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An Overflow System in Which 
Queuing Takes Precedence 

By J. A. MORRISON 

(Manuscript received July 1, 1980) 

Number 1 

When calls offered to a primary group of trunks find all of them 
busy, provisions are often made for these calls to overflow to other 
groups of trunks. Such traffic overflow systems have been of interest 
for a long time, but recently overflow systems that allow for some 
calls to be queued have been of importance. In this paper we analyze 
a traffic overflow system with queuing, which consists of a primary 
and a secondary gro.up. The system which we consider here differs 
from the two systems we investigated earlier, in that no overflow from 
the primary to the secondary is permitted if there is a waiting space 
available in the primary queue. As with the earlier investigations, we 
adopt an analytical approach which considerably reduces the dimen
sions of the problem, and simplifies the calculation of various steady
state quantities of interest. Our results include expressions for the 
loss probabilities, the average waiting times in the queues, and the 
average number of demands in service in each group. 

I. INTRODUCTION 

In this paper a particular overflow system with queuing is analyzed. 
The system consists of two groups, a primary and a secondary, with nk 
servers and qk waiting spaces, which receive demands from indepen
dent Poisson sources Sk with arrival rates Ak > 0, k = 1 and 2, 
respectively, as depicted in Fig. 1. The service times of the demands 
are independent, and exponentially distributed with mean service rate 
fl > 0. If all n2 servers in the secondary are busy when a demand from 
S2 arrives, the demand is queued if one of the q2 waiting spaces is 

In Memoriam: Joanne B. Fry, Associate Editor of The Bell System Technical Journal 
since 1978, died in an automobile accident January 2, 1981. 

1 



available, otherwise it is lost (blocked and cleared from the system). 
Demands waiting in the secondary queue enter service (in some 
prescribed order) as servers in the secondary become free. 

If all n.1 servers in the primary are busy when a demand from 8 1 
arrives, the demand is queued in the primary, if one of the q1 waiting 
spaces is available. No overflow is permitted from the primary queue, 
so that a demand in the primary queue must wait for a server in the 
primary to become free. If all nl servers in the primary are busy and 
all q1 waiting spaces are occupied, when a demand from 81 arrives, the 
demand is served in the secondary, if there is a free server and there 
are no demands waiting in the secondary queue, otherwise it is lost. 

The overflow system described above differs from the two systems 
which we investigated earlier,1,2 in that no overflow from the primary 
to the secondary is permitted if there is a waiting space available in 
the primary queue. This restriction was one invoked by Anderson.3 In 
the two systems investigated earlier, arriving calls can overflow when 
the primary queue is not full. The system considered in this paper is 
a particular case of the one considered by Rath,4 which was composed 
of two queues, one of which is allowed to overflow to the other under 
specified conditions involving the queue lengths. He obtained some 
numerical solutions using a Gauss-Seidel iteration technique, but none 
of these correspond to the particular system that we are considering. 
He also developed an approximate procedure for analyzing his system, 
based on the use of the Interrupted Poisson Process. 

Here we analyze the overflow system using a technique analogous 
to the one introduced in the earlier paper.1 Let Pij denote the steady
state probability that there are i demands in the primary and j 
demands in the secondary, either in service or waiting. These proba
bilities satisfy a set of generalized birth-and-death equations, which 
take the form of partial difference equations connecting neighboring 
states. We carry out an analysis that reduces the dimensions of the 
problem, which may be considerable in cases of interest. The basic 
technique is to separate variables in the region away from a certain 
boundary of state space. This leads to an eigenvalue problem for the 
separation constant. The eigenvalues are roots of a polynomial equa
tion. The probabilities Pij are then represented in terms of the corre
sponding eigenfunctions. The constant coefficients in these represen
tations are determined from the boundary conditions and the normal
ization condition that the sum of the probabilities is unity. 

Various steady-state quantities are of interest, which may be ex
pressed in terms of the probabilities Pij. The quantities include the loss 
(or blocking) probabilities, the average waiting times in the queues, 
and the average number of demands in service in each group. These 
quantities may be expressed directly in terms of the constant coeffi
cients which occur in the representations for the probabilities Pij. Thus 
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the steady-state quantities of interest may be calculated directly, 
without having to calculate the probabilities Pij. Here again the reduc
tion in the dimensions of the problem is valuable. 

Only the theoretical results are presented in this paper. Numerical 
results will be presented in a forthcoming paper by Kaufman, Seery, 
and Morrison.5 Results will be given there for the two overflow systems 
considered previously, based on the earlier analysis, 1 as well as for the 
system considered in this paper. 

Section II discusses the representation of the probabilities Pij in 
terms of the eigenfunctions, and the boundary and normalization 
conditions. Various steady-state quantities of interest are calculated in 
Section III. The appendix gives properties of the eigenfunctions. 

We assume throughout the analysis that ql 2: 1, since the system 
considered in this paper, and the two systems analyzed earlier, are 
identical if ql = 0, i.e., if there is no primary queue. However, the 
results of this paper reduce to those obtained earlier l if ql = 0. If q2 is 
large, or even infinite, an alternate analysis, analogous to that pre
sented for the other two systems,2 may be carried out for the present 
system, but we do not pursue that here. 

II. REPRESENTATION AND BOUNDARY CONDITIONS 

We let pij denote the steady-state probability that there are i 
demands in the primary and j demands in the secondary, either in 
service or waiting. These probabilities satisfy a set of generalized birth
and-death equations,6 which may be derived in a straightforward 
manner. We define the traffic intensities 

(1) 

and let the total number of servers and waiting spaces in each group 
be 

k2 = n2 + q2. 

It is convenient to introduce the function 

Xl= {
I, l2: 0, 
0, l < 0, 

as well as the Kronecker delta 

Oij = {I, 
0, 

i =j, 
i #j. 

Then the birth-and-death equations are 

[al(1- Oik1Xj-n2) + a2(1 - Ojk2) + min(i, nl) + min(j, n2)]Pij 

= al(l - OiO)Pi-l,J + (1 - OjO)(aloiklX~-j + a2)Pi,j-l 

(2) 

(3) 

(4) 
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+ (1 - oih)min(i + 1, nl)Pi+I,j + (1 - ojkz)min(j + 1, n2)Pi,j+l, (5) 

for 0 ::5 i ::5 kI, 0 ::5 j ::5 k2• The normalization condition is 
hI hz 
L L Pij = 1. (6) 
i=O j=O 

For i "# kl' the variables in (5) may be separated, and there are 
solutions of the form adlj, where 

[al + min(i, nl) + p]ai = al(1 - oio)ai-l + min(i + 1, nl)ai+l, (7) 

for 0 ::5 i::5 kl - 1, and 

[a2(1 - Ojhz) + min(j, n2) - p],Bj 

= a2(1 - OjO),Bj-1 + (1 - ojhz)min(j + 1, n2){3j+1, (8) 

for 0 ::5 j :s k2, and p is a separation constant. Hence, from (7), 

(al + i + p)ai = al(1 - oiO)ai-l + (i + l)ai+l, (9) 

for 0 ::5 i :s nl - 1. The solution of (9) may be expressed in terms of 
Poisson-Charlier7

,8 polynomials. We here denote the solution of (9) for 
which ao = 1 by Si(p, al). The properties of Si(p, a) which we will need 
are given in the appendix. 

We assume that ql ;::: 1. Then, from (7), 

(10) 

for nl :s i :s kl - 1. The solution of (10) may be expressed in terms of 
Chebyshev polynomials of the second kind,9 U1(x). It is convenient to 
define 

n/(p) = (nl )112 UI(al + nl + p). 
al 2~alnl 

(11) 

The appendix gives the properties of these functions that we need. We 
note here, however, that Uo(x) == 1 and U-1(x) == O. From (9), (10), 
(53), and (64), with a suitable normalization, it follows that 

( :: r-i 

[Sn, (p, al)ni-n, (p )-Sn,-1 (p, al)ni-n,-1 (p) 1, 

(12) 

nl ::5 i :s kl . 

Next, from (8), 

(a2 + j - p),Bj = a2(1 - OjO){3j-l + (j + 1){3j+l, (13) 

for 0 ::5 j ::5 n2 - 1. It follows from (53) that {3j is proportional to 
sA -p, a2) for 0 :s j :s n2. Also, 
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[a2(1 - 8jk2) + n2 - p]pj = a2{3j-1 + n2(1 - 8j~)f3j+l, (14) 

for n2 :s j :s k2. Corresponding to (11), we define 

(15) 

We also define 

(16) 

The appendix gives the properties of these functions that we need. It 
follows from (14) and (62) that pj is proportional to </>Ap) for n2 - 1 :s 
j:s k 2• 

Consequently, we take 

PAp) = {Sj(-P, a2)</>n2(P)' O:sj:s n2, 
Sn2(-P, a2)</>Ap), n2 - I:sj:s k2, (17) 

where 

Sn2-1( -p, a2)</>n2(P) = s~( -p, a2)</>~-I(p). (18) 

This equation may be written in the form 

p[sn2(1 - p, a2)'l'Q2(P) - sn2-I(I - p, a2)'l'Q2-I(P)] = O. (19) 

The expression in the square brackets in (19) is a polynomial in p of 
degree k2 = n2 + q2. It was shown I that its zeros are positive and 
distinct, and we denote them by pm, m = 1, ... , k 2• We also let po = o. 
It follows that we may represent the probabilities Pi} in the form 

k2 

L CmCXi(Pm)sA-Pm, a2)</>n2(Pm), 
m=O 

Pij = 
k2 

(20) 

L CmCXi(Pm)S~( -pm, a2)</>APm), 
m=O 

for 0 :s i :s kl' where CXi(p) is defined in (12), and the constants Cm are 
to be determined. 

It remains to satisfy the boundary conditions corresponding to i = 
kl in (5), as well as the normalization condition (6). If we set i = kl in 
(5), we obtain 

(al + a2 + nl + j)Pk1,j = alpk1-I,j + (al + a2)(1 - 8jO)Pk1,j-1 

for 0 :s j :s n2 - 1, 

[a2(1 - 8Q2,o) + nl + n2]Pk1,n2 

= aIPk1-I,n2 + (al + a2)pkl,~-1 + n2(1 - 8Q2,O)Pkl'~+1, (22) 
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and, if q2 ::: 1, 

[a2(1 - Ojk2) + nl + n2]Pkl,j 

for n2 + 1 :5j:5 k2. 
If we substitute (20) into (21), after reduction with the help of the 

recurrence relations in the appendix, we find that 

L Cm{pm[snl(1 + pm, al)nql(Pm) - Snl-I(1 + pm, al)nql-1(Pm)]Sj{-Pm, a2) 
m=O 

for 0 :5j:5 n2 - 1. Also, from (23), it is found that 
k2 

L CmPmSn2(-Pm, a2)[snl(1 + pm, al)nql(Pm) 
m=O 

- Sn l -I(1 + pm, al)nql-I(Pm)]<t>APm) = 0, (25) 

for n2 + 1 :5 j :5 k2. It may be shown that the boundary condition (22) 
is redundant, as is to be expected. Thus the constants Cm are deter
mined by (24) and (25) only to within a multiplicative constant, which 
is determined from the normalization condition (6). 

From (20), with the help of (16), (19), (57), and (58), it is found that 

L Pij = COlXi(0)[Sn2(1, a2)'l' q2(0) - sn2-1(1, a2)'l' Q2-1(0)], (26) 
j=O 

for 0 :5 i:5 k l • But, from (12) and (66), 

(::)",8,(0, all, 
(27) 

Hence, from (26) and (27), with the help of (57), (58), and (65), the 
normalization condition (6) implies that 

Co[snl(l, adnql(O) - sn l -I(I, al)nql - 1(0)] 

• [sn2(1, a2)'l' q2(0) - sn2-1(1, a2)'l' q2-1(0)] = 1. (28) 

Once the constants Cm have been determined, the steady-state prob
abilities Pij may be calculated from (20). We remark that the number 
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of constants to be determined is only k2 + 1, whereas the number of 
probabilities Pij is (kl + 1) (k2 + 1). 

III. SOME STEADY-STATE QUANTITIES 

We proceed now to the calculation of various steady-state quantities 
of interest. These quantities are depicted in the diagram of Fig. 1, 
which indicates the mean flow rates. The loss probabilities Ll and L2 
are given by 

k2 

Ll = L Pk l ,], 

j=~ 

kl 

L2 = L Pi,k2 , 

i=O 
(29) 

and the probabilities that a demand from the primary, or secondary, 
source is queued on arrival are 

k l -l k2 

Ql = L L pij, 
i=nl j=O 

kl k 2-1 

Q2 = (1 - 8qz,o) L L Pij. 
i=O j=~ 

(30) 

The probability that a demand arriving from the primary source 

A 1(1-Ll-0l-112) 
nl SERVERS 

A
1
(1-L 1-1 12 ) 

Al 

Rll = 1.. 10 1 

ql WAITING 

Al 0 1 
SPACES 

A1112 

n2 SERVERS 
A2(1-L2) + 1..1112 

A2(1- L2-0 2) 

A2 Rn = 1.. 20 2 

q2 WAITING 

A 2 Q 2 
SPACES 

Fig. I-Mean flow rates for an overflow system with queuing; Poisson arrival rates 
t\l and A2, loss probabilities Ll and L 2, queuing probabilities QI and Q2, and overflow 
probability 112• 
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overflows (immediately) is 
n2-I 

112 = L Pkl,j· 
j=o 

(31) 

Since the mean service rate is Jl, the mean departure rate from the 
primary queue to the primary servers is 

kl k2 

Ru = nIJl L L Pij, (32) 
i=nl+I j=O 

while the mean departure rate from the secondary queue to the 
secondary servers is 

R22 = n2Jl(1 - Oq2'O) L L Pij. 
i=Oj=~+1 

(33) 

The average number of demands in the primary and secondary queues 
are 

kl k2 

VI = L L (i - nl)Pij, 
i=nl j=O 

kl k2 

V 2 = L L (j - n2)Pij. 
i=Oj=~ 

(34) 

Also, the average number of demands in service in the two groups are 
kl k2 

Xl = L L min(i, nl)Pij, 
i=O j=O 

X2 = L L min(j, n2)Pij. 
i=O j=O 

(35) 

Now, according to Little's theorem,6 the average number of demands 
in a queuing system is equal to the average rate of arrival of demands 
to that system times the average time spent in that system. If we apply 
this result to the primary and secondary queues, we find that the 
average waiting times of the demands which are queued in the primary 
or in the secondary are given by 

VI V 2 
WI = }\JQI' W2 = A2Q2 (q2 ~ 1), (36) 

respectively, independently of the order of service within each queue. 
Also, if we apply Little's theorem to the primary and secondary groups 
of servers, we obtain 

(37) 

The steady-state quantities of interest may be expressed in terms of 
the constants Cm with the help of the representations in (20). From 
(29) it is found, with the help of (12) and (16), that 

k2 

LI = L Cm[Snl(P"" al)!2ql(Pm) - Snl-I(Pm, aI)!2QI-I(Pm)] 
m=O 

(38) 
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We define 

do = Co[sn2(1, a2)'l'q2(O) - Sn2-l(1, a2)'l'q2-l(O)] 

= [Snl(l, al)nQ1(O) - Snl-l(l, al)nQ1-l(O)r\ (39) 

from (28). Then, from (30) it is found, with the help of (26), (27), and 
(65), that 

Ql = dOsn1(0, al)[nQ1(O) - 1]. 

Moreover, from (29) and (31), it follows that 

Ll + 112 = doSn1(0, al), 

(40) 

(41) 

and from (32) it follows that Rn = AlQI, as is to be expected, since in 
the steady state the mean departure rate from the queue is equal to 
the mean arrival rate to it. 

We define 

Ll (~) = f l~Q-1 = {[q - (q + 1)~ + ~Q+l]/(l - ~)2, 
Q 1=1 % q (q + 1), ~ = 1. 

~~ 1, (42) 

Then, from (34), with the help of (26), (27), and (39), it is found that 

(43) 

Also, from (35), with the help of (56), (58), (59), and (65), it follows 
that 

(
nl)Ql } Xl = dOal al sn1-l(1, al) + Snl(O, al)[nQ1(O) - 1]. (44) 

It may be verified, with the help of (39), (57), and (65), that (41) and 
(44) are consistent with (37). The explicitness of the expressions for 
the quantities in (40), (41), (43), and (44) is due to the fact that these 
quantities are not affected by the secondary. This, of course, is not the 
case for the loss probability L l , which is given by (38). 

Next, from (29), since </>k2 (p) == 1, it is found, with the help of (20) 
and (68), that 

L2 = L CmSn2(-Pm, a2)[snl(1 + pm, al)nQ1(Pm) 
m=O 

- Sn1-l(1 + pm, al)nQ1-l(Pm)]. (45) 

Also, from (35), with the help of (6) and (59), it follows that 
k2 

X 2 = n2 - L CmSn2-1(2 - pm, a2)</>n2(Pm) 
m=O 

OVERFLOW WHERE QUEUING TAKES PRECEDENCE 9 



In view of (38), (41), (45), and (46), the second relationship in (37) 
provides a useful numerical check. 

We now define 
kl 

rj = L pij, 
i=O 

If we sum on i in (5), we obtain 

(47) 

[a2(1 - 8jk2) + n2]rj = a2rj-l + n2(1 - 8j~)rj+l' (48) 

for n2 + 1 :s j :s k2. It follows that 

(49) 

Hence, since L2 = rk
2

, from (29) and (47), 

(50) 

Then, from (30) and (33), with the help of (63), we obtain 

Q2 = ['l'q2(0) - 1]L2, (51) 

and R22 = A2Q2, as is to be expected. Also, from (34) and (42), it follows 
that 

V2 = L\q,(::)L2 0 (52) 

This completes the calculation of expressions for the steady-state 
quantities of interest. 

IV. ACKNOWLEDGMENT 
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APPENDIX 

We define Si(A, a) by the recurrence relation 

(a + i + A)Si(A, a) = a(l - 8iO )Si-l(A, a) + (i + l)Si+l(A, a); 

So(A, a) = 1, (53) 

for i = 0, 1, .... Thus Sn(A, a) is a polynomial of degree n in both A and 
a, and it may be related to a Poisson-Charlier polynomial.7,s However, 
we give here the properties of Sn(A, a) which we will need. An explicit 
formula is1 

(54) 
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where 

(1..)0 = 1, (A)r = 1..(1.. + 1) ... (A + r - 1), r = 1, 2, .... (55) 

It was also shown l that 

and 

Si(A, a) = si(A + 1, a) - (1 - 8iO)Si-l (A + 1, a). (57) 

From (57) it follows that 
n 

2: si(A, a) = Sn(A + 1, a), (58) 
i=O 

and, from (56) and (58), we deduce that 
n 

2: (n - i)si(A, a) = (1 - 8no)sn-l(A + 2, a). (59) 
i=O 

We now turn our attention to the Chebyshev polynomials of the 
second kind,9 Uz(x). They may be defined by the recurrence relation 

2xUz(x) = UZ+l(x) + UZ-l(x); U-l(x) == 0, Uo(x) == 1, (60) 

for l = 0, 1, .... From (15) and (60) it follows that 

(a2 + n2 - p)'Yz(p) = a2'YZ+l(P) + n2'YZ-l(p), 

'YO(p) == 1. (61) 

From (16) and (61) we deduce that 

[a2(1 - 8jk2) + n2 - p]<i>Ap) = a2<i>j-l(P) + n2(1 - 8j~)<i>j+l(P), (62) 

for j::; k2• Also, from (61), it may be shown by induction that 

(63) 

Next, from (11) and (60) it follows that 

(al + nl + p)Qz(p) = alQZ+1(p) + nlQz-l(P), 

Q-l(P) == 0, Qo(p) == 1. (64) 

In particular, it is found by induction that 

~MO) = 1:. (::r (65) 

Since Si(O, a) = ai/i!, from (54), it follows that 

l = 0, 1, . . . . (66) 

OVERFLOW WHERE QUEUING TAKES PRECEDENCE 11 



Next, from (9) and (10), we deduce that 
kI 

P L lXi(p) = (nl + p)lXkl(p) - allXkl-l(P). 
i=O 

(67) 

Then, with the help of (12), (56), (57), and (64), it may be shown that 
kl 
L lXi(p) = snl(l + p, al)Qql(p) - snl-l(l + p, al)Qql-l(p), (68) 

i=O 

for P ~ O. Moreover, this result holds for P = 0 also, from continuity. 
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The need to assess attendance behavior often arises, at the line
management level, when an employee is considered for a transfer or 
a promotion. A sound assessment should, of course, take into account 
the statistical behavior and distributional properties of absenteeism. 
The first part of this paper is a detailed statistical analysis of 
attendance records of a sample of 112 telephone operators. We use 
exploratory and confirmatory statistical techniques to suggest possi
ble theoretical models that can parsimoniously describe the behavior 
of the variables of interest. Methodological difficulties that often 
arise in cross-sectional studies and are caused by biased sampling 
are pointed out and treated. We explore the relation between age and 
attendance; in particular it is evident that (for this data set) the 
frequency of ((incidental" absences tends to decrease with age, and 
that the duration of ((disability" absences tends to increase with age. 
In the second part of the paper we suggest an attendance evaluation 
method based on the statistical analysis of the first part. The method 
is designed to reflect the current-year attendance as well as a longer
run attendance behavior, interpreted as a personal characteristic, 
and its properties are demonstrated via examples. 

I. INTRODUCTION AND SUMMARY 

Management policy regarding absenteeism has two major aspects: 
a global one spelled out in the various company rules and applied 
evenly to all employees and a local one, generally less formal, in which 
line management is concerned about individual's attendance. A ques
tion like how many "paid days off" per year an employee should be 
allowed for unexpected and unavoidable absences is often a subject for 
union negotiations and is a good example of what we mean by man
agement's global policy. On the other hand, the need to decide whether 
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a given operator has exhibited satisfactory attendance arises when 
that operator is considered for a transfer or promotion and is a good 
example of management's local policy. Whether local or global, a sound 
policy should consider the statistical characteristics and the distribu
tional properties of absenteeism. 

Section II gives a detailed statistical analysis of absenteeism (on the 
basis of a sample of 112 telephone operators). Such an analysis can 
enhance our understanding of absenteeism, and can be used as a basis 
for answering questions of the type described above. For example, the 
distribution of the duration of incidental absences (Section 2.6) and 
the frequency of incidental absences per year (Fig. 6, or more generally 
Section 2.6), can be used to answer how many paid days off per year 
an employee should be allowed. An answer based on such a statistical 
analysis is more likely to satisfy the true needs of the average employee 
than any decision which makes no reference to the distributional 
properties of absenteeism. (Note that the Bell System's allowance for 
personal time started after our data were taken.) 

In Section III we suggest a method for assessing absenteeism, based 
on our statistical findings of Section II, and discuss its properties. The 
analysis of Section 2.4 indicates that one year is too short a period to 
decide whether an operator is intrinsically "good," "bad," etc., regard
ing attendance. Thus, if management is interested in assessing at
tendance as a personal characteristic, the follow-up period needs to be 
longer than one year. The conflict between the viewpoint that past 
years' attendance should not affect the present evaluation (for any 
type of performance rating), and the statistical observation that one 
year is too short a period to assess attendance, are resolved by basing 
our evaluation method (Section III) on two indices. One index rates 
the current year attendance, while the other index rates attendance 
behavior as a personal characteristic, and it depends on the attendance 
during the three most recent years. 

Various aspects of absenteeism have been studied in recent years 
(particularly in the fields of labor relations, applied and industrial 
psychology, and management science). The major contributions of our 
paper to this area of research, and the relation to other studies, as we 
see them, are summarized below: 

(i) We suggest an intuitively appealing method for assessing absen
teeism, which reflects the current year attendance, as well as atten
dance behavior, as personal characteristics. With suitable modifica
tions, the method is adaptable to other occupations. 

(ii) Often in cross-sectional studies a certain sampling bias is intro
duced because the sampling is done along the time axis. The detailed 
analysis of Section 2.4 shows how to identify this bias (and in some 
instances how to estimate the underlying model in the presence of this 
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bias). This technique can be of use to other researchers analyzing 
cross-sectional data. (A more detailed paper devoted entirely to statis
tical questions that arise in the analysis of this type of data is forth
coming.) 

(iii) In the course of our analysis in Section II, we use some 
graphical techniques that are common tools in exploratory data anal
ysis, but are not yet familiar to most social scientists. These tools are 
useful in the tedious chore of identifying patterns and models in large 
data sets, and we hope that exposing them to researchers in the social 
sciences will help make them popular. 

(iv) Throughout the paper we distinguish between two types of 
absences, disability and incidental (definitions in Section II). This 
classification enables us to shed some light on the relation between 
absenteeism and age. Several authors have tried to relate absenteeism 
to age and conflicting findings are often reported. Indeed, in a recent 
study based on a survey of blue-collar production workers, Nicholson 
et al. (Ref. 1, pp. 319-320) report on a marked inverse relation (espe
cially for male employees) between absence frequency and age which, 
as they point out, contrasts the conclusions of Porter and Steers2 (a 
review of the literature on the subject of absenteeism and turnover) 
and Cooper and Payne,3 that absence frequency increases with age. 
Our data suggest that for telephone operators (all of whom in our 
sample are females) the truth lies somewhere in the middle. That is, 
the frequency of incidental absences is higher for younger operators, 
while the frequency and duration of disability absences is higher for 
older operators. 

For readers who are interested in aspects of absenteeism that are 
not directly related to this work (such as economic, psychological, 
etc.), we include a supplementary reference list (which is by no means 
complete). 

II. DATA ANALYSIS AND STATISTICAL MODELING 

2.1 Introduction 

We distinguish between two types of absences: incidental absences 
(IA), which are usually short, more frequent, and (to a certain extent) 
controllable, and disability absences (DA), which are usually long, less 
frequent, and uncontrollable. Formally, a DA is any absence that lasts 
six or more days and is due to an illness (an exception is an on-the-job 
accident in which case the DA period can be shorter than six days); 
any other absence is defined as an IA. Periods of attendance at work 
will be referred to as showing up (su) periods. 

Our data are made up of attendance records of 112 New England 
Telephone operators, for variable periods t1, ••• , t112. Out of the 112 
records, 6 cover approximately 1 year (between 0.8 and 1.4 years), 63 
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cover approximately 2 years (between 1.6 and 2.4 years), and 43 cover 
approximately 3 years (between 2.5 and 3.1 years). Here we take a year 
to be 240 working days. The attendance records in our sample do not 
usually start, or end, at a beginning of a DA, lA, or su period and thus 
two censored (i.e., incomplete) periods typically exist (these are usually 
su periods) for each of the 112 records, one at each end of the record. 
This situation is demonstrated in Fig. 1, which gives a schematic 
example of an attendance record in our data. Note that holidays, 
weekends, vacations, etc., have been deleted from the time axis. The 
large proportion of censored su periods, among the total number of su 
periods, requires special attention and leads to an interesting analysis. 

Frequency of absences, duration of absences, duration of su periods, 
relations between absence and age, etc., are all parts of the complete 
picture of "attendance behavior" of operators. We analyze these vari
ables below. In cases where our analysis suggests possible theoretical 
models that can adequately describe the behavior of the variables in 
question, we point out these models. 

Our analysis suggests that operators older than 35 are different from 
operators younger than 35 with regard to certain aspects of absence 
behavior; for the sake of brevity, we refer to the first group as older 
operators and to the second group as younger operators. 

2.2 Duration of lA's 

A histogram of the duration of the 560 observed lA'S is given in Fig. 
2a. A simple theoretical model that fits these data to a remarkable 
degree of accuracy is 

P[d t · fIA - 'J - P - { p if j = 1, (1) 
ura IOn 0 - J = j - (1 - p)2-j +\ if j = 2, 3, 000, 

with p = p = 346/560 = 0.6179 (note that if Xl, 0 0 0, Xn is a random 
sample with a probability density function (pdf) (1), then the maxi-

STATE 
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BEGINNING 
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Xn 

X' l-x;:O-
n n 

TIME 
------t------ (WORKING 

DAYS) f---t-·,, __ f 
START END 
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SAMPLE SAMPLE 

Fig. I-A schematic description of an attendance record. Note that the fIrst and last 
su periods (Xl and Xn) are censored (only X~ and X~ are recorded in the sample). 
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Fig.2-(a) A histogram of the durations of lA'S (avg = 1.72, stdv 1.16). 
(b) Comparison between the pdf of (1) and the observed durations of lA'S. 

mum likelihood and the minimum variance unbiased estimator of p is 
P = L7=1 I[Xi = l]/n, where I[ ] denotes the indicator function; in our 
case this gives p = 346/560). Figure 2b compares the model of (1) with 
the observed data, and the adequacy of the model is transparent. 
Nevertheless, it is interesting to note that a chi-square goodness of fit 
test with size a does not reject the hypothesis that the durations of 
lA'S have the pdf (1), even when a is as high as 0.90! 

A random variable, say X, with the pdf (1) has the following 
interesting property: 

P[X = k + j I X > k] = 2-i , j = 1, 2, "', k = 1, 2, .... (2) 

The interpretation of this property, when X stands for the duration of 
an lA, is the following: On the second day of an incidental absence, the 
employee tosses a coin; if the result is heads the employee returns to 
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work on the next day, otherwise he remains absent. The experiment is 
repeated daily until the fIrst time the result is heads, in which case the 
employee returns to work on the following day. Should one try to 
interpret this interesting property, exhibited by the data, in terms of 
human behavior in regard to short absences? 

We remark that the distribution of the duration of lA'S for younger 
operators is approximately the same as for older operators and neither 
deviate much from (1). 

2.3 Duration of DA's 

The following are summary statistics for the 78 DA occasions in our 
data: 

lower quartile = 9.0, median = 13.5 upper quartile = 41.0, 

mean (with six most extreme observations removed) = 26.1, 

standard deviation (with six most extreme observations removed) 

= 24.2. 

Out of the 78 observations, 18 were incurred by operators younger 
than 35. Figure 3 compares, by means of box plots,4 the distributions 
of the duration of DA'S in the three different cases; younger operators 
(18 DA occasions), older operators (60 DA occasions), and the combined 
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Fig. 3-Box plots for the duration of DA'S. 
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sample (78 DA occasions). The lower and upper sides of each box are 
the lower and upper quartiles, respectively, and the segment inside the 
box is the median. If d denotes the distance between the quartiles, 
then the box whiskers are drawn to the nearest data value with 1.5d 
from the nearest quartile. Points lying outside this range are plotted 
individually. The figure suggests that long DA'S are more frequent 
among the older operators. For instance, the upper quartile for the 
older operators is 44.0, with the most extreme observation being 165, 
while the corresponding figures for the younger operators are 32.0 and 
44.0. This difference cannot be accounted for by differences in the total 
sampling durations, because the distribution of the t/s is approximately 
the same for the two age groups. 

2.4 Duration of SU periods 

We use Fig. 1 as a vehicle to explain some basic concepts regarding 
the censoring of su periods. Suppose the length of each individual su 
period (Xi in Fig. 1) is distributed according to the cumulative distri
bution function (cdf) F(u). Then, since the probability of any individ
ual period that covers the point to is directly proportional to its length 
u, the distribution function of the length of the interval that covers to 
(Xl, in Fig. 1) is H(x) = fa udF(u) 1m (m is a normalizing constant that 
is equal to the mean of F). GivenXI , however, the distribution function 
of Xl, which is the observable part of Xl, is uniform on the interval [0, 
Xl] so that (using Bayes' theorem) the unconditional distribution of 
Xl is 

G(y) == P[X; s y] = m-1J: [1 - F(u)] duo (3) 

Since (3) is usually derived in the context of renewal processes, in 
which case an assumption about the independence of different X/s (su 
periods in our application) is built in, it is important to note that this 
assumption is not used in the derivation of (3) (cf. Ref. 5, p. 66), and 
therefore it is not assumed in our discussion. In the analysis that 
follows, however, we assume (unless otherwise stated) that su periods 
of different operators have the same cdf F, as long as they are in the 
same age group. 

It is clear that the argument leading to (3) applies also to X~, so that 
(3) is the distribution of the censored su periods. An important 
property of (3) is 

G = F if, and only if, F is an exponential distribution 

[i.e., F(x) = 1 - e-x
/ Jl , x> 0, fl> 0]. (4) 

Or, in words, 
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the censored su's and the completed su's have the same 
distribution if, and only if, the distribution 

of the su's is exponential. (4') 

2.4. 1 Analysis for operators younger than 35 

For the younger operators, Fig. 4a compares censored su's with 
completed su's, by means of a Q-Q plot (see Ref. 6, chapter 6). The 
deviation of the plot from a 45-degree line through the origin is not 
very large and for practical purposes one can assume that the censored 
su's and the completed su's follow the same distribution. Being more 
formal, if we test the hypothesis that the two samples have the same 
distribution, using a W ald-Wolfowitz runs test, we observe 92 runs 
while the mean and standard deviation under the null hypothesis are 
99.0 and 6.0, respectively, so that the hypothesis is not rejected at 
significance levels of 0.12 or less. Thus, from (4'), we are led to the 
conclusion that the distribution of the su's is exponential (or, at least, 
that this is an adequate description of the data). Figure 4b is a 
comparison of the combined su sample (censored and completed) 
versus quantiles from exponential distribution. The striking closeness 
to linearity of this plot strongly supports the conclusion that the su's 
are exponentially distributed. The estimated mean of the combined 
sample is 60.2 days, and the standard deviation is 61.2 (which is very 
close to the mean, as is to be expected from a sample from exponential 
distribution). In summary, for the purpose of fitting a parsimonious 
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Fig. 4a-Q-Q plot of censored su's (Y axis, 65 observations) versus completed su's 
(X axis, 199 observations), for operators younger than 35. 
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than 35. 

model, one can assume that the periods between consecutive absences, 
for operators of age 35 or less, follow an exponential distribution with 
mean = 60 days. 

2.4.2 Analysis for operators older than 35 

Applying a similar analysis as in the previous case, we point out an 
interesting "data paradox" exhibited by the two su samples (censored 
and completed), and we give possible explanations for this paradoxical 
behavior of the data. 

Figure 5a compares the censored su's with the completed su's. The 
deviation of the Q-Q plot from the 45-degree line through the origin 
is marked, and it is evident, therefore, that the completed and the 
censored su's have different distributions. Specifically, the censored 
su's appear to be stochastically bigger than the completed su's (the 
Q-Q plot is on or above the 45-degree line through the origin) and for 
comparison we look also at their summary statistics: 

(lower quartile, median, upper quartile, mean, stdv) = 
(20.0, 46.0, 88.0, 66.3, 71.2) for the completed su's, and 

(21.0,47.0, 206.0, 113.3, 13004) for the censored su's. 

In view of this situation and the assumption that su's of different 
operators have the same cdf, (4') suggests that the distribution of the 
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Fig. 5a-Q-Q plot of censored su's (Y axis, 142 observations) versus completed su's 
(X axis, 333 observations), for operators older than 35. 

completed su's cannot be exponential. Figure 5b, however, in which 
we compare the completed su's with exponential quantiles, points in 
the opposite direction. The closeness to linearity of the Q-Q plot (with 
the exception of the upper 17 points) suggests that the completed su's 
do follow an exponential distribution (or perhaps an exponential with 
a 5-percent contamination). 

We give two possible explanations to this data paradox. The first is 
that intrinsic differences in absence behavior might exist among the 79 
operators of age greater than 35, so that any attempt to fit a single cdf 
to the su periods of these operators is meaningless [in mathematical 
language this means that, in eq. (3), different operators are associated 
with different distribution functions F, while we try to fit a single F], 
and a more complicated model is needed. One possible model is that 
operators can be naturally classified into classes according to their 
attendance behavior (good, bad, etc.). Nevertheless, the sampling 
periods (t/s) in our data are not long enough to enable us to decide 
whether a given operator is intrinsically good, bad, etc., and thus we 
have not pursued this model. 

In the second possible explanation, we show that a certain sampling
bias effect could have been the source of our data paradox. Suppose 
the cdf of su periods, which is F of eq. (3), is a mixture of two cdf's, an 
exponential cdf with mean A, which is small relative to the sampling 
periods ti, and a degenerate cdf which assigns a unit mass to a point B 
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which is big relative to the t/s. This means that over a long period of 
time, a certain proportion, say a, of the su's have an exponential 
distribution, while the other su's last a fixed length B. Now any 
sampling period of length t satisfying A « t < B cannot possibly 
contain a completed su period of length B, so that all the completed 
su's must be from the exponential population and only censored su's 
could possibly be from the B population. In addition to being a model 
that accommodates the "paradoxical" behavior of our data, this model 
provides a useful framework for estimation. Under the model's as
sumptions 

P[su > x] == 1 - F(x) = ae-x
/
A + (1 - a)I[x < B], (5) 

where I[ ] denotes the indicator function, so that, using (5) and (3), 
the moments of the censored su's are 

E[censored su]" = iOO 

xn dG(x) 

a(n + 1) !An+l + (1 - a)B n+1 

(aA + (1 - a)B)(n + 1) 
n = 0,1, .... (6) 

Since our model assumes A « t we have, to a good approximation, 

E[completed su]" '" it xnA~le~x/A dx - n!An, n = 0, I, "', (7) 
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and therefore the moments method, applied to (6) and (7), gives 

E [completed su] = 

E [censored su] = 

66.3 = A, 

113.3 
2aA2 + (1 - a).82 

2(aA + (1 - a)B)' 

A 2 6aA3 + (1 - a).8 3 

E[censored su] = 29841.05 = 3(a1 + (1 - a)B)' 

which yield the estimates A = 66.3, .8 = 500.0, a = 0.96. 

(8) 

Though the above model accommodates the type of behavior dem
onstrated by our data, so do other models based on a contaminated 
exponential distribution and the question of finding a model that fits 
our data well has not been answered yet. Toward this end we derived 
a nonparametric estimate of F, denoted F, by tailoring the Kaplan
Meier estimator7 to our application, in which each completed obser
vation has to be counted with multiplicity two. (The exact details of 
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Fig. 5c-The dotted line is F(x) = Polder[SU:S x] (using a modification of the Kaplan
Meir estimator, Section 2.4). The solid line is the contaminated exponential distribution 
of eq. (1). 
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this estimator will be discussed in a separate paper.) The result is 
given in Fig. 5c. The contaminated exponential model 

F(x) = 0.94(1 - e-x
/

70
) + 0.06(5:0) 61[0 S X S 540], X"" 0, (9) 

is superimposed on this figure, and it seems to fit the data rather well. 
Figure 5d compares (9) with F(x) by means of a Q-Q plot, and the 
closeness of the plot to the 45-degree line reassures us about the 
adequacy of the model. 

The behavioral interpretation of (9) is that usually (i.e., 94 percent 
of the time) the duration of su periods follows an exponential distri
bution with mean 70 days, while occasionally (i.e., 6 percent of the 
time) an su period can be much longer (perhaps 500 to 540 days). We 
note that the average su period, according to (9), is approximately 94 
days, which is substantially bigger than the corresponding number for 
the younger operators (60 days). 

en 
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Fig.5d-A Q-Q plot of F(x) = .Polder[SU ::s x] (using a modification of the Kaplan
Meir estimator, Section 2.4) versus the contaminated exponential distribution of 
eq. (10). 
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An important aspect of our data-paradox, and the contaminated 
exponential model, is that it indicates that a follow-up period of one or 
two years is not sufficiently long for evaluating the attendance behavior 
of operators. This observation has implications to our discussion of 
evaluation procedures. 

2.5 Frequency of absences and total time lost (TTL) due to absences 

Figure 6 gives box plots of the frequency of lA'S (occasions per year) 
for the two age groups and for the combined sample. (The nonoverlap
ping of the notches in the first and second boxes indicates a difference 
at the rough 5-percent significance level between the two medians.4

) 

One can immediately see that younger operators tend to have substan
tially more lA'S. Note again that this difference cannot be accounted 
for by differences in the total sampling durations, because the distri
bution of the t/s is approximately the same for the two age groups. 

The situation regarding DA'S is somewhat reversed, as one can see 
from Tables I and II. For example, while the proportion of the younger 
operators in the sample is 29 percent, the proportion of the DA 

occasions incurred by them is only 23 percent. We also see in Table II 
that the ratio "TTL due to DA" to "TTL due to IA" is 0.022/0.021 for 
younger operators, while it is 0.045/0.014 for older operators. This, 
plus the fact that the probability distribution of the DA duration for 
older operators has a substantially longer tail than the corresponding 
quantity for younger operators (Fig. 3), explains the fact that the TTL 
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Age:::s 35 
Age> 35 

Table I-DA occasions and age 
No. of 

Individuals 
with Occasions 

OfDA 

13 (25%) 
40 (75%) 
53 (100%) 

No. of 
Occasions 

OfDA 

18 (23%) 
60 (77%) 
78 (100%) 

No. of 
Operators 

in the Entire 
Sample 

33 (29%) 
79 (71%) 

112 (100%) 

caused by absences is somewhat higher for older operators (5.9 percent) 
than for younger operators (4.2 percent). 

The first line of Table II shows that a period that starts at the end 
of the IA and ends at the end of the following IA (including the possible 
DA'S) lasts, on the average, 72 days for younger operators, and 107 days 
for older operators. 

2.6 The number of IA occasions (lAO) over a fixed period of time 

For later applications we want to derive an estimate for the proba
bility distribution of the number of lAO over a fixed period of time, for 
an arbitrary operator in our sample. To keep the analysis and the 
presentation simple we ignore, for the time being, the differences 
between younger and older operators. Later we will comment on the 
corresponding analysis when the difference in attendance between the 
two age groups is taken into account. It is well known (e.g., Ref. 5, 
p. 104) that under fairly weak assumptions about the statistical behav
ior of the periods between consecutive lA'S, the quantity Jt[N(t)b/t] 
has a limiting distribution as t ~ 00. Here N (t) denotes the number of 
lAO over a time period of length t and b is the average number of lAO 

per unit time. We take this theoretical model as a framework for 

Table II-Age comparison of certain absence characteristics (DA = 
disability absence, IA = incidental absence, TTL = total time lost) 

Combined 
Age:::s 35 Age> 35 Sample 

total sampling periods* 16601 ~3439 = 106 99 60040 
total no. of absence occasions 232 = 71.56 406 . 638 = 94.11 

no. of DA occasions 18 60 78 
no. of IA + DA occasions 232 = 0.078 406 = 0.148 638 = 0.122 

TTL due to IA 342 2 620 962 
total sampling periods 16601 = 0.0 1 43439 = 0.014 60040 = 0.016 

TTL due to DA ~=0.022 1941 2304 
total sampling periods 16601 43439 = 0.045 60040 = 0.038 

TTL due to absences 705 2561 3266 
total sampling periods 16601 = 0.042 43439 = 0.059 60040 = 0.054 

* Total sampling periods = the sum of all the observation periods across operators 
(i.e., sum of the t's of Fig. 1). 
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sampling duration, ti years (X axis), for the 112 operators. 

producing estimates of the distribution of N(t) for a given t. A scatter 
plot of (ti, N(ti)), i = 1, ... , 112, is given in Fig. 7, and one can see 
immediately that VAR(N(t)) increases with t (this is usually referred 
to as heteroscedasticity), as to be expected from our model. Note that 
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Fig. 8-Comparison of Ui = ·Jt:[N(ti)/ti - 6] for small and large values of ti. 
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our model implies that the mean and the variance of N(t) are approx
imately linear in t, for large values of t. The regression estimate of b in 
the model 

N(td/~ = b~ + U i (10) 

is "6 = 2.24 (with a t value of 15.36). Figure 8 compares (by means of 
box plots) the residuals, O;'s, of the regression (10) for periods of 
length ti < 2.5 years with the O;'s for periods of length ti ~ 2.5 years. 
The choice of t = 2.5 as a cutoff point seems natural from the 
distribution of t's (see second paragraph of Section 2.1); other t's in 
the neighborhood of 2.5 gives similar results. The comparison shows 
that the heteroscedasticity of the data (Fig. 7) is eliminated and the 
O;'s can be considered as random variables satisfying VAR Oi = 
a~ > 0, independent of t, so that the empirical distribution of the O;'s 
can be used to estimate the distribution of N (t). 

Theoretically, if (i) our assumptions (e.g., all operators behave 
according to the same probability law) were completely realistic and 
(ii) t were very large, then the distribution of U would be close to a 
normal distribution and we could use this fact to estimate the distri
bution of N(t). Since, however, neither (i) or (ii) is entirely correct, 
we do not rely on the asymptotic normality of U. Instead we use the 
empirical distribution of the O;'s as an estimate of the distribution of 
U, and hence obtain an estimate for the distribution of bt + Jt U. In 
practice, however, since N(t) is restricted to the nonnegative integers, 

Table III-P[ N(t) = j], 
estimated probability that 

the number of IA 
occasions, over a period 

of length t, equals j 

At 1 year 2 years 3 years 

0 0.29 0.09 0.01 
1 0.13 0.16 0.08 
2 0.14 0.11 0.08 
3 0.12 0.07 0.09 
4 0.17 0.11 0.11 
5 0.08 0.07 0.07 
6 0.03 0.10 0.07 
7 0.02 0.12 0.10 
8 0.02 0.07 0.05 
9 0.0 0.04 0.06 

10 0.0 0.02 0.13 
11 0.0 0.02 0.05 
12 0.0 0.02 0.04 
13 0.0 0.0 0.02 
14 0.0 0.0 0.02 
15 0.0 0.0 0.02 

Total 1.00 1.00 1.00 
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we look at 

mi(t) = max{O, [bt + JtOi + %]}, (11) 

where [x] denotes the integer part of x, and we estimate the distribu
tion of N(t) by 

Pdj) = P[N(t) = j] = (number of mi(t) = j)/112. (12) 

Table III gives Pt (j) for t = 1, 2, 3, years. 
Comment: In view of the difference between younger and older 

operators, it would have been more appropriate to estimate P[N(t) 
= j] separately for younger and for older operators, and then to use 
their relative weights in the entire sample to obtain a final estimate. 
That is, 

A 33 A 79 A 

P[N(t) = j] = 122 Pyounger[N(t) = j] + 112 Polder[N(t) = j]. 

The actual values of the estimates using this method are close to the 
values of the estimates we obtained (Table III) without partitioning 
the sample, and therefore we do not give the details of this calculation. 
Note that the estimates of (12) are motivated by a model that imposes 

Table IV-P[L(t) :::; jJ, 
estimated probability that 
the TTL from lA's, over a 

period of length t, is at 
most j days 

"'t 1 year 2 years 3 years 

0 0.29 0.09 0.01 
1 0.37 0.19 0.06 
2 0.45 0.26 0.11 
3 0.52 0.32 0.16 
4 0.60 0.38 0.21 
5 0.68 0.43 0.26 
6 0.75 0.48 0.31 
7 0.81 0.53 0.36 
8 0.86 0.58 0.41 
9 0.90 0.63 0.46 

10 0.93 0.68 0.50 
11 0.95 0.73 0.54 
12 0.97 0.77 0.58 
13 0.98 0.81 0.62 
14 0.99 0.84 0.66 
15 1.00 0.87 0.70 
16 0.89 0.74 
17 0.91 0.78 
18 0.93 0.81 
19 0.95 0.84 
20 0.96 0.87 
21 0.97 0.90 
11 0.98 0.92 
12 0.99 0.94 
24 1.00 0.96 
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very few assumptions on the data. Other possible frameworks for 
estimation, which impose more conditions on the data (e.g., Poisson 
arrivals of the lA'S) result in estimates for which we feel that the 
assumptions, rather than the data, determine the actual values of the 
estimates. However, with more absenteeism data (in particular, longer 
t/s) it is possible to identify a useful parametric model for estimating 
P[N(t) = j]. 

Let L (t) denote the TTL from the N (t) occasions of IA. Clearly 

L(t) = Xl + X 2 + ... + XN(t), (13) 

where Xi denotes the duration of the ith IA. Assuming that the X/s are 
independent of N(t), we have 

P[N(t) = n, L(t) = 1] = p[ ~ x, = 1 ]P[N(t) = n]. (14) 

Combining the estimates (12) and (14) with (15), we obtain the joint 
probabilities of N(t) and L(t) for t = 1, 2, 3 years. The marginal 
distributions of N(t) and L(t) (Tables III and IV, respectively) are 
then used to construct Tables Va, b, and c, as described below. 

2.7 Constructing Tables Va, b, and c 

Tables Va, b, and c are the building blocks of our proposed evalua
tion procedure (Section III) and understanding their construction 
enables the user to interpret the ratings R a, R b , and Rc which make up 
the attendance evaluation scheme. 

To each possible value of N(l), the number of lA'S in a single year, 
and to each possible value of L(1), the total number of days lost in 
these lA'S, we attach a grade and a score. Values of N(l) which lie in 
the lower 5 percent of the distribution of N(l), which is given in Table 

Table Va-Scoring table on the basis of one-year attendance 
Number of Occasions 

n 0 2 3 4 5 6 t 
0 100 E 100 
1 74 G 74 
2 68 55 G 62 

rr.; 3 60 49 43 F 49 
>. 4 56 46 40 32 F 43 
«I 

5 52 43 37 30 23 F 37 "'0 
....... 6 48 39 34 27 21 0 F 31 0 
~ 7 42 34 30 24 18 0 P 24 Cl.l 

.0 8 38 31 27 22 17 0 P 20 
S 9 34 28 24 20 15 0 P 16 ::l 
Z 10 30 24 21 17 13 0 P 12 

11 24 20 17 14 11 0 P 8 
12 0 0 0 0 0 0 U 0 

E G F F P P U 
100 74 49 37 24 14 0 
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Table Vb-Scoring table on the basis of two-years attendance 

o 100 
1 94 
2 83 
3 81 
4 78 
5 74 
6 71 
7 68 
8 64 

~ 9 61 
"'C 10 57 
'0 11 52 
~ 12 47 

15 13 45 
E 14 43 
Z 15 41 

16 39 
17 36 
18 34 
19 31 
20 0 

Number of Occasions 

2 3 4 

74 
71 65 
69 63 56 
66 60 54 
63 58 51 
60 55 49 
57 52 46 
54 49 44 
50 46 41 
46 42 38 
42 39 34 
40 37 33 
38 35 31 
36 33 30 
34 31 28 
32 29 26 
30 27 24 
27 25 22 
000 

5 

49 
47 
45 
42 
40 
37 
34 
31 
30 
29 
27 
26 
24 
22 
20 
o 

6 

42 
40 
38 
36 
33 
31 
28 
27 
26 
24 
23 
21 
20 
18 
o 

7 

34 
32 
31 
29 
26 
24 
23 
22 
21 
20 
18 
17 
15 
o 

8 

28 
26 
25 
23 
21 
20 
19 
18 
17 
16 
15 
13 
o 

9 

22 
20 
19 
17 
16 
15 
15 
14 
13 
12 
11 
o 

10 

E 
V 
G 
G 
G 
G 
G 
F 
F 
F 

o F 
o F 
o P 
o P 
o P 
o P 
o P 
o P 
o P 
o P 
o U 

E V G G F F F P P P U 
100 94 74 132 49 41 33 24 18 12 0 

100 
94 
74 
69 
64 
59 
54 
49 
44 
39 
34 
29 
24 
22 
20 
18 
16 
14 
12 
10 
o 

III, are given the grade Excellent and their scores vary between 100 
and 95; values of N(l) which lie between the 6th and the 25th percentile 
of the distribution of N(l) are given the grade Very Good and their 
scores vary between 94 and 75, etc. [The particular score depends on 
how many values of N(l) fall in this range. For example, if only one 
value of N(l) lies between the 6th and 25th percentile, its score is 94 
(e.g., the rightmost column of Table Vb); if there are two values, their 
scores are 94 and 84 == 94 - (%)(94 - 75) (e.g., the lower-most row of 
Table Vc); if there are three values, they get the scores 94,88 == 94 -
(%)(94 - 75) and 81 == 94 - (%)(94 - 75), and so on.] We treat L(l) 
similarly, using the estimated distribution in Table VI. Table VI gives 
the details of the grading and scoring method, and it is used for N (t ) 
and L(t), t = 1, 2, 3. 

An exception to Table VI is made when N(t) = 0 [and hence L(t) 
= 0], in which case the grade is Excellent and the score is 100 regardless 
of whether 0 is in the lower 5 percent of the distribution of N(t) [note 
that P(N(l) = 0) = 0.29 and P(N(2) = 0.09); see Table III]. The scores 
(and grades) associated with each value of N(l) and L(l) are written 
on the margins of Table Va and each entry in the body of the table is 
the geometric mean of the marginal scores; for example, Ra(N(l) = 3, 
L(l) = 4) = ../37 X 43 == 40. The reason for choosing the geometric 
mean to combine the marginal scores is to achieve the desirable shape 
of the equicontours of the resulting table. More specifically, we observe 
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the following attractive properties: (i) The ratings decrease along the 
west-east and north-south directions. (ii) Each entry in the table is 
slightly greater than (or equal to) its north-east neighboring entry. 
(This implies that a reduction in the number of occasions of lA'S is 
desirable even at the expense of a slight increase in the TTL.) (iii) An 
operator is rated Unsatisfactory whenever at least one margin is rated 
as such. 

Tables Vb and V c are constructed similarly with the obvious sub-
stitutions of (N(2), L(2)) and (N(3), L(3)) for (N(l), L(l)). 

III. EVALUATING ATTENDANCE AT WORK 

3. 1 Introduction 

The attendance behavior of an operator is one of the most important 
components in the operator's overall performance, so it is evaluated 
regularly. In particular, it is weighed very carefully when the operator 
is considered for a transfer or promotion. So far, however, attendance 
has been assessed in local terms (compared to other operators in the 
office) and naturally this is done in a subjective and informal way. 
Though the' informality is an advantage both for management and 
employees, this is not so for the subjectivity of the evaluation. A 

Table Vc-Scoring table on the basis of three-years attendance 
Number of Occasions 

t n 0 2 3 4 5 6 7 8 9 10 11 12 13 

0 100 E 100 
1 94 V 94 
2 91 86 V 89 
3 89 84 79 V 84 
4 86 81 76 72 V 79 
5 83 79 74 70 66 G 74 
6 81 77 72 68 64 60 G 70 
7 79 74 70 66 62 57 53 G 66 
8 76 72 68 64 60 55 52 48 G 62 
9 74 70 66 62 58 53 50 46 42 G 58 

<fl 10 71 67 63 60 56 51 48 45 41 36 G 54 >-. 

'" 11 68 64 60 57 53 49 46 43 39 34 30 F 49 "0 
'- 12 65 61 58 54 51 47 44 41 37 33 28 23 F 45 
0 13 62 59 55 52 49 45 42 39 36 31 27 22 0 F 41 '"' Q) 14 59 56 52 49 46 43 40 37 34 30 26 21 0 F 37 .0 
E 15 56 53 49 47 44 40 38 35 32 28 24 20 0 F 33 
::l 16 52 49 46 44 41 38 35 33 30 26 23 19 0 F 29 Z 17 47 45 42 40 37 34 32 30 27 24 21 17 0 P 24 

18 44 42 39 37 32 35 30 28 26 22 19 16 0 P 21 
19 41 39 36 34 32 30 28 26 24 21 18 15 0 P 18 
20 38 35 33 31 29 27 25 24 22 19 16 13 0 P 15 
21 34 32 30 28 26 24 23 21 19 17 15 12 0 P 12 
22 29 27 26 24 23 21 20 18 17 15 13 10 0 P 9 
23 24 22 21 20 19 17 16 15 14 12 10 8 0 P 6 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 U 0 

E V V G G G F F F F P P P U 
100 94 84 74 66 58 49 43 37 31 24 18 12 0 
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Table VI-Grades and scores for N(t) and L(t) 

Percentile 
range 

0-5 
6-25 

26-50 
51-75 
76-95 
96-100 

Grade 

Excellent 
Very-good 
Good 
Fair 
Poor 
Unsatisfactory 

Score Range 

100-95 
94-75 
74-50 
49-25 
24-5 

o 

scheme that allows an objective and consistent evaluation of atten
dance would be of potential use to line management. 

In Section II we studied in detail the statistical aspects of absentee
ism. Our analysis, in particular Section 2.4, suggested that if one is 
interested in attendance behavior as a personal characteristic, then 
one year is too short for evaluating it. The far past, on the other hand, 
bears little relevance to recent attendance behavior and thus should 
not be included in the attendance evaluation. In this section we suggest 
an evaluation method based on the present and near past (three most 
recent years) that reflects the current year attendance as well as 
attendance behavior in a more general sense. We recall, however, from 
the analysis of Section II that disability absences (DA'S) are intrinsi
cally different from incidental absences (lA'S). The high variation in 
the distribution of the duration of DA'S and their low frequency of 
occurrences make it hard to give meaningful statistical guidelines as to 
what can be considered good, bad, etc., behavior regarding DA'S. 

Furthermore, management can do practically nothing to control DA'S. 

We therefore base our attendance evaluation on lA'S only. 
In a sensitive issue such as absenteeism from work, the numerical 

values of the attendance rating do not always tell the whole story. Any 
method for evaluation might occasionally misjudge good employees, if 
it is used in a formal and rigid manner. Thus, the best way to avoid 
these effects is to use it as an informal tool. One has to keep in mind 
that for every absence there is a reason, and these reasons are not 
reflected in the formal attendance ratings. 

3.2 The evaluation procedure 

The proposed scheme is best explained with an example. Consider 
an operator who started to work on January 1970 and whose IA 

occurrences and total time lost (TTL) are given in Table VII. 

Year 

No. of IA occasions 
TTL due to lA'S 

Table VII-Record of lA's 
1970 1971 1972 1973 1974 1975 1976 1977 1978 

1 4 200 4 201 
1 6 300 5 4 0 1 
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Table VIII-Example of the evaluation scheme (Lines 4, 5, 6 are read off Tables Va, b, c) 
1970 1971 1972 1973 1974 1975 1976 1977 1978 

1. (N(I), L(I» (1, 1) (4,6) (2,3) (0,0) (0,0) (4,5) (2,4) (0,0) (1, 1) 

2. (N(2), L(2» (5,7) (6,9) (2,3) (0,0) (4,5) (6,9) (2,4) (1, 1) 

3. (N(3), L(3» (7,10) (6,9) (2,3) (4,5) (6,9) (6,9) (3,5) 

4. Ra 74 27 49 100 100 30 46 100 74 

0 5. Rb 45 36 71 100 54 36 69 94 
"'C 

6.R· 48 53 84 70 53 53 74 m 
JJ 

7.R 74 36 44 75 95 51 51 74 81 » 
--l 
0 
JJ 

» 
OJ 
CJ) 
m 
z 
--l 
m 
m en 
~ 

(,.) 
01 



To evaluate the operator's attendance we propose the followinL 
simple procedure: 

(i) Determine the fIrst three lines of Table VIII as follows: For each 
year use Table VII to calculate N(t) and L(t) (t = 1,2,3), the number 
of IA occasions, and the TTL due to lA'S during the t most recent years, 
respectively. 

(ii) For each year, read the ratings associated with (N(1), L(1)), 
(N(2), L(2)), and (N(3), L(3)) from Tables Va, b, and c. These ratings 
are written in lines 4, 5, and 6 of Table VIII, respectively, and their 
interpretation [in terms of percentiles of the marginal distributions of 
N(t) and L(t), t = 1, 2, 3] is described in Section 2.7. 

(iii) Dete.rmine line 7 of Table VIII, the attendance index of the j th 
year, according to the following formula: 

R. = { avg(Ra,}, Rb,}, Re,}), if Ra,}-l::: RaJ} 
J max{R}-l, avg(Ra,j, Rb,j, R e,})}, if Ra,}-l < R a,} . 

For example, in calculating R 1975 we fIrst compare Ra,1975 with Ra,1974. 

Since Ra,1974 = 100 ::: 30 = Ra,1975, we take R 1975 = avg(Ra ,1975, Rb,1975, 

Re ,1975) = (30 + 54 + 70)/3 = 51. On the other hand, in calculating 
R 1976 , comparing Ra,1975 with Ra,1976 shows that Ra,1975 = 30 < 46 = 
Ra ,1976, so that R 1976 = max {51, (46 + 36 + 53)/3} = max {51, 45} = 51. 

(iv) The formal evaluation consists of two indices, Ra (line 4) which 
is the current year rating and R (line 7) which can be considered as an 
index for attendance behavior (here we view attendance behavior as a 
personal characteristic of the operator), or in short attendance index. 

3.3 Properties of the proposed procedure 

(i) While the current year rating, Ra , reflects the attendance in the 
most recent year, the attendance index, R, takes the near past into 
account, enabling the operator to build up credit. For instance, while 
1975 itself was a Fair year (Ra = 30), in the example of Table VIII the 
attendance index, R, for 1975 was Good (R = 51). This is due to the 
perfect attendance during the previous two years. And indeed, if in 
1975 this operator was considered for promotion, then the score 51 is 
a better indicator of her attendance behavior (considered as a personal 
characteristic) than her current year rating of 30. Similarly, the effect 
of bad attendance cannot be entirely erased in a single year of perfect 
attendance, as can easily be seen in the years 1972 and 1973. 

By the nature of its definition, R is much smoother than Ra and is 
a better indicator of attendance. To reemphasize this point, consider 
an operator whose attendance record fluctuates from (N(l) = 0, L(l) 
= 0) to (N(1) = 6, L(l) = 12) to (N(l) = 0, L(l) = 0), "', etc. The 
current-year rating then fluctuates from Ra = 100 (Excellent) to Ra = 
o (Unsatisfactory) while the attendance index fluctuates from R = 58 
(Good) to R = 9 (Poor), which seems more appropriate overall. 
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(ii) If Ra,j-l < Ra,j, then Rj-l :s Rj, or, in other words, if the current 
year rating has improved, then the attendance index will not decrease. 
This follows from the definition of R and is done to avoid negative 
reinforcement. The situation is exemplified in moving from 1975 to 
1976 in Table VIII. There we have Ra ,1976 = 46 > 30 = Ra ,1975 (an 
improvement in the current-year rating), so we take R 1976 = 51 = R 1975 

despite the fact that avg(Ra ,1976, R b ,1976, Rc ,1976) = 45 < 51. 
Since the procedure allows the operator to build up credit, the 

reverse situation does not hold and one can have Ra,j-l > Ra,j (dete
rioration in the current-year rating) with Rj - 1 < Rj (improvement in 
the attendance index). This is exemplified in the ratings of 1977 and 
1978 in Table VIII. And indeed, even though the attendance in 1978 
was worse than the attendance in 1977, the period 1976-1978 as a 
whole reflects better attendance than the period 1975-1977. 

IV. REMARKS 

(i) Though the technical details (such as the length of the periods 
to be used for rating, and the specific values in Tables Va, b, and c) are 
tuned to telephone operators (more specifically to our sample), thp 
method itself can be adapted to other occupations. In occupations with 
substantially higher absence rate, such as auto workers [see, for 
example, the data collected from 60 blue-collar employees of an auto
mobile-parts foundry, reported in Morgan and Herman (Ref. 8, pp. 
739)], periods of 1, 2, and 3 years are too far in the past to affect the 
current attendance index and should be replaced with shorter periods 
(e.g., 6, 12, and 18 months). 

(ii) As pointed out by a Bell Laboratories referee, the choice of the 
scoring bands in Table VI is somewhat arbitrary, and these bands 
differ from the HOLU (high, objective, low, unsatisfactory) bands that 
were recommended by the AT&T Measurements Task Force. Since, 
however, our main contribution here is the general approach for 
evaluating attendance (i.e., weighing the recent past in the attendance 
index) rather than the particular details, we prefer to leave the expo
sition as is. 

(iii) In view of the difference between younger and older operators 
in regard to lA'S, note that the proposed scheme is tuned to a popula
tion of approximately 30-percent younger operators and 70-percent 
older operators (as in our sample). This proportion emphasizes the 
better behavior of the older operators without setting unattainable 
standards for the younger operators. 
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Experience has shown that efficiency usually increases when sep
arate traffic systems are combined into a single system. For example, 
if Group A contains 10 trunks and Group B 8 trunks, there should be 
fewer blocked calls if A and B are combined into a single group of 18 
trunks. It is intuitively clear that the separate systems are less efficient 
because a call can be blocked in one when trunks are idle in the 
other. Teletraffic engineers and queuing theorists widely accept such 
efficiency principles and often assume that their mathematical proofs 
are either trivial or already in the literature. This is not the case for 
two fundamental problems that concern combining blocking systems 
(as in the example above) and combining delay systems. For the 
simplest models, each problem reduces to the proof of an inequality 
involving the corresponding classical Erlang function. Here the two 
inequalities are proved in two different ways by exploiting general 
stochastic comparison concepts: first, by monotone likelihood-ratio 
methods and, second, by sample-path or "coupling" methods. These 
methods not only yield the desired inequalities and stronger compar
isons for the simplest models, but also apply to general arrival 
processes and general service-time distributions. However, it is as
sumed that the service-time distributions are the same in the systems 
being combined. This common-distribution condition is crucial since 
it may be disadvantageous to combine systems with different service
time distributions. For instance, the adverse effect of infrequent long 
calls in one system on frequent short calls in the other system can 
outweigh the benefits of making the two groups of servers mutually 
accessible. 

I. INTRODUCTION AND SUMMARY 

From extensive experience in teletraffic engineering, it is well known 
that congestion can often be reduced by sharing resources. The block-
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ing probability in a loss system and the average waiting time in a delay 
system are usually much less when separate facilities serving separate 
streams of traffic are combined to serve all the streams together. 
Alternatively, for a given level of congestion, fewer facilities are usually 
required to serve the streams together. Sometimes such results are 
trivial: Whenever the combined system may be managed as if it were 
in fact separate systems, the optimal performance of the combined 
system is at least as good as that of the separate systems. However, 
such management is not allowed in the models treated here. In any 
case, the efficiency of shared resources is certainly a fundamental 
principle of teletraffic engineering. 

The purpose of this paper is to establish versions of this efficiency 
principle mathematically. Our first two results verify conjectures by 
Arthurs and Stuck.I To state our first result, let L (8, A Jl) denote the 
stationary loss or overflow rate in an M/M/8 loss system (no waiting 
room) with 8 servers, arrival rate A, and individual service rate Jl. (See 
Kleinrock2 for background on the queuing models.) It is well known 
that L(8, A, Jl) = AB (8, a), where a = A/Jl and B (s, a) is the familiar 
Erlang blocking formula: 

S 

B(s, a) = (as/s!)/L (ail/k!); (1) 
k=O 

see Jagerman:3 and references there. The first efficiency principle we 
establish says that L (s, A, Jl) is a subadditive function of (s, A) for each 
fixed Jl: 
Theorem 1: For all positive integers SI and S2 and all positive real 
numbers AI, A2 and Jl, 

L(sl + S2, Al + A2, Jl) :s L(sl, AI, Jl) + L(S2, A2, Jl). (2) 

This yields immediately that 

GC~I Si. i~1 a.) '" i~1 G(Si. ail 

for each integer n, where G(s, a) = aB(s, a), which is the version of 
Theorem 1 actually conjectured by Arthurs and Stuck. I 

Of course, Theorem 1 should not surprise teletraffic engineers, since 
it can be inferred from common tables and graphs, but it has apparently 
not been proved before. It appears that all previous mathematical 
results can be described as "one-parameter" results. The relation (2) 
has been deduced for special cases in which quantities such as the 
blocking probability or the load per server are held constant. For 
example, it is known that if one combines separate groups of j and k 
trunks, each operating at a blocking probability 0.01, then the new 
blocking probability will be less than 0.01 (or, alternatively, the com
bined system can handle an increased total load and retain the same 
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0.01 blocking probability); see p. 68 of Cooper.4 Such results are often 
presented without rigorous mathematical support. 

From Paul Burke we learned about another special case that has 
been known for a long time. It is not difficult to show that B (ts, ta) is 
strictly decreasing in t (see the appendix), from which (2) easily follows 
in the case AI! SI = Ad S2. Herbert Shulman has also shown that 
Theorem 1 follows easily from the monotonicity of B (ts, ta) in t and 
the convexity of B (s, a) in s for s ~ 1, but such convexity has not yet 
been established (see the appendix). For further discussion of other 
related work, see Section 5.1 of Kleinrock.!; 

To state our second result, let D (s, A, p.) denote the mean steady
state delay in an M / M / s queue with infinite waiting room, FCFS (first
come, first-served) queue discipline, s servers, arrival rate A, and 
individual service rate p.. It is well known that D(s, A, p.) = C(s, A/P.)/ 
(sp. - A), where C(s, a) is the Erlang delay function: 

C( ) =_~ __ as_/_(s_-__ l)_!(_s_-_a_) __ __ 
s, a s 1 (3) 

L (ak/k!) + as/(s - I)! (s - a) 
k=O 

The following result establishes subadditivity of D (s, A, p.) as a function 
of (s, A) for each fixed p.. Note that 

[AI/(AI + A2)]D(sl, A}, p.) + [Az/(AI + A2)]D(S2, A2, p.) 

is the overall average delay experienced in the separate systems 
because AI/(AI + A2) is the long-run proportion of customers to enter 
the first system. 

Theorem 2: For all positive integers SI and S2 and all positive real 
numbers AIJ A2J and p.J 

D(SI + S2, Al + A2, p.) 
:S [AI/(AI + A2)]D(sl, AI, p.) + [Az/(AI + A2)]D(S2, A2, p.). (4) 

This yields immediately that 

HC~l Si, i~l ai) :S i~l H(Si, ail 

for each integer n, where H(s, a) = aC(s, a)/(s - a), which is the 
version of Theorem 2 actually conjectured by Arthurs and Stuck. 1 

In order to prove Theorems 1 and 2, we found it convenient to prove 
stronger results. It is helpful to see how the loss rate L(s, A, p.) and the 
mean delay D(s, A, p.) are related to the steady-state number of 
customers in the system, say Q. In the M / M / s loss system 

L(s, A, p.) = A - p.EQ (5) 

because A is the arrival rate and p.EQ is the service-completion rate; 
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the loss rate is that fraction of the arrivals that are not served. In the 
M / M / s delay system 

A(D(s, A, JL) + JL-l) = EQ (6) 

by virtue of the fundamental relation L = AW; see Stidham.6 

Let QI be the steady-state number of customers in the ith system 
(i = 1, 2) and let Q be the steady-state number of customers in the 
combined system. Then Theorem 1 is equivalent to 

for the loss systems, and Theorem 2 is equivalent to 

EQ :5 EQI + EQ'2 

, for the delay systems. 

(7) 

(8) 

Instead of comparing the means in (7) and (8), we prove Theorems 
1 and 2 by making more general stochastic comparisons. We do this in 
two different ways. Our first method of proof is to compare the 
distribution of Q with the distribution of QI + Q2. It turns out to be 
very easy to establish an appropriate ordering for the entire distribu
tions, which in turn implies the desired inequality for the means. The 
appropriate order is the monotone likelihood-ratio ordering. We define 
this ordering and prove the more general theorems implying Theorems 
1 and 2 in Section II. 

Our second method of proof is to compare entire stochastic processes 
rather than just stationary distributions. As corollaries we obtain 
stochastic-order relations for the stationary distributions which in turn 
also imply the desired inequalities (7) and (8) for the means. This 
approach has the advantage that the arrival processes can be arbitrary 
rather than Poisson and the service-time distributions can be general 
instead of exponential. The argument is also remarkably simple. The 
idea in this approach is to construct artificially the two stochastic 
processes being compared on the same probability space. The construc
tion is carried out so that each stochastic process individually has the 
correct distribution (family of finite-dimensional distributions) as orig
inally specified. We choose a special joint distribution so that each 
sample path of one process always lies below the corresponding sample 
path of the other process. Because the construction is artificial, the 
joint distribution of the two processes is not directly meaningful, but 
it implies a strong stochastic ordering for the processes. Such special 
constructions have been used previously to compare queuing processes; 
see Sonderman,7 Whitt,S Wolff:9 and references there. in fact, the 
generalization of Theorem 2 is a direct consequence of Wolff's theorem 
and the other proofs involve similar reasoning. We present our results 
using this approach in Section III. 
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In Theorems 1 and 2 we assume equal service rates in the two 
systems. It is natural to ask whether extensions of (2) and (4) hold 
when the service rates are unequal. In Section IV we show that, with 
unequal service rates, combining resources need not be more efficient; 
in fact it can substantially degrade performance. Infrequent "bad" 
customers from one system can adversely affect a large number of 
"good" customers from the other system. 

II. MONOTONE LIKELIHOOD-RATIO COMPARISONS 

Let X and Y be random variables assuming values in the nonnegative 
integers. We say X is less than or equal to Y in the monotone 
likelihood-ratio ordering and write X:S r Y if 

P(X = k + 1) < P( Y = k + 1) (9) 
P(X = k) P( Y = k) 

for all integers k; see page 208 of Ferguson. 10 We say X is stochastically 
less than or equal to Y and write X :Sst Y if Ef(X) :s Ef( Y) for all 
nondecreasing real-valued functions f for which the expectations are 
well defined. Obviously, EX:s EY whenever X :Sst Y. What is important 
for Theorems 1 and 2 is that X :Sr Y implies X :Sst Y. This is well 
known and not difficult to show. In fact, the monotone likelihood-ratio 
ordering is equivalent to stochastic order for all conditional distribu
tions obtained by conditioning on subsets, i.e., E(f(X) I X E A) :s 
E(f(Y) lYE A) for all subsets A and all nondecreasing real-valued 
functions f; this property is discussed in Whittll, 12; see Keilson and 
Sumita13 for additional material. 

Returning to the notation of (7) and (8), we obtain the following 
results which imply Theorems 1 and 2. 
Theorem 3: For the M/M/s loss systems, 

Ql + Q2<rQ. 

Theorem 4: For the M/M/s delay systems, 

Q <r Ql + Q2. 

Theorems 3 and 4 can each be proved by simple calculations since 
the stationary distributions are known and easy to work with. To 
illustrate, we do one proof. 

Direct Proof of Theorem 3: Let ai = Ail Jli for i = 1, 2. Then, using 
convolution, we obtain for some constant C 

P(QI + Q2 = k + 1) = C L afla~2Iil!i2! 
O:!Si1:!SSI 

O:!Si2:!SS2 

i1+i2=k+l 
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Cal 
=-- L k+l lsi1ss1 

OSi2ss2 
i1+i2=k+l 

Ca2 
+-

k+l L 
Osi1ss1 
lsi2ss2 

i1+i2=k+l 

P(Q = k + 1) 
= P(Q = k) P(QI + Q2 = k). 0 

It is also significant that both Theorems 3 and 4 can be viewed as 
trivial corollaries of a more general theorem. This more general theo
rem is especially useful for comparisons when the limiting distributions 
are not known. To state our general result, consider two stochastic 
processes on the integers, Yl(t) and Y 2(t), that move only by jumps up 
or down in unit steps to one of the neighboring states. Let all the 
transitions be governed by birth-and-death rates, but in contrast to 
those in birth-and-death processes, these rates may depend on infor
mation other than the current state such as the history of the process 
or other relevant variables. Let Ai(k, It) and p,i(k, It) be the birth-and
death rates, respectively, for the ith process (i = 1, 2) in state k with 
additional information It at time t. By having transitions governed by 
birth-and-death rates, we mean that 

and 

P(Yi(t + h) = k + 11 Yi(t) = k, I,) = hAi(t, I,) + o(h), 

P(Yi(t + h) = k - 11 Yi(t) = k,I,) = hp,i(t, I,) + o(h), 

P(Yi(t + h) = k I Yi(t) = k, I,) = 1 - h[Ai(t, I,) + p,i(t, I,)] + o(h), 

where o(h) means a quantity that converges to zero after division by 
h as h ~ o. Let Xl and X 2 be random variables with the limiting 
distributions of these two stochastic processes, which we assume exist 
as proper distributions. Here is our general monotone likelihood-ratio 
comparison result. 
Theorem 5: Consider the processes YI (t) and Y2(t) defined above. 
Suppose there exist sequences of constants {(Xi(k»} and {/3i(k»} such 
that 

AI(k, I,) ::; (XI(k), 
P,l (k, I,) ~ /31 (k), 

A2(k, I,) ~ (X·Ak), 
p,2(k, I,) ::; /32(k), 
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for all k and It. If CiI(k)//3I(k + 1) =5 Ci2(k)//32(k + 1) for all k, then 
Xl =5r X 2• 

Corollary: If 

and 

III (k, II) 2: 112 (k, n) 

for all k, It, and I~, then Xl =5r X 2• 

Proof of Theorem 5: Look at the stationary flow between states k and 
k + 1. The flow from k to k + 1 is less than or equal to P(XI = k)CiI(k) 
for process 1 and greater than or equal to P(X2 = k)Ci2(k) for process 
2. Similarly, the stationary flow from k + 1 to k is greater than or 
equal to P(XI = k + 1)/3I(k) in process 1 and less than or equal to 
P(X2 = k + 1)/32(k) in process 2. Since the stationary flow from k to 
k + 1 must equal the stationary flow in the opposite direction, 

P(XI = k)Cil (k) 2: P(XI = k + 1)/31 (k + 1) 

and 

Consequently, 

P(XI = k + 1) Cil (k) Ci2(k) P(X2 = k + 1) 
-----< < <------

P(XI = k) /31 (k + 1) /32(k + 1) P(X2 = k) 
D 

We can now apply the corollary to Theorem 5 to prove Theorems 3 
and 4. 
Second Proof of Theorem 3: Note that the processes depicting the 
number of customers being served satisfy the hypotheses of Theorem 
5. In the case of two separate facilities, the sum is not a birth-and
death process because the rates depend not only on the total number 
but how many are in the individual facilities. When k customers are 
present, the death (service) rates are identical, but the birth (arrival) 
rates can be higher in the combined system because if one of the 
separate facilities is full, then it cannot accept any more arrivals. 
Hence, the hypotheses of the corollary to Theorem 5 are 
satisfied. D 
Proof of Theorem 4: Again we apply the corollary to Theorem 5. The 
reasoning is similar except here when k customers are present, the 
birth (arrival) rates are always identical, but the death (service) rates 
can be less with the separate facilities because there can be idle servers 
in one facility while there are customers waiting in the other 
facility. D 
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III. SAMPLE PATH COMPARISONS 

Let {X(t), t 2= O} and {Y(t), t2= O} be real-valued stochastic processes. 
We call a real-valued function f defined on the space of all sample 
paths of X(t) and Y(t) nondecreasing if f( {x(t), t 2= O}) ~ f( {y(t), t 2= 
O}) for all sample paths {x(t), t 2= O} and {y(t), t 2= O} such that x(t) 
~ y(t) for all t 2= o. We say the stochastic process {X(t), t 2= O} is 
stochastically less than or equal to the stochastic process {Y(t), t 2= O} 
and write {X(t), t 2= O} ~st {Y(t), t 2= O} if f( {X(t), t 2= O}) ~ . .,t f( {Y(t), 
t 2= O}) for all nondecreasing real-valued functions f defined on the 
sample paths of X(t) and Y(t). Clearly, stochastic order of the processes 
implies X(t) ~st Y(t) for each t [just use the projection: f( {x(u), u 2= 
O}) = x(t)], but it is much stronger, applying to many other nonde
creasing functionals. In fact, since the queuing processes have sample 
paths with left and right limits everywhere, stochastic order of the 
processes is equivalent to stochastic order for all finite-dimensional 
(joint) distributions; see Section -4 of Kamae, Krengel, and O'Brien.14 
Moreover, stochastic order of the processes here is equivalent to the 
possibility of a strong sample-path comparison. In particular, 

{X(t), t 2= O} ~st {Y(t), t ~ O} 

holds if and only if it is possible to construct stochastic processes 
{X(t), t 2= O} and {Y(t), t ~ O} on a common probability space such 
that {X(t) , t ~ O} has the same distribution as {X(t), t ~ O}, 
{Y(t), t 2= O} has the same distribution as {Y(t), t ~ O}, and every 
sample path of {X(t), t ~ O} lies below the corresponding sample path 
of {Y(t), t 2= O}; see Theorem 1 of Kamae, Krengel, and O'Brien.14 
What we do is apply the easy half of this equivalence-the fact that 
the sample-path construction implies stochastic order-to make sto
chastic comparisons between the queuing processes. The proofs here 
are done by actually constructing processes with the sample-path 
ordering. Previous uses of such constructions appear in Sonderman,7 

Whitt,S Wolff,9 and references therein. The approach is also closely 
related to the so-called "coupling" techniques; see Lindvall1.'> and 
references therein. 

We begin with the generalization of Theorem 2 for delay systems 
because it follows directly from WOlff.9 As before, we assume the FCFS 

discipline, but now we allow the arrival streams in the two separate 
systems to be arbitrary. We assume the service times are independent 
of the arrival processes and mutually independent and identically 
distributed, but they need not be exponentially distributed. Since the 
arrival process is assumed to be independent of the service-time 
sequence, the evolution of the arrival process cannot depend on the 
state of the system. This excludes finite-source models, for which 
counterexamples to the efficiency of sharing are easy to construct; for 
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example, see page 1377 of Benes.16 Let Qi(t) be the number of customers 
in the ith system and let Q(t) be the number of customers in the 
combined system at time t. 
Theorem 6: (Wolff) If QI(O) = Q2(0) = Q(O) = 0, then {Q(t), t ~ O} 
~st {QI(t) + Q2(t), t ~ O}. 
Remarks: (i) Wolff9 was actually interested in comparing the FCFS 

discipline with the cyclic assignment discipline in a single delay-system. 
He showed that the queue length process with the FCFS discipline is 
stochastically less than the queue length process in the same system 
with any other discipline. This result applies here because the two 
separate facilities can be interpreted as a single system with a special 
queue discipline: Just label the arrivals in the special system according 
to the stream from which they came and then assign them according 
to the FCFS discipline to one of the servers in the corresponding 
subgroup of servers. 

(ii) We can obtain corresponding results if the systems are not 
empty initially. For more general initial conditions, we can assume 
appropriate stochastic order for the residual service times at t = o. 

(iii) W olff9 also obtained similar comparison results for other pro
cesses, all of which hold here too: the departure epochs, the number of 
customers in queue, the total work (in service time) in the system, and 
the total work in queue. By the sample-path construction, the sto
chastic order jointly holds for all these processes. See Theorem 8 here. 

(iv) As a consequence of Theorem 6, Q(t) ~st QI(t) + Q2(t) for each 
t. With the general assumptions here, steady-state distributions need 
not exist, but if Qi(t) and Q(t) converge in law to Qi and Q, respectively, 
as t ~ 00, then Q ~st QI + Q2; see Proposition 3 of Kamae, Krengel, 
and O'Brien.14 The convergence of course holds in the setting of 
Theorem 2, so Theorem 6 implies (8) and thus Theorem 2. 

(v) Since Theorem 2 concerns the mean-waiting time, it is natural 
to ask if the steady-state waiting-time distribution is also stochastically 
less in the combined system. Unfortunately, in general it is not. The 
counterexample in White 7 applies here too; the cyclic discipline there 
can be interpreted as arrivals to separate facilities. 

(vi) When the arrival streams are not Poisson, which we now permit, 
a new phenomenon occurs. Then the customers in the different streams 
experience different congestion when the systems are combined, even 
if the service times are independent and identically distributed. This 
phenomenon can be an important consideration in combining systems, 
but we do not consider it here; it has been studied by Kuczura. IH

,1fJ 

We now turn to our generalization of Theorem 1 for loss systems. In 
addition to allowing arbitrary arrival streams and general service-time 
distributions, we allow a finite waiting room. The number of waiting 
spaces in the combined system is the sum of the numbers of waiting 
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spaces in the separate systems. Let Ni(t) [N(t)] be the number of 
customers lost in the interval (0, t) in the ith separate system (in the 
combined system); let Si(t) [S(t)] be the number of service completions 
in the interval (0, t) in the ith separate system (in the combined 
system); and let Ci(t) [C(t)] be the amount of work performed-service 
given-in the interval (0, t) in the ith separate system (in the combined 
system). 

Theorem 7: If QI(O) = Q2(0) = Q(O) = 0 in these systems with finite 
waiting rooms, then 

{N(t), t;::: O} ~sl {N)(t) + N·At), t;::: OJ, 

{S(t), t;::: O} ;:::sl {S)(t) + SAt), t;::: OJ, 

and 

{C(t), t;::: O} ;:::st {CI(t) + C2(t), t;::: OJ. 

Now assume that Ni(t)/t and N(t)/t converge (either in probability 
or with probability one) as t --,) 00. Let the limits be denoted L(Si, ki, 
Ai(t), F) and L(SI + S2, kI + k2, AI(t) + A 2(t), F), respectively, with k i 
denoting the number of waiting spaces, Ai(t) the arbitrary arrival 
process and F(x) the general service-time c.dJ. From Theorem 7 we 
immediately obtain the following generalization of Theorem 1. 

Corollary: For all positive integers SI, S2, ki and k2; all arrival 
processes AI(t) and A 2(t); and all service time c.d.f.'s F(x) such that 
the loss-rate limits exist, 

L(SI + S2, ki + k2, AI(t) + A 2(t), F) 
=:; L(SI, kI, Al (t), F) + L(S2, k2, A 2(t), F). 

To prove Theorem 7, we establish a finite-waiting-room generaliza
tion of Wolff's9 comparison theorem. Following Wolff, we shall state 
the result in terms of the sample-path comparison. Since the joint 
distribution of the two systems being compared is artificially obtained, 
the appropriate conclusion is the general stochastic order as in Theo
rems 6 and 7. 

We carry out the artificial construction by letting the systems being 
compared have identical arrival processes and service times. Note that 
we are now focusing on a single (arbitrary) sample path. We let the 
nth service time Vn be associated with the nth customer to enter 
service in each system rather than the nth arrival. Let an be the arrival 
epoch of the nth arrival, 0 ~ a) ~ a2 ~ •••. We assume there are s 
servers operating in parallel and k extra waiting spaces in both systems. 
We also assume the systems are initially empty. 

One system, called the original system, will be the conventional 
system where the servers are fed by a single queue using a FCFS 

discipline. Moreover, there are k extra waiting spaces and arriving 
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customers enter the system if the number of customers in the system 
is less than s + k, and are lost otherwise. 

The other system, called the modified system, is any alternative to 
the original system which assigns customers to servers in some manner, 
independent of the sequence of service times {vn }, and which loses 
arrivals whenever the system is full and in some manner otherwise. 

Let an be the arrival epoch of the nth customer. For the original 
system, let tn be the time that the nth customer to enter the system 
enters; obviously tn = ak for some k, k 2: n. Also, for the original 
system, let bn be the time the nth customer to begin service begins and 
let dn be the nth ordered departure epoch from the system. Let an, t~, 
b~, and d~ be the corresponding quantities for the modified system. 

Theorem 8: For all integers n, tn === t~, bn === b~, and dn === d~. 

Proof: The sets of unordered departure epochs in the two systems are 
clearly {(bn + vn)} and {(b~ + vn)}, respectively. For the original 
system, 

d l = min {bi + vd = min {ti + vd, 
l::=:;i::=:;s i::=:;i::=:;s 

dn = nth-order statistic from {(b i + Vi): i < n + s} (10) 

and 

bn = max {tn, dn- s} , n 2: 1, (11) 

where dj = 0 if j = o. For the modified system, 

d~ = nth-order statistic from {(bi + Vi): i < n + s} (12) 

and 

n 2: 1, (13) 

because in the modified system it is possible to have a positive queue 
and an idle server. 

Since the nth-order statistic is a monotonic function, to prove 
Theorem 8 it suffices to show that tn === t~ and bn === b~ for all n. We 
show this induction. Obviously bi = ti = ai === t~ === b~, 1 === i === s. Suppose 
ti === ti and bi === b~ for all i, i === n - 1. We first show that tn === t~. 
Suppose not; then 

and thus n - 1 customers have entered both systems before the arrival 
associated with t~. (Note that customers could arrive in batches, i.e., 
ak = ak+l is a possibility, but this presents no serious difficulty.) 
However, by the induction hypothesis bi + Vi === hi + Vi, i === n - 1, so 
the original system has at most the same number of customers as the 
modified system before the arrival associated with t~. Thus, tn > t' n 
cannot occur. Hence tn === t~ as claimed. 

RESOURCE SHARING IN TRAFFIC SYSTEMS 49 



To continue the induction proof for bn , note that (10) and (12) imply 
that di :::: di for i :::: n - s. Then, from (11) and (13), we have 

which completes the proof. D 
Remark: Our proof of Theorem 8 is closely related not only to Wolff's 
proof,9 but also to Sonderman's comparison proofs.20.21 Sonderman was 
concerned with the effect of different service-time distributions instead 
of different queue disciplines. 

We close this section with another result about pure-loss systems. 
With waiting rooms or with general service times it is easy to show 
that the stochastic processes representing the number of customers in 
the system need not be stochastically ordered, but we do get stochastic 
order with exponential distributions and no waiting rooms. 
Theorem 9: In the setting of Theorem 7, if there are no waiting rooms, 
if the service-time distribution is exponential and if Q(O) =st Q1(O) + 
Q2(O), then 

and 

{N(t), t::: O} ::::st {N1(t) + N 2(t), t::: O}. 

Proof: Here the argument follows Sonderman7.20.21 and Whitt.8 As the 
first step in constructing the two systems on the same probability 
space, we let the two systems being compared have identical arrival 
processes; i.e., we let the arrival process to the combined group of Sl 
+ S2 servers be the sum of the two arrival processes to the separate 
groups of Si servers. This not only means that the arrival processes 
have the same joint distributions, but that they have the same sample 
paths. Similarly, we let both systems start off with the same number 
of customers in the system; i.e., given the pair [Q1(O), Q2(O)], we let 
Q(O) = Q1(O) + Q2(O). We now show how to construct the departures 
so that 

(14) 

and 

(15) 

for all t ::: o. We generate departures from both systems using a single 
Poisson process with rate (Sl + S2)jl. Each point in this Poisson process 
corresponds to a potential departure. Suppose the point occurs at time 
t. With probability Q1(t)/(Sl + S2), the point corresponds to a departure 
from both the single group of Sl servers and the combined group of Sl 
+ S2 servers; with probability Q2(t)/(Sl + S2), the point corresponds to 
a departure from both the single group of S2 servers and the combined 
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group of 81 + 82 servers; with probability [Q(t) - Q1(t) - Q2(t)]/(81 + 
82) the point corresponds to a departure from only the combined group 
of 81 + 82 servers; and finally, with probability [81 + 82 - Q(t)]/(81 + 
82), the point corresponds to no departure at all. This can be shown to 
yield the proper distributions for each system; see Sonderman 7 for 
more detail. This also guarantees that there is a departure in the 
combined group of 81 + 82 servers whenever there is a departure from 
one of the groups with 81 and 82 servers. There also cannot be a 
departure from the combined group alone when Q(t-) = Q1(t-) + 
Q2(t-), so inequality (15) is maintained. This means that all departures 
and losses from the combined group of 81 + 82 servers that are not 
matched by corresponding departures or losses from one of the groups 
of 81 and 82 servers can be matched with earlier losses from one of the 
groups of 81 and 82 servers. Mathematical induction on the arrival 
index establishes (14) and (15) and formally completes the proof. D 

Remark: For the special case of M/M/8 systems, the stochastic order 
in Theorems 6 and 9 can also be established under the conditions in 
the corollary to Theorem 5 using existing comparison theorems for 
continuous-time Markov chains; see Sonderman.7 However, we know 
of no direct connections between the monotone likelihood-ratio order
ings and the sample-path orderings. 

IV. DIFFERENT SERVICE RATES 

In this section we let the service rates in the two separate systems 
be different. One way to extend (2) and (4) occurs when the service 
times are associated with the arrivals. If two independent Poisson 
streams with rates Al and A2 and associated service-time c.dJ.'s Fdx) 
and Fdx) are combined, then the resultant stream is a Poisson stream 
with rate Al + A2 and associated service-time c.d.f.: 

F(x) = [A1F 1(x) + A2F2(x)]/(AI + A2). 

Of course, when Fi(x) is exponential with mean /li1 for each i, F(x) is 
not exponential unless /ll = /l2. However, the blocking probability for 
an M/G/8 loss system depends only on the mean service time. Thus 
the loss rate for the combined system is L(81 + 82, Al + A2, (AI + A2)/ 
(a1 + a2)), and a natural extension of (2) to conjecture is 

L(81 + 82, Al + A2, (AI + A2)/(a1 + a2)) :s L(81, AI, /ld + L(82, A2, /l2). 

Unfortunately, this conjectured inequality is not valid. To see this, let 
Al = 1, /l1 = €-I, A2 = €, and/l2 = €2; then a1 = € and a2 = €-1. Obviously, 

L(81 + 82, Al + A2, (AI + A2)/(al + a2)) = (AI + A2)B(81 + 82, al + a2) 

(1 + e)B(8I + 82, e + e-1
) 

~ 1 as €~ 0, 
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whereas 

L(8l, AI, J-td + L(82, A2, J-t2) = AlB(8l, ad + A2B(82, a2) 

B(8l, €) + €B(82, €-l) 

~ 0 as €~ o. 
Consequently, in this case 

L(8l + 82, Al + A2, (AI + A2)/(al + a2» ~ L(8I, AI, J-td + L(82, A2, J-t2) 

for sufficiently small €. The previous measure, rate of customer loss, is 
not the only reasonable way to evaluate system performance in this 
case. For example, one might be interested in the rate of loss of service 
time. (Note that there is no real difference between these measures 
when the mean service times of the systems are identical.) With this 
new measure, the natural extension of (2) to conjecture is: 

al + a2 
A A L(8l + 82, Al + A2, (AI + A2)/(al + a2» 

1 + 2 

1 1 
s - L(8l, AI, J-tl) + - L(82, A2, J-t2). 

J-tl J-t2 

This inequality is in fact always true, since substitution of L(8, A, J-t) 
= AB(8, A/J-t) quickly reduces it to the second version of the inequality 
of Theorem 1. Thus the server occupancy is always increased for the 
combined system. 

Turning to delay systems, we again find examples where sharing can 
be counterproductive. To see this, consider two MIMII delay sys
tems with Al = 1, J-tl = 2, A2 = €, and J-t2 = 2€. Then EQl(OO) = EQ2(OO) 
= pl(l - p) = 1, but EQ(oo) can be shown to be of order €-I as € ~ 0: 
Consider the interval following a low-intensity arrival. With probability 
Ad(A2 + J-t2) = Va, a second low-intensity arrival occurs before the first 
departs. Then there follows an exponentially distributed interval of 
mean length 1/4€ during which the combined system fills up with high
intensity customers. In computing the average number of customers 
in the system, we get a term of order €-2 (the total area in the plot of 
the number of customers in the system versus time, starting from the 
moment the second low-intensity customer arrives and ending when 
one of the two low-intensity customers departs), divided by a term of 
order €-l. In other words, with the mean steady-state delays held fixed 
in the two separate systems, the mean steady-state delay in the 
combined system can be arbitrarily large. 

Note that the combined system can be modeled as an MIG18l+82 
delay system where the service-time distribution is the mixture of two 
exponential distributions, but in contrast to the case of loss systems 
the mean delay does not depend only on the mean of the service-time 
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distribution. Hence, the appropriate generalization of (4) involves a 
system which is not M/M/s. 

Another possible extension for Jl1 =F Jl2 occurs when the service-time 
distributions are associated with the servers. Here the combined 
system is not M / M / s because there are heterogeneous servers, so there 
are no equations similar to (2) and (4). In this case, it can be shown 
that with exponential service-time distributions and no waiting rooms, 
resource sharing is always better if customers always are sent to the 
fastest available server. In particular, as in Theorems 6 to 8, it can be 
shown for any single system that assigning customers to the fastest 
available server produces fewer losses than any other rule, where by 
"fewer losses" we mean in the sample-path ordering of Section III. One 
other rule, corresponding to the two separate systems, is to assign the 
customer only to servers associated with their original separate arrival 
streams. 

When we focus on delay systems with heterogeneous servers, it is 
easy to give counterexamples showing that resource sharing can again 
be counterproductive. Related literature on the assignment of cus
tomers to heterogeneous servers appears in Winston,22-24 Smith,25 and 
references therein. 

This section shows that, with unequal service-time distributions, 
resource sharing can be counterproductive. However, with unequal 
service-time distributions, much depends on the criterion of system 
performance. Also, it should be noted that such counterexamples have 
been observed before; others have discovered that infrequent "bad" 
customers can affect adversely a large number of "good" customers. 
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APPENDIX 

Here we give two results that are due to others. First, we present Paul 
Burke's proof that B(ts, ta) is strictly decreasing in t for t :::: o. This 
result implies Theorem 1 when AI! Sl = A2/ S2, because then 
B(Sl + S2, al + a2) = B(tSi, tai) for some t :::: 1, so B(Si, ai) :::: 
B(Sl + S2, a1 + a2) for each i and 

A1B(sI, ad A2B(S2, a2) B( ) \ \ + \ \ > SI + S2, al + a2 , 
1\1 + 1\2 1\1 + 1\2 

which is equivalent to (2). 
To see that B(ts, ta) is strictly decreasing in t, first recall the 

following equation relating two different expressions for the tail of the 
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gamma distribution: 

e-a Il~n a'l/k! = Joo xne,-x dx. 
11=0 a n. 

Then note that 

1 

B(t8, ta) 

= foo e-(x-ta)(x/ta)fS dx 

fa 

= 100 

e-X(l + [x/ta])" dx; 

also see Theorem 3 of Jagerman.3 Finally, (1 + [x/ta])ts is strictly 
increasing in t. 

Second, Herbert Shulman has shown that Paul Burke's result and 
the convexity of B(8, a) in 8 for 8 ::: 1 imply a version of Theorem 1. 
Such convexity has frequently been conjectured but has been proved 
only for lattices of points with unit spacing, see Messerli26 and refer
ences therein. These versions of convexity are not strong enough to 
make the following valid even when 81 and 82 are integers; however, 
general convexity would establish the proof for all real numbers 81 and 
82 ::: 1, a more general mathematical result. We reproduce Shulman's 
argument here: 
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In this paper we derive explicit expressions for the transient state 
probabilities of the Kendall birth-death process, with and without 
immigration, for any initial condition. We then propose this process 
as a model for special services point-to-point demand, in which the 
births represent circuit "connects" and the deaths represent "discon
nects." This choice of model is based on intuitive arguments and on 
the fact that the model can represent the growth and turnover 
characteristics of special services demand. Thus, the model provides 
a means by which special services demand, with its inherent uncer
tainty, may be approximately represented in various facility network 
studies, to obtain, at the very least, useful qualitative results. In 
particular, we evaluate the probability of a held order (i.e., the 
probability that a service request is held for lack of spare facilities) 
with Blocked Customers Held (BCH) as the queue discipline. We also 
apply the model to capacity expansion problems, introduce the con
cept of margin, the extra capacity needed to meet the demand within 
a given held-order probability, and examine its sensitivity with re
spect to growth, turnover (or churn), and system size. We find that 
aggregating small demands into a single larger demand produces 
significant reduction of the margin, because of improved statistical 
properties. 

I. INTRODUCTION 

In this article, the transient behavior of the Kendall birth-death 
process * with immigration is examined, and some applications of the 

* The Kendall birth-death process is one in which the transition rates are proportional 
to the state. 
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process to capacity expansion problems are discussed. The choice of 
such a process was motivated by the search for a model for special 
services point-to-point circuit demand, a model which would be used 
as a tool for determining facility network circuit routing strategies. 
Special services demand generally consists of demand for full-time 
dedicated circuits (e.g., foreign exchange lines, WATS lines, data lines), 
as opposed to the message-traffic offered load which consists of de
mand for the use of common facilities for a relatively short period of 
time. Thus, the system examined is characterized by the stochastic 
process .Ait) with realizations (states) n = 0, 1, ... , 00, where n might 
refer to the number of working circuits or some other facility, rather 
than to the number of busy trunks, as in the message-traffic case. By 
definition, the birth-death process! allows transitions from some state 
n to n + 1 via a birth (circuit connect), or to n - 1 via a death (circuit 
disconnnect). The transition rates are An for the births and f-tn for the 
deaths, both of which are chosen proportional to n for the following 
reasons. 

It is clear, for special services, that the rate of disconnects, JLn, is 
state dependent. There are, in fact, indications2 that f-tn is a monoton
ically increasing function of n. The simplest such function is nf-t, which 
implies that the probability of disconnects is proportional to the size 
of the system. With this choice for the death rate, a number of possible 
choices exist for the birth rate. Choosing it to be a constant causes the 
mean number of circuits to saturate in time, while choosing it to be 
proportional to n causes the mean to grow or decline exponentially. 
Since special services are presently characterized by significant net 
growth, it would seem that a plausible model for special services 
demand is a birth and death process in which both the birth and death 
rates are proportional to the state. 

One consequence, however, of assuming An = nA is that if the process 
reaches the state n = 0 at any time, by a succession of disconnects, it 
will stay there forever, since the birth rate is zero. To eliminate this 
characteristic, the concept of immigration may be introduced by taking 
An = nA + {3, where {3 is the immigration factor. The cases with and 
without immigration will be discussed below. 

It must be emphasized that it is not the intent of this paper to 
validate the model based on an examination of actual special services 
data. Such statistical data analysis is important for a final assessment 
of the accuracy of the model and is currently being undertaken. For 
the purposes of this paper, it shall be assumed that a study of the 
proposed model is justified, based on the intuitive arguments given 
above and on the fact that the model captures the growth and turnover 
characteristics of special services (see Section 5.1). The model provides 
a means by which special services demand, with its inherent uncer-
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tainty, may be approximately represented in various special services 
facility network studies, to obtain, at the very least, useful qualitative 
results. 

Since the situation of interest is that of net growth, it is clear that 
statistical equilibrium does not exist, and that it is the problem of the 
transient solutions of the Kolmogorov birth-death equations that is of 
prime importance. Much literature exists on the subject of transient 
solutions for birth-and-death processes1

,3-11 and the case in which the 
transition rates are state independent is completely solved.7

,8 The case 
in which An and JLn are proportional to the population is solved when 
immigration is not included: The results for a specific initial condition, 
namely starting from the state n = 1, are derived in Refs. 4 and 10 and 
the expressions for the general initial condition are quoted in Ref. 10. 
For the nonzero immigration case, the form of the generating function 
for the state probabilities is known,lO but it seems that explicit expres
sions for the state probabilities have not previously appeared in the 
literature. In this paper, these expressions are derived for any non
negative value of p. 

In special services, if an order for service is delayed because of lack 
of spare facilities, the order is said to be held. Thus, in order to study 
capacity expansion problems, the probability of a held order is intro
duced, as well as the concept of margin, the extra capacity needed to 
meet the demand within a given held-order probability. This held
order probability is similar but not identical to the transient time 
congestion of the process (see Appendix B). The queue discipline 
followed here is Blocked Customers Held (HeR), in which an arriving 
customer spends a total time T (random variable) in the system, after 
which he departs regardless of whether he is waiting to be served (i.e., 
his service order has been delayed) or is actually being served (i.e., he 
has been assigned a circuit). 

A fundamental difference between this analysis and teletraffic must 
be emphasized. This difference arises because of the respective time 
scales in the two cases. Whereas the mean lifetime of a call in traffic 
(T = 1/ JL) is of the order of a few minutes, the mean lifetime of a circuit 
in the process described here is of the order of a few years. It is this 
fact, coupled with the relatively fast growth of special services demand, 
that makes it impossible to even approximately treat the process in a 
statistical equilibrium mode (no growth) with a slowly varying enve
lope representing the growth. Thus, the transient aspect of the problem 
is to be contrasted to the more conventional assumption, in teletraffic 
theory, that statistical equilibrium prevails (it must be mentioned, 
however, that some work has been done concerning nonstationary 
telephone traffic with time-varying Poisson-offered load, e.g., Refs. 12 
to 14). It must be further noted that, although the model is being 
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proposed for special services demand, nevertheless, it may be applied, 
with an appropriate choice of parameters A, /3, and /l, to any process 
that behaves in a similar manner. 

The held-order probability having been defined and the concept of 
margin introduced, questions concerning capacity expansion problems 
are addressed. Capacity expansion is a problem that has been studied 
by many. In this paper, optimal capacity-expansion policies are not 
sought; only very specialized aspects of the problem are considered. 
For instance, the effects of aggregating demands into a larger single 
demand are examined, and the minimum capacity increment which 
would meet the demand within a specified interval of time and within 
a given held-order probability is determined. In addition, the relation
ship between spare capacity and lead time is discussed (see summary 
of results in Section II). Some relevant work has been done by 
Freidenfeldsl5

•
16 in which the author computes fIrst-passage times to 

various levels of demand using a general birth-death process, and 
discusses briefly fill-at-relief problems. Work by Luss and WhittI7 

studies the impact of both deterministic and stochastic models on 
utilization. The authors use Brownian motion to model the stochastic 
demand and follow a scheme similar to ours for determining the margin 
needed at a future time. 

The organization of this paper is as follows. Section II sets up the 
problem and gives a summary of results. The explicit solutions for the 
general case are derived in Section III, and their properties are exam
ined in Section IV. In Section V, growth, turnover, and churn are 
defined, the concept of margin is introduced, and some of its applica
tions to capacity expansion problems are discussed. Finally, Section 
VI contains the conclusions. 

II. BACKGROUND AND SUMMARY OF RESULTS 

2. 1 General birth-death equations 
Consider a system described by a set of states n = 0, 1, .. ', 00, and 

a birth and death process defined by a set of transition rates {An, /In}. 
The quantity An8(/ln8) + 0(8) * is the probability of a birth (death) in 
the small interval [t, t + 8], given that the system is in state n at time 
t.1 The probability of more than one birth or death in [t, t + 8] is 0(8). 
The probabilities Pn(t) of finding the system in state n at time t must 
satisfy the well-known infinite set of difference-differential equations 
(p. 454 of Ref. 1) 

d 
dt Pn(t) = - (An + /In)Pn(t) + An-1Pn-l(t) + /In+IPn+l(t) 

[for n::: 0, P -I (t) = 0, /lo = 0]. (1) 

* 0(,): 1I?1 ~ 1I?1 is such that lim o~) = O. 
8-+0 u 
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If the initial number of circuits is no, the initial condition may be 
written 

(2) 

where Onno is the Kronecker delta. 
The particular birth-death processes considered in this paper are 

the cases in which the transition rates are proportional to the popu
lation, n, with or without immigration.5

,6,10 The corresponding transi
tion rates, defined for all nonnegative integers, n, are 

An = nA + f3, (3) 

where A, Jl, and f3 are nonnegative constants. In the following sections, 
results for the case with no immigration may be easily obtained by 
setting f3 = o . 

. 2.2 Mean and variance 

It has been shown1
,4,10 that the mean, m(t), and the variance, v(t), of 

processes such as those described by eqs. (1) and (3) may be obtained 
without solving explicitly for the Pn(t). The resulting expressions, 
satisfying initial condition (2), may be easily found to be 

(i) Case A ¥: Jl 

m(t) = (no + _f3_)e()..-/L)t - _f3_, (4) 
A-Jl A-Jl 

v(t) = no A + Jl e2()..-/L)t[1 - e-()..-/L)1 
A-Jl 

+ f3 [Ae2()..-/L)t - (A + Jl)e()..-/L)t + Jl] (5) 
(A - Jl)2 . 

(ii) Case A = Jl 

2.3 Solutions for Pn(t) 

m(t) = f3t + no, 
v(t) = Af3r + (2All{) + f3)t. 

(6) 

(7) 

To simplify the notation, define the following quantities: 
fl = A - Jl, 

fl2fft 
A = A(t) = J.LA(e~t _ 1)2' 

e~t - 1 
B = B(t) = A ~t , 

e - Jl 

fl 
C = C(t) = A ~t , (8) 

e - Jl 
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and 

( 
r) = r(r - 1) ••. (r - m + 1). 
m m! 

(9) 

This definition of the binomial coefficient is valid for any real number 
r and any positive integer m (see p. 50 of Ref. 1). For m = 0, one defines 
(~) = 1, and for negative integers m,one defines (~) = o. The symbol 
(~) is not used if m is not an integer. Denoting v = f3lA, where v is any 
nonnegative real number, the solutions derived in this paper are 

(i) Case A ¥: J.L 

. (A - l)i, if no + v> 0, 

if no + v = o. 
(ii) Case A = J.L 

(
_1 )p(~)n+no min~o,n} (~) 
1 + At 1 + At i=O t 

(10) 

(11) 

. (no + n + v ~ i-I) (_1 __ l)i if no + v> 0, (12) 
n - t A2t2

' 

if no + v = O. (13) 

Equations (10) and (11) with no immigration (v = 0) are identical to 
the results quoted by Bailey [Eqs. (8.47) of Ref. 10]. 

2.4 Application to capacity expansion 

In Section V, margin is defined as the capacity which must be built 
in excess of the mean to meet certain service requirements, and the 
percent margin is defined as the ratio of the margin to the mean in 
percent. The following is a summary of the main results: 

(i) By aggregating demands, less percent margin is needed than in 
the nonaggregated case. This effect is especially significant for small 
demands. 

(ii) Given a minimum desired time, T, between successive expan
sions, a procedure is established for determining the minimum capacity 
increment which would meet the given service requirements. 

(iii) Given a lead time, 'T, between the moment facilities are ordered 
and the time they are available for use, a procedure is established for 
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determining the threshold value of the remaining spare corresponding 
to the time at which new facilities should be ordered. 

(iv) By introducing immigration, the absorbing zero state is elimi
nated and the percent margin needed to meet the service requirements 
is reduced for moderately large to large times (of the order of two years 
or more for the particular values examined). 

III. DERIVATION OF THE STATE PROBABILITIES 

The approach followed to solve the set of equations in (1) is the 
generating function technique.5

,l0 In Ref. 10, a differential equation for 
the generating function, F(s, t), defined below, is established and its 
solution is derived. The results are quoted in Section 3.1. Three well
known identities are given in Section 3.2 and are then used in Section 
3.3 to derive explicit expressions for the state probabilities. The pro
cedure followed in Section 3.3 is to identify F(s, t) as the generating 
function for a convolution of two functions. 

3. 1 The generating function 

The generating function, F (s, t), is related to the state probabilities 
through the following expression: 

F(s, t) = L snpn(t), 0:::: s:::: 1. (14) 
n=O 

The differential equation for F(s, t), given in eq. (8.63) of Ref. 10 with 
eO = s, is 

aF~:, t) + H(s) aF~:, t) = {3(s _ l)F(s, t), (15) 

where 

H(s) = -(s - l)(As - JL). 

The solutions to this equation are 

( 
.1 )"(b + as)no 

d + cs d + cs ' 
(16) 

F(s, t) = 

( 
1 )"(6 + as)no 

a + cs a + cs ' A = JL, * (17) 

>I< An alternative approach for obtaining this result is to substitute ,\ - il for f.L in the 
,\ 'i: f.L expression and to take the limit il ~ o. 
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where 

0::; s::; 1, 

a = A - J,Letl. t
, 

b = -J,L(1 - etl. t
), 

C = A(1 - etl. t ), 

d = Aetl. t 
- J,L, 

ii = 1 - At, 

fj = At, 

C = -At, 

d = 1 + At. 

(18) 

(19) 

The above solutions may be verified by direct substitution. Equation 
(16) agrees with eq. (8.71) of Ref. 10 and eq. (17) with v = 0 agrees with 
eq. (8.52) of Ref. 10. 

3.2 Useful identities 

In Section 3.3, use will be made of the three following well-known 
identities. 

3.2.1 Binomial identity 

For any a and f3 and for any nonnegative integer n, the following 
identity holds (p. 51, Ref. 1): 

(a + f3)n = i: (n )an- mf3m. (20) 
m=O m 

3.2.2 Negative binomial identity 

For any a and f3 such that I Pia 1< 1 and for any real number r, the 
following identity holds (see pp. 51 and 269 of Ref. 1): 

(a - f3)-r = i (-I)m( -r)pma-<m+r>. 
m=O m 

If r is strictly positive, identity (12.4) on p. 63 of Ref. 1 may be used to 
write 

(a - p)-r = i (r + m - 1 )pma-<m+r>. 
m=O m 

(21) 

3.2.3 Generating function for a convolution 

Let Fl (s) and F2 (s) be the generating functions for the sequences 
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{p~l)}n=o,l,··· and {P~)}n=o,l,···, respectively, 

Fds) = L snp~l), F2(s) = L snp~2). (22) 
n=O n=O 

The function F(s) = Fds)F2(S) is then the generating function for 
{Pn}n=O,I,···, the convolution of PAl) and PA2), and may be written as 

F(s) = L snpn, (23) 
n=O 

where 
n n 

P = ~ p(l)p(2). = ~ p(2)p(1). n £oJ l n-l £oJ l n-l· 
i=O i=O 

The proof of this theorem is elementary (e.g., see Chapter 11 of 
Ref. 1). 

Note: This theorem applies to arbitrary sequences (PAl)} and {PA2)} 
(not necessarily probability distributions) as long as their respective 
generating functions exist. Thus, the series in eqs. (22) must converge. 
For the purpose of this theorem, however, it is assumed that Fds) and 
F2 (s) do exist. 

3.3 Derivation of explicit expressions 

3.3.1 Case A oF P. 

The generating function in eq. (16) may be rewritten as follows: 

F(s, t) = Fds, t)F2(s, t), 

where 

(aJ no + p> 0 

(24) 

Applying identity (20), it may be seen that F2 (s, t) is the generating 
function for a binomial type function, 

00 

= L smp~)(t), (25) 
m=O 
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where 

if m::; 11{), 

(26) 
if m > 11{). 

In a similar manner, it may be seen from identity (21) that Fds, t) is 
the generating function for a negative binomial type function, 

F
1
(s, t) = tl" ~ (no + v + m - 1)(_cs)md-(m+no+d 

m=O m 
oc 

= L smp~)(t), (27) 
m=O 

where 

p)'!'(t) = I~:( no + v: m -1 )(_c)md-,m+n,+,'. (28) 

It may be shown that I cs/ d I < 1 for all values of t 2: 0, 0 ::; s ::; 1, and 
A, J.L 2: o. Thus, identity (21) applies in all the relevant cases. 

It now follows from eq. (23) that F(s, t) is the generating function of 
the convolution, 

n 

Pn(t) = L pF)(t)p~l~i(t) 
i=O 

= min~o.n} [(~) bno-ia i ] 

i=O 1, 

-[ Il'( no + v : ~ ; i-I )(_c)n-id-,no+,+n-i)] , (29) 

where the upper limit on the sum arises from the condition i ::; no for 
p~2)(t) established by eq. (26). 

Rearranging, one obtains 

Pn(t) = (~)" min~o.n} 
d i=O 

. ( 7 ) (no + n : ~ ; i-I) ( ~ ) i ( ~ ) n,-i ( _ ~) n-i. (30) 

From the definitions of a, b, c, and din eqs. (18) and from eqs. (8), the 
above expression for Pn(t) reduces immediately to eq. (10). 

(b) 11{) + v = 0 

For this case, F(s, t) = 1. From the definition in eq. (14), it is then 
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apparent that all Pn(t) for n =;f 0 must be zero and that Po(t) = 1, 
which is the result shown in eq. (11). 

3.3.2 Case A = JL 

The solutions may be obtained by using the same procedure followed 
in Section 3.3.1. The only difference is that the starting equation 
should be eq. (17) rather than (16). Since eq. (17) can be simply 
obtained from eq. (16) by letting Ll ~ 1, a ~ ii, b ~ 6, c ~ c, and d 
~ d, it follows that the final results for the case A = Il can be obtained 
from the results of the case A =;f Il [i.e., eq. (30)J by making the above 
substitutions. Alternatively, eqs. (12) and (13) may be obtained by 
taking the limits of eqs. (10) and (11) as Il ~ A. The procedure is the 
following: Consider A to be a constant, then replace Il by A - Ll wherever 
it appears, and finally take the limits Ll ~ 0 using l'Hospital's rule 
whenever necessary. The results of this limiting procedure are found 
to be 

IV. PROPERTIES 

lim A(t) = ("\1 )2, 
Jl-+A I\.t 

lim B(t) = _t_ 
Jl-+A 1 + At' 

lim C(t) = _1_. 
Jl-+A 1 + At 

(31) 

In this section, the zero-state probability and the cumulative prob
ability distributions, for several choices of the parameters A, Il, and /3, 
are examined as a function of time. In addition, some cases in which 
the state probabilities are especially simple are indicated. 

4.1 Probability of ultimate extinction 

The birth-death process without immigration is characterized by an 
absorbing state at n = O. If the system reaches that state at some time 
to, it will stay there for all t > to since the birth rate is zero. The 
probability of hitting that state at time t is given by Po(t). In the limit 
t ~ 00, this probability tends to 

! 
(~r, 

lim Po(t) = 
t-+oo 

1, 

A> Il, 

(32) 

Thus, for any Il =;f 0, there is a nonzel'C probability of ultimate extinction 
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Fig. l-Zero-state probability. 

of the process, while for JL =:: A, ultimate extinction is a certainty. This 
feature may be removed, if desired, by introducing immigration. In 
this case, the limiting value of Po(t) tends to a nonzero value for A < 
JL and to zero for A =:: JL, ( ~ n ~ r lim e-'" = 0, A A t-+oo 

A> JL, 

lim Po(t) = (33) 
t-+oo 

(1-;)'. A ::: JL. 

The effect of immigration on Po(t) is shown graphically in Fig. 1, 
where Po(t) is plotted for various values of A, JL, and P, and for no = 1. 
The case no = 1 was chosen for clarity of the figure, since the effect of 
immigration is larger for smaller values of no. 

4.2 Cumulative probability distribution 

The cumulative probability distribution is defined as 
n 

Fn(t) = L Pi(t). 
i=O 

In order that limn-+00 Fn (t) = 1 for all t, it is necessary and sufficient 
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that L~=o A;;l diverges, which is the case for the process discussed in 
this paper (see Theorem on p. 452 of Ref. 1). The function, Fn(t), for 
various choices of A, Il, and (3, and for no = 5 is shown in Figs. 2 through 
5. The lowest curve plotted in each figure is Po(t), and is consequently 
a measure of the extinction probability. 

The values of A (0.6) and Il (0.3) chosen in Figs. 2 and 3 correspond 
to net positive growth (see discussion of growth in Section 5.1). As 
may be verified from eqs. (32) and (33), the limt--.ooPo(t) is nonzero in 
Fig. 2 and zero in Fig. 3. In addition, for each n > 0, the limt--.ooPn(t) 
= 0, although the limt--.oo L~=l Pn(t) is nonzero. Thus, for any n > 0, 
the limt--.ooFn(t) is nonzero for {3 = ° and zero for f3 ~ 0, reflecting the 
fact that the extinction probability is nonzero in the first case and zero 
in the second. (The n = ° curve in Fig. 3 is essentially flat and is hard 
to distinguish on the graph.) 

The case in which the death rate is larger than the birth rate is 
shown in Figs. 4 and 5. This situation corresponds to negative growth. 
As may be verified from eqs. (32) and (33), the limt--.ooPo(t) is 1.0 in 
Fig. 4 and 0.5 in Fig. 5. It may be shown that, for the (3 = ° case, 
limt--+ooPn(t) = ° for all n > 0, while for the f3 =;f ° case, limt--.ooPn(t) ~ ° for all n ::: 0. In both cases, however, the limt--.ooFn(t) is nonzero, 
reflecting the fact that the extinction probability is nonzero. 

Finally, the case A = Il, {3 = 0, is similar to Fig. 4 (with extinction 
probability equal to unity), and the case A = Il, f3 ~ 0, is similar to Fig. 
3 (with extinction probability zero). These cases are not shown. 

1.00 

0.80 

0.60 

Fn(t) 

0.40 

0.20 

0 
0 3 4 5 6 8 9 10 

TIME IN YEARS 

Fig. 2-Cumulative distribution without immigration (;\ > JL). 
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Fig. 3-Cumulative distribution with immigration (A> f.L). 

4.3 Special case solutions 

For certain initial conditions, the general solutions reduce to simple 
analytical forms. For no = 0, the interesting process is the one including 
immigration (v === 1). The state probabilities of eq. (10) may then be 

1.20 ,.--------------------------..., 

n=9 

0.80 

Fn(t) 0.60 

0.40 

0.20 

o ~ __ ~ __ ~_~ __ ~ __ ~_~ __ ~ __ ~_~ __ ~ 
o 3 4 5 6 8 9 10 

TIME IN YEARS 

Fig. 4-Cumulative distribution without immigration (A < f.L). 
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Fig. 5-Cumulative distribution with immigration (A < J.L). 

written 

Pn(t) = C'(AB)n( n; ~ ~ 1). (34) 

For no = 1, the process without immigration becomes interesting. 
Equation (10) with v = 0 reduces to the well-known form4

,10 

Po(t) = IlB , 

Pn(t) = (IlB)(AB)nA = (1 - AB)(l - IlB)(AB)n-l (n ~ 0). (35) 

v. APPLICATIONS TO CAPACITY EXPANSION 

In this section, the A, Il, and f3 parameters of the model are related 
to more physically intuitive quantities such as growth and turnover 
(or churn). The concept of margin, the extra capacity needed to meet 
the demand within a given held-order probability, is introduced. The 
effects of randomness and immigration on the margin are then exam
ined, and finally, several capacity expansion problems are addressed. 

5. 1 Growth, churn, and turnover 

The model described in the preceding sections is completely speci
fied once the parameters A, Il, and f3 are known. In this section, 
quantities that are more physically intuitive than the birth and death 
rates, namely growth and turnover (or churn), are introduced and 
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related to A, Il, and {3. First define the following quantities: 

b(t) = EB(t) = mean number of births in [0, t], (36) 

d(t) = ED(t) = mean number of deaths in [0, t]. (37) 

Then, 

m(t) - no = b(t) - d(t) 

= mean net population increase in [0, t], (38) 

where E refers to the expected value and where m (t) is the mean value 
of the population, as defined in eqs. (4) and (6). Differential equations 
for b (t) and d (t ) are derived in Appendix A and exact analytical 
solutions for these equations are found. 

The annual rate of growth, g, is defined as the change in the mean 
number of circuits in one year divided by its value at the beginning of 
the year. Thus, 

( ) 
_ m(t + 1) - m(t) 

g t - m(t) . 

From eqs. (4) and (6) it may be seen that 

g(t) = 

[no + /3/(A - 1l)]e(X-/L)l(eX-/L - 1) 

[no + {3/(A - 1l)]e(X-/L)l - /3ICA - Il) 

no + /3t 

(39) 

for A =;f Il, 

(40) 

for A = Il. 

By observation, it may be noted that if /3 = 0, the growth is time 
independent, whereas if /3 > 0, the growth depends on time. A time 
average value of the growth may be defined to be 

1 iT g = lim T g(t) dt. 
T-+oo 0 

It may be easily found that 

{

O' 
g= ° e~-/L - 1 

for A < Il, /3 =;f 0, 
for A = Il, 
for all other cases. 

(41) 

(42) 

When A = Il, it must be borne in mind that g = ° does not necessarily 
mean no growth. In fact, for the {3 > ° case there is linear growth at 
the rate {3 [recall eq. (6)]. Thus, it is the immigration factor that 
represents the growth in this case. 

In summary, throughout this paper, the last expression in (42) will 
be used as the definition of growth with the provision that it is the 
variable /3 that actually describes the growth in the A = Il case. The 
case A < Il and /3 > ° will be disregarded. 
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Churn may be defined in various ways. Its purpose is to quantify the 
"activity" of the process, i.e., to compare the number of "connects" 
with the number of "disconnects." For instance, churn may be defined 
as the ratio of the mean number of total connects in one year to the 
mean number of net connects in the same period. This ratio has also 
been called in-to-net, or in-to-gain ratio. 15 Thus, 

c(t) = b(t + 1) - b(t) = ~ . 
m(t + 1) - m(t) NET 

(43) 

This quantity has the easy interpretation of being the expected number 
of connects in one year for a net increase of one circuit. For instance, 
a churn of four (which seems to be a typical numberl8

) means that 
four connects are expected for every net increase of one circuit. Of 
course, it follows that three disconnects are also expected for consist
ency. The problem with this definition of churn is that for low-growth 
cases (i.e., when the net increase is almost zero) the ratio of total 
connects to net may become a very large number. Furthermore, in the 
case of negative growth, this ratio becomes negative. Thus, the range 
of values which the churn may take is very large, which makes it a 
difficult number to work with in data analysis. 

For this reason, an alternative definition of churn is introduced and 
is called turnover. Turnover is the expected number of connects 
(disconnects) needed to replace the number of disconnects (connects) 
that occurred in one year, divided by the expected number of circuits 
in place at the beginning of the year. The words outside the parentheses 
refer to the positive-growth case in which there are more expected 
connects than disconnects, and the words in the parentheses refer to 
the negative-growth case when the reverse is true. The turnover may 
be written as 

where 

1 IN + OUT - I IN - OUT I 
a(t) = - --------

2 MEAN 

min(IN, OUT) 

MEAN 

IN = b(t + 1) - b(t), 

OUT = d(t + 1) - d(t), 

MEAN = m(t). 

(44) 

(45) 

(46) 

Thus, a turnover of 0.3 with positive growth indicates that over the 
next year the expected number of disconnects will be equal to 30 
percent of the mean at the beginning of the year. The expected number 
of connects depends on the growth and will be greater than or equal to 
the disconnects. (Note that it is not necessarily the same circuits that 
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are connected and disconnected.) From the expressions in Appendix 
A, eq. (44) may be written as 

a(t) = 

where 

t (neffe~t - P/~)-l[neffe~t(e~ - 1) (A + fL)/ll 
- 2/1fL/!l - neffe~t I (e~ - 1) I] 

1 2A/1t + A/1 + 2Ano 

2 no + pt 

p 
neff = no + -,-- . 

l\-fL 

(A # fL), 

(47) 

(A = fL), 

Again, by observation, it may be noted that if /1 = 0, the turnover is 
time independent, whereas if /1 > 0, it is time dependent. As in the 
case of the growth, a time-average value of the turnover may be 
defined to be 

1 iT ii = lim -T a(t) dt. 
T-+oo 0 

(48) 

It may be easily found that 

!!:. (e~ - 1) 
II 

if A> fL, 

a= A ~ if A < fL, /1 = 0, - (e - 1) 
II 

(49) 

fL for all other cases. 

Throughout this paper, the above expressions for the turnover will be 
used. As mentioned before, the case A < fL and /1 > 0 will be disregarded. 

From preliminary data analysis, it has been found that typical values 
of growth and turnover for special services fall into the range -0.15 to 
+0.15 for the growth and 0 to 1 for the turnover. Nominal values of g 
= 0.1 and ii = 0.3 were chosen in this paper. 

To do a study using stochastic special services demand, numerical 
values of the parameters of the model are needed. Accurate values, if 
such values exist, may only be found by careful data analysis of 
historical demands. Approximate values, however, may be found as 
follows. First equate the mean [eqs. (4) or (6)] to the special services 
forecast to obtain values for II and /1. Then equate the variance [eqs. 
(5) or (7)] to some measure of the forecast uncertainty to determine 
A and fl. For some cases, given below, one may conveniently use eqs. 
(42) and (49) to write the mean as a function of growth alone, and the 
variance as a function of both growth and turnover. The results are as 
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follows. 
(i) Exponential growth with no immigration (A :;i: p., {3 = 0) 

m(t) = no(1 + g)t, (50) 

v(t) = no (~ ± 1) (1 + g)'[(l + g)' - 1], 

where the positive (negative) sign refers to A > p. (A < p.), 
(ii) Linear growth (A = p., {3 ~ 0) 

m(t) = {3t + no, (51) 

v(t) = ii{3t 2 + (2iino + {3)t. 

5.2 Margin and minimum capacity increments 

Define the quantity h(t) as the probability of a held order, i.e., the 
probability that at least one service order is delayed due to lack of 
spare facilities. Then 

h(t) = L Pn(t) = 1 - Fd(t), 
n=d+l 

where d = d (t) is the total number of servers (facilities) at time t. The 
quantity h(t) is similar but not identical to the transient time conges
tion function (see Appendix B). Computationally, d(t) may be deter
mined from the state probabilities by requiring h(t) to be less than or 
equal to some predetermined number, h. Thus 

d(t) = min{d = 0, 1, ···1 L Pn(t):S h}. (52) 
n=d+l 

Of course, the actual sum involved in the computation is not infinite, 
since the condition in eq. (52) is equivalent to L~=o Pn(t) ~ 1 - h. The 
level d (t) can be viewed as the sum of the mean number of circuits 
and a quantity which may be called margin. Thus, given any time t > 
0, the margin is the capacity which must be built at to = 0 in excess of 
the mean m(t), in order to meet the demand, within the maximum 
held-order probability, h. 

A significant quantity is the ratio of the margin to the mean in 
percent which will hereafter be referred to as the percent margin. 
Figure 6 shows a plot of this ratio as a function of time for various 
values of growth and no immigration. Turnover has been taken to be 
0.3, the initial number of circuits 5, and the maximum probability of a 
held order 0.05. As may be seen, the percent margin increases with 
time, and generally less percent margin is needed for larger growth 
rates. The sensitivity of the percent margin with respect to turnover, 
for a growth of 0.1, is shown in Fig. 7. It may be seen that the larger 
the turnover, i.e., the larger the "activity" in the network, the more 
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Fig. 6-Sensitivity of percent margin to growth (no immigration). 

margin one has to build to provide the same maximum held-order 
probability. 

The concept of margin has several applications, one of which is the 
determination of an appropriate capacity increment at each expansion. 
Given a minimum desired time, T, between expansions, it would be 
useful to determine the minimum capacity increment, c, which, if 
installed at time t, will exhaust in (t, t + T] with a probability that is 
no larger than h, or equivalently, the increment which will last the 
interval T with a probability greater than or equal to 1 - h. Thus, the 
condition on c may be written as 

Prob{.%(t + ~) ~ no + c I.%(t) = no, V ~ E (0, Tn :::: 1 - h. (53) 

Since the A and /L coefficients are time independent, the process is time 
homogeneous. Consequently, changing the origin of time does not 
affect the problem. Choosing it to be at t is equivalent to setting t = ° 
in the above expression, and determination of c reduces to finding 

{ I 
n()+c } 

min c = 0, 1, ... n~o Pn(~) :::: 1 - h, V ~ E [0, T] . (54) 
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Tables may be set up permitting direct reading of the values of c 
corresponding to the growth, turnover, initial state parameters, and to 
the time interval T. Some typical results are plotted in Fig. 8. 

For completeness, it must be mentioned that in problems of the type 
described above, questions about service-order queue disciplines must 
be entertained. A careful consideration of this aspect of the problem is 
beyond the scope of the present analysis, and the queue discipline 
implicitly followed has been Blocked Customers Held (BCH). See 
Appendix B. 

5.3 Effect of randomness: Aggregation benefits 

An inspection of Fig. 6 shows that the percent margin needed is 
large, for the particular case examined. Since the initial state consid
ered is rather small (no = 5), an interesting question is to find out 
whether the percent margin can be reduced by combining demand to 
form larger quantities, in the hope that the statistics of the aggregated 
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process will be better behaved, i.e., less susceptible to fluctuations. Our 
studies have shown that benefits are indeed obtained by aggregation. 
Figure 9 illustrates the results. The time evolution of the percent 
margin is plotted as the initial state of the system is varied, for fixed 
values of growth, turnover, held-order probability, and for no immigra
tion. Two important observations may be made. The fIrst one is the 
fact that the percent margin decreases as the initial state of the system 
increases. An implication of this behavior, for example, is the following: 
Suppose demand between two points is being satisfied by two inde
pendent routes (with initial number of circuits n&l) and n&2), respec
tively). Benefits would be obtained by combining the two demands on 
one route (with initial number of circuits n&l) + n&2l) because the 
margin one would have to build in this case is less than in the 
nonaggregated case, the held-order probability being the same. The 
second observation is that the change in the percent margin with 
respect to no is larger for small values of 1l{). The implication is that the 
benefits will be especially significant when aggregating small demands. 

It must be mentioned that the conclusions about aggregation 
benefits in the example given above were based on an examination of 
Fig. 9. The implicit assumption was that the combined process would 
obey the same birth and death equations as each single process, and 
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that it would be described by the same pair of transition rates, A and 
Jl. This assumption is only true if all the individual processes are of the 
same type, i.e., if they all have identical transition rates. It turns out, 
however, that the method for determining margin described in the 
previous sections may be extended with little additional effort to the 
general case in which there are M simultaneous processes characterized 
by a set of transition rates {Ai, Ii} for i = 1, ... , M. Since the processes 
are independent, the joint probability distribution is the product of 
the individual distributions, 

(55) 

The probability of being in some level n, regardless of the composition 
of that level, may then be written 

P,dt) = L' }:' .. 0 }:' p~~)(t)P~~(t) 000 p~~/(t), 
(56) 

ni + n2 + 0 0 0 + nM = n. 
The sums are over all values of nI, n2, 000, nM such that ni + n2 + 
o 0 0 + nM = n. The primes over the summations are an indication of 
this restriction. The margin for the combined process may then be 
determined from the mean rii(t), and the quantity d(t), analogous to 
that defined in Section 5.2. The mean for the combined process is 
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simply the sum of the individual means, 

rii(t) = ml(t) + m2(t) + ... + mM(t), (57) 

and d(t) may be obtained from an expression similar to eq. (52), 
namely, 

d(t) = min{d = 0, 1, .. ·1_ ~ Prr(t) ~ h}. (58) 
n=d+l 

5.4 Effect of immigration 

Immigration affects the problem in several ways. First, it eliminates 
the absorbing state at n = 0, and consequently the probability of 
extinction, for all cases except the A < Jl, f3 ¥: 0 case. Furthermore, the 
limt.oo+oo Pn(t) = 0 (n > 0), for all cases except the case mentioned above, 
for which the limit is nonzero. Finally, a nonzero value of f3 gives the 
model flexibility to represent linear growth (for A = Jl) as well as 
exponential growth (for A ¥: Jl). It is interesting to note that for the A 
> Jl case, immigration actually reduces the percent margin for moder
ately large to large times, as seen in Fig. 10. This behavior is due to the 
fact that introducing immigration increases the mean (which tends to 
decrease the percent margin) faster than it increases the variance 
(which tends to increase the percent margin). 
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5.5 Other applications: Spare threshold 
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t+ T 
.. 

In capacity expansion problems, a question that arises is when to 
expand. If facilities could be installed instantaneously, the expansion 
time would be simply the time at which remaining spare exhausted. 
However, there usually is a lead time, T, between the moment facilities 
are ordered and the time they are actually installed. If existing spare 
can be monitored, it would be useful to determine a priori what the 
particular level of spare would be at the time when new facilities 
should be ordered. This information would then yield the order time, 
since as soon as that spare level is attained, it is time to order. This 
value of spare., or spare threshold, CJ, is the amount of remaining 
capacity which will exhaust in [t, t + T] with a probability that is no 
larger than h, or equivalently, the amount of capacity which will last 
the interval T with a probability greater than or equal to 1 - h. If the 
last expansion occurred at to, providing a total capacity of C(to) (see 
Fig. 11), the constraint on CJ may be written as 

Prob{%(t + ~) :5 C(to) I 
%(t) = C(to) - CJ, \;/ ~ E [0, T]} ~ 1 - h. (59) 

Time homogeneity of the process allows setting t = 0 in the above 
expression, as discussed in Section 5.2,. and the determination of CJ 

reduces to finding 

min { u = 0, 1, ···1 :~: p n(~) 2: 1 - h, V ~ E [0, T]}, (60) 
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where (J appears implicitly in the initial condition used to evaluate the 
state probabilities Pn(g). Again, tables may be set up permitting the 
direct reading of the values of (J corresponding to the growth, turnover, 
capacity levels, and the lead time, T. Some typical results are plotted 
in Fig. 12, where (J is shown as a percentage of the total capacity. 

VI. CONCLUSION 
A summary of the main results has been given in Section II. Explicit 

solutions for the birth-death process in which the births and deaths 
are proportional to the state have been derived, and some of their 
applications to capacity expansion problems have been discussed. A 
method for determining margin has been described in detail for the 
case in which one birth-death process exists with exponential growth 
characterized by a pair of transition rates, A and Jl, and it was shown 
how to extend the method to cases in which there were several 
simultaneous processes. 

In addition to its applications to capacity expansion problems, the 
proposed model is useful in assessing the potential of routing strategies 
for special services. It has already been shown, for example, that 
benefits are to be expected by aggregating small demands. These 
conclusions were based largely on service robustness considerations. 
To obtain more comprehensive results about routing strategies, it is 
clear that cost robustness considerations must be addressed as well. 
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APPENDIX A 

Expressions for bet) and d(t) (Section 5.1) 

As indicated in Section 2.1, 

AnO + 0(0)* = Probability of a birth in [t, t + 0] given that 

the system was in state n at time t, 

JLnO + 0(0) = Probability of a death in [t, t + 0] given that 

the system was in state n at time t. 

Letting .K (t) be the random variable representing the number of 
circuits at time t, the total probability of a birth in [t, t + 0] may be 
written as 
Prob{a birth in [t, t + oJ} 

= L Prob{a birth in [t, t + 0] and .K(t) = n} 
n=O 

= L Prob{a birth in [t, t + 0] 1.K(t) = n}Prob{.K(t) = n} 
n 

(61) 
. n 

where the certain event and Bayes' rule were successively used. Simi
larly, the total probability of a death in [t, t + 0] is Ln [JLnO + 0(0)] 
Pn(t). With this information, a differential equation for b(t) may be set 
up as follows: 

b(t + 0) = b(t)[Probability no event or a death] 

+ [b(t) + l][Probability of a birth] + 0(0), 

where 0(0) is the contribution of more than one birth. 

b(t + 0) = b(t)[ {I - L (AnO + JLnO + o(o»Pn} 
n 

+ L (JLnO + o(o»Pn] 
n 

+ [b(t) + 1] L [AnO + o(o)]Pn(t) + 0(0). (62) 
n 

* 0(.): R J ~ R J is such that lim&-.o o~~) = o. 
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In the limit 0 ~ 0, eq. (62) becomes 

d 00 

-d b(t) = L AnPn(t). 
t n=O 

(63) 

In a similar manner, the following differential equations for d(t) and 
for m(t) may be obtained: 

d 00 

-d d(t) = L JlnPn(t), 
t n=O 

(64) 

d 00 

-d m(t) = L (An - Jln)Pn(t). 
t n=O 

(65) 

Since 

m(t) = L nPn(t), 
n=O 

one can use relations (3) to write eq. (65) as a differential equation for 
m(t). Its solutions have already been given in eqs. (4) and (6). With 
knowledge of the mean, eqs. (63) and (64) may be solved for b(t) and 
d (t), respectively. The results are easily found to be 

j 
A tlt f3Jlt _ Li nefde - 1) - T (A:F Jl), 

b(t) - Af3t2 (66) 
-2- + (Ano + f3)t (A = Jl), 

_ j i- neff(e
tlt 

- 1) - f3~t 
d(t) - Af3t2 

-2-+ Anot 

(67) 

(A = Jl), 

where 

f3 
neff = no + Li 

and 

!l = A - Jl. 

APPENDIX B 

Queue Discipline and Held-Order Probability 

In the model described in this paper, the queue discipline followed 
is Blocked Customers Held (BCH). Let the random variable T denote 
the sojourn time of the customer, i.e., the total time he spends in the 
system, either waiting for service or being served. The assumption 
inherent in the BCH queue discipline is that the customer will spend 
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time T in the system, after which he will depart, regardless of whether 
he has been served or is still waiting for service. The choice of JLn = 

n JL implies that the sojourn times have a negative exponential distri
bution. 

In special services, if the sojourn time distribution is in fact negative 
exponential, then the queue discipline used here should be correct. If, 
on the other hand, it is the service-time distribution that is negative 
exponential, then the BCH queue discipline assumed here may still be 
approximately correct if the average waiting time of a customer is 
much smaller than the average service time. 

To compute the held-order probability, care must be given as to 
whether the held order is seen by an outside observer or by an arriving 
customer. For processes with Poisson input, it is well known that the 
distribution Pn(t) seen by an outside observer is identical to the 
distribution '7Tn (t) seen by an arriving customer (see Section 3.2 of Ref. 
3), and hence the distinction is unimportant. For the process described 
in this paper, however, the distributions are different. Define 

Pn(t) = Prob{JV(t) = n}, (68) 

'7Tn (t) = Prob{JV(t) = n I a customer arrives at t+}. (69) 

Expression (69) is the probability that a customer who arrives at t 
finds n other customers being served or waiting to be served. Letting 
the event A refer to the arrival of a customer in the interval (t, t + 
8], and using conditional probabilities, one may write '7Tn (t) as the 
following limit, if it exists: 

lim Prob {JV(t) = n, A} 
8--+0 

'7Tn (t) = --------
lim Prob{A} 
8--+0 

= lim ooProb{A I %(t) = n}Prob{JV(t) = n} 

8--+0 L Prob{A I %(t) = j}Prob{JV(t) = j} 
j=O 

Since Prob{A I JV(t) = n} = An8 + 0(8),* one obtains, with the help of 
(68), 

'7Tn(t) = ooAnPn(t) . (70) 
L AjPj(t) 

j=O 

The held-order probability may thus be defined as 

h(t) = L Pn(t) as seen by an outside observer (71) 
n=d+l 

* 0(.): Rl ~ Rl is such that lim&-.o O~8) = o. 
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or 

LCXl AnPn(t) 
h' (t) = i=d A .p.(t) as seen by an arriving customer, (72) 

j=O :J J 

where d is the number of servers. Expression (72) is the conditional 
probability that if a customer were to arrive at t, he would find all the 
servers engaged. This quantity is known in congestion theory as the 
transient call-congestion function. 19 Expression (71) is the probability 
that at least one customer is waiting to be served. This quantity is 
similar but not identical to the transient time-congestion function, 
S(t), which is the probability that all servers are busy at time t, and 
which may be written as 19 

S(t) = L Pn(t). . (73) 
n=d 

For Poisson input (An = A), it may be shown that 

h'(t) = S(t) > h(t). 

For the Kendall process, the relationship is 

h'(t) > S(t) > h(t). 

For the Poisson input case, since S(t) is equal to h'(t), the time
congestion function may be used as a meaningful measure of the held 
orders. For the Kendall process, on the other hand, S(t) does not 
describe the held orders as seen by either an arriving customer or an 
outside observer. Consequently, the time-congestion function is not 
believed to be a meaningful measure of the held orders. Throughout 
this paper, expression (71) was used for the held-order probability, 
although eq. (72) could have been used instead. 

Both h(t) and h'(t) are instantaneous quantities. Since the Kendall 
process with A > JL is not ergodic (i.e., space averaging is different than 
time averaging), a space average must be made when measuring either 
of these quantities. Thus, one cannot measure h(t) or h'(t) byexam
ining one sample for a long enough time; rather, one needs an ensemble 
of samples. Because of these measurement difficulties, an open ques
tion remains as to whether this type of held-order probability is the 
best measure of the provided service, or whether other quantities such 
as the time average of h(t) or h'(t), or the duration of the held order 
might be more meaningful. Nevertheless, it is clear that eqs. (71) and 
(72) are some measure of the provided service and, as such, are useful 
when comparing different special services provisioning methods meant 
to provide the same level of service. 
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Finite Surface Impedances 
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We derive the modes inside a cylindrical waveguide offinite surface 
impedances, assuming the waveguide transverse dimensions are 
large compared to the wavelength A.. This paper restricts its consid
eration to the modes with P ;:::; k, where P is the propagation constant 
and k = 27T / A.. For these modes we show that asymptotically, for large 
values of k, the field", becomes infinitesimal (of the same order of 
1 / k) at the boundary. Taking this into account, we obtain simple 
expressions for the asymptotic properties of'" for large k. The theory 
applies to a variety of waveguides: corrugated waveguides, optical 
fibers, waveguides with smooth walls of lossy metal, and so on. An 
important property of the modes considered here is that their atten
uation constant is very low, i.e., asymptotic to 1/k2 for large k. Thus, 
these modes are useful for long-distance communication. Another 
consequence of '" ~ 0 at the boundary is that for large k the 
distribution of'" inside the boundary is essentially independent of the 
boundary parameters, i.e., independent of the surface impedances in 
the longitudinal and transverse directions. This consequence implies 
that the same radiation characteristics of the corrugated feed can be 
obtained using other structures and, therefore, construction can be 
simplified in many cases, with little sacrifice in performance. We also 
derive general expressions for'" and the propagation constant p. 

I. INTRODUCTION 

It is known 1-8 that in certain waveguides the field becomes, under 
certain conditions, very small at the boundary. Consider, for instance, 
a corrugated waveguide of radius a and let A. be the free-space wave
length. This waveguide is characterized at the boundary by finite 
surface impedance Zz in the longitudinal direction. The frequency 
dependence of Zz, which is determined by the depth of the corruga-
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tions, causes the transverse field distribution If;(x, y) of a mode to vary 
with the frequency k = 21T/A. However, this frequency dependence 
virtually disappears (for all modes except surface waves) if the wave
guide dimensions are large enough. In fact, one finds that If;(x, y) 
approaches for ka ~ 00 a frequency independent distribution that 
vanishes at the boundary.5 This behavior is responsible for the low 
attenuation constant, for the excellent radiation characteristics, and 
the wide bandwidth of corrugated waveguides.5 We show here that the 
same behavior also occurs, under quite general conditions, in a variety 
of uncorrugated waveguides.1

-
21 Figures I.a and Ib show two examples, 

a dielectric waveguide7
,8,13-16 of general cross section and a hollow 

waveguide with metal walls coated by a dielectric layer.4
,17 Other 

examples can be obtained by modifying the boundary conditions in a 
variety of different ways. For instance, several dielectric layers may be 
used in Fig. Ib, or a metal grid of transverse wires may be placed at 
the boundary, as pointed out in Section II. Other examples are the 
waveguides of dielectric or lossy metal considered in Ref. 2. We now 
outline the main assumptions. 

Consider a cylindrical waveguide with an interior region of homo
geneous and isotopic material, as in Fig. Ic. Let Z and k be the wave 
impedance and propagation constant for a plane wave in the interior 
region, and let C denote the boundary. Then 

k=w~. (1) 

Consider a mode with propagation constant f3 and let E t denote the 
transverse component of the electric field, 

E t = If;(x, y)e-j /3z. (2) 

Let 2a be a characteristic dimension of the waveguide, for instance the 
width in the x direction as in Fig. Ic. Weare concerned about the 
asymptotic behavior of If;(x, y) for large values of ka. Consideration 
will be restricted to the modes for which the propagation constant f3 
approaches k, as ka ~ 00. Thus, we assume 

for ka ~ 00. (3) 

This excludes surface waves, as pointed out in the following section. 
Then, a property of the modes considered here is that E and H become 
transverse, in the limit as ka ~ 00, 

lim Ez = Hz = o. (4) 
ka-+oo 

Another property is that asymptotically, per large ka, a set of linear 
relations exist at the boundary among the tangential components of E 
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Fig. I-Three examples of cylindrical waveguides: (a) a dielectric rod, (b) a waveguide 
with metal walls coated by a thin dielectric layer, and (c) a waveguide with boundary 
conditions shown in Fig. 2. 

and H. It is convenient to write these relations in the form 

on C, (5) 

where [H] is a 2 X 2 matrix and H T , ET denote the components of H, 
E in the direction of the unit vector T in Fig. lc. These relations 
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together with eq. (4) give at the boundary 

lim E., = H., = 0 onC, (6) 
ka-+rx> 

provided the matrix [H] does not diverge for ka ~ 00, 

[H] ¥: 00 for ka ~ 00. (7) 

Throughout this article, we assume conditions (3), (5), and (7). 
Condition (5) is discussed in the following section, where it is pointed 
out that for most waveguides considered here, [H] is a diagonal matrix. 
In this case it is convenient to define at the boundary surface imped
ances Zz and Z., by writing 

(8) 

where Zz is the longitudinal impedance, and Z., is the transverse 
impedance. Then condition (7) requires 

Z." l/Zz ¥: 00 for ka~ 00. (9) 

It is important to realize that this requirement is violated in a number 
of cases. It is violated in a hollow waveguide with metal walls of perfect 
conductivity, since then Zz = o. Furthermore, in a corrugated wave-

. guide with corrugations of depth d, the longitudinal impedance Zz is 
determined by kd, and there are certain frequencies for which Zz = o. 
A similar situation arises in Fig. Ib where both Z., and Zz vary with kd. 
Throughout this article it will be assumed that the quantities 

1 
ka' 

1 Z., 
kaZ' 

1 Z 
kaZz 

are small. Therefore, the results will not apply in the vicinity of the 
above frequencies. 

A direct consequence of condition (6) is that the boundary values of 
t/; vanish, in the limit as ka ~ 00, 

lim 1/I(x, y) = 0 on C. (10) 
ka-+rx> 

Another consequence is that 1/1 approaches a distribution t/;rx> indepen
dent of ka, for ka ~ 00. For finite ka, 

1/1= 1/Irx> + 81/1, 

where 81/1 (but not 1/Irx» varies with ka and 

lim 81/1 = o. 
ka-+rx> 

Notice condition (10) implies that 

onC. 
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These results are of practical interest for several reasons. In the design 
of a feed,6 it is desirable that the boundary values of l/; be small [as 
implied by eq. (10)] since these values determine radiation in the side
lobes due to edge diffraction at the aperture. Furthermore, for broad
band applications, it is desirable that the frequency dependent part 
ol/; of the aperture illumination be small, as implied by eq. (12). Finally, 
in a corrugated waveguide, or a waveguide with metal walls coated by 
dielectric layers, power is lost only at the walls and, therefore, it is 
determined by the boundary values of l/;. Since these boundary values 
vanish for ka ~ 00, the attenuation constant for the above waveguides 
for large ka is very small1,2,4,18-21; it is asymptotic to ka-2

• We shall see 
that in generall/;C1; is independent of [H] and, therefore, a variety of 
different waveguides, with different [H] but the same boundary shape, 
give rise to the same l/;C1;. This explains the similarity, noted in Ref. 9, 
between the modes of a corrugated waveguide and those of an optical 
fiber, a dielectric lined waveguide,4 and a hollow dielectric waveguide.2 

This similarity implies that essentially the same radiation character
istics of corrugated waveguides can also be obtained with a variety of 
other waveguides. 

In the particular case of the optical fiber, some of our results are 
implied by the asymptotic expressions derived in Ref. 7. Exact solu
tions for the modes of the corrugated waveguide/2 the optical fiber/,8 
and the hollow waveguide of dielectric2 are known for circular geom
etry. For a rectangular cross section, only approximate solutions3,22 are 
known, except in special cases.23 Exact solutions for the slab waveguide 
are given in Refs. 8 and 24. In all these cases one finds that condition 
(3) implies condition (10). Measurements of the radiation characteris
tics of a dielectric horn are described in Refs. 25 and 26. Some of 
the properties derived here apply also to propagation in stratified 
media.27-29 The use of surface impedances to characterize a boundary 
is discussed in Ref. 30. 

II. BOUNDARY CONDITIONS FOR ka ~ 00 

We now derive and discuss eq. (5). Figure lc shows a waveguide 
directed along the z axis and of general cross section in which p is the 
outwardly directed normal and 7' is a unit vector tangential to the 
boundary, 

7' = L X p. (14) 

The medium inside the boundary is assumed to be homogeneous and 
isotropic. Let C denote the closed contour of the boundary in the plane 
z = o. 

We are concerned with the properties of l/;(x, y) in a waveguide of 
large transverse dimensions. Thus, consider a mode propagating in the 
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waveguide of Fig. Ib and suppose the width 2a is increased keeping 
the dielectric thickness d fixed. The resulting behavior of ",(x, y) as ka 
~ 00 can be derived exactly in two cases, when (see Appendix C) 

at/; = 0 
ay 

(15) 

and when the boundary is a circle. In both cases one finds that for 
most of the modes f3 ~ k, as ka ~ 00. For these modes, the normalized 
field amplitude t/;(x, y) /t/;(O, 0) becomes infinitesimal at the boundary 
for ka ~ 00. For the remaining modes, those for which f3 does not 
approach k, just the opposite behavior takes place: The field becomes 
confined to the immediate vicinity of the walls, degenerating into a 
surface wave with propagation constant determined by the surface 
impedances of the walls. Here, consideration will be restricted to the 
modes satisfying condition (3). An important property of these modes 
is that asymptotically, for large ka, the surface impedances ZT and Zz 
become independent of ka. In fact, if one writes 

X = _J. ZT Y = -J. Z (16) 
z' Z/ 

then in Fig. Ib 

X ~ 1 tan(Jn 2 
- 1 kd), 

Jn 2 
- 1 

(17) 

n 2 1 
y ~ - ---- ---=~-=---

J n 2 - 1 tan ( J n 2 - 1 kd) , 
(18) 

as shown in Appendix C. Thus, ZT and Zz depend only on the refractive 
index n and the thickness kd of the dielectric layer. 

For a circular boundary, the above relations can be derived rigor
ously by expressing the field in terms of Bessel functions, and then 
making use of well-known expressions giving the asymptotic behavior 
of these functions for large arguments as in Ref. 5. They can also be 
derived by the following argument, which applies in general to a 
boundary of arbitrary shape (Fig. lc). Consider the field in the vicinity 
of a boundary point P in Fig. lc. Since ka is large, the curved boundary 
can be approximated locally by the tangent plane. Furthermore, since 
f3 :::: k, the field is produced locally by a plane wave at grazing 
incidence. If one determines the law of reflection for such a plane 
wave, and takes into account that the plane of incidence is parallel to 
the z axis, one obtains24

•
27 eqs. (16)-(18). 

The above argument can be used to derive the asymptotic behavior 
of Zz and ZT for a variety of other waveguides, illustrated in Fig. 2. * In 
case (d) the boundary is a smooth surface of lossy metal with surface 

* Notice ko denotes k in free space, 
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resistance Rs. In (a) the metal surface is corrugated. In (b) the medium 
outside the boundary is dielectric with refractive index n2 < nl. This 
corresponds to the optical fiber of Fig. 1a. In (c), n2 > nl as in Ref. 2, 
and, therefore, both Zz and ZT are real, which implies power is lost 
through the boundary. Other boundaries of practical interest are 
obtained from Fig. 2 by placing a grid of thin wires tangent to T on the 
boundary. This will cause ZT =:: 0 in all cases. For all these waveguides 
one finds, for large ka, that [H] in eq. (5) is a diagonal matrix, 

[Hl=-I~ ~I' 
TYPE OF BOUNDARY 

(a) 
(h« A) 

c 

(Z = -,jji/€) 
(b) 

c 

(c) nl 

METAL 

c (1+ i) Rs 

(d) 

(T = TANKa -J n~ -nf d. 

R -f« T. liT) 

(e) 

nl T' + iT 
r-Z--

n2 1 + JTT' 

(
T'= ~ n~) 

-Vn2 _n2 n~ 
2 1 

(f) 

(1+ i) Rs 

. 1 nl 
J-- ZT+ 

r n2 

+ Rs (1 + T2) 

1 nl T' + iT 
--Z--

r n2 1 + iTT' 

(
T'= ~) 
~ "V nj -ni 

(19) 

Fig. 2-Asymptotic values of the surface impedances Zz and ZT for different boundary 
conditions. 

HIGH-FREQUENCY BEHAVIOR OF WAVEGUIDES 95 



and the coefficients X and Yare determined by the surface impedances 
given in Fig. 2. Notice there are cases where [H] is not a diagonal 
matrix, as pointed out in Section VIII. 

In the following sections we consider a waveguide with boundary 
conditions given by eq. (5) and derive simple expressions for the 
dependence of 1/1 (x, y) upon the matrix [H]. These expressions are 
obtained neglecting terms of order higher than 1/ ka and, therefore, 
they do not require an exact knowledge of [H], but only of the 
asymptotic behavior of [H], which can be determined as seen in this 
section. In Appendix A, a procedure for determining t/I to any desired 
accuracy is pointed out, but the procedure requires that [H] be known 
accurately. Any desired accuracy for [H] can be obtained by a proce
dure of successive approximations, but the resulting expressions are in 
general too complicated to be of practical interest. 

Concerning the validity of the following derivation, it is important 
to realize that even though the expressions obtained for 1/1 will not 
satisfy the actual boundary conditions exactly, the errors will be small, 
of order two in 1/ ka. These errors imply the conditions satisfied at the 
boundary by the expressions in question can be obtained, from the 
actual conditions, by small perturbations, of order two in 1/ ka. 

III. ASYMPTOTIC PROPERTIES OF l/J 

We now determine the dependence of 1/I(x, y) upon the matrix [H]. 
To this purpose, it is convenient to assume that [H] is independent of 
ka. The expressions obtained for 1/I(x, y) will depend on the coefficients 
of [H]. By substituting for these coefficients the expressions obtained 
in Section II, one obtains the dependence of 1/1 upon ka in general, for 
a waveguide with frequency dependent [H]. 

Thus, consider a waveguide characterized by a given matrix [H], 
and let 

a2 = k 2 
- f32. 

Let 1/I(x, y) and a2 be expanded in power series of If ka, 

00 1 
1/1 = 1/I00(x, y) + .L (k )i 1/Ii(X, y), 

,=1 a 

2 2 ( ;, Ci) 
a = a oo 1 + i7:1 (ka)i 

(20) 

(21) 

(22) 

where the distributions 1/100, 1/11, etc., are independent of ka; they are 
determined entirely by the shape of the boundary and the coefficients 
of [H]. 

Using eqs. (21) and (22) one can derive from eq. (5) for large ka (see 
Appendix A) a set of linear relations involving t/I and the normal 
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derivative iJ1/I / iJv, 

iJ1/Iv 

= ~ [H] a; + O[k-2
] 

k iJ1/IT 
on C. (23) 

iJv 

Expressing l/Iv and l/IT in terms of the x- y-components of l/I, we obtain 

iJ1/Ix 
= ~ [A] a; + O[k-2 ] 

k iJ1/Iy on C, (24) 

·iJv 

where 

[A] = [vx' vyJ [H] [vx' -vyJ -Vy, Vx Vy, Vx ' (25) 

Vx and Vy being the direction cosines of p. 

3.1 Derivation of "'00 and C1 

We now show that for each nondegenerate eigenvalue (Joo there are 
in general two modes, characterized by different values of CI. For most 
waveguides, [H] has the diagonal form (19), and in this case we shall 
see that l/Ioo is linearly polarized. Furthermore, if the boundary has an 
axis of symmetry, then the polarization vector i of l/Ioo is either parallel 
or orthogonal to the symmetry axis. Very simple expressions are 
obtained in this case for l/Ioo, CI, l/II. More difficult is the treatment for 
degeneracy of order N > 1. Then, in order to determine l/Ioo, one must 
find the 2N latent roots of a certain characteristic equation. 

The function l/I must satisfy the wave equation, 

(26) 

Vt being the transverse part of V. Equation (24) implies that the 
boundary values of l/I vanish in the limit as k -'; 00. * It is, therefore, 
convenient to represent l/I in terms of the eigenfunctions fI, h, etc., 
that satisfy the boundary condition 

f,.=o on C. (27) 

Let Ur be the eigenvalue of fr, 

VF fr + u~ fr = O. (28) 

From equations (21) and (22) for k -'; 00, one has 

(29) 

• From now on the waveguide dimensions will be kept flxed, as k is increased. 
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and, therefore, 1/100 must satisfy the wave equation with (1 replaced by 
(100. Furthermore, from eq. (24), 

on C. (30) 

Therefore, (100 must be one of the eigenvalues U r • Let 

(31) 

and suppose there is degeneracy of order N, so that N distinct eigen
functions fl' ••• , fN correspond to the same eigenvalue. Then 

Ul = ... = UN (32) 

and 1/100 can be written in the form 

N N 

1/100 = L axmfm(x, y) ix + L aymfm(x, y) iy , (33) 
m=l m=l 

involving N eigenfunctions and 2 N coefficients axm , aym . We now show 
that these coefficients cannot be chosen arbitrarily, but there are in 
general only 2 N possible choices corresponding to 2 N distinct modes. 

3.2 Values ofaxm , a ym 

The values of 1/1 at any point (x', y') inside the boundary are related 
to the boundary values through the integral relation24

• 32 

1/I(X', y') = J 1/I(x, y) dG dl, 
c dV 

(34) 

where G = G(x, y; x', y') is Green's function satisfying the equation 

V¥G + (12G = 8(x - x')8(y - y') (35) 

and the boundary condition G = 0 when x, y is a point of C. Let G be 
represented in terms of the eigenfunctions fr, 

(36) 

where it is assumed that f,. are properly normalized so that they are 
real functions satisfying 

J L f~(x, y) dxdy = 1 (r = 1,2, ... ), (37) 

S being the region inside the bounda-ry C. From eq. (36), G contains a 
component 

(38) 
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which diverges for k ~ 00, since a ~ aoo . For large k, 
lIN 

Goo = ka -:;- -- L (rCX, Y) (r(X', y'). 
a;, Cl 1 

(39) 

The asymptotic behavior of eq. (34) for large k is now examined. 
Approximating G by Goo, from eqs. (24), (25), and (34) one obtains the 
integral relation 

t/;oo] = ~ J [A] atf;oo] aG
oo 

dl, 
k c av av 

(40) 

where 

(41) 

Substituting eq. (39) in eq. (40), and taking into account eq. (33), one 
obtains for the coefficients axm , aym the characteristic equation 

(42) 

where 

] aXI] ax =: ' ] aYI] 
ay =: ' (43) 

and 

a J a{s at (1xx)i,s = 2 Axx-- dl, 
a oo c av av 

(44) 

and similarly for 1xy , 1yx , 1yy (replace Axx with A xy , A yx , Ayy). 
Equation (42) admits, in general, a total of 2N independent solu

tions ad, a2], ••• , a2N] for 

] = ax]] 
a ] . ay 

(45) 

Each solution is obtained by solving eq. (42) with CI set equal to one 
of the 2 N latent roots AI, A2, ••• , A2N of the matrix 

[I] = [[1xx] 
[1yx] 

(46) 

If the boundary is lossless, then one can verify that [I] is Hermitian 
and its latent roots are real. In this case the 2N solutions are orthog
onal, 

for i":/:- s, (47) 

where ( )t denotes the transpose conjugate. 
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Thus, to determine the coefficients lX,d, lXyI, etc., which specify t¥oo, 
the 2N latent roots of the matrix [I] must be determined. If the roots 
are all distinct, then they correspond to 2 N distinct modes· character
ized by different CI, i.e., by different propagation constant /3. If there 
is degeneracy (N > 1), the expressions obtained from eq. (33) for t¥oo 
are quite complicated. Much simpler is the treatment for N = 1, since 
then only one eigenfunction tl(X, y) is involved. This is the most 
important case in practice, since it applies to the fundamental modes, 
which correspond to the lowest Goo (see Appendix B). 

3.3 easeN = 1 

For N = 1, only one eigenfunction tl(X, y) corresponds to Goo and eq. 
(33) reduces to 

(48) 

where i is a unit vector that determines the polarization of t¥oo. If Al =F 
A2, then eq. (42) for N = 1 specifies two polarizations, corresponding to 
two modes with different propagation constants. To determine these 
two polarizations, let lXx and lXy be the direction cosines of i. Then from 
eq. (42) with N = 1, 

[
1xx - CI 

Ixy 
1xy ] ax] = 0, 
1yy - CI lXy 

(49) 

where 

J []
2 

a atl 
1xx = 2 Axx - dl, 

(100 C av (50) 

and similarly for 1xy , Iyx , 1yy (replace Axx with A xy , etc.). From eq. (49) 
one obtains for Cl the characteristic equation 

(51) 

whose solutions Al and A2 determine for i two eigenvectors hand h 
with direction cosines specified by eq. (49). Notice h = i2 if Al =F A2. If 
the boundary is lossless and Al =F A2, then from eq. (47) 

h·i~ = 0, (52) 

and, therefore, the two eigenvectors represent orthogonal polarizations. 
For all the waveguides of Fig. 2, [H] is given by eq. (19). Then 

[ ]

2 
a ati 

Ixy = 1yxx = -2 J (¥ - X)vxVy - dl, 
(100 C av 

(53) 

J [ ]
2 

a 2 2 ah 
1xx = -2 (¥v x + XVy) - dl, 

(100 C av 
(54) 

100 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981 



and similarly for 1yy (interchange x ~ y). Since in this case [I] is a 
symmetric matrix, 

il . h = 0, (55) 

and if it is real (0/00 is linearly polarized), then i2 is also real and 
orthogonal to i l . 

We conclude by deriving a general condition that must be satisfied 
so that 0/00 is linearly polarized. Suppose i is real. Then the x axis can 
be oriented so that i = i x • This implies ay = 0 and therefore 1yx = O. We 
conclude that linear polarization is obtained only if it is possible to 
orient the x axis so that 

L (Y - X).x·,[:r dl = O. (56) 

Notice then 1xy = 1yx = 0, and, therefore, 

(57) 

The above requirement is always satisfied if the boundary is lossless 
(then X and Yare real) or if the values of X and Yare independent of 
position Ion the boundary. It is also satisfied if the boundary has an 
axis of symmetry. In fact, let the symmetry axis be the x axis. Then X, 
Yand aldav in eqs. (53) and (54) are even functions of y, 

X(x, y) = X(x, -y), Y(x, y) = Y(x, -y), (58) 

whereas VxVy is an odd function of y, which gives condition (56). 
We thus conclude that in most cases of practical interest 0/00 is 

linearly polarized. This is of importance in the design of a feed for 
reflector antennas, to obtain good cross-polarization discrimination 
over a wide frequency range. 

IV. PROPAGATION CONSTANT FOR N = 1 

Assume the boundary has an axis of symmetry given by the x axis 
and let N = 1. Let [H] be given by eq. (19), which applies to all 
waveguides of Fig. 2. Then, for the mode polarized in the x direction, 
the coefficient CI coincides with 1xx and it is given by eq. (54). Notice 
eq. (54) assumes that II(X, y) is normalized as shown by eq. (37). If II 
is not normalized, we must divide the right-hand side of eq. (54) by the 
left-hand side of eq. (37) with r = 1, then obtaining 

. L (Z, v;/Z + z.",jz,) (aida.)' dl 

CI = Ja (59) 

ul J J tidxdy 
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for i = i x • For the other polarization i = i y , interchange Vy ~ Vx in the 
above expression, which shows that the two polarizations are in general 
characterized by different propagation constants. 

Once Cl is known, the propagation constant f3 can be derived using 
eqs. (20) and (22) which for (100 = Ul give 

1 UI 1 UI 
f3 = k - 2 k - 2 k 2a Cl + ... , (60) 

where the dots indicate terms of order higher than two in 1/ k. If the 
medium inside the waveguide is lossless, k is real and the attenuation 
constant 11 is determined by the imaginary part of Cl. Then eqs. (59) 
and (60) give L (rp; + gp;,)(a[,/ap)2 dl 

11 = -Im(f3) = , 

2k2 I I tl dxdy 

(61) 

where rand g are the real parts of ZT / Z and Z / Zz. This relation was 
used in Ref. 1 to determine the attenuation constant for a variety of 
waveguides of practical interest. 

Using the above expressions one can straightforwardly calculate the 
dispersion and attenuation characteristics of any mode for large ka. In 
the special case of a hollow waveguide of dielectric with circular 
boundary, eqs. (59) and (60) give eq. (31) of Ref. 2. 

Of greatest importance are the fundamental modes, which corre
spond to the lowest (100. Then, for the circular boundary of Fig. 3, -

(62) 

where p = JX2 + y2, Jo is the Bessel function of order zero, and (100 a is 
the fIrst root of Jo, 

(100 a = 2.4048. (63) 

For the rectangular boundary of Fig. 3, 

{,(x, y) = A cos(i~) cos(i t). (64) 

If (l(X, y) is normalized [see eq. (37)], then 

(circle), 

A= (65) 
1 

rab 
(rectangle). 
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o-----+-_x i 

Fig. a-Circular and rectangular houndaries. 

V. THE DISTRIBUTION l/I1 

Once 1/100 is known, the boundary values of 1/1 can be calculated with 
error of order two in 11k using eq. (23). If N = 1, i = ix and [H] is given 
by eq. (19), then one obtains at the boundary 

.Jt "" - ~ [(XV; + Yvi)ix - (X - Y)vxvyiyJ 0:: on C. (66) 

To determine 1/1 inside the boundary we separate 1/1 into two parts, a 
component 

fl (x, y)i, 

plus a component due to the other eigenfunctions f2, f3, etc. The latter 
component can be determined with error of order two in 11k by 
substituting eq. (66) in the integral of eq. (34), with G replaced by G 
- Goo for a = aoo , as shown in Appendix A. Concerning the former 
component, it is shown in Appendix A that if the boundary has an axis 
of symmetry, then i is independent of k, and, therefore, one can set 
i = ix for all values of k. If there is no symmetry, then in general i is a 
function of k and, to determine its dependence upon k, one must follow 
the same procedure used in this section to determine i for k ~ 00. 

VI. APPLICATIONS 

We now derive the fundamental modes of circular and rectangular 
boundaries with diagonal matrix [H] given by eq. (19), which applies 
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to all the waveguides of Fig. 2. The surface parameters X and Y will be 
assumed to be independent of position on the boundary. Then for 
i = ix, 

(67) 

giving t/; in the limit as k ~ 00. We now wish to obtain a better 
approximation for t/;. 

For the rectangular boundary of Fig. 3b in eq. (66), one has "x"y = 0, 
and, therefore, t/; has the same polarization as t/;~, i.e., 

t/; ~ t/;ix, 

neglecting terms of order two in 1/ k. The boundary condition (23) can 
then be satisfied separating t/; into a product of two functions, t/;dx) 
and t/;2(Y), subject to the conditions 

Yat/;l 
t/;1=--- for x=±a, (68) 

k a" 
X at/;2 

t/;2=-/iav for y = ±b, (69) 

whose solutions are well known.2
6-31 For the fundamental mode one 

obtains 

t/; = A cos ax cos yy, (70) 

where 

aa = :!!. [1 -~ + .""] 2 ka ' yb = i [ 1 - ~ + ... ] . (71) 

These results are closely related to expressions derived in Ref. 3 for a 
dielectric waveguide. Notice that for b ~ 00 the rectangular waveguide 
degenerates into two parallel plates placed at x = ±a, in which case 
t/; ~ t/;I (x) and the modes can be derived exactly as in Appendix C. 
Similarly, for a~ 00 one obtains two plates aty = ±b and t/;~ t/;2(Y). 
If both a and b are finite, then eq. (70) shows that t/; is simply the 
product of the two distributions t/;dx) and t/;2(Y), provided terms of 
order two in 1/ k can be neglected. 

Next consider the circular waveguide of Fig. 3. In this case it is 
convenient to introduce polar coordinates p, cj>. Taking into account 
that X and Yare independent of cj>, one obtains for the fundamental 
mode 

t/;= 

A{ T ( )" X - Y (u~a)2 J. ()( ". } uo up Ix - --4-~ 2 up COS2cj>Ix + sln2cj>iy ) + """ , (72) 
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where the dots indicate terms of order two in 1/ k, and from eqs. (22) 
and (59), 

aa = aoo a [1 _ X + Y ~ + ... ] 
2 ka ' 

(73) 

aooa being given by eq. (63). These expressions were derived previously 
for X = 0 in Ref. 5 and therefore details of their derivation are not 
given here. 

The above results for rectangular and circular waveguide are valid 
provided k is large enough so that the field at the boundary is small. 
From eq. (66) this requires 

1 
ka «1, 

X 
-«1 
ka ' 

y 
ka « 1. 

If the waveguide dimensions are large enough, the results apply even 
to an ordinary waveguide with metal walls of finite conductivity. To 
determine how large the dimensions must be, consider for instance 
copper at 100 GHz. Then Rs/Z = 2.189 X 10-4

, and from Fig. 2d one 
obtains I Y I = 514 and I X I = 5 X 10-5

• Therefore, the above inequalities 
require 

2a» 1000A, 

which is too large a diameter for all practical purposes. 
The above requirement is a consequence of the large value of Y for 

copper walls. By coating the walls with a thin dielectric layer, or by 
corrugating them, much lower values of Y can be obtained. Suppose 
for instance in Fig. 2e one chooses T = 1, Rs::=:; 0, nl = 1, and n~ = 2. 
Then, instead of the above requirement, one obtains a »0.318A, which 
is a much more realistic condition. The attenuation constant of such 
a waveguide, or of other waveguides realized using one of the structures 
of Fig. 2, can be determined straightforwardly using eq. (61).1 

When a waveguide is used to illuminate a feed aperture, then at that 
aperture usually ka » 1. Then the aperture illumination is given 
accurately by eqs. (70) or (72) for rectangular and circular apertures. 
For other apertures, it can be determined as pointed out in Section V. 
By deriving the Fourier transform of eqs. (70) and (72) the far-field 
can be determined and thus its dependence on the aperture parameters 
X and Y can be obtained. These applications are discussed in Ref. 1. 

Helical waveguide- A case where [HJ is not a diagonal matrix 

Consider one of the waveguides of Fig. 2, and let a helical wire be 
placed at the boundary, as in Fig. 4. Then one finds that [H] is not a 
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/BOUNDARY C 
/ 

T 

~-------Q------~ 

Fig. 4-Helix with pitch angle e. 

diagonal matrix, 

-1 
[H] = '2() XY' '2() cos - sm 

[ 
Y, 

. -j sin() cos()(l + XY), 
j sinO COS~(1 + XY) J. (74) 

where X, Y denote the coefficients of [H] for () ~ 0, () being the pitch 
angle between the wire and T. 

Consider a circular boundary. Then, we have seen that for () = 0 the 
fundamental modes have the same propagation constant, and are 
linearly polarized for k ~ 00. In this section we show that for () =;'; 0 
they become circularly polarized, and have different propagation con
stants /31 and /3'2. This implies the following. Suppose at the input of 
such a waveguide (Fig. 4) the fundamental modes are combined so as 
to obtain, to a good approximation, linearly polarized excitation. Then, 
one will not obtain, in general, linear polarization at the output, unless 
the difference between the two propagation constants is small enough 
so that 

l being the waveguide length. In this section we derive /3'2 and /31. 

Helical waveguides are of importance for their simplicity of construc
tion, as compared to corrugated waveguides, and for their excellent 
performance as hybrid-mode feeds, as shown recently by R. H. Turrin33 

whose work motivated the calculation of this section. The following 
results agree with Ref. 34. 

Let consideration be restricted to the fundamental modes of a 
lossless boundary with [H] independent of position on the boundary. 
Then, from eqs. (25) and (44) 

Lx = Hll Vxx - (H12 + H'2I) Vxy + H'22 Vyy, 

Ixy = (H II - H'2'2) Vxy + HI'2Vxx - H'21 Vyy , 
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and similarly for Iyx and Iyy (interchange 1 ~ 2, x ~ y), where 

1 f 1 atl 12 Vjli = 2 . VjV/i - dl 
a oc c av 

(j, k = x,y). 

Since the boundary is assumed to be lossless, 

(Im)(Ixy) = H 12 (vxx + VYY ), 

(77) 

(78) 

and, therefore, Ixy =;t:. O. We conclude that for H12 =;t:. 0 there is no 
degeneracy possible for the fundamental modes. For a circular bound
ary, using eqs. (74), (25), (50), (51), and (62), we obtain 

and 

. 1 (. .. ) 
1= J2 Ix ±Jly 

oa = oooa[ 1 - 2(cos'/J _lXy sin'/J) 

. (X + Y =+= 2 sin 0 cos 0 1 + XY) + ... ], 
ka ka 

(79) 

(80) 

with the plus sign of eq. (79) corresponding to the minus sign of eq. 
(80). The same expressions apply also to a square aperture with a = b. 
Thus, in both cases l/Ioo is circularly polarized. If XY + 1 > 0, then the 
lower value of a corresponds to a mode with polarization rotating in 
the sense of the helix in Fig. 4. The opposite is true for XY + 1 < O. 

VII. CONCLUSIONS 

To summarize, we have shown for most of the modes inside a 
cylindrical waveguide of finite surface impedances that asymptotically, 
for large values of ka, the field l/I vanishes at the boundary. We have 
seen in Section III that for each eigenvalue u,. there are, in general, 2N 
modes, given for k ~ 00 by eq. (33). For the lowest eigenvalue one has 
N = 1, and for the corresponding two modes l/Ioo is given by tdx, y)i, 
where i is a unit vector. If the direction cosines of i are complex, then 
l/Ioo is elliptically polarized. If [H] is a diagonal matrix, as for the 
waveguides of Fig. 2, and the boundary has an axis of symmetry, then 
i is real, and one can always orient the x axis so that i = i x • In this case 
the propagation constant f3 is given by eqs. (59) and (60), and using 
the procedure of Appendix A we can straightforwardly determine l/I, 
with error of order two in 1/ k, for any boundary shape. For rectangular 
and circular boundaries l/I is given by eqs. (70) and (72). 

Of special importance are the fundamental modes, which correspond 
to the lowest eigenvalue aoo . These modes, treated in Section 3.2, are 
needed in reflector antennas to minimize cross-polarization and edge 
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illumination over the feed aperture. They are also needed for long 
distance waveguide or fiberguide communication. Our results, show 
that there is no need to corrugate the walls of a feed in order to obtain 
conditions (11) and (48) or to obtain the low attenuations calculated in 
Refs. 20 and 21. Furthermore, they imply that the low attenuations 
predicted in Ref. 2 for a hollow waveguide of dielectric, or for a 
waveguide with metal walls coated with dielectric,4 can be achieved 
also using other waveguides. These applications are discussed in 
Ref. 1. 

APPENDIX A 

A.1 Derivation of eq. (23) 

Taking into account that V.E = 0, one can express Ez in terms on 
the transverse component given by eq. (2). One obtains 

e- j /lz 

Ez = jf3 V,1/;. 

Using this relation and Maxwell's equation - jW}lH = V x E one can 
express Hz and H, in terms of 1/;. Substituting these expressions in eq. 
(5), we obtain the boundary condition 

k 
1/;,,] 1 /3 (V,1/;) ] 

= - [H] + 
1/;T k -V,· (L X 1/;) 

(81) 

Taking into account eqs. (21) and (22) for k ~ 00, we have 

1/;~0, on C. 

This implies 

V .r, • a1/;T 
tX't'~lz-. 

a" 
Taking into account these relations, from eq. (81) we obtain eq. (23) 
with error of order two in 1/ k. 

A.2 Development of (12 and", in Asymptotic Series of 1 /ka 

A general procedure for deriving the various terms Cr, 1/;r in eqs. (21) 
and (22) is now described, thus justifying these equations. Assume that 
the boundary has at least one line of symmetry, since this simplifies 
considerably the derivation, and it applies to most cases of practical 
interest. Also assume that [H] has the diagonal form of eq. (19), and 
that a single eigenfunction fl (x, y) corresponds to Goo. 

Since there is no degeneracy, 1/;00 is given by eq. (48). Let the x axis 
coincide with the symmetry line. Then, the surface parameters X and 
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Yare even functions of y, 

X(x, -y) = X(x, y) and Y(x, -y) = Y(x, y), (82) 

and we now show the modes can be divided in two groups, namely 
even modes satisfying 

tJ;y(x, -y) = -tJ;y(x, y), (83) 

and odd modes satisfying 

tJ;Ax, -y) = -tJ;x(x, y), tJ;.Ax, -y) = tJ;y(x, y). (84) 

In fact, let 

tJ; = tJ;Ax, y)ix + tJ;y(x, y)iy 

be a solution of the wave equation and of the boundary condition (81) 
with [H] given by eq. (19). Then we wish to show that 

tJ;' = tJ;x(x, -y)ix - tJ;y(x, -y)iy 

is also a solution. Notice that tJ;' is the image of tJ; with respect to the 
x axis, as shown in Fig. 5, where P and P' denote two corresponding 
points (x, y) and (x, -y). One can verify that 

(Vt X tJ;')p' = -(Vt X tJ;)p, 

(VttJ;')p' = (VttJ;)P. 

(85) 

(86) 

If P is a boundary point, and p' and p denote the normals to the 
boundary at P' and P, respectively, one has that p' is the image of p 

because the boundary is symmetrical. Taking all this into account one 
can verify that tJ;' satisfies the boundary condition (81) with [H] given 
byeq. (19) at P'. We conclude that if an arbitrary solution tJ; is known, 
two independent solutions tJ;e and tJ;0 can be obtained by the relations 

tJ;e = %[tJ; + tJ;'], (87) 

x 

~---------r----Y 

Fig. 5-For a symmetrical boundary, the boundary conditions are satisfied by both 
1/1 and its mirror image 1/1'. 
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One solution, 1/;e, is even and the other, 1/;0' is odd. 
We now proceed to derive 0'2 and 1/;. Let i = ix and assume idx, y) is 

even, i.e., 

il (x, y) = il (x, -y), (88) 

all other cases (i = iy, or il odd) being entirely analogous. Then 1/;x and 
1/;y are, respectively, even and odd and it is convenient to separate G 
into three parts, 

(89) 

where Gx , Gy denote, respectively, the even and odd parts of G - Goo. * 
Taking into account that 1/;x is even, from eqs. (34), (36), and (89) one 
obtains 

(90) 

where 

1 Jail Al = 2 2 1/;x - dl. 
a - UI C av 

(91) 

Similarly, for 1/;y, 

(92) 

In eq. (90), since 1/; can be multiplied by an arbitrary constant, the 
coefficient Al can be chosen arbitrarily. We choose Al = 1, to be 
consistent with 1/;00 = il (x, y)ix. Then eq. (91) gives 

(12 - a! = J 1/;x ail dl, 
c av 

(93) 

a basic relation that expresses (12 in terms of the boundary values of 
1/;x. Expanding 1/;x in a power series of l/ka, from eq. (91) one obtains 
for the ith coefficient of 0'2, 

Ci = ~ J 1/;xi ail dl, (94) 
0'00 C av 

where 1/;xi is the x component of 1/;i in eq. (21). From eq. (66), 

2 2 ail 1/;xl = -(Xvy - Yvx)a -, av (95) 

* Thus Gy is obtained from eq. (36) considering only those terms for which fr are odd, 
whereas for Gx, consideration is restricted to fr even with r> 1. 
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and, therefore, for i = 1, eq. (94) gives eq. (59). 
From eqs. (90) and (92), taking into account that at the boundary 

at/; = t/; - t/;oo = t/;, 

. f iJGx 
at/;x = at/;x - dl, 

c iJp 
(96) 

Thus, using eq. (95), we obtain 

f 2 2 iJil (iJGx) t/;Xl = - (XPy + ¥Px) - - dl, 
c iJp iJp 00 

(97) 

for the values of t/;xl inside the boundary whereas for t/;Yl, using eq. 
(66), we obtain 

f iJil (iJGy
) t/;yl = PxPy(x - ¥) - -- dl, 

c iJp iJp 00 
(98) 

where ( )00 denotes the value for (J = (Joo. Equations (97) and (98) allow 
t/; and its derivatives to be determined with an error O(l/k). Therefore, 
the right-hand side of eq. (81), which contains the factor 11k, can now 
be calculated with an error O(l/k2). The boundary values of t/;x2, t/;y2 
are then obtained from eq. (81). 

Once these values are known, eq. (96) can be used to determine t/;x2 
and t/;y2 inside the boundary. Equation (81) can then be used again to 
determine the boundary values of t/;x3 t/;y3, whose values inside the 
boundary can then be calculated using eq. (96). By proceeding this 
way, we can su·ccessively calculate all t/;xi, t/;yi. Notice in eq. (96) that 
the kernels depend on (J2. Therefore, to determine t/;xi, t/;yi for i> 1, we 
must first calculate the coefficients Cl, ••• , Ci-l using eq. (94). Once 
these coefficients are known, the kernels must be developed in power 
series of 1/ k, and then the fIrst i-I terms in these series must be 
determined. These terms then allow eq. (96) to be used to determine 
t/;xi, t/;yi. 

APPENDIX B 

Let il be one of the eigenfunctions satisfYing the boundary condition 
il = 0 and the wave equation 

'Vi il + u1il = 0, 

and let UI be the lowest eigenvalue. This implies that if g(x, y) is an 
arbitrary function with continuous derivatives, then 

J L gVl g dxdy '" ui J L g' dxdy. (99) 

HIGH-FREQUENCY BEHAVIOR OF WAVEGUIDES 111 



where the inequality sign applies to any g(x, y) that is not an eigen
function corresponding to the eigenvalue U 1. 

Condition (99) is now used to show that fl cannot have nodal lines 
inside S. In fact, suppose fl has a nodal line inside S, and let 

g= Ifd· 
Then, since 'Vtg is discontinuous across the nodal line, g cannot be an 
eigenfunction, and, therefore, condition (99) should give an inequality. 
To evaluate the integral 

1= J J gVigdxdy (100) 

in the immediate vicinity of the nodal line, where V¥g diverges because 
of the discontinuity of'Vtg, write 

and notice that 

g'Vtg 

is continuous because g = 0 on the nodal line. It follows that g'V¥g 
does not diverge on the nodal line, and, therefore, its integral over a 
narrow strip containing the nodal line vanishes as the width of the 
strip goes to zero. Thus, 

1= J L "V;" dxdy = ui J L ri dxdy (101) 

and, therefore, condition (99) gives an equality, which implies fl cannot 
have nodal lines inside S. 

It is now shown that fl is the only eigenfunction corresponding to 
UI. In fact, if f2 is another eigenfunction corresponding to UI, then this 
must be true also for 

where a is an arbitrary constant. But this is not possible, since one can 
always choose a causing f to have a nodal line inside S, and we have 
already seen that this violates condition (99). 

APPENDIX C 

Consider the modes propagating between two parallel planes or
thogonal to the x axis and let 2a be the spacing of the two planes. 
Assume at the boundary one of the conditions of Fig. 2, and let the x 
axis be oriented in the direction of propagation, so that there is no 
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variation in the y direction. Then 

1/1 = 1/I(x)i, (102) 

where i is a unit vector. For the TM-modes, i = ix, whereas for the TE
modes i = iy. For the former case ET = Hz = 0 and, therefore, 1/1 is 
independent of the transverse impedance ZT' In the latter case HT = Ez 
= 0 and 1/1 is independent of Zz. In either case one finds24

,27 that the 
surface impedances ZT and Zz in eq. (9) can be determined straightfor
wardly. For two metal plates with dielectric coating of thickness d, for 
instance, ZT and Zz are determined entirely by /3, d, and the refractive 
index n of the dielectric, 

(103) 

and 

n 2k 1 
Y = - (104) 

Jk'n' - fJ' tan (d Jk'n' - fJ')' 

which for /3 ~ k give eqs. (17) and (18). Analogous expressions are 
obtained for the other boundaries in Fig. 2. 

Consider the even modes with i = ix, 

1/1 =:= 1/Iix = cosaxix, (105) 

where from eq. (81) the wavenumber a must satisfy31 

y 1 

ka aa tanaa' 
(106) 

whose behavior for real values of aa is illustrated in Fig. 6a. If Y =;i: 00, 

then Y / ka vanishes for ka ~ 00 and, therefore, for most of the solutions 
of eq. (l06), 

7T 
aa~ m7T --

2' m = 1,2, "', (107) 

as ka ~ 00. In addition to these solutions, for Y < 0 one mode exists 
for which aa is imaginary and31 

aa ~ - j ~ , as a ~ 00. (108) 

Equation (107) implies that the boundary values of 1/1 vanish for ka 
~ 00, whereas eq. (108) implies that the mode is a surface wave whose 
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Y/ka 

L-____ ~~------L-----~~------L-------~ua 

x 

Fig.6-Relationship between oa and Y/ka for the TM-modes of a parallel plate 
waveguide. Notice in the dielectric-lined waveguide the spacing 2a of the two plates 
increases with z. As a consequence, the field amplitude l/; at the boundary decreases 
with a, for the mode with m = 1. 

amplitude in the vicinity of the walls is given by 

>f '" ~ exp( + I ~ I a ) exp( - I ~ I I x - a I) . (109) 

Notice eq. (107) implies 

f3~ h, (110) 

as ka ~ 00, whereas for the surface wave 

(111) 

To understand the significance of these results, consider two metal 
plates with dielectric coating as in Fig. 1 a. Let the separation a of the 
two plates be gradually incre.ased in the direction of propagation, as 
shown in Fig. 6, and let a ~ 00 as z ~ 00. Let the dielectric thickness 
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d be so small that initially, for z = 0, 
y 

-=::: - 00 
ka . (112) 

Then the modes for z = 0 are essentially those of an ordinary waveguide 
without dielectric coating, 

aa =::: m7T (m = 0, 1,2, ... ). (113) 

For z > 0, however, the magnitude of Y / ka decreases with z, and 
Y / ka ~ 0 for z ~ 00. This implies, for all the modes with m # 0, 
conditions (107) and (110) and, therefore, the boundary values of \f; 
vanish for z -~ 00. For m = 0, on the other hand, aa is imaginary and 
initially aa =::: O. This mode will degenerate for z ~ 00 into a surface 
wave with propagation constant determined by Y as shown by eq. 
(111). This is the only mode for which the field does not become 
infinitesimal at the walls for z ~ 00. For all the other modes the 
boundary values of \f; for large ka are given by 

(_ l)m+ly ~:, (114) 

which vanishes for ka ~ 00. 

The above considerations apply also to the TE-modes. In fact, it can 
be verified that if in eq. (2) E t is replaced with ZHt so that \f; represents 
the transverse component of ZHt , then, for the even modes, \f; is still 
given by eqs. (105) and (106), provided Y is replaced with X. The 
behavior of the odd modes is entirely analogous; simply replace 
cos ax with sin ax in eq. (105), and tan with - cotan in eq. (106). 

REFERENCES 

1. C. Dragone, "Attenuation and Radiation Characteristics of the HEu-Mode," IEEE 
Trans. MTT, 7 (July 1980), pp. 704-10. 

2. E. A. J. Marcatili and R. E. Schmeltzer, "Hollow Metallic and Dielectric Waveguides 
for Long Distance Optical Transmission and Lasers," B.S.T.J., 43, No.4 (July 
1964), pp. 1783-1809. 

3. E. A. J. Marcatili, "Dielectric Rectangular Waveguide and Directional Coupler for 
Integrated Optics," B.S.T.J., 48, No.7 (September 1969), pp. 2071-2102. 

4. J. W. Carlin and P. D'Apostino, "Normal Modes in Over-Moded Dielectric-Lined 
Circular Waveguide," B.S.T.J., Vol. 52, No.4 (April 1973), pp. 453-86. 

5. C. Dragone, "Reflection, Transmission, and Mode Conversion in a Corrugated 
Feed," B.S.T.J., 56, No.6 (July-August 1977), pp. 835-67. 

6. C. Dragone, "Characteristics of a Broadband Corrugated Feed: A Comparison 
Between Theory and Experiment," B.S.T.J., 56, No.6 (July-August 1977), pp. 
869-88. 

7. A. W. Snyder, "Asymptotic Expressions for Eigenfunctions and Eigenvalues of a 
Dielectric or Optical Waveguide," IEEE Trans. MTT, 17 (December 1969), pp. 
1130-8. 

8. D. Marcuse, Theory of Dielectric Optical Waveguides, New York: Academic, 1974. 
9. P. J. B. Clarricoats, "Similarities in the Electromagnetic Behavior of Optical 

Waveguides and Corrugated Feeds," Electron. Lett., 6, No.6 (March 1970), pp. 
178-80. 

10. V. H. Rumsey, "Horn Antennas with Uniform Power Patterns Around their Axes," 

HIGH-FREQUENCY BEHAVIOR OF WAVEGUIDES 115 



IEEE Trans. Antenna Propag., AP·14, No.5 (September 1966), pp. 656-8. 
11. H. C. Minnett and B. MacA. Thomas, "A Method of Synthesizing Radiation Patterns 

with Axial Symmetry," IEEE Trans. Antenna Propag., AP·14, No.5 (September 
1966), pp. 654-6. 

12. P. J. B. Clarricoats and P. K. Saha, "Propagation and Radiation Behavior of 
Corrugated Feeds; Part I-Corrugated Waveguide Feed," Proc. IEEE, 118, No.9 
(September 1971), pp. 1167-76. 

13. S. E. Miller, E. A. J. Marcatili, and Tingye Li, "Research Toward Optical-Fiber 
Transmission Systems, Part I: The Transmission Medium," Proc. IEEE, 61 
(December 1973), pp. 1703-51. 

14. D. Gloge, "Propagation Effects in Optical Fibers," IEEE Trans. MTT, 23 (January 
1975), pp. 106-20. 

15. D. Marcuse, Light Transmission Optics, Princeton, New Jersey: Van Nostrand, 
1972. 

16. N. S. Kapany and J. J. Burke, Optical Waveguides, New York: Academic, 1972. 
17. H. G. Unger, "Lined Waveguide," B.S.T.J., 41, No.2 (March 1962), pp. 745-68. 
18. J. W. Carlin and P. D'Apostino, "Low-Loss Modes in Dielectric Lined Waveguide," 

B.S.T.J., 50, No.5 (May-June 1971), pp. 1631-9. 
19. J. W. Carlin, "A Relation for the Loss Characteristics of Circular Electric and 

Magnetic Modes in Dielectric Lined Waveguide," B.8.T.J., 50, No.5 (May-June 
1971), pp. 1639-44. 

20. P. J. B. Clarricoats and P. K. Saha, "Attenuation in Corrugated Circular Waveguide," 
Electron. Lett., 6 (1970), pp. 370-2. 

21. P. J. Clarricoats, A. D. Oliver, and S. L. Chang, "Attenuation in Corrugated Circular 
Waveguide," Parts 1 and 2: Theory and Experiment, Proc. IEEE, 122, No. 11 
(November 1975), pp. 1173-83. 

22. J. E. Goell, "A Circular-Harmonic Computer Analysis of Rectangular Dielectric 
Waveguides," B.S.T.J., 48 (1969) pp. 2133-60. 

23. R. B. Dydbal, L. Peters, and W. H. Peake, "Rectangular Waveguide with Impedance 
Walls," IEEE Trans. MTT, 19, No.1 (January 1971), pp. 2-9. 

24. R. E. Collin, Field Theory of Guided Waves, New York: McGraw-Hill, 1960. 
25. N. Brooking, P. J. B. Clarricoats, and A. D. Oliver, "Radiation Patterns of Pyramidal 

Dielectric Waveguides," Electron. Lett., 10 (February 1974), pp. 33-4. 
26. P. J. B. Clarricoats and C. E. R. C. Salerno, "Antennas Employing Conical Dielectric 

Horns," Proc. Inst. Elect. Eng., 120 (July 1973), pp. 741-9. 
27. J. R. Wait, Electromagnetic Waves in Stratified Media, New York: Pergamon, 

1970. 
28. E. Bahar, "Propagation of VLF Radio Waves in a Model Earth-ionosphere Wave

guide of Arbitrary Height and Finite Surface Impedance Boundaries: Theory and 
Experiment," Radio Sci. (New Series), Vol. 1, No.8 (1966), pp. 925-38. 

29. E. Bahar, "Generalized Scattering Matrix Equations for Waveguide Structures of 
Varying Surface Impedance Boundaries," Radio Sci., 2 (New Series), No.3 (March 
1967), pp. 287-97. 

30. R. A. Waldron, "Theory of Guided Electromagnetic Waves," London: Van Nostrand, 
1969. 

31. V. V. Scherchenko, "Continuous Transitions in Open Waveguides," translated from 
Russian by P. Beckman, Boulder, Colorado: GOLEM Press, 1971. 

32. A. Sommerfeld, Partial Differential Equations in Physics, New York: Academic, 
1967. 

33. R. H. Turrin, "A Helical-Wire Hybrid-Mode Conical-Horn Antenna," IREECON, 
Sydney, Australia, August 30, 1979. 

34. S. Ghosh and G. P. Srivastava, "Corrugated Waveguide with Helically Continuous 
Corrugations," IEEE Trans. Antenna Propag. AP·27, No. 4 (July 1979), 
pp.564-7. 

116 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981 



Contributors to This Issue 

Corrado Dragone, Laurea in E.E., 1961, Padua University (Italy); 
Libera Docenza, 1968, Ministero della Pubblica Istruzione (Italy); Bell 
Laboratories, 1961-. Mr. Dragone has been engaged in experimental 
and theoretical work on microwave antennas and solid-state power 
sources. He is currently concerned with problems involving electro
magnetic wave propagation and microwave antennas. 

John A. Morrison, B.Sc., 1952, King's College, University of Lon
don; Sc.M., 1954 and Ph.D., 1956, Brown University; Bell Laboratories, 
1956-. Mr. Morrison has done research in various areas of applied 
mathematics and mathematical physics. He has recently been inter
ested in queuing problems associated with data communications net
works. He was a Visiting Professor of Mechanics at Lehigh University 
during the fall semester 1968. Member, American Mathematical So
ciety, SIAM, IEEE, Sigma Xi. 

Roger N. Nucho, B.S. (Physics), 1971, B.A. (Fine Arts), 1972, 
American University of Beirut; Ph.D. (Physics), 1977, Massachusetts 
Institute of Technology; Bell Laboratories, 1978-. Mr. Nucho was 
Research Associate at the University of Southern California in 1977-
1978, during which time his main interest was the electronic structure 
of semiconductors. Since joining Bell Laboratories, he has been in
volved in designing special services facility networks which are insen
sitive with respect to forecast uncertainty. Member, Sigma Xi. 

Donald R. Smith, A.B. (Physics), 1969, Cornell University; M.S. 
(Operations Research), 1974, Columbia University; Ph.D. (Operations 
Research), 1975, University of California, Berkeley; Bell Laboratories, 
1980- . Before joining Bell Laboratories, Mr. Smith was employed at 
Adaptive Technology, Inc., 1970-1974, and was Assistant Professor in 
the Department of Industrial Engineering and Operations Research, 
Columbia University, 1975-1979. At Adaptive Technology, Mr. Smith 

117 



developed mathematical models for new techniques in statistical mul
tiplexing. At Bell Laboratories he is in the Operations Research Center 
pursuing interests in applied stochastic processes, including queuing 
theory and reliability theory. 

Ward Whitt, A.B. (Mathematics), 1964, Dartmouth College; Ph.D. 
(Operations Research), 1968, Cornell University; Stanford University, 
1968-1969; Yale University, 1969-1977; Bell Laboratories, 1977-. At 
Yale University, from 1973-1977, Mr. Whitt was Associate Professor 
in the departments of Administrative Sciences and Statistics. At Bell 
Laboratories he supervises the Operations Research Analysis Group 
in the Operations Research Center. His work focuses on stochastic 
processes and stochastic models in operations research. 

Yehuda Vardi, B.S. (Mathematics and Statistics), 1970, Hebrew 
University; M.S. (Operations Research), 1973, Technion; Ph.D. (Op
erations Research), 1977, Cornell University; Bell Laboratories, 
1977-1980. At Bell Laboratories, Mr. Vardi worked on problems in 
operations research, financial management, statistical sequential anal
ysis, and distribution theory and on estimation procedures in renewal 
processes. 

118 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981 



Papers by Bell Laboratories Authors 
PHYSICAL SCIENCES 

Bounds on Spread-Spectrum Systems. H. E. Rowe, Electronics Conv Record (Nov 
1979). 
Carbon Films with Relatively High Conductivity. M. L. Kaplan, P. H. Schmidt, 
A. H. Chen, and W. M. Walsh, Jr., Appl Phys Lett, 36 (May 1980), pp 867-9. 
Convection in a Porous Lay~r. P. G. Simpkins and P. A. Blythe, Int J Heat Mass 
Trans,23 (June 1980), pp 881-7. 
CVSD to LPC Conversion Using Noise Tolerant Analysis. J. D. Tomcik and J. 
L. Melsa, Proc IEEE Int'l Conf on Acoust, Speech & Sig Proc, 3 (Apr 1980), pp 719-24. 
Coupled Modes with Random Propagation Constants. USIR North Amer Radio 
Sci Conf (June 1980), p 80. 
Electron Acceptor Surface States Due to Oxygen Adsorption on Metal Phthal
ocyanine Films. S. C. Dahlberg, J Chern Phys, 72 (1980), pp 6706-11. 
Magnetoelastic Interactions in Ionic w-Electron Systems: Magnetogy
ration. M. A. Bosch, M. E. Lines, and M. Labhart, Phys Rev Lett, 45 (July 1980), pp 
140-3. 
Optical Waveguides in LiTa03: Silver Lithium Ion Exchange. J. L. Jackel, Appl 
Optics, 19 (June 1980), p 1996. 
Pyroelectric Ba(N02hH20: Room Temperature Crystal Structure. S. C. Abra
hams, J. L. Bernstein, and R. Liminga, J Chern Phys, 72 (June 1980), pp 5857-62. 
The Raman Excitation Spectra and Absorption Spectrum of a Metalloporphyrin 
in an Environment of Low Symmetry. J. A. Shelnutt, J Chern Phys, 72 (Apr. 1980), 
pp 3948-58. 
Raman Spectra of Light-Coupling Prism and Gemstone Materials. J. E. Grif
fiths and K. Nassau, Appl Spectroscopy, 34 (1980), pp 395-9. 
Rayleigh-Brillouin Scattering in Polymers. G. D. Patterson, Method of Exper 
Phys, 16 (1980), pp 170-204. 
The Relation of Elastooptic and Electrostrictive Tensors. D. F. Nelson, Basic 
Optical Properties of Materials (May 1980), pp 209-12. 
Surface Phenomena in Noble and Rare Earth Metals. G. K. Wertheim, Mat Sci 
Eng,42 (1980), pp 85-90. 

MATHEMATICS 

Evolution of a Stable Profile for a Class of Nonlinear Diffusion Equations. ill 
Slow Diffusion on the Line. J. G. Berryman, J Math Phys, 21 (June 1980), pp 1326-
31. 
Hamming Association Schemes and Codes on Spheres. S. P. Lloyd, SIAM J 
Math Anal, 11 (May 1980), pp 488-505. 

COMPUTING 

Computational Procedures for Markov Decision Processes. R. W. Henry, 19, 
Annual Tech Sym Pathways to Sys Integrity (June 1980), pp 155-9. 
A Mixed-Mode Simulator. V. D. Agrawal, A. K. Bose, P. Kozak, H. N. Nham, and 
E. Pacas-Skewes, 17th Design Auto Conf Proc (June 1980), pp 618-25. 
A Standard Operating System Commanded Response Language. The ANSI 
X3Hl Effort. C. T. Schlegel, L. L. Frampton, and S. Mellor, Proc of IFIP Conf (1980), 
pp 83-99. 

119 



ENGINEERING 

Acceleration Factors for IC Leakage Current in a Steam Environment. W. 
Weick, IEEE Trans on Reliability, 29 (June 1980), pp 109-14. 
Digital Test Generation and Design for Testability. J. Grason and A. W. Nagle, 
17th Design Auto ConfProc (June 1980), pp 175-89. 
The Measurement of the Effect of Photon Noise on Detection. J. Krauskopf and 
A. Reeves, Vision Res, 20 (1980), pp 193-6. 
Multilocation Audiographic Conferencing. C. Stockbridge, Telecommun Policy, 
4 (June 1980), pp 96-107. 
Rerouting Stability in Virtual Circuit Data Networks. E. F. Wunderlich and T. 
S. Printis, Int'l Conf on Commun (June 1980), pp 13.5.1-.5. 
Solar Cells. W. D. Johnston, Jr., New York: Marcel Dekker (1980). 
Strengths and Diameter Variations of Fused Silica Fibers Prepared in Oxy
Hydrogen Flames. T. T. Wang and H. M. Zupko, 3 (1980), pp 73-87. 
Triggerable Semiconductor Lasers and Light-Coupled Logic. J. A. Copeland, J 
Appl Phys, 51 (Apr 1980), pp 1919-21. 
Triggerable Semiconductor Lasers. J. A. Copeland, S. M. Abbott, and W. S. 
Holden, J Quant Electronics, 16 (Apr 1980), pp 388-90 
A Two-Chip CMOS-p-Law Encoder/Decoder Set. M. R. Dwarakanath and D. G. 
Marsh, Conf Digest, 1 (June 1980), pp 11-3.1-.4. 
A Welded Optical Fiber Signal Splitter. A. F. Judy and T. D. Mathis, Fiber & 
Integated Optics, 3 (1980), pp 63-71. 

120 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981 



Contents, February 1981 

J. F. Reiser 

R. J. Canniff 

A. S. Acampora 

L. J. Greenstein and 
B. E. Czekaj 

A. B. Hoadley 

R. D. Gitlin and 
S. B. Weinstein 

Compiling Three-Address Code for C Programs 

A Digital Concentrator for the SLC™-96 System 

The Rain Margin Improvement Using Resource
Sharing in 12-GHz Satellite Downlinks 

Modeling Multipath Fading Responses Using Multi
Tone Probing Signal and Polynomial Approximation 

The Quality Measurement Plan 

Fractionally Spaced Equalization: An Improved Digital 
Transversal Equalizer 

121 









THE BELL SYSTEM TECHNICAL JOURNAL is abstracted or indexed by Abstract Journal 
in Earthquake Engineering, Applied Mechanics Review, Applied Science & Tech

nology Index, Chemical Abstracts, Computer Abstracts, Current Contents/Engi

neering, Technology & Applied Sciences, Current Index to Statistics, Current Papers 

in Electrical & Electronic Engineering, Current Papers on Computers & Control, 

Electronics & Communications Abstracts Journal, The Engineering Index, Interna

tional Aerospace Abstracts, Journal of Current Laser Abstracts, Language and 
Language Behavior Abstracts, Mathematical Reviews, Science Abstracts (Series A, 

Physics Abstracts; Series B, Electrical and Electronic Abstracts; and Series C, 
Computer & Control Abstracts), Science Citation Index, Sociological Abstracts, 

Social Welfare, Social Planning and Social Development, and Solid State Abstracts 

Journal. Reproductions of the Journal by years are available in microform from 

University Microfilms, 300 N. Zccb Road, Ann Arbor, Michigan 48106. 



@ Bell System 


