT 4,L CB 98 RES 3,L	CB 52					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CB 53					1,C
CB 56 BIT 2,A CB 8C RES 1,L CB 57 BIT 3,B CB 8D RES 1,L CB 58 BIT 3,C CB 8F RES 1,L CB 5A BIT 3,C CB 8F RES 1,L CB 5A BIT 3,L CB 90 RES 2,B CB 5C BIT 3,L CB 93 RES 2,L CB 5C BIT 3,A CB 96 RES 2,L CB 60 BIT 4,B CB 96 RES 2,L CB 61 BIT 4,C CB 97 RES 3,B CB 62 BIT 4,L CB 9A RES 3,C CB 63 BIT 4,L CB 9A RES 3,L CB 66 BIT 4,L CB 9A RES 3,L CB						
CB 57 BIT $2, A$ CB 80 RES $1, (HL)$ CB 59 BIT $3, C$ CB 80 RES $1, (HL)$ CB 59 BIT $3, C$ CB 80 RES $1, (HL)$ CB 56 BIT $3, L$ CB 90 RES $2, C$ CB 55 BIT $3, H$ CB 92 RES $2, C$ CB 55 BIT $3, L$ CB 94 RES $2, L$ CB 55 BIT $3, A$ CB 96 RES $2, L$ CB 60 BIT $4, D$ CB 97 RES $2, A$ CB 63 BIT $4, L$ CB 98 RES $3, B$ CB 66 BIT $4, (HL)$ CB 90 RES $3, H$ CB 66 BIT $5, D$ CB 80 RES $3, H$ CB 66 BIT $5, D$ <t< td=""><td>CB 55</td><td></td><td></td><td></td><td></td><td>1,E</td></t<>	CB 55					1,E
CB 58 BIT 3,B CB 6E RES 1,(HL) CB 59 BIT 3,C CB 8F RES 1,A CB 5A BIT 3,L CB 90 RES 2,B CB 55 BIT 3,L CB 93 RES 2,E CB 55 BIT 3,(HL) CB 93 RES 2,L CB 55 BIT 3,(HL) CB 94 RES 2,L CB 66 BIT 4,B CB 96 RES 2,L CB 66 BIT 4,C CB 96 RES 3,B CB 62 BIT 4,L CB 99 RES 3,C CB 66 BIT 4,L CB 98 RES 3,L CB 66 BIT 4,L CB 9B RES 3,L CB 66 BIT 5,D CB A RES 3,L CB	CB 56	BIT 2,(HL			RES	1,H
CB 59 BIT 3,C CB 8F RES 1,A CB 5A BIT 3,D CB 90 RES 2,B CB 55 BIT 3,H CB 91 RES 2,C CB 55 BIT 3,H CB 92 RES 2,L CB 55 BIT 3,(HL) CB 94 RES 2,L CB 56 BIT 3,(HL) CB 95 RES 2,L CB 66 BIT 4,L CB 95 RES 3,Z CB 62 BIT 4,L CB 97 RES 3,Z CB 66 BIT 4,L CB 98 RES 3,C CB 66 BIT 4,L CB 90 RES 3,L CB 66 BIT 4,L CB 9D RES 3,L CB 66 BIT 5,C CB 9C RES 3,L CB </td <td>CB 57</td> <td></td> <td></td> <td></td> <td></td> <td>1,L</td>	CB 57					1,L
CB 5A BIT 3,D CB 90 RES 2,B CB 56B BIT 3,H CB 91 RES 2,C CB 55C BIT 3,L CB 93 RES 2,L CB 55C BIT 3,(HL) CB 94 RES 2,L CB 66 BIT 4,A CB 96 RES 2,(HL) CB 66 BIT 4,D CB 96 RES 3,B CB 62 BIT 4,L CB 99 RES 3,C CB 63 BIT 4,L CB 9A RES 3,L CB 66 BIT 4,(HL) CB 9A RES 3,L CB 66 BIT 4,(HL) CB 9D RES 3,L CB 66 BIT 5,C CB AO RES 3,L CB 66 BIT 5,L CB AO RES 3,L	CB 58			CB 8E	RES	1,(HL)
CB 5B BIT 3,E CB 91 RES 2,C CB 5C BIT 3,L CB 92 RES 2,D CB 5C BIT 3,L CB 93 RES 2,E CB 5F BIT 3,A CB 95 RES 2,L CB 60 BIT 4,B CB 96 RES 2,L CB 61 BIT 4,C CB 97 RES 2,A CB 62 BIT 4,L CB 99 RES 3,B CB 64 BIT 4,H CB 9A RES 3,C CB 66 BIT 4,(HL) CB 9D RES 3,L CB 66 BIT 4,(HL) CB 9D RES 3,L CB 66 BIT 5,C CB B RES 3,L CB 66 BIT 5,C CB A1 RES 4,L CB <td>CB 59</td> <td></td> <td></td> <td>CB 8F</td> <td></td> <td></td>	CB 59			CB 8F		
CB 5C BIT 3,H CB 92 RES 2,D CB 5D BIT 3,L CB 93 RES 2,E CB 5F BIT 3,A CB 93 RES 2,L CB 60 BIT 4,B CB 96 RES 2,L(HL) CB 61 BIT 4,C CB 97 RES 2,A CB 62 BIT 4,L CB 99 RES 3,C CB 63 BIT 4,L CB 94 RES 3,D CB 66 BIT 4,L CB 99 RES 3,C CB 66 BIT 4,L CB 90 RES 3,L CB 66 BIT 5,E CB 90 RES 3,L CB 66 BIT 5,E CB 91 RES 3,L CB 66 BIT 5,L CB A0 RES 4,L CB <td>CB 5A</td> <td>BIT 3,D</td> <td></td> <td></td> <td></td> <td>2,B</td>	CB 5A	BIT 3,D				2,B
CB 5D BIT 3,L CB 93 RES 2,E CB 5E BIT 3,(HL) CB 94 RES 2,L CB 5F BIT 3,(HL) CB 94 RES 2,L CB 60 BIT 4,B CB 94 RES 2,L CB 61 BIT 4,C CB 97 RES 3,L CB 63 BIT 4,L CB 99 RES 3,C CB 66 BIT 4,HL CB 9A RES 3,L CB 66 BIT 4,HL CB 9D RES 3,L CB 66 BIT 5,C CB 9D RES 3,L CB 68 BIT 5,C CB A1 RES 3,A CB 69 BIT 5,C CB A1 RES 3,L CB 60 BIT 5,L CB A1 RES 3,L CB	CB 5B	BIT 3,E		CB 91	RES	2,C
CB 5E BIT $3,(HL)$ CB 94 RES $2,L$ CB 6F BIT $3,A$ CB 95 RES $2,L$ CB 61 BIT $4,B$ CB 96 RES $2,L$ CB 61 BIT $4,C$ CB 97 RES $3,B$ CB 62 BIT $4,L$ CB 99 RES $3,C$ CB 64 BIT $4,L$ CB 99 RES $3,L$ CB 66 BIT $4,L$ CB 90 RES $3,L$ CB 66 BIT $4,L$ CB 90 RES $3,L$ CB 66 BIT $5,C$ CB 90 RES $3,L$ CB 67 BIT $5,C$ CB A0 RES $4,L$ CB 68 BIT $5,L$ CB A1 RES $4,L$ CB 60 BIT $5,L$ CB A3 RES <th< td=""><td>CB 5C</td><td>BIT 3,H</td><td></td><td>CB 92</td><td>RES</td><td></td></th<>	CB 5C	BIT 3,H		CB 92	RES	
CB 5F BIT 3,A CB 95 RES 2,L CB 60 BIT 4,B CB 96 RES 2,(HL) CB 61 BIT 4,C CB 97 RES 2,A CB 62 BIT 4,D CB 98 RES 3,B CB 63 BIT 4,H CB 9A RES 3,C CB 66 BIT 4,H CB 9A RES 3,L CB 66 BIT 4,H CB 9D RES 3,L CB 66 BIT 5,B CB 9D RES 3,L CB 66 BIT 5,C CB 8D RES 3,L CB 6A BIT 5,E CB AD RES 4,B CB 6C BIT 5,L CB AA RES 4,C CB 6D BIT 5,A CB AA RES 4,L CB	CB 5D	BIT 3,L		CB 93	RES	2,E
CB 5F BIT 3,A CB 96 RES 2,L CB 60 BIT 4,B CB 97 RES 2,A CB 62 BIT 4,D CB 97 RES 3,B CB 62 BIT 4,L CB 99 RES 3,C CB 66 BIT 4,H CB 9A RES 3,L CB 66 BIT 4,H CB 9D RES 3,L CB 66 BIT 4,A CB 9D RES 3,L CB 66 BIT 5,B CB 69 RES 3,L CB 66 BIT 5,C CB AO RES 4,B CB 6A BIT 5,L CB AO RES 4,C CB 6D BIT 5,L CB AA RES 4,L CB 6D BIT 6,D CB AA RES 4,H CB	CB 5E	BIT 3,(HL		CB 94	RES	2,H
CB 61 BIT 4,C CB 97 RES 2,Å CB 62 BIT 4,D CB 98 RES 3,B CB 63 BIT 4,L CB 99 RES 3,C CB 64 BIT 4,L CB 9A RES 3,D CB 66 BIT 4,(HL) CB 9C RES 3,I CB 66 BIT 4,(A CB 9D RES 3,I CB 66 BIT 5,E CB 9F RES 3,I CB 66 BIT 5,L CB AO RES 4,B CB 6C BIT 5,L CB A1 RES 4,L CB 6C BIT 5,L CB A2 RES 4,L CB 6C BIT 5,L CB A4 RES 4,L CB <td>CB 5F</td> <td></td> <td></td> <td>CB 95</td> <td>RES</td> <td>2,L</td>	CB 5F			CB 95	RES	2,L
CB 61 BIT 4,C CB 97 RES 2,A CB 62 BIT 4,D CB 98 RES 3,C CB 64 BIT 4,H CB 99 RES 3,C CB 65 BIT 4,L CB 98 RES 3,L CB 66 BIT 4,(HL) CB 92 RES 3,L CB 66 BIT 4,(HL) CB 90 RES 3,L CB 66 BIT 5,E CB 9F RES 3,A CB 68 BIT 5,C CB A0 RES 4,B CB 60 BIT 5,L CB A1 RES 4,C CB 60 BIT 5,L CB A3 RES 4,E CB 6E BIT 5,L CB A4 RES 4,L CB 70 BIT 6,A CB A5 RES 4,L CB </td <td></td> <td></td> <td></td> <td>CB 96</td> <td>RES</td> <td></td>				CB 96	RES	
CB 62 BIT 4,D CB 98 RES 3,B CB 63 BIT 4,E CB 99 RES 3,C CB 64 BIT 4,H CB 9A RES 3,E CB 66 BIT 4,L CB 9B RES 3,I CB 66 BIT 4,A CB 9D RES 3,L CB 66 BIT 4,A CB 9D RES 3,L CB 66 BIT 5,B CB 9F RES 3,A CB 68 BIT 5,C CB 9F RES 4,B CB 60 BIT 5,L CB A1 RES 4,C CB 6C BIT 5,H CB A2 RES 4,L CB 6D BIT 5,L CB A3 RES 4,E CB 6D BIT 6,H CB A2 RES 4,L CB				CB 97	RES	
CB 63 BIT 4,E CB 99 RES 3,C CB 64 BIT 4,H CB 9A RES 3,D CB 65 BIT 4,L CB 9B RES 3,E CB 66 BIT 4,(HL) CB 9C RES 3,H CB 66 BIT 4,A CB 9D RES 3,(HL) CB 66 BIT 5,B CB 9F RES 3,(HL) CB 66 BIT 5,C CB AO RES 4,B CB 6A BIT 5,C CB AO RES 4,C CB 6B BIT 5,L CB AO RES 4,C CB 6C BIT 5,(HL) CB A4 RES 4,E CB 6F BIT 6,A CB A RES 4,E CB 70 BIT 6,A CB AA RES 5,D <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
CB 64 BIT 4,H CB 9A RES 3,D CB 65 BIT 4,L CB 9B RES 3,E CB 66 BIT 4,(HL) CB 9C RES 3,I CB 67 BIT 4,A CB 9D RES 3,I CB 68 BIT 5,C CB 9E RES 3,A CB 64 BIT 5,C CB A RES 4,B CB 6A BIT 5,L CB A1 RES 4,C CB 6C BIT 5,L CB A3 RES 4,E CB 6D BIT 5,L CB A3 RES 4,E CB 6F BIT 6,HL) CB A3 RES 4,H CB 70 BIT 6,C CB A4 RES 5,D CB 72 BIT 6,C CB A9 RES 5,C CB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 65 BIT 4,L CB 9B RES 3,E CB 66 BIT 4,(HL) CB 9C RES 3,H CB 67 BIT 4,A CB 9D RES 3,L CB 68 BIT 5,E CB 9E RES 3,A CB 68 BIT 5,C CB 9F RES 3,A CB 6A BIT 5,C CB AD RES 4,B CB 6B BIT 5,E CB A1 RES 4,C CB 6B BIT 5,H CB A2 RES 4,D CB 6C BIT 5,H CB A3 RES 4,E CB 6E BIT 5,(HL) CB A4 RES 4,L CB 70 BIT 6,C CB A6 RES 4,(HL) CB 71 BIT 6,C CB A6 RES 5,D C						
CB 66 BIT 4,(HL) CB 9C RES 3,H CB 67 BIT 4,A CB 9D RES 3,L CB 68 BIT 5,B CB 9E RES 3,(HL) CB 68 BIT 5,C CB 9F RES 3,(HL) CB 69 BIT 5,C CB AO RES 4,B CB 66 BIT 5,L CB AO RES 4,B CB 6C BIT 5,L CB A1 RES 4,D CB 6E BIT 5,H CB A3 RES 4,E CB 6E BIT 5,H CB AA RES 4,H CB 70 BIT 6,C CB A4 RES 4,A CB 71 BIT 6,C CB A7 RES 5,D CB 73 BIT 6,C CB AA RES 5,E C						
CB 67 BIT 4 , A CB 9D RES 3 , L CB 68 BIT 5 , B CB $9E$ RES 3 , (HL) CB 69 BIT 5 , C CB $9F$ RES 3 , (HL) CB 66 BIT 5 , C CB $A0$ RES 4 , B CB 66 BIT 5 , E CB $A1$ RES 4 , C CB 66 BIT 5 , H CB $A2$ RES 4 , C CB 66 BIT 5 , H CB $A2$ RES 4 , H CB 66 BIT 5 , H CB $A4$ RES 4 , H CB $6F$ BIT 6 , A CB $A4$ RES 4 , A CB 70 BIT 6 , B CB $A6$ RES 4 , A CB 71 BIT 6 , D CB $A8$ RES 5 , B CB 72 BIT 6 , D						
CB 68 BIT 5,B CB 9E RES 3,(HL) CB 69 BIT 5,C CB 9F RES 3,A CB 6A BIT 5,D CB A0 RES 4,B CB 6B BIT 5,E CB A1 RES 4,C CB 6C BIT 5,H CB A2 RES 4,D CB 6C BIT 5,L CB A3 RES 4,E CB 6E BIT 5,(HL) CB A4 RES 4,I CB 70 BIT 6,C CB A6 RES 4,(HL) CB 71 BIT 6,C CB A7 RES 5,D CB 73 BIT 6,C CB A8 RES 5,E CB 76 BIT 6,(HL) CB AA RES 5,L CB 76 BIT 7,C CB AC RES 5,L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
CB 69 BIT 5,C CB 9F RES 3,A CB 6A BIT 5,D CB AO RES 4,B CB 6B BIT 5,E CB A1 RES 4,C CB 6C BIT 5,L CB A2 RES 4,D CB 6D BIT 5,L CB A3 RES 4,E CB 6E BIT 5,A CB A4 RES 4,H CB 70 BIT 6,B CB A6 RES 4,(HL) CB 71 BIT 6,C CB A7 RES 5,B CB 72 BIT 6,D CB A8 RES 5,C CB 74 BIT 6,H CB AA RES 5,L CB 76 BIT 6,(HL) CB AA RES 5,L CB 77 BIT 6,A CB AB RES 5,L CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 6A BIT 5,D CB A0 RES 4,B CB 6B BIT 5,E CB A1 RES 4,C CB 6C BIT 5,H CB A2 RES 4,D CB 6D BIT 5,L CB A2 RES 4,E CB 6E BIT 5,(HL) CB A4 RES 4,H CB 6F BIT 5,(A CB A5 RES 4,I CB 70 BIT 6,C CB A6 RES 4,I CB 72 BIT 6,D CB A7 RES 5,C CB 73 BIT 6,L CB A9 RES 5,C CB 74 BIT 6,H CB AA RES 5,L CB 75 BIT 6,L CB AA RES 5,L CB 77 BIT 6,A CB AE RES 5,L CB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 6B BIT 5,E CB A1 RES 4,C CB 6C BIT 5,H CB A2 RES 4,D CB 6D BIT 5,L CB A3 RES 4,E CB 6E BIT 5,(HL) CB A4 RES 4,L CB 6F BIT 5,A CB A5 RES 4,(HL) CB 70 BIT 6,B CB A6 RES 4,A CB 71 BIT 6,C CB A7 RES 5,B CB 73 BIT 6,C CB A8 RES 5,C CB 74 BIT 6,H CB AA RES 5,C CB 76 BIT 6,L CB AA RES 5,L CB 76 BIT 6,H CB AB RES 5,L CB 77 BIT 6,A CB AB RES 5,L CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 6C BIT 5,H CB A2 RES 4,D CB 6D BIT 5,L CB A3 RES 4,E CB 6E BIT 5,(HL) CB A4 RES 4,H CB 6F BIT 5,A CB A5 RES 4,(HL) CB 70 BIT 6,B CB A6 RES 4,(HL) CB 71 BIT 6,C CB A7 RES 4,A CB 72 BIT 6,D CB A8 RES 5,B CB 73 BIT 6,E CB A4 RES 5,C CB 74 BIT 6,H CB AA RES 5,L CB 76 BIT 6,L CB AA RES 5,L CB 76 BIT 6,H CB AB RES 5,L CB 77 BIT 6,A CB AB RES 5,L C						
CB 6D BIT 5,L CB A3 RES 4,E CB 6E BIT 5,(HL) CB A4 RES 4,H CB 6F BIT 5,A CB A5 RES 4,L CB 70 BIT 6,B CB A6 RES 4,(HL) CB 71 BIT 6,C CB A7 RES 4,A CB 72 BIT 6,D CB A8 RES 5,B CB 73 BIT 6,E CB A9 RES 5,C CB 74 BIT 6,H CB AA RES 5,D CB 75 BIT 6,L CB AA RES 5,L CB 76 BIT 7,B CB AC RES 5,L CB 78 BIT 7,C CB AF RES 5,L CB 79 BIT 7,D CB BI RES 6,C CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 6E BIT 5,(HL) CB A4 RES 4,H CB 6F BIT 5,A CB A5 RES 4,L CB 70 BIT 6,B CB A6 RES 4,(HL) CB 71 BIT 6,C CB A7 RES 4,A CB 72 BIT 6,D CB A7 RES 5,C CB 73 BIT 6,E CB A9 RES 5,C CB 74 BIT 6,H CB AA RES 5,L CB 75 BIT 6,L CB AC RES 5,L CB 76 BIT 6,A CB AD RES 5,L CB 77 BIT 6,A CB AD RES 5,L CB 78 BIT 7,E CB AF RES 6,C CB 7A BIT 7,L CB B1 RES 6,C CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB6FBIT $5, A$ CBA5RES $4, L$ CB70BIT $6, B$ CBA6RES $4, (HL)$ CB71BIT $6, C$ CBA7RES $4, A$ CB72BIT $6, D$ CBA8RES $5, B$ CB73BIT $6, C$ CBA9RES $5, C$ CB74BIT $6, H$ CBAARES $5, D$ CB75BIT $6, L$ CBABRES $5, C$ CB76BIT $6, (HL)$ CBACRES $5, H$ CB77BIT $6, (HL)$ CBADRES $5, (HL)$ CB78BIT $7, C$ CBAFRES $5, (HL)$ CB79BIT $7, C$ CBAFRES $5, A$ CB78BIT $7, E$ CBB0RES $6, B$ CB70BIT $7, C$ CBB1RES $6, C$ CB78BIT $7, C$ CBB1RES $6, C$ CB78BIT $7, C$ CBB1RES $6, C$ CB78BIT $7, H$ CBB2RES $6, C$ CB70BIT $7, H$ CBB3RES $6, C$ CB75BIT $7, A$ CBB5RES $6, (HL)$ CB76BIT $7, A$ CBB5RES 6						
CB 70 BIT $6,B$ CB A6 RES $4,(HL)$ CB 71 BIT $6,C$ CB A7 RES $4,A$ CB 72 BIT $6,D$ CB A8 RES $5,B$ CB 73 BIT $6,E$ CB A9 RES $5,C$ CB 74 BIT $6,H$ CB AA RES $5,D$ CB 75 BIT $6,L$ CB AA RES $5,L$ CB 76 BIT $6,(HL)$ CB AC RES $5,L$ CB 77 BIT $6,A$ CB AD RES $5,(HL)$ CB 78 BIT $7,B$ CB AE RES $5,(HL)$ CB 78 BIT $7,C$ CB AF RES $6,C$ CB 78 BIT $7,C$ CB BAF RES $6,C$ CB 78 BIT $7,L$ CB B3 RES						
CB 71 BIT 6,C CB A7 RES 4,A CB 72 BIT 6,D CB A8 RES 5,B CB 73 BIT 6,E CB A9 RES 5,C CB 74 BIT 6,H CB AA RES 5,D CB 75 BIT 6,L CB AA RES 5,E CB 76 BIT 6,(HL) CB AC RES 5,H CB 77 BIT 6,A CB AD RES 5,L CB 78 BIT 7,B CB AE RES 5,(HL) CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,L CB B1 RES 6,C CB 7D BIT 7,A CB B5 RES 6,L CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 72 BIT 6,D CB A8 RES 5,B CB 73 BIT 6,E CB A9 RES 5,C CB 74 BIT 6,H CB AA RES 5,D CB 75 BIT 6,L CB AA RES 5,E CB 76 BIT 6,(HL) CB AC RES 5,L CB 77 BIT 6,A CB AD RES 5,(HL) CB 78 BIT 7,B CB AE RES 5,(HL) CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7D BIT 7,H CB B2 RES 6,D CB 7D BIT 7,A CB B5 RES 6,L CB						
CB73BIT $6,E$ CBA9RES $5,C$ CB74BIT $6,H$ CBAARES $5,D$ CB75BIT $6,L$ CBABRES $5,E$ CB76BIT $6,(HL)$ CBACRES $5,H$ CB77BIT $6,A$ CBADRES $5,L$ CB78BIT $7,B$ CBAERES $5,(HL)$ CB79BIT $7,C$ CBAFRES $5,A$ CB7ABIT $7,D$ CBB0RES $6,B$ CB7BBIT $7,E$ CBB1RES $6,C$ CB7CBIT $7,H$ CBB2RES $6,D$ CB7DBIT $7,A$ CBB3RES $6,C$ CB7DBIT $7,A$ CBB4RES $6,H$ CB7FBIT $7,A$ CBB5RES $6,L$ CB80RES $0,B$ CBB6RES $6,(HL)$ CB81RES $0,C$ CBB7RES $6,A$ CB82RES $0,D$ CBB8RES $7,B$ CB83RES $0,E$ CBB9RES $7,C$ CB84RES $0,H$ CBBARES $7,D$ CB85RES $0,L$ CBBBRES $7,D$						
CB 74 BIT 6,H CB AA RES 5,D CB 75 BIT 6,L CB AB RES 5,E CB 76 BIT 6,(HL) CB AC RES 5,H CB 77 BIT 6,A CB AD RES 5,L CB 78 BIT 7,B CB AE RES 5,(HL) CB 78 BIT 7,C CB AE RES 5,(HL) CB 79 BIT 7,C CB AF RES 6,B CB 7A BIT 7,D CB B0 RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,L CB 7F BIT 7,A CB B5 RES 6,L CB						
CB 75 BIT 6,L CB AB RES 5,E CB 76 BIT 6,(HL) CB AC RES 5,H CB 77 BIT 6,A CB AD RES 5,L CB 78 BIT 7,B CB AE RES 5,(HL) CB 78 BIT 7,C CB AE RES 5,(HL) CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,C CB BO RES 6,B CB 7A BIT 7,C CB BI RES 6,C CB 7B BIT 7,L CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,A CB B5 RES 6,L C						
CB 76 BIT 6,(HL) CB AC RES 5,H CB 77 BIT 6,A CB AD RES 5,L CB 78 BIT 7,B CB AE RES 5,(HL) CB 78 BIT 7,C CB AE RES 5,(AL) CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,L CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,A <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
CB 77 BIT 6,A CB AD RES 5,L CB 78 BIT 7,B CB AE RES 5,(HL) CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B7 RES 6,A CB						
CB 78 BIT 7,B CB AE RES 5,(HL) CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B7 RES 6,A CB 83 RES 0,E CB B9 RES 7,C CB						
CB 79 BIT 7,C CB AF RES 5,A CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 7A BIT 7,D CB BO RES 6,B CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 7B BIT 7,E CB B1 RES 6,C CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 7C BIT 7,H CB B2 RES 6,D CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B7 RES 6,A CB 82 RES 0,D CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CB 7D BIT 7,L CB B3 RES 6,E CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 7E BIT 7,(HL) CB B4 RES 6,H CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 7F BIT 7,A CB B5 RES 6,L CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 80 RES 0,B CB B6 RES 6,(HL) CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E			1			
CB 81 RES 0,C CB B7 RES 6,A CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 82 RES 0,D CB B8 RES 7,B CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 83 RES 0,E CB B9 RES 7,C CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 84 RES 0,H CB BA RES 7,D CB 85 RES 0,L CB BB RES 7,E						
CB 85 RES 0,L CB BB RES 7,E						
CB 86 RES 0,(HL) CB BC RES 7,H						
	CB 86	RES 0,(HL)	CB BC	RES	7,H

⊗ Ziloos

Mode

I X I X

> X X

ΙX

X X

Х

Х

L L L

L L L

L L

X X

Х

I

L

I

I X L

L

Object Code	Source Code	Mode	Object Code	Source Code
Object Code CB BD CB BE CB CB CB CD CB CD CB CO CB CO CB C1 CB C2 CB C3 CB C4 CB C5 CB C6 CB C7 CB C8 CB C9 CB CA CB CB CB CC CB CD CB CE CB CF CB D1 CB D2 CB D3 CB D4 CB D5 CB D6	Source Code RES 7,L RES 7,(HL) RES 7,A SET 0,B SET 0,C SET 0,C SET 0,L SET 0,H SET 0,L SET 0,A SET 1,C SET 1,C SET 1,E SET 1,H SET 1,H SET 1,H SET 1,C SET 1,E SET 1,H SET 1,C SET 1,H SET 1,H SET 1,C SET 1,H SET 1,H SET 1,C SET 1,E SET 1,E SET 1,C SET 2,B SET 2,C SET 2,E SET <td< td=""><td>Mode</td><td>Object Code CB F3 CB F4 CB F5 CB F6 CB F7 CB F8 CB F9 CB FA CB FB CB FC CB FC CB FF CC 34 CF 12 D0 12 D1 12 D3 12 D4 34 D5 12 D6 12 D7 7</td><td>Source Code SET 6,E SET 6,H SET 6,L SET 6,(HL) SET 6,A SET 7,B SET 7,C SET 7,C SET 7,C SET 7,H SET 7,H SET 7,H SET 7,H SET 7,A CALL Z,1234H CALL 1234H ADD A,12H RST 08H RET NC POP DE JP NC,1234H OUT (12H),A CALL NC,1234H OUT (12H),A CALL NC,1234H OUT 12H SUB 12H SUB 12H SUB A,12H RST 10H</td></td<>	Mode	Object Code CB F3 CB F4 CB F5 CB F6 CB F7 CB F8 CB F9 CB FA CB FB CB FC CB FC CB FF CC 34 CF 12 D0 12 D1 12 D3 12 D4 34 D5 12 D6 12 D7 7	Source Code SET 6,E SET 6,H SET 6,L SET 6,(HL) SET 6,A SET 7,B SET 7,C SET 7,C SET 7,C SET 7,H SET 7,H SET 7,H SET 7,H SET 7,A CALL Z,1234H CALL 1234H ADD A,12H RST 08H RET NC POP DE JP NC,1234H OUT (12H),A CALL NC,1234H OUT (12H),A CALL NC,1234H OUT 12H SUB 12H SUB 12H SUB A,12H RST 10H
CB D7 CB D8 CB D9 CB DA CB DB CB DC CB DC CB DC CB DC CB DE CB E1 CB E2 CB E3 CB E4 CB E5 CB E6 CB E7 CB E8 CB E7 CB E7 CB E8 CB E7 CB E8 CB E7 CB E7 CB E7 CB E8 CB E7 CB F7 CB SET 2,(HL) SET 2,A SET 3,B SET 3,C SET 3,L SET 3,L SET 3,A SET 4,C SET 4,C SET 4,L SET 4,L SET 5,C SET 5,C SET 5,C SET 5,L SET 5,L SET 5,L SET 5,L SET 5,C SET 5,C SET 5,C SET 5,L SET 5,L SET 5,L SET 5,A SET 6,B SET 6,C SET 6,D		D8 D9 DA 34 12 DB 12 DC 34 12 DD 01 DD 02 DD 03 DD 07 DD 09 DD 08 DD 07 DD 09 DD 08 DD 0C DD 00 DD 0F DD 00 DD 0F DD 10 34 12 DD 11 DD 12 DD 13 DD 17 DD 13 DD 17 DD 18 34 12 DD 19 DD 18 DD 1C DD 10 DD 17 DD 18 34 12 DD 19 DD 18 DD 1C DD 10 DD 17 DD 18 34 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 12 DD 19 DD 18 DD 12 DD 12 DD 19 DD 18 DD 12 DD 19 DD 18 DD 12 DD 12 DD 19 DD 12 DD 22 34 12 DD 34 12 D1 34 12 D1	RET C EXX JP C,1234H IN A,(12H) CALL C,1234H LD (BC),IX LD BC,DE LD IX,(BC) LD IX,BC ADD IX,BC LD BC,(IX) LD BC,IX LD BC,(ICE) LD BC,(ICE) LD BC,(ICE) LD BC,(ICE) LD BC,(ICE) LD BC,(ICE) LD DE,DE LD IX,(DE) LD IX,(DE) LD IX,(DE) LD DE,(IX) LD DE,IX LD DE,IX LD DE,IX LD DE,(ICE) LD DE,(ICE) LD DE,(ICE) LD DE,(IL) JR NZ,1234H LD IX,1234H LD IX,1234H LD IX,1234H LD IX,	

Mode

1

ĭ

I

I

T

I

1

I

1

Object Code	Source Code	Mode	Object Code	Source Code
DD 23 DD 23 DD 24 DD 25 DD 26 DD 27 DD 28 DD 27 DD 28 DD 27 DD 30 DD 31 DD 32 DD 34 DD 35 DD 36 DD 37 DD 38 DD 30 DD 31 DD 46 DD 47	INC IX INC IXU INC IXU DEC IXU DEC IXU,12H LD IX,IY JR Z,1234H ADD IX,IX LD IX,(1234H) DEC IX DEC IXL DEC IXL DEC IXL DEC IXL,12H CPLW HL CPLW HL DEC IXL,12H CPLW HL DEC IXL,12H CPLW HL DEC IXL,12H CPLW HL DEC IXL,12H DE IX,1X LD HL,0E JR C,1234H ADD IX,SP LD HL,0E SWAP <		DD 63 DD 64 DD 65 DD 66 DD 68 DD 68 DD 68 DD 68 DD 66 DD 60 DD 67 DD 70 DD 72 DD 71 DD 72 DD 74 DD 75 DD 77 DD 78 DD 70 DD 72 DD 72 DD 74 DD 75 DD 70 DD 70 DD 70 DD 70 DD 87 DD 87 DD 87	LD IXU,E LD IXU,IXU LD IXU,IXL LD H,(IX+12H) LD IXU,A LD IXL,B LD IXL,C LD IXL,C LD IXL,C LD IXL,E LD IXL,IXU LD IXL,IXL LD IXL,A LD (IX+12H),B LD (IX+12H),C LD (IX+12H),L LD (IX+12H),A INW HL,C OUTW (C),HL LD A,IXU LD A,IXU LD A,IXL LD A,IXL ADD A,IXL ADC A,IXL ADC A,IXU

⊗ Zilos

Object Code	Source	Code	Mode		Object Code	Source C	ode	Мс	de
DD AC	XOR	IXU			DD CB 12 2B	LD	(IX+12H),IY	I	L
DD AD	XOR	A,IXL			DD CB 12 2E	SRA	(IX+12H)	l	
DD AD	XOR	IXL			DD CB 12 31	LD	HL,(SP+12H)	!	L
DD AE 12	XOR	(IX+12H)			DD CB 12 33	LD	HL,(IX+12H)	-	L
DD AE 12	XOR	A,(IX+12H)	I		DD CB 12 39	LD	(SP+12H),HL	-	L
DD AF	XORW	HL,IX			DD CB 12 3A	SRLW	(IX+12H)	-	
	XORW	IX			DD CB 12 3B	LD	(IX+12H),HL		L
DD B4 DD B4	OR OR	a,ixu Ixu			DD CB 12 3E DD CB 12 46	SRL BIT	(IX+12H)	÷	
DD B5	OR	A,IXL			DD CB 12 40 DD CB 12 4E	BIT	0,(IX+12H) 1,(IX+12H)	÷	
DD B5	OR	IXL			DD CB 12 56	BIT	2,(IX∔12H)	÷	
DD B6 12	OR	(IX+12H)	1		DD CB 12 5E	BIT	3,(IX+12H)	i	
DD B6 12	OR	A,(IX+12H)	i		DD CB 12 66	BIT	4,(IX+12H)	i	
DD B7	ORW	HL,IX			DD CB 12 6E	BIT	5,(IX+12H)	Ì	
DD B7	ORW	IX Í			DD CB 12 76	BIT	6,(IX+12H)	T	
DD BC	CP	A,IXU			DD CB 12 7E	BIT	7,(IX+12H)	T	
DD BC	CP	IXU			DD CB 12 86	RES	0,(IX+12H)	1	
DD BD	CP	A,IXL			DD CB 12 8E	RES	1,(IX+12H)	1	
DD BD	CP	IXL			DD CB 12 92	MULTW	(IX+12H)	1	
DD BE 12	CP	(IX+12H)	I		DD CB 12 92	MULTW	HL,(IX+12H)	T	
DD BE 12	CP	A,(IX+12H)	1		DD CB 12 96	RES	2,(IX+12H)	I	
DD BF	CPW	HL,IX			DD CB 12 9A	MULTUW			
DD BF	CPW	IX			DD CB 12 9A		HL,(IX+12H)		
DD CO	DDIR	W			DD CB 12 9E	RES	3,(IX+12H)		
DD C1	DDIR	IB,W			DD CB 12 A6	RES	4,(IX+12H)	-	
DD C2	DDIR	IW,W			DD CB 12 AE	RES	5,(IX+12H)	-	
DD C3	DDIR CALR		х		DD CB 12 B6 DD CB 12 BA	RES DIVUW	6,(IX+12H) (IX+12H)	-	
DD C4 34 12 DD C6 12	ADDW	NZ,1234H (IX+12H)	. ^		DD CB 12 BA	DIVUW	$HL_{(IX+12H)}$	İ	
DD C6 12	ADDW	· · · · · · · · · · · · · · · · · · ·	1		DD CB 12 BA	RES	7,(IX+12H)	i	
DD C8	LDCTL				DD CB 12 C6	SET	0,(IX+12H)	i	
DD CA 01		SR,01H			DD CB 12 CE	SET	1,(IX+12H)	i	
DD CB 12 01	LD	BC,(SP+12H)	1	L	DD CB 12 D6	SET	2,(IX+12H)	i	
DD CB 12 02	RLCW	(IX+12H)	1		DD CB 12 DE	SET	3,(IX+12H)	1	
DD CB 12 03	LD	BC,(IX+12H)	1	L	DD CB 12 E6	SET	4,(IX+12H)	I	
DD CB 12 06	RLC	(IX+12H)	1		DD CB 12 EE	SET	5,(IX+12H)	1	
DD CB 12 09	LD	(SP+12H),BC	1	L	DD CB 12 F6	SET	6,(IX+12H)	I	
DD CB 12 0A	RRCW	(IX+12H)	I		DD CB 12 FE	SET	7,(IX+12H)	Ι	
DD CB 12 0B	LD	(IX+12H),BC	1	L	DD CC 34 12	CALR	Z,1234H		Х
DD CB 12 0E	RRC	(IX+12H)			DD CD 34 12	CALR	1234H		Х
DD CB 12 11	LD	DE,(SP+12H)		L	DD CE 12	ADCW	(IX+12H)	1	
DD CB 12 12	RLW	(IX+12H)	1		DD CE 12	ADCW	HL,(IX+12H)		
DD CB 12 13	LD	DE,(IX+12H)		L	DD CF	MTEST			
DD CB 12 16	RL	(IX+12H)			DD D0		A,XSR		V
DD CB 12 19		(SP+12H),DE		L	DD D4 34 12	CALR	NC,1234H		Х
DD CB 12 1A	RRW	(IX+12H)			DD D6 12	SUBW	(IX+12H)		
DD CB 12 1B	LD	(IX+12H),DE		L	DD D6 12	SUBW	HL,(IX+12H)	I	
DD CB 12 1E	RR	(IX+12H)	1		DD D8		XSR,A		
DD CB 12 21	LD SLAW	IX,(SP+12H)	1	L		EXXX LDCTL	XSR,01H		
DD CB 12 22 DD CB 12 23	LD	(IX+12H) IY,(IX+12H)	1	L	DD DA 01 DD DC 34 12	CALR	C,1234H		Х
DD CB 12 23 DD CB 12 26	SLA	(IX+12H)	1	L	DD DC 34 12 DD DE 12	SBCW	(IX+12H)	1	~
DD CB 12 20 DD CB 12 29	LD	(IX+12H) (SP+12H),IX	1	L	DD DE 12 DD DE 12	SBCW	HL,(IX+12H)	'	
DD CB 12 23	SRAW	(IX+12H)	i	-	DD E1	POP	IX		L
	<u> </u>		•						

⊗ Zilos

C

Object Code	Source	Code	Mo	ode		Object Code	Source	e Code	Mod	e
DD E3	EX	(SP),IX					EX	A,C		
DD E4 34 12	CALR	PO,1234H		Х	_	ED 10 12	INO	D,(12H)		
DD E5	PUSH	IX			L	ED 11 12	OUTO	(12H),D		
DD E6 12	ANDW		1			ED 12	LD	DE,BC		L
DD E6 12	ANDW	HL,(IX+12H)	I			ED 13	EX	DE,IX		L
DD E9	JP	(IX)		Х		ED 14	TST	D		
DD EC 34 12	CALR	PE,1234H		Х		ED 16 34 12	LDW	(DE),1234H	I	L
DD EE 12	XORW	(IX+12H)	1			ED 17	EX	A,D		
DD EE 12	XORW	· · · · ·	I			ED 18 12	IN0	E,(12H)		
DD F3 1F		1FH		v		ED 19 12	OUT0	(12H),E		
DD F4 34 12 DD F6 12	CALR ORW	P,1234H (IX+12H)	I	Х		ED 1B ED 1C	EX TST	DE,IY E		L
DD F6 12	ORW	HL,(IX+12H)	i			ED 1E	SWAP	DE		
DD F7	SETC	LW	'			ED 1F	EX	A,E		
DD F9	LD	SP,IX			L	ED 20 12	INO	H,(12H)		
DD FB 1F	EI	1FH				ED 21 12	OUTO	(12H),H		
DD FC 34 12	CALR	M,1234H		Х		ED 24	TST	Η̈́		
DD FE 12	CPW	(IX+12H)	I			ED 27	EX	A,H		
DD FE 12	CPW	HL,(IX+12H)	I.			ED 28 12	INO	L,(12H)		
DD FF	RESC	LW				ED 29 12	OUTO	(12H),L		
DE 12	SBC	A,12H				ED 2B	EX	IX,IY		L
DF	RST	18H		Х		ED 2C	TST	L		
EO	RET	NV		Х		ED 2F	EX	A,L		
EO	RET	PO		Х		ED 30 12	INO	(12H)		
E1	POP	HL		v	L	ED 32	LD	HL,BC		L
E2 34 12 E2 34 12	JP JP	NV,1234H	1	X X		ED 33 ED 34	EX TST	HL,IX		L
E2 34 12 E3	EX	PO,1234H	I	^	L	ED 34 ED 36 34 12	LDW	(HL) (HL),1234H	I	L
E4 34 12	CALL	(SP),HL NV, 1234H	Т	х	L	ED 30 34 12 ED 37	EX	(HL), 123411 A,(HL)	1	L
E4 34 12	CALL	PO,1234H	i	x		ED 38 12	INO	A,(12H)		
E5	PUSH	HL	•	~	L	ED 39 12	OUTO	(12H),A		
E6 12	AND	12H			-	ED 3B	EX	HL,IY		L
E6 12	AND	A,12H				ED 3C	TST	A		
E7	RST	20H		Х		ED 3E	SWAP	HL		
E8	RET	PE		Х		ED 3F	EX	A,A		
E8	RET	V		Х		ED 40	IN	B,(C)		
E9	JP	(HL)		Х		ED 41	OUT	(C),B		
EA 34 12	JP	PE,1234H	I	Х		ED 42	SBC	HL,BC		
EA 34 12	JP	V,1234H	I	Х		ED 43 34 12	LD	(1234H),BC	I	L
EB	EX	DE,HL		.,	L	ED 44	NEG	А		
EC 34 12	CALL	V, 1234H		X X		ED 44	NEG		,	,
EC 34 12 ED 00 12	CALL IN0	PE,1234H	I	~		ED 45 ED 46	RETN	0	>	× .
ED 00 12 ED 01 12	01.170	B,(12H) (12H) B					IM	0		
ED 02	LD	(12H),B BC,BC			L	ED 47 ED 48	LD IN	I,A C,(C)		
ED 03	EX	BC,IX			Ĺ	ED 40	OUT	(C),C		
ED 04	TST	B			-	ED 43	ADC	HL,BC		
ED 05	EX	BC,DE			L	ED 4B 34 12	LD	BC,(1234H)	I	L
ED 06 34 12	LDW	(BC),1234H	I		L	ED 4C	MLT	BC,(120411)	•	-
ED 07	EX	A,B	•		_	ED 4D	RETI		>	X
ED 08 12	INO	C,(12H)				ED 4E	IM	3		
ED 09 12	OUTO	(12H),C				ED 4F	LD	R,A		
ED 0B	EX	BC,IY			L	ED 50	IN	D,(C)		
ED 0C	TST	С				ED 51	OUT	(C),D		
ED 0D	EX	BC,HL			L					
ED OE	SWAP	BC								

⊗ Zilos

Object Code	Source Code	Mada		Source Code	Mode
Object Code	Source Code	Mode	Object Code	Source Code	Mode
ED 52 ED 53 34 12 ED 54 ED 54	SBC HL,DE LD (1234H),DE NEGW HL NEGW	1	ED 8D L ED 8E 34 12 ED 8E 34 12 ED 8F	ADCW HL,DE ADCW 1234H ADCW HL,1234H ADCW HL	
ED 55 ED 56	reserved IM 1		ED 8F ED 92 34 12	ADCW HL,HL SUB SP,1234H	ΙX
ED 57	LD A,I		ED 93	OTIMR	
ED 58 ED 59	IN E,(C) OUT (C),E		ED 94 ED 94	SUBW BC SUBW HL,BC	
ED 5A ED 5B 34 12	ADC HL,DE LD DE,(1234H)	1	ED 95 L ED 95	SUBW DE SUBW HL,DE	
ED 5C ED 5E	MLT DE IM 2		ED 96 34 12 ED 96 34 12	SUBW 1234H SUBW HL,1234H	
ED 5F	LD A,R		ED 97	SUBW HL	
ED 60 ED 61	IN H,(C) OUT (C),H		ED 97 ED 9B	SUBW HL,HL OTDMR	
ED 62 ED 63 34 12	SBC HL,HL LD (1234H),HL	I	ED 9C L ED 9C	SBCW BC SBCW HL,BC	
ED 64 12	TST 12H		ED 9D	SBCW DE	
ED 65 ED 65	EXTS A EXTS		L ED 9D L ED 9E 34 12	SBCW HL,DE SBCW 1234H	
ED 67 ED 68	RRD IN L,(C)		ED 9E 34 12 ED 9F	SBCW HL,1234H SBCW HL	
ED 69 ED 6A	OUT (C),L ADC HL,HL		ED 9F ED A0	SBCW HL,HL LDI	
ED 6B 34 12	LD HL,(1234H)	I	L ED A1 ED A2	CPI	Х
ED 6C ED 6F	MLT HL RLD		ED A3	OUTI	
ED 71 12 ED 72	OUT (C),12H SBC HL,SP		ED A4 ED A4	ANDW BC ANDW HL,BC	
ED 73 34 12 ED 74 12	LD (1234H),SP TSTIO 12H	l	L ED A5 ED A5	ANDW DE ANDW HL,DE	
ED 75 ED 75	EXTSW HL EXTSW		ED A6 34 12 ED A6 34 12	ANDW 1234H ANDW HL,1234H	
ED 76	SLP		ED A7	ANDW HL	
ED 78 ED 79	IN A,(C) OUT (C),A		ED Á7 ED A8	ANDW HL,HL LDD	
ED 7A ED 7B 34 12	ADC HL,SP LD SP,(1234H)	1	ED A9 L ED AA	CPD IND	Х
ED 7C ED 82 34 12	MLT SP ADD SP,1234H	IХ	ED AB ED AC	OUTD XORW BC	
ED 83 ED 84	OTIM ADDW BC		ED AC ED AD	XORW HL,BC XORW DE	
ED 84	ADDW HL,BC		ED AD	XORW HL,DE	
ED 85 ED 85	ADDW DE ADDW HL,DE		ED AE 34 12 ED AE 34 12	XORW 1234H XORW HL,1234H	
ED 86 34 12 ED 86 34 12	ADDW 1234H ADDW HL,1234H		ED AF ED AF	XORW HL XORW HL,HL	
ED 87 ED 87	ADDW HL ADDW HL,HL		ED B0 ED B1	LDIR CPIR	х
ED 8B	OTDM ADCW BC		ED B2	INIR OTIR	
ED 8C ED 8C	ADCW HL,BC		ED B3 ED B4	ORW BC	
ED 8D	ADCW DE		ED B4	ORW HL,BC	

C

Object Code	Source Code	Mode	Object Code	Source Code	Mode
ED B5 ED B5 ED B6 34 12 ED B6 34 12 ED B7 ED B7 ED B7 ED B7 ED B7 ED B8 ED B9 ED B8 ED B0 ED B0 ED B0 ED B0 ED B0 ED B0 ED B1 ED B2 ED B7 ED C0 ED C1 ED C4 12 ED C5 ED C6 34 12 ED C8 00 ED C8 01 ED C8 02 ED C8 03 ED C8 04 ED C8 05 ED C8 03 ED C8 04 ED C8 05 ED C8 08 ED C8 09 ED C8 00 ED C8 01 ED C8 02 ED C8 03 ED C8 04 ED C8 05 ED C8 08 ED C8 08 ED C8 08 ED C8 00 ED C8 11 ED C8 12 ED C8 13 ED C8 14 ED C8 12 ED C8 14 ED C8 12 ED	Source CodeORWDEORWHL,DEORW1234HORWHL,1234HORWHL,1234HORWHL,1234HORWHL,HLLDDRCPDRINDROTDRCPWBCCPWHL,BCCPWDECPWHL,DECPWHL,CECPWHL,1234HCPWHL,1234HCPWHL,1234HCPWHL,1234HCPWHL,1234HCPWHL,1234HCPWHL,1234HCPWHLLDCTLHL,8RPOPSRCALRNZ,12HPUSHSR,HLRLCWBCRLCWDERLCWDERLCWIXRLCWIXRLCWIXRRCWIERRCWHLRRCWIXRRCWIXRRCWIXRRCWIYRLWIXRRWIYRLWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRLWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRWIXRRW		ED CB 28 ED CB 29 ED CB 29 ED CB 20 ED CB 20 ED CB 30 ED CB 31 ED CB 33 ED CB 35 ED CB 35 ED CB 38 ED CB 30 ED CB 33 ED CB 30 ED CB 30 ED CB 30 ED CB 90 ED CB 91 ED CB 91 ED CB 93 ED CB 93 ED CB 97 ED CB 97 ED CB 99	SRAW BC SRAW DE SRAW (HL) SRAW HL SRAW IX SRAW IX SRAW IY EX BC,BC' EX DE,DE' EX HL,HL' EX IX,IX' EX IY,IY' SRLW BC SRLW BC SRLW DE SRLW (HL) SRLW HL SRLW IX SRLW HL SRLW IX SRLW IX MULTW HL,IZ MULTW HL,IZ MULTUW	BC HL,BC DE HL,DE HL,DE HL,HL HL,IX IX HL,IY IY 1234H HL,1234H

& Sirae

Object Code	Source (Code	M	ode		Object	Code		Source	e Code	M	ode	
ED CB BC	DIVUW	HL,IX				 FA 34			JP	S,1234H	1	X	
ED CB BC	DIVUW	IX				FB			El				
ED CB BD ED CB BD	DIVUW DIVUW	HL,IY IY				FC 34 FD 01	12		CALL S	6, M, 1234H (BC), IY	I	Х	L
ED CB BF	DIVUW	1234H				FD 02			LD	BC,HL			L
ED CB BF	DIVUW	HL,1234H				FD 03			LD	IY,(BC)			L
ED CC 12	CALR	Z,12H		Х		FD 07			LD	IY,BC			L
ED CD 12 ED CF	CALR BTEST	12H		Х		FD 09 FD 0B			ADD	IY,BC		Х	
ED DO	LDCTL	A,DSR				FD 06			LD LD	BC,IY (BC),BC			L
ED D3 34 12	OUTA	(1234H),A	Ι			FD 0D			LD	(DE),BC			Ĺ
ED D4 12	CALR	NC,12H		Х		FD OF			LD	(HL),BC			L
ED D6 34 12	SUB	HL,(1234H)	I	Х			56 34	12	DJNZ	123456H		Х	,
ED D8 ED D9	LDCTL EXALL	DSR,A				FD 11 FD 12			LD LD	(DE),IY DE,HL			L
ED DA 01	LDCTL	DSR,01H				FD 13			LD	IY,(DE)			L
ED DB 34 12	INA	A,(1234H)	1			FD 17			LD	IY,DE			L
ED DC 12		C,12H		Х		FD 18 FD 19	56 34	12	JR	123456H		X X	
ED EO ED E2	LDIW INIW				L	FD 19			ADD LD	IY,DE DE,IY		~	L
ED E3	OUTIW					FD 1C			LD	(BC),DE			L
ED E4 12	CALR	PO,12H		Х		FD 1D			LD	(DE),DE			L
ED E8					L	FD 1F	50.04	10	LD	(HL),DE		v	L
ED EA ED EB	INDW OUTDW					FD 20 FD 21	56 34 34 12	12	JR LD	NZ,123456H IY,1234H	1	Х	L
ED EC 12	CALR	PE,12H		Х			34 12		LD	(1234H),IY	i		Ĺ
ED FO	LDIRW				L	FD 23			INC	IY		Х	
ED F2 ED F3	INIRW OTIRW					FD 23 FD 24			INCW INC	IY IYU		Х	
ED F3 ED F4 12	CALR	P,12H		х		FD 24 FD 25			DEC	IYU			
ED F7	SETC	LCK				FD 27			LD	IY,IX			L
ED F8	LDDRW				L	FD 28	56 34	12	JR	Z,123456H		Х	
ED FA ED FB						FD 29	34 12			IY,IY	I	Х	
ED FG 12	OTDRW CALR	M,12H		х		FD 2A FD 2B			LD DEC	IY,(1234H) IY	I	х	L
ED FF	RESC	LCK				FD 2B			DECW			X	
EE 12	XOR	12H				FD 2C			INC	IYL			
EE 12 EF	XOR RST	A,12H 28H		v		FD 2D FD 2E			DEC LD	IYL IYL,12H			
FO	RET	NS		X X			56 34	12	JR	NC,123456H		х	
FO	RET	P		X		FD 31			LD	(HL),IY			L
F1	POP	AF			L	FD 32			LD	HL,HL			L
F2 34 12	JP	NS,1234H		X		FD 33	10			IY,(HL)			L
F2 34 12 F3	JP DI	P,1234H	I	Х		FD 34 FD 35			INC DEC	(IY+12H) (IY+12H)	i		
F4 34 12	CALL NS	P,1234H	I	Х		FD 36	34 12		LD	(IY+12H),34H	i		
F5	PUSH	AF			L	FD 36			LD	IYU,12H			
F6 12	OR	12H				FD 37	50.04	40	LD	IY,HL		v	L
F6 12 F7	OR RST	A,12H 30H		х		FD 38 FD 39	56 34	12	JR ADD	C,123456H IY,SP		X X	
F8	RET	M		x		FD 3B			LD	HL,IY		^	L
F8	RET	S		X		FD 3C			LD	(BC),HL			L
F9	LD	SP,HL			L	FD 3D			LD	(DE),HL			L
FA 34 12	JP	M,1234H		X		FD 3E	-		SWAP	IY		_	

Object Code	Source	Code	Mode		Object Code		Source	Code	Mode
FD 3F FD 44 FD 45 FD 46 12 FD 4C	LD LD LD LD LD	(HL),HL B,IYU B,IYL B,(IY+12H) C,IYU	1	L	FD 97 FD 9C FD 9D FD 9D FD 9E 12 FD 9F		SUBW SBC SBC SBC SBCW	IY A,IYU A,IYL A,(IY+12H) HL,IY	
FD 4D FD 4E 12 FD 54 FD 55 FD 56 12	LD LD LD LD	C,IYL C,(IY+12H) D,IYU D,IYL	I		FD 9F FD A4 FD A4 FD A5 FD A5		SBCW AND AND AND AND	IY A,IYU IYU A,IYL IYL	
FD 56 12 FD 5C FD 5D FD 5E 12 FD 60 FD 61	LD LD LD LD LD LD	D,(IY+12H) E,IYU E,IYL E,(IY+12H) IYU,B IYU,C	I		FD A5 FD A6 12 FD A6 12 FD A7 FD A7 FD A7 FD AC		AND AND ANDW ANDW XOR	(IY+12H) A,(IY+12H) HL,IY IY A,IYU	
FD 62 FD 63 FD 64 FD 65	LD LD LD LD	IYU,D IYU,E IYU,IYU IYU,IYL			FD AC FD AD FD AD FD AE 12		XOR XOR XOR XOR	IYU A,IYL IYL (IY+12H)	1
FD 66 12 FD 67 FD 68 FD 69 FD 6A FD 6B	LD LD LD LD LD	H,(IY+12H) IYU,A IYL,B IYL,C IYL,D IYL,E	I		FD AE 12 FD AF FD AF FD B4 FD B4 FD B5		XOR XORW XORW OR OR OR	A,(IY+12H) HL,IY IY A,IYU IYU A,IYL	I
FD 6C FD 6D FD 6E 12 FD 6F FD 70 12 FD 71 12	LD LD LD LD LD LD	IYL,IYU IYL,IYL L,(IY+12H) IYL,A (IY+12H),B (IY+12H),C	1		FD B5 FD B6 12 FD B6 12 FD B7 FD B7 FD B7 FD BC		OR OR OR ORW ORW CP	IYL (IY+12H) A,(IY+12H) HL,IY IY A,IYU	
FD 72 12 FD 73 12 FD 74 12 FD 75 12 FD 77 12	LD LD LD LD	(IY+12H),D (IY+12H),E (IY+12H),H (IY+12H),L (IY+12H),A		L	FD BC FD BD FD BD FD BE 12 FD BE 12		CP CP CP CP CP	IYU A,IYL IYL (IY+12H) A,(IY+12H)	i 1
FD 79 34 12 FD 7C FD 7D FD 7E 12 FD 84 FD 85	OUTW LD LD ADD	(C),1234H A,IYU A,IYL A,(IY+12H) A,IYU	I		FD BF FD BF FD C0 FD C1 FD C2 FD C2		CPW CPW DDIR DDIR DDIR	HL,IY IY LW IB,LW IW,LW	
FD 85 FD 86 12 FD 87 FD 87 FD 8C FD 8D	ADD ADD ADDW ADDW ADC ADC		I		FD C3 FD C4 56 34 FD C6 12 FD C6 12 FD C6 12 FD CB 12 02 FD CB 12 03	12	DDIR CALR ADDW ADDW RLCW LD	IW NZ,123456H (IY+12H) HL,(IY+12H) (IY+12H) BC,(IY+12H)	X
FD 8E 12 FD 8F FD 8F FD 94 FD 95	ADC ADCW ADCW SUB SUB	A,(IY+12H) HL,IY	I		FD CB 12 06 FD CB 12 06 FD CB 12 0A FD CB 12 0B FD CB 12 0E FD CB 12 12		RLC RRCW LD RRC RLW	(IY+12H) (IY+12H) (IY+12H),BC (IY+12H) (IY+12H) (IY+12H)	
FD 96 12 FD 97	SUB SUBW	A,(IY+12H)	1		FD CB 12 13 FD CB 12 16		LD RL	(IY+12H) (IY+12H)	i i

L

L

L

& Silæ

Object Code	Source C	ode	Mode	Object Code	Source (Code	Mode
FD CB 12 1A FD CB 12 1B FD CB 12 1E FD CB 12 21 FD CB 12 21 FD CB 12 22 FD CB 12 23 FD CB 12 23 FD CB 12 28 FD CB 12 28 FD CB 12 33 FD CB 12 33 FD CB 12 33 FD CB 12 34 FD CB 12 35 FD CB 12 35 FD CB 12 36 FD	RRW LD RR LD SLAW LD SLAW LD SLA LD SRAW LD SRAW LD SRAW LD SRLW LD SRLW LD SRLW LD SRLW LD SRL BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT	$\begin{array}{c} (Y+12H) \\ (Y+12H), DE \\ (Y+12H) \\ Y, (SP+12H) \\ (Y+12H) \\ 2, (Y+12H) \\ 3, (Y+12H) \\ 4, (Y+12H) \\ 5, (Y+12H) \\ 4, (Y+12H) \\ 5, (Y+12H) \\ 6, (Y+12H) \\ 6, (Y+12H) \\ 6, (Y+12H) \\ 1, (Y+12H) \\ 0, (Y+12H) \\ 1, ($	I L I L I L I L I L I L I L I L I L I L I L I L I L I L I I I I I I I I I X I X I X I X I X I X I X I X I X I X I X I X I I	FD D8 FD D9 FD DA 01 FD DB 34 12 FD DC 56 34 12 FD DE 12 FD DE 12 FD E4 56 34 12 FD E6 12 FD E6 12 FD E6 12 FD E6 12 FD E6 12 FD E7 5 34 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F6 12 FD F7 FD F8 F0 F8 F0 F8 F0 F8 F0 F8 F0 F8 F0 F8 F0 F8 F0 F8 F12 F12 F2 F2 F2 F2 F3 F4 F4 F5 F6 F7 F8	LDCTL EXXY LDCTL INAW CALR SBCW POP EX CALR PUSH ANDW JP CALR XORW CALR PUSH ORW CALR PUSH ORW CALR PUSH ORW CALR CPW CP CP CP RST	YSR,A YSR,01H HL,(1234H) C,123456H (IY+12H) HL,(IY+12H) IY (SP),IY PO,123456H IY (IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) HL,(IY+12H) 38H	

\$ 600	V Solar Solar Solar Solar Solar		10 	· · · ·
	، بر کی کر ۱۹	α an a	· · · · ·	5
	ر بال المراجع مەقرىر مى بىر بالار مەرر مى بىر بىر		5 •ø «n *n	, , , , , , , , , , , , , , , , , , , ,
A	pper	ıdix	D	D
5 43	<u>آو</u> بالارتران	en al constantino de la consta	. r.	anu , a , , a , , a , , a , , , ,
			1999 9 - 8 9 - 9 9 9 9 - 9 9 9 9	2
			1221	

Superhittagention7 | Products dalas

and the second s

Atamane Seléo

ZNogʻs Sales Gillans (1971) Ropras Lählvoo (111) & Distribultura

USER'S MANUAL

APPENDIX D INSTRUCTIONS AFFECTED BY NORMAL/ EXTENDED MODE, AND LONG WORD MODE

This Appendix has two sets of tables. Each table is a subset of the Table in the Appendix B. The Table D-1 has the instructions which works differently in the Native and

Extended mode of operation, and the Table D-2 has the instructions which works differently in Word/Long Word mode of operation.

Table D-1. Instructions operating differently in Native or Extended mode of operation.

Sourc	e Code	Obje	ect Co	de			 Source	Code	Obje	ect Co	ode		
ADD ADD ADD ADD ADD	HL,BC HL,DE HL,HL HL,SP	09 19 29 39					DECW DECW DECW DECW	HL IX	1B 2B DD FD	2B 2B			
ADD ADD ADD ADD ADD ADD	IX,BC IX,DE IX,IX IX,SP IY,BC	DD DD DD DD FD	09 19 29 39 09				DECW DJNZ DJNZ DJNZ INC	SP 123456H 1234H 12H BC	3B FD DD 10 03	10 10 12	56 34	34 12	12
ADD ADD ADD CALR	IY,DE IY,IY IY,SP 123456H	FD FD FD FD	19 29 39 CD	56	34	12	INC INC INC INC INC	DE HL IX IY SP	13 23 DD FD 33	23 23			
CALR CALR CALR CALR	1234H 12H C,123456H C,1234H	DD ED FD DD	CD CD DC DC	34 12 56 34	12 34 12	12	INCW INCW INCW	BC DE HL	03 13 23				
CALR CALR CALR CALR	C,12H M,123456H M,1234H M,12H	ED FD DD ED	DC FC FC FC	12 34 12	12		INCW INCW INCW JP	IX IY SP (HL)	DD FD 33 E9	23 23			
CALR CALR CALR CALR	NC, 123456H NC, 1234H NC, 12H NZ, 123456H	FD DD ED FD	D4 D4 D4 C4	56 34 12 56	34 12 34	12 12	JP JP JR JR	(IX) (IY) 123456H 1234H	DD FD FD DD	E9 E9 18 18	34	12	
CALR CALR CALR CALR	NZ,1234H NZ,12H P,123456H	DD ED FD DD	C4 C4 F4 F4	34 12 56 34	12 34 12	12	JR JR JR JR	12H C,123456H C,1234H C,12H	18 FD DD 38	12 38 38 12	56 34	34 12	12
CALR CALR CALR	P,12H PE,123456H PE,1234H	ED FD DD	F4 EC EC	12 56 34	34 12	12	JR JR JR JR	NC,123456H NC,1234H NZ,123456H NZ,1234H	FD DD FD DD	30 30 20 20	56 34 56 34	34 12 34 12	12 12
CALR CALR CALR CALR	PO,1234H PO,12H	ED FD DD ED	EC E4 E4 E4	12 56 34 12	34 12	12	JR JR JR	NZ,12H Z,123456H Z,1234H	20 FD DD	12 28 28	56 34	34 12	12
CALR CALR CPD CPDR CPDR CPIR DEC	Z,123456H Z,1234H Z,12H BC	FD DD ED ED ED ED ED OB	CC CC A9 B9 A1 B1	56 34 12	34 12	12	JR RET RET RET RET RET RET RET	Z,12H C M NC NS NV NZ P	28 D8 F8 D0 F0 E0 C0 F0	12			
DEC DEC DEC DEC DEC DEC DECW	DE HL IX IY SP	1B 2B DD FD 3B 0B	2B 2B				 RET RET RET RET RET RET RET	PE PO S V Z	E8 E0 F8 E8 C8 C9 ED	4D			

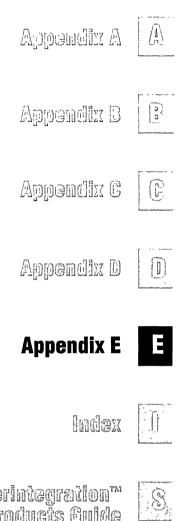

Sourc	e Code	Obje	Object Code					
RETN		ED	45					
RST	00H	C7						
RST	08H	CF						
RST	10H	D7						
RST	18H	DF						
RST	20H	E7						
RST	28H	EF						
RST	30H	F7						
RST	38H	FF						

Table D-2. Instructions operates different in Long Word Modes.

Sourc	e Code	Object Co	ode	Sour	ce Code	Obje	ect Code	
EX EX	(SP),HL (SP),IX	E3 DD E3		LD LD	BC,DE BC,HL	DD FD	02 02	
ΕX	(SP),IY	FD E3		LD	BC,IX	DD	OB	
EX	BC,BC'	ED CB	30	LD	BC,IY	FD	0B	
EX EX	BC,DE BC,HL	ED 05 ED 0D		LD LD	DE,(BC) DE,(DE)	DD DD	1C 1D	
EX	BC,IX	ED 0D ED 03		LD	DE,(DE) DE,(HL)		1D 1F	
EX	BC,IX BC,IY	ED 0B		LD	DE,BC	ED	12	
EX	DE,DE'	ED CB	31	LD	DE,DE	DD	12	
EX	DE,HL	EB		LD	DE,HL	FD	12	
EX	DE,IX	ED 13		LD	DE,IX	DD	1B	
EX	DE,IY	ED 1B		LD	DE,IY	FD	1B	
EX	HL,HL'	ED CB	33	LD	HL,(BC)	DD	3C	
EX	HL,IX	ED 33 ED 3B		LD LD	HL,(DE) HL,(HL)	DD DD	3D 3F	
EX EX	HL,IY IX,IX'	ED 3B ED CB	34	LD	HL,BC	ED	32	
EX	IX,IX IX,IY	ED 2B	04	LD	HL,DE	DD	32	
EX	IY,IY'	ED CB	35	LD	HL,HL	FD	32	
EXTS	A	ED 65		LD	HL,I	DD	57	
EXTS		ED 65		LD	HL,IX	DD	3B	
LD	(BC),BC	FD OC		LD	HL,IY	FD	3B	
LD	(BC),DE	FD 1C		LD	I,HL	DD	47	
LD	(BC),HL	FD 3C DD 01		LD LD	IX,(BC) IX,(DE)	DD DD	03 13	
LD LD	(BC),IX (BC),IY	FD 01		LD	IX,(DE)		33	
LD	(DE),BC	FD 0D		LD	IX,BC	DD	07	
LD	(DE),DE	FD 1D		LD	IX,DE	DD	17	
LD	(DE),HL	FD 3D		LD	IX,HL	DD	37	
LD	(DE),IX	DD 11		LD	IX,IY	DD	27	
LD	(DE),IY	FD 11		LD	IY,(BC)	FD	03	
LD	(HL),BC	FD OF		LD	IY,(DE)	FD	13	
LD	(HL),DE	FD 1F		LD	IY,(HL)	FD	33 07	
LD LD	(HL),HL (HL),IX	FD 3F DD 31		LD LD	IY,BC IY,DE	FD FD	17	
LD	(HL),IX (HL),IY	FD 31		LD	IY,HL	FD	37	
LD	BC,(BC)	DD OC		LD	IY,IX	FD	27	
LD	BC,(DE)	DD 0D		LD	SP,HL	F9		
LD	BC,(HL)	DD 0F		LD	SP,IX	DD	F9	
LD	BC,BC	ED 02		LD	SP,IY	FD	F9	

Source	e Code	1	Obje	ect Coc	le	
	HL,SR		ED	C0		
	. SR,HL		ED	C8		
LDDRV	V		ED	F8		
LDDW			ED	E8		
LDIRW			ED	F0		
LDIW			ED	EO		
LDW	HL,I		DD	57		
LDW	I,HL		DD	47		
POP	AF		F1			
POP	BC		C1			
POP	DE		D1			
POP	HL		E1			
POP	IX		DD	E1		
POP	IY		FD	E1		
POP	SR		ED	C1		
PUSH	AF		F5			
PUSH	BC		C5			
PUSH	DE		D5			
PUSH	HL		E5			
PUSH	IX		DD	E5		
PUSH	IY		FD	E5		
PUSH	SR		ED	C5		

Superintegration™ Products Guide

Literature Guide

Zilog's Sales Offices Representatives & Distributors ļ

USER'S MANUAL

[®]Silæ

APPENDIX E INSTRUCTIONS AFFECTED BY DDIR IM INSTRUCTIONS

This Appendix has instructions which can be used with the Decoder Directive(s) Extend Immediate. There are eight tables (E1-E8) which are the subset of the Table A, sorted by the category of the instruction.

Note that the instructions listed here does not have the DDIR Decoder Directive in front of the instructions listed below, and notation used here may be different by the assembler to be used.

Table E-1. Valid with DDIR IB in Extended mode. LW bit status does not affect the operation

ADD	HL,(123456H)	ED	C6	56	34	12	
ADD	SP,123456H	ED	82	56	34	12	
CALL	123456H	CD	56	34	12		
CALL	C,123456H	DC	56	34	12		
CALL	M,123456H	FC	56	34	12		
CALL	NC,123456H	D4	56	34	12		
CALL	NZ,123456H	C4	56	34	12		
CALL	P,123456H	F4	56	34	12		
CALL	PE,123456H	EC	56	34	12		
CALL	PO,123456H	E4	56	34	12		
CALL	Z,123456H	CC	56	34	12		
JP	123456H	C3	56	34	12		
JP	C,123456H	DA	56	34	12		
JP	M,123456H	FA	56	34	12		
JP	NC,123456H	D2	56	34	12		
JP	NS,123456H	F2	56	34	12		
JP	NV,123456H	E2	56	34	12		
JP	NZ,123456H	C2	56	34	12		
JP	P,123456H	F2	56	34	12		
JP	PE,123456H	EA	56	34	12		
JP	PO,123456H	E2	56	34	12		
JP	S,123456H	FA	56	34	12		
JP	V,123456H	EA	56	34	12		
JP	Z,123456H	CA	56	34	12		
SUB	HL,(123456H)	ED	D6	56	34	12	
SUB	SP,123456H	ED	92	56	34	12	

Table E-2. Valid with DDIR IB. XM bit status does not affect the operation. Transfer size determined by LW bit. (Either with DDIR IB, DDIR IB,LW or DDIR IB,W)

		_,	,			,,
LD	(123456H),BC	ED	43	56	34	12
LD LD	(123456H),DE (123456H),HL	ED 22	53 56	56 34	34 12	12
LD	(123456H),HL	ED	63	54 56	34	12
LD	(123456H),IX	DD	22	56	34	12
LD	(123456H),IY	FD	22	56	34	12
LD LD	(123456H),SP (IX+1234H),BC	ED DD	73 CB	56 34	34 12	12 0B
LD	(IX+1234H),DE	DD	CB	34	12	1B
LD	(IX+1234H),HL	DD	СВ	34	12	3B
LD LD	(IX+1234H),IY	DD FD	CB CB	34	12 12	2B 0B
LD	(IY+1234H),BC (IY+1234H),E	FD FD	СВ 73	34 34	12	UВ
LD	(IY+1234H),HL	FD	CB	34	12	3B
LD	(IY+1234H),IX	FD	СВ	34	12	2B
LD LD	(SP+1234H),BC (SP+1234H),DE	DD DD	CB CB	34 34	12 12	09 19
LD	(SP+1234H),DE (SP+1234H),HL	DD	СВ	34 34	12	39
LD	(SP+1234H),IX	DD	CB	34	12	29
LD	(SP+1234H),IY	FD	CB	34	12	29
LD LD	BC,(123456H) BC,(IX+1234H)	ED DD	4B CB	56 34	34 12	12 03
LD	BC,(IX+1234H) BC,(IY+1234H)	FD	CB	34 34	12	03
LD	BC,(SP+1234H)	DD	CB	34	12	01
LD	DE,(123456H)	ED	5B	56	34	12
LD LD	DE,(IX+1234H) DE,(IY+1234H)	DD FD	CB CB	34 34	12 12	13 13
LD	DE,(SP+1234H)	DD	CB	34	12	11
LD	HL,(123456H)	2A	56	34	12	
LD	HL,(123456H)	ED	6B	56	34	12
LD LD	HL,(IX+1234H) HL,(IY+1234H)	DD FD	CB CB	34 34	12 12	33 33
LD	HL,(SP+1234H)	DD	CB	34	12	31
LD	IX,(123456H)	DD	2A	56	34	12
LD	IX,(IY+1234H)	FD	CB	34	12	23
LD LD	IX,(SP+1234H) IY,(123456H)	DD FD	CB 2A	34 56	12 34	21 12
LD	IY,(IX+1234H)	DD	CB	34	12	23
LD	IY,(SP+1234H)	FD	СВ	34	12	21
LD	SP,(123456H)	ED	7B	56	34	12
LDW LDW	(BC),123456H (DE),123456H	ED ED	06 16	56 56	34 34	12 12
LDW	(HL),123456H	ED	36	56	34 34	12

Table E-3. Valid with DDIR IB in Long Word mode. XM bit status does not affect the operation. (Either with DDIR IB,LW or DDIR IB with LW bit set.)

LD	BC,123456H	01	56	34	12	
LD	DE,123456H	11	56	34	12	
LD	HL,123456H	21	56	34	12	
LD	IX,123456H	DD	21	56	34	12
LD	IY,123456H	FD	21	56	34	12
LD	SP,123456H	31	56	34	12	
PUSH	123456H	FD	F 5	56	34	12

Table E-4. Valid with DDIR IB. XM bit nor LW bit status do not affect the operation

A,(IX+1234H) A,(IY+1234H) (IX+1234H)	DD	8E	34	12		LD	(12
			U .				
(1X + 1234H)	FD	8E	34	12		LD	(IX
	DD	CE	34	12		LD	(IX
(IY+1234H)	FD	CE	34	12		LD	(IX
							(IX
							(IX
· · · · · ·							(IX
							(IX
							(IX
							(IY
							(IY
							(IY
· · ·							(IY (IY
							(IY
							(IY
							(IY
							A,(
							A,(
							A,(
					46		B,(
							B,(
							C,(
							C,(
							D,(
							D,(
						LD	E,(
						LD	E,(
						LD	Н,
						LD	Η,(
			34		6E	LD	L,(
5,(IY+1234H)			34		6E	LD	L,(
						MULTUV	
6,(IY+1234H)	FD	CB	34	12	76		
7,(IX+1234H)	DD	CB	34	12	7E		
7,(IY+1234H)	FD	CB	34	12	7E		
(IX+1234H)	DD	BE	34	12			(IX
(IY+1234H)	FD	BE	34	12			(IY
A,(IX+1234H)	DD	BE	34	12			HL
A,(IY+1234H)	FD	BE	34	12			HL (IX
	$\begin{array}{l} HL, (IX+1234H)\\ HL, (IY+1234H)\\ A, (IX+1234H)\\ A, (IY+1234H)\\ (IX+1234H)\\ (IY+1234H)\\ (IY+1234H)\\ HL, (IY+1234H)\\ HL, (IY+1234H)\\ (IY+1234H)\\ (IY+1234H)\\ A, (IY+1234H)\\ A, (IY+1234H)\\ (IY+1234H)\\ (IY+1234H)\\ HL, (IY+1234H)\\ HL, (IY+1234H)\\ HL, (IY+1234H)\\ 0, (IY+1234H)\\ 1, (IY+1234H)\\ 0, (IY+1234H)\\ 1, (IY+1234H)\\ 2, (IX+1234H)\\ 2, (IX+1234H)\\ 3, (IX+1234H)\\ 3, (IY+1234H)\\ 4, (IY+1234H)\\ 5, (IY+1234H)\\ 6, (IY+1234H)\\ 6, (IY+1234H)\\ 6, (IY+1234H)\\ 7, (IY+1234H)\\ 7, (IY+1234H)\\ 7, (IY+1234H)\\ (IY+1234H)\\ 7, (IY+1234H)\\ 7, (IY+1234H)\\ (IY+1234H)\\ 7, (IY+1234H)\\ 7, (IY+1234H)\\ (IY+1234H)\\ 7, (IY+1234H)\\ (IY+1234H)\\ (IY+1234H)\\ (IY+1234H)\\ 7, (IY+1234H)\\ (IY+123$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HL,(IX+1234H)DDCE3412HL,(IY+1234H)FDCE3412A,(IX+1234H)DD863412A,(IY+1234H)FD863412(IX+1234H)DDC63412(IX+1234H)FDC63412HL,(IX+1234H)DDC63412(IX+1234H)FDC63412(IX+1234H)DDA63412(IX+1234H)FDA63412(IX+1234H)FDA63412(IX+1234H)FDA63412(IX+1234H)FDE63412(IX+1234H)FDE63412(IX+1234H)FDE63412(IX+1234H)FDCB34120,(IX+1234H)FDCB34120,(IX+1234H)FDCB34121,(IX+1234H)FDCB34122,(IX+1234H)FDCB34123,(IX+1234H)FDCB34123,(IX+1234H)FDCB34123,(IX+1234H)FDCB34123,(IX+1234H)FDCB34124,(IX+1234H)FDCB34125,(IY+1234H)FDCB34126,(IX+1234H)FDCB34126,(IX+1234H)FDCB34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	·····					
CPW	(IX+1234H)	DD	FE	34	12	
CPW	(IY+1234H)	FD	FE	34	12	
CPW	HL,(IX+1234H)	DD	FE	34	12	
CPW	HL,(IY+1234H)	FD	FE	34	12	
DEC	(IX+1234H)	DD	35	34	12	
DEC	(IY+1234H)	FD	35	34	12	
DIVUW	(IX+1234H)	DD	CB	34	12	BA
DIVUW	(IY+1234H)	FD	CB	34	12	ΒA
DIVUW	HL,(IX+1234H)	DD	CB	34	12	BA
DIVUW	HL,(IY+1234H)	FD	CB	34	12	ΒA
INA	A,(123456H)	ED	DB	34	12	
INAW	HL,(123456H)	FD	DB	34	12	
INC	(IX+1234H)	DD	34	12		
INC	(IY+1234H)	FD	34	12	10	
LD	(123456H),A	32	56	34	12	50
LD	(IX+1234H),56H	DD	36	34	12	56
LD	(IX+1234H),A	DD	77	34	12	
LD	(IX+1234H),B	DD	70	34	12	
LD	(IX+1234H),C	DD	71	34	12	
LD LD	(IX+1234H),D	DD DD	72 73	34 34	12 12	
LD LD	(IX+1234H),E	DD	73	34 34	12	
LD LD	(IX+1234H),H (IX+1234H),L	DD	74	34 34	12	
LD	(IX+1234H),56H	FD	36	34	12	56
LD	(IY+1234H),A	FD	77	34	12	50
LD	(IY+1234H),B	FD	70	34	12	
LD	(IY+1234H),C	FD	71	34	12	
LD	(IY+1234H),D	FD	72	34	12	
LD	(IY+1234H),DE	FD	CB	34	12	1B
LD	(IY+1234H),H	FD	74	34	12	10
LD	(IY+1234H),L	FD	75	34	12	
LD	A,(1234H)	ЗA	34	34	12	
LD	A,(IX+1234H)	DD	7E	34	12	
LD	A,(IY+1234H)	FD	7E	34	12	
LD	B,(IX+1234H)	DD	46	34	12	
LD	B,(IY+1234H)	FD	46	34	12	
LD	C,(IX+1234H)	DD	4E	34	12	
LD	C,(IY+1234H)	FD	4E	34	12	
LD	D,(IX+1234H)	DD	56	34	12	
LD	D,(IY+1234H)	FD	56	34	12	
LD	E,(IX+1234H)	DD	5E	34	12	
LD	E,(IY+1234H)	FD	5E	34	12	
LD	H,(IX+1234H)	DD	66	34	12	
LD	H,(IY+1234H)	FD	66	34	12	
LD	L,(IX+1234H)	DD	6E	34	12	
LD	L,(IY+1234H)	FD	6E	34	12	
	V (IX+1234H)	DD	CB	34	12	9A
	V (IY+1234H)	FD	CB	34	12	9A
	VHL,(IX+1234H)	DD	CB	34	12	9A
	VHL,(IY+1234H)	FD	CB	34	12	9A
MULTW	(IX+1234H)		CB	34	12	92
MULTW	(IY+1234H)	FD	CB	34	12	92
MULTW	HL,(IX+1234H)	DD FD	CB	34	12	92
MULTW	HL,(IY+1234H) (IX+1234H)		CB	34	12	92
OR	(1/+1/23411)	DD	B6	34	12	

Silas

Z380™ User's Manual

OR OR OR OR OR OR OR OR OR OR OR OR OR O	(IY+1234H) A,(IX+1234H) (IX+1234H) (IX+1234H) (IY+1234H) HL,(IX+1234H) HL,(IY+1234H) (123456H),A (123456H),A (123456H),HL 0,(IX+1234H) 1,(IX+1234H) 2,(IX+1234H) 2,(IX+1234H) 3,(IX+1234H) 3,(IX+1234H) 3,(IX+1234H) 4,(IX+1234H) 4,(IX+1234H) 5,(IX+1234H) 6,(IX+1234H) 6,(IX+1234H) 6,(IY+1234H) 1,(IX+1234H)		B6 B6 F F F D D C C C C C C C C C C C C C C C	34 34 34 34 34 34 34 35 55 33 34 34 34 34 34 34 34 34 34 34 34 34	12 12 12 12 12 12 12 12 12 12 12 12 12 1	12266EE66EE666EE666EE66622222EEEEAAAAABBBB16666222222EEEEAAAAAAAAAAAAAAAAAAAAAAAAA	SET SET SET SET SET SLA SLAW SLAW SRA SRAW SRA SRAW SRA SRAW SRL SRLW SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB	5,(IX+1234H) 5,(IY+1234H) 6,(IX+1234H) 7,(IX+1234H) 7,(IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) A,(IX+1234H) HL,(IX+1234H) HL,(IX+1234H) A,(IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) (IX+1234H) A,	DD FD DD FD DD FD FD FD FD FD FD FD FD F	CBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	34 34 34 34 34 34 34 34 34 34 34 34 34 3	12 EE 12 EE 12 F6 12 F6 12 F6 12 F6 12 FE 12 26 12 22 12 22 12 22 12 22 12 22 12 22 12 22 12 22 12 22 12 22 12 23E 12 3A 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
RRW SBC SBC SBCW SET SET SET SET SET SET SET SET SET	(IY+1234H) A,(IX+1234H) A,(IX+1234H) (IX+1234H) (IY+1234H) 0,(IX+1234H) 0,(IY+1234H) 1,(IX+1234H) 1,(IY+1234H) 2,(IX+1234H) 2,(IX+1234H) 3,(IX+1234H) 3,(IY+1234H) 4,(IX+1234H) 4,(IY+1234H)	FD FD FD FD FD FD FD FD FD FD FD FD FD F	CB 9E DE DE CB CB CB CB CB CB CB CB CB CB CB CB CB	34 34 34 34 34 34 34 34 34 34 34 34 34	12 12 12 12 12 12 12 12 12 12 12 12 12 1	1A C6 C6 CE D6 D6 DE E6 E6						

Table E-5. Valid with DDIR IW in Exteded mode. LW bit status does not affect the operation

ADD	HL,(12345678H)	ED	C6	78	56		12
ADD	SP,12345678H	ED	82	78	56	34	12
CALL	12345678H	CD	78	56	34	12	
CALL	C,12345678H	DC	78	56	34	12	
CALL	M,12345678H	FC	78	56	34	12	
CALL	NC,12345678H	D4	78	56	34	12	
CALL	NZ,12345678H	C4	78	56	34	12	
CALL	P,12345678H	F4	78	56	34	12	
CALL	PE,12345678H	EC	78	56	34	12	
CALL	PO,12345678H	E4	78	56	34	12	
CALL	Z,12345678H	CC	78	56	34	12	
JP	12345678H	C3	78	56	34	12	
JP	C,12345678H	DA	78	56	34	12	
JP	M,12345678H	FA	78	56	34	12	
JP	NC,12345678H	D2	78	56	34	12	
JP	NS,12345678H	F2	78	56	34	12	
JP	NV,12345678H	E2	78	56	34	12	
JP	NZ,12345678H	C2	78	56	34	12	
JP	P,12345678H	F2	78	56	34	12	
JP	PE,12345678H	ΕA	78	56	34	12	
JP	PO,12345678H	E2	78	56	34	12	
JP	S,12345678H	FA	78	56	34	12	
JP	V,12345678H	EA	78	56	34	12	
JP	Z,12345678H	CA	78	56	34	12	
SUB	HL,(12345678H)	ED	D6	78	56	34	12
SUB	SP,12345678H	ED	92	78	56	34	12

Table E-6. Valid with DDIR IW. XM bit status does							
not affect the operation. Transfer size							
determined by LW bit							

	uetermine	ubyi			
LD	(12345678H),BC	ED	43 78	56 34	12
LD	(12345678H),DE	ED	53 78		12
LD	(12345678H),HL	22	78 56	34 12	
LD	(12345678H),HL	ED	63 78	56 34	12
LD	(12345678H),IX	DD	22 78	56 34	12
LD	(12345678H),IY	FD	22 78		12
LD	(12345678H),SP	ED	73 78		12
LD	(IX+123456H),BC	DD	CB 56		OB
LD	(IX+123456H),DE	DD	CB 56		1B
LD LD	(IX+123456H),HL	DD	CB 56		3B
LD	(IX+123456H),IY (IY+123456H),BC	DD FD	CB 56 CB 56		2B 0B
LD	(IY+123456H),EC	FD	73 56	34 12 1	UD
LD	(IY+123456H),HL	FD	CB 56		3B
LD	(IY+123456H),IX	FD	CB 56		2B
LD	(SP+123456H),BC	DD	CB 56		09
LD	(SP+123456H),DE	DD	CB 56		19
LD	(SP+123456H),HL	DD	CB 56	34 12 3	39
LD	(SP+123456H),IX	DD	CB 56		29
LD	(SP+123456H),IY	FD	CB 56		29
LD	BC,(12345678H)	ED	4B 78		12
LD	BC,(IX+123456H)	DD	CB 34	12 03	
LD	BC,(IY+123456H)	FD	CB 34	12 03	
LD LD	BC,(SP+123456H) DE,(12345678H)	DD ED	CB 34 5B 78	12 01 56 34	12
LD	DE,(12345676H) DE,(IX+123456H)		CB 56		12 13
LD	DE,(IY+123456H)	FD	CB 56		13
LD	DE,(SP+123456H)	DD	CB 56		11
LD	HL,(12345678H)	2A	78 56	34 12	•••
LD	HL,(12345678H)	ED	6B 78		12
LD	HL,(IX+123456H)	DD	CB 56	34 12 3	33
LD	HL,(IY+123456H)	FD	CB 56	34 12 3	33
LD	HL,(SP+123456H)	DD	CB 56		31
LD	IX,(12345678H)	DD	2A 78		12
LD	IX,(IY+123456H)	FD	CB 56		23
LD	IX,(SP+123456H)	DD	CB 56		21
LD	IY,(12345678H)	FD	2A 78		12
LD LD	IY,(IX+123456H) IY,(SP+123456H)	DD FD	CB 56 CB 56		23 21
LD	SP,(12345678H)	ED	7B 78		21 12
LDW	(BC),12345678H	ED	06 78		12
LDW	(DE),12345678H	ED	16 78		12
LDW	(HL),12345678H	ED	36 78		12
	<u>,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,</u>		-		

& Silas

Z380™ User's Manual

Table E-7. Valid with DDIR IW in Long Word mode. XM bit status does not affect the operation. (Either with DDIR IW,LW or DDIR IW with LW bit set.)

LD	BC,12345678H	01	78	56	34	12	
LD	DE,12345678H	11	78	56	34	12	
LD	HL,12345678H	21	78	56	34	12	
LD	IX,12345678H	DD	21	78	56	34	12
LD	IY,12345678H	FD	21	78	56	34	12
LD	SP,12345678H	31	78	56	34	12	
PUSH	12345678H	FD	F5	78	56	34	12

Table E-8. Valid with DDIR IW. XM bit nor LW bit status do not affect the operation

-							
ADC	A,(IX+123456H)	DD	8E	56	34	12	
ADC	A,(IY+123456H)	FD	8E	56	34	12	
ADCW	(IX+123456H)	DD	CE	56	34	12	
ADCW	(IY+123456H)	FD	CE	56	34	12	
ADCW	HL,(IX+123456H)	DD	ĈĒ	56	34	12	
ADCW	HL,(IY+123456H)	FD	CE	56	34	12	
ADD	A,(IX+123456H)	DD	86	56	34	12	
ADD	A,(IY+123456H)	FD	86	56	34	12	
ADDW	(IX+123456H)	DD	C6	56	34	12	
ADDW	(IY+123456H)	FD	C6	56	34	12	
ADDW	HL,(IX+123456H)	DD	C6	56	34	12	
ADDW	HL,(IY+123456H)	FD	C6	56	34	12	
AND	(IX+123456H)	DD	A6	56	34	12	
AND	(IY+123456H)	FD	A6	56	34	12	
AND	A,(IX+123456H)	DD	A6	56	34	12	
AND	A,(IY+123456H)	FD	A6	56	34	12	
ANDW	(IX+123456H)	DD	E6	56	34	12	
ANDW	(IY+123456H)	FD	E6	56	34	12	
ANDW	HL,(IX+123456H)	DD	E6	56	34	12	
ANDW	HL,(IY+123456H)	FD	E6	56	34	12	
BIT	0,(IX+123456H)	DD	CB	56	34	12	46
BIT	0,(IY+123456H)	FD	CB	56	34	12	46
BIT	1,(IX+123456H)	DD	CB	56	34	12	4E
BIT	1,(IY+123456H)	FD	CB	56	34	12	4E
BIT	2,(IX+123456H)	DD	CB	56	34	12	56
BIT	2,(IY+123456H)	FD	CB	56	34	12	56
BIT	3,(IX+123456H)	DD	СВ	56	34	12	5E
BIT	3,(IY+123456H)	FD	СВ	56	34	12	5E
BIT	4,(IX+123456H)	DD	CB	56	34	12	66
BIT	4,(IY+123456H)	FD	ĊВ	56	34	12	66
BIT	5,(IX+123456H)	DD	ĊВ	56	34	12	6E
BIT	5,(IY+123456H)	FD	CB	56	34	12	6E
BIT	6,(IX+123456H)	DD	СВ	56	34	12	76
BIT	6,(IY+123456H)	FD	СВ	56	34	12	76
BIT	7,(IX+123456H)	DD	СВ	56	34	12	7E
BIT	7,(IY+123456H)	FD	CB	56	34	12	7E
CP	(IX+123456H)	DD	BE	56	34	12	
CP	(IY+123456H)	FD	BE	56	34	12	
CP	A,(IX+123456H)	DD	BE	56	34	12	
CP	A,(IY+123456H)	FD	BE	56	34	12	
CPW	(IX+123456H)	DD	FE	56	34	12	
CPW	(IY+123456H)	FD	FE	56	34	12	
	· · · · · · · · · · · · · · · · · · ·						

CPW	HL,(IX+123456H)	DD	FE 56 34 1	2
CPW	HL,(IY+123456H)	FD		2
DEC	(IX+123456H)	DD		2
DEC	(IY+123456H)	FD		2
DIVUW	(IX+123456H)	DD		2 BA
DIVUW	(IX+123456H)	FD		2 BA
DIVUW	HL,(IX+123456H)	DD		2 BA
DIVUW	HL,(IY+123456H)	FD		2 BA
INA	A,(123456H)	ED		2
INAW	HL,(123456H)	FD		2
INC	(IX+123456H)	DD	56 34 12	
INC	(IY+123456H)	FD	56 34 12	
LD	(12345678H),A	32		2
LD	(IX+123456H),56H	DD		2 56
LD	(IX+123456H),A	DD		2
LD	(IX+123456H),B	DD		2
LD	(IX+123456H),C	DD		2
LD	(IX+123456H),D	DD	72 56 34 1	2
LD	(IX+123456H),E	DD	73 56 34 1	2
LD	(IX+123456H),H	DD		2
LD	(IX+123456H),L	DD	75 56 34 1	2
LD	(IY+123456H),78H	FD	36 56 34 1	2 78
LD	(IY+123456H),A	FD	77 56 34 1	2
LD	(IY+123456H),B	FD	70 56 34 1	2
LD	(IY+123456H),C	FD	71 56 34 1	2
LD	(IY+123456H),D	FD	72 56 34 1	2
LD	(IY+123456H),DE	FD	CB 56 34 1	2 1B
LD	(IY+123456H),H	FD	74 56 34 1	2
LD	(IY+123456H),L	FD		2
LD	A,(12345678H)	ЗA		2
LD	A,(IX+123456H)	DD		2
LD	A,(IY+123456H)	FD		2
LD	B,(IX+123456H)	DD		2
LD	B,(IY+123456H)	FD		2
LD	C,(IX+123456H)	DD		2
LD	C,(IY+123456H)	FD		2
LD	D,(IX+123456H)	DD		2
LD	D,(IY+123456H)	FD		2
LD	E,(IX+123456H)	DD		2
LD	E,(IY+123456H)	FD		2
LD	H,(IX+123456H)	DD		2
LD	H,(IY+123456H)	FD		2
LD	L,(IX+123456H)	DD		2
LD	L,(IX+123456H)	FD		2
	(IX+123456H)	DD		2 9A
	(IY+123456H)	FD		2 9A
	HL,(IX+123456H)	DD		2 9A
	HL,(IY+123456H)	FD		2 9A
MULTW	(IX+123456H)	DD		2 92
MULTW	(IY+123456H)	FD		2 92
MULTW	HL,(IX+123456H)	DD		2 92
MULTW	HL,(IY+123456H)	FD		2 92
OR	(IX+123456H)	DD		2
OR	(IY+123456H)	FD	B6 56 34 1	2

·								
OR	A,(IX+123456H)	DD	B6 56 34	12	SET	4,(IY+123456H)	FD	CB 56 34 12 E6
OR	A,(IY+123456H)	FD	B6 56 34	12	SET	5,(IX+123456H)	DD	CB 56 34 12 EE
ORW	(IX+123456H)	DD	F6 56 34	12	SET	5,(IY+123456H)	FD	CB 56 34 12 EE
ORW	(IY+123456H)	FD	F6 56 34		SET	6,(IX+123456H)	DD	CB 56 34 12 F6
ORW	HL,(IX+123456H)	DD	F6 56 34		SET	6,(IY+123456H)	FD	CB 56 34 12 F6
ORW	HL,(IY+123456H)	FD	F6 56 34		SET	7,(IX+123456H)	DD	
OUTA	(12345678H),A	ED	D3 78 56		SET	7,(IY+123456H)	FD	CB 56 34 12 FE
OUTAW	(12345678H),HL	FD	D3 78 56		SLA	(IX+123456H)	DD	CB 56 34 12 26
RES	0,(IX+123456H)	DD	CB 56 34		SLA	(IY+123456H)	FD	CB 56 34 12 26
RES	0,(IX+123456H)	FD	CB 56 34		SLAW	(IX+123456H)	DD	CB 56 34 12 20
RES	1,(IX+123456H)	DD	CB 56 34		SLAW	(IX+123456H)	FD	CB 56 34 12 22 CB 56 34 12 22
			CB 56 34		SRA			CB 56 34 12 22 CB 56 34 12 2E
RES	1,(IY+123456H)	FD	CB 56 34 CB 56 34			(IX+123456H)		CB 56 34 12 2E CB 56 34 12 2E
RES	2,(IX+123456H)	DD	-		SRA	(IY+123456H)	FD	
RES	2,(IY+123456H)	FD	CB 56 34		SRAW	(IX+123456H)	DD	
RES	3,(IX+123456H)	DD	CB 56 34		SRAW	(IY+123456H)	FD	CB 56 34 12 2A
RES	3,(IY+123456H)	FD	CB 56 34		SRL	(IX+123456H)	DD	CB 56 34 12 3E
RES	4,(IX+123456H)		CB 56 34		SRL	(IY+123456H)	FD	CB 56 34 12 3E
RES	4,(IY+123456H)	FD	CB 56 34		SRLW	(IX+123456H)		CB 56 34 12 3A
RES	5,(IX+123456H)	DD	CB 56 34		SRLW	(IY+123456H)	FD	CB 56 34 12 3A
RES	5,(IY+123456H)	FD	CB 56 34		SUB	A,(IX+123456H)	DD	96 56 34 12
RES	6,(IX+123456H)	DD	CB 56 34		SUB	A,(IY+123456H)	FD	96 56 34 12
RES	6,(IY+123456H)	FD	CB 56 34		SUBW	HL,(IX+123456H)	DD	D6 56 34 12
RES	7,(IX+123456H)	DD	CB 56 34		SUBW	HL,(IY+123456H)	FD	D6 56 34 12
RES	7,(IY+123456H)	FD	CB 56 34		XOR	(IX+123456H)	DD	AE 56 34 12
RL	(IX+123456H)	DD	CB 56 34	12 16	XOR	(IY+123456H)	FD	AE 56 34 12
RL	(IY+123456H)	FD	CB 56 34	12 16	XOR	A,(IX+123456H)	DD	AE 56 34 12
RLC	(IX+123456H)	DD	CB 56 34	12 06	XOR	A,(IY+123456H)	FD	AE 56 34 12
RLC	(IY+123456H)	FD	CB 56 34	12 06	XORW	(IX+123456H)	DD	EE 56 34 12
RLCW	(IX+123456H)	DD	CB 56 34	12 02	XORW	(IY+123456H)	FD	EE 56 34 12
RLCW	(IY+123456H)	FD	CB 56 34	12 02	XORW	HL,(IX+123456H)	DD	EE 56 34 12
RLW	(IX+123456H)	DD	CB 56 34	12 12	XORW	HL,(IY+123456H)	FD	EE 56 34 12
RLW	(IY+123456H)	FD	CB 56 34	12 12	······			
RR	(IX+123456H)	DD	CB 56 34	12 1E				
RR	(IY+123456H)	FD	CB 56 34	12 1E				
RRC	(IX+123456H)	DD	CB 56 34	12 OE				
RRC	(IY+123456H)	FD	CB 56 34	12 OE				
RRCW	(IX+123456H)	DD	CB 56 34					
RRCW	(IY+123456H)	FD	CB 56 34	12 0A				
RRW	(IX+123456H)	DD	CB 56 34					
RRW	(IY+123456H)	FD	CB 56 34					
SBC	A,(IX+123456H)	DD	9E 56 34					
SBC	A,(IY+123456H)	FD	9E 56 34					
SBCW	(IX+123456H)	DD	DE 56 34					
SBCW	(IY+123456H)	FD	DE 56 34					
SET	0,(IX+123456H)	DD	CB 56 34					
SET	0,(IY+123456H)	FD	CB 56 34					
SET	1,(IX+123456H)	DD	CB 56 34					
SET	1,(IY+123456H)	FD	CB 56 34					
SET	2,(IX+123456H)	DD	CB 56 34					
SET	2,(IX+123456H) 2,(IY+123456H)	FD	CB 56 34 CB 56 34					
SET	2,(IX+123456H) 3,(IX+123456H)		CB 56 34 CB 56 34					
			CB 56 34 CB 56 34					
SET	3,(IY+123456H)	FD						
SET	4,(IX+123456H)	טט	CB 56 34	12 20				

- ļ /ļ Appendix A
- Appendix B
- Appendix C
- Appendix D
- Appendix E
 - Index

(c.5)

ſ

Superintegration™ Products Guide

Literature Guide

Zilog's Sales Offices Representatives & Distributors

USER'S MANUAL

INDEX

Symbols

/INT3-/INT0	6-1
/NMI	6-1
/RESET	1-5
8-Bit Load/Exchange Group	5-6
8080 compatible (Mode 0)	1-5

Α

Add (Byte)5-23
Add (Word) 5-24
Add to Stack Pointer (Word) 5-25
Add/Subtract flag 5-2
Address manipulation 3-1
Address space 1-1
Addressing mode A-1
Addressing mode escape byte A-1
Addressing mode escape bytes, addresses A-2
Addressing Modes 1-4,4-1
AF or AF' Register Select 5-5
AND (Byte)
AND (Word) 5-28
Arithmetic and Logical Group 5-9
Arithmetic Operation 5-10
Assembly language format 4-1
Assigned Vector Base Register 5-15,6-3,6-6
Assigned Vectors Base

В

Bank Test	5-30
Bank Test instructions	5-16
BC/DE/HL or BC'/DE'/HL' Register Select	5-4
Binary-coded decimal	4-10,5-1
Bit Test	
Block I/O	5-5
Block move	5-5
Block move, block search, and block I/O instruct	tion 6-1
Block search	5-2, 5-5
Block Transfer and Search Group	5-1,5-8
Block transfer	5-2, 5-8
Bus bandwidth	1-5
Byte ordering	
Byte strings	4-10

								(;												
 •	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•

Call and Restart	5-12
Call Relative	5-1, 5-12
Call Relative	5-32
Call, Return, Push, and Pop	4-10
Carry flag	5-2
Carry or borrow operation	
Chip Version ID Register	
Compare (Byte)	5-34
Compare (Word)	5-35
Compare and Decrement (Byte)	
Compare and Increment (Byte)	
Compare, Decrement and Repeat (Byte)	
Compare, Increment and Repeat (Byte)	5-39
Complement Accumulator	5-40
Complement Carry flag	
Complement HL Register (Word)	
Condition Codes	
Conditional instructions	
Conditional Return instruction	
Context Switching	
CPU Control Group	
CPU Control Register Space	
CPU Register Space	2-1

D

Data frame	5-7
Data manipulation	3-1
Data Types 4-1,	4-10
DDIR	3-1
DDIR IB Immediate Byte	3-2
DDIR IB,LW Immediate Byte, Long Word Mode	3-2
DDIR IB,W Immediate Byte, Word Mode	3-2
DDIR IW,LW Immediate Word, Long Word Mode	3-2
DDIR IW,W Immediate Word, Word Mode	3-2
DDIR LW	1-3
DDIR LW Long Word Mode	3-2
DDIR W	1-3
DDIR W Word Mode	3-2
Decimal Adjust Accumulator 4-10,5-2,	
Decoder Directive 3- 2, 5-17, 5-43	, A-1
Decrement (Byte)	5-44
Decrement (Word)	5-45

[®]Silas

Decrement and Jump if Non-Zero	5-12
Decrement and Jump if Non-Zero	5-48
Dedicated interrupts (Mode 1)	1-5
DIR IW Immediate Word	3-2
Direct Address	1-4, 4-1, 4-3
Disable and Enable Interrupt	5-16
Disable Interrupt instruction	6-1
Disable Interrupts	5-46
Displacement	4-6
Divide Unsigned (Word)	5-47

Ε

F

F register 5	5-17
Fetching	6-2
Flag and Accumulator registers	2-1
Flag register 2-3,	5-1
Format 1	A-1
Format 2	A-1
Format 3	A-1
Format 4	A-1

Z380[™] User's Manual

Н

Half-Carry flag	5-2
HALT and Sleep instructions	5-16
Halt	5-62
Hardware reset overrides	6-1

1

I Extend	6-3
I/O addressing space	
I/O instructions	
IB decoder directive	3-2
IEF1, IEF2	
Immediate	
Immediate addressing mode	
Increment (Byte)	
Increment (Word)	5-70
Increment and Decrement instructions	
Index Registers	
Index registers	1-1, 2-1
Indexed	1-4,4-1
Indexed address	
Indirect Register 1-	4,4-1,4-3
Indirect Register mode	
Input (Byte)	5-64
Input (from Page 0)	
Input (Word)	
Input Accumulator	5-66
Input and Decrement (Byte)	5-72
Input and Decrement (Word)	5-73
Input and Increment (Byte)	
Input and Increment (Word)	
Input Direct from Port Address (Byte)	
Input Direct from Port Address (Word)	
Input, Decrement and Repeat (Byte)	5-74
Input, Decrement and Repeat (Word)	5-75
Input, Increment and Repeat (Byte)	5-78
Input, Increment and Repeat (Word)	5-79
INSTRUCTION EXECUTION AND EXCEPTIONS	S 5-5
INSTRUCTION SET FUNCTIONAL GROUPS	5-6
Instruction decoder	
Instruction Execution and Interrupts	
Instruction Execution and Trap	
Instruction fetch/execute	1-3
Instruction mnemonic	5-17
Internal Data Bus	1-1
Internal I/O Instruction Group	5-15
Internal I/O locations	
Interrupt acknowledge transaction	0-10 6-2
Interrupt Control	
Interrupt Enable Flag	5-5
Interrupt Enable Register	0-0 56-169
Interrupt Flags and Registers	0,0-1,0-3 6 0
Interrupt Mode Interrupt Mode Select	
Interrupt wode Select	5-63

[®]ZiL005

Interrupt mode	6-1,6-2, 6-3	, 6-5
Interrupt Priority Ranking		6-2
Interrupt Register		2-3
Interrupt Register Extension		6-2
Interrupt service routines		1-3
Interrupt Vectors Mode		6-6
Interrupt vectors		6-2
interrupt return instruction		5-5
Interrupts		6-1
Interrupts, traps, and resets		1,6-1
IW decoder directive		3-2
IX Bank Select		5-4
IX or IX' Register Select		5-4
IY Bank Select		5-4
IY or IY' Register Select		5-4

J

JP	5-80
Jump	5-1,5-80
Jump and Call instructions	4-3
Jump Relative	5-1, 5-81

Linear Memory Address Space Load Accumulator Load Accumulator from R or I register Load and Decrement (Byte)	5-82 5-16
Load and Decrement (Word)	5-97
Load and Increment (Byte)	5-100
Load and Increment (Word)	5-101
Load B register	A-1
Load Control Register (Byte)	5-93
Load from Control Register (Word)	5-94
Load from I or R Register (Byte)	5-90
Load I Register (Word)	5-92
Load Immediate (Byte)	5-83
Load Immediate (Word)	5-84
Load into Control Register (Word)	5-95
Load into I or R Register (Byte)	5-91
Load Register (Byte)	
Load Register (Word)5-87,5-	88, A-1
Load Stack Pointer	
Load, Decrement and Repeat (Byte)	5-98
Load, Decrement and Repeat (Word)	5-99
Load, Exchange, SWAP and Push/Pop Group	5-1
Load, Exchange, SWAP, and PUSH/POP Group .	
Load, Increment and Repeat (Byte)	
Load, Increment and Repeat (Word)	
load, arithmetic, logical, shift, and rotate	
Load/Exchange Group	5-1
Lock	5-5
Lock/Unlock status	5-5
Logical, signed numeric, or unsigned	
Long Word Mode	
LW decoder directive	

М

Machine language bit	A-1
Main Bank Select	5-4
Maskable Interrupt	6-5
Memory Address Space	2-1
Memory Banking scheme	1-5
memory addressing modes	5-9
Mode Test	-105
Mode Test instructions	5-16
Multiple register banks	1-5
Multiply (Word) 5	-106
Multiply Unsigned (Byte) 5	-104
Multiply Unsigned (Word) 5-	-107

Ν

NATIVE MODE AND EXTENDED MODE	
Native or Extended mode	6-2
Native/Extended	1-3
Negate Accumulator	5-108
Negate HL instruction	5-10
Negate HL Register (Word)	5-109
No Operation	5-110
No Operation instruction	5-16
NONMASKABLE INTERRUPT	. 6-5
Nonmaskable Interrupt (NMI)	. 6-1

0

Object-code compatibility	1-1
ON-CHIP I/O ADDRESS SPACE	2-6
On-Chip I/O Address Space	2-1
On-Chip Register Files	
Opcode Trap	1-1
Operand	
OR (Byte)	5-111
OR (Word)	
Output (Byte)	
Output (to Page 0)	5-124
Output (Word)	
Output Accumulator	
Output and Decrement (Byte)	
Output and Decrement (Word)	
Output and Increment (Byte)	
Output and Increment (Word)	
Output Decrement Memory	
Output Direct to Port Address (Byte)	
Output Direct to Port Address (Word)	
Output Increment Memory	
Output, Decrement and Repeat (Byte)	
Output, Decrement and Repeat (Word)	
Output, Decrement Memory Repeat	
Output, Increment and Repeat (Byte)	5-119
Output, Increment and Repeat (Word)	
Output, Increment Memory Repeat	5-118

I-3

0

Ρ

Parity/Overflow Flag	5-2
Pascal FOR loop	
Pop Accumulator	5-131
Pop Control Register	5-132
Pop operation	2-4
Pop Register	
POPed	
Primary and Working registers	2-1
PROCESSOR FLAGS	5-1
Program Control Group	
Program Counter	2-3
Program Counter Relative	1-4
Program Counter Relative Address	4-1
Program Counter, Interrupt register, Refresh	2-1
Pseudo Pascal	5-17
Push Accumulator	5-134
Push and Pop operations	3-2
Push Control Register	5-135
Push Immediate	5-136
Push Register	5-137
PUSH/POP instructions	5-7
PUSHed	2-4

R

Register (R, RX) Register Register file Register pairs Register, Immediate Relative Addressing mode RESC LCK	1-4 1-1 1-1 4-1 4-6
RESC LW (Reset Long Word)	
RESC LW RESC LW instruction	1-3
Reserved on-chip I/O instructions	
Reset Bit Reset Control Bit	5-130
Reset Control Long Word	
Restart	
Restart instruction	6-5
RETI INSTRUCTION	
Return	5-140
Return From Nonmaskable Interrupt	6-3
Return from Interrupt	5-141
Return from Interrupt	6-6
Return from Nonmaskable Interrupt	
Rotate and Shift Group	5-11
Rotate Digit	
Rotate instructions	
Rotate Left (Accumulator)	
Rotate Left (Byte)	
Rotate Left (Word)	
Rotate Left Circular (Accumulator)	5-148

Rotate Left Circular (Byte)	5-146
Rotate Left Circular (Word)	5-147
Rotate Left Circular	A-1
Rotate Left Digit	
Rotate Right (Accumulator)	5-152
Rotate Right (Byte)	
Rotate Right (Word)	5-151
Rotate Right Circular (Accumulator)	5-155
Rotate Right Circular (Byte)	5-153
Botate Bight Circular (Word)	5-154
Rotate Right Circular (Word) Rotate Right Digit	5-156
Save/restore	0 100
Saved carry	5-7 5-2
Select Register (SR)	0-2 2_1
Select Register	5161
Set Bit	
Set Bit and Reset Bit	5 11
Set Carry flag	D-11
Set Carry hag	5-101
Set Control Long Word	1-3
Set/Reset Condition flag	
SETC LCK SETC LW (Set Long Word)	5-5
SETC LW (Set Long Word)	3-3
SETC LW	1-3
SETC LW instruction	
SETC XM instruction	
Shift Left Arithmetic (Byte)	5-164
Shift Left Arithmetic (Word)	5-165
Shift Right Arithmetic (Byte) Shift Right Arithmetic (Word)	5-167
Shift Right Arithmetic (Word)	5-168
Shift Right Logical (Byte)	5-169
Shift Right Logical (Word)	5-170
Sign flag	
Sleep	5-166
Source/destination combination	
Stack Pointer (SP)	
Stack Pointer Relative 1-4	, 1-5, 4-1
Stack Pointer Relative addressing mode	4-7
Standby Mode	1-1
String search	5-8
Subroutine Call	
Subroutine Return	5-1
Subtract (Byte)	
Subtract (Word) 5-17	
Subtract from Stack Pointer (Word)	
Subtract With Carry (Word)	5-159
Subtract With Carry (Word)	5-158
SWAP	0 100 1_/
Swap instruction	5-7
Swap Upper Register Word with Lower Register	07 r 5-175
ence epper register mere man conci ricgister	

<u> Asilos</u>

т

Test (Byte) Test I/O Port	
TRAP INTERRUPT	b-4
Trap and Break Register	
Trap handling routine	
Trap on Instruction Fetch	
Trap on Interrupt Vector	
Trap Register	5-15, 6-4
TST instruction	
TSTIO instruction	5-15
U	

Ump relative/Call relative	1-6
Unsigned divide instruction	5-10

V

Vectored interrupt mode (Mode 2) 1	-5
------------------------------------	----

W

W decoder directive	3-2
Word or Long Word block transfer	5-8
Word strings	4-10
Word/Long Word	1-3

Ζ

Zero byte input	5-2
Zero flag	5-2

Literature Suido

Zliog's Salas Offices Representativos 2 Distributors

Superintegration[™] Products Guide

Block Diagram	ROMUARTCPU8611CPUCOUNTER/ TIMERSRAMP0P1P2P3	ROM CPU WDT 236 RAM P1 P2 P3 P0	Z8 DSP 24K 4K ROM ROM A/D D/A 31 or 47 DIGITAL I/O	Z8 DSP 24K 6K ROM ROM A/D D/A 31 or 47 DIGITAL I/O	
Part Number	Z8600/Z8 611	Z86C30/E30/C31/E31	Z89C65/Z89C66	Z89165/Z89166	
DESCRIPTION	Z8® NMOS (CCP") Z8600 = 2K ROM Z8611 = 4K ROM	Z8® Consumer Controller Processor (CCP")Telephone Answering ControllerZ86C30 = 28-Pin, 4K ROMZ86C31 = 28-Pin, 2K ROMZ86C40 = 40-Pin, 4K ROMZ86E30, Z86E31, Z86E40 = OTP Version		Low-Cost DTAD Controller Z89166 = ROMLess with 31 I/O Pins	
PROCESS/SPEED	NMOS: 8,12 MHz	CMOS: 12 MHz	CMOS: 20 MHz	CMOS: 20 MHz	
Features	 2K/4K ROM 128 Bytes RAM 22/32 I/O Lines On-Chip Oscillator Two Counter/Timers Six Vectored, Priority Interrupts UART (Z8611 Only) 	 4K ROM/236 RAM Two Standby Modes Two Counter/Timers ROM/RAM Protect Four Ports (286C40/E40) Three Ports (286C30/E30/C31/E31) Low-Voltage Protection Two Analog Comparators Low-EMI Option Watch-Dog Timer (WDT) Auto Power-On Reset Low-Power Option 	 24K ROM (Z89C65 Only) 16-Bit DSP 4K Word ROM 8-Bit A/D with Automatic Gain Control (AGC) DTMF Macro Available LPC Macro Available 10-Bit PWM D/A Other DSP Software Options Available 47 I/O Pins (Z89C65 Only) 	 24K ROM (Z89165 Only) 16-Bit DSP 6K Word DSP ROM 8-Bit A/D with Automatic Gain Control (AGC) DTMF Macro Available LPC Macro Available 10-Bit PWM D/A Other DSP Software Options Available 47 I/O Pins (Z89165 Only) 	
Package	28-Pin DIP 40-Pin DIP 44-Pin PLCC	28-Pin DIP 40-Pin DIP 44-Pin PLCC, QFP	68-Pin PLCC	68-Pin PLCC 80-Pin QFP	
Support Products	Z86C1200ZEM - Emulator Z0860000ZCO - Evaluation Board Z0860000ZDP - Adaptor Kit	Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator Z86C5000ZEM - Emulator Z86E3000ZDP - Adaptor Kit Z86E4000ZDP - Program Adaptor Kit	Z89C6501ZEM - Emulator Z89C6500ZDB - Emulator	Z89C6501ZEM - Emulator Z89C6500ZDB - Emulator Z8916500ZCO - Evaluation Board	

Superintegration [™] Products Guide				
Block Diagram	Z8DSP24K/32K6K ROMRAM PORTCODEC INTF.RAM REFRESHPWM27 or 43 DIGITAL I/O	Z8DSP24K ROM8K ROMRAM PORTCODEC INTE.RAM REFRESHCODEC INTE.27 or 43 DIGITAL I/O	Z8DSP32K ROM8K ROMRAM PORTCODEC INTF.RAM REFRESHCODEC INTF.27 or 43 DIGITAL I/O	
Part Number	Z89C67/Z89C68/Z89C69	Z89167/Z89168	Z89169	
DESCRIPTION	Telephone Answering Controller Z89C67 = 24 Kbytes of Program ROM Z89C68 = ROMLess with 27 I/O Pins Z89C69 = 32 Kbytes of Program ROM	Enhanced Telephone Answering Controller Z89168 = ROMLess with 27 I/O Pins	Enhanced Telephone Answering Controller	
Process/Speed	CMOS: 20 MHz	CMOS: 24 MHz	CMOS: 24 MHz	
Features	 16-Bit DSP 6K Word ROM DTMF Macro Available LPC Macro Available 10-Bit PWM D/A Other DSP Software Options Available ARAM/DRAM/ROM Controller and Interface Dual CODEC Interface 43 I/O (Z89C67 Only) 	 24K ROM (Z89167 Only) 16-Bit DSP 8K Word ROM DTMF Macro Available LPC Macro Available 10-Bit PWM D/A Other DSP Software Options Available ARAM/DRAM/ROM Dual CODEC Interface 43 I/O (Z89167 Only) 	 32K ROM 16-Bit DSP 8K Word ROM DTMF Macro Available LPC Macro Available 10-Bit PWM D/A Other DSP Software Options Available ARAM/DRAM/ROM Dual CODEC Interface 43 I/O 	
Package	84-Pin PLCC	84-Pin PLCC 100-Pin QFP	84-Pin PLCC 100-Pin QFP	
SUPPORT Products	Z89C5900ZEM - Emulator Z89C6700ZEM - Emulator Z89C6700ZDB - Emulator Z8916902ZCO - Evaluation Board	Z89C5900ZEM - Emulator Z89C6700ZEM - Emulator Z89C6700ZDB - Emulator Z8916902ZCO - Evaluation Board	Z89C5900ZEM - Emulator Z89C6700ZEM -Emulator Z89C6700ZDB - Emulator Z8916902ZCO - Evaluation Board	

S-2

			SUPERINTEGRATION	[™] Products Guide	
Block Diagram	16/8K ROM 4K CHAR ROM Z8 CPU RAM OSD 13 TIMER 5 PWM WDT PORTS	6K ROM 3K CHAR ROM Z8 CPU RAM OSD 7 TIMER 3 PWM WDT PORTS	CHAR ROM COMMAND INTERPRETER ANALOG SYNC/DATA SLICER OSD CTRL	1K/6K ROM 28 CPU WDT 124 RAM P2 P3	2K/8K/16K ROM Z8 CPU WDT 128,256, 768 P0 P1 P2 P3
Part Number	Z86C27/127/97/47/E47	Z86227	Z86128/Z86228/Z86129	Z86L06/Z86L29	Z86L70/71/72/73/74 75/76/77/78
Description	Digital Television Controller (DTC") Television, VCRs, and Cable Z86E47 = OTP Version	Standard DTC [™] Features with Reduced ROM, RAM, PWM Outputs for Greater Economy	Z86128/228 = Line 21 Closed Caption Controller (L21C™) Z86129/228 = Line 21 Closed Caption and EDS Controller	Z86L06 = Low-Voltage CMOS Consumer Controller Processor Z86L29 = 6K Infrared Remote Controller	Zilog Infrared Remote Controllers (ZIRC") for IR Remote/Battery Operated Applications Ranging in ROM: L70–2K, L71=8K,L72&78=16K,L73&74=32K, L75=4K,L76=12K,L77=24K
Process/Speed	CMOS: 4 MHz	CMOS: 4 MHz	CMOS: 12 MHz	Low-Voltage CMOS: 8 MHz	Low-Voltage CMOS: 8 MHz
Features	 8K/16K/OTP ROM 256 Byte RAM 160x7-Bit Video RAM On-Screen Display (OSD) Video Controller Programmable Color Size Position Attributes 13 PWMS for D/A Conversion 128-Character Set 4Kx6-Bit Char. Gen. ROM Watch-Dog Timer (WDT) Low-Voltage Protection Five Ports/36 Pins Two Standby Modes Low-EMI Mode 	 6K ROM, 256 Byte RAM 120x7-Bit Video RAM OSD On-Board Programmable Color Size Position Attributes 96 Character Set 3Kx6-Bit Char. Gen. ROM Watch-Dog Timer (WDT) Low-Voltage Protection Three Ports/20 Pins Two Standby Modes Low-EMI Mode 	 Conforms to FCC Line 21 Format Parallel or Serial Modes Stand-Alone Operation On-Board Data Sync and Slicer On-Board Character Generator Color Blinking Italic Underline Extended Data Services 	 1K ROM and 6K ROM Watch-Dog Timer (WDT) Two Analog Comparators with Output Option Two Standby Modes Two Counter/Timers Auto Power-On Reset 2V Operation RC Oscillator Option Low-Voltage Protection High-Current Drivers (2, 4) 	 Watch-Dog Timer (WDT) Two Analog Comparators with Output Option Two Standby Modes Two Enhanced Counter/Timers Auto Pulse Reception/Generation Auto Power-On Reset 2V Operation RC Oscillator Option Low-Voltage Protection High-Current Drivers Three OTP Versions Available Z86E72/73/74
Package	64-Pin DIP	40-Pin DIP	18-Pin DIP	18-Pin DIP 18-Pin SOIC	Z86L71=20-Pin DIP/SOIC Z86L70/L75=18-Pin DIP, SOIC Z86L72/L76/L77=40,44-Pin DIP, PLCC, QFP Z86L74=64/68-Pin
Support Products	Z86C2700ZCO - Evaluation Board Z86C2700ZDB - Emulator Z86C2700ZEM - Emulator	Z86C2700ZDB - Ernulator Z86C2702ZEM - Ernulator Z86C2700ZCO - Evaluation Board	Support Documentation Provided with the device	Z86C5000ZEM - Emulator	Z86L7200TSC - Emulator Z86L7100ZEM - Emulator Z86L7100ZDB - Emulator

& Silæ	5 TV/Video Products		Superintegration [™] Products Guide		
Block Diagram	4K ROM CPU WDT 236 RAM P1 P2 P3 P0	16K ROM UART CPU 236 RAM P0 P1 P2 P3 P4 P5 P6	12K/16K/24K ROM DSP CORE RAM I ² C OSD CCD PWM WDT 2 PORTS	12K/16K/24K ROM DSP CORE RAM I ² C OSD CCD PWM WDT 2 PORTS	32K 16K OTP ROM DSP CORE RAM 1 ² C OSD CCD PWM WDT 2 PORTS
Part Number	Z86C40/Z86E40	Z86C61/Z86C62	Z89300/02/04/06/14	Z89301/03/05/07/13	Z89331/Z89336
DESCRIPTION	Z8® Consumer Controller Processor (CCP") Z86E40 = OTP Version	Z8® MCU with Expanded I/Os	Advanced TV Controller with Closed Caption Decoder (CCD), StarSight*, OSD for TV, VCR, Cable, Satellite Z89301 = OTP Version	Advanced TV Controller with CCD StarSight, for TV, VCR, Cable, Satellite Z89301 = OTP Version	Advanced TV Controller with CCD StarSight, OSD for TV, VCR, Cable, Satellite Z89301 = OTP Version
PROCESS/SPEED	CMOS: 12 MHz	CMOS: 16, 20 MHz	CMOS: 12 MHz	CMOS: 12 MHz	CMOS: 12 MHz
Features	 4K ROM, 236 RAM Two Standby Modes Two Counter/Timers ROM Protect RAM Protect Four Ports Low-Voltage Protection Two Analog Comparators Low-EMI Mode Watch-Dog Timer (WDT) Auto Power-On Reset Low-Power Option 	 16K ROM Full-Duplex UART Two Standby Modes (STOP and HALT) Two Counter/Timers ROM Protect Option RAM Protect Option Pin Compatible to Z86C21 Z86C61 = Four Ports Z86C62 = Seven Ports 	 StarSight Capability Closed-Captioning DSP 12 MHz 16-Bit, 512 Byte (Z89314) 640 Byte RAM 12K/16K/24K ROM Programmable OSD PC*, 7 PWM 3-Channel ADC Watch-Dog Timer (WDT) Two Ports 32 kHz, XTAL Low-Power Mode *Not Available on Z89314 	 StarSight Capability Closed-Captioning DSP 12 MHz 16-Bit, 640 Byte RAM 12K/16K/24K ROM Programmable OSD PC, 9 PWM 4-Channel ADC Watch-Dog Timer (WDT) Two Ports 32 kHz, XTAL Low-Power Mode 	 StarSight Capability Closed-Captioning DSP 12 MHz 16-Bit, 640 Byte RAM 12K/16K/24K ROM Programmable OSD PC, 7 PWM 5-Channel ADC Watch-Dog Timer (WDT) Two Ports 32 kHz, XTAL Low-Power Mode
Package	40-Pin DIP 44-Pin PLCC	Z86C61 = 40-Pin DIP Z86C61 = 44-Pin PLCC,QFP Z86C62 = 68-Pin PLCC	40-Pin SDIP	52-Pin SDIP	42-Pin SDIP
Support Products	Z86C5000ZEM - Emulator Z86CCP00ZEM - Emulator Z86E4000ZDP - Adaptor Kit Z86E4000ZDV - Adaptor Kit	Z86C5000ZEM - Emulator Z86CCP00ZEM - Emulator	Z8930900ZEM – Emulator Z8930900TSC – Emulator Z8930901TSC – Emulator	Z8930900ZEM - Emulator Z8930900TSC - Emulator Z8930901TSC - Emulator	Z8930900ZEM - Emulator Z8930900TSC - Emulator Z8930901TSC - Emulator

Silos Discrete Z8® Microcontroller

Superintegration[™] Products Guide

Block Diagram	512 Byte ROM Z8® CPU WDT 64 RAM P2 P3	1K ROM Z8 [®] CPU WDT 128 RAM P0 P2	IK ROM Z8® CPU WDT 128 RAM SPI P2 P3	
Part Number	Z86C03	Z86C04/Z86E04	Z86C06	
Description	Consumer Controller Processor (CCP™) with 512 Byte ROM	Z86C04 = 8-Bit Low Cost 1 Kbyte ROM MCU Z86E04 = OTP Version	Consumer Controller Processor (CCP™) with 1 Kbyte ROM	
Process/Speed	CMOS: 8 MHz	CMOS: 8 MHz	CMOS: 12 MHz	
Features	 512 Byte ROM 64 Byte RAM Two Standby Modes One Counter/Timer ROM Protect Two Analog Comparator Auto Power-On Reset Low-Voltage Protection 14 I/O RC Oscillator Option Low-Noise Option 	 1 Kbyte ROM 128 Byte RAM Two Standby Modes Two Counter/Timer ROM Protect Two Analog Comparator Auto Power-On Reset Low-Voltage Protection (ROM Only) 14 I/O Low-Noise Option 	 1 Kbyte ROM 128-Byte RAM Two Standby Modes Two Counter/Timer ROM Protect Two Analog Comparator Auto Power-On Reset Low-Voltage Protection (ROM Only) 14 I/O RC Oscillator Option Serial Peripheral Interface (SPI) 	
Package	18-Pin DIP 18-Pin SOIC	18-Pin DIP 18-Pin SOIC	18-Pin DIP 18-Pin SOIC	
Support Products	Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator	Z86C0800ZCO - Evaluation Board Z86C0800ZDP - Adaptor Kit Z86C1200ZEM - Emulator Z86C1200ZPD - Adaptor Kit Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator	Z86E0600ZDP - Adaptor Kit Z86C5000ZEM - Emulator Z86C5000ZDP - Adaptor Kit Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator	

& Silæ	DISCRETE Z8[®] M ICROCON	TROLLER SUPER	INTEGRATION [™] P RODUCTS G UIDE
Block Diagram	2K ROM Z6® CPU WDT 128 RAM P0 P2	4K ROM Z8 ⁹⁰ CPU WDT 236 RAM P0 P3 P2	2K ROM Z8 [®] CPU WDT RAM P0 P3 P2
Part Number	Z86C08/Z86E08	Z86C30/Z86E30	Z86C31/Z86E31
Description	Z86C08 = Z8 [®] MCU with 2 Kbyte ROM Z86E08 = OTP Version	Z86C30 = Z8® (CCP") with 4 Kbyte ROM Z86E30 = OTP Version	Z86C31 = 8-Bit MCU with 2 Kbyte ROM Z86E31 = OTP Version
Process/Speed	CMOS: 12 MHz	CMOS: 12 MHz	CMOS: 8 MHz
Features	 2 Kbyte ROM 128 Byte RAM Two Standby Modes Two Counter/Timer ROM Protect Two Analog Comparators Auto Power-On Reset Low-Voltage Protection (ROM Only) 14 I/O Low-Noise Option 	 4 Kbyte ROM 236 Byte RAM Two Standby Modes Two Counter/Timer ROM Protect Two Analog Comparators Auto Power-On Reset Low-Voltage Protection (ROM Only) 24 I/O RC Oscillator Option Low-Noise Option 	 2 Kbyte ROM 128 Byte RAM Two Standby Modes Two Counter/Timer ROM Protect Two Analog Comparators Auto Power-On Reset Low-Voltage Protection (ROM Only) 24 I/O RC Oscillator Option Low-Noise Option
Package	18-Pin DIP 18-Pin SOIC	28-Pin DIP	28-Pin DIP 28-Pin PLCC
Support Products	Z86C0800ZCO - Evaluation Board Z86C0800ZDP - Adaptor Kit Z86C1200ZEM - Emulator Z86C1200ZDP - Adaptor Kit Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator	Z86E3000ZDP - Adaptor Kit Z86C5000ZEM - Emulator Z86C5000ZPD - Emulator Pod Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator	Z86E3000ZDP - Adaptor Kit Z86C5000ZEM - Emulator Z86C5000ZPD - Emulator Pod Z86CCP00ZEM - Emulator Z86CCP00ZAC - Emulator

9-0 0

82ilæ	Multimedia/PC Audio		Superintegration [™] Products Guide	
Block Diagram	Bus DAC UF UF Sample Rate Generator Sound Blaster Command Set Interpreter MIDI Interface	DSP 512 RAM 4K ROM 16-BIT MAC Peripherals Interface	DSP 512 RAM 4K ROM 16-BIT MAC Peripherals Codec Interface I/F	ISA Bus I/F DMA Interface Logic Logic Interrupt Control Logic Logic Registers
Part Number	Z86321	Z89320	Z89321/Z89371	Z5380
DESCRIPTION	8-Bit Digital Audio Processor	16-Bit Digital Signal Processor	16-Bit Digital Signal Processor Z89371= OTP Version	Small Computer System Interface (SCSI)
Process/Speed	CMOS: 12 MHz	CMOS: 10 MHz	CMOS: 20 MHz	Clock: 1.5 Mb/s
Features	 Sound Blaster[™] Compatible ADPCM Decompression 8-Bit DAC Interface Successive Approximation ADC Algoritant MIDI Interface 	 16-Bit Multiply/Accumulate 100 ns 512 Word RAM 4K Word RAM Peripherals Interface Bus 74 Instruction Set 	 16-Bit Multiply/Accumulate 50 µs 512 Word RAM 4K Word ROM Peripherals Interface Bus CODEC Interface 	 Compatible 5380 Pin-out CMOS Asynchronous I/F Supports 1.5 Mb/s 48 mA Drivers Arbitration Support Support Normal or Block Mode DMA
Package	40-Pin DIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC
Support Products	Support Documentation Provided with Device	Z89C0000ZEM - Emulator	Z8937100ZEM - Emulator	Support Documentation Provided with Device

S-7

SoundBlaster[™] is a Trademark of Creative Labs, Inc.

	5 Multimedia/PC Aud	10	Wireless	Devices
Block Diagram	ISA Bus I/F DMA Interface Logic Logic Interrupt Logic Control Logic Registers	Host VF Command Control ROM VF Zero Crossing Detector Parameter Acquisition Waveform Data Transfer Data Transfer Marenter Bank Marenter MCA	Modulator Drff /PN C Drff /PN C Drff O Demodulator Matched Fitter Down Converter	ADC'S AC'S DAC'S DAC'S AC'S Demodulator Transmit & Receive Buffer Core Core Core
Part Number	Z53C80	Z89341/Z89342	Z2000*	287000
DESCRIPTION	SCSI Adaptor	Wave Synthesis Chip Set	Spread Spectrum Burst Processor	Cordless Phone Transceiver/Controller
Speed MHz	Clock: 3 Mb/s	CMOS: 36 MHz	CMOS: 45 MHz Clock: 2.048 Mb/s	CMOS: 16.384 MHz
Features	 ANSI X3, 131-1986 Standard DMA or Programmed I/O Data Transfers Asynchronous Interface Support 3 Mb/s ISA Bus I/F Glitch Eater 	 4-Channel 16-Bit Linear PCM Sound Generator Sampling Rates 20 kHz to 44.1 kHz Support 16-, 18-, and 20-Bit DAC Audio Bandwidth 0 Hz to 20,000 Hz Direct Interface with PC ISA Bus Direct Support 4Mx16 ROM 	 Operates up to 11.1264 Mchips Second in Transmit and Receive Modes Maximum Data Rate of 2.048 Mbps in Conformance with FCC Regulations Supports Differentially Encoded BPSK or QPSK Modulation Full-or Half-Duplex Operation for FDD or TDD Implementations Two Independent PN Sequences Power Management Features 	 Supports 900 MHz Spread Spectrum Cordless Phone Design Adaptive Frequency Hopping Transmit Power Control Bus Interface to ADPCM Processor 12K Words of RAM for Transceiver and Phone Control Software 32 Pins of Program I/O ROM Code, OTP and ICEBOX." Version to be Available Q3/94
Package	40-Pin DIP 44-Pin PLCC	84-Pin PLCC	100-Pin VQFP	84-Pin PLCC
Support Products	Support Documentation Provided with Device	Support Documentation Provided with Device	Z020000ZC0 - Evaluation Board	Z870000ZEM - Emulator

*Z2000 is sold under license from Stanford Telecommunications, Inc. ASIC and Custom Products Division

လ-လ စ

& Silæ	Keyboard/Input De	EVICES	Superintegr	ation [™] P roducts G uide
Block Diagram	4K ROM Z8® CPU RAM Counter/Timers WDT P0 P1 P2 P3	2/4K ROMZ8 ^{to} CPURAMCounter/TimersP0P1P2P3	8K OTP/ROMZ8® CPURAMCounter/TimerP0P1P2P3	2K ROM Z8 [®] CPU RAM Counter/Timer WDT P0 P2 P3
Part Number	Z8615	Z8614/Z8602	Z86E23	Z86C17
DESCRIPTION	Keyboard MCU	Z8602 = 2K ROM Keyboard MCU Z8614 = 4K ROM Keyboard MCU	Keyboard OTP MCU	Mouse MCU
Process/Speed	NMOS: 4, 5 MHz	NMOS: 4 MHz	CMOS: 4 MHz	CMOS: 4 MHz
Features	 4K ROM 124-Byte RAM 32 I/O Lines Two Counter/Timers Watch-Dog Timer (WDT) RC Oscillator Dedicated Row Column Pins Data/Clock Pins Direct Connect LED Pins 	 4K ROM 124 Byte RAM 32 I/O Lines Two Counter/Timers Dedicated Row Column Pins 	 8K ROM 256 Byte RAM 32 I/O Lines Two Counter/Timers Dedicated Row Column Pins 	 2K ROM 124 Byte RAM 14 I/O Lines Two Counter/Timers Dedicated Opto-Transistor Pins Integrated Pull-up Resistors Power-Down Modes Power-On Reset (POR) Watch-Dog Timer (WDT)
Package	40-Pin DIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC	18-Pin DIP 18-Pin SOIC
Support Products	Z0861500ZCO - Evaluation Board Z86C1200ZEM -Emulator Z0861500ZDP - Adaptor Kit	Z0860200ZCO - Evaluation Board Z86C1200ZEM - Emulator Z0860200ZDP - Adaptor Kit Z86C1200ZPD - Emulator Pod	Z0860200ZCO - Evaluation Board Z86C1200ZEM - Emulator Z0860200ZDP - Adaptor Kit	Z86C1200ZEM - Emulator

& Silæ	Keyboard/Input De	VICES	Superintegr	ation [™] Products Guide
Block Diagram	2K ROM Z8® CPU RAM Counter/Timer WDT Comparators P0 P2 P3	1K ROM Z8® CPU RAM Counter/Timer WDT Comparators P0 P2 P3	4K ROM DSP RAM Counter/Timer Codec Interface 16-Bit DATA MAC I/O	4K ROM Z8® MCU] RAM Counter/Timer WDT Comparators P0 P2 P3
Part Number	Z86C08/Z86C07/Z86E08	Z86C04/Z86E04	Z89321/Z89371	Z86C30/Z86E30
DESCRIPTION	Pointing Device Z8® MCU Z86E08 = OTP Version	Discrete MCU Z86E04 = OTP Version	16-Bit Digital Signal Processor Z89371 = OTP Version	Z8® MCU Z86E30 = OTP Version
Process/Speed	CMOS: 4,8,12 MHz	CMOS: 4 MHz	CMOS: 15, 20 MHz	CMOS: 8, 12 MHz
Features	 2K ROM 124 Byte RAM 14 I/O Lines Two Counter/Timers Power-Down Modes Two Comparators Power-On Reset (POR) Watch-Dog Timer (WDT) Auto Latch (Z86C07 Only) 	 1K ROM 124 Byte RAM 14 I/O Lines Two Counter/Timers Power-Down Modes Two Comparators Power-On Reset (POR) Watch-Dog Timer (WDT) 	 4K Word ROM 512 Word RAM 16 Bit I/O Bus Two Counter/Timers CODEC Interface 50/75 ns Cycle Timer 4K OTP ROM (Z89371 Only) 	 4K Word ROM 256 Byte RAM 24 I/O Lines 2 Counter/Timers Power-Down Mode Two Comparators Power-On Reset (POR) Watch-Dog Timer (WDT)
Package	18-Pin DIP 18-Pin SOIC	18-Pin DIP 18-Pin SOIC	40-Pin DIP 44-Pin PLCC	28-Pin DIP 28-Pin SOIC
Support Products	Z86C1200ZEM - Emulator	Z86C1200ZEM - Emulator Z86CCP00ZEM - Emulator	Z8937100ZEM - Emulator Z8937100TSC - Emulator	Z86C5000ZEM - Emulator

,

& Silæ	Z80[®] Embedded Controllers		Superintegra	tion [™] P roducts Guide
Block Diagram	84C00 CPU O S Power C Down	SIO PIO OSC PIA	CTC CGC SIO WDT Z80 CPU	PIO CGC WDT SIO CTC Z80 CPU
Part Number	Z84C01	Z84C90	Z84013/Z84C13	Z84015/Z84C15
DESCRIPTION	Z80 [®] CPU with Clock Generator/Clock	Killer I/O (Three Z80® Peripherals)	Intelligent Peripheral Controller	Enhanced Intelligent Peripheral
Process/Speed	CMOS: 10 MHz	CMOS: 8, 10, 12 MHz	Z84013 = CMOS: 6, 10 MHz Z84C13 = CMOS: 6, 10 MHz	Z84015 = CMOS: 6, 10 MHz Z84C15 = CMOS: 16 MHz
Features	 Clock Generator/Controller Four Power Down Modes 	 Serial Input/Output (SIO) Counter/Timer Circuit (CTC) Plus Eight I/O Lines Three 8-Bit Ports 	 Serial Input/Output (SIO) Counter/Timer Circuit (CTC) Watch-Dog Timer (WDT) Clock Generator Circuit (CGC) Wait State Generator (WSG) Power-On Reset (POR) Two Chip Selects Evaluation Mode 	 Serial Input/Output (SIO) Counter/Timer Circuit (CTC) Watch-Dog Timer (WDT) Clock Generator Circuit (CGC) Four Power-Down Modes Power-On Reset Two Chip Selects 32-Bit CRC Wait State Generator (WSG) Evaluation Mode
Package	44-Pin QFP 44-Pin PLCC	84-Pin PLCC 80-Pin QFP	84-Pin PLCC	100-Pin QFP 100-Pin VQFP
Support Products	Z84C9000ZCO - Evaluation Board	Z84C9000ZC0 - Evaluation Board	Z84C1500ZCO - Evaluation Board	Z84C1500ZCO - Evaluation Board

& Siros	Z80 [®] Embedded C	ONTROLLERS	Superintegr	ation [™] P roducts Guide
Block Diagram	Z80 CPU MMU SC Z DMA 2 UART 2 C/T C/Ser	CTC SCC/2 (85C30/2) Z180	24 I/O 85230 ESCC (2 CH) 16550 MIMIC S180	Clock w/ Standby Control Refresh Control Chip Selects and Wait
Part Number	Z80180/Z8S180/Z8L180	Z80181	Z80182/Z8L182	Z80380/Z8L380
DESCRIPTION	High-Performance Z80 [®] CPU with Peripherals Z8S180 = Static Version Z8L180 = Low-Voltage Version	Smart Access Controller	Zilog Intelligent Peripheral (ZIP™) Z8L182 = Low-Voltage Version	Z380" Microprocessor Z8L380 = Low-Voltage Z380
Process/Speed	Z80180 = CMOS: 6, 8, 10, MHz Z8S180 = CMOS: 16 MHz Z8L180 = CMOS: 20, 33 MHz	CMOS: 10, 12 MHz	Z80182 = CMOS: 16, 33 MHz Z8L182 = CMOS: 20 MHz	Z8L380 = CMOS: 10 MHz Z80380 = CMOS: 16, 18 MHz
Features	 Enhanced Z80[®] CPU 1 Mbyte MMU 2 DMAs 2 UARTs with Baud Rate Generators C/Serial I/O Port Oscillator Z8S180 Includes; Power-Down Programmable EMI Divide-By-One Clock Option 3.3V and 5V Version 	 Complete Z180[®] plus SCC/2 Counter/Timer Circuit 16 I/O Lines Emulation Mode 	 Static Version of Z180" plus ESCC (2 Channels of Z85230 with 32-Bit CRC Not Available for 16 MHz) 16550 MIMIC 24 Parallel I/O Emulation Mode 3.3V and 5V Version 	 16/32-Bit MPU Internal 32-Bit Datapaths and ALU 2 Clocks/Cycle Instruction Execution up to 4 Gbytes of Linear Addressing Enhanced Instruction Set 4 Banks of On-Chip Register Files Object-Code Compatible with Z80/Z180 Microprocessors up to 6 Programmable Memory Chip Selects 3.3V and 5V Version
Package	64-Pin DIP 68-Pin PLCC 80-Pin QFP	100-Pin QFP	100-Pin QFP 100-Pin VQFP	100-Pin QFP
Support Products	Z8S18000ZCO - Evaluation Board ZEPMIP00001 - EPM [™] Manual	Z8018100ZCO - Evaluation Board Z8018100ZDP - Adaptor Kit Z8018101ZCO* - Evaluation Board * Includes LLAP software that can be licensed (Z80181ZA6). ZEPMIP00001- EPM* Manual	Z8018200ZCO - Evaluation Board ZEPMIP00002 - EPM [™] Manual	Z8038000ZCO - Evaluation Board ZEPMIP00003 - EPM [™] Manual

Superintegration[™] Products Guide

Block Diagram	DSP 512 RAM 4K ROM 16-BIT MAC DATA RAM I/O I/O	Z8DSP24K4K WORDROMROM256 BYTES512 WORDRAMRAM8-Bit10-BitA/DD/A	Z8DSPROMLess4K WORD ROM256 BYTES512 WORD RAM8-Bit10-Bit D/A	P C B M U C S A A A A A A A A A A A A A A A A A A A
Part Number	Z89C00	Z89120	Z89920	Z86017
DESCRIPTION	16-Bit Digital Signal Processor	Zilog Modem/Fax Controller	Zilog Modem/Fax Controller	PCMCIA Interface Adaptor
PROCESS/SPEED	CMOS: 10, 15 MHz	CMOS: 20 MHz	CMOS: 20 MHz	CMOS: 20 MHz
Features	 16-Bit Multiply/Accumulate 75 ns Two Data RAMs (256 Words each) 4K Word ROM 64Kx16 Ext. ROM 16-Bit I/O Port 74 Instructions Most Single Cycle Two Conditional Branch Inputs, Two User Outputs Library of Macros Zero Overhead Pointers 	 Z8[®] with 24 Kbyte ROM 16-Bit DSP with 4K Word ROM 8-Bit A/D 10-Bit D/A (PWM) Library of Macros 47 I/O Pins Two Comparators Independent Z8[®] and DSP Operations Power-Down Mode 	 Z8 with 64K External Memory DSP with 4K Word ROM 8-Bit A/D 10-Bit D/A Library of Macros 47 I/O Pins Two Comparators Independent Z8[®] and DSP Operations Power-Down Mode 	 256 Bytes of Attribute Memory Five Configuration Registers EEPROM Sequencer or SPI Interface PCMCIA to I/O, Memory or Both PCMCIA to ATA/IDE ATA/IDE to ATA/IDE 3.0V to 5.5V Operation 8- or 16-Bit Peripheral Support
Package	68-Pin PLCC 60-Pin VQFP	68-Pin PLCC	68-Pin PLCC	100-Pin VQFP
Support Products	Z89C0000ZEM - Emulator Z89C0000ZCC - Emulator	Z89C6501ZEM - Ernulator Z89C6500ZDP - Ernulator	Z89C6501ZEM - Emulator Z89C6500ZDB - Emulator	Z8601700ZCO - Evaluation Board

\$ SILCE	Modem/Fax		Superinteg	ration [™] P roducts Guide
Block Diagram	PIO CGC WDT SIO CTC Z80 CPU	ZBD 2 DMA 2 UART 2 C/T C/Ser MMU OSC	24 1/0 ESCC 16550 (2 CH) MIMIC S180	FIFO FIFO 85C30 SCC (2 CH)
Part Number	Z84C15/Z84015	Z80180/Z8S180/Z8L180	Z80182/Z8L182	Z85230
DESCRIPTION	Enhanced Intelligent Peripheral Controller	High-Performance Z80 [®] CPU with Peripherals Z8S180 = Static Version Z8L180 = Low-Voltage Version	Zilog Intelligent Peripheral (ZIP**) Z8L182 = Low-Voltage Version	Enhanced Serial Communication Controller
Process/Speed	Z84015 = CMOS: 6, 10 MHz Z84C15 = CMOS: 16 MHz	Z80180 = CMOS: 6, 8, 10, MHz Z8S180 = CMOS: 16 MHz Z8L180 = CMOS: 20, 33 MHz	Z80182 = CMOS: 16, 18, 33 MHz Z8L182 = CMOS: 20 MHz	CMOS: 8, 10,16, 20 MHz
Features	 Z80[®] CPU, Serial Input/Output (SIO) Counter/Timer Circuit (CTC) Watch-Dog Timer (WDT) Clock Generator Circuit (CGC) Four Power-Down Modes Z84C15 Enhancements Include: Power-On Reset Two Chip Selects 32-Bit CRC Wait State Generator (WSG) Evaluation Mode 	 Enhanced Z80% CPU 1 Mbyte MMU 2 DMAs 2 UARts with Baud Rate Generators C/Serial I/O Port Oscillator Z8S180 Includes; Power Down Programmable EMI Divide-By-One Clock Option 3.3V and 5V Version 	 Static Version of Z180" plus ESCC (Two Channels of Z85230 with 32-Bit CRC Not Available for 16 MHz) 16550 MIMIC 24 Parallel I/O Emulation Mode 3.3V and 5V Version 	 Full Dual-Channel SCC Plus Deeper FIFOs: 4 Bytes on Transceivers 8 Bytes on Receivers DPLL Counter Per Channel Software Compatible to SCC
Package	100-Pin QFP 100-Pin VQFP	64-Pin DIP 68-Pin PLCC 80-Pin QFP	100-Pin QFP 100-Pin VQFP	40-Pin DIP 44-Pin PLCC
Support Products	Z84C1500ZCO - Evaluation Board	Z8S18000ZCO - Evaluation Board ZEPMIP00001- EPM [®] Manual	Z8018200ZCO - Evaluation Board ZEPMIP00002 - EPM [™] Manual	Z8S18000ZCO - Evaluation Board Z8038000ZCO - Evaluation Board Z8523000ZCO - Evaluation Board Z8018600ZCO - Evaluation Board ZEPMDC00002 - EPM [™] Manual

\$2ilæ	Serial Communication	DNS .	Superintegrat	ion [™] Products Guide
Block Diagram	SCC	FIFO FIFO 85C30 SCC (2 CH)	SCC DMADMADMADMA BIU	85C30 SCC 53C80 SCSI
Part Number	Z8030/Z80C30 Z8530/Z85C30	Z85230/Z80230 Z85233	Z16C35	Z85C80
DESCRIPTION	Serial Communication Controller 28030/280C30 = Multiplexed Bus 28530/285C30 = Non-Multiplexed Bus	Enhanced Serial Communication Controller Z8230/Z80230 = Dual Channel Z85233 = Single Channel	Integrated Serial Communication Controller	SCSCI Serial Communication and Small Computer Interface
Process/Speed	Z8030/Z8530 = NMOS: 4, 6, 8 MHz Z80C30/Z85C30 = CMOS: 8,10 16 MHz Clock: 2, 2.5, 4 Mb/s	CMOS: 10, 16 20 MHz Clock: 2.5, 4.0, 5.0 Mb/s	CMOS: 10, 16 MHz Clock: 2.5, 4.0 Mb/s	CMOS: 10, 16 MHz Clock: 2.5 Mb/s
Features	 Two Independent Full-Duplex Channels Enhanced DMA Support: 10x19 Status FIFO 14-Bit Byte Counter NRZ/NRZI/FM Encoding Modes 	 Full Dual-Channel SCC Plus Deeper FIFOs: 4 Bytes on Transmitters 8 Bytes on Receivers DPLL Counter Per Channel Software Compatible to SCC 	 Full Dual-Channel SCC Four DMA Controllers Bus Interface Unit 	 Two Independent Full-Duplex Channels Direct SCSI Bus Interface Supports SCSI ANSI-X3.131-1986 Standard
Package	40-Pin DIP 44-Pin CERDIP 44-Pin PLCC	40-Pin DIP 44-Pin PLCC 44-Pin QFP (Z85233 Only)	68-Pin PLCC	68-Pin PLCC 100-Pin VQFP
Support Products	Z8018600ZCO - Evaluation Board Z8523000ZCO - Evaluation Board Z8018100ZCO - Evaluation Board ZEPMD000002 - EPM [®] Manual	Z8018600ZCO - Evaluation Board Z8518000ZCO - Evaluation Board Z8038000ZCO - Evaluation Board Z8523000ZCO - Evaluation Board ZEPMDC00002 - EPM [™] Manual	Z8018600ZCO - Evaluation Board	ZEPMD00002 - EPM™ Manual

Serial Communications			Superintegration [™] Products Guide	
Block Diagram	CTC 16 I/0 (85C30/2) Z180	24 I/O 85230 16550 ESCC MIMIC (2 CH) S180	USC	USC/2 DMA DMA
Part Number	Z80181	Z80182/Z8L182	Z16C30	Z16C32
DESCRIPTION	Smart Access Controller	Zilog Intelligent Peripheral (ZIP") Z80L182 = Low-Voltage Version	Universal Serial Controller (USC®)	Integrated Universal Serial Controller
Process/Speed	CMOS: 10, 12 MHz	Z80182 = CMOS: 16,18, 33 MHz Z8L182 = CMOS: 20 MHz	CMOS: 10 MHz CPU Bus 10 Mb/s	CMOS: 20 MHz DMA Clock 20 Mb/s
Features	 Complete Z180[™] plus SCC/2CTC 16 I/O Lines Emulation Mode 	 Complete Static Version of Z180" plus ESCC (2 Channels of Z85230 with 32-Bit CRC not Available for 16 MHz) 16550 MIMIC 24 Parallel I/O Emulation Mode 3.3V and 5V Version 	 Two Dual-Channel 32-Byte Receive and Transmit FIFOs 16-Bit Bus B/W:18.2 Mb/s Two BRGs Per Channel Flexible 8/16-Bit Bus Interface 12 Serial Protocols Eight Data Encoding Bits 	 Single-Channel (Half of USC) plus two DMA Controllers Array Chained and Linked-List Modes with Ring Buffer Support
Package	100-Pin QFP	100-Pin QFP 100-Pin VQFP	68-Pin PLCC	68-Pin PLCC
Support Products	Z8018100ZCO - Evaluation Board Z8018100ZDP - Adaptor Kit Z8018101ZCO* - Evaluation Board ZEPMIP00001 - EPM [™] Manual * Includes LLAP software that can be licensed (Z80181ZA6)	Z8018200ZCO - Evaluation Board ZEPMIP00002 - EPM [®] Manual	Z16C3001ZCO - Evaluation Board Z8018600ZCO - Evaluation Board ZEPMDC00001 - EPM [®] Manual	Z16C3200ZCO - Evaluation Board Z8018600ZCO - Evaluation Board ZEPMDC00001 - USC [®] EPM [™] Manual

& Silos	Mass Storage		SUPERINTEGRAT	'ion™ Products Guide
Block Diagram	UART CPU OSC 256 RAM CLOCK P0 P1 P2 P3	8K PROM UART CPU 256 RAM P0 P1 P2 P3	DSP 512 RAM 4K ROM 16-BIT MAC DATA RAM I/O I/O	MULT DIV UART CPU OSC 256 RAM CLOCK P0 P1 P2 P3
Part Number	Z86C91/Z8691	Z86E21/Z86C21	Z89C00	Z86C93
DESCRIPTION	ROMLess Z8®	Z86E21 = 8K OTP Z86C21 = 8K ROM	16-Bit Digital Signal Processor	ROMLess Enhanced Z8 [®] Mult/Div
Process/Speed	Z86C91 = CMOS: 16 MHz Z8691 = NMOS: 12 MHz	CMOS: 12, 16 MHz	CMOS: 10, 15 MHz	CMOS: 20, 25, 33 MHz
Features	 Full-Duplex UART Two Standby Modes (STOP and HALT) 2x8 Bit Counter/Timer 	 256 Byte RAM Full-Duplex UART Two Standby Modes (STOP and HALT) Two Counter/Timers ROM Protect Option RAM Protect Option Low-EMI Option 	 16-Bit Multiply/Accumulate 75 ns Two Data RAMs (256 Words Each) 4K Word ROM 64Kx16 Ext. ROM 16-Bit I/O Port 74 Instructions Most Single Cycle Two Conditional Branch Inputs, Two User Outputs Library of Macros Zero Overhead Pointers 	 16x16 Multiply 17 Clocks 32x16 Divide 20 Clocks Full-Duplex UART Two Standby Modes (STOP and HALT) Three 16-Bit Counter/Timers
Package	40-Pin DIP 44-Pin PLCC 44-Pin QFP	40-Pin DIP 44-Pin PLCC 44-Pin QFP	68-Pin PLCC	40-Pin DIP 44-Pin PLCC 44-Pin QFP
Support Products	Z0860000ZCO - Evaluation Board Z86C0000ZUSP064 - Signum Emulator Z86C1200ZPD - Signum Emulator Pod	Z0860000ZCO - Evaluation Board Z86C0000ZUSP064 - Signum Emulator Z86C1200ZPD - Signum Emulator Pod	Z89C00ZEM - Ernulator	Z0860000ZCO - Evaluation Board Z86C0000ZUSP064 - Signum Emulator Z86C0001ZUSP064 - Signum Emulator Z86C9300ZPD - Signum Emulator Pod Z86C9301ZPD - Signum Emulator Pod

& Silæ	Mass Storage	Superintegration [™] Products Guide			
Block Diagram	MULTDIVUARTCPUDSPDACPWMADCSPIP2P3A15-0	88-BIT SRAM/ R-S DRAM ECC CTRL DISK MCU INTER-INTER-FACE FACE	MULT DIV UART CPU OSC 464 RAM CLOCK Search Merge P2 P3 A15-A0	SERVO MAILBOX MULT DIV UART CPU DSP DAC PWM ADC SPI P2 P3 A15-A0	
Part Number	Z86C95	Z86018	Z86193	Z86295	
DESCRIPTION	ROMLess Enhanced Z8® with DSP	Zilog Datapath Controller	ROMLess Enhanced Z8® Multiply/Divide	ROMLess Enhanced Z8® DSP Servo Timer	
PROCESS/SPEED	CMOS: 24, 33 MHz	CMOS: 40 MHz	CMOS: 40 MHz	CMOS: 40 MHz	
Features	 Eight Channel 8-Bit ADC 9-Bit DAC 16-Bit Multiply/Divide Full-Duplex UART Serial Peripheral Interface (SPI) Three Standby Modes (STOP/HALT/PAUSE) Pulse Width Modulator (PWM) 3x16-Bit Timer 16-Bit DSP Slave Processor 83 ns Multiply/Accumulate 	 Full-Track Read Automatic Data Transfer (Point & Go®) 88-Bit Reed Solomon ECC "On The Fly" Full AT/IDE Bus Interface 64 Kbytes SRAM Buffer 1 Mbytes DRAM Buffer Split Data Field Support Joint Test Action Group (JTAG) Boundary Scan Option 8 Kbytes Buffer RAM Reserved for MCU 	 16x16 Multiply 17 Clocks 32x16 Divide 38 Clocks Full-Duplex UART Two Standby Modes (STOP & HALT) Three 16-Bit Counter/Timers SEARCH Machine MERGE Machine Bus Request Mode Evaluation Mode 	 Eight Channel 8-Bit ADC 8-Bit DAC Serial Peripheral Interface (SPI) Pulse Width Modulator (PWM) Three 16-Bit Counter/Timer Full-Duplex UART 16-Bit Z8® Multiply/Divide Full 16-Bit DSP Programmable Servo Timer Z8® - DSP Mail Box 	
Package	80-Pin QFP 84-Pin PLCC 100-Pin VQFP	100-Pin VQFP	64-Pin VQFP	100-Pin VQFP 144-Pin QFP	
Support Products	Z86C9500ZCO - Evaluation Board Z86C9500ZUSP064 - Signum Emulator Z86C9501ZUSP064 - Signum Emulator Z86C9500ZPD - Signum Emulator POD Z86C9501ZPD - Signum Emulator POD Z86ZIA00ZCO - Evaluation Board	Z86C9900ZCO - Evaluation Board	Z8619200ZME - Emulator Z8619300ZCO - Evaluation Board	Z86ZIA01ZCO - Evaluation Board	

Superintegration[™] Products Guide

Block Diagram	P C B M U C S A A Address Window B E B B B V B C S C B Registers P B P C B Registers P C B Registers P C B C B C C C C C C C C C C C C C C C	P C B M U C S A A A A A A A A A A A A A A A A A A A	P C B M U C S I A A A A A A A A A A A A A A A A A A	P 2 DMA Channels 2 128 Byte FiFOs P E FiFOs P E Registers B 8 NO S 8 NO Ap Ranges 0 P E S B Arbfration Logic P 8 Registers A E C 1 C B 8 NO S 1 C 1 C C 1 C 1 C 1 C
Part Number	Z86016	Z86017	Z86M17	Z86020
DESCRIPTION	8-Bit PCMCIA Interface Adaptor	PCMCIA Interface Adaptor	PCMCIA Interface Adaptor	PCI/Multifunction Bridge
Process/Speed	CMOS: 20 MHz	CMOS: 20 MHz	CMOS: 20 MHz	CMOS: 33 MHz
Features	Z86017 with 8-Bit Peripheral Bus Only	 256 Bytes of Attribute Memory Five Configuration Registers EEPROM Sequencer or SPI Interface PCMCIA to I/O, Memory or Both PCMCIA to ATA/IDE ATA/IDE to ATA/IDE 3.0V to 5.5V Operation 8- or 16-Bit Peripheral Support 	 Mirror Image Pin-Out of Z86017 for Opposite PCB - Surface Layout 	 256 Bytes of Configuration Memory 64 PCI Configuration Registers Eight Programmable Memory or I/O Map Ranges with Independent Timing Control 128 Byte FIFO's Two Full Featured DMA Channels PCI Initiator/Target Operations On-Chip Peripheral Bus Arbitration
Package	48-Pin VQFP 64-Pin VQFP	100-Pin VQFP	100-Pin VQFP	160-Pin QFP
Support Products	Z8601600ZCO - Evaluation Board (Available Q494)	Z8601700ZCO -Evaluation Board	Z8601700ZCO - Evaluation Board	Available Q494

S

- Appandly A
- 100 Appondix 8
- Appendiz G

 $\widehat{\left(\begin{smallmatrix} \\ \vdots \\ \vdots \end{smallmatrix} \right)}$

Appendix D

E

Appendix E

Index

Superintegration™ Products Guide

Literature Guide

[®] Silos

LITERATURE GUIDE

Databooks By Market Niche	Part No	Unit Cos
Databooks By Market Niche Z8° Microcontrollers Databook Product Specifications Z86C07 CM0S Z8 8-Bit Microcontroller Z86C08 CM0S Z8 8-Bit Microcontroller Z86C11 CM0S Z8 B-Bit OTP Microcontroller Z86C12 CM0S Z8 In-Circuit Microcontroller Z86C12 CM0S Z8 In-Circuit Microcontroller Z86C21 8K ROM Z8 CM0S Microcontroller Z86C21 CM0S Z8 8K OTP Microcontroller Z86C3/64 32K ROM Z8 CM0S Microcontroller Z86C91 CM0S Z8 R0Mless Microcontroller Z86C93 CM0S Z8 Multiply/Divide Microcontroller Z86C93 CM0S Z8 Multiply/Divide Microcontroller Z86C93 CM0S Z8 Multiply/Divide Microcontroller Z86C93 CM0S Z8 Multiply/Divide Microcontroller Z86C90002C0 Development Kit Z86C91002DF Adaptor Kit Z86E21002DF Adaptor Kit Z86E21002DF Adaptor Kit Z86E21002DV Adaptor Kit Z86E21012DF Conversion Kit Z86C6100TSC Z86C61/63 MCU OTP Emulation Board Z86C6200ZEM In-Circuit Emulator Z86C61200ZEM Z8® In-Circuit Emulator Z86C1200ZEM Z8® In-Circuit Emulator Z86C1200ZEM Z8® In-Circuit Emulator Z86C1200ZEM Z8® In-Circuit Emulator Z86C1200ZEM Z8® In-Circuit Emulator <	Part No DC-8305-02	Unit Co: \$ 5.00
Zilog's Sales Offices, Representatives and Distributors Infrared Remote (IR) Controllers Databook	DC-8301-04	\$ 5.00
Product Specifications Z86L06 Low Voltage CMOS Consumer Controller Processor (Preliminary) Z86L29 6K Infrared (IR) Remote (ZIRC™) Controller (Advance Information) Z86L70/L71/L72/L75/L76 Zilog IR (ZIRC™) CCP™ Controller Family (Preliminary) Z86E72/E73/E74 Zilog IR (ZIRC™) CCP™ Controller Family (Preliminary) Z86E72/E73/E74 Zilog IR (ZIRC™) CCP™ Controller Family (Preliminary) Application Note Beyond the 3 Volt Limit Support Product Specifications Z86L7100ZDB Emulator Board Z86L7100ZEM ICEB0X™ In-Circuit Emulator Board Additional Information	D0-0001-04	φ 3.00

Zilog's Superintegration[™] Products Guide Literature Ordering Guide Zilog's Sales Offices, Representatives and Distributors

L-1

Silæ

LITERATURE GUIDE

Databooks By Market Niche	Part No	Unit Cos
iscrete Z8 [®] Microcontrollers	DC 8318-01	\$ 5.00
Product Specifications		
Z86C03/C06 CMOS Z8® 8-Bit Microcontroller		
Z86E03/E06 CMOS Z8 [®] 8-Bit OTP Microcontroller		
Z86C04/C08 CMOS Z8® 8-Bit Low Cost 1K/2K ROM Microcontroller		
Z86E04/E08 CMOS Z8® OTP Microcontroller		
Z86C07 CMOS Z8 [®] 8-Bit Microcontroller		
Z86E07 CMOS Z8® 8-Bit OTP Microcontroller		
Z86C30 and Z86C31 CMOS Z8® 8-Bit Microcontroller		
Z86E30 and Z86E31 CMOS Z8 [®] 8-Bit OTP Microcontroller		
Z86C40 CMOS Z8 [®] 8-Bit CCP [™] Microcontroller		
Z86E40 CMOS Z8 [®] 0TP CCP [™] Microcontroller		
Support Product Specifications and Third Party Vendors		
Z86C0800ZCO Applications Board		
Z86C0800ZDP Adaptor Board		
Z86E0600ZDP Conversion Kit		
Z86E3000ZDP Adaptor Kit		
Z86E4000ZDF Adaptor Kit		
Z86E4000ZDP Adaptor Kit		
Z86E4000ZDV Adaptor Kit		
Z86E4001ZDF Conversion Kit		
Z86E4001ZDV Conversion Kit		
Z86CCP00ZAC Emulator Accessory Kit		
Z86CCP00ZEM In-Circuit Emulator Additional Information		
Zilagia Superintegration™ Draduata Cuida		
Zilog's Superintegration™ Products Guide		
Literature Guide and Ordering Information Zilog's Sales Offices, Representatives and Distributors		
zilog s Sales Offices, Representatives and Distributors		
gital Television Controllers	DC-8308-01	\$ 5.00
Product Specifications		
Z89300 Series Digital Television Controller		
Z86C27/97 CMOS Z8® Digital Signal Processor		
Z86C47/E47 CMOS Z8® Digital Signal Processor		
Z86127 Low Cost Digital Television Controller		
Z86128/228 Line 21 Closed-Caption Controller (L21C™)		
Z86227 40-Pin Low Cost (4LDTC™) Digital Television Controller		
Support Product Specifications		
Z86C2700ZCO Application Kit		
Z86C2700ZDB Emulation Board		
Z86C2702ZEM In-Circuit Emulator		
Additional Information		
7ilog's Superintegration™ Broducts Cuide		

Zilog's Superintegration[™] Products Guide Literature Guide and Ordering Information Zilog's Sales Offices, Representatives and Distributors

[©]Silæ

LITERATURE GUIDE

Z8® MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS Databooks By Market Niche Part No Unit Cost **Telephone Answering Device Databook** DC-8300-02 \$ 5.00 Product Specifications Z89C65, Z89C66 (ROMless) Dual Processor T.A.M. Controller (Preliminary) Z89C67, Z89C68/C69 (ROMIess) Dual Processor Tapeless T.A.M. Controller (Preliminary) **Development Guides** Z89C65 Software Development Guide Z89C67/C69 Software Development Guide **Technical Notes** Using Samsung KT8554 Codec on the ZTAD Development Board Z89C67/C69 Design Guidelines Z89C67/C69 ARAM Bit-Rate Measurements Z89C67 Codec Interfacing (Preliminary) Controlling the Out –5V and Codec Clock Signals for Low-Power Halt Mode Support Product Specifications Z89C5900ZEM Emulation Module Z89C6500ZDB Emulation Board Z89C6501ZEM ICEBOX™ In-Circuit Emulator Z89C6700ZDB Emulator Board Z89C6700ZEM ICEBOX[™] Emulator Board Additional Information Zilog's Superintegration[™] Products Guide Literature Ordering Guide Zilog's Sales Offices, Representatives and Distributors

⊗ ZilŒ

LITERATURE GUIDE

Databooks By Market Niche	Part No	Unit Cos
Digital Signal Processor Databook	DC-8299-04	\$ 5.00
Product Specifications		
Z89321/371 16-Bit Digital Signal Processor (Preliminary)		
Z89C00 16-Bit Digital Signal Processor (Preliminary)		
Z89320 16-Bit Digital Signal Processor (Preliminary)		
Z86C95 Z8 [®] Digital Signal Processor (Preliminary)		
Z89120, Z89920 (ROMIess) 16-Bit Mixed Signal Processor (Preliminary)		
Z89121, Z89921 (ROMless) 16-Bit Mixed Signal Processor (Preliminary)		
Application Note		
Using the Z89371/321 CODEC Interface		
Z89371 Inter Processor Communication		
Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP)		
Support Product Specifications		
Z8937100ZEM In-Circuit Emulator -C00		
Z8937100TSC Emulation Module		
Z89C0000ZAS Z89C00 Assembler, Linker and Librarian		
Z89C0000ZCC Z89C00 C Cross Compiler		
Z89C0000ZEM In-Circuit Emulator -C00		
Z89C0000ZHP Logic Analyzer Adaptor Board		
Z89C0000ZSD Z89C00 Simulator/Debugger		
Z89C0000ZTR Z89C00 Translator		
Additional Information		
Zilog's Superintegration [™] Products Guide		
Literature Guide and Third Party Support		
Zilog's Sales Offices, Representatives and Distributors		

Zilæ

LITERATURE GUIDE

28° MICROCONTROLLERS - PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS

Databooks By Market Niche	Part No	Unit Cost
Keyboard/Mouse/Pointing Devices Databook	DC-8304-00	\$ 5.00
Product Specifications		
Z8602 NMOS Z8 [®] 8-Bit Keyboard Controller		
Z8614 NMOS Z8® 8-Bit Keyboard Controller		
Z8615 NMOS Z8® 8-Bit Keyboard Controller Z86E23 Z8® 8-Bit Keyboard Controller with 8K OTP		
Z86C04 CMOS Z8 [®] 8-Bit Microcontroller		
Z86C08 CMOS Z8® 8-Bit Microcontroller		
Z88C17 CMOS Z8 [®] 8-Bit Microcontroller		
Additional Information		
Zilog's Superintegration™ Products Guide Literature Guide		
C Audio Databook	DC-8317-00	\$ 5.00
Product Specifications		
Z86321 Digital Audio Processor (Preliminary)		
Z89320 16-Bit Digital Signal Processor (Preliminary)		
Z89321/371 16-Bit Digital Signal Processor (Preliminary)		
Z89331 16-Bit PC ISA Bus Interface (Advance Information)		
Z89341/42/43 Wave Synthesis Chip Set (Advance Information)		

Z5380 Small Computer System Interface Additional Information Zilog's Superintegration[™] Products Guide Literature Guide

LITERATURE GUIDE

Mass Storage Solutions Product Specifications Z86C21 8K ROM Z8 CMOS Microcontroller Z86E21 CMOS Z8 8K OTP Microcontroller Z86C91 CMOS Z8 ROMless Microcontroller Z86C93 CMOS Z8 Multiply/Divide Microcontroller Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z86016 -Bit Digital Signal Processor Z86017 Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z860000ZC0 Development Kit Z86E2100ZDF Adaptor Kit Z86E2100ZDV Adaptor Kit Z86E2100ZDV Adaptor Kit Z86E21012DF Conversion Kit	DC-8303-01	\$ 5.00
Z86C21 8K ROM Z8 CMOS Microcontroller Z86E21 CMOS Z8 8K OTP Microcontroller Z86C91 CMOS Z8 ROMless Microcontroller Z86C93 CMOS Z8 Multiply/Divide Microcontroller Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZFM In-Circuit Emulator		
Z86C21 8K ROM Z8 CMOS Microcontroller Z86E21 CMOS Z8 8K OTP Microcontroller Z86C91 CMOS Z8 ROMless Microcontroller Z86C93 CMOS Z8 Multiply/Divide Microcontroller Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZFM In-Circuit Emulator		
Z86E21 CMOS Z8 8K OTP Microcontroller Z86C91 CMOS Z8 ROMless Microcontroller Z86C93 CMOS Z8 Multiply/Divide Microcontroller Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZEM In-Circuit Emulator		
Z86C91 CMOS Z8 ROMless Microcontroller Z86C93 CMOS Z8 Multiply/Divide Microcontroller Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZEM In-Circuit Emulator		
Z86C93 CMOS Z8 Multiply/Divide Microcontroller Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZEM In-Circuit Emulator		
Z86C95 Z8 Digital Signal Processor Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZEM In-Circuit Emulator		
Z86018 Data Path Controller Z89C00 16-Bit Digital Signal Processor Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZEM In-Circuit Emulator		
Application Note Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZFM In-Circuit Emulator		
Understanding Q15 Two's Complement Fractional Multiplication (Z89C00 DSP) Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZFM In-Circuit Emulator		
Support Product Specifications Z8060000ZC0 Development Kit Z86C1200ZEM In-Circuit Emulator		•
Z806000ZCO Development Kit Z86C1200ZEM In-Circuit Emulator		
786C12007EM In-Circuit Emulator		
286012002EM IN-CITCUIT EMUIATOR Z86E2100ZDF Adaptor Kit Z86E2100ZDP Adaptor Kit Z86E2100ZDV Adaptor Kit		
Z86E2100ZDF Adaptor Kit Z86E2100ZDP Adaptor Kit Z86E2100ZDV Adaptor Kit		
Z86E2100ZDF Adaptor Kit		
786F21017DF Conversion Kit		
Z86E2101ZDV Conversion Kit		
Z86C9300ZEM ICEB0X [™] Emulator		
Z86C9500ZC0 Evaluation Board		
Z8® S Series Emulators, Base Units and Pods		
Z89C0000ZAS Z89C00 Assembler, Linker and Librarian		
Z89C0000ZCC Z89C00 C Cross Compiler		
Z89C0000ZEM In-Circuit Emulator - C00		
Z89C0000ZSD Z89C00 Simulator/Debugger ZPCMCIA0ZDP PCMCIA Extender Card		
Additional Information		
Zilog's Superintegration [™] Products Guide		
Zilog's Literature Guide		
Zilog's Sales Offices, Representatives and Distributors		

[©]Silæ

LITERATURE GUIDE

Z8® MICROCONTROLLERS LITERATURE (Continued)

Technical Manuals and Users Guides	Part No.	Unit Cost
Z8® Microcontrollers Technical Manual Z86018 Preliminary User's Manual Digital TV Controller User's Manual Z89C00 16-Bit Digital Signal Processor User's Manual/DSP Software Manual Z86C95 16-Bit Digital Signal Processor User Manual Z86017 PCMCIA Adaptor Chip User's Manual and Databook PLC Z89C00 Cross Development Tools Brochure	DC-8291-02 DC-8296-00 DC-8284-01 DC-8294-02 DC-8595-00 DC-8595-00 DC-8298-03 DC-5538-01	5.00 N/C 5.00 5.00 5.00 5.00 5.00 N/C
Z8 [®] Application Notes	Part No	Unit Cost
The Z8 MCU Dual Analog Comparator Z8 Applications for I/O Port Expansions Z86E21 Z8 Low Cost Thermal Printer Zilog Family On-Chip Oscillator Design Using the Zilog Z86C06 SPI Bus Interfacing LCDs to the Z8 X-10 Compatible Infrared (IR) Remote Control Z86C17 In-Mouse Applications Z86C40/E40 MCU Applications Evaluation Board Z86C08/C17 Controls A Scrolling LED Message Display Z86C95 Hard Disk Controller Flash EPROM Interface Three Z8® Applications Notes: Timekeeping with Z8; DTMF Tone Generation;	DC-2516-01 DC-2539-01 DC-2541-01 DC-2584-01 DC-2582-01 DC-2592-01 DC-2591-01 DC-2604-01 DC-2605-01 DC-2639-01 DC-2639-01 DC-2645-01	N/C N/C N/C N/C N/C N/C N/C N/C N/C N/C

Serial Communication Using the CCP Software UART

[⊗]ZiL05

LITERATURE GUIDE

Databooks By Market Niche	Part No	Unit Cost
High-Speed Serial Communication Controllers Product Specifications Z16C30 CMOS Universal Serial Controller (USC [™]) (Preliminary) Z16C32 Integrated Universal Serial Controller (IUSC [™]) (Preliminary) Application Notes Using the Z16C30 Universal Serial Controller with MIL-STD-1553B Design a Serial Board to Handle Multiple Protocols Datacommunications IUSC [™] /MUSC [™] Time Slot Assigner Support Products Z16C3001ZCO Evaluation Board Product Specification Z8018600ZCO Evaluation Board Product Specification Zilog's Superintegration [™] Products Guide Literature Guide Third Party Support Vendors	DC-8314-00	5.00
Serial Communication Controllers Product Specifications Z8030/Z8530 Z-Bus® SCC Serial Communication Controller Z80230/Z85C30 CMOS Z-Bus® SCC Serial Communication Controller Z80230 Z-Bus® ESCC™ Enhanced Serial Communication Controller Z80230 Z-Bus® ESCC™ Enhanced Serial Communication Controller Z80230 Z-Bus® ESCC™ Enhanced Serial Communication Controller Z85230 ESCC™ Enhanced Mono Serial Communication Controller Z85233 EMSCC™ Serial Communications and Small Computer Interface Z16035/Z85C35 CMOS ISCC™ Integrated Serial Communications Controller Application Notes Interfacing Z8500 Peripherals to the 68000 SCC in Binary Synchronous Communications Zilog SCC Z8030/Z8530 Questions and Answers Integrating Serial Data and SCSI Peripheral Control on One Chip Zilog ISCC™ Controller Questions and Answers Boost Your System Performance Using the Zilog ESCC™ Zilog Datacom Family with the 80186 CPU On-Chip Oscillator Design	DC-8316-00	5.00

LITERATURE GUIDE

Databooks	Part No	Unit Cost
Z80 Family Databook	DC-8321-00	5.00
Discrete Z80® Family		
Z8400/C00 NMOS/CMOS Z80 [®] CPU Product Specification		
Z8410/C10 NMOS/CMOS Z80 DMA Product Specification		
Z8420/C20 NMOS/CMOS Z80 PIO Product Specification		
Z8430/C30 NMOS/CMOS Z80 CTC Product Specification		
Z8440/C40 NMOS/CMOS Z80 SIO Product Specification		
Embedded Controllers		
Z84C01 Z80 CPU with CGC Product Specification		
Z8470 Z80 DART Product Specification		
Z84C90 CMOS Z80 KIO [™] Product Specification		
Z84013/015 Z84C13/C15 IPC/EIPC Product Specification		
Application Notes and Technical Articles		
Z80 [®] Family Interrupt Structure		
Using the Z80 [®] SIO with SDLC		
Using the Z80 [®] SIO in Asynchronous Communications		
Binary Synchronous Communication Using the Z80 [®] SIO		
Serial Communication with the Z80A DART		
Interfacing Z80 [®] CPUs to the Z8500 Peripheral Family		
Timing in an Interrupt-Based System with the Z80 [®] CTC		
A Z80-Based System Using the DMA with the SIO		
Using the Z84C11/C13/C15 in Place of the Z84011/013/015		
On-Chip Oscillator Design		
A Fast Z80 [®] Embedded Controller		
Z80 [®] Questions and Answers		
Additional Information		
Zilog's Superintegration [™] Products Guide		
Literature Guide		
Third Party Support Vendors		
Zilog's Sales Offices, Representatives and Distributors		

L

LITERATURE GUIDE

Databooks	Part No	Unit Cost
Z180™ Microprocessors and Peripherals Databook	DC-8322-00	5.00
Product Specifications		
Z80180/Z8S180/Z8L180 Z180 [™] Microprocessor		
Z80181 Z181 [™] Smart Access Controller (SAC [™])		
Z80182/Z8L182 Zilog Intelligent Peripheral Controller (ZIP [™])		
Application Notes and Technical Articles		
Z180 [™] Questions and Answers		
Z180 [™] /SCC Serial Communication Controller Interface at 10 MHz		
Interfacing Memory and I/O to the 20 MHz Z8S180 System		
Break Detection on the Z80180 and Z181 [™]		
Z182 Programming the MIMIC Autoecho ECHOZ182 Sample Code		
Local Talk Link Access Protocol Using the Z80181		
Support Products		
Z8S18000ZC0 Evaluation Board		
Z8018100ZCO Evaluation Board		
Z8018101ZCO Evaluation Board		
Z8018101ZA6 Driver Software		
Z8018100ZDP Adaptor Board		
Z8018200ZCO Evaluation Board		
Z80 [®] and Z80180 Hardware and Software Support		
Third Party Support Vendors		
Additional Information		
Zilog's Superintegration [™] Products Guide		
Literature Guide		
Zilog's Sales Offices, Representatives and Distributors		

⊗ ZilŒ

LITERATURE GUIDE

Z80 [®] /Z8000 [®] DATACOMMUNICATIONS FAMILY OF PRODUCTS				
Databooks and User's Manuals	Part No	Unit Cost		
 Z8000 Family of Products Z8000 Family Databook Zilog's Z8000 Family Architecture Z8001/Z8002 Z8000 CPU Product Specification Z8016 Z8000 Z-DTC Product Specification Z8036 Z8000 Z-CIO Product Specification Z8036 Z8000 Z-CIO Product Specification Z8036 Z8030 Z-CIO Product Specification Z8038/Z8538 FIO FIFO Input/Output Interface Unit Product Specification Z8060/Z8560 FIFO Buffer Unit Z8581 Clock Generator and Controller Product Specification User's Manuals Z8000 CPU Central Processing Unit User's Manual Z8036 Z-CI0/Z8536 CIO Counter/Timer and Parallel Input/Output User's Manual Z8036 Z-CI0/Z8536 CIO Counter/Timer and Parallel Input/Output User's Manual Z8038 Z8000 Z-FIO FIFO Input/Output Interface User's Manual Z8030 Application Notes and Military Products Application Notes Using SCC with Z8000 in SDLC Protocol SCC in Binary Synchronous Communication Zilog's Superintegration[™] Products Guide Literature Guide Zilog's Sales Offices, Representatives and Distributors 	DC-8319-00	5.00		
Z80 Family Technical Manual Z80180 Z180 MPU Microprocessor Unit Technical Manual Z280 MPU Microprocessor Unit Technical Manual Z380 [™] Preliminary Product Specification Z380 [™] User's Manual ZNW2000 User's Manual for PC WAN Adaptor Board Development Kit	DC-8309-00 DC-8276-04 DC-8224-03 DC-6003-03 DC-8297-03 DC-8315-00	5.00 5.00 5.00 N/C 5.00 N/C		
SCC Serial Communication Controller User's Manual High-Speed SCC, Z16C30 USC User's Manual High-Speed SCC, Z16C32 IUSC User's Manual Z16C35 ISCC Integrated Serial Communication Controller Technical Manual Z16C35 ISCC Integrated Serial Communication Controller Addendum	DC-8293-02 DC-8280-04 DC-8292-02 DC-8286-01 DC-8286-01A	5.00 5.00 5.00 5.00 5.00 N/C		

[⊗]Silæ

LITERATURE GUIDE

MILITARY COMPONENTS FAMILY

Military Product Specifications	Part No	Unit Cost
Z8681 ROMIess Microcomputer	DC-2392-02	N/C
Z8001/8002 Military Z8000 CPU Central Processing Unit	DC-2342-03	N/C
Z8581 Military CGC Clock Generator and Controller	DC-2346-01	N/C
Z8030 Military Z8000 Z-SCC Serial Communications Controller	DC-2388-02	N/C
Z8530 Military SCC Serial Communications Controller	DC-2397-02	N/C
Z8036 Military Z8000 Z-CIO Counter/Timer Controller and Parallel I/O	DC-2389-01	N/C
Z8038/8538 Military FIO FIFO Input/Output Interface Unit	DC-2463-02	N/C
Z8536 Military CIO Counter/Timer Controller and Parallel I/O	DC-2396-01	N/C
Z8400 Military Z80 CPU Central Processing Unit	DC-2351-02	N/C
Z8420 Military PIO Parallel Input/Output Controller	DC-2384-02	N/C
Z8430 Military CTC Counter/Timer Circuit	DC-2385-01	N/C
Z8440/1/2/4 Ž80 SIO Serial Input/Output Controller	DC-2386-02	N/C
Z80C30/85C30 Military CMOS SCC Serial Communications Controller	DC-2478-02	N/C
Z84C00 CMOS Z80 CPU Central Processing Unit	DC-2441-02	N/C
Z84C20 CMOS Z80 PIO Parallel Input/Output	DC-2384-02	N/C
Z84C30 CMOS Z80 CTC Counter/Timer Circuit	DC-2481-01	N/C
Z84C40/1/2/4 CMOS Z80 SIO Serial Input/Output	DC-2482-01	N/C
Z16C30 CMOS USC Universal Serial Controller (Preliminary)	DC-2531-01	N/C
Z80180 Z180 MPU Microprocessor Unit	DC-2538-01	N/C
Z84C90 CMOS KIO Serial/Parallel/Counter Timer (Preliminary)	DC-2502-00	N/C
Z85230 ESCC Enhanced Serial Communication Controller	DC-2595-00	N/C

LITERATURE GUIDE

GENERAL LITERATURE

Catalogs, Handbooks, Product Flyers and Users Guides	Part No	Unit Cost
Superintegration Master Selection Guide 1994-1995	DC-5634-00	N/C
Superintegration Products Guide	DC-5676-00	N/C
Quality and Reliability Report	DC-8329-00	N/C
ZIA [™] 3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet	DC-5556-01	N/C
ZIA ZIA00ZCO Disk Drive Development Kit Datasheet	DC-5593-01	N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet	DC-5560-01	N/C
Zilog Infrared (IR) Controllers - ZIRC [™] Datasheet	DC-5558-01	N/C
Zilog V. Fast Modem Controller Solutions	DC-5525-02	N/C
Zilog Digital Signal Processing - Z89320 Datasheet	DC-5547-01	N/C
Zilog Keyboard Controllers Datasheet	DC-5600-01	N/C
Z380 [™] - Next Generation Z80 [®] /Z180 [™] Datasheet	DC-5580-02	N/C
Fault Tolerant Z8 [®] Microcontroller Datasheet	DC-5603-01	N/C
32K ROM Z8® Microcontrollers Datasheet	DC-5601-01	N/C
Zilog Datacommunications Brochure	DC-5519-00	N/C
Z89300 DTC Controller Family Brochure	DC-5608-01	N/C
Zilog Digital Signal Processing Brochure	DC-5536-02	N/C
Zilog ASSPs - Partnering With You Product Brochure	DC-5553-01	N/C
Zilog Wireless Products Datasheet	DC-5630-00	N/C
Zilog Z8604 Cost Efficient Datasheet	DC-5662-00	N/C
Zilog Chip Carrier Device Packaging Datasheet	DC-5672-00	N/C
Zilog Database of IR Codes Datasheet	DC-5631-00	N/C
Zilog PCMCIA Adaptor Chip Z86017 Datasheet	DC-5585-01	N/C
Zilog Television/Video Controllers Datasheet	DC-5567-01	N/C
Zilog TAD Controllers - Z89C65/C67/C69 Datasheet	DC-5561-02	N/C
Zilog Z87000 Z-Phone Datasheet	DC-5632-00	D/C
Zilog 1993 Annual Report	DC-1993-AR	N/C
Zilog 1994 First Quarter Financial Report	DC-1994-Q1	N/C

[®] Silæ

LITERATURE GUIDE

ORDERING INFORMATION

Phone: (408)370-8016 (408)370-8056

Fax:

Complete the attached literature order form. Be sure to enclose the proper payment or supply a purchase order. Please reference specific order requirements.

MINIMUM ORDER REQUIREMENTS

Orders under \$300.00 must be prepaid by check, money order or credit card. Canadian and foreign orders must be accompanied by a cashier's check in U.S. dollars, drawn on a correspondent U.S. bank only. Orders over \$300.00 may be submitted with a Purchase Order.

SHIPMENT

Orders will be shipped after your check is cashed or credit is checked via the most economical method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

PLEASE PRINT OR TYPE							
NAME					PHONE ()	-
COMPANY					Method of Pay		
ADDRESS					Credit Card UV		☐ Money Order ☐ P.O. (over \$300.00)
CITY			STATE	ZIP	COUNTRY		
PART	NUMBER		DOCUMEN	IT TITLE	UNIT COST	QTY.	TOTAL
					\$		\$
					\$		\$
					\$		\$
					\$		\$
					\$		\$
					\$		\$
					\$		\$
					\$		\$
					\$		\$
					\$		\$
-+-+-+					\$		\$
-+++					\$		\$
					\$		\$
			<u></u>		\$		\$
Mail To: Credit Card or Purchase Order # SUBTOTAL		BTOTAL					
Expiration Date ADD APPLICABLE SALES TAX (CA ONLY)		A ONLY)					
210 E. HACIENDA AVE. M/S C1-0 Signature ADD 10% SHIPPING AND HANDLING							
CAMPBELL, CA 95008-6600 TOTAL							

Appender A

 $\left\langle \bar{k} \right\rangle$

 $\left(\begin{array}{c} \widehat{b} \\ \widehat{b} \end{array} \right)$

E E

Appendix B **)**

Appendix C

Appendix D

Appendix E

Index

Superintegration™ Products Guide

Literature Guide

Z

Zilog's Sales Offices Representatives & Distributors

ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

INTERNATIONAL SALES OFFICES

CALIFORNIA Agoura 818-707-2160	CANADA Toronto
Campbell	CHINA Shenzhen
COLORADO	Shanghai
Boulder 303-494-2905	GERMANY
	Munich
Clearwater	Sömmerda 49-3634-23906
GEORGIA Duluth	JAPAN Tokyo81-3-3587-0528
ILLINOIS Schaumburg	HONG KONG Kowloon
MINNESOTA	KOREA
Minneapolis	Seoul
NEW HAMPSHIRE	SINGAPORE
Nashua 603-888-8590	Singapore
оню	TAIWAN
Independence	Taipei886-2-741-3125
OREGON Portland	UNITED KINGDOM Maidenhead
PENNSYLVANIA Horsham215-784-0805	
TEXAS Austin	

© 1994 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document. Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056

U.S., CANADIAN & PUERTO RICAN REPRESENTATIVES

ARIZONA

Scottsdale	
Thom Luke Sales, Inc	(602) 451-5400

CALIFORNIA

Santa Clara	
Phase II Technical Sales	(408) 980-0414
Irvine	
Infinity Sales	(714) 833-0300

COLORADO

CONNECTICUT

Wallingford	
Advanced Technical Sales	(508) 664-0888

FLORIDA

Altamonte Springs
Semtronic Associates, Inc
Clearwater
Semtronic Associates, Inc
Fort Lauderdale
Semtronic Associates, Inc (305) 731-2484

ILLINOIS

IOWA

Cedar Rapids Advanced Technical Sales (319) 393-8280

KANSAS

Olathe Advanced Technical Sales(913) 782-8702

MARYLAND

Pasadena Electronic Engineering & Sales (410) 255-9686

MASSACHUSETTS

North Reading Advanced Technical Sales (508) 664-0888

MICHIGAN Novi **MINNESOTA** Minneapolis Professional Sales for Industry (612) 944-8545 MISSOURI Bridgeton Advanced Technical Sales (314) 291-5003 **NEW JERSEY Cherry Hill** NEW MEXICO Albuqueraue Quatra & Associates (505) 296-6781 **NEW YORK** Fairport OHIO Centerville Independence OKLAHOMA Tulsa

OREGON

Portland Phase II Technical Sales (503) 643-6455

TEXAS

Austin
Nova Marketing, Inc
Dallas
Nova Marketing, Inc (214) 265-4630
Houston
Nova Marketing, Inc (713) 240-6082

U.S., CANADIAN & PUERTO RICAN REPRESENTATIVES

UTAH

Salt Lake City Thorson Rocky Mountain(801) 942-1683

WASHINGTON

Kirkland Phase II Technical Sales (206) 823-3874

WISCONSIN

Brookfield		
Victory Sales,	Inc	(414) 789-5770

CANADA

British Columbia	
BBD Electronics, Inc	04) 465-4907
Ontario	
BBD Electronics, Inc (9)	05) 821-7800
Ottawa	
BBD Electronics, Inc	13) 764-1752
Quebec	
BBD Electronics, Inc	14) 697-0801
	14) 001 0001

PUERTO RICO

San Juan

Semtronic Associates, Inc. (809) 766-0700

SOUTH AMERICAN REPRESENTATIVES

ARGENTINA

Buenos Aires

Parallax Sales & Distribution (1) 372-7140

BRAZIL

Sao Paulo Parallax Sales & Distribution(11) 535-1755

U.S. AND CANADIAN DISTRIBUTORS

NATIONWIDE

Newark Electronics 1-8	800-367-3573
------------------------	--------------

ALABAMA

Hamilton Hallmark Electronics Inside Alabama Outside Alabama		
Huntsville		
Arrow Electronics Hamilton Hallmark Electronics	(205	837-6955
Hamilton Hallmark Electronics	(205) 837-8700

ARIZONA

Hamilton Hallmark Electronics Inside Arizona Outside Arizona	800-352-8489 800-528-8471
Phoenix	
Hamilton Hallmark Electronics	(602) 437-1200
Tempe	
Anthem Electronics Arrow Electronics	(602) 966-6600
Arrow Electronics	(602) 431-0030

CALIFORNIA

Calabasas
Arrow Electronics
Chatsworth
Anthem Electronics
Costa Mesa
Hamilton Hallmark Electronics (714) 641-4100
Hayward
Arrow Electronics
Irvine
Anthem Electronics (714) 768-4444 Arrow Electronics (714) 587-0404
Rocklin
Anthem Electronics
San Diego
Arrow Electronics
Anthem Electronics
San Jose
Anthem Electronics (408) 453-1200 Arrow Electronics (408) 441-9700 Hamilton Hallmark Electronics (408) 435-3500
Arrow Electronics
Woodland Hills
Hamilton Hallmark Electronics

COLORADO

Colorado Springs Hamilton Hallmark Electronics	(719)	637-0055
Englewood Anthem Electronics Arrow Electronics Hamilton Hallmark Electronics	(303) (303) (303)	790-4500 799-0258 790-1662

CONNECTICUT

Cheshire	
Hamilton Hallmark Electronics	271-2844
Wallingford	
Arrow Electronics (2	203) 265-7741
Waterbury	
Anthem Electronics	203) 596-3200

FLORIDA

Deerfield Beach Arrow Electronics	200
Lake Mary Arrow Electronics	300
Largo Hamilton Hallmark Electronics	440 350
Fort Lauderdale Hamilton Hallmark Electronics (305) 484-5	
Winter Park Hamilton Hallmark Electronics	300

GEORGIA

Arrow Electronics	(404)	497-1300
Hamilton Hallmark Electronics	(404)	623-5475
Arrow Electronics Hamilton Hallmark Electronics	(404)	623-4400

ILLINOIS Bonsonville

Hamilton Hallmark Electronics (708) 860-7780
<i>Itasca</i> Arrow Electronics
Schaumburg Anthem Electronics

U.S. AND CANADIAN DISTRIBUTORS

INDIANA

malanapono		
Arrow Electronics (317)	299-2071
Arrow Electronics	317)	872-8875
	800)	829-0146

IOWA

Cedar Rapids		
Arrow Electronics	(319)	395-7230

KANSAS

Lenexa		
Arrow Electronics Hamilton Hallmark Electronics	(913)	541-9542
Hamilton Hallmark Electronics	(913)	888-4747
	(800)	332-4375

KENTUCKY

Lexington

Hamilton Hallmark Electronics	(800)	235-6039
	(800)	525-0069

MARYLAND

Columbia		
Anthem Electronics	(410)	995-6640
Arrow Electronics	(410)	596-7000
Anthem Electronics Arrow Electronics Hamilton Hallmark Electronics	(410)	988-9800

MASSACHUSETTS

Peabody		
Hamilton Hallmark Electronics	(508)	532-9808
Wilmington		
Anthem Electronics Arrow Electronics	(508)	657-5170
Arrow Electronics	(508)	658-0900

MICHIGAN

Livonia
Arrow Electronics (313) 462-2290
Nori
Hamilton Hallmark Electronics
Plymouth
Hamilton Hallmark Electronics

MINNESOTA

Bloomington		
Hamilton Hallmark Electronics	(612)	881-2600
Eden Prairie		
Anthem Electronics	(612)	944-5454
Anthem Electronics Arrow Electronics	(612)	941-5280

MISSOURI <i>Earth City</i> Hamilton Hallmark Electronics
NEVADA
<i>Sparks</i> Arrow Electronics
NEW JERSEY
Cherry Hill Hamilton Hallmark Electronics
Arrow Electronics (609) 596-8000
Pinebrook Anthem Electronics
Parsippany Hamilton Hallmark Electronics(201) 575-4415
NEW YORK
<i>Commack</i> Anthem Electronics
Arrow Electronics
<i>Melville</i> Arrow Electronics
Arrow Electronics

Ronkonkoma Hamilton Hallmark Electronics (516) 737-0600

NORTH CAROLINA

Raleigh

Arrow Electronics Hamilton Hallmark Electronics	(919)	876-3132
Hamilton Hallmark Electronics	(919)	872-0712

U.S. AND CANADIAN DISTRIBUTORS

OHIO

Centerville Arrow Electronics	(513) 435-5563
Dayton Hamilton Hallmark Electronics	(513) 439-6735
Solon Arrow Electronics Hamilton Hallmark Electronics	(216) 248-3990 (216) 498-1100
<i>Worthington</i> Hamilton Hallmark Electronics	(614) 888-3313

OKLAHOMA

Tulsa

Arrow Electronics Hamilton Hallmark Electronics	(918)	252-7537
Hamilton Hallmark Electronics	(918)	254-6110

OREGON

Beaverton

ALMAC/Arrow Electronics	(503)	629-8090
Anthem Electronics	(503)	643-1114
ALMAC/Arrow Electronics Anthem Electronics Hamilton Hallmark Electronics	(503)	526-6200

PENNSYLVANIA

Horsham Anthem Electronics	
Pittsburgh	
Arrow Electronics	(412) 963-6807

TEXAS

Austin Arrow Electronics
Carroliton
Arrow Electronics (214) 380-6464
Dallas
Hamilton Hallmark Electronics (214) 553-4300
Houston
Arrow Electronics
Richardson
Anthem Electronics
San Antonio
Hamilton Hallmark Electronics (210) 828-2246

UTAH

Salt Lake City

Anthem Electronics	(801)	973-8555
Arrow Electronics	(801)	973-6913
Anthem Electronics Arrow Electronics Hamilton Hallmark Electronics	(801)	266-2022

WASHINGTON

Bellevue
ALMAC/Arrow Electronics (206) 643-9992
Bothell
Anthem Electronics
Redmond
Hamilton Hallmark Electronics (206) 881-6697
Spokane
ALMAC/Arrow Electronics (509) 924-9500

WISCONSIN

Brookfield	
Arrow Electronics	(414) 792-0150
New Berlin	
Hamilton Hallmark Electronics	(414) 797-7844

CANADA

Alberta		
Future Electronics	 (403)	250-5550
Future Electronics	 (403)	438-2858
	 ····/	

British Columbia

Arrow Electronics	(604)	421-2333
Future Electronics	(604)	294-1166
Arrow Electronics Future Electronics Hamilton Hallmark Electronics	(604)	420-4101

Manitoba

Future Electronics	(204) 786-7711
--------------------	----------------

Ontario

Arrow Electronics Arrow Electronics Future Electronics Hamilton Hallmark Electronics Hamilton Hallmark Electronics	(613)	226-6903
Arrow Electronics	(905)	670-7769
Future Electronics	(905)	612-9200
Future Electronics	(613)	820-8313
Hamilton Hallmark Electronics	(416)	564-6060
Hamilton Hallmark Electronics	(613)	226-1700

Quebec

Arrow Electronics Future Electronics Hamilton Hallmark Electronics	(514)	421-7411
Future Electronics	(514)	694-7710
Hamilton Hallmark Electronics	(514)	335-1000

CENTRAL AND SOUTH AMERICA

MEXICO

Semiconductores Proyeccion Electronica 525-264-7482

BRAZIL

Sao Paulo

ARGENTINA

Buenos Aires YEL SRL 011-541-440-1532

ASIA-PACIFIC

AUSTRALIA JAPAN R&D Electronics 61-3-558-0444 Tokvo GEC Electronics Division 61-2-638-1888 CHINA Kanematsu Elec. Components Corp. 81-3-3779-7811 Beijina Osaka Lestina International Ltd. 86-1-849-8888 Teksel Co., Ltd., 81-6368-9000 Rm. 20469 KOREA Guana Zhou MALAYSIA Eltee Electronics Ltd. 60-3-7038498 86-20-886-1615 **NEW ZEALAND** HONG KONG GEC Electronics Division 64-25-971057 Lestina International Ltd. 852-735-1736 PHILIPPINES INDIA Bangalore SINGAPORE Zenith Technologies Pvt. Ltd. 91-812-586782 Bombav Zenith Technologies Pvt. Ltd. 91-22-4947457 **TAIWAN (ROC) INDONESIA** Jakarta Cinergi Asiamaju 62-21-7982762 THAILAND

	7	1			
	,	A			
r			1		
		÷.			

Eltee Electronics Ltd. 66-2-538-4600

EUROPE

AUSTRIA

Vienna	
EBV Elektronik GMBH	0043-1-8941774
Avnet/Electronic 2000	0043-1-9112847

BELGIUM

Antwerp D & D Electronics PVBA	32-3-8277934
Zaventem	
EBV Elektronik	322-7160010

DENMARK

Brondby Ditz Schweitzer AS	
<i>Lynge</i> Rep Delco	

ENGLAND

Berkshire	
Future Electronics	44-753-687000
Gothic Crellon	44-734-787848
Macro Marketing	44-628-604383
Lancashire	
Complementary Technologies Ltd.	44-942-274731

FINLAND

<i>Espoo</i> OY SW Instruments AB 358-0-522-122
--

FRANCE

<i>Cedex</i> A2M	
<i>Champs sur Marne</i> EBV Elektronik	221 64698600
Massv	
Reptronic SA	

GERMANY

Berlin	
EBV Elektronik GMBH	030-3421041
Avnet/Electronic 2000	030-2110761
Burgwedel	
EBV Elektronik GMBH	05139-80870
Dortmund	
Future GMBH	02305-42051
Duesseldorf	
Avnet/Electronic 2000	0211-92003-0
Thesys/AE	0211-53602-0
Erfurt	0001 4070100
Thesys	0361-4278100
Frankfurt	000 705007
EBV Elektronik GMBH Avnet/Electronic 2000	
Future GMBH	
Future GMBH Thesys/AE	
Hambura	
Avnet/Electronic 2000	040-64557021
Leonberg	
EBV Elektronik GMBH	07152-30090
Muenchen	
Avnet/Electronic 2000	
EBV Elektronik GMBH	
Future GMBH	089-9571950
Nuernberg	
Avnet/Electronic 2000	0911-9951610
Neuss	
EBV Elektronik GMBH	02131-96770
Stuttgart	
Avnet/Electronic 2000	07156-356190
Future GMBH	0711-830830
Thesys/AE	0711-9889100
Weissbach	
EBV Elektronik GMBH	036-426486

ISRAEL RDT	
ITALY <i>Milano</i>	
De Mico S.P.A EBV Elektronik	
<i>Firenze</i> EBV Elektronik	
<i>Roma</i> EBV Elektronik	
<i>Modena</i> EBV Elektronik	0039-59-344752
<i>Napoli</i> EBV Elektronik	
Torino EBV Elektronik	
Vicenza	
EBV Elektronik	

NETHERLANDS

EBV	Elektr	onik	 	 313-46	562353

NORWAY

Bexab Norge	47-63833800

POLAND

Warsaw	
Gamma Ltd	004822-330853

PORTUGAL

Amadora	
Amitron-Arrow.	0035-1-4714806

RUSSIA

Woronesh	
Thesys/Intertechna	0732593697
Vyborg	
Gamma Ltd	
St. Petersburg	
Gamma Ltd	0812-5131402

<i>Barcelona</i> Amitron-Arrow S.A <i>Madrid</i> Amitron-Arrow S.A	
SWEDEN Bexab Sweden AB	46-8-630-8800
SWITZERLAND Dietikon	
EBV Elektronik GMBH	0041-1-7401090
<i>Lausanne</i> EBV Elektronik AG <i>Regensdorf</i>	0041-21-3112804
Eurodis AG	0041-1-8433111

UKRAINE

KIEV	
Thesys/Mikropribor	04434-9533

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 408-370-8000