

This is a technical manual. The information contained herein is subject to change.

Copyright 1981 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than circuitry embodied in a Zilog product. No other circuit patent licenses are implied.

Z-SCAN 8000 EMULATOR

3

.

ð

USER'S GUIDE

This manual applies to serial numbers

3000 and up

TABLE OF CONTENTS

SECTION ONE:	HOW TO USE	THIS MANUAL		1-	1
--------------	------------	-------------	--	----	---

SECTION TWO: GENERAL DESCRIPTION

2.1	Introduction	2–1
2.2	System Features	2-2
2.3	Z-SCAN 8000 Specifications	2-3
2.4	Ordering Information	2-4
2.5	Recommended Systems for Use With Z-SCAN 8000	2-5

SECTION THREE: UNPACKING, INSTALLATION AND CHECKOUT

3.1	Introduction	3-1
3.2	Unpacking	3-1
3.2.1	Reshipment or Relocation	3-2
3.3	Z-SCAN 8000 Power Connection	3-2
3.3.1	U.S. Power Cord	3-5
3.3.2	Power Cord for Other Countries	3-6
3.4	Z-SCAN Unit Operational Check	3-7
3.5	Z-SCAN 8000 and CRT Connection	3-8
3.6	Z-SCAN 8000 Verification	3-10
3.7	Z-SCAN Connection to Host System	3-13
3.8	Troubleshooting Guide	3-15
3.9	Changing the CPU	3-17
3.10	Special Jumper Placements for Dual Resident CPU's	3-19

SECTION FOUR: Z-SCAN MONITOR TUTORIAL

4.1 4.2 4.3 4.4 4.4.1 4.5 4.6 4.7	Introduction Tutorial Hardware Requirements The Keyboard and User Controls Tutorial Presentation Error Recovery Tutorial Script for Z8002 Host System Use with Z8002 Tutorial Script for Z8001	$4-1 \\ 4-1 \\ 4-4 \\ 4-5 \\ 4-5 \\ 4-5 \\ 4-34 \\ 4-4$
4.7	Tutorial Script for Z8001	4-4
4.8	Host System Use with Z8001	4-7
4.9	Conclusion	4-8

SECTION FIVE: TARGET HARDWARE CONNECTION

5.1	Introduction	5-1
5.2	Use of the Emulator Cable	5-1
5.2.1	Clock Source	5-1
5.2.2	Connection of the Emulator Cable	5-4
5.2.3	Checkout of Z-SCAN with Target	5-5
5.2.4	Care of the Emulator Cable	5-6
5.3	Front Panel Switches	5-7
5.4	Hardware Design and Debugging with Z-SCAN	5-9

TABLE OF CONTENTS (Continued)

5.4.1	Emulator dc Characteristics	5-9
5.4.2	Emulator ac Characteristics	5-10
5.4.3	Dynamic Memory Refresh	5-11
5.4.4	Target Memory I/O Access	5-12
5.4.5	Interrupts and Traps	5-13
5.4.6	Memory Management Considerations	5-13
5.4.7	Direct Memory Access	5-14
5.4.8	Termination of Emulation	5-15
5.5	Use of the Hardware Trigger	5-15
5.5.1	Break Pulse Characteristics	5-15
5.5.2	Connection of External Equipment	5-16
5.5.3	Choice of Logic Analyzer Recording Window	5-16
5.5.4	Clocking of Logic Analyzers	5-17
5.5.5	Break Pulse Demonstration	5-18

SECTION 6: MONITOR SOFTWARE DESCRIPTION

6.1	Introduction	6-1
6.2	Z-SCAN 8000 Operating Modes	6-1
6.3	Monitor Mode Överview	6-3
6.4	Z-SCAN Screen Layouts and Command Displays	6-5
6.4.1	The Menu Area	6-6
6.5	Cursor Manipulation	6-6
6.6	Variable Fields	6-9
6.6.1	Hexadecimal Fields	6-9
6.6.2	Multiple Choice Fields	6-11
6.6.3	Other Field Types - File Name and Memory Content	6-13
6.7	Summary of Valid User Input Sequences	6-14
6.8	The Terminal Selection Screen	6-18
6.9	The System Screen	6-20
6.10	The Memory io Screen	6-23
6.10.1	The Compare Command	6-25
6.10.2	The Display Command	6-26
6.10.3	The eXamine Command	6-29
6.10.4	The Fill Command	6-31
6.10.5	The moVe Command	6-33
6.10.6	The reAd Command	6-34
6.10.7	The Write Command	6-36
6.10.8	The Load Command	6-37
6.10.9	The seNd Command	6-39
6.11	The Resources Screen	6-41
6.11.1	The Break Command	6-42
6.11.2	The Inst count Command	6-46
6.11.3	The map Command	6-47
6.11.4	The reGister Command	6-49
6.11.5	The Peek Command	6-5
6.11.6	The Wait states Command	6-52
6.12	The Execution Screen	6-52
6.12.1	The Go Command	6-50
6.12.2	The Next Command	6-5
6.12.3	The Irace Command	6-5
6.13	The Host Screen	6-61

TABLE OF CONTENTS (Continued)

SECTION SEVEN: INTERFACE TO NON-ZILOG HOSTS

7.1	Introduction	7-1
7.2	Data Acknowledgement Messages	7-1
7.3	Data Transmission Messages	7-2
7.3.1	Error Messages	7-2
7.3.2	Data Messages	7-3
7.4	Command Transmission	7-4
7.5	User Abort	7-5
7.6	Detailed Transmission Protocol	7-5
7.6.1	Load Protocol	7-7
7.6.2	Send Protocol	7-9
7.7	Message Syntax	7-10
7.8	Host Program Control Flow	7-1
7.8.1	load Program	7-1
7.8.2	Send Program	7-1
APPENDIX A.1 A.2 A.2.1 A.2.2 A.2.3 A.2.4 A.2.5 A.2.6	A: Terminals Supported by Z-SCAN. Introduction	A-1 A-4 A-5 A-6 A-6 A-6 A-7
A.2.7	Hazeltine Control Sequences	A-8
A.2.8	Hewlett Packard Terminals	A-9
A.2.9	IBM (International Business Machines)	A-9
APPENDIX	B: Tutorial Test Program	B-1
APPENDIX	C: RIO Load and Send Program Listings	C-1
APPENDIX	D: Z-SCAN 8000 Schematics	D-1
INDEX		I-1

LIST OF ILLUSTRATIONS

Figure		Page
3-1	High Voltage Areas - Rear	3-3
3-2	High Voltage Areas - Front	3-3
3-3	Z-SCAN Front Panel	3-4
3-4	Z-SCAN Rear Panel	3-5

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
3-5 3-6 3-7 3-8 3-9 3-10	Z-SCAN Unit and Terminal Connections The Terminal Selection Screen The System Screen (to be inserted on this page) Z-SCAN/Terminal/Host Configuration Top Cover Removal Location of CPU Jumpers on PC Board Component Layout	3-8 3-11 3-12 3-13 3-17 3-20
$\begin{array}{c} 4-1\\ 4-2\\ 4-3\\ 4-4\\ 4-5\\ 4-6\\ 4-7\\ 4-8\\ 4-9\\ 4-10\\ 4-11\\ 4-12\\ 4-13\\ 4-14\\ 4-15\\ 4-16\\ 4-17\\ 4-18\\ 4-19\\ 4-20\\ 4-21\\ 4-20\\ 4-21\\ 4-22\\ 4-21\\ 4-22\\ 4-$	Lear Sieqler ADM 31 Keyboard Layout. Terminal Selection Screen Z8002 Monitor System Screen Z8002 Monitor Memory_io Screen Z8002 Monitor Resources Screen Z8002 Monitor Execution Screen Z8002 Monitor Trace Screen Host Screen, Transparent Mode Cursor in mAp Subscreen Horizontal Cursor Movement. Vertical Cursor Movement. Enabling Mappable Memory Enabling Break Logic Setting Break Address Default Fill Command Display Execution of Fill Command Display with Default Parameters Disassembled Memory Display Set-up of eXamine Command Modification of Memory Contents Checking Mappable Memory Contents Checking Mappable Memory Contents	$\begin{array}{c} 4-3\\ 4-6\\ 4-7\\ 4-8\\ 4-7\\ 4-8\\ 4-9\\ 4-10\\ 4-11\\ 4-12\\ 4-13\\ 4-14\\ 4-15\\ 4-15\\ 4-16\\ 4-17\\ 4-18\\ 4-18\\ 4-19\\ $
4-23 4-24 4-25 4-26 4-27 4-28 4-29 4-29	Use of the Compare Command Instruction Step with Next Command Second Instruction Step Running to Breakpoint with Go Command Use of the Trace Screen Indefinite Emulation with Go Command Manual Break with NMI Switch	4-20 4-21 4-22 4-22 4-23 4-24 4-24
4-30 4-31 4-32 4-33 4-34 4-35 4-36 4-37 4-38	Check of Change with Compare Command Display of Change Setting Peek Parameters Second Manual Break Modification of Break Parameters Modification of mAp Parameters Modification of RO Value Trigger Break on Data Read	4-25 4-25 4-26 4-27 4-28 4-28 4-29 4-29
4-39 4-40 4-41 4-42 4-43 4-44 4-45 4-46	Adjusting Pass Counter Break After Multiple Passes Selection of Write Protect Break Break After Violation Set-up of Multiple Condition Break Break on Address Match Data Read Break on Trace Screen Enabling of All mAp Address Spaces	4-30 4-31 4-31 4-32 4-32 4-33 4-35

LIST OF ILLUSTRATIONS (Continued)

(

*

13

Figure		Page
4-47	78002 Program Example	4-38
4-48	Z8002 Program Creation with RIO	4-39
4-49	Loading of Z8002 Example Program	4-40
4-50	Copying Program with move Command	4-41
4-51	reGister Initialization	4-42
4-52	Set-up of Peek Parameters	4-42
4-53	Emulation and Breakpoint	4-43
4-54	Tracing Initialization Routine	4-43
4-55	Trace of Main Routine	4-44
4-56	Trigger Due to Target Reset	4-44
4-57	Trigger Due to Target NMI	4-45
4-58	Set-up of Stack Write Break	4-45
4-59	Break Following Stack Write	4-46
4-60	28001 Terminal Selection Screen	4-48
4-61	28001 Monitor System Screen	4-48
4-62	28001 Monitor Memory_10 Screen	4-49
4-63		4-49
4-64	28001 Monitor Execution Screen	4-50
4-67	28001 Monitor Trace Screen	4-20
4-00	Russes in ma Subsesses	4-21
4-67	Cursor in Prosk Subscreen	4-72
4-00 4 20	Henizental Curser Meyement	4-77
4-07	Vertical Cursor Movement	4-54
4-70 /_71	Fnabling Mannable Memory	4-24
4-72	Enabling Break Logic	4-56
4-73	Setting Break Address	4-56
4-74	Default Fill Command Display	4-57
4-75	Execution of Fill Command	4-57
4-76	Display with Default Parameters	4-58
4-77	Disassembled Memory Display	4-59
4-78	Set-up of eXamine Command	4-59
4-79	Modification of Memory Contents	4-60
4-80	Checking Memory Contents	4-60
4-81	Use of the Compare Command	4-61
4-82	Instruction Step with Next Command	4-62
4-83	Second Instruction Step	4-63
4-84	Running to Breakpoint with Go Command	4-63
4-85	Use of the Trace Screen	4-64
4-86	Indefinite Emulation with Go Command	4-65
4-87	Manual Break with NMI Switch	4-65
4-88	Insertion of New Instruction	4-66
4-89	Check of Change with Compare Command	4-66
4-90	Display of Change	4-67
4-91	Setting Peek Parameters	4-67
4-92	Second Manual Break	4-68
4-93	Modification of Break Parameters	4-69
4-94	Modification of map Parameters	4-69
4-95	MODIFICATION OF KU VALUE	4-70
4-76 / 07	Adjusting Pase Counter	4-/0
4-7/ /1_90	Aujusting rass councer Break After Multiple Paces	4-// / 71
4-20	DIEAN MILEI MUILIPIE LASSES	4-/1

.

LIST OF ILLUSTRATIONS (Continued)

Figure		Paqe
$\begin{array}{r} 4-99\\ 4-100\\ 4-101\\ 4-102\\ 4-103\\ 4-104\\ 4-105\\ 4-106\\ 4-107\\ 4-108\\ 4-109\\ 4-109\\ 4-110\\ 4-111\\ 4-112\\ 4-113\\ 4-114\\ 4-115\\ 4-116\\ 4-117\\ \end{array}$	Selection of Writer-Protect Break Break After Violation Set-up of Multiple Condition Break Break on Address Match Data Read Break on Trace Screen Enabling of All mAp Address Spaces Z8001 Example Program Z8001 Program Creatiion with RIO Loading of Z8001 Example Program Copying Program with moVe reGister Initialization Set-up of Peek Parameters Emulation and Breakpoint Tracing Initialization Routine Trace of Main Routine Irigger Due to Target Reset Trigger Due to Target NMI Set-up of Stack Write Break Break on Stack Write	4-72 4-72 4-74 4-74 4-74 4-76 4-78 4-79 4-80 4-81 4-82 4-82 4-82 4-83 4-84 4-85 4-85 4-85 4-86 4-87
5–1 5–2 5–3	Clock Jumper Location Z-SCAN Top Cover Removal Z-SCAN and Target System Connections	5-2 5-3 5-5
6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 6-14 6-15 6-16 6-7 6-18 6-19 6-19	Z-SCAN 8000 Operating Modes The Z8001 Terminal Selection Screen The Z8001 System Screen The Z8001 Memory_io Screen The Compare Command The Display Command The Display Command The eXamine Command The Fill Command The reAd Command The reAd Command The Vrite Command The Load Command The SeNd Command The Z8001 Resources Screen Z-SCAN Breakpoint Logic (Conceptual Diagram) The Z8001 Execution Screen Default Trace Display Z8001 Trace Screen after Execution The Host Screen	6-3 6-19 6-21 6-25 6-28 6-30 6-32 6-32 6-33 6-35 6-36 6-38 6-40 6-42 6-44 6-54 6-57 6-59 6-60
7–1 7–2	Flowchart for LOAD Program	7–12 7–13

LIST OF TABLES

ſ

1

Table		Page
3-1	Cable Leads to Connector Terminal Interconnections	3-6
3-2	ADM 31 Baud Rates Supported by Z-SCAN	3-10
3-3	Zilog Host System Terminal Connectors	3-13
3-4	Host Baud Rates Supported by Z-SCAN	3-14
3-5	Troubleshooting Guide	3-15,16
3-6	Jumper Placements for Dual Resident CPU's	3-19
4-1	Key Names and Locations	4-2
4-2	Z–SCAN Front Panel Switch Operation	4-4
4-3	Key Sequence Examples	4-4
5-1	Clock Source Selection	5-2
5-2	Response to Monitor Reset Input	5-7
5-3	Response to Monitor NMI Input	5-8
5-4	Response to Target Reset Input	5-8
5-5	Response to Target NMI Input	5-8
5-6	Monitor Mode Target Signals	5-12
5-7	Z-SCAN Target Access Transactions	5-12
6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-10 6-11 6-12 6-13 6-14 6-15 6-16 6-17 6-18 6-19 6-20 6-21 6-23 6-24 6-24	Software Monitor Commands . Effect of Cursor Control Keys . Effect of User Entry on Hexadecimal Field . Multiple Choice Field Indexes . Effect of User Input on Multiple Choice Field . Terminals and Terminal Type Selection Numbers . Host Baud Rate Values . Status to target Values . Compare Command Fields . Display Command Fields . Fill Command Fields . Write Command Fields . Write Command Fields . SeNd Command Fields . Reak Command Fields . Rreak Command Fields . Inst count Field . Map Command Fields . Fields . Fill Command Fields . Effect of Wait States . Wait States Command Field . Map Command Field . Map Command Field . Map Command Fields . Effect of Wait States . Wait States Command Field . Map Command Field . Map Command Field . Map Command Fields . Effect of Wait States . Wait States Command Field . Map Command Field . M	6-1 6-8 6-9,10 6-12 6-22 6-22 6-23 6-26 6-29 6-31 6-32 6-34 6-35 6-37 6-38 6-41 6-45,46 6-45,46 6-48 6-49,50 6-51 6-53 6-53 6-53
A-1	Terminals Supported by the Z-SCAN Monitor	A-2
A-2	Control Sequence Protocol Symbols	A-3
A-3	ADM 31 and Soroco Terminals	A-4
A-4	ADM 31 Option Settings	A-4
A-5	ADM 31 Baud Rates Supported by Z-SCAN	A-5
A-6	Regent 40 Control Sequences	A-5

LIST OF TABLES (Continued)

Figure Page A-7 Beehive Control Sequences A-6 VI 52 Control Sequences A-8 A-6 A-9 A-7 A-10 A-7 Hazeltine Control Sequences A-8 A-11 A-12 Hewlett Packard Control Sequences A-9 A-9 A-13 IBM 3101 Control Sequences

SECTION ONE

HOW TO USE THIS MANUAL

Z-SCAN 8000, a Zilog Stand-Alone Circuit Analyzer, is a free-standing peripheral unit used for the design, debugging, and testing of equipment based on Zilog's Z8001 and Z8002 16-bit microprocessor. Because different users of the Z-SCAN 8000 have varying backgrounds or needs, various approaches to using this manual are suggested.

Writing conventions used throughout this manual:

- 1. The complement of a signal is specified by a dash (-) following the signal name, e.q., ABC- specifies that ABC is active low (ABC).
- 2. The capital letter in each screen and/or command name indicates the key used to access each CRT terminal display.
- 3. Underscores used within text represent exactly how these items appear on the Z-SCAN terminal screen displays.

Important Notations: Three levels of notation are used throughout this manual to bring attention to specific information and safety precautions. The three levels of notation and their purposes are:

- NOTE Calls attention to specific points of technical or procedural importance.
- CAUTION Calls attention to conditions that could cause possible damage to equipment or facilities.
- WARNING Calls attention to conditions that could cause serious injury to personnel.

Suggested Reading Sequences

- A. All users:
 - 1. Read Section 3, Unpacking, Installation and Checkout, for special instructions and safety procedures.
 - 2. Continue to those items below that are applicable to your situation and system configuration.

B. New Users Unfamiliar with Z-SCAN:

1. Read Section 2, General Description for an overview and glimpse of the features and capabilities of Z-SCAN.

- Read Section 3 and perform the installation and checkout procedures applicable to your system configuration. All users should work from Sections 3.1 through 3.6. Users with a host system, see items E and F.
- 3. Read Section 4, Z-SCAN Monitor Tutorial and then work through the appropriate tutorial for your system configuration. The Z8002 and Z8001 tutorials are designed to accomplish two major tasks:
 - a. Familiarize the user with the functions and capabilities of Z-SCAN.
 - b. Assure that all Z-SCAN functions operate properly.
- 4. Read Section 6, Monitor Software Description, for more detailed information on commands and displays.
- 5. Continue to those items below that are best suited to your needs.

C. Users Familiar with Z-SCAN:

- 1. Review Section 4 and work through the appropriate tutorial for your system configuration.
- 2. See Section 6, Monitor Software Description for more detailed information on commands and displays.
- 3. Continue to any of the following items that best suit your needs.

D. Users With a Target System:

- 1. Complete all items from either B or C above.
- 2. Read Section 5 for the target system connections and supporting information that describes how the Z-SCAN 8000 interacts with the target during debugging.

E. Users with Z-SCAN and a Host System:

- 1. Complete all items from either B or C above.
- 2. If your Z-SCAN configuration includes a target system, complete item 2 of D above.
- 3. Complete Section 3.7 which describes how to connect a host system to Z-SCAN and initialize Monitor mode and Transparent mode.
- 4. Read Section 4, Z-SCAN Monitor Tutorials, and then work through the appropriate tutorial for your system configuration. Section 4.6 of the Z8002 tutorial and Section 4.8 of the Z8001 tutorial describe the downloading facility used by a host system.
- 5. If you have a non-Zilog host system, see F below.

F. Users With a Non-Zilog Host System

Z-SCAN is able to communicate with any system that supports asynchronous serial communication.

- 1. Complete all items from either B or C above.
- 2. If your Z-SCAN system configuration includes a target system, complete item 2 of D above.
- 3. Complete section 3.7 which describes how to connect a host system and initialize Monitor mode and Transparent mode.
- 4. If your host already supports Z-SCAN's downloading facility, you can familiarize yourself with its operation (Section 4.6 of the Z8002 tutorial and Section 4.8 of the Z8001 tutorial).
- 5. If your host does not support downloading, Section 7, Interface to Non-Zilog Host, contains the information needed to write the required host resident utility program.

SECTION TWO

GENERAL DESCRIPTION

2.1 INTRODUCTION

Z-SCAN 8000, the Zilog Stand-Alone In-Circuit Analyzer, is a free-standing peripheral unit that emulates Zilog's Z8001 and Z8002 16-bit microprocessors. These are MOS/LSI, register-oriented CPUs designed for general-purpose applications. Features of the Z8000 CPUs include:

- Available as 40-pin nonsegmented version (Z8002) or 48-pin segmented version (Z8001)
- 110 instruction types
- Eight addressing modes
- 64-kilobyte (Z8002) or 8-megabyte (Z8001) addressing capability in each of the six address spaces
- Synchronous and asynchronous interrupts
- Automatic dynamic RAM refresh
- Single +5 V dc power supply
- Single-phase clock
- Advanced instructions, such as hardware signed multiplication and signed division, for both 16-bit and 32-bit words

The <u>Z8000 CPU Technical Manual</u> (document #00-2010-C) gives a detailed description of Z8000 CPU architecture and applications.

The Z-SCAN 8000 can operate with Zilog's family of development hosts by interfacing to the host and a CRT terminal via two RS-232C serial ports. Because it employs a standard serial interface, Z-SCAN can be used with any software host system that runs a cross assembler or cross compiler capable of generating Z8000 code. Z-SCAN supports the development and testing of this code. Z-SCAN communicates with a host system through a standard serial format that requires only simple download and upload utilities in the host system. For PROM-based target systems, Z-SCAN can operate as a stand-alone unit with a CRT terminal because the monitor and debug software are EPROM resident.

In keeping with Zilog's design philosophy of separating a development system into two identifiable units (the software host and an emulation peripheral), the Z-SCAN fits into three environments.

- As a peripheral to Zilog's Z-LAB 8000, PDS 8000 and ZDS-1 series of development systems, the Z-SCAN 8000 completes the Zilog development support package for the Z8001 and Z8002 microprocessors:
- As a peripheral to any development host capable of compiling or assembling Z8000 code, the Z-SCAN 8000 offers a low-cost emulation capability, which precludes substantial reinvestment in a software host system.
- As a stand-alone in-circuit emulator operating with a CRT terminal, the Z-SCAN 8000 provides simple testing and debugging capability for PROM-based target systems.

5/27/81

2-1

2.2 SYSTEM FEATURES

User Interface. Instead of a line-oriented interface, the Z-SCAN 8000 incorporates a two-dimensional, screen-oriented user interface, which makes it easy to use. A choice of screen erase, line erase and cursor addressing sequences is provided, allowing most popular terminals to be used with Z-SCAN.

The object of the user interface is to provide a screen format with a menulike approach, which directs the user through the operations of the emulator. At all times, the Z-SCAN 8000 displays information about system parameters, system resources, current execution, and error messages. This feature keeps the user informed of the status of the debug process. When the system is turned on, a bootstrap routine sets the baud rate and produces a display, which informs the user of the unit's configuration and requests the user to define set-up parameters. A menu of display choices offers the user various system capabilities:

- The Memory io screen display shows the various memory and I/O manipulation commands that give the user access to the target system.
- The Resources screen display presents the full range of arguments applicable to target system emulation.
- The Execution screen display lists all the commands and parameters necessary for emulation.
- The Trace subscreen presents a disassembled listing of each instruction executed during an emulation.

Execution of specific Z-SCAN monitor commands is always possible, and information on other relevant system parameters and resources is always displayed. This highly interactive user interface makes it possible to use the Z-SCAN 8000 without frequent reference to the operating manual.

Shadow Memory. Although the Z-SCAN system uses a single CPU for both monitor and emulation functions, no restrictions are placed on the size of the target system memory. This is because the entire Z-SCAN monitor resides in Z-SCAN PROM (shadow) memory and therefore does not use the target system memory space or addresses.

Hardware Trigger. The Z-SCAN 8000 offers the versatility of setting breakpoints in either or both of two fields: the address/data field and the control/status field. A pass counter can be set from 0 to a maximum of 255 counts to allow multiple-pass triggering. In addition, Z-SCAN 8000 can also be set to break on instruction fetches only (single-step execution) or, by using a pass counter, can be set for a maximum of 250 counts to allow triggering on multiple instruction fetches (multi-step execution).

The breakpoint logic has two operating modes. In the first, the address/data field and the control/status field must simultaneously match the programmed breakpoint condition to terminate an emulation. The second mode allows either an address/data match or a control/status match to terminate an emulation. This mode can be used to terminate emulation when either of two conditions is detected during an emulation, for example, execution of an instruction at a particular address or acknowledgement of an interrupt. This feature, when

2-2

combined with the multi-step mechanism, allows a break to be programmed on either of two target bus conditions or, if those conditions do not occur, after a set number of instruction fetches.

Mappable Memory. The Z-SCAN 8000 offers a 4K word (8192 bytes) block of high-speed static RAM. This block simulates a target system memory block, which typically is ROM. No wait states are required at 4 MHz. This block is mappable anywhere in the Z8000 address space and can be specified to respond to any combination of normal code, normal data, normal stack, system code, system data or system stack accesses. Mapping must be done on 4K word boundaries only, and the entire block can be protected against illegal emulation memory writes, causing the emulation to either terminate or continue, depending on user options. When a break results from a write protect violation, an error message appears on the CRT display informing the user of an illegal write.

Memory Peek. The Z-SCAN 8000 has a software feature that displays the contents of three 4-word areas of target memory. The display is updated every time an emulation terminates and it supplements the information displayed in the register contents. The three areas displayed, can be at any address in any memory space (system code, normal data, etc.). In addition, the Trace screen displays the data at the top of normal and system stacks.

Wait States. Under software control, Z-SCAN can insert zero to eight wait states in each bus transaction.

2.3 Z-SCAN 8000 SPECIFICATIONS

Nonsegmented 40-pin Z8002 CPU or segmented 48-pin Processors: Z8001 CPU 3.3 MHz (internal), 500 kHz to 4.0 MHz (external) Clock Rate: I/0: Two RS-232C serial ports for terminal and host CRT Terminal: A choice of various CRT terminals (see Table 6.6) Baud Rate: Automatically adjusted from 50 to 19.2K per baud set on the terminal Mappable Memory: 4096 x 16 static RAM (no wait states at 4 MHz when Z-SCAN is operating using an external user clock) Address, data, control, address and control, data and Breakpoint: control, instruction fetch; or a combination of instruction fetch and any field argument. The address field on the Z8001 may be offset, segment or segment and offset. Reset (RESET-), data strobe, (DS-), non-maskable Emulator Input Loading interrupt (NMI-), vectored interrupt (VI-), nonvectored interrupt (NVI-), segment trap (SEGT-): one low-power Schottky transistor-to-transistor logic

8/13/81

2-3

(LS-TTL) load plus 10k pullup plus 30 pF max. All others: one LS-TTL load plus 30pF max.

Driven by LS-ITL buffer with 33 ohm series termination Emulator Output Drive: Cables: Z8002 Emulator 18 inches Cable Z8001 Emulator 18 inches Cable Terminal Cable: 48 inches Front Panel: TARGET/MONITOR toggle switch, RESET and NMI momentary switches, POWER rocker switch with indicator. 40-pin connector, 3M type 3495 (Z8002) 48-pin connector, 3M type 3496 (Z8001) Rear Panel: BNC connector for pulse output, standard LS-TTL level 2x25 pin connectors, 3M type 3483 (terminal and host) 3-pin power connector 1-1/4 in. fuseholder, screwdriver-release type 115/220 voltage selection slide switch Power: 180-264V ac or 90-130V ac switch selectable; 47-63 Hz; 60 VA max. 1-1/4 in. antisurge, 3 A (120 V), 1.5A (220 V) Fuse: 4 in. (10.2 cm) (H) x 17.5 in. (44.5 cm) (W) x Dimensions: 14.5 in. (36.8 cm) (D) Environmental: Operates at 10°C to 50°C: relative humidity 10% to 90% Unit Weight: 25 pounds Shipping Weight: 30 pounds

2.4 ORDERING INFORMATION

05-0103-01

Z-SCAN 8000 Emulator (Supports Z8001 and Z8002 Emulation and Control)

2-4

2.5 RECOMMENDED SYSTEMS FOR USE WITH Z-SCAN 8000

Model	Description	Prerequisite
ZDS-1/25, 1/40	Zilog Development Systems, Floppy-based	Z8000 Software Development Package
PDS 8000, Models 10, 15, 30, 35	Zilog Product Development Systems, Floppy and Hard Disk	Z8000 Software Development Package
Z-LAB 8000	Development Station	None

SECTION THREE

UNPACKING, INSTALLATION AND CHECKOUT

3.1 INTRODUCTION

This section contains instructions for unpacking, installing, checking, and verifying a Z-SCAN unit. The latter part of the section describes the set-up and initialization of a link between the Z-SCAN and a host system. A trouble shooting guide is also included to help users. Refer to Section Five for the target system connection and verification procedures.

All Z-SCAN 8000 shipments include factory-selected 6MHz Z8001A CPU and Z8002A CPU components. The performance is impaired if standard speed 4MHz parts are used. Although the Z-SCAN 8000 can be operated using either the Z8001A CPU or the Z8002A CPU, the original design permitted only one CPU to be installed on the PC Board at a time. As a convenience upgrade, Z-SCAN boards have been updated to allow both CPU's (Z8001 and Z8002) to be resident at the same time. Section 3.9 lists the procedures necessary to change CPU's, especially helpful to those user's with the early Z-SCAN design. For those user's with both CPU's resident on the PC board, refer to Section 3.10 which gives information on rearranging jumpers to access either the Z8001 or the Z8002 CPU.

The following procedures should be followed only if there is no indication of damage. If any damage is detected, installation of the equipment should be immediately suspended and a Zilog field service representative should be contacted.

Three levels of important notations appear within this section to bring attention to specific information and safety precautions. These notations and their purposes are:

- NOTE Calls attention to specific points of technical or procedural importance.
- CAUTION Calls attention to conditions that could cause possible damage to equipment or facilities.
- WARNING Calls attention to conditions that could cause serious injury to personnel.

3.2 UNPACKING

Every Z-SCAN 8000 system is fully inspected and tested before shipment to ensure that it meets specifications. All equipment is packaged for safe transit under normal freight-handling conditions and should arrive ready to be installed. Before unpacking the system, inspect the shipping container for signs of possible damage to the unit during transit. If shipping damage is suspected, claims with the freight carrier should be filed immediately.

To unpack the system, the following steps should be taken:

- 1. Open top end of box and remove packing.
- 2. Lift system out of the carton and remove polyethylene plastic covering.

- 3. Locate the packing list, cables, and accessories and check to see that all items on the packing list are accounted for.
- 4. Replace all packing in the shipping container and store the container until the unit has been checked out and is considered operational, or if possible, keep all packing material for future use (see Section 3.2.1).
- 5. Inspect the Z-SCAN unit for external damage, such as dents, broken switches or loose connections. Any sound of loose items inside the cabinet is evidence of damage. If damage is evident or suspected, make no further attempt to operate the system.

If there is no damage a unit checkout followed by a system setup and checkout (see sections 3.5 and 3.6) should be performed without the target or host system.

3.2.1 Reshipment or Relocation

The packing material has been specially tested to protect Z-SCAN for shipment, therefore the packing boxes and materials should be retained after unpacking.

--NOTE--

Refer to Section 5.2.4, Care of the Emulator Cable, before disconnecting or relocating the Z-SCAN system.

Repack the Z-SCAN equipment in the original packing material for reshipment.

3.3 Z-SCAN 8000 POWER CONNECTION

Connecting power to a Z-SCAN 8000 is the same regardless of whether the system will be used as a Z8001 or a Z8002 system. Special consideration must be given, however, to the power cord used for Z-SCAN, especially if the system is to be used in countries outside United States. See Section 3.3.1 for information regarding Z-SCAN's power cord for U.S. usage, or Section 3.3.2 for information on Z-SCAN's special power cord to be used in all foreign countries.

--WARNINGS--

- a. The Z-SCAN 8000 must be operated with a three-wire grounded power system. Do not use a two-wire power system, as this can damage the Z-SCAN unit and poses a safety hazard to operators and maintenance personnel.
- b. The top cover of the unit must not be removed while the unit is connected to a power receptacle.
 Hazardous voltages exist around the power transformer, the fuse and the power switch. These areas are shown in Figures 3-1 and 3-2.

Figure 3-1. High Voltage Areas - Rear

Figure 3-2. High Voltage Areas - Front

Power Up Sequence

1. Turn the red power switch on the Z-SCAN front panel to the OFF position. Figure 3-3 illustrates the switches and connections on the Z-SCAN front panel.

Figure 3-3. Z-SCAN Front Panel

- 2. Locate the 115/220 voltage selection switch on the Z-SCAN rear panel and verify that it is set correctly for the electrical power source to be connected to the Z-SCAN system. Refer to Figure 3-4 for the approximate location of the voltage selection switch.
- 3. Locate the correct power cord for your country, and discard the other one. Two power cords are included in Z-SCAN 8000 shipments: the power cord to be used in the United States is shipped completely assembled (see Section 3.3.1); the power cord shipped without a plug is to be used in countries outside the United States. Refer to Section 3.3.2 for the instructions to attach a three-wire grounded power plug to this cord.

3.3.1 U.S. Power Cord

The U.S. power cord meets the U.S. National Electrial and Manufacturing regulations and is suitable for use in the United States only. This power cord is identified by the molded plug attached to the cord and is ready to be connected to the Z-SCAN unit. Figure 3-4 identifies the location for the power connection on Z-SCAN's rear panel.

--WARNING--

Do not use the U.S. power cord in any other country as it could damage the Z-SCAN system and pose a safety hazard to operators and maintenance personnel.

Should Z-SCAN's power cord for U.S. usage at any time require a new plug, be sure that the new plug is a three-wire plug and that it is properly grounded.

Figure 3-4. Z-SCAN Rear Panel

3.3.2 Power Cord for Other Countries

--WARNING--

The Z-SCAN unit must be safety grounded (earthed).

The power cord for countries outside the United States is shipped without a plug attached. Use the following instructions to connect a plug:

Connecting a Three-wire Plug for Usage In All Countries Except the United States

The wires in European power cable (mains lead) are colored in accordance with the following code:

- Green and Yellow Earth (safety grounded)
- Blue Neutral
- Brown Live

Since these colors might not correspond with the colored markings identifying the terminals in your plug, connect as indicated in Table 3-1.

 Table 3-1.
 Cable Leads to Connector Terminal Interconnections

Cable Lead (Wire Color)		Use	Connector Terminals: Marking or Color	
1.	Green and yellow	Ground (Earth)	E or Earth	Green or Yellow and Green
2.	Blue	Neutral	N	Black
3.	Brown	Live	L	Red

3-6

3.4 Z-SCAN UNIT OPERATIONAL CHECK

It is important that following the unpacking and installation of the proper power cord to the Z-SCAN unit, all users perform the following initial check of the Z-SCAN unit. These procedures determine if your Z-SCAN unit is operational and must be done before connecting the CRT terminal to Z-SCAN or before changing the CPU to the Z8002 CPU.

--NOTE--

If during the unpacking the Z-SCAN unit appeared undamaged and the power cord installation has been successfully completed, this procedure must be attempted before requesting repair service.

- 1. Set the voltage selection switch (rear panel of Z-SCAN) to the proper setting for your facility. The two settings on Z-SCAN's voltage selection switch are 115 and 230. See Figure 3-4, Z-SCAN Rear Panel.
- 2. Power up Z-SCAN by pushing the red rocker-type switch on the front left panel to the POWER position. This turns the electrical power on to the Z-SCAN unit. See Figure 3-3, Z-SCAN Front Panel.
- 3. Make sure that the red indicator in Z-SCAN's power switch is illuminated.
- 4. Make sure that the Z-SCAN cooling fan is running; do not block the fan exhaust area with cables, books, prints, etc.
- 5. Place the front panel TARGET/MONITOR switch in the MONITOR position. This is a two-position switch; the "up" position is used for Target mode operations, and the "down" position is used for Monitor mode operations.
- 6. Verify that the two other front-panel switches (to the right of the TARGET/MONITOR switch) toggle correctly. These toggle switches are the RESET switch and the NMI switch. Push up on each switch to toggle it. When released the switches should return to their original positions.
- 7. Turn the power switch to the OFF position.

3.5 Z-SCAN 8000 AND CRT TERMINAL CONNECTION

Three ribbon cables are included with Z-SCAN as follows:

- o A 25-pin terminal cable, 1-1/4" (3.2 cm) wide with identical 25-pin connectors at each end
- o A 48-pin emulator cable for the Z8001, 2-1/2" (6.5 cm) wide
- o A 40-pin emulator cable for the Z8002, 2" (5.2 cm) wide
- 1. Select the terminal cable.
- 2. Connect one end of the terminal cable to the Z-SCAN rear panel RS-232 connector labeled "terminal." Figure 3-5 illustrates the connecting areas for the CRT terminal and Z-SCAN 8000 (stand-alone configuration).

Figure 3-5. Z-SCAN Unit and Terminal Connections (Stand-Alone Configuration)

3. Connect the other end of the terminal cable to the main port connector on the rear panel of the CRT terminal. This socket is labeled "MODEM" on most types of terminals.

--NOTE--

Other CRT terminal connectors for printers or auxillary equipment are not used by Z-SCAN.

- 4. Verify that the Z-SCAN 8000 and the CRT terminal are connected to a working power outlet. DO NOT TURN ON EITHER UNIT AT THIS TIME.
- 5. Ensure that the CRT terminal is set to a baud rate supported by the Z-SCAN. Table 3-2 lists supported speeds. Appendix A gives details of specific terminals. A baud rate of 9600 is recommended for most applications.
- 6. Power up the CRT terminal only. A cursor should appear at top left of the CRT display shortly after power up.
- 7. Depress the Cap Lock Key and ensure that the CRT terminal is in Cap Lock Mode (this is optional and not required for Z-SCAN systems operating under Monitor Version 3.1 or higher).

8. Turn the CRT terminal power switch to OFF.

3-9

3.6 Z-SCAN 8000 VERIFICATION

It is assumed that all previous procedures have been correctly performed up to this point. Begin the following procedures with both the Z-SCAN unit and the CRT terminal turned OFF.

A. CRT Terminal Power Up and Setting the Hardware Baud Rate.

- 1. Power up the CRT terminal connected to Z-SCAN. A cursor should appear at the top left of the CRT display about 10 seconds after power up.
- 2. Make sure that the cursor is displayed on the CRT terminal. If the cursor does not appear, refer to the Troubleshooting Guide at the end of this section.
- 3. Ensure that the terminal is set to a baud rate supported by the Z-SCAN. Table 3-2 lists supported speeds. Appendix A gives details of specific terminals. A baud rate of 9600 is recommended for most applications.
- 4. Make sure that the terminal is in CAP Lock mode (not required for Monitor version 3.1 or higher).

Baud Rate	ADM 31 Switch Setting
75	1
110	2
134.5	3
150	4
300	5
600	6
1200	7
1800	8
2400	10
4800	12
9600	14

Table 3-2. ADM 31 Baud Rates Supported by Z-SCAN

- B. Z-SCAN Unit Power Up and Power Check
 - 1. Power up Z-SCAN by turning the red rocker-type switch on the front left panel to the POWER position.
 - 2. Make sure that red indicator in Z-SCAN's power switch is illuminated. This tells you that the Z-SCAN unit is turned on, and that power is being received from the power outlet.
 - 3. Make sure that the Z-SCAN cooling fan is running and that the fan exhaust area is kept clear.

Power Up Sequence

1. Turn the red power switch on the Z-SCAN front panel to the OFF position. Figure 3-3 illustrates the switches and connections on the Z-SCAN front panel.

Figure 3-3. Z-SCAN Front Panel

- 2. Locate the 115/220 voltage selection switch on the Z-SCAN rear panel and verify that it is set correctly for the electrical power source to be connected to the Z-SCAN system. Refer to Figure 3-4 for the approximate location of the voltage selection switch.
- 3. Locate the correct power cord for your country, and discard the other one. Two power cords are included in Z-SCAN 8000 shipments: the power cord to be used in the United States is shipped completely assembled (see Section 3.3.1); the power cord shipped without a plug is to be used in countries outside the United States. Refer to Section 3.3.2 for the instructions to attach a three-wire grounded power plug to this cord.

Figure 4-1. Lear Siegler ADM 31 Keyboard Layout

An upgrade of Z-SCAN's Monitor (version 3.1) permits both upper and lower case terminal input to Z-SCAN.

NOTE

Z-SCAN Monitor Version 3.0 ignores lower case letters except in file names for Load/Send. The cap lock key on the Lear Siegler ADM31 must be illuminated. Monitor Version 3.1 and higher allow both upper and lower case letters for use on commands and the cap lock is no longer required.

Certain key symbols are set in boldface in the tutorial to aid in identifying error recovery points, (as described in Section 4.4.1). Enter these keys as you would normally.

Table 4-2 describes the four operations possible with the Z-SCAN front panel switches. Section 5.3 describes the effects of the TARGET/MONITOR, RESET and NMI switches.
3.7 Z-SCAN CONNECTION TO HOST SYSTEM

It is assumed that the user has successfully completed all of the previous installation and checkout procedures for the Z-SCAN 8000 unit and the CRT terminal connection.

The following step-by-step procedures specify how to **safely** connect a host system to the Z-SCAN system, and perform the basic initialization of the Monitor mode and Transparent mode operations.

If you have problems performing any of the following steps, refer to the Troubleshooting Guide at the end of this section.

A. Connect Host System to Z-SCAN.

- 1. Before connecting the host system to Z-SCAN, turn all units OFF: the Z-SCAN unit, the CRT terminal, and the host system.
- 2. Connect the host system terminal cable to the RS-232C connector on the rear panel of Z-SCAN that is marked "Host". Figure 3-8 illustrates the proper connections. Table 3-3 lists the socket to which the terminal cable should be attached on Zilog host systems.

Table 3-3. Zilog Host System Terminal Connectors

Figure 3-8. Z-SCAN/Terminal/Host Configuration

B. Initialize Monitor Mode, Terminal System Screen and System Screen.

- 1. Turn all units ON (CRT terminal, Z-SCAN and host system).
- 2. Toggle the RESET switch again and press RETURN once. The Terminal Selection screen appears.
- 3. Enter the appropriate terminal type selection number on the Terminal Selection screen and press RETURN once. The System screen appears on the terminal and Z-SCAN is now in Monitor mode.

If an incorrect 'terminal type selection number for your type of terminal is entered on the Terminal Selection screen, it is necessary to redo step two which re-initializes the Terminal Selection screen and then enter a RETURN to initialize the System screen.

C. Select Parameters for Variable Fields on System Screen.

- 1. If the host operates at a baud rate which differs from that of the terminal enter RETURN to move the cursor into the first variable field (host baud rate) on this screen.
- 2. Use the SHIFT and > keys to select the appropriate baud rate for your host terminal. Refer to Table 3-4 for the host baud rates supported by Z-SCAN.

Table 3-4. Host Baud Rates Supported by Z-SCAN

19,200	1,200	134.5
9,600	600	110
4,800	300	75
2,400	200	50
1,800	150	

- 3. If you wish to change the default value of the status to target field, use the cursor down key to move the cursor from the host baud rate to this variable field, then use the SHIFT and > keys repeatedly to select the parameter desired.
- 4. A RETURN must be entered to move the cursor from either of the two variable fields in the System screen to the System screen name (menu area).

NOTE

The cursor must be on the System screen name to either continue operations in Monitor mode or to change to Transparent mode.

D. Change to Host (Transparent) Mode from Monitor Mode.

1. To select Host (Transparent) mode, type H. The initialization message for the Host screen is the word HOST which appears in the upper left-hand corner of the screen. If the terminal and host baud rates differ, set the terminal baud rate to match that of the host, then enter RETURN.

The Z-SCAN system is now in the Transparent mode and serves only as a link between the terminal and the host system.

Entry of a RETURN should elicit the same response from the host, as would be expected if the terminal was directly connected to the host. Refer to the host's documentation for further details.

E. Return to Monitor Mode from Host (Transparent) Mode.

- 1. Press the terminal keyboard BREAK key.
- 2. If the baud rates selected for host and terminal differ, set the terminal baud rate to match that required by the Z-SCAN monitor, then enter RETURN. When the terminal baud rate is correct, the Z-SCAN returns to Monitor mode and displays the System screen.

3.8 TROUBLESHOOTING GUIDE

It may happen that the correct display does not appear on the terminal screen at the end of the verification procedure, or that the host system does not respond correctly. In most cases, this indicates a small oversight in connection or verification rather than a fault with the Z-SCAN or the terminal. Table 3-5 lists the most common symptoms of problems and their causes.

	Symptom	Cause	Solution
1.	Cursor does not appear and cap lock indicator does not illuminate when terminal switched on.	Terminal is not receiving power from the power outlet.	Use a live power outlet and check terminal power connection and switch.
2.	Cursor does not appear when terminal switched on.	Brightness control incorrectly adjusted.	Adjust control (small adjacent to baud rate switch on ADM 31 rear panel).

Table 3-5. Troubleshooting Guide

	Symptom	Cause	Solution
3.	Terminal displays mean- ingless data as soon as it is switched on.	Z-SCAN was powered on before terminal and has interpreted switch-on of terminal as a baud rate syn- chronization signal.	Toggle Z-SCAN RESET switch, then enter RETURN. Check to see that the selected baud rate is supported by Z-SCAN (Table 3-4).
4.	Terminal displays mean- ingless data after RETURN entered.	The value set on the baud rate switch at the rear of the terminal corresponds to a rate not sup- ported by Z-SCAN.	Reset the baud rate switch at the rear of the terminal to a baud rate supported by Z-SCAN. Then toggle Z-SCAN RESET switch and enter RETURN.
5.	No display after RESET and RETURN entered.	Z-SCAN not correctly connected to terminal.	Check that cable links modem socket on terminal to terminal socket on Z-SCAN. Then toggle the Z-SCAN RESET switch and enter RETURN again.
		Z-SCAN's internal clock source jumper is in "external" position. (All units are shipped with this jumper in the "internal" position.)	Refer to Section 5.2.1 for instructions on altering clock jumper position.
6.	System screen not displayed correctly after entry of terminal selection number and RETURN.	Terminal selection number incorrect. Terminal's option switch settings incorrect.	Repeat instructions of Section 3.6 using correct selection number. Refer to Appendix A and terminal documen- tation. Repeat instructions of Section 3.6 with correct settings.
7.	Host system does not respond to characters entered after Z-SCAN has displayed "host" message or responds with garbage.	Host incorrectly connected or in need of initialization. Host baud rate does not match Z-SCAN and terminal baud rate.	Check cable and refer to host system docu- mentation. Set terminal baud rate (Table 3-1), toggle Z-SCAN RESET switch, then enter return H.

3.9 CHANGING THE CPU

The Z-SCAN 8000 can emulate either the Z8001 or the Z8002 CPU, depending on the CPU type installed in the unit. The following procedures are primarily applicable to the Z-SCAN units which permit only one CPU (either the Z8001 or Z8002) to be resident on the PC board at a time. The same monitor software PROMs and option jumper settings are used for either CPU type.

--Note--

Z-SCAN units with both CPU's resident on the PC board require special jumper placements to access either the Z8001 or the Z8002 CPU; refer to Section 3.10 for this information.

To change the CPU, proceed as follows:

- 1. Switch Z-SCAN power off by pushing the red power switch located on the front panel to the OFF position.
- 2. Remove the power cord from the socket on the rear of the unit.

--WARNING--

Failure to remove power from the unit prior to removal of the cover may result in exposure to hazardous voltages.

- 3. Remove the three screws and washers that secure the top cover of the unit, at the left, center and right of the rear panel, as shown in Figure 3-9. Store the screws and washers in a safe place.
- 4. Grasping the rear of the top cover, lift it upward and rearward to release the cover from the front panel (Figure 3-9).

Figure 3-9. Top Cover Removal

5. Locate the two CPU sockets towards the front right of the Z-SCAN circuit board. Using a small screwdriver or IC removal tool, gently pry the installed CPU from its socket and place it in conductive foam for safekeeping.

--CAUTION--

To avoid possible damage to NMOS components by static discharge, it is recommended that both the Z-SCAN chassis and the user are grounded through a high-impedance circuit while the CPU is changed. Do not use the power cord to effect a ground connection.

- 6. Install the alternative CPU in the correct socket. Care is required to avoid bending the pins. The 40-pin socket for the Z8002 is on the left, and the 48-pin socket for the Z8001 is on the right. The notch identifying pin 1 of the component must face towards the rear of the unit.
- 7. To replace the top cover, locate the front flange under the front bezel; insert the front edge of the top cover under the front bezel and swing the rear down. Make sure that the rear flange is inside the rear panel of the unit.

--WARNING--

Do not connect power to the unit until the top cover has been replaced and secured.

- 8. Replace the screws and washers removed in step three.
- 9. Reconnect the power cord to the rear of the unit and verify correct system operation by following the procedure of Section 3.6.

3.10 SPECIAL JUMPER PLACEMENTS FOR DUAL RESIDENT CPU'S

As a convenience upgrade, Z-SCAN production PC boards have been updated to allow both CPU's (Z8001 and Z8002) to be resident at the same time. The new board is identified by the four sets of jumpers at the base of the Z8002 socket (U124). The jumpers are labeled as E17 through E28.

To change between active CPU's:

- 1. Press Z-SCAN's power switch to the OFF position. Power must be turned off before changing between active CPU's.
- 2. Locate the four sets of jumpers at the base of the Z8002 socket marked U124 (see Figure 3-10).
- 3. Move the four jumpers to the appropriate row as indicated in Table 3-6.

× Z8002	Z8001
E 17-18	E 18-19
E 20-21	E 21-22
E 23-24	E 24-25
E 26-27	E 27-28

Table 3-6. Jumper Placements for Dual Resident CPU's

- 4. Change the front emulator cable to the correct one (refer to Section 5.2.2, Connection of the Emulator Cable).
- 5. Press Z-SCAN's power switch to ON.

Figure 3-10. Location of CPU Jumpers on PC Board Component Layout

SECTION FOUR

Z-SCAN MONITOR TUTORIAL

4.1 INTRODUCTION

Z-SCAN monitor software is designed to utilize the facilities offered by a CRT (cathode ray tube) terminal. The entire CRT is used to present the required information, which gives a more complete picture of emulation status than would be possible on a printing terminal. This two-dimensional user interface also allows Z-SCAN to display, for user reference, all the commands that might be entered in a particular context.

These features make the monitor software very easy to use. The tutorial sessions in this section provide keystroke-by-keystroke and screendisplay-by-screen-display introduction to the Z-SCAN monitor software. As the keystrokes and displays differ slightly between the Z8001 and Z8002 CPUs, two versions of the same tuturial are presented.

The tutorials are not designed to present every feature of the Z-SCAN monitor in detail. Instead, they give a feeling for the way the software operates. Section 6 gives definitive information about each of the Z-SCAN monitor commands.

4.2 TUTORIAL HARDWARE REQUIREMENTS

The majority of the session requires no equipment other than a Z-SCAN unit and a terminal. There is no need for Z8000-based target equipment, because Z-SCAN can run emulations even when no target is connected. The final part of each tutorial requires a Zilog host system for demonstrating the Z-SCAN downloading facility. If you do not have a Ziloq host system, you can still run the download demonstration if download software compatible with Z-SCAN exists on your host. For most hosts, this software is provided by the supplier of the Z8000 support software that operates on the host. If your host does not support the Z-SCAN download protocol, Section 7 provides the information required to write a suitable utility program. If you do not have a host system, the example programs can be copied from the Z-SCAN monitor ROM instead of being downloaded.

The parts of the tutorials that demonstrate the download facility do not depend on conditions set up in the previous sections of the tutorials. This means that you do not need to work through the first part of the tutorial script if you only want to use the part dealing with the Load command.

4.3 THE KEYBOARD AND USER CONTROLS

Figure 4-1 shows the layout of the Lear Siegler ADM 31 terminal keyboard. Before starting this tutorial, it is important to know the positions of the keys required and the symbols used in the text to designate these keys. This information is listed in Table 4-1. If your terminal is not an ADM-31, consult Appendix A and the terminal's documentation to find the corresponding keys on its keyboard.

Key Name Key Symbol		Text Symbol	ADM-31 Keyboard Position		
(letters) A through Z		A through Z	Center left. Ensure cap lock key is lit.		
(numbers)	0 through 9	0 through 9	Top left to center or numeric pad at right		
return	RETURN	RETURN	Far right or center right		
space	(blank)	space	Bottom		
control-R	CTRL R	CTRL R	Press the control key and R simultaneously.		
break	BREAK	BREAK	Top center right		
less than	<	<	Bottom center – press shift key and comma simultaneously		
greater than	>	>	Bottom center – press shift key and period simultaneously		
cursor down		down	Bottom right		
cursor up	↑	ир	Bottom right		
cursor left	<	left	Bottom right		
cursor right	>	right	Bottom right		

Table 4-1. Key Names and Locations

Figure 4-1. Lear Siegler ADM 31 Keyboard Layout

An upgrade of Z-SCAN's Monitor (version 3.1) permits both upper and lower case terminal input to Z-SCAN.

NOTE

Z-SCAN Monitor Version 3.0 ignores lower case letters except in file names for Load/Send. The cap lock key on the Lear Siegler ADM31 must be illuminated. Monitor Version 3.1 and higher allow both upper and lower case letters for use on commands and the cap lock is no longer required.

Certain key symbols are set in boldface in the tutorial to aid in identifying error recovery points, (as described in Section 4.4.1). Enter these keys as you would normally.

Table 4-2 describes the four operations possible with the Z-SCAN front panel switches. Section 5.3 describes the effects of the TARGET/MONITOR, RESET and NMI switches.

Text Representation	User Action
Monitor RESET	 Check that MONITOR/TARGET switch points to MONITOR Push RESET switch up
Monitor NMI	 Check that MONITOR/TARGET switch points to MONITOR Push NMI switch up
Target RESET	 Check that MONITOR/TARGET switch points to TARGET Push RESET switch up
Target NMI	1) Check that MONITOR/TARGET switch points to TARGET 2) Push NMI switch up

Table 4-2. Z-SCAN Front Panel Switch Operation

Photographs of the Z-SCAN screen illustrate the sequence of operations. Each step in the sequence is separated by a comma and a space. Do not enter either. Table 4-3 gives examples of keying sequences as they are shown in the tutorial script and as they are actually entered.

<u>Script</u>	Keystrokes Required
A, 8, 0, B	A80B
>, <, <, 0, 1	><<01
Q, S, R, A	QSRA

Table 4-3. Key Sequence Examples

4.4 TUTORIAL PRESENTATION

Before beginning the tutorial, Z-SCAN must be powered up and connected to a terminal, as described in Section 3.5, steps 1 through 8. If you have a Zilog host system, it must also be connected to Z-SCAN in order to demonstrate the download feature. Host connection is detailed in Section 3.7, steps 1 through 7.

The tutorials are presented as a series of steps in tabular form. For each step, a sequence of operator actions is given. For the first few steps, you will probably want to enter each keystroke separately, examining its effect on the display before entering the next. As you become more familiar with the monitor, you will recognize common keystroke sequences that can be entered as a block. The Z-SCAN monitor has a type-ahead feature that allows it to accept

5/27/81

new user input before it has finished processing previous input. Note, however, that type-ahead only operates when the monitor software is running, not when a user program is running during an emulation. You will also recognize that not all the keystrokes listed for each step are strictly necessary. Some redundant entries are included simply to illustrate their effect.

The accompanying text explains the effect of your input for each step in the script. In most cases, photographs of the screen highlight areas of interest. The text introduces a number of technical terms specific to Z-SCAN. The first appearence of each term is in boldface.

4.4.1 Error Recovery

It is quite likely that sometime during the tutorial you will make a keying error. Often this has no effect, because in many situations Z-SCAN ignores invalid input. You simply need to follow the incorrect keystroke with the correct one.

In other cases, an incorrect key can be accepted as valid input. When this happens, what you see on the screen at the end of a step is not the same as the photograph in the manual. It is important to backtrack and fix the incorrect parts of the screen before proceeding to the next step in the tutorial. To make this easier, error recovery points are identified in the script. If, at the end of a step, the display is incorrect, proceed as follows:

- 1. If the cursor is not inside the parentheses on line 23 of the display, enter RETURN. If this does not move the cursor to line 23, try a second RETURN, BREAK or monitor NMI.
- 2. If the screen name at the left of the line in which the cursor now rests is not that shown in the most recent photograph, call up the correct screen by entering the first character of its name.
- 3. Re-enter tutorial input from and including the last boldface keystroke in the script to the end of the current step.
- 4. If the display is still incorrect, try to correct it by using unscripted key sequences. Make sure that the cursor is in the position shown on the photograph at the end of the sequence.
- 5. Should this fail to correct the error, the safest thing to do is to restart the tutorial from step 1. It should seldom be necessary to restart, especially as you become more familiar with the Z-SCAN commands.

4.5 TUTORIAL SCRIPT FOR Z8002

The Tutorial Script for the Z8002 begins on the following page. If a Z8001 is currently operating in your Z-SCAN unit, follow the tutorial of Section 4.7. Re sure not to type the commas or spaces shown throughout the key sequence. 1. Monitor RESET, RETURN

Z-SCAN is RESET. All information about the previous state of the hardware and software is lost. The monitor software uses the RETURN character to set up a baud rate generator, then displays a **menu** of the CRT terminal types supported by the software. The cursor (a steady or flashing bright square on most terminals) appears in the center of the bottom screen line.

2. Terminal selection digit

To configure the monitor for your terminal, enter one of the digits listed in the menu. If your terminal is not one of those listed on the menu, consult Appendix A and the documentation for the terminal. Pick a digit that corresponds to a protocol supported by the terminal.

3. RETURN

The CRT screen is cleared, and the System screen is displayed. The cursor rests on the name of the screen, which is in parentheses on line 23, part of the menu area. This screen gives information about the status of the Z-SCAN hardware, for example, the CPU type currently operating and the software revision level. The displayed baud rates and revision level may differ from those shown in the figure, but the CPII type must be the same. If it is not, follow the alternative tutorial of Section 4.7. If the display is corrupted, the digit entered in step 2 is incorrect and you must repeat the tutorial from step 1.

Figure 4-2. Terminal Selection Screen

	Z-SCINI BOOD
	Z8882 NONITOR Version 3.8
terminal band rate:	5660
heet baud rate:	\$660
status_to_target:	internal_op
(Dustes Canada)	Constitution Heat

Figure 4-3. Z8002 Monitor System Screen

Commentary

-1

4. M

The single-keystroke **commands** you are allowed to enter appear as upper-case letters in the words outside the parentheses in the menu area. The command M calls up the **Memory_io** screen. Again, the cursor rests on the name of the screen, which appears on line 23 in the menu area.

٠

Figure 4-4. Z8002 Monitor Memory io Screen

Figure 4-5. Z8002 Monitor Resources Screen

5. S, R

Commentary

In step 5, you went from one screen to another by way of the System screen. However, it is usually possibly to move from one screen to another with a single keystroke. The Execution screen is **activated** by the command E.

1

One display, the Trace screen, is accessible only from the Execution screen. Notice that there is no menu area because this screen does not support a variety of commands. It is dedicated to providing a detailed picture of program execution.

111

1

Figure 4-6. Z8002 Monitor Execution Screen

Figure 4-7. Z8002 Monitor Trace Screen

5/27/81

6. E

7. T

一, 大田市村

Commentary

8. RETURN, H

Enter a RETURN to exit from the Trace screen to the Execution screen, then enter H. The Host command selects **Transparent** mode, allowing the terminal to communicate with a host system through Z-SCAN. You can enter the command even if no host is connected.

Figure 4-8. Host Screen, Transparent mode

Commentary

9. BREAK

10. R, A

Key Sequence

Step

Transparent mode is terminated when the BREAK key is entered. If the System screen does not reappear, consult your terminal documentation -you may have to press another key at the same time as BREAK, or the key may be disabled by an option setting inside the terminal. A monitor reset can be used to end Transparent mode, but its use is not recommended because it destroys any information that was set up inside the Z-SCAN.

So far the cursor has remained at the bottom of the screen except when the Host command was used. All of the user-modifiable fields on the Z-SCAN screens are outside the menu area. The fields are divided into groups, known as subscreens. Each subscreen is associated with a particular command and can be entered by keying the capital letter in the command name as it appears in the menu area. Note that as soon as you enter the A command, the first menu line changes to reflect the selected command, and the cursor moves to the top left field in the mAp subscreen.

Figure 4-9. Cursor in mAp Subscreen

Commentary

11. RETURN, B

To move the cursor back to the menu area, enter a RETURN. The menu display does not change because the mAp command is still active. It is altered when a new command, Break, is activated. The cursor moves to the top left field in the Break subscreen.

Figure 4-10. Cursor in Break Subscreen

Commentary

12. RETURN, Q, S, R, A You should now be comfortable with activating screens and commands. The only new command in this sequence is Quit. It deactivates the current command and modifies the menu to show the names of the other screens.

- 13. RETURN, S, R, A It is not necessary to use the Quit command before moving to another screen. You can enter the initial letter of the new screen name even if it is not currently listed in the menu area.
- 14. right, right, right left, left, left, left

Most subscreens consist of more than one field. Once the cursor is in a subscreen, it can be moved to the other fields in the same subscreen by using the cursor control keys. If the cursor left key is entered while the cursor is in the leftmost field,the cursor **wraps around** to the rightmost field in a subscreen line.

Figure 4-11. Horizontal Cursor Movement

5/27/81

Commentary

15. right, down, down, down, up, left, right The same wrap-around applies in the vertical direction. Note that when there is only one field on a particular line of a subscreen, the horizontal cursor movement keys cannot move the cursor out of that field. The cursor keys can never move the cursor out of the active subscreen.

Inst_count 81 Wait_states 0 Break ъÂр pulse_&_break status disable space count 01 address address 0000 system word instr fetch1. read nprotect re6ister FCY COOC HSP Peek space address (Resources Screen Break Inst_count Quit Hait states mAp Commandi reGister - F eAp Peek

Figure 4-12. Vertical Cursor Movement

16. RETURN, RETURN

The RETURN key moves the cursor back to the menu area. Because the command remains active, a second RETURN moves the cursor to the top left field in its subscreen: there is no need to re-enter the command name.

17. >, >, <, 0, 1, space G, F, H, CTRL R, >

Each of the six fields on the first line of the mAp subscreen corresponds to one of the Z8002's address spaces, and each has just two possible values. In the default state. an underbar is displayed, indicating that the 8K bytes of mappable memory will not respond to CPU accesses made to a particular address space during an emulation. In the alternative state. a two-letter abbreviation for the name of the address space (for example, SC for System Code) shows that the mappable memory will respond. You can step forward or backward through the possible values with the > and <keys or you can access them directly by entering 0 for the first choice and 1 for the second. Alternatively, space and F select the default and final values. CTRL R restores the field to the value it held when the cursor entered it. Other printable characters that are not hexadecimal digits do not affect the field.

Figure 4-13. Enabling Mappable Memory

Commentary

18. RETURN, B, 2

The emulation you are going to run requires a **breakpoint**, so you must enable the breakpoint logic by setting the first field of the Break subscreen to "enable*". This tells the logic to search for a simultaneous match in both the address field and the various status fields.

4-15

The breakpoint address is not correct and must be changed. The address field contains four hexadecimal digits and can hold any value between 0000 and FFFF. Use > and < to move the cursor within the field, and enter new hex digits to change the value. You have now set a breakpoint that will be triggered when the first word of an instruction is read from system code location 0010.

Figure 4-14. Enabling Break Logic

Figure 4-15. Setting Break Address

Key Sequence

Commentary

Move to the Memory-io screen. When it is displayed, notice that the top three lines are blank.

Fill is listed as a valid command in the menu area. As soon as the command is activated, the cursor moves to the first field of the Fill subscreen, which appears at the top of the screen.

22. left, 1, F, F, F, down A, 8, 0, B

Use the Fill command to fill mappable memory, which currently extends from address 0000 to 1FFF in system code space, with increment byte register instructions (opcode A80B, mnemonic INCB RHO, #12). In order to do this, you must change the contents of some of the fields on the subscreen. The Fill string can be up to 16 hex digits long, but only four are required in this case.

23. RETURN

After the parameters have been set up, the command must be executed by entering a RETURN. Before execution starts, the cursor moves to the bottom of the central window area. The message "DONE" is displayed when execution is complete.

Figure 4-16. Default Fill Command Display

target: space	SC	begin_address	0000	end_address	1FFF
string	ACC3				·
(Memory_10) Compare Di	Screen	111 Command	0	0 	lu i t e e Nd

Figure 4-17. Execution of Fill Command

Step

20. M

21. F

24. D, RETURN

The Z-SCAN Display command is used to look at the contents of memory. In order to look at the bottom of system code memory, you do not need to change the default parameters that appear at the top of the screen when the command is activated, so execute the command immediately. Addresses appear at the left of the screen, data in the center and at the right is an ASCII representation of the same data. Neither A8 nor OB corresponds to a printable character. Periods are used to show this. The asterisks are delimiters.

Commentary

source	: spac	e SC	2	iddres	s s	9888		type	⊎ord				
0000	0000	0000	0000	0000	0000	0000	0000	69 9 8					
0000-	0000		0.0000	100.00 00000	0000	0000	0000	0000					
0.010			1.0.00	niai Jud Antan	0000	0000	0000	0000					
0.040				1000	1000	10.00	1000	0000					
					1000	1000	1000	0000					
							HOUU	1000					
0.300			.	<u>.</u>		1000	10.00					5	
6				í	i	ii	1000	10000					
. 9909							1000	0000					
÷							1000	0000					
- 18-1 19-19-1							1000	0000		1			
								0000					
					i liter Nord		0000	0000					
1000			4 1 1	0.000	0.00			A998					
COL	P TOT		0.000	0 1100 0 000	0 0.000			ARAR					
ORF	1 661	1 6 6 6	A 600	R ARE	R AGE	RARA		ABBR					
010	8 888	B A86	18 A88	8 A80	8 A80	B A800	A 800E	88 0 8		٠	,		
(Me	Dory 1	• Sci	reen	Dise	lau (0.00000	4.1			au.t			
Co	pare	Disp	lay	Xanır	ne Fr	11	nVe r	e Hd	where the	uad keNd			

Figure 4-18. Display with Default Parameters

25. down, up, RETURN

After the Display command has filled the window area, the cursor rests at the bottom right of the screen. You can enter cursor down to display the next block of memory or cursor up to display the previous block. The command is terminated when RETURN is entered.

Same

Commentary

26. RETURN, left, 3 RETURN, RETURN The command remains active as long as its name appears inside the parentheses on the menu line, so a second RETURN moves the cursor back into the parameter subscreen. Set the type field so that memory is displayed as **disassembled** nonsegmented Z8002 instructions.

source:	space SC	address	-6333	type	nseg		
	ARAR		INCB	RHA	12		
0002	ARER		INCR	RHA	12		
	AREA		INCR	RHA	-110		
	ARAR		INCR	PHP	112		
	ARE		INCR	PHA	012		
CODA	ARR		INCR	RH9	112		
000C	ARAR		INCR	2119	012		
0.000	ABBB		INCR	RHØ	117		
0010	ABCB		INC8	RHØ	110		
012	ACCE		INCB	RHO	•1 <i>c</i>		
0614	A868		INCB	RHB	♦ 12		
0016	ABCB		INCH	RHØ	₩12		
	A 8 6 8		INCB	RHØ	1 1.		
	6303		1 MCB -	RHØ	$\bullet 1\dot{c}$		
			I HCB	RHB	•1 <i>c</i>		
	6608		I NCB	RHØ	112		
0060	i		1 MC8	RHØ	● 17		
(He w	TN 10 Scree		(neeand)			Quit	
Comp	are Display	eXamine	Fill moVe	r e Ad	Write to	ad seNd	

Figure 4-19. Disassembled Memory Display

27. X, right, 1, F, F, C RETURN

The eXamine command allows you to look at and, if desired, modify the contents of memory. Like Fill and Display, it has a private subscreen. The first location you need to examine is the word at system code location 1FFC. Its current contents are displayed when the command is executed, and you are prompted for a new value to replace them.

5/27/81

Step	Key	Sequence
------	-----	----------

Commentary

28. 5, E, F, <, O, 8, 1, 8 down This step replaces the two INCB instructions at the top of mappable memory with an unconditional jump to location 0018 (opcode 5E08 0018, mnemonic JP %0018). The < key can be used to backspace over incorrect input. When sufficient digits have been entered to fill the open location, the new value is stored and the next location is opened automatically. The cursor down key opens the next location immediately, storing any digits that have been entered. The data seen in location 2000 may vary because no memory responds at that address.

Cursor up reopens the previous location, showing that the two digits entered in the previous step have been stored right justified in a

field of zeros.

Source: space SC address 1FFC type word CUBBENT NEW NOOR CONTENTS CONTENTS 1FFC noge (SENO 1FFE NOIS (18 2000 2001 (1) 1FE NOIS (18 2000 2001 (1) Compare Screen eXamine Command) Guit Compare Display eXamine Fill move refid Hrite Load setting

Figure 4-21. Modification of Memory Contents

type word address 1FFC source: space SC ADDR CURRENT NEH Contents < 5E 88 0018 2001 1FFE 2000 (Memory in Screen emmaine Command Compare Display eXamine Fill meyr

Figure 4-22. Checking Memory Contents

29. up, RETURN

:

Commentary

5/27/81

30. C, left, 1, 0, 0, 0 left, 1, RETURN

Just to check that everything is set up correctly, the Compare command is used to find the differences between the contents of the top and bottom 4K byte blocks of mappable memory. The byte count field for this commands is, like all Z-SCAN monitor numeric fields, hexadecimal (1000 hex = 4096 decimal = 4K). When the command is executed, it should reveal that just four bytes differ between the top and bottom halves of the memory. If it shows anything else, you have probably made a mistake somewhere and not corrected it. Type R, A or, if the cursor is at the bottom right of the screen, RETURN, R, A and repeat the tutorial from step 17.

source: space target: space	SC address 1000 SC address 0000	count 1000	
SOURCE ADDR CONTENTS	TARGET S ADDR CONTENT		
1FFC 5E 1FFD 08 1FFE 00 1FFF 18	OFFC AB OFFD OB OFFF AB OFFF AB		
PRO L			
(Memory 10 %)	Creen Dompare (ummand).		

Figure 4-23. Use of the Compare Command

Step Ke

Key Sequence

Commentary

The program in the mappable memory consists of 4,094 (decimal) INCB instructions and an unconditional

jump. It can be run from the Execu-

tion screen. The default values of

the Program Counter (PC) and Flag

and Control Word (FCW) are suitable

for running this first emulation.

The emulation will run in system

mode because bit 14 of the FCW is

31. E

32. N

set. The Z8002 CPU always runs in nonsegmented mode. It ignores bit 15 which selects segmented mode and is also set in the default FCW value provided by the monitor. The Next command steps through the number of instructions displayed in the Instruction count field at the top right of the screen. In this case, the count is one. After the single instruction has been executed, the whole screen is redisplayed, updating the emulation status. Three registers are affected: RHO, the high byte of RO has been incremented by 12 (decimal); the PC has moved to next instruction and bit 15 of the FCW is now clear because of it cannot be set on the Z8002. The top instruction and register values reflect the state of the program after the emulation, the bottom values the state before.

5/27/81

33. RETURN

Now that the Next command is active, it may be repeated by entering return. Again, the PC value changes and RHO is incremented.

Commentary

Figure 4-25. Second Instruction Step

Figure 4-26. Running to Breakpoint with Go Command

34. G

The Go command starts an emulation which does not stop until a break condition is encountered. Your program should **trigger** the breakpoint logic when an instruction is fetched from location 0010. The breakpoint is honored after the instruction has been executed so that the emulation ends with the Program Counter pointing to the instruction at location 0012. Note that the termination message is different from that of the Next command.

Step

35. T

Key Sequence

Commentary

Emulations can also be run from the Trace screen, which disassembles each instruction before it is executed. The instruction which appears in the center of the screen is the first to be executed when emulation starts. The bottom of the screen displays register and memory contents. The function of these fields will be explored later.

Entering cursor down results in the execution of the number of instructions given in the count field at the bottom left of the screen. PC and FCW values are given for each instruction executed, and the first instruction executed is flagged with an asterisk in column 1. The remaining registers are not redisplayed until all the instructions have been executed. The FCW values at the right of the screen show that the value in RHO has overflowed and become negative.

											~	FCN	
Contents-			nne	0010	~~~~		112					1000	
ACC3			1.0	В	.14.		112						
ACC 8			16.0	8	.t		•1 <i>C</i>					4920	
ACCO				8			12					4030	
ABBB				8			ş14					4828	
8888			H K	8	RHC		12					4628	
ARER			INC	8	810		12					4620	
ABBR			INC	18	313		112					4020	
ABOR			IN	R	RHS		112					4620	
A POR				R	21.2		12					4620	
AREA			IN	R			12					4620	
6666				R	PH 2		112					48/0	
REER			ĪN	B	210		12					4620	
		-05	- PK	.07	- 99	- 19	- 210-	-R11	R12 ·	R13	R14	R1D	
	n ĉien	n a	î.	<u>.</u>	<u></u>		0000						
108 8008 BBC					0.000								
Hode Stack-				-Nore	al No	de St	ack ·						
003 0005 000	17 0009				C3		1007	6669				-	
003 0005 00	7 0009			1001	038	b	0007	0009		000		1.1.1.1.1	
C0000			- SC -		888-			SC	0000	0009	69 F P		
icue rege re	08 8000		1808	6.900B		A868		10.00	0000		0908		
	Contents- A998 A998 A998 A998 A998 A998 A998 A99						Contents	Contents	Contents	Content:	Contents	Contents	Contents

Figure 4-27. Use of the Trace Screen

4-23

36. down

Commentary

Step Key Sequence

37. RETURN, G

Return from the Trace screen to the Execution screen and start another emulation with the Go command. This time the breakpoint is not encountered - the program loops in the address range 0018 to 1FFC, avoiding location 0010. While the emulation is running, the cursor rests in the blanked return message line and the terminal keyboard is disabled.

Figure 4-28. Indefinite Emulation with Go Command

Figure 4-29. Manual Break

Manual Break with NMI Switch

38. monitor NMI

The monitor NMI signal acts as a **manual break** request during emulations run from the Execution screen. The emulation terminates when execution of the current instruction is complete. The break address and register contents you see will probably be different from those in the photograph, but this does not matter. Commentary

39. M, X, right, space CIRL R, O, O, 1, 8

To explore further facilities offered by Z-SCAN, an instruction which reads and writes memory is required. Use the Memory_io screen eXamine command to insert an instruction at location 0018. Two of the keystrokes in this sequence are redundant. The space restores the address field to its default value and CTRL R cancels any changes made since the cursor entered the field.

The instruction is "INC %0010,#16"

(increment by 16 the word at loca-

tion 0010). It has a two-word op-

code, 690F 0010.

40. RETURN, 6, 9, 0, F, 1 O, RETURN

41. C, BREAK, RETURN, left O, RETURN Check memory contents again by using the Compare command. Extra keystrokes in this sequence show that the BREAK key moves the cursor back to the menu area without executing the active command and that the monitor does not allow you to enter an illegal value in a numeric field: the previous value of the field is restored. When the command is executed it should show eight differences.

Figure 4-30. Insertion of New Instruction

source: space SC target: space SC	address 1999 address 8668	count 1000	
SOURCE ADDR CONTENTS	TARGET Addr Contents		
1018 A8 1019 08 101A A8 161B 88 1FFC 5E 1FFD 88 1FFE 98 1FFF 18	80818 69 90819 9F 90819 8F 90818 18 90710 88 9FTC 88 9FTC 88 9FFF 88		
9900 DIFFERENCE	c		
(Nemory to Scri Compare Disp)	cen Dompare Command av eXamine Fill move	wi⊔ t ∍en-nd werte orad verMd	

Figure 4-31. Check of Change with Compare Command

5/27/81

Key Sequence

Commentary

42. D, RETURN, RETURN

Display disassembled memory to show the new instruction at location 0018.

source: space SC	address 8888 -	type	nseg			
	INCE	.u	•12			
	INCB		12			
	INCB	. di	1 2			
	INCB	RHO	12			
	INCB		17			
and the second	INCB		•12			
	INCB		•12			
Color Color	INCE		•12			
12 0000	INCE	kh U	- 12			
14 0000	INCE	kin.	112			
0016 0000	INCB	- KHU	12			
0018 690F not		KNU 20010				
MOIC AREA	INCD	40010	10			
MOIE MONG	TNCB	DMO	12			
4008 ABB8	INCR	PH9	12			
- 222 NB08	INCB	RHO	•12			
(Memory_10 Scree Compare Display	n Display Command) eXamine Fill moVe	reAd Hr	ite lo	Quit ad seNd		

Figure 4-33. Setting Peek Parameters

43. R, P, right, >, >, 1, RETURN The added instruction modifies the contents of location 0010 each time it is executed, so it is desirable to know how they have changed after each emulation is run. Z-SCAN displays the contents of selected locations on the Execution and Trace screens. The monitored addresses are set up by the Peek command on the Resources screen. Modify the first of the three addresses to 0010.

nce

Commentary

44. E, G

Now call up the Execution screen and start an emulation. The top line of the first Peek field shows the contents of word locations 0010 through 0016 as they were before the emulation started.

45. monitor NMI

You might think that this emulation should stop with a trigger break, because location 0010 is being read by the new instruction. The trigger logic does not fire because the break parameters are set up for an instruction fetch, not a data read. so the emulation must be terminated with a manual break. Looking at the Peek memory areas, you see that the contents of location 0010 have not changed during the emulation. Remember that the mappable memory has been set to respond only to system code space accesses. This explains why the system data accesses made by the new instruction do not affect it.

Figure 4-34. Second Manual Break

Commentary

46. R, B, up, left, >, >,

To fix these two problems, leave the Execution screen, which, though it displays data about mappable memory and the break condition, does not allow you to modify the parameters. Use the Resources screen Break command to set up a breakpoint on a data memory request. This is one of 16 possible values in the bus cycle type field. As usual, you can select a choice either by stepping through the table of possible values or by entering a number that corresponds to the required choice. The space character selects the default value.

F, <, space, 1, 2, 9, RETURN

The second field in the mAp subscreen determines whether or not the mappable memory responds to system data accesses. Entering a 1 sets the field to "SD". The mappable memory now responds to two types of accesses. For this reason, it is not necessary to modify the memory space parameters of Peek. System code location 0010 is the same memory word as system data location 0010.

Figure 4-36. Modification of mAp Parameters

4-28

5/27/81
Commentary

48. G, A, B, RETURN

The last action on this screen is to set up a new starting value for RO with the reGister command.

49. E, G

Start a new emulation. This time, the trigger fires almost immediately, and when the execution screen is redisplayed, you see that the contents of location 0010 have indeed changed from A80B to A81B. The Program Counter points to location 001C, the word after the instruction that caused the break condition to be met. The condition flags in the FCW reflect the fact that location 0010 holds a negative 2's complement number.

È.

Figure 4-37. Modification of RO Value

Figure 4-38. Trigger Break on Data Read

50. R, B, down, left, 5 RETURN

Key Sequence

Associated with the breakpoint logic is a **pass counter**. If you load it with 51 hex (that is 81 decimal), the program loop is executed that number of times on the next emulation.

After the emulation begins, there is a short delay before the breakpoint is encountered the number of times programmed. When the emulation ends, location 0010 has been incremented by 510 hex (51 x 10), showing that the correct number of passes has been made.

Figure 4-39. Adjusting Pass Counter

Figure 4-40. Break After Multiple Passes

5/27/81

Step

51. E, G

Commentary

52. R, A, up, 2, RETURN, B, space, RETURN

The INC instruction writes memory and can be used to show the Z-SCAN's write protect feature. To do this, disable the breakpoint and enable a write protect break.

The next emulation terminates with a message warning of a write protect **violation**. Although the offending instruction has been executed, the contents of mappable memory remain unchanged and the data that the CPU attempted to write into memory is lost.

Figure 4-41. Selection of Write-Protect Break

Figure 4-42. Break After Violation

53. E, G

Commentary

54. R, A, up, space, RETURN

Clear the write protect break.

55. **B**, 1, down, left, space, left, 1, F, F, A, RETURN Now select a break on the first occurence of either any reference to location 1FFA (in any address space) or any word read from system data memory. "enable+" designates this mode of operation.

Figure 4-44. Break on Address Match

56

4-32

56.E,G

Return to the Execution screen and run an emulation. It stops at location 1FFC because the address of the previous instruction has fired the trigger. The contents of location 0010 are unchanged, indicating that the instruction at location 0018 was not executed during the emulation.

Commentary

57. T, down

A trace terminates after only two instructions have been executed because a trigger is caused when the instruction at location 0018 performs a data memory read. Emulation stops as this event has precedence over the step count of 000B (11 decimal) instructions. A break message replaces the prompt that normally appears on the bottom screen line. The Peek display shows that the contents of location 0010 have changed.

Figure 4-45. Data Read Break on Trace Screen

4.6 HOST SYSTEM USE WITH Z8002

The tutorial script continues on the next page. If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8002 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

Commentary

58. RETURN, R, RETURN, R, A, 1, right, 1, right 1, right, 1, right, 1, right, 1, RETURN The example program that is run in this part of the tutorial generates accesses to all six Z8002 memory spaces. Select the Resources screen and set up the mappable memory to respond to all types of access: code, data and stack references in both system and normal modes.

4-35

NOTE

If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8002 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

Before you can use the Z-SCAN **down**load command, you must have a Z8002 program to load. Your host's utilities and support programs can be used to create it. Type H to enter Transparent mode.

60. Bootstrap your system

Unless it is already up and running, load the operating system of your host. For Zilog PDS 8000 systems, press the reset button on the front panel of the system, then enter RETURN at the terminal keyboard. For ZDS/1 systems, press wait, then enter two returns. An operating system diskette must be present in drive zero or, for hard disk systems, the disks must be spinning. If you have a non-Zilog host, follow the bootstrap procedure described in its system manual.

Step

59. H

Commentary

3

61. Enter, assemble and image the example program

Figure 4-47 shows an example program that is compatible with Zilog's Z8000 PLZ/ASM assembler, version 2.02 or later. The commands needed by the Zilog RIO operating system to create it are listed in Figure 4-48. Assemblers on non-Zilog hosts probably require changes in the syntax of the source. Changes are acceptable provided that the memory image of the final program corresponds to the information at the left of Figure 4-47. Refer to the host documentation for more information. The program appears with expanded commentary in Appendix B of this manual.

Return to the Z-SCAN monitor environment.

62. BREAK

LOC	OB	J CODE	1 EXAMNSG MODULE 2 \$SECTION EXAMNSG_P ! Make imaging easy ! 3 \$REL \$0000 # INTERNAL
0002	4000	002A'	5 NEW_STATUS_AREA: ! Most entries unused ! 6 \$REL \$0002 ! Reset status 7 RESET ARRAY [2 WORD] := [\$4000, INIT] 8 \$\$PEL \$\$0002 ! Printipaged instruments
0008	4004	002A'	9 PRIV_VECTOR ARRAY [2 WORD] := [%4004, INIT] 10 \$REL %000C ! System call
000C	4000	00301	11SC_VECTORARRAY [2 WORD] := [\$4000, BREAKER]12\$REL\$0014! Non-Maskable Int.
0014	4008	002A'	13 NMI_VECTOR ARRAY [2 WORD] := [%4008, INIT] 14
0018 001C 0024 0028	0000 0000 0000 0000	0000 0000	15PASS, LASTWORD := 0! Data and stack area !16NML_STKARRAY [4 WORD] := 017SYS_STKRECORD [ID OLD_FCW OLD_PC WORD] := 0
002A			18 GLOBAL INIT PROCEDURE! Set up control reg's!19 ENTRY! and both stacks.
002A 002E 0030 0034 0038 003A 003C	7600 7D0D 210F 7600 7D0F 7F12	0000' 002A' 0024'	20LDAR0,NEW_STATUS_AREA21LDCTLPSAP,R022LDR15,#SYS_STK + SIZEOF SYS_STK23LDAR0,NML_STK + SIZEOF NML_STK24LDCTLNSP,R025SC#%12! Trap into BREAKER !26END INIT27
003C 003E 0042 0044 0046 0048 0044 0046 0042 0050 0052 0054 0058	A9F5 670E E604 7D02 A30E 7D0A E808 2101 3D12 3F13 3B05 3B37	0026' ABCD 1234 1234	28INTERNAL BREAKER PROCEDURE! Demonstrate bus!29ENTRY! cycle types.!30INCR15,#SIZEOF SYS_STK! Fix up system stack !31BITSYS_STK.OLD_FCW,#14! Check previous mode !32JRZ,ELSE_! If mode was system !33LDCTLR0,FCW! set normal mode by !34RESR0,#14! clearing bit 1435LDCTLFCW,RO! of FCW;36JRFI_! else do I/O.37ELSE_:LDR1,#%ABCD! Dummy port address. !38INR2,@R1! I/O read!39OUT@R1,R3! I/O write!40SINR0,%1234! Special I/O read!41SOUT%1234,R3! Special I/O write!
005C 0060 0062 0064 0066 006A 006E 0070	7602 2124 93F4 29F0 57F0 3304 7FEF	0018' 0018' FFAC	42 FI_:! Memory op's follow: !43 LDA R2,PASS! Internal operation !44 LD R4,@R2! Data read !45 PUSH @R15,R4! Stk write !46 INC @R15! Stk write !47 POP PASS,@R15! Stk read, stk write !48 LDR LAST,R4! Code write !49 SC #%EF! Trap sequence !50 END BREAKER5152 END EXAMNSG

Figure 4-47. Z8002 Program Example

4-38

> COPYRIGHT, ZILOG, INC. 1979 All rights reserved. No part of this software may be copied or used without the express written consent of ZILOG, INC. THURSDAY, NOVEMBER 1, 1979 RIO REL 2.2 %DATE 810424 FRIDAY, APRIL 24, 1981 %B;SET TABSIZE=4;EDIT EXAMNSG.S В EDIT 2.1 NEW FILE INPUT EXAMNSG MODULE \$SECTION EXAMNSG_P ! Make imaging easy ! \$REL %0000 INTERNAL #%EF ! Trap sequence ! SC END BREAKER END EXAMNSG EDIT >QUIT %Z8000ASM EXAMNSG Z8000ASM 2.02 Pass 1 complete 0 errors Assembly complete %IMAGER EXAMNSG.OBJ (\$=0000 EXAMNSG_P) {0000 0080} E=002A 0=EXAMNSG IMAGER 2.0 68 BYTES LOADED **%EXTRACT EXAMNSG** RECORD COUNT = 0001 RECORD LENGTH = 0200 NO. OF BYTES IN LAST RECORD = 008 ENTRY POINT = 002A LOW ADDRESS = 0000 HIGH_ADDRESS = 0080 STACK SIZE = 000 SEGMENTS: 0000 007F % NOTE

5

If the file EXAMSEG is created on a diskette, the record length shown by the EXTRACT command will be 0080.

Figure 4-48. Z8002 Program Creation with RIO

5/27/81

63. M, L, down, E, X, A, M, N, S, G, RETURN

Key Sequence

Set up and execute the Memory-io screen Load command. The program name is EXAMNSG (nonsegmented example), and it is to be loaded into system code memory. As the file is loaded, an incrementing number field appears toward the top left of the screen. This is a count of the number of records transferred from the host to target memory. Each record carries 30 or fewer bytes. When the loading is complete, the entry address of the program is displayed. If any error message appears, enter H and check the following:

- o Does the program file EXAMNSG exist?
- o Is its name correct?
- o Does the download utility LOAD exist?

If no message appears when the command is executed, the host has not responded to the Load command sent by Z-SCAN. Terminate the load by entering BREAK, then type H and establish why this happened. When you have fixed the fault, return to the Z-SCAN monitor environment and type M, L, return.

Figure 4-49. Loading of Z8002 Example Program

Step

4-40

Step Key Sequence Commentary

If you have completed the four previous steps, skip the next one.

4-41

64. M, V, 6, right, 5, F, 8, 0, right, 0, 0, 7, 0, RETURN A copy of the example program shown in Figure 4-47 exists in the Z-SCAN monitor ROM. Use the Memory_io screen moVe command to copy it into the mappable memory. DOME (Messory_10 Screen Compare Display eXamine Fill move read write (oad read

Figure 4-50. Copying Program with move Command

10

Commentary

65. R, G, space, left
 4, O, O, O, left, O, O,
 2, A, RETURN

Set up the PC and FCW so that the program starts at location 002A in system mode. At the same time, restore RO to its default value.

Figure 4-51. reGister Initialization

66. **P**, 1, right, 0, 0, 1, 8, down, 0, 0, 1, C, left, 5, down, 2, right, 0, 0, 2, 4, RETURN

The program has data, normal stack and system stack areas. Set up the Peek fields to monitor their contents before and after each emulation is run.

5/27/81

Step	Key	Sequei	nce	
67. B, 2 up, RETU	, up, left, RN	left, 0, 0,	space, 2, A,	F f: z qi
68. E, G				T

inally, set up a breakpoint on the irst instruction of the initialiation routine of the example proram.

Commentary

The Z-SCAN is now ready to run the program. There is a trigger break after the first instruction is executed. At this point, the only change is in the PC value.

Trace the next five instructions, entering numbers to change the default Trace step count. At the end of the sequence, both system and normal stack pointers have been set up, changing the displays for the two **stack areas**. The final instruction, a System Call, pushes three words of data onto the system stack, producing a further change. The data also appears in the third Peek area.

70. 1, 0, 0, 0, down, BREAK

A large number of instructions can be traced by entering a hexidecimal number (bottom right of menu area). Tracing begins when you enter cursor down. Let the display run for awhile and observe that the program loops, alternately setting and clearing bit 14 of the FCW to move in and out of system mode. Tracing can be stopped at any time by entering the terminal BREAK key. The redisplayed memory content fields show that the contents of the data area and of both stacks have changed.

	7682 8810	104	92	20018	4948
	2424	LD II	DA	90 2	4848
***	000	DUCU	015	DA	4848
	25.74	ruon	CK1J CK1J	A4	4848
		1110	CK1J	PD15	4000
	5/10 0018	PUP	40018	CKID-	4826
	JJB4 FFRC	LDK	4001H	K4	
	AFF	50	PZE1	• (
	R9F 5	INC	R15	•6	
5 2	670E 0026	BIT	X00 26	♦14	
	EC. 1	JR	Z E0	2004 (.	
	7012	LDCTL	R0	FCN	
	ASSE	RES	RO	1 4	
-	70. A	LDCTL	FCH	RO	
-	1	JR		X00 50	**** State 1
	7682 0018	LDA	R2	20018	
	2124	LD	R4	GR2	
	95 4	PUSH	R15	R4	
***	CH B	INC	CR15	•1 •••	
		POP	X0018	GR15	
- 41	ACCESS FIFIC	LDK		K4	
100	8955	50	4421	AC	4000
	6785 8826	1 ML	70026	414	4000
		011	41.140		

Figure 4-55. Trace of Main Routine

71. RETURN, G, target RESET

Run the program. The emulation can be terminated with a target RESET because the status loaded from locations 0002 and 0004 in response to the input makes the CPU execute the instruction on which the breakpoint is set. The initial conditions of the program are not fully restored by the RESET because the data and stack areas may no longer be zero.

Inst_count 81 Hait_states 0 mAp space SC SD SS NC ND NS Break enable* pulse_& break status count 01 address 002A address system word instr fetchi unprotect read addr 002E 006E instruction 7000 7FEF PSAF €XE F 9 1 SD 9911 ARCD MAIA R19 2 NS 3 SS 2224 Return_message TRIGGER BREAK AT: 0028 (Execution Screen b Command QU 1

Figure 4-56. Trigger Due to Target Reset

8/13/81

Commentary

72. RETURN, target NMI

A target NMI also terminates an emulation. Again, the initialization routine is entered in response to the input. The cause of the entry can be distinguished because the reset and NMI flag register values differ.

					Ins	st_co	unt	81						
ace dress	SC SD 9	6S-NC 8 ect	ND. N	S Br	eak ena ado rea	able# iress ad	5 Y	lse & 002A sten	break word	sta rnu iris	tus nt Ø1 tr fe	trhl		
inst 7000 7000	ructio))	n		L DC T	onic L pe L pe	SAP SAP	RH RH							
addr 8818	ne n or 79F 4 851E	y con 79F3 851D	tents 0000 0000	0080 0000	RØ 0000 0000	R1 ABCD 0018	R2 0018 0018	R3 0000 0000	R4 79F4 8510	R5 0000 0000 0000	R5 19999 99999 814	R 0000 0000 0000 0000		
001 (0000 9000	0000 0000	0000 0000	796 ° 8510	8000 8000	8000 8000 8008	0000 0000	нанн	нани	HOOH HOOH PSAF	HANN	8824 8828 NGE		
98 24	F 00 B 7FEF	0000 4020	0066 0070	76 00 76 00	HI 91	821 821	4000 4000		HI HI	нн Нн		HH. J		
rn mess	<mark>age</mark> IR Screen	1661 R	BRE AN	r H1 (ab 21			-15						
	inst 700(700(addr 0010 0001(00024 0001(00024 0001(00024 0001(00024	unproti instructio 7000 7000 8016 794 4 8516 9000 9024 F000 766 9024 F000 766 766 766 766 766 766 766 766 766	unprotect instruction 7060 7060 8068	unprotect instruction 7000 7000 8018 7914 7913 0000 8018 8516 8510 0000 9010 8000 0000 9010 8000 0000 9024 6000 0000 0000 9024 6000 0000 0000 9024 6000 0000 0000 711 0000 0000 0000 9024 6000 0000 0000 9020 0000 0000 0000 9000 0000 0000 0000 9000 0000 0	unprotect instruction 7D60 1DCT 7D60 addr memory contents 6818 794 794 794 794 806 806 806 901 906 906 906 906 906 906 9	unprotect real Instruction mn=monif 7D00 LDCTL P9 7D00 LDCTL P9 addr memory contents R0 0018 795.4.795.3.0000.0000 0000 B51E R51D.00000.0000 0000 0010 0000.0000 0000 0010 0000.0000 0000 0010 0000.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 00000 0000 0000 00000 0000 0000 00000 0000 0000 00000 0000 7FF 4020 0070 0 remand	unprotect read Instruction mnemonic 7DeD IDCTI PSAP IDCTI IDCTI IDCTI IDCTI	unprotect read sy Instruction mnemonic DC11 PSAP RM 7DeD DC11 PSAP RM Rd Rd addr memory contents R0 R1 R2 Rd Rd R4 <	unprotect read system Instruction Inceonic IDCTL PSAP RM 7DeD IDCTL PSAP RM addr memory contents RM R1 R2 R3 M018 794.4 794.3 B0808 B0808	unprotect read system word Instruction Incmoni/ IDCII PSAP RM 7DeD IDCII PSAP RM addr memory contents 8088 8088 8088 8088 9018 794.4 794.3 8088 818 818 819 810	unprotect read system word inst instruction 7De0 LDC11 PSAP RH addr memory contents R0 R1 R2 R3 0018 7954 7953 0000 0000 R000 R000 B511 R510 0000 0000 R96 R10 R1 R2 R3 R4 R5 8018 7954 7954 8000 0000 R9 R1 R1	unprotect read system word instruction Instruction Incmonic Incmonic Instruction Instruction 7DeD IDCII PSAP RH RH RH addr memory contents RB R1 R2 R3 R4 R5 Rb addr memory contents RB R1 R2 R3 R4 R5 Rb addr memory contents RB R1 R2 R3 R4 R5 Rb B018 75f 4 75f 3 8000 <td>unprotect read system word instruction Instruction B0000 LOCIL PSAP RH 7DeD LOCIL PSAP RH addr Bemory contents RB R1 R2 R3 9018 79% 4 79% 3 80808 9080 9080 9080 B511 B510 90808 90800 90800 90800<</td> <td>unprotect read system word instricted and a system and a system word instricted and a system word instricted and a system word instricted and a system and system and</td>	unprotect read system word instruction Instruction B0000 LOCIL PSAP RH 7DeD LOCIL PSAP RH addr Bemory contents RB R1 R2 R3 9018 79% 4 79% 3 80808 9080 9080 9080 B511 B510 90808 90800 90800 90800<	unprotect read system word instricted and a system and a system word instricted and a system word instricted and a system word instricted and a system and

Figure 4-57. Trigger Due to Target NMI

Figure 4-58. Set-up of Stack Write Break

73. R, B, down, 1, down, 1, left, A, RETURN

This tutorial does not explore the full possibilities of the program, which can generate a wide variety of bus cycle types in both system and normal modes. Experiment with it if you want to explore the Z-SCAN's features in more depth. As a start, set up a breakpoint on a system stack write of data pattern 002A.

Key Sequence

Commentary

74. E, G

Step

This last emulation can run for as long as four seconds before the instruction at address OD64 writes the data pattern matching the programmed break condition. Z-SCAN may not stop the emulation before the next instruction is executed because the data match is detected only at the end of the last bus cycle of the INC instruction. Because of this, the next instuction, POP, is executed before the emulation terminates. This leaves the PC pointing to the LDR instruction.

Figure 4-59. Break Following Stack Write

5/27/81

4.7 TUTORIAL SCRIPT FOR Z8001

.

The tutorial script for the Z8001 begins on the following page. If a Z8002 is currently operating in your Z-SCAN unit, turn back to the script in Section 4.5. Be sure not to type the commas or spaces shown throughout the key sequence.

~~ 옷이 이 것을 알았다.

ä,

a garage

1. Monitor RESET, RETURN

Z-SCAN is RESET. All information about the previous state of the hardware and software is lost. The monitor software uses the RETURN character to set up a baud rate generator, then it displays a menu of the CRT terminal types supported by the software. The cursor (a steady or flashing bright square on most terminals) appears in the center of the bottom screen line.

2. Terminal selection digit To

To configure the monitor for your terminal, enter one of the digits listed in the menu. If your terminal is not one of those listed on the menu, consult Appendix A and the documentation for the terminal. Pick a digit that corresponds to a protocol supported by the terminal.

The CRT screen is cleared, and the System screen is displayed. The cursor rests on the name of the screen. which is in parentheses on line 23, part of the menu area. This screen gives information about the status of the Z-SCAN hardware, for example, the CPU type currently operating in Z-SCAN and the software revision level. The displayed baud rates and revision levels may differ from those shown in the figure, but the CPU type must be the same. If it is not, follow the alternative tutorial of Section 4.5. If the display is corrupted, the digit entered in step 2 is incorrect and you must repeat the tutorial from step 1.

Z-SCAN 8000 28001 MONITOR Version 3.0 terminal baud rate: 9688 host baud rate: 9688 status_to_target: internal_op (Lusten Screen) System Host Memory_10 Resources Execution

Figure 4-61. Z8001 Monitor System Screen

RETURN

8/13/81

Commentary

4. M

The single-keystroke **commands** you are allowed to enter appear as upper-case letters in the words outside the parentheses in the menu area. The command M calls up the Memory_io screen. Again, the cursor rests on the name of the screen, which appears on line 23 in the menu area.

Figure 4-62. Z8001 Monitor Memory io Screen

5. S, R

In step 5, you went from one screen to another by way of the System screen. However, it is usually possibly to move from one screen to another with a single keystroke. The Execution screen is **activated** by the command E.

One display, the Trace screen, is accessible only from the Execution screen. Notice that there is no menu area because this screen does not support a variety of commands. It is dedicated to providing a detailed picture of program execution.

Wajt_states	8			Inst_cou	nt 01				
and space address	00 0000 unprote		Breal	k disable seg#offs read	pulse_&_ et00 0000 system	break word	status count 81 instr_fe	tchl	
addr ins 98 8888 888 98 8888 888	truction 1 0003		eneiion ADDB ADDB	IC RH1 RH1	\$%00 \$%00				
sp addr 1 SC 88 888	r memor 8 0001 0001	y conten 8003 000 8003 000	1 8 5 999 7 5 999 7	R0 R1 0000 0000 0000 0000	R2 R3 9999 9999 9999 9999	R4 0000 0000 012	R5 R6 9999 9999 9999 9999 813 R14	R7 9999 9999 R15	
2 SC 668 6686	18 9991 9991	0083 008 0083 008	5 0007 5 0007	R8 R9 8888 8899 8888 8899 8888 8899 8889 8899 89999 899 899 899 899 899 899 899 899 899 899 899 899 899 899 899 800 80 800 80	6000 0000 6000 0000 FCH	9699 0090	9999 9699 9999 9699 PSAP	0008 0009 NSP 0009	
3 50 88 88	80 0001 8001	0003 000 0003 000	15 0007 15 0007	00 0000 00 0000	C 000 C 000	86 0 80 0	800 8000 800 8000	8688	
Return_mes	sage								
(Decution	n Screen Ga	Syste	n Meno Next	IFY_10	Resources Trace	Exe	ution	Host	

Figure 4-64. Z8001 Monitor Execution Screen

Figure 4-65. Z8001 Monitor Trace Screen

5/27/81

6. E

7. T

Commentary

8. RETURN, H

Enter a RETURN to exit from the Trace screen to the Execution screen, then enter H. The Host command selects **Transparent** mode, allowing the terminal to communicate with a host system through Z-SCAN. You can enter the command even if no host is connected.

Figure 4-66. Host Screen, Transparent Mode

Step

9. BREAK

8/13/81

Key Sequence

Commentary

Transparent mode is terminated when the BREAK key is entered. If the System screen does not reappear, consult your terminal documentation -you may have to press another key at the same time as BREAK, or the key may be disabled by an option setting inside the terminal. A monitor RESET can be used to end Transparent mode, but its use is not recommended because it destroys any information that was set up inside the Z-SCAN.

10. R, A

So far the cursor has remained at the bottom of the screen except when the Host command was used. All of the user-modifiable fields on the Z-SCAN screens are outside the menu area. The fields are divided into groups, known as subscreens. Each subscreen is associated with a particular command and can be entered by keying the capital letter in the command name as it appears in the menu area. Note that as soon as you enter the A command, the first menu line changes to reflect the selected command (Resources screen, mAp command), and the cursor moves to the top left field in the mAp subscreen.

Figure 4-67. Cursor in mAp Subscreen

Commentary

11. RETURN, B

To move the cursor back to the menu area, enter a RETURN. The menu display does not change because the mAp command is still active. It is altered when a new command, Break, is activated. The cursor moves to the top left field in the Break subscreen.

Figure 4-68. Cursor in Break Subscreen

Step

Key Sequence

Commentary

12. RETURN, **Q**, S, R, A

You should now be comfortable with activating screens and commands. The only new command in this sequence is Quit. It deactivates the current command and modifies the menu to show the names of the other screens.

It is not necessary to use the Quit

command before moving to another

screen. You can enter the initial

letter of the new screen name even if it is not currently listed in the

menu area.

13. RETURN, S, R, A

14. right, right, right left, left, left, left Most subscreens consist of more than one field. Once the cursor is in a subscreen, it can be moved to the other fields in the same subscreen by using the cursor control keys. If the cursor left key is entered while the cursor is in the leftmost field, the cursor **wraps around** to the rightmost field in a subscreen line.

15. right, down, down, down, up, left, right The same wrap-around applies in the vertical direction. Note that when there is only one field on a particular line of a subscreen, the horizontal cursor movement keys cannot move the cursor out of that field. The cursor keys can never move the cursor out of the active subscreen.

Figure 4-69. Horizontal Cursor Movement

Figure 4-70. Vertical Cursor Movement

Step Key Sequ	ence Commentary
16. RE TURN, RE TURN	The RETURN key moves the cursor back to the menu area. Because the com- mand remains active, a second RETURN moves the cursor to the top left field in its subscreen: there is no need to re-enter the command name.
17. >, >, <, 0, 1, G, F, H, CTRL F	space Each of the six fields on the first R, > line of the mAp subscreen corre- sponds to one of the Z8001's address

on the first creen corre-1001's address spaces, and each has just two possible values. In the default state, an underbar is displayed, indicating that the 8K bytes of mappable memory will not respond to CPU accesses made to a particular address space during an emulation. In the alternative state, a twoletter abbreviation for the name of the address space (for example, SC for System Code) shows that the mappable memory will respond. You can step forward or backward through the possible values with the > and <keys or you can access them directly by entering O for the first choice and 1 for the second. Alternatively, space and F select the default and final values. CIRL R restores the field to the value it held when the cursor entered it. Other printable characters that are not hexadecimal digits do not affect the field.

Figure 4-71. Enabling Mappable Memory

Key Sequence

18. RETURN, **B**, 2

The emulation you are going to run requires a **breakpoint**, so you must enable the breakpoint logic by setting the first field of the Break subscreen to "enable*". This tells the logic to search for a simultaneous match in the segment field, the offset field and the various status fields.

Figure 4-72. Enabling Break Logic

Figure 4-73. Setting Break Address

 The breakpoint segment number is correct but the offset must be changed. The address field contains four hexadecimal digits and can hold any value between 0000 and FFFF. Use > and < to move the cursor within the field, and enter new hex digits to change the value. You have now set a breakpoint which will be triggered when the first word of an instruction is read from system code location 0010 in segment 00.

Step

5/27/81

Step

21. F

Commentary

Move to the Memory-io screen. When it is displayed, notice that the top three lines are blank.

Fill is listed as a valid command in the menu area. As soon as the command is activated, the cursor moves to the first field of the Fill subscreen which appears at the top of the screen.

Key Sequence

Use the Fill command to fill mappable memory, which currently extends from address 0000 to 1FFF in the first segment of system code space, with increment byte register instructions (opcode A80B, mnemonic INCB RHO, #12). In order to do this, you must change the contents of some of the fields on the subscreen. The Fill string can be up to 16 hex digits long, but only four are required in this case.

After the parameters have been set up, the command must be executed by entering a RETURN. Before execution starts, the cursor moves to the bottom of the central window area. The message "DONE" is displayed when execution is complete.

Figure 4-74. Default Fill Command Display

Figure 4-75. Execution of Fill Command

4-57

24. D, RETURN

Step

Key Sequence

The Z-SCAN Display command is used to look at the contents of memory. In order to look at the bottom of system code memory, you do not need to change the default parameters that appear at the top of the screen when the command is activated, so execute the command immediately. Addresses appear at the left of the screen, data in the center and at the right is an ASCII representation of the same data. Neither A8 nor OB corresponds to a printable character. Periods are used to show this. The asterisks are delimiters.

25. down, up, RETURN

After the Display command has filled the window area, the cursor rests at the bottom right of the screen. You can enter cursor down to display the next block of memory or cursor up to display the previous block. The command is terminated when RETURN is entered.

\$0WP	ce: space SC	address	8888	type wor		
	ARAR ARAR AR	R ARR AR	R ABBB ABBB	3 A888	\$ 	
- 11	AREA AREA AR	ER ADER ADE	B ABBB ABB	8 A888	•	
- 2	ARER ARER AF	ARE ARE ARE	B AREB ARE	8 A868	د در <mark>۲</mark> ۹۹۹ مختور و وروا	
	ARER ARER AG	IR ARE ARE	R ABER ABE	8 A888	a da anti da 📭 da anti da a	
		HE ACHE ALL	8 A688 A68	B ABBB `	•••••••••••••••••	
	ADDE ADDE A	ADD ADDB ADD	8 A998 A99	B A888	•	
	ACTER ACTER A	BOB ADDB ADD	B ABBB ABB	B AGGB	A second seco	
	A STER ASTER A	BOB ADDB ADD	B ABBB ABB	B A888	•	
	A REAR AREA A	608 A668 A66	IB ABBB ABB	8 A888		
	A READ NOOD A	608 A808 A80	18 ABB8 ABB	8 A888		
	N ABBB ABBB A	icob acob aci	18 ACOB ACO	8 ACCO		
	10 ABBB ABBB A	ione acce ac	18 AGGB AGG	B A888		
	CO AGOB AGOB A	1988 A888 A6	08 ACCB ACC	B A888		
-	DU REUB REOB (NGEB ADDB AD	er and and	3 (
		NOUS NOUS AO	08 A808 A80			
		13.3 13.3 H.		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	
-		nood hood he	ad hoad haa			
	Hemory to Seree		(oppand)		Quit	

Figure 4-76. Display with Default Parameters

4-58

Commentary

26. RETURN, left, 4 RETURN, RETURN

27. X, right, right, 1,

F, F, C, RETURN

The command remains active as long as its name appears inside the parentheses on the menu line, so a second return moves the cursor back into the parameter subscreen. Set the type field so that memory is displayed as **disassembled** segmented Z8001 instructions.

The eXamine command allows you to look at and, if desired, modify the contents of memory. Like Fill and Display, it has a private subscreen. The first location you need to examine is the word at system code location 1FFC in segment 00. Its current contents are displayed when the command is executed, and you are prompted for a new value to replace them.

source: space SC addr	ess 90 9000	type	\$ €9	
	INCB	RHØ	12	
B 8882 ARE	INCB	RHO	12	
	INCB	RHØ	♦12	
	INCB	RHO	12	
	INCB	RHO	•12	
NA REAL AGER	INCB	RHO	♦12	
NO MORE AREA	INCB	2110	•12	
	INCB		€12	
08 0010 A008	INCB	8110	♦12	
08 0812 ABBB	INCE	RHØ	112	
88 8814 A888	INCB	3H0	12	
99 991 6 A888	INCB	RH.0	♦12	
00 0018 ABBB	INCB	RHO	112	
WIA ABBB	INCB	RHO	•12	
	INCB	KHØ	112	
	INCB	KIND DUM	12	
	INCB	di.	V12	

Figure 4-77. Disassembled Memory Display

CURRENT Contents	NEH Contents			
FFC ABBB				
	Memory_to_Scr ompare_Dispi	Memory.io Screen – eXamine (omma ompare Display eXamine Fil)	Memory.io.Screen examine.Command) ompare Display examine.Fill move reAd Write L	Memory.io Screen eXamine (ommand) - Quit ommpare Display eXamine Fill moVe reAd Mrite Load seMd

Figure 4-78. Set-up of eXamine Command

28. 5, E, F, <, O, 8, 1, 8 down

Step

5/27/81

Key Sequence

This step replaces the two INCB instructions at the top of mappable memory with an unconditional jump to location segment 00 0018 (opcode 5E08 0018, mnemonic JP <<00>> %0018). Short offset addressing is used to save bytes. The < key can be used to backspace over incorrect input. When sufficient digits have been entered to fill the open location, the new value is stored and the next location is opened automatically. The cursor down key opens the next location immediately, storing any digits which have been entered. The data seen in location 2000 may vary because no memory responds at that address.

Cursor up reopens the previous location, showing that the two digits entered in the previous step have been stored right justified in a field of zeros.

source: space SC address 00 1FFC type word ADDR CURRENT neh Contents < 5E 08 00 1FFE 00 2000 <18 < (Memory.io.Screen eXamine.Command). Compare Display eXamine Fill move reAd Hrite Load seMd

source: space SC	address 00_1FFC	type word	
ADDR CONTENTS	CONTENTS		
88 1FFC A888 88 1FFE 8818 88 2988 2881	< 5E 08 ((

Figure 4-80. Checking Memory Contents

29. up, RETURN

Commentary

30. C, left, 1, 0, 0, 0 left, 1, RETURN

Just to check that everything is set up correctly, the Compare command is used to find the differences between the contents of the top and bottom 4K byte blocks of mappable memory. The byte count field for this commands is, like all Z-SCAN monitor numeric fields, hexadecimal (1000 hex = 4096 decimal = 4K). When the command is executed, it should reveal that just four bytes differ between the top and bottom halves of the memory. If it shows anything else, you have probably made a mistake somewhere and not corrected it. To recover type R, A or, if the cursor is at the bottom right of the screen, RETURN, R, A and repeat the tutorial from step 17.

SOURCE HDDR CO 80 1FFC 80 1FFD 80 1FFE 80 1FFF	TA NTENTS AD Se 90 90 90 90 90	RGET Dr Conte I BFFC A8 I BFFD BB	NTS			
00 1FFC 00 1FFD 08 1FFE 08 1FFF	5£ 96 96 96 96 96	IBIFFC A8				
	18 96	O BEFE AB O BEFF BE				
	IEEEEwere					

Figure 4-81. Use of the Compare Command

31. E

32. N

4-62

consists of 4,094 (decimal) INCB instructions and an unconditional jump. It can be run from the Execution screen. The default values of the Program Counter (PC) and Flag and Control Word (FCW) are suitable for running this first emulation. The emulation will run in system mode because bit 14 of the FCW is set. Bit 15 selects segmented mode and is also set in the default FCW value provided by the monitor.

The program in the mappable memory

The Next command steps through the number of instructions displayed in the Instruction count field at the top right of the screen. In this case, the count is one. After the single instruction has been executed, the whole screen is redisplayed, updating the emulation status. Two registers are affected: RHO, the high byte of RO has been incremented by 12 (decimal) and the PC offset has moved to next instruction. The top row of the instruction and register values reflect the state of the program after the emulation. The bottom row values reflect the state of the program at the end of the previous emulation.

eAp	spac addr	e 5 5	50 30 000 Unprot	ect		Bre	ak en sei	able# g*off ad	pu set00	lse_&_ 0010 stem	break word	sta cou ins	tus nt 01 tr'fe	tchl	
add 88 88	r 0002 0009	inst A808 A808	ructio	n		neno INCB INCB	nic Ri Ri	HØ HØ	¢1						
1	50 00	addr 8888	ne nor A808 A808	y cor A808 A808	tents A808 A808	A808 A808	R0 0000 0000	R 1 0000 0000	R2 0000 0000	r 3 0000 0000	K4 0000 1000	R5 8000 8000	R5 8008 8008	нин Нинн В.	
2	SC 00	0000	A808 A8 0 8	A 80 8 A808	A808 A808	A808 A808	R8 0000 0000	R9 0000 0000	R18 0000 0000	RT 1 0000 0000	r17 0000 0000	8000 8000	<u>нинн</u> 1901	HUHH	
3	SC DE	0000	A808 A808	A808 A808	A808 A808	A808 A808	00 0 00 0	P(902 909	1000 1000 1000		HH HH HH HH	INN INN INN	нөөн Нөөн	нинн	
R	eturn	. nessa	ge ST	EP BR	E AK A	T: 0002									

Figure 4-82. Instruction Step with Next Command

Step

Key Sequence

Commentary

33. RETURN

Now that the Next command is active, it may be repeated by entering RETURN. Again, the PC value changes and RHO is incremented.

The Go command starts an emulation which does not stop until a break condition is encountered. Your program should **trigger** the breakpoint logic when an instruction is fetched from location 0010. The breakpoint is honored after the instruction has been executed so that the emulation ends with the Program Counter pointing to the

that the emulation ends with the Program Counter pointing to the instruction at location 0012. Note that the termination message is different from that of the Next command.

Ap	spac addr	e ess	SC _ 00 000 unprot	ē ect.		Bre	ak en se re	able# g#offs ad	pul set00 sys	lse_&_ 0010 sten	word	sta cou ins	tus nt 01 tr fe	tch1	
add 88 88	r 0004 0002	inst A808 A808	ructio	n		nneno INCB INCB	nic R	1H0 1H0	♦17 ♦17						
2	50 00	addr 9999 9999	ne nor AB88 AB88 AB88	y cor ABBB ABBB ABBB	ABBB ABBB ABBB	A808 A808 A808	R0 1800 0000 R8 0000	R1 0000 0000 R9 0000	R2 0000 0000 R10 8090	R.) 0000 0000 R11 0000	R4 0000 0000 R12 0000	R5 9999 9999 R13 9999	R6 9999 9999 R14 9999	R ¹ HHOH HHOH R1 ¹ HHOH HHOH	
3	SC 8	8 9996	A888 A886 A886	A808 A808 A808	A808 A808 A808	A808 A808 A808	0000 00 0 00 0	9000 P(9004 9002	0000 FCH (000 (000	8888	на л а Ни ни Ни ни	1 0000 PSAF 1014 1414	HINNA HINNA HINNA HINNA	Mana Mana Mana Mana	
R	eturn Execi	iness ution Go	age S' Screen	TEP BR	REAK A	1 8094				ġi.					

Figure 4-83. Second Instruction Step

Nai	t_sta	tes	0			1 n s	τ_cou	nt e	11					
∎Ap	spac addr	e e s s	SC 90 8000 unprotect	- t	Brea	k ena seg rea	ble≢ ⊫≄offs id	pul et00 sys	se 8 0010 tem	break word	stat : nur nst	lus' ht A1 hr fet	1 h 1	
add 90 96	r 9912 9994	ins 1 880 880	truction B B		nenon INCB INCB	ir RH RH	10	\$1. . \$1.						
	sp 50.00	addr 0000	nenory A808 A8 A808 A8	contents 198 A898 198 A898	A808 A808 A808	R0 БС00 1800	R1 0000 0000	R. 8090 8088 818	R 1000 1000 111	нин Инни Инни	н ИНИИ ИНИИ Н	рі Нини Нини Р14	r 1' Hhhh R 1'	
	5(94	000	a a bb a ar Ab b ba ar	808 A808 808 A808	A808 A808	8000 8000	0000 0000	9990 9999	нини	ниии	нини нини	нннн Нинн	нинн Нинн	
ł	500	8 888	19 A8648 A A8648 A	808 A808 808 A808	A808 A808	HH H HA H	н1. Нил	нин		ин ні Ни ні	анн Инн	нинн Нинн	иннн Иннн	
	Return	1 BPS:	sage IRI(GER BREA	1K A! - 00	1.								

34. G

S.M.M.

Step Key Sequence

Emulations can also be run from the Trace screen, which disassembles each instruction before it is executed. The instruction which appears in the center of the screen is the first to be executed when emulation starts. The bottom of the screen displays register and memory contents. The function of these fields will be explored later.

Entering cursor down results in the execution of the number of instructions given in the count field at the bottom left of the screen. PC and FCW values are given for each instruction executed, and the first instruction executed is flagged with an asterisk in column 1. The remaining registers are not redisplayed until all the instructions have been executed. The FCW values at the right of the screen show that the value in RHO has overflowed and become negative.

AddressContents		Mnemonic				····FCM
#BR BR12 ABBR		INCR	RHØ	12		CUU
BA BA14 ABAB		INCR	RHO	¢12		0000
RIA RIA16 ABAR		INCR	RHØ	1 2		1838
00 0018 A808		INCR	RHØ	♦12		1828
00 001A A808		INCE	RHØ	♦1c		. 828
00 001C A808		. INC8	RHØ	1 1.		828
00 001E A80B		INCB	RH0	¥1.1		828
00 0020 A80B		INC8	RHN	\$1 .		· 676 aba
99 99 22 A80B		INCB	RHØ	♦17		666
00 0024 AB0B		INCB	RHP	. ∳1 ,'		· 878.
WW WW26 A898		INCB	RHØ	•1 <i>c</i>		. ang
00 0828 HB08	0.1	INCB	RHN		ne> 012 4	unia Pri
E000 0000 0000 0000	-R4 R5	RP K/	KR KA	K10 K11	K17 K13 4	NOR NOR
6CPR 8000 0000 0000		9000 9000 9000 9000	0000 0000	9999 9999	0000 0000	MAR REP
System Mode Stack-	4.4.4.4 A.4.4.4	0000 0000	10000 0000	0000 0000	DOON DINO	MSP
8881 8883 8885 8887	MARY ANOR	9991	AAAA AAAA	AAA7 AAA9	9 99 8 8	HHH H000
0001 0003 0005 0007	0009 000E	0001	8883 8885	8887 8889	9 00 8 8	
Peek-SC08-00009		50 00 0	888	SC	00 0000	cum)
19986 A888 A886	A808	A808 A808	A808 A808	A808	A808 A80H H	000 000
1000 1000 1000	HBRR	8808 A808	A808 A808	ABNH	Hous Hous h	
Trace Step Count	AAAA	fotor . H	as ougher	Second day	n or Return	
	0000	- tirter an				

Figure 4-85. Use of the Trace Screen

5/27/81

36. down

35. T

4-64
Step Key Sequence

Commentary

37. RETURN, G

Return from the Trace screen to the Execution screen and start another emulation with the Go command. This time the breakpoint is not encountered - the program loops in the address range 0018 to 1FFC, avoiding location 0010. While the emulation is running, the cursor rests in the blanked return message line and the terminal keyboard is disabled.

38. monitor NMI

The monitor NMI signal acts as a **manual break** request during emulations run from the Execution screen. The emulation terminates when execution of the current instruction is complete. The break address and register contents which you see will probably be different from those in the photograph, but this does not matter.

Figure 4-86. Indefinite Emulation with Go Command

aAp	spac addr	e g ess f	6C 30 0000 unprotect		Break	enable seg¤off read	pulse_%_ set00 0010 system	break s word	tatus ount B1 nstr fetch1
add 99 99	r 0382 0028	insti A808 A808	ruction		INCB	RH0 RH0	♦12 ♦12		
1	sp SC 00	addr 8880	nenory co A808 A808 A808 A808	A808 A808	AB 0 8 AB 0 8	RØ R1 1400 0000 F000 0000	R2 R3 9000 0009 9000 0009	R4 R 9999 9 9999 9	R6 R7 98 9999 9999 98 9999 9999 3 814 815
2	SC DA	8888	A808 A808 A808 A808	A808 A808	A808 A808	KB K9 0000 000 0000 000 0000 000	R16 R11 8000 0000	0000 0 0000 0	60 8000 8000 60 8000 8009 AP NSP
3	SC 0	8000	A808 A806 A808 A806	3 Å8 0 8 3 Å80 8	A808 A808	00 0382 00 0028	C020	00 000 00 000	8889 8889 8888 8899

Figure 4-87. Manual Break with NMI Switch

39. M, X, right, right, space, CTRL R, O, O, 1, 8 To explore further facilities offered by Z-SCAN, an instruction which reads and writes memory is required. Use the Memory_io screen eXamine command to insert an instruction at location 0018. Two of the keystrokes in this sequence are redundant. The space restores the address field to its default value and CTRL R cancels any changes made since the cursor entered the field.

%0010 , #16 in segment 00 (increment by 16 the word at location 0010). If short offset addressing is used, it has a two-word opcode,

<<00>>

The instruction is INC

690F 0010.

40. RETURN, 6, 9, 0, F, 1 0, RETURN

41. C, BREAK, RETURN, left O, RETURN

Check memory contents again by using the Compare command. Extra keystrokes in this sequence show that the BREAK key moves the cursor back to the menu area without executing the active command and that the monitor does not allow you to enter an illegal value in a numeric field: the previous value of the field is restored. When the command is executed it should show eight differences.

source: space SC address 00 0018 type word CURRENT - MEW ADOR CONTENTS CONTENTS 00 0018 AB00 <690F 00 001A AB00 <18	⊌0rd	
CURRENT - NEW ADDR CONTENTS 60 6018 A8008 <690F 60 601A A8008 <10		
CURRENT - NEW Ador Contents Og Og1b Agog (690f Og Og1A Agog (10		
00 0018 A806 (690F 00 001A A800 (10		
(Memory.io Screen emailine Command) Compare Display eXamine Fill move reAd		uust Marte uud saNd

Figure 4-88. Insertion of New Instruction

source: space SC — address 80-1000 target: space SC — address 80-0000	count 1000
Source target Addr Contents Addr Content NA 1918 AR RA RAIS 54	
00 1010 00 00 0010 0f 00 1010 00 00 0010 0f 00 1010 08 00 0010 0f 00 1018 08 00 0018 10 00 11FC 5C 00 0ff 6 08	
UU DIALU UU UU UU UU UU UU DIALU UU UU DIALU UU UU DIALU UU UU DIALU UU UU UU UU UU UU UU UU UU UU UU UU UU	
1998: Differences,	
(Memory to Screen — Dompare Command Compare Display eXamine fill me	iust veriend write stad seNd

Figure 4-89. Check of Change with Compare Command

5/27/81

			*	•	
Step	Key	Sequence			Commentary

42. D, RETURN, RETURN

Display disassembled memory to show the new instruction at location 0018.

source: sp	ace SC	address	08 0008	type	seg		
08 0000 (A308		INCB	RHØ	12		
68 6682	ABBB		INCB	RHO	•12		
88 8884	ARAR		INCB	RH0 -	+12		
NA NANK	ARAR		INCB	RHØ	17		
NA NARR	APPR		INCB	RHO	↓ 12		
BA REBA	ARMR		INCB	RHØ	•12		
CO 0000	ARAR		INCB	RHO	•12		
80 800E	ABBB		INCB	RHØ	¢12		
08 0010	A928		INCB	RHØ	•12		
00 0012	A868		INCB	RHØ	¢12		
90 00 14	ABBB		INCB	RHØ	•12		
00 0016	RBCB		INCB	RHO	12		
00 0018	690F 001	0	INC	: < < 🛛)>>% 0010 ∶	♦1 6	
00 00 1C	A668		1 MCB	RHØ	•12		
00 001E	8898		I n CB	RHO	112		
00 0020 00 0000	ROOD		INCB	RHO	12		
	680.8		INCB	RH8	112		

Figure 4-90. Display of Change

Figure 4-91. Setting Peek Parameters

43. R, P, left, >, >, 1, RETURN

The added instruction modifies the contents of location 0010 each time it is executed, so it is desirable to know how they have changed after each emulation is run. The Z-SCAN displays the contents of selected locations on the Execution and Trace screens. The monitored addresses are set up by the Peek command on the Resources screen. Modify the first of the three addresses to 0010. Now call up the system screen and start an emulation. The top line of the first Peek field shows the contents of word locations 0010 through 0016 as they were before the emulation started.

45. monitor NMI

Key Sequence

You might think that this emulation should stop with a trigger break, because location 0010 is being read by the new instruction. The trigger logic does not fire because the break parameters are set up for an instruction fetch, not a data read, so the emulation must be terminated with a manual break. Looking at the Peek memory areas, you see that the contents of location 0010 have not changed during the emulation. Remember that the mappable memory has been set to respond only to system code space accesses. This explains why the system data accesses made by the new instruction do not affect it.

Ap space SC Break enable# pulse_&_break status address 00 0000 seg#offset00 0010 count 01 unprotect read system word instr fetch1 ddr instruction instremonic 0 0000 0000 00 0000 1NCB RH0 012 0000	ait_states			Inst_coun		
addr instruction innemonic HB BHB2 HBCB HCB H12 HB BHB2 HBCB HCB H12 HB BHB2 HBCB HCB H12 HB BHB2 HBCB HBCB H12 HB BHB3 HBCB HBCB HBCB HBCB HB BHB3 HBCB HBCB HBCB HBCB HBCB HB BHB3 HBCB HBCB HBCB HBCB HBCB HBCB HB BHB3 HBCB HBCB <t< th=""><th>Ap space address</th><th>SC 90 0000 unprotect</th><th>Breal</th><th>k enable# seg#offse read</th><th>pulse_&_break t00 0010 system word</th><th>status count 01 instr fetch1</th></t<>	Ap space address	SC 90 0000 unprotect	Breal	k enable# seg#offse read	pulse_&_break t00 0010 system word	status count 01 instr fetch1
xp addr memory contents R8 R1 R2 R3 R4 R5 R6 R7 1 SC 98 9819 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098 A098	addr in 80 8A82 A6 80 8382 A6	istruction 198 198	nnenon INCB INCB	rc RHO RHO	11? 112	
	1 SC 99 99 2 SC 99 99 3 SC 99 99	dr memory co 10 A888 A698 A988 A988 A988 A988 A988 A988 A988 A986 A988 A986 A988 A986	ntents ABBB ABBB ABBB ABBB ABBB ABBB ABBB ABBB B ABBB ABBB B ABBB ABBB	R8 R1 R 3486 0000 8 1488 0000 8 R8 R9 R 0000 0000 8 0000 0000 8 PC F 80 0A82 C 00 0382 C	12 R3 R4 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 00060 0006 10060 0006 0006	R5 R5 R7 6 0000 0000 0000 0 0000 0000 0000 R13 R14 R15 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 00000 0000

Step

44. E, G

Step Key Sequence

Commentary

46. R, B, up, left, >, >, F <, space, 1, 2, 9, RETURN

fo fix these two problems, leave the Execution screen, which, though it displays data about mappable memory and the break condition, does not allow you to modify the parameters. Use the Resources screen Break command to set up a breakpoint on a data memory request. This is one of 16 possible values in the bus cycle type field. As usual you can select a choice eiher by stepping through the table of possible values or by entering a number that corresponds to the required choice. The space character selects the default value.

47. A, right, 1, RETURN

The second field in the mAp subscreen determines whether or not the mappable memory responds to system data accesses. Entering a 1 sets the field to "SD". The mappable memory now responds to two types of accesses. For this reason, it is not necessary to modify the memory space parameters of Peek. System code location 0010 is the same memory word as system data location 0010.

Figure 4-94. Modification of mAp Parameters

48. G, A, B, RETURN

The last action on this screen is to set up a new starting value for RO with the reGister command.

Figure 4-95. Modification of RO Value

Figure 4-96. Trigger Break on Data Read

49. E, G

Start a new emulation. This time, the trigger fires almost immediately, and when the execution screen is redisplayed, you see that the contents of location 0010 have indeed changed from A80B to A81B. The Program Counter points to location 001C, the word after the instruction that caused the break condition to be met. The condition flags in the FCW reflect the fact that location 0010 holds a negative 2's complement number.

5/27/81

4-70

Step Key Sequence

.

50. R, B, down, left, 5 RETURN Associated with the breakpoint logic is a **pass counter**. If you load it with 51 hex (that is 81 decimal), the program loop is executed that number of times on the next emulation.

Commentary

After the emulation begins, there is a short delay before the breakpoint is encountered the number of times programmed. When the emulation ends, location 0010 has been incremented by 510 hex (51×10) , showing that the correct number of passes has been made.

Figure 4-97. Adjusting Pass Counter

				jan ar ar S			
Nait_states	8		Inst_co	unt Ø1			
address	SC SD 80 8088 unprotect	Break	enable# seg#off read	pulse_&_ set00 0010 system	break st co word da	atus unt 51 ta_mreg	
addr ins 00 0010 A00 00 0010 A00	truction B B	INCB	c RHØ RHØ	¢12 ¢12			
sp addr 1 SC 848 84811	memory content AD2B ABBB ABBB AB1B ABBB ABBB	r R Agge C Agge g	9 R1 700 0000 700 0000	R2 R3 0000 0000 0000 0000	R4 R5 6669 669 6668 669	R6 R7 0000 0000	
2 SC 000 0000	8 ABBE ABBE ABBE ABBE ABBE ABBE	R AGOB 0 AGOB 0	8 R9 888 8888 888 8888	R10 R11 0000 0000 0000 0000	R12 R13 0000 000 0000 000	K14 K15 8889 8889 8889 8889 8898 8899 8898 8899	
3 SC 669 6606	10 ABBS ABBS ABBS ABBS ABBS ABBS	AB08 0 AB08 0	PC 0 0010 0 0010	F CM CB20 CB20	90 9090 90 9090 90 9999	8888 8889 8888 8889	
Return_mes	age TRIGGER' BREA	K AT: 001C					
(Execution	Screen / 🗗 Com	mand) Next		Qu Irace	i t		

Figure 4-98. Break After Multiple Passes

51. E, G

	Step	Key Seq uence	
5/27/81	52. R, / spac	A, up, 2, RETURN, ce, RETURN	B, The I and ca write

The INC instruction writes memory and can be used to show the Z-SCAN's write protect feature. To do this, disable the breakpoint and enable a write protect break.

Commentary

Figure 4-99. Selection of Write-Protect Break

Figure 4-100. Break After Violation

53. E, G

The next emulation terminates with a message warning of a write protect **violation**. Although the offending instruction has been executed, the contents of mappable memory remain unchanged and the data that the CPU attempted to write into memory is lost.

Step Key Sequence Commentary	У
------------------------------	---

54. R, A, up, space, RETURN Clea

Clear the write protect break.

Figure 4-101. Set-up of Multiple Condition Break

55. B, 1, down, left, space, left, 1, F, F, A, RETURN Now select a break on the first occurence of either any reference to segment 00, location 1FFA (in any address space) or any word read from system data memory. "enable+" designates this mode of operation. Step

56. E, G

5/27/81

Key Sequence

Return to the Execution screen and run an emulation. It stops at location 1FFC because the address of the previous instruction has fired the trigger. The contents of location 0010 are unchanged, indicating that the instruction at location 0018 was not executed during the emulation.

57. [, down

4-74

A trace terminates after only two instructions have been executed because a trigger is caused when the instruction at location 0018 performs a data memory read. Emulation stops as this event has precedence over the step count of 000B (11 decimal) instructions. A break message replaces the prompt that normally appears on the bottom screen line. The Peek display shows that the contents of location 0010 have changed.

Figure 4-102. Break on Address Match

Figure 4-103. Data Read Break on Trace Screen

4.8 HOST SYSTEM USE WITH Z8001

The tutorial script continues on the next page. If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8001 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

Step Key Sequence

58. RETURN, R, RETURN, R, A, 1, right, 1, right 1, right, 1, right, 1, right, 1, RETURN

The example program that is run in this part of the tutorial generates accesses to all six Z8001 memory spaces. Select the Resources screen and set up the mappable memory to respond to all types of access: code, data and stack references in both system and normal modes.

Commentary

Figure 4-104. Enabling of All mAp Address Spaces

NOTE

If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8001 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

4-76

5/27/81

ŧ

59. H

Before you can use the Z-SCAN **down**load command, you must have Z8001 program to load. Your host's utilities and support programs can be used to create it. Type H to enter Transparent mode.

Unless it is already up and running.

60. Bootstrap your system

61. Enter, assemble and

program

image the example

load the operating system of your host. For Zilog PDS 8000 systems, press the RESET button on the front panel of the system, then enter RETURN at the terminal keyboard. For ZDS/1 systems, press wait, then enter two returns. An operating system diskette must be present in drive zero or, for hard disk systems, the disks must be spinning. If you have a non-Zilog host, follow the bootstrap procedure described in its system manual.

Figure 4-105 shows an example program that is compatible with Zilog's Z8000 PLZ/ASM assembler, version 2.02 or later. The commands needed by the Zilog RIO operating system to create it are listed in Figure 4-106. Assemblers on non-Zilog hosts probably require changes in the syntax of the source. Changes are acceptable provided that the memory image of the final program corresponds to the information at the left of Figure 4-105. Refer to the host documentation for more information. The program appears with expanded commentary in Appendix B of this manual.

4-77

LOC OBJ	CODE 1 2 3 4 5	EXAMSEG MODULE \$SEGMENTED \$SECTION EXAMSEG_P ! Make imaging easy ! \$REL %0000 INTERNAL NEW STATUS APEA:
0000 0000 0004 8000'	C000 7 0044'	RESET ARRAY [2 LONG] := [%C000, INIT]
0010 0000 0014 8000'	8 COO4 9 OO44 '	<pre>\$REL %0010</pre>
0018 0000	10 C000 11	<pre>\$REL %0018 ! System call ! SC_VECTOR ARRAY [2 LONG] := [%C000, BREAKER]</pre>
0028 0000	12 0054 12 0008 13	<pre>\$REL %0028 ! Non-Maskable Int. ! NMI_VECTOR ARRAY [2 LONG] := [%C008, INIT]</pre>
002C 8000 0030 0000 0034 0000	00044 0000 14 15	PASS, LAST WORD := 0 ! Data and stack area ! NML_STK ARRAY [4 WORD] := 0
003C 0000 0040 0000 0044	0000 16 0000 17	SYS_STK RECORD LID OLD_FCW WORD OLD_PC LONG] := 0
0044 7600 0048 7D0C 004A 7D1D 004C 760E 0050 7600 0054 7D0E 0056 7D1F 0058 7F12	17 18 00' 00' 19 20 21 00' 44' 22 00' 3C' 23 24 25 26 27	GLOBAL INTI PROCEDURE ! Set up control regist ENTRY ! and both stacks. ! LDA RRO, NEW_STATUS_AREA LDCTL PSAPSEG, RO LDCTL PSAPOFF, R1 LDA RR14, SYS_STK + SIZEOF SYS_STK LDA RRO, NML_STK + SIZEOF NML_STK LDCTL NSPSEG, RO LDCTL NSPOFF, R1 SC #%12 END INIT
005A 005A A9F7 005C 670E 0060 E604 0062 7D02 0064 A30E 0066 7D0A 0068 E808 006A 2101 006E 3D12 0070 3F13 0072 3B05 0076 3B37	28 29 30 31 00'3E'32 33 34 35 36 37 ABCD 38 39 40 1234 41 1234 42 43	<pre>INTERNAL BREAKER PROCEDURE ! Demonstrate bus ! ENTRY ! cycle types. ! INC R15,#SIZEOF SYS_STK ! Fix up system stack ! BIT SYS_STK.OLD_FCW ,#14!Check previous mode ! JR Z,ELSE_ ! If mode was system ! LDCTL R0,FCW ! set normal mode by ! RES R0,#14 ! clearing bit 14 ! LDCTL FCW,R0 ! of FCW; JR FI_ ! else do I/O. ! ELSE_: LD R1,#%ABCD ! Dummy port address. ! IN R2,@R1 ! I/O read ! OUT @R1,R3 ! I/O write ! SIN R0,%1234 ! Special I/O read ! SOUT %1234,R3 ! Special I/O write ! FI_: PRO_EDEMONDALE </pre>
007A 7602 007E 2124 0080 93E4 0082 29E0 0084 57E0 0088 3304 008C 7FEF 008E	00'30'44 45 46 47 00'30'48 FFA6 49 50 51 52	LDARR2, PASS ! Internal operation !LDR4,@RR2! Data read!PUSH@RR14, R4! Stk write!INC@RR14! Stk read, stk write !POP!PASS!,@RR14! Stk read, data write!LDRLAST, R4! Code write!SC#%EF! Trap sequence!END BREAKEREND EXAMSEG!

Figure 4-105. Z8001 Example Program

5/27/81

4-78

> COPYRIGHT, ZILOG, INC. 1979 All rights reserved. No part of this software may be copied or used without the express written consent of ZILOG, INC. THURSDAY, NOVEMBER 1, 1979 RIO REL 2.2 %DATE 810424 FRIDAY, APRIL 24, 1981 %B;SET TABSIZE=4;EDIT EXAMSEG.S В EDIT 2.1 *NEW FILE INPUT EXAMSEG MODULE \$SEGMENTED \$SECTION EXAMSEG_P ! Make imaging easy ! \$REL %0000 INTERNAL SC #%EF ! Trap sequence 1 END BREAKER END EXAMSEG FDIT QUIT %Z8000ASM EXAMSEG 2 Z8000ASM 2.02 Pass 1 complete 0 errors Assembly complete %IMAGER EXAMSEG.OBJ 0=(\$=0000 EXAMSEG_P) {0000 0090} E=0044 0=EXAMSEG IMAGER 2.0 7E BYTES LOADED **%EXTRACT EXAMSEG** * RECORD COUNT = 0001 RECORD LENGTH = 0200 NO. OF BYTES IN LAST RECORD = 0090 ENTRY POINT = 0044 LOW ADDRESS = 0000 HIGH_ADDRESS = 0080 STACK SIZE = 0000 SEGMENTS: 0000 008F * % NOTE If the file EXAMSEG is created on a diskette, the first

RECORD COUNT = 0002 RECORD LENGTH = 0080 NO. OF BYTES IN LAST RECORD = 0010

line of information output by the EXTRACT command will

read as follows:

Figure 4-106. Z8001 Program Creation with RIO

5/27/81

Step

62. BREAK

Key Sequence

Commentary

Return to the Z-SCAN monitor environment.

Step Key Sequence

Commentary

63. M, L, down, E, X, A, M, S, E, G, return

Set up and execute the Memory-io screen Load command. The program name is EXAMSEG (segmented example), and it is to be loaded into system code memory, segment 00. As the file is loaded, an incrementing number field appears toward the top left of the screen. This is a countof the number of records transferred from the host to target memory. Each record carries 30 or fewer bytes. When the loading is complete, the entry address of the program is displayed. If any error message appears, enter H and check the following:

- o Does the program file EXAMSEG
 exist?
- o Is its name correct?
- o Does the download utility LOAD exist?

If no message appears when the command is executed, the host has not responded to the Load command sent by Z-SCAN. Terminate the load by entering BREAK, then type H and establish why this happened. When you have fixed the fault, return to the Z-SCAN monitor environment and type M, L, return.

t	arget: space	e SC seg	ment 00			
f	ile_name	EXAMSEG				
	DES NTRY POINT (8844				

Figure 4-107. Loading of Z8001 Example Program

Step	Key	Sequence	Commentary

If you have completed the four previous steps, skip the next one.

64. M, V, 6, left, 0, 0, 9, 0, left, 5, E, 7, 0, RETURN

A copy of the example program shown in Figure 4-105 exists in the Z-SCAN monitor ROM. Use the Memory_io screen moVe command to copy it into the mappable memory.

source: space MT address 00 5E78 count 00990 target: space SC address 00 00000	
DOME	
(Memory is Screen moder Command)	

Figure 4-108. Copying Program with moVe

	Step	Key Sequence	
5/27/81	65. R, (G, space, left	Set
	spac	ce, left, O, O,	proc
	4, 4	4, RETURN	sys

Set up the PC and FCW so that the program starts at location 0044 in system mode. At the same time, restore RO to its default value.

Figure 4-109. reGister Initialization

Figure 4-110. Set-up of Peek Parameters

66. P, 1, left, 0, 0, 3, 0, down, 0, 0, 3, 4, right, 5, down, 2, left, 0, 0, 3, C, RETURN The program has data, normal stack and system stack areas. Set up the Peek fields to monitor their contents before and after each emulation is run.

Step	Кеу	Sequence	Commentary
67. B , 2, up, 1 RETUR	up, eft, N	left, space, O, O, 4, 4,	Finally, set up a breakpoint on the first instruction of the initiali- zation routine of the example pro- gram.

The Z-SCAN is now ready to run the program. There is a trigger break after the first instruction is executed. At this point, the only change is in the PC value.

Ha	it_ s	tates	0					Inst_c	ount	01					
∎A	adi	ace dress	SC SC BB BB unpro)SSN 1009 tect	KND	MS	Break	enable seg≢of read	s pu fset96 sy	lse_1_ 0044 stem	break word	sta cou ins	tus nt 01 tr fe	ch1	
add 80 80	r 0048 0044	ins 7000 7600	ruct 1	on		LD LD	emonic CTL A	PSAPS RR0	EG R18	(00))) (0000				
s 1 S	p D 00	addr 8838	80 80 8008 8088	FV CO 0000 0000	ntent 8000 0000	: 0000 0000		R1 100 000	R2 8 8888 8 8888	R 3 8668 8668	R4 8088 8088	R5 8000 9000	R6 0000 0000	R7 9000 9000	
2 H	5 00	00 34					K) 61 61	199 199 199 199 199 199	R18 9 9999 9 99999	R11 9999 9999	R12 0000 0000	R13 0000 0000	R14 0089 0089	R15 0000 0000	
3 S	S 80	0830	0000 0000		0000 0000	0000 0000		9848 9844	C000 C000		86 6 86 6	P58P 100 100		NSP 1990 8000	
Ret	urn_	Bessag	e TR	IGGER	BREA	CAT:	6648								
(Ex	ecut	ion Sc	reen	ŀ	o Com	and)			ī.	9.	uit				

١,

Figure 4-111. Emulation and Breakpoint

68. E, G

Step Key Sequence

69. I, 6, down, 1, down

Irace the next five instructions, entering numbers to change the default Irace step count. At the end of the sequence, both system and normal stack pointers have been set up, changing the displays for the two stack areas. Notice that when the LDA instruction is used with a short offset address, the low byte of the address is loaded into both halves of the long word destination register. This is acceptable because the low eight bits of the segment register are ignored. Also, bit 7 of the PC segment number is a don't care. The final instruction, a System Call, pushes four words of data onto the system stack, producing a further change. The data also appears in the third Peek area.

Figure 4-112. Tracing Initialization Routine

•

5/27/81

70. 1, 0, 0, 0, down, BREAK

Key Sequence

A large number of instructions can be traced by entering a hexidecimal number (botton right of menu area). Tracing begins when you enter cursor down. Let the display run for a while and observe that the program loops, alternately setting and clearing bit 14 of the FCW to move in and out of system mode. Tracing can be stopped at any time by entering the terminal BREAK key. The redisplayed memory content fields show that the contents of the data area and of both stacks have changed.

Figure 4-113. Trace of Main Routine

71. RETURN, G, target RESET

Run the program. The emulation can be terminated with a target RESET because the status loaded from locations 0002 through 0006 in response to the input makes the CPU execute the instruction on which the breakpoint is set. The initial conditions of the program are not fully restored by the RESET because the data and stack areas may no longer be zero.

Figure 4-114. Trigger Due to Target Reset

5/27 72. RETURN, target NMI 81

Key Sequence

Step

A target NMI also terminates an emulation. Again, the initialization routine is entered in response to the input. The cause of the entry can be distinguished because the reset and NMI flag register values differ.

Figure 4-115. Trigger Due to Target NMI

Figure 4-116. Set-up of Stack Write Break

73. R, B, down, 3, down, 1, left, A, RETURN This tutorial does not explore the full possibilities of the program, which can generate a wide variety of bus cycle types in both system and normal modes. Experiment with it if you want to explore the Z-SCAN's features in more depth. As a start, set up a breakpoint on a system stack write of data pattern 0044. Step Key Sequence

Commentary

74. E, G

This last emulation can run for as long as four seconds before the instruction at address OO82 writes the data pattern matching the programmed break condition. The Z-SCAN may not stop the emulation before the next instruction is executed because the data match is detected only at the end of the last bus cycle of the INC instruction. Because of this, the next instuction, POP, is executed before the emulation terminates. This leaves the PC pointing to the LDR instruction.

Figure 4-117. Break on Stack Write

4.9 CONCLUSION

This concludes the Z-SCAN monitor tutorials. They have shown many of Z-SCAN's features and most of its displays. A few commands have not been explored; these are discussed in Section 6. New users should now proceed to Section 5 which describes the connection of target hardware to Z-SCAN.

SECTION 5

TARGET HARDWARE CONNECTION

5.1 INTRODUCTION

The Z-SCAN 8000's major function is to replace a Z8001 or Z8002 microprocessor in a target system with an in-circuit emulator. This section details the method of connection. Readers are assumed to have some familiarity with the Z-SCAN monitor software. New users are advised to work through the tutorial in Section 4 before proceeding to the connection of a target system.

While Z-SCAN is designed to mimic the Z8000 processors as accurately as possible, the characteristics of any microprocessor emulator inevitably differ slightly from those of the CPU it replaces. These differences and their impact on the behavior of Z-SCAN in certain types of target hardware are discussed. Designers of Z8000-based hardware should read this material. Users debugging existing designs may find that this section explains certain aspects of Z-SCAN's behavior in their target systems.

The combination of a Z-SCAN and a logic analyzer forms a powerful tool capable of real-time recording of logic signals in the target during emulations. The way Z-SCAN's break pulse output can be used to trigger the analyzer, or an oscilloscope, is described in the final part of the section.

5.2 USE OF THE EMULATOR CABLE

5.2.1 Clock Source

Z-SCAN is capable of operating either from its own 3.3 MHz internal clock or from an external clock supplied through the emulator cable from the target hardware. The external clock can have any frequency from 0.5 to 4.0 MHz.

If Z-SCAN is used without a target, as might be the case during the debugging of a non-hardware-dependent software module no larger than the 8K bytes of mappable memory, the internal clock source must be used. When Z-SCAN is connected to a target that has its own clock source, Z-SCAN must use the target's clock to ensure that its CPU operates at the same speed as synchronous logic elements in the target and to ensure successful emulation.

Changeover from internal to external clock is accomplished by moving a single jumper on the Z-SCAN printed circuit board. The jumper, designated E10, E11, E12, is located towards the front left of the board, as shown in Figure 5-1. The jumper is the only one on the board the user should alter, and it selects clock source as listed in Table 5-1.

Connection	Clock Source
E10 to E11	Internal
E11 to E12	External

Figure 5-1. Clock Jumper Location

In order to select a new clock source, proceed as follows:

- 1. Switch the Z-SCAN power off by toggling the red power switch, located on the front panel, to the OFF position.
- 2. Remove the power cord from the socket on the rear of the unit.

--DANGER--

Failure to remove power from the unit prior to removal of the cover may result in exposure to hazardous voltages.

- 3. Remove the three screws and washers that secure the top cover of the unit at the top left, center, and right of the rear panel, as shown in Figure 5-2. Store the screws and washers in a safe place.
- 4. Grasping the rear of the top cover, lift it upwards and move it to the rear to release it from the front panel.

- 5. Locate the clock source jumper (see Figure 5-1) and move to the required position (see Table 5-1).
- 6. To replace the top cover, locate the front flange under the front bezel and swing the rear down. Make sure that the rear flange is inside the rear panel of the unit.

--DANGER--

Do not reconnect power to the unit until the top cover has been replaced and secured.

Figure 5-2. Z-SCAN Top Cover Removal

- 7. Replace the three screws and washers removed in step 3.
- 8. Reconnect the power cord to the rear of the unit, but do not switch power on at this stage.
- 9. If the external clock was selected in step 5, procede to Section 5.2.2 below, which describes the connection of the emulator cable. Z-SCAN requires the connection of a target in order to function when the external clock has been selected.
- 10. If the internal clock was selected in step 5, the unit can now be powered on by moving the front panel power switch to the on position. Correct operation can be verified by following the procedure described in Section 3.6.

5.2.2 Connection of the Emulator Cable

Two emulator cables are shipped with each Z-SCAN. The 40-way cable is used for Z8002 emulation and the 48-way for emulation of the Z8001. Before connecting either of the cables to the Z-SCAN, check that the correct processor is installed. The processor type is displayed on the System screen. Section 3.9 describes how to change the processor.

When the correct processor is installed, the target system can be connected to Z-SCAN with the emulator cable. To do this, procede as follows:

- 1. If Z-SCAN is not already switched OFF, switch it OFF using the front panel POWER/OFF switch.
- 2. Turn the target system OFF.
- 3. If the Z-SCAN unit is equipped with a Z8002 CPU, plug the 40-pin flat cable connector into the right-hand socket marked Z8002 on the front panel of the Z-SCAN. If a Z8001 is installed, plug the 50-pin flat cable connector into the left-hand socket marked Z8001. The stripe indicating Line 1 should be to the right of the cable.

--CAUTION--

It is possible to insert either connector upside-down. Incorrect connection can result in damage both to Z-SCAN and to the target system.

- 4. Remove the plastic pin protector from the DIL header and store it in a safe place.
- 5. Plug the header into the CPU socket in the target system, making sure that the pin marked "1" on the header is mated with pin 1 of the socket. Figure 5-3 shows the Z-SCAN unit correctly connected to a target system.

5-4

Figure 5-3. Z-SCAN and Z8002 Target System Connections

5.2.3 Checkout of Z-SCAN with Target System

To check that Z-SCAN can operate with the newly connected target system, the following test should be carried out. Note that this simple procedure only verifies that the target is correctly connected and is providing an adequate clock signal to the unit. It does not verify that the target is functional in any other respect.

- 1. Turn on the target system.
- 2. Power the Z-SCAN by moving the front panel Power/OFF switch to the POWER position.
- 3. Place the TARGET/MONITOR switch in the MONITOR position.
- 4. Toggle the RESET switch.
- 5. On the keyboard, enter RETURN once. The Z-SCAN sets its baud rate and displays the terminal menu.

If the terminal menu does not appear, check the following:

- Emulator cable is correctly connected.
- Target system is powered.
- Target clock circuitry is functioning properly.

- Target clock rate is within Z8000 specification (0.5 4.0 MHz).
- Target clock meets minimum high- or low-time requirements of Z8000 CPU (105 ns) and has proper rise time (less than 20 ns).
- Clock source selection jumper is correctly installed (see Section 5.2.1).
- Emulator cable assembly is not damaged (see Section 5.2.4).

After the problem has been identified and corrected, the Terminal Selection screen should appear after the checkout procedure. If problems persist despite the availability of an adequate clock from the target system, the Z-SCAN may require maintenance. In this event, the user should contact the nearest Zilog sales office.

6. Select a terminal number, then enter return. If the target system contains dynamic memory components, enter the key sequence:

RETURN, cursor down, 1, RETURN

This updates the status to target field on the System screen from internal op to refresh. For further details see Section 5.4.3.

5.2.4 Care of the Emulator Cable

The emulator cable assembly is 18 inches (45.7 cm) long and is constructed from a special high-quality flat cable that has a ground wire adjacent to each signal wire for optimum transmission characteristics. Standard flat cable connectors cannot be used with this type of cable. If the assembly is damaged during use, a replacement must be obtained from Zilog. Z-SCAN's performance will be degraded if a substitute is constructed with standard cable and connectors.

While the assembly is quite sturdy, it can be damaged by incorrect handling. Observe the following precautions to minimize the possibility of damage:

- Never pull on the cable. Use the procedures detailed below to remove the connectors from the Z-SCAN or from the target system.
- When the cable is not plugged into a target system, cover the exposed pins on the emulator plug with the pin protector supplied with the unit. If the protector is lost, a small pad of conductive foam or styrofoam is an acceptable substitute.
- Once the cable has been connected to the Z-SCAN, do not remove it unless absolutely necessary. When removal is required, grip both sides of the cable and the connector between the thumbs and forefingers of both hands. Move the connector up and down slightly while gently pulling until it is free.
- To remove the emulator plug from the target system CPU socket, use a small screwdriver as a lever to lift each end of the Augat header from the socket in the target a little at a time. When the plug is free, cover the exposed pins with the pin protector supplied with the unit.

• If target hardware modifications are made, remove the cable from the target system to avoid contact with a hot soldering iron.

5.3 FRONT PANEL SWITCHES

The three switches at the right of the Z-SCAN front panel were described in Sections 3 and 4. This section describes the exact effect of each of the four types of input that these switches can generate to Z-SCAN. See Table 4-2 for details of how to generate each type. Z-SCAN's response to a particular input is determined primarily by the operating mode at the time the input is received (see Tables 5-2 through 5-5).

At no time does Z-SCAN drive the target system's RESET- or NMI- signals. Thus, while the Z-SCAN CPU responds correctly to a target RESET or NMI generated with the Z-SCAN front panel switches, circuitry in the target hardware that relies on these signals' being active does not respond. This makes it possible that the behavior of the target following a front panel reset or NMI will differ from that which occurs when either signal is generated by the target itself.

Operating Mode Before Monitor RESET	Operating Mode After Monitor RESET	Notes
Monitor	Monitor	The CPU and Z-SCAN hardware is RESET to its initial state. All information
Host	Monitor	about the previous state of Z-SCAN is lost Type RETURN to set baud rate
Target	Monitor	

	Table	5-2.	Response	to	Monitor	RESET	Input
--	-------	------	----------	----	---------	-------	-------

ladie 2-2. Kesponse to Monitor N

Operating Mode Before Monitor NMI	Operating Mode After Monitor NMI	Notes
Monitor	Monitor	The input is ignored.
Host	Monitor	The input is ignored.
Target	Monitor	This is the Z-SCAN's manual BREAK.

5-7

Ta	ble	5-4.	Response	to	Target	RESET	Input	Ł
----	-----	------	----------	----	--------	-------	-------	---

Operating Mode Before Target RESET	Operating Mode After Target RESET	Notes
Monitor	Monitor	Returns Z-SCAN to its initial condition.
Host	Monitor	Has same effect as Monitor reset.
Target	Target	Has the same effect as the target sys- tem's RESET- input to Z-SCAN. The The Z8000 CPU in Z-SCAN is reset. All other Z-SCAN hardware is unaffected. See Section 7.4 of the <u>Z8000 CPU Technical</u> <u>Manual</u> .

Table 5-5.	Response	to Tar	rget	NMI	Input	Ľ
------------	----------	--------	------	-----	-------	---

Operating Mode Before Target NMI	Operating Mode After Target NMI	Notes
Monitor	Monitor	The input is ignored.
Host	Host	The input is ignored.
Target	Target	Has the same effect as the target sys- tem's NMI- input to the Z-SCAN. The Z8000 CPU in Z-SCAN will respond to an NMI All other Z-SCAN hardware is unaffected. See Section 7.6 of the Z8000 CPU Technical Manual.

5.4 HARDWARE DESIGN AND DEBUGGING WITH Z-SCAN

The Z-SCAN 8000 has been designed to emulate the Z8000 CPUs faithfully in both new and existing hardware designs. This means that any target that operates correctly when a CPU chip is installed should also operate correctly when a Z-SCAN emulator is used in place of the CPU. The converse is also true. However, the ac and dc characteristics of Z-SCAN, and under certain circumstances, its bus signal sequences differ slightly from those of an actual CPU. These differences arise from the buffering required to isolate the Z-SCAN CPU from possible faults in the target system and from the need to prevent execution of the Z-SCAN monitor software from affecting the target system.

The remainder of this subsection details the areas in which differences exist and describes their possible effects on emulation and debugging. Hints to designers allow potential problems to be avoided before they arise. The hints in general reflect conservative design practices and ensure that equipment can be produced reliably and repeatably once the design has been finalized. Additionally, each paragraph suggests ways in which small problems in existing target hardware designs can be overcome or circumvented.

5.4.1 Emulator DC Characteristics

The dc characteristics of the Z-SCAN emulator differ from those of an actual CPU in three respects:

- Input Loading: Z8000 CPUs load inputs very lightly (no more than 10 uA and, except in the case of CLK, less than 10 pF). The Z-SCAN, in contrast, loads each input with 30 pF and a low-power Schottky TTL buffer (200 uA). In addition, the NMI-, NVI-, SEGT-, WAIT-, RESET-, DS- and VI- inputs have 10k pullups for an additional load of 500 uA.
- Output Drive: Z8000 CPUs are specified with a load of 100 pF and 2 mA. Because it has low-power Schottky TTL drivers, Z-SCAN can drive a much greater load.
- Input Levels: The majority of Z8000 inputs are completely TTL compatible. Two are not: CLK has more stringent high- and low-level requirements, and RESET- requires a slightly greater input high level. In contrast, all inputs to Z-SCAN are TTL compatible.

The electrical differences between a Z-SCAN and the Z8000 CPUs make it possible (though unlikely) that a target system could work with Z-SCAN but not with a CPU, or vice-versa. Such problems can easily be avoided at the design stage by adopting a few simple standards:

- Clock Driver: Never attempt to drive the CLK pin of the CPU directly from a TTL output. A special drive circuit capable of meeting the stringent requirements of the Z8000 is required. The Zilog application note <u>A Small Z8000 System</u> (document #03-8060) details a suitable design. A TTL output with a pullup resistor is not a satisfactory alternative.
- Reset Driver: If RESET- is driven by a TTL output, add a pullup resistor. The value is not critical: 4.7 K will do.

5-9

• Bus Loading: Do not attach too many loads directly to the bus signal pins of the CPU. As a rule of thumb, Z8000 processors can accommodate up to ten NMOS loads plus one low-power Schottky TTL load on each bus signal line, provided that the total length of the line is not greater than 8 in (20 cm) of printed circuit track. Greater loading is likely to exceed the capacitive drive capability of the CPU, even if dc loading limits are not exceeded. If there is any doubt about loading levels, or if bus signals are to be carried between circuit boards, use buffers.

Emulation problems arising from the differences between the dc characteristics of Z-SCAN and those of a Z8000 CPU are likely to show one or more of the following symptoms:

- Intermittency: The symptoms appear and disappear unpredictably.
- Temperature Sensitivity: The symptoms are seen only when Z-SCAN or the target system is warm and can be removed by cooling a particular component in the target system.
- Voltage Sensitivity: Raising or lowering the supply voltage in the target system affects the symptoms.
- Locality: Z-SCAN is able to access all features of the target system except those associated with a particular component or logic block.

If it is established that the Z-SCAN capacitive loading is increasing access times in the target to an unacceptable level, and that the target is capable of meeting the worst case ac specification of the Z8000, a temporary solution is to replace the target memory or I/O components with faster parts. Alternatively, provided that full-speed emulation is not required, the Z-SCAN Wait_states command can be used to relax access time requirements. Section 6.10.6 gives more details.

In general, quick fix solutions to such problems are not recommended because they probably indicate a marginal hardware design which, even if it works correctly with a CPU in prototype form, could suffer from repetitative or reliability problems when it is moved into production. The user is urged to determine the source of the problem and incorporate a permanent solution into the target hardware.

5.4.2 Emulator AC Characteristics

The ac characteristics of Z-SCAN differ from those of a Z8000 CPU because of delays introduced by signal buffering. The differences are minimized by using a factory-selected CPU in Z-SCAN.

Problems might also occur in synchronous logic in the target. Typically, such logic uses the system clock to latch signals coming from the CPU. For example, a dynamic memory controller might latch MREQ- on the rising edge of CLK-. The Z8000 has been designed to allow comparatively long set-up times in such cases, so it is unlikely that the slight reduction of time that results when Z-SCAN is used will cause problems. If a problem does occur because the timing skew introduced by the Z-SCAN is unacceptable to the target, it can usually be solved by introducing extra delay in the clock path to the synchronous logic in the target. Designers should be aware that such a solution may affect the access time requirements of memory or I/O components controlled by the synchronous logic.

5.4.3 Dynamic Memory Refresh

Z8000 microprocessors have a feature that allows them to refresh dynamic memory components automatically with a minimum of external logic. This is described in Chapter 8 of the <u>Z8000 CPU Technical Manual</u> (document #00-2010-C). Zilog's application note <u>A Small Z8000 System</u> suggests a suitable logic design and shows the relationship between the contents of the upper byte of the refresh register and refresh rate.

Z-SCAN supports automatic refresh before, during, and after emulations to preserve the integrity of the contents of dynamic memory in the target system. Z-SCAN itself contains no dynamic memory and so does not require refresh to be enabled in order to operate correctly.

Refresh is controlled by the Z8000 refresh register. Z-SCAN does not exercise as close control over the contents of this register as it does over those of others, partly because changes in its contents are largely independent of the code which is being executed, and also because some of its bits are write-only bits. For these reasons it does not appear on the Resources or Execution screens (Sections 6.10 and 6.11). Z-SCAN only alters the contents of the refresh register when the status to target field on the System screen is changed by the user. When refresh is selected, the register is loaded with %9E00; when internal_op is selected, a value of %0000 is loaded. The System screen is described in Section 6.8.

The hexadecimal value %9E00 causes the CPU to perform a refresh operation every 60 clock cycles. At a 4 MHz clock rate, this results in 128 refresh cycles every 1.92 ms, sufficient to satisfy the worst case requirements of typical dynamic RAM components. For targets in which the clock rate is significantly lower or in which a higher refresh rate is required, the user must change the value in the refresh register if worst case requirements are to be met. The alteration can be accomplished in one of two ways:

- Run an emulation of the initialization portion of the target application software. This should contain code that loads the refresh register with the value required by the target.
- Using the eXamine command on the Memory io screen, load the opcode %7DOB (LDCTL REFRESH,RO) into any available RAM location. Use mappable memory if all the target memory is dynamic. Then use the Resources screen reGister command to load the required refresh register value into RO, the location of the instruction into PC, and %4000 into FCW. Finally, step through the instruction with the Execution screen Next command.

It is worthwhile to consider the exact effects of the two possible status to target values on the bus signals in the target system (Table 5-6).

status_to_target	st ₀₋₃	AD ₀₋₁₅	AS-	MREQ-	DS-
internal_op	internal op (0000)	active	active	3-stated	inactive*
refresh	internal op (0000) or refresh (0001)	active	active	active	inactive*

Table 5-6. Monitor Mode Target Signals

*DS- is held high by a 10 kilo ohm pullup resistor

When internal op is selected, every bus transaction generated by the monitor appears to be an internal operation to the target system. Because AS- is still active, self-refreshing (pseudo-static) memories in the target retain their contents provided that they use AS- and not MREQ- as a clocking signal.

When refresh is selected, most Z-SCAN monitor bus transactions appear as internal operations to the target system. They differ from the internal operations generated by an actual CPU because MREQ- may be active. Refresh cycles, generated when the CPU refresh rate counter times out, present refresh status to the target.

5.4.4 Target Memory and I/O Access

When Z-SCAN accesses target memory during emulations, the transactions it generates are identical to those that would be generated by a Z8000 CPU. However, when such accesses are made by the Z-SCAN monitor software, there may be differences. All the commands available on the Memory io screen (see Section 6.9) cause Z-SCAN to perform memory or I/O operations in the target system. The Peek and current instruction fields on the Execution screen also require target memory accesses in order to be updated.

The Memory io screen reAd and Write commands access target byte and word standard and special I/O ports using operations exactly like those produced when I/O instructions are executed by a program running under emulation. For target memory accesses, however, Z-SCAN always uses the same width of data (word or byte) for each type of operation, independent of the width (long word, word, or byte) selected by the user for the display of information. Table 5-7 lists the operation types, together with the transactions generated by Z-SCAN.

Operation Transaction		Notes		
Memory read	Byte read			
Memory write	Byte read, word write	A read-modify-write sequence for each byte to be written accommodates memories that do not support byte writes.		

T	able	5-7	7.	Z-SCAN	Target	Memory	Access	Transactions
Z-SCAN's choice of transaction types should cause no problems in most target systems. There are, however, some unusual design configurations where target accesses may produce unexpected results:

- Memory that does not support byte reads: A correctly designed Z8000 memory control circuit does not need to distinguish between byte and word reads and hence implicitly supports both (see <u>A Small Z8000 System</u>). If, for any reason, a target's memory does not respond to byte read transactions, the Z-SCAN monitor will not be able to access that memory.
- Systems using B/W- as a memory bank select signal: The Z-SCAN monitor expects the same memory space to be accessed by both byte and word transactions. The Z-SCAN memory modification commands cannot be used in unorthodox target systems that use the B/W- (Byte/Word) signal to choose between two separate memory banks.
- Word-wide, memory-mapped I/O: The Z-SCAN memory modification commands cannot operate on write-only, word-wide memory-mapped I/O, nor do they give correct results on memory-mapped ports that require all 16 bits to be written or read in a single operation.

5.4.5 Interrupts and Traps

Z-SCAN terminates all emulations by giving the CPU a non-maskable interrupt. This interrupt has a higher priority than the three other external interrupts supported by the Z8000--segment trap, vectored and non-vectored. This means that all break conditions--step, manual, trigger and write protect --have priority over interrupts generated by the target hardware, including target NMI (see Section 6.10.1).

The Trace command (see Section 6.12.3) and the Next command (see Section 6.12.2), if used with an instruction count of one, give the CPU an NMI after each user instruction. This prevents the acknowledgement of any target interrupt, even though the target program is being executed. This does not prevent interrupt service routines from being traced, but it does mean that they cannot be entered while another part of the program is being traced.

The Z8000 CPU always fetches one instruction that it does not execute after it has accepted an interrupt or trap. See Section 9.4.5 of the <u>Z8000 CPU</u> <u>Technical Manual</u> for further details. The aborted operation is indistinguishable from any other instruction fetch, first word, bus cycle, and so can trigger the Z-SCAN breakpoint logic if suitable conditions have been set up. When this happens, the state of the user program following the breakpoint will differ from the state expected.

Unexpected breaks of this type do not corrupt the target program: if emulation is resumed, the instruction is fetched and executed normally after the target handler interrupt is executed.

5.4.6 Memory Management Considerations

Many applications use a Z8001 CPU in conjunction with a Z8010 Memory Management Unit, or some other memory management hardware. These external components increase system reliability and flexibility by serving two functions:

- Translation of logical address information from the CPU to physical addresses for memory components.
- Protection of memory from invalid access by the CPU.

When the Z-SCAN mappable memory is used in conjunction with a target system that has a memory manager, the user should be aware that the mappable memory is fixed in logical address space during emulations. It responds directly to the untranslated addresses output by the CPU. It cannot be relocated or protected by the action of the memory manager.

The protection attributes of target system memory may be violated by a program running under emulation. In such cases, the MMU activates the SEGT- signal and the user's trap handler is entered to deal with the problem. It is also possible for target memory accesses generated when Z-SCAN is in monitor mode to violate protection attributes. For example, the user could use the Fill command on a write protected memory area. An external memory manager responds to these violations by asserting SEGT-, but the monitor does not acknowledge the signal, and so it remains outstanding until the next emulation starts. The user's trap handler is then entered to deal with a violation that is not caused by the user program.

A message displayed at the lower right of the System and Trace screens warns the user if SEGT- is asserted before an emulation is started (see Section 6.12). If the user does not want the trap routine to be entered, the Memory_io screen Write command must be used to reset the memory management hardware before emulation.

5.4.7 Direct Memory Access

Z-SCAN fully supports Direct Memory Access (DMA) in the target system while emulations are running. Note that if a trigger or manual break condition occurs during a DMA operation, emulation does not stop until the DMA controller releases the bus, because the CPU cannot service the break request until it has regained control of the bus. Also, because BUSACK- is not a term in the breakpoint equation, Z-SCAN cannot distinguish between transactions generated by the CPU and those generated by another bus master.

DMA controllers (or any other types of bus masters) are able to read and write the Z-SCAN mappable memory once they have gained control of the bus during an emulation. A prerequisite for such operations is that the alternative bus master and the CPU socket must be connected to the same bus. Any buffering between the socket and the alternative bus master probably prevents access to mappable memory because the buffers may be 3-stated during DMA operations.

Z-SCAN does not acknowledge bus requests from the target when no emulation is in progress. This means that DMA devices that repeatedly request the bus once it is enabled (for example, CRT refresh controllers) do not have their requests honored after an emulation has terminated. For problem-free operation with Z-SCAN, such controllers should be designed to accommodate the possibility that the bus may not be granted an indefinite period following a request. Designs that abort or shut down if a request is not honored within a certain time may not restart correctly when emuation is resumed.

5.4.8 Termination of Emulation

The previous section mentioned that a breakpoint, whether manual or programmed, is not activated until the end of a bus acknowledge state. The same is true of wait and stop states: an emulation cannot terminate unless RESET-, BUSACK-, WAII-, and STOP- are all inactive. The only certain method of returning control to the Z-SCAN monitor if any of these signals is stuck in the active state is to apply a monitor reset using the Z-SCAN front panel switches. This action, which must be followed by RETURN, reinitializes the monitor, meaning that Z-SCAN must be completely reprogrammed. This can be avoided by first resetting the target with its own reset logic (a Target mode reset from Z-SCAN front panel switches may not have the required effect; see Section 4.3) and then entering a manual break with a Monitor mode non-maskable interrupt (NMI).

There are occasions when it appears that a programmed breakpoint should have been encountered--execution has proceeded past the point at which the breakpoint was expected to occur--but emulation continues. This is likely to happen when the bus transaction on which the breakpoint was set does not completely match the conditions set up with the Breakpoint command. The mismatch can arise from the fact that the Z-SCAN address/data bus breakpoint comparator is a full 16 bits wide and so does not detect byte data or interrupt vector matches (eight bits) or refresh address matches (nine bits). Problems can often be circumvented either by eliminating the offending term from the break condition or by choosing an alternative bus transaction as the trigger condition. This topic is discussed in more detail in Section 6.10.1.

Unless one or more of the signals mentioned in the first paragraph is active, it should always be possible to stop an emulation with a front panel monitor NMI. If emulation cannot be stopped this way, it is possible that the CPU has entered an illegal state as a result of being driven by target-generated signals that are out of specification. The most likely culprit is the clock. Another possibility is that substantial ground currents are flowing in the emulator cable and disrupting dc levels. This can happen when Z-SCAN and the target system are connected to different power ground distributions. For this reason it is recommended that Z-SCAN and the target system are both connected to the same power receptacle.

5.5 USE OF THE HARDWARE TRIGGER

The rear panel BNC connector which carries the Z-SCAN break pulse output signal allows the unit to be used in conjunction with other test instruments such as oscilloscopes and logic analyzers. Section 6.10.1 details the programming of the break pulse logic. This section discusses the use of the break pulse in general terms only because of the wide variety of equipment with which Z-SCAN can be used.

5.5.1 Break Pulse Characteristics

The pulse from the rear panel is positive going. This means that the rising edge of the pulse signals the time when the programmed bus condition is detected. Detection occurs shortly after the rising edge of clock in T2, and the pulse is one clock cycle long. The pulse appears in the same cycle that causes the match when the programmed condition is address, control/status, or control/status with address. For data or control/status with data, the pulse is output during the bus cycle that follows the programmed condition causing the match. A separate pulse is produced for each cycle which results in a match, even when a number of consecutive cycles all match the programmed condition.

The pass counter logic can be used in conjunction with the pulse feature. For a pass count of n, a pulse is output every nth time the programmed condition is satisfied. There is no output at any other time.

The Z-SCAN pulse logic is inhibited when no emulation is in progress, so there is no danger of spurious triggering of external equipment, even if the programmed match condition is satisfied during the execution of the monitor software.

5.5.2 Connection of External Equipment

Connection of an oscilloscope or logic analyzer to the Z-SCAN break pulse output is a simple matter, typically accomplished with a coaxial cable terminated with BNC connectors.

--CAUTION--

The break pulse output is driven directly by the output of a low-power Schottky TIL gate, which may be damaged if subjected to a sustained short circuit.

Due to its short duration, the pulse should be used as an external trigger when Z-SCAN is used in conjunction with a logic analyzer. It is not suitable for use as a gating, qualifying, or enabling signal. The analyzer should be set to expect a positive-going TTL-level trigger pulse.

The pulse can also be used as an external trigger for an oscilloscope. The time base should be set to trigger on the positive edge of the dc-coupled input signal. AC coupling is not recommended because the mean level of the signal--and hence the trigger point--changes according to the frequency of the pulses. If the break pulse is displayed on an oscilloscope for any reason, it may have a slight but inconsequential ringing on transitions, because the output is not terminated.

5.5.3 Choice of Logic Analyser Recording Window

When a logic analyzer receives a trigger, one of three things happens:

- The logic analyzer stops recording, and its memory holds information about events prior to the trigger.
- It starts recording, stopping when its memory is full. Here, events after the trigger are recorded.
- It continues recording but stops after a certain number of sample clock cycles. Information about events before and after the trigger is recorded.

All three options can be used in conjunction with the Z-SCAN break pulse output when the pulse_only option is selected with the Break command (see Section 6.11.1).

Z-SCAN also outputs a break pulse when the pulse & break option is selected. This allows a logic analyzer to be used to record events in the target system prior to the break if the analyzer is set to stop recording when it receives a trigger pulse.

5.5.4 Clocking of Logic Analyzers

With most logic analyzers, users have a choice of two sources for the clock that determines the rate at which logic inputs are sampled. The analyzer's internal clock, which typically allows sampling rates of between tens of nanoseconds and milliseconds, can be used. Alternatively, the user can provide an external clock signal from the system under test.

Both sources have their uses in the development of Z8000-based designs. The internal clock is used both for simplicity of set-up and for maximum resolution. The sample rate should be such that the sample period is shorter than the duration of the shortest pulse being monitored; this avoids the possibility of pulses being missed. The shortest pulse generated by the Z8000 is Address Strobe (AS-), which has a minimum duration of 20 ns less than the CPU's clock high width (85 ns with a 4 MHz clock). In order to reliably capture AS-, a sample period of 50 ns is required in a 4 MHz system with an internally clocked logic analyzer. Still shorter periods may be required to capture glitches of short duration in the target hardware.

The disadvantage of internal clocking is that the analyzer must sample the input signals at a higher rate than is strictly necessary to record events occurring in a system that is driven synchronously by its own clock source. As a result, the number of events that can be recorded by the analyzer before its memory becomes saturated is less than optimal. For example, with a 50 ns sample period it takes only about 50 Z8000 bus cycles to saturate a 1024-word sample memory. A greater number of cycles could be accommodated if a clocking signal precisely matched to the Z8000 system were used. Of course, such a signal is readily available in the CPU clock signal.

When the CPU clock is used as an external clock for a logic analyzer, its negative edge (high-to-low transition) should be treated as active. It is on this edge that Address Strobe is active, that address and status are valid in T1 of any bus cycle, that WAIT- is sampled during T2, and that data is sampled in T3 during read operations. For further details, see Section 9.4 of the Z8000 CPU Technical Manual. Using the clock, a 1024-word sample memory in an analyzer can record about 250 Z8000 bus cycles, five times more than is possible with the analyzer's own clock.

In certain situations it may be desirable to use a more selective clock source than the clock signal. For example, the user may wish to record only I/O transactions or only refresh cycles. This can be accomplished in one of two ways, depending on the amount of information required about the transactions:

- Address and Status Only: When just one sample occurring shortly after Address Strobe is sufficient, the break pulse output of Z-SCAN can be used directly as a positive-going clock signal. Use the Break command (see Section 6.11.1) to select pulse only on the selected status condition, with ignore AD and a count of 01.
- Full Record: When complete information about each transaction is required, the analyzer should be clocked either from its internal clock source or from the target clock, as described above, but the clock must be qualified by the Z8000 status signals in order to select particular types of transactions. Most analyzers have a clock qualifier input that can be used to gate the clock in this way. The qualifying signal must come from the target, from a proprietary qualifying probe pod available from the supplier of the analyzer, or from a temporary circuit constructed from logic components and attached to the target system. Most Z8000 systems fully decode the status lines SI_{0-3} . An output of the decoder can often be used directly as a clock qualifier, avoiding the requirement for additional logic.

5.5.5 Break Pulse Demonstration

The wide variety of equipment that can be used with Z-SCAN makes it impossible to give a step-by-step tutorial. It is suggested that users having logic analyzers and wishing to become familiar with the break pulse should procede as follows:

- 1. Connect the emulator cable to the Z-SCAN as described in Section 5.2.2, steps 1 through 4.
- 2. Attach logic analyzer signal probes to signal pins of interest on the header at the target end of the cable. Suggested signals are SI_{0-3} (pins 21-18 on the Z8002, 23-20 on the Z8001), AS- (pins 29-34), DS- (pins 17-19), MREQ- (pins 16-18), and R/W- (pins 25-30). Consult the logic analyzer manual to find out how to arrange these so SI_{0-3} can be interpreted as a hex digit with SI_3 as the most significant bit.

--WARNING--

Take care not to bend or break the pins on the header.

- 3. Connect the Z-SCAN rear panel break pulse output to the external trigger input of the analyzer. On analyzers without such an input, connect the break pulse to an unused signal input. The position of the connector is shown in Figure 3-2.
- 4. Ensure that the analyzer is on, then turn on the Z-SCAN.
- 5. Set up the analyzer for pre-trigger recording with an internal clock period of 50 ns. Select a positive-going trigger from the external trigger input rather than from the analyzer's internal word recognizer. For analyzers without an external trigger, select the signal input

carrying the break pulse as the only significant term in the trigger equation: all other inputs should be "don't cares." Consult the logic analyzer manual for its set-up procedure.

- 6. Prime the analyzer manually so that it starts to record information.
- 7. Work through the tutorial of Section 4 of this manual. Experienced users can ignore some of the redundant keystrokes in arriving at the steps that perform emulations.

Each time an emulation terminating with a trigger break is run, the analyzer should capture information about the transactions preceding the break. If it does not, it is probably not set up or primed properly. Check the manual again. Once the error has been corrected, use the Z-SCAN Register command (see Section 6.10.4) to reset the PC register to the value it held before emulation, then rerun the emulation with the Go command (Section 6.11.1). Before each emulation, reprime the analyzer so that it can record the new information.

The format in which the recorded information is displayed depends both on the particular analyzer used and on the display mode selected. The signals suggested above in step 2 are best suited to the Timing Diagram Display mode supported by most analyzers. These signals give insight into the way the processor uses the bus while executing programs.

SECTION SIX

MONITOR SOFTWARE DESCRIPTION

6.1 INTRODUCTION

The main functions of the monitor program software are to monitor the interaction between the Z-SCAN system and the target system during emulation, to supervise the changeover from Target mode to Monitor mode, and to control the passing of program files between a host system and Z-SCAN. A secondary but more visible aspect of the program is its user interface, which controls, monitors, and acts upon user input from the terminal keyboard. Section 6.2 describes the Z-SCAN operating modes in more detail.

The user interface controls the commands available to the user throughout the set-up and execution phases of emulation. It also checks the syntax and sequence of user input and acts upon correct sequences by updating the screen display and, if necessary, the values of operating parameter fields. The Z-SCAN screen displays are introduced in Section 6.3. If user input is invalid, the monitor ignores it completely. Valid inputs are discussed in Sections 6.4 through 6.7.

Table 6-1 is an alphabetical summary of the software commands available in the monitor program and the keys that must be entered to access them. Sections 6.8 through 6.12 describe each command, its parameters, and its usage in detail.

Command	Key	Command	Key	Command	Key
Break	В	Inst count	I	reAd	А
Compare	С	Load	L	reGister	G
Display	D	mAp	А	Resources	R
eXamine	Х	Memory io	M	seNd	N
Execution	Ε	moVe	V.	System	S
Fill	F	Next	N	Trace	T
Go	G	Peek	Р	Wait states	W
Host	H	Quit	Q	Write	W

Table 6-1. Software Monitor Commands

6.2 Z-SCAN 8000 OPERATING MODES

The Z-SCAN 8000 system can operate in any of three modes: Monitor mode, Transparent mode and the Target Mode. One of these can be used only in configurations that include a host system for software development. The three modes are:

6-1

1. Monitor Mode

- The Z-SCAN terminal is logically connected to the Z-SCAN unit, giving the user access to the monitor's commands.
- In this mode, the user has access to five distinct displays on the terminal's CRT. These screens allow the examination, enabling, and modification of resources belonging to the Z-SCAN or to the target system.
- If the Z-SCAN system configuration includes a host system, program files can be passed between the host file system and Z-SCAN's memory when the Z-SCAN Monitor mode is in effect.

2. Transparent Mode

- This mode logically connects the Z-SCAN terminal to the host system, giving the user unrestricted access to host system resources.
- The user has no access to the Z-SCAN monitor commands during Transparent mode, but can enter host system commands just as if the terminal were directly connected to the host.
- Transparent mode can be entered from Monitor mode at any time and does not affect any parameters the user has set up to control the debugging process.

3. Target Mode

- This mode dedicates Z-SCAN resources to running either Z8001 or Z8002 emulation on the target system, depending on the CPU installed in Z-SCAN.
- While Target mode is in effect, the user cannot enter keyboard commands either for Z-SCAN or for the host system.

Following a RESET and baud rate synchronization (see Section 3.5), the Z-SCAN software enters Monitor mode. Transition to either Transparent mode or Target mode occurs in response to specific commands entered on the terminal keyboard. The reverse transitions take place in response to generation of the Z-SCAN break signals. Alternatively, transition from Target mode to Monitor mode can take place if the program running during emulation generates a condition that triggers the Z-SCAN breakpoint logic.

Figure 6-1 diagrams the allowed transitions and their causes. Note that direct transitions between Transparent and Target modes are not allowed.

6-2

Figure 6-1. Z-SCAN 8000 Operating Modes

6.3 MONITOR MODE OVERVIEW

Almost all interaction between the user and Z-SCAN monitor software occurs in Monitor mode. During Transparent and Target modes, the user cannot give commands to the monitor. For this reason, the remainder of this section describes Monitor mode commands and displays.

The commands available while Z-SCAN is in Transparent mode are determined by the host system and its operating software and are not described here. Refer to the host system's documentation for further details.

While operating in Target mode, Z-SCAN 8000 emulates either the Z8001 or the Z8002, so its behavior is described in the <u>Z8000 CPU Technical Manual</u> (document #00-2010-C). Further information can be found in Section 5.4 of this manual.

In Monitor mode, Z-SCAN gives the user access to five screens, each allowing the user to select from a menu of commands and other screens in order to set up and control the emulation process. The basic functions of each screen are listed below. In keeping with the format used by the Z-SCAN CRT terminal displays, the capital letter in each screen or command name indicates the key entered to activate the screen or command. Sections 6.8 through 6.13 give a complete description of each screen and how its associated commands can be used.

The seven screens available in Monitor mode and the functions of each are:

1. Terminal Selection screen

- o Displayed following monitor RESET and entry of RETURN.
- o Allows the user to select from a choice of terminal cursor control protocols.

• Provides access to the System screen.

2. System screen

- Informs the user of the monitor software release level and of the baud rate selected for communications between the terminal, Z-SCAN's monitor and the target system.
- Allows the user to select the appropriate baud rate for the host system communication link.
- Allows the user to select one of two values, internal operation or refresh, for the CPU status that is sent to the target system while the monitor software is running.
- Allows other screens to be selected.

3. Memory io screen

- Presents a choice of commands that allow manipulation of target system memory: Compare, Display, eXamine, Fill and moVe.
- Allows target system input and output ports to be manipulated with the reAd and Write commands.
- Permits program files to be loaded from the host system into memory. This function is controlled by the Load command.
- Permits program files or information to be sent to the host system from Z-SCAN via the seNd command.
- Allows other screens to be selected.

4. Resources screen

- Gives the user access to the Z-SCAN emulation control resources through the Break, Inst count, mAp, reGister, Peek and Wait states commands.
- Allows other screens to be selected.

5. Execution screen

- Displays the conditions selected for the execution and control of emulations and the state of the processor before and after each emulation.
- Allows emulations to be started with the Go and Next commands.
- Upon termination of each emulation begun by either the Go or Next commands, displays a message stating the reason for termination.

- Allows access to the Trace screen.
- Allows other screens to be selected.

6. Trace screen

- Accessible from Execution screen.
- Provides an instruction-by-instruction analysis of the execution of the user program and its effect on registers and memory.
- Allows return to the Execution screen.

7. Host screen

- Displayed when Z-SCAN enters the Transparent mode.
- Indicates that control of the display has passed from the Z-SCAN monitor to the host system's software.
- Does not allow access to Z-SCAN monitor commands or to other screens.

6.4 Z-SCAN SCREEN LAYOUTS AND COMMAND DISPLAYS

With the exception of the Terminal Selection screen and the Host screen, each of the Z-SCAN displays is divided into two or more areas by horizontal rows of dashes. Each area has one of three distinct functions:

- Menu area. This area appears below the bottom row of dashes on the System, Memory io, Resources and Execution screens. It lists the name of the screen, the commands available on the screen, and the active command. If no command is active, the names of alternative screens are listed.
- Window area. This type of area appears on the Memory io screen only, directly above the menu area. It displays variable amounts of information during the execution of commands available on the Memory io screen.
- **Command area.** Any area above both the menu area and (on the Memory_io screen only) the window area is a command area. These areas display fixed amounts of information. Much of the information displayed in command areas is invariant, consisting of headings or of Z-SCAN parameters that cannot be changed on the particular screen displayed. The contents of certain fields in command areas can be altered by the user. This process is described in Sections 6.5, Cursor Manipulation, and Section 6.6, Variable Fields.

Command areas are divided into subscreens. Each subscreen is controlled by one of the Z-SCAN monitor commands. On the Memory io screen, only the subscreen associated with the active command is displayed, whereas on other screens, all subscreens are displayed at all times.

6-5

6.4.1 The Menu Area

The menu area appears on all screens except the Terminal Selection screen and the Host screen. The format and content of other areas varies from screen to screen and is discussed in following sections that relate to specific screens.

Examples of menu displays can be found at the bottoms of Figures 4-5 and 4-9. Moving through the two lines of the menu area from left to right and top to bottom, the first items encountered are enclosed in parentheses. The item on the far left is the name of the screen itself--for example "Resources screen." If there is another item inside the parentheses, it is the name of an active command, which is a command the user has selected from those displayed on the lower line of the menu.

Outside the parentheses, the contents of the upper line vary according to whether or not a command has been selected. If no command is active, the line names alternative screens. To select another screen the user enters the initial letter of the desired screen name. When a command is active, the only information outside the parentheses is the name of any command supplementary to the active command. To execute a supplementary command, the user enters the letter in its name that is capitalized. The only supplementary command is Quit, which deactivates the current command.

The contents of the lower line of the menu area are fixed for each particular screen; they do not change in response to user input. The lower line lists the commands available on a particular screen. The user can activate any one of these commands by entering the letter in its name that is capitalized, for example, "A" for the mAp command.

6.5 CURSOR MANIPULATION

When a screen is first displayed, the cursor rests on the initial letter of the name of the screen, which is inside the parentheses at the top left of the menu area. When a command is activated, its name is added to the information inside the parentheses, and the cursor automatically moves to the first variable field associated with the active command. For commands controlling more than one field, the "first" field is that nearest the top left of the subscreen associated with the command.

Once the cursor has been positioned on the first variable field in a subscreen, the contents of that field can be altered by user input. This process is described in Section 6.6. To allow other fields on the same subscreen to be altered, the cursor must be moved into those fields. The four cursor control keys, \blacklozenge , \blacklozenge , \checkmark , <--, and --> (cursor up, cursor down, cursor left, and cursor right) are used for this purpose.

Each cursor control key moves the cursor into a variable field that is logically adjacent to the current field. Logical adjacency requires the destination field to be part of the subscreen associated with the active command. A field that is physically adjacent (for example, on the same display line as the current field) but is not part of the subscreen associated with the active command cannot be entered through the use of the cursor control keys alone.

6-6

For consistency, the top and bottom variable fields in a given subscreen column are considered to be logically adjacent, as are the far left and far right fields on a given subscreen line. This means that if, for example, the cursor is moved up from the top field, it appears on the bottom field. Sometimes there is only one variable field in a particular subscreen row. In such cases, the cursor left and cursor right keys cannot move the cursor out of the field, because there is no field logically adjacent to it in those directions (in fact, the implementation considers the field to be logically adjacent to itself). Similar reasoning applies to fields without a logically adjacent field above or below them.

After the values held by the fields in a given subscreen are updated, the cursor must be returned to the menu area before a new command be activated or an alternative screen selected. Entering RETURN achieves this, moving the cursor from the current field to the name of the active command. The command itself is not deactivated until a new command is selected or the Quit command is executed.

Table 6-2 shows how the cursor can be manipulated to access parameter fields in a typical subscreen. The example shows the effect of the cursor movement keys when the Resources screen is active. The cursor position in each step is at the left of the field shown in boldface type. Refer to Section 6.10.5 for further details of the Peek command.

6-7

Table 6-2. Effect of Cursor Control Keys (Peek command, Resources screen)

Step	Display	Keystroke	Notes
1.	SC 00 0000 SC 00 0000 SC 00 0000		Cursor is on screen name (Resources screen) prior to selecting Peek command.
		P Na ang ang ang ang ang ang ang ang ang an	The Peek command is activated by keying P. This moves the cursor to the first variable item in the Peek command area. (Cursor position is indicated by bold characters of the following display.)
2.	SC 00 0000 SC 00 0000 SC 00 0000	>	Move right. This key positions the cursor at the beginning of the second variable item in this command area.
3.	SC 00 0000 SC 00 0000 SC 00 0000	¥	Move down to vertically adjacent field.
4.	SC 00 0000 SC 00 0000 SC 00 0000	<	Move left.
5.	SC 00 0000 SC 00 0000 SC 00 0000	Ŷ	Move up to vertically adjacent field.
6.	SC 00 0000 SC 00 0000 SC 00 0000	t	Move directly down to bottom row of this field.
7.	SC 00 0000 SC 00 0000 SC 00 0000	RE TURN	Remove cursor from subscreen.

6-8

6.6 VARIABLE FIELDS

As mentioned above, command areas display information the user is allowed to alter. There are two main types of modifiable fields: hexadecimal and multiple choice. The next two subsections discuss these in detail. A third subsection mentions two additional types of fields, the file name and memory content fields.

6.6.1 Hexadecimal Fields

A hexadecimal field may contain two, four or 16 hexadecimal digits and can be modified, once the cursor has been positioned in the field, by entering new digits (D-9 and upper case A-F). A space restores the default value of a hex field whereas entering the control (CTRL) and R keys returns it to the value it held when the cursor was last moved into it. CTRL R is entered by holding down the control key while pressing the R key.

If the user does not want to modify the particular digit on which the cursor rests, "<" or ">" can be entered to move the cursor left or right within the field. The SHIFT key must be held down while these characters (< or >) are entered.

None of the keys mentioned above is able to move the cursor out of the variable field. When the cursor is moved to the right of the far-right character, it wraps around to the far-left character. The reverse is also true. The cursor can be moved out of the field by using the cursor control functions described in the previous section.

Table 6-3 gives examples of the effects of valid keys on a four-digit hexadecimal field. Although the count field in the Compare command (Memory_io screen) has been used for this example, the effects of keystrokes as shown in Table 6-3 apply to all similar hexadecimal fields. The position of the cursor is shown in Table 6-3 by a vertical arrow.

Step 7 of the key sequence shown in the table gives the result shown only if the field holds the value 0018 when the cursor is moved into it. If you wish to examine the effect of the sequence yourself, you must first set up the field by selecting the Memory io screen, then enter the following keystrokes:

C, left, O, O, 1, 8, left, right

Step	Keystroke	Contents	Notes
1.	(see note)	0018 4	Not default value. Use instructions in previous paragraph to start with 0018 in the count field and with the cursor on the first 0.
2.	1	1018	Changes digit that cursor is on to 1.

Table 6-3.	Effect	of User	: Entry	on	Hexadecimal	Field
(0	ompare d	command,	Memory	y io	screen)	

Step	Keystroke	Contents	Notes
3.	SHIFT >	1018 1	Moves cursor right one position. (Repeated use of the SHIFT and > keys steps the cursor forward through each position. This is useful in moving the cursor to a particular position with- out having to rekey any of the other digits.)
4.	G	1018 4	Z-SCAN ignores this input because it is not a valid hex digit.
5.	F	10F8 4	Hex digit "F" is inserted and the cursor automatically moves to the next position.
6.	SHIFT >	10F8 ♠	These keys are used to move forward through each position in the field. If the cursor is on the last position of a hexadecimal field, SHIFT > moves the cursor back to the first position of the field.
7.	space	000C	Entering a space always restores the field to the default value. Also, the cursor returns to the first position of the field each time a space is used.
8.	SHIFT <	000C	These keys (SHIFT and <) move the cursor backwards through each position of the field. If the cursor was on the first position before using these keys, then the use of these keys moves the cursor to the last position of this field.
9.	CTRL R	0018 ↑	CTRL R is used to restore the contents of a field to the value it held when the cursor firts moved into the field.

Table 6-3. Effect of User Entry on Hexadecimal Field--Continued (Compare command, Memory_io screen)

All hexadecimal fields are initialized to meaningful default values by a monitor reset or power-up sequence. The range of values that can be held in some hexadecimal fields is constrained: for example, a count field cannot contain zero. If the user attempts to move the cursor out of a field that contains an illegal value, the monitor automatically restores the contents of the field to what it held when the cursor last entered it.

6.6.2 Multiple-Choice Fields

The other main type of modifiable field is the multiple-choice field. As the name suggests, such fields allow the user to choose a value from a fixed number of alternatives.

An example of such a field is the data type associated with the Display command (see Section 6.10.2). It has five valid values: word, byte, long (for 32-bit long words), nseg (for nonsegmented disassembly) and seg (for segmented disassembly). Rather than displaying the value selected as a single-digit code, the monitor displays a descriptive string. Single digit codes are used internally by Z-SCAN as indexes into tables of possible values for each multiple-choice field. Consequently, when the cursor is positioned on a multiple-choice field, the user can select a particular value (table entry) by entering the single hexadecimal digit that indexes that choice. Valid indexes range from zero to one less than the number of entries in the table. If the user inputs a digit outside the allowed range, the last entry in the table is used.

It is unreasonable to expect all users to learn the index numbers for each possible value in each of the Z-SCAN multiple choice fields. Consequently, an alternative method of selecting values is provided: when the cursor rests on a multiple choice field, SHIFT and > can be entered to select and display the next possible value. The preceding table entry is selected by entering SHIFT and <. As previously indicated, the SHIFT key must be depressed during the entry of either of these characters (< or >). This feature allows the user to step forward or backward through the list of available values until the desired value is found. Stepping forward from the last available value reselects the first possible value. The reverse is also true.

Besides the hexadecimal digits, the "greater than" and the "less than" keys, two other keys are accepted as valid inputs for multiple choice fields. The space character is considered equivalent to zero, and so it selects the first of the possible choices. Entering the CIRL and R keys returns the contents of a multiple choice field to what it held when the cursor last entered it.

Like hexadecimal fields, multiple choice fields are initialized to meaningful default values by a monitor reset or power-up sequence. The default corresponds to the first entry in the table of possible values. This makes it possible to restore the default value with a single keystroke: zero or space, either of which selects the first value in the table.

Table 6-4 lists the hexadecimal digits that can be used to make particular choices in one of the multiple choice fields; this particular field is the "type" field of the Memory io Screen's Display command.

6-11

Index	Choice	Selected by
0	word	O, space, Monitor reset
1	byte	1
2	long	2
3	nseg	3
4	seg	4, or any of the hex digits greater than 4 (i.e., 5 thru F)

Table 6-4. Multiple Choice Field Indexes (Display command, Memory io screen)

Entering an F always selects the last possible choice in any of the multiple choice fields, whereas entering a O or space always selects the first possible choice in any multiple-choice field.

Table 6-5 shows the effect of user input including some key sequences other than Index entries on the same example field. These examples show how user input is handled on all multiple choice fields by the Z-SCAN monitor. If you wish to perform the sequential steps in this table, select the Memory_io screen, then enter the following keystrokes:

D, left, 4, left, right

Step	Keystroke	Contents	Index	Notes
1.	(none)	seg	4	The field holds this value when the cursor is moved into it. Step 6 recalls the same value.
2.	1	byte	1	Select second table entry by the index value of 1.
3.	SHIFT <	word	0	Step back to preceeding table entry via SHIFT and < keys.
4.	SHIFT >	byte	1	Step forward to next table entry via SHIFT and > key.
5.	2	long	2	Move directly to third entry of table using index value.

Table 6-5. Effect of User Input on Multiple Choice Field (Display command, Memory io screen)

5/27/81

6-12

Step	Keystroke	Contents	Index	Notes
6.	CTRL R	seg	4	Restore field to value that existed at the time the cursor was moved into the field. This is the value shown in step 1 above.
7.	F	seg	4	Move directly to last entry in table.
8.	SHIFT >	word	0	Step forward and loop back to first entry in table.
9.	6	seg	4	Any hex number larger than number of items in table always selects the last table entry.
10.	3	nseg	3	Selects fourth entry in table.
11.	space	word	0	Restores field to the default value.

Table 6-5. Effect of User Input on Multiple Choice Field (Display command, Memory_io screen)

6.6.3 Other Field Types - File Name and Memory Content

In addition to hexadecimal and multiple choice fields, the Z-SCAN monitor uses two other types of fields. Each is used in only one situation.

o The file name field appears only in the Load and seNd command subscreens (see Sections 6.10.8 and 6.10.9). This field can hold up to 32 non-space characters. Z-SCAN makes no check on input because it has no knowledge of the file-naming conventions of the host system. It is the responsibility of the host system's LOAD command to check the file name for validity. For further details see Section 7, Interface to Non-Zilog Hosts.

The SHIFT >, SHIFT <, and control (CTRL) and R keys are used in the same way in the file name field as in a hexadecimal field (see Section 6.6.1). Hence, Z-SCAN does not allow these characters to be sent to the host as part of a file name. If you put a space in a file name, Z-SCAN treats it as a terminator and shows this by erasing all input to the right of the inserted space.

o The Memory Content field is used exclusively by the eXamine command and is tailored to the special requirements of that command. Its behavior is similar to that of a hexadecimal field with two, four or eight digits. The differences are summarized in paragraph seven of the next section.

6.7 SUMMARY OF VALID USER INPUT SEQUENCES

The three preceding sections discussed the keystrokes used to achieve the following objectives:

- o Moving from one screen display to another.
- o Activating commands available on the current screen.
- o Moving the cursor into and out of modifiable fields in parameter areas.
- o Updating the contents of modifiable fields.

This section summarizes the keys that can be entered, which generally depend on the position of the cursor on the screen. Refer to Section 6.8 for complete information on executing commands.

Many of the terminals supported by the Z-SCAN monitor offer features which are not needed by the monitor. In many cases, Z-SCAN ignores data received when keys associated with such features are entered. Some keys, however, may send data that is considered to be valid. The function keys on some terminals do this, while others affect the display on the terminal screen without sending data to the Z-SCAN. Local editing keys such as line delete and character insert have this effect.

If the display is corrupted by the entry of an incorrect key, the user should activate another screen (the following paragraphs explain how to do this), then reactivate the corrupted screen. If any of the variable fields on the screen contains an incorrect value, they should be corrected before the user continues.

1. Following a power-up or monitor RESET from front panel:

- o To synchronize Z-SCAN's baud rate with that of your terminal, enter RETURN. The terminal selection screen is displayed. Entry of an incorrect character may result in garbage being displayed. To correct this, RESET Z-SCAN, then enter RETURN.
- o To select a terminal type, enter one of the numbers listed on the screen. Invalid entries are ignored. Incorrect entries can be replaced by entering another selection. Appendix A details the terminals supported by the Z-SCAN monitor.
- o When the terminal type has been selected, enter RETURN to activate the System screen. If the display is corrupted, the terminal selection is incorrect. RESET Z-SCAN and repeat the steps above.
- 2. Cursor on current screen name inside menu area parentheses:
 - o To select another of the five screen displays, enter the appropriate capital letter from the screen name.

- To activate a command on the current screen, enter the appropriate capital letter from the command name. This automatically moves the cursor to the first position of the first item in the associated command area.
- System screen only: Enter RETURN to move cursor into the host baud rate field.

All other input is considered invalid and does not change the state of the monitor software. Screen editing keys must not be used as they can cause unpredictable results.

3. Cursor on a hexadecimal variable field in a command area:

- Enter hex digits (O-9, capital A-F) or spaces to modify the value in the field.
- Enter SHIFT > or SHIFT < to move the cursor forward or backward inside the current field without modifying its contents.
- Enter space to change the contents of the field to the default value.
- Enter CTRL R to restore the field to the value it held when the cursor was moved into it.
- Use the cursor control keys (cursor up, cursor down, cursor right or cursor left) to move the cursor to other fields in the subscreen associated with the active command.
- To return the cursor to the menu area (state six below) without executing the active command, enter BREAK.
- To execute the current command, enter RETURN.

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

4. Cursor on a multiple choice, variable field in a command area:

- Enter a single hexadecimal digit (0-9, A-F) to select a corresponding value to a particular entry in the Z-SCAN internal table of choices.
- Enter SHIFT > or SHIFT < to select the next or previous value from the Z-SCAN internal table of choices.
- Enter CTRL R to restore the field to the value it held when the cursor was moved into it.
- Enter space to restore the field to the default value.

6-15

- Use the cursor control keys (cursor up, cursor down, cursor left or cursor right) to move the cursor to other fields in the subscreen associated with the active command.
- To return the cursor to the menu area (state six below) without executing the active command, enter BREAK.
- To execute the current command, enter RETURN.

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 5. Cursor on file name field (Memory io screen Load and seNd commands only):
 - Enter any keys not mentioned below to update the value of the field
 - Enter SHIFT > or SHIFT < to move the cursor forward or backward inside the current field without modifying its contents.
 - Enter CIRL R to restore the field to the value it held when the cursor was moved into it.
 - Enter space to terminate the file name.
 - Use the cursor control keys (cursor up or cursor down) to move the cursor to other fields in the subscreen associated with the active command.
 - To return the cursor to the menu area without excecuting the command, enter BREAK.
 - To execute the command, enter RETURN.

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

6. Cursor on active command name inside menu area parentheses:

- To move the cursor to the first variable field associated with the active command, enter RETURN.
- To select another command on the same screen, enter the appropriate capital letter from the command name. The cursor moves automatically from the command name to the first position of the first field associated with the new command.
- To deactivate the current command, enter Q. The upper menu line is rewritten to display the names of alternative screens.

o To display another screen, enter the appropriate capital letter from the screen name. It is not necessary to enter Q prior to displaying another screen when the cursor is on an active command name inside the menu area parentheses. (The Terminal Selection screen cannot be called up in this manner and the Trace screen can only be selected from the Execution screen.)

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 7. Cursor in window area (Memory io screen eXamine command only):
 - o Enter hex digits (O-9, A-F) to modify the value in the memory location currently open. After sufficient digits are entered to fill the current location, the next location is automatically opened.
 - o Use the <-- (cursor left) key or SHIFT < to backspace over and delete incorrectly entered digits.
 - o The and (cursor up and cursor down) keys can be used to open the previous and next locations respectively.
 - o To return the cursor to the menu area, enter RETURN.

Any other key is considered invalid and is completely ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 8. Cursor resting in window area (Memory io screen only):
 - o Enter cursor down to clear the window area and display the next block of data.
 - o Enter cursor up to clear the window and display the previous block of data (Display command only).
 - o Enter BREAK to abort the Load, seNd, Fill or moVe commands.
 - o Enter RETURN to move the cursor to the menu area.

Any other key is considered invalid and is completely ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 9. Cursor resting at bottom right of Trace screen:
 - o Enter cursor down to execute the number of instructions shown in the step count field.
 - Enter hex digits (0-9, A-F) to alter the value in the step count field.
 Use cursor left or SHIFT < to backspace over and delete incorrect entries. Use cursor down to begin executing the number of instructions indicated by the modified step count.

8/13/81

• Enter RETURN to move to the Execution screen.

Any other key is considered invalid and is completely ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

10. Cursor writing data onto screen:

- Enter CTRL S to force a temporary pause in data output to the terminal. Enter CTRL Q to resume output. Some terminals have a scroll control key which sends CTRL S and CTRL Q alternately.
- Enter BREAK to ensure that output stops when the screen is full and before any part of the screen is overwritten with new data. Break achieves this by aborting execution on the Trace screen and by flushing the type ahead input buffer. Any commands entered but not yet executed are lost.

Any other key (with the exception of screen editing keys) can be entered while Z-SCAN is sending data to the terminal or while output is paused. The input is buffered and is not acted upon until output is complete.

- 11. Cursor resting in Execution screen return message area (Z-SCAN in Target mode):
 - To force a return to Monitor mode, use the Z-SCAN front panel switches to enter a Monitor NMI.

Input from the keyboard is not accepted while Z-SCAN is in Target mode.

- 12. Transparent mode (all cases not mentioned above):
 - Enter data in the format required by the host system.
 - To return to Monitor mode from Transparent mode, use the BREAK key. If the host and terminal baud rates differ, the user is prompted to set the baud rate of the terminal to the Monitor mode value. The System screen is displayed when the terminal baud rate is correctly set up.

6.8 THE TERMINAL SELECTION SCREEN

Following a power-up or monitor RESET sequence, Z-SCAN must establish two characteristics of the terminal being used:

- Baud rate.
- Cursor addressing protocol.

To set up the baud rate, the user enters a RETURN. Z-SCAN measures the width of the start bit of the character, then programs a baud rate generator to match the calculated speed. Fourteen rates, listed in Table 6-7, are supported.

When the terminal baud rate is established, the Terminal Selection screen shown in Figure 6-2 is displayed. If the terminal is running at a baud rate not supported by Z-SCAN or if an incorrect character is entered, the display will be corrupted or will not appear. Z-SCAN must be RESET before the baud rate can be set up correctly.

The display prompts the user to enter a terminal selection digit. Valid choices are listed on the screen. Invalid entries are ignored. If an incorrect choice is entered, it can be replaced by entering the correct choice.

Figure 6-2. The Terminal Selection Screen

Table 6-6 lists a number of terminals supported by the Z-SCAN monitor and the corresponding selection digits. Appendix A gives further information about the supported terminals and describes how to find out whether an unlisted type can work with Z-SCAN.

ó

After the selection digit has been entered, the user must enter RETURN to move to the System screen (Section 6.9). If garbage appears instead of the System screen, the terminal selection digit is incorrect. Z-SCAN must be RESET and baud rate synchronization re-established before the correct digit can be entered.

Supplier	Model	Selection Number
ADDS	Regent 20, 40 or 60	1
Beehive	8-100 or Bee-1	2
DEC	VT52	3
DEC	VT100	4
General terminals	I-200, I-400	5
Hazeltine	1420 or 1500 series	6
Hewlett Packard	2620 or 2640 series	7
IBM	3101	8
Lear Siegler	ADM 31	0
Soroc	IQ 120 or IQ 135	0
Televideo	TVI 912 or TVI 920	0
Zentec	Zephyr	D

Table 6-6. Terminals and Terminal Type Selection Numbers

6.9 THE SYSTEM SCREEN

Figure 6-3 shows the System screen in the default state. The display area is divided into three parts by rows of dashes. The bottom is a Menu area (see Section 6.4.1) and the other two are Command areas. Since there is no choice of commands on this Screen, the second line of the menu area is blank.

		Z-SCAN	8000					
	Z8001	MONITOR	Versio	n 3.0 ·				
cerminal baud rate:	96 00							
host baud rate:	9600							
status_to_target:	internal	op						
(Nusten Screen)	System	Memory		Resources	Executi	an H	oxt	

Figure 6-3. The System Screen

The top Command area identifies the Z-SCAN monitor software. It shows the release level of the software and identifies the CPU type (Z8001 or Z8002) installed. It does not contain any user modifiable fields. The release level may differ from that shown in Figure 6-3.

The first field in the center command area specifies the terminal baud rate. This is not a variable field (as discussed in Section 6.6) and cannot be changed by the user on the System screen. The terminal baud rate is used between Z-SCAN and the terminal during Monitor mode.

The second field in the center command area specifies the host baud rate. This variable field allows the user to select the baud rate used between the terminal and a host system (if connected). Following a RESET, its value defaults to the same value as the terminal baud rate.

- o To move the cursor to the host baud rate field from the menu area, enter RETURN.
- o To step forward through the 14 selections available for the host baud rate use SHIFT >.
- o To step backward through the various selections available for this field, use SHIFT <.

Table 6-7 lists the Host baud rates supported by Z-SCAN. Many terminals do not support all the rates supported by Z-SCAN. Some terminals support rates not available on Z-SCAN. These speeds must not be used. The effects of the terminal baud rate selection are discussed in Section 6.13.

Field name	Туре	Values (M-C) Range (hex)	Index/ Default	Notes
Host baud rate	mult	19200	0	See text
	choice	9600	1	
		4800	2	
		2400	3	
÷		1800	4	
-		1200	5	
		600	6	
		300	7	
		200	8	
		150	9	
		134.5	A	134.5 baud
· · ·		110	В	
		75	С	
		50	D	

Table 6-7. Host Baud Rate Values

--NOTE--

In this and subsequent tables, mult choice stands for multiple choice. Hex-N, where N is 2, 4 or 16, indicates a hexadecimal field with the given number of digits. The fourth column lists indexes for multiple-choice fields. The default is always the choice with an index of zero. A default value is given for hexadecimal fields.

The third field in the center command area specifies the status to target. This variable field determines the status code sent to the target system during Monitor mode and Transparent mode. It is a multiple-choice field with two possible values: internal op (internal operation, the default value) or refresh. The implications of each possible status are covered in Section 5.4.3.

- To move the cursor from the host baud rate field to the status to target field, enter cursor down (\downarrow).
- To move the cursor back to the host baud rate field, enter cursor up (1).
- To move the cursor to the menu area from either of the two variable fields, enter RETURN.

Table 6-8 summarizes the behavior of the status to target field.

Field Name	Туре	Values (m-c) Range (hex)	Index/ Default	Notes
status_to_target	mult choice	internal_op refresh	0 1	see Section 5.4.3

Table 6-8. Status to target Values

6.10 THE MEMORY IO SCREEN

The Memory_io screen (Figure 6-4) supports nine commands that can manipulate the contents of memory and I/O ports in the target system. The memory commands can also operate on the Z-SCAN mappable memory (see Section 6.11.3) and on the Z-SCAN monitor memory. Monitor commands and emulations are prohibited from operating on the Z-SCAN I/O ports.

--NOTE--

To set up conditions for emulation, it should not be necessary for the user to operate on the contents of monitor memory with Memory_io screen commands. If the commands are used to operate on monitor memory, the user should exercise great care, since changes to the contents of the memory could prevent the monitor from functioning correctly.

Figure 6-4. The Memory io Screen

The Memory_io screen display is divided into three areas by lines of dashes. The bottom area is the menu area. Above it is a window area, used primarily for the display of data during the execution of commands. The window is initially empty and remains so until a command is executed. The command area at the top of the screen is also initially blank but is used to display a subscreen associated with the command as soon as any command is activated. Refer to Section 6.4 for further information on screen layouts and command displays.

Once a command has been activated, the cursor automatically moves up into the first variable field in the newly displayed subscreen, allowing the contents of the various fields to be updated as described in Section 6.6.

Simply updating the values held by variable fields does not result in the actual performance of an active command. For example, changing the start address field in the memory display command does not result in the immediate display of the contents of the newly addressed block of memory. In order for the action defined by the command and its parameters to be performed, the command must be executed. Execution is accomplished by entering a RETURN after all the command parameters are set to the desired values. The cursor is in the command parameter area just before execution takes place.

Execution of any command clears the window area (which may contain data resulting from a previous execution) and then performs the command. As execution proceeds, data or messages are displayed in the window. If a command requires the display of more data than will fit in the window, the window is repeatedly filled from top to bottom as many times as are necessary to display all the data. The user is given the opportunity to abort or continue with the command after each block of data is displayed.

Execution of commands that operate on large areas of memory may take a long time because Z-SCAN runs one or two separate emulations for each byte in the block. Section 5.4.4 discusses the hardware implications of these memory accesses.

Execution can be suspended temporarily by entering CTRL S to stop the display of further data. CTRL Q terminates the suspension.

When execution is complete, all commands except Display and eXamine give a closing message, usually DONE. The cursor returns to the menu area, and the command is still active. The state of the software is as described in state seven of Section 6.7.

In summary:

- To abort the current command, enter BREAK. This moves the cursor to the menu area without executing the command.
- To execute the current command, enter RETURN.
- To temporarily stop the execution process, enter CTRL S. To continue, enter CTRL Q.
- To continue when the window is full, enter (cursor down); to abort the execution, enter RETURN.

6.10.1 The Compare Command

ł

This command performs a byte-by-byte comparison of the contents of two areas. Any differences between corresponding bytes in the source and target blocks are reported. The terms source and target have no significance; the result of comparing two blocks of memory does not depend on which is named in the source field and which is in the target.

Execution of the command clears the window area and displays a heading at its top left. Bytes from the source and target areas are then compared. Each time a difference is found the two bytes and their addresses are displayed on a new line. This continues either until the examination is complete or until the window area is full. In the first case, a count of differences is displayed at the bottom left of the window, and the cursor returns to the menu area. When the window is full no message is displayed. The cursor rests at the bottom right of the area. Two user input characters are valid:

- Cursor down clears the window and redisplays the heading, allowing more data to be displayed.
- RETURN terminates the command, moving the cursor to the menu area. The message ABORTED appears, indicating that not all the differences between the blocks were displayed.

If there are no differences between the source and target areas, the headings and the message NO DIFFERENCES appear before the cursor returns to the menu area.

Figure 6-5 is an example of a display produced by the Compare command.

source: space SC target: space SC	address 00 address 00	1000 count 9000	1000			
Source Addr Contents	TARGET ADDR CONTENTS	5				
00 1018 A8 00 1019 00 00 1019 00 00 101A A8 00 101A A8 00 1FFC 5E 00 1FFC 08 00 1FFC 00 00 1FFC 10	00 0018 69 00 0019 0F 00 0010 00 00 00118 10 00 0018 10 00 00FFC AB 00 00FFC AB 00 00FFC AB					
8888 DIFFERENCE	שמש הידוד שמש S					
(Memory_10 Scr Compare Disp]	en D ompare Co av eXamine Fil	immand) L1 moVe reAd b	Quit Frite Load seNd			

Additional examples of the Compare command are included in the tutorials in Section 4.

Table 6-9 summarizes the Compare command's fields and parameters.

Field name	Туре	Values (M-C) Range (hex)	Index/ Default	Notes		
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space		
source address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	Does not appear if Z8002 is installed This is the only address field on the Z8002		
count	Hex-4	0001 - FFFF	000C	This is a byte count		
target space	mult choice	same as for source space				
target address (segment number) (offset)	Hex-2 Hex-4	00-7F 0000-FFFF	00 0000	See notes for source address		

Table 6-9. Compare Command Fields

6.10.2 The Display Command

The Display command allows the contents of blocks of memory to be displayed on the screen. It does not allow the user to modify those contents; that function is handled by the eXamine command, described in Section 6.10.3. The Display command has two operating modes: memory dump and disassembly. In the first, sixteen bytes are displayed per screen line. The hexadecimal representation of their contents follows the address of the first byte, which appears at the left of the screen. The data can be formatted on the display as bytes, words, or long words (two, four or eight hex digits per data item, respectively). The right of the screen is used to display an ASCII representation of the same data, delimited at each end by asterisks (*). Non-printing characters (00-1F and 7E-FF) are represented by periods (.). There are 17 (decimal) display lines giving a total of 110 hex bytes per display. The Display command can also disassemble the contents of memory in segmented or nonsegmented mode. The format of the disassembled instruction mnemonics and operands is as described in the Z8000 PLZ/ASM Assembly Language Programming Manual (document # 03-3055-02). Addresses and most immediate operands are presented as hexadecimal values. Decimal representation is used for immediate values represented by four or fewer bits.

The display is presented in listing format with addresses at the left of the screen, mnemonics in the center and operands at the right. The memory words disassembled from the decoded instructions appear between the address and the mnemonic.

If the disassembler encounters one of the Z8000's extended instructions, the message * * UNIMPLEMENTED INSTRUCTION * * is displayed in the place of the mnemonic and operands, but the correct number of disassembled words appear to the right of the address. Extended instructions, which may be two, three or four words in length depending on addressing mode and address format, are described in Section 6.8 of the <u>Z8000 CPU Technical Manual</u> (document # 00-2010-C).

When the disassembler finds that the first word of an instruction does not correspond to an operation available on the Z8000, the message * * INVALID OPCODE * * appears and just one word appears to the right of the address. The same message is shown if an illegal register designator--for example, an odd valued long word designator--appears anywhere in the instruction. The number of words disassembled is determined by the opcode and addressing mode of the first instruction word. No error message is generated if invalid constant or opcode fields appear in the second word of an instruction. The invalid instruction message is likely to appear when data areas are disassembled, or when an incorrect disassembly mode (segmented or nonsegmented) is used.

Seventeen instructions are displayed in the window area by disassembly. The number of bytes displayed depends on the instructions disassembled.

--NOTE--

The Z-SCAN memory target access method allows the Display command to address words at odd memory addresses. Individual Z8000 instructions address words only at even addresses. See Section 5.4.4 for more details.

After 110 (hex) bytes or 17 (decimal) instructions have been decoded, the cursor rests at the bottom right of the window area. One of three characters must be entered:

• Cursor down clears the screen, then displays the next block of memory. For word, byte and long display types, the next block starts at the address shown at the bottom left of the display before the screen is cleared, giving an overlap of 16 (decimal) bytes. For disassembly, the next block starts at the address following that of the last word displayed before the screen is cleared.

- Cursor up clears the screen, then displays the previous block of memory. For word, byte and long display types, the final line of the block is the same as the first line of data on the screen just erased. Again, this gives an overlap of 16 (decimal) bytes. For disassembly, the first word disassembled is fetched from an address 44 hex bytes below that which follows the last word displayed before the screen is cleared.
- **Return** moves the cursor to the menu area. The command remains active and the window area is not cleared.

Figure 6-6 shows a display produced by the execution of the Display command.

source: s	ace SC	address	00 0000	type	seg		
66 6666	A888		INCB	RHØ	1 2		
88 8882	A888		INCB	RHO	12		
88 8884	A898		INCB	RHO	12		
00 0006	A888		INCB	RHØ	- 17		
8666 66	ABBB		INCB	RHO	12		
00 000A	8888		INCB	RHØ	12		
00 000C	ABBB		INCB	RHO	12		
99 999E	ABBB		INCB	RHO	12		
00 0010	A888		INCB	RHO	511		
08 0812	N30B		INCB	RHØ	12		
00 0014	ABBB		INCB	RHØ	12		
00 0016	RBBB		INCB	RHØ	12		
00 0018	690F 0	818	INC	(. (00	DD70010	116	
00 0010	ABOB		INCB-	RHØ	12		
08 081E	A86 B		INCB	RHØ	11		
00 0020 80 9021	8888		INCB	RHØ	- 11		
00 0000	100.0		INCB	RHU	: ♦ 17		

Figure 6-6. The Display Command

Table 6-10 details the variable fields in the Display Command.
Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002. It should be even except when the type field is set to byte.
type	mult choice	word byte long nseg seg	0 1 2 3 4	Non-segmented disassembly Segmented disassembly

Table 6-10. Display Command Fields

6.10.3 The eXamine Command

Ł

The function of this command is to allow the user to examine, and optionally to modify, the contents of individual bytes, words, or long words in memory. When the eXamine command is executed, the contents of the location specified in the command area at the top of the screen are displayed in the window area, and the user is prompted for a new value that will replace those contents.

Figure 6-7 shows the initial screen obtained by the eXamine command. Additional examples of this command are included in the tutorials of Section 4.

Figure 6-7. The eXamine Command

Table 6-11 lists the parameters of the eXamine command. After setting up the parameters, one of two keys must be entered:

- BREAK returns the cursor to the menu area without executing the command. The command remains active.
- RETURN clears the window area then displays the address of the location selected by the parameters, its contents, and a prompt for a new value.

At this stage, the following keys are valid:

- Hex digits can be used to alter the value held in the open location.
- Cursor up and cursor down keys open the previous and the next memory locations, respectively.
- The next location (in the new contents field) is automatically opened after enough hex digits have been entered to fill the location.
- Erroneous input can be deleted with the cursor left or SHIFT < keys.
- Execution of this command is terminated by entering RETURN. The cursor moves to the menu area and the command remains active.

The eXamine command is capable of writing into the Z-SCAN mappable memory. A write protection feature is available that protects the contents of this memory (see Section 6.11.3). Write protection applies only during Target mode; Memory_io screen commands can still write to the memory. The user should exercise caution to avoid overwriting data that should be preserved.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002. It should be even except when the type field is set to byte.
type	mult choice	word byte long	0 1 2	

Table 6-11. eXamine Command Fields

6.10.4 The Fill Command

The Fill command allows the user to replicate a specified string one to eight bytes in length throughout a specified memory area. If the length of the memory area in bytes is not exactly divisible by the length of the string in bytes, the final copy of the string is truncated. The length of the memory area is defined as end_address- (begin_address + 1). This implies that the last byte filled is the one located at the end address. If end_address is less than begin_address, filling continues from the bottom of memory after the top of memory has been passed.

The string is specified as a sequence of up to 16 (decimal) hex digits. The string used to fill memory always consists of a whole number of bytes. Thus, if the user enters a string that has an odd number of digits, a leading zero is assumed. For example, a user input of 12345 is interpreted as a three-byte string: 01, 23, 45.

The default string is empty; that is, it has no digits and its length is zero. It is equivalent to a field of spaces. Z-SCAN automatically aborts the Fill command if it is executed with such a fill string.

The area to be filled may include the Z-SCAN mappable memory, which is described in Section 6.10.3. The Fill command can alter its contents even if it is write protected.

The only display produced by this command in the window area is the termination message DONE. See Figure 4-20 for an example. Table 6-11 lists the command's variable fields.

Figure 6-8. The Fill Command

Table 6-12 lists the variable fields for the Fill command.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
target space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
begin_address (segment number) (offset)	gin_address Hex-2 00-FF egment number) ffset) Hex-4 0000-FFFF		00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002.
end_address	Hex-4	0000-FFFF	0000	On the Z8001, the same segment number is used for both address fields.
string	Hex-16	empty – FFFFFF	empty	Leading zero is implied if length is odd.

Table 6-12. Fill Command Fields

6.10.5 The moVe Command

The moVe command allows the user to copy the contents of one area of memory into another area. The contents of the source area are not altered by this command. The source and target areas can be in the same or in different address spaces, and they can overlap. Thus, it is possible for the target address to be within the block specified by the start address and by the length. Similarly, the source address can be within the block specified by the target address and the length. Note that the length is always specified in bytes.

As with the eXamine and Fill commands, the target memory area for the moVe command may include the Z-SCAN mappable memory (see Section 6.11.3). The moVe command can alter its contents even if it is write protected.

Figure 6-9 shows an example of the moVe command. This display results from setting parameters to move the contents of 10 bytes starting at location 0000 in system code space to the 10 bytes starting at location 2000 in system code space. A RETURN is entered after setting up the parameters. This executes the command and displays the DONE message when complete.

	source: space SC target: space SC	address 00 0000 address 00 2000	count 888A		
• .					
	DONE		· · ·		
	(Nemory_is Scree Compare Display	n nome Command eXamine Fill no) Ve refid Hrite	Guit Load seNd	

Figure 6-9. The move Command

Table 6-13 summarizes the moVe command's parameters.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00-FF 0000-FFFF	00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002.
count	Hex-4	0001-FFFF	0001	This is a byte count.
target space	mult choice	same as for source space		1Ce
target address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	See notes for source address.

Table 6-13. moVe Command Fields

6.10.6 The reAd Command

The user can read byte- or word-wide ports in the target system through the use of this command. Up to FFFF read operations can be performed and their results displayed. Both standard and special operations are supported by the reAd command.

Note that Z-SCAN's own ports cannot be accessed by this command, just as they cannot be accessed during emulations.

Execution of the reAd command first clears the window area, then displays the data read, one word or byte per line. An ordinal number appears to the left of each value.

If the number of operations specified by the count field in the command area is not complete when the bottom of the window is reached the cursor waits at the bottom right of the area. Two keys are valid in this context:

- Cursor down clears the screen and displays more data.
- Return aborts the command, moving the cursor to the menu area. The message ABORT is displayed.

The message DONE is displayed when the requested number of reads has taken place.

Figure 6-10 is an example of a display following execution of the reAd command.

input_port 600		count 0001	type std_word	
COUNT DATA				
0001 0000				
1000				
(Nemory_10 Scre Compare Disals	en reisi Com	and)	Quit ad seMel	

Figure 6-10. The reAd Command

Table 6-14 details the reAd command parameters.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
input_port	Hex-4	0000-FFFF	nnnn	See Section 5.4.4.
count	Hex-4	0001 - FFFF	0001	Counts words or bytes.
type	multi choice	std_word std_byte	n 1	Reads whole bus. Reads bits O-7 of bus if address is odd, or bits 8–16 of bus if address is even.
		spl_word spl_byte	2 3	Peads whole bus. Reads bits 0–7 of bus if address is odd, or bits 8–16 of bus if address is even.

Table 6-14. reAd Command Fields

6.10.7 The Write Command

With this command, a string of up to eight bytes can be written to a single byte or word-wide I/O port in the target system. The Write command also supports both standard and special operations. The output string can contain up to 16 hex digits. If the string contains an odd number of digits and the destination is a byte port, a leading zero is assumed. Thus, the bigh nibble of the first byte transmitted is zero. Similarly, if the destination is a word port, up to three leading zeros can be assumed to ensure that the string fills a whole number of words. For example, the user input 12345 could be interpreted as three bytes (01, 23, 45) or as two words (0001 and 2345).

As each word or byte is output, it is displayed in the window area to the right of an ordinal number. No output occurs if the command is executed with the default string, which is empty (equivalent to a user input of spaces). Note that this command cannot access Z-SCAN's own output ports. The message DONE indicates completion.

An example of the Write command's default screen display is shown in Figure 6-11.

output_port		type std_word	
string	012345ABCDEFFFFF		
COUNT DATA			
11 23 11 23 11 23 11 23 11 23			
COLOR FEFF			
DONE			
(Hemory_is Compare_D	Screen Brite Command)	Guit e refut Manite Ioad seMal	

Figure 6-11 The Write Command

Table 6-15 lists the parameters for the Write command.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
output_port	Hex-4	0000-FFFF	0000	
type	mult	std_word	N	16 bits of data appear on bus
	choice	std_byte	1	Data duplicated on high and low halves of bus
		spl_word	2	16 bits of data appear on bus
		spl_byte	3	Data duplicated on high and low halves of bus
string	Hex-16	empty – FFFFFF	empty	Leading zeros may be implied See above.

ladie 6-12. Write Lommand	Field	Command	Write	6-15.	Table
---------------------------	-------	---------	-------	-------	-------

6.10.8 The Load Command

The Load command allows the downloading of executable files (procedure files) from a host system into memory controlled by Z-SCAN. This section describes the user interface to the command. Section 7 of this manual details the download transactions between Z-SCAN and the host system.

Z-SCAN requires three items of information in order to load a program. It needs to know which address space it will be loaded into. A load address is not required, since the file itself contains this information. If Z-SCAN is using the Z8001 CPU, the second item of information needed is the segment number. The last item of information required is the file name, which may contain up to 32 arbitrary characters. Refer to Section 6.6.3 for further information on file names.

When the Load command is executed, Z-SCAN requests the host system's load utility to open the requested file. It is possible that the host cannot run the load utility or that the requested file cannot be opened for some reason. In either of these cases, an error message is displayed in the window area and execution is terminated. If the host does not respond to the request at all, Z-SCAN waits indefinitely for a response. In this case, the user must abort the command by entering a BREAK.

More often, the load utility runs successfully and the contents of the file are loaded into the target memory area. As this happens, a record count is displayed at the top left of the window area. Each record contains about 30 (decimal) bytes of data. When loading is complete, the entry point of the program just loaded is displayed before execution of the command terminates. The user can abort loading at any time by entering BREAK.

Load can be used to write the contents of a program file into the Z-SCAN mappable memory, which is described in Section 6.11.3. As with other monitor commands that can write to this memory, Load is able to alter its contents even if it is write protected.

Figure 6-12 shows an example screen for the Load command. The tutorials in Section 4 include other examples of the Load command.

target: space SC segment 00		
file_name EXAMSEG		
ENTRY POINT 8844		
(Nemory_is Screenbad Come Compare Display eXamine Fill	sand) Quit soVe refid Hrite Load seMid	

Figure 6-12 The Load Command

Table 6-15 lists the parameters for the Load command.

Table	6-16.	Load	Command	Fields

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
segment number	Hex-2	00	00 - 7F	Seament number does not appear if Z8002 is installed
file_name	file na	me any	blank	32 arbitrary characters terminated by space.

5/27/81

6.10.9 The seNd Command

The seNd command allows the uploading of information or procedure files contained in memory controlled by Z-SCAN. This section describes the interface to the command. Section 7 of this manual details the upload transactions between Z-SCAN and the host system.

Z-SCAN requires several items of information in order to seNd (upload) information or files to the host system. The begin_address and end_address identify the block of data to be sent from the source address space. The Z8001 requires the segment number to be stated. Both begin_address and end_address are offsets in the same segment. The number of bytes sent is (end_address - begin_address + 1), so that the last byte in the block is that at end address.

The seNd command is intended mainly for saving patched programs. For this reason, it has an entry point field to define the address at which execution of the program should begin. The entry point must be greater than or equal to the begin address and less than the end address. seNd can be used to save the contents of data areas provided that a dummy entry point is supplied.

When the command is executed, the validity of the addresses is checked. If the check fails, BAD ADDRESS is displayed and the command aborts. If the parameters are acceptable, the host's SEND utility is activated. An error message is displayed if the host cannot load the utility or if the file name is unacceptable--for example, the file already exists with the same file name as the one given in the seNd command. More normally, the host program is activated without error and records are sent to the host by Z-SCAN. An incrementing number at the top left of the screen counts the records, which each contain 30 or fewer bytes. Execution terminates when the transfer is complete.

Figure 6-13 shows an example of the initial display obtained by accessing the seNd command.

Figure 6-13 The seNd Command

Table 6-17 describes the parameters for the seNd command.

5/27/81

Field Name	Туре	Values (M-C) Range (hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
begin_address (segment number) (offset)	Hex-2 Hex-4	00-7F 0000-FFFF	00 0000	Segment number does not appear if Z8002 is installed. This is the only field on the Z8002. Must be less than end_address.
end_address	Hex-4	0000-FFFF	0000	Must be greater than begin_address.
entry_address	Hex-4	0000-FFFF	0000	Must be in range of begin_address to end_address -1.
file_name	file_na	me any	blank	32 non-blank characters

Table 6-17. seNd Command Fields

6.11 RESOURCES SCREEN

Before an emulation can be run, a number of parameters must be set up to define the emulation starting conditions, its environment and the constraints placed on it. Without such controls, the emulator would have little advantage over a CPU for debugging purposes.

The Resources screen allows the user to enter control information of this type. A set of six commands is available on this screen. Some of these configure the Z-SCAN resources, for example, its mappable memory and breakpoint logic, whereas others affect the CPU's state and behavior during emulations.

The Resources screen is shown in Figure 6-14. Above the Menu area there are three command areas which are further divided into six subscreens, one for each command. Unlike the Memory io screen, the Resources screen displays all its subscreens continually, whether the associated command has been activated or not. Commands are activated by entering the capital letter from their names when the cursor is in the menu area.

Once a command has been activated, the cursor automatically moves into the first variable field in the associated subscreen, which allows the contents of the fields to be updated as described in Section 6.6. Entering a RETURN or BREAK moves the cursor back to the menu area.

Figure 6-14. The Resources Screen

Each of the following subsections describes one of the six commands available from the Resource screen (Break, Inst_count, mAp, reGister, Peek and Wait states).

6.11.1 The Break Command

The Z-SCAN breakpoint logic is very flexible, allowing BREAKs to be set or pulses to be output in response to a wide variety of conditions. Consequently, the monitor must maintain a large number of variables in order to control its functions. The Break command provides a comprehensive and comprehensible interface to those functions. The default parameters for the Break command fields are included in the Resources Screen, Figure 6-14.

One of the two main inputs to the Z-SCAN breakpoint logic is the address/data bus and, in the case of the Z8001 only, the segment number. The logic can be programmed to search for address matches or data matches, but not both at once. Hence, it is possible to request a break to occur when a particular location is read, but it is not possible to simultaneously request that the break take place only when a particular data pattern is read from that location. Instead, a break can be programmed when that data pattern is read from any location. On the Z8002, the only address field is the 16-bit address/data bus contents. On the Z8001, it may be the segment number, the offset, or both. The segment field is ignored when searching for data matches. The Z-SCAN address/data comparator is 16 bits wide. This must be taken into account when setting up breaks conditioned on byte data. With byte write operations, the user can take advantage of the fact that the Z8001 duplicates the eight bits of data on the upper and lower halves of the bus during all such operations. For example, to break when an ASCII A (code 41 hex) is written, load the match field with 4141. During byte read operations, it is difficult to predict the data that will be seen on the unused part of the bus (upper byte for odd addresses, lower byte for even), so it is seldom possible to program a break conditioned on byte read data. For similar reasons, the user is cautioned against the setting of breakpoints on specific 8-bit interrupt vectors or 9-bit refresh addresses.

The other input to the breakpoint logic is the set of seven signals that constitute the Z8000's status: read/write, normal/system, byte/word and the four status code lines, SI_{0-3} . Users can select any of 128 possible combinations, although some of these are meaningless because the CPU never generates them. An example of such a meaningless status is a normal mode I/O operation, a transaction that is specifically prohibited by the processor architecture.

The design of the breakpoint logic makes it possible to break following a nonmaskable interrupt acknowledge cycle. However, because the logic that controls the change of mode from Target to Monitor traps this particular status code, an NMI acknowledge that triggers the breakpoint is prevented from reaching the target system. This is likely to prevent the target's service routine from being entered correctly, even when emulation is resumed. For this reason, breaks on NMI acknowledges are not allowed and the corresponding status code appears as "reserved".

When some characteristic of either Z-SCAN or the target system makes it undesirable to select a certain set of breakpoint conditions, it is almost always possible to program an alternative condition that ends the emulation under identical or very similar circumstances. Such alternatives take advantage either of program flow or of CPU characteristics. In the case of NMI acknowledge, the operating sequence of the CPU ensures that the new program status area in system code space is referenced soon after such a cycle. Thus, a breakpoint placed on the NMI status entry is an acceptable substitute for a break on NMI acknowledge. Similarly, it may be possible to pick out a certain instruction that will be executed if and only if a particular byte data value is read.

The outputs of the address/data and status comparators feed the trigger logic. Either of these inputs can be masked out (a "don't care" condition). The trigger logic can be fired either when both of its inputs are true (the logical AND condition represented by enable*) or when either of the inputs is true (the logical OR condition, enable+). If either of the inputs is a "don't care" when a logical OR trigger is selected, the break condition is always satisfied, and any emulation stops at once if the trigger logic is enabled (pulse & break selected).

The trigger can be further conditioned by a pass counter, which can count up to FF pulses (255 decimal) before providing a trigger output. Values other than 01 should not be used in conjunction with the Execution screen Trace command (Section 6.12.3) because this command loads the pass counter with the count value before each instruction is emulated. This usually prevents a multiple pass break condition from being satisfied.

6-43

Figure 6-15 is a conceptual diagram of the breakpoint logic chain. It is provided to help users visualize the action of the logic, not to illustrate the actual implementation. The instruction counter shown on the diagram is discussed in connection with the Inst count command in the Section 6.11.2.

Figure 6-15. Z-SCAN Breakpoint Logic (Conceptual Diagram)

Table 6-16 lists the Break command fields and their possible values. Steps 19 and 20 of the tutorial in Section 4.5, together with their associated Figures 4-14 and 4-15, show the setting of a breakpoint that uses the enable* option. The alternative, enable+, is shown in step 55 and Figure 4-43.

Field name	Туре	Values (M-C) Index/ Range (Hex) Default		Notes
master enable	mult choice	disable enable+ enable*	0 1 2	Inhibit pulse and break Enable, NR condition Enable, AND condition
effect	mult choice	pulse_&_break pulse_only	0 1	Trigger ends emulation Trigger does not stop emulation
status select	mult choice	status ST_dontcare	0 1	Status affects break Status ignored
address/data select (Z8002 installed)	mult choice	address data ignore_AD	0 1 1	Address affects break Data affects break Address/data ignored
address/data select (Z8001 installed)	mult choice	seg*offset offset segment data ignore_AD	0 1 2 3 4	Segment and offset must match for break Offset affects break Segment affects break Data affects break Address/data and segment ignored
segment number		00–7F	00	Used for address matches only with Z8001
match pattern	Hex-4	0000-FFFF	0000	See above notes
count	Hex-2	01-FF	01	Pass count field
read/write	mult choice	read write	0 1	
normal/system	mult choice	system normal	0 1	
byte/word	mult choice	word byte	0 1	

Table 6-18. Break Command Fields

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
status code	mult choice	<pre>instr_fetch1 internal_op mem_refresh io_reference special_io seg_trap_ack reserved nvi_ack vi_ack data_mreq stk_mreq EPU_data_mrq EPU_stk_mrq code_sp_access EPA_transfer reserved</pre>	0 1 2 3 4 5 6 7 8 9 A B C D E F	Instruction fetch, 1st word Internal operation Memory refresh Standard I/O Special I/O Not produced by Z8002 NMI acknowledge. See above Non-vectored int. ack. Vectored interrupt ack. Data memory access Stack memory access Stack memory access Extended Processing Unit Memory operations Code space access, Nth word CPU to EPU transfer Not used by CPU

Table 6-18. Break Command Fields--Continued

6.11.2 The Inst count Command

As well as the breakpoint logic described in the previous section, Z-SCAN contains an instruction counter that can be programmed to stop an emulation after a given number of instructions have been executed. The user must start the emulation with the Execution screen Next command (see Section 6.12.2) if the instruction counter is to affect the trigger condition. Figure 6-5 shows the relationship between the instruction counter and the breakpoint logic.

The instruction counter can be used in conjunction with a programmed break condition to run emulations that stop either when a specified number of instructions is executed or when a particular condition is detected on the bus. This feature further increases the flexibility of Z-SCAN.

Up to FB (251 decimal) instructions can be counted. The difference between this maximum and that of the breakpoint pass counter (FF) arises because four instructions are fetched between the time that the instruction counter is enabled and the time at which the next emulation actually begins. Table 6-19 summarizes the range of values for the field.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
Inst_count	Hex-2	01 - FB	01	

Table	6-19.	Inst	count	Command	Field

6.11.3 The mAp Command

Z-SCAN contains an 8K byte (8192 decimal bytes) block of mappable memory. This feature facilitates the development and debugging of target hardware, because the mappable memory can be used as a substitute for memory in the target system. This feature is generally used in one of two situations:

- Target memory not implemented. Often, when a prototype is made, it does not include as much memory as is provided by the final design. Alternatively, it may be found that the preliminary memory design does not function correctly. In either of these cases, Z-SCAN mappable memory can substitute for the missing or faulty memory, allowing software debugging to proceed even before the target hardware is fully functional. The memory can also be used for the loading of test programs that exercise the target hardware, thus speeding hardware development.
- Target memory is read-only. Many applications, particularly those addressed by small, dedicated systems, require software that is totally ROM (Read-Only Memory) based. This non volatile method of program storage allows systems to operate without requiring backup storage devices (floppy disks, for example) to save and protect the software when power is removed from the equipment. The production advantages of ROM-based software (also known as firmware) are balanced by a development disadvantage: it is difficult to make changes in firmware in order to debug applications programs. The non volatile nature of the memory means that it must be removed from the prototype in order to modify its contents--if they can be modified at all. Z-SCAN circumvents such problems by allowing the mappable memory to substitute for target system ROM. Because the memory can be written as well as read, the user can easily make changes to its contents as debugging proceeds. An additional feature protects the mappable memory against write accesses, permitting it to simulate read-only memory.

The mAp command allows the user to define the types of memory accesses to which the mappable memory responds. The address space (or spaces) in which the memory appears must be selected, then the ranges of addresses within those spaces. Finally, write protection can be enabled or disabled, as required.

Mappable memory can appear in any combination of the Z8000's six memory address spaces (system code, system data, ..., normal stack) and can be mapped as a single block onto any 8K byte boundary within those spaces. Such boundaries are multiples of 2000 hex. It is not possible for the memory to appear at different addresses in different spaces, nor is it possible for it to be write-enabled in one space and write-protected in another. When the memory is mapped at a particular address in a particular block, it responds to all CPU accesses in the range between the base address and base address + 1FFF hex. Memory in the target may respond in the same address range. Even so, CPU read accesses read data from the mappable memory, not from the target. CPU writes are to both the mappable memory and the target memory.

The user may sometimes want to develop ROM-based applications that require more memory than is provided by the Z-SCAN mapping feature. The recommended approach in such cases is to develop and debug the software as a number of separate pieces, consigning each piece to ROM when it is considered fully functional. This allows the amount of code in the mappable memory to be kept within the allowed limits. The Z8000 support software available on many host systems permits newly written routines to be linked to existing procedures in ROM.

Table 6-20 details the mAp command's parameter fields. The tutorials in Section 4 include examples of operations using the mAp command.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
system code select	mult choice		0	Mappable memory does not respond to system code
		SC	···· 1 ···	Mappable memory responds to system code accesses.
system data select	mult choice	SD	0 1	Similar to first field
system stack select	mult choice	<u>5</u> 5	0 1	Similar to first field
normal code select	mult choice	NC	0 1	Similar to first field
normal data select	mult choice	ND	0 1	Similar to first field
normal stack select	. mult choice	NS	0 1	Similar to first field
segment	Hex-2	00-7F	00	Segment number does not ap- pear if Z8002 is installed.
address	mult choice	0000 2000 C000 E000	0 1 6 7	This is NOT a hex field , because the index required by the choice table.
protection	mult choice	unprotect protect break	0	Mappable memory can be written. Mappable memory cannot be written, but emulation continues if an attempt is made to do so. Mappable memory cannot be written, and emulation terminates if an attempt is made to do so.

Table 6-20. mAp Command Fields

5/27/81

-# -

6.11.4 The reGister Command

By default, Z-SCAN saves the contents of the CPU registers at the end of each emulation and retores the same values at the start of the next emulation. The reGister command allows the user to alter register contents between emulations so that the next emulation starts with modified values. For example, the Program Counter's contents can be changed so that the next emulation does not start where the previous one finished, or in order to set up the entry point of a newly loaded file.

Changes made to register contents on the Resources screen are reflected in the upper rows of register values on the Execution screen (see Section 6.12). Table 6-21, parts 1 and 2, details the reGister command's variable fields. The tutorials in Section 4 demonstrate the use of the reGister command.

Some of the control registers are used only on the segmented Z8001. They do not appear when a Z8002 is installed in Z-SCAN. These registers are the Program Counter and new program status area segment numbers and normal mode register 14 (NSPSEG).

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
RO.	Hex-4	0000-FFFF	0000	Word register zero. High byte is byte register RHO, low byte is RLO. Can be used as more significant part of long word reg. RRO or as most significant part of quad reg. RQO.
R1	Hex-4	0000-FFFF	0000	Also RH1, RL1, RRO, RQO
R2	Hex-4	0000-FFFF	0000	See notes above
R3	Hex-4	0000-FFFF	0000	See notes above
R4	Hex-4	0000-FFFF	0000	See notes above
R5	Hex-4	0000 - FFFF	0000	See notes above
R6	Hex-4	0000-FFFF	0000	See notes above
R7	Hex-4	0000-FFFF	0000	See notes above
PC Seg. no.	Hex-2	00-FF	00	Segment number for Program Counter. This does not appear if Z8002 CPU installed. MSB may be set as a result of program execution, but cannot be set by user.

Table 6-21. reGister Command Fields

Table 6-21. reGister Command Fields (continued)

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
PC (offset for Z8001)	Hex-4	0000-FFFF	0000	Program Counter. Action of CPU undefined if contents are odd.
FCW	Hex-4	0000-FFFF	C000	Flag and Control Word. See <u>Z8000 Technical Manual</u> to determine legal values. Default is segmented system mode with interrupts disabled. The Z8002 ignores the fact that the segmentation flag is set.
R8	Hex-4	0000-FFFF	0000	Also RR8, RQ8
R9	Hex-4	0000-FFFF	0000	See notes above
R10	Hex-4	0000-FFFF	0000	See notes above
R11	Hex-4	0000-FFFF	0000	See notes above
R12	Hex-4	0000-FFFF	0000	See notes above
R13	Hex-4	0000-FFFF	0000	See notes above
R14	Hex-4	0000-FFFF	0000	See notes above. Also segment number of system stack pointer for Z8001.
R15	Hex-4	0000-FFFF	0000	System mode Stack Pointer, must contain an even value if used for this function. Also less significant half of RR14 in system mode only
PSAP Segment no.	Hex-2	00–7F	0000	Program Status Area Pointer segment number. Not displayed if Z8002 is installed.
PSAP (offset for Z8001)	Hex-4	0000 - FFFF	0000	Program Status Area Pointer. Low byte is ignored by CPU.
NSP Segment Segment no.	Hex-4	0000-FFFF	0000	Normal mode Stack Pointer Segment no. (R14). Not dis- played if Z8002 is installed.
NSP offset	Hex-4	0000-FFFF	0000	Normal mode stack pointer (offset on Z8001) R15.

6.11.5 The Peek Command

3

Z-SCAN automatically captures and displays the contents of the CPU registers at the end of an emulation. This information appears on the Execution screen (Section 6.12) and can be updated with the reGister command (Section 6.11.4). Often, the user wants to know the contents of selected areas of memory at the end of each emulation as well as register contents. In order to satisfy this request, Z-SCAN provides three windows, each four words in length, into target memory and displays the contents of these windows alongside the register information. Note that this usage of the word window is different from that used in connection with the window area on the Memory io screen.

The Peek command allows the user to select the memory space and start address for each of the three windows. Table 6-22 lists its variable fields. An example of its use is given in step 66 of the tutorial, Section 4.6.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
space #1	mult choice	SC SD SS NC ND NS	0 1 2 3 4 5	System code space System data space System stack space Normal code space Normal data space Normal stack space
address #1 (segment number)	Hex-2	00-7F	00	Window segment number. Segment number does not appear if Z8002 is
(offset)	Hex-4	0000-FFFF	0000	installed. This is the only address field on the Z8002.
space #2	mult choice	same as spa	ace #1	
address #2	Hex-2	00-7F	00	See notes for address #1.
(offset)	Hex-4	0000-FFFF	0000	
space #3	mult choice	same as space #1		
address #3	Hex-2	00-7F	00	See notes for address #1
(offset)	Hex-4	0000-FFFF	0000	

Table 6-22. Peek Command Fields

6-51

6.11.6 The Wait states Command

Not all memory components meet the maximum access time requirement of 350 ns required by the Z8000 to run at full speed with a 4 MHz clock frequency. A common example of such a memory component is the EPROM (Erasable Programmable Read Only Memory), which has a typical access time of 450 ns. If the Z8000 is used with slow memory or with slow I/O, its access time requirement must be increased. This function is handled by the WAIT- input to the CPU, which must be driven by an external wait state generator in systems that cannot meet full speed access time requirements.

To eliminate the need for each user to implement a wait state generator at an early stage in development, Z-SCAN provides its own generator. This can insert between zero and eight wait states in each memory transaction. It also affects I/O and interrupt acknowledge cycles, as detailed in Table 6-23. The differences between the three types of transactions arise because the CPU samples the WAIT- signal at a different time, relative to Address Strobe, in each type of transaction. Note that refresh operations are not affected because the CPU does not sample the WAIT- line during these cycles. Table 6-24 summarizes the choice of values available in the single variable field controlled by this command.

t

Wait states	Memory R Cycles Added	eference Total	I/O Re Cycles	ference Total	Interrupt / Cycles Added	Acknowledge Total
		Longen				congen
0	Û	3	0	4	0	10
1	1	4	0	4	N .	10
2	2	5	1	5	0	10
3	3	6	2	6	0	10
4	4	7	3	-7	1	11
5	5	8	4	8	2	12
6	6	9	5	9	3	13
7	7	10	6	10	4	14
8	8	11	7	11	5	15

Table 6-23. Effect of Wait States

Table 6-24. Wait states Command Field

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
Wait_states	mult choice	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	No waits

6.12 THE EXECUTION SCREEN

The Execution screen differs from those discussed previously in that it has no variable fields. Instead, it performs the following functions:

- Display of Z-SCAN parameters pertinent to emulation--for example, the setting of the breakpoint logic.
- Display of information on the status of the processor and selected target memory areas before and after each emulation.
- Display of a message that indicates the reason for termination of each emulation.
- Provision of commands to start emulations (Go and Next).
- Access to the Trace screen for detailed program analysis.

Figure 6-16 shows the screen as it appears between emulations. It is shown in this state rather than in its default state to better illustrate the functions of the various fields. Note that the screen is divided into five command areas (although they are not used for the entry of command parameters) and a menu area.

ait_states	8	Inst_co	int 01		
Ap space address	90 9090 unprotect	Break disable seg#off read	pulse_& break set00_0000 sustem word	status count Øl instr fetri	11
addr inst 80 8088 9001 80 8088 8081	ruction 0003 0003	nnemonic ADDB RH1 ADDB RH1-	#N00 #N00		
sp addr 1 SC 00 0000	memory contents 8001 8003 8005 8001 8003 8005	RØ R1 8007 8000 8088 8087 8088 8096 88 89	R2 R3 P4 0000 0000 006 0000 0000 006 0000 0000	R5, R6 R 10 0000 0000 00 10 0000 0000 00 11 0000 0000 00 11 0000 0000 00	нин Нин 15
2 SC 00 0000	0001 0003 0005 0001 0003 0005	0007 0000 0000 0007 0000 0000	0000 0000 000 0000 0000 000	10 0000 0000 00 10 0000 0000 00 PSAP N	8 00 5P
3 SC 00 000	0 0001 0003 0005 0001 0003 0005	0007 00 0000 0007 00 0000	(000 00 000 00	инии инии и инии инии и	ann Ann
Return mess	9062				

Figure 6-16. The Execution Screen

The two top command areas contain Z-SCAN status information that describes the state of the Wait_states, Inst_count, mAp and Break variable fields. These displays are for reference only, since the fields can be modified only by Resources screen commands. For further details, see Sections 6.11.1 through 6.11.3 and 6.11.6.

Moving toward the bottom of the screen, the next command area contains two lines of data that correspond to the Program Counter contents before and after the last emulation and to the instructions at those locations. The current information, captured after the emulation stopped, appears as the upper row of data, and the status from before the emulation is displayed on the lower line. The display lines are generated by the disassembler described in Section 6.10.2. Disassembly is always nonsegmented if a Z8002 is installed in Z-SCAN. For the Z8001, the segmentation bit (bit 15) of the FCW controls disassembly segmentation mode.

Below the instruction information is a large command area that contains information about register and memory contents. The memory locations displayed to the left of this area are selected by the Resources screen Peek command (see Section 6.11.5). There are two rows of data for each location, again corresponding to the status before (lower row) and after (upper row) the last emulation. To the right of the memory trace information is a display of register contents. As with the instruction and trace fields, the two rows of data represent the status before and after the last emulation. As with the Resources screen reGister command, three control registers do not appear if a Z8002 is installed in Z-SCAN. Refer to Table 6-21 for details. It is possible for bit seven of the Program Counter segment number to be set by program execution on the Z8001, for example, when a long offset direct address mode call instruction is executed. This has no consequence: a segment number of 80 is equivalent to 00, 81 to 01 and so on.

Register contents and traced addresses can be changed using the Resources screen reGister and Peek commands, respectively (see Sections 6.11.4 and 6.11.5). Any such change is reflected in the top entry for the corresponding field on the Execution screen. In other words, it is the status captured after the last emulation that is modified. It is this status that is used when the next emulation begins.

The bottom Command area on the Execution screen is headed Return message. It is here that the monitor writes a short message stating where (\overline{PC} contents) and why (cause of transition from Target to Monitor mode) the previous emulation terminated. This field is blank when the Execution screen is first displayed unless a segment trap is outstanding on the Z8001. Section 5.4.6 discusses this situation. Table 6-25 lists the four possible causes of break conditions. One or more of these messages appears each time an emulation terminates.

Message	Notes
TRIGGER BREAK	The condition set up by the Break command was satisfied.
MANUAL BREAK	The user generated a monitor NMI with the Z-SCAN front panel switches.
WRITE PROTECT BREAK	The executing program attempted to write into the Z-SCAN mappable memory when a write-protect break was enabled.
STEP BREAK	The number of instructions defined by the Inst_count field was executed during an emulation started with the Next command.

Table 6-25. Termination Messages

The menu area of the Execution screen lists two commands that are specific to the screen: Go and Next. These are described in Sections 6.12.1 and 6.12.2. There is a third command, Trace, which generates its own screen. The Trace command is described in Section 6.12.3.

6-55

6.12.1 The Go Command

This command starts an emulation at the address held in the PC register. The emulation continues until one of three conditions occur:

- The breakpoint condition selected with the Break command is met.
- The user generates a Monitor NMI with the Z-SCAN front panel switches.
- The program running under emulation attempts to write into the Z-SCAN mappable memory when a break is set on write protect violation.

If any of the above conditions is detected, the emulation either stops at once or executes a maximum of one more instruction in Target mode before Z-SCAN switches back to Monitor mode. This implies that the CPU must be executing instructions so that the transition between modes can occur. This topic is discussed in Section 5.4.8. The tutorials in Section 4 include examples of the Go command.

6.12.2 The Next Command

The Next command allows the user to start an emulation that executes a given number of instructions before it is automatically terminated. The number of instructions is determined by the contents of the Inst count field, which can be modified on the Resources screen (see Section 6.11.2). This command is useful for stepping through programs one or more instructions at a time.

It is possible for an emulation started by the Next command to terminate before the instruction count is exhausted if an alternative break condition arises. The Next command can terminate when:

- The programmed instruction count is exhausted.
- The breakpoint condition selected with the Break command is met.
- The user generates a monitor NMI with the Z-SCAN front panel switches.
- The program running under emulation attempts to write into the Z-SCAN mappable memory when a break has been set on write-protect violation

If any of the above conditions is detected, the emulation either stops at once or executes a maximum of one more instruction in Target mode before Z-SCAN switches back to Monitor mode. This implies that the CPU must be executing instructions so that the transition betweeen modes can occur. This topic is discussed in Section 5.4.8 (Termination of Emulation). The tutorials in Section 4 include examples of the use of the Next command.

The user should be aware of the effect of stepping through the Z8002's block instructions, for example LDIR or OTDRB. When Inst count is set to one, each step results in a single operation on one word or byte, and the Program Counter value is not changed by the operation unless the Block Count register named in the instruction is decremented to zero. If, on the other hand, Inst count has a value greater than one, the block instruction executes in its entirety and counts as just one instruction as far as the Z-SCAN instruction counting logic is concerned. This is a consequence of the interaction between the interruptable block instructions and Z-SCAN's use of non-maskable interrupts to terminate emulation (see Section 5.4.6). The <u>Z8000 CPU Techni-</u> <u>cal Manual</u> provides more information about the operation of block instructions.

6.12.3 The Trace Command

The Trace command provides a more detailed picture of program execution than either the Go or Next command because it disassembles and displays each instruction before it is executed. Disassembly incurs a time penalty, so unlike Go or Next, Trace cannot run emulations in real time. The monitor traces the user program by forcing a non-maskable interrupt after each instruction. This prevents acceptance of any interrupts or traps generated by the target hardware. Section 5.4.6 discusses this behavior in detail.

Figure 6-17 shows the Trace screen in its default state. The contents of all memory data fields in the figure is arbitrary and has no significance in the following discussion.

Address	-Contents			Mn	en i	c							FCN	
98 0000 R8R1 9880 0000 9900 0000 System Mc 9001 0001 9001 0001 Prek SC- 800 800	9001 900 -R2 R3- 9000 900 9000 900 9000 900 9000 900 9000 900 9000 900 9000 900 9000 900 9000 900 900	3 	- R5 0000 0000 0000 0000 0000	ADC R6 0000 0000 5000 SC 0001 0001	B R7 0000 Norm 0001 0001 0001 0003 0003	RH1 R8 0000 0000 0003 0003 0003 0003 0005 0005	R9 9000 0000 de St 0005 0005 0007 0007	‡ %88 R18 9008 9008 ack 8007 0007	R11 8000 8009 8009 8009 50 8001 8001 8001	R12 9000 9000 9000 9000 900 90 900 4 900 4 900 4	R1.} 9000 9000 9000 9000	R14 8009 8009 8009 8009 8009 8009	(1998) R15 9999 9999 9999 9999 9999	
Trace St	ep Count	. 0005	8	Enter	a He	a nui	ber.	(ur sa	ir dio∎	n or l	Returi	n		

Figure 6-17. Default Trace Display

In its default state, the screen displays a heading followed by ten blank lines. Below these, a single disassembled instruction appears in the format described in Section 6.10.2, followed by the FCW value. Disassembly mode is always nonsegmented if a Z8002 is installed in Z-SCAN. The segmentation bit (bit 15) of the FCW controls the mode on the Z8001. The instruction will be executed when emulation starts.

5/27/81

Below the instruction, two lines of general-purpose register contents are shown. The values in the top line are loaded before the next emulation starts; those in the lower line were used when the last emulation started. Space limitations prevent the display of the normal mode stack pointer (NSP) in this area. It appears elsewhere on the screen. The program status area pointer (PSAP) is not shown on the Trace screen.

Two stack area displays appear below the register contents. Again there are two lines of data, corresponding to the current and previous stack states. The left hand area displays the 12 (decimal) bytes at the top of the system stack, which starts at the address in RR14 (Z8001 segmented mode) or R15 (Z8001 nonsegmented mode or Z8002). Thus, the address of the first byte displayed varies as data is added to or removed from the system stack.

To the right, the normal stack is displayed in a similar format. The normal stack pointer register contents appear at the far right. The segment number register (NSPSEG) is not displayed if a Z8002 is installed in Z-SCAN.

The final data area displays the contents of the memory areas defined by the Resources screen Peek command (Section 6.11.5). Current and previous contents appear on the upper and lower lines respectively.

The field at the left of the bottom line defines a step count; that is the number of instructions to be executed when emulation starts. The default value is 000B (11 decimal), sufficient to fill the upper half of the screen with disassembled instructions. The value can be changed as described below. A prompt filling the remainder of the line invites the user to enter hex digits, cursor down or RETURN. The effect of these keys are as follows:

- Enter cursor down to execute the number of instructions shown in the step count field.
- Enter hex digits (0-9, A-F) to alter the value in the step count field. Use cursor left or SHIFT < to backspace over and delete incorrect entries. Use cursor down to begin executing the number of instructions indicated by the modified step count.
- Enter RETURN to move to the Execution screen.

When tracing starts, the bottommost instruction on the screen is redisplayed. An asterisk in column one shows that it is the first instruction executed in A the series of traced instructions.

Tracing can be stopped by four events:

- The number of instructions defined by the step count has been traced. This is the normal termination. The prompt is redisplayed on the bottom screen line.
- The condition set up by the Resources screen Break command (Section 6.11.1) is satisfied. Tracing terminates at once and the message TRIGGER BREAK replaces the prompt.

6-58

- A traced instruction attempts to write to write protected mappable memory. Tracing terminates at once and the message WRITE PROTECT BREAK replaces the prompt.
- o The user enters the terminal keyboard BREAK key. Tracing terminates at once and the message MANUAL BREAK replaces the prompt.

When tracing terminates, the register, stack and peek memory contents fields are updated. All instructions shown in the top half of the screen have been executed except the bottommost. The next emulation starts by executing this instruction. The FCW values at the right of the screen show the state of the CPU **before** the execution of the instruction to the left. Figure 6-18 shows the Trace screen after execution.

AddressContents	-Mnemonic	· ·+ UN
*899 1FFC 5E88 0018 09 0012 6596 0019 99 001C 8808 R9R1 - R2R3R4R5 4798-0098 0000 0000 0000 0000 4798 0000 0000 0000 0000 0000 Sustem Mode Stack	JP (00) >20018 INC <(00) >20018 416 INCB RH0 412 RCB R9 R10 R11 R000 0000 0000 0000 0000 8000 0000 0000 0000 0000 0000 8000 0000 0000 0000 0000 0000 0000 8000 0000 0000 0000 0000 0000 0000 0000 0000 8001 0000 <	E800 E828 R13 R14 R15 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0000 0 0000 0000 0 0000 0000 0 0000 0 0000 0000 0 0000
AD28 A888 A888 A888 Trace Step Count : 8008	ABOB ABOB ABOB ABOB ABOB ABOB ABOP ABO	D

Figure 6-18. Trace Screen after Execution

Three termination conditions described above replace the prompt on the bottom screen line with an informative message. The user input required is not changed: hex digits, cursor down and RETURN are still valid keys.

As discussed in Section 5.4.7, the Z-SCAN monitor may violate protection attributes set up in the memory manager of a Z8001-based target system. The user is warned of this condition by the appearance of a warning message near the bottom right of the screen. Segment traps cannot be serviced during tracing for the reasons outlined at the beginning of this section. Other screens and commands must be used to correct the condition.

6.13 The Host Screen

The characteristics of the host screen are defined almost entirely by the host system rather than by Z-SCAN. The initial screen, which is displayed in response to the Host command, is shown in Figure 6-19. It is clear, except for the message "Host" at the top left. When the contents of the host baud rate and terminal baud rate fields set up on the System screen (Section 6.9) differ, a supplementary message, "Set baud rate of terminal to (speed), then enter RETURN and ">", appears. The speed is taken from the host baud rate field. The monitor waits until a RETURN character is received at the host baud rate before enabling communication between the terminal and the host system. Consult the terminal documentation for details of its baud rate setting procedure.

When the baud rate is correct, Transparent mode is entered. This mode is terminated when the user enters BREAK. If the System screen host and terminal baud rates are the same, the System screen is displayed at once. If they differ, the procedure described in the previous panel is repeated, telling the user to set the baud rate of the terminal to that required by the monitor. The System screen is displayed after a RETURN has been entered at the correct baud rate.

Figure 6-19. The Host Screen

SECTION SEVEN

INTERFACE TO NON-ZILOG HOSTS

7.1 INTRODUCTION

This section describes the overall communications protocol of the Z-SCAN monitor so that custom host software can be designed to interact successfully with the Load/seNd utility built into Z-SCAN.

Load/send communication between a Zilog (or other) host system and the Z-SCAN monitor is accomplished by exchanging messages containing printable ASCII characters. Message types are:

o Single-character, data-block acknowledgement

o Error text

o Data block

All messages exchanged during a Load or seNd command are text lines, each ending in RETURN (carriage return). Memory and other data are converted into hexadecimal numerals for transmission, and the resultant message is readable left-to-right, high-order digit first, as it is transmitted over the RS-232 link.

The	following	illustrates	а	simplified	form	of	Z-SCAN's	Load/seNd	transmis-
sion	protocol:								

Mode	Host Message	Message Path	Z-SCAN Message
either		<>	start command
mode	acknowledge		
Load	data	>	
		<	acknowledge
seNd		<	data
	acknowledge	>	

In this illustration, data/acknowledge message pairs are continually sent until the desired amount of data is transmitted successfully, or a fatal error or user abort occurs.

7.2 DATA ACKNOWLEDGEMENT MESSAGES

Of the three types of Load/seNd messages, data-block acknowledgements are the simplest. A data-block acknowledgement must be sent each time a data message is received. It consists of exactly one of three characters--0, 7, or 9--followed by a RETURN. The characters have the following meaning:

- 0 Data block received with valid checksums.
- 7 Transmission error, please resend last block
- 9

Bad load address or error message received, abort process.

Thus, the sender (either the host system or Z-SCAN) simply places a data message on the RS-232 link and after one echoed line, receives one of these three characters. If the host does not echo the input characters, it must at least precede any acknowledgement with RETURN or RETURN and linefeed. This happens if, for example, the host is half duplex.

If a 7 is persistently returned to the host system because of checksum errors, the sender must decide when to stop trying to send a message. In the Z-SCAN seNd command, this occurs after a total of 10 trys. A custom host Load command can use some other value, if desired. In any case, once the sender stops re-sending data, it notifies the receiver that it is giving up the whole communication effort by sending one of the error messages (// RETURN) described below.

Z-SCAN Load/seNd acknowledgement logic allows for don't-care regions in acknowledgement lines, such as:

xxxx O xxxx RETURN xxxx ...

Here, Z-SCAN's seNd command examines all characters returning from the host after a data message has been sent. It throws out all data until a O, 7 or 9 is found. The data preceding the acknowledgement character must not contain 0, 7 or 9. It also throws away the rest of the line. Z-SCAN does not currently use these regions, so the host receives 0, 7 or 9 and RETURN in unadulterated form, even if it chooses to send "dirty" acknowledgements.

7.3 DATA TRANSMISSION MESSAGES

All memory or other numerical data sent over the host/Z-SCAN link is formatted as ASCII characters that represent each data byte as two hexadecimal digits. Error-message text can also be sent. Since each transmission is terminated by a RETURN, it appears to the host as if the source were simply a standard ASCII terminal. This formatting allows Z-SCAN to be connected to a standard terminal port on the host, which, in turn, makes possible its transparent (user-to-host) mode of operation.

Data and error messages begin with a slash (/) to distinguish them from acknowledgements. The basic format for a message is:

/ printable ASCII characters RETURN

7.3.1 Error Messages

To distinguish error messages from data blocks, an error message has the form:

/ / error text RETURN

where the degenerate case, //, is used by the Z-SCAN seNd command to respond to the last 7 in a failed sequence of sending retries (see Section 7.2). Z-SCAN thus signals the host to abort the entire communication process. When sent by the host, error messages cause the Z-SCAN Load and seNd commands to abort, but any error text is first copied to the user's terminal to indicate that an error has occurred.

The error-message facility thus allows the sender to force the receiver to abort, while optionally providing an informative message of up to 40 characters. Error messages can only be sent in place of a data message--that is, only when a data message might otherwise by sent. The appropriate acknowledgement of any error message is 9. Z-SCAN supplies but does not expect such closure, since all error messages from Z-SCAN correspond to abort conditions.

7.3.2 Data Messages

A data message begins with /, ends with RETURN, and contains printable characters that are translated from hexadecimal numerals into memory bytes, checksum bytes, or address words. The sender's message encoding proceeds byte by byte, nibble-by-nibble, building a string of hexadecimal text digits O through F. The receiver must then reverse the translation to obtain binary byte values. The basic format of a data message is:

/ address byte count checksum1 data checksum2 RETURN

char:1 2 3 4 5 6 7 8 9 10... 2xbyte count+10 2xbyte count+11

where the items sent are defined as:

- address 4-digit hexadecimal (O-F) representation of a 16-bit destination address for data, highest-order digit first. If the byte count is zero, it corresponds to a program file's entry address and must be even.
- byte_count 2-digit hexadecimal, 8-bit count of the physical memory bytes to be constructed from data numerals. OO indicates the final record in the transmission and that the program's entry address was sent in this message. For the Z-SCAN seNd command, the maximum count is 30 (decimal). For Load, the byte count is limited by the Z-SCAN input buffer size.
- checksum1 2-digit hexadecimal, 8-bit sum of address and byte-count values, nibble-by-nibble, done prior to conversion to ASCII 0 to F. Data nibbles are simply added successively into an 8-bit register to produce the checksum, which is then translated into the two numerals sent.
- data 2-digit hexadecimal, 8-bit memory bytes, starting with numerals for the byte at the address sent--30 bytes (60 numerals) maximum length for seNd.
- checksum2 2-digit hexadecimal, 8-bit sum of data-byte nibbles with the overflow ignored. The ability of this checksum to trap errors decreases once the sum of all data nibbles exceeds 255, which also depends on the byte_count.

During reception of data messages, all ASCII control characters (codes below 32 decimal) are ignored except for RETURN. Furthermore, all characters following RETURN up to the beginning of the next message (/) are ignored. In combination with the fact that only sufficient numerals are used to exhaust the byte count and checksum2, identification of don't-care regions within a stream of data messages is possible:

xxxx / address... data checksum2 xxxx RETURN xxxx /...

The xxxx regions could conceivably be used to transmit any information that does not conflict with the basic format used. As with the acknowledgement message, Z-SCAN does not use this feature, though a custom host program can do so, with the limitation that during Load operations, any host should not send more message characters than can fit in Z-SCAN's input buffer (currently 128).

Note that the only characters that have meaning in data messages are /, RETURN, O to 9 and A to F, and the overall transmission format corresponds to one originally developed by Tektronix. Each data message must be acknowledged before the next can be sent.

7.4 COMMAND TRANSMISSION

Both the Load and seNd commands initiated in Z-SCAN by the user at the terminal rely on the host to run the appropriate program (LOAD or SEND) to complete the communications link and to transfer the desired data. To begin the process, Z-SCAN sends a command line to the host. This line includes a file name taken from the corresponding field on the Load or seNd command subscreen. The seNd command line also includes the start address, end address and entry point for the file, encoded as four-digit hex numbers. The host program may choose to ignore this information since it is also contained in the data records sent to the host by Z-SCAN. Thus, the host operating system must be able to receive either of two commands from Z-SCAN:

B;LOAD filename RETURN

or:

B;SEND filename start address end address entry point RETURN

The host operating system should then run the appropriate program, passing the parameters, which may be followed by trailing blanks, to the program for parsing.

The "B;" prefix instructs the Zilog RIO operating system to cease verbose mode re-echoing of commands after RETURN. If no such feature exists in the host being used, these two characters must be ignored. In any case, Z-SCAN ignores echoing of the command line and the next line too if it begins with B; and awaits activation of the corresponding program.

The user can enter BREAK to abort command transmission. If this is not done, Z-SCAN does one of three things once the command line has been sent to the host and any echo(s) have been ignored:
- host failure 0, 7, or 9 RETURN not received: pass what was received to user's terminal as host error diagnostic and abort.
- file unopened 7 or 9 RETURN received: desired file not found or can't be opened: display error message and abort.
- proceed 0 received: LOAD/SEND running and ready to send or receive data.

Note that in host failure, the host's response is passed directly to the user's terminal regardless of its structure. The transmission or reception of data by the host begins as soon as the host LOAD/SEND program issues its initial O response.

Once Z-SCAN has ignored command echoing, any text beginning with B is skipped until the next RETURN:

B;SEND...RETURN... B xxxx RETURN xxxx O xxxx RETURN

This feature is not used by Zilog's host software, though it may be implemented by a custom host.

7.5 USER ABORT

The Z-SCAN software monitors terminal activity and BREAK keystrokes during Load/seNd activities. In this way it can abort data transfers entirely. Whenever an abort occurs after successful command transmission, the host is sent either 9 or //, depending on the context (Z-SCAN receiving or sending, respectively), and is expected to abort the LOAD/SEND program immediately. The Z-SCAN never waits for acknowledgement of the degenerate error message (//) and terminates seNd activity at once. BREAK aborts Z-SCAN Load/seNd regardless of the host program's current state, functional or not. During Load activity, the 9 is sent just after the last acknowledge, allowing the host to send an extra data block that is acknowledged by the waiting 9 but is never received by the already aborted Z-SCAN.

7.6 DETAILED TRANSMISSION PROTOCOL

The following sections describe the assumptions of the sequential details of host/Z-SCAN Load/seNd transactions and data transmission currently made by the Z-SCAN monitor.

Load/seNd communication is always initiated by Z-SCAN because it responds to commands from the user terminal. Whether Z-SCAN issues a Load or seNd command, the initial sequence of messages is the same:

Z-SCAN Sends B; command RETURN Host Sends

normal_echo RETURN line feed (of command) verbose echo RETURN line feed (possible) O RETURN (file found and ready) where the command sent by Z-SCAN always begins with either B;LOAD or B;SEND, and where the host operating system (RIO on Zilog systems) determines the nature and existence of command echoing. Z-SCAN assumes that there is one echo line, and that if B starts the second line received, the host was in verbose mode and acknowledgement will be found in the next line (0...). Thus, the first one or two lines received from the host are completely ignored by Z-SCAN. For custom hosts or host programs, this means that if no echoing occurs (for example, if normal, full-duplex echoing is turned off), all messages sent to Z-SCAN must be preceded by RETURN, since Z-SCAN assumes that each message sent to the host is echoed. The acknowledgement above would then be RETURN O RETURN.

Just before sending the host command, Z-SCAN also checks to see if the user has entered BREAK. If so, Z-SCAN sends 9 RETURN to the host, as it does during data transmission, but does not send the command. Typically, the host operating system does not understand this meaningless message and, in turn, generates a meaningless error message.

Note that every message line sent to the host by Z-SCAN is echoed by the host if echoing is on. For simplicity, this is not shown in subsequent examples except for command transmission. Z-SCAN automatically skips one received line for each line it sends.

It is, however, possible that communication is not successfully established. In fact, once Z-SCAN has sent the Load or seNd command line to the host and received and ignored normal and verbose echoes, three possibilities exist:

- 1. The command contains an error that prevents the operating system from running the load or send program. In this case, a O is not transmitted, but any response or error message the operating system chooses is sent. Whatever is returned is passed directly to the user's terminal to indicate the failure of the command.
- 2. The command is correct, and the load or send program runs but cannot find or open the desired file. In this case, either a 7 or a 9 (no preference) is returned by the host program to Z-SCAN, generating an error message on the user's terminal.
- 3. The command is correct, the LOAD/SEND program runs, and the desired file is opened. In this case, a O is returned to signify that data transmission will (Load), or may begin (seNd).

Samples of successful command transmission appear in the data transmission examples in subsequent sections. Listed here are some failure possibilities:

	Z-SCAN Sends	Host Sends
1.	B;LOAD X RETURN	CAN'T FIND PROGRAM: LOAD RETURN line feed
2.	B;LOAD X RETURN	7 RETURN (LOAD can't open X)
3.	9 RETURN	ILLEGAL FILENAME: 9 RETURN line feed
		(user entered BREAK)

5/27/81

7-6

In the first case, Z-SCAN copies the host message to the user's terminal, while in the second case, Z-SCAN generates its file-error message. In all cases, Z-SCAN aborts the Load/seNd activity, and in the second case, the host program does the same.

7.6.1 Load Protocol

.

After command transmission to the host, the message-exchange protocol for down-loading a program into Z-SCAN is:

Host Message	Path	Z-SCAN Message	Notes
data message	>		Skip until /, then wait for RETURN. Check first message character for error flag (/), validate checksums, and load data into memory.
	<	0	Acknowledge valid data so next block can be sent. Done if final block. Check for BREAK by user.
	<	7	Request re-sending of block due to checksum error. Check for BREAK by user.
	<	9	Acknowledge error message or indicate that BREAK was typed, and transmis- sion must be aborted. Done.

Possible message sequences between the Z-SCAN and the host might be:

Z-SCAN Sends	Host Sends
B;LOAD X RETURN O RETURN	B;LOAD X RETURN line feed (normal echo) O RETURN (LOAD / data1 RETURN acknowledgement)
7 RETURN O RETURN	/ data2 RETURN / data2 RETURN (data re-sent) / data3 RETURN
• • •	•
O RETURN	• / dataend RETURN (O-count data message with entry point address)

Here, both Z-SCAN and the host system reach normal completion after the final acknowledge.

An error transmission might be:

Z-SCAN Sends	Host Sends	
B;LOAD X RETURN	B;LOAD X RETURN line feed O RETURN	(from host OS) (from LOAD program)
7 RETURN	/ data1 RETURN (checks	(checksum bad)
7 RETURN	•	
9 RETURN	// error RETURN	(retries exhausted)

Here, both Z-SCAN and the host program abort the transmission attempt after error-message acknowledgement.

An example of a user-induced abort during data transmission might be:

Z-SCAN Sends	Host Sends
B;LOAD X RETURN O RETURN 9 RETURN	B;LOAD X RETURN line feed O RETURN / data1 RETURN (user enters BREAK) (host sees O) / data2 RETURN (sends next data) (then sees 9)

The BREAK is entered during data1 transmission, but Z-SCAN acknowledges the data anyway and then immediately sends its abort signal. The host, operating line by line on Z-SCAN messages, sends data2, sees the abort acknowledgement waiting in its input buffer, and then terminates. Z-SCAN terminated earlier, upon sending the 9.

7.6.2 Send Protocol

In the seNd protocol, as in Load, command transmission takes place first. Subsequent protocol elements are:

Host Message	Path	Z-SCAN Message	Notes
	<	data message	See Section 7.7, Message Syntax
O RETURN	>		Acknowledge valid data
7 RETURN	>		Request to re-send data
		:	
	<	11	Error – re-send count exhausted
9 RETURN	>		Acknowledge error and abort

A message sequence might look like:

Z-SCAN Sends	Host Sends
B;SEND W start end entry RETURN	
	O RETURN
/ data1 RETURN	O RETURN
/ data2 RETURN	
	•
•	•
•	
/ dataend RETURN	O RETURN

As a result of this sequence, the Z-SCAN command and the host program simply terminate.

An error transmission might be:

Z-SCAN Sends	Host Sends
B;SEND W start end entry RETURN	
	B;SEND W RETURN line feed O RETURN
/ data1 RETURN	
	7 RETURN
•	
•	
	•
	•
// RETURN	

Again both programs terminate, but in failure.

A user abort might take place before command transmission (see Section 7.5, User Abort) or during data transmission:

Z-SCAN Sends	Host Sends
B;SEND W start end entry RETURN	B;SEND W start end entry RETURN line feed n
/ data1 RETURN //	0 (user enters BREAK)
	9

Here, BREAK was struck after Z-SCAN began sending data1 and the error-abort message was sent instead of data2.

7.7 MESSAGE SYNTAX

The three types of messages symmetrically exchanged over the host-Z-SCAN link can be described in Backus-Nauer form:

<z-scan message=""></z-scan>	::= <message string=""> RETURN</message>		
<message string=""></message>	::= <acknowledgement> <data string=""> <end string=""> </end></data></acknowledgement>		
	<pror string=""></pror>		
<acknowledgement></acknowledgement>	::="0" "7" "9"		
<data string=""></data>	::="/" <address> <count> <sum> <data> <sum></sum></data></sum></count></address>		
<end string=""></end>	::="/" <address> "00" <sum></sum></address>		
<address></address>	::= <digit> <digit> <digit> <digit></digit></digit></digit></digit>		
<count></count>	<pre>::=<digit> <digit></digit></digit></pre>		
<sum></sum>	<pre>::=<digit> <digit></digit></digit></pre>		
<data></data>	::= <digit> <data> <digit></digit></data></digit>		
<error string=""></error>	::="//" <error string=""> <ascii char=""></ascii></error>		
<digit></digit>	::="0" "1" "9"		
	"A" "B" ••• "F"		

A valid data message must have twice the value of <count> data digits in the <data> string. The end string is a special case of the data string and is the last message to be sent by the sender. In this case, <address> is the entry (starting) point of the procedure (program) file being transferred and must be even for Z8000 programs.

The two checksum (<sum>) values are computed by adding all nibbles of the data they are to check. This is done in an 8-bit accumulator, which generally overflows for the <data> portion of the transmission. Note that the addition occurs before the data is translated into ASCII numerals. Thus the host SEND program must translate the received Z-SCAN data before computing the checksum for comparison with the value of either <sum>.

For any of the three message types, Z-SCAN ignores control characters (except RETURN) and any characters between those needed to decode the message and the end of the line sent (RETURN). Z-SCAN also ignores characters between the last RETURN and the next / when receiving data/error messages.

Command transmission syntax is defined by Z-SCAN, and because it describes unidirectional communication, it is of interest only to the host:

<z-scan command=""></z-scan>	::="B;" <name> sp</name>	<body> sp* RE1</body>	ſURN
<name></name>	::="LOAD" "SEND"	•	
<body></body>	::= <filename> [<pa< td=""><td>arameter>]*</td><td></td></pa<></filename>	arameter>]*	
<parameter></parameter>	:: =start_address	end_address	entry_point

where sp denotes ASCII space, filename is the name entered by the user, and * indicates an item that occurs zero or more times.

7.8 HOST PROGRAM CONTROL FLOW

The following outlines the sequential behavior of a host LOAD or SEND program that successfully interacts with Z-SCAN. It is an alternative way of stating the protocol definition already discussed from the host program's point of view. An example of such a program, the LOAD utility for Zilog's Z80 RIO operating system, is given in Appendix A.

7-11

7.8.1 Load Program

The host LOAD program flow is shown in Figure 7-1.

Figure 7-1. Flowchart for LOAD Program

7.8.2 seNd Program

The host SEND program flow is shown in Figure 7-2.

Figure 7-2. Flowchart for SEND Program

APPENDIX A

TERMINALS SUPPORTED BY Z-SCAN

. ۰, .

t s

APPENDIX A

Terminals Supported by Z-SCAN

A.1 INTRODUCTION

The two-dimensional user interface of the Z-SCAN monitor software requires a CRT terminal with a 24-line by 80-column display. In addition, the monitor software requires the following functions:

- Clear screen
- Clear to end of line
- Position cursor
- Cursor control keys (move cursor up, down, left or right)

Most terminals offer these features, but the character sequences that distinguish them vary according to the terminal manufacturer.

The monitor software supports nine distinct CRT control protocols, allowing Z-SCAN to be used in conjunction with terminals from many different manufacturers. The user must select the terminal type by entering a hex digit during the initialization of the software. See Section 3.5 for further details. Table A-1 summarizes the terminal types that are supported.

A.2 TERMINAL DETAILS

The Z-SCAN can be used with a terminal not listed in Table A-1 provided that the terminal is compatible with one of those which is listed. The following paragraphs detail the control sequences generated by the monitor for each supported control protocol. Table A-2 lists the symbols used to describe the protocols. Commas and spaces that appear in the descriptions are simply separators: they are not part of the transmitted sequences.

Selection Digit	Manufacturer	Model
0	Lear Siegler Televideo	ADM 31 TVI 912 TVI 920
	Zentec	Zephyr
	Soroc	IQ 120 IQ 135
1	ADDS	Regent series
2	Beehive	Bee 100 Bee 107 Micro-B 1
3	DEC	VT52
4	DEC (any)	VT100 ANSI A3.64 or ISO DP 6429 compatible
5	General Terminals Inc.	I –200 I –400
6	Hazeltine	1420 1500 Exec 80
7	Hewlett Packard	2620 2640
8	IBM	3101

Table A-1. Terminals Supported by the Z-SCAN Monitor

Table A-2.	Control	Sequence	Protocol	Symbols
------------	---------	----------	----------	---------

1

Symbol Type	Representation	Notes
escape (hex 1B)	esc	
other control chars. (codes OO to 1F)	∧ char	This code is that transmitted when the control key and the given character key are press- ed together.
tilde (hex 7E)	tilde	This character, \sim , does not display on some terminals.
cursor row (binary)	rb	This is a single character giving the row number, 1-24 decimal, offset by 31 decimal unless otherwise stated.
cursor column (binary)	cb	This is a single character giving the column number, 1–80 decimal, offset by 31 decimal unless otherwide stated.
cursor row (decimal)	rd	This is the row number sent as two printable characters. The range is 00 to 23 for HP ter- minals and 01 to 24 for the ANSI compatible DEC VI100.
cursor column (decimal)	cd	This is the column number sent as two printable characters. The range is OO to 79 for HP terminals and O1 to 80 for the ANSI compatible DEC VI100.
all others	as displayed	

Many terminals offer options that can be selected by entering commands at the keyboard when the terminal is in a special set-up mode, or by setting concealed switches. The Z-SCAN monitor is not able to function correctly when certain options are selected. The option settings required on each major terminal type are listed. The monitor is not sensitive to the setting of any option that is not mentioned. Refer to the manufacturer's documentation if further information is required about any particular terminal.

Special considerations apply when certain terminals are used with Z-SCAN. For example, some low-cost terminals do not have cursor movement keys, so the user must enter control characters manually in order to acheive the desired effect. Such considerations are mentioned when they apply.

5/27/81

A-3

A.2.1 Lear Sielger ADM 31 and Soroc Terminals

Table A-3 lists the control sequences used with the ADM 31 and compatible terminals:

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
^ 	esc, T	esc, =, rb, c	ь ^ к	.^ ј	^ L	^ н

Table A-3. ADM 31 Control Sequences

The following internal switch settings are required when an ADM-31 is used in conjunction with Z-SCAN. It should not be necessary to check these settings unless problems are experienced during use:

Table	A-4.	ADM	31	Option	Settings
-------	------	-----	----	--------	----------

Switch Bank	Switch	Setting	Function
1	1	On	Break enable
	5	Off	8 bits, no parity
	7	Off	Conversational mode
	8	On	Full duplex
3	8	On	Disable polling
4	4	Off	Current loop disable
	6	On	Display nulls as nulls

The following ADM 31 baud rates may be used in conjunction with the Z-SCAN monitor. Note that, because some of the features of the terminal do not function at 19200 baud, this speed should not be used. The baud rate selection switch is at the left rear of the terminal.

Baud Rate	Switch Setting	Baud rate	Switch Setting
75 110 134.5 150 300 600	1 2 3 4 5 6	1200 1800 2400 4800 9600	7 8 10 12 14

Table A-5. ADM 31 Baud Rates Supported by Z-SCAN

The sequences used to control the ADM 31 are compatible with the Soroc IQ 120 and IQ 135 terminals. Z-SCAN supports all baud rates available on these terminals except 1000, 2000, 3600 and 7200 baud. Users of the IQ 135 should be aware that either of the SHIFT keys must be pressed at the same time as BREAK in order for a break to be transmitted. Switch bank K8 switch, 8 must be in the up position. Parity should be disabled when a Soroc terminal is used with Z-SCAN.

A.2.2 ADDS (Applied Digital Data Systems) Regent Series

The Z-SCAN monitor supports the protocol used by the Regent 40 and other compatible terminals in the ADDS range. Table A-6 lists the control sequences used.

Table A-6. Regent 40 Control Sequences

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
∧ _L .	esc, K	esc, Y, rb, ct	• • Z	^ j	^ F	^ U

Because of the wide variety of terminals in the Regent series, it is not possible to list the options and baud rates required for compatibility with the Z-SCAN monitor in each case. If difficulties are experienced, refer to the terminal documentation and check that each of the following statements is true:

- Line mode is full duplex.
- Parity bit is spacing.
- Baud rate is supported by Z-SCAN (See Table 6-7).
- Termination character is CR.
- Auto scroll is on.
- Interface is EIA (not current loop).
- Z-SCAN is connected to EAI/CURRENT LOOP connector.

A.2.3 Beehive Terminals

The protocol used by the Bee 100, Bee 107 and Micro B 1 terminals is given in Table A-7.

Clear Screen Sequence	Clear Line Sequence	Move Cursor Sequence	Cursor Up	Cursor Down	Cursor Left	Cursor Right
esc,E	esc, K	esc, F, rb, cb	esc, A	esc, B	esc, C	esc, D
alternative sequences – see below>			· 🔨 K	^ ј	^ L	^ `H

Table A-7. Beehive Control Sequences

The cursor up, down, left and right keys on the Bee 100 operate locally: they move the cursor on the screen but do not transmit codes on the serial link. They are thus unsuitable for use with the Z-SCAN monitor. The user must enter the sequences manually. The single control characters listed above may be used to save keystrokes. As a further alternative, Beehive's service organization can arrange for incorporation of the field change that transforms a Bee 100 into a Bee 107. The Bee 107 cursor control keys transmit escape sequences on the serial link. Cursor control sequence transmission is a switchselectable option on the Micro B1. The option should be enabled.

A.2.4 DEC (Digital Equipment Corporation) VT52

Table A-8 lists the control sequences used with the DEC VT 52 terminal.

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
esc, H, esc, J	esc, K	esc, Y, rb, cb	esc, A	esc, B	esc, C	esc, D

Table A-8. VT 52 Control Sequences

A.2.5 DEC (Digital Equipment Corporation) VI 100

The VI 100 terminal control sequences are compatible with those specified by ANSI standard A 3.64 and ISO standard DP 6429 and so can be used with any terminal that supports either standard. The standards allow some flexibility in implementation, so users should check that any alternative terminal is compatible with the VI 100 for the small number of functions required. The sequences used by the Z-SCAN monitor are shown in Table A-9. Note that there are three valid sequences, each starting with esc, [, for each of the four cursor movement keys:

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
esc, [, 2, J	esc, [, K	esc, [, rd, ;, cd, H	esc, [, A or O, A or 1, A	esc, [, B or O, B or 1, B	esc, [, C or 0, C or 1, C	esc, [, D or 0, D or 1, D

TADIE A-9. VI TOU CONTROL Sequenc

The VI 100 allows 80 or 132 columns per line. The Z-SCAN screens are designed for 80 column presentation. This format should be selected on the set-up A screen. The screens will not display correctly in 132 column format unless the Advanced Video option is installed in the terminal. Most VI 100 options are selected on the set-up B screen. Four settings are important to the Z-SCAN monitor:

- ANSI mode must be on (unless the terminal is to be used in VT 52 mode see A.4.2).
- Auto XON XOFF must be enabled if the baud rate is 9600 or 19200, or if smooth scrolling is selected.
- New line must be disabled.
- Parity must be off.

In addition, the transmit speed must be the same as the receive speed. The Z-SCAN monitor supports all VT 100 baud rates except 2000 and 3600 baud.

A.2.6 GII (General Terminals Inc.) I-200 etc.

The control sequences used by GII (formerly Infoton) terminals are listed in Table A-10.

Clear Screen Sequence	Clear Line Sequence	Move Cursor Sequence	Cursor Up	Cursor Down	Cursor Left	Cursor Right
^ L	^ K	^ W, cb, rb	^\	^]	Λ γ	^ H
alternati	^ ј	^ L	ΛH			

Table	A-10.	GII	Control	Sequences
10010			00110202	00000

Some GTI models do not have cursor movement keys. The operator must enter the control characters listed in order to move the cursor. The alternative keys listed above can also be used.

The following comments apply to the I 200 terminal. Refer to the terminal documentation for information on other models.

- The indicators in the Caps Only, Page and Line keys at the top right of the keyboard should all be illuminated for correct operation with Z-SCAN.
- The two rear panel parity switches, the Page/Bottom line entry and Int clk/Ext clk switches should be in the off position.
- Any baud rate except 3600 or 7200 can be selected.

A.2.7 Hazeltine Terminals

Hazeltine terminals, especially more recent models, support a variety of protocols. Table A-11 describes the basic sequences implemented by all Hazeltine terminals. Note that the binary column code used is the actual binary column number unless the column number is in the range 1-31 decimal, in which case an offset of 95 decimal is added.

Clear Screen Sequence	Clear Line Sequence	Move Cursor Sequence	Cursor Up	Cursor Down	Cursor Left	Cursor Right
tilde, 🔨	tilde ,^ O	tilde,^Q, cb, rb	tilde, L	tilde, K	∧ р	^ н
alternativ	^ ј	<u>^ L</u>	^ H			

Table A-II. Hazercine concrot sequences	Table A-11		Hazeltine	Control	Sequences
---	------------	--	-----------	---------	-----------

Some Hazeltine terminals do not have cursor movement keys. The user must enter the correct sequences manually if Z-SCAN is used in conjunction with these models. Alternatively, the second group of control codes shown above can be used.

In order to work correctly with the Z-SCAN monitor, the automatic line feed and parity options should be disabled on Hazeltine terminals. Where a user option allows either escape or tilde to be used in control sequences, tilde should be selected. Where a choice of protocols exists, select Hazeltine protocol.

The Hazeltine current loop option uses the same connector as the RS 232 interface and can intefere with data sent to the terminal by Z-SCAN. If problems are experienced when a 25-way cable is used for the RS 232 link, substitute a cable that connects only pins 2, 3, 4, 5, 7 and 20.

A-8

A.2.8 Hewlett Packard Terminals

Hewlett Packard 2620 series and 2640 series terminals use the control sequences listed in Table A-12.

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
esc, J	esc, K	esc, &, a, rd, Y, cd, C	esc, A	esc, B	esc, C	esc, D

Table A-12. Hewlett Packard Control Sequences

The sequences required by some early models of the 2640 may differ. These terminals are not supported by the Z-SCAN monitor. Users experiencing difficulties should contact a Hewlett Packard sales office.

A user option on HP terminals determines whether the cursor movement keys act locally or cause escape sequences to be transmitted. The Z-SCAN monitor requires that escape sequences are transmitted. See the terminal manual for further details. Parity must be disabled when a Hewlett Packard terminal is used in conjunction with Z-SCAN.

A.2.9 IBM (International Business Machines) 3101 Terminal

Table A-13 lists the control sequences used with the IBM 3101 asynchronous terminal:

Clear Screen	Clear Line	Move Cursor	Cursor Cursor		Cursor	Cursor
Sequence	Sequence	Sequence	ence Up		Left	Right
esc, K	esc, I	esc, Y, rb, cb	esc, A	esc, B	esc, C	esc, D

The following user options should be selected when this terminal is used in conjunction with Z-SCAN:

- Auto LF off
- Terminator is CR only
- SCRL on
- Parity off

The transmit and receive baud rates must be the same and must correspond to one of the rates supported by Z-SCAN.

The keyboard of the 3101 differs from those of most terminals in several respects:

- The ALT and R keys must be pressed together to generate the control and R required to restore the previous contents of a variable field.
- The SHIFT lock key is like that of a typewriter in that it shifts all four rows of keys.
- The < and > characters are generated by a single key at the lower left of the keyboard.

APPENDIX B

TUTORIAL TEST PROGRAM

Z8000ASM 2.02		
LOC OBJ CODE	STMT	SOURCE STATEMENT
	1	EXAMNSG MODULE
	3	MODULE NAME
	4 5 6 7	EXAMNSG
	8	ASSOCIATED MODULES
	10 11	None
	12 13 14	FUNCTION
	15 16 17 18	To provide a demonstration of Z-SCAN's breakpoint and Target mode functions. This is the only function of the program.
	19 20 21	TARGET PROCESSOR
	22 23 24 25 26 27 28 29 30	Z8002. Since this program contains trap and reset vectors, it cannot be run on the Z8001, even if that processor is run in nonsegmented mode. See chapter 7 of the "Z8000 CPU Technical Manual" for futher details. The following assembler directive is not strictly necessary because Z8000ASM assembles in non-segmented mode by default.
	31 32 33	\$NONSEGMENTED ! Assemble for Z8002 ! !
	34 35 36 37 38 39 40	REQUIRED HARDWARE Z-SCAN 8000 with Z8002 processor. No other hardware is required or assumed when the program is running.

41	PROGRAM	SECTIONS	USED
42			

43

44

45 46 47

48

49

50 51

52

53 54

60 61

62

63

64

65 66 67

68

69 70 71

72

73

74

All code and data is directed to a single named program section, EXAMNSG_P. This allows code and data areas to appear in memory in exactly the order that they are defined in the program. By default, the assembler would direct the data into a second section, EXAMNSG_D. The defaults are useful in applications where all procedure code must be assigned to one memory area (often ROM) and all data to another. IMAGER is used to make This particular program needs such assignments. only a simple IMAGER command line (see tutorial).

\$SECTION	EXAMNSG_P	!	Make imaging easy	ļ
\$REL	20000	!	Start at loc. 0000	!

59 RESET PROGRAM STATUS

Following a reset, a Flag and Control Word (FCW) value of %4000 is loaded to make the processor start in system mode with interrupts and extended processing disabled. The Program Counter (PC) is loaded with the start address of the initialization routine, INIT. This information is automatically fetched from locations \$0002 and %0004 respectively. See section 7.4 of the "Z8000 CPU Technical Manual" for more details. The reset status is defined with an initialized array declaration which has the effect of reserving two words of memory. The \$REL directive fixes the data at locations 0002 and 0004. 75 !

76 I	INTERNAL		! Private data area	1
77 N	EW_STATUS_A	REA:	! See note below	
78	\$REL	%0002		
79 80	RESET	ARRAY	[2 WORD] := [%4000, INIT]	

0002 4000 002A'

83 84 The new program status area defines the program 85 statuses which will be loaded following each type of interrupt or trap, as described in section 7.6 of the "Z8000 CPU Technical Manual". This 86 87 88 example uses only three of its many entries. It start on any 256 byte boundary in system address space. In most applications it 89 can 9Ō code address space. could not start at location zero because the 91 reset program status overlaps the extended instruction trap vector, which is not used in this example program. The identifier 92 93 94 95 NEW_STATUS_AREA, defined above, points to the 96 start of the area. 97 98 The destination of the privileged instruction 99 trap is the same procedure which is entered 100 following a reset. Bit two, the half carry flag, 101 of the FCW is set in the first case and clear in second so that the user may easily identify 102 the 103 why the routine was entered. Two different System Call instruction opcodes are used for a 104 105 similar reason - examination of the top of the 106 system stack shows why BREAKER was entered. 107 108 The last vector defined handles Non-Maskable 109 Interrupts. Like the system call and privileged 110 instruction traps, an NMI forces the CPU into the 111 INIT procedure. The decimal adjust flag is set. 112 1 113 114 INTERNAL 115 116 1 0008 4004 002A' 117 118 119 %000C \$REL ! System Call SC_VECTOR ARRAY [2 WORD] := [%4000, BREAKER] 000C 4000 003C' 120 121 122 %0014 \$REL ! Non-Maskable Int. 1

81 !

0014 4008 002A'

123 124

82 NEW PROGRAM STATUS AREA

B-3

NMI_VECTOR ARRAY [2 WORD] := [\$4008, INIT]

	1	25 !	
	1	26 DAT	A AREA
	1	27 -	_
		28	The program uses just two words of static data:
		29	PASS is incremented by one for each pass through
		130	the procedure BREAKER (see below). On each loop,
	-	130	Deth verichles are zone when the program is first
		22	loaded but as they are not intialized by the
		131	program's initialization routine their contents
	-	35	must be considered to be undefined following a
		136	reset. Their position in memory is not critical.
		37 !	
		138	
	•	39 INT	ERNAL ! Private data area !
_	· •	40	
0018 0000	0000	141	PASS, LAST WORD := 0
		142	
		143 !	CK ADDA
		144 SIA 145	UK AREA
		145 1/16	The 78000 meanined the coll nothern links
		1/17	stacks: one for system mode operation and the
		148	other for normal mode. For more information, see
		149	section 4.3.3 of the "7.8000 CPU Technical
		150	Manual". The procedure INIT sets up the two
		151	stack pointers. The normal stack is used by the
		152	instructions on lines 368 through 370 in the
		153	procedure BREAKER. These instructions affect the
		154	top word of the stack area only. The system
		155	stack is used by the same instructions and
		150	additionally by the System Call (SC) instructions
		157	on lines 230 and 372. This instruction stacks
		150	the old Program Counter, the old Flag and
		159	three words The identifier, giving a total of
		161	itself For more details of this instruction
		162	which is used rather unconventionally in this
		163	program. see section 6 of the $".28000$ CPU
		164	Technical Manual". The position of the stacks in
		165	memory is not important.
•		166 !	•
		167	
		168 INI	ERNAL ! Private data area !
0010 0000		109	
	• • •	171	NML_SIK ARKAY L 4 WORD J := U
0024 0000	0000	172	SYS STK RECORD [ID OLD FOW OLD DO HODD] 0
0028 0000	0000		SIS_SIK RECORD [ID OLD_FOW OLD_FO WORD] := 0
		173	
		-	

5/27/81

174 ! 175 PROCEDURE NAME 176 177 INIT 178 179 180 FUNCTION 181 182 Sets up the Program Status Area Pointer and both 183 system and normal mode stack pointers before 184 using a System Call instruction which passes control to the main routine, BREAKER. 185 186 187 188 REGISTERS USED 189 190 RO Temporary register 191 R15 (System stack pointer) Initialized R15' (Normal stack pointer) Initialized 192 193 194 **195 DESCRIPTION** 196 197 The routine is designed to be entered in system 198 mode. If it is not, its first action, the 199 loading of the Program Status Area Pointer, will 200 result in a privileged instruction trap. As a result of the trap, the routine will be entered again, this time in system mode. The new status 201 202 defined on line 117 of this program arranges this. Note that this trap will only function correctly if the PSAP register has already been set up either by the Z-SCAN monitor, or by a 203 204 205 206 207 previous correct execution of the routine. 208 209 The system stack pointer is set up simply by loading R15 while the processor is running in 210 system mode. The SIZEOF operator is used to add the length of the stack, in bytes, to its lowest 211 212 213 address to obtain the correct initial value. The 214 normal stack pointer is set up by first loading its initial value into RO, then using the 215 216 privileged LDCTL instruction. 217 218 BREAKER is reached by using the System Call 219 instruction which terminates the routine. See 220 below for further details. 221 ! 222

5/27,81

8-5

002A	22 22	23 GLOBAL INIT 24 ENTRY	PROCEDURE	! Set up control reg's!
002A 7600 002E 7D0D	0000' 22 22	25 LDA 26 LDCTL	RO,NEW_STATUS_AREA PSAP,RO	! and both stacks !
0030 210F 0034 7600 0038 7D0F	002A' 22 0024' 22 22	27 LD 28 LDA 29 LDCTL	R15,#SYS_STK + SIZEC R0,NML_STK + SIZEOF NSP,R0	DF SYS_STK NML_STK
003A 7F12 003C	23 23 23	SO SC S1 END INIT S2	#%12	! Trap into BREAKER !

5/27/81

B-6

_

233 ! 234 PROCEDURE NAME 235 236 BREAKER 237 238 239 FUNCTION 240 241 providing Loops continuously once entered, 242 examples of many word bus cycle types in both 243 system and normal modes. 244 245 246 REGISTERS USED 247 248 RO Temporary register 249 Dest. for special I/O 250 R1 Holds I/O port address 251 R2 Dest for I/O read 252 Holds address of PASS 253 254 R3 Src. for I/O, sp. I/O R4 Dest for read of PASS 255 256 R15 (System stack pointer) Data pointer; linkage R15' (Normal stack pointer) Data pointer 257 258 259 DESCRIPTION 260 261 This routine is somewhat 'tricky', so it is 262 described in some detail. 263 264 The procedure is always entered in system mode as the result of the execution of a System Call instruction. The new status defined on line 120 265 266 of this program arranges this. Z8000 programs 267 generally handle System Calls by executing a 268 service routine which terminates with Interrupt Return (IRET) instruction. I 269 an 270 This 271 restores the FCW to its state before the System 272 Call, and the PC to the address of the instrucion 273 following the call. Instead of doing this, 274 BREAKER's first action is to discard the old PC and FCW values by restoring the system stack pointer to the value which it held before the 275 276 System Call. 277 278

5/27 81

Alternate passes of the routine execute in system and normal modes. This is arranged by entering normal mode if and only if the status on the previous pass through the routine was made in system mode. The previous status is examined by testing the System/Normal bit (bit 14) of the old FCW value on the system stack with the BIT instruction on line 354. Note the use of the assembler's 'dot construct' to access a field within a record.

mode, If the previous pass was in normal the instructions on lines 356 through 358 are not executed, so system mode, set during the system call, remains in force. The instructions on lines 361 through 364 are executed to demonstrate I/O and special I/O accesses, which may only be made in system mode. Because the input instructions access non-existent ports, the data which they read is not predictable - though it is generally their own port address, held over by bus capacitance. The output instructions, over a period of about four seconds, output all possible odd data patterns (R3 is odd during passes through BREAKER in system mode).

The instructions from line 366 onwards are executed both on system mode and on normal mode passes. The first Load Address, demonstrates an internal operation cycle. The Byte/Word line, which is not defined during internal operations, goes to the byte state during this particular cycle.

The indirect Load instruction of line 367 performs a memory read which will eventually read all possible even values on system mode passes and all possible odd values on normal passes. Similarly, the PUSH on the next line will write those values, but access stack space instead of data space.

System mode passes result in the indirect INCrement instruction reading an even value from, and writing an odd value to, stack space. In normal mode odd data is read and even data written. Finally, the PUSH to a direct address reads stack space and writes data space. The value is odd in system mode, even in normal.

329 The final data manipulation of the routine is a 330 write to program memory performed by a Load 331 Relative instruction. Data is even for system 332 mode, odd for normal. 333

5/27/81

279

280

281 282

283

284

289 290

291

292

293

294

295

296

297

298

299 300

301

302

303

304 305

306

307

308

309 310

311

312

313 314 315

316

317

318

319

320 321

322

323 324

325

326

327

328

8-8

334 335 336	Exit from, or rather return to the start of, the routine is achieved by means of a System Call. This instruction has to be used because it
337	provides the only 'gateway' (apart from
338	privileged and extended instruction traps)
339	between normal mode and system mode. The new
340	status loaded by the instruction, after it has
341	saved the old status and its own opcode on the
342	system stack, is defined on line 120. The
343	instruction provides an example of the Z8002's
344	trap response sequence, which starts with an
345	aborted instruction fetch from the location
346	following the System Call, then pushes the old
347	processor status into system stack space before
348	reading a new status from system code space.
349	
350	

003C			351	INTERN	AL BRI	EAKEH	R PROCEDURE	!	Demonstrate bus	!
003C	A9F5		352 353	ENIRI	с	R15,	#SIZEOF SYS_STK	1	Fix up system stack	! !
003E	670E	0026 '	354	BI	Т	SYS_	STK.OLD_FCW,#14	!	Check previous mode	I
0042	E604		355	JR		Z,EL	SE_	!	If mode was system	!
0044	7D02		356		LDC	FL	RO,FCW	1	set normal mode by	!
0046	A30E		357		RES		RO,#14	1	clearing bit 14	ļ
0048	7 D O A		358		LDC	TL	FCW, RO	1	of FCW;	!
004A	E808		359		JR		FI_	1	else do I/O.	!
004C	2101	ABCD	360	ELSE_:	LD		R1,#%ABCD	!	Dummy port address.	!
0050	3D12		361		IN		R2, @R1	!	I/O read	!
0052	3F13		362		OUT		@R1,R3	1	I/O write	!
0054	3B05	1234	363		SIN		RO, %1 234	1	Special I/O read	!
0058	3B37	1234	364		SOUT	Г	%1234,R3	!	Special I/O write	!
			365	FI_:				1	Memory op's follow:	!
005C	7602	00181	366	LD	A	R2,I	PASS	1	Internal operation	l
0060	2124		367	LD		R4,6	R2	!	Data read	!
0062	93F4		368	PU	SH	@R15	5,R4	-1	Stk write	!
0064	29F0		369	IN	С	@R15	5	1	Stk read, stk write	!
0066	57F0	00181	370	PO	Р	PASS	S,@R15	1	Stk read, data write	!
006 A	3304	FFAC	371	LD	R	LAST	Г , R4	!	Code write	!
006E	7FEF		372	SC		#% EF	7	1	Trap sequence	!
0070			373 374	END BR	EAKER					
			375	END EX	A MN SG					

0 errors Assembly complete

5/27/81

Z8000ASM 2.02 LOC OBJ CODE

STMT SOURCE STATEMENT

1	EXAMSEG MODULE								
3	MODULE NAME								
5	EXAMSEG								
7									
8	ASSOCIATED MODULES								
10 11	None								
13	FUNCTION								
15 16 17 18 19 22 23 24 56 78 90 31	To provide a demonstration of Z-SCAN's breakpoint and Target mode functions. This is the only function of the program.								
	TARGET PROCESSOR								
	28001. Since this program contains trap and reset vectors, it cannot be run on the 28002, even if that processor is run in nonsegmented mode. See chapter 7 of the "28000 CPU Technical Manual" for futher details. The following assembler directive selects segmented assembly for the 28001.								
	\$SEGMENTED ! Assemble for 28001 !								
5∠ 33 34	REQUIRED HARDWARE								
35 36 37 38	Z-SCAN 8000 with Z8001 processor. No other hardware is required or assumed when the program is running.								

5/27/81

39 PROGRAM SECTIONS USED

1

0000 0000 0004 8000,

	40 41 42 44 45 44 45 47 49 55	All code and data is directed to a single named program section, EXAMSEG_P. This allows code and data areas to appear in memory in exactly the order that they are defined in the program. By default, the assembler would direct the data into a second section, EXAMSEG_D. The defaults are useful in applications where all procedure code must be assigned to one memory area (often ROM) and all data to another. IMAGER is used to make such assignments. This particular program needs only a simple IMAGER command line (see tutorial).	
	52 53 54 55 56	! \$SECTION EXAMSEG_P ! Make imaging easy ! \$REL %0000 ! Start at loc. 0000 !	
	57 58 59 61 62 63 64 65 66 67 68 90 71 23 74 56 77 75 61 77 75 77 77 77 77 77 77	RESET PROGRAM STATUSFollowing a reset, a Flag and Control Word (FCW) value of %C000 is loaded to make the processor start in segmented system mode with interrupts and extended processing disabled. The Program Counter (PC) segment and offset registers are loaded with the start address of the initialization routine, INIT. This information is automatically fetched from locations %0002, %0004 and %0006 in segment 00. See section 7.4 of the "Z8000 CPU Technical Manual" for more details. The reset status is defined with an initialized array declaration which has the effect of reserving two long (32 bit) words of memory.INTERNAL NEW_STATUS_AREA:! Private data area ! See note below	
C000 0044 1	77 78 79	RESET ARRAY [2 LONG] := [%C000, INIT]	
	80 81 82 83 84 85 86 87 88 89 90 91	NEW PROGRAM STATUS AREA The new program status area defines the program statuses which will be loaded following each type of interrupt or trap, as described in section 7.6 of the "28000 CPU Technical Manual". This example uses only three of its many entries. It can start on any 256 byte boundary in system code address space. The identifier NEW_STATUS_AREA, defined above, points to the start of the area.	

The destination of the privileged instruction trap is the same procedure which is entered 92 93 94 following a reset. Bit two, the half carry flag, 95 of the FCW is set in the first case and clear in 96 second so that the user may easily identify the 97 why the routine was entered. Two different System Call instruction opcodes are used for a similar reason - examination of the top of the 98 99 100 system stack shows why BREAKER was entered. 101 102 The last vector defined handles Non-Maskable 103 Interrupts. Like the system call and privileged instruction traps, an NMI forces the CPU into the INIT procedure. The decimal adjust flag is set. 104 105 106 1 107 **108 INTERNAL** 109 110 ! 0010 0000 C004 111 0014 8000' 0044' 112 113 \$REL \$0018 ! System Call ARRAY [2 LONG] := [%COOO, BREAKER] 0018 0000 C000 114 SC_VECTOR 001C 8000' 005A' 115 \$REL %0028 ! Non-Maskable Int.
NMI_VECTOR ARRAY [2 LONG] := [%C008, INIT] 116 1 0028 0000 C008 117 0020 8000' 0044' 118 119 120 ! 121 DATA AREA 122 The program uses just two words of static data: 123 124 PASS is incremented by one for each pass through 125 the procedure BREAKER (see below). On each loop, the previous value of PASS is copied into LAST. Both variables are zero when the program is first 126 127 128 but as they are not intialized by the loaded, 129 program's initialization routine, their contents 130 must be considered to be undefined following a 131 reset. Their position in memory is not critical. 132 ! 133 **134 INTERNAL** ! Private data area ! 135 136 0030 0000 0000 PASS, LAST WORD := 0 137

5/27/81
138 ! 139 STACK AREA 140

141 Z8000 requires two call-return The linkage 142 stacks; one for system mode operation and the 143 other for normal mode. For more information, see section 4.3.3 of the "Z8000 CPU Technical Manual". The procedure INIT sets up the two 144 145 stack pointers. The normal stack is used by the instructions on lines 370 through 372 in the 146 147 148 procedure BREAKER. These instructions affect the top word of the stack area only. The system stack is used by the same instructions and additionally by the System Call (SC) instructions 149 150 151 152 on lines 232 and 374. This instruction stacks 153 the old Program Counter offset and segment, the 154 155 old Flag and Control Word and an identifier, giving a total of four words. The identifier is the instruction itself. For more details of this 156 157 instruction, which is used rather unconventionally in this program, see section 6 of the "Z8000 CPU Technical Manual". The 158 159 160 of the stacks in memory not position is 161 important. 162 ! 163 164 INTERNAL ! Private data area 1 165 166 NML_STK ARRAY [4 WORD] := 0

SYS_STK RECORD [ID OLD_FCW WORD OLD_PC LONG] := 0

0034 0000 ... 003C 0000 0000 0040 0000 0000

168 169

167

5/27/81

170 ! **171 PROCEDURE NAME** 172 173 INIT 174 175 **176 FUNCTION** 177 178 Sets up the Program Status Area Pointer and both 179 system and normal mode stack pointers before 180 using a System Call instruction which passes control to the main routine, BREAKER. 181 182 183 184 REGISTERS USED 185 186 R RO Temporary register RR14 (System stack pointer) Initialized 187 188 RR14'(Normal stack pointer) Initialized 189 190 **191 DESCRIPTION** 192 193 The routine is designed to be entered in system mode. If it is not, its first action, the loading of the Program Status Area Pointer, will 194 195 196 result in a privileged instruction trap. As a 197 result of the trap, the routine will be entered again, this time in system mode. The new status 198 defined on line 111 of this program arranges this. Note that this trap will only function correctly if the PSAP registers have already been 199 200 201 202 set up either by the Z-SCAN monitor, or by a 203 previous correct execution of the routine. 204 205 The system stack pointer is set up simply by loading RR14 while the processor is running in system mode. The SIZEOF operator is used to add the length of the stack, in bytes, to its lowest address to obtain the correct initial value. 206 207 208 209 210 Because the stack resides in the first 256 bytes 211 of its segment, its address can be coded in short 212 offet form. In order to conserve memory space, 213 all direct addresses in the example take this 214 The normal stack pointer is set up by form. 215 first loading its initial value into RRO, then 216 using two privileged LDCTL instructions. 217 218 BREAKER is reached by using the System instruction which terminates the routine. Call 219 See 220 below for further details. 221 ! 222

5/27/81

0044	223 GLOBAL INIT 224 ENTRY	PROCEDURE ! Set up control reg's! ! and both stacks !
0044 7600 00' 00'	225 LDA	RRO, [NEW_STATUS_AREA]
0048 7DOC	226 LDCTL	PSAPSEG, RO
004A 7D1D	227 LDCTL	PSAPOFF, R1
004C 760E 00' 44'	228 LDA	RR14, SYS_STK + SIZEOF SYS_STK
0050 7600 00' 3C'	229 LDA	RRO, NML_STK + SIZEOF NML_STK
0054 7D0E	230 LDCTL	NSPŚEG, RO
0056 7D1F	231 LDCTL	NSPOFF, R1
0058 7F12	232 SC	#%12 ! Trap into BREAKER !
005A	233 END INIT	
	234	

.

Ċ

.

5/27/81

235 ! 236 PROCEDURE NAME 237 238 239 BREAKER 240 241 FUNCTION 242 243 continuously once entered, providing Loops 244 examples of many word bus cycle types in both 245 system and normal modes. 246 247 248 REGISTERS USED 249 250 RO Temporary register Dest. for special I/O Holds I/O port address Dest for I/O read 251 252 R1 253 254 R2 RR2 Holds address of PASS 255 256 Src. for I/O, sp. I/O R3 R4 Dest for read of PASS 257 RR14 (System stack pointer) Data pointer; linkage 258 RR14'(Normal stack pointer) Data pointer 259 260 261 DESCRIPTION 262 263 This routine is somewhat 'tricky', so it is 264 described in some detail. 265 266 The procedure is always entered in system mode as 267 the result of the execution of a System Call 268 instruction. The new status defined on line 114 269 of this program arranges this. Z8000 programs generally handle System Calls by executing a 270 271 routine which terminates with service an 272 Return (IRET) Interrupt instruction. This 273 274 restores the FCW to its state before the System Call, and the PC to the address of the instrucion following the call. Instead of doing this, BREAKER's first action is to discard the old PC 275 276 and FCW values by restoring the system stack pointer to the value which it held before the 277 278 279 System Call. 280

 \mathbf{A}

5/27/81

Alternate passes of the routine execute in system and normal modes. This is arranged by entering normal mode if and only if the status on the previous pass through the routine was made in system mode. The previous status is examined by testing the System/Normal bit (bit 14) of the old FCW value on the system stack with the BIT instruction on line 356. Note the use of the assembler's 'dot construct' to access a field within a record.

281

282

283

288

289 290

291 292

293 294

295 296 297

298

299

300

301

302

303 304

305

306 307

308

309

310 311

312 313

314

319

320

321

322 323

324

325

326 327

328

329

330 331

332 333

334 335

If the previous pass was in normal mode, the instructions on lines 358 through 360 are not executed, so system mode, set during the system call, remains in force. The instructions on lines 363 through 366 are executed to demonstrate I/O and special I/O accesses, which may only be made in system mode. Because the input instructions access non-existent ports, the data which they read is not predictable - though it is generally their own port address, held over by bus capacitance. The output instructions, over a period of about four seconds, output all possible odd data patterns (R3 is odd during passes through BREAKER in system mode).

The instructions from line 368 onwards are executed both on system mode and on normal mode passes. The first Load Address, demonstrates an internal operation cycle. The Byte/Word line, which is not defined during internal operations, goes to the byte state during this particular cycle.

The indirect Load instruction of line 369 performs a memory read which will eventually read all possible even values on system mode passes and all possible odd values on normal passes. Similarly, the PUSH on the next line will write those values, but access stack space instead of data space.

System mode passes result in the indirect INCrement instruction reading an even value from, and writing an odd value to, stack space. In normal mode odd data is read and even data written. Finally, the PUSH to a direct address reads stack space and writes data space. The value is odd in system mode, even in normal.

The final data manipulation of the routine is a write to program memory performed by a Load Relative instruction. Data is even for system mode, odd for normal.

B-17

5/27/81

			336 337 338 339 340 344 344 344 344 344 344 344 344 344	Exit fro routine This in provide: privile between status saved system instruc trap r aborted followi process reading	om, or rather retu is achieved by m nstruction has to s the only 'g ged and extended normal mode and loaded by the inst the old status and stack, is define tion provides an e esponse sequence, instruction fetc ng the System Call or status into sys a new status from	rn to the start of, the eans of a System Call. be used because it ateway' (apart from instruction traps) system mode. The new ruction, after it has its own opcode on the d on line 114. The xample of the Z8001's which starts with an h from the location , then pushes the old tem stack space before system code space.
005A			352 ! 353 IN	TERNAL BR	EAKER PROCEDURE	! Demonstrate bus !
			354 EN	TRY		! cycle types. !
005A	A9F7		355	INC	R15,#SIZEOF SYS_ST	K ! Fix up system stack !
005C	670E	00' 3E'	356	BIT	SYS_STK.OLD_FCW ,	#14!Check previous mode !
0060	E604		357	JR	Z,ELSE_	! If mode was system !
0062	7D02		358	LDC	TL RO,FCW	! set normal mode by !
0064	A30E		359	RES	RO,#14	! clearing bit 14 !
0066	7D0 A		360	LDC	TL FCW, RO	I of FCW;
0068	E808		301	JR	F1_	else do 1/0.
006A	2101	ABCD	362 EL	SE_: LD	R1,#%ABCD	! Dummy port address. !
UUDE	3012		303		R2, @R1	! 1/0 read !
0070	3113	1000	364	001	eri, R3	! 1/U write !
0072	3805	1234	305	SIN	KU,761∠34 Tr #1021 D2	Special 1/0 read
0070	2021	1234	267 FT	. 500	1 \$1254,R5	I Momony only follows I
0074	7602	001 201	368 201 LT	 1 DA	IDAGS!	I Internal operation
0075	2121	00 30	360			Data read
0070	03 27		370	PIICH	OPR14 RA	I Stk write
0082	29F0		371	TNC	0RR14	I Stk read, stk write I
0084	57 FO	001 301	372	POP	PASS! ORR14	1 Stk read, data write!
0088	3304	FFAG	373	LDR	LAST. R4	I Code write
008C	7FEF		374	SC	#%EF	I Trap sequence
008E			375 EN	D BREAKER		· · · · · · · · · · · · · · · · · · ·
		No. and Anna Anna Anna Anna Anna Anna Anna	376			÷.
			377 EN	D E XA MS EG		

0 errors Assembly complete

5/27/81

APPENDIX C RIO LOAD AND SEND PROGRAM LISTINGS

 \bigcirc

ROUTINE OBJ CODE M	STMT	SOURCE ST)AD ATEMENT	PAGE 1 ASM 5.9
	1	*HEADING	MAIN ROUTINE	
	2 3 4		EXTERNAL	SYSTEM
	56	;PREDEFI	NED DEVICES	
	/ 8 9 10	FILDEV CONIN CONOUT	EQU 5 EQU 1 EQU 2	;DEVICE FOR FILES ;CONSOLE INPUT ;CONSOLE OUTPUT
	11 12 13	;SPECIAI	. CODES ETC.	
a	14 15 16 17	PROC OPNINP MAXRTY	EQU 80H EQU 0 EQU 10	;PROCEDURE FILE ;OPEN FOR INPUT ;MAX TIMES TO RETRY ON LOAD
	18	;DEVICE	FUNCTION CODES	
	20 21 22 23 24 25 26 27	ZDASGN ZDOPEN ZDCLOS ZDREDB ZDREDA ZDRRTB ZDRDST	EQU 2 EQU 4 EQU 6 EQU 0AH EQU 0CH EQU 0EH EQU 40H	;ASSIGN ;OPEN ;CLOSE DEVICE ;READ BINARY ;READ ASCII LINE ;WRITE BINARY ;READ STATUS

MAIN LOC

\$

ł

C-1

5/27/81

MAIN LOC	PROGRAM OBJ CODE	М	STMT	LC SOURCE ST	DAD SATEMENT			PAGE 2 ASM 5.9
			28	*HEADING	G MAIN P	ROGRAM		
			30 31	• * * * * * * *	******	* * * * * * * * * * * * * * * * *	******	****
			32	, * , *		. TO WORD NO OR		
			33 34	; * 1815 ; * 2800	O EVALU	M IS USED TO SEA	TEKTRON	IIX FORMAT.
			35 36	; * IF T : * OPEN	THE REQUINT FILE.	ESTED FILE DOES IT SEND RECORD 1	NOT EX VITH //	(IST OR UNABLE TO ' FOLLOWED BY ERROR
			37	; * MESS	SAGE TO	THE CONSOLE OUT	PUT AND WILL F	D PROGRAM WILL BE
			39 40	; * IF 1 * ACKN	THE Z800	O EVALUATION BO	ARD RES	SPONSE WITH NON-
			41 42	; * RESF	PONSE IS	AN ASCII CHARA	CTER '9)'.
			43	; ****;	******	* * * * * * * * * * * * * * * *	* * * * * * *	{ * * * * * * * * * * * * * * * * * * * * * * *
0000	1905		45		TD	COMS V 1		
0000	44415445		40		DEFM 'D.	ATE:790524'		
			48 49	COMSY1:				
000D	215803	R	50 51		LD	HL, ACKMSG	; SEN	ID O FOR PROGRAM GEL LOADED OK
0010 0013	CDF301 E1	R	52 53		CALL POP	PUTSTR HL	: RIC	RETURN
0014	E3		54 55		EX	(SP),HL	; GEI	COMMAND POINTER
0015	7 E 5 5 2 0		56	SKIPSP:	LD	A,(HL)		D OVER SPACE
0018	2003		58		JR	NZ, CHMORE	, 511	II OVER DIROL
001A	18F8		59 60		JR	SKIPSP		
001D	FE3B		62	CHMORE:	СР	';'	; СНЕ	ECK FOR DELIMITER
001F	2836 FE2C		64		J R CP	Z,FILERK		
0023 0025	2832 FEOD		65 66		JR CP	Z, FILERR ODH		
0027	282E		67 68		J R	Z,FILERR	; FII	LENAME ERROR
0029	CD5 E00	R	69 70		CALL	OPNFIL	: OPE	EN FILE FOR INPUT
0020	2016		71 72		JR	NZ, OPNB	; UN1	ABLE TO OPEN FILE
			73 74					
002E	3A4B02 F6F0	R	75			A, (FILPRM) OFOH	; CHI	ECK IF PROC.FILE
0033	FE80		77		CP	PROC	· VE	-
0035	FD213F02	R	79		LD	IY, FILCLS	; 1 <u>5</u> .	
003B 003E	1812	X	80 81		JR	SISTEM NPROC	; NO,	, LLUSE FILE
		E	82 83	PROCF:				
0040 0043	C D7 E00 C9	R	84 85		CALL RET	RDFILE	; RE. ; BAC	AD FILE & SEND DATA CK TO RIO
	5/27/81				C-3	2		

~

٢

•

.

MAIN	PROGRAM				LOAD		PAGE 3
LOC	OBJ COI	DE M	STMT	SOURCE	STATEMENT		ASM 5.9
			86 87	OPNB:			
0044	21F802	R	88		LD	HL, ERADR	; INSERT ERROR CODE
0047	FD4 EOA		89		LD	C,(IY+10)	
004A	CDC501	R	90		CALL	GENCKS	
004D	21E002	R	91		LD	HL, NOOPEN	; UNABLE TO OPEN FILE
005 0	1808		92		JR	PUTS	
			93			· · · · · · · · ·	
0052	210E03	R	. 94	NPROC:	LD	HL, NOPROC	NOT PROCEDURE FILE
0055	1803		95		JR	PUTS	
0057	21FC02	R	96	FILERR	: LD	HL, ERFILE	; FILENAME ERROR
005A	CDF301	R	97	PUTS:	CALL	PUTSTR	
005D	C9 -		98		RET		

100

C-3

5/27/81

OPNFIL LOC	ROUTINE OBJ CODE	M S	L STMT SOURCE S	OAD TATEMENT			PAGE 4 ASM 5.9
			99 #HEADIN 100 101 102 103 ; ***** 104 ; * 105 ; * OPN 106 ; * 107 ; * 108 ; * INP 109 ; * 110 ; * OUT 111 ; * 112 ; * 113 ; * 114 ; *****	G OPNFIL	ROUTINE GN A LOGICAL UNIT NAME AND ALSO OPI - POINTER TO FILI JRN Z IF OPEN FIL JRN NZ IF UNABLE OR FILE DO	T # TO T EN THE F ENAME LE SUCCE TO ASSI DES NOT	THE GIVEN TILE SSFUL GN FILENAME EXIST
005 E 006 1 0065 0068 006 C	220402 FD210202 CD0000 FDCB0A76 C0	R R X	117 118 119 120 121 122 123	LD LD CALL BIT RET	(FILPTR), HL IY, FILASV SYSTEM 6, (IY+10) NZ	; FILEN ; ASSIG ; ASSIC ; NO	IAME PTR INTO IY \ N FILE N OK?
006D 006F 0072 0076 0079 007D	3E00 320F02 FD213202 CD0000 FDCB0A76 C9	R R X	124 125 126 127 128 129	LD LD CALL BIT RET	A,OPNINP (FILSPV),A IY, FILOPN SYSTEM 6, (IY+10)	; OPEN ; OPEN ; OPEN ; RETUR	TYPE - OLDFILE FILE OK? RN NZ OR Z

Ì

5/27/81

RDFILE LOC	ROUTINE OBJ CODE	М	STMT	LO. SOURCE ST.	AD ATEMENT		PAGE 5 ASM 5.9
			130 131	*HEADING	RDFILE	ROUTINE	·
			132 133 134	; ******	* * * * * * * *	* * * * * * * * * * * * * * * * * *	********
			135 136 137 138 139 140 141	* RDFI * * * * *	LE READ TEKTR OUTPU EACH OBTAI	DATA FROM FILE A ONIX FORMAT TO S T. MAXIMUM WILL TIME. THE ADDRE NED FROM FILE SE	ND FORMAT THEM IN END OUT TO CONSOLE READ 80 BYTES OF DATA SS FOR THIS DATA IS GMENT TABLE.
			142 143 144	• ***** ?	******	*****	***************************************
007 E 0081	216702 225D03	R R	145 146 147 148	RDFILE:	LD LD	HL, FILSMT (SEGPTR), HL	; SEGMENT TABLE LOCATION ; POINTER TO SEGMENT TAN
0084 0087	2A5D03 4E	R	149 150	NXTSEG:	LD. LD	HL, (SEGPTR) C,(HL)	; PTR TO NEXT SEGMENT
0088 0089 008A 008B	23 46 23 5E		151 152 153 154		INC LD INC LD	HL B, (HL) HL E,(HL)	; SEGMENT ADDRESS
008C 008D 008F	23 56 23		155 156 157			HL D,(HL) HL	; SEGMENT SIZE
008F 0092 0093	225D03 7B B2	R	158 159 160		LD LD OR	(SEGPTR), HL A,E D	; UPDATE SEGMENT TBL PTI
0094	CA2101	R	161 162		JP	Z, FINL	; SEND LAST RECORD
•			163 164 165 166 167 168 169 170 171 172 173	; READ I ; THE # ; 400H E ; CORADF ; SEGCNJ ; RDVLEM ; CURBUF ; REMCNJ	DATA FROM OF BYTE BYTE EACH ACTUA C - # OF A - ACTUA C - # OF C - # OF	4 FILE. IF CURRE TO READ IS SEGME H TIME. AL ADDRESS TO BE BYTE IN CURRENT AL # TO READ DATA FER TO FILBFR BUF BYTE LEFT IN FII	ENT SEGMENT SIZE <400H, T ENT SIZE, OTHERWISE READ FORMAT IN THE RECORD SEGMENT NEED TO BE READ A FROM FILE FFER FOR DATA TO BE FORM/ LBFR FOR NEXT RECORD
0097 009B	ED435F03 EB	R	174 175 176		LD EX	(CORADR),BC DE,HL	; CORE ADDR USED IN RECC
009C	226103	R	177 178	NXTBFR:	LD	(SEGCNT), HL	# OF BYTE LEFT IN CURI SEGMENT TO BE READ
009F 00A2 00A3 00A5 00A7 00AB 00AF 00B2 00B5	010004 A7 ED42 3004 ED4B6103 ED43C302 21E903 226303 C5	R R R	179 180 181 182 183 184 185 186 187	UBIG1:	LD AND SBC JR LD LD (RDV) LD HL,F LD PUSH BC	BC,400H A HL,BC NC,UBIG1 BC,(SEGCNT) LEN),BC ILBFR (CURBUF),HL	; MAX BYTE TO READ FILE ;HL>400H SO USE 400H AS ;USE SIZE REMAINING ;PTR TO FILBFR FOR DATA ;SAVE # OF BYTE TO READ 5/27/81

(

RDFILE LOC	ROUTINE OBJ CODE	М	STMT	L SOURCE S	OAD TATEMENT			PAGE 6 ASM 5.9	
00B6 00BA 00BD 00BE 00C1 00C5	FD21BF02 CD0000 E1 22C302 FDCB0A76 280E	R X R	188 189 190 191 192 193		LD IY,FI CALL SYS POP HL LD (RDVL BIT 6,(I JR Z,NXI	LRDV STEM .EN),HL .Y+10) FLIN	;F ; ;C	READ DATA FROM FILE # OF BYTE THAT READ MAY HAVE GOTTEN BIGGEF OK	
			195 196 197	; ERROR ; TO CO	IN READI NSOLE OUT	ING FILE, SEND IPUT	RECC	ORD WITH ERROR MESSAGE 🔸	
00C7 00CA 00CD	213E03 FD4E0A CDC501	R R	198 199 200		LD LD CALL	HL, ERRADR C, (IY+10) GENCKS	;	INSERT ERROR CODE	
00D0 00D3	212403 1876	R	201 202 203 204		LD JR	HL, RDBAD PUTCLS	;	FILE READ ERROR OUTPUT MESSAGE&CLOSEF1	
00D5 00D8 00DB	226503 111E00 A7 ED52	R	205 206 207 208 209	NXTLIN:	LD (REMO LD DE,30 AND A SBC HL I	CNT),HL) DF	;;;;	# OF BYTE LEFT IN FILE FORMAT 30 BYTE /RECORI	
00DE 00E0 00E4 00E8	3004 ED5B6503 ED535B03 43	R R	210 211 212 213	UBIG2:	JR NC, UE LD DE, (F LD LD	GE EMCNT) (RECBYE),DE B,E	; H ; L ;	REMCNT>30, USE 30 USE REMCNT (ITS SMALLEF SAVE RECORD BYTE COUNT	
00E9 00EB	3E0A 326703	R	214 215 216		LD A,MA) LD (RTY((RTY CNT),A	;	RETRY 10 TIMES	
00EE 00F2 00F5 00F8 00FA	ED5B6303 CD8201 CD5601 2804 3852	R R R	217 218 219 220 221		LD CALL CALL JR JR	DE, (CURBUF) TEKLIN TKSWAT Z, ACKOK C,CLSF	., ., ., ., .,	FILBFR PTR FOR DATA TO BE FORMATTED GET ACKNOWLEDGE GOOD ACKNOWLEDGE ABORT-ACKNOWLEDGE, CLOSE FILE & RETURN	
OOFC	184A		223 224 225		J R	ТМИСН	, , ,	RETRY 10 TIMES ALREADY ABORT	
			226 227 228	; UPDAT	E RECORD	ADDRESS & CHEC	K AI	NY DATA LEFT IN FILBFR	
OOFE	ED4 B5 B0 3	R	229 230 231	ACKOK:	LD	BC,(RECBYE)	;	RECORD BYTE COUNT	
0102 0105 0106 0109 010C 010D	2A5F03 09 225F03 2A6503 A7 ED42	R R R	232 233 234 235 236 237		LD ADD LD LD AND SBC	HL, (CORADR) HL, BC (CORADR), HL HL, (REMCNT) A HL, BC	, , , , ,	UPDATE ADDR TO BE USED IN NEXT RECORD UPDATE # OF BYTE LEFT IN FILB	
010F	2004		238 239		JR	NZ,NXTLIN	;	MORE IN FILBFR	
			240 241 242 243	; CHECK ; EITHE ; OR RE	IF ALL I R READ SO AD DATA I	DATA IS BEING R OME MORE DATA F FROM NEXT SEGME	READ TROM IN T	FROM CURRENT SEGMENT THE SAME SEGMENT	
0111 0114	2A6103 ED4BC302 5/27/81	R R	244 245		LD LD C-6	HL,(SEGCNT) BC,(RDVLEN)	;;	IF # OF BYTE READ=SEGM SIZE, THEN READ NEXT	\
				.*					•

 \bigcirc

RDFILE LOC	ROUTINE OBJ CODE	М	STMT	SOURCE	LOAD STATEMENT			PAGE 7 ASM 5.9
0118 0119	A7 ED42		246 247		AND SBC	A HL, BC	;	SEGMENT
011B	C29COO	R	248 249		JP	NZ, NXTBFR	;	READ FROM SAME SEGMEN'
011E	C38400	R	250 251 252		JP	NXTSEG	;	READ FROM NEXT SEGMEN'
			253	; SEG	MENT SIZE	IS ZERO, SO SEN	ID L.	AST RECORD AS FOLLOWS:
			254	; / <e< td=""><td>NTRY ADDR></td><td>00<cksum><retuf< td=""><td>RN></td><td></td></retuf<></cksum></td></e<>	NTRY ADDR>	00 <cksum><retuf< td=""><td>RN></td><td></td></retuf<></cksum>	RN>	
			250	FINL:				
0121	3E0A 326703	R	258 259		LD LD	A, MAXRTY (RTYCNT), A	;	RETRY 10 TIMES IF FAII
0126	21E908	R	260		LD	HL, OUTBUF	;	FORMAT DATA IN OUTBUF
0129 012B	302F 23		262		INC	HL		
0120	0'E00	Ð	263		LD	C, O		CET ENTRY ADDRESS
0121	CDC601	R	265		CALL	GENHEX	,	GET ENTRI ADDRESS
0134	3A5302	R	266		LD	A,(FILSA)		
0137	CDC601	R	267		CALL	GENHEX		CENEDARE DYRE COUNT O
013A 013D	AF CDC601	D	268		XOR	A	;	GENERATE BITE COUNTED
013E		л R	209		CALL	TKMSEN	•	FINISH DATA CHECKSUM
0.01	o Dinito V		271		ondu	11110111	;	SEND OUT DATA
0141	CD5601	R	272		CALL	TKSWAT	;	WAIT FOR ACKNOWLEDGE
0144	2808		273		JR	Z,CLSF	;	GOOD-ACKNOWLEDGE, CLOSI
0146	2906		274		, T	C CLEE	;	FILE & RETURN
0140	3000		215		JK	C, CLSF	;	FILE & RETURN
			277				,	
			278	ТМИСН	:			
0148	214203	R	279		LD	HL, TRYMCH	;	RESEND SAME RECORD 10
			280				;	CKSUM ERRORI TO 78000
014B	CDF301	R	282	PUTCL	S: CALL	PUTSTR	,	CRSCH ERROR 10 20000
	-		283					
0115			284	CLSF:				
014E 0152	FD213F02	R	285			LY,FILCLS SYSTEM	;	CLOSE FILE
0152	C9	Λ	287		RET	O TO LEIN		
	- /		288					

(

5/27/81

TKSWAT LOC	ROUTINE OBJ CODE	М	STMT SOURCE S	OAD TATEMENT		PAGE 8 ASM 5.9
			289 *HEADIN 290 291 292 ; ***** 293 ; * 294 ; * TKS 295 ; * ASC 296 ; * AGA 297 ; * INI 298 ; * ABC 299 ; * 300 ; * OUT 301 ; * 302 ; * 303 ; * 304 ; * 305 ; * 306 ; *****	G TKSWAT	ROUTINE FOR RESPONSE RECEIVED, RES 10 TIMES. I DD-ACKNOWLEDG AM. TURN Z IF REC TURN NZ, NC I R TURN NZ, C I A	FROM CONSOLE INPUT. IF END THE SAME DATA RECORD F ASCII O IS RECEIVED, E. IF ASCII 9 IS RECIEVED, EIVING ACKNOWLEDGE F ASCII 7 IS RECIVED EVEN ESEND DATA 10 TIMES F ASCII 9 IS RECIVED TO BORT THE PROGRAM
0156 0159 015D	CDEOO1 FDCBOA76 CO	R	308 309 TKSWAT: 310 311 312 313 211	CALL BIT RET	CONINP 6,(IY+10) NZ	; GET RESPOND ; CHECK ANY ERROR ; CONSOLE READ ERROR
015E 0161 0163	3A6903 FE30 C8	R	314 315 316 317 318	LD CP RET	A,(CHRBUF) 'O' Z	; GOOD ACKNOWLEDGE
0164 0166 0168 016A 016C	FE37 2808 FE39 20EA F601		319 320 321 322 323 324	CP JR CP JR OR	'7' Z, NACK '9' NZ,TKSWAT 1	; CHECK FOR ABORT ; NO, WAIT FOR AGAIN
016E 016F	37 C9		325 326 327 328	SCF RET		; RETURN NZ,C FOR ABORI ; ACKNOWLEDGE
0170 0173 0174 0176 0178	216703 35 2003 F601 C9	R	329 NACK: 330 331 332 333 334 335	LD DEC JR OR RET	HL, RTYCNT (HL) NZ, RTRY 1	; RETRY ; RETURN NZ,NC FOR RETF
0179 017D 0180	FD21D502 CD0000 18D4	R X	336 RTRY: 337 338 339 340 341	LD CALL JR	IY, STRVEC SYSTEM TKSWAT	; RESEND SAME RECORD ; WAIT FOR ACKNOWLDGE

.

5/27/81

C-8

2

TEKLIN LOC	OBJ CODE	м	STMT	LO SOURCE ST	AD ATEMENT		PAGE 9 ASM 5.9
			342 343	*HEADING	TEKLIN		
			3445 344789 3344789 355234556789 35556789 35556789	****** DATA I / <addr COUNT, REPRESE LOAD AI CHECKSU THE CHA CORADR DE IS TH B IS TH</addr 	DATA, AN DATA, AN DATA, AN DATA, ING ON DARESS IS MAS ARE T ARACTERS IS THE L CHE SOURC HE COUNT	**************************************	A RETURN
0182 0185 0187 0188 018A 0190 0193 0196 0197 019A 019D 019F	21E908 362F 23 0E00 3A6003 CDC601 3A5F03 CDC601 78 CDC601 CDC501 0E00 1A	R R R R R R R R	3601 362 363 364 3656 367 368 369 370 372 373 374 375	TEKLIN: TKLNLP:	LD HL, OU LD (HL), INC HL LD C,O LD A, (CC CALL LD A, (CC CALL GEN LD CALL GEN LD C,O LD	TBUF '/' GENHEX ORADR) HEX A, B GENHEX ICKS A, (DE)	;BUILD LINE HERE ;FOR CHECKSUM ; CONVERT ADDRESS TO AS(;THE ADDRESS ; CONVERT COUNT TO ASCII ;SEND C (ACCUMULATED CKS ;RESET ; CONVERT DATA
01A0 01A1 01A4 01A6	13 CDC601 10F9 ED536303 CDC501	R R R	376 377 378 379 380 381 382	TKMSFN:	INC DE CALL GEN DJNZ TKI LD CALL	GENCKS	; FILBFR PTR FOR NEXT D4 ; SEND DATA CKSUM
01AD 01AF 01B2 01B3 01B5 01B8 01BB 01BE 01C2	500D 11E808 A7 ED52 22D902 21E908 22D702 FD21D502 C30000	R R R R X	383 384 385 386 387 388 389 390 391 392		LD AND SBC LD LD LD LD JP	(HL), ODH DE, OUTBUF-1 A HL, DE (STRLEN), HL HL, OUTBUF (STRDTA), HL IY, STRVEC SYSTEM	; FIGURE BUF SIZE TO SEN ;LENGTH OF BUFFER ; ADDR OF BUF

-

È

*

(

À,

8

C

5/27/81

s

GENHEX, LOC C	GENCKS DBJ CODE	M	STMT	LO SOURCE S	OAD FATEMENT		PAGE ASM	10 5•9
LOC C 01C5 7 01C6 F 01C7 C 01C8 C 01C9 C 01C8 C 01C9 C 01C8 C 01C5 F 01C7 F 01C7 F 01C7 F 01C7 F 01C7 F 01C7 F	09 55 07 07 07 07 07 07 07 07 07 07 07 07 07	R	STMT 39456789012345667890112339956789901234566789011233456789011232	SOURCE ST *HEADING ; ***** ; * GEN ; * GEN ; * INP ; * OUT ; * OUT ; * **** GENCKS: GENHEX: NIBBLE:	TATEMENT G GENHEX,	GENCKS ************************************	ASM ASM A IN REGISTER THE OUTPUT S ACCUMULATES A CUMULATES A BIT NIBBLI A IN REGISTER VLAUE OUT STREAM 2 AND FALL IN ;SAVE WHILE 0	5.9 A TO TWO STREAM IHE CHECKSUN ES. C
01D2 0 01D3 4 01D4 F 01D5 F 01D7 0 01D8 0 01D8 0 01DB 0 01DF 0	51 4F 71 3802 2607 2630 77 23 29		422 423 424 425 426 427 428 429 430 431 432	NIBDIG:	ADD A, C LD C, A POP AF CP 10 JR C, NIB ADD A, 'A ADD A, 'O LD (HL), INC HL RET	DIG '-'0'-10 ' A	;SEND AS A D ;SEND AS A L	IGIT ETTER

5/27/81

SUBROUTINES.COMM	м стмт	LOAD Source statement	PAGE 11 ASM 5-9
	1101111	*UEADING SUDDOUTINES COMM	
	433	"HEADING SUBROUTINES.COMM	
	435 436	; GET CHARACTER FROM SERI	AL LINE
	438	CONINP:	
01E0 216903 01E3 22CC02 01E6 218000	R 439 R 440	LD HL, CHRBU LD (CONDTA),	F ; RECEIVE CHARACTER STR: HL
01E0 218000 01E9 22CE02 01EC FD21CA02	R 442 R 443	LD (CONLEN), LD IY, CONVE	HL ; LENGTH OF BUF
01F0 C30000	X 444 445 446	JP SYSTEM	
	447		****
	440	· *	***************************************
	450 451	* PUTSTR OUTPUT A MESSA * DEFT FORMAT.	GE, HL POINT TO THE MESSAGE IN
	452 453 454	* INPUT: HL - POINTER	TO MESSAGE
	455	, , , , , , , , , , , , , , , , , , ,	***************************************
	456		
01F3 7E 01F4 23	458 458 459	PUTSTR: LD A,(HL) INC HL	;GET COUNT
01F5 22D702 01F8 32D902 01FB FD21D502 01FF C30000	R 460 R 461 R 462 X 463	LD (STRDTA),HL LD (STRLEN),A LD IY,STRVEC JP SYSTEM	;OTHER PART IS ALWAYS O

(

5/27/81

SYSTEM	CALL VECTOR) t,				
LOC	OBJ CODE M	STMT SOURCE ST	TATEMENT			ASM 5.9
		465 *HEADING 466	G SYSTEM	CALL VE	CTOR	
		467 468 ; ASSIGI	N FILE			с
0202 0203 0204 0206 0208 0208 020A	05 02 0000 0000 0000 0000 0000	470 FILASV: 471 472 FILPTR: 473 474 475 476	DEFB DEFB DEFW DEFW DEFW DEFB	FILDEV ZDASGN 0 0 0 0		; ASSIGN REQUEST CODE ; FILENAME POINTER
020D	OFO2 R	477 478	DEFW	FILSPV		; SUPPL.PARAMETER VECTOR
020F 0210	00	479 FILSPV: 480	DEFB DEFS	0 34		; FLAG BYTE
	,	482 ; OPEN I 483	FILE			
0232 0233 0234 0236 0238 0238 023A 023C	05 04 4B02 R 7400 0000 0000 000 00 00 00 00 00 00 00 0	484 FILOPN: 485 486 487 488 489 490	DEFB DEFB DEFW DEFW DEFW DEFW DEFB	FILDEV ZDOPEN FILPRM 116 0 0		; SAME UNIT AS ASSIGN ; OPEN REQUEST CODE ; FILE ATTRIBUTES AREA ; LENGTH OF FILE ATRIBU?
0250	0102 h	491 492 493 ; CLOSE	FILE	FILSPV		; SUPPL.PARAMETER VECTOR
023F 0240 0241 0243 0245 0247 0249	05 06 0000 0000 0000 0000 0000	494 495 FILCLS: 496 497 498 499 500 501 502	DEFB DEFB DEFW DEFW DEFW DEFW DEFW	FILDEV ZDCLOS 0 0 0 0 0		; SAME UNIT AS ASSIGN ; CLOSE REQUEST CODE
024B 024C 024F	00 0000 0000	502 503 FILPRM: 504 505 506 FILPL	DEFB DEFW	0	; FILE ; SIZE	TYPE (MUST BE PROC.)
0250 0252 0253 0255	0000	507 508 FILPRP: 509 FILSA: 510	DEFS DEFS DEFW DEFS	2 1 0 18	; RECOR ; BLOCK ; PROPE ; START ; BYTE	D LENGIH ING RTIES ING ADDRESS IN LAST RECORD, CREATION I
0267 02B9 02BB 02BD		511 FILSMT: 512 LOWADR: 513 HIGADR: 514 515	DEFS DEFS DEFS DEFS	82 2 2 2	; SEGME ; LOWES ; HIGHE ; STACK	NT POINTER TABLE I ADDRESS USED ST ADDRESS UES SIZE
		510 517 ; READ I 518	FILE VECT	ſOR		
02BF 02C0 02C1 02C3	05 0A E903 R	519 FILRDV: 520 521 522 RDVLEN:	DEFB DEFB DEFW DEFS	FILDEV ZDREDB FILBFR 2		
	5/2//81		C-1:	2		

 \bigcirc

SYSTEM LOC	CALL VECTOR OBJ CODE M S	STMT	LO SOURCE S	OAD FATEME	NT	PAGE 13 ASM 5.9
02C5 02C7 02C9	0000 0000 00	523 524 525		DEFW DEFW DEFB	0 0 0	
		520 527 528	;CONSOL	E READ	AND WRITE	
02CA 02CB 02CC 02CE 02D0 02D2 02D4	01 0C 0000 0000 0000 0000 0000	529 530 531 532 5334 5354 5356	CONVEC: CONDTA: CONLEN:	DEFB DEFB DEFW DEFW DEFW DEFW DEFB	CONIN ZDREDA O O O O O	
02D5 02D6 02D7 02D9 02DB 02DB 02DD 02DF	02 0E 0000 0000 0000 0000 0000	530 537 538 539 540 541 542 543	STRVEC: STRDTA: STRLEN:	DEFB DEFB DEFW DEFW DEFW DEFW DEFB	CONOUT Z DWRTB O O O O O	·
02E0 02E1 02F8 02FA 02FB	1B 2F2F554E 3830 29 0D	545 546 547 548 559 550 550	NOOPEN: ERADR: BO	DEFB DEFM DEFW DEFB DEFB EQU	BO-NOOPEN '//UNABLE 3038H ')' ODH \$-1	TO OPEN FILE ('
02FC 02FD 030D	11 2F2F4649 OD	552 553 554 555 556	ERFILE: B1	DEFB DEFM DEFB EQU	B1-ERFILE '//FILENAM ODH \$-1	E ERROR'
030E 030F 0323	15 2F2F4E4F 0D	557 558 559 560 561	NOPROC: B2	DEFB DEFM DEFB EQU	B2-NOPROC '//NOT PRO ODH \$-1	CEDURE FILE'
0324 0325 033E 0340 0341	1D 2F2F4552 3830 29 0D	562 563 564 565 566 567 568 568	RDBAD: ERRADR: B3	DEFB DEFW DEFW DEFB DEFB EQU	B3-RDBAD '//ERROR I 3038H ')' ODH \$-1	N READING FILE ('
0342 0343 0357	15 2F2F5245 0D	570 571 572 573	TRYMCH: B4	DEFB DEFM DEFB EQU	B4-TRYMCH '//RECORD ODH \$-1	CKSUM ERROR'
0358 0359 035A	02 30 0D	575 576 577 578	ACKMSG:	DEFB DEFB DEFB	2 101 0DH	
035B 035D	0000 0000	579 580	RECBYE: SEGPTR:	DEFW DEFW	0	; RECORD BYTE COUNT ; SEGMENT TABLE POINTER

1

(

۶

C

C-13

5/27/81

and the second

PAGE	14
ASM	5.9

SYSTEM LOC	CALL VECTOR OBJ CODE M STMT	LOAD Source statement		PAGE 14 ASM 5.9
035F 0361	0000 58 ² 0000 582 583	CORADR: DEFW SEGCNT: DEFW	0 ;	CORE ADDR USED IN REC(# OF BYTE REMAINING I CURRENT SEGMENT
0363 0365 0367 0369 03E9 08E9	0000 582 0000 585 0000 586 587 588 588 588	CURBUF: DEFW REMCNT: DEFW RTYCNT: DEFW CHRBUF: DEFS FILBFR: DEFS OUTBUF: DEFS	0 0 128 500H 132	CURRENT FILBFR ADDRESS REMAINING BYTE IN FILH RETRY COUNT INPUT BUFFER FILBFR FOR FILE DATA BUF FOR OUTPUT MESSAGE

5/27/81

CROSS R SYMBOL	EFERE VAL	EN C M	CE DEFN	REFS		LOAD				
ACKMSG ACKOK BO B1 B2 B3	0358 00FE 02FB 030D 0323 0341	R R R R R R	575 229 550 556 561 568	50 220 545 553 558 563						
B4 CHMORE CHRBUF CLSF COMSY1 CONDTA CONIN CONINP	0357 001D 0369 014E 000D 02CC 0001 01E0	R R R R R R R R	573 62 587 284 49 531 438	570 58 315 221 46 440 529 310	439 273	275				
CONLEN CONOUT CONVEC CORADR CURBUF ERADR FRETLE	02CE 0002 02CA 035F 0363 02F8 02FC	R R R R R R R R	532 10 529 581 584 547 553	442 537 443 174 186 88 96	232 217 553	234 379	366	368		
ERRADR FILASV FILBFR FILCLS FILDEV FILERR	033E 0202 03E9 023F 0005 0057	R R R R R R	565 470 588 495 8 96	198 118 185 79 470 63	521 285 484 65	495 67	519			
FILOPN FILPRM FILPRP FILPTR FILRDV FILRL	0232 024B 0252 0204 02BF 024E	R R R R R R R R R	484 503 508 472 519 506	126 75 117 188	486					
FILSA FILSMT FILSPV FINL	0253 0267 020F 0121	R R R R	509 511 479 257	204 146 125 161	477	491				
GENCKS GENHEX HIGADR	01C5 01C6 02BB	R R R	412 413 513	90 265	200 267	372 269	382 367	369	371	377
LOWADR MAXRTY NACK NIBBLE NIBDIG	02B9 000A 0170 01CF 01DB	R R R R	512 16 329 420 428	214 320 418 426	258					
NOOPEN NOPROC NPROC	02E0 030E 0052	R R R	545 558 94	91 94 81	545 558					
NXIBFR NXTLIN NXTSEG OPNB OPNETI	009C 00D5 0084 0044	R R R R R	177 206 149 87	248 193 250 71	238					
OPNINP OUTBUF PROC PROCF	0000 08E9 0080 0040	к R R	110 15 589 14 83	124 260 77 78	362	384	388			
PUTCLS	014B	R	282	202			C-1	5		

PAGE 15

...

5/27/81

CROSS I SYMBOL	REFER VAL	EN C M	CE DEFN	REFS		LOAD							PA
PUTS PUTSTR RDBAD RDFTLF	005A 01F3 0324 007F	R R R R	97 458 563 145	92 52 201 84	95 97 563	282							
RDVLEN RECBYE	02C3 035B	RR	522 579	184 212	191 230	245							
REMCNT RTRY	0365 0179	R R	585 336	206 332	211	235							
RTYCNT SEGCNT	0367 0361	R R	586 582	215 177	259 183	330 244							
SEGPTR SKIPSP	035D 0015	R R	580 56	147 60	149	158							
STRDTA STRLEN	02D7 02D9	R R	539 540	389 387	460 461								
SIRVEC SYSTEM	0205	к Х Р	537	337 80	390 119	462 127	189	286	338	391	444	463	
TKLNLP	019F	R	374	378									
TKSWAT TMUCH	0156	R R	309 278	219	272	322	339						
TRYMCH UBIG1	0342 00AB	R R	570 184	279 182	570								
UBIG2 ZDASGN	00E4 0002	R	212 20	210 471									
Z DCLOS Z DOPEN	0006 0004		22 21	496 485									
Z DRDST Z DREDA	0040 000C		26 24	530									
Z DREDB Z DWRTB	000A 000E		23 25	520 538									

C-16

5/27/81

AGE 16

ROUIII	1 E			SEND			PAGE
OBJ	CODE	M STMT	SOURCE	STATEMEN	Т		ASM 5
		1	*HEADI	NG MAIN	ROUTIN	E	
		3		EXTERN	AL	SYSTEM	
		567	;PREDE	FINED DE	VICES		
		8 9 10 11	FILDEV CONIN CONOUT	EQU 5 EQU 1 EQU 2		;DEVICE FO ;CONSOLE ; ;CONSOLE (OR FILES INPUT DUTPUT
		12 13	; CODE	FOR OPE	N NEW	FILE	
4		14 15 16	OPNEWF	EQU	2	; OPEN NET	N FILE
		17 18	;DEVIC	E FUNCTI	CON COI	DES	
		19 20 21 22 23 24 25	Z DA SG N Z DO PEN Z DCL OS Z DREDB Z DREDA Z DWR TB	EQU 2 EQU 4 EQU 6 EQU 01 EQU 00 EQU 01	AH CH CH	;ASSIGN ;OPEN ;CLOSE DE ;READ BIN ;READ ASC ;WRITE BI	VICE ARY II LINE NARY
	KOU I I M OBJ	OBJ CODE	OBJ CODE M STMT OBJ CODE M STMT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	NOUTINE OBJ CODE M STMT SOURCE 0BJ CODE M STMT SOURCE 1 *HEADI. 2 3 4 5 ; PREDE 6 7 8 FILDEV 9 CONIN 10 CONOUT 11 12 ; CODE 13 14 OPNEWF 15 16 17 ; DEVIC 18 19 ZDASGN 20 ZDOPEN 21 ZDCLOS 22 ZDREDB 23 ZDREDA 24 ZDWRTB 25 25 25	NOUTINESENDOBJ CODE M STMT SOURCE STATEMEN1*HEADING MAIN23EXTERN4559CONIN EQU 11010CONOUT EQU 211121314OPNEWF EQU15161718192DASGN EQU 2202DOPEN EQU 4212220212223242425	NOUTINE SEND OBJ CODE M STMT SOURCE STATEMENT 1 *HEADING MAIN ROUTIN 2 EXTERNAL 4 ;PREDEFINED DEVICES 6 7 8 FILDEV EQU 5 9 CONIN EQU 1 10 CONOUT EQU 2 11 12 12 ; CODE FOR OPEN NEW 13 14 14 OPNEWF EQU 2 15 16 17 ; DEVICE FUNCTION COI 18 19 ZDASGN EQU 2 20 ZDOPEN EQU 4 21 ZDCLOS EQU 6 22 ZDREDB EQU OCH 23 ZDREDA EQU OCH 24 ZDWRTB EQU OEH	NOUTINE SEND OBJ CODE M STMT SOURCE STATEMENT *HEADING MAIN ROUTINE 2 EXTERNAL SYSTEM 4 ;PREDEFINED DEVICES 6 ; ;DEVICE FC 9 CONIN EQU 1 ;CONSOLE 1 10 CONOUT EQU 2 ;CONSOLE 1 11 ;CODE FOR OPEN NEW FILE 13 14 OPNEWF EQU 2 ;OPEN NEV 15 16 17 ;DEVICE FUNCTION CODES 18 19 ZDASGN EQU 4 ;OPEN 20 ZDOPEN EQU 4 ;OPEN 21 ZDCLOS EQU 6 ;CLOSE DE 21 ZDCLOS EQU 0 ;READ BIN 23 ZDREDA EQU 0CH ;READ ASC 24 ZDWRTB EQU 0EH ;WRITE BI 25

MAIN ROUTINE CEND LO

5/27/81

(

.... 1

MAIN Loc	PROGRAM OBJ CODE	M STMT	SE Source Si	ND ATEMENT		PAGE 2 ASM 5.9
		26 27 28 29	*HEADING ; ******	G MAIN PR	OG RAM	*****
		30 31 32 33 34 35 37 38 37 38 41 42 43 44	* THIS * RECE * IF T * FILE * IF I * IF I * IF T * THE ; * SENI * IF C ; * *****	S PROGRAM EVING FF CHE FILE E, THIS F SOLE OUTF DATA RECC S PROGRAM CHE CHECK CONSOLE D TO THE CHECKSUM	A IS USED TO CREA OM THE Z8000 EVA HAS ALREADY EXIS PROGRAM WILL SENI PUT, AND PROGRAM ORD WITH TWO LEAN A WILL ALSO BE AN SUM OF THE DATA INPUT ARE VERIFIC CONSOLE OUTPUT. DOES NOT VERIFY.	ATE A FILE WITH DATA ALUATION BOARD. STED OR UNABLE TO OPEN D AN ASCII 9 TO THE WILL BE ABORTED. DING '//' IS RECIVIED, BORTED. RECORD RECEIVING FROM IED, AN ASCII 0 WILL BE AN ASCII 7 WILL BE SENI
0000 0002	180B 44415445	45 46 47		JR DEFM 'DA	COMSY1 ATE:790629'	
000D 000E	E 1 E3	48 49 50 51	COMSY1:	PO P E X	HL (SP),HL	; RIO RETURN ; GET COMMAND POINTER
000F 0010 0012 0014 0015	7E FE20 2003 23 18F8	52 53 54 55 56 57	SKIPSP:	L D C P J R I N C J R	A,(HL) NZ, CHMORE HL SKIPSP	; SKIP OVER SPACE
0017 0019 001B 001D 001F 0021	FE3B 2819 FE2C 2815 FE0D 2811	5 9 5 9 6 1 6 2 6 3 6 4 6 5	CHMORE:	C P J R C P J R C P J R	Z, SEND9 Z, SEND9 ODH Z, SEND9	; CHECK FOR DELIMITER
0023 0026	CD3800 200C	66 R 67 68 69	5 7 3	CALL JR	OPNFIL NZ, SEND9	; OPEN FILE FOR INPUT ; UNABLE TO OPEN FILE
0028	CD5800	70 R 71		CALL	STRFIL	; GET DATA FROM CONSOLE
002B	C8	7 - 7 - 7 -	2 3 4	RET	Z	; & STORE IN FILE ; FILE CLOSE, EVERYTHING
		75 76	5 ; RECEI	VE ABORT	MESSAGE OR HAVI	NG WRITE FILE PROBLEMS
002C 0030 0033	FD213F03 CD0000 C9	R 77 X 78 79	7 x 3 9	LD CALL RET	IY,FILCLS SYSTEM	; CLOSE FILE
0034 0037	CD8101 C9	R 81	SEND9:	CALL RET	ABRCKS	; SEND '9'
	5/27/81			C-1	8	

.

 \sum

OPNFIL LOC	ROUTINE OBJ CODE	M	STMT	SOUI	SE RCE ST	EN D CATEMENT			PAGE 3 ASM 5.9
			83 84 85	¥HI	EADINC	G OPNFIL	ROUTINE		
			86 87 88 89 90 91 92	· · · · · · · · · · · · · · · · · · ·	***** * * * * * * * * * * * * * *	FIL ASSIC FILEN JT: HL -	GN A LOGICAL UNI NAME AND ALSO OPI - POINTER TO FILI	* * * c	**************************************
			93 94 95 96	, , , ,	* OUTI * * *	PUT: RETU RETU	JRN Z IF OPEN FII JRN NZ IF UNABLE OR FILE AN	LE TC LRE	SUCCESSFUL D ASSIGN FILENAME EADY EXISTED
			97 98	;	*****	******	* * * * * * * * * * * * * * * * * * *	* * 3	*******************************
0038 003B 003F 0042 0046	220403 FD210203 CD0000 FDCB0A76 C0	R R X	99 100 101 102 103 104 105	OP.	NFIL:	LD LD CALL BIT RET	(FILPTR), HL IY, FILASV SYSTEM 6, (IY+10) NZ	;;	FILENAME PTR INTO IY \ ASSIGN FILE ASSIGN OK? NO
0047 0049 004C 0050 0053 0057	3E02 320F03 FD213203 CD0000 FDCB0A76 C9	R R X	108 107 108 109 110 111 112			LD LD LD CALL BIT RET	A,OPNEWF (FILSPV),A IY, FILOPN SYSTEM 6, (IY+10)	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	OPEN TYPE - NEWFILE OPEN FILE OPEN OK? RETURN NZ OR Z

5/27/81

STRFIL LOC	ROUTINE OBJ CODE	M STMT	SE Source ST	ND ATEMENT		PAGE 4 ASM 5.9
		113 114	#HEADING	STRFIL	ROUTINE	
		115	• *****	*******		**********************
		117	; *			
		118 119 120 121 122	* STRF * *	IL RECEI TEKTF THE F AND S DATA	IVE DATA RECORD CONIX FORMAT. RECEIVING DATA, TORE THEM IN A RECORD WITH 7 F	FROM CONSOLE INPUT IN VERIFIY TWO CHECKSUMS IN UNPACK DATA TO HEX VALUE FILE BO BYTE COUNT INDICATES
		123 124	*	END C	OF DATA, THEN T	TWO LEADING //. ALSO
		125 126	*	WILL IF EN	STOP RECIVING	DATA AND CLOSE THE FILE. E WRITING DATA INTO FILE.
		127 128	, ★ }	AN AS DATA	SCII 9 WILL BE TRANSFERING.	SEND OUT TO ABORT THE
		129 130); *); * TEK1	RONIX FO	DRMAT:	
		131 132 133	, # , # , #	/ <core <br=""><data(2< td=""><td>ADDRESS(4)><byt 2)><data(2)></data(2)></byt </td><td>E COUNT(2)><checksum1(2)> . <data(2)><checksum2(2)></checksum2(2)></data(2)></checksum1(2)></td></data(2<></core>	ADDRESS(4)> <byt 2)><data(2)></data(2)></byt 	E COUNT(2)> <checksum1(2)> . <data(2)><checksum2(2)></checksum2(2)></data(2)></checksum1(2)>
		134 135 136	4 ; * 5 ; * OUTI 5 ; *	PUT: RE' RE'	TURN Z FOR SAVI TURN NZ FOR HAV	ING DATA ON FILE VING PROBLEM IN WRITING
		137	7 ; * 8 ; *		DATA ON	FILE
		139	9 ; *****)	********	* * * * * * * * * * * * * * * * * *	***************************************
0059	210000	14	1 STRFIL:			
0058 005B 005E	210000 22F603 216703	R 142 R 143 R 144	2 3 4		HL,O (SEGPTR), HL HL,FILSMT	; INIT SEGMENT TABLE PTH
0061 0064	116803 015200	R 149	5		DE, FILSMT+1 BC, 82	; INIT SEGMENT TABLE TO
0067 0069	3600 EDB0	14 14	7 8	LD LDIR	(HĹ),O	•
006B	CD3B02	R 14 15	9 0	CALL	BLKBUF	; BLANK FILBFR WITH FF
006 E	CD7501	15 R 15	1 LODFRO:	CALL	GODCKS	; SEND ACKNOWLEDGE FOR
0071	CD0201	R 15	3 LODF: 4	CALL	LODREC	; GET RECORD OF DATA
0074	FE2F	R 15 15	5 6	CP	A,(OUIBUF) 1/1	: CHECK IF ERROR RECORD
0079	287 E	15 15	7 8	JR	Z,CLSE	; YES, ABORT & CLOSE FIL
		15 16 16	9 0 ; VERIF	Ч ТЖО СН	IECKSUM & UNPAC	KED DATA
007B 007E	210009 0603	R 16	2		HL, OUTBUF B,3 CUNCKS	; VERIFY ADDR & CNT CKSL
0083	380B	л 10 16	5	JR	C, CHKBAD	; BAD CHECKSUM
0086	A7	16	57	AND	A, D	, CHECK BILL COUNT
0087	280C	16 16	58 59	JR	Z, LODOK	; COUNT=O, NO DATA CKSUN
	5,27,81	17	70 ; BYTE	COUNT NO	DT ZERO, VERIFY	DATA CHECKSUM

STRFIL LOC	ROUTINE OBJ CODE	М	STMT SO	SI URCE SI	EN D FATEMENT			PAGE 5 ASM 5.9
0089 008A 008D 008E	C5 CD8701 C1 3005	R	171 172 173 174 175		PUSH CALL POP JR	BC CHKCKS BC NC, LODOK	;;	SAVE BYTE COUNT CKSUM DATA,B=BYTE COUI
0090 0093	CD7B01 18DC	R	170 C 177 178 170	NKBAD:	CALL JR	BADCKS LODF	;;	SEND NON-ACKNOWLEDGE GET DATA RECORD
			180 ; 181 ;	CHECKS FILE	SUM ARE ' ATTRIBU	VERIFIED, GENERA TES, FILE RECORD	TE •	ADDRESS & POINTER FOR .ETC
0095 0096 0097	78 A7 2828		182 183 L 184 185 186	ODOK:	LD AND JR	A, B A Z, FINLOD	;;;	BYTE COUNT=O INDICATE LAST RECORD YES, LAST RECORD
0099	ED43F403	R	187		LD	(RECBYE), BC	;	SAVE BYTE COUNT
009D 00A0 00A3 00A6	210009 CD6B01 CD9A01 2806	R R R	189 190 191 192 193		LD CALL CALL J R	HL,OUTBUF GENADL BUFADM Z, LODCON	;;;;	GET ADDRESS FROM RECON GENERATE BUF ADDRESS NO ERROR IN WRITING F:
00 A 8 00 A B 00 A D	CD8101 F601 C9	R	194 S 195 196 R 197 198	ED9: ETNZ:	CALL OR RET	ABRCKS 1	;;	SEND '9' TO ABORT RETURN NZ FOR FAILURE
			199 ; 200 ;	UNPAC	K DATA I HL - FI	N OUTBUF TO FILE LBFR ADDRESS TO	SFR ST	ORE DATA
00AE 00AF 00B3 00B6 00B9 00BA	D9 ED4BF403 210809 CD3601 D9 77	R R R	201 202 L 203 204 205 206 L 207 208	.ODCON:	EXX LD CALL EXX LD	BC, (RECBYE) HL,OUTBUF+8 LODBYL (HL),A	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	BYTE COUNT ADDRESS OF 1ST DATA B CONVERT TO HEX VALUE SAVE IN FILE BUFF
0088 008C 008D 008F	23 D9 10F7 13AD		209 210 211 212 213 214		INC EXX DJNZ JR	HL LODFR3 LODFR0	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	NEXT BYTE DONE WITH CURRENT REC(SEND 'O',GET NEXT RE(
			215 216 ; 217 ;	RECEI DESCR	VE LAST IPTOR RE	DATA RECORD WITH CORD, AND WRITE	ł B FI	YTE COUNT=0, SET UP FIL LE TO DISK
			219 F 220	FINLOD:				
00C1 00C4 00C7 00CA	210009 CD6B01 225303 CDBC02	R R R R	221 222 223 224 225 226		LD CALL LD CALL	HL,OUTBUF GENADL (FILSA),HL SETCNT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GENERATE ENTRY ADDRESS & STORE IN FILE ATTRI ADJUST CURRENT SEGMENI ENTRY 2ND WORD
00CD 00D1	DD360000 DD360100))	227 228		LD LD C-	(IX),0 (IX+1),0 21	;;	CLEAR ONE SEGMENT ENTF TO INDICATE END 5/27/81

ì

And the second

STRFIL LOC	ROUTINE OBJ CODE	М	STMT	SOURCE	SEND STATEMENT		PAGE 6 ASM 5.9
00D5 00D9 00DD 00E0 00E3 00F4	DD360200 DD360300 CD4D02 2ABB03 2B 22BB03	R R R	229 230 231 232 233 234		LD LD CALL LD DEC LD	(IX+2),0 (IX+3),0 TSTMXR HL,(HIGADR) HL (HIGADR).HL	; FIX UP HIGH ADDRESS ; ADDRESS IS 1 TOO HIGH
00E4 00E7 00EA 00EC 00EF 00F1 00F4 00F6	CD5D02 20BC CD6F02 3805 CD5D02 20B2 CD7501	R R R R R	235 235 236 237 238 239 240 241	CLSS:	CALL JR CALL JR CALL JR CALL	WRTDSK NZ,SED9 ADJDSK C,CLSS WRTDSK NZ,SED9 GODCKS	; WRITE CURRENT FILE RE(; WRITE FILE ERROR ; CHECK ANY MORE DATA ; NO MORE DATA, CLOSE FII ; MORE DATA TO WRITE ; WRITE FILE ERROR
00F9 00FD 0100 0101	FD21CA03 CD0000 AF C9	R X	242 243 244 245 246 247	CLDE.	LD IY,F CALL XOR RET	ILCLP SYSTEM A	;CLOSE PROCEDURE FILE ; RETURN Z FOR OK

 \bigcirc

5/27/81

LODREC LOC	ROUTINE OBJ CODE	M	STMT	SE Source St	N D ATEMENT			PAGE 7 ASM 5.9
			248 249	*HEADING	LODREC	ROUTINE		
			250 251 252 253 255 255 255 255 255 255 255 255	<pre>******* * LODR * * * * * * * * * * * * * * * * * * *</pre>	EC RECED MAXIN CARRI AFTEF THE L	TVING AN INPUT AUM READ 128 CI FAGE RETURN. (A '/', AND IC EADING / WILL TBUF - CONTAIN	LINE FR HARACTER ONLY ACC GNORE AL BE INCL DATA ST	OM CONSOLE INPUT, S TERMAINATED WITH EPT CHARACTERS L CONTROL CHARACTEF UDED IN THE BUFFER. RING
0102 0105 0108 0109	CDE002 3AD903 47 218009	R R R	263 264 265 266 267	LODREC:	CALL LD LD LD	CONINP A,(CONLEN) B,A HL, CHRBUF	; GET ; # O ; INF	INPUT LINE 128 F CHAR IN INPUT LII PUT LINE BUFFER
010C 010D 010E 0110 0112	7E 23 E67F FE2F 2807		268 269 270 271 272 273	NCHR:	L D INC AND CP JR	A, (HL) HL 7FH '/' Z, GOTLSH	; LOC	DK FOR '/'
0114 0116 0119	10F6 CD7B01 18E7	R	275 276 277 278		DJNZ CALL JR	NCHR BADCKS LODREC	; NO ; CAN ; I	<pre>'/', CHECK NEXT CHA 'T FIND '/', GET NE NPUT LINE</pre>
011B 011C 011F 0120 0121 0123 0124	05 110009 7E 23 E67F 12 FE0D	R	279 280 281 282 283 283 284 285 286	GOTLSH:	DEC LD LD INC AND LD CP	B DE,OUTBUF A,(HL) HL 7FH (DE),A ODH	; CHA ; FIL ; MOV ; CHE	AR COUNT L OUTBUF WITH DATA VE CHAR INTO OUTBUF CCK END OF LINE
0126 0127 0129 0128 012D	C8 FE20 3004 10F2 1803		287 288 289 290 291 292 293		RET CP JR DJNZ JR	Z NC, CHROK NXT CEND	; CHE ; CHA ; NEX ; TEF	ECK FOR CONTROL CHAF AR OK AT CHARACTER RMINATE WITH CR
012F 0130	13 10ED		294 295 296 297	CHROK:	INC DJNZ	DE N X T		
0132 0134 0135	3E0D 12 C9		298 299 300 301 302	CEND:	LD LD RET	A,ODH (DE),A	; JUS	ST PUT CR AT END

C-23

5/27/81

(

LODBYL LOC	ROUTINE OBJ CODE	M ST	MT SOURCE	SEND STATEMENT		PAGE 8 ASM 5.9
		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	803 *HEADJ 804 **** 805 ; **** 806 ; * 807 ; * CC 808 ; * SJ 809 ; * IS 810 ; * AI 811 ; * 812 ; * IN 813 ; * 814 ; * 815 ; * OL 816 ; * 817 ; * 818 ; * 819 ; * 820 ; *	ING LODBYL	ROUTINE NEXT TWO ASCII 8-BIT HEX VALUE TO 4-BIT HEX V CHECKSUM ACCUMUL POINTER TO CHA CHECKSUM ACCUM INCREMENTED BY UPDATED CHECKS 8 BIT HEX VALU URN NC FOR CONV INN C FOR NON-	CHARACTERS IN THE INPUT AFTER EACH ASCII CHAR ALUE, THE HEX VALUE IS ATOR. RACTER STREAM ULATOR 2 UM ACCUMULATOR E OF TWO ASCII CHAR ERSION SUCCESSFUL ASCII CHAR IN BUFFER
0136 0139 013A 013B 013C 013D 013E 013F 0140 0141 0142 0143 0146 0147 0148 0149 014A 014B 014C	CD4D01 D8 F5 81 4F F1 07 07 07 07 07 5F CD4D01 D8 F5 81 4F F1 B3 C9	88888888888888888888888888888888888888	322 ; **** 323 ; LODBYI 325 ; LODBYI 326 ; 27 327 ; 28 329 ; 330 331 ; 332 3333 ; 333 334 ; 335 335 ; 336 337 ; 338 339 ; 41 344 ; 43 344 ; 445 344 ; 445 344 ; 445	**************************************	KDCD HEXDCD E	;GET CHR AND CHECK ;BAD ;SAVE PARTIAL BYTE ; NEXT BYTE ; MERGE TWO HEX VALUE ; OR SET NC FOR OK RETUF
	5/27/81		344 ; * * * 348 ; * * 349 ; * 1 350 ; * 1 351 ; * 1 352 ; * 0 355 ; * 0 355 ; * 355 355 ; * 355 355 ; * 355 356 ; * * 3550 ; * * 3560 ; * **	EXDCD CONVENENT HEX NPUT: HL - UTPUT: HL - A - RET RET **********	ERT A SINGLE ASO VALUE. (41 -> - POINTER TO ASO - INCREMENTED BY - 4-BITS HEX VAL URN NC FOR CONVE URN C FOR CHARA	CII CHARACTER TO A 4-BIT A, 37 -> 7) CII CHARACTER (1 LUE ERSION SUCCESSFUL ACTER IS NON-ASCII

LODBYL LOC	ROUTINE OBJ CODE	М	STMT	SOURCE	SH Si	EN D FATEMENT			PAGE 9 ASM 5.9
014D 014E 014F 0151 0153 0155 0157 0158 015E 015E 0162 0162 0164	7E 23 FE5B 3802 CBAF FE30 D8 FE47 300D FE3A 3806 FE41 3805 D637		361 362 363 364 365 366 368 371 372 3773 3774 3773 3775	HE X D C	D: R:	LD INC CP JR RES CP RET CP JR CP JR CP JR CP JR SUB	A, (HL) HL 'Z'+1 C, HEXUPI 5,A 'O' C 'F'+1 NC, HEXB. '9'+1 C, USEDIG 'A' C, HEXBAD 'A'-10	; R ; ; AD ;	GET CHARACTER CHECK FOR LOWER CASE NO FORCE TO UPPER CASE NOT 0-9 NOT A-F IS DIGIT
0166 0168	E60F C9		376 377	USEDI	[G:	AND RET	OFH.	;	RETURN NC FROM AND
0169 016A	37 C9		378 379 380 381 382	HEXB	AD:	SCF RET	•	;	RETURN C FOR BAD CHAR
016B 016E 016F 0172	CD3601 57 CD3601 55	R	386 386 388 388 390 399 399 399 399 399 399 399 399 399	; * (; * ; * ; * ; * ; * ; * ; *	GEN INP OUT *** DL:	ADL CONV VALU UT: HL PUT: HL ********* CALL LO LD D,A CALL LO LD F.A	ERT 4 ASC E IN HL. - POINTER - 16-BIT ********* DBYL DBYL	II CHARAC' TO FIRST HEX VALUE *****	TERS TO A 16 BIT HEX ASCII CHARACTER
0173 0174	EB C9		400 401 402 403 404 405	; ** ; *	* * *	EX DÉ,H RET *******	L *******	*******	******
			406 407 408	; * ; * ; *	GOD ACK	CKS SEND NOWLEDGE	ASCII 0	FOLLOWED	BY CARRIAGE RETURN FOR
			409 410 411 412 413 414 415	* * * * * *	BAD NON ABR EIT ON	CKS SEND -ACKNOWL CKS SEND HER ERRO DISK FIL	ASCII 7 EDGE. ASCII 9 R IN OPEN E.	FOLLOWED FOLLOWED FILE OR	BY CARRIAGE RETURN FOR BY CARRIAGE RETURN FOR ERROR IN WRITE DATA
			416 417	; **	* * *	*****	******	******	**********
			418			C-2	25		5/27/81

(

LODBYL LOC	ROUTINE OBJ CODE	М	STMT	SOURCE S	SEND STATEMENT				PAGE ASM	10 5.9
0175 0178	21EB03 C3F302	R R	419 420 421	GODCKS	LD JP	HL,ACKMSG PUTSTR	;	S EN D	ASCII	101
017B 017E	21EE03 C3F302	R R	422 423 424	BADCKS	LD JP	HL,NAKMSG PUTSTR	;	SEND	ASCII	' 7'
0181 0184	21F103 C3F302	R R	425 426	ABRCKS	LD JP	HL,ABRMSG PUTSTR	;	SEND	ASCII	191

5/27/81

CHKCKS	ROUTINE	N OTMT	SEND SOURCE STATEMENT	PAGE 11
LUC	OBJ CODE	M SIMI	SOURCE STATEMENT	ASH 5.9
		427 428 429	#HEADING CHKCKS	ROUTINE
		430		***************************************
		431		
		432	; CHKCKS VERIFI	ES RECORD CHECKSUM. FIRST CONVERT THE AS
		433	; CHARACTERS TO	D THEIR CORRESPONDING HEX VALUE, CALCULA.
		434	; THE CHECKSUM	BY ADDING THESE HEX VALUES, THEN CONVERT
		430	HEY VALUES AN	ID COMPARE TO THE CALCULATED CHECKSUM
		437		b comme to me calcolateb checkbon.
		438	; INPUT: HL -	POINTER TO ASCII STRING
		439	; B -	# OF CHARACTER PAIR TO BE CHECKSUM
		440 551	;	(TOTAL CHARACTERS TO CHECKSUM IS (B#2)
		442	, OUTPUT: RETU	RN NC IF CHECKSUM VERIFY
		443	RETU	RN C IF INCORRECT CHECKSUM
		444	•	· · · · · · · · · · · · · · · · · · ·
		445	; **********	***************************************
		440)	
0187	0E00	448	CHKCKS: LD C.O	:INITIAL CKSUM ACCUMULA
0189	CD3601	R 449	CK1: CALL LOI	DBYL ; KEEPS C UPDATED
0180	D8	450	RET C	;ERROR, NON-ASCII CHAR
018D	10FA	451	DJNZ CK	
0100	41 C5	454 1153	LUB, A	•SAVE ACCUMULATED CHECKS
0191	CD3601	R 454	CALL	LODBYL : CONVERT STORED CKSUM
0194	C1	455	POP BC	······ , ······· ·····
0195	D8	456	RET C	;ERROR, NON-ASCII CHAR
0196	B9	457	СР	C ; COMPARE STORED CKSUM (
0107	C8	450 1150) 	, WITH CALC.CKSUM (C)
0198	37	460) SCF	BAD CHECKUSM. FORCE ERF
0199	Č9	461	RET	,2

A

5/27/81

BUFADM Loc	ROUTINE OBJ CODE	M ST	SE MT SOURCE ST	N D ATEMENT		PAGE 12 ASM 5.9	
		4	62 *HEADING	BUFADM	ROUTINE		
		4	63 64 ; *****	******	****	*******	
		4	65 ; 66 ; BUFADM	BREAKS	UP THE LOAD ST	REAM INTO DISK SEGMENTS.	
		4	67 ; 68 ; INPUT: 69 ;	HL- CO B - BY	RE ADDRESS IN TE COUNT IN LO	LOAD RECORD AD RECORD	
		4	70 ; 71 ; OUTPUI	: HL - F	ILBFR ADDRESS	TO STORE DATA	
		4 4 4	72 ; 73 ; OUTPU1 74 ;	: RETUR RETUR	N Z IF NO ERRO N NZ IF PROBLE	R IN FILE WRITING MS IN FILE WRITING	t-
		4 4 4	75 ; 76 ; IT USE 77 ; FIRST	S FLAG (SEGMENT.	SEGPTR=0) TO I	NDICATE THAT THIS IS THE	*
		4	79 ; *****	******	*********	*******	
		4	80 81				
019A 019D 01A1 01A2 01A3	22F803 ED5BF603 7A B3 201B	4 R 4 R 4 4 4	82 BUFADM: 83 84 85 86 87	LD LD LD OR JR	(CORADR),HL DE,(SEGPTR) A,D E NZ,NOTFST	; CORE ADDRESS ; CHECK IF FIRST TIME ; NOT FIRST TIME	
		- 4 4 4 4 4 4 4 4 4	89 90 ; INIT V 91 ; 92 ; 93 ; 94 ; 95 ; 96 ; 97 ; 44 50	ARIABLES SEGPTR - HIGADR - LOWADR - BOTRNG - TOPRNG - TOPUSD -	SEGMENT TABLE HIGH ADDRESS LOW ADDRESS F LOW ADDRESS O TOP ADDRESS O FILBFR ADDR.	POINTER FOR FILE ATTRIBUTES OR FILE ATTRIBUTES F CURRENT FILE RECORD F CURRENT FILE RECORD WHERE LAST BYTE DATA STORE	
		4 5 5	990 ; ALSO 999 ; 500 ; 501 ;	SET UP E 1ST WORL 2ND WORL	DITRY IN SEGMEN D - LOW CORE AD D - HIGH CORE A (TEMPORARY,	T TABLE DRESS OF CURRENT SEGMENT DDRESS OF CURRENT SEGMENT SHOULD SET TO SEGMENT SIZ	
01A5 01A8	116703 ED53F603	R 5 R 5	502 503 504	L D L D	DE,FILSMT (SEGPTR),DE	; SEGMENT TABLE POINTER	
01AC	CDA602	R 5	505	CALL	GENRNG	; SET UP ADDRESSES FOR F	્ય
01AF 01B2 01B5	22BB03 2AFA03 22B903		507 508 509 510 511	LD LD LD	(HIGADR),HL HL,(BOTRNG) (LOWADR),HL	; RECORD, SEGMENT TABLE ; ADDRESS FOR FILE ATTRI	
01B8 01BE 01BE	CD3B02 210004 1816	R	512 513 BLKBFR: 514 515 516 517 518	CALL LD JR	BLKBUF HL,FILBFR COMADM	; INIT FILBFR WITH FF ; FIGURE HOW FAR TO FILL ; FILBFR (TOPUSD)	,
	5/27/81		519 ; CHECK	IF CORE C-2	ADDRESS OF REC 8	CEIVING DATA IS BEYOND THE	

ŧ
BUFADM Loc	ROUTINE OBJ CODE	м	STMT	SE Source St	END ATEMENT		PAGE 13 ASM 5.9
			520 521 522	; RANGE ; OUT I	OF CUR Data Lef	RENT FILE RECO I IN FILBFR TO	RD ADDRESS, IF SO, WRITE FILE, AND CREATE NEW SEGMI
01C0 01C4 01C6	ED5BFC03 ED52 302C	R	523 524 525 526 527	NOTFST:	LD SBC JR	DE,(TOPRNG) HL,DE NC,NXTRNG	; TOP ADDRESS OF CURREN: ; FILE RECORD ; NEED TO WRITE FILE
			528 529	; FIGURE	E THE AD	DRESS OF FILBF	R FOR STORING RECEIVING DA!
01C8 01C9 01CC 01D0 01D2 01D5	A7 2AF803 ED5BFA03 ED52 110004 19	R R R	530 531 532 533 534 535		AND LD SBC LD ADD	A HL,(CORADR) DE,(BOTRNG) HL,DE DE,FILBFR HL,DE	; CORE ADDRESS IN RECORI ; FILBFR ADDRESS FOR NE:
			536 537				; BYTE = (CORADR)-(BOTI +FILBFR
			538 539	; COMPU;	CE THE T	OP ADDRESS OF	FILBFR FOR STORING THE LAS!
			540 541	, RECH	EIVING D SET UP T	ATA IN (TOPUS HE CORE ADDRES)) S OF THE LAST RECEIVING
			(542 543	; DATA	IN 2ND	WORD OF SEGMEN	T TABLE ENTRY
0106	EDU BENOS	q	544 545	COMADM:	תו	BC (PECRYE)	
01DA 01DB 01DD	48 0600 0B	A	545 546 547 548		LD · LD · DEC	C,B B,O BC	; BYTE COUNT
01DE	E5		549		PUSH	HL HL BC	; FILBFR ADDR FOR NEXT I
01E0	22FE03	R	551 552 553		LD	(TOPUSD), HL	; ADDRESS OF FILBFR FOR ; STORING LAST DATA
01E3 01E6	2AF803 09	R	554 555		LD ADD	HL,(CORADR) HL,BC	; CORD ADDRESS
01E7 01EB 01EE	DD2AF603 DD7502 DD7403	R	556 557 558		LD LD LD	IX,(SEGPTR) (IX+2),L (IX+3),H	; SET 2ND WORD SEGMENT F ; WITH ADDRESS OF LAST
01F1 01F2 01F3	E1 BF C9		559 560 561 562		POP CP RET	HL A	; FILBFR ADDR FOR 1ST D/ ; RETURN Z FOR OK
011.5	0)		563 564		KE1		
			565 566 567	; WRITE ; THE ; IN	OUT DAT REST OF (BOTRNG)	A IN FILBFR (DATA, RECOMPUT & (TOPRNG)	MAX.80 BYTES), AND MOVE UP E ADDRESS OF NEXT FILE REC(
		_	569	NXTRNG:			
01F4 01F7	CD5D02 C0	R	570 571 572		CALL RET	WRTDSK NZ	; WRITE FILE ERROR
01F8 01FB	CD6F02 08	R	573 574 575		CALL EX	ADJDSK AF,AF'	; MOVE DATA UP TO FILBFI ; SAVE CARRY FOR BUF EMI
01FC	2AFC03	R	577		LD C-	HL, (TOPRNG)	; RESET ADDRESS OF NEW 5/27/81

BUFADM Loc	ROUTINE OBJ CODE	М	STMT	SOURCE S	END TATEMENT		PAGE 14 ASM 5.9
01FF 0202 0206	22FA03 ED5B4E03 19	R R	578 579 580		LD LD ADD	(BOTRNG),HL DE,(FILRL) HL,DE	; FILE RECORD ; RECORD LENGTH
0207	22FC03	R	581 582		LD	(TÓPRNG),HL	; TOP ADDR FOR NEW FILE
			583 584 585 586	; CHECK ; RANGI ; KEEP	IF CORE E OF THE FILLING	ADDRESS OF RECEINEXT NEW FILE REDATA IN FILBFR	IVING DATA IS BEYOND THE CORD ADDRESSES, IF NOT,
020A	DD2AF603	R	587		LD	IX, (SEGPTR)	
0211	DD6603		589		LD	$H_{1}(IX+3)$	
0214	19		590 591		ADD	HĹ, DE	; CORE ADDRESS FOR LAST BYTE + 80H
0215 0219	ED5BF803	R	592 593			DE, (CORADR)	; CORE ADDR OF RECIVING
021A	ED52		594		SBC	HL,DE	
0210	EB		595		EX	DE, HL	; $HL = CORE ADDR$
0210	3806		590 597		JR	C, WRTS	; WRITE OUT DATA
021F	08		598		ΕX	AF,AF'	
0220	DC3B02	R	599		CALL	C, BLKBUF	; BLANK FILBFR IF EMPTY
0223	1898		600 601		JR	NOTEST	; USE SAME FILE RECORD
			602	; ADDRE	SS OF NE	KT RECORD DATA IS	NOT IN THE RANGE OF
			603 604	; CURR ; CREA	ENT FILE TE A NEW	RECORD, WRITE OU Segment	IT DATA IN FILBFR, AND
			606	WRTS:			
0225	08		607		EX AF, Al	F1	;WAS THERE MORE IN BUFFE
0226	3804	Ð	608 600		JR C, NX	TRN2	;NO
022B	CO	n	610		RET	NZ	: WRITE FILE ERROR
0220		n	611			0.5.8.0.1.8	
0220	CDBC02	R	613	NXI KNZ:	CALL	SEICNI	; SEI SEGMENI SIZE IN SE ; MENT TABLE
022F	2AF803	R	614		LD	HL, (CORADR)	APT FILE DECORD ADDRES
0235	CD4 D02	R	616		CALL CALL	GEN KNG TSTMXR	SET HIGHADDRESS FOR FI
0238	C3B801	 P	617		TD		; ATTRIBUTES
2230	0,0001	A	619		91	DEADIA	, DEANA FILDER & START

5,27,81

C-30

Ε _{ζα}	BLKBUF, LOC	, TSTMXR, OBJ CODE	WR M	IDSK, A STMT SO	DJD URCE	SE ST	ND ATEMENT			PAGE 15 ASM 5.9
				620 * 621 622 ;	HEAD:	ENG ***	BLKBUF,	, TSTMXR,	WRTDSK ******	, ADJDSK **********
				623 ; 624 ; 625 ;	BLK	BUF	FILL TH	HE FILBFR	BUFFER	WITH DATA FF.
•	023B 023C 023D 0240 0243 0246 0248 0248 0248 0248 0242	E5 C5 210004 110104 01FF03 36FF EDB0 C1 E1 C9	R R	6 6 2 7 8 6 2 9 0 1 2 6 6 3 3 4 5 6 6 3 3 4 5 6 6 3 7 6 3 3 4 5 6 6 3 7 6 3 7 6 3 7 6 3 7 6 3 7 6 6 3 7	*** LKBU	# # # F :	PUSH PUSH LD LD LD LD LDIR POP RET	HL BC HL,FILBF DE,FILBF BC, 3FFH (HL),OFF BC HL	****** R R+1 H	; BUFFER ADDR ; SIZE OF BUFF ; FILL 1ST BYTE WITH FF
				638 639 ;	***	* * *	******	*******	******	****
				640 641 642 643	TST IF GR	MXR (T EAT	SET THI OPUSD) 'ER THAN	E HIGH AD TOP ADDRE THEVALUE	DRESS F SS OF C IN(HIG	OR THE FILE ATTRIBUTES. CURRENT FILE RECORD IS ADR),THEN SET HIGADR=TOPI
				644 645 646	***	* * *	******	******	*****	****
	024D 0250 0254 0255 0257 0258 025C	2 ABB03 ED5BFC03 A7 ED52 D0 ED53BB03 C9	R R R	647 648 650 651 652 653 654 6555 655	ISTMX	R:	LD HL,(1 LD DE,(1 AND A SBC HL,1 RET NC LD (HIG. RET	HIGADR) TOPRNG) DE ADR),DE		;OK ;RESET
				657 ;	***	* * *	******	*******	*****	*******
				659 660	WRT BU	DSK FFE	WRITE R TO THE	THE FIRST E DISK.	80 BYI	ES OF DATA IN FILBFR
**				661 662 663 664	OUT	PUT	RETUR	N NZ FOR N Z FOR N	WRITE F O ERROF	TILE ERROR
٠	с •			665 666	***	* * *	******	*******	*****	*****************************
	025D 0260 0263 0267 026A 026E	2 A4 E03 22C303 FD21BF03 CD0000 FDCB0A76 C9	R R X	667 668 670 671 672 673 674 675 676	NRTDS	К:	LD HL,(LD LD CALL BIT RET	FILRL) (FILDL), IY,FILVE SYSTEM 6,(IY+10	HL C	; FILE RECORD LENGTH ; WRITE DATA TO FILE ; RETURN Z FOR NO ERROR ; RETURN NZ FOR WRITE EJ
				677	; ***	* * *	***** C-3	******** 31	*****	**************************************
										· · · ·

•

BLKBUF, LOC	TSTMXR, OBJ CODE	WR1 M S	rdsk, Stmt s	ADJD SOURCE	SE ST	ND ATEMENT	PAGE 16 ASM 5.9
			678 679 680 681 682 683 684 685	, ADJ , TO , THE , FOR , OUT	DSK FIL UN AD PUT	DELETES THE DAT E, THEN MOVES UF USED PART OF FIL DRESS OF FILBFR : RETURN NC IF	TA IN FILBFR THAT HAS BEEN WRITT THE REST OF DATA AND BLANK OUT BFR. ALSO RESET (TOPUSD) LAST USED. THERE IS VALID DATA IN FILBFR FUBFR FMPTY
			686 687 688	; ; ***	* * *	*****	· · · · · · · · · · · · · · · · · · ·
026F 0272 0275 0276 0278	2AFE03 110004 A7 ED52 D8	R R	689 690 691 692 693 694	A D J D S	к:	LD HL,(TOPUSD) LD DE,FILBFR AND A SBC HL,DE RET C	; # OF BYTE OF DATA IN FILBFR ; NO DATA IN FILBFR
0279	ED5 B4 E0 3	R	695 696			LD DE,(FILRL)	;THIS MUCH WAS WRITTEN
027D 027F	ED52 D8		697 698			SBC HL, DE RET C	;NOTHING MORE IN FILBFR
			699 700	; MOV	ΕU	P DATA	
0280 0281 0282 0283 0286	23 44 4D 2 A4 E03 1 10004	R R	701 702 703 704 705 706	 		INC HL LD B,H LD C,L LD HL,(FILRL) LD DE,FILBFR	;READY FOR LDIR
0289 028A 028B 028D 028E 0291	19 C5 EDBO C1 21FF03 A7		707 708 709 710 711 712			PUSH BC LDIR POP BC LD HL,400H-1 AND A	; FROM TOP TO BOTTOM ; # OF BYTE GOT MOVE ; BLANK REST OF FILBFR WITH FF
0292 0294 0295 0296	ED42 44 4D D5		713 714 715 716 717			SBC HL,BC LD B,H LD C,L PUSH DE	; FILBFR ADDRESS FOR NEXT DATA E
0297 0298 0299 029B	62 6B 36FF 13		718 719 720 721			LD H,D LD L,E LD (HL),OFFH INC DE	
029C 029E 029F 02A0	EDBO D1 1B ED53FE03	R	722 723 724 725			LDIR POP DE DEC DE LD (TOPUSD),DE	; CLEAR REMAINDER WITH FF ; DATA ARE FILL UP TO THIS ADDRE
02A4 02A5	A7 C9		726 727 729			AND A RET	;FORCE NO CARRY ON RETURN
			729	• **	***	*****	****
			731 732 733 734 735	; GEI ; SI	N RN(E T	G SET UP SEGMENT BOTRNG - LOW A TOPRNG - HIGH A	ADDRESS IN SEGMENT TABLE. ALSO DDRESS OF NEW FILE RECORD DDRESS OF NEW FILE RECORD
	5/27/81					C-32	

	BLKBUF, LOC	TSTMXR, OBJ CODE	WRTDS M STI	SK, ADJD MT SOURCE	SEND STATEMENT	PAGE 17 ASM 5.9
			7 7 7 7 7	36 ; INPU 37 ; 38 ; 39 ; ****	T: HL - CORE ADDRESS SEGPTR - POINTER TO S	SEGMENT TABLE ************
*	02A6 02A9 02AD 02B0 02B3 02B7 02B8 02BB	22FA03 DD2AF603 DD7401 DD7500 ED5B4E03 19 22FC03 C9	R 71 R 71 R 71 R 71 R 71 R 71 R 71 R 71	40 41 GEN RNG 42 43 44 45 45 46 47 48 49 50 50 51	: LD (BOTRNG),HL LD IX,(SEGPTR) LD (IX+1),H LD (IX),L LD DE,(FILRL) ADD HL,DE LD (TOPRNG),HL RET	;TOP
			7 7 7 7 7 7 7 7 7 7 7	52 ; **** 53 ; 54 ; SETC 55 ; TH 56 ; UI 57 ; RH 58 ; 59 ; INPU 61 ; OUT	CNT COMPUTES THE SEGMENT HE SECOND WORD IN THE SEG PDATED WITH THE HIGHEST A EPLACE WITH THE ACTUAL SE JT: SEGPTR - POINTER TO T	SIZE IN THE SEGMENT TABLE MENT TABLE HAS BEEN KEPT DDRESS-1 SO FAR. IT SHOUL GMENT SIZE. THE SEGMENT TABLE
			7 7 7 7	62 ; 63 ; *** 64	**************************************	4 10 POINT 10 NEXT SEGMEN.
A	02BC 02C3 02C3 02C6 02C2 02CC 02CF 02CF 02D0 02D3 02D6 02D9 02DB	DD2AF603 DD6603 DD5601 DD5601 DD5E00 A7 ED52 23 DD7403 DD7502 110400 DD19 DD22F603	R 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	66 SETCN 67 68 69 70 71 72 73 74 75 76 77 78 76 77 78	<pre>F: LD IX,(SEGPTR) LD H,(IX+3) LD L,(IX+2) LD D,(IX+1) LD E,(IX) AND A SBC HL,DE INC HL LD (IX+3),H LD (IX+2),L LD DE,4 ADD IX,DE LD (SEGPTR),IX</pre>	; 1ST WORD OF SEGMENT ; 2ND WORD OF SEGMENT ; CONVERT TO SIZE ; UPDATE SEGMENT TBL POI
	0201	69	7	19	RET	

C-33

5/27/81

SUBROU Loc	TINE.S OBJ CODE	М	STMT SOURCE	SEND STATEMENT		PAGE 18 ASM 5.9
			780 *HEADI 781 782 783 ; **** 784 ; 785 ; CONI 786 ; 787 ; **** 788 789	NG SUBROU? ********** NP GET IN ******	FINE.S ************************************	**************************************
02E0 02E3 02E6 02E9 02EC 02F0	218009 22D703 218000 22D903 FD21D503 C30000	R R R X	790 CONINP 791 792 793 794 795 796 797 798 799	LD LD LD LD LD JP	HL, CH RBUF (CONDTA),HL HL,CH RSIZ (CONLEN),HL IY, CONVEC SYSTEM	; RECEIVE CHARACTER STR: ; SIZE OF INPUT CHAR ; LENGTH OF BUF
			800 ; **** 801 ; 802 ; PUTS 803 ; 804 ; INPU 805 ; 806 ; **** 807 808	TR OUTPUT T: HL -	A STRING OF CH POINT TO A MESS	ARACTER TO CONSOLE OUTPUT AGE IN DEFT FORMAT
02F3 02F4 02F5 02F8 02FB 02FF	7E 23 22E203 32E403 FD21E003 C30000	R R R X	809 PUTSTF 810 811 812 813 814 815	R: LD A, (H INC HL LD (STR LD (STR LD (STR) LD IY, S JP SYST	L) DTA),HL LEN),A TRVEC EM	;GET COUNT ;OTHER PART IS ALWAYS O

5/27/81

C-34

SYSTEM LOC	CALL VECT OBJ CODE	TOR M STMT	SI Source St	END FATEMENT		PAGE 19 ASM 5.9
		816 817 818	*HEADING	G SYSTEM	CALL VE	CTOR
		819	; ASSIG	N FILE		
0302 0303 0304 0306 0308 0308 030A 030C	05 02 0000 0000 0000 0000 0000	821 822 823 824 825 826 826	FILASV: FILPTR:	DEFB DEFB DEFW DEFW DEFW DEFW DEFB	FILDEV ZDASGN O O O O O	; ASSIGN REQUEST CODE ; FILENAME POINTER
030D	0F03	R 828		DEFW	FILSPV	; SUPPL.PARAMETER VECTO:
030F 0310	00	029 830 831 832	FILSPV:	DEFB DEFS	0 34	; FLAG BYTE
		833	; OPEN 1	FILE		
0332 0333 0334 0336 0338 0338 0338	05 04 4B03 7400 0000 0000 0000	835 836 R 837 838 839 840 841	FILOPN:	DEFB DEFB DEFW DEFW DEFW DEFB	FILDEV ZDOPEN FILPRM 116 0 0	; SAME UNIT AS ASSIGN ; OPEN REQUEST CODE ; FILE ATTRIBUTES AREA ; LENGTH OF FILE ATRIBU'
033D	0F03	R 842		DEFW	FILSPV	; SUPPL.PARAMETER VECTO
		844	; CLOSE	FILE		
033F 0340 0341 0343 0345 0347 0349	05 06 0000 0000 0000 0000 0000	845 846 847 848 850 850 851 852	FILCLS:	DEFB DEFB DEFW DEFW DEFW DEFW DEFW	FILDEV ZDCLOS O O O O O	; SAME UNIT AS ASSIGN ; CLOSE REQUEST CODE
0.2 11 D	0.0	854	FILPRM:		0.0.11	
034B 034C 0350 0352 0353 0355	0000 0000 0000 0000 0000	856 857 858 859 860 861	FILRL: FILSA:	DEFB DEFW DEFW DEFB DEFB DEFW DEFW	500H 0 00H 00H 00H	; FILE TYPE (MUST BE PROC.) ; SIZE ; RECORD LENGTH, DEFAULT ; BLOCKING ; PROPERTIES ; STARTING ADDRESS ; BYTE IN LAST RECORD
0357 0367 03B9 03BB 03BB	0000 0000 8000	862 863 864 865 866 867	FILSMT: LOWADR: HIGADR:	DEFS DEFS DEFW DEFW DEFW DEFW	16 82 0 0 80H	WILL CHANGE TO 80H IF FLOPPY : CREATION DATE SEGMENT POINTER TABLE LOWEST ADDRESS USED HIGHEST ADDRESS UES STACK SIZE
		868 869 870 871	;FILE W	RITE VEC'	TOR	
03BF 03C0	05 0E	872 873	FILVEC:	DEFB FII DEFB ZDI C-3	LDEV WRTB 5	5/27/81

¥

SYSTEM LOC	CALL VEC OBJ CODE	roi M	R STMT	SEND SOURCE STATEMENT
0301	0004	R	874	DEFW FILBFR
03C5 03C7 03C9	0000 0000 00		876 877 878 878	DEFS 2 DEFW 0 DEFW 0 DEFB 0
			880	; CLOSE FOR PROCEDURE FILE
03CA 03CB 03CC 03CE 03D0 03D2 03D4	05 06 4 B0 3 7 400 0000 0000 00	R	882 883 884 885 886 886 887 888 888 889	FILCLP: DEFB FILDEV DEFB ZDCLOS DEFW FILPRM DEFW 116 DEFW 0 DEFW 0 DEFW 0 DEFB 0
			890 891	;CONSOLE READ AND WRITE
03D5 03D6 03D7 03D9 03DB 03DD 03DF	01 0C 0000 0000 0000 0000 0000	•	892 893 894 895 896 896 897 898 899	CONVEC: DEFB CONIN DEFB ZDREDA CONDTA: DEFW O CONLEN: DEFW O DEFW O DEFW O DEFB O
03E0 03E1 03E2 03E4 03E6 03E8 03EA	02 0E 0000 0000 0000 0000 0000		900 901 902 903 904 905 906 907	STRVEC: DEFB CONOUT DEFB ZDWRTB STRDTA: DEFW 0 STRLEN: DEFW 0 DEFW 0 DEFW 0 DEFB 0
03EB 03EC 03ED 03EF 03F0 03F1 03F2 03F3	02 30 0D 02 37 0D 02 39 0D		900 909 910 912 912 913 914 915 916 917 918	ACKMSG: DEFB 2 DEFB '0' DEFB ODH NAKMSG: DEFB 2 DEFB 2 DEFB '7' DEFB ODH ABRMSG: DEFB 2 DEFB 2 DEFB 9' DEFB 0DH
03F4 03F6 03F8 03FA	0000 0000 0000 0000		919 920 921 922 923	RECBYE: DEFW 00 SEGPTR: DEFW 0 CORADR: DEFW 0 BOTRNG: DEFW 0
03FC	0000		924 925 026	TOPRNG: DEFW 0
03FE 0400 0900 0980	0000		927 928 929 930 931	TOPUSD: DEFW O FILBFR: DEFS 500H OUTBUF: DEFS 128 CHRBUF: DEFS 128 CHRSIZ EQU \$-CHRBUF

RECORD BYTE COUNT
SEGMENT TABLE POINTER
ADDRESS IN LOAD RECOR:
LOW ADDRESS OF CURREN'
FILE RECORD
HIGH ADDRESS OF CURRE!
FILE RECORD
TOP ADDRESS OF FILBFR
FILE BUFFER
BUF WITH TEKTRONIX FO
INPUT BUF FROM CONSOL

;

5/27/81

C-36

PAGE 20 ASM 5.9

CROSS REF SYMBOL V	'EREN 'AL M	CE DEFN	REFS		SEND					
ABRCKS 01 ABRMSG 03 ACKMSG 03	81 R F1 R	425 915	81 425	195						
ADJDSK 02 BADCKS 01 BLKBER 01	26F R 7B R 88 R	690 422 513	237 177 618	574 276						
BLKBUF 02 BOTRNG 03 BUFADM 01	23B R 35A R 9A R	627 923 482	149 509 191	514 532	599 578	741				
CEND 01 CHKBAD 00 CHKCKS 01	32 R 90 R 87 R	298 176 448	292 165 164	173						
CHRBUF 09 CHRBUF 01 CHROK 01	80 R 2F R	930 294	55 267 290	791	931					
CK1 01 CLSE 00 CLSS 00	189 R 189 R 19 R	931 449 242 2/1	451 157 228							
COMADM 01 COMSY1 00 CONDTA 03	106 R 106 R 100 R 100 R	544 49 895	516 46 792							
CONIN 00 CONINP 02 CONLEN 03	001 2E0 R 3D9 R	9 790 896	893 264 265	794						
CONOUT 00 CONVEC 03 CORADR 03	02 3D5 R 3F8 R	10 893 922	901 795 483	531	554	592	614			
FILASV 03 FILBFR 04 FILCLP 03	802 R 100 R 8CA R	821 928 882	101 515 243	534	629	630	691	706	874	
FILCLS 03 FILDEV 00 FILDL 03	33F R 005 8C3 R	846 8 875	77 821 669	835	846	872	882			
FILOPN 03 FILPRM 03 FILPTR 03	32 R 34B R 304 R	835 854 823	109 837 100	884						
FILRL 03 FILSA 03	4E R 53 R	857 860	579 224	668	696	705	745			
FILSPV 03 FILVEC 03	OF R BF R	830 872	108 670 185	828	842					
GENADL 01 GENRNG 02 GODCKS 01	6B R 2A6 R 75 R	396 741 419	190 506 152	223 615 241						
GOTLSH 01 HEXBAD 01 HEXDCD 01	1B R 69 R 4D R	279 379 362	273 370 324	374 335						
HEXUPR 01 HIGADR 03 LODBYL 01 LODCON 00 LODF 00	55 R BB R 36 R AE R 071 R	367 866 324 202 153	365 232 206 192 178	234 396	508 398	648 449	653 454			
LODFR3 00 LODOK 00 LODREC 01	02 R 095 R 02 R	206 183 264	212 211 168 154	175 277		_				
						0 7				

.

2

PAGE 21

C-37

5/27/d1

CROSS REFERENCE SYMBOL VAL M DE	EFN REFS	SEND
LOWADR 03B9 R 8 NAKMSG 03EE R 9 NCHR 010C R 2 NOTFST 01CO R 5 NXT 011F R 2 NXTRN2 022C R 6 NXTRNG 01F4 R 5 OPNEWE 0002	365 510 912 422 269 275 524 487 600 282 291 296 512 608 569 526 14 107 107	
OPNFIL 0038 R	99 67	
PUTSTR 02F3 R 8 RECBYE 03F4 R 9	329 155 162 309 420 423 320 187 204	189 205 222 281 426 545
SED9 00A8 R 1	96 194 236 240	
SEGPTR 03F6 R 9 SEND9 0034 R	921 143 484 81 60 62	504 556 587 742 766 778 64 68
SETCNT 02BC R 7 SKIPSP 000F R STRDTA 03E2 R 9 STRFIL 0058 R 1 STRLEN 03E4 R 9 STRVEC 03E0 P 9	266 225 612 53 57 103 811 141 71 104 812 004 812	
SYSTEM 0000 X	3 78 102	110 244 671 796 814
TOPRNG 03FC R 9 TOPUSD 03FE R 9 TSTMXR 024D R 6 USEDIC 0166 P 2	925 524 577 927 551 690 548 231 616	581 649 747 725
WRTDSK 025D R 6 WRTS 0225 R 6 ZDASGN 0002	575 572 568 235 239 506 596 19 822	570 609
ZDCLOS 0006 ZDOPEN 0004 ZDREDA 000C ZDREDB 000A	21 847 883 20 836 23 894	
ZDWRTB 000E	24 873 902	

5/27/81

C-38

25

PAGE 22

APPENDIX D

7

ń

Z-SCAN 8000 SCHEMATICS

ă**t**

	8					7			6	
				DE	VICE	TABLE	E			
	TYPE	+5V	-57	+12V	-12V	GND	RE	FDES	UNUSED	OUTPUTS
	741 5 04	14				7	111 61 128	138	11128-1012	2
	741532			ł		7	112 46 64	95.108.155	10120 10,11	-
	741 5161	16				8	U3 70 7L	136		
	741 5373	20		1		10	14.6.84 -	87		
	74 585	16		t		8	115891112	22 23 30 101 103	3 104	
	745373	20				10	U7.105)==]=0]=0];0];0]		
	74L5175	16		1		8	UI0.13	- 1.0 - M.C M.C		
	1489	14				7	U14,35		1	
	1488			14	1	7	U15,16		U15-3:U	16-3
	74L5125	14				7	UI7			
	745260	14	1			7	018			
	74500	14	1	1	1	7	U140		· · · ·	JI40-8,II
	74532	14				7	U20,149		U149- 8,	11,020-6
	74502	14				7	U96,126		U126-4	
	74LS00	14				7	U24,63,1	33,135,19	U19-6	
	74LSI38	16				8	U25,26,3	36,47,49		
	74LS74	14				7	U28,29,5	8,68,92,94	U68-8.9	
	Z80A - PIO	26					U31-33,	73-75		
	Z80A-SI0/2	9				31	U34			
	TL497	14				5	U37	······		
	40L44-20	18				9	U38-45,	50-57		
	745133	16				8	U48,67			
	74LS10	14	ļ			7	U59,60,1	32,137	U132-6:U	137-8,12
	74L508	14	ļ			7	062,65,1	31		
	74LS20	14				7	066,109		0109-6	
	74 510	14	ļ		ļ		069			
	280A-CIC	24	ļ			5	072	1E) (EA		
	2114-2	18		+		+	0/6-19,	00-01		
	(2/32) PROM	24	 		ł	12	081-83	89-91		
	0251	14	 	+	<u> </u>	+	095			
	75510	10	ł	+	+	+	096,79			
	4702	14	ł	+	+		0100			
	741 5241	20	 	+	+	1 10	11106 107 1	17-123 145 146 14	A 150	
	74509		+	+	<u> </u>	+ 19	11111 129		11120-2 0	
	74564	14	ŧ	+	ł	+	1112		0127-5,0	
	741 5253	16	+	+	+	+ <u></u>	11113-116			
· · ·	78002-CPU	10	+	+	+	31	11124			
	78001-CPU	-iř-	+	+	<u> </u>	36	1 0125			
~	74 502	14	+	+	t	1 7	1 1121			
	745240	20	+	+	<u> </u>	1 10	10127		1127-3.5	7.9.18
	74 5 2 4 1	20	1	+	t	1 10	1 0134			1.1.1.1.0
	Z8000 CLK DRVR	1	1	1	1	5	10139			
	RES NTWK 33	<u> </u>	1	1	t	<u>† =</u>	1 1142-144	4, 147	.1	
	RES NTWK IOK	16	1	1	1	- 1	U27.97.	130, 141	· 1	
	74574	14	1	1	1	7	UIIO		1	

Ċ

В

REFERENCE	DESIGNATORS
HIGHEST USED	NOT USED
CI3	
CR3	
E16	
J 4	
LI	
P2	
PB I	
R19	
S3	
U155	U80,88

COMPIDENTIAL		
This decument is the preparty of Zlag transversion and contains information		
which a confidential and proprietary to Zing, he part of the desument may be	09-0229-00	ZSCAN
expired, reproduced or disclosed to third perilies without the prior written expected	NEXT ABBY	UBED ON
of Zileg incorporated.	MIL	ATION
	3	

∧		F		^
X		1 3	4	3
•	•	•	-	

		ZILOG INC.	TINO, CALIFORNIA 85014	
DRAWN O. Carella: c	BIZE TITLE	ZSCAN BOOO	DZ-0229-00	A A
ISSUED	scale \sim		SHEET 3	
2			1	

D

С

В

Γ						
C	IADØØ-Ø7 SH 5 IC SIOCE- SH 7 IC SLI RST- SH 5 2B	IADØØ IADØI IADØ2 IADØ3 IADØ4 IADØ5 IADØ6 IADØ7	40 D0 1 D1 39 D2 2 D3 38 D4 3 D5 RXDA 12 37 D6 4 D7 350 CE TXDA 15	$\begin{array}{c} & U35 \\ 3 \\ \hline \\ \hline \\ \hline \\ \hline \\ 47 \phi_{Pf} \end{array}$		
c	ZBØMI- SH7 IB ZBØIORQ- SH7 IA ZBØRD- SH7 IB CLOCK+ SH8 IC LAØ2 SH4 2D LAØ1 SH4 2D RXC-		210 RESET BOMT CTSA 0 ¹⁸ 320 ΙΟRQ 320 RD RTSA 0 ¹⁷ DCDA 0 ¹⁹ 20 CLK DTRA 0 ¹⁶ U 94 33 C/D Z 8Ø A 34 B/A SIO/2 130 140 270 280 NT 0 ⁵	U 35 4 C G 5 1489 47¢pf U 35 8 10 1489 1489 1489 1489 1489 1489 1489 1489 1489 1489 1489 1489 1489	4 5 015 1488 9 10 015 1488	
B	SH B ID		7 IEO RXDB 29 $6 IEI$ $1 SNCA$ $1 SNCA$ $1 SNCA$ $1 SNCA$ $1 SNCA$ $2 G$ $3 S$ $7 XDB 2 G$ $7 XDB 2 G$ $2 G$ $3 S$ $7 XDB 2 G$			
Ĉ		·			5 U 16 0 C	$\frac{N(2-1)}{1488}$

genes	3/20	D	Z 50	CAN	
		SCALI	\sim		
2					

2	.		1		
		REVISIONS SCRIPTION	DATE	APPROVED	
			£		
		MASNØ-6	HIS BD		
			<u> </u>		•
	1948		H 10 BC		,
		ND			
		5	H 18 88		
		NS			
		le	H 18 88		
		SC			
		<u> </u>			
		50	H 18 88		
		55			
		5	H 18 8A		2
		T MEM ACC			-
		S	H 17 8A		
		MAADI3-15			
		MSEGDEP	5H15 8C	1 F	
		\\/D			
		S	H 12 88		
		BWP	HISTBA]	
		5	SH 12 8C]	
		NO WAIT		, E	3
		Ŀ	H 9 88	1	
		<u> </u>	5H B BD	1	
		WBØ-2			
			SH 3 8C		
	K	FSH. IN / TOP-	н гф 8В]	
	<u> </u>	EG ST	SHIB IC	1	
		L		-	
	For referen	nce only.		. 4	4
Subjec	et to change	e without no	otice.		
	ZILO 10411 BU	G INC. BB ROAD, CUPERTINO, CAL	IFORNIA 95014		
DRAWN Gemini Jeaps		8000 DZ	- 0229- (20 A	
2			1		

	1	-			
6		E E	E	A	A
ō		0		4	
	•	•	•	-	. · · · · · · · · · · · · · · · · · · ·

_	8	7	1	6		5	4	3	
,	ADØØ-1	5			ADØØ ADØ1 ADØ2 ADØ3	8 9 2 1A1 2 1A1 2 1A1 2 1A2 4 1A2 7 2 4 1A2 7 2 1A3 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TADØØ TADØ1 TADØ2 TADØ3	
С	DUCAY				ADØ4 ADØ5 ADØ6 ADØ7	4 iA2 2Y3 2Y3 2Y3 2Y3 1A1 2Y4 1A3 2Y4 1A3 2Y4 1A3 2Y2 8 1A4 2Y2 8 1A4 2Y2 1A4 2Y2 1A4 2Y3 2Y3 2Y3 2Y3 2Y3 2Y3 2Y3 2Y3	$ \begin{array}{c} 17\\ 1Y2\\ 2A3\\ 15\\ 16\\ 17\\ 18\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17\\ 17$	TADØ4 TADØ5 TADØ6 TADØ7	(
- (BUSAK SH 2 1A TBEN- SH 2 1D U/M- SH 2 1D 12 13 U62 74L5		φ 0 15 φ φ 2 1 74L3 φ φ 451 φ		ADØ8 ADØ9 ADIØ	B A4 q 2Y1 G A3 2Y2 4 A2 5 2Y3 1A1	$ \begin{array}{c} 19\\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	ТАDØ8 ТАDØ9 ТАDIØ	
*	TBEN SH2 ID MMEN SH15 ID	4 3 5 745	9 06 13 0 12 UI 10 74L304	2 1 UI49 3. 74532			2A4 2G		
A (AD 12 AD 13 AD 14 AD 15	6 1A3 2Y2 1A1 2Y4 1A4 2Y1 1A4 2Y1 1A2 2Y3 7G 0	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 1 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 $	TADI2 TADI3 TADI4 TADI5	1

	1				
8	7	6	5	4	3
			•	a .	

INDEX

÷ . Ł •

Z-SCAN INDEX

-A-

abort, 5-14, 6-17, 6-24, 6-31, 6-34, 6-37, 6-39, 7-1,2,3,4,5, 7-7,8,9,10 active low, 1-1 ac Characteristics, 5-10 access, I/O, 5-12 access, memory, 5-12, 5-14, 6-24, 6-46,47 access time, 6-52 acknowledgement, 2-2, 5-13, 7-1,2,3,4,5,6,7,8, 7-11 activate, 6-3, 6-6, 6-14,15 address/data bus, 5-15 address space, 2-1, 2-3, 4-14, 4-55, 5-14, 6-33, 6-37, 6-47 ADM 31, 4-1, 4-3, A-4 AD₀₋₁₅, 5-12, 5-18, 6-45 AS- (Address Strobe), 5-12,5-17,18 ASCII, 4-17, 4-58, 6-26, 6-43, 7-1,2,3,4, 7-11

3

-B-

backspace, 6-17, 6-58 baud rate, 2-3, 3-9,10,11,12, 3-14,15,16, 4-6 4-48, 5-5, 5-7, 6-2, 6-4, 6-14, 6-18, 19, 6-21, 22, 6-60, A-4, 5, A-7,8, A-10 block instructions, 6-57 Break command, 2-2, 4-11, 4-15, 4-28, 4-52, 4-69, 5-17,18, 6-42, 6-44,45, 6-56, 6-58 BREAK key, 2-2, 4-2, 4-24, 4-40, 4-44, 4-52, 4-66, 4-80, 6-18, 6-59 breakpoint, 2-2,3, 4-15, 4-22, 4-24, 4-28, 4-30, 4-43, 4-56, 4-63, 4-65, 4-69,70,71,72,73, 4-83, 4-87, 5-13, 14, 15, 6-2, 6-41, 42, 43, 44, 6-44, 6-46, 6-53, 6-56 break pulse, 5-15,16,17,18,19 buffers, 2-4, 5-10, 5-14 BUSACK-, 5-14,15 bus cycle, 4-28, 5-16,17 bus loading, 5-10 bus master, 5-14 B/W (byte/word), 5-13, 6-43, 6-45
byte, 2-3, 4-20, 4-61,62, 5-1, 5-11,12,13, 5-15, 6-11,12, 6-24,25,26,27,28,29, 6-31, 6-33,34, 6-35,36,37, 6-39, 6-43, 6-45, 6-47, 6-49,50, 6-56, 6-58 byte count, 6-26

-C-

cable, emulator, 3-2, 3-8, 5-1, 5-4,5,6, 5-15, 5-18 cable, terminal, 2-4, 3-8,9, 3-13 cap lock mode, 3-9,10 CAUTION, 1-1, 3-1, 3-18, 5-4, 5-16 checksum, 7-2,3,4, 7-7,8, 7-11 clock driver, 5-9 clock, external, 5-1, 5-3, 5-17 clock, internal, 5-1, 5-3, 5-17,18 clock jumper, 3-16, 5-2 clock source, 3-16, 5-1,2,3, 5-6, 5-17 Command area, 6-4,5, 6-8,9, 6-15, 6-20,21,22, 6-29, 6-34, 6-41, 6-54,55 Command, Break, 2-2, 4-11, 4-15, 4-28, 4-52, 4-69, 5-17,18, 6-42, 6-44,45, 6-56, 6-58 Command, Compare, 4-21, 4-61, 4-66, 6-9, 6-25,26 Command, Display, 1-1,2, 2-2,3, 3-9,10,11,12, 3-15,16, 4-58,59, 5-4,5, 5-12, 5-14, 5-16, 5-19, 6-1,2, 6-3,4,5,6, 6-8,9, 6-11,12, 6-14, 6-16,17,18,19,20, 6-24,25,26,27,28,29, 6-32,33,34,35, 6-37, 6-39, 6-41, 6-50, 51, 6-53, 54, 55, 6-57, 58, 6-60, 7-5, A-1, A-3,4, A-7 Command, eXamine, 4-25, 4-59, 5-11, 6-1, 6-4, 6-13, 6-17, 6-24, 6-26, 6-29, 30, 31, 6-33 Command, Fill, 4-59, 6-31, 32, 33 Command, Go, 4-22, 4-24, 4-63, 4-65, 5-19, 6-1, 6-4, 6-53, 6-55, 56, 57 Command, Inst count, 6-1, 6-4, 6-42, 6-44, 6-46, 6-54,55,56 Command, Load, 6-1, 6-4, 6-13, 6-16,17, 6-37,38, 7-1,2,3,4,5,6 Command, mAp, 4-28, 4-52, 4-69, 6-1, 6-4, 6-6, 6-42, 6-47,48, 6-54 Command, moVe, 4-41, 4-81, 6-1, 6-4, 6-33, 34 Command, Next, 4-21,22, 4-62,63, 5-11, 5-13, 6-1, 6-4, 6-46, 6-53, 6-55, 56, 57 Command, Peek, 4-26, 4-67, 6-1, 6-4, 6-7,8, 6-51, 6-54,55, 6-58 Command, Quit, 4-12, 4-54, 6-1, 6-6, 6-7 Command, reAd, 5-12, 6-1, 6-4, 6-34, 35

Command, reGister, 4-29, 4-70, 5-11, 5-19, 6-1, 6-4, 6-42, 6-49, 6-51, 6-55 Command, supplementary, 6-6 Command, Irace, 5-13, 6-1, 6-43, 6-55, 6-57 Command, Wait-states, 5-10, 6-4, 6-52,53 Command, Write, 5-12, 5-14, 6-1, 6-4, 6-36,37 command line, 7-4, 7-6 Commands, monitor, 2-2 Compare command, 4-21, 4-61, 4-66, 6-9, 6-25,26 complement, 1-1 control character, 7-4, 7-11, A-3, A-6, A-8 CTRL R, 4-2, 4-14, 4-25, 4-55, 4-66, 6-9,10, 6-13, 6-15,16 CTRL Q, 6-18, 6-24 CTRL S, 6-18, 6-24 cross assembler, 2-1 cross compiler, 2-1 CRT connection, 3-8, 3-10, 3-13 cursor control keys, 4-12, 4-54, 6-6,7,8, 6-15,16, A-1, A-6, A-8,9 cursor manipulation, 6-5

Ĺ

3

-D-

data message, 6-24, 7-1,2,3,4, 7-7,8,9, 7-11 data transmission, 7-2, 7-5,6, 7-8, 7-10 dc characteristics, 5-9,10 deact1vate, 6-6,7, 6-16 default value, 3-14, 4-14, 4-25, 4-42, 4-55, 4-62, 6-9,10, 6-15, 6-22 direct memory access, 5-14 Display command, 1-1,2, 2-2,3, 3-9,10,11,12, 3-15,16, 4-16,17, 4-58,59, 5-4,5, 5-12, 5-14, 5-16, 5-19, 6-1,2,3,4,5,6, 6-11,12, 6-8,9, 6-14, 6-24,25,26,27,28,29, 6-16,17,18,19,20, 6-32,33,34,35, 6-37, 6-39, 6-41, 6-50,51, 6-53,54,55, 6-57,58, 6-60, 7-5, A-1, A-3,4, A-7 DMA, 5-14 DONE message, 4-16, 4-57, 6-24, 6-32, 33, 34, 6-36 don't care, 5-19 download, 1-2,3, 2-1, 4-1, 4-4, 4-36, 4-40, 4-75,76,77, 6-37 DS- (Data Strobe), 2-3, 5-9, 5-12, 5-18 dynamic memory, 5-6, 5-10,11

echo, 7-2, 7-4,5,6,7 2-1,2,3,4, emulation, 5-1, 5-4, 5-9,10,11,12, 5-14,15,16, 5-19, 6-1,2,3,4, 6-6, 6-23,24, 6-34, 6-41, 6-43, 6-45,46, 6-48,49, 6-51, 6-53,54,55,56,57,58,59 emulation cable, 3-2, 3-8, 5-1, 5-3,4,5,6, 5-13, 5-15, 5-18 emulator, 2-2,3,4, 3-17, 5-1, 5-9,10, 5-14, 6-3, 6-41,43 enabling signal, 5-16 error text, 7-1.,2,3 eXamine command, 4-25, 4-59, 5-11, 6-1, 6-4, 6-13, 6-17, 6-24, 6-26, 6-29, 30, 31, 6-33 Execute command, 6-1 Execution Screen, 2-2, 4-8,9, 4-24, 4-26,27,28, 4-32, 4-50,51, 4-62, 4-65, 4-67, 4-69, 4-74, 5-11,12, 6-4,5, 6-17,18, 6-43, 6-46, 6-49, 6-51, 6-53,54,55, 6-58 external clock, 5-1, 5-3, 5-17 external equipment, 5-16

-F-

fan, 3-7, 3-10 field, file name, 6-13, 6-16 field, hexadecimal, (see hexadecimal) field, memory content, 6-9, 6-13 field, modifiable, 6-9, 6-11, 6-14, 6-21 field, multiple choice, 6-11,12,13, 6-22 file name, 6-9, 6-13, 6-16, 6-37, 38, 39, 6-41, 7-4, 7-6, 7-11 file name field, 6-13, 6-16 Fill command, 4-16, 4-22, 4-59, 6-31, 32, 33 fill string, 4-57, 6-31 firmware, 6-47 Flag & Control Word, 4-21, 4-23, 4-29, 4-42, 4-44, 4-62, 4-64, 4-70, 4-82, 4-85, 5-11, 6-50, 6-54, 6-57, 6-59 flowchart, LOAD, 7-12 flowchart, SEND, 7-13 front panel, 2-4, 3-4, 3-7, 3-11, 3-17, 5-2,3,4,5, 5-7, 5-15, 6-14, 6-18, 6-55, 56 fuse, 2-4, 3-2

-H-

hardware trigger, 5-15 hexadecimal field, 4-61, 6-9,10,11, 6-13, 6-15, 6-22 hex-N, 6-22 high voltage areas, 3-3 host mode, (see Transparent mode) host, non-Zilog, 1-2,3, 6-13, 7-1 Host screen, 3-15, 6-5,6, 6-60 host system, 1-2,3, 2-1, 3-1,2, 3-13, 3-15,16, 6-1,2,3,4, 6-13, 6-18, 6-21, 6-37, 6-39, 6-48, 6-60, 7-1,2, 7-8 host system connection, 4-4 host, Zilog, 3-13,14

-I-

ť

-J-

jumper, clock, 3-16, 5-2,3

-K-

-L-

÷

7

-M-

manual break, 4-2, 5-7, 5-15, 6-55, 6-59 mappable memory, 2-3, 4-19,20,21, 4-27,28, 4-31, 4-35, 4-41, 4-55, 4-57, 4-60, 61, 62, 4-69, 4-72, 4-81, 5-11, 5-14, 6-23, 6-30, 31, 6-33, 6-37, 6-41, 6-47,48, 6-56, 6-59 mAp command, 4-28, 4-52, 4-69, 6-1, 6-4, 6-6, 6-42, 6-47,48, 6-54 M-C, 6-22, 6-26, 6-29, 6-31, 32, 6-34, 35, 6-37, 38, 6-41, 6-45,46, 6-48,49, 6-51, 6-53 memory access, 5-12, 5-14, 6-24, 6-46,47 memory content field, 4-66, 6-9, 6-13 Memory I/O Screen, 2-2, 4-7, 4-16, 4-25, 4-40,41, 4-49, 4-57, 4-66, 4-80,81, 5-11,12, 5-14, 6-4, 6-5, 6-9, 6-11,12, 6-16,17, 6-23, 6-30, 6-41, 6-51 memory-mapped I/O, 5-13 memory spaces, 2-3, 4-28, 4-35, 4-76, 5-13, 6-26, 6-29, 6-31,32, 6-34, 6-38, 6-41, 6-47,6-51 memory, target, (see target memory) memory trace, 6-55 menu area, 4-7, 4-11, 4-14, 4-48,49, 4-52,53, 6-5,6,7, 6-14, 6-16, 17, 6-20, 6-22, 6-24, 25, 6-28, 6-30, 6-34, 6-41, 6-54,55 modes, operating, (see operating mode)

modifiable field, 6-9, 6-11, 6-14, 6-21
monitor mode, 1-2,3, 3-7, 3-11, 3-13,14,15, 5-12,
 5-14,15, 6-1,2,3, 6-18, 6-21,22, 6-55,56
monitor NMI, 4-24, 4-65, 5-7, 5-15, 6-18, 6-55,56
monitor RESET, 4-4, 4-6, 4-48, 4-52, 5-7, 6-18
MONITOR/TARGET switch, 4-4
monitor tutorial, 1-2, 3-12,13
moVe command, 4-41, 4-81, 6-1, 6-4, 6-33,34
MREQ-, 5-10, 5-12, 5-18
multiple choice field, 6-11,12,13

-N-

ź

ţ

1

-0-

operating mode, 2-2, 5-7,8, 6-1, 6-3, 6-26 ordering information, 2-4 oscilloscope, 5-1, 5-15,16 output drive, 5-9

-P-

pass counter, 2-2, 4-30, 4-71, 5-16, 6-43, 6-46
PDS 8000, 2-1, 2-5, 3-13 4-36, 4-77
Peek command, 4-26, 4-67, 6-1, 6-4, 6-7,8, 6-51,
 6-54,55, 6-58
pin protector, 5-4, 5-6
PLZ/ASM, 4-37, 4-77, 6-27
POWER, 2-4, 3-2, 3-7, 3-10, 5-4,5
power connection, 3-2, 3-5
power cord, 3-2, 3-4,5, 3-7, 5-2
power cord, 0.5., 3-5, 3-17, 5-3
POWER switch, 3-4, 3-7, 3-9,10, 3-17,18, 5-2,3

-Q-

qualifying signal, 5-16, 5-18 Quit command, 4-12, 4-54, 6-1, 6-6,7

-R-

read/write, 4-25, 4-66, 4-86,87, 6-43, 6-45 reAd command, 5-12, 6-1, 6-4, 6-34,35, recommended systems, 2-5 record count, 6-37 recording window, 5-16 refresh, 2-1, 5-6, 5-11,12, 5-14,15, 5-17, 6-4, 6-22,23, 6-43, 6-46, 6-52 register, 2-3, 4-21, 4-65, 5-11, 5-19, 6-5, 6-27, 6-49, 6-51, 6-54, 55, 56, 6-58, 59, 7-3 reGister command, 4-29, 4-70, 5-11, 5-19, 6-1, 6-4, 6-42, 6-49, 6-51, 6-55 relocation, 3-2 reset driver, 5-9 RESET, monitor, 4-4, 4-6, 4-48, 4-52, 5-7, 6-18 RESET- signal, 2-3, 3-16, 5-7 RESET switch, 3-7, 3-11, 3-14, 3-16, 4-4, 5-5 RESET, Target, 4-4, 4-44, 4-85, 5-7,8 reshipment, 3-2 Resources Screen, 2-2, 4-7, 4-28, 4-35, 4-49, 4-52, 4-67, 4-69, 4-76, 5-11, 6-4, 6-6,7,8, 6-41,42, 6-49, 6-54, 6-56, 6-58 return message, 4-24, 4-65, 6-18 RIO, 4-37, 4-77, 7-4, 7-6, 7-11 ROM (Read Only Memory), 2-3, 4-1, 4-41, 4-81, 6-47,48

1

-8-

segment number, 4-56, 4-59, 4-73, 4-84, 6-26, 6-29, 6-31,32, 6-34, 6-37,38,39, 6-41,42, 6-45, 6-48,49,50,51, 6-55, 6-58 self refreshing memory, 5-12 set-up time, 5-10 shadow memory, 2-2 SHIFT key, 3-14, 4-2, 6-9, 10, 11, 12, 13, 6-30, A-5 space character, 4-28, 4-69, 6-11 specification, 2-3, 3-1, 5-6, 5-10, 5-15 stand-alone, 1-1, 2-1, 3-8,9 status code, 6-22, 6-43, 6-46 Status to target, 3-12, 3-14, 5-6, 5-11,12, 6-22,23 ST₀₋₃, 5-12, 5-18, 6-43 STOP-, 5-15 subscreen, 4-10, 6-5,6,7,8, 6-13, 6-15,16, 6-24, 6-41, 7-4 supplementary command, 6-6 switch, Baud Rate, 3-15,16 switch, NMI, (see NMI) switch, POWER, (see POWER switch) switch, RESET, (see RESET) switch, MONITOR/TARGET, (see MONITOR/TARGET) switch, voltage selection, 3-4, 3-7 syntax, 6-1, 7-11 system mode, 6-50 system screen, 3-11,12, 3-14,15,16, 4-6, 4-8, 4-10, 4-48,49,50, 4-68, 6-4, 6-14,15, 4-52, 6-18,19,20,21, 6-60

-S-

-T-

1

1

typeahead, 4-4,5

-U-

underscore, 1-1 unpacking, 1-1, 3-1,2, 3-7 upload, 2-1, 6-39 user input, 6-1, 6-6, 6-11,12, 6-14, 6-25, 6-31, 6-36, 6-59 user interface, 2-2, 4-1, 6-1, 6-37, A-1

-V-

2

7

-W-

WAIT-, 5-9, 5-15, 5-17, 6-52 Wait states command, 5-10, 6-4, 6-52,53 WARNING, 1-1, 3-1,2, 3-5,6, 3-17,18, 5-18 window area, 6-5, 6-17, 6-24,25, 6-27,28,29,30, 6-32, 6-34, 6-36,37, 6-51 word, 2-1, 2-3, 3-15, 5-12,13, 5-17,18, 6-11,12,13, 6-26,27,28,29, 6-31, 6-34,35,36,37, 6-43, 6-45,46, 6-49, 6-51, 6-55,56, 7-3 Write command, 5-12, 5-14, 6-1, 6-4, 6-36,37

write protection, 4-31, 4-72,73, 6-30, 6-47

-Z-

Z8000 CPU Technical Manual, 2-1, 5-8, 5-11, 5-13, 5-17, 6-3, 6-27, 6-57
Z8000 Software Development Package, 2-5
Z8001, 1-2,3, 2-1, 2-3,4, 3-1,2, 3-8, 3-12, 3-17,18, 4-1, 4-5, 4-14, 4-47, 4-55, 4-59, 4-75,76,77,78,79, 5-1, 5-4, 5-13, 5-18, 6-2,3, 6-21, 6-32, 6-37, 6-39, 6-41,42,43, 6-45, 6-49,50, 6-54,55, 6-57,58
Z8002, 1-1,2,3, 2-1, 2-3,4, 3-1,2, 3-7,8, 3-12, 3-17,18, 4-1, 4-5, 4-18, 4-21, 4-34,35,36, 4-38,39, 5-4,5, 5-18, 6-2,3, 6-21, 6-26, 6-29, 6-31,32, 6-34, 6-38, 6-41,42, 6-45,46, 6-48,49,50,51, 6-54,55,56,57,58
ZDS-1, 2-1, 2-5, 4-36, 4-77
Zilog host, 1-2, 3-13, 7-1, 7-5
Z-SCAN 8000 verification, 3-10

÷

Zilog Sales Office

West

Sales & Technical Center Zilog, Incorporated 1333 Lawrence Expressway Suite 400 Santa Clara, CA 95051 Tele: (408) 446-9848

Sales & Technical Center Zilog, Incorporated 18023 Sky Park Circle Suite J Irvine, CA 92714 Tele: (714) 549-2891 TWX: 910 595-2803

Sales & Technical Center Zilog, Incorporated 15643 Sherman Way Suite 430 Van Nuys, CA 91406 Tele: (213) 989-7484 TWX: 910-495-1765

Midwest

Sales & Technical Center Zilog, Incorporated 890 East Higgins Road Suite 147 Schaumburg, IL 60195 Tele: (312) 885-8080 TWX: 910 291 1064

South

Sales & Technical Center Zilog, Incorporated 2711 Valley View, Suite 103 Dallas, TX 75234 Tele: (214) 243-6550 TWX: 910 860 5850

Technical Center Zilog, Incorporated 1442 U.S. Hwy 19 South Suite 135 Clearwater, FL 33516 Tele: (813) 535-5571

East

Sales & Technical Center Zilog, Incorporated Corporate Place 99 South Bedford St. Burlington, MA 01803 Tele: (617) 273-4222 TWX: 710 332-1726

Sales & Technical Center Zilog, Incorporated 110 Gibraltar Road Horsham, PA 19044 Tele: (215) 441-8282 TWX: 510 665 7077

United Kingdom

Zilog (U.K.) Limited Babbage House, King Street Maidenhead SL6 1DU Berkshire, United Kingdom Tele: (628) 36131 TELEX: 848609

West Germany

Zilog GmbH Zugspitzstrasse 2a D-8011 Vaterstetten Munich, West Germany Tele: 08106 4035 TELEX: 529110 Zilog d. 1

Japan

Zilog, Japan KK Linden Sky Heights Bldg. 1F 13-2 Sakuragaoka-Machi Shibuya-Ku Tokyo 105 *Japan Tele: (3) 476-3010 TWX: 781 23723 Lawright