
EMS 8000

\2:/ , "

, I

~ User's Guide Zilog
~

';"

September 1982

EMS 8000

User's Guide

(

EMS 8000
T ABlE or CONTENTS

Chapter 1. Introduction

1.1
1.2

Overview •••
Command Syntax

. · · . . . · · • 1-1
• • • 1-2

Chapter 2. Unpacking.,(j Installation

2.1
2.2

Overview ••• • • • • • • • • • • • • • 2-1
Units and Systems that can be Connected to EMS • • • • · . • • • 2-1

2.2.1
2.2.2
2.2.3

CRT Terminals Compatible with EMS BOOO
Recommended Host Systems • • • • •
Target System Requirements • • • • • • · . .

• • • • 2-2
• • 2-2

• • • • 2-2

2.3 Unpacking............................ 2-3

2.4

2.5
2.6
2.7
2.B

2.9

Installation . • 2-3

2.4.1
2.4.2

2.4.3
2.4.4
2.4.5
2.4.6

Front Panel • • •
Cable Connections

2.4.2.1 CPU Pod
2.4.2.2 Target

• •

• . .
Cable

2.4.2.3 Terminal Cable
2.4.2.4 Host Cable •

· ·
• · · · . . · · · · · · · · · · · . . · • • · · · • • · · · ·

• • • • • 2-4
• • • • • • • 2-4

· · · · · · · 2-5

· 2-5

· · · · · · · 2-6

· · • 2-7

Switch Settings • • • • • • • • • •
Power Cord and AC Power Selection •

• • • • • • • • • • • 2-B

External Prolles • • • • • • •
Mappable Memory • • • • • • •

· . • • • • • • 2-B
• • • • • • • • • • • 2-9

• • • • • • • • • • • • • • 2-9

Initial Power-Up Procedures • • • • • • • • • • • 2-10
2-10 Booting the System Up •

Returning to Transparent Mode • • • • • • • • • • • • • • • • •
Initial Operational Checkout ••••••••••••••

• 2-11
• 2-11

2.B.1 Bad Clock or Timeout Messages · 2-12

EMS BOOO Specifications ••••••• · . . . · 2-12

iii

Chapter ,. EMS 8000 Features and Capabilities

3.1
3.2

3.3

Overview • • • • • • • • • • • • • • If • • • • • • • • • • • 3-1
Hardware Description ••••••• • • • • • • • • · . . • • • • :S-2

3.2.1 .. Central Control Unit (CCU) ·0 ... 3.3

3.2.2
:S.2.3
3.2.4

3.2.S
3.2.6
3.2.7

3.2.1.1 The Rear Panel · 3-3

Sample Bus •• • • • • • • • • • • • • •
Trigger Module •••••• • • • • • • •
Trace Module ••••••• • • • • • •

• • · . · . .
• • • • 3-3
• • • • 3·4
• • • • 3-S

3.2.4.1
3.2.4.2

Trace Qualification •••••
Multiple Snapshots •••••

Emulator Module
Mappable Memory
External Probes

.
• • • • •

· · ·

· . . · . • • 3-8 · . . . • •••• 3-9

• •••••••• 3-12
• • • • 3-13

• • ' ••••••• 3-13

Software Description . 3-13

Chapter 4. User Screens

4.1

4.2

Overview

4.1.1
4.1.2
4.1.3
4.1.4

4.1.S

. 4-1

Selecting Screens • • • • • •
Cursor Manipulation • • • •
Menu Facility • • • • • • • • •
Rules for Entering Data in a Field

·
·

• • • • • • •

• 4-2
• 4-2
• 4-2
• 4-2

· • • • • 4-3 · • • • • 4-3
4.1.4.1
4.1.4.2
4.1.4.3

Option Fields
Data Fields •
Special Rules for Pattern Screen Entry • • • • 4-3

Using Control Keys for Starting, Stopping, and Stepping • 4-4

Configuration Screen · · 4-4

4.2.1 Configuration Screen Fields · 4-S

4.2.1.1 CPU Type Fields • • · • • • • • · · · • • · • • 4-S
4.2.1.2 CPU Signals Fields • • • • · • • • • · • · 4-S
4.2.1.3 Break Fields • • • • • · · · · • · • · · 4-S
4.2.1.4 Memory Fields • · · • · • • • · • • · • • · • · 4-6
4.2.1.S Address Fields · • • • • · • • • • • • • · 4-6
4.2.1.6 Internal Operation and Refresh Cycles Field · · 4-7
4.2.1.7 Croup Break Field • • • • · • · · • • · • • · • 4-7

iv

4.3

4.4

4.5

4.6

4.2.1.8
4.2.1.9

Mode field • • • •
Clock frequency field •

• • . . · · . . · . . · . . 4-7
4-7

Allocation Screen • . 4-7

4.3.1
• 4.3.2

4.3.3
4.3.4

4.3.5
4.3.6

Mode field •••••••••••••• • • • • • • • • • 4-8
Resources and Actions • • • • • • • • • • • • • • • • • • 4-9
Rules for Assigning Resources to Actions • • • • • • • • 4-10
Pass Counting •••••••••••••••••••••• 4-11

4.3.4.1 General Rules for Selecting Pass Counting

Timer Mode
Counter Mode

.
· . . 4-11

• • 4-12
• 4-12

Pattern Screen · 4-13

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8

4.4.9
4.4.10

Pattern Enable field
Logical fields
ADDRESS 1 • • • • •
Using Two Addresses •
Data fields • • • • •
eYe . . •

• • • • 4-14
• • 4-14

. • . . . • • . • . . . • 4-15
• • • • • • • • • • • • • • • • • • 4-16 · . . . • • • • • • • • • • 4-16 . . · • 4-16

Status Lines (Cd Rw Bw Sn) ••••
External Probes (EXT 1 and EXT 2) • • •

• • • • • • 4-16
• • • • • • • • • 4-17

4.4.8.1 Various Uses of EXT 1 • · . 4-17

No Time Limit •• " •••••••••••.••.•••• • 4-18
4-18 Programming the Snapshot Setup (Break/Trace Mode Only)

4.4.10.1 Timer Control field (Timer Mode Only) 4-21

Debug Screen . 4-21

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.5.10

Breakpoint ••••••••••••••••••••••• 4-22
Display ••••• • • • • • • • • • • • • • • • • • 4-23
Addressing Modes •• • • • • • • • • • • • • 4-23
Edit •• 4-24
Go •••••••• • • • • • • • • • • • • • 4-26
Host • 4-26
Memory ••••••••••••• • • • • • • • 4-27
Step . • . • . • • . • . • • . . . • . • • . 4-28
Trace • 4-29
Watch • • • • • • • • • • • • • • • • • • 4-29

Map Screen . 4-30

"

4.7 Help fadIi ty • • • • • • • • • • • • • · . • • • • • • · . . . • 4-34

4.7.1 Scripts (EMS Monitor Macros) • • • • • • • • • • • • • • 4-35

Appendix A. EMS 8000 Tutorial

A.1 INITIAlIZATION ••••••••••••••••••••••••• A-1
A.2 fAMILIARIZATION................ • • • • • • • A-3
A.3 TUTORIAL •••••••••••••••••• • • • • • • • • • • A-3
A.4 EDITING COMMANDS IN DEBUG SCREEN • • • • • • • • • • • • • • A-12

Appendix 8. Load/Send Protocol

B.1 INTRODUCTION

B.1.1 Records • . • . • . • · · • • · • · · · • · • · · · B-1
B.1.2 Load/Save Operation · · · · • • · • · • · · · · • B-2
B.1.3 Load and Save Record format · · · · · • • · · • · · • • • B-3
B.1.4 Configuration Record format · · · • • · • · · · · · • · · B-3
B.1.5 Instruction/Data Record format · • • · • • • · • · · B-3
B.1.6 Acknowledge Record format · · · · • • · · · · · • B-4
B.1.7 Termination Record format • · • · · • • • · · • · • · B-5
B.1.B Error Record format • · • · · · • • · · · · • · • • · · · B-5

Appendix C. EMS 8000 Emulator Timing Analysis • • · C-1

List of Illustrations

figure 2-1
figure 2-2
figure 2-3
figure 2-4
figure 2-5

figure 3-1
figure 3-2
figure 3-3
figure 3-4
figure 3-5
figure 3-6
figure 3-7
figure 3-B
figure 3-9
figure 3-10
figure 3-11

EMS 8000 System Configuration ••• • • • • • • • • 2-2
EMS front Panel ••••••••••••• • • • • • • 2-4
CPU Pod and Target Cable Connection • • • • • • • • • 2-6
EMS BOOO Rear Panel, Before Installation • • • • • • • • • 2-6
EMS 8000 Rear Panel (Access Door) ••••• • •••• 2-7

EMS 8000 System Block Diagram •• • • • • • • • • • • 3-2
EMS 8000 Sample Data Bus • • • • • • • • • • • • • • • 3-4
Pre-Trigger Trace •••••••••••••• • • • • 3-6
Center-Trigger Trace. • • • • • •••••••••• 3-6
Post-Trigger Trace • • • • • • • • • • • • • • • • • 3-7
Center-Trigger with Arbitrary Cycle Delay •••••••• 3-7
Post-Trigger with Long Cycle Delay •••••••••••• 3-7
Qualified Cycles ••••••••••••••••••••• 3-8
Enable/Disable Trace • • • • • • • • • • • • • • • • • • • 3-8
Qualification with Enable/Disable •••••••••••• 3-9
Numbering of Qualified Cycles •••••••••••• •• 3-9

'''"''-.

figure 3-12 Multiple Snapshots, Breaking After a Certain
Number of Triggers (Break After 3) • • • • • •

figure 3-13 Multiple Snapshots Break with Breakpoint
. . • • 3-10

or Manual Break ••••••••••••••••••••• 3-10
figure 3-14 Multiple Snapshots Break n Snapshots After

final Trigger (n = 3) •••••••••••••••••• 3-11
figure 3-15 Triggers Occurring During a Cycle Delay ••••••••• 3-11
figure 3-16 . Triggers Occurring During the Last Cycle Delay •••••• 3-12

figure 4-1
figure 4-2
figure 4-3

Watch Display Area • • • •
Segment Map Display
Help Screen ••• • •

. • • • • • • 4-30 • • • • • • 4-32 • • • • • • 4-34

List of Tables

Table 2-1
Table 2-2
Table 2-3

Table 2-4

Table 2-5
Table 2-6

EMS 8000 System Units and functions • • • • • 2-1
CRT Terminals for Use with the EMS 8000 • • • • • • • • • • 2-2
Suggested Rear-Panel Switches for MCZ-1,
MCZ ... 2 and S8000 Hosts • • • • • • • • • • • • • • • • • • • 2-8
Host Baud Rates and Corresponding Values for .
the "53" Switch Settings ••••••• . . .
External Probes, Usage and Requirements • • • • • • • •
Jumper Placements for Mappable Memory • • • • • •

• • 2-B
• • 2-9

• 2-9

Table 3-1 Rear Panel Connector Assignments and functions • • • • 3-3
Table 3-2 Possible Snapshot and Bus Cycle Combinations ••••••• 3-5

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5

Table B-1
Table B-2

Table C-1

EMS Screen Descr iptions • • • • • • • • • • • • • • • • 4-1
CPU Control Signals • • • • • • • • • • • • • • • • • 4-5
Break fields, Configuration Screen •• • • • • • • • • • • 4-6
Mode Selections, Allocation Screen • • • • • • • • • • 4-9
Resources and their Associated Attributes • • • • 4-9

Record Types and Associated Characters
Error Numbers and Meaning • • • •

EMS 8000 Emulator Timing Analysis • . .

vii

. • B-2 • B-6

. ••• C-2

(

1.1 -OVERY lEW

CHAPTER 1

INTROOUCTION

EMS 8000 is a high-end Emulation subsystem for emulating Z8001, Z8002,
and Z8003 microprocessors in real time at clock speeds up to 6 MHz. The
Z-LAB· concept of emulation treats the in-circuit emulator as an intelligent
peripheral. This technique allows independent selection of the software
development and emulation debug environments. Zilog offers the 58000· Z-LAB
as a sophisticated software development system that can serve as the host for
EMS.

The following chapters are provided in this manual. Chapter 4 serves as the
user's reference manual for operation of EMS and provides various examples of
EMS commands.

Chapter 1
Chapter 2
Chapter 3
Chapter ,4

Introduction
Unpacking and Installing the EMS 8000
Features and Capabilities
Commands and Examples

Each di fferent host that is used with EMS requires a special communications
package on a media (tape, diskette, etc.) that the host can read. Host
communications packages are currently available for the following hosts:

• 58000 Z -LAB
• PDS 8000·
• MCZ-1
• MCZ-2
• VAX UNIX1

A Field Applications Engineer (FAE) from your local Zilog sales office should
be your first point of contact regarding any questions or problems with EMS.

1UNIX is a trademark of Bell laboratories; Zilog is licensed by Western
Electric Company.

1-1

1.2 CDtfWi) SYNTAX

The following command syntax is used throughout this manual:

• A single set of square brackets [n] indicates that n is optional.
-

• A set of square brackets with options [Opt " Opt 2, Opt 3] indicates that
one option should be chosen from within the brackets.

• <CTRL> indicates that the terminal keyboard control key is to be used in
conjunction with another key.

1-2

2.1 OVERVIEW

CHAPTER 2

Utf»ACKING AN> INSTALLATION

The yarious~osts, terminals, and target systems that can be selected for use
with the EMS 8000 are discussed in this chapter. In addition,' basic cable
connections and installation procedures are also described. The EMS 8000
needs to be unpacked in such a way that it can be reshipped if service becomes
necessary (unpacking procedures are described in Section 2.3). The initial
power-up and booting up of the system is also discussed, and the overall
specifications of EMS are provided.

2.2 UNITS AND SYSTEMS THAT CAN BE CONNECTED TO EMS

A CRT terminal (from our list of supported terminals in Table 2-2) and a host
system are required for the minimal EMS configuration. A target system can be
connected to EMS, or programs can be debugged in EMS"s internal mappable
memory. In addition, a logic analyzer with an external trigger can be
connected to EMS. The trigger output (located on the EMS front panel)
provides a high-going pulse when user-programmed trigger conditions have been
satisfied. Figure 2-1 illustrates the most common EMS 8000 configuration; the
functions of the units included in this configuration are shown in Table 2-1.

Unit

CRT Terminal

Host System

Target System

Logic Analyzer

Table 2-1. EMS 8000 System Units 'and Functions

Function

The CRT terminal provides the user interface for EMS as well
as to the host system during Transparent mode.

The Host system is used initially to download the EMS 8000
moni tor. The user can communicate directly with the host
(via Transparent mode) to develop software that can be
downloaded into the user's target memory. Target memory can
also be uploaded into the host computer and saved for future
use. The 58000 ZLAB is an example of a host computer that
is supported by EMS.

The target system is the system to be emulated.

Optional; may be used with the EMS 8000 to record digital
signals synchronized with programmed triggers.

2-1

TlllUlIllAL

.... 000

D

TARGET SYSTEM

Figure 2-1. EMS 8000 System Configuration

2.2.1 CRT Terminals Compatible with EMS 8000

The number of CRT terminals that are supported by EMS are listed in Table 2-2.

Table 2-2.
CRT Terminals for Use with the EMS 8000

Terminal

ADM 31
VT100
VT-Z 2/10

2.2.2 Recommended Host Systems

Manufacturer

Lear Siegler
Digital Equipment Corp_
Zilog

The MCZ-1, MCZ-2, and 58000 are Zilog development systems that can serve as a
host for the EMS 8000. The MCl-1 and MCl-2 use the RIO operating system,
whereas the 58000 uses the ZEUS· (UNIX) operating system •

.
2.2:3 Target System Requirements

EMS currently supports any target system that uses either a l8001 or l8002
microprocessor.

2-2

c

2.3 UNPACKING

Every EMS 8000 is fully inspected and tested before shipment to ensure that it
meets Zilog specifications. All equipment is packaged for safe transit under
normal freight-handling conditions and should arrive ready to be installed.
The packing material has been specially designed to protect the EMS 8000 unit
during shipm~nt. Should reshipment be necessary, repack the EMS 8000 unit in
the original carton using the original packing _terial received with the
unit.

Before unpacking the system, inspect the shipping containers for signs of
possible damage of the primary unit or the CPU Pod during transit. If
shipping damage is suspected, claiMS with the freight carrier should be filed
illllediately. Your Field Applications Engineer (FAE) should be notified of
such action.

The complete EMS 8000 system can be shipped in more than one carton. A mini
mum ope"rational system consists of the following three items, which are each
ordered separately:

• EMS basic unit

• CPU Pod module for the processor in your application

• A host software package with manual

Any optional items ordered, such as CPU Pod modules, a Probe Interface board,
External Probes or an additional Mappable Memory board will be present with
your order.

Unpack all items carefully and inspect them for external damage, such as
dents, broken switches, loose connections or damaged cables. Any sound of
loose items inside the cabinet is evidence of damage. If damage is evident
or suspected, make no further attempt to install or operate the system.
Notify your FAE of the problem.

2.4 INSTALLATION

The procedures for installing the EMS 8000 system include:

• Mounting the front panel
• Connecting EMS to the CRT terminal
• Connecting EMS to the host
• Connecting the POD cables to the EMS emulator board
• Connecting the target cable to the target
• Setting the DIP switches on the EMS rear panel
• Installing the power cord

Refer to Sections 2.S and 2.6 for the initial power-up procedure and opera
tional checkout of the EMS 8000 subsystem. Before beginning the installation
procedures, be sure that the EMS 8000 unit is placed securely on a level sur
face, and that ample space is allowed for ventilation on the sides and back
portion of the unit.

2-3

2.4.1 front Panel.

Before installing the front panel (shown in figure 2-2), check the following
items:

1. All PC boards should be securely seated in the EMS Backplane. The ends of
the ejector tabs should be pointing towards the center of the PC board.

2. The Emulator board (eighth card slot from the top) contains two connectors
for the two CPU Pod cables. The Probe Interface board (optional) also
contains connectors for its External Probe cables. Make sure that the
ejector tabs on these connectors are positioned straight (forward) so that
they will not interfere with the mounting of the front panel; failure to
do so could result in permanent damage to the ejector tabs.

3. Grasp the front panel by each end with the labels legible. As you are
positioning the front panel in place, make sure that all four of the ejec
tor tabs come through the appropriate opening, labeled CPU POD CABLES.

4. Press on each corner of the front panel to snap it into place.

RESET 01'1'011 SELF 'I&T o PASS FAIL o 0 reaL- IMS aooo Zilog - -
IT

....... -., .. --.. , -. -.
F~"r ... 40 CPU POO CAII.LIS

~ " • 12 •
III············ .. ··· .. ····I! &· · 111

TRIGGIROOGND

figure 2-2. EMS front Panel

2.4.2 Cable Connections

The following subsections describe the cables and the procedures used to
connect the various parts·of the EMS system.

2-4

(- 2.11.2.1 CPU Pod

1",' '/

The first cables to be connected are the CPU Pod cables that connect the CPU
Pod to the EMS 8000. These six-foot cables are permanently attached to the
Z8001/2 CPU Pod and are marked CPU-POD-CABLE-01 and CPU-POD-CABLE-02 at the
50-pin conneqtors. Use the following instructions to connect these two cables
through the .front panel of the EMS unit to the emulator board (see Figure
2-2).

1. Plug the top Pod cable connector (marked CPU-POD-CABLE-01) into the EMS
front-panel 50-pin header labeled CPU POD CABLE 11 (left connector). This
cable is keyed and should be oriented so that the connector marked CPU POD
CABLE 1 faces up.

2. Plug the bottom Pod cable connector (marked CPU-POD-CABLE-02) into the EMS
front-panel 50-pin header labeled CPU POD CABLE 12 (right connector).
This cable is also keyed' and should be connected so that the connector
marked CPU POD CABLE 2 faces up.

2.11.2.2 Target Cable

The target cable that connects the target to the CPU Pod is installed next.
This cable is identified by the blue wire along its side, which indicates the
location of Pin 1.

The size of the DIP connector on this cable differs for the Z8001 and Z8002
CPU Pod. The connector on the target cable (on the EMS Pod side) is marked
with a part number and a triangle that indicates Pin 11. The other end of the
target cable has a special molded plastic protector plugged into the pins of
the connector.

1. Plug the target cable connector (50-pin for Z8001, 40-pin for Z8002) into
the EMS Pod, ensuring that Pin 1 of the cable matches Pin 1 of the EMS
Pod. Pin 1 of the EMS Pod is ~ocated on the top-right side of the Pod
(see figure 2-3).

2. Carefully remove the plastic protector from the connector pins on the
other end of the target cable and plug the connector pins into the target
system (ensuring that Pin 1 is in the proper position). (Pin 1 of the
target cable is indicated by the blue wire running along the side of the
cable.) The plastic protector should be placed over the target system
plug whenever the plug is removed from the target system •

.
~.

-.

Figure 2-3. CPU Pod and Target Cable Connection

2.4.2.3 Termdnal Cable

The terminal cable that connects the terminal to EMS is connected next. A flat
cable with 25-pin "0" connectors on each end is supplied to connect the ter
minal to the EMS 8000. (Refer to Table 2-2 for a list of supported ter
minals.) The only lines that are actually required in this cable are the
Transmit, Receive, and Ground signals (so three wire cables are acceptable).

To connect the terminal to EMS, perform the following steps:

1. Unscrew the knurled knob of the rear-panel door (see Figure 2-4). This
uncovers the area used to connect the various cables to the EMS unit.

2. Connect one end of the RS-232 cable to connector J4 located (upper-right)
on the rear panel of the EMS 8000 unit. This portion of the rear panel is
shown in figure 2-5.

3. Connect the other end of the RS-232 cable to the selected terminal.

4. See Section 2.4.3 for instructions on setting the EMS 8000 baud rate used
for EMS terminal and host communications.

K UII EDKNOI L'N ~

/ Ili*]
~

--

~ ~~ IW S 6> PWII PWII

HINGED-DOOII tcLDIEIII flOW", , FUSU

Figure 2-4. EMS 8000 Rear Panel, Before Installation

c

+

+

f

ON ~,
OFF,. 0

MOST TIl_MAL
Moll11 • ... oM

f + f +
MOST

ZoIIIIT' MIlT II .. ,
+ f +

HOST lAUD "ATE U. NIITCOUT)
RATE (HEX) RATE (HEX) ...

3110 0 ,1.2K • f 100 , _All
7 ,- 2 7I.IK • + :MIlO a "UK • - • 307.2K A - I .,UK • 01 1111' 0000 00 TTL

HEX C F:RESERVED 00 111'1 0000 00 ...
1 0 1 1 1 1 1 0000 00

232 H - :
IIEllRVED IlISEIIVED EllS

00 00000 o 0 1 1 00 T

A I I NO. I 00 00000 1 1 001 1 Z·N ET

I HZI'I· 51.1 71. ,1 2 31.15 -Ir ·Hzlal·151·lrl·llllzlal·lsl·lr·1 j1\zlal·lsl· rial I
53 52 51

RCVCU
XMT CLK

HOSTCDMM

Figure 2-5.

0

~ "I H~ I 101 FIAST IN CHAIN

INT lAUD hi LAST IN CHAIN
INT RATE

(HEX)
ASYNC SYNC
FULL HALF DUPLEX

EMS Rear Panel (Access Door)

hili
hili

EMS
NET

2.4.2.4 Host Cable

+

+

The host cable is identical to the terminal cable and can be connected as fol
lows:

1. Connect one end of the 25-pin "0" connector to the EMS rear-panel jack J3,
which is located on the top left of the EMS BODO rear panel (see Figure
2-5) •

2. ~onnect the other end of the 25-pin "0" connector to the appropriate port
~n the host system.

'.Refer to Section 2.4.3 for instructions on setting the EMS 8000 rear-panel
switches for EMS and host communications.

2-7

2.4.3 Switch Settings

Rear-panel switch settings recommended for the Mel-1 t Mel-2 and 58000 hosts
are given in Table 2-3.

1. Set bits 5-8 of 53 to represent the hexadecimal value that corresponds to
the desi'red baud rate for the host computer (see Table 2-4). The
terminal" should always be operated at 9600 baud.

Table 2-3. Suggested Rear-Panel Switches for
Mel-1, ":Z-2 and 58000 Hosts

Switch Bit State Connents

Switch 51 Bits 1-6 Off Select RS232
Switch 52 Bits 1-2 Off Select RS232
Switch S2 Bits 4-8 On Select RS232

Switch S1 Bits 7-8 On ON for EMS Net
Switch 52 Bit 3 Off MS first in Net

Table 2-4. Host Baud Rates and Corresponding
Values for the "S3" Switch Settings

Baud
Rate

300
600

1200
2400
4800
9600
19.2K

Bits
567 8

o 0 0 0
000 1
001 0
001 1
o 1 0 0
o 1 0 1
o 1 1 0

2.4.4 Power Cord and AC Power Selection

Hex

(0 Hex)
(1 Hex)
(2 Hex)
(3 Hex)
(4 Hex)
(5 Hex)
(6 Hex)

Connect the power cord that was shipped with the EMS 8000 unit to the power
receptacle on the rear panel of the EMS unit (refer to Figure 2-4). If your
EMS 8000 is being used outside of the United States, contact your local FAE
befqre performing the initial power-up procedures or the initial operation
chee1<out.

2-8

C,'

£

2 ••• 5 External Probes

The External probes are connected through the front panel of EMS with the red
• stripe of the cable on the right. The External Probe option requires the

External Probe board, and one or more. External Probes. External Probes can be
used 'for supporting Physical addressing from Memory Management Units (MMUs),
tracing log~cal levels (sampled on Data Strobe), and detecting glitches.

The locations for Physical Address probes (two are required) and the external
Logic probes are shown on the front panel as EXT PROBE 1, EXT PROBE 2, PHYS
ADDR LOW and PHYS ADDR HIGH. When using the EXT PROBE 2 field to trace CPU
signals as configured in the Allocation screen (see Section 4.4.8), the
External Probe board is not required. The usage and requirements of the
External Probes are shown in Table 2-5.

Table 2-5. External Probes Usage and Requirements

Use Requirements

Trace CPU
Trace Ext 1 and 2
Physical Memory
Trace Ext 1 and 2 and

Physical Memory

2 ••• 6 Mappable Memory

None
Ext Probe board and two pods
Ext Probe board and two pods
Ext Probe board and four pods

The standard EMS 8000 configuration includes one Mappable Memory board with
64K bytes of high-speed static RAM. An optional Mappable Memory board can be
purchased to increase mappable RAM capacity to 126K bytes. This board is
placed in the bottom card slot. Table 2-6 shows the jumper placements for the
standard and optional Mappable Memory boards.

Table 2-6. Jumper Placements for Mappable Memory

Board Jumper Placement

Mappable Memory 11
(64K bytes)

Mappable Memory 12
(62K bytes)

Jumper is factory-placed
between E1 and E2.

Place jumper between E2
and E3.

2-9

2.5 INITIAl POWER-UP PROCEDURES

1. Turn ac power on for the EMS 8000.
2. Turn on the CRT terminal.
3. Turn ac on for the target.

2.6 . BOOTING TI£ SYSTEM tp

1. Make sure that the host communications package is resident on the host
computer and accessible from the port connected to EMS. Host communica
tions packages for the MCZ-1, MCZ-2, and saooo are available from ZUog.

2. Press the RESET button on EMS (located on the left side of the front panel
next to the MONITOR button). The following message should appear invne
diately on the terminal screen:

Please select one of the following terminal types and enter the terminal
code.
O} ADM-J1 1} TVI-920 2} VT-100 J) VT-Z 2/10
?

3. At this point, select one of the above terminals by number. EMS will
respond with the version number of the monitor software, and will
automatically place EMS into Transparent mode. The following message
should appear on the screen:

EMS 8000 Version X.X
Transparent Mode

4. The user's terminal is now linked directly with the host. If the host has
not yet been initialized, it should be done now.

Execute the host communications program "HOST". This program is available
on floppy disk for the MCZ-1 and MCZ-2 host systems and on tape for the
58000 host system (this program takes a few second a to load). HOST is an
active program that runs on the host computer to monitor EMS requests to
the host for .loading or saving functions.

5. Press the BREAK key on the EMS terminal, or the MONITOR button on EMS.
This action initiates downloading of the EMS monitor software from the
host system. After downloading is completed, the user is in the Change
screen (see Chapter 4 for a description of EMS commands). The following
me.ssages should appear on the screen:

Loading EMS
Loading EMSA
Loading EMSB
Loading EMSC
Loading EMSD
Load completed ••• Stand by

2-10

A few seconds after the "Load completed" message, EMS should display the
Change screen. If an error occurs during loading, the initial terminal
request will be repeated. The links and the host should be checked for
problems, and to Rlake sure that the EMS files are present on~ the host.
The procedure would then be repeated.

2.7 RETURNING TO TRANSPARENT MODE

Aft~ booting the monitor, Transparent mode can be reentered at any time from
any screen by typing the control character "<CTRL) T" (for Transparent mode).
The EMS monitor responds with "Transparent Mode". At this time the EMS ter
minal behaves as if it were directly connected to the host system. If the com
munications program HOST is still active on the host system, it should be
terminated by an "X <RETURN)" • This character must be an upper case "X"
(otherwise the host will appear not to respond to terminal commands). EMS
remains in Transparent mode until either the BREAK key on the terminal or the
MONITOR button on the EMS front panel is pressed. Before pressing the BREAK
key or the MONITOR button, the HOST program must be re-executed if any loading
or saving of files is to be done. Pressing either the BREAK key or the
MONITOR button immediately returns control to the EMS screen that was active
before entering Transparent mode.

2.8 INITIAl OPERATIONAL CHECKOUT

In order to verify the proper attachment to the Target system, the user should
type the following sequence.

As the user becomes more familiar with the operation of EMS, some of these
steps can be eliminated.

1. Type a "<TAB) 0" to go to the Debug screen.

2. Type an "E" to select the "Edit" command, tlR" to select Register mode, "P"
to select PC, and <RETURN) to allow the PC and rcw to be entered. This
allows the beginning of emulation to be at the point desired in the
correct location. Otherwise, the CPU will begin execution at location 0
with a status of zero as if it were code.

3. Type <CTRL) G to begin emulation. A reverse video feedback area in the
lower right-hand portion of the screen should read "Running".

4. Verify that the target operation is identical to operation with an actual
Z8000 CPU. If the target has components needing a reset not achieved
during a power-up, it should be reset manually after start of emulation.

5. After identical operation is verified, type "<CTRL) C" to terminate emula
tion and return control to EMS. Note that the feedback area in the lower
right-hand portion of the screen displays "User Break".

2-11

2.8.1 Bad Clock or Ti.aout Messages

If the message "BAD CLOCK! fix it" appears, check the following:

• The Z8000 CPU clock may not meet the Z8000 ac or dc specifications given in
the "Z8001/Z8002 CPU Product Specification" (document number 00-2045-AO).

• A bad connection may exist between the target CPU socket and EMS.

• Power may not be present in the target system.

• The EMS CPU Pod or the EMS Emulator board may be faulty.

If the message "TIMEOUT! ••• " appears, check the CPU bus signals BUSRQ-,
RESET-, or WAIT-. If any of these signals are shorted or held Low for very
long periods of time, system emulations cannot be completed. These emulations
are necessary to fetch user registers, display user memory and to access
target resources. If the problem persists after checking the items listed
above, call your fAE.

2.9 EMS 8000 SPECIfICATIONS

EMS Terminal

Host Computer

EMS Group Break

25-pin "0" connector(using Txd, Rxd, and Gnd). RS-423
buffering is provided. Terminal baud rate is 9600
baud.

25-pin "0" connector (using Txd, Rxd, and Gnd). RS-423
buffering is provided. Host baud rate can be 38.4K baud
maximum.

25-pin "0" connectors in a daisy chain.

Electrical Specifications:

Target Clock Rate

Voltage

fuse

Power

Line frequency

Phase

500 KHz to 6 MHz

90-140 V
180-260 V

5 A

670 W

47-63 Hz

1

Note

Voltage conversion MUST be performed by authorized Zilog
personnel. Contact your Zilog Sales Office to request
this service.

2-12

If
~.

(:

1'\
'-/

DiJlensions of the EMS 8000 tkait:

Width 20.0 in. (50.8 em)

Depth 25.0 in. (63.5 em)

Height 7.0 in. (17.8 em)
.. -

Unit.Weight 65.0 Ibs. (29.5 kg)

shipping Weight 80.0 Ibs. (36.4 kg)

Transportation/Storage Environment

Temperature

Humidity Sr.-9Sr. (No condensation)

Operating Environment:

Humidity 10r.-90r. (No condensation)

2-13

c

CHAPTER 3

EMS BOOO FEATURES AND CAPABILITIES

J.1 .OVERY lEW

This section describes the basic hardware and software features of the EMS
8000. A description of the EMS screens and commands is provided in Chapter 4
of this manual.

The EMS 8000 is a state-of-the-art in-circuit emulation subsystem that sup
ports the hardware and software design engineer in developing products using
the Zilog Family of microprocessors and peripheral components. EMS provides a
CPU plug to replace the CPU chip in the user's target system, which makes
installation simple and immediate.

The EMS 8000 is modular in design, with a friendly screen-oriented, self
prompting user interface. The user has full access to the target micro
processor's registers, memory, and I/O space. Special I/O and Memory Manage
ment Unit (MMU) functions are supported with substitution of physical
addresses for logical addresses. The user can start, stop, monitor, and step
execution in real time.

The EMS 8000 interfaces with either UNIX or RIO-based Zilog systems. The
following Zilog microcomputers can be used as the EMS Host system: System
8000, MCZ-2, PDS 8000 or theMCZ-1.

The EMS 8000 is an intelligent peripheral whose monitor software is downloaded
during the initial power-up. This feature allows the EMS software to be
upgraded easily. Other features, such as complex triggering, a large
real-time trace buffer, and a large mappable memory space provide the user
with powerful debugging tools during the development cycle.

Additional features of the EMS 8000 include:

• A real-time partitionable trace module for multiple recordings of program
execution. lhe partitioned trace feature also enables the user to capture
events that are separated in time. Trace fields that are recorded include
CPU address, data, status, control and External Probe bits: 64 bits of
target information are recorded each cycle.

• Three parallel trigger resources are provided as building blocks in con
figuring the trigger, trace and timing functions. These comparators pro
vide an effective aid for specific debugging strategies and support address
ranging, sequential conditions, Enable and Disable of other triggers,
ORing, and bit-masking.

• Performance measurements are supported with a General-Purpose counter
designed to aid in benchmarking critical software routines.

• 64K bytes (expandable to 126K bytes) of high-speed, static mappable memory
can be mapped with a resolution of 2K bytes anywhere in the user's memory
space. Each 2K block can be declared unprotected, write-protected, non
existent, code or data only, or normal or system only.

• A pulse output feature permits a logic analyzer to be used as part of the
development system allowing logic data to be captured synchr~nous to pro
gram execution.

• A Group Break feature is provided to allow several EMS units to begin and
terminate emulation together. This feature is useful in debugging network
systems.

3.2 HARDWARE DESCRIPTION

EMS is a full-featured emulation peripheral. The heart of EMS 8000 is a Cen
tral Controller Unit (CCU) with 256K of dynamic memory and 16K of ROM.
The CCU contains the monitor program that provides a screen-oriented user
interface. The CCU operates continuously, allowing the user to follow the
progress of an emulation and monitor breakpoints during the emulation process
in real-time.

The other EMS modules include a two-board Trigger module, a real-time Trace
module, an External Probe interface module, a Mappable Memory module, and a
microprocessor "Personality" module with a CPU Pod. A block diagram of the EMS
8000 hardware is provided in Figure 3-1.

TO
TERMINAL ------CEN,",AL CONTROLI.ER

TOHOST
COMPUTER

}

SERIAL UNI1'

COMMUNlCATl9NI
CHANNELl

TOIRUK
GROUP

INTERRUPT

OATAIADDRESI RIACl-WRITE CONnlOL

TRIGOIR MODULE

RESOURCE A
REIOURcel
RESOURCEC

TRACIIOARD MIt'K

IYNCHRDNIZID TO EMIlLATIO

TRACE

DYER MAPPAILI
MEMORY

CONTROL---._,L.----.I

Figure 3-1. EMS 8000 System Block Diagram

------------- -----

MAPPAILE
MEMORY 10AROI

.. ILOCKIOF
2K IVYD

8216·006

4l:~ 3.2.1 Central Control Unit (CCU)

The CCU module contains a 4 MHz l80A microprocessor with up to 16K bytes of
EPROM for bootstrapping and low-level software routines. Up to 2S6K bytes of
bank-switched RAM on this board is reserved for the system software. The CCU
maintains all communications to and from the user terminal and the development
system host via the Rear Panel board. In response to user inputs, the CCU
programs the other EMS modules that are reponsible for speci fic EMS tasks.
The CCU also contains the necessary hardware for the EMS Group Break (a fea
ture that allows several EMS units to start and stop emulation
simultaneously).

3.2.1.1 The Rear Panel

There are six connectors and five DIP switches on the rear panel (see
figure 2-5). Table 3-1 describes the functions of the connectors.

Table 3-1. Rear Panel Connector Assignments and Functions

Connector
Label Functions

J1 Internal connector to connect the Rear Panel board to the EMS
Backplane. This connector is not visible to the user.

J2 Reserved for future connection to Z-NET network transceiver or a
high-speed host computer (RS-422 compatible).

J3 Used to connect EMS to a host computer with RS-232 or RS-423
electrical buffering (RS-232 pin assignments using 25 pin "0"
connector).

J4 Used to connect EMS with the terminal.

JS Daisy-chain input for EMS NET (used for Group Break feature).

J6 Daisy-chain output for EMS NET (used for Group Break feature).

3.2.2 Sample Bus

EMS 8000 uses a 64-bit-wide sample bus.
assigned as follows:

• 8 bits for segment number
• 16 bits for offset address
• 16 bits for data

With the zeooo, these bits are

• 8 bits for CPU Control (STO-ST3, N/S, R/W, B/W, BUSACK)
• 16 bits for External Probes or 8 bits for External Probes and 8 bits for

CPU signals

A detailed diagram of the sample bus is shown in figure 3-2.

8. lIlTS ADDIIUa<
, IFf nITS ,. 8ITS = I 0 ·IIIOHNT IWIIII'EI\ I2l1011 I I .-.-WlES

011 .IITS

:::a1l«;A1.1 U~UI~ _______________________ _

ali Ii Ii i
p .. _.. •

I I NIi In 1IIIWIITa -ITo I
IUIll!it

EXT' . ..,..
DATA UNa

EXT 2
.IITS

,--~ __ LOGIC __ I'IIO_I_I_' __ ...II I CWfCHES MOHITOIIID ON 1'lI0II' I GUTCHES

r--__ ~.;.;.1ITS~~--..,011 lIlTS
'--__ I.OG_IC_""_OI_'E_' __ 1 INiDI 1M I Vi [ft§ 0 "1msf181laul CPU

r--____ ~.;.;..ITS~ ______ ..,QRr------~.IITI~------_..,

I.OGIC l'II0I11 I 1 ... ___ 1.OG_.1C_'1IOI_1_2 __ 1I'l10 .. 2
'-------------_-...!QR-

' •• T!

• AIOIIY ... ZIG03

figure 3-2. EMS 8000 Sample Data Bus

3.2.3 Trigger Module

Three separate resources monitor the 64 bits of sample data each cycle, look
ing for preprogrammed conditions. The resources can be programmed to look for
"0", "1", or "don't care" for each of the 64 bits. The address, data and
External Probe fields can each be used in equal, not equal, greater than, or
less than comparison,modes. Each of the three resources can be programmed to
look for a different pattern.

Resource B is simple and produces an output whenever its pattern is found.

Resource A is more sophisticated and can look for a sequence of up to five
different cycles, each with its own pattern-matching qualifications. Resource
A also has two Address fields that can be logically ANDed to provide in-range
or out-of-range cycle detection. These fields can also be ORed to provide two
addresses per pattern. Resource A also includes a Cycle Limit counter that
allows the user to specify that this sequence must occur within a certain
number of cycles.

Resource C can look for a sequence of up to eight different cycles, each with
its own pattern-matching quali fications. Resource C can be used the same way
as Resource A or Resource S, or it can be partitioned into an Enable/Disable
resource. When used as an Enable/Disable resource. Resource C serves as a
"window" to qualify other resources.

3-4 8216-007

c

c

A 16-bit General-Purpose counter resource can be used in conjunction with the
above resources. The general-purpose counter can be a pass counter or can
count cycles or elapsed time. As a pass counter it waits for an event of the
trigger resources to occur a certain number of times before taking any
action. As a cycle or elapsed time counter, the number of machine cycles or
T-States between two events is accumulated. This feature aids in performance
measurements:such as benchmarking.

All ~ the above resources can be used as building blocks to control the Trace
module. These resources specify which cycles are traced, trigger the record
ing of trace snapshots, and terminate emulation. These resources can be used
for any of the trace functions. for example, Resource A can trigger the trace
while all cycles matching Resource B are traced. The resources can also be
combined logically; for instance emulation can end if any cycle meets the
conditions of Resource A OR Resource B OR Resource C.

'.2.4 Trace Module

The Trace module is a 64 x 1024 bit-partitionable memory that records 64 bits
of sample data from the CPU bus each time a qualified trace event is recog
nized. The Allocation screen (discussed in Chapter 4) allows the user to
specify which resources affect this recording process. In addition, a delay
feature allows cycles to be recorded long after the trigger resource has
become true.

A group of cycles recorded relative to a trigger is called a "snapshot" or
"partition." A snapshot provides a small window of execution history. The
trace memory can be partitioned into several smaller sized snapshots or the
entire trace memory can be allocated to a single snapshot. Multiple snapshots
are discussed in Section 3.2.4.2. One snapshot is recorded for each
occurrence of the Trigger. This feature allows many occurrences of
subroutines or speci fic CPU instructions to be recorded without disturbing
real-time operation. The emulation can be terminated after a specified number
of snapshots (determined by the user) has been recorded.

The number of snapshots and bus cycles can be combined as shown in Table 3-2.

Table 3-2. Possible Snapshot and Bus Cycle Combinations

Number of
Snapshots

1 snapshot
2 snapshots
4 snapshots
8 snapshots

16 snapshots
32 snapshots
64 snapshots

128 snapshots
256 snapshots

Number of Qualified
Bus Cycles

1024 qualified bus cy~les
512 qualified bus cycles
256 qualified bus cycles
128 qualified bus cycles
64 qualified bus cycles
32 qualified bus cycles
16 qualified bus cycles

8 qualified bus cycles
4 qualified bus cycles

3-5

Two special counters (different from the General-Purpose counter) can be used
in conjunction with the trace functions. They are the Cycle Delay counter and
the Snapshot Delay counter:

• The Cycle Delay counter gives the user the ability to position cycles
within a ~napshot relative to a trigger (much like post-, center- and pre
trigger recording with a logic analyzer).

• The Snapshot Delay counter allows the user to stop emulation after a speci
fied number of snapshot triggers after the emulation breakpoint has been
recognized.

Collecting cycles before a trigger event is called pre-trigger recording.
Collecting cycles around a trigger event is called center-trigger recording.
Collecting cycles after a trigger event is called post-trigger recording.

for the pre-trigger trace (see Figure 3-3), recording stops immediately on the
trigger condition. For the center-trigger trace (see Figure 3-4), after the
trigger occurs there is a delay equal to half the size of the snapshot before
recording is stopped. At that time, half of the snap~hot contains a record of
what happened before the trigger occurred, and the other half contains a
record of what happened afterward~. for the post-trigger trace (see
figure 3-5), after the trigger occurs, there is a delay equal to the size of
the snapshot memory and then recording is stopped. The snapshot contains all
of the bus transactions beginning with the trigger event itself.

I TRACED CYCLIS I
----~I==========~I---------------.n--1013 0

Figure 3-3. Pre-Trigger Trace

~
---------~I----ool=====~·I~~;~2Z-------·~E -'" ~.TRACfIlZE

Figure 3-4. Center-Trigger Trace

8216-008.009

--- -------- - -

\"'....,..

I TRACED CYCLE

I • ,... . +-I -I
CYCLI DlUY .. TIIACE IIZ£

figure 3-5. Post-Trigger Trace

The only difference between pre-trigger, center-trigger and the post-trigger
tracing is the number of cycles after the trigger event before recording is
stopped. In EMS, this number can be continuously adjusted: for instance, the
trace memory, which is 1024 cycles long, can contain 923 cycles before and 100
cycles after the trigger (note that the trigger cycle is also included, see
Figure 3-6). It is also possible to have a delay that is longer than the
trace snapshot size (see Figure 3-7). This feature is useful if the user's
software program seems to "get lost" after a fixed amount of time following a
certain identifiable point in the program. As an example, if a delay of 9024
is used to stop tracing, the number of cycles traced would be in the range
from BODO to 9024 after the trigger. Note that the trigger cycle is not
included in this case (see Figure 3-7).

If the trigger condition never occurs, or no trigger condition is specified,
then recording occurs until the user intervenes with a manual break
n<CTRL> C". Cycles are numbered with respect to the trigger point. The
trigger itself is cycle number O. The fifth cycle before the trigger is cycle
number -5. The 7046th cycle after the trigger (in this case the trigger buf
fer is written over many times) is cycle number +7046. Cycle numbering is
shown in Figures 3-3 through 3-7.

8216·010.011.012

TIIACED CYCLES I
----~I========~I===+I--------------.nME

-123 0 CYCLE 100
~"100

DELAY

Figure 3-6. Center Trigger with Arbitrary Cycle Delay

TR'TU I :a~ I
----+I------------~I---·~I~----·~E

•
I CYCLE DELAY" _

figure 3-7. Post-Trigger with long Cycle Delay

3-7

3.2 ••• 1 Trace Qualification

Trace qualification is the ability to restrict the cycles recorded in the
trace memory to those that meet specified requirements. This is particularly
useful for m~nitoring all of the accesses to a certain device, memory address,
or range of addresses. The various forms of trace qualifications in EMS are
described in the following paragraphs.

Any of the three resources (A, B, or C) can be used as trace qualifiers (see
figure 3-8).

It is possible to use Enable and Disable (part of Resource C) to define time
slots during which tracing occurs. Selecting Enable means that cycles are
qualified only after the Enable point. Selecting Disable means that cycles
are not qualified after the Disable point (see figure 3-9).

------------------------------___ n.
figure 3-8. Qualified Cycles

TRAce TRAce TRACI
eNloIILI OJSA8UE .""81.1

~ ~ l
TRACI

DJ U

~
r-1-TflA-cy-J:-", 1"'1 MO-~~-:::u-"I

______ ~::::==~ __ !:::::~ _______ nME

figure 3-9. Enable/Disable Trace

Enable and Disable can be allocated to form a "qualification window" for
cycles to be recorded in the trace memory. This allocation requires Resource
C to be used in Enable/Disable mode. for example, Figure 3-10 shows the
trace memory recording only those cycles that meet certain conditions and that
occur in a certain qualification window.

8216-013. 014

c

{

TltACE TRACE TRACE TRACE
.. &aLa DIU... ..A...

~ ~ ~ ~

I "" I III I I II
--------------------------------_. ~! '-\t/ 'V

TRACIID TltACIID
Cycua Cycua

Figure 3-10. Qualification with Enable/Disable

NOTE
Triggers and final triggers are always traced, regardless of
quali fication.

When a trigger condition is used with a delay for center- or post-trigger
tracing, and this condition is combined with trace qualification, the delay is
a number of qualified cycles. This situation is illustrated in Figure 3-11.

LAST
TltI,DIIIl ICYCLI! t TRACED

II III II II IIIII II II 1111
----------------------------------T.E -,,-to -... ·7 -I .. -44 -2 -t 0 t 2 3. II 7 •• to I CYCLE DELAY = 10 .1

CENTER-TRIGGER
CYCLE DELAY a 10

figure 3-11. Numbering of Qualified Cycles

3.2.4.2 Multiple Snapshots

If the user has an intermittent hardware or software problem it may be
desirable to collect, in one trial, execution data before or after each of
several triggers. The ability to collect execution data in this way (called
multiple snapshots) is a unique feature of EMS.

In order to capture multiple snapshots, the 1024-cycle trace memory is
partitioned into a collection of smaller trace memories. The number and size
of the partitions is adjustable (some situations require a larger number of
triggers, and other situations. require a larger amount of data around each
trigger). As indicated in Section 3.2.4, the memory can be divided into 2
partitions of 512 cycles, 4 partitions of 256 cycles, and so on, down to 256
partitions of 4 cycles. When emulation begins, instead of overwriting the
entire trace memory, recording is restricted to the first partition. At some
point, a trigger condition occurs, followed by the cycle delay (for center- or
post-trigger tracing). After the cycle delay occurs, recording in the first
partition stops and proceeds on to t~e second partition. Each trigger

8216-015. 016 3-9

•

condition that occurs thereafter causes cycles to be traced in the next
partition. When the last partition has been filled, the first one will be
overwritten (as long as triggers keep occurring). This process continues
until a condition occurs that stops emulation. This condition can be one of
several things:

• A certain: number of triggers have occurred (shown in figure 3-12).
• A breakpoint or a manual break has occurred (shown in Figure 3-13).
• A breakpoint has occurred, followed by a certain number of triggers (shown

in Figure 3-14).

Snapshots are numbered relative to the emulation breakpoint. If there is no
emulation breakpoint, they are numbered relative to the end of emulation;
therefore, the oldest one is -n and the most recent one is O. Snapshot
numbering is shown in Figures 3-12 through Figures 3-14.

r=:::I
L.::::::..J
I I I

TIIl0011R

~ tIC
fu:§j
I I 1. 11111

SNAP-Z -2 SNAP_2 -, SNAP-1 0 SNAPO
CYCLE-121 0 CYCLE + 121 0 CYCLE + 121 0 CYct.E + 121

SNAP_1 SNAP 0
CYCLE-121 CYCLI + 128

110 QUALIFICATION
CENTeR TRIGGER

• PAIITITIONS. _ CYCLES

Figure 3-12. Multiple Snapshots, Breaking After a
Certain Number of Triggers (Break After 3)

TJllIooa ..

~ r-----·-,
IOYE::"IN I
L ... _ __ J
__________ +-__ ~--~~--~--_+~--_+--~~--~~--+_--~.~T1MI

CYCLE NUMIER: - 11/8 o +~-~ • +~-~ 0

NO OUALIFICA'IIOI'f
CENTER TRIGGER

• PARTITIONS. 2M CYCLES EACH
IREAKPOINT '7 CYCLES AFTER" TRIGOER

o

MOAE PRE·TRIO INFOR
MATION .. LlSS POIT·
TIIIO INFORMATION
BECAUSE BREAKPOINT
OCCURED. ITILL 2JI
VALID CYCLES "AROUND"
TRIOOIII.

figure 3-1). Multiple Snapshots Break with
Breakpoint or Manual Break

3-10 8216·017,018

~ ~ r----' r----' I LOR II LOR I l ____ J L ___ --'

AL
T "1- ,.- "1a

.. T! T ~- nur- r
BBEJBBBBEJ
I I II I II I I II II II II I

CYC\J! _ -M ..M ~M • .M -M .M -M .M -M .M -M .M -M .M-M .M

rigure 1-14. Multiple Snapshots, Break n
Snapshots after Final Trigger (0 = 1)

If multiple snapshots are used in center- or post-trigger mode and if the
trigger occurs again while the cycle delay is in progress, then recording in
that partition is stopped immediately and continues in the next partition.
This process is shown in rigure 3-15.

T".oa." "".a •• " T"'GGa"
t • C

~ ~ .

II IIII II II h ; I II I LllllldllllllJ
r----------.
L____ L I I I I I I I

-I -. a f 4 7 -I f-' a • 5 of' 7

SNAPSHOT A INAPSHOTJ SNAPSHOTC

PARTITION SIZE = l' OOtTEO LINES SHOW THAT. CYCLES ARE STILL
CYCLE DELAY. I TRACED llFORE AND AFTER EACH TRIGGER.

THE CYCLES WlU QIIL'f JE DISPLAYED ONCE
(WITH THE NUMJERING SHOWN).

rigure 3-15. Triggers Occurring During
a Cycle Delay

During the cycle delay after the last trigger, any extra triggers that occur
will not cause recording in that partition to be stopped. This allows the
user to gain full post-trigger information from the last trigger that occurs.
The extra triggers appear in the trace display as "Triggers", and the
numbering of the cycles is from the first trigger. This is shown in Figure
3-16.

8216-019.020 3-11

TH .. T aT"fIT." lie. S .. AHIIOT
&lID" .. enUl Y
TIl TIIICI.... TIll TIl......."

l l ' ~ r~!

I '--'0001: I ~I __ l ~'I t:· ===::1 I (·1
-t2l~-----"~'21'-'21 •• 0 +121 -_~----+~'21

• PARTITIOIIS. _ C\'CLIS lACK
CENTElI TRIQlJER (CYCLE DELAY • '. _ AF'fIII' TRlGGlRS

Figure '-16. Triggers Occurring During the
last Cycle Delay

'.2.5 Emulator Module

The EMS Emulator module is the "Personality" module located between the user's
Z8001 or Z8002 socket and the rest of EMS. The user's Z8000 socket is con
nected to a pod by a short cable. The Z8000 Pod is connected to EMS by two
long cables. The pod contains a high-speed Z8000 CPU and all of the time
critical circuitry necessary to connect or isolate the target system from the
pod's Z8000 CPU. It also contains buffer circuitry to drive signals to the
Z8000 Emulator board.

The Z8000 Emulator board contains a controller to start and stop the Z8000
CPU. The CPU can be stopped by anyone of the following:

• A command from the terminal, "<CTRL) CIt.

• An occurrence of a trigger breakpoint, or a trace-full condition.

• An EMS Group Break.

• A memory protect violation.

The Emulator board transfers data between the CCU board and the Z8000 CPU.
Local memory is provided to the Z8000 to run system emulations. These
emulations are responsible for fetching the Z8000' s internal registers and
accessing the various resources of the target system. Another function of the
Emulator board is to gather and supply the address, data, and cycle status to
the Sample Data bus for the Trigger and Trace modules. Timing signals for the
sample data are also supplied. The Emulator board produces the memory timing
signals and protection bits for the mappable memory array.

'·12 8216·021

3.2.6 Mappable Me.ary

Mappable memory allows regions of target memory space to be substituted by
internal high-speed static RAM located in EMS. EMS is shipped with 64K of
mappable memory and is expandable to 126K (2K of the second memory board is
reserved for EMS mapping operation)., The memory mapper provides mappable
memory for ,up to two Z8001 segments at the same time. Mapping can be
performed separately for Code and Data, and for Normal and System modes. It
also allows these areas to be write-protected, or designated as nonexi~tent.
These protection modes can apply to target memory or to EMS memory. No Wait
states are introduced by the use of mappable memory (except when Physical
Address probes are used with a slow MMU).

3.2.7 External Probes

External Probes are an optional feature offered with EMS. These probes allow
the user to record logic transitions (sampled with the trailing edge of Data
Strobe of the target CPU) along with instruction execution. for example, the
user may wish to verify that an output port has changed state based upon a
specific CPU output instruction. The External Probes can also be used to
detect short transitions (as small as 50 ns) that may occur between Data
Strobes.

Up to four probes can be connected to the External Probe board. Two of these
probes are dedicated to the above logic state functions and two are dedicated
to supporting- memory management addressing. EMS can trigger, trace, map
(SUbstitute) memory, and break instruction execution based upon physical
addresses (as opposed to logical addresses from the Z8001 CPU). This allows
EMS to support the debugging of large memory systems with MMUs. The External
Probe cables are connected through the EMS front panel (see Section 2.4.5).

3.3 sorTWARE DESCRIPTION

The EMS 8000 software provides a friendly debug environment for micro
processor-based systems. The user interacts with EMS through screens with
menu prompts. Each screen fills a standard 24 x 80 CRT display, and is devoted
to a particular function. The information contained in this section provides
an overview of the EMS 8000 software; refer to Chapter 4 for a complete
description of the screens and their commands.

In general, the user enters parameters and commands by moving the cursor to a
desired field and selecting an option from a constantly displayed menu line.
An error message is displayed in reverse video when an option is selected that
conflicts with a previously-selected option.

3-13

The user interface consists of five user screens, a "Help" screen, and a
"Change" screen. The five user screens are: Allocation, Pattern, Configura
tion, Debug, and Map. The user can move from one screen to another by typing
<TAB> followed by the letter capitalized in the desired screen name. The
<TAB> character exits the current screen and returns control back to the
Change screen. .

• The Change screen allows the user to change from one screen to another.
This screen is entered when the EMS monitor is downloaded and whenever the
<TAB> character is typed. The available screens are indicated on the menu
line.

• The Allocation screen is used to allocate EMS resources to specific
actions.

• The Pattern screen is used to program patterns for allocated resources.

• The Configuration screen is used to configure global parameters for the
system.

• The Debug screen allows the user to set Instruction Breakpoints, Display
memory, Edit Memory, Edit Registers, Edit I/O, Edit Special I/O, Begin
Emulation, Upload and Download from the Host computer:, Compare Memory, rill
Memory, Move Memory, Search Memory, Step Execution, Display the Trace
Memory, Setup Watch area, and Zero triggers.

• The Map screen. i.s used to substitute EMS mappable memory in place of target
memory.

• The Help screen (which is invoked by typing the question mark character
"?") provides a helpful reminder of some system-wide EMS commands that are
not provided by the menu line. The Help screen can be entered from any
other screen by typing "?" and is exited by typing <RETURN>.

3-14

4.1 OVERVIEW

CHAPTER 4

USER SCREENS

The user communicates with EMS through five menu-driven screens and two
support screens. A screen is designed to fit on a standard display terminal,
80 columns wide by 24 lines long. Each main screen in EMS is dedicated to a
particular function. Descriptions of all the screens are given in Table 4-1.

Table 4-1. EMS Screen Descriptions

Screen Function

Menu-Driven Screen

Configuration screen

Allocation screen

Pattern screen

Map screen

Debug screen

Change screen

Help screen

Used to configure global features of EMS.

Used to allocate the EMS event recognition
resources to sped fie actions such as
tracing and breakpoints.

Used to enter event pat terns for the EMS
recognition resources.

Used to substi tute EMS mappable memory in
place of target memory.

Used to examine and edit memory, registers,
I/O; to display the trace results; to begin
emulation; to set software breakpoints; to
turn on and off the "watch" area; to upload
and download files to and ,from the host
computer; and to single/multiple step
through program execution.

Support Screens

Serves as a "dispatch" screen to allow the
user to change from one screen to another.

Provides a helpful reminder of some system
wide EMS command characters that are not
provided by the menu line.

4-1

4.1.1 Selecting Screens

The user can move between screens at any time by typing the "(TAB>" key to
enter the Change screen, followed by the capitalized letter of the screen to
be entered.

Example: To enter the Configuration screen from any user screen, type
"(TAB> cn.

4.1.2 Cursor Manipulation

As each main screen is displayed, the cursor moves automatically to the first
modifiable field on the screen. The cursor can be moved only to user
modi fiable fields. The modifiable fields consist of numbers or key words
selected from a menu line. The keywords have a single letter capitalized
that identifies the option. fields that consist of only capital letters are
not modifiable. "All Caps" fields are used to clarify the user display and to
visually locate option fields. The Right, Left, Up, and ·Down arrows move the
cursor to the next user-modifiable field.

4.1.3 Menu facility

When the user enters a field, a list of available options is displayed on the
Menu line.

Example: If the cursor is positioned to the EXT 2 option field of the
Allocation screen, the options available for that field (displayed
on the bottom line of the screen) look like this:

Probe 2 Glitch Cpu

The user can then enter anyone of the capitalized letters from the menu line
(P, G, or C) to select the desired option. The menu line also contains status
information indicating break conditions and macro status. In most cases con
flicts between menu selections are impossible. If EMS detects a menu
selection conflict (such as deselecting a resource with its Pass Count still
enabled) this condition is displayed on the menu line. A carriage return
clears the error condition and re-prompts the user for another menu selection.

4.1.4 Rules for Entering Data in a field

There are two types of fields: multiple-choice Option fields, and Data fields
in which a number or other string of characters (such as a filename) can be
entered.

4-2

c

4.1.4.1 Option Fields

Options are selected by typing the single letter associated with an option,
or by scrolling through the available options with the space bar. The
available options are displayed jn the menu ljne •

.
4.1.4.2 Data Fields

1. Addresses, data, and other strings are simply typed in data fields. A
prompt in the menu line describes the type of data expected.

2. Characters entered into variable fields can be deleted with ASCII DEL.

3. A "<CTRl> U" removes a new entry and restores the previous value in a
field.

4.1.4.3 Special Rules for Pattern Screen Data Entry

Masking Address and Data Bits

All numbers can contain an "X" for binary or hexadecimal digits that signify
"don't care" values in those positions. Binary "don't care" digits can be
expressed in a nibble of binary digits enclosed in parentheses. This nibble
can be used as a hex digit. for example, 7f{ 1X01)3XD represents a valid
number for a Pattern screen address or data entry.

When entering addresses or CPU data, the user can optionally enter a second
number separated by an "&" (ampersand). The "&" symbol is used to specify a
mask of bits to be used in the comparison.

Selecting Comparison Mode

Comparisons must be specified for address, data, and external fields on the
Pattern screen. An address, data, or External field can be blanked out by
setting the comparison field to ,,_It.

The comparison operators are:

• = (equal to)
• I (not equal to)
• < (less than or equal to)
• > (greater than or equal to)

Note

for descriptions of the functions allocatable via the
Allocation screen and their associated rules, refer to
Section 4.3. for descriptions of the functions and
Resource patterns defined via the Pattern screen (and
their associated rules) refer to Section 4.4.

4-3

4.1.5 Using Control Keys for Starting, Stopping, Met Stepping

One of the primary functions of EMS 8000 is to switch a CPU between a mode in
which it is "emulating" or "ruMing, If (Le. f executing the user program and
actin'g like a Z8000 CPU), and a mode in which it is suspended q.e., "break"
state). The latter mode allows EMS access to target registers, memory, and
I/O. A system status indicator at the lower right-hand corner of the screen
shows the current mode at all times.

Three keys can be used to control these modes at all times in all modes of all
screens:

(CTRL> G

(CTRL> C

(CTRL> X

(Go) is used to start emulation, using all of the current
register values including the PC. Emulation continues until a
breakpoint or memory violation occurs, or until "(CTRL> C" is
typed. After "(CTRL> G", the system status indicator shows
"Running".

(Cancel) is
immediately~
"User Break".

used to stop emulation, unconditionally and
After "(CTRL> C", the system status indicator shows

If emulation breaks for some other reason, the terminal will
beep, and the reason (IiTrig Break", "Write Viol", "Mem Viol")
is displayed by the system status indicator.

(Execute single instruction) executes one instruction from the
current PC. The message "Trig Break" is then displayed by the
system status indicator.

When the system is "Running," the user can:

• Switch freely between screens.

• Change options, such as enabling or disabling control signals, on the
Configuration screen (the effect is immediate).

• Options can be selected on the Debug and Map screens.

However, Data fields may not be filled in, and commands may not be executed.
To regain control, typing "(CTRL> CIt stops emulation.

4.2 CONFIGURATION SCREEN

The Configuration screen is entered by typing "(TAB> C" from any screen. The
user can move the cursor to any user-modi fiable field on the screen by
pressing the arrow keys on the terminal. To modify a field on the screen, the
user enters the first letter of one of the available options, or a number. The
space bar key also scrolls through the available options for a particular
option field.

I(' .
.-,.

c

Example: When the Configuration screen is first entered, the cursor is
positioned on the RESET field on the screen and the Menu line
reads:

Enabled Disabled

The user can enable or disable the CPU Reset input by entering "E"
for enable, or "0" for disable.

4.2.1 Configuration Screen Fields

The following fields on the Configuration screen display EMS status and allow
the user to select default conditions for the EMS 8000.

4.2.1.1 CPU Type Field

EMS currently supports the Z8001, Z8002, or Z8003 microprocessors. EMS can
automatically sense which processor pod is connected to EMS.

4.2.1.2 CPU Signals Fields

EMS allows the user to selectively enable or disable individual Z8000 control
signals from the target. These CPU control signals are listed in Table 4-2.

Table 4-2. CPU Control Signals

Signals Description

RESET
BUSRQ
WAIT
STOP
NMI
NVI
VI
SEGT
ABORT

4.2.1.3 Break Fields

Reset
Bus Request
Wait
Stop
Nonmaskable Interrupt
Nonvectored Interrupt
Vectored Interrupt
Segment Trap (Z8001 or Z8003 only)
Instruction Abort (Z8003 only)

The BREAK fields control whether or not an emulation break occurs in case of
a memory write-protect violation or mode violation (see Table 4.3).

Table 4-3. BREAK Fields, Configuration Screen

labels

BREAK ON WRlTE
PROTECT VIOLATION

BREAK O~{ MEMORY
ACCESS VIOLATION

Description

If Yes, a write-protect violation will cause a
Breakpoint.

If Yes, access to memory mapped as nonexistent
or incorrect access to memory protected as code
or data will cause a break.

Memory access violations occur whenever a protected memory area is invalidly
accessed, such as a data access to memory mapped as code protected when the
code and data spaces are not configured as separate.

4.2.1.4 Memory Fields

The Memory fields are used to enter Wai t states for systems that require
longer memory access time. Each Wait state inserts one additional CPU clock
cycle into the memory access. The user can enter up to seven Wait states for
mappable memory accesses or user memory accesses. This field is useful when
using External Probes for physical address substitution. If physical
addresses are being used in the EMS system and mappable memory is required, at
least one mapped access Wait state is required. Two l8001 segments can be
mapped to internal EMS memory. The EMS standard configuration comes with 32
blocks of 2K byte resolution. If an optional 'Mappable Memory board is
ordered, the number of available mappable,memory blocks is increased to 63.

The EMS can also be configured to allow separate System and Normal and
separate Code and Data memories. Data and Stack memory can not be separated.

4.2.1.5 Address Fields

Logical

Physical

Selects logical addresses for Trace and Mapped Memory.

Selects physical addresses for Trace and Mapped Memory.
(Physical addresses require the External Probe option.)

These fields of the Configuration screen are used to specify whether logical
addressing or physical addressing is used as the address field for the
trigger, trace, and memory mapper. Logical addressing is the default mode.
Logical addressing means that the address from the CPU is used for the address
fields automatically. Physical addressing can be used if an optional Probe
Interface module is installed. The user connects these external probes to the
output of the target MMU. EMS then substi tules these physical addresses for
the CPU logical addresses. The probes should be connected (see Section 2.4.5)
through the EMS fron·t panel into the PHYS ADOR HI and PHYS AOOR LOW
connectors. PHYS AOOR HI replaces the segment number (eight bits instead of
seven) and PHYS AOOR LO replaces the upper byte of the 16-bit offset. The
lower eight bits of the address are always supplied by the CPU.

4-6

c
4.2.1.6 Internal Operation and Refresh Cycles Field

The options are as follows:

Ignored

Traced

Causes internal CPU cycles and refresh cycles NOT to be
recognized for triggering or tracing. This is the default
mode, which causes only cycles relevant to the executing
program to be traced, and uses the trace capacity
effectively.

Trace internal CPU cycles and refresh cycles if they meet the
other trace qualifications. This mode can be useful for
initial hardware checkout, familiarization with the zaooo
CPU, or verification of refresh frequency.

4.2.1.7 Group Break Field

The Group Break is an option that can be enabled or disabled. If the Group
Break is enabled then EMS starts and stops emulation together with any other
EMS which also has its Group Break enabled. The EMS units are connected in a
daisy chain via cables and 25-pin 0 connectors on the rear panel.

4.2.1.8 Mode Field

The Mode field allows the user to switch between an Emulator mode and an
Analyzer mode. The Emulator mode causes EMS to act as a normal emulation
system in which the CPU stops execution when breaks or user halt is issued.
The Analyzer mode allows the CPU to continue running after the initial start
of emulation and a break. This pseudo-halted state allows the user to examine
trace history and change EMS setup while the emulated target is still
running. This is useful in systems in which a shutdown in CPU functions is
not desirable. A switch back from Analyzer to Emulator mode while EMS status
is not "running" causes a halt to the zaooo CPU. While in Analyzer mode,
starting emulation and breaking from it results in associating trace resources
to and away from the CPU. While in Analyzer mode, and with the status not
"running," CPU registers are not available for viewing.

4.2.1.9 Clock Frequency Field

The Clock Frequency field displays the clock frequency of the target system.
This is measured during the initialization of EMS and can be used by EMS to
display timing results in ~sec instead of T states at the user option.

4.3 AlLOCATION SCREEN

The Allocation screen is entered by typing "<TAB)" for the Change screen and
then "A" from any screen. The Allocation screen is used to allocate EMS
resources by assigning them to specific actions. Once the Allocation screen

4-7

has been set up, the user programs the resource match patterns by changing to
the Pattern screen. The various modes ~f operation (Break/Trace mode, Timer
mode, and Counter mode) are discussed below. The Allocation screen allocates
the resources but they must be "activated" in the Pattern screen before they
have an effect.

The Allocation screen is preset to a useful default that allows first-time
users to skip the Allocation screen and to use the Pattern screen directly.
This default allows trace qualification, trace triggering, a hardware
breakpoint, and up to 16 instruction breakpoints. It is recommended that the
user become familiar with the default Pattern screen and basic EMS
capabili ties before using the Allocation screen.

The Allocation screen must be used to select the following EMS features:
performance evaluation modes (timer and event counter); trigger or qualifier
enable/disable; ~Ring of resources; separate trace trigger and hardware
breakpoint; alternate probe modes (glitches, CPU inputs, linked probes).

4.3.1 Mode Field

The Mode field is located at the top left of the Allocation screen and allows
the user to select one of three modes: Break/Trace, Counter, or Timer mode.
The first'time that the Allocation screen is entered, the default value for
the Mode field is "Break/Trace mode." Each successive time that the
Allocation screen is entered, the Mode field indicates the mode that is
presently selected. Table 4-4 lists the Mode selections for the Allocation
screen. The Allocation screen can be reset to. the default value or cleared of
all settings by entering n<CTRL) Z" followed by lid" for default or "0" for
clearing.

4-8

Table 4-4. Mode Selections, Allocation Screen

Mode

Break/Trace mode

Timer mode

Counter mode

Description

Used to allocate instruction breakpoints (using
Resource B), trace triggers, hardware breakpoint,
trace qualification, and pass counting.

Used for performance evaluation. Timer mode allows
the user to determine the execution time between two
events. Any of the three Resources (A, B, or C) can
be used for the start and end points. Ei ther the
start or end point can be qualified by Enable/
Disable. The execution times can be recorded in the
trace memory. Emulation can be halted if the
execution time exceeds a specified value. Time can be
counted in T states, machine cycles (based on Address
Strobe), or microseconds.

Used for performance evaluation. Counter mode allows
the user to count the number of events from Enable to
Disable. Either Resource A or B can be counted. In
this mode, the Enable sequence is always the Start
Event and the Disable sequence is always the Finish
Event.

4.3.2 Resources and Actions

The basic architecture of EMS consists of several resources that can be
assigned to specific debugging actions via the Allocation screen. The basic
resources are listed with their attributes in Table 4-5.

Table "-5. Resources and Their Associated Attributes

Resource Attributes

A

B

C

Enable/Disable

Up to five patterns (bus patterns) deep; Address Ranging.

One cycle deep; can be allocated for software
breakpoints.

Up to eight patterns deep; If Resource C is selected as a
sequence event, Enable/Disable cannot be selected.

Used as a "window" to quali fy Resource A or Resource B.
Can be defined as "Enable only," or "Disable only."

4-9

The resources described in Table 4-5 can be configured to perform the
following actions:

Trace quali fier

Trace Trigger

Breakpoint

Instruction
Breakpoint

rilters what gets recorded in the trace memory. The
default is "trace everything" (including internal and
refresh cycles if tracing on internal and refresh cycles
option is selected on the Configuration screen).

The event before, after, or around which each snapshot
(partition) of cycles is recorded.

Stops emulation either immediately or after a specified
number of trace triggers.

Stops emulation on instruction fetch at speci fied
locations. Up to sixteen such locations can be
speci fied. This action can be allqcated by Resource a
only, and can only be implemented with RAM tar'get memory
or mapped memory.

Refer to Section 4.3.3 for the specific rules that apply to configuring
resources and actions via the Allocation screen.

4.3.3 Rules for Assigning Resources to Actions

Each resource can be associated with an action, but certain rules must be
followed. In most cases, these rules are enforced by restrictions in cursor
movement. The cursor can only be moved to places where options are available
wi thout "breaking the rules." These places are identi fied on the screen by
the symbol It_" (which acts as a place holder). In a few cases, violations of
the rules cause an error message to appear on the bot tom line in reverse
video. When an error occurs, type "<RETURN>" to return to the conflicting
field and resolve the ·conflict. Usually an error is caused by the user
attempting to create a configuration that cannot exist (e.g., removing a
resource with pass counting still assigned).

1. Once a Resource (A, a, C, or Enable/Disable) is configured to perform a
specified action, it cannot be used for another action. This rule is
enforced by restricting cursor movement after each resource is assigned.
Only one entry can appear in any column on the Allocation screen. The
user can reassign a selected resource prior to leaving the Allocation
screen, as long as the reassignment adheres to the rules. A resource can
usually be reassigned by positioning the cursor to the currently-assigned
location and typing the character It_" (or hitting the space bar). The
cursor is then moved to the new location and the resource identi fier
(e.g., "A" for Resource A) or the spacebar is typed (hitting the space bar
toggles the resource from active to inactive).

2. Only Resource B can be associated with instruction breakpoint.

3. Resource C can be a sequence event or Enable/Disable (but not both) and
can be configured for any of the actions. Refer to rules 4 and 5 (below)
for further information on the Enable/Disable event.

4-10

4. Enable or Disable can be used as a trace qualifier, causing the titles
"trace enable" and "trace disable" to be displayed on the Pattern screen.
If Enable/Disable is the only resource configured to trace qualification
then all cycles are traced after the Enable sequence and before the
Disable sequence. If either Resource A or Resource B is used as a trace
qualifier, and Enable or Disable is selected, only qualified cycles after
Enable and before Disable are traced.

5. Enable or Disable can also be used to qualify Resource A or B when they
are configured as a trace trigger, breakpoint, timer start event, or timer
finish event. In any of these cases, either Resource A or B must be
selected in order for Enable or Disable to be selected. Likewise, Enable
or Disable must be deselected before Resource A or Resource B can be
deselected.

4.3.4 Pass Counting

Pass counting is a feature that is available only in Break/Trace mode. Pass
counting allows the user to speci fy the number of occurrences (for example of
Resource A) before the associated action takes place. When pass counting is
selected, the Allocation screen changes to include parentheses around the
events that can be pass counted.

4.3.4.1 General Rules for Selecting Pass Counting

The following rules apply to the use of the Pass Count option:

1. The Pass Count option is available in Break/Trace mode only.

2. Pass counting must be enabled before it can be applied to the actions.
Pass counting is enabled by entering "Y" (for Yes) in the Pass Count
field. Pass counting is disabled by entering "N" (for No) in the Pass
Count field.

3. Only trace triggers and breakpoints can be pass counted. Trace qualifiers
cannot be pass counted.

4. Pass counting for Resource A, B, or C is indicated by entering an "n" in
the field next to the selected Resource, whereas pass counting for Enable
(when Resource C is used as an enable/disable instead of a sequence event)
is indicated by entering "mil next to the Enable field. Only one pass
count symbol "n" and one enable pass count symbol "m" can be entered per
screen.

5. The user can pass count part of a complex resource by entering un" inside
the parentheses (next to the pass-counted resource), or the user can pass
count all of a complex Resource by entering "n" outside the parentheses.
If Enable/Disable is selected, the Enable portion of this Resource can be
pass counted by entering "mil next to the Enable Resource. The values for
nn" and tim" can be different.

4-11

6. The value of "n" or "m" is programmed on the Pattern screen. If a value
of zero or one is programmed for "n" or "m", no pass count occurs. Only
values of two or more cause pass counting to occur.

EX8lllples:

BREAKPOINT (nA or B)

This example means that "n" occurrences of Resource A or 1 occurrence of
Resource B will cause the emulation to break. The value of "n" and the
patterns that comprise Resource A and Resource B are programmed on the
Pattern screen.

TRACE TRIGGER n (A or B)

This example means that "n" occurrences of either Resource A or Bare
required to trigger the trace once. The values of "n", Resource A and
Resource B are programmed on the Programming screen.

TRACE TRIGGER (A or nB) after m Enable before Disable

This example means that the trace trigger occurs after the "m"th time
that the Enable pattern happened when either Resource A's pattern
occurred or the "n" occurrence of Resource B's pattern and the disable
pattern had not yet occurred.

4.3.5 Timer ~de

The Timer mode option,which can be selected via the Allocation screen, is
very Similar to Break/Trace mode. In Timer mode, EMS records the amount of
time from the start resource to the finish resource. The start and finish
resource can be either Resource A, Resource a, or Enable and Disable. If the
start resource occurs again after the finish resource, a new interval is
begun, the count is reset to zero, and sequence begins again.

The Timer mode can be set to cause a break if the count exceeds a certain
value or it can be set to halt after a number of finished events.

4.3.6 Counter Mode

The Counter mode option, which is also selectable via the Allocation screen,
is used to count the number of occurrences of Resource A or B after Enable and
before Disable. If Enable occurs again after Disable, then a new interval
begins and the count is reset to zero.

The counter can also halt emulation of the count exceeds a value or upon
completion of a number of Disable events.

4-12

(
4.4 PATTERN SCREEN

The Pattern screen is used to enter the desired patterns for each of the
resources that were assigned on the Allocation screen. The Pattern screen is
dynamically created by the allocating of resources to actions on the
Allocation screen.

The Pattern screen is generally laid out as shown:

ACTION

PATTERN
DESCRIPTIONS

ACTION

PATTERN
DESCRIPTIONS

TRACE/BREAK CONTROL
PARAMETERS

The majority of the screen (i.e., starting from the top), is used to specify
pattern descriptions consisting of the address, data, status, and external
patterns of the events to be recognized with the pass counter. The remainder
of the screen (i.e., lower/bottom portion) contains fields that contain trace
information, such as breaking control snapshot size, and the number of
snapshots to be traced.

Only actions with resources allocated on the Allocation screen are shown on
the Pattern screen, in the same order as the Allocation screen. If Enable or
Disable is used to restrict a resource to a particular time window, that
resource is displayed on the screen between Enable and Disable, because it
must occur in time between Enable and Disable.

If emulation is begun after the Pattern screen is programmed, then tracking of
pattern matching is shown by an arrow that indicates which pattern is being
looked for. The number of the pass count completed and traced cycle counts is
also displayed so the user can know at any time how much of the pattern and/or
pass-count has been completed. Generally, the occurrences can complete and
halt emulation before the Pattern screen is updated, even the first time, but
this feature allows the user to know where in the pattern the events were
completad if the completion is not accomplished.

4-13

------------------------.---.------
[P] [l] ADDRESS 1 [l] ADDRESS 2 [l] DATA CYC CdRwBwSn [l] EXT 1 [l]EXT 2

---~---~---------------------------------.------------------~----------------

Pattern Descriptions

Each pattern consists of one line on the screen. The line consists of an
Enable field for the whole line (when disabled, the remainder of the line is
blanked), followed by Enable/logical fields for each of the Address, Data,
Status, and External Probe Trace fields. Once the pattern line has been
enabled, each of the Address Data or Ext fields can be programmed by entering
one of the logical characters (= equal, I not equal, > greater than, or < less
than) and then entering the value to be recognized in the following fields.
The cycle status (ST3-STO value can be specified by entering the CPU status
mnemonic as shown at the bottom of the screen when in the field or by entering
the binary value with the option of "X" being a "don't care." The remaining
status is specified using the letter of the desired state. In all cases,
leaving a field with a "_" results in Itdon'tcarelt •

•••• 1 Pattern Enable Field

The Pattern Enable field for each line of a resource is located in the left
position in the pattern line. The Pattern Enable field is always visible as
either a It-It (not used) or as a "*It (enabled). This field enables and
disables. the entire row for each pattern. This field allows the Pattern
screen to be "clutter free" and also allows the EMS monitor to determine how
many of the available patterns in each resource are actually being used. A
pattern (row) is enabled by positioning the cursor to the left field and
typing the character "*It. If a pattern is enabled, modi fled, and later
disabled (by positioning the cursor to the pattern enable field and typing It_"
to disable), the information entered in this pattern "reappears" if this
pattern is ever re-enabled. This feature allows the user to specify several
patterns in the same resource and to enable only those that are needed. EMS
monitor software automatically "packslt all visible pattern entries for a
resource, even though some patterns in the sequence are not used. (Each
enabled line will be examined in sequence and disabled lines will be
ignored). For example, this allows the second, fourth, and seventh event of
Resource C to respond as the first, second, and third occurrence of a match.

4.4.2 Logical Fields

The logical fields (shown as "[l]It above) are used to control the relation of
the Address, Data, and Ext Probe fields. The logical fields are invoked by
positioning the cursor on the desired logical field and selecting a logical
operation from the menu line. If the logical operator field is blanked (by
selecting It_"), then the corresponding entry field is also blanked and its
value is interpreted by EMS as "don't care." Re-enabling the field by
entering one of the logical characters redisplays the field with its previous
value restored.

4-14

(

c

4.4.3 ADDRESS 1

To use a trigger resource to monitor the Address bus, the Address fields are
used. Resource A, wherever allocated, has two address fields: ADDRESS 1 and
ADDRESS 2. .-Resources Band C use only ADDRESS 2. Data is entered in both
ADDRESS 1 and ADDRESS 2 in the same way.

Values for ADDRESS can be entered as a 6-digi t hexadecimal number "sshhhh",
which combines both the optional segment number and the address ·offset. "Don't
care" hexadecimal digits can be entered as "X".

Examples: BC6CXD, 4021, 23, XXXXXX

The first entry, BC6CXD, sets the segment number toBC and the offset to
6CXD; X is a "don't care" hex digit.

The second entry, 4021, sets the offset to 4021; the previous segment
number is unchanged.

The third entry, 23, sets the offset to 0023; the previous segment number
is unchanged.

The fourth entry clears the address field.

Entry for the Z8002 is the same as ZB001 except that only the four digit
offset is used because there is no segment associated with the Z8002.

Values can also be entered as a hexadecimal number with one or more digits
specified in binary and one or more digits specified as "don't care" bits.
Only 13 characters are allowed in the address field, which means that no more
than two hexadecimal characters can be expressed in binary.

Examples: (110X)D(10XO), (1X01)BFD07

The first entry, (110X)D(10XO), sets the offset to any of OCDB, OCDA,
ODDB, or ODDA (due to the two "don't care" bits) • This pattern is
displayed as OOOCDB&OOFEFD (see mask examples below).

The second entry, (1X01)BFD07, sets the segment number to either 9B or DB
and the offset to FD07.

Values can also be entered as a hexadecimal address with a hexadecimal mask
field "sshhhh&mmmmmm" (0 bits in the Hex Mask field correspond to "don't care"
and 15 correspond to "ON" or a "must match").

4-15

Example: 4C44IDf[S

This example sets the offset to 01XO 1100 010X X1XO. This value is
calculated as follows: F'irst set all "don't care" bits to "0". This
yields 4C44 as the Hex portion of the entry. Then compute the mask field
as "0" for "don't care" bits. This yields OrE5 as the mask field. The
.segment; number is unchanged and this entry is displayed as SS4C44&ffOfE5
where SS is the previous segment number.

4.4.4 Using Two Addresses

ADDRESS 2 is similar to ADDRESS 1 and is available for Resource A, Resource B,
and Resource C. When ADDRESS 2 is used with ADDRESS 1 for Resource A, an
additional field appears between the two addresses. This field is initially
set to "&" (logical AND) to allow address ranging (i .e. greater than ADDRESS
1 & less than ADDRESS 2). The field can be changed to "t" (logical OR) by
positioning the cursor over the "&" and selecting "I" from the menu line or by
hitting the space bar. The OR "I" function can be used for an "out-of-range"
comparison (less than ADDRESS 1 OR greater than ADDRESS 2). It can also be
used simply to OR two addresses (equal to 4016 OR equal to 4024, for example).

4.4.5 Oatarields

The rules for entering Data fields are similar to Address fields, except that
Data fields are 16 bits wide instead of 23 for the address.

4.4.6 eye
Cycle entries ("CYe" on the Pattern screen) can be any of the following:

• <SPACE>

• Symbolic entry from
menu line

• A binary (optionally
masked) value

Results in "don't care" entry

Results in zaooo status

Results in one or more
zaooo status conditions.

4.4.7 Status Lines (Cd Rw Bw Sn)

A pattern entry may require a cycle to be a CPU cycle or a DMA cycle (C/O).
Other status lines consist of Read/Write (R/W), Byte/Word (B/W), and
Normal/System (N/S). The menu line prompts the user for the first character
of the desired status. As an example, R in the R/W field selects "Read".
Using the fI_" for any of the status lines indicates "don't care" for that
particular status line.

4-16

.~---.---

C=' 4.4.8 External Probes (EXT 1 and EXT 2)

The EXT 1 and EXT 2 fields are binary fields that specify the External Probe
inputs for each pattern. The first option field at the far left of the pattern
line must be enabled (indicated by the character "*") for the External Probe
fields to be available. The External Probe fields consist of 16 individual
bits that can be programmed to "1", "0", or "X" (don't care). for External
Probes, each probe is treated as a separate field. The cursor automatically
advances to the next bit after a new bit has been typed in. When the External
Probe field is modified, new binary digits overwrite old values from left to
right. The Ext 1 field always corresponds to the eight bits of Probe 1. The
Ext 2 field can be configured on the Allocation screen to perform the
functions shown in the following section.

4.4.8.1 Various Uses of EXT 1

Probe 2:

Glitches:

EXT 1 and EXT 2 are two separate a-bit External Probes. Each
External Probe field has a logical field (=; I, <, » associated
with it. All bits (except "don't care" bits) must match for the
External Probes portion of the pattern to be true. (Bit 0 is to
the far right.) Probe 2 has a subfield associated with it
("Linked") which allows EXT 1 and EXT 2 to be linked together as
one 16-bit External Probe. The logical field associated with
EXT 2 on the Pattern screen disappears when this option is
used. All bits (except "don't care" bits) must match for the
External Probes portion of the pattern to be true.

EXT 1 remains an B-bit probe. EXT 2 performs glitch detection
for EXT 1. A glitch is defined as more than one transition
between sample times. If a 1 is entered in bit "n" of EXT 2
then a glitch on bit "n" of EXT 1 causes this bit to be true.
All bits (except "don't care bits) must match for the external
probes portion of the pattern to be true. If a "0" is entered
in bit "n" of EXT 2, then "no glitch" on bit "n" of EXT 1 causes
this bit to be true. If an "X" is entered in bit "n", then this
bit is ignored. Bits are checked by EMS on the rising edge of
Data Strobe, but only on those cycles that are traced. The
cycles that are traced are determined by the particular default
selections on the Configuration screen and by the trace
qualifier (if allocated) on the Pattern screen. When viewing
the EXT 1 and EXT 2 displays, the digit in the far-right
position of each field represents bit o.

4-17

CPU: EXT 1 is an 8-bi t probe. _EXT ~ is inte'AEtV? connecte!!,. to -the
eight CPU signals (NMI, NVI, VI, SEGT, 0 1, SfOl5, MI, MO).
If a "1" is programmed in bit "n" of EXT 2, then this bit will
be true if the corresponding CPU signal is active. for example,
if a "1" is programmed into bit 8 of EXT 2 (the far left bit of
EXT 2) then this bit will be true if NMI is active (Low) on the
rising edge of data strobe of any cycle. Cycles traced are
determined by the particular defaults listed on the
Configuration screen and the by the trace quall fier (i f
allocated) on the Pattern screen. If a "0" is entered in bit
posi tion "n" , then this bit will be true if the signal is
inacti ve on the rising edge of data strobe of a traceable
cycle. Entering an "X" in bit "n" means "don't care" for this
bit. All bits in EXT 2 must match for the EXT 2 portion of the
External Probes to be true.

4.4.9 No Time limit

Under normal conditions, Resource A causes an action to occur after all
patterns in Resource A have been recognized. In this case there is no time
limit for the resource to go true. The Pattern screen provides a field (No
time limit/Sequence must occur within n cycles) to require Resource A to be
recognized within "n" cycles or the entire Resource is reset to look for the
first pattern again. The value of "n" can be from 0-255 and is entered in
decimal. The sequence restarts automatically if the "n" cycles occur before
the sequence of patterns is completed. This feature is particularly useful to
trace or trigger on a multiple cycl.e instruction with specific data
transfers. A "0" entry for "nit also indicates that there is no time limit.
The time limi t feature is useful with two or more pal terns and with "n"
greater than or equal to the number of patterns in the sequence.

4.4.10 Programming the Snapshot Setup (Break/Trace mode only)

The last line of the Pattern screen is the menu line. The three lines above
the menu line allow the user to program features associated with the trace
snapshot. The top line in the trace snapshot area allows the user to position
the trigger within the trace much like a logic analyzer that allows pre-,
post- and center- triggering.

The default setting for these fields causes the trace trigger to act exactly
like a breakpoint--execution breaks immediately at the end of the current
instruction. "End SNAPSHOT 0 CYCLES after TRIGGER - BREAK after 1 snapshot."

1Applicable to Z8003; no connection for ZB001 and Z8002.

. 4-18

I(e,
"

Possible examples include the following:

EX8llllples:

1. Start SNAPSHOT 10 QUAlIFIm CYCLES Before TRIGGER

This is allowed if [decimal number] is less than the snapshot size.

2. Start SNAPSHOT 10 QUAlIFIm CYClES After TRIGGER

This is allowed if [decimal number] is less than (64512 - snapshot
size) •

J. End SNAPSHOT 10 QUAlIFIED CYCLES Before TRIGGER

This is not allowed.
message.

This option selection produces an error

4. End SNAPSHOT 10 QUALIFIED CYCLES After TRIGGER

This is allowed if [decimal number] is less than 64512.

This specification is a recommendation to the trace hardware. Complete
instructions are always traced, and usually result in extra cycles overwriting
the beginning. "Start SNAPSHOT 20 CYCLES Before TRIGGER" is safer for a
post-trigger trace than "Start SNAPSHOT 0 CYCLES After TRIGGER", because it
gives a "cushion" to the trace and prevents the trace activity at the end of
the snapshot from overwriting the beginning. This preserves the trace
information around the trigger.

To center the trigger in snapshots of size 512 qualified cycles:

1. Select option "b" in the field "II of snapshots:"

2. Select format number 1 above with [decimal number] = 256
or select format number 4 above with [decimal number] = 256

The second line in the trace snapshot area allows the user to position the
breakpoint in the selected number of snapshots (much as the trigger was
postioned inside the snapshot). If a trigger and breakpoint are configured to
resources, the second line in the trace snapshot area allows the following
possible entries:

4-19

Exaaples:

1. BREAK DISABlED

Always available •

. 2. BRE" ~ breakpoint

Available if a breakpoint has been configured. Causes an immediate
break, regardless of snapshots or cycles traced.

,. BREAK ArTER 15 Snapshots

Available if a trigger has been configured. Breaks after the 15th
snapshot is complete.

4. BREAK AFTER 15 Snapshots or On breakpoint

Available if a breakpoint and a trigger have both been configured.
Breaks after the 15th snapshot is complete, or immediately when a
breakpoint occurs.

5. BREAK 15 Snapshots After breakpoint

Available if a breakpoint and a trigger have both been configured,
and instruction breakpoints are not used. When the breakpoint
occurs, a count of 15 snapshots begins; execution breaks when the
last snapshot is complete.

6. BREAK DISABlED

Always available.

The last line in the trace snapshot area allows the user to program the number
of snapshots (partitions) in the trace memory. The Trace memory is 1024
entries long and can be partitioned in anyone of the following ways:

a. 1 partition of size 1024
b. 2 partitions of size 512
c. 4 partitions of size 256
d. 8 partitions of size 128
e. 16 partitions of size 64
f. 32 partitions of size 32
g. 64 parti tions of size 16
h. 128 partitions of size B
i. 256 partitions of size 4

(Partitioning is accomplished by entering the letter corresponding to the
snapshot size.)

4-20

.,1' .

. "",-.

r(

4.4.10.1 Ti.er Control field (TiMer .ode only)

Cycles Earliest
COUNT Usecs FROM START EVENT TO FINISH EVENT

T-states Latest

The first field on this line controls whether machine cycles (based on Address
Strobe) are counted, or whether T-states (CPU clock) are counted. If "Jlsec"
is selected, the number of T-states counted is converted to JiSecs by using the
measured clock frequency. If the clock frequency varies, this number will be
wrong.

The second field allows the count to be reset to 0 every time a start event
occurs. "COUNT FROM Earliest START" means that the count is reset only the
first time; "COUNT FROM Latest START" causes the count to be reset on every
Start Event.

Time Stamping/Tracing Option (Timer and Counter modes only)

TRACE ALL Counts
TRACE ALL Cycles

If "TRACE ALL Cycles" is selected, the finish event acts as a trace trigger.
The trace will contain the last 1024 cycles of the last traced count
interval. If "TRACE ALL Counts" (time stamping) is selected, the count for
each interval will be traced along with each finish event.

(' Break option (Timer and Counter modes)

Disabled
BREAK if Count exceeds n

after n Finish events

The first option, Disabled, requires a "<CTRL) CIt to terminate emulation. The
second option, "if Count exceeds n", allows breaking if no break occurs before
n count. (n must be 65535 or less, and if specified in J'Sec, must correspond
to less than 65535 T states.) The third option allows specifying exactly the
number of count intervals before a break.

4.5 DEBUG SCREEN

The Debug screen allows the user to perform simple debugging operations.
Debug commands are entered with a single capital letter from the menu line.
Values entered in specific option fields "persist" (they are still there when
the Debug screen is reentered). The display area associated with memory
display or trace display (with the exception of the Watch area when active) is
scrollable with the up and down arrow keys. Scrolling is only active after a
command has been executed and by entering "<RETURN)"; scrolling remains active
until the current command is ed ted by entering another "<RETURN)". When
using the edit command, up and down arrows can be used to scroll through
locations. "Q" is used to terminate the edit command.

4-21

Note

The scroll able display area is increased from the normal
13 lines to a total of 22 lines by setting the Watch
command (area) to off.

When the cursor enters a field, that field is opened for modification. The
user can then enter a number into the field. Values are entered into a field
by typing the desired value. As characters are typed, the previously dis
played characters are overwritten. While the user is modifying a field, the
the previous value entered in this field can be restored by simply typing
"<CTRl> U" (for "Undo"). However, once the cursor leaves the field, the old
value is lost and cannot be recovered. The most-recently entered character
can be deleted with an "ASCII DEL". To abort any of the Debug commands, the
user can position the cursor at the first position in the line and enter
another command letter, or enter "<TAB)" to exit debug. An upload/download
can be aborted by typing "<BREAK>".

The following functions are performed on the "Debug screen":

1. Program up to 16 instruction breakpoints (software breakpoints)
2. Display target memory
3. Edit target resources (Memory, Registers; I/O, Special I/O)
4. Go (begin emulation) from current program PC or specified address.
5. Upload and download files from the host (including scripts)
6. Memory compare, fill, move
7. Step execution (single step or multiple step)
8. Display the Trace contents
9. Set up a Watch area to report on target resources after each break

The commands used to perform debug functions are explained and illustrated by
examples in the following sections.

4.5.1 Breakpoint

Breakpoints work by substituting a special NOP instruction at the specified
address. The Instruction Breakpoint (Breakpoint Set) must not be to ROM or
other target enforced write-protected areas. If an Instruction Breakpoint is
entered in a ROM address, the error message "Software Breakpoints Must be in
RAM, Enter <RETURN) to Continue" appears when the user attempts to begin emu
lation. This message appears for each breakpoint set in ROM. After each is
cleared, the emulation begins and such erroneous breakpoints are ignored.
Instruction breakpoints are also operable in EMS mapped memory. The user must
not set instruction breakpoints in the middle of multi-word instructions, as
these words may never be accessed by the zaooo as If1. The setting or
clearing of instruction breakpoints causes a display of the resulting
condition.

4-22

--_._-- --~-

!(..
\ -,-

('

Breakpoint [Display, Set, Clear]

Example: Breakpoint Display (displays instruction breakpoints which were
previously set with the "Breakpoint Set" command)

Example: Breakpoint Set K at 017FBD (sets instruction breakpoint labeled
"K" to 01 7FBD).

Example: Breakpoint Clear * (clears all instruction breakpoints)

4.5.2 Display

Display ~MORY FROM I [hex address]
RRA (hex add)
(hex add)(rn)
rrn (rn)
(hex add) (offset)

AS DIRECT }
Base Add
Indexed
base index
offset

{[Hex, ASCII, Octal, Binary, Decimal] [Word, Byt.e]}
[Instruction] [Segmented Nonsegmented]2

The display command offers various addressing modes as well as disassembled
mnemonics. The mnemonics match the Z8000 PLZ/ASM standard except for some
simplifying (for example, single brackets instead of double for segment
numbers).

Example: Display MEMORY FROM 7811F7 DIRECT AS Binary Byte

Example: Display MEMORY FROM 3D1SDS DIRECT AS Decimal Word

Note

The memory displayed as instructions can be scrolled
backwards as well as forward. However, the disassembler
can not determine multi-word instructions, and errors are
possible if the reverse scroll starts the new display in
the middle of a multiple-word instruction. In general, to
ensure correctness of instruction "SYNC"s, forward
scrolling from a known first-word of an instruction is
necessary. Scrolling into data areas also disassembles
into incorrect instructions.

4.S.1 Addressing Modes

Direct is the most commonly used default mode. Memory display simply begins
at the specified address.

The other forms perform an addition of two values. These forms can be useful
in scripts or debugging in which the stack, memory in relation to the PC, or
some data structure are automatically displayed after a break.

C 2Segmented/nonsegmented option appears only for Ze001 and Z80OJ.

4-23

Base Addr uses a register (pair) to sp.eci fy the segment and offset of the
baae address, and adds an optional constant.

Indexed adds an offset contained in a word register to the specified
(segmented) hex address.

Base Addr and Indexed are equivalent for the Za002.

Base Index adds the contents of a register (pair) used as a (segmented)
address to the contents of a word register used as an offset.

Offset adds a specified (segmented) address to a specified offset.

4.S.4 Edit

The Edit command options allow the user to edit memory, edit 1/0 or special
I/O, or edit registers. The fields associated with each of these options are
as foUows:

Edit [Memory] fROM [HexAddr] AS [Hex, ASCII, Binary, Oecimal,Octal]
[Byte,Word]

Edit Ufo, Special i/o] AS [Hex, ASCII, Binary, Decimal, Octal] [Byte, Word]

Edit [Registers] fROM [0-9, a-f, Pc, fcW, Nap Refr, pSap] IN t£x

The following gives an example for each of the Edit command options:

Example: "Edit Memory fROM 008000 AS Hex Word

Causes editing to begin at address aooo of Segment 00. Editing is
performed on words that are displayed and entered in hexadecimal.

Example: "Edit I/o AS Hex Byte

Causes I/O Editing mode to be entered. Editing is performed on a
byte basis with hexadecimal numbers.

Example: "Edit Register fROM fcW IN HEX"

Prompts the user with feW old value. The user can then type in a
new value in hexadecimal for the zeooo fCW (Flag Control Word).
Entering a new value gives a new prompt of the next register in
sequence until "0" (for quit) is typed.

Example: "Edit Special i/o AS Hex Byte"

Causes Special i/o Editing mode to be entered. Editing is performed
on a byte basis with hexadecimal numbers.

4-24

(

Edit Register and Edit Memory begin at the address speci fied in the command
line. The register name or memory address is displayed and the current data
in that register or memory location is displayed. At this point, the user can
enter a new value for the location. Whenever Byte is selected, an ASCII value
can be entered by typing "(CHAR)" (i.e., a quotation I18rk followed by the
desit-ed ASCII character). The value entered is stored when anyone of the
following keys is depressed: "up arrow", "down arrow", "(SPACE)''', "(RETURN)",
".", "I", "Q", "(TAB)", "(CTRL) G", "(CTRL) X", "(CTRL) T". To correct a
character, type "(DEL)" or "(RUB)". To restore an entry to the value
previously entered, type "<CTRL) UtI. Entering a "down arrow" or a "<RETURN)"
advances to the next location; entering a "." re-edits the same location,
allowing the user to check to see if target memory is responding. Entering an
"up arrow" goes to the previous location. Entering an "I" allows the user to
begin editing "at" a completely new location. The "I" key leaves the cursor at
the beginning of the next line where xhe next location to be edited is typed
in, followed by a space, "right arrow", or return. for Edit Register, the "I"
is followed by the letter that identifies the register as prompted in the menu
line.

Entering a "Q" returns to the Debug command line. "(TAB)" and "(CTRL> T"
switch screens or enter Transparent mode as usual, ending the edit session.
"<CTRL> Gil and "(CTRL) X" start and stop emulation as usual, and also end the
Edit session.

In Edit, a series of values can be entered on one line. These values must be
separated by spaces, ending with a return or "down arrow." Each value
separated by spaces is entered in the next sequential location.

In addition, a looping read can be started by entering "L" after the address
is shown. A looping write can be started by entering a value, then an "L".
This causes a tight, repetitive read or write of the same location to ease the
examination by oscilloscope. The process is ended by a "<CTRL) CIt.

Edit I/O and Special I/O are like Edit Memory in most respects. There are five
major differences:

• The initial !/Oaddress is entered at the beginning of the' scroll area of
Edit, instead of on the command line.

• Ports are read by typing "R" in the data field instead of entering a
value. Ports are not automatically read before writing. Reading a port
must be explicitly requested.

• Writing to a port is accomplished by entering a value or series of values
followed by (RETURN). Thus the writing can be performed without a read.

• Typing "<RETURN)" is like typing "I" rather than "down arrow". Most
I/O Editing requires random addresses.

• ft(SPACE)" does not increment the port address when entering values in the
data field. Entering a series of values causes them all to be written to
the same port.

4-25

4.5.5 Go

Go rROM [hex address]

The Go command is used instead of <CTRL> G when emulation is to start from the
same PC esch time. <CTRL> G continues from the current PC; "Go" uses the
address given. Like <CTRL> G, emulation continues until one of the following
conditions occurs: breakpoint, improper memory access, ora <CTRL> C user
break.

4.5.6 Host

The host commands are used to transfer loadable binary files on the host to
and from target memory space. They can also be used to load and save scripts
(see Section 4.7.1 for keystroke sequences) to and from the host.

Host [Load] [Memory,5cript] FROM rILE [filename] [5eg No] ['IdA]

Seg No and "d" are optional entries for the MCZ hosts to allow the filename to
be loaded into a particular segment or data memory since this host does not
directly contain segment or memory type information.

Host [Save] [Memory, Script] TO rILE [filename]

EXBlllple: Host Load Memory fROM fILE RAM. BIN (load binary file RAM.BIN)

Example: Host Load Script from file B.Script (download script B into
EMS from host computer)

Example: Host Save Script to file All.Scripts (upload all scripts to
host computer under filename AII.Scripts)

Any host load or save can be manually aborted by typing "<BREAK>". If this is
done or if a transmission error causes an abort, sync will be lost and the
host program will probably have to be cleared by entering Transparent mode and
then typing E05<RETURN) until the message "EMS-initiated abort" or "illegal
request:E" appears. To be absolutely sure the host program is cleared, the
user can type "X <RETURN)" to exit host and "HOST" to reenter.

4-26

(The [save] [lIeIIJry] to file [filen&lle] prompts for the area to be saved as
follows:

After <RETURN>, a menu is displayed in the display area that can be moved
through with the cursor controls. (Right or left arrow for moving from
beginning to end address, and up or down arrows for moving from blocks to

·block or to the entry point.

Number of blocks: 1 Default 1. Number of discontinuous memory
blocks to be saved.

[Hex Add] to [Hex Add] Address range to be saved •
•

Entry Point [Hex Add]

Type <RETURN> to save 'Q' to Abort.

After <RETURN> is entered, EMS asks one more time "Are you sure?" Any
response except "Y" aborts. "Y" starts the save process.

Caution

If the file named already exists, this process writes over
the existing file. If no address range is specified, a
zero length file results. The user must be careful to not
enter extra carriage returns when executing the save
(especially in script) to prevent destroying good files.
The final query in a memory save will generally prevent
problems, but accidental entry is possible when in a hurry
or in a repetitive situation.

4.5.7 Memory

Memory [Compare] [HexAddr] WITH [HexAddr] [To,For] [HexWord] AS [~~J [:~!:J
Memory Compare compares two blocks of memory each with the starting address
specified with the length specified. Differences will be displayed on the
screen. If the differences fill the screen, the compare will stop but typing
the down arrow will scroll the screen and cau.se the compare to continue.

[For]
MeIaory [Fill] FROM [HexAddr] [To 1 [HexWord] WITH [valuesl

[Asc] r[Byteil
[Hex,OeclL[Word]J

Memory Fill fills a block of memory with a value or string of values.
Multiple hex or decimal values are entered separated by spaces. The last four
characters will be used in Hex or decimal Word mode and the last two will be
used in Hex or decimal Byte mode (e.g., 5£4 will be treated as E4 in byte
mode). ASCII strings are treated completely, including spaces. Decimal
values will be converted to modulo 64K for word mode, and 256 f·or byte mode.

4-27

[For] [Byte]
Menmry [Move] source [HexAddr] destination [HexAddr] [To] [HexWord] AS[word]

Example: Memory Compare 001000 WITH 002000 For 0020 AS Hex Byte

Example: Memory Fill FROM 7F43BD to 5000 WITH ABCD EF'12 Hex Word' .

Example: Memory Fill FROM 010200 to IFFF WITH 12B Decimal Byte

Example: Memory Move SOURCE 123456 DESTINATION 345678 For 1000 AS Byte

MelllOryMove moves a block of memory from a source address to a destination
address for the length sped fied. If the blocks overlap, EMS will preserve
the source.

The values in the [HexWord] option fields are inclusive (i.e., "To 1000"
includes 1000).

Hex Word

[~J [Value]
[For]

Memory [Search] FROM [Hex Addr 1 [To] [Hex Word] UNTIL =

Dec Byte

[ASCII]

Memory Search searches a block of memory for a pat tern that can be up to 24
characters, including the end delimiters. For example, five words of four hex
characters delimited by four spaces will search for the sequence of those five
words, or 1234 B007 5555 AAAA will search for a location in memory of 1234
followed by B007, etc. Word mode evaluates inputs on 16 bits and byte mode
evaluates inputs on 8 bits for hex and decimal inputs. ASCII values are
searched for in bytes with spaces treated as ASCII "20" instead of a
delimiter.

4.5.8 Step

Step for [decimal word] instructions [Skip calls]

Example: Step FOR three INSTRUCTIONS

Example: Step FOR two INSTRUCTIONS Skip calls (count the Call itself, but
do not count the called subroutine)

4-28

(

c

•• 5.9 Trace

Trace DISPLAY FROM CYCLE [+,-] [deci_l word] SNAP [+,-]
[decimal byte] AS {HeX }

Instruct [seg non-seg].

The specification of cycle and snapshot allow the user to choose where in the
trace history the display should start. Once displayed, the history may be
scrolled back and forth if it is larger than one screen. The selection of a
cycle or snapshot earlier than traced will display the earliest cycle traced
and likewise, the selection of a more positive cycle number than the last
cycle number traced will display the last cycle traced. In the case of the
latter, scrolling to earlier history can be accomplished with the up arrow
cursor control.

Example: Trace DISPLAY fROM CYCLE +0 SNAP +0 (display the trace memory
starting from the trigger cycle of the first snapshot).

Example: Trace DISPLAY fROM CYCLE -32 SNAP +12 (display the trace memory
starting from 32 before the trigger point in the 12th snapshot.

Example: Trace DISPLAY fROM CYCLE +7 SNAP -3 (display the trace memory
starting with the 7th cycle after the trigger in the 3rd snapshot before
the emulation breakpoint •

•• 5.10 Watch

Watch [Set] [1, 2, 3, ., 5, 6] AT [hex address]

Watch [Clear, On, orf] [1,2,3,.,5,6,*]

Example: Watch Set 3 AT 011000 (monitor address 01 1000 of ZaOOO)

Example: Watch On (turn on watch area. Scrolling area decreases)

Example: Watch off (turn off watch area. Scrolling area increases)

Example: Watch Clear * (clear all watch addresses)

The Watch area is used to display specific registers and memory during
debugging. The information in this area is non-scroll able and displays both
old and new values for each watch item. The items displayed are: CPU
registers, flags, and specified memory locations. The Watch area is shown in
figure 4-1. Old values are those at the beginning of the last emulation. New
values are the current values if emulation is stopped, or the values at the
beginning of the current emulation otherwise.

4-29

----------~---~---~----~-------~----~~------~------------------------------RO R1 R2 R3 R4 R5 R6 R7 Seg NS EP Vi Nvi CZSVDH rcw
New: 0000 0000 0000 0000 0000 0000 0000 0000 0 0 0 0 0 000000 0000
Old: rrrr Frrr FrrF rrrr rr~r rrrF rrrr rrrr 1 1 1 1 1 111111 rrrr

Ra R9 R10 R11 R12 R13 R14 R15 N14 N15 PSAP PC RErR
New: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000000 000000 W:9EOO
Old: rrrr rr:rr rrrr rrrr rrrr Ffrr rrrf Fffr rrrr rrrr rrrrrf rrrrrr w:rrrr

New: 1
Old:

0103fE
2 rrrr 3

0000
4

004000
5 0001 0002 0003 0004 6

rrrr A9C7 6214 sorA

-------------------------~--~

rigure 4-1. Watch Display Area

•• 6 MAP SCREEN

EMS mappable memory consists of 32 (optionally expandable to 63) 2K blocks
that can be mapped to any segment of the Za001. Up to two segments can be
mapped at the same time. In addition, memory protection (over all segments)
can be performed with this screen.

After any Map command is executed, the map affected will automatically be
displayed. The Display command can be used to display a map when the screen
is initially selected or when a different map is to be displayed.

The number of remaining blocks or segments is also shown at the bottom of the
display.

MAP [Allocate] [Segment] [Hex Byte] TO [Hex Byte] AS [Target, Nonexistent]

This command restores a range of previously mapped Za001 segments to
Target, or declares them Nonexistent. No mappable memory is allocated
with this command. Since only two segments can be mapped (a block at a
time), this is a good way of clearing block-level mapping for segments.
Map allocating should always be done before Map protecting because any
protection previously set for the sped ned segments will be lost when
these segments are reallocated.

(Example: MAP Allocate Segment 00 TO 2A AS Target

This command restores segments 00 through 2A to target memory.

[EMS] [Copy]
[Target]

MAP [Allocal;e][Block] [HexAddr] [To,for] [HexWord] AS [Nonexistent]

This command allocates a Block of EMS mappable memory from the address
specified in HexAddr To the address specified in HexWord (or for the
extent specified in HexWord) AS either belonging to Ems (mapped),
belonging to the Target (unmapped), or as Nonexistent. If the Copy
option is selected, EMS will copy the contents of the target memory into
the region of memory mapped to EMS (useful for copying PROM into mappable
memory for patching). Only two segments may contain mapped memory,
therefore if an attempt is made to map more than two segments an error
message is displayed. Only 32 or 63 map blocks are available. When they
are all used, an error message will be displayed.

If separate Normal/System or Code/Data is selected on the Configuration
screen, there will be three space choices (N,S,-; C,D,-) in the Map
Allocate command. The two commands

MAP Allocate Block C 000000 To IfFf AS EMS
MAP Allocate Block 0 000000 To IFFF AS EMS

will map Code and Data to SEPARATE mappable memory. The command

MAP Allocate Block - 000000 To IfFF AS EMS

will map Code and Data to the SAME mappable memory.

MAP [Display] [All segments]

Displays mapping Blocks allocated previously in a two-dimensional grid.
The vertical axis of the grid represents the most significant Hex digit
of the Za001 segment number, and the horizontal axis 'represents the
least-signi ficant hex digit. A "*" in the grid means that this segment
has been allocated.

MAP [Display] [Segment] [Hex Byte] or MAP [Display] [S N] [C 0] [Segment]
[Hex Byte]3

Displays the mapping of the blocks within Za001 segment number HexByte.
The display shows the address, state of mapping (i.e., USR or EMS), and
any protection (Write protect, Normal/System, Code/Data).

3System or normal, code or data can be entered if the configuration screen
is programmed for separate memory spaces. Segment applies only to Za001
or Za003.

4-31

Note

For EMS mappable memory, Stack and Data memory can not be
separate.

An example of the form used for MAP Display All segments is shown in
·ngure 4-2.

--.------.--------------------------
Segment Map:

<XO><Xl><X2><X3>
<OX> * * T Tc Tc
<lX> Tn Tn Tn Ts Ts
<2X> T T T T T
<2X> T T T T T
<3X> T T T T T
<4X> T T T T T
<SX> T T T T T
<6X> N N N N N
<7X> N N N N N

<X4><XS><X6><X7><xa><X9><XA><XB><XC><XD><XE><XF>
Tc Tc Tc Tc Tc Tdw Tdw Tdw Tdw Tdw T
Ts Ts T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
T T T T T T T T T T T
N N N N N N N N N N N
N N N N N N N N N N N

---~--------------------------------

MAP [Clear]

legend

Mapping

Nmeans Nonexistent
T means Target
* means Mapped
n means Normal segment
s means System segment

Protection

c means Code segment
d means Data segment
w means write protect

Figure 4-2. Segment Map Display

Clears all Block mappings, segment allocations, and protections. All
memory is returned to the target system.

MAP [Protect] [Segment] [HexByte1] TO [HexByte2] AS [Write prot] [C,D,N,S]

Applies protection to ZaOOl segments begining at segment HexBytel and
ending at segment HexByte2. Protection can apply to Code, Data, Normal,
or System accesses. Seven options are available for segment-wide
protection. These options are: Normal, System, Code, Data, Write-Prot,
Write-Prot Data, and unprotected. Protection may apply to both Target
Memory and EMS memory.

4-32

("' MAP [Protect] [Block] [HexAddr] [To,For] [HexWord] AS [Write prot]

(

[;oya~] [~]
Applies protection for a previously allocated Block. Memory can be
designated as Normal only, System only, Data only, Code only, or write
protected. These protections can be combined (such as Write protect,
Normal, and Code). Protection may apply both to Target memory and EMS
memory.

4-:n

4.7 HELP FACILITY

EMS provides a help facility for those commands that can be applied across
many screens. The facility can be invoked by typing "?". In response EMS
displays a Help screen listing the global commands 8S:shown below.

COMMANDS4 EXECUTION
<RETURN> to execute Debug or Map command <ctl-G> to "go" from current PC
<up/down arrows> to scroll Debug display <ctl-C> to "cancel" emulation

<ctl-X> to single step
SCREENS

<TAB><letter> to switch screens
<ctl-T> to enter transparent mode
<BREAK> to exit transparent mode
<ctl-Z> to "zero" current screen
<arrow keys> to move on screen

OPTION f"IELDS
<Cap letter> to select option
<space>5 to select next option

DATA ENTRY FIELDS

SCRIPTS
<ctl-R><letter>: record script <letter>
<ctl-S>: stop record script
<ctl-P><letter>: play script <letter>
<ctl-O><letter>: loop on script <letter>
<ctl-W>: pause for input / resume (rec)

. resume after input (play)

<ctl-E><letter>: erase script <letter>
<ctl-Q>: kill all macro activity

<ctl-U> to "undo" and restore previous contents while in field
<RUB> to backspace over errors
"s" or "h" on prompt line is .8 hex digit. (0-9,A-F) or X for don't care
"bit on prompt . line is a binary digit <0,1) or X for don't care
If segment number is omitted, previously entered segment remains

Type <RETURN> to continue.

Figure 4-3. Help Screen

--"--------------------4 COMMANDS:
<Return> Refers to command lines in the debug and map screen. To execute

the command after the option fields have been programmed, enter
<RETURN>

<up, down arrows> For scrolling memory display or trace display.

S <space> can be used in an option field to scroll through the options in lieu
of direct entry of the option letter. Use of the space bar for option
scrolling leaves the cursor in the same option field for fur.ther scrolling
while direct entry sometimes steps the cursor to the next option field
(never on Allocation and Configuration, sometimes on Program, and always on
Debug and Map.

(4.7.1 Scripts (EMS .anitor _eros)

(

The following lists the procedures and requirements for the Script usage:

1. Start recording a script with "(CTRL) R [A-Z]". All keystrokes are
recorded in the EMS monitor scratch memory. These user keystrokes usually
represent a particular EMS setup for repetitive debugging sessions. Up to
26 scripts can be recorded. These scripts can be named with a single
capital letter [A-Z] (starting a macro with the "(TAB)" character is a
good idea because it always guarantees that the cursor will be placed in
the first option field of the Change screen).

2. Script recording can be stopped by typing "(CTRL> S".

3. Playa previously recorded script by typing "(CTRL> P [A-Z]".
named by a single capital letter [A-Z] is played back from
memory.

Note

The script
EMS monitor

EMS must be in generally the same configuration
(especially the location of the cursor) as when the script
record process was initiated to reproduce the same
results.

4. A script can be erased (cleared) by typing "(CTRL) E [A-Z]". for example,
to erase script B, type ."(CTRL> E B", or all can be cleared by typing
"(CTRL> E".

5. Scripts can be aborted by typing "(CTRL> Q". The recording process should
not be aborted by (CTRL) Q because this leaves the command sequence in an
unclear state and can cause EMS to "crash."

6. Scripts can be "looped" automatically by typing "(CTRL) 0 [A-Z]".

7. If user input is required in the middle of a script playback, follow the
following sequence during script recording:

o Type "<CTRL) R B" to begin recording script "B".

o Type "(CTRL) W" to wait for input.

o Type INPUT--input at this time will not be recorded.

o Type "(CTRL) W" to resume recording process and type rest of script.

o Type "(CTRL) SIt to stop recording.

4-35

To play back this script:

Position the cursor to the initial location where the recording process
began. To prematurely abort the script playback, type n(CTRL> Q".

Type "(CTRL> P B" to play script "B".

Type the USER INPUT when the macro has paused for you; the terminal will
prompt with a (CTRL> G or a beep.

Type "(CTRL> W" to continue with the macro.

4-36

1(' ,',',
"
,

A . - . -..-

--

APPENlIX A

EMS 8000 Tutorial

A.1. INITIAlIZATI(J4

This tutorial is intended to allow the first-time user to step through some of
the beginning steps of using the EMS and thus to speed the familiarization
process. Keystrokes are shown exactly as they are to be entered by the user,
with the following exceptions:

• The control key (CTRL) that is used in conjunction with another key is
shown as <CTRL> (letter).

for example: <CTRL> G indicates that the control key <CTRL> is pressed
simultaneously with the letter G.

• The tab key is shown as <TAB>.

• The space bar is shown as <SPACE>.

• The return key is shown as <RETURN>.

• The cursor control keys that are used to move between option fields are as
follows:

~' The right arrow is shown as <r arrow>.

The left arrow is shown as <1 arrow>.>

The up arrow is shown as <u arrow>.

The down arrow is shown as "<d arrow>.

The EMS 8000 is used in the link between the user's host computer and
terminal. When not in use, the EMS can be set to Transparent mode, which
allows the host to be used normally without disconnecting the EMS. The
exception to this is if the user's normal system requires the use of the BREAK
key; note that EMS uses BREAK to terminate from the Transparent mode.

The user is assumed to have read thTOugh the remainder of this manual, and to
be familiar with the terms used.

The EMS system should be assembled according to the installation procedure in
this manual. "lhe following items should be checked:

a Terminal connection to the terminal port on the back of the EMS via the
RS-232 cable. The terminal always operates at 9600 baud.

a The host connection to the host RS-232 connector and an appropriate baud
rate set on the EMS host baud rate switch. This does not have to be the
same as the terminal. A table of settings is shown on the back panel of
the EMS with switch position 5 being the most-significant bit and

A-1

• The Emulator pod connection to the EMS unit by the two emulator cables.

WARNING

Incorrection insertion of these cables will damage the. unit.

• Make sure that the target cable is correctly inserted into a target
system with pin 1 of the 40/48 pin connector corresponding to the pin 1
of the Z8002 and Z8001 socket. The EMS 'unit requires an external Z8000-
type clock; if no target is available and the user wants to use the EMS
for familiarization or software testing, the test socket on the front
panel of the EMS can be used to supply the emulator pod with a clock. To
use this socket to supply the clock signal, the test board inserted
behind the front panel and to the left of the socket must be oriented for
the correct CPU (40- or 48-pin) and the emulator cable must be inserted
into the socket. When using the 48-pin Z8001, the connector is difficult
to place into the ZIr socket and care should be exercised. The lever
should be held slightly away from the connector as it is being inserted
into the socket;. and then pressed fully vertical to lock the connector in
place.

The EMS should be powered up and initialized. (See Section 2.6, 800ting the
System Up) • In general, the order of powering up each component is not
important, but in some cases if a full 25"'pin cable is used, ground loops can
cause a reset of the host or EMS or a failure to reset in either. In such ~-
cases, a three-wire cable using only signal ground, transmitting data, and '~
receiver data lines should be used.

After completion of the session, the host link can be terminated by entering
Transparent mode, typing "X" and then "<RETURN>". If the HOST program is in
the middle of a load or download procedure, it responds with data lines and/or
error messages. Several E05<RETURN>s clear the HOST and allow it to accept
the X<RETURN>.

A-2

("

/

A.2 fAMILIARIZATION

After the EMS software is loaded, the EMS takes a few moments to initialize,
then the terminal screen changes to the Change screen with the mode set to the
Allocation mode. At this point, any of the EMS screens can be entered by
entering the first letter of the screen name. The Change screen is shown
below.

NEW SCREEN: Allocation

Type "?" for help.

Allocation Configuration Debug Pattern Map

As the Change screen is shown, there is only one option field (the top
position now showing Allocation) and the cursor is positioned at the beginning
of that field. The options that can be entered in any option field are shown
at the bottom line of the screen, as it is now showing each of the five action
screens of Allocation, Configuration, Debug, Pattern, and Map. Thus to enter
any of the screens, type the letter shown as a capital (i.e., A, C, 0, P, or
M) •

A.3 TUTORIAl

The following tutorial provides a sequence of commands that guides one through
a sample emulation using the EMS to debug a simple program. This tutorial is
intended as a learning tool, particularly for first-time users of the
EMS 8000.

In the following sequence of keyboard entries, a carriage return, (i.e.,
<RETURN», is not entered unless specified, and blanks and new lines are used
for clarity of reading only. Addresses containing segment numbers refer to
the segmented CPU and can be shortened to just the offset portion for use with
the nonsegmented CPU.) Incorrect entry of data can be corrected by entering
"<CTRL U>" or by using <delete> and reentering the data. Where entries are
di fferent for users of l8002, the l8002 command are entered in parentheses
after the l8001, Z8003 commands.

A-3

Enter these keystrokes:

A
(TAB>
C
(TAB)
o
(TAB>
p
(TAB>
M
(TAB>

?

(RETURN>
(CTRl R) A

A

<CTRl Z> 0

<TAB> M

A
B
000000 (0000 for Ze002)
T
orrr
E

<RETURN>

Each letter results in the screen changing to
that particular screen, then exiting back to the
Change screen. This is always the procedure for
the selection of the deSired menu.

Typing "?" enters the Help screen, which lists the
control characters that are available for some key
EMS functions.

This initializes a recording process that records
all the keystrokes entered as script until it is
terminated. This script can be the host for
retrieval and reuse later. The "<CTRl> R" starts
a script called A. The bottom right corner
reflects a message, "Rec", to indicate that
recording is in progress.

Used to display the Allocation screen. The screen
should now default to allocation setup. (This is
a common setup that gives EMS a good basis for
debugging average problems.) Changes to this
screen are discussed later in this tutorial.

If the user has changed the Allocation setup and
wishes to reset it to the default quickly or
wishes to zero it totally and assign a new
allocation, the <CTRl Z> performs this. A
following D sets the default and a clears all
allocations. Since the EMS has just been
initialized, this setup is redundant.

To reach Map screen. Cursor is at the first
option screen with the options shown at the bottom
of the screen. (Allocate Clear Display Protect)

Allocate by Block address <00>0000 to orrr into
EMS mappable memory without Copy. The copy option
copies existing external memory into the mapped
memory. This option is generally used when
debugging read only memory (PROMS). As the cursor
steps from field to field, be sure to look at the
bottom line of the screen for the menu list. The
<RETURN> causes execution of the command line just
generated and displays the resulting map.

A-4

c <right arrow>
<right arrow>
1000<right arrow>
r
1000
N
<RETURN>

<TAB> 0

D <RETURN>
<RETURN>

Alternately, if most of the command line is
already correct, the cursor control keys can be
used to step to a specific field for correction.
The first 1000 resets the beginning address to
1000 with the segment (ZB001 only) unchanged. The
F changes the allocation to a byte counting mode,
and the second 1000 is the number 'of bytes. N
sets the allocation to non-existent, which allows
breaking by EMS if specified in the Configuration
screen and prevents EMS from writing to it during
Emulation mode. A <RETURN> anywhere in the
command line causes execution of the command as it
then exists.

Goes to the Debug screen. The Debug screen
consists of various command lines. When the Debug
screen is entered, the cursor is placed in the
command option field and the commands are listed
at tne bottom of the screen. These commands are
used in the actual debugging process.

Display memory from o.
Return from display to command line.

M F 0 <r arrow> T orrr B007 Memory rill from 0 to OrrF with B007 as Hex words.
<r arrow> H W <RETURN>

D <RETURN>
<RETURN>

E R P <RETURN>
OOOOOB <RETURN>
COOO (4000 for ZB002)

Q

Display memory filled with B007.

Edit Registers FROM Pc IN HEX.
Load PC with a starting value of B.
Load rcw with System Segmented mode, (System Non
segmented for ZB002, although COOO could also be
used with the ZB002 because it ignores the
segmented/nonsegmented bit).

Quit Edit.

A-S

(for Z8002)
E M 000000 H W (E M 0000 H W) Edit Memory fROM 0 AS Hex Words
<RETURN>

[Z8001] ([Z8002])

o <RETURN>
0000 <RETURN>(4000 <RETURN»
0008 <RETURN>

8 <RETURN> «RETURN»

1402 «RETURN> (2102 <RETURN»
8000 (RETURN> (500 <RETURN»
500 <RETURN> (2104 <RETURN»
1404 <RETURN) (600 <RETURN»
8000 <RETURN> «RETURN»
600 <RETURN> «RETURN»
2922 <RETURN> (2922 <RETURN»
2840 <RETURN> (2840 <RETURN»

a

E8fO •

·a·.
60 <RETURN>
EBOO<SPACE)EBOO<SPACE>EBOO

<RETURN>

Q

0000008
DIS
<RETURN>

(0 OOOB)
(0 I)

(Entries not excepted with () for Z8002 are
common to both microprocessors.)
Set Memory with initializing values of fCW and
PC in case of reset. .
(Z8001 treats this as segment OOXX and the
Z8002 treats it as location 0008.)
Z8002 does not use this location because the
first instruction is at location B.
Edit reads the last four entries on a line.
Try entering 2041402 <RETURN> instead of 1402
<RETURN>.

The "a" sped fies: go to the next value as an
address and continue editing there.

The " • " (period) sped fies: redisplay the
previously edited location. In this case
location)2 should be redisplayed wi th the
contents changed to EBfO.

When editing memory locations, numbers entered
in sequence and separated by a space are
loaded into consecutive memory locations.
This allows the user to enter a string of
numbers instead of entering one line at a
time. When editing I/O, all values on one
line are written into the same address to
allow multiple entries to the same port.

Quits edit session.

Display memory from location
Direct addressing as Instruction
mode (nonsegmented for Z8002).
display command.

(00)0008 in
in Segmented
Execute the

<d arrow> <d arrow>

<RETURN>

At this point the disassembled version of the
program should be displayed.
Scroll the display down twice.
The last line of the entry should now appear.
The program consists of two immediate loads into
register pair 2 and 4, INCIRR2, DEC IRR4,
followed bya series of NOPs,' and then a
relative jump back to the INC step. (The Z8002
will have some extra NOPs).

Terminate the display command.

<TAB> P Go to pattern screen.
<d arrow> <RETURN> <r arrow> These are alternate ways of traveling around the

screen from field to field.
* = 000014<r arrow> Activate first line of trace trigger and set

address equal to <00> 0014. Notice that the
Z8002 ignores the first two OOs, which are the
segment number for the Z8001.

<RETURN> <RETURN>
<RETURN> <RETURN>
<RETURN>
S <r arrow> 10 <r arrow>
B <RETURN>

<TAB> 0

G 000008

<RETURN>

T <RETURN>

(G 0008)

Step the cursor down to Snapshot Trigger set.

Set snapshot to start 10 cycles before the
trigger.

Return to Debug screen.

Set Go to start from <00> 0008. Note that the
Data field is exited when it. is full. There
fore, to correct errors, use the <RUB> key or
exit the Data field and reenter. Only the
maximum number of digits or less should be
entered (e.g., G 8 <RETURN> could also be
entered).

Execute the Go command.

At this point, the screen should flash a
"Running" message momentarily in reverse video.
A bell will then sound and the message will
change to "Trig Break". To the right of this
message will be another reverse video message,
"Rec", indicating that you are still recording
script.

Display trace history. The trace. will be
displayed from snapshot 0 cycle O.

A-7

<u arrow> <u arrow>

<RETURN>

T - 1024
<r arrow>
<r arrow>
<r arrow>

I S
<RETURN>

(I for Z8002)

<d arrow> <d arrow>

<RETURN>

<CTRL S>
<TAB>
<CTRL P> A

<TAB> D

W S 5 500 <RETURN>

W S 6 600 <RETURN>

<CTRL G>

Scroll the trace display up
cycles. Keep entering up
scrolling stops.
Terminate the trace display.

to show previous
arrows until the

Display trace history again from the earliest
history retained as Instructions Segmented
(Nonsegmented for Z8002).

Scroll the trace down to familiarize yourself with
the display.

Terminate the trace display.

Now there is a trace showing the operation of a
simple test program. The trace shows all instruc
tions and steps in the test program including many
NOPs. In debugging a program with unimportant
steps, the EMS allows more efficient use of the
trace memory size by qualifying the trace to skip
the unimportant steps.
Stop recording of the script.

Now watch script A play, and repeat the process to
here. Remeber that, in general, script. must have
the same starting conditions to guarantee the same
resul t.s or care must be taken to have direct entry
in option fields since the space bar causes a
toggling to the next option.

Returns t.o the Debug screen.

Set Watch area 5 at location <0>0500.

Set Watch area 6 at location <0>0600.
Watch areas 5 and 6 give an automatic peek at four
consecutive locations upon break from emulation,
whereas Watch areas 1 through 4 let you observe
one for each of these watch lines. The watch is
useful for keeping track of important or
troublesome locations.

Perform another emulation run which should also
end in a trigger break. This method of filling
snapshots and using the snapshot to break from
emulation allows the user to adjust where in
relation to the trigger, trace is recorded.

Notice the Watch area and how the before and after
values of memory locations are shown.

A-a

c W F <RETURN)

T <RETURN)
<RETURN)

W 0 <RETURN>

<TAB> P

* <r arrow> , 8007
<r arrow> IF1

<CTRl G>

<TAB) 0

T <RETURN>

<TAB>

P
<r arrow> <r arrow>

- (minus sign)

<r arrow> 1000

<TAB> 0

<CTRl> G

Turn Watch area Off to allow more display room on
the screen.

Display Trace history again as instructions.

Turn Watch area back on so that register values
can be monitored.

Return to Pattern Screen.

Enable the trace quali fier as data not equal to
8007 on an IF1, which is the NOP instruction.

Start the emulation again; there should again be a
trigger break.

Return to the Debug screen.

Display the
instructions
cycles were
instructions

trace and notice that the NOP
were left out and that only IF1
trace. Without IFN cycles, most

cannot be disassembled.

Terminate the trace display. If exiting the Debug
screen, it is not necessary to terminate the trace
display first. <TAB) will exit the screen
directly.

Enter the Pattern screen.

Disable the data field.

Set the cycle type to data. 1000 is the status
number corresponding to a data cycle.
(Alternately, 0 or DATA could have been entered.)
When using cycle names, only enough of the name is
required for unique identification. Thus 0 is
sufficient for data but IF1 must be fully
specified. The cycle status bit can also be set
to "don't care". Thus, 1XXX would select any
status with the first status bit a 1.

Return to the Debug screen. Notice the command
line is set to trace because that is what had been
set up when the Debug screen was last exited.

Start the emulation again; there should again be a
trigger break.

A-9

<RETURN>

<TAB> P

<RETURN>
4 <RETURN>

:

<RETURN> <RETURN>
<RETURN> <RETURN>
<RETURN> <RETURN>
<r arrow> 0 <RETURN>

255 <RETURN> I

<CTRL G>

<TAB> D

<RETURN>

Execute the trace command.
Notice that the trace contains only the data
cycles and trace triggers.
Return to the Pattern screen.

Turn off the trace qualifier.

Set the pass counter to 4. This means that the
trigger must be recognized four times before the
event occurs.

Move the cursor down to the Snapshot field.

Set the snapshot trigger to be at the trace
trigger. The ten cycles were set to ensure that
the trace would be terminated soon enough to
preserve the beginning of the trace. Otherwise,
the beginning of the trace would be lost due to
being overwritten by multiple-cycle instructions
occurring as the emulation was ending.

Set the break to occur after recording 255
snapshots and set the number of snapshots to 256.
This will partition the trace into 256 separate
trace memories.

Start emulation.

Return to the Debug screen.

Display trace. Notice that four cycles (the
snapshot size) have been traced every fourth time
through the loop (the pass count number). The
dashed lines indicate that not all cycles are
shown. If the start of a following snapshot is
consecuti ve with the previous snapshot and there
are no missing cycles, just a blank line is
shown. Scan the trace by using the up and down
cursor control arrows. The snapshot number is in
relation to the first trigger, those occurring
after are plus and those before minus, and the
cycles are in relation to the last trigger in that
snapshot. (Therefore, the last snapshot in a
sequence which may have two or more triggers will
have the cycles numbered from the last one.) As
you become familiar with this display, try exiting
the trace display command, modifying the starting
snapshot and cycle numbers, and then reexecuting
the trace display command (by hitting <RETURN».

\.

(~ <TAB> P
<u arrow>
H
<u arrow> <u arrow>
4 <r arrow> B

<CTRL G>
<TAB> D <RETURN>

<TAB> P
<u arrow> D

<CTRL G>
<TAB> D <RETURN>

Return to the Pattern screen.
Go to the bottom of the screen by a "short cut."
Change number of snapshots to 12B.

Start snapshot 4 cycles before trigger. Note that
the number of cycles must not be greater than the
number of cycles in the snapshot- because the
control is always after an event.. Specifying
"Start SNAPSHOT 4 CYCLE - BEFORE TRIGGER" allows
the machine to perform arithmetic for you and then
causes a break after the remaining portion of the
snapshot is filled after the trigger. For
example, if the snapshot is 8 cycles long,
speci fying that the snapshot should be started 4
cycles before the trigger actually causes a break
4 cycles after the trigger by subtracting the 4

. cycles before from the length of 8.

The break before is helpful because the trace con
tinues until the completion of the last instruc
tion. In the case of block move instructions, the
EMS interrupts a·few cycles into the intruction to
preserve most of the trace.

This configuration allows you to record the
trigger instruction as a part of the recorded
trace.
Start emulation.
Return to Debug screen and display trace.
Now the trigger is recorded and you can see
instructions occurring around it.

Return to Pattern screen and set snapshot size to
8 snapshots of 128 cycles.
Start·emulation.
Display trace. Notice that there' is now a full
trace with the snapshots being the last 8 of 255
snapshots taken. Each of the snapshots terminates
at the next trigger even though the snapshot was
not yet full (the trigger is set to be every
fourth execution of location 14). The last
snapshot, however, continues to a full snapshot
length and contains two triggers. Notice that the
cycles are numbered from the last trigger in the
la9t snapshot.

This concludes the use of this program, which has demonstrated some simple
debugging methods. The rest of this section serves to familiarize you with
the editing commands in the Debug screen.

A-11

A.4 EDITING COtfWl)S IN DEBUG SCREEN

<RETURN>

E

R <RETURN>

60 •
a

o
1234 (u arrow>

0000 <SPACE>

Q

E I

<RETURN)

0021 <RETURN> R

<RETURN)
ff12 <RETURN) R 44 <RETURN>
ff22 <RETURN> 12 <SPACE>

Q

23 <SPACE)
33 <RETURN>

Exit the trace display command from above if not
already done.
Go to the edit command line. This command has
already been used to load the simple tutorial
program and to set the PC and FCW to the desired
value. .
Edit registers (the starting point is preserved
from the last time the registers were edited).

Set PC to 60 and display the change.
Override the normal edit sequence so that instead
of prompting for a change to the FCW, the EMS
will prompt for a register name to be edited.
Zero for register O.
Enter value 1234 and go the previous register in
sequence.

Notice that in the case of registers, <SPACE>
acts like a <RETURN>.
Quit the edit mode.

Edit I/o.

Execute the command.

Enler the address of the I/O port to be read and
read it. Unless the target the EMS is presently
executing in has I/O at location 0021 , what is
read will be nothing, generally reflecting the
address due to the open bus.

Set the mode to read the next port address.
Read port ff12 and then write value 44 to it.

Write values 12, 23, 33 into port ff22 without a
read cycle.

Used to quit the Edit command.

In summary, the edi t command has the subcommands "<RETURN)", ". It,

"<up arrow)", <down arrow>", "<space>", "Q", and "a" to allow the user to
quickly enter data in an efficient manner. The user should remember small
differences between each type of edit [whether it is memory, registers, or I/O
(normal or special)]; commands apply to each.

A-12

c B

APPEN>IX B

LOAD/SEN> PROTOCOL

B.1 ·INTROOOCTION

This appendix describes the protocol used for transfer of program (binary)
text between EMS BOOO and its host computer. Transfers take place over an
asynchronous serial line at a variety of speeds. Specific design goals for
this protocol were:

• To be compatible with (at least) all development systems manufactured by
Zilog for the ZBOOO.

• To be compatible with other systems (PDP-11, DEC-10, VAX, DG Nova,
etc.)--highly desirable.

• To provide a form of error checking, which gives a reasonable assurance
that the data sent is received correctly.

• To provide a method of error correction for data incorrectly received.

• To ensure that the download/upload process would not require an
exorbitant amount of time for a reasonably-sized program.

• To provide the following features:

• Support for the full addressing capability of the Z8000, including code
and data separation.

• Transfer abort can be initiated from either the sending or receiving
station.

• A method must be provided for transmission of error indications.

The load/Send protocol that was developed to meet these objectives transmits
the unencoded records in 8-bit binary. This procedure requires that the host
computer be capable of transmitting or receiving B-bit characters through the
terminal interface. Also, the following software options must be disabled if
present:

• Automatic carriage return at right margin of terminal.

• Conversion of tabs to spaces.

• Conversion of form feeds to line feeds.

• Printing of control characters as "char" or other control character
translations.

• Non-transmission of certain characters (e.g., the DEC RT-11 and RSX-11M
terminal drivers do not output null characters).

B-1

• Use of characters such as DC1 and DC) (CTRL-S and CTRL-Q) to start and stop
output.

• Use of the 8th bit for parity.

• ChlJracters that mean "take the next character literally" (like backslash).

Both the MCi arid 58000 feature an "absolute" or "raw" mode that allows the
binary protocol to be used with them. This protocol yields a line efficiency
of 92~, which results in much faster downloads than the TekHex protocol.

B.1.1 Records

All transmitted data takes the form of single-line records that appear to the
host computer as if they were entered by an (extremely fast) operator. The
first character of each record is used to determine the type of the record:

Table B-1. Record Types and Associated Characters

Character Record Type

A
o
I
E
L
S
T
*

B.1.2 load/Save Operation

Acknowledge Record
Data Record
Instruction Record
Error Message Record
Load (Host --> EMS) Request
Save (EMS -~> Host) Request
Termination Record
Configuration Record

The following sequence of events takes place for a load or send operation.
first, EMS sen~s an "L" record (for download, host to EMS) or an "5" record
(for upload, EMS to host) that specifies the filename of the file to be
transferred. Then the host responds with a '*' (configuration) record
specifying that 8-bit binary format is used for the data transfer. If a
problem occurs opening the file, the host responds with an error record
instead.

After this initial exchange, the host and EMS perform a dialogue of actually
transferring data. The sender (EMS for upload, the host for download) sends a
'0' (data) or 'I' (instruction) record. After receiving it and checking the
checksum, the re.cei ver sends an t A' (acknowledge) record if there is no
error. If there is an error, the receiver sends an "E" (Error) record, then
the sender "re-sends" the data record; after ten retries, the sender sends an
abort error instead of the data or instruction record.

When all data is transferred successfully, the sender sends a "T" record,
which contains an entry point and signals the end of the file. The receiver
checks the checksums and issues an "A" record • .
For downloading only, a second acknowledge record is sent by the host after
EMS's acknowledge of the termination record. This prevents EMS from making
another dowoload request until the host has finished closing the file and is
ready for a new command. This is particularly important for hosts without
"typeahead" during the initial program load, which contains several files.

8.1.3 load and Save Record For.at

The Load and Save records have the following ASCII format:

Lfilename(RETURN>
Sfilename(RETURN>
Pfilename<RETURN>

(download a file)
(upload a program file)
(upload an ASCII file)

where "filename" is an ASCII string giving the name of the file to be read or
written. This field is inherently system-dependent, so the EMS end of the
link will do no error checking for file names. All information typed in the
filename field in the Host Load or Save command is supplied. This may include
extra parameters after the filename. For instance, the MCZ version of HOST
uses a token after the filename (if supplied) as the ZB001 segment number, and
t.o convey code/data information.

If a "P" request is used instead of an "5" request to save a file, that file
should be opened as an ASCII file, and all address information sent with the
file should be ignored. This feature will be used by the Host Save Script
command to save the keystroke information so that the Host's editor may be
used to edit the command script.

B.1.4 Configuration Record Format

The format of the configuration record is:

*BB<RETURN>

where * is the ASCII character '*' (hex 2A), and 'BB' specifies that both
sending and receiving is done with an B-bi t binary format. Configuration
records are issued in response to a 'L' or duration of the transfer. No
formats other than B-bit binary are currently supported.

8.1.5 Instruction/Data Record Format

Instruction and Data records contain the actual data transferred in a load or
send operation. The record is in the following form:

< IO><text>

where <10> is the ASCII character "0" (hex 44) or "I" (hex 49) which
identifies the record as a data or instruction record (respectively); (text>
contains address, count, and checksum information, and the data.

B-3

, .-

The <text> is always in this format:

Offset

o -
1

2

3 -
4

S

6

Contents

!.!..9.!.!.!!.1 n u m b e r ------
,Q,ff!.!.l low !?.tl!. ---
Off set hi.9.!l !?.tl.! ------
B.tl!. c 0 u n t n ----- -
C h e c k sum low !?.tl!. ------ - ---
C h e c k sum h.!..9.h b.tl!. --------
Oat a .!:!..tl!. 0 ----

•

!!.+sl Q.! l!. !?.t l!. (11-1)

The segment number and address field define the zaooo address at which "Data
byte 0" will be' loaded. The byte count is the number of bytes in the Data
portion of the record. "Checksum" is the sum of the bytes in the binary
record (not including the checksum field). Note that the bytes in the offset
and checksum fietds are low byte followed by high byte. Up to 128 data bytes
may be sent in a single record. An acknowledge is sent immediately after the
required number of characters are transmitted. No termination character, such
as carriage return, is used in this type of record.

8.1.6 Acknowledge Record format

The Acknowledge record is sent in response to a correctly rece! ved data or
instruction record. Its form is simple:

A<text><RETURN>

where <text> may be zero or more arbitrary characters. The <text> field
currently has no use, but may be used in the future for double buffe·red
transmission. EMS will always send one byte of <text>.

After receiving an acknowledge record, the next data record or a termination
record can be sent.

8-4

(~ B.1.7 Termnation Record forat

(/

The Termination record indicates the end of transmission, supplies the program
entry point, and contains a vertical checksum to ensure that entire data
records were not missed. Its form is similar to a Data record:

T<text)

where T is the ASCII character "T" (hex 54) which identifies the record as a
termination record; <text> contains entry point address and vertical checksum
information.

The <text> is always in this format:

Offset Contents

0 Segment number

1 Offset low byte Entry Point

2 Offset high byte

3 2 (l~ngth of v. cksum)

4 Hor. Cksum low byte

5 Hor. Cksum high byte

6 Ver. Cksum low byte

7 Ver. Cksum high byte

The segment number and address field define the zaooo address with which the
PC will be loaded. The byte count is 2--the number of bytes of vertical
checksum. "Hor. Cksum" is the sum of the entry point address bytes and the
vertical checksum bytes. "Ver. Cksum" is the sum of the checksum fields of
all of the '0' and 'I' records sent during the current operation. Checksums
in records re-transmitted due to error are not included.

B.1.8 Error Record format

The Error record allows the Host or EMS to signal that some error has
occurred. Any error sent to EMS by the Host (except checksum error) will
abort the current operation, and will be printed on the terminal.· EMS will
only send four types of error records: horizontal checksum error, vertical
checksum error, Host-initiated abort, and EMS-initiated abort. Upon receiving
a horizontal checksum error, the Host should retry the most recent data,
instruction, or termination record; upon receiving any of the others, it
should abort the current operation.

8-5

The form of the error record is:

E<error number><text><RETURN>

where E is the ASCII character "E" (hex 45) which identifies the record as an
error record; <error number> is a two-digit decimal ASCII number which
identifies the type of error; and <text> (sent only from the Host to EMS) is
the message to be printed on the terminal when the error occurs.

These <error number>s are defined in Table B-2.

Table B-2. Error Numbers .-.d Meaning

NlIIber Meaning

01 Horizontal Checksum Error (initiates retry)
02 Vertical Checksum Error
04 Host-initiated abort
05 EMS-initiated abort

8-6

c c

•

{

£\

•

APPEN>IX C

EMS 8000 EMUlATOR TIMING ANAlYSIS

While the EMS 8000 emulator is specified to emulate at a clock speed of 6 MHz,
it uses a Z80008 CPU (10 MHz) in the user pod in order to compensate to some
extent for the buffering required between the CPU and the target.

The 10 MHz CPU and the EMS control functions cause some differences in the
expected timing specification. In general, these differences are slight and
should not cause a problem unless the target is very close to the limits of
the design specifications.

To aid the designer in handling such problems, the following table is a sum
mary of worse-case timing. The table shows 6 MHz and 10 MHz specifications
with speci fications for a 10 MHz CPU running wi th a 6 MHz clock and the
EMS 8000 running with a 6 MHz clock. The last column lists di fferences
between a 6 MHz CPU and the EMS with a + signifying EMS is better and -
signify~ng EMS is worse.

The definition of parameters is in the Z8000 CPU manual.

C-1

I
• I

i

..

Table C-1. EMS 8000 EMulator Tilling Analysis

DELTA
10 MHz Z8000 6 MHz EMS 8000 6 MHz Z8000 + = better;

10 MHz Z8000 lIin max adn max adn I18X - = worse

1 Clock Cycle Time 100 2000 165 2000
2 Width High 40 70 , Width low 40 70
4 fall Time 10 10
5 Rise Time 10 15
6 Clock SN + 70 88 110 +22
1 CK SN min + 5 11 10 +1
8 CK 8us float 40 95 55 -40
9 CK Addr Valid 50 80 75 -5

10 CK Addr float 40 81 55 -26
11 AO- AD- 180 316 305 +11
12 AD+ CK 10 22 20 -2

"
13 OS Addr Active 20 60 45 +15

• 14 CK AD+ 50 62 75 +13
N

15 AD lIin + OS min + - 0 11 0 ~11

16 AD- DS in + 110 200 195 +5
17 AD - MREQ min + 20 45 35 +10
18 CK MREQ + 40 61 70 +9
19 MREQ max - MREQ min + 80 131 135 -4
20 MREQ max - Addr float min + 20 33 35 -2
21 AD - OS min + 15 40 35 +5
22 MREQ - AD- 140 237 230 +7
23 CK MREQ + 45 66 60 -6
24 CK AS + 40 54 60 +6
25 AD - AS min + 20 43 35 +8
26 CK AS + 40 54 80 +26
27 AS - AD - 140 244 220 +24
28 OS - AS min + 15 29 35 -6
29 AS - AS min + 30 51 55 -4
30 AS Addr float 20 -40 45 -5
31 Addr float OS 0 -40 0 -40
32 AS - OS min + 30 53 55 -2
33 OS - AD- 70 132 130 +2

·34 CK OS + 45 66 65 -1
J5 OS - AD min + 25 38 45 -7

(1 ('1 ~.~
I) ..

~

~ ~ ~

Table C-1. EMS 8000 Emulator Timing Analysia (Continued)

DELTA
10 MHz l8000 6 MHz EMS 8000 6 MHz l8000 + = better;

10 MHz Z8000 min max IRin I18X min max - = worae
, .

36 AD - OS min + 65 125 110 +15
37 CK OS + 60 81 85 +4
38 OS - OS min + 110 191 185 +6
39 CK OS + 60 81 80 -1
40 OS - OS min + 75 131 110 +21
41 OS - AO- 120 217 210 +7
42 CK OS + 60 81 90 +9
43 OS - OS min + 160 276 255 +21
44 AS - OS min + 410 693 690 +J
45 CK OS + 65 86 85 -1
46 OS - AD - 165 292 295 -3
47 CK ST + 60 86 85 -1
48 ST - AS min + 10 19 30 -11

n 49 Reset + CK 50 80 70 -10 •
'" 50 Reset min - CK 0 -10 0 +10

» ' 51 NMI+ NMI min - 50 70 70 . 0
52 NMI + ' CK 50 80 70 -10
53 ;, (N)VI + • 'CK 40 62 50 -12

! S4 \ (N)VI min - 'CK 10 3 20 +17
'$5 . 'SEGT + ·»CK 40 62 55 -7
56 'SEGT min - CK 0 -7 0 +7
57 > HI CK 80 98 110 +12
58 >HI CK 0 -6 0 +6
59 CK MO + 70 88 85 -3
60 STOP + CK 50 72 80 +8
61 STOP min - CK 0 -7 0 +7
62 WAIT + CK 20 32 30 -2
63 WAIT min - CK 5 1 10 +9
64 . BUSRQ + ' CK 60 105 80 -25
65 8USRQ min>- CK 5 -10 10 +20
66 CK > BUSAK + 60 78 75 -3
67 CK BUSAK + 60 78 75 -3
68 AD - AD min + 50 107 95 +12
'69 OS - ST min + 30 48 55 -7

(t")
",,-..

I

•

•

-A-

AC power selection, 2:8
Address, logical, 4:6
Address, physical, 2:9, 4:6
ADM-31, 2:2,10

-8-

Baud rate
host, 2:8,12
terminal, 2:12

Boards

EMS 8000
INlEX

Central Controller Unit (CCU), 3:2,3
Emulator, 2:4,5
External Probe, 2:9
Mappable Memory, 2:3,9, 4:6

BREAK (see Keys, function)
Break

group, 2:12, 3:2,3, 4:7
manual, 3:7

Breakpoint, 4:22
Instruction, 4:9,10,23

···Bus
CPU, 2:12
Sample, 3:3

-c-
Cable

connections, 2:4
CPU Pod, 2:3-5
External Probe, 2:4
host, 2:7
target, 2:3,5,6
terminal, 2:6

CCU (see Boards, Central Controller Unit)
Center-trigger, 3:6,7
Central Controller Unit (see Boards, Central Controller Unit)
Change screen (see Screens, Change)
Clock rate, 2:12

1-1

Connands
Display, 4:23,30
Edit, 4:24
Go, 4:26
Host, 4:26
Map, 4:30.33 ' $:>:;"~'
Memory, 4-27
Step, 4:28
Trace, 4:29
Watch, 4:29

Command Syntax, 1:2
Comparison operators, 4:3
Configuration screen (see Screens, Configuration)
Control Keys:

cursor, 4:2
CTRL U, 4:3
CTRL G, 4:4
CTRL C, 4:4
CTRL X, 4:4
CTRL Z, 4:8
(see Cursor Control Keys and Keys, Function)

Control signals (see Signals, control)
CPU

bus, 3:5
clock, 2:12
cycle, 4:7,16
Pod, 2:5

CRT (see terminal, CRT)
Cursor Control Keys (see Control Keys, Cursor)
Cycle delay, 3:9,11
Cycle entries, 4:16
Cycle numbering, 3:7

Data fields (see Fields, Data)
Default value, 4:8
DIP switches (see Switches, DIP)
Disassembler, 4:23
Downloading, 2:10, 8:3
Oynami c memory (see Memory, dynamic)

Edit memory, 3:14, 4:1,24-25
Edit register, 3:14, 4:24,25
Enable, 3:1,8, 4:9,11,12,14
Enable/disable, 3:4,8,9, 4:8-11,13
EMS monitor (see Monitor, EMS)
EPROM, 3:3
Emulator board (see Boards, Emulator)

1-2

•

(

•

Error messages, 3:13, 4:10, B:2
BAD CLOCK, 2:12
TIMEOUT, 2:12

Error record format, B:5
External Probes (see Probes, external)

:;";.i.t /' ,.

.. ~.: .. !;~r,~

.'. ~".

"". ~.~ ;.

External Probe board (see Boards, External Probe)

-f-

Flag Control word (FCW), 4:24,30
Helds

Address, 3:4, 4:6,15,16, B:4,5
Binary, 4:17
Break, 4:5
Clock frequency, 4:7
Counter, 4:12
Data, 4:3,16
Filename, 4:2,26,27, B:2,3
Group Break, 3:2,3,12, 4:7
Internal Operation, 4:7
Logical, 4:14
Memory, 4:6
Mode, 4:7,8
Option, 4:3,17,28,34
Pattern Enable, 4:14
Physical Address, 3:1,13, 4:6
Refresh cycles, 4:7
Timer, 4:12
user-modifiable, 4:2,4

Hnal trigger (see Trigger, final)
Front panel, 2:3,4, 3:13
Fuse, 2:12

-G-

Glitch, 2:9, 4:2,8,17
Group break (see break, group)

-H-

Help facility, 4:34
Help screen (see Screens, Help)
Host cable (see Cables, Host)
HOST program, 2:10,11, 4:26
Host system, 2:1

(,' .- j .~ .

" ~ ~. , '*.

,: "j ':,

;:: ,~:c.::r3

~.. r t .b'~: ~ ,;;.. ~ ~i ~ ~: " , .. ~ (!I f:. .. , ," .~' i ~~; '. _ E r::GnJ
" ?f":.:.i ~ '": ': j Z <":(1,,1 ,,~~~: ..

-1-

Installation, 2:3
Instruction breakpoint (see Breakpoint, instruction)

-3- .

Juq)er placement, 2:9

-K-

Keys, function
BREAK, 2:10,11, A:1
MONITOR, 2: 10, 11, 4:35

Keys, cursor control (see Cursor Control keys)

-l-

Line frequency, 2:12
Logic analyzer, 2:1
Logical addresses (see Address, logical)
Logical fields (see tields, logical)

-M-

Machine cycles, 3:5, 4:21
Manual break (see Break, manual)
Map screen (see Screens: Map)
Mappable Memory, 2:9, 3:2,13
Mappable Memory board (see Boards, Mappable Memory)
MCZ-1, 1:1, 2:2,8,10, 3:1, 8:2,3
MCZ-2, 1:1, 2:2,8,10, 3:1, B:2,3
Memory, 3:9
Memory access violation (see Violation, memory access)
Memory, dynamic, 3:2
Memory Management Units (MMUs), 2:9
Menu line, 3: 13, 14, 4:2,3,5,16,18
MMU (see Memory Management Uni t)
Hodes

Counter, 4:9,12
Timer, 4:9,12
Transparent, 2:11

MONITOR (see keys, function)
Monitor, EMS, 2:10, 3:14, 4:14,35
Multiple snapshots (see Snapshots, multiple)

1-4

•

•

("" ..

•

Nibble, 4:3
NMI, 4:5

Option fields (see rields, Option)

-p-

Partitions, 3:9, 4:20
Pattern screen (see Screens, Pattern)
Pass counting, 4:9,11, B:5
Pass counting, 4:9,11, B:5
Pass count option, 4:11
PC, 2:4,11, 4:22
PDS 8000, 1:1
"Personality" module, 3:2, 12
Physical addresses (see Address, physical)
Pod cables, 2:8
Pod module, 2:3
Ports, 4:25
Post-trigger, 3:7
Power cord, 2:8
Pre-trigger, 3:7
Probe cables (see Cables, Probe)

-,\ ...

.. '-.,',..

" : ',',--'

Probe Interface board (see Boards, Probe Interface) : '.

,;, "
Probes, external, 2:9, 4:17 (I,,;;;..,'~:·,":\
Protection bits, 3:12
Protection modes, 3:13
Pulse output, 3:2

-Q-

Qualification window, 3:8
Qualified cycles, 3:8,9, 4:19

-R-

RAM, 2:9
Real time, 1:1, 3:1
Rear panel, 2:3,6-8, 3:3
Refresh cycles, 3:12, 4:7
RESET (see keys, function)
Reshipment, 2:3
Resource A, 3:4,5,8, 4:9-12,15-18
Resource B, 3:4,5,8, 4:9-12,16
Resource C, 3:4,5,8, 4:9-11,16

" ~ F
' , I ~,;

'-
... 't: ... ~I-'J.

, l : ~. ,,:,~"·' ... i<

f"'~ : .• ', II> "';~h~r:

~:!:~ t·: :S'~6~}-+:t~f~')
(~~~;li:;{"!~'~ ~':";"S"~ ~~-;:~:. H:lllr1~:,,~

.. ,i..:!¥:":' .. ;;:.~.~:': ~~~ .• 2~'.: r'lnj;:'rt.::~~~

\. ;;:; 1 urn ~zJ("r1i:;1q~n2 ~j:~e; :!. :~C~'·~.· ::F.J(:2 !'.~ q.~:' ,~,u; .. ·{

1-5 . i

RIO, 2:2, 3:1
ROM, 3:2

-5-

58000, 1:1, 2:1,2,8,10, 3:1, 8:2
Sample data,"); 12
Screens

Allocation,):14, 4:1,'-11,13
Change, 2:11, 3:14, 4:1,2
Configuration, 3:14, 4:1,4-6
Debug, 3:14, 4:1,21,22, A:5
Help, 3:14, 4:1, A:4
Map, 3:14, 4:30
Pattern, 3:14, 4:1,3,8,13
user, 3:14

Segment number, 3:3, 4:15, 8:3-5
Signals, control

8USREQ, 4:5
NMI, 4:5
NVI, 4:5
RESET, 2:10, 4:5
SEGT, 4:5
STOP, 4:5
VI, 4:5
WAIT, 2:12, 4:5

Signals, timing, 3:12
Snapshot, 3:;.', 4:10,18-20
Snapshots, multiple, 3:5,9.11
Status lines, 4: 16
Step, 3:1,14, 4:4,28
System configuration, 2:2
Switch settings, 2:8
Syntax, 1:2 .j .:;;. ::" •. '"

-T-

Target cable (see Cables, Target)
Target system, 2:1,2,11, 3:1,12
terminal

baud rste (see 8aud rate, Terminal)
cable (see Cables, Terminal)
CRT, 2: 1,2,10
supported, 2:1

Time counter, 3:5
Timer mode (see Modes, Timer)
Timing functions, 3:1
Timing signals (see Signals, timing)
Trace module, 3:1,5,12

1-6 :

&

•

•

•

("

Trace
qualifier, 3:B,9
trigger, 4:10,12

Transparent mode (see Modes, Transparent)
Trigger

final, 3:9,11
module, 3:2-4
resources, 3:1,5

T-State, 3:5

-U-

UNIX, 1:1, 2:2, 3:1
Unpacking, 2:3
User input, 3:3, 4:35
User-modifiable fields, 4:2
User screens (see Screens, User)

-v-

V AX, 1: 1, B: 1
Voltage, 2: 12

-w-
Watch area, 3:14, 4:29

-z-

. .. , , ,,"
t" ',-

.i='j Jo<~~(~-;rJ:~t~ .. f';: ~f t i'{>~LP:x:.
~:\. f" :;.~ >t t J':" ... ~ ~: JtT. ,:.-,::

ei~~f>'" .~~.;:

~ ... : l' t" .. "':' ? ~ : ~ ~ i.~.~"' ~.~ "iU; ~ 18.) ':: ¥

S: .. :> ~,~\ '/~ r ~ f, ?~. f· ,,; ~ ':');~:·tE~r;,,:

f:-~'~, . ;!4. '1>' :"; (~;: r. .. tc~:)r.~,,, "l"r~;.;
4::1. . . $:S,,~·:t:":.J ~~~;;.~ i"p~~\Ni"7.".

, . ,
"~ ." ~. \ ¥

c)'-~ ~)' :'W;~'" • ~ ," ""~ .<>(t .L·:!("~~;'"t ' :::-

; t ~, .. ?: (: r '':I ~ q.r ; ~, .. "r". ~ ~',:' ";~d? ~)~:' ", . ,l r ~:;) 1. ,,/snl.:: e· .. ;';~·~··;?
~i.~:~ ,~r.r.! kC~.~

.. ~\l~ :;-~,.. ·~.<:i .~~~~ ~~fe. ~ c ;.'";

lB001, 1:1, 2:2,5,12, 3:12,13, 4:5,6,15,23,30-32, A:5,6
l8002, 1:1, 2:2,5,12, 3:12, 4:5,15, A:3,6-B
l8003, 1:1, 4:5,23,31

1_7.-1

2:~P"'~~~: 'I:':>~.,1~·5:"; $l~e" ?!ds,;, <r~·7.r.:":rr
s:r-(; ~ 1I>~;.' .. ~r~\:' ";f:~,s'·L::'<'"~ .jSQ":;·r~;

,Lf.tr:.~. ~ '~-;'..~ ...
,1t":ir, .. 1Y!'J~~ fa'J'a~~ '{bbf "8::a~~' ~:t,~~ ~ 'H··.:

(:~~~"' • ..:.~~'1'-:? ff<2t\!_df,~i :'~~~~ s.: ':~':':'I
-, f' -<: ~ ~ ~. "'; ~. ,..
L. (0'- t ; . .:,. (.1.,,..

~!~ ~~:t ·':.J:~~i~~~

(:~ l~s:nwO~ 9~~~
::~smj.r .2~:"'~ eee>: !.,t-orF :~~'q:T

t:t .£!nt:.J:F'Ui' ~'nl'~fl:~
:Q~!retj ter6r~~2 ~~e: . l~r?£e pn!~\7

$':' ! : ~ i : { r 9 ~ 6,," ~.".~;; -s .. .,: e '1 ~

•

•

(:' ...

dn:~ ,",-"
siles & Techaii:iaICenter
ZiY(jq,lncorPorated
131S~DellAvenue
~ll.CA·9S008
Pbone: (40St-'370-8120 .
TWX:· 91()"338-7621

Seles cSt T~:Cen.ter
iUoq.lri~' .
letm'S~y Pin C1tcle'
SuiteJ
hivme. CA;:92714"
Phone: (714}' 549-2891'
TWX:"910·59S·2803 .

Sales·& ,techaicel 'Center
Ziklg. llicoi'pbratei:i ."
15643 Sherman Way
SUite 430' '
Van Nuys. CA '910
Phone: (213) 969'-1485
TWX: 910~495·1765'

Sales cSt TechnicafCenfer
ZilO9. Incorpqrated' .
17~ 112th Av.. N.E.
Suite'DlS}";
BelleVu&,WA 98()().t
Phone: (206) :454·5597

-Sales &:T4!clmic41 Center
ZlloQ.' ~rporated
951 North Plum.:Grove Rc:iad
SUite F
Sc:haumDurg. IL «>~9~·
Phone:'· (312) 885-8080 '
TWX~ 9iO-29-f-l064

SclJ.ea"& TecbnicelCenter
21109;' InCQrpOrated :~ ,
~C~!ivd;
Sti.lte"l09·
W~. Off'44i22
P})o.ne: . <2J:i) 83t-7Q40
FAX~· 216~831-29!7

sau~:

Sales &TecluUi:4l Center
ZUoq; blc0ri30ratect·
4851' KeJler SPnnQ' Road.
Sult.2ll
DallUi'TX :15248.
PhOne:' (214)' 931-9090
TWX: ~ 910-S6Q.'sa50

.Zilag .lncoJ1)Otated
7113 Burnet Rd.
Suite 201· .
AustiPiTX7S'15i .
.PhotiEi: (51"2) 453-3216

Zilog. Inc. 10460 Bubb Road. Cupertino. California 95014

r..
Se.les &: Technicel Center
21log. Incorporated
Corporate Pl4ce
99 South Bedford St.
Burlington. MA 01803
Phone: (617) 273-4222
TWX: 710-332-1726

Soles & TechniCtll Ceriter
Zilog. Incorporated
240 Cedar KMUsid.
Cedar Knolls. NJ 07927
Phone: (201) ~c1671

Technicel Center
~O9. Incorporated
3300 Buckeye Rd_ .
SUite 401
AtIantil. GA 3O!341
Phone: (404) 451-8425

Soles & Technical Center
21109. Incorporated
1442 U.S. Hwy 19 South
Suite 135
Clearwater. FL 33516
Phone: (S13) 535-5571

21109. Incorporated
613-B Pitt St.
Cornwall. Ontario
canada K6J 3RS ' .
Phone: (613) 938-1121

.,

--\. ..
UDittid IiDgdom

Zil"Og (U.K':) Limiteq
Zilog lieuse
43-~:Moprhrid.ge Road
Mald~ .' .
Bex:ks:hitEt'SL6 'SPLEngldll(
Phone: _8·39200 "', .
Telex: 848609 .

'ICIDCW'.
Zil~. InCorporated
T!?ur Europe
CitdeX1_

~ '92d60.l?"isLaPelense
France .'
Pi;Qne:'(l) 77S,14-33
Tef~: -6fl~F'

W_~y
- ".~ ...

Z1log:GrnbH
EscheristitiMe 8

,D:ao2S'tAUFKIRCHEN
M-WUch. :West Germany
Phone: 89-612~6046
Tefex: S2S110'Z,ilog d.

< ,t

Japm .

'Zu9Q. J~:K .. ~.
KonpartdMdQ.· 5F
2-&Akasalur 4-Chome
Minato-Ku. Tokyo 107
Japan
Phone: (81) (03) 587-0528
Telex~ 242202~ AlB: Zilog J

Telephone (408)446-4666 TWX 910-338-7621

Printed in USA

