

Evaluate the tradeoffs in linear-semicustom designs Accurate sampling techniques

Display-driver ICs
Designing to telecomm standards

A breakthrough in op amps: golden opportunities for precision system upgrades!

Higher speed and precision, plus ultra-low noise!

Our op amps have broken out of the old performance limits shell - so you can hatch new designs that upgrade system performance. In your process control, test and medical equipment. In military systems like avionics and sonar.

Use our HA-5147 op amp for closed-loop gains of 10 or greater. It delivers $35 \mathrm{~V} / \mu \mathrm{s}$ slew rate, only $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise, and these outstanding specs:

- $10 \mu \mathrm{~V}$ offset voltage
- $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift
- 120 MHz gain bandwidth
- 126 dB CMRR/PSRR

There's more: voltage gain of 1.8 million, and temperature ranges for military, industrial and commercial applications. Packaging: TO-99 cans, 8-pin cerdips, plus leadless chip carriers (LCCs) for space-saving surface mounting.
For system upgrades by the dozen, use our HA-5147. Or choose our HA-5127 or HA-5137 as plug-in replacements for 0P27 and 0P37.
Call for details: 1-800-4-HARRIS, Ext. 1500 (in Canada, 1-800-344-2444, Ext. 1500). Or write: Harris Semiconductor Products Division, P.O. Box 883, MS 53-035, Melbourne, Florida 32902-0883.

'Look: this one's got

For free on-line information on the Harris HA-5147, call 1-800-345-7335 with any ASCII terminal or PC and 300 or 1200 -baud modem (even parity, 7 data bits, 1 stop bit). Enter response code HA5147 (CR). In Connecticut, dial (203) 852-9201.
 speed, precision, and ultra-low noise!"

Chosen for

 high visibility and versatility. Dale Displays.When you need exceptional viewing characteristics and compact size, Dale plasma panel displays offer extra value and reliability. Our versatile display module family includes bar graphs, alphanumeric displays and graphics displays. All offer high brightness (up to 100 ft . lamberts) and a wide $\left(150^{\circ}\right)$ viewing angle. In addition, most models accept serial or parallel inputs and can be provided with STD Bus interface. For fast, personal attention to your display needs, contact Dale Electronics, Inc., 2064 12th Avenue, Columbus, NE 68601.

Circle No. 1

You can see the advantages.

 Dale Displays.Bright. Legible. Versatile. We're ready to help you use the advantages of plasma panel displays wherever you need to convey information. Our new bar graph models handle a wide range of control and indication needs. Each has dual linear graphs with 201 or 101 elements, resolution down to $1 / 2 \%$ and requires a minimum of drive circuits. In addition, standard segmented and dot matrix styles with up to 256 characters are available with complete drive electronics. To get more details contact: Dale Electronics, Inc., 2064 12th Ave., Columbus, NE 68601

$\underset{\substack{\text { For complete } \\ \text { antomalo }} \text { 402-564-3131 }}{ }$

Circle No. 2

Circle No. 3

dc to 2000 MHz amplifier series

SPECIFICATIONS

MODEL	FREQ. MHz	GAIN, dB				- MAX PWR. dBm	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$	PRICE Ea.	$\$$
		$\begin{aligned} & 100 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1000 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2000 \\ & \mathrm{MHz} \end{aligned}$	Min. (note)				
MAR-1	DC-1000	18.5	15.5	-	13.0	0	5.0	0.99	(100)
MAR-2	DC-2000	13	12.5	11	8.5	+3	6.5	1.50	(25)
MAR-3	DC-2000	13	12.5	10.5	8.0	+80	6.0	1.70	(25)
MAR-4	DC-1000	8.2	8.0	-	7.0	+11	7.0	1.90	(25)
MAR-6	DC-2000	20	16	11	9	0	2.8	1.29	(25)
MAR-7	DC-2000	13.5	12.5	10.5	8.5	+3	50	1.90	(25)
MAR-8	DC-1000	33	23	-	19	+10	3.5	2.20	(25)

NOTE: Minimum gain at highest frequency point and over full temperature range.

- 1dB Gain Compression
$\square+4 \mathrm{dBm} 1$ to 2 GHz
designers amplifier kit, DAK-2
5 of each model, total 35 amplifiers

only $\$ 59.95$
finding new ways

Unbelievable, until now ...tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.,plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11 dBm output, noise figure as low as 2.8 dB , and up to DC-2000MHz bandwidth.
*MAR-8, Input/ Output Impedance is not 50 ohms, see data sheet Stable for source/load impedance VSWR less than $3: 1$
AIso, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each. \dagger

$\begin{aligned} & \text { Size } \\ & \text { (mils) } \end{aligned}$	Tolerance	Temperature Characteristic	Value
80×50	5\%	NPO	10, 22, 47, 68, 100, 470, 680, 100 pt
80×50	10\%	X7R	2200, 4700, 6800, 10,000 pt
120×60	10\%	X7R	.022, 047, .068, . $1 \mu \dagger$
Minimum	der 50 per Va		

setting higher standards

On the cover: Digital-ASIC simulation packages keep chip designs on course. See pg 118. (Photo courtesy Ikos Systems)

DESIGN FEATURES

ASIC simulators

Sophisticated digital simulators can help you develop your applicationspecific IC (ASIC) designs. Simulators can prevent chip-level design problems and can often come up with good test-vector sets, but they can't correct failures resulting from the old engineering bugabooinadequate design specifications.-Margery S Conner, Regional Editor

Consider the tradeoffs when evaluating
 135 linear-semicustom ICs

System designers face special problems when creating analog circuits for semicustom IC fabrication. Unlike digital circuits, which you can readily subdivide into simple gates, analog circuits are highly irregular, require different design methods, and frequently need nonintegrable external components.-Bruce Moore, Raytheon Semiconductor, and Will Ritmanich, Consultant

S/H amp-ADC matrimony provides accurate sampling

When using an A/D converter to capture samples of moving signals, you usually need a sample-and-hold amplifier to hold the voltage steady at the converter's input. If you don't choose the right S / H amplifier for the application, signal degradation in the form of distortion and reduced dynamic range invariably results. $-A l$ Little and Bob Burnett, Harris Corp

Heed local norms when designing 175 telecomm interfaces

In designing customer-premises telecomm equipment for foreign markets, you must account for the respective countries' national telecommunications standards. These norms often differ in significant ways from the FCC Rules Part 68, which governs telecomm equipment in the US.-Glen Dash, Dash, Straus - Goodhue Inc

Continued on page 7

A NEW WORLD OF HIGH POWER FLEXIBILITY

Westcor's PowerCage ${ }^{\text {TM }}$ and PowerCards ${ }^{T M}$ comprise a modular power supply system of galactic power (7200 watts max.), flexibility (36 outputs max.) and efficiency (80% typ.). More like an expandable computer mainframe in design and concept than a standard high power supply, the PowerCage offers space-age alternatives to users of outdated $5 \times 8 \times 11$ inch box switchers.
Measuring 19x10.5x11.25 inches deep the PowerCage fits into a standard NEMA rack and powers 18 slots for single or dual output PowerCards or dummy cards. PowerCage backplanes provide connections for easy configuration by the user.

Low profile ($.8^{\prime \prime}$) PowerCards supply single outputs from 2 to 75 VDC at up to 400 watts (outputs from 2 to 5 VDC limited to 60 amperes). Dual output cards source two isolated outputs each at half of the above ratings. Single output cards can be paralleled with current sharing to provide kilowatts via simple backplane configuration.

The nucleus of each PowerCage system is Westcor's patented 1 MHz , high power density, high reliability converter. Consider these benefits and features: 208 VAC 3 phase input; remote/local sense on all outputs; TTL power good signal and status LED's; designed to meet UL, CSA and VDE safety requirements; TTL inhibit; over-temperature, over-current, over-voltage protection; "hot" card insertion; full power at $50^{\circ} \mathrm{C}$.

Future options include: DC input; IEEE-488 programmability; fault tolerant operation and battery backup. To discover a new world of high power flexibility, please contact us.

WESTCOR CORPORATION • 485-100 Alberto Way • Los Gatos, CA 95032 • (408) 395-7050• FAX (408) 395-1518•TWX 910-240-2108.

With today's new generation of calibrators and digital multimeters, you can attain accuracy previously impossible to achieve outside of a standards lab (pg 57).

TECHNOLOGY UPDATE

High-performance DMMs and calibrators
bring standards-lab specs to the benchtop
To satisfy their customers' demands for improved performance, engineers who design and test products such as data converters and automatic test equipment (ATE) must make increasingly accurate basic measurements in their labs, in production, and in systems.-Dan Strassberg, Associate Editor

Innovations in monolithic display drivers
 75 improve flat-panel cost/performance ratios
 Generally it's hard to beat the cost/performance ratio of complete flat-panel display systems, but you may have an application in which it makes sense to build, rather than buy, the displays.-Jim Wiegand, Associate Editor

Plug-in boards let your personal computer 89 perform parallel-processing tasks

You can now select from a number of IBM PC-compatible expansion cards that give your desktop computer computational power approaching that of a Cray supercomputer.-J D Mosley, Regional Editor

PRODUCT UPDATE
PLD design software 101
Digital precision motion controller 104

DESIGN IDEAS

Soft-start and delay protects power supply 189
Pulse-burst generator is programmable 190
Power circuit has constant full scale 192
Switched signal powers analog switch 196
Zero-current sensor protects relay contacts 196
Continued on page 9

[^0]

19RPOO PROGRAMMABLE REASONS TO MOVE UP TO THE 298.

With support for an additional 200 devices, the 29B Universal Programming System continues to program virtually every device on the market, including the latest one megabit EPROMs and PLDs in PLCC packages. And the 29B continues to support more devices than any other programmer, because no one is more committed to keeping pace with the semiconductor manufacturers than Datal/ ${ }^{\circledR}$.

THE 29B GIVES YOU A PROGRAM-

 MING FUTURE. While the 29B supports more than 1600 devices, you don't have to buy support for every device all at once. Its modular system of paks gives you the flexibility to build a universal programming system at your own pace-whethergradually or all at once. For example, you can start with gang and set programming for EPROMs and EEPROMs. Later, expand your system by adding logic or bipolar PROM programming.

MANUFACTURER-APPROVED

 ALGORITHMS FOR RELIABILITY. The 29B provides manufacturer-approved algorithms for superior programming. So, whether you operate the system in the stand-alone mode, from a terminal, or from a personal computer using PROMlink ${ }^{\text {TM }}$ programmer interface software, you're guaranteed reliable, trouble-free programming and maximum yields. It's this dedication to superior performance and complete device support that's made the 29B the leader, year after year.
UPGRADE

For a limited time only, you'll receive a credit towards a new 29B mainframe, UniPak 2B ${ }^{\text {Tw }}$, or GangPak ${ }^{m m}$ when you upgrade your equivalent Data I/O equipment, including the $17,19,100 \mathrm{~A}$ 29A mainframe; UniPak; or 24/28Pin Gang Module.

TRADE IN

Or trade in any other programmer (from any manufacturer), and you'll receive a credit towards the gramming gramming System.
Call to find out exactly how much your programmer is worth But hurry! This offer ends March 31, 1988.

1-800-247-5700

Dept. 452

[^1]```
 VP/Publisher
 F Warren Dickson
VP/Associate Publisher/Editorial Director
 Roy Forsberg
 Editor
 Jonathan Titus
 Managing Editor
 John S Haystead
 Assistant Managing Editor
 Joan Morrow
 Special Projects
 Gary Legg
 Home Office Editorial Staff
275 Washington St, Newton, MA 02158
 (617) 964-3030
 Tom Ormond, Senior Editor
 Deborah Asbrand, Associate Editor
 Joanne Clay, Associate Editor
 Tarlton Fleming, Associate Editor
 John A Gallant, Associate Editor
 Clare Mansfield, Associate Editor
 Dave Pryce, Associate Editor
 Cynthia B Rettig, Associate Editor
 Charles Small, Associate Editor
 Dan Strassberg, Associate Editor
 Chris Terry, Associate Editor
 Jim Wiegand, Associate Editor
 Ron Gilbert,Staff Editor
 Valerie Lauzon, Staff Editor
 Helen McElwee,Staff Editor
 Steven Paul, Senior Production Editor
 Editorial Field Offices
 Margery S Conner, Regional Editor
 Los Osos, CA: (805) 528-0833
 Doug Conner, Regional Editor
 Los Osos, CA: (805) 528-0864
 Bob Cushman, Special Features Editor
 Port Washington, NY: (516) 944-6524
 Steven H Leibson, Regional Editor
 Boulder, CO: (303) 494-2233
 J D Mosley, Regional Editor
 Arlington, TX: (817) 465-4961
 Richard A Quinnell, Regional Editor
 San Jose, CA: (408) 296-0868
 David Shear, Regional Editor
 San Jose, CA: (408) 997-5452
 Maury Wright, Regional Editor
 San Diego, CA: (619) 748-6785
 Peter Harold, European Editor
 0603-630782
 (St Francis House, Queens Rd,
 Norwich, Norfolk NR1 3PN, UK)
 Contributing Editors
 Robert Pease, Bob Peterson
 Don Powers, Bill Travis
 Editorial Services
 Kathy Leonard, Office Manager
 Loretta Curcio, Nancy Weiland,
 Sharon Gildea
 Art Staff
 Kathleen Ruhl, Art Director
 Ken Racicot, Assistant Art Director
 Chin-Soo Chung, Graphic Designer
 Cathy Filipski, Graphic Designer
 Production/Manufacturing Staff
William Tomaselli, Production Supervisor
 Donna Pono, Production Manager
 Andrew A Jantz, Production Assistant
 Diane Malone, Composition
 Graphics Director
 Norman Graf
 VP/Production/Manufacturing
 Wayne Hulitzky
Director of Production/Manufacturing John R Sanders
 Director of Research
 Deborah Virtue
 Marketing Communications
 Janice Molinari, Manager
Jennifer Ware, Communications Manager
 Corie Rand, Promotion Coordinator
 Anne Foley, Promotion Assistant
```



# MORE MULTIPROCESSOR MUSCLE PERRORMANCE. 

When you're out in the trenches fighting it out with ordinary microprocessors, running out of muscle is all too easy. That's why you should look to the new $T 800$ Transputer from INMOS.

The 1800 is the fastest 32 -bit, single chip, floating-point microprocessor available today. Aquick glanceat its statistics will show why nothing else is in its league...

32-bit enhanced RISC processor...64-bit on-chip IEEE floatingpoint processor... 4 K Bytes on-chip 50 ns static RAM...Four $20 \mathrm{MBits} / \mathrm{sec}$ interprocessor communication links...Eight independent DMA engines. All on a single chip capable of sustained 1.5 MFLOPS...and 4.6M Whetstones!

And, if that's not enough raw power, the T800's links allow multiprocessor systems to be constructed quickly and easily - giving you 6 MFLOPS with four T800's... 30 MFLOPS with 20 ... 150 MFLOPS with 100 ...In fact, there's no limit to the number of Transputers you can use!

Programming Transputers couldn't be easier, with compilers for C, Fortran and Pascal, and the world's first concurrent programming language OCCAM.

Want to turbocharge your current system? No problem. Our exclusive Link Adaptor IC's allow Transputers to be connected to other
microprocessors or peripherals.
Other team members include the pin compatible T414 Transputer, offering lower cost, 10 MIP performance and 0.75 M Whetstones. Lined-up to provide all the I/O processing you need, the T212 16-bit Transputer is the ideal high performance controller and the M212 Disk Processor combines disk controller hardware and a Transputer on a single chip, supporting both Winchester and floppy disks. And the C004 Link Switch makes the design of soffware reconfigurable multiprocessor systems as easy as kicking an extra point.

Whatever field you're in - from real-time distributed systems to high-performance graphics, from faull-tolerant systems to robotics, Transputer technology can give you scalable performance at a cost you can afford.

Transputers are manufactured using an advanced 1.5 micron CMOS process which keeps the power consumption under one watt So your system stays cool while under fire.

Transputers to MIL-STD 883C will be available in the first half of 1988.

If this all sounds like your kind of game, put the ball in play by contacting your local INMOS sales office today. And get ready to score

| DESCRIPTION |  |  | PERFORMANCE |  | AVAILABILITY |  | PACKAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PartNo. | Word Length | Clock MHz | Integer Drystones | Floating Point Whetstones | Commercial | Military |  |
| IMS T800-20 | 32-Bit | 20 | 9500 | 4.6 Million | Now | Q2 88 | 84 PGA |
| IMS T414-20 | 32-Bit | 20 | 9500 | 0.75 Million | Now | Q2 88 | 84 PGA |
| IMS T212-17 | 16-Bit | 17 | 8000 | - | Now | Q2 88 | 68 PGA |
| IMS T212-20 | 16-Bit | 20 | 9500 | - | Now | Q288 | 68 PGA |
| IMS M212-17 | 16-Bit | 17 | 8000 | - | Now | - | 68 PGA |
| NETWORK SUPPORT PRODUCTS |  |  |  |  | AVAILABILITY |  | PACKAGE |
| Part No. | Description |  | Communication Speed |  | Commercial | Military |  |
| IMS C004 | Software configurable 32 way link switch |  | 10+20 MBits/sec |  | Now | Q288 | 84 PGA |
| $\begin{aligned} & \text { IMS C011 } \\ & \text { IMS C012 } \end{aligned}$ | Link to system bus |  | $10+20 \mathrm{MBits} / \mathrm{sec}$ |  | Now <br> Now | $\text { Q2 } 88$ | $\begin{aligned} & 24 \mathrm{Pin} \text { DIP } \\ & 24 \mathrm{Pin} \text { DIP } \end{aligned}$ |

# THE TRANSPUTER TEAM <br>  <br> - ㅁ <br> inmos 

INMOS, Colorado Springs, Colorado 80935. Tel. (303) 630-4000.

Orange County - 714-957-6018 Santa Clara-408-727-7771

Denver-303-252-4100
Minneapolis -612-932-7121

Dallas -214-490-9522
Boston-617-366-4020

Baltimore - 301-995-6952
Atlanta-404-242-7444


# "ASICs CREATE SET OF TEST PROBLEMS. WE NEED A WHOLE NEM 

# WHOLE NEW DOESN'T THAT MEAN IEST STRATEGY?" 

## IT SURE DOES. It's easy to see that the tremendous potential of ASICs has

 only just begun to be tapped. What's not so evident is the fact that developing these unique ASIC devices carries with it some unprecedented test problems. Problems that traditional test approaches and traditional ATE simply are not equipped to handle.At ASIX Systems our focus has always been exclusively on ASICs. From the start we recognized the unique ASIC test problems. That's why we took an entirely different approach to solving these problems. For instance, we saw that adapting existing ATE to fit the needs of ASICs didn't make sense. Designing a totally new, focused ASIC test system did. Test programs needed to be automated, developed from the design data base, and simple to change. The test system itself needed to be easy to use, designed for its particular environment, and a cost-effective alternative to the huge, expensive, complicated ATE.

## TEST SOLUTIONS FOR THE WHOLE ASIC COMMUNITY.

Our unique perspective allowed us to understand that the ASIC world is not Design Engineers, Test Engineers and Quality Engineers performing separate functions. It's actually a "community" of specialists whose tasks are intrinsically linked. So we made sure that we could provide another crucial element. Communication. In order to capture the vital time-to-market edge, what ASIC designers and vendors really need is the opportunity to use the same test programs and the same tester. Because when both environments are working from a common frame of reference there can be some real communication about test results. That's a whole new way of looking at ASIC testing. That's the ASIX-1 family of test systems.

## ASIX-1: ASIC TEST SYSTEMS THAT MAKE SENSE.

This isn't the place to tell you everything the ASIX-1 family has to offer. But here are a few things to think about: automatic, menu-guided programming; data base management; ATE architecture and flexibility at an affordable cost; 256 true I/O pins; "zero footprint"; fully integrated PMU; automatic calibration; simple fixturing; no cabling; high MTBF. Enough. You get the point. You really ought to see the ASIX-1 for yourself. And the sooner the better. ASIX Systems Corporation • 47338 Fremont Blvd • Fremont, CA 94538.


## CALL: 1-800-FOR-ASIX

## THE POINT OF NO RETURN.

When you put a Fuiitsu ASIC to work, you can rest assured it will work the way it should. And keep on doing its job for a very long time to come. In fact, when you look at our performance record over the years, you'll be hard pressed to find any field failures at all.

This is no empty promise. Product reliability has been a way of life for us for more than 15 years.

That's why we always take a conservative approach to the design process. Giving you realistic worst case specs that no production device will exceed.
Guaranteeing a minimum 90\% utilization of all gates. And giving you a simulation-to-production correlation of $99 \%$.

It's also why we control every stepof the production process.From design to wafer fab to assembly
and final test, including $100 \%$ AC testing at frequency. So nothing is left to chance.

To us, reliability in the field is everything. And when you remember we've taken over 8,000 ASIC devices from design through mass production, you can see that well give you a level of confidence no one else can offer.

So count on parts that have longer life expectancies.

Call our Hot Line today at (800) 556-1234, Ext. 82 ; in California (800) 441-2345. Look into ASICs you can send out the door. Never to return again.

FUJITSU
FUJITSU
MICROELECTRONICS. INC.
Technology That Works.
CIRCLE NO 139


Shows < $\pm 0.7$ LSB code width variation from ideal (definitely no missed codes)
CS5016 16-BIT DIFFERENTIAL NONLINEARITY AT $16 \mu$ SEC CONVERSION TIME

## OUR 12-TOTV-BIT CMOSAD CONVERIERS LOOK gheit ow Pap Pr. <br> AND ARETHE WORID'S BEST IW ACTIOM.

4nyone can promise the world's best performance from monolithic CMOS A/D converters. Only Crystal can prove it.

Get your hands on the evaluation board of a Crystal SMARTAnalog ${ }^{\text {Tu }}$ device and you'll believe the breakthrough performance the plots on the opposite page promise.
Dynamic performance really is 92 dB SNR over a 25 kHz bandwidth, or 70 dB over 500 kHz .

Differential Non-Linearity of 16 bits with no missing codes is so outstanding we've published a DNL plot no one else dares to. Stability over temperature is dramatically better than the competition across the entire military range.

- Our reliability far surpasses the alternatives, with less than 52 failures per billion operating hours (FITs).

What the plots don't show, you already know: monolithic A/D converters using CMOS technology mean lower design and assembly costs, higher relia-

| DEVICE | STAIC-TESTED ADCS |  | $\operatorname{CS5012}$ | CS7820 | DYNAMIC FFT-TESTED ADCs |  |  | CS25114 | CS25112 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution | 16 | 14 | 12 | 8 | 12 | 16 | 16 | 14 | 12 |
| Conversion Time ( $\mu \mathrm{sec}$ ) Throughput Speed (kHz) | $\begin{aligned} & 16 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{array}{r} 14 \\ 56 \\ \hline \end{array}$ | $\begin{aligned} & 7 \\ & 100 \\ & \hline \end{aligned}$ | 1.3 | $\begin{aligned} & 1.25 \\ & 1000 \\ & \hline \end{aligned}$ | 20 | $\begin{aligned} & 16 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & 14 \\ & 56 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 \\ & 100 \\ & \hline \end{aligned}$ |
| Static Specifications: Linearity Error (\% FS, max) No Missing Codes (Bits) | $\begin{aligned} & +1-.0015 \\ & 16 \end{aligned}$ | $\begin{aligned} & +1-.003 \\ & 14 \end{aligned}$ | $\begin{aligned} & +1-.012 \\ & 12 \end{aligned}$ | $8^{+1-.2}$ | $\begin{aligned} & +1-.01 \\ & 12 \end{aligned}$ | 16 | 16 | 14 | 12 |
| $\begin{aligned} & \text { Dynamic Specifications } \\ & \text { THD (\%) } \\ & S /(N+D)(d B) \end{aligned}$ |  |  |  |  | $\begin{aligned} & .02 \\ & 70 \\ & \hline \end{aligned}$ | $\begin{aligned} & .007 \\ & 84 \\ & \hline \end{aligned}$ | $\begin{aligned} & .001 \\ & 92 \end{aligned}$ | $\begin{aligned} & .003 \\ & .83 \\ & \hline \end{aligned}$ | $\begin{aligned} & .008 \\ & 73 \\ & \hline \end{aligned}$ |
| Power Dissipation (mW) | 120 | 120 | 120 | 40 | 700 | 220 | 120 | 120 | 120 |
| On-Chip Sample and Hold | YES |

The proof behind the promise: monolithic CMOS performance that beats even hybrids.
bility, lower power consumption, easier manufacturing and faster deliveries than hybrid or discrete designs can manage.

And our SMARTAnalog devices are the first with self-calibration at any time/ temperature. Which ensures accuracy throughout their operating lives, correcting for gain, offset and even linearity errors. Automatically.

If that weren't enough, Crystal's SMARTAnalog line is the first line of 12 - to 16-bit AD converters with the converter, track/hold, digital interface, calibration circuitry and timing all on a single chip. So you can forget designing, building and characterizing discrete
devices while trying to correlate component specifications with system requirements.

Prove to yourself how our revolutionary SMARTAnalog technology makes hybrids a very expensive proposition, indeed. Call 512-445-7222 today for yourvery own 12 -, 14 - or 16 -bit evaluation board. Or ask for a demonstration at your facility.

Either way, you'll know why seeing a SMARTAnalog converter in action makes our promises on the opposite page seem flat by comparison.


## HowToWringWorkstation-Leve



## P-CAD's new Master Designer turns an ordinary PC into a full-fledged PCB workstation.

When you need to wring every drop of performance out of your next PCB design, you need Master Designer ${ }^{\text {rm }}$ software.

With Master Designer you can tackle the really big jobs. Board designs with 500 EICs, 32,000 pins and 2,500 nets are just the beginning.

Master Designer provides all the horsepower, features and bells and whistles you'd expect only from workstations priced from $\$ 50 \mathrm{~K}$, to as much as $\$ 200 \mathrm{~K}$.

P-CAD*'s price? A tiny fraction of the cost of a workstation for the same performance. All on a PC!

P-CAD's Master Designer routes multiple layers simultaneously cutting the number of vias and subnets in half. So you'll wring out cleaner designs and higher completion rates (up to 100\%).

For forward annotation of logic changes and "history independent"

## CB Designs Out Of Your PC.


back annotation, Master Designer also has an ECO processing option.
And Master Designer supports all PCB design technologies. Including SMT, with a library of over 3,300 symbols and 4,600 parts.
Still not convinced?
If you're interested in wringing every penny out of your PCB design station instead of wringing your hands, ring P-CAD. Let P-CAD show you how to turn a PC into a high-powered workstation overnight.

P-CAD
1290 Parkmoor Avenue San Jose, California 95126 USA Telex: 371-7199
FAX:408-279-3752
800-523-5207 U.S. 800-628-8748 CA 408-971-1300 Hdqtrs.

P-CAD is a registered trademark of Personal CAD Systems, Inc. Master Designer is a trademark of Personal CAD Systems, Inc.



## Introducing perfect 32-bit balance

The Philips PM 3570 Logic Analyzer.
A no-compromise solution for true 32bit systems integration. At a price that won't weigh you down.
HEAVYWEIGHT PERFORMANCE

- 32-bit channel width: No other logic analyzer in its class offers 83 state plus 32 transitional timing channels for simultaneous, time-correlated display of software flow and high-speed hardware signals.
- Unmatched acquisition speed: Up to 400 MHz with 2.5 ns resolution for data capture four times faster than similarly-priced instruments.
- Transitional Timing: A Philips' innovation, this feature provides the equivalent of 132 GBytes of conventional RAM.
- Plus broad support: Get dedicated personality modules for quick connection to most 8 -, 16- and 32-bit micros.


## EASY MEASUREMENTS

- Softkey simplicity: Eight menu-driven softkeys give you direct access to over 300 different functions.
- Labeled timing channels: Lets you identify each channel with your own code names.
- Time-tagged events: Logs time between events for stored signals in synchronous and asynchronous acquisition modes.
- Non-volatile memory: Stores four complete user settings, measurement data and your last set-up-even at power-down.
UPSCALE SUPPORT
Count on a one-year warranty and all the application and service assistance you'll ever need. From Fluke-the people who believe that extraordinary technology deserves extraordinary support.


## WEIGH THE DIFFERENCE

Call Fluke today at 800-44-FLUKE ext.77. And discover how easy it is to achieve perfect 32-bit balance.

John Fluke Mfg. Co., Inc., P.O. Box C9090, M/S 250C,
Everett, WA. 98206
U.S.: 206-356-5400 CANADA: 416-890-7600 OTHER COUNTRIES: 206-356-5500
(c) Copyright 1987 John Fluke Mfg. Co., Inc.

All rights reserved. Ad No. 1171-P3570


PM 3570 - LOGIC ANALYZER

## FLபK툴

## NEWS BREAKS

## PLUG FOUR SMD DRIVES INTO YOUR SUN WORKSTATION

You can use the V/SMD 4400 Phoenix disk-controller board from Interphase (Dallas, TX, (214) 350-9000) to plug as many as four SMD or SMD/E disk drives into a Sun workstation. The board's BusPacket interface preformats packets of data in its highspeed bank of FIFO memory before acquiring control of the workstation's VME Bus. Then, once the BusPacket has control of the bus, the FIFO bank transfers the data as quickly as the bus and memory allow. This approach produces data-transfer rates over the VME Bus in excess of 30 M bytes/sec. The board comes with installation software, boot ROMs, a queuing driver, a run-time formatter, and other utilities. You can purchase the board in single quantities for \$3350.-J D Mosley

## SCHEMATIC-ENTRY PC-BOARD CAD SOFTWARE SELLS FOR \$395

The Capfast CF1000 software package for IBM PC/AT, PS/2, and compatible computers allows you to create pc-board schematics with an unlimited number of hierarchy levels. The package, from Phase Three Logic (Hillsboro, OR, (503) 640-2422), includes schematic and symbol editors, a symbol library containing more than 2000 components, a net-list extractor, a program for generating parts lists, and a plotting utility. The company claims that the software offers workstation-type features, such as on-line checking of electrical rules, dynamic panning, and split-screen capability.-Steven H Leibson

## CMOS, MONOLITHIC 12-BIT A/D CONVERTER OFFERS 1-MHz SPEED

If you've been waiting for someone to develop a monolithic 12-bit A/D converter with the speed and accuracy of a hybrid device, you'll be pleased to learn that Crystal Semiconductor (Austin, TX, (512) 445-722ん) now offers the CSZ5412-JCl-a CMOS device that operates at speeds as high as 1 MHz while consuming only 700 mW . Using a 2-step flash A/D conversion to achieve its high speed and accuracy, the CSZ5412 incorporates self-calibrating circuitry, pipelined acquisition and settling times, and overlapped conversion cycles. The chip also includes a track-and-hold amplifier, a 6-bit flash A/D converter, a 6-bit D/A converter, and a differential amplifier.

You can connect the CSZ5412 directly to a $\mu$ P's data and control buses because it comes with an overrange output, 3 -state output buffers, and a flexible control interface. Alternatively, the device can operate in stand-alone mode, independently of microprocessor control. The CSZ5412-JCl costs $\$ 180$ (100), and it includes the sample-and-hold circuitry that you must add to many competing hybrid devices. You can also order a similar device, the CSZ5412-JC2, which has a $500-\mathrm{kHz}$ conversion rate and costs $\$ 115$ (100).-J D Mosley

## E- AND D-SIZE ELECTROSTATIC PLOTTERS PRODUCE PRINTS AT 1 IN./SEC

The 8500 Series monochrome plotters from Versatec (Santa Clara, CA, (408) 988-2800) employ electrostatic raster-printing technology that results in a l-in./sec plotting speed. You can use the 24- and 36 -in.-wide plotters as a department or network resource because of the fast output speed. The Model 8524 plots on 24-in.-wide (D-size) paper and costs $\$ 19,900$; the Model 8536 uses 36 -in.-wide ( E -size) paper and sells for $\$ 24,900$. The 8500 Series includes a controller that performs a vector-to-raster conversion. The controller accepts input in the Hewlett-Packard Graphics Language (HPGL) and Calcomp 906/907 vector data formats. You can choose among various types of media, including opaque, translucent, and vellum paper and clear and matte polyester films. The plotters are available now.-Maury Wright

## NEWS BREAKS

## AC/DC CLAMP-ON PROBE EXTENDS YOUR DMM'S CAPABILITIES

To measure current in awkwardly located cables, you can use the Model $159 \mathrm{ac} / \mathrm{dc}$ clamp-on current probe from Simpson Electric Co (Elgin, IL, (312) 697-2260). Specifying a dc to $400-\mathrm{Hz}$ frequency band for current ranging from 0.1 to 500 A , this autoranging probe lets you gain access to cables mounted in almost any position without breaking the circuit you're measuring. The maximum jaw opening of the clamp is 1.3 in . You can use the Model 159 with digital or analog meters. Its maximum operating voltage is 660 V rms, and it sells for $\$ 169$.-J D Mosley

## \$995 INK-JET PRINTER PRODUCES 2 PAGES/MINUTE AT 300 DOTS/IN.

Offering the look of laser printing without the high cost, the Deskjet printer from Hewlett-Packard Co (Palo Alto, CA, phone local office) emulates the company's Laserjet laser printer but costs $\$ 995$. The Deskjet incorporates a drop-on-demand ink jet, and it can print text with graphics on plain paper at a rate of 2 pages $/$ minute and with a resolution of 300 dots/in. It can print high-resolution or draft-quality text at 120 and 240 cps , respectively.

The printer's integral, front-loading sheet feeder accepts 100 sheets of paper and accommodates US letter, legal, and European A4 paper sizes. You can feed the printer \#10 envelopes manually. The printer incorporates three built-in fonts-Courier, Courier Bold, and Courier Compressed-and accepts additional font cartridges through two accessory-cartridge ports. Each cartridge contains four or more fonts and costs $\$ 75$ to $\$ 125$. The printer's ink cartridge costs $\$ 18.95$ and lasts for 200 to 400 pages, depending on the amount of graphics printed.-Steven $H$ Leibson

## SOCKET SUITS TEST AND BURN-IN OF VLSI LCC DEVICES

Suitable for use during the test and burn-in of VLSI devices packaged in ceramic leadless chip carriers (LCCs), the 132-contact Textool socket from 3M (Austin, TX, (512) 834-6792) has leads on $0.025-\mathrm{in}$. centers. The socket is made of glass-fortified polyphenylene sulfide, and the contacts are of beryllium copper plated with $30 \mu \mathrm{in}$. of gold over $50 \mu \mathrm{in}$. of nickel. A thruster spring in the body of the socket applies a constant pressure to the chamfered corner of the device, so that the device is properly and securely seated during use. A specially designed latching cover and two stainless-steel posts in the socket's body help reduce socket wear. The socket costs $\$ 38.94$ (1000).-J D Mosley

## 80386-BASED WORKSTATIONS WILL RUN UNIX-BASED OPERATING SYSTEM

To create a common operating system for its line of 80386 -based workstations, Daisy Systems Corp (Mountain View, CA, (415) 960-6591) has signed an agreement with Sun Microsystems whereby Sun will provide its Unix-based SunOS for Daisy's 80386-based workstations and Sun 4 -based file servers. Daisy plans to release the SunOS-based workstations in the second half of 1988. The operating system will also incorporate the TCP/IP communications protocol (pioneered by the US Department of Defense) and Sun's Open Network Computing/Network File System (ONC/NFS).

The standard Unix-based environment will allow the workstation users to take advantage of the wide variety of available software-development tools and standard communications packages for integrating CAE networks with existing computer environments. The initial terms of the agreement between Daisy and Sun cover a 5-year period, during which Daisy will receive all enhancements made to the operating system, including any enhancements resulting from the joint development efforts of Sun and AT\&eT. Daisy doesn't plan to port SunOS to any of its 80286-based workstations.-Joanne Clay

## Speed Reading.



# NEWS BREAKS: International 

## $\mu$ P PERIPHERAL CHIPS SUIT MILITARY AND SPACE APPLICATIONS

Marconi Electronic Devices Ltd (Lincoln, UK, TLX 56380; in the US, phone (516) 231-7710) has introduced several $\mu$ P peripheral chips fabricated in the company's radiation-hard SOS (silicon-on-sapphire) technology, which makes the chips suitable for use in military and space applications. The MAS8237A 4-channel DMA controller, MAS8255A peripheral interface adapter, and MAS8251A universal synchronous/ asynchronous receiver transmitter (USART) are pin and function compatible with the equivalent Intel parts. Military-grade versions of the chips sell for £280, £220, and £250 (100), respectively. For the same prices, you can obtain similar parts (the MAS28137, MAS28155, and MAS28151, respectively) that have the drive and timing requirements necessary for use with the McDonnell Douglas MDC-281 MIL-STD-1750A processor. You can also obtain the 54HST630, a radiation-hardened 16 -bit parallel error-detection and error-correction IC. A military-grade version of this part costs $£ 170$ (100).-Peter Harold

## VME BUS MODULE EASES SYSTEM INTEGRATION

By using the \$2000 CVMEBSI VME Bus stimulator module from Concise Technology (Aylesbury, UK, TLX 975646), you can exercise your operating-system and devicedriver software before all your system's hardware is installed. The module allows you to generate VME Bus interrupts on any interrupt level and bus requests on any busrequest level. For interrupts, you can select the eight least significant bits (LSBs) of the 8 -, 16-, or 32-bit Status/ID word, which the module places on the VME Bus during the interrupt-acknowledge cycle.

In addition to generating legal VME Bus conditions, the module can also generate spurious interrupts or bus requests, allowing you to test the system's response to ghost conditions. A special mode allows you to slow down the response of the module's interrupter and bus requester. The module also allows you to generate VME Bus SYSFAIL*, SYSRESET*, and ACFAIL* signals. Although it normally occupies two VME Bus slots, the CVMEBSl has a detachable control panel that allows you to operate the module in a single VME Bus slot.-Peter Harold

## MITI ASKS JAPANESE ELECTRONICS FIRMS TO BUY MORE US SEMICONDUCTORS

In the wake of renewed complaints from the US government, the Japanese Ministry of International Trade and Industry (MITI) has asked 10 of Japan's major electronics companies to purchase more US semiconductor products. MITI reportedly expects to see an increase of at least $10 \%$ in the procurement of US semiconductors by the major Japanese electronics companies, which include NEC, Toshiba, Hitachi, Fujitsu, Matsushita, and Mitsubishi. The Japanese government has apparently promised that US semiconductor firms will have a $20 \%$ share in the Japanese semiconductor market by the year 1991. MITI claims that the American share in the Japanese market has already grown to $12.7 \%$.-Joanne Clay

## FUNCTIONAL TRANSISTOR ACHIEVES 5.5 PSEC AT ROOM TEMPERATURE

Fujitsu Ltd has developed a resonant tunneling bipolar transistor that can operate at 5.5 psec at room temperature. Resonant tunneling bipolar transistors can replace six or seven conventional transistors. Previous versions of this type of transistor could operate only at very low temperatures, however. To create this room-temperature version, Fujitsu replaced the traditional materials-gallium arsenide and aluminum gallium arsenide-with indium gallium arsenide and indium aluminum arsenide.


The World's Best Op Amp Just Earned Its Stripes!

OPA111/883B combines unmatched performance and radiation hardness. Our customers tell us it could be the best military op amp available. It's based on our industry-leading monolithic Difer ${ }^{\circledR}$ design, and we make it fully compliant to MIL-STD-883C, Class B, on our DESC-certified lines. We hope you'll consider it for your precision military instrumentation, data acquisition, optoelectronics, and test equipment applications.

Key OPA111/883B Features

- Fully compliant MIL-STD-883C processing
- Dielectrically isolated FET design provides superior radiation hardness
- Low noise: 100\% tested, $8 \mathrm{nV} / \sqrt{\mathrm{Hz}} \max (10 \mathrm{kHz})$
- Low bias current: 2pA max
- Low offset: $500 \mu \mathrm{~V}$ max
- Low drift: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- High open-loop gain: 114 dB min
- Hermetic metal TO-99 package, full $-55 /+125^{\circ} \mathrm{C}$ MIL temp range

Contact your Burr-Brown technical rep for full details and evaluation samples, or call Applications Engineering, (602) 746-1111. Burr-Brown, P.O. Box 11400, Tucson,
 AZ 85734.

BURR-BROWN



## dc to 3 GHz

- less than 1 dB insertion loss over entire passband
- greater than 40 dB stopband rejection
- 5 section, 30dB per octave roll-off
- VSWR less than 1.7 (typ)
- over 100 models, immediate delivery
- meets MIL-STD-202
finding new ways...
setting higher standards
- rugged hermetically sealed package $(0.4 \times 0.8 \times 0.4$ in. $)$
- BNC, Type N, SMA available

| $\mathbf{L O W}$ PASS $\quad$ Model | *LP- | $\mathbf{1 0 . 7}$ | $\mathbf{2 1 . 4}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ | $\mathbf{7 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{4 5 0}$ | $\mathbf{5 5 0}$ | $\mathbf{6 0 0}$ | $\mathbf{7 5 0}$ | $\mathbf{8 5 0}$ | $\mathbf{1 0 0 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min. Pass Band MHz) DC to | 10.7 | 22 | 32 | 48 | 60 | 98 | 140 | 190 | 270 | 400 | 520 | 580 | 700 | 780 | 900 |  |
| Max, 20dB Stop Frequency $(\mathrm{MHz})$ | 19 | 32 | 47 | 70 | 90 | 147 | 210 | 290 | 410 | 580 | $\mathbf{7 5 0}$ | 840 | 1000 | 1100 | $\mathbf{1 3 4 0}$ |  |

Prices (ea.): $\mathrm{P} \$ 9.95(6-49), \mathrm{B} \$ 24.95(1-49), \mathrm{N} \$ 27.95(1-49), \mathrm{S} \$ 26.95(1-49)$

| HIGH PASS | Model | *HP- | 50 | 100 | 150 | 200 | 250 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pass Band (MHz) |  | start, max. end, min. | 41 | 90 | 133 | 185 | 225 | 290 | 395 | 500 | 600 | 700 | 780 | 910 | 1000 |
|  |  | 200 | 400 | 600 | 800 | 1200 | 1200 | 1600 | 1600 | 1600 | 1800 | 2000 | 2100 | 2200 |
| Min. 20dB |  |  | (MHz) | 26 | 55 | 95 | 116 | 150 | 190 | 290 | 365 | 460 | 520 | 570 | 660 | 720 |

Prices (ea.): $\mathbf{P} \$ 12.95(6-49), \mathrm{B} \$ 27.95(1-49), \mathrm{N} \$ 30.95(1-49), \mathrm{S} \$ 29.95(1-49)$
*Prefix $P$ for pins, $B$ for BNC, $N$ for Type $N, S$ for SMA example: PLP-10.7

## transformers



## $3 \mathrm{KHz}-800 \mathrm{MHz}$ <br> over 50 off-the-shelf models from \$295

Choose impedance ratios from 1:1 up to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*), Fast risetime and low droop for pulse applications; up to 1000 M ohms (insulation resistance) and up to 1000 V (dielectric withstanding voltage). Available for immediate delivery with one-year guarantee.

Call or write for 64 -page catalog or see our catalog in EBG, EEM, Gold Book or Microwaves Directory. *units are not QPL listed
finding new ways setting higher standards

## The GE/RCA ASIC cell library



## where best-sellers begin.

# With one of the largest standard cell and gate array libraries, and a first-time success rate of virtually 100\%, GE Solid State has all the tools you need to design leading-edge products. 

Our library of hundreds of verified cells and functions is one of the broadest in the industry.

We have cells with effective gate length as small as $1.5 \mu(.9 \mu$ coming soon). And double-level metal for higher-density chips that handle higher clock speeds.

You can choose from a wide range of Supercells, including core micros, RAMs, analog functions and bit-slice processors. Right now, we're working on new editions, including Advanced CMOS Logic, EPROMs and high-voltage cells. Additionally, we can generate custom cells to meet your requirements.

So you can easily reduce an entire system onto a single ASIC chip, and get the ASIC benefits of smaller power supplies, lower system cost and higher reliability.

## Plus a full library of gate arrays.

If your design calls for gate arrays, you can select from a broad line with up to 13,000 gates. With alternate sourcing on the LSI/Toshiba series.

Our gate arrays have effective gate lengths as small as $1.2 \mu$. And they're compatible with the industry standard.

## Writing made easy.

We've made it easy for you to write your bestselling design.

Our designer-friendly software gets you up to speed in as little as the three days it takes to complete our training course.

And our software supports the major workstations in the industry, including Daisy, ${ }^{\text {™ }}$ Mentor

Graphics, ${ }^{\text {TM }}$ Valid, ${ }^{\text {TM }}{ }^{\text {P }}$-CAD ${ }^{\circledR}$ and FutureNet. ${ }^{\circledR}$
Through the use of Twins, our transparent workstation interface system, you can complete or revise your design at practically any workstation.

We're also in the forefront of silicon compiler technology. So we can offer you the ability to create designs that are heavily BUS-structured, with your ROMs, RAMs, PLAs and ALUs compiled right into the design.

## The best editors in the business.

We know how important accurate performance modeling is to you. That's why we've developed the industry's most advanced simulation and parasitic extraction programs, which make it easy to create designs that work. In fact, our first-time success rate is virtually $100 \%$.

And you can count on our ASICs specialists for technical support from design through production. One other thing you can count on with GE Solid State: there are no hidden charges in addition to your NRE.

## On the best-seller list for years.

We've been the CMOS company since the day we invented the technology. We've produced one best-selling CMOS circuit after another. And built the industry's broadest line of High-Rel CMOS parts, including super radiation-hardened Silicon-on-Sapphire.

With all this behind you, think how easy it could be to design a best-seller.

For more information, call toll-free $800-443-7364$, ext. 14. Or contact your local GE Solid State sales office or distributor.

In Europe, call: Brussels, (2) 246-21-11; Paris, (1) 39-46-57-99; London, 0276-685911; Milano, (2) 82-291; Munich, (89) 63813-0.

[^2]
## How To Keep All Your Horsepower from Running Around In Girctes.



To really understand your performance problem, just turn traditional thinking around.

You see, your CPU is really more like a peripheral-it's usually your storage subsystem that sets the pace.

When you look at the problem that way, it's a horse of a different color. The solution, of course, isn't a CPU upgrade. It's better management of the data.

At System Industries, that's an
idea we've championed all along. And the same one behind our new CLUSTOR" ${ }^{m}$ family of shared data storage systems.

CLUSTOR allows you to integrate MicroVAXs and other small VAX CPUs, with or without DEC's bigger, high ticket iron. And it takes over most of the I/O functions that normally bog down those CPUs.

CLUSTOR is built around a true multitasking controller, capable of

overlapped seeks and simultaneous data transfers. Between up to 8 CPUs and 16 high performance mass storage devices.

As for what it costs, let's put it this way. When was the last time you saved six figures getting more performance? Up to $90 \%$ more, in I/O intensive environments.

And you can saddle it with complex multi-host configurations with no drop in performance.

CLUSTOR is just one example of how our systems can improve the performance of yours. We have a whole company full of people dedicated to doing nothing but that.

Including the largest, bestequipped, best-trained service and support organization this side of Route 128.

Give us a ring at 800-333-2220.
We'll have all your horses pulling together in no time.

CIRCLE NO 64

## SIGNALS \& NOISE

## A transimpedance amp by any other name . . .

In his article, "Use of transimpedance amplifiers minimizes design tradeoffs" (EDN, November 26, 1987, pg 205), Alan Hansford of Analog Devices uses the term "transimpedance amplifier" in a misleading way.

According to longstanding usage, that term refers to the function being performed, namely, actively converting a current to a voltage, not to the type of amplifier used as the active element. Any electronic negative-feedback amplifier having inverting and noninverting inputs will perform as a transimpedance amplifier if it's connected in the correct manner. The amplifier that the article describes has a $-3-\mathrm{dB}$ bandwidth that's nearly independent of closed-loop voltage gain-a nice feature, but transimpedance amplifiers have neither voltage-gain nor gain-

"IT'S GETTING SO YOU CAN'T EVEN TAKE TIME FOR ONE LOUSY CUP OF COFFEE AROUND HERE WITHOUT HIM BLOWING UP!"
bandwidth independence.
So, if the amplifier isn't a conventional voltage-feedback op amp, (as Mr Hansford states in his article), and if transimpedance amplifier is an improper name, then what is the correct description? The accepted
term is "current-feedback op amp." Comlinear introduced the term in 1982 to describe the first op amp with gain-bandwidth independence, a $-3-\mathrm{dB}$ bandwidth, and an extremely fast settling time. Current feedback is the key to this performance, but it's not an inherent property of a transimpedance amplifier, contrary to what Mr Hansford says. Comlinear has described the operation of its current-feedback op amps in numerous magazines and application notes since 1982 .
The author's conceptual model of operation ( pg 210 ) bears little resemblance to the op amp design that he describes. Rather, the described op amp is designed in accordance with the design that Comlinear invented, patented, and has used in op amps such as the CLC231. I'm flattered by Analog Devices' imitation of our products, but by failing to reference our pioneering work, it

# From Layout to Finished Board In Minutes <br>  



Paths of insulation around copper traces are created by the precision router. The LPKF unit also performs drilling and contour milling to complete the circuit board production.

Now you can use the LPKF circuit board plotter with any Gerber CAD files to create a ready-to-stuff circuit board. This unique plotter is excellent for prototypes, film production, and even front-plate engraving.

- Mechanically plots double- and single-sided boards
- Boards can take surfacemounted components
- Single-sided boards in 10-15 minutes; complex, dense boards in 2 hours or less
- Compatible with any CAD system Gerber output
- No more waiting for prototypes or small runs



# Finally .. PRECISON IN SURFACEMOUNTDEVCES 

Yes, finally! Precision in a small
package.
PMI's precision bipolar analog
and CMOS converter product
line is now offered in SMD.
Write for our SMD brochure
which lists the availability of 65
devices in various surface
mount packages.
PMI's precision SMDs are
available in commercial and
industrial temperature ranges.
The surface mount offerings
include SO, SOL, LCC, and PLCC
versions.

To get your SMD brochure, circle the reader service number or call . . 1-800-843-1515.
You'll also receive a free copy of our new 1988 Data Book!


Precision Monolithics Inc.
A Bourns Company
Santa Clara, California, USA
408-727-9222

## Faster than a speeding bullet. . . well, almost.

## Citizen's New DP-600 Series Dot Matrix Printer Mechanism <br> Citizen's new high speed DP-600 series printers are twice as fast as Citizen's DP-500 series (and you know how fast they are). <br> Just think of how well a DP-600 series print mechanism will work in your point-of-sale, medical testing, pay telephone or scientific equipment.



Imagine a fast, reliable DP-600 in your cash register system, banking equipment, time clock or "you name the application." Citizen's

CBM America Corp. 2999 Overland Ave., Suite 203 Los Angeles, CA 90064-4243 Phone (213) 558-0961 Toll free (800) 421-6516 Fax (213) 836-1140
new DP-600 series dot matrix printers can do the job faster and better without sacrificing Citizen's dedication to quality.

Call or write for complete information and pricing

CIRCLE NO 5


## SIGNALS \& NOISE

makes one wonder if the company is trying to take credit for this new and useful class of op amp.
David Nelson
President
Comlinear Corp
Ft Collins, CO
Analog Devices responds:
Mr Nelson's comments are insightful and interesting. Two statements are slightly misleading, however, and require clarification.
The implication is that Analog Devices violated a Comlinear patent by bringing the AD9610 to market; a second implication is that Comlinear did the "pioneering work" in the field of "current-feedback op amps." Analog Devices is aware of the patents in question, and the AD9610 does not infringe on any Comlinear patent. As for the issue of pioneering work, current-feedback amplifiers have a long and welldocumented history in the electronics industry. Innumerable textbooks contain references to and examples of current-feedback amplifiers. Many of these books were printed and copyrighted long before 1982.
Analog Devices identified a segment of users that was not totally satisfied with existing high-speed amplifiers, and subsequently introduced the AD9610. We stand by our products, our technology, and our reputation as leaders in this industry. Competition is the cornerstone of the American free-enterprise system.

## Thomas Gratzek <br> Linear Products Marketing

## Manager

Analog Devices, Computer
Labs Div
Greensboro, NC

## WRITE IN

Send your letters to the Signals and Noise Editor, 275 Washington St, Newton MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity. TAKESYOU BaCKTO THEBASICS

## ....AND INTO THE FUTI

## Multibus II Opens Up

## Advanced

## Applications In Ways No Other Bus Can.

When the architects of Multibus II set out to create an advanced bus, they set their sights far beyond just another souped-up tradi-

BASIC \#2: HARDWARE-ASSISTED MESSAGE PASSING.
This advanced technique gives Multibus II a true sustained bandwidth of 32 megabytes per second. Standardized in a single silicon chip, message passing simplifies sytem design, and makes it possible to mix totally different microprocessor architectures and operating systems in the same application.
tional bus.

They went back to the basics and created a truly advanced bus.

A bus capable of supporting vast new levels of microcomputer performance. To make possible low cost microcomputer systems that outperform minis, and rival mainframes.

An inherently more reliable bus, suitable for applications that process huge volumes of data at unprecedented speeds.


A more maintainable bus, to reduce the cost and complexity of configuration, trouble-shooting and repair
A bus solid enough to gain the support of a broad base of hardware and software vendors, and ensure that all products would work

together efficiently and dependably. It would be the ideal advanced bus -the perfect higher performance alternative to Multibus I, VME and other traditional architectures.

## Multibus II Is Changing The WORLD!

The advanced bus of the future is here today, to the delight of designers needing to transcend the limitations of today's other bus alternatives.

BASIC \#3: AUTO

CONFIGURATION.
Like a chameleon, Multibus II boards automatically configure themselves when system power is turned on, eliminating DIP switch hassles during configuration and maintenance.


## BASIC \#1: PARITY.

Multibus II's parity error detection provides the basic protection needed by advanced applications that process large volumes of data at high speeds.

For example, NCR and Prime based their newest Tower ${ }^{\text {TM }}$ and EXL ${ }^{\text {Tm }}$ systems on Multibus II. Both provide several times the power of a VAX ${ }^{T \mathrm{TM}} 11 / 780$ minicomputer,

TRADITIONAL VS. AL

|  | CHARACTERISTICS | TRADITION |
| :---: | :---: | :---: |
|  | MULTIBUS I |  |
|  | TIMING <br> (Synchronous or Asynch) | ASYNCH |
|  | PIN USAGE <br> (MPX) Multiplexed (NON) <br> Non-Multiplexed | NON |

*Implemented outside IEEE 1014 using several proprietary schemes.
at a fraction of the price.
A major U.S. department store chain has put into operation a revolutionary home shopping network, based on Multibus II.

In Europe, Multibus II was chosen by a leading automation company as its

## URE.

architecture for the future for advanced factory automation applications.

MULTIBUS II:
The world's fastest growing open system architecture!

And two leading aerospace companies are using Multibus II to build the world's most advanced

## vanced architectures

| AL BUSES | ADVANCED BUSES |  |
| :---: | :---: | :---: |
|  | MUITIBUS II | VAX BI |
| ASYNCH | SYNCH | SYNCH |
| NON | MPX | MPX |
| CENT. | DIST. | DIST. |
| DED. | VIR. | VIR |
| YES | YES | YES |
| NO | YES | YES |
| NO | YES | YES |
| NO* | YES | YES |
| AVAIL.'88 | YES | YES |
| 24,32 | 32 | 32 |
| $8,16,24,32$ | $8,16,24,32$ | $8,16,24,32$ |
| 59.8 | 80 | 73.4 |
| DIN | DIN | ZIF |
| $6 A$ | $15 A$ | Not Published |

aircraft flight simulators.
Throughout the world, these and scores of other companies have introduced

## BASIC \#4: MULTI-VENDOR COMPATIBILITY.

A host of unique features ensure that Multibus II boards will work together efficiently and dependably. The IEEE 1296 specification is complete and concise. And, the Multibus II Message Passing Coprocessor (MPC), now universally available, ensures compatibility even between boards using different processor architectures and operating system software.
or are now developing Multibus II applications that set new standards of performance, price and reliability.

## BuILD Your Own Multibus II Library.

The broad base of Multibus II hardware, software, accessories and systems is growing almost daily. Yet it's easy for you to keep up to date.

Just circle the reader service number, and each of the companies on the back of this ad will send you in-depth technical data on their complete Multibus II product lines. Plus timely updates and new product announcements.

And, to keep your Multibus II library organized, the Multibus Manufacturers Group will send you this convenient indexed bookshelf binder.

Absolutely free!

## BASIC \#5:

MECHANICAL INTEGRITY.
Naturally, Multibus II uses DIN connectors, for the most reliable mechanical connections. But, it also incorporates builtin front panels for EMI shielding. And, its standard Eurocard form factor provides enough board space (a full 80 sq . in.) to accommodate complex designs.

So don't delay. Get the whole story on Multibus II and discover the new levels of performance and reliability that are possible with a truly advanced bus. Multibus II.

The bus of your future is here today.

CIRCLE NO. 99

P.O. Box 6208 Aloha, OR 97007 (503) 629-8497

Multibus ${ }^{8}$ is a trademark of Intel Corp.
EXL" is a trademark of Prime Computer Inc.
Tower" ${ }^{\text {" }}$ is a trademark of NCR Corp.
$V A X^{\prime \prime \prime}$ is a trademark of Digital Equipment Corp.

## WERFHERFFORYOU

The companies listed below would like you to know that Multibus II is now in full swing. These industry leaders offer a complete selection of Multibus II boards, software, systems and acces-sories-everything you need to develop advanced, high performance applications today.

For your free Multibus II Data Book

plus future new product announcements, just return the reader service card. Or, for faster response, call the MMG or one of the participating companies listed below.

Discover what the world's most advanced OEM microcomputer bus can do for your next generation applications.

Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051 (800) 548-4725

## 2925 Merrell Road Dallas, TX 75229 <br> Contact: Sales Admin. <br> (214) 350-9000

FAX (214) 350-1433
785 Lucerne Drive
Sunnyvale, CA 94086
Contact: Bill Burton
Telephone (408) 720-9300
MICROBAR
FAX (408) 773-9475
10 Mupac Drive
Brockton, MA 02401
Contact: Steve Cobb
(617) 588-6110

FAX (617) 588-0498
3445 Fletcher Avenue
El Monte, CA 91731
Contact: Mike Burton
(800) 227-0557
( 2 S. FAX (818) 444-3953

6465 Nancy Ridge Drive San Diego, CA 92121 Contact: Trevor Constable (619) 453-8970

The Multibus Manufacturers Group, or MMG, is dedicated to the proposition that everyone benefits from strong, open standards. Membership is open to hardware and software manufacturers, application integrators, end users and even students.

To learn more about what the MMG can do for you, contact Dan Fink, MMG executive director.

Use this convenient product reference guide to quickly Iocate the companies that offer the types of Multibus II products you need.
CIRCLE NO. 99

# Uncover solder defects with Augats VisnPak sockets and this amazing inspection instrument. 

Wouldn't it be more efficient if you could spot solder defects before the boards went to testing? Well, Augat has introduced a removable carrier for DIP, SIP, ZIP, QUAD, pin grid and custom footprints that makes it possible. Visual Inspection
Package (VisInPak) Sockets. They work without an insulator. So you can tell by visual inspec-tion-or, just by looking for soldering voids where the contacts join the plated through holes. During manufacturing. Before testing.

Also, without an insulator,
the air flow that keeps your device cool is improved. And repairs are easier because each contact can be repaired individually.

Plus, the VisInPak family of sockets can be made to any custom footprint easily and quickly to eliminate loose loading

Find out how else they can improve your designs and increase your success rate. Send in the coupon for some eyeopening data

sheets and a demonstrator.
The VisInPak family of sockets. More sockets. More innovation that works from the people who listen to what you need. Augat. A company worth keeping an eye on.

[^3]Name $\qquad$


## Combine Tek's unsurpassed

 graphics capabilities with the leading industry standards, and you have a breakthrough in workstation performance.A breakthrough achieved by the optimum combination of a 32 bit compute engine and 32-bit graphics engine. A graphics engine featuring parallel pipelined architecture with five custom gate arrays to make you more productive than ever: 450,000 2D vectors/second; 340,000 3D vectors/second; and 20,000 Gouraud shaded polygons/second.

Add to that horsepower the security of industry standards like UNIX, 68020 processors, Ethernet, TCP/IP, X Windows, and Tek quality. Plus compatibility with more than 300,000 PLOT $10^{\circledR}$ applications. And finally, the flexibility to mix and match the world's broadest line of compatible standalone workstations and high-performance terminals.

Whether your need is for bit-mapped or vector graphics, software engineering or 2D drafting, 3D shaded surface modeling, or true stereoscopic


3D viewing, Tek's 4300 Series has an answer.

Let us raise your sights to the new graphics workstations that won't change your standards. For more information on the 4300 Series, contact your local Tek representative today. Or call 1-800-225-5434. In Oregon, 1-235-7202.


# V25: the most powerful 16-bit single-chi 


nicrocomputer.
"N/4masterpiect!


To remain competitive in the world of electronics, you have to get your product to market without delay.
To help keep you competitive, Gennum offers the following unique guarantee:
WE WILL DELIVER YOUR LINEAR SEMICUSTOM IC ON TIME AND ON BUDGET, OR YOUR NEXT PROTOTYPING JOB WITH US IS FREE!*
It's that simple.
We offer this unique guarantee because we take the time to find the best possible solution to your problem, before we start designing. That means fewer trips 'back to the drawing board'.
That's why companies in 18 countries rely on Gennum IC's. Call or write for our free brochure and ask about our SEMICUSTOM DESIGN PACKAGE.
*Details of Gennum's unique Delivery Warranty are included with our Design Package.
P.O. Box 284

Buffalo, N.Y.
14220
Toll Free: 1-800-263-9353
 Burlington, Ontario Canada L7R 3 Y3 (416) 632-2996 Fax: (416) 632-2055

## DID YOU KNOW?

> EDN is distributed at every major electronics/computer show in the U.S., France, and Germany.

## CALENDAR

American Association for the Advancement of Science Annual Conference, Boston, MA. AAAS, 1333 H St NW, Washington, DC 20005. (202) 326-6448. February 11 to 15 .

Semicustom Circuit Program Conference, San Diego, CA. Mackintosh Consultants, 209 W Central St, Natick, MA 01760. (617) 6550001. February 17 to 19.

Software Development '88, San Francisco, CA. Miller Freeman Publications, 500 Howard St, San Francisco, CA 94105. (415) 9952426. February 17 to 19.

Digital Signal Microprocessor and Microcomputer Chips and Development Systems (seminar), Palo Alto, CA. Amnon Aliphas, DSP Associates, 18 Peregrine Rd, Newton, MA 02159. (617) 964-3817. February 22 to 24.

Compcon Spring '88 (33rd IEEE Computer Society International Conference), San Francisco, CA. Hasan AlKhatib, Dept of EECS, Santa Clara University, Santa Clara, CA 95053. (408) 927-1818. February 29 to March 4.

Microwave IC Technology (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. March 4.

Personal Computer Interfacing for Scientific Instrumentation Automation (short course), Blacksburg, VA. Linda Leffel, CEC, Virginia Tech, Blacksburg, VA 24061. (703) 961-4848. March 10 to 12.

Modern Electronic Packaging (seminar), San Diego, CA. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. March 15 to 17 .

Spectrum Software's MICRO-CAP II ${ }^{\circledR}$ is fast, powerful, and feature rich. This fully interactive, advanced electronic circuit analysis program helps engineers speed through analog problems right at their own PCs.
MICRO-CAP II, which is based on our original MICRO-CAP software, is a field-proven, second-generation program. But it's dramatically improved.


Schematic Editor
MICRO-CAP II has faster analysis routines. Better resolution and color. Larger libraries. All add up to a powerful, cost-effective CAE tool for your PC.
The program has a sophisticated integrated schematic editor with a pan capability. Just sketch and analyze. You can step


Transient Analysis
component values, and run worst-case scenarios-all interactively. And a 500 -type* library of standard parts is at your fingertips for added flexiblity.
MICRO-CAP II is available for IBM ${ }^{\circledast}$ PCs and Macintosh. ${ }^{\text {™ }}$ The IBM version is CGA, EGA, and Hercules ${ }^{\circledR}$ compatible and costs only $\$ 895$ complete. An evaluation version is available for $\$ 100$. Call or write today for our free brochure and demo disk. We'd like to tell you more about analog solutions in the fast lane.

[^4]Transient, AC, DC, and FFT routines

- Op-amp and switch models
- Spec-sheet-to model converter*
- Printer and plotter* hard copy


AC Analysis

들트ㄹㅡㅡㄹㅡㅡㄹㅡㅡ르ㄹㅡㅡ르ㄹㅡㅡㄹ
1021 S. Wolfe Road, Dept. E Sunnyvale, CA 94087
(408) 738-4387

[^5]

CIRCLE NO 8


Stanford Research Systems
1290 D Reamwood Avenue, Sunnyvale, CA 94089 TLX 706891 SRS UD, FAX 4087449049, TEL (408) 744-9040

## CALENDAR

Microelectronic Packaging and Surface Mounting (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. March 18.

10th Annual Conference for Inventors and Entrepreneurs, Denver, CO. Rocky Mountain Inventors Congress, Box 4365, Denver, CO 80204. (303) 443-3818. March 18 to 19 .

Neural Networks for Artificial Intelligence, Arlington, VA. Technology Transfer Institute, 741 10th St, Santa Monica, CA 90402. (213) 3948305. March 21 to 23.

Digital Signal Microprocessor and Microcomputer Chips and Development Systems (seminar), Cambridge, MA. Amnon Aliphas, DSP Associates, 18 Peregrine Rd, Newton, MA 02159. (617) 964-3817. April 4 to 6.

Microcircuit Interconnections and Assembly Methods (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 7.

Electrostatic Discharge (ESD): Concern or Over-concern? (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 12.

Hybrid Microcircuit Technology (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 18.

American Power Conference, Chicago, IL. Robert Porter, Chicago Institute of Technology, Chicago, IL 60618. (312) 567-3202. April 18 to 20 .

## WATCH WHAT YOURE DOING.

## Introducing UniLab 8620 analyzer-emulator with InSight.

- There's nothing like InSight." ${ }^{m}$ A feature of the new 8620 that lets you actually watch your program go through its paces. So you can debug faster. And speed up microprocessor development. For demanding applications like the automotive controller shown.
- An exciting industry first, InSight blends analyzer/emulator techniques to give you continuous, real time monitoring of key processor functions. See changing register contents, I/O lines, ports, user-defined memory windows. With your own labels. And all at once. Interactively. Without stopping your program.


- InSight is made possible by the 8620 's advanced bus state analyzer, its 2730 -bus-cycle trace buffer, and a new high-speed parallel interface that eliminates RS -232 bottlenecks.
- The fast interface also speeds data throughput. From your hard drive, you can load a 64 K program into emulation memory in five seconds.
- On top of that, you get a new, crystalcontrolled $1 \mu$ sec clock for super precise event timing.
- Computer integrated instruments from Orion prove debugging needn't be costly or tedious. For more than 150 processors. Like all our analyzer-emulators, the 8620 debugs by symptom. Via advanced truth table triggering. Always included is enough breakpointing and single stepping (now faster than ever) to assure optimum efficiency. We even provide a stimulus generator and built-in EPROM programmer to help finish the job.
- Get serious about price/performance. Save big on design, test, and support costs. UniLab 8620 analyzer-emulator.
- Look into it.

Toll free: 800/245-8500. In CA: 415/361-8883.

##  <br> I NSTRUMENTS

## Computer Integrated Instrumentation

702 Marshall Street, Redwood City, CA 94063 Telex: 530942
*InSight is a trademark of Orion Instruments, Inc.


## You wouldn't do this with your AnalogVLSI devices.

You'll have to if you go to most ATE companies for, a solution to today's sophisticated "system silicon" testing problems. Because all you'll get is a makeshift tester. And that means resigning yourself to man-months of custom hardware work integrating analog and digital instrumentation. And putting up with the long hours of low-level software development that go with custom solutions. Worse, you can expect these delays to cut your chances of getting your product to market on time.

Teradyne now has a simple answer to this complex testing problem. The A500 Analog VLSI Test System. It's the first of a new generation of systems specifically for AVLSI "system silicon" devices. A test system that can help you cut critical product development time by months or even years.
One Test System, Once and for All
With AVLSI devices you won't get fast design feedback, unless you test individual components-the
"building blocks" of system silicon. And you won't comply with customer and industry requirements if you don't do complete "system" functional testing. With conventional test systems it means two of everything. Two testers, two test programs, two insertions, two data bases. And more than twice the time to get to market.

The A500 allows you to do it all with one system. So there's only one system to program. One insertion to make for both component and functional testing. And only one data base to work with. Which means significantly less time to market.

## Vector Bus II': the Great Integrator

The heart of the A500 is Teradyne's unique Vector Bus II architecture. It integrates analog and digital VLSI test capability at the system level. Which means you won't have to build special applications hardware for every new device you design. Vector Bus II eliminates that costly custom-work bottleneck


## Why accept it in an AnalogVLSI Test System?

with such features as TimeMaster ${ }^{\mathrm{mm}}$ Synchronization, Mixed-Signal Event Control, and MultiSource Data Mixing.
A Picture's Worth a Thousand Keystrokes The A500 also revolutionizes program development. Our IMAGE ${ }^{\text {mi }}$ (Interactive Menu-Assisted Graphics Environment) software gives you graphics programming as powerful as device designers' CAD/CAE tools. Using a mouse to control multiple windows, pop-up menus and software "power tools," you move ideas rapidly from mind to screen. And much faster to market.

Teradyne's new A500 is the only test system with the features you need to win the race for Analog VLSI market opportunities. To find out more, call Beth Sulak at (617) 482-2700, ext. 2746. Or call your nearest Teradyne sales office or write: Teradyne, Inc., 321 Harrison Avenue, Boston, MA 02118.

## TERADNE

We measure quality.

## WHAT DRIVES A LEADER?

You do.
We do.
On one hand, there's your drive to find new applications and new markets. On the other, there's our drive to meet your needs.

And as partners, we both end up in the lead.

You give us the impetus to stay a generation or more ahead of the competition. And we give you the products to do the same.

Like our high-performance, high-capacity Winchester drive families, from 85 MB to 760 MB . And our first high-capacity optical product, a 5 ¹/4-inch, 800 MB WORM drive.

So keep pushing us.
Because the further you drive Maxtor, the further we'll drive you.

Maxtor Corporation, 211 River Oaks Parkway, San Jose, CA 95134, (408) 432-1700, TELEX 171074.

# Mastor 

## EDITORIAL

## The IEEE faces extinction



Since Irwin Feerst gathered a respectable number of votes in the IEEE's 1986 annual election, the organization has renewed its determination to prevent dissidents from participating in IEEE affairs. Now, instead of facing up to the need for internal reform and external action on behalf of its members, the IEEE's board of directors is dabbling in election-policy changes. Those changes are driving the organization closer to extinction.

Because Feerst split-and almost won-the 3-way contest for presi-dent-elect in 1986, the IEEE decided to nominate only one IEEEsanctioned candidate for the president-elect position in future elections. No more split elections, if you please. However, the hue and cry against having a single candidate was so great that the IEEE's board of directors has reconsidered. You'll now choose from two IEEE-backed candidates for president-elect.

But to ensure that no petition candidate splits an election with the two sanctioned candidates, the IEEE has adopted "approval" voting. In such a scheme, IEEE members get the chance to cast an "approval" vote for each candidate on a ballot. Thus, by not casting a vote, they withhold approval from a candidate. It's worth noting that the board of directors modified the election procedure by changing the organization's bylaws, not by asking members to amend the organization's constitution. The IEEE's board of directors has a case of siege mentality. Once an organization is infected with that disease, it's headed for extinction.
So, instead of real reforms or calls for action by the IEEE's "leaders," you'll see more of the same plodding and self-preserving moves that now characterize the IEEE. Working engineers will observe no action on tax or pension reforms, no action on age discrimination, and no action on other professional concerns. In short, no action at all.

The besieged IEEE will continue publishing journals and periodicals, but that hardly forms the heart of a vital professional organization-one that should be improving its members' profession and working environment. So, when it's time to renew your IEEE membership, consider the cost carefully. Are those journals and group life-insurance policies really worth it? If you still think the IEEE has a chance of surviving as a professional organization and you renew your membership, send Irwin Feerst's Committee of Concerned EEs a check for an equal amount. You may not agree with everything Feerst says and does, but he has probably done more to change the IEEE than anyone else who has won one of its lopsided elections.


G0 ahead. Indulge yourself. And say hello to BUSTER. The first user-configurable MPU peripheral. And the fastest and easiest way yet to get your proprietary design from concept to silicon.

Finally there's a way to get the off-the-shelf convenience of TTL. Without dealing with acres of board space.

In fact, with BUSTER you'll get the performance and single chip advantages of ASICs. While avoiding the painful NRE, long development cycles and inventory burdens.

You can program BUSTER for almost any peripheral function you can name. Counter/timers, data converters, configurable I/0 ports, data communication transceivers and lots more.

And it'll work perfectly with just about any MPU. Including 8, 16 and 32 bit parts from Intel, Motorola, National, Zilog and others. Even when they're running at 25 MHz with no wait states.

BUSTER's amazingly flexible. It combines a fast, bus organized architecture with a powerful 20 macrocell CMOS EPLD. Giving you 52 register bits, an 8 bitI/ 0 , cascadable to greater widths, 24 mA bus port and a long list of other features. More than enough, in fact, to give you plenty of performance and functions for almost any application. Including those using the IBM Micro Channel bus or MIL-STD-1750A processors.

Best of all, you make it happen - concept to silicon - in hours. Not days or weeks. All you need is your PC and our powerful A+PLUS software and development system. You'll enter your design using macrofunctions based on over 100 TTL devices. And you'll program your parts in minutes. It's about as close as you can get to instant gratification.

So find out how BUSTER can help make short work of your peripheral designs. Call us today for data sheets or more information.

You'll be gratified you did.

## Call (408) 984-2800.



[^6]

# ification. 



## WHO YA GONNA CALL TO ICE 68020 BUGS? ATRON BUGBUSTERS!

We recently received a competitive analysis written by a billion-dollar competitor of ours. In it, they rank incircuit emulation companies in order of importance. We were number one.

## SO WHO'S ATRON?

Today, Atron is the number-one supplier of hardware-assisted software debuggers for 8088/80286/80386based PCs. Nine of the top ten software packages were written by Atron customers. Everybody from AST to Borland to Oracle to Zenith. Now, we can make the same claim in the 68020 marketplace.

Everybody from Apple (MAC IIs) to Wellfleet (datacom) will attest to the superiority of Atron's 68020 debugging technology. One Atron customer even said, "We sent our nonAtron ICE unit out several months ago for repairs; nobody around here seems to know or care if it's back yet. The Atron unit is the tool of choice.'

## 25-MHZ, REAL-TIME, EMULATION: SOONER OR LATER, YOU KNOW YOU'LL NEED IT.

Why invest in a slower emulator (especially one that costs more)? Some bugs only occur in real time, and you know your next design will be 25 mhz . Before Atron's state-of-the-art design, there was no such thing as a 25 mhz emulator. There still isn't another one anywhere near our price.

## PROBE CAN TRACE IT THROUGH THE PIPELINE, SO YOU WON'T LOSE YOUR MIND.

The 68020 has an on-board pre-fetch pipeline. Without Atron's 68020 PROBE, your best software engineer will spend a lot of time figuring out which instructions actually execute, and then, which bus cycles go with those instructions. The 68020 PROBE eliminates all these
tedious mental translations and displays what the processor really did. The technology, called pipeline dequeueing, is only available from Atron. Because the Atron bugbusters are the only ones anywhere who've figured out how to do it. And it took us 100,000 lines of code. Consider it our contribution to your sanity. (It was a dirty job, but somebody had to do it.)

## 68020 PROBE SPECIFICATIONS



## LET THE SOURCE BE WITH YOU.

Why spend all day doing mental translations between your C source code and the machine code in your target? These tedious operations are eliminated with Atron's source-level debugging capabilities.

Since PROBE uses a PC AT as its instrumentation chassis, you can get compiled code to its target via Ethernet, VAXNet, SUNNet, SCSI or RS-232. And whether you are compiling on a PC, a workstation or a VAX, Atron supports more objectmodule formats than anybody else (see specification box).

YOU'LL BE A BELIEVER AFTER A SHORT DEMONSTRATION. So who ya gonna call? Bugbusters! Today. At 408/741-5900. Or send in the attached coupon.

## My business card or company letterhead is attached:

$\square \quad$ I've got to see this for myself. Please have a representative call me to schedule a demonstration.
$\square \quad$ Please send me your 36-page 68020 PROBE user's guide, with its command summary and examples of use.


BUGBUSTERS
A division of Northwest Instrument Systems, Inc.

## TECHNOLOGY UPDATE

# High-performance DMMs and calibrators bring standards-lab specs to the benchtop 

Dan Strassberg,
Associate Editor
To satisfy their customers' continuing demands for improved performance, engineers who design and test products such as data converters and automatic test equipment (ATE) must make increasingly accurate basic measurements in their labs, in production, and in systems. Manufacturers of digital multimeters (DMMs) and voltage/current/ resistance calibrators are providing tools to meet these tightened measurement requirements. This new generation of rugged, affordable, and easy-to-use instruments offers accuracy that, until recently, was possible only in the cloistered and sacrosanct standards-laboratory environment. To realize the accuracy these instruments promise, however, you must apply them with consummate care.

DMMs measure ac and dc voltage and current, resistance, and voltage and resistance ratios. Not all the meters discussed here can make every one of these measurements. Table 1 lists some representative high-precision DMMs. All of these DMMs offer resolution of $61 / 2$ digits or more; some provide resolution as high as $81 / 2$ digits. Depending on how the vendor defines a half digit and how it defines full-scale range (FSR), an $81 / 2$-digit meter may be able to resolve an input change as small as 2.5 parts per billion of FSR.

A question frequently posed about such high-resolution meters is, "Who needs so many digits?" In many cases, the ability to resolve six digits or more doesn't make previously impossible measurements pos-sible-it just makes possible meas-


You don't have to take these meters out of service to calibrate them. In Racal-Dana's Series 6000 DMMs , all components that affect calibration are in a module-removable from the rear of the instrument-that you can exchange when the unit needs calibration.
urements much easier. For example, if you're measuring the temperature coefficient (TC) of a low-TC resistor, you might find it easier to read resistance directly from a DMM than to rebalance a bridge each time you want a reading.

If you're determining the accuracy of an attenuator, you could use a precision voltage divider (for example, a Kelvin-Varley divider) and a null meter. Alternatively, you could use an $81 / 2$-digit DMM and read the divider ratio with resolution as fine as 1 ppm , even when the output of the divider you're testing is only $1 \%$ of its input. To measure the divider ratio as accurately with a DMM that has lower resolution, you'd need to change DMM ranges. Range changing introduces the possibility of incurring additional errors. In both of these examples, the built-in computational capabilities of many available meters could make the job even easier-for instance, by computing the TC after you enter the temperature change, or by calculating and
displaying the percent error in the attenuator.

If you're designing a process to test measuring equipment (A/D converters, for example), you could supply a signal to the unit under test (UUT) from a relatively inaccurate source having a low-noise, short-term-stable output that you monitor with a very accurate meter. Instead of using the meter and lowaccuracy source, you can use a cali-brator-a low-noise, stable, and highly accurate source of voltage, current, or resistance. Although the meter and low-accuracy source are more general-purpose instruments than the calibrator and might appear to offer a better value, you might achieve higher test throughput, and possibly even improved test accuracy, by using the calibrator directly. Table 2 gives an overview of the capabilities of several representative calibrators.
The almost universal application of $\mu \mathrm{Ps}$ and related components in high-performance DMMs and calibrators accounts for many recent

#  con : Nation Corspio   

$200 \mathrm{MS} / \mathrm{s}$., 10 -bit resolution, + .4\% gain accuracy, and 64 K record length: the best balance in high-resolution digitizers is clearly the new RTD 710 from Tektronix.

The RTD 710 lets you work with fast transients, from DC to 100 MHz , in standalone, semi-automated or fully automated test and measurement environments.

You can partition its 64 K memory to store signals of different lengths. Acquire data simultaneously on two difierent channels. Switch sampling speeds up to five times in a single acquisition.

Add a TV triggering option for video applications. And choose from a variety of computer-based measurement packages.

Call 1-800-835-9433 for more information or to arrange a personal demonstration.

RTD 710
advancements in the instruments' stability and ease of use. Remember, though, that a very large portion of each of these instruments consists of circuits that are inherently analog, and computer technology can't solve all the analog measurement problems. For example, it's difficult to imagine (and probably impossible to construct) a dc-voltage-measuring digital meter that doesn't include a stable voltage reference and some type of voltage divider (or its functional equivalent).
The reference and divider, as well as the meter's $\mathrm{A} / \mathrm{D}$ converter, are analog circuits. Note that although the reference must be stable over time, it really needn't be accurate. As long as you, or a standards lab, can compare the reference voltage against the accurately known output of another reference source, and store the amount by which the meter's reference differs from the ideal, you can correct your meter's readings so that they're more accurate than the internal reference is.

Basically, to calibrate is to determine how meter readings (or source outputs) differ from the ideal, and to insert corrections. The use of digital technology has significantly im-


Incorporating an easy-to-use self-calibrator, the $8^{1 ⁄ 2}$-digit Model 1281 DMM from Datron also has a separate voltage reference, as well as dividers based on transformer turns ratios.
proved the ease and speed of instrument calibration, and has made it possible to eliminate major sources of calibration drift (that is, changes in calibration over time). Calibration used to require removing the covers from an instrument and adjusting potentiometers inside, an operation a prudent person would entrust only to a standards lab. Many newer instrument designs eliminate calibration potentiometers entirely, replacing them with nonvolatile memory that stores corrections, and $\mu \mathrm{Ps}$ that apply the corrections to the

A/D converter's output before driving the display.

Calibration under $\mu \mathrm{P}$ control offers several advantages. In some cases, you can perform it yourself, and thereby eliminate the need to take the instrument out of service for a trip to the standards lab. If an instrument receives heavy use, the ability to calibrate it on location can save the cost of a backup unit. The covers can stay on, so critical analog components will remain at the temperatures they experience in actual operation. And unlike potentiome-

TABLE 1-REPRESENTATIVE HIGH-PERFORMANCE DMMs

| MANUFACTURER | MODEL | DIGITS | SPEED (READINGS/SEC) |  |  | UNCERTAINTY ${ }^{3}$ |  | FREQUENCY RANGE FOR BEST AC ACCURACY | PRICE ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MAX | AT MAX RESOLUTION ${ }^{1}$ | AT $61 / 2$ DIGITS ${ }^{2}$ | DC | AC |  |  |
| DATRON | $\begin{aligned} & 1061 \mathrm{~A} \\ & 1281 \end{aligned}$ | $\begin{aligned} & 61 / 2 \\ & 81 / 2 \end{aligned}$ | $\begin{gathered} 35 \\ 150 \end{gathered}$ | $\begin{gathered} 1.5 \\ 0.04 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 35 \end{aligned}$ | $\begin{gathered} 30+80 \\ 7.5+4 \end{gathered}$ | $\begin{gathered} 1000+3000 \\ 90+200 \end{gathered}$ | 45 Hz TO 2 kHz 40 Hz TO 10 kHz | $\begin{aligned} & \$ 4140 \\ & \$ 7950 \end{aligned}$ |
| FLUKE | 8506A | $71 / 2$ | 500 | 5 | 500 | $15+70$ | $250+0$ | 40 Hz TO 20 kHz | \$6265 |
| HEWLETT-PACKARD | $\begin{aligned} & 3457 \mathrm{~A} \\ & 3458 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 71 / 2 \\ & 81 / 2 \end{aligned}$ | $\begin{gathered} 1350 \\ 100,000 \end{gathered}$ | $\begin{gathered} 0.25 \\ 6 \end{gathered}$ | $\begin{gathered} 53 \\ 8000 \end{gathered}$ | $\begin{gathered} 35+190 \\ 8+1 \end{gathered}$ | $\begin{gathered} 2300+2800 \\ 80+200 \end{gathered}$ | $\begin{gathered} 100 \mathrm{~Hz} \text { TO } 20 \mathrm{kHz} \\ 45 \mathrm{~Hz} \text { TO } 1 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & \$ 2800 \\ & \$ 6000 \end{aligned}$ |
| KEITHLEY | $\begin{aligned} & 193 A \\ & 196 A \end{aligned}$ | $\begin{aligned} & 61 / 2 \\ & 61 / 2 \end{aligned}$ | $\begin{gathered} 25 \\ 1000 \end{gathered}$ | $\begin{aligned} & 25 \\ & 0.3 \end{aligned}$ | $\begin{gathered} 25 \\ 9 \end{gathered}$ | $\begin{aligned} & 80+300 \\ & 80+300 \end{aligned}$ | $\begin{aligned} & 2500+10,000 \\ & 1500+10,000 \end{aligned}$ | 50 Hz TO 10 kHz 200 Hz TO 10 kHz | $\begin{aligned} & \$ 2395 \\ & \$ 1395 \end{aligned}$ |
| RACAL-DANA | SERIES 6000 | $61 / 2$ | 34,000 | 10 | 35 | $30+100$ | $800+7000^{6}$ | 100 Hz TO 20 kHz | \$5960 |
| SCHLUMBERGER | $\begin{aligned} & 7061 \\ & 7081 \end{aligned}$ | $\begin{aligned} & 71 / 2 \\ & 81 / 2 \end{aligned}$ | $\begin{aligned} & 1500 \\ & 100 \end{aligned}$ | $\begin{gathered} \hline 0.5 \\ 0.019 \end{gathered}$ | $\begin{gathered} 5 \\ 2.5 \end{gathered}$ | $\begin{gathered} 25+20 \\ 7+4 \end{gathered}$ | $\begin{aligned} & 450+1500 \\ & 220+700 \end{aligned}$ | 40 Hz TO 10 kHz 40 Hz TO 10 kHz | $\begin{aligned} & \$ 2995 \\ & \$ 7595 \end{aligned}$ |
| YOKOGAWA | 2501A | $61 / 2$ | 1.67 | 1 | 1 | $50+50^{7}$ | $700+3600^{7}$ | 50 TO 500 Hz | \$6000+ |

NOTES:
SPECIFICATIONS SHOWN ARE ABBREVIATED. CONSULT MANUFACTURERS' DATA SHEETS FOR FULL SPECS.

1. SPEED SELECTED TO MINIMIZE UNCERTAINTY.
2. HIGHEST SPEED AT WHICH VENDOR CLAIMS $61 / 2$-DIGIT RESOLUTION.
3. $\pm$ (PPM OF READING $+\mu \mathrm{V}$ ), 10 V RANGE, 1 YEAR, 18 TO $28^{\circ} \mathrm{C}$
4. US LIST. EQUIPPED FOR DCIAC VOLTS AND RESISTANCE. IEEE-488 IS INCLUDED, EVEN IF OPTIONAL.
5. AVERAGE FROM $2^{0}$ TO $2^{17}$ READINGS. WITH $60-\mathrm{Hz}$ LINE AND $2^{17}$ SAMPLES AVERAGED, READING TIME IS 546 SEC.
6. AC UNCERTAINTY GIVEN IS FOR SIX MONTHS. DATA SHEET DOES NOT INDICATE 1-YEAR SPEC.
7. UNCERTAINTY GIVEN IS FOR 90 DAYS. DATA SHEET DOES NOT INDICATE 1-YEAR SPEC.

## TECHNOLOGY UPDATE

ter settings, which could shift because of vibration or temperature changes, the digital correction values remain constant.

Although it may be simple to store corrections in a $\mu \mathrm{P}$-based instrument, you will still need a calibration reference source. If your facility uses several high-performance meters, you might find it worth the investment to have a calibrator on the premises. Datron Instruments, now a subsidiary of Wavetek, provides an independent self-calibrator in the recently intro-
duced Model 1281 8½-digit DMM. This calibrator uses an internal voltage reference that's separate from the meter's reference, and a voltage divider based on inherently stable transformer turns ratios.

Racal-Dana houses all components that can affect the calibration of its Series 6000 DMMs in a small module that a user can replace from the rear of the instrument. If you can't afford to relinquish the meter periodically for calibration, you simply stock a spare module. When it's time to calibrate, you don't send the
meter to the standards lab-you swap modules. Schlumberger Instruments (formerly Solartron) provides lifetime calibration specifications for its 7000 Series DMMs. Schlumberger also publishes tighter specs for situations in which you calibrate the instruments on a periodic basis. Currently, few-if anyother instruments offer lifetime specs, independent internal calibrators, or interchangeable calibration modules.

If you maintain an on-premises calibrator, you must decide whether

TABLE 2-SPECIFICATION ABSTRACTS FOR REPRESENTATIVE CALIBRATORS

| MANUFACTURER | MODEL | STIMULI PROVIDED | AMPLITUDE RANGE | FREQUENCY RANGE | BASIC ACCURACY ${ }^{1}$ <br> [ $\pm$ ( $\%$ SETTING $+\%$ RANGE) EXCEPT WHERE OTHERWISE NOTED] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BALLANTINE ${ }^{3}$ | $\begin{aligned} & \text { 1620A- } \\ & \text { OPT20² } \end{aligned}$ | DC CURRENT AC CURRENT | $\begin{aligned} & 20 \mu \mathrm{~A} \text { TO } 100 \mathrm{~A} \\ & 20 \mu \mathrm{~A} \text { TO } 100 \mathrm{~A} \end{aligned}$ | $\begin{gathered} \text { DC } \\ \text { DC TO } 10 \mathrm{kHz} \end{gathered}$ | $\begin{gathered} \pm(0.02 \%+0.02 \%) \\ \pm(0.15 \%+0.1 \%) \end{gathered}$ |
|  | 6400A OPT84 | AC VOLTS AC CURRENT | $\begin{gathered} 10 \mu \mathrm{~V} \text { TO } 1100 \mathrm{~V} \\ 9 \mu \mathrm{~A} \text { TO } 2 \mathrm{~A} \end{gathered}$ | 10 Hz TO 1 MHz 10 Hz TO 5 kHz | $\begin{gathered} \pm 0.0375 \% \text { ABSOLUTE } \\ \pm(0.035 \%+0.01 \%) \end{gathered}$ |
| DATRON ${ }^{3}$ | 4000A | DC VOLTS DC CURRENT RESISTANCE | $100 \mu \mathrm{~V}$ TO 1000 V $100 \mu$ A TO 1A $1 \Omega$ TO $10 \mathrm{M} \Omega$ | $\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$ | $\begin{gathered} \pm(0.0007 \%+0.000025 \%) \\ \pm(0.005 \%+0.0005 \%) \\ \pm 0.001 \% \text { SETTING } \end{gathered}$ |
|  | 4700A | DC VOLTS AC VOLTS DC CURRENT AC CURRENT RESISTANCE | 1 nV TO 1100 V $90 \mu \mathrm{~V}$ TO 1100 V $9 \mu \mathrm{~A}$ TO 2 A $9 \mu \mathrm{~A}$ TO 2 A $10 \Omega$ TO $100 \mathrm{~m} \Omega$ | $\begin{gathered} \text { DC } \\ 10 \mathrm{~Hz} \text { TO } 1 \mathrm{MHz} \\ \text { DC } \\ 10 \mathrm{~Hz} \text { TO } 5 \mathrm{kHz} \end{gathered}$ | $\begin{gathered} \pm(0.0015 \%+1 \mu \mathrm{~V}) \\ \pm(0.018 \%+0.004 \%) \\ \pm(0.01 \%+0.001 \%) \\ \pm(0.035 \%+0.01 \%) \\ \pm 0.002 \% \end{gathered}$ |
| DOWTY RFL | 829M | AC VOLTS DC VOLTS AC CURRENT DC CURRENT RESISTANCE | 20 nV TO 1100 V 20 nV TO 1100 V 200 pA TO 2A 200 pA TO 2A $10 \Omega$ TO $10 \mathrm{M} \Omega$ | $\begin{gathered} 10 \mathrm{~Hz} \text { TO } 20 \mathrm{kHz} \\ \text { DC } \\ 10 \mathrm{~Hz} \text { TO } 1 \mathrm{kHz} \\ \text { DC } \end{gathered}$ | $\begin{gathered} \pm(0.02 \%+0.03 \%+70 \mu \mathrm{~V}) \\ \pm(0.002 \%+0.003 \%+5 \mu \mathrm{~V}) \\ \pm(0.03 \%+0.03 \%+1 \mu \mathrm{~A}) \\ \pm(0.01 \%+0.01 \%+0.01 \mu \mathrm{~A}) \\ \pm 0.005 \% \end{gathered}$ |
| ELECTRONIC DEVELOPMENT | 520A | DC VOLTS | 0.1 TO 1000V | DC | $\pm 0.002 \%$ SETTING |
|  | 4503 | AC VOLTS | 10 nV TO 111.111V | 10 Hz TO 100 kHz | $\pm(0.04 \%+0.004 \%)$ |
| FLUKE ${ }^{3}$ | 5200A-05 | AC VOLTS | 1 mV TO 100V | 10 TO 100 kHz | \pm (0.02\% SETTING $+10 \mu \mathrm{~V})$ |
|  | 5205A | AC VOLTS DC VOLTS | $\begin{aligned} & \text { TO } 1100 \mathrm{~V} \\ & \text { TO } 1500 \mathrm{~V} \end{aligned}$ | $\begin{gathered} 10 \mathrm{TO} 100 \mathrm{kHz} \\ \text { DC } \end{gathered}$ | $\pm 0.05 \%$ GAIN UNCERTAINTY <br> $\pm 0.05 \%$ GAIN UNCERTAINTY |
|  | 5215A | AC VOLTS | TO 1100 V | 10 TO 100 kHz | $\pm(0.04 \%+0.002 \%)$ GAIN UNCERTAINTY |
|  | $\begin{aligned} & 5440 \mathrm{~B} / \\ & 5442 \mathrm{~A} \end{aligned}$ | DC VOLTS | 0 TO 1100V | DC | $\pm(0.00035 \%+5 \mu \mathrm{~V})$ |
|  | 5450A | RESISTANCE | $1 \Omega \mathrm{TO} 100 \mathrm{M} \Omega$ | - | $\pm 0.0012 \%$ |
| KEITHLEY | 263 | DC AMPS DC VOLTS CHARGE | 50 aA TO 20 mA $5 \mu \mathrm{~V}$ TO 20 V 0.5 fC TO $20 \mu \mathrm{C}$ | $\begin{aligned} & \text { DC } \\ & \text { DC } \end{aligned}$ | $\begin{gathered} \pm(0.025 \%+0.005 \%) \\ \pm(0.0125 \%+0.0025 \%) \\ \pm(0.5+0.005 \%) \end{gathered}$ |
| ROTEK ${ }^{3}$ | 610B | DC VOLTS AC VOLTS DC CURRENT AC CURRENT RESISTANCE | $1 \mu \mathrm{~V}$ TO 1000 V 10 mV TO 1000 V 1 nA TO 10A $100 \mu \mathrm{~A}$ TO 1A $1 \Omega$ TO $10 \mathrm{M} \Omega$ | DC 40 Hz TO 20 kHz DC 40 Hz TO 20 kHz | $\begin{gathered} \pm(0.002 \%+0.001 \%) \\ \pm(0.025 \%+0.0025 \%+10 \mu \mathrm{~V}) \\ \pm(0.02 \%+0.002 \%+50 \mathrm{nA}) \\ \pm(0.05 \%+0.005 \%) \\ \pm 0.005 \% \end{gathered}$ |
|  | 710A | DC VOLTS AC VOLTS DC CURRENT AC CURRENT RESISTANCE | $1 \mu \mathrm{~V}$ TO 1000 V <br> 1 mV TO 1000V <br> 1 nA TO 1A $10 \mu \mathrm{~A}$ TO 1 A $1 \Omega$ TO $10 \mathrm{M} \Omega$ | $\begin{gathered} \text { DC } \\ 10 \mathrm{~Hz} \text { TO } 100 \mathrm{kHz} \\ \text { DC } \\ 40 \mathrm{~Hz} \text { TO } 20 \mathrm{kHz} \end{gathered}$ | $\begin{gathered} \pm(0.002 \%+0.0002 \%) \\ \pm(0.025 \%+0.0025 \%) \\ \pm(0.02 \%+0.002 \%+50 \mathrm{nA}) \\ \pm(0.05 \%+0.005 \%) \\ \pm 0.02 \% \end{gathered}$ |
| VALHALLA ${ }^{3}$ | 2701C | DC VOLTS | 1.2 TO 1200V | DC | $\pm(0.0008 \%+0.0001 \%)$ |
|  | 2724A | RESISTANCE | $100 \mu \Omega$ TO $11 \mathrm{G} \Omega$ | - | $\pm 0.0007 \%+2 \mathrm{~m} \Omega$ |

## NOTES:

1. BASIC ACCURACIES MAY APPLY TO LIMITED VALUES, RANGES, OR STABILITY PERIODS. CONSULT VENDORS' CATALOGS FOR DETAILS.
2. TRANSCONDUCTANCE AMPLIFIER CURRENT SOURCE DRIVEN BY ANY DCIAC VOLTAGE STIMULUS (MAX DRIVE 2V).
3. VENDOR ALSO SUPPLIES COMPUTER-BASED CALIBRATION SYSTEMS.

## The One Week Analog ASIC.



The leading technology . . . the best support . . . go!

The leading analog ASIC family: RLA80, RLA120, and RLA160 userconfigurable macrocell arrays. Onchip thin film SiCr resistors and duallayer metal for ease of interconnect routing and maximum array utilization and performance. Wide supply voltage range $- \pm 1 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. And simplified design procedures that take days, not weeks.
$\square$ Configurable macrocells: 8,12 , or 15 gain blocks in any combination as general purpose op amps, open collector output comparators, or as input amplifiers with ground sensing function for single-supply systems. RLA160 has a preconfigured onboard adjustable $\pm 30 \mathrm{ppm}$ voltage reference.
$\square$ Thin-film resistors: on-chip SiCr resistors exhibit $1 \%$ matching and temperature drift characteristics comparable to discrete film resistors. High performance and high values $(1.25 \mathrm{k} \Omega$ to $150 \mathrm{k} \Omega$ ) handle a wide variety of applications.
$\square$ Design support: The RLA Breadboarding Kit contains complete design and applications documentation, 200x plots, a pre-drilled printed circuit board, and 23 ICs. Friendly RLAModel software includes menudriven user interface program for PSPICE ${ }^{1}$, SPICE $^{2}$ model library for RLA series, documentation files, and full screen editor. Not to mention the attention you get from applications engineers who have 15 years experi-
ence meeting custom and semi-custom requirements.

Call Raytheon for access to RLA program information and details on the RLA Macrocell Array Breadboarding Kit. We promise you a week that will go down in history.

Raytheon Company
Semiconductor Division
350 Ellis Street
Mountain View, CA 94039-7016
(415) 966-7716

PSPICE is a trademark of MicroSim Corporation. ${ }^{2}$ SPICE developed by University of California.

## Access to the right technology

you will bring it to the instruments you're calibrating or bring the instruments to it. In any case, you must either keep both the calibrator and the instruments continuously under power, or wait three to 24 hours after restoring power so that they'll be at thermal equilibrium during calibration. You can keep most DMMs and many calibrators running during a 5 - to 15 -minute trip with a small uninterruptible power supply (UPS) of the type often used to provide backup power for personal computers. Unless you're prepared to wait for the instrument to reach thermal equilibrium at its destination, be sure to keep it at its normal ambient temperature while you're moving it.

## Calibration labs never forget

When you send a high-accuracy instrument to a standards lab for calibration, the lab does more than verify instrument accuracy and make the necessary adjustments. Standards labs keep meticulous records of changes in calibration corrections over time. These records form a part of the mechanism that establishes a link to nationally accepted reference standards. For example, the records serve to substantiate a claim that the accuracy of the product you're testing is traceable to the National Bureau of Standards (NBS).

If you perform on-site equipment calibration and fail to keep good records, you may be unable to provide satisfactory evidence of traceability, even though the accuracy of your measurements might be acceptable. Several calibrator manufacturers offer personal-computerbased software packages to facilitate the maintenance of calibration records. If traceability is important to you, you should consider adding a personal computer and calibration record-keeping software to your on-site calibration system.

Schlumberger Instruments has studied how calibration corrections change over time in its Series 7000


Called a "system multimeter" by its manufacturer, Hewlett-Packard, the Model 3458A performs 100,000 conversions/sec at 16-bit resolution. For a year after calibration, on its 10 V dc range it delivers $8^{1 / 2}$-digit readings accurate to 8 ppm of reading plus $1 \mu \mathrm{~V}$ at 6 conversions/sec.

DMMs. A very good fit exists between calibration drift and a squareroot curve. This relationship may also hold for other manufacturers' instruments. For example, suppose you have a large number of DMMs and, under constant ambient conditions, you use them to monitor the output of some reference source (such as a standard cell) for four months. If you compute the average of the change in readings from all the meters after one month and again after four months, you can expect that the 4-month-average


This computer-controlled, mobile, configurable calibration station is Fluke's Model A123. You can bring the station to the instruments you need to calibrate.
change will be double the 1-month figure. Schlumberger specifies the long-term drift of its DMMs according to the formula

$$
\text { (ppm of reading) } / \sqrt{\mathrm{T}},
$$

where T is the time in years. From the formula, you can infer that an old instrument will drift much less than a new one will. However, it's doubtful that anybody was building instruments 10 years ago whose stability was as good as that of units manufactured today.
If you need all the accuracy your instrument's vendor specifies, and you rely on an off-site standards lab for calibration services, you'd be well advised to determine how closely the operating environment in which you use the instrument approaches the standards-lab environment. In a well-run standards lab, temperature and humidity are under much tighter control than they are in a typical R\&D lab or production-test area. Furthermore, when high-accuracy instruments are in actual use, it's quite common to see other instruments stacked on top of them, or to find them tilted at an angle that makes it easier to view the display.

Stacking instruments that dissipate a significant amount of power on top of a high-accuracy meter, or operating a meter or calibrator in a position different from that which its designers intended, can upset the meter's calibration. If these re-

## CHOOSE YOUR CERAMIC.



NDP A MONOLYTHIC ${ }^{\circledR}$ Multilayer Ceramic Capacitors from Sprague: a complete line of ceramic caps featuring economy, high-performance and reliability in a variety of
 popular ratings and EIA temperature characteristics. Get fast delivery on multilayer
 TrC high-frequency applications. Sprague ceramic chips are available in bulk pack or may be supplied on tape and reel to EIA 481A. Also available: molded-case DIPs and SIPs supplied in plastic carriers. Conformally-coated radial-lead capacitors are also available in quantity, supplied in bulk pack or on tape and reel. For technical data, write for the new Sprague Catalog WF-100 to Technical Literature Service, Sprague Electric Company, P.O. Box 9102, Mansfield, MA 02048-9102.
strictions appear to place unreasonable constraints on your use of highaccuracy instruments, consider obtaining instruments that you can calibrate right where you use them, and calibrators that you can bring to them.

## Transfer mode enhances accuracy

An alternative to performing a full on-premises DMM calibration is to use the meter in "transfer mode." You can obtain extremely accurate readings if you first determine a correction by using the DMM to measure a quantity whose value is accurately known. Then, under constant conditions and after a minimal delay, you apply the correction to the measurement of an unknown quantity whose value is very close to that of the accurately known quantity. Some vendors publish separate specs covering the use of DMMs in transfer mode; as you might expect, transfer accuracy is even better than absolute accuracy 24 hours after calibration if the meter's temperature is held within $\pm 1^{\circ} \mathrm{C}$ of the calibration temperature.

To measure ac voltages, DMMs convert ac voltage to dc and then


A rarity in the DMM marketplace, lifetime calibration specs are the hallmark of Schlumberger's Series 7000 DMMs. After nine years of use, measurement uncertainty is specified at three times the 1-year figure.
measure the dc voltage. As with dc current, when a DMM measures ac current it first converts the current to a proportional voltage. Today, nearly all high-accuracy DMMs having ac ranges either use or offer the option of true rms-to-dc conversion, as opposed, for example, to sine-wave-calibrated, half-cycle average-to-dc or peak ac-to-dc conversion. However, it really isn't sufficient to characterize the ac-to-dc conversion technique as true rms-to-dc conversion. The latter process embraces several circuit approaches.

With the exception of a single
specification, crest factor, vendors specify DMMs' ac-measurement accuracy for sine-wave inputs only. Crest factor is the ratio of the repetitive peak value of an ac waveform to the rms value. The crest factor of a sine wave is 1.41 . Many possible waveforms exist for a given crest factor. Therefore, attempts to characterize crest-factor error might yield only an estimate of the inaccuracy in measuring your nonsinusoidal waveform. (Crest-factor error is the difference between readings for a nonsinusoidal signal having a given fundamental fre-

## NBS goes into the standard-volts business

Most engineers don't think of the National Bureau of Standards as being in the business of selling hardware, but in a very limited sense, NBS is in the hardware business. To maintain NBS traceability, standards laboratories have, for decades, transported their dc-voltage references (unsaturated standard cells) to NBS facilities for periodic calibration. Because the cells are very fragile, labs can't entrust them to a common carrier, such as a package-delivery service. The usual practice is for someone from the lab to carry the cells by hand. If a flight is involved, the cells travel as passengers, not baggage. The process is obviously time consuming and expensive, and as the number of standards labs grows, existing NBS facilities might find themselves unable to handle the workload.

After 10 years of working on the problem, NBS
in Boulder, CO, has developed a practical voltage standard that requires no calibration. Based on Josephson-junction technology, the standard uses an NBS-developed chip that operates at cryogenic temperatures. Clark Hamilton of NBS believes that organizations wishing to replicate NBS's setup can do so for about $\$ 100,000$. If your company would like to own an inherently accurate voltage calibrator, write to Clark Hamilton at the National Bureau of Standards, Electromagnetic Technology Div MS 724.03, Boulder, CO 80303, or phone him at (303) 497-3740. If you can allocate funds to support a calibrator project, NBS will arrange for you to visit its facility. You can come away with the critical hardware items and the know-how you need to construct a standard like NBS's.

## Because youre thinking fast...

you need responsive
suppliers as well as fast
parts. Comlinear is tuned
in. With high quality, high
speed products. Assist-
ance from R\&D-level
applications engineers to
help develop your ideas
quicker. Sales and distri-
bution that get you what you need fast. Quality
product documentation
with guaranteed specs
so you don't waste time.
In your business, time is
everything. Count on us
for the speed you need.

## Introducing monolithic op amps with 10 ns settling times and 150-200MHz bandwidths.

Now, only from Comlinear, monolithic op amps with incredible high-speed, fast-settling performance.

Our new 200MHz CLC400 is designed for low-gain applications ( $\pm 1$ to $\pm 8$ ) and settles in a mere 10 ns to $0.1 \%$. For gains greater than 7 , choose our 150 MHz CLC401, with the same 10 ns settling time. Both feature low power $(150 \mathrm{~mW})$, low distortion, stability without compensation, plus overload and short circuit protection. They're ideal as flash A/D drivers and D/A current-tovoltage converters, or in video distribution and line driving applications.

Our experience in high speed amplifiers now brings you monolithic op amps with numbers like you've never had before. A new dimension in performance is now available for your analog designs.

Try one. Fast.

That's fast!


## TECHNOLOGY UPDATE

quency and crest factor, and a sinusoidal signal having the same frequency and rms value.) Consequently, many DMM vendors merely specify the highest crestfactor signal their meters can accept without malfunctioning.

## True rms is tough to measure

In theory, if you know all the frequency components and their respective amplitudes in a nonsinusoidal ac waveform, and you know the waveform's crest factor, you can predict how accurately a meter will measure the waveform's rms value. Don't count on making this prediction in practice, however. One reason why DMMs have difficulty in matching their sine-wave accuracy specs when measuring nonsinusoidal waveforms is that almost all of them, even those having thermal rms-to-dc converters, have active circuits in the signal path. These circuits have finite bandwidth and slew-rate capability, a limitation that can cause distortion and errors in measuring nonsinusoidal waveforms.

Bear in mind also that DMM accuracy is usually specified in terms of digits plus ppm of reading. For ac ranges, the vendor provides a table of specs covering different frequency bands. As the frequency rises, you'll find that both components of the error expression increase. The frequency dependence of the "digits" term implies that if you insist on making measurements at a small percentage of full scale, you'll experience degraded accuracy, particularly at higher frequencies.

Most high-accuracy meters provide a 4 -wire ohms-measurement capability. The 4 -wire, or Kelvin, configuration allows you to exclude the resistance of the current-carrying leads from the measurement. Another useful feature of some DMMs is a low-current ohms-measurement mode. At the expense of reduced accuracy, the low-current mode lets you limit the voltage across the resistor you're measur-


Translator software confers chameleon-like qualities on Keithley's Model 193 DMM. By storing new command definitions in its nonvolatile memory, you can make the DMM's IEEE-488 vocabulary mimic that of competitive meters.
ing. This ability might let you make a reasonably accurate measurement of the value of a resistor shunted by a diode, or it might minimize the self-heating of a temperature-sensitive resistor.

## Getting rid of noise

One of the prices you pay for high resolution in most DMMs is increased measurement time. Most of
the high-accuracy meters will make faster measurements if you reduce the number of digits displayed. In a given instrument, increasing measurement time improves the repeatability of readings and allows a high-er-resolution display. Truly random noise has a zero average value. Line-frequency-related "noise" (aka hum), averaged over an integral number of line cycles, also has a

## For more information . . .

For more information on the DMMs, calibrators, and computer-controlled calibration systems described in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

[^7]

## TECHNOLOGY UPDATE

value of zero. The longer the period over which you compute the average, the more closely it will approach zero.

Most DMMs obtain noise rejection by using inherently slow integration, but some DMMs, such as Fluke's 8505A and 8506A, use a high-speed conversion technique and reject noise by averaging measurements. Although averaging large numbers of measurements can make such instruments very slow, Fluke's design lets you separately select the number of digits displayed and the number of samples averaged. Therefore, if noise doesn't invalidate the data represented by the digits of low significance, the instruments can make high-precision measurements at high speed.

Many meters allow you to switch in a normal-mode filter on dc ranges to improve the rejection of noise superimposed on the signal. If you
opt to use the filter and attempt to make measurements at the meter's maximum rate, you'll probably find that after you change the input voltage, you must wait for several measurement periods to obtain a stable reading. The settling time of most such filters is greater than the DMM's measurement time.

All the DMMs and most of the calibrators discussed here offer an IEEE-488 interface, either as a standard feature or as an option. The commands you use to invoke specific functions vary from product to product-sometimes even within a single company's line. If you plan to control one of these instruments via the IEEE-488 bus, before you purchase the instrument be sure to ask the vendor for a manual that explains the programming language. Although you're unlikely to find that you can't program a particular instrument to do what you want, before you spend your compa-
ny's money you should understand approximately what you'll have to do to write control programs for the unit of your choice.

To alleviate the problem of incompatibility among the command sets of different instruments, Keithley's Model 193, a $61 / 2$-digit DMM, includes a software package called Translator. This software lets you define a new command set for the 193-for example, to emulate a competitive instrument-and then store the command library in nonvolatile memory. If you're replicating an existing test system (for example, to increase capacity), the 193's userdefinable command set enables you to substitute Keithley's meter for a competitive unit without rewriting the control software.

EDN

Article Interest Quotient
(Circle One) High 512 Medium 513 Low 514



## What do you need to build on a rough application concept?



## AT\&T. Thecomp



## onents of success.



Whether you're building a visionary home-or a breakthrough product or system-getting from concept to completion demands more than bricks and mortar, or metal and silicon. There are other components that can make a critical difference in meeting your market window on time, and on budget.
We call them the components of successready for immediate delivery from AT\&T.
The component of commitment: here today, here tomorrow.
AT\&T is in the components business to stay. We have formed a separate unit, AT\&T Microelectronics, to bring our more than 100 years of electronic components experience to the marketplace. And, we have the capital, people, and technical savvy to meet our commitment to the future.
The component of innovation: AT\&T' Bell Labs. Count on Bell Laboratories to help make your 'blue-sky' designs a reality. With everything from DSPs and optical data links, to custom designed products such as ASICs, multilayer boards, and power supplies. And throughout planning and manufacturing, count on AT\&T to keep your product up to the minute with the latest Bell Labs advances.
The component of quality.
Through our Integrated Quality System, Bell Labs engineers work with our quality professionals to meet customer-defined criteria. At AT\&T quality is
our history-and our future.
The component of management involvement.
AT\&T Microelectronics gives you total support, right up to its president, Bill Warwick. If our solutions aren't on the money, call him at 1201 771-2900.

## The component

 of quick response. With 12 plants and an extensive network of design centers and sales offices worldwide, AT\&T is ready to meet your volume demand for components. Ready with everything you need to get ideas off the ground and in the market-successfully.To learn why AT\&T is more than ever the right choice, just give us a call.

DIAL1800372-2447

## AT\&T Microelectronics

Major Product Lines:
ASICs
Digital Signal Processors Communication ICs
32-bit Microprocessors and Peripherals
Solid State Relays
Multilayer Circuit Boards HICs
Optical Data Links
Fiber Optic Components
Power Products
Transformers and Inductors
Wound Film Capacitors
© 1987 AT\&T

ATET
The right choice.

# telling yourself 

 its only a game. iits only a game. fits only a game. iis only a game. iis only a game.fits only a game.
its only a game.
its only a game.


## Dagrem of Cramoisy Brigade camp. You'll need this to complete your mission.

 "bug" it can seem like you're the victim. Now, ZAX challenges you to strike back by experiencing the ultimate in investigative tactics with Ground Zero! Ground Zero is an intriguing computer game that solicits shrewd thinking, lightning reilexes and sturdy nerves-plus the ability to face the sometimes unfavorable consequences of your actions.Armed with your trusty ZAX in-cireuit emulator, you'll parachute into the camp of the dreaded Cramoisy Brigade, a terrorist group ploting to assemble and then deploy a small, nuclear bomb. Your mission: Infiltrate the camp, discover the location of the bomb, dismantle it, and then retreat to safety.
With the map shown here you can begin playing Ground Zero, right now! Simply use your computer and modem

and call the number below ( 8 bits/no parity/1 stop bit). Not only will you enjoy the challenge of matching wits against a cagey adversary, you'll learn how ZAX emulators can help you track down and destroy those hideous bugs that threaten to sabotage your development projects. Because atier all, in the game of life the stakes are for real.
To play Ground Zero, call: 1-800-PLA GRD: (in CA 1-714-474-1177).
No modem? Call 1-800-421-0982 (in CA 1-800-233-9817) for the Ground Zero game diskette or write ZAX Corporation, 2572 White Road, Irvine, CA 92714.

## ROHM Optoelectronics

Brilliant ideas with lasting appeal.

# Innovations in monolithic display drivers improve flat-panel cost/performance ratios 

Jim Wiegand, Associate Editor

Generally it's hard to beat the cost/ performance ratio of complete flatpanel display systems, but you may have an application in which it makes sense to build, rather than buy, the displavs. There are driver ICs available that make it economical to configure flat-panel displays that meet your specific needs.

Consider an example of a build-vs-buy situation: If your product must operate in a harsh environment, then you must purchase and integrate the display's glass module and MIL-spec versions of the driver ICs. Also, the display configuration you need might not be available from high-volume manufacturers.

In such a case you must develop your own display. In this and similar applications, then, the best approach (although it might be count-er-intuitive) is for you to purchase the glass panels and driver chips separately, then integrate them yourself. If you must build your own displays, it's useful to become acquainted with the various displaydriver ICs and how you can use them.

## Row and column drivers

Display drivers are generally configured to let you build displays in multiples of 20,32 , or 34 pixels. Drivers are of two types: row drivers and column drivers. The row drivers supply the negative highvoltage output ( -200 V or greater) necessary for driving thin-film electroluminescent (TFEL) displays; the column drivers provide the positive output (approximately 60 V ) required to bring the voltage on the designated pixel to the luminescence threshold level. (Most of the


Fig 1-The basic similarities of TFEL (thin-film electroluminescent) row (a) and column (b) drivers are obvious in these block diagrams. The row drivers must, however, drive voltages as great as -225 V , whereas the column drivers need to sustain only 60 V at their outputs.
driver chips also operate with acplasma display panels, but that's beyond this article's scope.)
A row driver typically consists of a 20 -, 32 -, or 34 -bit shift register having output-enable and strobe lines that you can use to turn all 20 (or 32 or 34 ) output lines on or off. You feed data into the shift register on a high-to-low clock transition, and a logical one put into a register causes its corresponding output to pull low.

In a typical application, you clock a single logical one through the shift register and pull each of the rows low one at a time by using the chip's output-enable signal. After a complete scan, you then pull the substrate's common pin high, thereby pulling all the outputs high. The block diagram of Fig 1a illustrates the structure of a typical row driver.

Like a row driver, a column driver (Fig 1b) contains a 32 -bit shift register having a serial output that you

## Make the connection with Emerald.



Touch Terminal, CGA Monitor, RS232 Terminal and 26 " Plasma Monitor (rear)

EMERALD saves you time and money with complete systems, interfaces and controllers that let you connect your system to a flat panel display without altering or customizing existing circuits.

As great as flat panel displays are, they have one major drawback. They don't easily connect to any existing CRT-based system. Until now you've had only two options: spend a lot of time and money engineering a product yourself, or buy a potentially overpriced or inadequate product.

Emerald offers a better solution. You can purchase a high-performance unit from us, ready to connect. Emerald manufactures an array of products: terminals and monitors (some with touch input), subassemblies, and board level interfaces and controllers. Emerald supports all technologies: EL, Plasma, VF and LCD. For specialized, high-volume applications, we custom design anything from board level products to complete systems.

So, to make your connection easily and economically, talk to Emerald. We are the most experienced and diversified flat panel display people in the industry.
Here's a sample of what you can get, at prices you can afford*

- Terminals \$1,595
- Touch Terminals 1,995
- Monitors 1,550
- LCD VT100 Terminals 1,095
- Subsystems 1,295
- Text and Graphics RS232 220
- RGB-EGA to $640 \times 400$
- RGB-CGA to $640 \times 200110$
*Based on the purchase of 1,000 units.



## EMERALD

7324 S.W. Durham Rd. Portland, OR 97224 (503) 620-6094

FAX (503) 639-7932

LCD, Plasma, EL Touch and EL Modules


Interface and Controller Boards

## TECHNOLOGY UPDATE

use to cascade column data into additional driver ICs. In the column driver, however, data enters the shift register on a low-to-high clock transition. A logical one turns on the corresponding output. In the on state, the driver's output sources current from its high-voltage Darlington stage, thereby producing an "on" pixel.

Column drivers also contain a 32 -bit latch that lets you store currently displayed information while you clock a new set of data through the shift register. You transfer the data from the shift register to the latch by using the chip's latch-enable signal.

The configurations commonly available in these driver ICs let you readily build displays that have an overall configuration of $512 \times 512$ pixels, a popular display format. But suppose your application requires a $96 \times 96$-pixel display area. Such a configuration is uncommon, so it's not available in volume; therefore, you can probably produce such a display as inexpensively as the display manufacturers can. Furthermore, you'll need to use only three row drivers and three column drivers in your circuit.

## Home-brewed boards cut costs

One of the most compelling reasons to integrate your own display panels, however, is not to obtain an odd-sized display; rather, it is to combine your own peripheral-control circuitry with the circuits that drive the display. If your system is relatively simple (a $\mu \mathrm{P}$, RAM, ROM, and minimal I/O, for example), chances are that you can include these chips on the display's pc board. Such an inclusion might seem to be an insignificant factor, but take a close look at your system's costs. You'll discover that this approach can reduce production costs significantly.

For example, suppose your system consists of interconnected control units, each of which requires a flat-panel display. You might imple-


Fig 2-Packaging density is high in flat-panel displays, as is evident in this photo of a board in one of Cherry Electric's dc TFEL displays. If you want to include your own peripheral circuitry along with a display-driver circuit like the one you see here, you should maintain high density to obtain the full economic benefit of the design integration.
ment the control circuits by using the previously mentioned $\mu \mathrm{P}$, RAM, ROM, and a few ICs for I/O operations. Therefore, you could integrate this circuitry with the dis-play-driving ICs on a practical-size pe board.
If you use two separate pe boards -one for the display and one for the control circuits-you'll be in for an unpleasant surprise at design-review time. Although the cost of the ICs ( $\mu \mathrm{P}$, ROM, etc) for your design may be as low as $\$ 30$, don't forget the cost of the connectors, cables, standoffs, nuts, bolts, and assembly labor needed to construct a 2 -board design. You'll quickly find that your product's cost is double or possibly triple the $\$ 30$ cost of the ICs. So, combining the control and displaydriver circuits on one board often makes economic sense. Now it's worth looking at several specific ICs that can help answer your displaydriving needs.

A variety of driver ICs for TFELdisplay panels is available from Texas Instruments. TFEL drivers include row (SN65563 and -4; SN75563 and -4) and column (SN65567 and -8; SN75567 and -8) drivers. The row drivers control 34 high-voltage outputs; the column drivers control 32 outputs. The chips employ BIDFET technology,
which puts bipolar, double-diffused, n - and p-channel MOS transistors on one chip.

All inputs to TI's TFEL drivers are CMOS compatible. The sequence of the -4 devices' output lines is the reverse of that on the -3 devices. Similarly, the -8 devices' output-line sequence is the reverse of that on the -7 devices. The re-versed-sequence availability greatly facilitates your board-layout task if you want to install these devices on both sides of your pe board or along all edges of a display module.

The row drivers are available with either open-drain or opensource outputs, which have ratings of 225 V and 70 mA . The column drivers' totem-pole outputs are rated at 60 V and 15 mA . Both the column and the row drivers feature serial inputs and outputs, so you can cascade the drivers easily for largearea displays. The 75563 and 75564 drivers, the most recently available of these ICs, cost $\$ 5.89$ (1000).
Thin-film electroluminescent displays hold a great deal of promise for the future. A scrutiny of the ICs in Cherry Electric Corp's (Waukegan, IL) TFEL display (Fig 2) shows that Siliconix plans to help develop that market. In fact, Siliconix developed the Si9559 in conjunction with Cherry specifically for
driving de TFEL displays. The Si9559 constant-current column driver features 32 outputs, each rated at 90 V and 15 mA . The chip costs $\$ 8.93$ in quantities of 1000 .
The company also offers the 34output Si9560 electroluminescent symmetric row driver. Each output has a 235 V push-pull structure that can source or sink 70 mA . Now available in prototype quantities, the Si9560 carries a price of $\$ 20.55$ in 1000-piece quantities. In addition to the chips' intended application of driving flat-panel displays, Siliconix finds that they are being used in nonimpact printers, facsimile machines, and high-voltage line drivers. Those applications take advantage of the chips' high-voltage push-pull outputs.
Another source of TFEL displaydriver ICs is the Semiconductor Group of Sprague Electric Co. Sprague manufactures the UCN5851 and UCN5852 BiMOS II TFEL row drivers and the UCN5853 and UCN5854 TFEL column drivers. The row drivers, rated at 225 V and 120 mA , feature DMOS outputs. The column drivers offer totem-pole outputs that can source or sink 25 mA and can withstand 60 V . The row driver and the column driver are both 32 -bit devices that include clock, serial-input, serialoutput, and output-enable lines. The 5851 and 5852 row-driver chips each cost $\$ 4.80$ (1000).
To take full advantage of the TFEL drivers' features, be sure to consider your system's overall requirements. For instance, when a flat-panel display replaces a traditional CRT, the EL display's circuits usually use a raster-scanning refresh approach that is compatible with existing CRT systems. The refresh rates vary from 60 to 500 Hz . As you increase the refresh rate, you also increase the panel's power consumption and its brightness. At refresh rates lower than 500 Hz , the panel's brightness varies linearly with the refresh rate.
The scanning sequence for a


Fig 3-The output sequence that TFEL displays require is illustrated here. Traditionally, the refresh pulses supplied to the displays have not been symmetrical, but if you design your circuit in such a way that the refresh pulses are symmetrical, you'll minimize the latentimage problem common with TFEL displays.

TFEL panel begins with all columns grounded. All the rows then receive a positive refresh pulse from the row drivers. This refresh pulse may be as high as 225 V in some systems (Fig 3). Next, the refresh signal turns on the row-driver IC; the row driver's outputs then follow the composite signal back to ground and allow the cell capacitances to discharge. The rows are left floating until each row is in turn selected by the row driver, which then drives the row to a negative potential.
You achieve the threshold voltage for light emission, approximately 210 V , by driving the rows to -160 V and then driving the columns to 50 V . The difference between these outputs, 210 V , is the voltage that appears across the cells you want to emit light.

Before you select a row, you must have the column data ready. First, you transfer the column bits into the column-driver chip's shift register and then latch the data for the output drivers. You can clock data for subsequent display lines into the shift register as soon as the current data enters the output latches. After the column and row bits are available, you enable the column drivers and force the row driver's output to a negative voltage.
Because the row-driver substrates are connected to the compos-ite-row drive, you have to shift the logic levels of all the clock, data, strobe, and enable signals that connect to the row drivers. You can use optical isolators (logic levels on the inputs, high voltage on the outputs) to shift these signals. The column

## Display technology is often the last thing you specify.



## And the first thing your customer sees.



LCD display and Planar EL display photographed under identical ambient lighting conditions.

From a customer's viewpoint, therés only one real window into your product.

The display.
If it's inferior, your product is judged inferior. No matter how good it really is.

For flat panel displays, there's a simple, yet elegant solution. Planar's electroluminescent (EL) display. Why is EL the preferred display technology? Better viewing angle. Better brightness. Better contrast.

It adds up to superior performance.
So contact us today. Choose the flat panel display that surpasses all others from everyone's point of view.

For a brochure, please phone either 503-690-1100 or 503-690-1102, or write to

PLANAR SYSTEMS, INC.



SAS Bi-Metal Switch

- Operated by $1 / 2^{\prime \prime}$ dia. bimetal disc
-Good for 100,000 cycles
- $5^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ in $5^{\circ}$ increments
- Large or small quantities available
- Many non-standard terminal configurations offered at no extra cost
-U.L., C.S.A. Approved
- Competitively priced


## SAH Hermetic Bi-Metal Switch

-Hermetically sealed T - 05 case allows wave soldering

- Good for 10,000 cycles
- PC board mountable
$-30^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ in $10^{\circ}$ increments
- Large or small quantities available
- U.L., C.S.A Approved
- Competitively priced

MTS Reed Switch
-Hermetically sealed in glass

- Low contact resistance (100 Milliohms or less)
-3,000,000 operations at a full rated load
- Smaller size for faster response
-. $5^{\circ}$ to $115^{\circ} \mathrm{C}$ in $5^{\circ}$ increments
- Tight reset tolerances
-U.L. Approved
-Competitively priced
All three switches available in normally open and normally closed configurations.
Call or write for your free temperature control manual and engineering sample.

> MIDWEST
> COMPONENTS
> 1 NC.

Midwest Components, Inc.
P.O. Box 787

1981 Port City Boulevard
Muskegon, MI 49443
(616) 777-2602 FAX 616-773-4307
drivers use ground as their reference; therefore, they don't require logic-level shifting.

## Trouble in paradise

Beyond the architectural considerations previously discussed, you should be aware that TFEL displays have a tendency to display latent images. This latent-image problem-a differential-aging effect -results from using asymmetrical waveforms to drive the displays.

When TFEL-display panels are driven by an asymmetrical waveform, the pixels are driven by pulses of alternating polarity. Because the pulses, labeled illuminate and refresh, vary in amplitude and duration, as well as in polarity, a charge is left on the pixels. The charge can, in turn, "burn" pixels in the display. These burned pixels remain partially on, even when they aren't selected, causing latent images to appear on the display.

The key to solving the latentimage problem lies in eliminatingor at least compensating for-the asymmetric display-driving waveforms. Adding a compensation pulse both before and after the refresh pulse is one way to compensate for the asymmetry. The amplitude of these compensation pulses should be lower than the illuminationthreshold voltage of the display, but their duration must be long enough to compensate for the charge buildup in the display.

Another compensation technique involves periodically moving the refresh pulse with respect to the panel's scan timing. This technique
lengthens the time between the refresh pulse and the illuminating pulse, but it does so without degrading the displayed information. The extra time between pulses is long enough for the charge to bleed off each row, thereby eliminating charge buildup.
Although the described compensation methods reduce the differen-tial-aging effect, such aging still takes place. By using a symmetri-cal-drive method-that is, if you drive each pixel with pulses of equal amplitude and duration but of alternating polarity-you eliminate the net dc charging of the pixels and, consequently, you eliminate burned pixels.
In addition, when you eliminate the refresh pulses, you improve the display's contrast ratio and reduce its power consumption. Until recently, however, you couldn't develop the symmetrical-drive waveform using integrated drivers, and using discrete-component drivers is an impractical approach.
To drive TFEL displays symmetrically, the row driver must combine logic-level input circuitry with $225 \mathrm{~V}, 3$-state output capabilities. Driver-IC manufacturers have just recently satisfied such output capabilities. The devices from Siliconix, Texas Instruments, and Sprague described here all fulfill these requirements.

Article Interest Quotient
(Circle One)
High 515 Medium 516 Low 517

## For more information . . .

For more information on the display-driver ICs described in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

## Siliconix Inc

2201 Laurelwood Rd
Santa Clara, CA 95054
(408) 988-8000

Circle No 715

Sprague Electric Co
115 Northeast Cutoff
Worcester, MA 01606
(617) 853-5000

Circle No 716

Texas Instruments
Box 655474
Dallas, TX 75265
(214) 995-2011

Circle No 717

## Make it friendly. Touch it.

Design a system that gives you a competitive edge. Make it simple to use. Easy to learn. Make it friendly. With a touch input system from Carroll Touch, the world's leading OEM supplier of touch products.

Discover the full line of solutions Carroll Touch offers. From infrared to overlay touch products. Select from a wide range of standard add-on units in a variety of sizes. Or from a line of fully integrated computer displays equipped with touch. Or specify your own unique requirements.

Once you've chosen the Carroll Touch product that's right for your system, you'll discover even more. Exceptional quality and ruggedness. High reliability. Low maintenance. Making touch more affordable and cost-effective than ever.
Whether it's sophisticated test equipment for automotive technicians. Or a medical diagnostic system for patient care. Make your next system friendly. Touch it. Begin by calling 512/244-3500.

## Carroll Touch

a subsidiary of AMP Incorporated
P.O. Box 1309

Round Rock, Texas 78680
512/244-3500 Telex 881906
CIRCLE NO 84

## GOOD NEWS FOR THOSE WHO DONT <br> HAVE THE GUTS TO MAKE IT ALONE

Yamaha ${ }^{\otimes}$ is known for its motorcycles. Its musical instruments. Sporting goods. And audio equipment.
But when it comes to LSI chips, boardlevel products and computers, Yamaha may be the best kept secret in the world.

## OUR CHIPS ARE YOUR CHIPS.

For more than 15 years, Yamaha has done some of its best work for companies you probably know.
If you've heard a CD player lately, you've probably heard our signal processing chip in action.

And if you've gazed into the popular laptop computers, you've seen the handiwork of our graphics controller chips.

Yamaha manufactures sound chips. Graphics chips. Communications chips. And signal processing chips.
Chips that synthesize voices. Go into audio equipment. Home computers. Video games. Graphics terminals and a whole lot more.

So whatever you design, it's highly likely Yamaha can bring your ideas to life. You can order our

Many popular CD players use Yamaha DSP chips and surface-mount, flexible circuits. And if you need full- custom, we do that too.

## OUR BOARDS ARE YOUR BOARDS.

Yamaha can make your next product sound like a cow. Or its graphics display

Yamaha CRT and flat panel display controllers are in many popular laptop computers.

## look like a million.

But, if all you
want to do is take advantage of our highly automated manufacturing facilities, that's fine with us, too.
Just bring Yamaha the schematic and we'll build it in quantity. On time and on budget.

No problem.
Yamaha has the facility to build the latest in surfacemount boards.

We'd like nothing better than to show you how well it works.

## OUR TERMINALS ARE YOUR TERMINALS.

Yamaha can probably put your name on a greatlooking terminal for a lot less than you'd expect.
Our color graphics terminals are known for high quality, high performance and low price.
That's why some of the best-selling terminals in the U.S. and Japan are made by you-know-who.


Yamaha has no double standards. It's the only way we work.

## AND YOU CAN BORROW OUR BEST PEOPLE IF YOU PROMISE TO RETURN THEM.

When Yamaha enters into an OEM agreement, we put our best people on the job.
People ready, willing and able to stretch your imagination to the limit and help solve your


Yamaha engineers use the latest CAD/ CAM techniques to customize the functions of a chip. design and manufacturing problems, as well.

To put this multi-billion dollar international company to work for you, call 800-521-9074.

In California, 800-544-9939. Or write to our National Sales Manager, Yamaha Systems Technology Division, P.O. Box 6600, Buena Park, California 90622-6600.

With your brains and our guts, there's no telling how far we can go.

## OUR QUALITY IS YOUR QUALITY.

Reliability.
It's an attribute that generally takes years to acquire. But if you do business with Yamaha, it's a totally different story.
Whether we're making parts for you or ourselves, Yamaha enforces the same stringent quality controls every step of the way.


Enter into a partnership with Yamaha and you have the resources and stability of a multi-billion dollar partner working on your behalf.


It's really quite simple: others offer you a product, we offer a company. And a commitment.

It's also simple to prove. Next time the rep who fills your miniature lamp needs is in, ask him for performance data, too. Or a competitive analysis, or quarterly product audit and reliability test data. Or a legacy of excellence like we began with Chicago Miniature. You get the idea. VCH not only has these capabilities and credentials, but we can provide them to you in this country. If you need help, VCH will send a specialist who talks your language and can be available in a few hours for design engineering assistance or applications advice.

Why you'll find us to be the beacon of miniature

Compare that with the infuriating alternatives: transoceanic phone calls and cables, garbled facts and data, and unfulfilled next-day promises. VCH looks at commitment as much more than a management buzzword. We're putting a new plant, an eager staff, and considerable resources where our mouth is. All this shows our dedication to the proposition that...nobody is going to out-service us. Nobody.
VCH...Three letters that stand for a whole new level in miniature lamp performance. We've rewritten the industry standards before, with Chicago Miniature. Now we're ready to do it again.

We're out to be the beacon of miniature lamps.

CIRCLE NO 71



Pushing the leading edge of display technologies, the Supertex family of HVCMOS* drivers permit major breakthroughs in electroluminescent, gas plasma, LCD \& vacuum fluorescent displays. This advanced smart power technology also opens up a wide range of applications in medical ultrasound imaging, robotics, telecommunications, test systems, high performance printers, power supplies, motor controls and solid-state relays.

The Supertex high density HVCMOS drivers, listed below, feature high speed with low power consumption to produce bright, high-resolution images. Investigate HVCMOS . . . a most attractive alternative to cumbersome boards or hybrids.

For more information or custom designs, write or call: Supertex, Inc., 1225 Bordeaux Drive, Sunnyvale, CA 94088; Tel. (408) 744-0100; Telex 6839143 SUPTX and FAX (408) 734-5247.


# DEECO SEALTOUCH DISPLAY SYSTEM. SEALS IN PERFORMANCE. SEALS OUT DIRT AND MOISTURE. 

If there's one thing you don't need, it's dirt and moisture seeping into your display system and disrupting its performance. The DeeCO SealTouch display system is the best solution for your most demanding industrial applications.

Designed especially for harsh environments, SealTouch delivers consistently reliable performance under the most threatening conditions.

The SealTouch display system is a 3-part module consisting of flat-panel display and sealed I-R Touch panel, mounted on a controller card with VT 100 text emulation and extensive drawing graphics. All within an absolute minimum footprint.

Easy-to-use touch software, pop-up menus and convenient button draw routines make SealTouch easy to design-in and simple to use. The system's programmable touch sensitivity allows you to easily implement protection against annoying false triggers. What's more, the SealTouch infra-red beam diagnostics continuously monitor system performance, assuring you of consistent reliability.

Don't take chances with any other display system. Call or write for full product information. Let SealTouch seal in performance for your design.
And seal out dirt and moisture.
1ㄹㄹㄹㄹㄷ


# "We bet our entire company's future on our partnership with Hitachi." 

-Jim Balkcom President and Chief Executive Officer Humminbird ${ }^{\circledR}$ Depth Sounders Techsonic Industries, Inc.
"As the second largest manufacturer of depth-sounding equipment, we were determined to become the leader. We knew it would take a breakthrough in meeting the fisherman's needs.
"In strategic partnership with Hitachi, we developed the LCD technology that redefined the depth-sounder market and ultimately quadrupled its size. Our share went from 20 to over $50 \%$. The new technology was a big risk for us. We laid the whole future of our company in Hitachi's hands, and it paid off."
"Whether between two people, or two companies, trust is what makes partnerships work." "We've shared technologies, design concepts, marketing plans and other critically confidential information across both sides
of the table. That's partnership. Trust makes it work. . . and continue to grow."

## "Hitachi defines quality

 the same way we domeeting customers' needs." "Hitachi gives Techsonic the technological edge, and more. We've learned it's a waste of time to do incoming testing on Hitachi LCDs. And when we sold over three times our forecast, they were flexible enough to come through for us. Whatever support we need, we get.

And the best part is, we never have to ask for it."
"Hitachi makes it clear that their most important product is our product."
"We needed to team up with an LCD supplier who had the expertise, the capabilities, and the desire to work with us to develop the right solutions. Partnering with Hitachi made Humminbird No. 1, and we're sure it's going to keep us there."

To learn about how partnering with Hitachi can benefit your company, call Tom Klopcic or David Ross at (312) 843-1144. Or write to Hitachi America, Ltd., Electron Tube Division, 300 N. Martingale Road, Suite 600, Schaumburg, IL 60173.

## (0) HITACHI

Hitachi America, Ltd. Electron Tube Division

# Plug-in boards let your personal computer perform parallel-processing tasks 

J D Mosley, Regional Editor

You can now select from a number of IBM PC-compatible expansion cards that give your desktop computer computational power approaching that of a Cray supercomputer. These cards each contain a $\mu \mathrm{P}$ that works in conjunction with the host CPU to execute software faster than a single $\mu \mathrm{P}$ could.

When you plug multiple processing cards into your PC or compatible computer, you increase the number of CPUs available for number crunching and problem solving. However, using such boards entails considerations that don't apply to the use of the typical Von Neumann serial-processing architecture found in most computers. The efficient use of multiple processors requires intelligent task parsing (process allocation) among the available processors as well as provisions for interprocessor communication.

The PC-based parallel-processing market is currently divided into three segments: boards based on Intel's 80386, ones based on Inmos's Transputer, and ones based on RISC (reduced-instruction-set computer) CPUs. Each has benefits and drawbacks, and your choice will depend on your application, on your programming skill, and on how receptive you are to learning new techniques.

If, besides writing multiprocessor applications, you also want to run several MS-DOS programs concurrently at the fastest possible speed, then you should consider the 80386based cards. If you want to concentrate on parallel-processing development and prefer using a programming language designed specifically for that task, take a look


Housing a maximum of four Transputers in a steel enclosure, the Transputer Evaluation System (TES) from Sension Ltd lets you build a large Transputer network while monopolizing only one expansion slot in your PC.
at the Transputer boards and Inmos's Occam language. But, if your need for processing speed is greater than your need for programming flexibility, the RISC boards may be your best choice.

Although several expansion cards with an 80386 CPU are available, few are designed to work with the host CPU in your desktop computer. Expansion boards that require the removal of the host CPU are generally known as accelerator boards. The Inboard 386/PC from Intel Corp, for example, requires that you remove the host CPU from your PC/XT-compatible mother board, leaving the Inboard's 80386 $\mu \mathrm{P}$ as the sole processor-and obviously negating any chance for developing multiprocessing applications. You cannot link boards such as these together, either physically or with software, to provide a multiprocessing environment.

Conversely, coprocessor boards work in concert with the host CPU: The coprocessor performs CPU-intensive tasks, leaving the host CPU to perform housekeeping duties like I/0 and task parsing. As a result, a
coprocessor board doesn't accelerate such I/O tasks as display output, disk access, or printer control. For example, an 8088 -based PC with a coprocessor board installed will execute a program slower than would a PC/AT-compatible or 80386-based host with the same board installed -the more I/O activity, the greater the difference.

In addition, though the coprocessor board can readily perform 32 -bit-wide operations, to transport the results to you, the board must translate its 32 -bit output into the 8 -bit data patterns required for propagation along the host's bus. As a result, I/O-intensive MS-DOS software may actually run slower on a computer with a coprocessor board than it would on an unmodified PC.
To deal with this problem, Applied Reasoning Corp includes utility software with its PC-Elevator 386 coprocessor board that lets you decide whether to run an application on the coprocessor board or on the host CPU. So, even with the 386 board installed, you can run all of your MS-DOS application programs -even the ones with timing or
 new line of high-performance plotters from Houston Instrument. ${ }^{\text {™ }}$ HI's sleek new DMP-60 series is designed to impress even the most demanding CAD professional.
Discover unprecedented flexibility-blended with ultra-fine resolution, speed, and software compatibility. Benefit from HI's rigorous standards for quality, reliability, and service. All at prices starting from $\$ 4,695$.*
Watch the DMP-60 series double as a scanner with HI's unique SCAN-CAD ${ }^{\text {Tu }}$ option. Quickly produce multicolored drawings when you use the Multi-Pen adaptor. Plot several originals-without tying up your PC when you add HI's buffer expansion board.
Select media as small as $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ or as large as $36^{\prime \prime} \times 48^{\prime \prime}$. Load either DM/PL ${ }^{\text {ri }}$ or HP-GL 758X-compatible software. Then watch as your plotter quickly produces a drawing polished to a precise resolution of 5 ten-thousandths of an inch. Smile when you see smoothly formed circles, curves, and lettering.
Explore HI's host of support
programs including an overnight plotter-replacement service. And then relax, knowing that HI's new plotters rest on 27 years of engineering excellence.

Move up. To a fine, new line. From Houston Instrument. Begin by calling 1-800-444-3425 or 512-835-0900 or writing Houston Instrument, 8500 Cameron Road, Austin, TX 78753.
*U.S. suggested retail price.


## HOUSTON INSTRUMENT <br> A DIVISION OF MMETEK

Houston Instrument, SCAN-CAD, and DM/PL are trademarks of AMETEK, Inc.

## TECHNOLOGY UPDATE

hardware sensitivity. A simple Up or Down command enables or disables coprocessor control.
In addition, you can plug as many as six PC-Elevator 386 boards into one PC-compatible computer. Thus, if you use an 80386 -based PC for the host, you can tap the processing power of seven 80386 CPUs, which yields the potential computing power of 3.4 MIPS per processor. Each board sports a $16-\mathrm{MHz} 80386$ and 1 M bytes of $100-\mathrm{nsec}$ RAM with 4 -way interleaving for zero-waitstate operation. The Norton index for this board is 18.7 , which the manufacturer claims is 10 to 20 times the speed of an IBM PC/XT, 3 to 4 times that of an IBM PC/AT, and $10 \%$ faster than a Compaq 386.
You can add an extra 12M bytes of RAM by using as many as three daughter boards. Devoid of onboard ROM, the PC-Elevator 386 is controlled by disk-based software, which Applied Reasoning supplies. The manufacturer will provide PLAs to circumvent I/O-address limitations that ordinarily arise when you attempt to add more than four coprocessor boards to a PC host.


You can pack six PC-Elevator 386 boards into a single PC-compatible computer and still maintain MS-DOS compatibility. Applied Reasoning Corp provides PLAs that overcome the I/O address limitations likely to occur if you install more than four boards in your computer.

The host computer uses eight consecutive I/O locations for coprocessor control, and it uses a 64 k -byte window to read from and write to the onboard memory. An 8259 controls interrupt requests on board, but the host emulates all I/O and interrupt-acknowledge cycles. Therefore, the host's control program can detect error conditions in the coprocessor board and simulate any configuration of interrupt controllers. For $\$ 500$, you can buy a software developer's kit that includes code and examples for programs that use more than one board


The 386 Hummingboard includes a board-resident operating system called OS/386, which provides extended, protected-mode 32-bit DOS services to applications running on the board. Developed by A I Architects, the OS/386 runs in conjunction with DOS, so you can run realand protected-mode software simultaneously on the host and Hummingboard CPUs.
for parallel-processing applications.
One program that the developer's kit includes and which illustrates the PC-Elevator 386's prowess in a multiprocessing application is based on the Mandelbrot set of complex numbers. Your computer displays this set as a 2 -dimensional plane with an infinitely intricate bordera figure commonly referred to as a fractal and which is discussed at length in Ref 1.
Because the Mandelbrot set can offer an unending stream of computations, it's particularly well suited to illustrate the time savings attainable by applying more and more processors to the generation of the fractal pattern. This computationally intensive task presents an almost linear improvement in execution speed as you apply one to six boards to the problem.
The PC-Elevator 386 costs $\$ 1995$; an 80387 arithmetic coprocessor adds $\$ 795$; and each 4 M -byte RAM daughter board costs $\$ 2000$. For programming, you can use any language available for use with MS-DOS computers.
Another 80386-based coprocessor for PCs is the 386 Hummingboard from A I Architects. Using a 32 -bit C language Dhrystone benchmark as a basis for comparison, the manufacturer claims that a 386 Hummingboard with a $20-\mathrm{MHz}$ CPU runs 10.7 times faster than a $6-\mathrm{MHz}$ IBM PC/AT running Microsoft C.
Best known as the hardware foun-
dation for Gold Hill Computers' (Cambridge, MA) line of Lisp-based expert-system software packages for artificial-intelligence development on PCs, the Hummingboard also runs in parallel with your PC's CPU. Software support includes 16 and 32 -bit versions of C, Pascal, Fortran, and Ada, as well as an assembler and a software developer's kit for the company's DOS extenders for 80286 and $80386 \mu$ Ps.
Because the Hummingboard appears to the host CPU as a dual-port EMS-compatible memory card, the design simplifies interprocessor communication through a shared memory scheme that provides the host $\mu \mathrm{P}$ with a 64 k -byte window into the 24 M bytes of $120-\mathrm{nsec}$ physical memory that you can pack onto a single Hummingboard. The host $\mu \mathrm{P}$ controls I/O while the Hummingboard assumes central-processing control via its resident 0S/386 DOS-extending operating system. As a result, certain MS-DOS programs that are sensitive to timing and hardware configurations may not run properly on a Hummingboard.

Although there is currently no software that specifically lets you use multiple Hummingboards in a PC for parallel operation, the company claims to have successfully installed four Hummingboards in a personal computer to execute a cus-tom-designed application.
A $16-\mathrm{MHz} 386$ Hummingboard with 2 M bytes of RAM sells for $\$ 2895$; a $20-\mathrm{MHz}$ version costs $\$ 3395$. Pricing for a fully populated 24 M -byte, $20-\mathrm{MHz} 386$ Hummingboard is $\$ 18,950$. You can add a $\$ 69516-\mathrm{MHz}$ or a $\$ 119520-\mathrm{MHz}$ 80387 numeric coprocessor to the board, and you can select from several software options ranging in price from a $\$ 495$ software developer's kit to a $\$ 89532$-bit C, Pascal, or Fortran compiler.
If you're looking for a board that's specifically designed to execute multiprocessing applications in a PC, you can select from a variety of


Sporting four Transputers on one board, the Quadputer from MicroWay provides as much as 10 MIPS per $\mu P$ and suits parallel-processing applications. The board comes with an Occam-2 compiler for optimized program development.
plug-in cards based on Inmos's T414 or T800 Transputer $\mu$ Ps. These 32 -bit processors can crank out 10 MIPS, and the T800-which is a T414 with dedicated high-speed graphics functions and on-chip float-ing-point numeric processingclocks in at 4 million Whetstones. Technically, these figures indicate that the T800 should perform about 12 times faster than an 80386 with an 80387 coprocessor, and six times faster than a 68020 with a 68881 coprocessor. A network of 64 T 800 s theoretically offers the throughput of a Cray supercomputer.

A Transputer has four bidirectional lines that let it directly communicate with as many as four other Transputers. Accordingly, you can build a network of Transputers in either a hypercube or a ring configuration to maximize efficiency in your multiprocessing application. Furthermore, these processors have 2 k bytes of 50 -nsec static RAM on chip, so each Transputer can execute a task independent of the other $\mu \mathrm{Ps}$ and simultaneously share data stored in its on-chip RAM with the other processors in the network.

Converting your present programs for execution by a Transputer will require that you change compilers, because the Transputer's instruction set is completely different from the one that Intel uses. Accordingly, Inmos has developed the Occam assembly language for use with its Transputers. Specifically suited to the development of par-allel-processing applications, Occam exploits the Transputer's interprocessor communication facilities, lets you specify which sections of code should run serially or in parallel, and supports time slicing for concurrent processing.
One company that gives you an Occam-2 compiler when you buy a Transputer board is MicroWay. Its single-Transputer board-the $\$ 1495$ Monoputer-comes populated with 2 M bytes of 100 -nsec RAM and a $20-\mathrm{MHz}$ T414 Transputer. The T800 version costs $\$ 1995$. The company also offers Transputer-compatible compilers for C, Fortran, Pascal, and Prolog, however, which sell for $\$ 750$ each. In addition, MicroWay sells boards with either two or four Transputers at prices varying from $\$ 3495$ to $\$ 8000$. Memory upgrades range from $\$ 1400$ to $\$ 5600$ for 1 M to 16M bytes of RAM.
MicroWay's line of Transputer boards uses a link adapter to interface to your host PC. Besides providing I/O for host-to-Transputer communication, the link adapter also generates control signals in the event of a $\mu \mathrm{P}$ error. On board, the Transputers function via a Von Neumann architecture.

Unfortunately, much of the speed advantage of the Transputer is consumed in the host-to-Transputer communication process. Using a fileserver program that runs on your host PC under DOS, an Occam-2 program can only implement I/O functions such as reading the keyboard or writing to the CRT by passing messages to the Occam file server, which in turn passes them to the PC, which executes the task and relays the result via the file server

## The first good reason in 5 years tobuy new 8 -bit development tools.



We asked design engineers to describe the ideal 8-bit development system. Then we designed it.

Introducing the EL-800: real-time transparent emulation, the most powerful event system available plus lots of trace memory...all for under $\$ 5000$.

## The second good reason.

The EL-800's triggers and breakpoints let you quickly identify complex bugs. Our powerful Advanced Event System controls emulation with a combination of address, data, status, counters and logic fields. And you can specify up to 1 Megabyte of overlay memory.

## But we didn't stop there.

The EL-800 also comes with symbolic debug as well as a quick and easy way to define up to 1 million breakpoints. And it provides closely coupled interfaces to high level debuggers...all for much less than you'd expect to pay for an Applied Microsystems emulator.

What's more, the new modular design makes it easy to add additional capabilities and new processors without switching to a new operating environment or discarding your emulator.

Ask us about our plans to develop a library of options for the EL-800, performance analysis, post processing of real-time trace, and software development tools. And let us show how we can extend support to your particular 8-bit microprocessor or microcontroller.

To find out more, call 1-800-4263925 (in WA, 206-882-2000). Or mail us the coupon below.

Applied Microsystems Corporation, P.O.Box 97002, Redmond, WA 98073-9702
To learn more about the new EL-800 emulator, I'd like to receive:
$\square$ Free literature $\quad \square$ A free demonstration $\square \mathrm{A}$ free demo disk
$\square$ Free application note on cross-triggering with 8 - and 16 -bit emulators
$\square$ Free 10 day evaluation
EDN 020488
Name $\qquad$
Title
Company $\qquad$
Address
City $\qquad$ State $\qquad$ Zip

## TECHNOLOGY UPDATE

back to the Occam program. MicroWay reports that an IBM AT with a Monoputer performs benchmark tests $50 \%$ faster than an 80386 based PC -not quite the speed advantage one would expect from its 10-MIPS CPU, but clearly a significant figure when you realize that you can theoretically network an infinite number of Transputers.

MicroWay prides itself on the software support it offers its customers. A $\$ 1500$ Transputer Development System (TDS) provides an extra software layer that helps you link multiple boards by configuring a map of the system and determining what piece of code should go to which Transputer. The Occam language includes calls to access the TDS.

The Fast17 from Quintek Ltd sports seventeen Transputers on a single board to provide as much as 25 M -flops processing power for your application. One Transputer, desig-


Convertible for use either with PC- or VME-based systems, the Megaframe line of Transputer boards from Parsytec provides a bus-free, communications-oriented architecture for industrial computer systems.
nated the master, has 4 M bytes of local RAM for program code and data. The master controls a set of 16 slave Transputers coupled in a ma-
trix-switched reconfigurable network. A link interface channels communications to the host CPU, and three 8 -link connectors let you net-
work the board to others. The Fast17 ranges in price from $£ 12,050$ to $£ 16,450$, depending on the Transputer you specify. The company also sells 4-Transputer boards; prices for these start at $£ 3995$.

Another company that offers multiple Transputers on a plug-in PC board is Definicon Systems. The $\$ 4990$ DSI-T4 board has four Transputers and 1 M bytes of RAM per computing section, and it comes with program development tools and a Parallel-C compiler with an assembler and linker. The package includes host server software, a macro assembler, a disassembler, and a debugging tool that lets you probe the memory of a specific Transputer. You can network these boards, but linking more than four boards requires the extensive use of jumper cables from an array of pins that line one long edge of the board.

Sension Ltd sells a Transputer Evaluation System (TES) that ex-
ternally houses one to four T414s and 1 M bytes of RAM and whose cost ranges from $£ 1365$ to $£ 4750$. A link-adapter board plugs into your PC to connect the TES cabinet to the host CPU. You have to purchase the software separately: A singleTransputer version of Occam-2 costs £300, and an Occam-to-IBM editor/ compiler/configurer costs $£ 1500$ for a single-user license or $£ 3000$ for a multiuser system.

If you're considering parallel processing for an industrial application, you may want to consider the Megaframe/IBM board, which Parsytec has for sale. The basis of this company's line of Transputer boards is a set of Transputer modules that you can alter from VME Bus to PC bus compatibility by swapping interchangeable adapters, called bus bridges, which connect to the modules via a linking cable. The cable facilitates bidirectional signal transmission at a speed of 20 M bps over a
distance as great as 10 m . The modules include boards with one to four Transputers, $1280 \times 1024 \times 8$-dot graphics-display modules, a frame grabber, mass-storage controllers, and a 50 M -byte $/ \mathrm{sec}$ I/O interface. The Megaframe/PC adapter costs $\$ 595$, and the Transputer modules sell for $\$ 1050$ to $\$ 5650$.

You can even purchase, from Levco, Transputer processor modules for your Macintosh II or SE computer. Priced at $\$ 2499$ for the Mac II and $\$ 1899$ for the Mac SE, starter kits include a Translink plug-in card, a $15-\mathrm{MHz}$ Transputer module with 256 k bytes of RAM, and a software tool kit. You can select from various other Transputer modules ranging in price from $\$ 1299$ to $\$ 3499$.

Finally, you also have the alternative of choosing a coprocessing board that uses a RISC processor instead of a full-featured $\mu$ P. Acorn Computers' Springboard is mar-

## How to stay current on glue logic.

Samsung's Advanced AHCT CMOS Logic Family meets the demands of your new 16 - and 32-bit designs for high speed, high drive and low power.

Available now.
Our Advanced AHCT CMOS Logic Family has a selection of 109 part types available in production quantities now, increasing to 157 parts by 20 '88. This means you can design AHCT into your product now and move immediately into production.

If you need to reduce power in your existing designs, Samsung's AHCT gives you pin-for-pin, part-for-part replacement for ALS and FAST." It fits right in and reduces power ten-fold. Yet Samsung


KS74AHCT PARTS LIST


AHCT does not have a premium price. It costs the same as ALS. Plus, our surface-mount (SOIC) package option is moving into production.

## Rugged and reliable.

Designed into each part is a minimum of 200 mA latch up protection and a minimum of 2000V ESD protection. So you won't have to worry about them.

Write or call Samsung AHCT CMOS Logic Marketing at 408/434-5400
for free samples
and a data book.
Setting the pace.
keted in the US for $\$ 2500$ through VLSI Technology, and is built around a 32 -bit Acorn RISC Machine (ARM) processor, which VLSI Technology manufactures. Because of the reduced number and simplified nature of the processor instructions available to RISC chips, such chips can execute code faster than standard $\mu \mathrm{Ps}$ can. In addition, the ARM processor uses pipelined operation and hard-wired instruction decoding to further enhance the chip's performance.

The result is a plug-in board that performs twice as fast as the fastest Symbolics workstation, according to the manufacturer. Although the company primarily markets the Springboard for artificial-intelligence development, languages available for the board include ARM versions of C, Fortran, Lisp, Prolog, Basic, and Pascal-each priced at $\$ 500$.
Another RISC coprocessor board
for PC-compatible computers is the PC4000, which features a 16 -bit Novix NC4016 RISC processor. Silicon Composers, the manufacturer of the PC4000, specifies the board's performance in the 4 - to 8-MIPS range, or approximately twice the speed of a VAX 11/780. You can plug as many as six PC4000s into your PC, or more with an expansion chassis.
The PC acts as an I/O server, and the PC4000 has direct memory access to PC disks, I/O, and memory-to-memory transfers. Each board shares the PC bus and a minimum of 16 k bytes of RAM with the host CPU to facilitate communications and data transmission. A 5-MIPS single-processor board costs $\$ 1295$; a 6 -processor $40-$ MIPS board sells for $\$ 9150$.

The coprocessor boards that Opus Systems manufactures feature Intergraph's 32 -bit, $33-\mathrm{MHz}$ Clipper RISC chip and run Unix System V

Release 3. The Personal Mainframe Series coprocessor boards provide processing speeds as fast as 5 MIPS (300PM models). Pricing for these models ranges from $\$ 3070$ with 4M bytes of RAM to $\$ 6700$ with 16 M bytes. The price tag includes a C compiler and a Fortran- 77 compiler, a device-driver library, and a realtime I/O executive that has provisions for scheduling, data management, and interprocessor communications.

EDN

## Reference

1. Dewdney, A K, "Computer Recreations," Scientific American, August 1985, Vol 253, No 2, pg 16.

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

## Samsung's flash converters

## TECHNOLOGY UPDATE

## For more information . . .

For more information on the PC-based parallel-processing boards described in this article, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

A I Architects Inc
1 Kendall Square
Cambridge, MA 02139
(617) 577-8052

FAX (617) 577-9774
Circle No 701
Acorn Computers Ltd
Cambridge Technopark
645 Newmarket Rd
Cambridge CB5 8PB, UK
(0223) 214411

TLX 81152 ACNNMR G
Circle No 702
Applied Reasoning Corp
86 Sherman St
Cambridge, MA 02140
(617) 492-0700

TLX 6714194
Circle No 703
Definicon Systems Inc 1100 Business Center Circle Newbury Park, CA 91320
(805) 499-0652

TLX 272849
Circle No 704

Levco Corp
6160 Lusk Blvd, Suite C-203
San Diego, CA 92121
(619) 457-2011

Circle No 705
MicroWay Inc
Box 79
Kingston, MA 02364
(617) 746-7341

TLX 503014
Circle No 706
MicroWay (Europe) Ltd 32 High St
Kingston-Upon-Thames
Surrey, KT1 1HL, UK (01) 541-5466

TLX 9413790 MCRWAY G Circle No 707

Opus Systems
20863 Stevens Creek, Bldg 400
Cupertino, CA 95014
(408) 446-2110

TLX 323114
Circle No 708

Parsytec
c/o C\&C Marketing
708 Mandrake Dr
Box 280
Batavia, IL 60510
(312) 879-7003

TLX 4974811
Circle No 709
Parsytec GmbH
Jülicher Strasse 338
D-5100 Aachen, West Germany
(241) 182-2275

Circle No 710
Quintek Ltd
Southfield House
2 Southfield Rd
Westbury-on-Trym
Bristol BS9 3BH, UK
(0272) 628196

TLX 449683
Circle No 711

Sension Ltd
Denton Dr
Northwich
Cheshire CW9 7LU, UK
(0606) 44321

TLX 666468
Circle No 712
Silicon Composers
210 California Ave, Suite K
Palo Alto, CA 94306
(415) 322-8763

Circle No 713
VLSI Technology Inc
8375 S River Parkway
Tempe, AZ 85284
(602) 752-8574

Circle No 714

## How to get A/D-D/A in one.

The pacesetting technology of our single-chip KSV3110 A/D-D/A flash converter provides independent 8 -bit A/D converter functions and $10-$ bit R-2R D/A converter functions over an operating range of DC to 20 MHz .

High performance at low cost.
Not only does the new KSV3110 operate from DC to 20 MHz , it also gives TTI-compatible input/output, has


1\% absolute non-linearity, and selectable input peak level or keyed clamping-all for less than half the cost.

Introducing a low-cost 20 MHz KSV3208 8-bit A/D converter.
The impressive linear characteristics of the KSV3110

FLASH CONVERTER PARTS LIST

| Part | Resolution |  | Linearity |  | Conversion Speed | Industry Part |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A/D | D/A | A/D | D/A |  |  |
| KSV3110 N-10 | 8 bits | 10 bits | $=1 / 2$ LSB | $\pm 1 / 2$ LSB | 20 MSPS |  |
| KSV3110N-9 | 8 bits | 10 bits | $\pm 1 / 2$ LSB | $=1 \mathrm{LSB}$ | 20 MSPS |  |
| KSV3110N-8 | 8 bits | 10 bits | $\pm 1 / 2$ LSB | -2 LSB | 20 MSPS |  |
| KSV3110N-7 | 8 bits | 10 bits | $=1 / 2$ LSB | 4 LSB | 20 MSPS |  |
| KSV3100AN-8 | 8 bits | 10 bits | $=1 / 2$ LSB | - 2 LSB | 20 MSPS | UVC3101 |
| KSV3100AN-7 | 8 bits | 10 bits | $\pm 1 / 2$ LSB | $\pm 4 \mathrm{LSB}$ | 20 MSPS | UVC3101 |
| KSV3208N | 8 bits |  | +1/2 LSB |  | 20 MSPS |  |

are shared by our new KSV3208. It provides the same features for those applications that don't require D/A conversion.

Samsung also offers the support chips needed to ease the integration of our flash converters into video applications: the KA2606 Sync Separate IC, the KA2153 Chrominance Signal Processor for NTSC systems, and the KA2154 Video Chroma Deflection System for NTSC and PAL systems.

Write or call Samsung Flash Converter Marketing today at 408-434-5400 for samples, data books, and a full listing of our data converter products.


Our new 80C196 delivers the microcontroller available. highest performance and the highest integration of any 16-bit

While demanding the least power, the least design time, the
least hassle.Which means you can spend more time perfecting the rest of your application.

The 12 MHz 80 C 196 is the latest member of our proven MCS-96 family of embedded controllers. It offers the lowpower requirements of CMOS technology while doubling the performance of the 16-bit 8096 . Which means that it can perform a $16 \times 16$ multiply in 2.3 microseconds. That's faster than any other microcontroller.

Yet you still get all the features of the 8096. And more. Resident on the highly-integrated 80C196 are a 16 -bit cpu with an 8/16-bit bus (reconfigurable), 256 bytes of RAM, PWM, 10-bit A/D, two 16bit timer/counters, 40 I/O pins, full duplex serial port, and a high-speed I/O subsystem. And speaking of getting more features in less space, we're working on an EPROM version of the 80C196 for an even easier design path (available Q2 1988).

Our low cost ICE"'196 PC development tool gives you more for less, too. Together with highlevel languages like PL/M and C,
it delivers the easiest, lowestcost design support you can get.

Further support is available from the world's largest network of field applications engineers. Plus customer workshops to get you up to speed fast.


So you see, there's really no easier or more powerful answer to embedded real-time control than Intel's 80C196. For complete technical information, call toll-free (800) 548-4725 and ask for Literature Department W398.

Do it now. And relax.
Because we're ready to meet your demands.

## intel

ICE is a trademark of Intel Corporation. ©1987 Intel Corporation

## Turn to the Masters of RFAmplifier Design <br> 

RF Devices has the talent and the experience it takes. We are RF amplifier performance artists. With our palette of products and capabilities, we can meet your needs - from RF and microwave power transistors and hi-rel hybrids to complete UHF high-power modules and systems - from 100 KHz to 4 GHz , from under 1 W to 1 KW .

And not just with standard products. We team up with you to create special and original solutions - and every design bears our industry-leading figure of merit - power at frequency with low distortion.

We've developed RF linear hybrids featuring high gain, very high dynamic range and very low distortion. Our feedforward techniques in these hybrids are meeting demands for faster speeds in CATV systems and wideband LANs.

We're delivering the gain needed in
high-power cellular base stations with our power-combining and feed-forward technology. And, our high-voltage drivers with sub-three nanosecond rise time are reducing the cost of highresolution monitors and VLSI test equipment.

Your solution will have quality, reliability and manufacturability built-in right from the beginning, starting with

our own die design and wafer fab. And, with our high-volume production facility, you'll get a total capability that can handle your largest requirement.

Your challenge will bring out the best in us - and the RF amplifier that's just right for your design. Call us about your application at 213.536.0888 and ask for RF Amplifier Solutions. Or write for our free brochure to TRW RF Devices, 14520 Aviation Blvd., Lawndale, CA 90260. Attn: RF Amplifier Solutions.

Let us paint you a masterpiece.
$\complement_{\text {TRW Inc. }} 1987$ - $713 A 00887$
TRII
TRW RF Devices Division

## PRODUCT UPDATE

## PLD design software accepts designs as schematics, waveforms, or tables

Featuring an interactive, graphics user interface, the Model 74150A PLD Design System software allows you to design PLD-based circuits by using any combination of Boolean equations, schematics, waveforms, or tabular data. The software runs on the company's Model 9000 Series 300 workstations. It takes your design, simulates the circuit's operation, checks for glitches, partitions the design to fit in one or more PLDs, and generates a fuse map and test vectors. You can select the target devices or use the software to automatically fit your design into appropriate PLDs.
The PLD Design System accepts circuit designs as schematics, statetransition diagrams, waveforms, Boolean equations, or truth tables. You can also take advantage of the software's hierarchical structure to break your design into modules and then use different design-entry methods to describe each module. In effect, the software allows you to match the design-entry method to the circuit or subsystem that you're developing.
The software's schematic editor provides an entry method similar to most CAD schematic-capture packages and allows you to attach simulated switches, oscillators, and logic probes to circuit nodes to aid debugging and verification efforts. A batch-mode debugger coupled with the schematic editor allows you to simulate your design's operation with input waveforms defined graphically in a separate stimulus file.

For synchronous circuit design, you can create state-transition diagrams (STDs) with a special STD editor that shows individual states as boxes linked with transition arrows. Pop-up transition tables allow


With the PLD Design System, you can design PLD-based circuits by using either waveforms, schematics, or state-transition diagrams.
you to enter state-transition conditions in tabular form. An interactive debugger coupled to the STD editor enables you to step through state transitions or to advance multiple states one at a time.

The software's waveform editor allows you to define a PLD, using timing diagrams that are especially useful for developing asynchronous circuits. The waveform display represents cause-and-effect relation-ships-causalities-using curved arrows that link the related waveforms.

The waveform editor and its debugger support six types of causalities: input edge to output edge, input value to output edge, input edge to output value, input value to output value, input edge and value to output value, and input edge and value to output edge. You can also define a PLD's structure with Boolean equations and truth tables, for-
mats established by early PLD design tools. The PLD Design System minimizes equations automatically.
The software accepts designs without regard to a target PLD; this device independence allows you to try out various PLDs and find the most appropriate device for your design. You can also ask the PLD Design System to select the most appropriate device automatically from its PLD library, and you can narrow its choices by specifying parameters that pertain to your appli-cation-vendor type, inventory, or power consumption, for example. The PLD library currently contains device information about PLDs available from Altera, AMD, Intel, Lattice, Monolithic Memories, NEC, Ricoh/Panatech, Signetics, and VTI.
If your design won't fit into one PLD, the software allows you to partition the circuitry manually, or

## WORLDCLASS IC PRODUCTS



At Silicon Systems, here ore the product lines we have developed in response to your market needs.
MICROPERIPHERAL IC's: We offer more than 50 ASIC chips serving the mass storage market. It includes the industry's most comprehensive line of read / write amplifier IC's for disk drives as well as complete chip sets covering such other disk drive electronic functions as pulse detection; data recovery: head positioning; spindle motor control; and buffer, storage, and interface control. We also offer circuits for optical, floppy, and tape drives; and we are continuously expanding the line.
TELECOMMUNICATIONS IC's: FOr U.S. or world-wide telecom systems operating at 300 to 2400 BPS data transfer speeds, Silicon Systems can provide the industry's most advanced family of software / hardware compatible, single-chip modem IC's available. These pin-out and register-compatible K-Series chips allow for easy product upgrading over the entire Bell and CCITT ranges, and Silicon Systems also offers more than a score of other telecom IC's for a variety of applications in tone signaling, telephony, and digital communications.
CUSTOM / SEMICUSTOM IC's: And beyond its lines of standard ASIC's, Silicon Systems continues to offer-as it has since its inception-its innovative bipolar and CMOS design and manufacturing capabilities as a unique resource for complex custom / semicustom products. For more information, contact: Silicon Systems, 14351 Myford Road, Tustin, CA 92680. Phone: (714) 731-7110, Ext. 575.

you can ask the software to perform the partitioning automatically. If your design has speed-sensitive signal paths, you can assign the critical signals manually and have the software to finish the job.

Once you've defined and compiled your design for a particular PLD or set of devices, the PLD Design System creates the appropriate fuse maps. The software supplies these maps to a PLD programmer as JEDEC fuse-map files via the host workstation's RS-232C or IEEE488 interface ports. It can also read JEDEC fuse maps back from the programmer, including maps for existing PLDs designed with other design tools; thus you can more easily incorporate existing PLDs into new designs. Currently, the software supports PLD programmers from Data I/O and Stag, but any PLD programmer that accepts JEDEC fuse maps is compatible with the PLD Design System.

The company is marketing the software as part of its Electronic Design System, a collection of CAE software tools for electronics engineers. The PLD Design System exchanges circuit and simulation data with the other software tools in the Electronic Design System, using a proprietary representation format for schematic information and GenRad-compatible HILO-3 data files for simulation data. This data interchange allows the PLD Design System to convert circuits (or portions of circuits) designed with the Electronic Design System into PLD designs; it also allows more complete simulation of PLD designs by the Electronic Design System package's HILO simulator.

The PLD Design System costs $\$ 8000$ to $\$ 14,500$, depending on options. You can expect delivery approximately 12 weeks ARO. -Steven H Leibson
Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 700


> HOT NEWS OF PRODUCTS, TECHNOLOGY, AND CAREERS

# SERVIMG WORID-WIDE NCHES with woridoclassic Proouctis 

## What is a niche?

To many companies, a niche is a market segment targeted by the sales department. At Silicon Systems, a niche is a segment of the market in need of specialized products and services, a segment not well served by the large generalpurpose companies. We target such niches at the highest level of our company-well in advance of the actual market needs. In this way, we have brought forth some of the industry's most innovative products.

## The Microperipheral Niche.

While pioneering the development of single-chip read/write amplifiers for disk drives, we very early recognized the need for a family of highly integrated disk drive IC's. Today, as the leading supplier of read/write amplifiers, we also offer the industry's most complete line of integrated circuits for every other major function in disk drive electronics.

## The Telecommunications Niche.

In 1979, when we were first to fully integrate a complete dual tone multiple frequency (DTMF) circuit on a chip, we also selected telecommunications as yet another important niche in need of special products and services. Today, Silicon Systems leads the industry with its highly-integrated, pin-out and register-compatible, K-Series family of modem IC's to serve operating modes world-wide.

The Custom / Semicustom Niche.
And because we started life as a custom design house, superior design and engineering shall always remain paramount at Silicon Systems. It's a superiority that allows us to create and produce complex analog and digital designs on the same chip, to create special bipolar and CMOS monolithic circuits that other companies are unable to produce. It is a capability key to our success-a capability available to you for your most demanding custom and semicustom designs.

## Call Now!

 (714) 731-7110, Ext. 575For more information on our company, our products or our capabilities, contact: Silicon Systems, 14351 Myford Road, Tustin, CA 92680.

"Where we design to your applications."

# Digital precision motion controller simplifies control of de motors 

The LM628 motion-control processor simplifies the control of dc and brushless de motors by performing real-time computational tasks. Using this motion-control processor, you can build a servo system that requires only a dc motor, an optical incremental encoder, a DAC, and a power amplifier. A host processor controls the system via an 8 -bit I/O port that uses a byte serial format wherein the data words follow the command word.
The host processor programs a trapezoidal velocity profile and a digital compensation filter. The trapezoidal velocity profile defines the operation of the motor in terms of maximum acceleration, maximum velocity, maximum deceleration, and final position.
The digital compensation filter is a proportional-integral-derivative (PID) filter. It modifies the output of the controller to keep the servo system stable, and it compensates for the control loop. The LM628 subtracts the actual position, which is determined by feedback from the optical encoder, from the desired, or profile-generator, position. The PID filter processes the resulting position error to drive the motor to the desired position. The LM628 holds the motor at the desired position by subjecting it to a restoring force proportional to the position error, the integral of the error, and the derivative of the error.

An optical incremental encoder linked to the motor sends a 2 -phase quadrature signal back to the LM628 to detect the direction of the motor's rotation and position. The motion-control processor uses this signal to control an up/down counter that keeps track of the actual position of the motor.

When the LM628 is in the position


The LM628 provides precision motion control of dc and brushless dc motors and minimizes the parts count of a dc servo system.
mode, you specify the motor's acceleration, maximum velocity, and final position. The unit then controls the motor to meet these parameters. At any time during a move, you can change the maximum velocity, the target position, or both, and the motor will accelerate or decelerate accordingly-which permits the unit to change profile or filter parameters on the fly.

When the unit is in the velocity mode, the motor accelerates to the specified velocity at the specified acceleration rate and maintains this velocity until it receives a command to stop.
The analog control signal from the LM628 can feed either an 8- or 12 -bit DAC. The 12 -bit output is multiplexed on the eight parallel digital outputs. The amplified output of the DAC controls the motor.
Traditionally, the servo-system host must poll the controller; with the LM628, you have the option of using interrupts. The unit provides
index-pulse, absolute, or relativeposition breakpoint interrupts, as well as wraparound, command-error, and end-of-profile interrupts. It also features an alarm register that you can set to cause an interrupt should the difference between the desired position and the actual position become greater than the programmable limit. This feature aids in the detection of rotor lock.

The LM629 is identical to the LM628 except that it provides a pulse-width-modulated output instead of a DAC-compatible output. Both motion-control processors come in 28-pin DIPs, operate over the -40 to $+85^{\circ} \mathrm{C}$ range, and cost $\$ 50$ (100).—David Shear
National Semiconductor, 2900 Semiconductor Dr, Santa Clara, CA 95052. Phone (408) 721-4494.

Circle No 699

## READERS' CHOICE

Of all the new products covered in EDN's November 26, 1987, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, or refer to the indicated pages in our November 26, 1987, issue.


## - OPTICAL SWITCHES

Slotted optical switches are available with transistor (Series MOC70) and Darlington-type (Series MOC71) outputs (pg 267).

## Motorola Inc.

Circle No 603


- VOICE MODULE

The low-bit-rate voice digitizer LBRV Codec Module produces voice-quality communications at 9600 bps . The pc board contains a $\mu$-law codec that digitizes an ana$\log$ voice input (pg 262).
Advanced Compression Technology.
Circle No 602

## FILTER-DESIGN PROGRAM

The LCFIL stand-alone, menudriven filter-design program runs on IBM PCs and compatibles or on the Apple Macintosh. You can design highpass, lowpass, and bandpass filters that have as many as 21 poles (pg 272).

## BV Engineering.

Circle No 604


## - DC/DC CONVERTER

The IR2100 dc/dc converter needs only three external components to form a complete 15 V dc, $500-\mathrm{mA} \mathrm{de} / \mathrm{dc}$ converter power supply that works directly from 115/ 230 V ac lines ( pg 257 ).
International Rectifier.
Circle No 601


## 4 SOLDERABILITY TESTERS

Mustmate-100 and -200 software packages provide PC-based solderability testing of electronic components (pg 288).
Multicore Solders Ltd.
Circle No 605
Multicore Solders Inc.
Circle No 606


It's the brightest thing going in optical drives. The Toshiba XM-3100. The fastest half-height $5.25^{\prime \prime}$ CD-ROM drive available on the market today. And it's lighting the way to a whole new realm of optical opportunities.

Because the XM-3100 is perfect for all sorts of applications. Like archives, catalogues and libraries. Any application that calls for a reference database with infinite capacity, complete portability, durability and high reliability. Of course what makes the XM-3100
 particularly well suited to the task is Toshiba engineering. With features like both digital and audio output to let your database speak its mind. 400 ms average time-to-data to do the job fast. And a SCSI interface to make system integration painless.

But then, taking pains to do it right is nothing new at Toshiba. After all, we shipped the first optical drive way back in 1981 and we've been in front ever since. With the products, the engineering and the support it takes to be the leader.

To see how the Toshiba XM-3100 can help put you in front, call us at 714-583-3150.

And before long you'll be light years ahead of the competition.

In Touch with Tomorrow

Disk Products Division, 9740 Irvine Boulevard, Irvine, CA 92718

## LEADTIME INDEX

Percentage of respondents


## TRANSFORMERS



CONNECTORS

| Military panel | 0 | 0 | 67 | 17 | 16 | 0 | 12.2 | 11.5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Flat/Cable | 17 | 44 | 28 | 11 | 0 | 0 | 5.3 | 6.6 |
| Multi-pin circular | 10 | 40 | 20 | 20 | 10 | 0 | 8.0 | 10.0 |
| PC (2-piece) | 0 | 33 | 45 | 22 | 0 | 0 | 8.0 | 7.3 |
| RF/Coaxial | 13 | 40 | 13 | 27 | 7 | 0 | 8.1 | 6.4 |
| Socket | 6 | 67 | 11 | 11 | 5 | 0 | 6.0 | 5.3 |
| Terminal blocks | 25 | 45 | 15 | 10 | 5 | 0 | 5.4 | 5.6 |
| Edge card | 19 | 44 | 19 | 12 | 6 | 0 | 6.3 | 6.3 |
| D-Subminiature | 13 | 40 | 33 | 7 | 7 | 0 | 6.6 | 6.2 |
| Rack \& panel | 0 | 45 | 33 | 11 | 11 | 0 | 8.6 | 6.8 |
| Power | 0 | 29 | 29 | 28 | 14 | 0 | 11.2 | 7.2 |

## PRINTED CIRCUIT BOARDS

| Single-sided | 0 | 74 | 21 | 5 | 0 | 0 | 4.7 | 5.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Double-sided | 0 | 46 | 50 | 4 | 0 | 0 | 6.0 | 6.9 |
| Multi-layer | 0 | 23 | 69 | 8 | 0 | 0 | 7.4 | 7.9 |
| Prototype | 5 | 85 | 10 | 0 | 0 | 0 | 3.4 | 3.5 |

## RESISTORS

| Carbon film | 35 | 45 | 20 | 0 | 0 | 0 | 3.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3.6 |  |  |  |  |  |  |  |
| Carbon composition | 28 | 43 | 19 | 10 | 0 | 0 | 4.3 |
| Metal film | 15 | 50 | 35 | 0 | 0 | 0 | 4.3 |
| Metal oxide | 11 | 56 | 22 | 11 | 0 | 0 | 5.2 |
| Wirewound | 4 | 46 | 32 | 14 | 4 | 0 | 7.2 |
| Potentiometers | 7 | 55 | 31 | 7 | 0 | 0 | 5.2 |
| Networks | 16 | 37 | 32 | 10 | 5 | 0 | 6.6 |
| FUSES |  |  |  |  |  |  |  |

SWITCHES

| $\begin{aligned} & \text { SWITCHES } \\ & \text { Pushbutton } \end{aligned}$ | 11 | 72 | 11 | 6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rotary |  | 67 |  |  |  |  |  |  |
| Rocker | 6 | 59 | 23 | 12 | 0 | 0 | 55 | 57 |
| Thumbwheel | 0 | 69 | 15 | 16 | 0 | 0 | 5.7 | 8.4 |
| Snap action | 0 | 64 | 29 | 7 | 0 | 0 | 5.3 | 5.6 |
| Momentary | 7 | 60 | 26 | 7 | 0 | 0 | 5.0 | 5.6 |
| Dual in-line | 0 | 50 | 20 | 30 | 0 | 0 | 7.8 | 6.4 |

WIRE AND CABLE
Coaxial

| Coaxial | 23 |
| :--- | :--- |
| Flat ribbon | 26 |
| Multiconductor | 25 |
| Hookup | 23 |
| Wire wrap | 38 |
| Power cords | 28 |
| POWER SUPPLIES |  |

POWER SUPPLIES

| Switcher | 6 | 41 | 29 | 24 | 0 | 0 | 7.2 | 10.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Linear | 0 | 55 | 27 | 18 | 0 | 0 | 6.6 | 9.5 |
| CIRCUIT BREAKERS |  | 33 | 27 | 33 | 0 | 0 | 8.3 | 8.2 |
|  | 7 |  |  |  |  |  |  |  |
| HEAT SINKS |  |  |  |  |  |  |  |  |
|  | 17 | 46 | 33 | 4 | 0 | 0 | 4.7 | 6.2 |
| RELAYS |  |  |  |  |  |  |  |  |
| General purpose | 13 | 67 | 12 | 8 | 0 | 0 | 4.3 | 6.9 |
| PC board | 0 | 79 | 0 | 21 | 0 | 0 | 5.7 | 8.5 |

$$
\begin{array}{r|r|r|r|r|r|r|}
\hline 23 & 68 & 9 & 0 & 0 & 0 & 2.8 \\
\hline 3.3 \\
\hline 26 & 42 & 32 & 0 & 0 & 0 & 3.8 \\
4.0 \\
\hline 25 & 50 & 25 & 0 & 0 & 0 & 3.5 \\
\hline 4.6 \\
\hline 23 & 65 & 12 & 0 & 0 & 0 & 2.9 \\
3.1 \\
\hline 38 & 54 & 8 & 0 & 0 & 0 & 2.2 \\
\hline 4.8 \\
\hline 28 & 56 & 12 & 4 & 0 & 0 & 10.8 \\
\hline
\end{array}
$$

| 0 | 79 | 0 | 21 | 0 | 0 | 5.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | 0 | 46 | 27 | 27 | 0 | 0 | 7.8 | 7.3 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAM 16k | 0 | 47 | 27 | 26 | 0 | 0 | 7.7 | 7.7 |
| RAM 64k | 0 | 20 | 47 | 33 | 0 | 0 | 9.5 | 10.0 |
| RAM 256k | 0 | 20 | 30 | 40 | 10 | 0 | 11.8 | 11.1 |
| RAM 1M-bit | 9 | 36 | 18 | 37 | 0 | 0 | 8.2 | 8.7 |
| ROM/PROM | 0 | 36 | 43 | 21 | 0 | 0 | 7.8 | 8.5 |
| EPROM 64k | 0 | 36 | 36 | 28 | 0 | 0 | 8.4 | 9.7 |
| EPROM 256k | 0 | 22 | 45 | 33 | 0 | 0 | 9.4 | 13.5 |
| EPROM 1M-bit | 0 | 40 | 30 | 30 | 0 | 0 | 8.3 | 9.4 |
| EEPROM 16k | 0 | 36 | 37 | 27 | 0 | 0 | 8.3 | 9.6 |
| EEPROM 64k |  |  |  |  |  |  |  |  |
| DISPLAYS | 8 | 38 | 46 | 8 | 0 | 0 | 6.0 | 7.2 |
| Panel meters | 0 | 12 | 38 | 50 | 0 | 0 | 11.1 | 13.0 |
| Fluorescent | 0 | 33 | 34 | 33 | 0 | 0 | 8.8 | 8.9 |
| Incandescent | 18 | 32 | 41 | 9 | 0 | 0 | 5.6 | 6.8 |
| LED | 0 | 10 | 40 | 50 | 0 | 0 | 11.3 | 9.8 |
| Liquid crystal |  |  |  |  |  |  |  |  |

## MICROPROCESSOR ICs

| 8 -bit | 28 | 27 | 18 | 27 | 0 | 0 | 6.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 -bit | 8 | 50 | 17 | 25 | 0 | 0 | 6.7 |
| 32-bit | 8 | 42 | 25 | 25 | 0 | 0 | 7.1 |

## FUNCTION PACKAGES

| Amplifier | 0 | 50 | 38 | 12 | 0 | 0 | 6.4 | 10.2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Converter, analog to digital | 0 | 31 | 46 | 23 | 0 | 0 | 8.2 | 9.8 |
| Converter, digital to analog | 0 | 43 | 29 | 28 | 0 | 0 | 8.0 | 10.7 |
| LINE FILTERS |  |  |  |  |  |  |  |  |
|  | 0 | 63 | 12 | 25 | 0 | 0 | 6.8 | 7.6 |
| CAPACITORS |  |  |  |  |  |  |  |  |
| Ceramic monolithic | 21 | 32 | 37 | 10 | 0 | 0 | 5.5 | 6.3 |
| Ceramic disc | 26 | 30 | 29 | 15 | 0 | 0 | 5.6 | 6.5 |
| Film | 9 | 45 | 32 | 14 | 0 | 0 | 6.0 | 7.5 |
| Aluminum electrolytic | 12 | 42 | 27 | 19 | 0 | 0 | 6.4 | 7.2 |
| Tantalum | 15 | 41 | 29 | 15 | 0 | 0 | 5.9 | 7.1 |
| INDUCTORS |  |  |  |  |  |  |  |  |

## INDUCTORS

| RAM 16k | 0 | 46 | 27 | 27 | 0 | 0 | 7.8 | 7.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAM 64k | 0 | 47 | 27 | 26 | 0 | 0 | 7.7 | 7.7 |
| RAM 256k | 0 | 20 | 47 | 33 | 0 | 0 | 9.5 | 10.0 |
| RAM 1M-bit | 0 | 20 | 30 | 40 | 10 | 0 | 11.8 | 11.1 |
| ROM/PROM | 9 | 36 | 18 | 37 | 0 | 0 | 8.2 | 8.7 |
| EPROM 64k | 0 | 36 | 43 | 21 | 0 | 0 | 7.8 | 8.5 |
| EPROM 256k | 0 | 36 | 36 | 28 | 0 | 0 | 8.4 | 9.7 |
| EPROM 1M-bit | 0 | 22 | 45 | 33 | 0 | 0 | 9.4 | 13.5 |
| EEPROM 16k | 0 | 40 | 30 | 30 | 0 | 0 | 8.3 | 9.4 |
| EEPROM 64k | 0 | 36 | 37 | 27 | 0 | 0 | 8.3 | 9.6 |
| DISPLAYS |  |  |  |  |  |  |  |  |
| Panel meters | 8 | 38 | 46 | 8 | 0 | 0 | 6.0 | 7.2 |
| Fluorescent | 0 | 12 | 38 | 50 | 0 | 0 | 11.1 | 13.0 |
| Incandescent | 0 | 33 | 34 | 33 | 0 | 0 | 8.8 | 8.9 |
| LED | 18 | 32 | 41 | 9 | 0 | 0 | 5.6 | 6.8 |
| Liquid crystal | 0 | 10 | 40 | 50 | 0 | 0 | 11.3 | 9.8 |

## DISCRETE SEMICONDUCTORS

## Diode

Zener
Thyristor

Small signal transistor
MOSFET
Power, bipolar

## INTEGRATED CIRCUITS, DIGITAL

| Advanced CMOS |
| :--- |
| CMOS |
| TTL |

TTL

| 0 | 50 | 33 | 17 | 0 | 0 | 6.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 9.3 |  |  |  |  |  |  |
| 10 | 38 | 38 | 14 | 0 | 0 | 6.4 |
| 21 | 42 | 16 | 21 | 0 | 0 | 5.8 |
| 19 | 48 | 19 | 14 | 0 | 0 | 5.2 |

## INTEGRATED CIRCUITS, LINEAR

| Communication/Circuit | 8 | 42 | 33 | 17 | 0 | 0 | 6.5 | 8.9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OP amplifier | 17 | 33 | 22 | 28 | 0 | 0 | 7.1 | 7.8 |
| Voltage regulator | 11 | 42 | 26 | 21 | 0 | 0 | 6.6 | 6.8 |

## MEMORY CIRCUITS

| 32 | 42 | 19 | 7 | 0 | 0 | 3.8 | 7.8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 35 | 35 | 15 | 15 | 0 | 0 | 4.7 | 8.8 |
| 8 | 38 | 31 | 23 | 0 | 0 | 7.2 | 9.5 |
| 37 | 32 | 21 | 10 | 0 | 0 | 4.3 | 8.8 |
| 6 | 44 | 28 | 22 | 0 | 0 | 7.0 | 8.0 |
| 15 | 31 | 39 | 15 | 0 | 0 | 6.4 | 7.5 |


\section*{| 0 | 50 |
| :---: | :---: |
| 10 | 38 |
| 21 | 42 |
| 19 | 48 |
| S, LINEAR |  |}

ITEM

| RELAYS <br> Dry reed | 0 | 40 | 40 | 20 | 0 | 0 | 7.5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .9 |  |  |  |  |  |  |  |
| Mercury | 20 | 40 | 40 | 20 | 0 | 0 | 4.4 |
| 8.8 |  |  |  |  |  |  |  |
| Solid state | 0 | 54 | 31 | 15 | 0 | 0 | 6.5 |

Source: Electronics Purchasing magazine's survey of buyers


Unclutter your 1553 data bus.

Now you can have a more reliable MIL-STD 1553 data bus system that uses less real estate. All on our monolithic, dual-redundant UT1553B RTI.

Fully proven in military and aerospace products of United Technologies Corporation, UTMC's RTI is ready for your system.

It features the low power consumption of CMOS technology and is the standard LAN used for military systems requiring a serial bus with low EMI/RFI susceptibility and high data
integrity. Of course, the UT1553B RTI is screened to selected tests in MIL-STD 883C.

This RTI reduces host overhead with an automatic DMA and address generation and can be used in a transparent dual-port RAM configuration. It interfaces with data bus transceivers, system memories, and 8 - or 16 -bit CPUs. Various 84-pin package options available.

If your 1553 data bus needs are getting lost in a maze of hybrids, call UTMC. We'll unclutter things.

Product Marketing
United Technologies
Microelectronics Center 1575 Garden of the Gods Road Colorado Springs, Colorado 80907 1-800-MIL-UTMC


UNITED TECHNOLOGIES MICROELECTRONICS CENTER

CIRCLE NO 72

## System, syste how will I know it

simulating and testing large, multi-technology systems utilizing ASIC's always involved lots of guesswork. And a little magic.

No more.
Now there's the AIDA Design System.

A comprehensive set of software design tools for capture, simulation and automatic generation of test patterns for systems of 5000 to 1 million gates. At all levels - chip, board, system.

Faster and more cost effective than ever before. Giving each designer 20 to 30 simulation turns a day. At one-tenth the cost of hardware accelerators.

The AIDA tool set is so powerful, it lets you do complete and automatic timing analysis of your design to identify all critical paths. And simulate its operation by running actual application programs and diagnostic software.


## m, on the wall, <br> you'll work at all?



## FLLIE <br> sunit <br> $\square \frac{\operatorname{TMING}}{A L L}$ <br> CRTICAC PATHS

Even better, it guarantees $100 \%$ test coverage for scannable designs by automatically generating all possible test vectors.

Installation and training are easy, too. Because the AIDA Design System runs on industry-standard workstations. And we have translators that let you use your existing databases with the AIDA design tools.

Skeptical? Call 408-980-5200 now to get a video tape* of what our customers are saying.

And see how we're helping them get systems off the wall and into production. Fast.

For more information, contact AIDA Corporation, 5155 Old Ironsides Drive, Santa Clara, CA 95054, 408-980-5200.

## AIIDA <br> *We reserve the right to qualify recipients.

AIDA is the trademark of AIDA Corporation. C) 1987


You can reduce simulation time by adding a hardware accelerator, which implements simulation algorithms in hardware. The Cats accelerator from HHB Systems performs logic, timing, and fault simulation at around 300 times the speed of a VAX 11/780. The Cats accelerator starts at $\$ 200,000$; for a VAXstation II, the basic Cadat simulation package costs $\$ 20,000$.

## 

## ASIC

# simulators 

> Sophisticated digital simulators can help you develop your application-specific IC (ASIC) designs. Simulators can prevent chip-level design problems and can often come up with good test-vector sets, but they can't correct failures resulting from the old engineering bugaboo-inadequate design specifications.

## Margery S Conner, Regional Editor

Design flaws in application-specific ICs (ASICs) can be costly: Most ASIC foundries report prototype chip yields of $95 \%$, but many of their customers regularly throw away 40 to $60 \%$ of those chips because of flaws in the original designs. Digital-ASIC simulation packages can help you identify and correct some of those flaws before your design goes into production.

Manufacturers of these new logic and timing simulators boast, with some justification, that their products can solve your thorniest ASIC-design problems. (Fault simulation packages are also available; see box, "Fault simulators verify testability.") But no simulator in existence now, or likely to exist in the near futurebarring a massive breakthrough in artificial intelligence-can make up for the failure to specify your designs rigorously at the chip level.

You can obtain an ASICsimulation package from one of three sources: You can use your foundry's in-house package, you can develop and support your own custom simulation package, or you can purchase a simula-
tor from a third-party supplier. Each of these approaches has its advantages and disadvantages. The major advantage of using a foundry's in-house simulator, for example, is that the simulator is developed specifically for the foundry's processes and devices. When you use such a proprietary simulator, you are using a package that the foundry knows intimately and that is fine-tuned to model the foundry's proprietary process. What's more, if you encounter problems with your ASIC, you can get them solved promptly; you don't risk waiting around while the foundry and the simulation vendor argue about whose fault the problems are.


Capable of performing logic, timing, and fault simulation, the Lasar simulator from Teradyne ranges in price from $\$ 15,000$ for the VAXstation 2000 version to $\$ 280,000$ for the VAX 8800 version.

The second option-that of developing and supporting your own simulator-is impractical for most companies because it requires a large software effort. Developing a simulator is practical only for companies that already do a great deal of custom-IC work.

The big advantage of the third option, the third-party simulation package, is that it's portable: You can start with one foundry and later shift to another, as long as the simulator you choose supports both foundries' li-

Digital-ASIC simulation packages can belp you identify and correct design flaws before your design goes into production.
braries of models. However, because of the huge number of foundries to choose from and the rapid advancements in model design, vendors of third-party simulators have not been quick enough to support new models.

## Foundry supports third-party simulators

Until recently, many of the larger ASIC foundries have often refused to guarantee chips fabricated from designs simulated with third-party simulators. Now, however, some of the foundries show signs of bowing to their customers' demands for third-party-simulator support. VLSI Technology (San Jose, CA), for example, deals with many a potential customer that has already invested in a workstation package and doesn't want to purchase another one from a foundry. The company offers its Portable Library for the Daisy and Mentor workstations. The basic Portable Library interface is $\$ 10,000$; the timing-module libraries cost $\$ 5000$
each. (Each timing module is for a particular line width; ASICs with $1.2-\mu \mathrm{m}$ line widths, for example, have different timing characteristics than do those with $1.5-\mu \mathrm{m}$ line widths.) Because of the competition among foundries, third-party-simulator support will probably become the rule rather than the exception.

VLSI Technology chose Daisy's and Mentor's simulators because those two companies have large installed bases. That decision illustrates the Catch-22 situation that some of the younger simulator companies find themselves in: Designers are reluctant to commit to the newer simulator vendors, regardless of the quality or cleverness of their products, because newer companies' simulator libraries lack extensive foundry models. However, it's difficult for a younger company to develop a library of foundry models, because foundries usually choose only third-party simulators that are already in wide use.

When you're choosing a third-party simulator, it's

## Fault simulators verify testability

The design engineer has traditionally been responsible for troubleshooting any logic and timing problems in an ASIC design. Now, however, the production problems associated with higher degrees of circuit inte-gration-problems such as increasing circuit complexity and the lack of test points-are forcing design engineers to shoulder testability concerns as well. The reason that design engineers must consider testability is clear: The best point at which to determine whether a design is testable, and thus manufacturable, is the earliest one-the design stage.

To meet those needs, most vendors of ASIC-simulation packages currently offer faultsimulation packages in addition to their logic and timing simulators. Fault simulators help ensure that designs will be testa-
ble by inserting faults into a network model and running a network simulation for both the correct conditions (as an experimental control group) and the error conditions. For example, the most commonly used fault model, the "stuck-at" fault model, assumes that inputs and outputs of network primitives fail at either a high or a low state. The fault simulator looks for changes in the output for a stuck-at condition; if that output is different from the output exhibited in the fault-free state, then the input vector has detected a fault. The ultimate purpose of the fault simulator is to find out whether your fault-simulation vectors provide adequate fault coverage.

Note that these fault-simulation vectors are not test vectors. Rather, you use fault-simulation vectors to generate test vectors.

Test vectors are the stimulus and response patterns that the ASIC foundry uses to verify that its chip meets your design criteria and that the manufacturing process has not varied. Once the chip is in volume production, the foundry monitors the manufacturing process by running the test vectors through each ASIC.

Because of production-time and cost restraints, an ASIC house can usually run about 4000 to 10,000 test vectors through the ASIC-for more vectors, you must pay a premium. Although 10,000 test vectors are usually enough to verify that a chip has been produced correctly and that the manufacturing process is not varying, they are not sufficient to verify that the design is good. Fault-simulation vectors, however, can verify that a design meets its specifications.
useful to consider the experiences of companies that have developed their own simulators. Such companies understand how simulators work and have practical experience in applying them. Further, because they don't sell their simulators, these companies are relatively unbiased about what a simulator's capabilities should be, and they're under few illusions about what you can expect from a simulator.

## One company's experience

For example, Zymos Corp (Sunnyvale, CA), which designs and manufactures customizable IBM PC- and PS/2-compatible chip sets, wrote its own logic and timing simulator. Initially, the company let customers use the simulator to simulate chips that varied from Zymos's basic ASIC design. The company then took those designs and turned them into silicon.

Zymos discovered, however, that the chips developed from those simulations often did not work in the customers' systems. The problem was not that the simulations were wrong, but that the specifications the customer used in the simulations were incorrect. Because Zymos had incurred unnecessary nonrecurring engineering costs to develop prototype chips that it never produced, the company elected to require that all new designs be proven first in its hardware emulator. In essence, the company required a breadboard of the new design. The lesson to be learned from Zymos's experiences is not that simulation doesn't work, but that ASIC design still requires a great degree of engineer-ing-design skill.

## Look for a complete library of models

The three most important features to consider when choosing a simulator are the simulator's library of models, its modeling capabilities, and its timing-verification capability. The library is the most important of these features. It should have enough of the models you need and should be compatible with your foundry's processes. Be sure to find out exactly what models the simulator supports before purchasing it; don't assume that the simulator will have the models you need just because it has a large number of models.

For example, a $7400,74 \mathrm{~S} 00$, and a 74 ALS 00 are all implementations of a NAND gate, yet the simulator manufacturer may count them as three separate models. Although it's true that the different families have different timing characteristics, the timing differences don't affect the device model; timing parameters are loaded in at simulator run-time.


With the 192M-byte expanded-memory option, the Compute Engine Model $M$ can simulate designs having as many as 325,000 gates. The Model M typically allows Apollo workstations to perform logic simulations 24 times faster than they could without the accelerator. This acceleration allows you to perform mixed-mode ASIC simulation at the system level.

If, like most companies, your company designs products in one general field, it's more important for you to choose a simulator library that has most of the devices you design with than it is for the library to have a broad selection of models you won't use. Even so, your company will probably need to develop proprietary models for devices; using these proprietary models is one way to give your ASIC designs a competitive edge over products from companies that use all plain-vanilla parts. All digital-ASIC simulators let you define proprietary device models.

Paradise Systems (South San Francisco), for example, designs products and ASICs for the video-display market. Paradise has found that no simulator library covers all of the video-related devices that it designs with. Paradise chose the Mentor simulator package and added to it by writing many simulator models in house. An alternative to writing extra models yourself is to arrange for another company, such as Logic Automation (Beaverton, OR) or Quadtree (Bridgewater, NJ), to develop the library models for you under contract.

Next in importance to the simulator's library is its

Simulation can belp solve some design problems, but no simulator can make up for poor chip-level specifications.


To perform behavioral modeling from the gate level through the system level, the Verilog simulator from Gateway Design Automation uses the Verilog-XL hardware-description language (HDL).
modeling capability. Simulators that offer a behavioral language make it easy for you to model complex devices. Further, because behavioral languages can model devices at various levels, they're well suited for use in hierarchical system design.
When you model a device, you face two challengesyou must describe how the device works, and you must be able to specify stimulus and response patterns. To make this process as painless as possible, you should use a simulator that supports a hardware description language (HDL) that is a behavioral language. Behavioral languages are C-like languages with control structures (constructs), such as If-Then-Else statements, that are tailored for defining the behavior of a device and its response to a stimulus.
Theoretically, the best way to design ASICs for a complex system is to start by specifying the system requirements. Next, you divide the system into subsystems and define each subsystem's requirements, repeating this process through the board level to the individual-ASIC level until the system is completely defined. This complete set of requirements for each building block allows you to simulate ASICs completely in their environment.
That's the theory, anyway. In reality, according to Pete Johnson, a product marketing manager at Gateway Design Automation Corp, it's very rare for a company to do a complete hierarchical system design.

Although more design engineers are seeing the benefits of specifying designs thoroughly from the system level to the chip level, Johnson notes, their managers don't always agree. The problem, he says, is that most engineering managers operating under a tight schedule feel more comfortable with hardware-even when it doesn't work and has to be rebuilt-than they do with the intangible results of a software simulation. They're not always willing to wait for a designer to completely specify and simulate a design before producing the actual part.

Cirrus Logic (Milpitas, CA), a designer of custom ICs for the peripheral-controller market, makes a good case for drawing up detailed design requirements. Because Cirrus's ASIC designs are specialized, the company can make the large software effort necessary to develop and support a custom simulator. However, George Alexy, the company's vice president of marketing, is quick to point out that no simulator is a panacea. More important than software tools are engineers who thoroughly understand what they're trying to design and can translate that understanding to good design specifications.

Cirrus, for example, committed itself to developing a fully custom IBM VGA-compatible chip for IBM PCand PS/2-compatible machines in six months. Instead of jumping immediately into chip design, the company first developed a complete specification for the chip. After performing the design, Cirrus used a simulator that forced the designers to compare the simulated results with the initial requirements. This practice ensured two things: first, that the designers thoroughly understood how it expected the chip to perform in the system, and second, that the design would be completely documented.

## No guarantee it's a duck

This detailed approach has obvious advantages over the traditional design technique that assumes, as the saying goes, that if it looks like a duck, walks like a duck, and quacks like a duck, it probably is a duck. Cirrus's results were impressive; it had delivered over 20,000 of the VGA-compatible chips before its competitors even started shipping. The project's success was largely due to the effort the company put into the initial design specifications.

Although they can emulate Cirrus by placing more emphasis on their designs' initial specifications, most small companies don't have the resources to develop their own simulators. Instead, they must rely on third-
(a)

(b)
module gate_adder(carry_out, sum, a, b, carry_in);
input[3:0] a,b;
input carry in;
output [3:0] sum;
output carry__out;
addbit add3(carry_out, sum[3], a[3], b[3], c2);
addbit add2(c2 , sum[2], a[2], b[2], c1);
addbit add ( $\mathrm{c} 1 \quad$, sum[1], a[1], b[1], c0);
addbit addo(c0 , sum[0], a[0], b[0], carry_in);
endmodule
module addbit(cout, sum, $\mathrm{x}, \mathrm{y}, \mathrm{cin}$ );
input x,y,cin;
output sum, cout;
xor g1(half_sum, $x, y$ ),
g2(sum, half_sum, cin);
and $g 3$ (ov, half sum, cin),
g4(half_carry,x,y);
or g5(cout,ov,half carry);
endmodule
(c)
module func_adder(carry_out, sum, a, b, carry_in);
input[3:0] a,b;
input carry in;
output [3:0] sum;
output carry_out;
wire [4:0] full sum;
assign full_sum $=a+b+$ carry_in;
assign sum $=$ full_sum[3:0];
assign carry_out $=$ full_ sum[4];
endmodule
(d)
module alg_adder(carry_out, sum, a, b, carry_in);

```
input[3:0] a,b;
```

input[3:0] a,b;
input carry in;
input carry in;
output [3:0] sum;
output [3:0] sum;
output carry_out;
output carry_out;
reg temp_carry,carry_out;
reg temp_carry,carry_out;
reg [3:0] sum;
reg [3:0] sum;
integer i;
integer i;
always @(a or b or carry_in)
always @(a or b or carry_in)
begin
begin
temp_carry = carry_in;
temp_carry = carry_in;
for (i=0;i<= 3;i=i+1)
for (i=0;i<= 3;i=i+1)
begin
begin
sum[i] =a[i] ^b[i] ^temp_carry;
sum[i] =a[i] ^b[i] ^temp_carry;
iff([i] + b[i] + temp_carry>1)
iff([i] + b[i] + temp_carry>1)
temp_carry = 1;
temp_carry = 1;
else temp_carry = 0;
else temp_carry = 0;
end
end
carry_out = temp_carry:
carry_out = temp_carry:
end
end
endmodule

```

Fig 1-To compare and contrast gate-level, functional, and algorithmic behavioral models, consider the 1-bit full adder shown in a. The gate-level behavioral model (b) of the adder demonstrates the detail needed at this level of modeling, even when you use a hardware description language (HDL). A functional model (c) of the same adder device is much less complex and requires a less-detailed knowledge of the device's gate composition-the code is basically just the Boolean equation for an adder. The algorithmic model (d) is the most abstract level of modeling. In this example it requires more lines of code than \(\boldsymbol{c}\) does, but for more abstract devices it's the simpler of the two methods. Note that the first five lines of each model are the same; they are necessary to make the module appear to the simulator as a black box. These five lines describe the inputs and outputs and define an order in which the module can be accessed from another module. The language used in this example is Verilog-XL from Gateway Design Automation.
party simulators to support the design effort from the system level down to the chip level. If you choose a third-party simulator, be sure to choose one that uses an HDL, which is invaluable in supporting this range of simulation levels.

\section*{Behavioral-language models}

Most HDLs being developed now are behavioral languages. You can use most behavioral languages to model devices from the transistor level up through the algorithmic level. Although early simulators could use
only transistor-level (or switch-level) device models, most currently available simulators can use a range of models, from the gate level to the algorithmic level. Devices are becoming so complex that even gate-level modeling is becoming impractical, however.

Developing a gate-level model of the 80386 could take a relatively long time-perhaps even a few years. In other words, it can take as long to model a device at the hardware level as it does to design it in the first place. At present, it's common to make behavioral-language models of complex chips at the more abstract bus level.

Some of the larger foundries now show signs of bowing to their customers' demands for third-party-simulator support.

Logic Automation developed such a model for the 80386 (which it offers for \(\$ 1850\)) over several months.

Behavioral-language modeling models a chip by describing, in a behavioral language, how the chip acts ("behaves") in the system. Although it takes about as long to create a behavioral-language model of a simple device-a flip-flop, for example-as it does to construct a Boolean model of the device, you can model complex devices much more rapidly by using behavioral-language modeling rather than hardware-level modeling. Hardware-level modeling describes the specific physical structure of a device. Because a behavioral-language model describes the behavior of a device independently of its physical structure, foundries can make extensive changes in the physical structure-as long as they don't change the device's behavior-without invalidating the simulation results obtained with the behavioral-language model.

Strictly speaking, you can make a behavioral model of a design at any level. Practically speaking, however, you'll probably use a behavioral-language model only when your ASIC's gate count exceeds about 25 gates. The programming overhead associated with behaviorallanguage modeling (setting up variables, for example) is too great to be worthwhile for less-complex devices.

ASIC simulators that offer behavioral languages let you model devices at any of three levels: the gate, functional, and algorithmic levels. A gate-level model defines a device in terms of its gate interconnections. A functional model defines a device's behavior as a set of Boolean equations. An algorithmic model defines the device's behavior in terms of algorithms by making full use of a behavioral language's constructs and higherlevel capabilities. Fig 1 gives examples of gate-level, functional, and algorithmic models written in an HDL that is also a behavioral language.

\section*{Hardware modelers}

If your design includes a commercially available component for which no software model exists, you can still use that part in your simulation by plugging a hardware model of the part into a hardware modeler. A hardware modeler is a unit that interfaces with (or is built into) the simulator's workstation. A hardware model is usually a board that contains the commercially available device and any required support circuitry. Companies such as HHB Systems, Ikos, and Mentor offer hardware modelers and hardware models of various parts for use with their simulators. HHB Systems, for example, offers its hardware modeler for \(\$ 65,000\)
and sells hardware models for around \(\$ 5400\) each.
A big advantage of hardware modeling is that, unlike a software model, a hardware model of a device always performs exactly as the commercially available part does. A disadvantage of the hardware model, however, is that although it always matches the commercially available part, it may not match the device the foundry eventually produces, because of design revisions. Software models can be changed more easily to accommodate any revisions. Further, you can't use a hardware model to run timing simulation, because you can't change the timing parameters of the hardware model.

\section*{Consider performing a timing simulation}

To draw up a detailed specification for your ASIC, you need to specify timing parameters. It's one thing to write an ASIC specification that baldly states the relationship among the logic levels; it's much more difficult to write a spec that explains the minimum and maximum timing for each signal. These timing extremes are important because they verify that the ASIC will work over the range of timing conditions the manufacturing process allows.

Although min/max timing verification is time consuming because of the number of variables the simulator must consider, consider running a timing simulation anyway: Timing-simulation information is critical because it is information that a breadboard can't give. If your design has more than 5000 gates, your timing simulation will probably run very slowly. To speed the simulation of large designs, consider using a hardware accelerator.

Hardware accelerators are optional units that implement the simulation algorithms in hardware. Mentor's Compute Engine Model M accelerator, for example, lets a workstation perform a logic simulation of a \(23,000-\) gate circuit 24 times faster than it could without the accelerator. The accelerator interfaces with the Apollo Model DN400, -500, -600, and -3000 workstations. Prices for the Compute Engine start at \(\$ 59,900\).

However, accelerator prices cover a wide range. Zycad's line, for example, starts with the \(\$ 38,000\) Magnum and ends with the \(\$ 2.5\) million System Development Engine. Accelerators are also available for smaller budgets. One of the least expensive hardware accelerators is Aida's Persim, which performs 5 million evaluations \(/ \mathrm{sec}\). The Persim Model 1 can model 64,000 gates; the Model II can model a maximum of 128,000 gates. The prices are \(\$ 7500\) and \(\$ 20,000\), respectively.

The reason the prices and simulation times quoted for

\section*{'REAL-TIME SOLUTION TO ASIC VERIFICATION}

For the first time, you can test your VLSI prototype design at real world operating speeds. Thoroughly and easily. Across the entire cycle. Without compromise.

Topaz is a totally-integrated ASIC verification system that reduces prototype characterization and fault analysis time, while offering these exclusive advantages:
- Full Data Formatting to 50 MHz -for quick measurement of setup times and propagation delays.
- 256 I/O Channels at Speed, Without Multiplexing-for maximum performance and flexibility.
- Programmable Pattern Generation to \(50 \mathbf{M H z}\)-for initiation of loops, branching and data control.
ASIC design requires painstaking accuracy. Verifying that design has been neither fast nor easy. The time available to get today's increasinglycomplex ASICs to market continues to contract, and the price of an undetected error can be incredibly costly.

With Topaz, you'll know your design is right, and you'll know it faster. CAE-LINK \({ }^{T M}\) software permits easy translation of simulator vectors into ready-to-use test vectors. And, our exclusive Meta-Shmoo \({ }^{\text {TM }}\) software allows you to quickly sweep voltages and times at 500ps increments across an entire cycle, without programming.

It acquires data with a minimum of effort; and its ability to do graphic error-bit mapping and multi-level triggering gives it unequalled performance in failure analysis.

Topaz is a cost-effective solution to today's high speed ASIC verification needs, and the even higher speeds you'll require tomorrow. Call for complete details or your personal demonstration.

TECHNOLOGY, INC.
18902 Bardeen, Irvine, CA 92715
Phone: (714) 752-5215
DIAL TOLL FREE 1-800-HILEVEL
(In California 1-800-752-5215)
Circle 112 for Demonstration
Circle 151 for Literature Only

> Third-party simulators are portable: You can start with one foundry and later switch to another, as long as your simulator supports both foundries' libraries.
the Persim models seem very low is that these simulators operate differently from the others. The Aida simulators perform levelized-compile-code simulation, which evaluates the output state of all logic gates in a design, in accordance with each change in the input pattern, and ignores timing delays. This type of simulation takes place much more quickly than do simulations that take gate delays into account. By ignoring any gate delays, the simulator can simply evaluate a Boolean equation. After you've performed the logic simulation and caught any obvious logic-design problems, you can then run the design through the timing-analyzer software, which determines the timing associated with all of the circuit's delay paths.

Because the Aida simulator doesn't take the gates' timing characteristics into account, this timing analysis only works for synchronous circuits; the simulator merely flags any asynchronous circuits. This scheme is generally adequate for most designs, however, because most large gate designs are synchronous.

Not all simulator manufacturers are fans of hardware accelerators. Prabhu Goel, president of Gateway Design Automation, claims that as engineering workstations gain more processing power, they'll no longer need separately accelerated simulation algorithms. For now, however, keep in mind that accelerators can commonly execute 500 MIPS, which is still far beyond the capability of a general-purpose workstation at pres-

\section*{Manufacturers of ASIC simulators}

For more information on digital-ASIC simulation packages, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

\author{
Aida Corp \\ 5155 Old Ironsides Dr Santa Clara, CA 95054 (408) 748-8571 \\ Circle No 650 \\ Aptos Systems Corp \\ 4113 Scotts Valley Dr Scotts Valley, CA 95066 \\ (408) 438-2199 \\ Circle No 651 \\ The CAD Group Inc 3911 Portola Dr \\ Santa Cruz, CA 95062 \\ (408) 475-5800 \\ Circle No 652 \\ Cadnetix Corp \\ 5757 Central Ave \\ Boulder, CO 80301 \\ (303) 444-8075 \\ Circle No 653 \\ Calma Co 501 Sycamore Dr Milpitas, CA 95035 (408) 434-4000 \\ Circle No 654 \\ Control Data Corp \\ 8100 34th Ave S \\ Minneapolis, MN 55440 \\ (612) \(853-7460\) \\ Circle No 655 \\ Daisy Systems Corp \\ 700 Middlefield Rd \\ Mountain View, CA 94039 \\ (415) \(960-6593\) \\ Circle No 656
}

Data General Corp
6300 S Syracuse Way Englewood, CO 80111 (303) 694-2900

Circle No 657
Endot Inc
11001 Cedar Ave
Cleveland, OH 44106
(216) 229-8900

Circle No 658
Gateway Design Automation
Box 573
Westford, MA 01886
(617) 692-9400

Circle No 659
GenRad Inc
510 Cottonwood Dr
Milpitas, CA 95035
(408) 946-6960

Circle No 660
HHB Systems
1000 Wyckoff Ave
Mahwah, NJ 07430
(201) 848-8000

Circle No 661
Ikos Systems Inc
145 N Wolfe Rd
Sunnyvale, CA 94086
(408) 245-1900

Circle No 662
Mentor Graphics Corp
8500 SW Creekside Pl
Beaverton, OR 97005
(503) 626-7000

Circle No 663

Personal CAD Systems Inc
1290 Parkmoor Ave
San Jose, CA 95126
(408) 971-1300

Circle No 664
Silicon Design Labs
645 Martinsville Rd
Liberty Corner, NJ 07938
(201) 580-0102

Circle No 665
Silvar-Lisco
1080 Marsh Rd
Menlo Park, CA 94025
(415) 324-0700

Circle No 666
SimuCad
1040 Marsh Rd
Suite 200
Menlo Park, CA 94025
(415) 321-2350

Circle No 667
Simulog Inc
2336H Walsh Ave
Bldg G
Santa Clara, CA 95051
(408) 727-8272

Circle No 668
Spectrum Software
1021 S Wolfe Rd
Sunnyvale, CA 94086
(408) 738-4387

Circle No 669
Teradyne Inc
321 Harrison Ave
Boston, MA 02118
(617) 482-2700

Circle No 670

Valid Logic Systems Inc
2820 Orchard Parkway
San Jose, CA 95134
(408) 945-9400

Circle No 671
Vamp Ine
6753 Selma Ave
Los Angeles, CA 90028
(213) 466-5533

Circle No 672
Viewlogic Systems Inc
275 Boston Post Rd W
Marlborough, MA 07152
(617) 480-0881

Circle No 673
XCAT
2855 Anthony Lane S
Minneapolis, MN 55418
(612) 789-2050

Circle No 674
Zycad Corp
3500 Zycad Dr
St Paul, MN 55109
(612) 631-5555

Circle No 675

\section*{Low Cost EL Lamps. Fast.}
ent. It's likely that accelerators will continue to increase in popularity for high-gate-count designs and for accelerating PC-based workstations, while unaided workstations will provide acceptable performance for medium-gate-count designs.

Unlike the manufacturers that offer hardware accelerators, Ikos has taken a different approach. The company designed its simulators to implement all of their simulation algorithms in hardware. The Ikos 1900, for example, is a deskside tower that interfaces to an IBM PC/AT, Apollo DN3000, or Sun 3. The 1900, which starts at \(\$ 46,500\), simulates designs of as many as 16,000 gates. You can increase that number-to 245,000 gates-by adding as many as fourteen 16,000 -gate evaluation boards at \(\$ 11,000\) each.

EDN

\section*{References}
1. Wiegand, Jim, "Gate Array Directory," \(E D N\), June 25, 1987, pg 134.
2. "1987 Survey of Logic Simulators," VLSI Systems Design, February, 1987, pg 71.

Article Interest Quotient (Circle One)
High 470 Medium 471 Low 472

Reliable, quathy Ellampr. Any size: Any shape: With the fastest turnaround in the industry:

BKL's new soft touch EL lamps are made with KARD-O-LITE, "M a revolutionary material that is quickly and easily die-cut to any configuration.

BKL's patented automated manufacturing process produces extremely thin (.012" to \(.018^{\prime \prime}\)), superior quality EL lamps at a drastically reduced cost. Ideal for LCDs, membrane switches, flat panel displays, emergency and safety lighting.

Call Dean Smith at (215) 277-2910.

Bonar KARD-O-LITE, \({ }^{\text {TM }}\) Inc.
421 Feheley Drive, King of Prussia, PA 19406 (215) 277-2910

CIRCLE NO 14

\section*{FREEII}

IDI offers you the largest selection. LED's, Neon Glow Lamps, Relampable and Non-relampable indicator lights. They're all listed in our free catalog. Along with standard variations, money-saving packages, our customizing services and much, much more.
It's the industry's source . . make it your source.

Industrial Devices, Inc., Hackensack, NJ 07601 Telephone: (201) 489-8989

It's yours FREE!! For more information, circle 15 on the reader's card.

\section*{INTRODUCINGTHE IDEAI}

Aleader's work is never done.

No sooner do we invent the Programmable Gate \({ }^{\text {nu }}\) Array and with it a whole new category of logic devices, than wére already outdoing ourselves.

By adding a brand new, more powerful family of Programmable Gate Arrays, the 3000 series.

What's new and different?

They're faster and denser,
with more gates than anybody ever thought a programmable logic device would ever have.

And, are you ready? Cheaper to use than conventional gate arrays.

Which makes them more ideal than ever.

Xilinx Programmable Gate Arraus have densities up to and including 9000 honest gates.
How dense can you get? We aim to keep finding out.
THE PROGRAMMABLE GATE ARRAY, IMPROVED.
The 3000 series has a second generation Logic Cell"'Array architecture that turns a 40 MHz system clock rate.

That's enough speed to run with the highest performance microprocessors you can name.

Of course, our patented

\section*{LOGIC DEVICE. AGAIN.}
architecture is also responsible for gate counts that range from 1200 in the XC 2064 to 9000 in the XC 3090.

Enough density for just about any logic application you can name.

Plus more flexibility in routing and gate utilization than you'll know what to do with.

\section*{THE ONLY LOGIC DEVICE YOU MAY EVER NEED.}

Like all Xilinx Programmable Gate Arrays, our 3000 series offers the same advantages you've come to know and love:

Gate array density.
User-programmability with unlimited reprogrammability.

No NRE or inventory risk.
\(100 \%\) tested parts.
Low cost gate array type design tools.

And a development cycle that fits between paychecks.

Our Programmable Gate Arrays also make it simple to choose a logic device.

They simply make every other logic device obsolete.

With their new architecture, you'll have the speed you need, plus the density to get all your logic on one device.

A device with advantages no other technology can match.

So much less it isn't even funny. At least, not to them.

We can prove it, too.
We've prepared a study that lays out the cost comparison data in detail and, needless to say, we'd love to send you a copy. (There's also a nice thick data

Want to see how fast our new 3000 series is? Want to see it again?

Now stop and ask yourself, "Why should I use anything else?"

Good question, isn't it?

\section*{THE PRICE IS RIGHT, TOO.}

We've told you about our improved speed.

And our increased density.

But weve saved the best news for last.

Using a Xilinx Programmable Gate Array costs less than using a conventional gate array.
book for those of you who are already true believers.) Just call us toll-free at (800) 255-7778. In California,(408) 559-7778. Or contact your local Xilinx sales representative or distributor. The Programmable Gate Array from Xilinx. It's everything you've ever wanted. Again.

\section*{8. XIIINX}

The Programmable Gate Array Company \({ }^{\text {s" }}\)

\section*{Irasy ASIC}

\section*{Only from OKI:}

\section*{Most complete ASIC building blocks. Most versatile design/package options. Most experienced ASIC technology.}

Nobody but nobody puts ASIC technology together like OKI Semiconductor can.
Ease into ASIC with OKI as your close working partner-and you instantly support your VLSI application with the most comprehensive ASIC capabilities on the world market today. Bar none.

From gate array, standard cell and full custom chips to standard components to integration to advanced board level products, OKI alone puts you on the leading edge of ASIC technology and its complete implementation.

\section*{OKI: the totally logical choice}

Opt for OKI ASIC, and you open up your options across the board. Only OKI now offers the system designer the unique security and entry ease that only a proven track record in CMOS ASIC problem-solving can provide. This history of performance built up since 1977 has produced the widest range of solid building blocks yet: advanced ASIC products and packaging including surfacemount, backed up with the most flexible cell libraries, CAD/CAE design tools and development aids.
As your working partner, OKI ASIC expertise is available to you at any stage of the development process. We'll help you define system requirements, determine the most cost-effective product solutions and supply complete design softwareaccessible at your own workstation or through our regional design centers. And then we take it from there: with high
volume fabrication, assembly and testing completed in one of the world's most highly robotized manufacturing facilities.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Compare \\
Total ASIC Capabilities
\end{tabular} & & ¢ & i
¢
0
0
in \\
\hline Gate Arrays to 10K Gates & - & - & \\
\hline Standard Cells to 30K Gates & \(\bullet\) & - & \\
\hline Full Customs - Lowest Cost & \(\bullet\) & & \\
\hline 1.5 Micron Cell Library & - & \(\bullet\) & \(\bullet\) \\
\hline Macro Cells & \(\bullet\) & - & \\
\hline Bi CMOS & - & & \\
\hline High Density Surface Mount Packages & \(\bullet\) & & \\
\hline Board Level Products & \(\bullet\) & & \\
\hline Supporting Standard Products & \(\bullet\) & & \\
\hline COB Technology (Chip on Board) & \(\bullet\) & & \\
\hline CAD/CAE Design Support & \(\bullet\) & - & - \\
\hline Customer-Friendly Design Interface & \(\bullet\) & - & \(\bullet\) \\
\hline Regional Design Centers & \(\bullet\) & - & \(\bullet\) \\
\hline Robotic Manufacturing & - & & \\
\hline
\end{tabular}

ASIC Solutions from OKI: You can't beat the logic!

Please rush complete technical data/specs on OKI capabilities in:
() Gate Arrays
() Standard Cells
() Full Customs
() Please call: we have immediate requirements:

\title{
Team Performance Gould 4070 Digital Oscilloscope Gould K450B Logic Analyzer 400 MS/s (sampling rate)
}

\section*{Start solving your design problems today!}

Gould offers two powerful tools to help the digital design engineer track down and eliminate intermittent failures. Used separately or teamed together with sophisticated triggering, they provide the power to resolve design problems.

The K450B Logic Analyzer, with 80 channels at 100 MHz or 40 channels at 200 MHz , gives you an overview of the whole system so that individual glitches or timing errors can be located.

Using the 4070 Digital Storage Oscilloscope, with 2 or 4 channels at 400 Megasamples per second, you can capture the analog details of the waveform and find noise transients or race conditions which can be the source of the failure.
Put Gould on your design team with our special combination offer on scopes and analyzers. Call 1-800-GOULD-10 or write to Gould Inc., Test \& Measurement Group, 19050 Pruneridge Ave., Cupertino, CA 95014.

4070 DSO
K450B LA
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
2 or 4 channels @ \(400 \mathrm{MS} / \mathrm{s}\) \\
(400 Megasamples/sec.)
\end{tabular} & \begin{tabular}{l}
80 channels all @ 100 MHzl \\
40 channels @ 200 MHz
\end{tabular} \\
\hline \begin{tabular}{l}
2.5 ns resolution on \\
transient signals
\end{tabular} & \begin{tabular}{l}
5 ns glitch capture on \\
all channels
\end{tabular} \\
\hline Auto SetupTM & Auto SetupTM \\
\hline Trigger delay by time/events & 16 levels of Trace ControlTM \\
\hline Built-in 4 color screen plotter & Built-in disk drive \\
\hline
\end{tabular}
\(\Rightarrow\) goum
Electronics

\title{
Consider the tradeoffs when evaluating linear-semicustom ICs
}

> System designers face special problems when creating analog circuits for semicustom IC fabrication. Unlike digital circuits, which you can readily subdivide into simple gates, analog circuits are highly irregular, require different design methods, and frequently need nonintegrable external components.

\section*{Bruce Moore, Raytheon Semiconductor, and Will Ritmanich, Consultant}

The problem of designing analog (linear) circuits suitable for semicustom fabrication is complicated by the nature of the active and passive devices available for IC fabrication. Because the fabrication process imposes constraints, transistors, resistors, and capacitors in IC form display performance characteristics different from those of their discrete counterparts. To help minimize the cycle time, cost, and risk involved in your design effort, it is important to understand these performance characteristics and the design approaches necessary to implement a successful linear-semicustom circuit.

\section*{Start with a list}

The first step in preparing your design for integration is to rank the circuit's key requirements and features in order of their relative importance. This ranking is essential because the process of creating a
semicustom-linear IC requires compromises involving a number of factors, including the following:
- available power-supply voltages
- desired power consumption
- required circuit speed
- desired accuracy
- operating environment
- I/O considerations
- time-to-market urgency
- volume vs device-cost tradeoffs.

To the extent that it is possible, you should assign objective specifications to each major functional block in your circuit. Successful monolithic designs are easy to manufacture and achieve good yields in volume production. If you impose parameter specifications tighter than those normally obtainable, you will limit production yields and substantially increase device costs. Don't make any specifications tighter than needed, even if you don't think that there's a chance of compromising manufacturability.

In reviewing your circuit for feasibility of integration, you should be aware of four generalized aspects of monolithic-IC circuit designs that distinguish them from discrete or hybrid designs:
1. Matching. Semicustom IC designs generally rely on the matching and tracking of component ratios rather than on absolute values. If possible, you should avoid circuits that depend on tight-tolerance absolute values, or change the circuits to rely on component matching. If the circuit needs precision componentstiming resistors, for example-you'll usually have to leave them off chip.
2. Component choice. You can best accomplish semi-

> Transistors, resistors, and capacitors in in-tegrated-circuit form do not display characteristics identical to those of their discrete counterparts.

custom designs through proper partitioning, which entails leaving the difficult-to-integrate components outside the package. For instance, you must handle large-value capacitors in this manner because it is difficult and expensive to integrate more than 50 picofarads of capacitance on chip. Power transistors create similar problems; they commonly require special processing to achieve their rated performance, and the large die sizes and high power dissipation of highcurrent (\(>200 \mathrm{~mA}\)) power transistors usually preclude their use on chip. Medium-power transistors, however, are generally available on chip.
3. I/O limitations. Successful semicustom designs generally minimize the number of bonding-pad (I/O) connections and maximize the interconnection of internal elements. The number of I/O and power-supply connections is a major determinant of an IC's chip size, packaging yields, test costs, and reliability. Try to keep the IC pin count lower than 44 to take advantage of low-cost packaging, though any work to minimize the bonding-pad count will prove rewarding. In particular, for circuits that use many capacitors, you can often reconfigure the circuit to reduce the device pin count while providing performance equal to or better than that of the original design. If your circuit contains both analog and digital elements, you'll sometimes find it cost effective to split the design into two chips. Large semicustom chips using analog elements to provide digital functions are generally more difficult to design, manufacture, and test-and are much more expensive -than purely digital circuits with comparable logic performance.
4. Infinite redesign. Although a discrete design that

Fig 1-The workhorse of the linear bipolar IC, this small-signal npn transistor is similar to the 2N3904 discrete type in construction and basic performance. Its saturation voltage, stray capacitance, and current-handling capability are inferior to those of the discrete device.

Fig 2-Having no practical discrete equivalent, lateral pnp transistors operate laterally in the plane of the die surface. Their gain and frequency characteristics are poor in comparison with those of vertical devices.
is already in production can be modified, tweaks and fixes in an IC are expensive and difficult, and thus you should give some thought to the lifetime of the end product. Consider including options or adjustability features in your design before committing it to production. (For more information on this subject, see box, "Achieving first-pass design success.") If there's a great likelihood that your initial design may change before attaining substantial volume, then an arraybased approach is probably your best choice. If circuit accuracy or volume requirements are a high priority, you may want to choose a standard-cell design or a full-custom design. An approach that many engineers have adopted is to use arrays for prototyping and low-volume production, and then to phase in full-custom designs later. This approach offers the best of both worlds-low initial design costs, low risk, a reduced time factor, and the provision for producing low-cost devices in large volume when you need them.

\section*{Bipolar workhorse is like the 2 N 3904}

Fig 1 shows the structure of a small-signal npn transistor, the workhorse of the linear bipolar IC. Similar to the discrete 2N3904 in construction and basic performance, it has one outstanding difference. In a discrete transistor, ohmic contact is made directly underneath the base-emitter junction to minimize bulk collector resistance and \(\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}\). Because this interconnection technique isn't possible in a junction-isolated IC, manufacturers add a heavily doped, buried layer instead. This buried layer causes higher saturation voltages, a higher collector capacitance (about 3 pF), and a lower current-handling capacity (about 10 mA).
Frequency response of the integrated transistor is very good-the small npn transistors in Raytheon's

\section*{Achieving first-pass design success}

A general problem that most system designers face is that they don't have the time to redesign malfunctioning circuits. Because most linear ICs start with a paper design followed by a discrete breadboard, you should avoid the possibility of a redesign by selecting the most suitable technology and methodology early in your design cycle. Reducing the risks by eliminating the unknowns is always a good idea.

The approach that Raytheon (Mountain View, CA) takes is to eliminate most of the design difficulties posed by semiconductor variables, by making the active and passive components behave more like familiar, off-the-shelf devices. To ease the design task, Raytheon has a kit available that includes sample devices, software, and design documentation.

Raytheon's RLA series of tilebased, linear macrocell arrays includes a variety of thin-film resistors ranging in value from \(1.25 \mathrm{k} \Omega\) to \(150 \mathrm{k} \Omega\). Further, the configurable, tile-based differential gain blocks have high gain and provide performance approaching that of many off-theshelf op amps and comparators. In addition, a proprietary 2 -lay-er-metal process allows ease of routing and provides maximum array utilization and low NRE costs. Such features permit the creation of array-based circuits that rival the performance of standard-product ICs.

Fig A-This 1.23V bandgap regulator rivals discrete designs. It has an initial circuit accuracy of \(\pm 2 \%\), a typical \(T C\) of \(\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), and a load regulation of \(\pm 2 \mathrm{mV}\) at currents to 20 mA .

As an example of the performance attainable with this approach, Fig A shows a bandgap voltage reference that can also function as an electronic thermometer. The reference takes advantage of the thin-film resistors in the RLAs to generate an output voltage with a low temperature coefficient. The 1.23 V output voltage has an initial accuracy of \(\pm 2 \%\) and a typical TC of \(\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). The load regulation is \(\pm 2 \mathrm{mV}\) at load currents of 0 to 20 mA , and the line regulation is \(\pm 10 \mathrm{mV}\) at supply voltages \(\left(\mathrm{V}_{\mathrm{S}}\right)\) ranging from 4 to 30 V .

The transistors designated NPNS in the circuit are smallsignal types. The MOPA gain
block is a single macrocell location connected as an operational amplifier. The circuit generates the reference voltage by adding the \(\mathrm{V}_{\mathrm{BE}}\) of the single NPNS to the voltage across \(\mathrm{R}_{2}\).
\(\mathrm{V}_{\mathrm{BE}}\) has a negative temperature coefficient; the \(\mathrm{R}_{2}\) voltage has a positive temperature coefficient, which the voltage across \(\mathrm{R}_{1}\) determines. These voltages sum to produce a nearly zero TC at the \(V_{B G}\) terminal. The output, \(\mathrm{V}_{\text {PAT }}\), is the actual bandgap voltage, which is proportional to the actual temperature. You can scale this output to any convenient value by using a buffer amplifier having suitable gain.

RLA linear arrays have a typical \(f_{T}\) of 500 MHz . New bipolar processes have extended this figure to over 1 GHz . Manufacturers accomplish this frequency extension by using fine-line geometries, plasma etching, and electron-beam lithography. Thanks to their vertical structures, npn transistors have high current gain in a small device size. They also have a stable and predictable \(V_{B E}\) that has good device-to-device matching characteristics.

High-current (large) npn transistors have a geometry
similar to the small npn types, but with substantially increased emitter- and collector-contact areas to handle the higher currents. As a result, these transistors have a lower frequency response and an increased parasitic capacitance (about 10 to 30 pF) from collector to substrate. Roughly comparable to the 2N2222, these IC versions handle a conservatively rated 200 mA , but exhibit higher saturation voltages.

Fig 2 depicts the geometry of the pnp transistors normally encountered in a monolithic IC. These transis-

High-value capacitors and precision resistors are difficult and costly to fabricate; they're often best left off the chip.
tors, for which no practical discrete equivalent exists, operate laterally in the plane of the die surface. Their construction results in a base-emitter area that is much smaller than that of an npn device having an equal emitter size. Because of their method of operation, as well as processing limitations, lateral pnp transistors exhibit a falloff in beta at collector currents below 100 \(\mu \mathrm{A}\). The frequency response also suffers; the typical \(\mathrm{f}_{\mathrm{T}}\) is about 4 MHz unless exotic processing is used. By employing dielectric isolation and a special complemen-tary-bipolar process, manufacturers can create vertical pnp devices with greatly improved performance, but production costs and manufacturing complexity escalate rapidly. Conventional lateral pnp transistors find use as current sources, level shifters, and input stages.

\section*{MOS pros and cons}

Manufacturers of linear ICs have used bipolar technology for a much longer time than they've used CMOS. However, many of today's applications employ CMOS to great advantage. The use of CMOS is especially valid for designs that must implement a sampled-data system. CMOS is very useful when a high degree of interconnection exists between analog and digital func-

Fig 3-This layout of a typical n-channel, silicon-gate MOS transistor shows the coding for the mask layers and the scale in microns.

Fig 4-This characteristic of an NMOS transistor plots conduction from the linear region to the switched region as a function of \(V_{G S}\).
tions, such as in data-acquisition systems. Whereas linear bipolar devices are best suited for use in a current-steering mode, CMOS circuits work best in switching-type applications. This mode (always-on) eliminates the problems that storage-time delays create when the devices switch.

MOS devices, which use voltage rather than current to control their conduction characteristics, have both advantages and disadvantages. Their advantages include low input currents, high input impedance, and excellent logic compatibility. Their disadvantages involve higher noise, poorer matching (caused by processing and environmental variables), and a lower effective transconductance than that of bipolar devices of the same die size.

Fig 3 shows the layout of a typical n-channel MOS device. As the gate-to-source voltage (\(\mathrm{V}_{\mathrm{GS}}\)) varies (Fig 4), the lateral conduction through the channel varies from the linear region to the switched region. This action illustrates a principal challenge in linear MOS designs-that of keeping the device properly biased. Unlike the base input of a bipolar transistor, the isolated gate of an MOS transistor exhibits a high input impedance and only a small diode-leakage current. This characteristic allows MOS devices to have low leakage currents at low temperatures and to function well as analog switches.

As current sources, MOS devices provide high output impedance; as switches, they allow bidirectional current flow and exhibit much lower impedance than that of bipolar devices. Voltage-noise performance is worse than that of bipolar devices, however, because running higher current through the MOSFET doesn't lower the noise nearly as much as in a bipolar transistor. Because

TABLE 1-BIPOLAR/CMOS PERFORMANCE COMPARISON
\begin{tabular}{l|c|c|c|c}
\multirow{2}{*}{} & \multicolumn{2}{|c|}{\begin{tabular}{c}
JUNCTION-ISOLATED \\
BIPOLAR
\end{tabular}} & \multicolumn{2}{c}{\begin{tabular}{c}
SILICON-GATE \\
CMOS
\end{tabular}} \\
\cline { 2 - 5 } PARAMETER & NPN & \begin{tabular}{c}
LATERAL \\
PNP
\end{tabular} & \begin{tabular}{c}
N-CHANNEL \\
MOSFET
\end{tabular} & \begin{tabular}{c}
P-CHANNEL \\
MOSFET
\end{tabular} \\
\hline GAIN & VERY GOOD & GOOD & GOOD & FAIR \\
\hline MATCHING & VERY GOOD & GOOD & POOR & FAIR \\
\hline INPUT IMPEDANCE & LOW & LOW & HIGH & HIGH \\
\hline OUTPUT IMPEDANCE & MODERATE & MODERATE & MODERATE & MODERATE \\
\hline SPEED & VERY HIGH & LOW & HIGH & MODERATE \\
\hline NOISE & VERY LOW & LOW & HIGH & HIGH \\
\hline RADIATION RESISTANCE & GOOD & FAIR & POOR & FAIR \\
\hline CONTROL ELEMENT & CURRENT & CURRENT & VOLTAGE & VOLTAGE \\
\hline CONDUCTION PATH & VERTICAL & SURFACE & SURFACE & SOURCE \\
\hline
\end{tabular}
the current flow is lateral, rather than vertical, the transconductance of an n-channel MOSFET is less than \(1 / 10\) that of an npn bipolar transistor of the same size. As a result, achieving high-gain-bandwidth op amps is much more difficult with MOS than it is with bipolar devices.

P-channel MOSFETs are similar to n-channel devices in operation and construction, but have reversed polarities. Because they conduct by the movement of holes rather than electrons, p-channel devices operate at much lower speeds than n-channel types. However, PMOS devices are more stable than their NMOS counterparts; designers often use them as input stages for op amps and comparators. For both n- and p-channel devices, manufacturers can control the linear characteristics, such as power and speed, by scaling the width-tolength (W/L) ratio of the channel geometries. Logic transistors have a short channel of about \(3 \mu \mathrm{~m}\). Transistors suitable for use as linear elements generally have device channel lengths greater than \(10 \mu \mathrm{~m}\).

A common practice among manufacturers of CMOS ICs is to use ion implantation to selectively control the devices' operating characteristics. Because radiation affects the threshold voltage of MOSFETs, the devices are often not as well suited for aerospace applications as are bipolar devices. Also, operating at low (3V) supply voltages is generally more difficult with MOS devices than it is with bipolar types.

Table 1 shows a performance comparison between bipolar and CMOS circuits for a number of important parameters, and Table 2 provides a comparison between bipolar and CMOS circuits in various applications.
Manufacturers of ICs create resistors in several
ways. The most common approach is via diffusion or pinch diffusion of reverse-biased active devices. Ion implantation is another method that both bipolar and MOS technologies employ, and some fabrication processes also use sputtered, thin-film resistors.

Several factors determine the characteristics of an IC resistor. Of major importance is the sheet resistivity of the material used to create the resistor-a high value is generally desirable. Sheet resistivity determines the die area required for a given resistor value and tolerance, and the die area determines the cost of the resistor. Another factor to consider is the material from which the resistor is made. A drawback to using silicon for resistors is the nonlinearity of their resis-tance-vs-voltage characteristic.

The junction isolation separating the resistor from its surrounding material introduces stray capacitance that varies with the applied voltage. Further, a reverse-

TABLE 2-BIPOLAR/CMOS COMPARISON
\begin{tabular}{l|c|c}
\multicolumn{1}{c|}{ APPLICATION } & BIPOLAR & CMOS \\
\hline OP AMP & VERY GOOD & FAIR \\
\hline ANALOG SWITCH & POOR & VERY GOOD \\
\hline COMPARATOR & VERY GOOD & FAIR \\
\hline DIA CONVERTER & FAIR & FAIR \\
\hline REFERENCE & VERY GOOD & POOR \\
\hline REGULATOR & VERY GOOD & POOR \\
\hline ACTIVE FILTER & GOOD & VERY GOOD \\
\hline LOGIC COMPATIBILITY & FAIR & VERY GOOD \\
\hline <3V OPERATION & VERY GOOD & POOR \\
\hline RADIATION RESISTANCE & GOOD & POOR
\end{tabular}

\section*{The workhorses of a linear bipolar IC are the small-signal npn and the medium-power npn-roughly equivalent to the discrete 2N3904 and 2N2222.}
biased diode associated with each resistor exhibits increased leakage-current flow when subjected to radiation. This radiation susceptibility is a possible contributor to major circuit errors.

It is a simple matter to create resistors from either MOS or bipolar active devices. As an example, Fig 5 shows a diffused base resistor formed by the transistor's base-diffusion step. Because of the difficulty in controlling the depth and density of the impurity concentration, the resistance value can vary as much as \(\pm 30 \%\). The low sheet resistivity, along with a distributed capacitance that is directly proportional to the resistor's value, as well as the need to reverse-bias the parasitic diode, limits the usefulness of this type of resistor.

The temperature coefficient of a base resistor's value varies nonlinearly from \(-600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) at \(-55^{\circ} \mathrm{C}\) to 1200 \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) at \(125^{\circ} \mathrm{C}\). Moreover, the difference in potential between the epi (epitaxial) island and the resistor terminals modulates the value of the base resistor. Although they're the most commonly used resistors in bipolar technology, base resistors require a highly experienced linear-IC designer and skillful layout techniques to avoid serious accuracy problems. An optimal base-resistor layout isn't possible in configurable linearsemicustom arrays.

Fig 5-Because of the difficulty in controlling the depth and density of the impurity concentration, the resistance value of this diffused base resistor will vary as much as \(\pm 30 \%\).

Fig 6 shows a base pinch resistor. An extra diffusion (the \(\mathrm{n}+\), which ordinarily forms the transistor's emitter) pinches the resistor channel, increasing the effective sheet resistance, but worsening all other characteristics. One disadvantage of the pinch resistor is that its value is directly related to the beta of the npn transistor. Another is that the fabrication process creates a parasitic zener diode that limits the maximum permissible voltage across the resistor.

An epi resistor offers a high sheet resistivity, but otherwise it has poor electrical characteristics. A pinched version (Fig 7) of the epi resistor has an even

Fig 6-In this equivalent circuit (a) and cross-section (b) of a base pinch resistor, an extra \(n+\) diffusion pinches the resistor channel, increasing the effective sheet resistance, but worsening all other characteristics.

Fig 7-An epi resistor (in this case a pinched version) is formed by an epitaxial layer and offers high sheet resistivity but poor electrical characteristics.

\section*{INTEL'S FIRST CMOS} 16-BIT DAJA CONTROLLER 'AILABLE THROUGH 58 LOCAIONS
itel makes faster designs and consolition a cinch with a new standard of formance in microprocessors: The \(こ 186\) data controller.
's the most highly-integrated, highestformance 16 -bit microprocessor they \(\geqslant r\) created, with a CPU running at 12.5 Iz optimized for data-intensive apzations such as printers, ISDN and LAN. he 80C186, fabricated in CHMOS, is g-compatible with Intel's industry-stanrd NMOS 80186. But it provides 1.5 ies the throughput. So now you can I those higher clock speeds with oneith the power consumption.
he best part is Intel's condensed a lot unctions onto this one chip -15 to 20 the most common microcontroller mponents, including two DMAchannels h four operational modes and a DRAM esh control unit.
And if you think the 80C186 is fast, lit'll you see how quickly Hamilton/Avnet ponds to your order, with immediate or it-In-Time delivery.
'o order Intel's new high-performance C186 data controller, call your local imilton/Avnet representative. To find e location nearest you, call toll free: 300-442-6458 (1-800-387-6879 in anada: 1-800-387-6849 in Ontario and נebec).
See how simple innovation can be.

\(\qquad\)

\(\qquad\)

\section*{FREE INTEL 80C186 SAMPLER DISK FROM HAMILTON/AVNET}

See for yourself how easily you can speed-up your designs with a 80C186 sampler disk from Intel.
It's free, and all you have to do is fill out the coupon below and send it to your \#1 source for Intel components, Hamilton/ Avnet.
F Yes, I would like a complimentary 80 C 186
floppy disk sent to me today.
| NAME
I title \(\qquad\)
COMPANY
| ADDRESS
CITY \(\qquad\)
STATE
PHONE \(\qquad\)
MSTOP
APPLICATION \(\square\)
| Mail to:

\section*{M. Burnett}

Advertising Department
Hamilton/Avnet
10950 Washington Blva.
Culver City, CA 90230

\section*{HamiltonbAvnet}

CMOS circuits are best suited to switching applications, or to designs having a bigh degree of interconnection between analog and digital functions.

\section*{TABLE 3-IC RESISTOR-TYPE COMPARISON}
\(\left.\begin{array}{l|c|c|c|c|c|c}\text { RESISTOR TYPE } & \begin{array}{c}\text { SHEET } \\ (\Omega / \square)\end{array} & \begin{array}{c}\text { ABSOLUTE } \\ \text { TOLERANCE }(\%)\end{array} & \begin{array}{c}\text { MATCHING } \\ \text { TOLERANCE }(\%)\end{array} & \begin{array}{c}\text { TEMPERATURE } \\ \text { COEFFICIENT }\left(\text { ppm } /{ }^{\circ} \mathrm{C}\right)\end{array} & \begin{array}{c}\text { VOLTAGE } \\ \text { COEFFICIENT }\end{array} & \begin{array}{c}\text { RADIATION } \\ \text { RESISTANCE }\end{array} \\ \hline \text { BASE DIFFUSION } & 100 \text { TO } 200 & \pm 20 & -600 \text { TO } \\ +2(10 \mu \mathrm{~m} \text { WIDE) } \\ \pm 0.2(50 \mu \mathrm{~m} \text { WIDE) }\end{array}\right)\)
higher sheet resistivity and even poorer electrical characteristics. Fabricators can also create well-type resistors from MOS devices; these resistors offer similarly poor performance.

In CMOS circuits, manufacturers often form resistors by performing ion implantation of polysilicon material. Having oxide isolation, these resistors will tolerate voltages beyond the value of the supplies. Unfortunately, besides harboring a parasitic capacitance, they exhibit a low sheet resistivity (from \(100 \Omega\) /square to a maximum of \(1000 \Omega\) /square) that limits their usefulness in many applications, especially those requiring moderate resistor values. Processing tolerances in the polysilicon deposition, photolithography, and implant dosages limit the absolute tolerances of ion-implanted resistors to about \(\pm 20 \%\).

Your best choice for precision designs is thin-film resistors. Their performance is equal to or better than that of most discrete equivalents, and is much better than that of the silicon resistors previously described. Thin-film resistors have no junction capacitance, are almost perfectly linear, and can tolerate voltages well beyond those of the power supplies. This voltage tolerance is often a major consideration in analog systems, many of which require an overvoltage capability. If you use junction-isolated resistors, the ac performance of the final circuit will often differ from that of the breadboard. Thin-film resistors, however, don't degrade the ac performance relative to that of the breadboard. Table 3 summarizes the performance available for the various resistor types.

\section*{Capacitors are difficult}

Because the dielectrics used in the manufacture of an IC are very inefficient (compared with those found in discrete devices), the fabrication of high-value capacitors in an IC is very difficult. Nitride capacitors (such as
those provided in the RLA arrays, as well as in some other manufacturers' ICs) provide higher capacitance and better reliability than do the thin-oxide capacitors that most manufacturers use. However, if your design calls for capacitor values greater than 50 pF , or requires absolute tolerances tighter than \(\pm 10 \%\), then your best policy is to keep these capacitors off chip.

Some applications are naturally amenable to the use of on-chip capacitors. For example, active filters operating at frequencies to 50 kHz often lend themselves to the use of switched-capacitor techniques, which you can readily implement in CMOS. In these filters, capacitor values need not be large and the capacitors are easy to integrate. In another example, CMOS sample/hold circuits often include the (small) hold capacitor on chip.

EDN

\section*{Authors' biographies}

Bruce Moore is a linear applications engineer at Raytheon (Mountain View, CA), where he is presently involved in ASIC design. Bruce has an EET degree from Heald Engineering College and holds two patents. His hobbies include motorcycle road racing, skiing, and chess.

Will Ritmanich is an IC-design consultant living in Detroit, MI. His previous employment includes Precision Monolithics and Analog Devices. Will has a BSEE from San Jose State and has applied for two patents. His sparetime activities include camping and skiing.

\author{
Article Interest Quotient (Circle One)
}

High 497 Medium 498 Low 499

Now you have three lowcost choices in Tek digital storage oscilloscopes. All featuring powerful \(20 \mathrm{MS} / \mathrm{s}\) digitizing along with familiar, full-bandwidth analog operation. It's the best of both worlds in one easy-to-use, portable package.
Discover the potential! With digital storage you can freeze waveforms. Capture events invisible to nonstorage scopes. Find signals buried in noise. And build a library of reference waveforms.
CRT readout and cursors distinguish the new 2221. For even higher performance, there's the 100 MHz , dual time base 2230 with optional battery-backed
\begin{tabular}{|c|c|c|c|}
\hline Features & 2230 & NEW! 2221 & 2220 \\
\hline Analog/Digital Storage BW & 100 MHz & 60 MHz & 60 MHz \\
\hline Maximum Sampling Speed & \(20 \mathrm{MS} / \mathrm{s}\) & \(20 \mathrm{MS} / \mathrm{s}\) & \(20 \mathrm{MS} / \mathrm{s}\) \\
\hline Record Length & 4K/1K (selectable) & 4 K & 4 K \\
\hline Peak Detect & 100 ns & 100 ns & 100 ns \\
\hline Save Reference Memory & \begin{tabular}{l}
One, 4K \\
Three, 1 K
\end{tabular} & One, 4K & One, 4K \\
\hline Vertical Resolution & 8 bits 10 bits (AVG mode) 12 bits (AVG mode over the bus) & 8 bits 10 bits (AVG mode) & 8 bits \\
\hline CRT Readout/Cursors & Yes & Yes & No \\
\hline GPIB/RS-232-C Options & Yes (\$750) & Yes (\$500) & Yes (\$500) \\
\hline Battery-Backed Memory (save 26 waveform sets) & Yes (inc with GPIB/ RS-232-C) & No & No \\
\hline Warranty & \multicolumn{3}{|l|}{3 year on labor and parts, including the CRT} \\
\hline Price & \$4995 & \$3995 & \$2995 \\
\hline
\end{tabular}

Prices subject to change without notice
memory for saving up to 26 waveform sets. And if it's economy you want, choose the 60 MHz 2220 with many of the same features at an even lower cost.

With each scope you can automate measurements with interface options. And output direct to a printer or plotter. Tek software is available for systems.
Call Tek direct: 1-800-426-2200
for free video brochure for orders/assistance.

\section*{National \\ Semiconductor}

Digital and analog functions
in standard packages

Similar functions in a standard cell available for packaging

\section*{We've mixed analog with digital to help you make it small in ASIC.}

\section*{NATIONAL INTRODUCES OP AMP, COMPARATOR, ANALOG SWITCH,AND BAND GAP REFERENCE CELLS DESIGNED TO CUT YOUR ANALOG REALESTATE DOWN TO SIZE}

Now you can bring the finest in analog performance right into the heart of your digital cell-based design.

Because now, the people who wrote the book on linear offer you industry-standard functions in analog cells.

With all the quality and reliability you've come to expect from National. Plus all the design and high-yield manufacturing expertise it takes to ensure you get the cells you need when you need them.

\section*{EIGHT CELLS YOU CAN BUILD ON}

Our cell library now includes three general-purpose op amp cells, based on our popular LM324, with gain bandwidths ranging from. 75 MHz to 3 MHz .

We've also developed the A021 and A022 Comparators, which feature two different input common mode ranges. Both cells are similar in performance to our industrystandard LM339.

Our A241 Analog Switch is designed to handle signal voltages equal to, or less than, VDD while exhibiting a lower on-resistance than

\section*{NATIONAL'S CELLLIBRARY INCLUDES:}

Op Amps
- Wide input common mode (0.3 V to VDD -1.5 V)
- Up to 3 MHz gain bandwidth product

Analog Comparators
- High input common mode range (1.5 V toVDD -0.5 V)
- Low input common mode range \((0.3 \mathrm{~V}\) toVDD -1.5 V)
- Less than \(70 n 5\) response time

Voltage Reference
- 2.5 V Band Gap Reference
- Tempco under \(100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)

Analog Switch
- Analog signal range 0 V toVDD
- Low on-resistance 100 ohms

All are available in military, commercial, and industrial temperature ranges and in a variety of high-density surface mount packages.
most switches in our AH50XX, LM, or LF families.

As you'd expect, we've also added a 2.5 V Voltage Reference, plus resistors. And all our analog cells oper ate at the standard 5 V .

\section*{PROVEN CELLS YOU CAN WORK WITH}

We're already working with digital ASIC designers who need basic analog functions without making basic analog trade-offs in size, weight and performance.

One major automotive sub system manufacturer, for example, is currently testing our op amp and comparator cells in a revolutionary anti-skid braking system under severe environmental conditions.

Wherever there's a need for mixed digital and analog solutions that improve efficiency and reliability by eliminating bulky, power-hungry multi-chip configurations, there's a need for analog cells from National.

\section*{FUTURE CELLSYOU CAN COUNT ON}

All our analog cells are fabricated in our proprietary \(\mathrm{M}^{2} \mathrm{CMOS}\) process. Which guarantees you three important competitive advantages: outstanding low-power performance, noncopyable functional implementation, and a steady stream of other proven National analog products into our cell library.
The result? Your decision to go with National's analog solutions will continue to pay off long after the decision is made.

\section*{CELLEXPERTS YOU CAN TALK TO}

We can show you how a little analog functionality can make abig difference in your digital ASIC design. For details, call our Applications Hotline at (408) 721-6247, or write:
National Semiconductor ASIC Solutions
M/S 23-200
P.O. Box 58090

Santa Clara, CA 95052-8090
National Semiconductor

\section*{High-resolution conversion}

\section*{in the blink of an eye.}

\section*{Get video speed, low power consumption, high resolution and superior price/performance with our new CMOS data converters.}

We've expanded our line to include more CMOS flash ADC's, a charge balancing ADC, an SPI ADC and a DAC. All featuring single 5 V supply operation.

We also offer a new high-speed op amp especially wellsuited to driving ADC 's or video cables.

\section*{4, 6 and 8-bit CMOS flash ADC's.}

Choose from 4,6 and 8-bit ADC's. All operate at video speeds, with clocking speed and input bandwidth specified at 5 V . What makes these flash ADC's special is silicon-onsapphire construction, resulting in low cost, high speed, very low input capacitance, low power consumption and inherent latch-up resistance.

\section*{10-hit CMOS charge balancing ADC.}

This 10-bit successive approximation ADC captures fast moving signals, providing excellent resolution.

It features a built-in fast track and hold, with conversion rates of 150 KHz and an input bandwidth of 1.5 MHz . Even at the maximum rate, power consumption is less than 20 mW .

\section*{10-bit CMOS serial ADC.}

The CDP68HC68A2 is selectable for either 8 - or 10 -bit resolution and has an 8 -channel multiplexer allowing up to 8 channels of inputs. The device can be used directly with our CDP68HC05C4, C8 or D2 microprocessors or other similar SPI (Serial Peripheral Interface) buses.

\section*{8-bit CMOS R-2R video-speed DAC's.}

These CMOS/SOS digital-to-analog converters operate

from a single 5 V supply at video speeds and can produce "rail-to-rail" output swings. Typical update rate is 50 MHz . Settling is fast (20 ns typical) to \(1 / 2 \mathrm{LSB}\). "Glitch" energy is minimized by segmenting and bar graph decoding of upper 3 bits.

High-speed op amp.
Specially designed for use with data converters, the CA3450 op amp has excellent speed and transmission line driving capabilities.

For 10-bit accuracy, it settles to within \(1 / 2 \mathrm{LSB}\) in 40 ns with a 2 V input signal. And it can drive up to four 50 ohm transmission lines.
\begin{tabular}{|l|c|c|c|c|c|}
\hline ADC's & Res. Bits & \multicolumn{1}{c|}{ Conv. Rate Hz Power Diss. (MW) Pkg. Leads } & 1K Price \\
\hline CA3304E & 4 & 20 M & 30 & 16 & 2.95 \\
\hline CA3304AE & 4 & 25 M & 35 & 16 & 4.50 \\
\hline CA3306CE & 6 & 10 M & 65 & 18 & 5.50 \\
\hline CA3306E/3306AE & 6 & 15 M & 70 & 18 & \(6.25 / 11.25\) \\
\hline CA3318E/3318CE & 8 & 15 M & 150 & 24 & \(38.50 / 24.00\) \\
\hline CA3310E/3310AE & 10 & 150 K & 15 & 24 & \(6.00 / 8.00\) \\
\hline CDP68HC68A2E & 10 & 10 K & 15 & 16 & 3.75 \\
\hline DAC's \\
\hline CA3338E/3338AE & 8 & 50 M & 100 & 16 & \(6.00 / 8.40\) \\
\hline OP AMP & UGBW Hz & Slew Rate (X10) & Iour MA & Pkg Leads & 1 K Price \\
\hline CA3450E & 200 M & \(300 \mathrm{~V} / \mu \mathrm{Sec}\) & \(\pm 75\) & 16 & 2.70 \\
\hline
\end{tabular}

\section*{Data in a flash.}

For data sheets of these new products, call toll-free 800-443-7364, extension 19. Or contact your local GE Solid State sales office or distributor.
.

\title{
THE BEST 5 \(1 / 4\) INCH DISK DRIVE AVAILABLE UNTIL WE BUILD WREN VI.
}

\section*{INTRODUCING}

\section*{WREN V}

The fastest, most reliable 51/4" disk drives are now better than ever. The new WrenV with bigger capacity has up to 574 Mbytes formatted with the SCSI interface, or 442 Mbytes of unformatted capacity using the ESDI.

\section*{PERFORMANCE SECOND TO NONE}

Wren V is high performance. Average seek is a blistering 14.5 ms . A patented, balanced straight-arm actuator, employing less mass than other designs, results in precision positioning and faster seek times.

\section*{DESIGNED-IN RELIABILITY}

New Wren disk drives are better than ever thanks in part to lower power consumption, special shock mounts, advanced electronics packaging, and synchronized spindle capability for high performance subsystem applications. You can count on years of trouble-free use.

\section*{A COMMITMENT TO QUALITY}

Manufacturing quality products and backing them with top-notch service and customer support is our commitment to
you. We're with you every step of the way; from system's design to post-sales service in a true customer manufacturer partnership.

Get the high performance edgeWren disk drives from Control Data. For more information, call 1-800-828-8001, ext. 82.
\begin{tabular}{|l|c|c|l|c|}
\hline Model & \begin{tabular}{c}
Capacity \\
(Mbytes)
\end{tabular} & \begin{tabular}{c}
Avg. Seek \\
\((\mathrm{ms})\)
\end{tabular} & Interface & \begin{tabular}{c}
Transfer Rate \\
\((\mathrm{MHz})\)
\end{tabular} \\
\hline Wren V & 574 & 16 & SCSI & \(10-15\) \\
Wren V & 442 & 16 & ESDI & 10 \\
Wren V & 383 & 14.5 & ESDI & 10 \\
Wren V & 344 & 16.5 & SCSI & \(10-15\) \\
Wren V H.H. & 190 & 18 & SCSI & \(10-15\) \\
Wren IV & 307 & 16.5 & SCSI & \(10-15\) \\
Wren III & 182 & 16.5 & ESDI & 10 \\
Wren III & 160 & 16.5 & SCSI & 10 \\
Wren III H.H. & 106 & 18 & ESDI & 10 \\
Wren III H.H. & 91 & 18 & SCSI & 10 \\
Wren II & 96 & 28 & ST506,ESDI & 5 \\
Wren II H.H. & 51 & 28 & ST506 & 5 \\
\hline
\end{tabular}
H.H. \(=\) Half High Models

SCSI models list usable capacity formatted in 1024 Byte sectors. Wren III, IV, V-344 Mb SCSI models have \(40,000 \mathrm{Hr}\). MTBF (others: \(30,000 \mathrm{Hr}\). MTBF).

\section*{Now, high performance vacuum/pressure blowers that operate from 120 VAC}

\section*{Compact units feature brushless dc motors with integral controller and variable speed capability}

These new Windjammer \({ }^{\boxplus}\) blowers combine electroniss, motor, and fan system in a compact, cost-effective package that operates from a standard 120 VAC input. An exclusive Lamb Electric design, they were developed for demanding, limited space applications such as business machines, medical equipment and

materials handling applications. Just \(5.7^{\prime \prime}\) in diameter, the blowers have 1 - 2-, or 3-stage fans for performance from \(50^{\prime \prime} \mathrm{H}_{2} \mathrm{O}\) vacuum at 0 CFM to 110 CFM at \(0^{\prime \prime} \mathrm{H}_{2} \mathrm{O}\). With one version, a 0 to

10 VDC signal from a sensor or other device will control motor speed and adjust air performance from 0 to \(100 \%\). Or, a second model provides manual speed control by means of a potentiometer located in the blower housing.
These blowers also feature low noise performance and are UL/CSA component recognized. Get complete details by contading AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. (216) 673-3451. Telex: 433-2140. Cable:LAMETEK.

\title{
S/H amp-ADC matrimony provides accurate sampling
}

\begin{abstract}
When using an \(A / D\) converter to capture samples of moving signals, you usually need a sample-and-hold amplifier to hold the voltage steady at the converter's input. If you don't choose the right S/H amplifier for the application, signal degradation in the form of distortion and reduced dynamic range invariably results.
\end{abstract}

\section*{Al Little and Bob Burnett, Harris Corp}

Choosing the optimum sample-and-hold amplifier for a particular A/D converter in a given application is often not an easy matter. The choice depends on the speed and resolution of the converter, the system's sampling rate, and several other variables. A less-than-ideal S/H amplifier-ADC match can result in reduced system efficiency or in degradation of the sampled signals. The discussion that follows uses three available monolithic S/H amplifiers and several industry-standard A/D converters as examples of how to arrange a harmonious S/H amplifier-ADC marriage for your application. The principles detailed here are universal; thus, they're equally applicable to other available \(\mathrm{S} / \mathrm{H}\) amplifiers and A/D converters.

The principal parameters of an \(\mathrm{S} / \mathrm{H}\) amplifier that come to bear on the accuracy you can obtain in a given A/D-conversion application are acquisition time, holdmode settling time, aperture time, aperture jitter,
pedestal, hold-mode feedthrough, and droop rate. The first four of these parameters set an upper limit on the allowable input frequency and the achievable sampling rate. The input-voltage-dependent pedestal can introduce nonlinearities into an S/H amplifier's transfer function. Finally, feedthrough introduces accuracy errors, and droop imposes a limit on the length of the A/D-conversion period. Before studying the effect of these parameters on A/D conversions, it's useful to review the parameters in some detail.

\section*{S/H terms are esoteric}

Data sheets for \(\mathrm{S} / \mathrm{H}\) amplifiers use many terms that are peculiar to these devices. Sometimes they use several different terms for the same spec. The waveforms in Fig 1 illustrate the parameters that are of principal interest in arranging a good match between an S/H amplifier and an A/D converter. First, consider the acquisition time. This quantity is the time the \(\mathrm{S} / \mathrm{H}\) amplifier requires to sample (more accurately, to track) the input signal to within a given error band after it receives a Sample command.
S/H-amplifier manufacturers usually specify the slew rate for the hold-to-sample transition. Note, however, that the acquisition-time spec takes into account both slew rate and settling from any overshoot and ringing. (If you want to calculate the specific effects of input slew rate on the S/H amplifier's overall performance, see box, "Take finite \(\mathrm{S} / \mathrm{H}\)-switch time into account.") Many data sheets specify acquisition time for two error bands: \(\pm 0.1 \%\) and \(\pm 0.01 \%\). The \(\pm 0.01 \%\) figure equates roughly to \(\pm 1 / 2\) LSB for a 12 -bit conversion.
After acquiring the input signal, the \(\mathrm{S} / \mathrm{H}\) amplifier

An inappropriate match between an \(S / H\) amplifier and an \(A / D\) converter can result in degradation of the sampled signal.
tracks the signal until it receives a Hold command. Their internal connections commit many S/H amplifiers to unity-gain operation; the HA-2420, -5320, and -5330 families, however, contain uncommitted input amplifiers that allow feedback-determined gain in inverting or noninverting configurations. The two intervals immediately following the Hold command are aperture time and hold-mode settling time.

Aperture time is the interval required before the \(\mathrm{S} / \mathrm{H}\) switch can open; hold-mode settling time is the interval, after the receipt of a Hold command, in which the output settles within a given error band about its final settled value. The hold-mode settling time, which includes the aperture time, is the parameter of interest here, because the settled, held voltage is presented to the \(\mathrm{S} / \mathrm{H}\) amplifier's mating \(\mathrm{A} / \mathrm{D}\) converter during the conversion cycle. Aperture jitter (or uncertainty) is also of particular interest; it imposes a limit on the allowable input frequency.

When the S/H amplifier's output settles after the reception of a Hold command, it doesn't exactly settle to the value of the previously tracked input voltage imposed on the hold capacitor. Because of unavoidable
stray capacitance between the \(\mathrm{S} / \mathrm{H}\)-command input and the hold capacitor, the sample-to-hold transition causes charge to transfer to the hold capacitor. According to \(\mathrm{V}=\mathrm{Q} / \mathrm{C}\), this charge produces a voltage step in the capacitor. This step is variously called pedestal (as in Fig 1), charge injection, offset step, hold step, or sample-to-hold offset.

To complicate matters, the pedestal is not always a constant quantity. It can be a function of the amplitude and the transition time of the S/H command, for example, and sometimes it can vary as a function of the analog input voltage. This latter dependency is itself a function of the S/H amplifier's architecture. Fig 2 shows how a device's architecture can have a bearing on the relationship between pedestal and input voltage.

Two basic S/H-amplifier architectures are evident in Fig 2. In Fig 2a, the input amplifier, upon closure of the Sample/Hold switch, charges the hold capacitor to the voltage level to be held. After the switch opens, the hold capacitor has no discharge mechanism except the input-bias current of the output amplifier and the leakage resistance of the open switch, so it holds the sampled voltage. In Fig 2b, the input transconductance

Fig 1-S/H amplifiers need their own dictionary, as witness the esoteric terms in this timing waveform. What's more, many of the parameters can have several alternate names. For example, aperture time is sometimes called aperture delay, aperture jitter is also called aperture uncertainty, and pedestal is also referred to as charge injection, hold step, offset step, and sample-to-hold offset. The important parameters for timing considerations are acquisition time, hold-mode settling time, and aperture jitter.
amplifier, upon closure of the switch, charges a hold capacitor connected in the feedback loop of the output amplifier. The amplifier provides a charging current proportional to the differential input voltage.

In Fig 2a, the voltage at the junction of the hold capacitor and the input of the output amplifier varies
directly as a function of the input voltage. On the other hand, in the integrating configuration of Fig 2b, this junction is a virtual ground, held at 0 V by negative feedback. The problem is that the amount of charge transferred to the hold capacitor in Fig 2a's circuit is a function of the voltage on the hold capacitor. This

\section*{Take finite \(\mathrm{S} / \mathrm{H}\)-switch time into account}

Some of the specifications commonly given in \(\mathrm{S} / \mathrm{H}\)-amplifier data sheets can be misleading or confusing. For example, a data sheet might specify acquisition time for a 10 V static signal, but not for a rapidly moving input signal.

Similarly, aperture time indicates the time it takes for the Sample/Hold switch to open from 10 to \(90 \%\). It's useful to study the effects this finite switch-opening time has on overall performance. In analyzing the effects, it's convenient to think in terms of a simplified equivalent circuit for an \(\mathrm{S} / \mathrm{H}\) de-
vice such as the one in Fig Aa. Fig Ab shows such a simplified circuit for the very fast, trans-conductance-input types of \(\mathrm{S} / \mathrm{H}\) amplifiers, such as the HA-5320 and -5330.

In this simplified form, the circuit is easily recognizable as a simple lowpass configuration. The characteristics of the lowpass circuit lead directly to the analysis of the S/H circuit. For example, high-frequency signal components will suffer from phase lag through the RC circuit. This simple circuit makes it possible to estimate the quantitative capacitor error voltage

Fig A-Modeling a sample-and-hold amplifier such as the HA-5320 or HA-5330 (a) with a simplified equivalent circuit (b) enables you to understand the effects of finite aperture time. In the sample mode (switch closed) the \(R\) and C components introduce increasing error because of phase lag vs frequency. Then, following the switch-open command, the switch causes additional error by allowing the capacitor to continue charging for several nanoseconds (c).
during the acquisition phase for any given signal.

Similarly, it's also possible to estimate sampling errors arising from aperture time. For example, suppose you're digitizing a 2 V p-p, \(20-\mathrm{kHz}\) signal. The maximum rate of change, occurring at the signal's zero-crossing point, is given by
\[
\begin{aligned}
\frac{\mathrm{dV}}{\mathrm{dt}}(\mathrm{MAX}) & =\frac{\mathrm{d}}{\mathrm{dt}}[\sin 2 \pi(20 \mathrm{kHz}) \mathrm{t}]_{\mathrm{t}=0} \\
& =1.257 \times 10^{5} \mathrm{~V} / \mathrm{SEC}
\end{aligned}
\]

As the switch opens (Fig Ac), the resistance increases exponentially. To make a worst-case estimate, you can assume that for, say, a \(10-n s e c\) aperture time, the switch remains closed for an additional 5 nsec. What error voltage results from this prolonged closure? The capacitor continues to be charged at the rate of \(125,700 \mathrm{~V} / \mathrm{sec}\). For 5 nsec , the error is \(628 \mu \mathrm{~V}\), which is approximately a \(1 / 4\)-LSB error for a 12 -bit, 10 V FSR A/D conversion.

Modeling the \(\mathrm{S} / \mathrm{H}\) amplifier in this way gives you some insight into how the different \(\mathrm{S} / \mathrm{H}\)-amplifier specifications figure into the overall accuracy of the device for any particular application.

To avoid harmonic surprises in sampled signals, be aware of how an S/H amplifier's pedestal varies as a function of the amplitude of the voltage to be sampled.
problem is compounded by the fact that the Sample/ Hold switch often displays nonideal characteristics. For example, if the switch is a MOSFET, the gate-to-source (that is, S/H-logic-to-hold-capacitor) capacitance can vary as a function of the gate-to-source voltage, and hence as a function of the input voltage.

The scope photos in Fig 3 illustrate the dependence (or independence) of the pedestal on input voltage. For all three photos, traces \(\mathrm{A}, \mathrm{B}\), and C show the pedestals that occur for input voltages of \(+10,0\), and -10 V , respectively. For Fig 3a, the S/H amplifier is an HA2420 using a \(1-\mathrm{nF}\) hold capacitor. This IC is a nonintegrating device that uses the architecture shown in Fig 2a. The S/H units for Figs 3b and 3c, the HA-5320 and -5330 (respectively), use the integrating structure shown in Fig 2b. You can see that both the pedestal and its variation are much smaller-in fact, negligible-for the integrating types.

Fig 4 shows the typical dependence of the pedestal on the input voltage for the HA-2420. The coordinates for the 1-nF curve come from the scope photo in Fig 3a; those for the \(100-\mathrm{pF}\) curve are from typical curves in the data sheet. As you can see, the pedestal with the \(1-\mathrm{nF}\) hold capacitor varies linearly with the input voltage. It's a simple matter to derive the equation for pedestal vs input, then to prove that this linearly

Fig 2-The architecture of an S/H amplifier has a profound influence on the device's pedestal. In circuit configuration a, the voltage at the output amplifier's input terminal varies with the input voltage. This variation causes changes in the value of the stray capacitance CS, and thus causes variations in the pedestal as a function of the input level. In b's circuit, the voltage at the summing junction is invariant with input voltage; therefore, the value of CS remains constant. The result is a constant pedestal voltage, which only adds a fixed offset to the S/H amplifier's output.
(a)

\begin{tabular}{c|c|c|c}
TRACE & INPUT & VERTICAL & HORIZONTAL \\
\hline \(\mathbf{A}\) & +10 V & \(10 \mathrm{mV} / D I V\) & \(50 \mu\) SEC/DIV \\
\hline \(\mathbf{B}\) & 0 V & \(10 \mathrm{mV} / \mathrm{DIV}\) & \(50 \mu\) SEC/DIV \\
\hline \(\mathbf{C}\) & -10 V & \(10 \mathrm{mV} / \mathrm{DIV}\) & \(50 \mu\) SEC/DIV
\end{tabular}

(b)
\begin{tabular}{c|c|c|c}
TRACE & INPUT & VERTICAL & HORIZONTAL \\
\hline A & +10 V & 2 mV/DIV & \(50 \mu\) SEC/DIV \\
\hline B & \(0 V\) & 2 mV/DIV & \(50 \mu\) SEC/DIV \\
\hline C & -10 V & 2 mV/DIV & \(50 \mu\) SEC/DIV
\end{tabular}

Fig 3-Nonintegrating S/H amplifiers display a variable pedestal, as seen in \(\boldsymbol{a}\). The pedestal for the HA-2420 under test varies from -6 mV for \(a-10 \mathrm{~V}\) input to -11 mV for \(a+10 \mathrm{~V}\) input. The HA-5320 and HA-5330 are integrating S/H devices; therefore, their pedestal is not a function of the input level, as seen in \(\boldsymbol{b}\) and \(\boldsymbol{c}\). A linearly variable pedestal adds an offset to the \(S / H\) amplifier's output; a nonlinearly variable pedestal contributes nonlinearity in the form of harmonics.

Fig 4-Based on measurements made at \(95^{\circ} \mathrm{C}\) on a nonintegrating S/H amplifier (the HA-2420), these curves show that the pedestal is a strong function of the input voltage. In the curve measured with a \(1-n F\) hold capacitor, the pedestal varies linearly with input. For a configuration using a 100-pF hold capacitor, the pedestal-input relationship is a second-order one, and the result is harmonic distortion.

varying pedestal does not introduce nonlinearities in the S/H amplifier's transfer function:
\[
\begin{aligned}
\mathrm{P} & =-0.0025 \mathrm{~V}_{\text {IN }}-0.009 \\
\mathrm{~V}_{\text {OUT }} & =\mathrm{V}_{\text {IN }}+\mathrm{P} \\
& =\mathrm{V}_{\text {IN }}-0.0025 \mathrm{~V}_{\text {IN }}-0.009 \\
& =0.99975 \mathrm{~V}_{\text {IN }}-0.009 \\
\mathrm{~V}_{\text {IN }} & =10 \sin \omega \mathrm{t} \\
\mathrm{~V}_{\text {OUT }} & =9.9975 \sin \omega \mathrm{t}-0.009,
\end{aligned}
\]
where P is the pedestal in volts. These expressions reflect a \(\pm 10 \mathrm{~V}\) sinusoidal input signal. The result shows that the linearly varying pedestal introduces a \(0.025 \%\) gain error and a constant 9-mV negative offset voltage in the transfer function. You can easily compensate for these errors by simply adjusting the gain and offset of the \(\mathrm{S} / \mathrm{H}\) amplifier. The effects of a nonlinearly varying pedestal, however, are more insidious. The following expressions are based on a second-order (quadratic) pedestal-input relationship, derived from the coordinates of the \(100-\mathrm{pF}\) curve in Fig 4.
\[
\begin{aligned}
\mathrm{P} & =-0.000045 \mathrm{~V}_{\text {IN }}{ }^{2}-0.00105 \mathrm{~V}_{\text {IN }}-0.015 \\
\mathrm{~V}_{\text {OUT }} & =\mathrm{V}_{\text {IN }}+\mathrm{P}=0.99895 \mathrm{~V}_{\text {IN }}-0.000045 \mathrm{~V}_{\text {IN }}-0.015 \\
\mathrm{~V}_{\text {IN }} & =10 \sin \omega \mathrm{t} \\
\mathrm{~V}_{\text {OUT }} & =9.9895 \sin \omega \mathrm{t}-0.0045 \sin ^{2} \omega \mathrm{t}-0.015 \\
\sin ^{2} \omega \mathrm{t} & =\frac{1-\cos 2 \omega \mathrm{t}}{2} \\
\mathrm{~V}_{\text {OUT }} & =9.9895 \sin \omega \mathrm{t}+0.00225 \cos 2 \omega \mathrm{t}-0.01725 .
\end{aligned}
\]

The obvious result of the nonlinear pedestal-input relationship is harmonic distortion. The \(0.00225 \cos 2 \omega \mathrm{t}\) term indicates that the output voltage will contain a \(4.5-\mathrm{mV}\) p-p second-harmonic term; this amplitude represents almost 1 LSB for the \(\pm 10 \mathrm{~V}\) input range under discussion. A good way to minimize pedestal-induced nonlinearity in an S/H amplifier is to reduce the input excursions. For example, when using the HA-2420 with an industry-standard \(574 \mathrm{~A} / \mathrm{D}\) converter, you'd do well to use the lowest input range available: \(\pm 5 \mathrm{~V}\) or 0 to +10 V . A curve-fitting and equation-solving exercise for the -5 to +5 V portion of the \(100-\mathrm{pF}\) curve in Fig 4 reveals that the resulting second harmonic measures about 0.75 mV p-p, or only about \(1 / 3 \mathrm{LSB}\) for the 10 V full-scale range.

\section*{Don't neglect droop}

After the output of the \(\mathrm{S} / \mathrm{H}\) amplifier settles to within the specified error band following the sample-to-hold transition, two more error-producing phenomena arise

> Acquisition time and hold-mode settling time impose an upper limit on the sampling frequency for an S/H amplifier; droop limits the ADC's conversion time.

Fig 5-An S/H amplifier's held voltage sags linearly with time, as seen in these scope photos. In a, the HA-2420's voltage droops (actually, it rises-droop can be positive or negative, depending on the direction of the hold capacitor's discharge current) at 0.4V/sec. For the HA-5320 and -5330 of \(\boldsymbol{b}\) and \(\boldsymbol{c}\), the respective droop values are 4.4 and \(12 \mathrm{~V} / \mathrm{sec}\). These droop characteristics were measured at a \(95^{\circ} \mathrm{C}\) operating temperature.

Fig 6-The maximum rate of change for a sine wave occurs at zero crossing; this fact is both intuitively obvious and easily proven mathematically. For the small angular displacements shown in the expanded view, \(A \sin \omega t=A \omega t\), and the maximum rate of change is \(A \omega\) (\(10 \omega\) for the \(\pm 10 \mathrm{~V}\) sine wave depicted). The \(\pm 0.012 \%\) ordinates shown correspond to \(\pm 1 / 2\) LSB for a 12-bit A/D converter.
for consideration: feedthrough and droop. Feedthrough is what its name implies: the transmission of inputvoltage variations to the output while the \(\mathrm{S} / \mathrm{H}\) amplifier is in hold mode. For the S/H devices discussed here, this parameter is not a cause for alarm; the feedthrough specs for the HA-2420, -5320 , and -5330 are \(-76 \mathrm{~dB}, 2\) mV , and -88 dB , respectively. In all cases, these figures represent feedthrough that's considerably lower than 1 LSB. Note, however, that you must take measurement conditions (voltage and frequency) into account when interpreting feedthrough specs; these conditions vary in the data sheets for the various available S/H amplifiers.
A parameter more worthy of attention is droop. This phenomenon is the change in output voltage that accrues from the inevitable discharge of the hold capacitor. The discharge paths are the bias current of the output amplifier and the leakage current of the Sample/ Hold switch, as well as any leakage paths that may exist in external circuitry (in the case of S/H amplifiers using an external hold capacitor).

As is usually the case with semiconductor devices, these currents double with each \(10^{\circ} \mathrm{C}\) rise in junction temperature. Fig 5 shows the droop characteristics at \(95^{\circ} \mathrm{C}\) for the HA-2420 (a), the HA-5320 (b), and the HA-5330 (c). For this test, the HA-2420 used an

(c)
\begin{tabular}{c|c|c|c}
TRACE & HELD VOLTAGE & VERTICAL & HORIZONTAL \\
\hline \(\mathbf{A}\) & +10 V & \(200 \mathrm{mV} / \mathrm{DIV}\) & \(100 \mathrm{mSEC/DIV}\) \\
\hline B & 0 V & \(200 \mathrm{mV} / \mathrm{DIV}\) & 100 mSEC DIV \\
\hline C & -10 V & \(200 \mathrm{mV} / \mathrm{DIV}\) & 100 mSEC DIV
\end{tabular}
external 1-nF hold capacitor; the other two devices used their internal hold capacitors. Take note that the leakage currents (also called drift currents) for some S/H amplifiers can be extremely difficult to measure. The \(5-\mathrm{pA}\) typ spec at \(25^{\circ} \mathrm{C}\) for the HA- 2420 , for example, equates to about \(3 \times 10^{12} \Omega\) impedance. This high impedance level also points up the need to exercise extreme care in laying out a pe board for an S/H amplifier that uses an external hold capacitor. Guarding techniques and moisture-avoidance measures are often necessary for these devices.

According to Fig 5a, the highest droop value at \(95^{\circ} \mathrm{C}\) for the HA- 2420 occurs with +10 V input; at this level, the output voltage droops (or sags) at the rate of \(0.4 \mathrm{~V} / \mathrm{sec}\). For the HA-5320 and HA-5330, the droop figures are 4.4 and \(12 \mathrm{~V} / \mathrm{sec}\), respectively. Again, when you apply the \(\pm 1 / 2\)-LSB max criterion for output change, the longest times you can keep these devices in hold mode are \(3,0.27\), and 0.1 msec , respectively. Based on the fact that the acquisition and hold-mode settling times are negligible in comparison with these figures, the lowest allowable conversion rates (assuming a \(50 \%\) duty cycle for the sampling-conversion period) for \(\pm 1 / 2\)-LSB max error are \(330 \mathrm{~Hz}, 3.7 \mathrm{kHz}\), and 10 kHz , respectively.

\section*{Slew limits ADC speed}

To see why A/D converters usually need the assistance of S/H amplifiers, assume you've just procured a fast, 12 -bit A/D converter-for example, the \(12-\mu \mathrm{sec}\)

HI-674A. The \(12-\mu\) sec conversion time tells you the device is capable of an \(83-\mathrm{kHz}\) conversion rate. If you were unaware of the idiosyncrasies of successive-approximation A/D converters, you might intuitively jump to the conclusion that the unassisted converter could digitize signals having frequency components as high as 41 kHz . Unfortunately, the allowable inputsignal speed is far below this figure. The problem is that for a successive-approximation A/D converter to achieve rated accuracy, the input signal must remain constant (within \(\pm 1 / 2\) LSB) during the conversion cycle.
To understand the implications of this constant-input rule on allowable input frequencies, refer to Fig 6. The sine wave represents a \(\pm 10 \mathrm{~V}\) input signal presented to an HI-674 A/D converter, for example. The highest rate of change for the sine wave occurs at the zero-crossing point. The expanded view represents a \(\pm 1 / 2\)-LSB excursion around the zero-crossing point. The slope, or rate of change, of the curve at this point is \(A \omega\), where \(A\) is 10 V . If the conversion time, T , is \(12 \mu \mathrm{sec}\), the maximum permissible rate of change is \(200 \mathrm{~V} / \mathrm{sec}\). When you solve for \(\omega\) and divide by \(2 \pi\), you find that the maximum allowable input frequency presented to the \(\mathrm{A} / \mathrm{D}\) converter is 3.2 Hz -a far cry from 41 kHz .

It's thus clear that, in most cases, A/D converters need the assistance of S/H amplifiers. The ADC-S/H mating having taken place, it's natural to assume that the only limitation on the input frequency would be Nyquist's criterion: a maximum of half the sampling frequency. Not so. Referring again to Fig 1, you can see that a parameter called aperture jitter or aperture uncertainty imposes a limit on the input's rate of change, and thus on the input frequency. This parameter is the uncertainty concerning the exact time the Sample/Hold switch opens; that is, variations in aperture time from one sample-to-hold transition to another.

Fig 6 shows a \(\pm 10 \mathrm{~V}\) sinusoidal input signal, along with an expanded view of the zero-crossing point (again, the point of maximum rate of change for a sine wave). This time, the positive and negative T values on the time axis correspond to the aperture-jitter spec of an S/H amplifier. Again, the assumption is that \(\pm 1 / 2\) LSB is the maximum variation permitted in the input voltage presented to an A/D converter. For a 12-bit converter, the maximum variation is thus \(\pm 0.012 \%\). For the small excursions depicted in Fig 5, \(A \sin \omega t=A \omega t\). From the aperture-jitter specs \((\pm T)\) in the S/H amplifiers' data sheets, it's then a simple mathematical exercise to solve for \(\omega\), then for \(f\). For the

Aperture jitter-in essence a random modulation of the time the Sample/Hold switch takes to open-imposes a limit on the input signal's slewing rate.

Fig 7-Sample-and-hold cycles and A/D-conversion times are additive, as this timing diagram shows. Before the A/D conversion can begin, the S/H amplifier must acquire the input signal to within a \(\pm 1 / 2-L S B\) error band, and then settle in hold mode to within the same error allowance. This diagram applies to an HA-5330 S/H amplifier working with an MN5245 1- \(\mu\) sec A/D converter. The total acquisition, hold-settling, and conversion period for the S/H-amplifier/ADC combination is 1560 nsec.

Fig 8-If one S/H amplifier won't do the job, try two. In this configuration, one S/H unit is holding the sampled signal constant for the \(A / D\) conversion while the other S/H amplifier is acquiring the next sample. The result is a nearly \(50 \%\) increase in sampling rate. If you used this circuit, you might be able to save money by using a slower \(A / D\) converter than you could use in a single-S/H-amplifier circuit.

HA-2420, -5320 , and -5330 , the input frequencies that produce \(\pm 1 / 2\)-LSB max jitter-induced error are 7.6, 127, and 382 kHz , respectively.

Before leaving the topic of aperture jitter, note that this parameter is a relative (sample-to-sample) one, whereas aperture time is an absolute quantity. Because it remains constant from sample to sample, the aperture time has no detrimental effect on the accuracy of sampling for repetitive signals. However, if you must obtain accurate phase-related data for the signal you're sampling, you can simply advance the Hold command by an interval equal to the aperture time.

When using a fast \(\mathrm{S} / \mathrm{H}\) amplifier with a high-speed A/D converter, you must consider your timing budget carefully. The factors that come into play are the \(\mathrm{S} / \mathrm{H}\) amplifier's acquisition time and hold-mode settling time, as well as the A/D converter's conversion time and necessary timing overhead. For example, consider an HA-5330 S/H amplifier operating in tandem with Micro Networks' (and others') MN5245 A/D converter. The S/H unit has a 500 -nsec acquisition time; the A/D converter specs \(900-n s e c\) conversion time. It might seem natural to jump to the conclusion that the combination can work with a 1400 -nsec sampling period, but the conclusion would be wrong. Fig 7 shows the timing considerations for the pair.

First, the S/H amplifier must acquire the input signal to within a \(\pm 0.012 \%\) error band; this operation takes 500 nsec. Next, the held signal takes 100 nsec to settle within this error band before the falling edge of the start pulse commands the \(\mathrm{A} / \mathrm{D}\) unit to start converting. A 60-nsec interval ensues between the start command and the conversion interval of the status line. Finally, the conversion consumes 900 nsec , during which the \(\mathrm{S} / \mathrm{H}\) amplifier must hold the acquired signal constant. The entire cycle takes 1560 nsec , not the 1400 nsec you might expect; the maximum sampling rate is thus 641 kHz , rather than 714 kHz .

The speed-limiting factor in this marriage is the fact that the \(\mathrm{S} / \mathrm{H}\) amplifier must hold the acquired signal during the entire conversion period and must not start acquiring a new signal until the conversion is complete. If it were possible for the \(\mathrm{S} / \mathrm{H}\) device to acquire while
the \(A / D\) converter is converting, the cycle time would be considerably shorter. Fortunately, there is a way to shorten the cycle. If you use two \(\mathrm{S} / \mathrm{H}\) amplifiers and switch between their outputs by using an analog
switch, one \(\mathrm{S} / \mathrm{H}\) amplifier can acquire while its companion unit is holding, and vice versa.
Fig 8 gives the schematic diagram of a circuit that embodies the dual-S/H-amplifier scheme. Each S/H

Fig 9—Two holds are better than one, as you can see from this timing diagram for two HA-5330 S/H amplifiers driving an MN5245 A/D converter. Each S/H amplifier operates at half the \(943-k H z\) sampling rate. While one S/H unit is holding the acquired input signal constant for the \(A / D\) converter, the other \(S / H\) amplifier is acquiring the next sample. The result is an almost \(50 \%\) increase in sampling rate over that of the configuration that uses only one S/H device.

Fig 10-Signal acquisition follows a linear ramp. These photos show the slew-limited nature of the acquisition transition. In order of increasing acquisition time, the three waveforms in a are for the HA-5330, -5320, and -2420 S/H amplifiers. The photo in b shows the effect of using external hold capacitors having different values with the HA-2420. Quite simply, higher-value hold capacitors take longer to charge.

By using two S/H amplifiers instead of one to drive a bigh-speed \(A / D\) converter, you can increase the achievable sampling rate by a significant amount.

(a)

(b)

Fig 11-You can use these curves to choose the optimum S/H amplifier for your application. The curves in a give the maximum achievable sampling rates for the three S/H amplifiers under discussion, as a function of the speed of the ADC the S/H amplifier must drive. The curves in \(\boldsymbol{b}\) show the contribution of the S/H amplifier to the total sampling time. For example, when working with a \(10-\mu \mathrm{sec}\) converter, the fast HA-5330 contributes only about \(6.5 \%\) of the sampling period at the highest achievable sampling rate; the slower HA-2420 contributes about \(38 \%\) of the sampling time.

\section*{TABLE 1-S/H AMPLIFIER-ADC COMBINATIONS VS THROUGHPUT}
\begin{tabular}{c|c|c}
\begin{tabular}{c}
THROUGHPUT \\
\((\mathrm{kHz})\)
\end{tabular} & S/H AMPLIFIER & A/D CONVERTER \\
\hline 30 & HA-2420 & HI-574A \\
\hline 40 & HA-2420 & HI-674A \\
\hline 50 & HA-5320 \\
& HA-2420 & \begin{tabular}{c}
HI-674A \\
HI-774
\end{tabular} \\
\hline 75 & HA-5320 & HI-774 \\
\hline 100 & HA-5330 & HI-774A \\
\hline 200 & HA-5320 & ADC-817 \\
\hline 300 & HA-5320 & HN5245 \\
& HA-5330 & ADC-817 \\
\hline 500 & HA-5330 & MN5245 \\
& & \\
\hline
\end{tabular}
unit operates at half the sampling frequency. A side benefit of this method is that it lets you use lower-speed S/H devices than you could use in a single-S/H-amplifier scheme. Fig 9's timing diagram is similar to that of Fig 7; you can see that the sample and hold intervals for the two S/H amplifiers overlap. The circuit operates at very nearly the maximum repetition rate possible for the MN5245; the only additional timing overhead is the 100 nsec allowed for the analog switch to settle completely. As shown, the sampling period is 1060 nsec , for a sampling rate of 943 kHz .

\section*{Acquisition time is the determining factor}

As you've seen, acquisition time is the preponderant term in an S/H amplifier's sample-and-hold cycle. Its value is a measure of the speed of the input amplifier and of the amplifier's ability to charge the hold capacitor rapidly to the value of the input signal. The scope photos in Fig 10 show some typical acquisition-time measurements. Fig 10a shows comparative acquisition times for \(\mathrm{a}+10\) to -10 V input step for the HA-5330, -5320 , and -2420 , in order of decreasing speed.

It's evident from Fig 10a that the naked eye is not a very effective measurement tool when it comes to \(\pm 0.01 \%\) settling. The 500 -nsec (typ) HA-5330 appears to settle in an interval well under 500 nsec , and the \(1-\mu \mathrm{sec}\) (typ) -5320 seems to settle in about 500 nsec . Remember, though, that the \(\pm 0.01 \%\) represents only a \(\pm 2-\mathrm{mV}\) excursion around the final -10 V value. Another fact that's evident from the trace for the -2420 in Fig 10a is that the acquisition speed is slew limited, as borne out by the linear nature of the trace.

Fig 10b gives more proof of the slew-limited behavior of the acquisition process. Here, you see the effects of

\section*{In your frequency range, but not out of your price range.}

\section*{Introducing the first highperformance 2 GHz signal generator under \(\$ 11,000\).}

If you're expanding your testing capabilities in the up to 2 GHz range, or updating older equipment, our new 6062A offers an outstanding value. With high accuracy, low noise signals, and \(\mathrm{AM}, \mathrm{FM}\) and PM modulation, this new synthesized signal generator keeps the price of quality production testing surprisingly low.

The 6062A is the only signal generator in its price range that also offers high-speed pulse modulation as a standard feature. So you can test radar and avionics transponders without paying a premium. Very high on-to-off ratios (80 dB minimum) and very
fast rise times (15 ns) are made possible by new gallium arsenide switching technology.

For low-cost convenient maintenance, you can do on-site calibration yourselfmanually or over the IEEE bus. The 6062A is based on the highly reliable 6060B, proven in thousands of installations at manufacturing facilities worldwide. And like all Fluke instruments, the 6062A is backed by Fluke service, training and our exclusive fast-turnaround modular exchange program for emergency repairs.

Contact your local Fluke Sales Engineer or call 1-800-426-0361. High performance is now in your frequency range. And in your price range.

Fluke 6062A

FLபKK

The choice of the right S/H amplifier and ADC for a particular application often entails tradeoffs involving price, speed, and application-related features.

Fig 12-A fault-tolerant \(\boldsymbol{A} / \boldsymbol{D}\) converter can save time, as this timing diagram shows. Because the HI-774A A/D converter can tolerate errors as high as \(+32,-31\) LSB during much of its conversion cycle, it lets you initiate a sample-hold cycle much later than you could with less-forgiving converters. By taking advantage of the A/D converter's error-correction mechanism, you can increase the achievable sampling rate by about \(30 \%\).
increasing the value of the external hold capacitor used with the HA-2420. The traces depict acquisition time for a 0 to 10 V input step. In order of decreasing speed, the hold-capacitor values are 1, 68, and 100 nF . Again, it's evident from the linear traces that the input amplifier charges the hold capacitor with a constant current.

\section*{Timing and budget determine \(\mathrm{S} / \mathrm{H}\)-amplifier choice}

Just as it's wasteful to use a cannon to kill a fly, it's unwise to splurge on an S/H amplifier that's overly specified for the application at hand. The prices of both S/H amplifiers and A/D converters, of course, are proportional to the devices' speed. Depending on the required throughput rate in your application, you often have a tradeoff decision to make. The tradeoff involves speed, cost, and application-mandated features in the \(\mathrm{S} / \mathrm{H}\) and \(\mathrm{A} / \mathrm{D}\) units.

Fig 11a can help you select the optimum S/H amplifi-
er and A/D converter for a particular application. For the HA-2420, -5320 , and \(-5330 \mathrm{~S} / \mathrm{H}\) amplifiers, the curves give the maximum achievable throughput as a function of \(A / D-c o n v e r t e r ~ s p e e d . ~ T h e ~ A / D-c o n v e r s i o n ~\) times reflect the total conversion cycle-that is, the specified conversion time plus any timing overhead. For example, the timing overhead for the HI-X74 Series of \(\mathrm{A} / \mathrm{D}\) converters is 200 nsec. Fig 11b gives the three \(\mathrm{S} / \mathrm{H}\) amplifiers' percent contribution to total throughput time as a function of A/D-converter speed.

The data presented in Table 1 comes from the graphs in Fig 11a. For each throughput rate, Table 1 gives appropriate \(\mathrm{S} / \mathrm{H}\)-amplifier/ADC combinations. In each case, the cited \(\mathrm{S} / \mathrm{H}\) amplifier is the minimum (that is, the slowest and least expensive) one that will do the job. You'll note that, for \(50-\mathrm{kHz}\) throughput, a tradeoff is possible: the HA-2420 with the HI-774, or the HA-5320 with the HI-674A. Incidentally, in 100-piece quantities,

\title{
NOW YOU CAN DRIVE OUR SUBCOMPACTS.
}

\section*{Seagate's family of \(31 / 2^{\prime \prime}\) hard disc drives.}
 voice coil actuators.

\title{
It's unwise to splurge on an \(S / H\) amplifier that's overspecified for the application at hand.
}
the first combination is about \(\$ 5.50\) less costly. For throughput rates higher than 200 kHz , the HI-X74 Series has insufficient speed. The high-speed A/D converters chosen for this example are Datel's \(2-\mu \mathrm{sec}\) ADC-817 and Micro Networks' \(1-\mu \mathrm{sec}\) MN5245.

\section*{Forgiving ADC saves time}

Most successive-approximation A/D converters are of an unforgiving nature. That is, they require that the input voltage be within a \(\pm 1 / 2\)-LSB error band of its final value from the beginning to the end of the conversion period. Again, this error band is \(\pm 0.012 \%\) for a 12-bit converter. However, a slight timing leeway is possible: The input signal doesn't have to reach its final value until the first (MSB) successive-approximation bit decision is made. This decision time varies from converter to converter. The leeway is very slight, however.

You can see, then, that to calculate throughput you must add the \(\mathrm{S} / \mathrm{H}\) amplifier's full acquisition time plus its hold-mode settling time to the ADC's conversion time. A more forgiving A/D converter, the HI-774A, uses error correction to reduce the timing demands on the analog input voltage. Fig 12 shows that the analog input merely has to settle to within a -31 - to +32 -LSB envelope for much of the conversion cycle. This leeway lets you effectively advance the beginning of an A/Dconversion cycle in relation to the beginning of a sam-ple-and-hold operation, and thus shorten the total ac-quisition-hold-conversion time.
Fig 12 illustrates the timing requirements for an HA-2420 S/H amplifier working in tandem with an HI-774A A/D converter. Curve A gives the timing considerations for the \(\mathrm{S} / \mathrm{H}\) unit operating with a conventional 12 -bit \(\mathrm{A} / \mathrm{D}\) converter, one that demands that the input signal be fully settled at the beginning of the conversion. Curve B shows how you can take advantage of the HI-774A's forgiving nature. For curve A, you must take into account the \(\mathrm{S} / \mathrm{H}\) device's full 12 -bit acquisition and hold-mode settling times in starting the sample-hold cycle. For the HA-2420, this time is \(6 \mu \mathrm{sec}\) max.
For the situation represented by curve B, you can delay the initiation of the sample-hold cycle such that settling to a lesser accuracy occurs within a safe period at some time well into the conversion cycle. In Fig 12, the S/H amplifier settles to within \(\pm 0.1 \%\) in a \(1-\mu \mathrm{sec}\) interval after the start of the conversion. The HA2420 's spec for acquisition and settling to within \(\pm 0.1 \%\) is \(4 \mu\) sec max. You can see that the initiation of the sample-hold cycle for situations A and B must take
place no earlier than 6 and \(3 \mu \mathrm{sec}\) before the start of conversion, respectively. The total respective conversion times are thus 13 and \(10 \mu \mathrm{sec}\), yielding maximum sampling rates of 77 and 100 kHz .

By taking advantage of the HI-774A's input-settling envelope, you can thus increase the conversion rate by about \(30 \%\). Note that the throughput rates determined in this example are based on the HI-774A's \(7-\mu \mathrm{sec}\) typical conversion time; the converter's maximum conversion time is specified at \(8 \mu \mathrm{sec}\).

EDN

\section*{Authors' biographies}

Al Little is technical marketing manager for the data/comm product line at Harris Semiconductor. A 7-year employee at Harris, he obtained math and physics degrees from the University of the South at Sewanee, TN; a BSEE from Georgia Tech; and a master's degree in psychology from Nova University in Fort Lauderdale, FL. He holds a patent for an ECG-monitoring amplifier. Al's spare-time activities include playing the piano and electronic music synthesizers.

Bob Burnett is an applications engineer for data-acquisition products at Harris Semiconductor. He holds a bachelor's degree in psychology from the State University of New York at Oneonta, and a BS in electronic technology from the University of Central Florida. His hobbies include bicycling and motorcycling.

Article Interest Quotient (Circle One) High 494 Medium 495 Low 496

\title{
WITH AVIS ROVING RAPID RETURN, YOU GET YOUR RECEIPT 1-2-3. (WITH HERTZ,II'S
1-2-3-3-5-6-7-9.-10
\(12-13-14-15-16-17\).
}

Now, during peak periods at major U.S. airports and selected downtown locations, an Avis Roving Rapid Return representative will meet you right at your car. Just three rapid entries into the Avis Carside Computer, \({ }^{\text {SM }}\) and Wizard \({ }^{\text {© }}\) calculates your rental charges and your printed receipt is ready in seconds.*

The Avis Carside Computer talks directly to our Wizard III computer system, so all your contract information is available instantaneously. And your receipt will be complete and accurate. Hertz also offers a carside service. However, their machine is a stand-alone computing

Be. 10,
device-not a terminal linked to your rental information. So all your car rental information has to be manually entered - up to 17 separate entries (and extra chances for errors), before your transaction can be completed and a receipt issued.

Avis invented Rapid Return. And now, with Avis Roving Rapid Return, you can be on your way in mere seconds.

Avis is always trying harder, with super services and low SuperValue Rates. So next time, rent Avis. It's as easy as 1-2-3!
"Our Dracula \({ }^{\text {TM }}\) layout design verification software was developed and based on Digital systems, and for very good reason,"' states ECAD President Jim Hill. "Our customers in Integrated Circuit design regard Digital's VAX \({ }^{\text {TM }}\) systems as the standard. Recognizing that, we've developed a line of software products that have made us the standard of our industry."

According to Mr. Hill, Digital's unmatched software compatibility offers real benefits in creating customer acceptance. "We know that whatever Digital system the customer has purchased, our software will run on it successfully. That kind of confidence is rare in the IC design industry. And Digital's hardware and

\section*{"ECAD seized an 80\% world market share - the key was writing our design software to the industry standard,Digital."}
software consistency helps us deliver a better product, faster and at a lower cost."
"We're aggressively pursuing a worldwide market," Mr. Hill adds. "And Digital has the worldwide presence to help us sell each market with strong local support. Our software and Digital's systems sell each other. ECAD and Digital have evolved a strategic partnership, one that gives us a proven competitive advantage in the marketplace."

To get your competitive advantage now, write to: Digital Equipment Corporation, 200 Baker Avenue, West Concord, MA 01742 . Or call your local Digital sales office.

\title{
Easy loaders. Faster test and burn-in with AMP sockets. Faster delivery from AMP.
}

Our LIF burn-in sockets for PLCCs, for instance. Rated to \(200^{\circ} \mathrm{C}\), they offer J lead-down loading - and they can be used in automated processes.

For PGA burn-in sockets, our ZIF styles feature normallyclosed contacts for long life, and curved-handle design to make life easier. Use them for test and they're rated to a phenomenal 25,000 cycles. Loading and
unloading leadless ceramic packages is a breeze, too, thanks to a press-to-release cover on our Low Height test/burn-in versions: no tools necessary, no loose parts.

No matter what technology you work with, AMP sockets can make your work easier. Popular styles are available off-the-shelf.

And they all come with the name that spells affordable dependability: AMP.

Call (717) 780-4400. Ask for the Test/Burn-In Sockets Desk. AMP Incorporated, Harrisburg, PA 17105-3608.

CIRCLE NO 44

\section*{Your next destination:}

\section*{The ACLComputer Age.}

\section*{The future belongs to computers and peripherals built with RCA Advanced CMOS Logic (ACL).}

The pressure is on to make your systems smaller, faster, cheaper.

Some of your competitors are doing just that by incorporating ACL into their new designs. If you want to stay on the fast track, you can't afford not to consider ACL for your new designs.

\section*{The computer of the future.}

Imagine a computer with power dissipation so low you could eliminate all cooling systems. Or design a sealed system to prevent dust problems.

And get dramatically improved reliability, thanks to the far lower heat generated. As well as far smaller system size.

You'd also be able to use it in a far wider operating temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\)). Even in high-noise environments.

\section*{FAST* speed, CMOS benefits.}

Advanced CMOS Logic gives you high speed (less than 3 ns propagation delay with our AC00 NAND gate) and 24 mA output drive current.

But unlike FAST, it gives you a whole new world of design opportunity for computers, peripherals, telecommunications and other speed-intensive applications.

ACL dissipates less than \(1 / 8\) Watt while switching, compared to \(1 / 2\) Watt for a FAST IC (octal transceiver operating at 5 MHz). And quiescent power savings are even more dramatic: ACL idles at a small fraction of the power of a FAST IC.

In addition, ACL offers balanced propagation delay, superior input characteristics, improved output source current, low ground bounce and a wider operating supply voltage range.

\section*{Latch-up and ESD protection, too.}

Latch-up concern is virtually eliminated, because ACL uses a thin epitaxial layer which effectively shorts the parasitic PNP transistor responsible for SCR latch-up.

And a dual diode input/output circuit provides ESD protection in excess of 2 KV .

\section*{A broad and growing product line.}

Our line already includes over 100 of the most popular types (SSI, MSI and LSI). More are coming soon. And many are available in High-Rel versions.

\section*{All this at FAST prices.}

Our ACL line is priced comparably to FAST. So you get better performance at no extra cost. Why wait, when your competition is very likely designing its first generation of ACL products right now?

Get into the passing lane, with RCA ACL from the CMOS leader: GE Solid State. Free test evaluation kits are available for qualified users. Kits must be requested on your company letterhead. Write: GE Solid State, Box 2900, Somerville, NJ 08876.

For more information, call toll-free 800)-443-7364, extension 24. Or contact your local (EE Solid State sales office or distributor.
*FASI is a trademath of Fairchild Semiconductor Corp.
In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm (08) 793-9500.

GE Solid State

\section*{THEN: WWPOWERN
}

Gates Energy Products has purchased GE's Battery Business Department, making us the world's largest source of sealed rechargeable batteries.

What does this mean to you?
That Gates is dedicated to providing you with the best rechargeable batteries in the world.

Gates now has the technology and resources to offer the largest selection of rechargeable batteries including nickel cadmium, nickel hydrogen and sealed lead batteries-from .065Ah to 300Ah.

Leading the technological advancements at Gates is our new GEMAX \({ }^{\text {m }}\) Series of nickel cadmium cells. These cells are providing more run time and maximizing power delivery in all product applications by incorporating higher capacities and lower internal resistance.

As a result of GEMAX technology, Gates now offers the world's highest capacity, production-volume Sub C cell at 1.4 Ah (1-hour rate). And more advancements are on the way.

Our commitment to supply batteries tailored to your specific applications is
yet another aspect of our determination to make sure that Gates batteries are superior.

No other rechargeable battery company in the world is taking such dramatic steps to perfect and expand their rechargeable battery products as the new Gates. It's time you discovered the difference.

For more information worldwide, contact one of the Gates Regional Sales Offices listed below.

Energy
Products
\begin{tabular}{ll}
WESTERN U.S. & CENTRAL U.S. \\
4063 Birch St.\#130 & 2860 S. River Rd. \\
Newport Beach, & Suite 401 \\
CA 92660 & Des Plaines, IL 60018 \\
(714) 852-9033 & (312) 827-9130 \\
(c)1987 Gates Energy Products, Inc.
\end{tabular}

EASTERN U.S.
1 Prestige Dr.
Meriden, CT 06450
(203) 238-6840

SOUTHERN U.S.
1835 Savoy Dr.
Suite 200
Atlanta, GA 30341 (404) 458-8755

PACIFIC AND ASIAN
3706 A, Shun Tak Centre 200 Connaught Rd. Central Hong Kong 011-852-5-403073

EUROPE
Units 12/13
Loomer Rd. Industrial Estate Chesterton
Newcastle-under-Lyme
Staffs. ST5 7LB, Great Britain 011-44-782-566525

\title{
Heed local norms when designing telecomm interfaces
}

> In designing customer-premises telecomm equipment for foreign markets, you must account for the respective countries' national telecommunications standards. These norms often differ in significant ways from the FCC Rules Part 68, which governs telecomm equipment in the US.

\author{
Glen Dash, Dash, Straus \& Goodhue Inc
}

Although most of the world's market for installed telecommunications apparatus remains closed to US suppliers, three major markets are open: Canada, the United Kingdom, and Japan. To gain approval for US-built customer-premises equipment (CPE) in these countries, however, you must demonstrate that the apparatus meets the national standards relevant to several aspects of the equipment's interface to the telecomm network (see box, "If you need standards information"). By using the test methods described here, you can prove that an installation complies with the key national norms governing safety, electrical performance, and other aspects of a CPE's operation. The tests cover voltage stress, hazardous voltages and currents, pulse and DTMF (dual-tone multifrequency) characteristics, signal power, impedances and line balance, and billing protection.

Many of the criteria for overseas telecomm interfaces differ significantly from the requirements delineated in FCC Rules Part 68, and you must be aware of these criteria during the telecomm equipment's design and testing stage. (Ref 1 discusses corresponding test methods for Part 68.) Before going into the electrical performance of an export-destined CPE, it's helpful to see how the different countries recommend feeding dc power to the CPE.
In perusing the various standards and their test methods and circuits, note that many of the specs call for specific loop-current settings in the CPEs during testing. Indeed, several of the spec-limit graphs use the CPE's loop current as their abscissa. To impose the necessary dc-feed conditions, the standards offer what are in essence network power-supply schematics. Fig 1 shows the recommended de-feed circuitry (also called a loop simulator) for Canada, the UK, and Japan.
The feed circuit for Canada is the most elaborate, as it provides a ringing circuit for bringing the CPE to an off-hook condition. The 0 to 105 V adjustable supply (nominally 48V) feeds a variable resistor that allows you to trim the loop current to the value specified for a given measurement. For any test, the + and - terminals connect to the CPE's tip and ring terminals, respectively. (The term "ring" in tip and ring is a carryover from the phone plugs that switchboard operators used in the days of yore.)
In the British telecomm documentation, the dc-feed circuit recommended for most tests makes no provision for ringing the CPE. Instead, the UK specs stipulate a

\title{
To gain approval for telephone equipment in foreign markets, you must prove that the apparatus conforms with national norms, according to mandated test methods.
}
separate circuit for testing the ringer. This configuration, like the Canadian circuit, allows you to adjust the loop current (I). Many of the British standards specify the loop current, and they also offer an alternative: "Compliance shall be checked by the test of (spec No) with an apparatus current of (spec) mA , or the current obtained when the apparatus is connected to a 50 V dc source in series with a \(400 \Omega\) resistor, whichever is the less."

The Japanese seem singularly unconcerned about testing various parameters under varying loop currents; their fixed-value dc-feed circuit for most tests is an inductively blocked 48 V dc supply in series with a \(440 \Omega\) resistor.

\section*{First, stresses and surges}

National telecomm standards impose various requirements for dielectric strength and for excessive voltages and currents. The purpose of these requirements is twofold. First, the CPE must not subject the telecomm network to excessive voltages. Second, the CPE must protect the user from contact with any hazardous voltages that might originate in the network.

Consider the Canadian test for CPE resistance to voltage surges (lightning, for example). Fig 2a gives the Canadian test circuit for surge voltage. As is the case with most of the Canadian standards, it uses the dc-feed circuit of Fig 1a. The surge generator in Fig 2b provides the controlled-characteristic voltage surge shown in Fig 2c. The timing specs for this waveform are complicated and use some very idiosyncratic terms. For example, the waveform is defined as \(1000 \mathrm{~V}, 10 \mu \mathrm{sec}\) \(\max \times 1000 \mu \mathrm{sec} \min\). The \(10 \mu \mathrm{sec}\), an index of the wave front, is the "virtual duration" of the front. This quantity is 1.67 times the interval for the voltage to rise from 30 to \(90 \%\) of its crest value. The \(1000 \mu \mathrm{sec}\), an index of the wave tail, is the interval from the tail's \(50 \%\) point to "virtual zero," the point of intersection of the 0 V abscissa with a line drawn through the tail's 90 and \(30 \%\) points.

Esoteric terms notwithstanding, the way to perform surge-voltage testing on a Canada-destined CPE is to place \(S_{1}\) and \(S_{2}\) in position \(A\) and \(S_{3}\) in position B, and then to fire the surge generator three times. This action applies the surge to the tip terminal; the ring is grounded. Next, place \(\mathrm{S}_{2}\) in position B (thereby reversing tip and ring) and fire the surge generator three more times. Now, adjust the surge generator to produce \(1000 \mathrm{~V}, 100 \mu \mathrm{sec} \max \times 1000 \mu \mathrm{sec} \mathrm{min}\) and repeat the two preceding steps. Next, place \(\mathrm{S}_{1}\) in position B
and operate the ring-up circuit to bring the CPE off hook. You then repeat the firings for both connections of tip and ring and for both surge-generator waveforms. Finally, you place \(S_{3}\) in position \(A\) and repeat all the tests. The criterion for passing the surge-voltage test is

Fig 1-Generate the loop current for your CPE by using one of these dc power-supply circuits. The Canadian dc-feed circuit (a) has a ringing circuit for bringing the terminal equipment off hook; the British (b) and the Japanese (c) dc-excitation circuits are simpler. All three provide essential capacitive dc blocking to the measurement terminals and inductive ac blocking to the driving-voltage source.

Fig 2-In this Canadian surge-voltage testing scheme, (a), the surge generator (b) supplies impulses to the tip, ring, and other connections of the terminal equipment. The impulse's wave front and tail must have very particular timing characteristics (c).
as follows: The test sample, after testing, is fully operational in accordance with the manufacturer's instruction manual, or it must fail in a mode that will not cause harm to the network-for example, permanently on hook.
The UK standards, too, mandate a surge-voltage test to protect users from excessive voltages originating in the telecomm network. A simple RC network provides the surges (Fig 3). To perform the test, you charge the \(20-\mu \mathrm{F}\) capacitor to 1.5 kV . Closing \(\mathrm{S}_{1}\) delivers the impulse to the CPE. The standards require 10 impulses each of both polarities, applied at 1-minute intervals. The terminals of the impulse generator are connected between all network-interface connections and all exposed conducting surfaces on the CPE. After applying the impulses, perform a 500 V insulation-resistance test. The measured insulation resistance must exceed \(2 \mathrm{M} \Omega\).
Another UK stress test involves measuring insulation resistance. The way you perform the test depends on whether your CPE's insulation barriers must serve as the entire insulation system between the network and any eventual hazardous voltages, or whether it will serve as supplementary insulation.
Consider the example of a modem. It connects to the telecomm network via its DCE port, to a computer via its DTE (RS-232C) port and, perhaps, to an auxiliary telephone handset. If the computer's insulation system

Fig 3-British impulses are easy to generate, with the help of this simple network. You simply charge the \(20-\mu F\) capacitor to 1.5 kV , then close \(S_{i}\). This impulse test is actually a conditioning measure; you perform an insulation-resistance test after applying 10 impulses for each polarity of the terminal equipment.
complies with British safety standard BS6204, then you can consider the modem's barrier to be supplementary insulation. Satisfying BS6204 in this context means that the DCE-to-DTE interface in the computer is a "class 2 " circuit. That is, the supply feeding the interface uses an approved transformer and supplies less than 42.4 V at 8 A . In this case, you would perform insulation-resistance tests according to curve A in Fig 4. If, however, the modem's insulation must be the primary barrier (for example, in the event of insulation

\section*{In performing tests to national standards, you must set up a dc supply that simulates conditions in the actual phone network.}
failure in the computer), then you must perform insula-tion-resistance tests according to the more severe curve B in Fig 4.

To perform these tests, you must determine the maximum working voltage-that is, the voltage that the telecomm network could encounter in the event of insulation failure (which would impose the primarysupply voltage on the modem). You then apply this voltage to the insulation barrier as follows: Increase the applied voltage from 0 V to the test voltage gradually (over 5 to 10 sec), then maintain this voltage for 60 sec . The criterion for failure is insulation breakdown.

The Japanese standards for stress and breakdown are simple. If the highest working voltage in the CPE is 300 V de or lower, the power-circuit-to-housing insulation resistance must be at least \(200 \mathrm{k} \Omega\). If the voltage exceeds 300 V dc or ac, the insulation resistance must be at least \(400 \mathrm{k} \Omega\). You must test dielectric strength only if the working voltage exceeds 750 V dc or 600 V ac. To perform the test for dielectric breakdown, apply 1.5 times the working voltage for 10 minutes.

\section*{Take your pulse carefully}

If you plan to design customer-premises equipment for installation in Canada, the UK, or Japan, you must accommodate the national standards governing the characteristics of dial pulses and DTMF tones. To create dial pulses, of course, the CPE simply connects

Fig 4-Insulation resistance is of prime concern in the UK, and the measurement of it depends on your CPE and its application. Use curve \(A\) if the insulation barriers in the other equipment connected to the CPE satisfy British standards. If, however, the insulation barrier in the CPE must serve as the primary barrier in the case of a breakdown, you must test according to the more stringent curve \(B\).
(the "make" interval) and disconnects (the "break" interval) itself to and from the network. Curiously, the US standards do not regulate the characteristics of dial pulses. In the three countries under discussion here, however, the respective national norms rigidly govern these characteristics.
Table 1 gives the countries' salient specs for dial pulses. In Canada, to obtain an adequate loop current for measuring dial-pulse characteristics, you adjust the variable resistor in the dc-feed circuit of Fig 1a. The Canadian spec for spurious breaks applies to the total spurious breaks that occur during any make interval. The spec for maximum interdigital pauses applies, of course, only to automatic dialers. The tip-to-ring resistance during break intervals must equal or exceed \(20 \mathrm{k} \Omega\).

For CPEs destined for the UK, you can test for compliance with dial-pulse requirements by using a dc-feed circuit consisting of a 50 V dc source in series with a \(400 \Omega\) resistor. The British standards mandate that the loop current during break intervals must not exceed \(500 \mu \mathrm{~A}\). In contrast with most of the very carefully stipulated UK specs, the British spec for dial-pulse distortion is somewhat hazy: "The pulsing performance of the apparatus shall be adequate for

TABLE 1-DIAL-PULSE CHARACTERISTICS
\begin{tabular}{|c|c|c|c|}
\hline PARAMETER & CANADA & UK & JAPAN \\
\hline \begin{tabular}{l}
DIALING RATE \\
(PULSES/SEC)
\end{tabular} & 8 TO 11 & 9 TO 11 & \[
\begin{aligned}
& \text { 9.21 TO } 10.8 \\
& \text { OR 18.4 TO } 21.6
\end{aligned}
\] \\
\hline MAKE/BREAK RATIO & 36 TO 42\% & 28 TO 37\% & 30 TO 36\% \\
\hline INTERDIGITAL PAUSE & \[
\begin{aligned}
& 700 \mathrm{mSEC} \\
& \text { TO } 3 \text { SEC }
\end{aligned}
\] & AUTOMATIC: 720 TO 920 mSEC; MANUAL: 240 mSEC MIN & 10-PPS MODE: 600 mSEC MIN; 20-PPS MODE: 450 mSEC MIN \\
\hline SPURIOUS BREAKS & 3 mSEC MAX TOTAL & NO SPEC & NO SPEC \\
\hline
\end{tabular}

TABLE 2-DTMF SIGNAL TONES
\begin{tabular}{l|c|c|c|c}
\hline \multicolumn{5}{|c|}{ HIGH (Hz) } \\
LOW \((\mathrm{Hz})\) & 1209 & 1336 & 1477 & 1633 \\
\hline 697 & 1 & 2 & 3 & A \\
\hline 770 & 4 & 5 & 6 & B \\
\hline 852 & 7 & 8 & 9 & C \\
\hline 941 & \(\star\) & 0 & \(\#\) & D
\end{tabular}
normal operation under extremes of conditions and configurations."
The UK standards explain the difference in automatic and manual (rotary-dial) interdigital-pause specs as follows: "Rotary dials normally have a lost-motion period of not less than 240 msec inherent in the design. In addition, it may be assumed that rotary dials have a wind-up time of not less than 180 msec for digit 1 , and that the wind-up time increases for other digits. Together with user-selection time, this may be expected to give an average interdigital pause of about 800 msec."
The Japanese standards allow for two dial-pulsespeed classes of CPEs: 10 and 20 pps (pulses/sec). As Table 1 shows, the \(\pm 8 \%\) dialing-rate spec is the most rigid of the three countries. The spec for interdigital pauses in Japan is the same for automatic or manual systems. Note that, neither the UK nor Japan, unlike Canada, specify spurious breaks during make intervals. Note also that the Japanese standards do not delineate the dc-feed conditions that must prevail during dial-pulse measurements.

\section*{DTMF tests set the tone}

One thing the three countries agree upon is the set of DTMF frequency pairs that define the numbers 0 to 9 , the asterisk (*), and the pound sign (\#). In addition to these characters (found on a standard telephone handset), the tone pairs can define the four letters A, B, C, and D. Table 2 gives the universally agreed-upon frequencies. Note that Canada, the UK, and Japan also agree upon a \(\pm 1.5 \%\) max frequency tolerance. Where the countries diverge is in the waveform characteristics and the signal-power levels of the DTMF tones.
Table 3 lists the Canadian, British, and Japanese telecomm standards for DTMF waveform characteris-
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{PARAMETER} & \multicolumn{3}{|l|}{ABLE 3-DTMF WAVEFORM CHARACTERISTICS} \\
\hline & CANADA & UK & JAPAN \\
\hline RISE TIME & STARTING FROM \(-55 \mathrm{dBm}, \leq 5\) mSEC TO 90\% OF FINAL VALUE & \[
\begin{gathered}
\leq 15 \mathrm{mSEC} \text { TO } \\
\text { LIMITS IN } \\
\text { FIGURE }
\end{gathered}
\] & NO SPEC \\
\hline ON TIME & \(\geq 50 \mathrm{mSEC}\) & \(\geq 68 \mathrm{mSEC}\) & \(\geq 50 \mathrm{mSEC}\) \\
\hline INTERDIGITAL PAUSE & \(\geq 45 \mathrm{mSEC}\) & \(\geq 68 \mathrm{mSEC}\) & \(\geq 30 \mathrm{mSEC}\) \\
\hline CYCLE TIME & \(\geq 100 \mathrm{mSEC}\) & \(\geq 136 \mathrm{mSEC}\) & \(\geq 120 \mathrm{mSEC}\) \\
\hline
\end{tabular}
tics. You can see that the three sets of specs are widely disparate, and you'll have to take account of these disparities if you're designing equipment for different markets. Consider the rise time of a DTMF waveform, for example. (The rise-time parameter applies to the composite-tone envelope.) In Canada, the rise time is the time it takes the envelope to reach \(90 \%\) of its final value, starting from the \(-55-\mathrm{dBm}\) level. The UK defines it as the time it takes the envelope to reach the specified tone-power limits. Japan has no spec at all for rise time.
Disparities in standards become really pronounced regarding DTMF-tone signal levels. In Canada, for example, DTMF network-control signals transmitted by the CPE to the network interface must meet the following requirements:
- The maximum power difference between the high- and low-group components shall not exceed 4 dB
- The power level of the high-group component shall equal or exceed that of the low-group component
- Loop-powered DTMF-signal power levels shall conform to the limits shown in Fig 5
- The total power of all extraneous frequencies transmitted by the CPE shall be at least 20 dB lower than the DTMF-signal power.

Fig 5-For loop-powered terminal equipment destined for Canada, the power levels of DTMF dial tones must fall within the limits indicated by these curves. As you can see, the tone power is a function of loop current. To test the tones, you can vary the loop current by using the dc-feed circuit of Fig 1a.

Virtually all national telecomm standards view tests for bazardous voltages and dangerous leakage paths as of paramount concern.

For fixed-level, locally powered generators, DTMFsignal power levels have the following requirements:
- nominal power per frequency: -6 to -4 dBm
- maximum power per frequency pair: 2 dBm
- minimum power, high group: -10 dBm
- minimum power, low group: -12 dBm .

In Canada, for data equipment designed to have the DTMF level track the data signal level, the power levels of the high- and low-group DTMF signals shall not exceed that of the data by 2 and 0 dB , respectively. Finally, for autodialers, DTMF-tone average power levels shall not exceed 0 dBm , over any 3 -sec interval and at any loop current.
Fig 6 gives the power-level limits for individual DTMF tones for CPEs destined for installation in the UK. Additional stipulations accompany these limits:
- The high-group tone amplitude shall be \(2 \pm 1 \mathrm{~dB}\) higher than the low-group tone amplitude
- The transient peak voltage (associated with rise and fall intervals) for a DTMF tone shall not exceed 5 V
- During DTMF signaling, the power level for a single unwanted frequency component shall not exceed -33 dBm , and the total power of unwanted frequency components shall be at least 20 dB lower than the lowest power level of any one signaling tone of a digit tone burst.
Unlike those in Canada and the UK, the standards in Japan require that measurements be made at the central office, rather than at the CPE site. You must, therefore, take line loss into account. The Japanese standard for DTMF-signal power levels specifies the

Fig 6-DTMF tone-burst power must meet British norms by remaining within this envelope. As they are in Canada, the DTMF power limits are a function of the loop current. You can vary the loop current by using the dc-excitation circuit of Fig 1 b.
low- and high-group limits as a function of the line loss. The low-group minimum and maximum power limits are \((-16.5+0.8 \mathrm{~L})\) and \((-6.5+0.8 \mathrm{~L}) \mathrm{dBm}\), respectively; L is the line loss in dBm measured at 1500 Hz . The absolute maximum power level for the low group is -3.5 dBm . For the high group, the limits are \((-16+\mathrm{L})\) and \((-6.5+\mathrm{L}) \mathrm{dBm}\), not to exceed -2.5 dBm .

\section*{Scrutinize signal power}

In the three countries under consideration here, no other parameter is so closely regulated as the signal power that the CPE delivers to the telecomm network. Also, no other parameter displays such a disparity in specs. Consider the Canadian standards, for instance. Fig 7 shows the permissible limits for transmitted signal power. Again, you'll find esoteric nomenclature. The term "metallic" applies to differential signals, and "longitudinal" refers to single-ended, ground-referenced signals.
Fig 7's limit curves reflect power levels measured over a 3 -sec interval. The written specs allow shortterm power levels beyond the curves' limits. For example, the spec limits metallic voice and data signals to -9 dBm ; however, during a \(250-\mathrm{msec}\) interval, the power can attain 3 dBm max. The Canadian standards also regulate the maximum de signals that the CPE may impose on the network. On hook, the metallic and longitudinal dc voltage may not exceed \(\pm 25 \mathrm{mV}\). Off hook, the longitudinal signals may not exceed 0 V , nor be more negative than -0.5 V . Note that, though Fig 7 doesn't show it, the frequency range of 3995 to 4005 Hz

Fig 7-Signal power is a crucial parameter in Canada. The curves reflect measurements averaged over a 3 -sec interval; shorter bursts (250 msec) have higher limits. "Metallic" signals are differential, tip-to-ring signals; "longitudinal" signals are single-ended signals, measured from tip to ground and ring to ground.
is restricted: Metallic voice and data levels may not exceed -29 and -20 dBV , respectively. The telecomm system uses this frequency band for network control.

In the UK, signal-power limits are more complex than in Canada (or anywhere else). Table 4 gives the limits for in-band frequencies. The tabular figures represent instantaneous power measured in a \(10-\mathrm{Hz}\) bandwidth. Besides these limits, the British standards mandate a 1 -minute mean power level of -9 dBm max for fixed-level CPEs, and -13 dBm max for apparatus having adjustable power levels. For the adjustable CPEs, the installer must set the level at the time of installation, according to procedures prescribed by British telecomm authorities.

You should interpret Table 4 in the following way: When a signal occurs in area A, it shall be accompanied by a signal or signals in area \(B\), whose power level is not more than 12 dB lower than that of the signal in area A . Similarly, when a signal occurs in area C, it shall be accompanied by a signal or signals in area B, whose power level is not more than 12 dB lower than that of the signal in area C . When no signal exists in area B , the total power in the frequency range of 2220 to 2340 Hz shall not exceed -33 dBm . Table 5 lists the limits for out-of-band signal power in the UK. These limits reflect 1 -minute mean power measured in any \(3-\mathrm{kHz}\) bandwidth above 3.4 kHz .
As mentioned, the Japanese telecomm standards take account of transmission-line losses between the CPE and the central exchange, as borne out by the signal-power limits in Table 6. As you can see, the specs impose a maximum mean power level of \((\mathrm{L}-15) \mathrm{dBm}\), where L is the line loss. Assuming losses between 0 and 7 dB , the CPE should be able to transmit maximum mean power levels between -15 and -7 dBm .

You can consider the lines coming from the telecomm network to your CPE to be long, open-wire transmission lines. To be able to reject noise and hum (principally 50 and 60 Hz) and to minimize coupling to other telephone lines, these lines must remain in balance. Therefore, it's important that your CPE present balanced longitudinal impedances to the network. ANSI/ IEEE-455 is the standard test procedure that Canada has adopted for terminal-equipment balance tests. Fig 8 shows the proposed circuit for performing these tests; the accompanying table gives the Canadian limits for longitudinal-impedance balance. For dataterminal equipment, the minimum balance is 45 dB over the range of 200 to 4000 Hz .

To perform the balance test, you place \(S_{2}\) in position B

TABLE 4-UK SIGNAL-POWER LIMITS
\begin{tabular}{c|c|c}
FREQUENCY \((\mathrm{Hz})\) & \begin{tabular}{c}
POWER LEVEL IN A \\
10-Hz BANDWIDTH \((\mathrm{dBm})\)
\end{tabular} & NOTES \\
\hline 0 & -33 & \\
100 & -33 & \\
100 & -23 & \\
200 & -23 & \\
200 & -6 & \\
\hline 450 & -6 & \\
575 & -43 & \\
775 & -43 & \\
865 & -33 & \\
900 & -6 & \\
\hline 900 & -6 & \\
1000 & -23 & \\
1000 & -45 & \\
2000 & -45 & \\
2000 & -23 & \\
2130 & -6 & \\
\hline 2130 & -6 & \\
2220 & -33 & \\
2340 & -33 & \\
2430 & -6 & \\
\hline 3200 & -6 & \\
3200 & -23 & \\
3400 & -23 & \\
3400 & -33 & \\
& & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ TABLE 5-UK POWER } \\
SPECTRAL-DENSITY LIMITS \\
FREQUENCY & POWER SPECTRAL DENSITY \\
\((\mathrm{kHz})\) & \((\mathrm{dBm})\) \\
\hline 3.4 & -33 \\
5.1 & -40 \\
8.9 & -40 \\
50 & -70 \\
10,000 & -70 \\
\hline
\end{tabular}

TABLE 6-SIGNAL-POWER LIMITS IN JAPAN
\begin{tabular}{c|c|c}
PARAMETER & FREQUENCIES & SIGNAL-POWER LIMITS \\
\hline IN-BAND SIGNALS & 4 kHz MAX & \begin{tabular}{c}
L-15 dBm MAX MEAN LEVEL \\
0 dBm MAX LEVEL
\end{tabular} \\
\hline OUT-OF-BAND & 4 TO 8 kHz & P-20 dB MAX \\
SIGNALS & 8 TO 12 kHz & P-40 dB MAX \\
& \(>12 \mathrm{kHz}\) & P-60 dB MAX
\end{tabular}

NOTES:
1. L IS T HE LINE-TRANSMISSION LOSS BETWEEN THE SWITCHING FACILITIES OF A TELECOMMUNICATIONS CARRIER AND THE INTERFACE WITH THE TERMINAL EQUIPMENT, MEASURED AT 1.5 kHz .
2. THE MEAN LEVEL IS THE AVERAGE SIGNAL POWER MEAS-

URED AT THE TERMINAL EQUIPMENT. THE MAX LEVEL IS THE MAXIMUM PERMISSIBLE POWER LEVEL TO BE SET AT THE TIME OF ADJUSTING THE TERMINAL-EQUIPMENT OUTPUT.
3. \(P\) IS THE IN-BAND SIGNAL-POWER LEVEL.
4. THE DENOTED SIGNAL-POWER LEVELS APPLY TO SYSTEMS HAVING \(600 \Omega\) BALANCED IMPEDANCE.

\section*{Thankfully, all three countries use the same DTMF frequencies, but the permissible power levels for the dial tones vary considerably from country to country.}
and close \(\mathrm{S}_{3}\) to produce an on-hook condition. You then apply a 10 V rms signal and measure the voltage from tip to ring at all the stipulated frequencies. The \(250-\mathrm{k} \Omega\) potentiometer compensates for any mismatch between the \(368 \Omega\) resistors; when these impedances are balanced, flipping \(\mathrm{S}_{1}\) shouldn't produce any differences in
the tip-to-ring voltages. The balance figure is 20 times the base- \(10 \log\) of the ratio of the oscillator voltage to the tip-to-ring voltage. You must test the CPE in an off-hook condition, too. For this condition, you open \(S_{3}\) and adjust the loop current to obtain the lowest balance indication, and then repeat the balance tests.

Fig 8-Balanced impedance to ground is of prime concern in Canada. Longitudinal-impedance imbalance can cause noise and hum pickup, as well as interference with other phone lines. The table gives the minimum acceptable balance figures for various frequencies; the test circuit shown comes from ANSI/IEEE-455.

Fig 9-A concern for balance prevails in the UK, as well as in Canada. Somewhat simpler than Fig 8's circuit for measuring longitudinal-impedance balance, this circuit depends on precise matching of components for its accuracy. The principle of operation and the test method are identical to those for Canadian CPEs.

Fig 10-You must pay your phone bills in Canada, thanks to these off-hook voltage-current limits set by Canadian standards. The CPE's off-hook impedance properties allow the phone company to detect off-hook conditions for billing purposes.

Cut out this actual size image acquisition module and bend it.

\section*{OR CUT THIS OUT.}

\section*{We'll supply what you} demand. Buy only what you need. Philips solid-state image sensors, IC drive chips, complete imaging modules, or referrals to camera makers using our components.
Application Flexibility: Sensitive and versatile enough for security and surveillance, medical use, machine vision and factory automation(with its harsh environments), and general purpose imaging.
Also, the video module is designed with flexible circuit boards that allow the module to bend through 90 degrees of unrestricted movement.

\section*{Amperex}

IMAGING PRODUCTS GROUP

\section*{PHILIPS}

Specifications: Black and white or color image acquisition in EIA and CCIR, frame transfer, unmatched sensitivity (.05LUX), high resolution with \(600 \times 500\) effective pixels, \(100 \times\) anti-blooming margin, extremely low fixed pattern noise.
See for yourself. At your leisure. Our \(15-\mathrm{min}\). VHS video-on-loan demonstrates Philips new CCD capabilities... unmatched performance and flexibility. When you see how much there is to choose from, you'll see why there's only one supplier to choose from. Philips/Amperex, the supplier of choice.

Signal power is the most closely regulated parameter in all telecomm markets. Specs for the various countries vary widely.

Fig 11-Off-hook impedance is important in the UK, as is evident from this limit curve. The off-hook voltage-current status of a terminal allows the phone company to ascertain an off-hook condition for billing.

The circuit prescribed by the UK standards for measuring longitudinal-impedance balance (called "impedance balance about earth" in the UK) is shown in Fig 9. The British specs simply stipulate that the balance, calculated in the same way as the Canadian standards, must exceed 46 dB over the range of 300 to 3400 Hz . Curiously, the Japanese telecomm standards do not specify longitudinal-impedance balance.

In order to be able to bill a caller, a telephone company must be able to detect that the caller's CPE is indeed off hook. One way to do this is to assign limits to

\section*{If you need standards information}

The following companies provide standards information, testing services, and instrumentation necessary for testing telecommunications apparatus to the various national standards discussed in the accompanying article.

Standards information
Compliance Engineering
593 Massachusetts Ave
Boxborough, MA 01719
(617) 264-4208

\section*{ANSI}

1430 Broadway
New York, NY 10011
(212) 642-4900

Testing services
Dash, Straus \& Goodhue Inc 593 Massachusetts Ave Boxborough, MA 01719 (617) 263-2662

Underwriters Laboratory 1655 Scott Blvd
Santa Clara, CA 95050
(415) 782-6900

Instrumentation
Hewlett-Packard 1820 Embarcadero Rd Palo Alto, CA 94303 (415) 857-8000

Compliance Design Inc 629 Massachusetts Ave Boxborough, MA 01719 (617) 264-4668
the CPE's off-hook voltage-current relationship. An example of such a billing-protection spec is the Canadian standard off-hook V-I-limit diagram (Fig 10). The tip-to-ring voltage-current characteristic must satisfy the limits in the diagram for a minimum of 5 sec following the on- to off-hook transition.

In addition to the voltage-current limits shown in the diagram, Canada also stipulates that the measured current shall not decrease by more than \(25 \%\) from the maximum value attained during the 5 -sec interval following the transition. This last requirement does not apply if the current is greater than the current that would flow through a \(200 \Omega\) resistor connected from tip to ring. As in the US, another Canadian billing-protection provision mandates that energy in the 800- to \(2450-\mathrm{Hz}\) band exceeds that in the \(2450-\) to \(2750-\mathrm{Hz}\) band.

Although not labeled as a billing-protection measure as such, an off-hook V-I limit diagram forms part of the British telecomm standards, too. Fig 11 shows the upper limits on the tip-to-ring voltage measured for currents ranging from 0 to 125 mA . The Japanese standards have no explicit billing-protection provisions. The only Japanese spec that corresponds to the Canadian and the British standards is the requirement that the CPE exhibit dc off-hook resistance between 50 and \(300 \Omega\).

EDN

\section*{References}
1. Dash, Glen, "Understand FCC rules when designing telecomm equipment," \(E D N\), May 16, 1985, pg 193.

\section*{Author's biography}

Glen Dash is the founder of Dash, Straus \& Goodhue Inc, a Boxborough, MA-based \(R \& D\) organization that deals with FCC and VDE consulting and testing and with telephone-interconnect analysis for US- and foreignstandards compliance. Glen holds a \(B S\) in Electrical Engineering and an MBA, both from MIT, and has a law degree from Harvard University. He holds four patents and enjoys playing softball in his leisure hours.

Article Interest Quotient (Circle One) High 491 Medium 492 Low 493

\section*{XILINX PROGRAMMABLE GATE ARRAYS from HAMILTON/AVNET PERFECT DESIGNS ALL THE WAY DOWN THE LINE}

\section*{FIRST USER-PROGRAMMABLE GATE ARRAYS AVAILABLE THROUGH 57 LOCATIONS}

Create complex logic designs with the Xilinx family of Logic Cell" Arrays, the only user-programmable gate arrays. You get the performance and densities you expect from a conventional gate array with none of the risk. That could add-up to substantial savings in time and money.
Hamilton/Avnet's experienced team of field application engineers are available to demonstrate the versatility and convenience of using Xilinx LCA*s. And if you want help with your design, our design center engineers are always on hand.
Xilinx's patented architecture is responsible for gate counts that range from 1200 gates in our XC2064 to 1800 in the XC2018. While the 3000 series, with enhanced architecture, features the 2000 gate XC3020.
But this is only the beginning. The 9000 gate XC3090 is soon to come, offering enough density for just about any logic application
With speeds that run with the fastest performance microprocessors available, VLSI densities and \(100 \%\) tested parts, the Xilinx Programmable Gate Array is the ideal logic device. And it's available now from Hamilton/Avnet
So, if you want the very best in high performance, high density programmable logic, and the strongest technical support grouparound, get on the line with your local Hamilton/Avnet representative today.
For more information or to find the location nearest you, call toll free: 1-800-HAM-ASIC. (In Canada, 1-800-387-6879; 1-800-387-6849 in Ontario and Quebec.)
Logic Cell and LCA are trademarks of XUINX. INC.

\section*{HamiltonbAvnet}

CIRCLE NO 54

\section*{Nationa \\ Semiconductor}

\title{
Now anyone can draw on the power of the mainframe with a single chip.
}

\section*{INTRODUCING \\ THE DP8344-THE EASY, AFFORDABLE WAY TO IBM CONNECTIVITY}

At last there's a one-chip solution to processing IBM 3270, 3299 and 5250 communication protocols - the programmable DP8344 Biphase Communications Processor.

The \(B C P^{\prime \prime}\) is easily integrated into cluster controllers, PCs, terminals and printers, so now anyone can design a plug-compatible interface for IBM mainframe and departmental processors.

You can also use the DP8344 in a PBX or to build a gateway to various local- and wide-area networks.

You can use it in a protocol converter to give inexpensive peripherals access to the power of the mainframe. Or in a PC or IBMPS/2 to provide 3270 or 5250 terminal emulation.

In fact, providing IBM connectivity is now so simple and inexpensive that a host of new applications are being developed. The BCP has been designed in by more than 100 companies - including Hewlett-Packard, Local Data, Pathway Designs, Lee Data, Centronics, and Memorex.
© 1988 National Semiconductor Corporation BCP is a trademark of National Semiconductor Corporation. IBM and PS/ 2 are registered trademarks of International Business Machines Corporation.

> IT GIVESYOU A
> LOT OF POWER IN A VERY SMALL SPACE

A full system, supporting all three IBM protocols can be implemented in an area not much larger than a credit card.

The BCP integrates an intelligent transceiver and a high-performance CPU on the same low-power CMOS chip.

Powerful enough to operate as the sole system processor, the BCP also incorporates a flexible bus interface with on-chip arbitration logic, enabling communication with other processors.

With a \(20-\mathrm{MHz}, 50\)-nanosecond T-state processor, 30 instruction types, full-function ALU, and an instructioncycle time ranging from 100 to 200 nanoseconds, the DP8344 supports the 3270 protocol using only 20 percent of the CPU bandwidth.

Fast and flexible interrupt and subroutine capabilities, with on-chip stacks, make the remaining bandwidth readily available for other system tasks. In fact, enough power is available to eliminate other system processors entirely.

\section*{IT COULDN'TBE MORE FLEXIBLE}

The BCP features a softwareconfigurable transceiver that supports not only IBM 3270,3299 and 5250 protocols but also general eight-bit protocols.
A simple line interface connects the BCP to the communications line. The receiver includes an on-chip analog comparator and provides a TTL-level input for added flexibility.

\section*{WE'LL GIVE YOU ALLTHE SUPPORTYOU NEED}

The DP8344 is backed by a development package that includes a demo/evaluation board with a monitor/debugger program, insystem emulation features, and demonstration software for complete 3270 terminal emulation on an IBMPC.

On the system level, we offer both 3270 and 5250 controller emulators and analysis tools.
Application support is available through a worldwide network of technical support centers.

For more information on the DP8344 BCP- the easy, inexpensive way for you to provide IBM connectivity - please contact your National Sales Engineer.

Or write National Semiconductor, MS 23/200,P.O. Box 58090 ,Santa Clara, CA 95052-8090.

Advanced
Peripherals

\section*{Cut your losses}

\section*{High current, low dropout regulators reduce power loss}

Stop wasting power, space and weight. With our LT1083/84/85 positive adjustable regulator family, you'll easily achieve high current at low dropout voltage with precision performance. Low dropout voltage allows dramatic reductions in power dissipation, or increases headroom and operating flexibility. Cut heat sink sizes by \(50 \%\) and enjoy lower system costs with our TO-247 and TO-220 packages.

All three regulators are pincompatible with existing threeterminal adjustable devices. They are rated \(7.5 \mathrm{~A}, 5 \mathrm{~A}\) and 3 A , with a guaranteed dropout voltage of 1.5 V at maximum output current. This makes them the lowest dropout regulators in their class.

Short-circuit and safe area protection are included on the chips, and these regulators don't need protection diodes. Unlike most PNP low dropout regulators where 10\% or more of input current flows to ground and is wasted, our regulators

LT1083 DROPOUT VOLTAGE VS. OUTPUT CURRENT

are efficient with all quiescent current flowing into the load.

This regulator trio delivers a strong array of specifications. On-chip trimming adjusts reference voltage error to less than \(\pm 1 \%\). Line and load regulation are 0.015\% and \(0.1 \%\), respectively. Current limit trimming minimizes stress on the power source, since maximum current is well controlled. For greater reliability, all units are subjected to \(100 \%\) thermal limit burn-in.

Typical applications include high efficiency voltage regulators, constant current regulators, and post regulators for switching power supplies.

Cut your losses with our triplethreat power regulator family. LT1083/84 devices are packaged in TO-3 metal cans and TO-247 plastic. The LT1085 is in TO-3 and TO-220 plastic, and all are offered in MIL-STD-883 versions. Pricing begins at \(\$ 3.70\) each, in quantities of 100. For literature contact: LINEAR TECHNOLOGY CORPORATION, 1630 McCarthy Blvd., Milpitas, CA 95035. 800-637-5545.

\section*{DESIGN IDEAS}

\section*{Soft-start and delay protects power supply}

\author{
William Andreycak \\ Unitrode IC Corp, Merrimack, NH
}

The Fig 1 circuit governs the manner in which a switch-mode power supply returns to normal operation following a short-circuited output. (If the short remains, successive retrys can produce excessive power dissipation in the supply.)

Delays inherent in a typical switcher's PWM IC, drive circuit, MOSFETs, and current-sense filter contribute to power dissipation by delaying a short-circuit shutdown. Therefore, the small propagation delay of a high-speed PWM chip such as \(\mathrm{IC}_{1}\) helps to reduce the on-time following a short. Without protection circuitry, however, the supply will continue to deliver a finitewidth current pulse during each period of \(\mathrm{IC}_{1}\) 's oscillator signal.

To further reduce power dissipation during retry attempts, you must minimize the pulse widths and pulse rate. You can control the pulse widths by incorporating a soft-start sequence in the control circuit. The soft-start delivers a narrow pulse to the load followed by successively wider pulses until the supply is back in operation or the short triggers another shutdown. You control the pulse rate by adjusting the \(R_{5} / \mathrm{C}_{4}\) time constant, thereby reducing \(\mathrm{IC}_{1}\) 's power dissipation as required.

The soft-start alone may produce an unacceptably slow buildup of supply voltage, however. The Fig 1 circuit therefore introduces a restart delay of several tens or hundreds of milliseconds, which lowers the average rate of retry pulses while allowing supply voltages to rise at the turn-on rate required.

Fig 2-These waveforms show how the circuit of Fig 1 responds to repeated fault conditions.

During normal operation, the pin-8 voltage \(\left(\mathrm{IC}_{2}\right)\) is high, and both transistors are off. A fault (shorted output) then shuts down the supply and produces a low level at pin 8 (Fig 2). \(Q_{1}\) and \(Q_{2}\) turn on in quick succession, discharging the restart-delay capacitor \(\mathrm{C}_{2}\) and the soft-start capacitor \(\mathrm{C}_{4}\). When the fault is removed pin 8 returns high and \(Q_{1}\) turns off, producing the restart delay by allowing a slow recharge of \(\mathrm{C}_{4}\).

The restart delay ends and the soft-start sequence begins when \(\mathrm{Q}_{1}\) 's collector voltage reaches \(\mathrm{Q}_{2}\) 's turn-on threshold, about \(0.5 \mathrm{~V} . \mathrm{Q}_{2}\) turns off, which allows \(\mathrm{C}_{4}\) to charge and unclamp the error amplifier's input voltage (\(\mathrm{IC}_{1}\), pin 2). \(\mathrm{R}_{5}\) and \(\mathrm{C}_{4}\) form the soft-start time constant. The circuit can respond accurately to fault conditions lasting longer than 25 nsec.

EDN

To Vote For This Design, Circle No 748

Fig 1-Following shutdown of a PWM switching supply caused by a fault condition, this circuit eases the restart by introducing a delay followed by a soft-start sequence, in case the fault is still present.

\section*{Pulse-burst generator is programmable}

\section*{David Tutlo \\ General Electric, Philadelphia, PA}

The programmable pulse generator of Fig 1a loads data and produces a programmable pulse burst, time delay, or pulse width on receipt of a negative trigger edge. When the circuit is not busy (that is, when the last output event is complete and the trigger signal has returned high), it loads itself with data. It ignores data while the output is active (commencing with the first positive clock edge following a trigger edge). The alphabetically labeled waveforms in Fig 1b illustrate the generator's operation.

By automatically latching the received trigger edges, the circuit accepts asynchronous triggers without producing fractional pulses. The generator also adjusts to the trigger waveform's duty cycle, with the proviso that new digital data enter the counter \(\left(\mathrm{IC}_{2}\right)\) only when the trigger waveform is high. \(\mathrm{IC}_{2}\) is a 4 -bit binary counter; by cascading one or more of these (or the BCD-equivalent 74192 counters) you can implement any desired binary or decade modulo.

Fig 2-One application for the circuit in Fig 1a is to generate a programmable time interval, denoted by two negative edges.

For binary inputs representing the decimal number N , the output exhibits an N -pulse burst (replicating the clock waveform) for each negative trigger edge received. Or, you can use waveform \(\mathrm{H}\left(\mathrm{IC}_{2}\right.\), pin 13\()\) as an output, obtaining a programmed interval of N clock periods denoted by an end-of-cycle pulse (Fig 2). And

Fig 1—This 2-IC circuit (a) provides a pulse burst, pulse width, or time interval that you can program with a resolution of \(\pm 1 / 2\) clock period. Waveforms (b) illustrate the circuit's operation.

\section*{tiny SPDT switches absorptive... reflective}

\section*{dc to 4.6 GHz tom \(\$ 3295\)}

Tough enough to pass stringent MIL-STD-202 tests, useable from dc to 6 GHz and smaller than most RF switches, Mini-Circuits' hermetically-sealed (reflective) KSW-2-46 and (absorptive) KSWA-2-46 offer a new, unexplored horizon of applications. Unlike pin diode switches that become ineffective below 1 MHz , these GaAs switches can operate down to dc with control voltage as low as -5 V , at a blinding 2 ns switching speed.

Despite its extremely tiny size, only 0.185 by 0.185 by 0.06 in., these switches provide 50 dB isolation (considerably higher than many larger units) and insertion loss of only 1dB. The absorptive model KSWA-2-46 exhibits a typical VSWR of 1.5 in its "OFF" state over the entire frequency range. These surface-mount units can be soldered to pc boards using conventional assembly techniques. The KSW-2-46, priced at only \(\$ 32.95\), and the KSWA-2-46, at \$48.95, are the latest examples of components from Mini-Circuits with unbeatable price/performance.

Connector versions, packaged in a \(1.25 \times 1.25 \times 0.75 \mathrm{in}\). metal case, contain five SMA connectors, including one at each control port to maintain 3 n sec switching speed.
Switch fast... to Mini-Circuits' GaAs switches.

SPECIFICATIONS

KSW-2-46 ZFSW-2-46
FREQ. RANGE INSERT. LOSS (db) dc-200MHz \(200-1000 \mathrm{MHz}\) \(1-4.6 \mathrm{GHz}\)
ISOLATION (dB) \(\mathrm{dc}-200 \mathrm{MHz}\) \(200-1000 \mathrm{MHz}\) \(1-4.6 \mathrm{GHz}\)
VSWR (typ)
SW. SPEED (nsec) rise or fall time
MAX RF INPUT (bBm)
up to 500 MHz above 500 MHz CONTROL VOLT. OPER/STOR TEMP.
PRICE (1-24)
\begin{tabular}{ll}
+17 & +17 \\
+27 & +27 \\
-5 V on, OV off & -5 V on, OV off \\
\(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) \\
\(\mathbf{\$ 3 2 . 9 5}\) & \(\$ 48.95\) \\
\(\mathbf{\$ 7 2 . 9 5}\) & \(\$ 88.95\)
\end{tabular}

\section*{DESIGN IDEAS}
by using waveform \(\mathrm{A}\left(\mathrm{IC}_{1}\right.\), pin 4) as the output (Fig 3) you get a one-shot multivibrator, whose output is a pulse whose width is programmable. These circuits synchronize the trigger and clock signals by introducing as much as one clock period of delay, in addition to the programmed interval.

Finally, you can use the burst generator in a binary-to-BCD code converter (Fig 4). Each positive trigger pulse clears the BCD counters \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\). The pulse's trailing edge causes the generator to load the 4 -bit binary data and then issue a corresponding burst of N pulses, which increments the counters to the desired BCD code for N. The generator's end-of-burst pulse can flag a host processor. Again, you can expand the counters to handle larger numbers.

EDN

To Vote For This Design, Circle No 747

Fig 3-In this application, the circuit of Fig Ia serves as the digital analog of a one-shot multivibrator.

Fig 4-Connecting the Fig 1 pulse-burst generator as shown here forms a binary-to-BCD converter.

\section*{Power circuit has constant full scale}

James Bryant
Analog Devices, Newbury, UK

Note that the two equations above are numerically accurate but dimensionally incorrect. You must first normalize a voltage to a dimensionless quantity before raising it to a power-like this, for example:
\[
\mathrm{V}_{\mathrm{OUT}}=\left(\frac{\mathrm{V}_{\mathrm{IN}}}{2 \mathrm{~V}}\right)^{\mathrm{M}}(2 \mathrm{~V})
\]
(The circuit, in fact, does perform this normalization.)
\[
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{FS}}{ }^{(1-\mathrm{M})} \mathrm{V}_{\mathrm{IN}}{ }^{\mathrm{M}} .
\]

An analog computational chip such as AD538 can easily generate the relationship
\[
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}{ }^{\mathrm{M}} .
\]

The full-scale output \(\mathrm{V}_{\mathrm{FS}}\) varies considerably with M , however, for a given range of \(\mathrm{V}_{\text {IN }}\). You can produce a constant-full-scale output by adding a second IC (Fig 1). This circuit inserts a factor into the above equation:

\title{
The highest performance and highest integration, ever. Together on a single 16-bit chip.
}

The \(Z 280^{\mathrm{mm}}\) gives you a more powerful CPU and higher performance peripherals than you've ever seen on a 16 -bit chip. Think of it as a complete microsystem on a chip.

\section*{Unmatched} performance..

Start with the most powerful 16-bit engine available, add on-board Cache, MMU and Burst Mode memory support - and you'll begin to understand the Z280's power and potential. ...powerful on-board peripherals..

Imagine the savings in cost and board size when you have peripherals like 4 DMA channels that'll give you transfers at \(6.6 \mathrm{Mbytes} / \mathrm{sec}\), and a full-duplex UART.
\begin{tabular}{|c|c|c|c|}
\hline & \(7280^{\text {mu }}\) & 80186 & 68070 \\
\hline Package & 68-pin PLCC/CMOS & 68-pin LCC/NMOS & 84-pin PLCC/CHMOS \\
\hline Typical Power & 375 mW & 2W & 800 mW (est) \\
\hline Speed & \(10-25 \mathrm{MHz}\) & 8-12.5MHz & 10 MHz \\
\hline Memory Support & 16 Mb Physical Paged & 1 Mb Physical Segmented & 16 Mb Physical 8 or 128 Segments \\
\hline 16-bit Registers & 12 General & 8 General & 15 Dedicated \\
\hline Instruction Pre-fetch & 256-Byte Assoc. Cache; Burst Mode & 6-Byte Queue & None \\
\hline Multiprocessor Support & Local or Global & Local only & Local only \\
\hline Wait Logic & Programmable & Programmable & Hardwire \\
\hline DMA & 4 Channels, 6.6 Mb/s @ 10 MHz & 2 Channels \(2 \mathrm{Mb} / \mathrm{s}\) @ 8 MHz & 2Channels, 3.2 \(\mathrm{Mb} / \mathrm{s}\) @ 10 MHz \\
\hline Counter/Timers & 316 -bit & 316-bit & 216-bit \\
\hline Serial//0 & 1 Full-Duplex UART & None & 1 Full-Duplex UART \\
\hline DRAM Controlier & 10-bit Refresh & None & None \\
\hline Price (100) & \$33 & \$43 & \$50 \\
\hline
\end{tabular}

\section*{The choice is clear.}
\(\ldots\) and the glue to tie it all together.
With a DRAM Controller to support up to 1 MBit DRAMs and

\section*{Right product. Right price. Right away. \\ (303) 494-2905, F1 (815) 585-2533} GA (404) 923-8500, IL (312) 885-8080, MA (617) 273-4222, MN (612) 831-7611, NJ (201) 288-3737, (609) 778-8070. \(\mathbf{O H}\) (216) 447-1480, TX (214) 231-9090, CANADA Toronto (416) 673-0634, ENGLAND Maidenhead (44) (628) 781227, W. GERMANY Munich (49) (89) 612-6046, JAPAN Tokyo (81) (3) 587-0528, HONG KONG Kowloon (852) (3) 723-8979. R.O.C.: Taiwan (886) (2) 731-2420, U.S. AND CANADA DISTRIBUTORS: Anthem Electric, Bell Indus., Graham Elec., Hall-Mark Elec., JAN Devices Inc., Lionex Corp., Schweber Elec., Western Microtech., CANADA Future Elec., SEMAD.

Programmable Wait State Logic on board - you're really looking at significant glue reduction.

Z280: Truly a microsystem.
The Z280 gives you a lot more performance. In a lot less board space. All off the shelf and backed by Zilog's proven quality and reliability. Plus, it's binary code-compatible with the 780 , and priced to rival 8 -bit chips. And all the development support tools you need are available from industry leaders. Contact your local Zilog sales office or your authorized distributor today. Seeing is believing. Zilog, Inc., 210
Hacienda Ave., Camphell, CA 95008 (408) 370-8000.

Each IC has the transfer function \(\mathrm{V}_{\text {OUT }}=\mathrm{Y}(\mathrm{Z} / \mathrm{X})^{\mathrm{M}}\), where \(\mathrm{X}, \mathrm{Y}\), and Z are inputs (pins 15,10 , and 2). \(\mathrm{IC}_{2}\) applies \(\mathrm{V}_{\mathrm{FS}}\left(2 \mathrm{~V} / \mathrm{V}_{\mathrm{FS}}\right)^{\mathrm{M}}\) to the Y input (pin 10) of \(\mathrm{IC}_{1}\), which completes the desired expression by adding the factor \(\left(\mathrm{V}_{\mathrm{IN}} / 2 \mathrm{~V}\right)^{\mathrm{M}}\). Potentiometer \(\mathrm{R}_{3}\) lets you set \(\mathrm{V}_{\mathrm{FS}}\) in the range 2 to 10 V . (You can obtain \(\mathrm{V}_{\mathrm{FS}}=10 \mathrm{~V}\) by simply opening the connection to pin \(5 ; \mathrm{R}_{3}\) and \(\mathrm{R}_{4}\) are unnecessary in that case.)

The ganged potentiometers \(R_{5 A}\) and \(R_{5 B}\) let you set the power \(M\). The maximum value for \(M\) depends on the common value chosen for \(R_{3}\) and \(R_{4}\) :
\[
\mathrm{M}_{\mathrm{MAX}}=\frac{\mathrm{R}_{3}+200}{\mathrm{R}_{3}}
\]
\(\mathrm{M}_{\text {MIN }}\) depends on \(\mathrm{M}_{\text {MAX }}\) and the common value of the \(\mathrm{R}_{5}\) potentiometer sections:
\[
\mathrm{M}_{\mathrm{MIN}}=\frac{100 \mathrm{M}_{\mathrm{MAX}}}{\mathrm{R}_{5}+100} .
\]

For a given circuit, you get the maximum M value by turning \(R_{5}\) to zero resistance. You get the minimum \(M\) (\(\mathrm{M}_{\text {MAX }} \div 21\)) by turning \(\mathrm{R}_{5}\) to its maximum value of \(2 \mathrm{k} \Omega\). The accuracy of your chosen \(V_{F S}\) value depends on the matching between \(R_{5}\) sections \(A\) and \(B\). For many applications, \(1 \%\)-tolerance sections are satisfactory. The circuit can handle signal frequencies as high as several tens of kilohertz, provided that \(V_{\text {IN }}\) remains positive.

EDN

To Vote For This Design, Circle No 746

Fig 1-This circuit raises \(V_{I N}\) to a power \(M\) set by the potentiometer \(R_{j}\). You set \(V_{\text {our }}\) 's full-scale value by adjusting \(R_{1}\).

You've seen the advantages offered by the A100 Digital Signal Processor. The single-chip DSP solution that features 32 multiply-accumulators, executes up to 320 MOPs, and easily attaches to microprocessors.

Now INMOS speeds A100 system development with the new D704, the complete DSP Development System. The D704 overcomes the clutter normally encountered in developing DSP systems such as hand-crafted assemblers, interleaved busses and power-hungry glue. And since it is tailored for the A100, your end product is first to market and second-to-none in performance.

The D704 combines a comprehensive set of software tools, PC plug-in card and extensive documentation, providing a powerful yet easy-to-use DSP environment. You can experiment with the technology, simulate DSP algorithms in software and run them in real time on the A100's provided on the board.

The A100 is quickly becoming the number one choice in everything from avionics to ultrasonics. And with MIL-STD 883C devices available soon, it will be a natural for military DSP programs of all types. With the D704 Development System, creating DSP solutions has never been easier.

So if you'd like to cut through the clutter, start by clipping the coupon.

THE AIOO DSP FAMIIY
\begin{tabular}{|c|l|}
\hline IMS A100 & \begin{tabular}{l}
Single-Chip 32-Stage Cascadable Transversal \\
Filter-16-Bit Data, 16-Bit Coefficients, \\
320 MOPs
\end{tabular} \\
\hline IMS B009 & PC Plug-In Card Including Four A100's \\
\hline IMS D704 & \begin{tabular}{l}
IMS B009 + Interactive Software Simulator/ \\
DSP Development Suite
\end{tabular} \\
\hline
\end{tabular}

\section*{DESIGN IDEAS}

\section*{Switched signal powers analog switch}

\author{
Jack Armijos \\ Siliconix Inc, Santa Clara, CA
}

The analog switch \(\mathrm{IC}_{1}\) in \(\mathbf{F i g} 1\) can derive power from its input signal during power outages, provided the input signal amplitude exceeds 4 V and its frequency exceeds 1 kHz . For normal operation, the supply voltage \(\left(\mathrm{V}^{+}\right)\)is 12 V , and you apply 5 V at \(\mathrm{V}_{\mathrm{L}}\) for TTL compatibility. With these voltages present, a logic low at \(\mathrm{IN}_{2}\) closes the switch and produces a \(45 \Omega\) on-resistance.

If \(\mathrm{V}_{\mathrm{L}}\) and \(\mathrm{V}^{+}\)are lost, the switch becomes a guest of the signal source and draws power from it. Typical CMOS switches can be destroyed under these conditions, but blocking diodes \(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\) prevent the chip from drawing excessive current from the source.

A positive input pulse turns on the clamping diode \(\mathrm{D}_{3}\) and charges \(\mathrm{C}_{1}\). Charge on \(\mathrm{C}_{1}\) powers the chip; opera-

Fig 1-If this analog-switch circuit loses \(V_{L}\) and \(V^{+}\)voltage, it will draw power from the signal source instead.

Fig 2-These waveforms show that the Fig 1 circuit passes TTL waveforms even when the power is removed. The data input must have at least a 4 V amplitude and a \(1-\mathrm{kHz}\) repetition rate.
tion is satisfactory because the chip requires less than 1 \(\mu \mathrm{A}\) of supply current. Loading of the signal source is imperceptible (Fig 2). Switch resistance is a respectable \(100 \Omega\) for this mode of operation.
Pullup resistor \(\mathrm{R}_{2}\) restores the output level for TTL data. If TTL control is lost, the pulldown resistor \(\mathrm{R}_{3}\) ensures that the switch will remain closed. \(\mathrm{IC}_{1}\) contains two normally closed switches and two normally open switches, so you can also configure a switch that opens when the control is lost. Either circuit requires inverted logic and handles data rates from 1 kHz to 1 MHz.

EDN

To Vote For This Design, Circle No 749

\section*{Zero-current sensor protects relay contacts}

\section*{B Erik Valeur \\ Electronic Instrument \& Specialty Corp, Stoneham, MA}

The Fig 1 circuit extends the life of a reed relay by allowing the relay's contacts to open only at moments of
zero current. (Destructive arcing can cause rapid contact wear if the contacts open repeatedly while conducting current.) Unlike zero-crossing circuits that predict the zero-current moment, this circuit senses that condition and responds immediately, using a fast relay (\(\mathrm{K}_{1}\), \(100 \mu \mathrm{sec}\)).

\title{
WE'LLSHOW YOUWHAT NO ONE HAS EVER SEEN BEFORE
}

\section*{AND WE'LL COLOR IT, TO}

With A 3 Hz Filter That Provides A New Industry Standard Of Resolution For Close-In Performance... The user friendly Marconi Model \(2383,100 \mathrm{~Hz}\) to 4.2 GHz Spectrum Analyzer with built-in tracking generator establishes a new standard of high accuracy, resolution and stability of measurements. The automatic self calibration routine provides exceptional RF level accuracy of \(\pm 1.5 \mathrm{~dB}\) at 4.2 GHz from

Instruments
+27 dBm to -130 dBm . Close-in performance is unmatched with a 3 Hz filter and 1 Hz frequency resolution.

With numerous high performance display functions, dynamic trace, limits memory, RGB drive, GPIB, plus limits masking. The 2383 is at your command for demanding spectral analysis requirements.

For a demonstration or details contact: Marconi Instruments, 3 Pearl Ct., Allendale, NJ 07401. - (800) 233-2955 • (201) 934-9050
- In Canada (514) 341-7630

Marconi

\section*{DESIGN IDEAS}

\section*{Design Entry Blank}
\$75 Cash Award for all entries selected by editors. An additional \(\$ 100\) Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name \(\qquad\)
Title \(\qquad\) Phone
Company
Division (if any)
Street \(\qquad\)
City \(\qquad\) State \(\qquad\) Zip \(\qquad\)
Design Title \(\qquad\)
Home Address \(\qquad\)

Social Security Number
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.

Signed
Date \(\qquad\)
Your vote determines this issue's winner. All designs published win \(\$ 75\) cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

\section*{ISSUE WINNER}

The winning Design Idea for the October 29, 1987, issue is entitled "Debouncer for spdt switches uses few parts," submitted by Mounir Boukadoum of the University of Quebec at Montreal (Quebec, Canada).

Fig 1-You control this power circuit by operating the \(S_{1}\) switch; the diodes and the optoisolator prevent a response in the relay except when the relay contacts' current is near zero.

The on/off switch \(S_{1}\) controls the application of \(\mathrm{V}_{\text {Supply }}\) to the load by controlling \(\mathrm{K}_{1}\). Load current biases one of the diode pairs on, which in turn activates one of two LEDs in the optocoupler. This action turns on the phototransistor, ensuring that the relay remains closed while load current is flowing regardless of the state of \(\mathrm{S}_{1}\).

Conventional \(60-\mathrm{Hz}\) ac current, however, goes through zero twice per cycle, about every 8 msec . At that time the phototransistor turns off, and (if you have opened \(\mathrm{S}_{1}\)) \(\mathrm{K}_{1}\) opens, at or near the moment of zero current. Resistor \(\mathrm{R}_{1}\) limits the LED current if necessary. (No limit is required in this circuit, which can handle one or two amperes.) Similarly, the zener diode \(\mathrm{D}_{1}\) protects the opto device by clamping the relay's flyback voltage (the zener's breakdown should be about \(4 \times\) the coil voltage). \(\mathrm{D}_{1}\) isn't required with the components shown.
This type of circuit can extend a relay's life by several orders of magnitude while handling contact currents at least \(2 \times\) that rated for the relay. The circuit shown, for example, ran for 40 or 50 million operations with little evidence of wear and no signs of contact breakdown.

EDN

To Vote For This Design, Circle No 750

\title{
FLASH OF BRILIANCE
}

Tri-Color Excellence in aT1 size from the World Leader in High-Efficiency LEDs.

For performance superiority, space saving design and packaging selection, Data Display's tri-color LEDs are your brilliant choice. As high-intensity red, green and amber light indicators, their quality and reliability clearly shine through in a T1 package.
Actual size

The tri-color LED light output is a good 21 MCD with wavelengths of 635 for red and 565 green. A milky diffused package provides an extra wide viewing angle. Also, you're designing in the dependability and competitive pricing you can expect from a world leader in LEDs.

\section*{Save Space. Two LEDs in One Package.}

All of our tri-color LEDs use a bright idea to improve your high density packing. The T1 size has 2 LED chips in the same small package. Twoterminal operation gives red (\(\mathrm{DC}+\)), green (\(\mathrm{DC}-\)), and amber (AC) with current of 20 mA .

Also having the same two-terminal operation features is a larger \(\mathrm{T} 13 / 4\) size. It's ideal for lens illumination. Another T13/4 size has three-terminal operation with a common cathode.

\section*{Choice of Packages. Shining Support.}

Data Display has a network of sales representatives and distributors to get you the quantities you want. Our complete line of LEDs includes a variety of packaging options-from PCB mounts including our new variable array to panel lights available with or without lenses. And we also provide engineering support.

Make the brilliant choice. Call Data Display, TOLL FREE (800) 421-6815. Within California, call (213) \(640-0442\). Free catalog.

Your Brilliant Choice
P.O. Box 91072, Los Angeles, CA 90009 (213) 640-0442, TELEX 664-690, FAX 213-640-7639

\section*{Hitachi's 3-Chip Graphics System}

Off the northeast coast of Australia lies the Great Barrier Reef. . . a world of striking visual images... its appearance changing effortlessly with the tide. Now, Hitachi's made it easier than ever for you to create dazzling graphic images.

Our renowned HD63484 Advanced CRT Controller (ACRTC) has been joined by the HD63485 Graphics Memory Interface Controller (GMIC), and the HD63486 Graphics Video Attributes Controller (GVAC). The ACRTC made graphics software design simple, and now the GMIC and GVAC complete the picture by making your hardware design just as easy.

Glue logic is virtually eliminated. Development time and cost are slashed to the minimum. You end up with a graphics system so costeffective that you can use it in high-volume, mainstream PC and OA workstation applica-
tions. High-performance graphics no longer has to be an option on your products.

A trio of devices gives unbeatable performance in every key area. The ACRTC embodies Hitachi's 2-micron CMOS technology to integrate all CRT and graphics control functions on one chip. This all-CMOS device has three on-board processors to relieve the system's CPU of many time-consuming processing tasks. The ACRTC executes 38 high-level commands-including 23 graphic drawing commands. You don't have to compute command parameters, and address translation is done in hardware.

The GMIC acts as an interface between the ACRTC and your frame buffer. This 64 MHz Hi - \(\mathrm{BiCMOS}^{\text {w' }}\) device generates every control and refresh signal required by the DRAM frame buffer, including all timing signals, row-and-column addresses, and write strobes.

\section*{Every Image}

The GVAC controls the data flow going to the display itself. This \(64 \mathrm{MHz} \mathrm{Hi}-\mathrm{BiCMOS}\) device controls the video attributes, and includes programmable dot shift registers. These provide zooming, horizontal smooth scrolling, plus many user-definable video attributes.

With one ACRTC, one GMIC, two GVACs, plus frame buffer memory, you quickly build a system with \(640 \times 480\) resolution, and 16 colors. Or, configure a system any way you want. As you add GVACs, system flexibility goes up exponentially-just imagine the kinds of images you can create. And, you'll do it all in less time, and with less cost, than any other graphics system ever made.
more-at EGA' prices! To learn more, call your local Hitachi Sales Representative or Distributor Sales Office today.

Fast Action: To obtain product literature immediately, CALL TOLL FREE, 1-800-842-9000, Ext. 6809. Ask for literature number SB-103.
*PGA and EGA are registered trademarks of International Business Machines Corporation. PGA offers \(640 \times 480\) resolution, a 4 K color palette, and 256 displayable colors. EGA offers \(640 \times 350\) resolution, with 16 displayable colors.

\section*{Hitachi America, Ltd.}

Semiconductor and IC Division
2210 O'Toole Avenue, San Jose, CA 95131
Telephone 1-408/435-8300

Hitachi gives you the price/performance competitive edge. This system is rapidly becoming the industry-standard CRT and graphics controller. After all, it allows PGA* capabilities-and
(0) HITACHI

We make things possible

Taiwan Liton Electronic Co., Ltd. 12th FI., 25 Tunhwa S. Rd., Taipei, Taiwan, ROC Tel: (02) 771-4321/8 Fax: 886-2-751-1962 Tlx: 24514/20211 TWLITON
\({ }^{*}\) IBM PC/AT and PC/XT are trademarks of the International Business Machines Corp.

\section*{NEW PRODUCTS}

\section*{COMPONENTS \& POWER SUPPLIES}

\section*{CLOCK BATTERIES}
- Maintain power to clock chip when computer is turned off
- 2- to 4-year lifetime

The Model 843 and 844 batteries utilize a \(4.5 \mathrm{~V}, 1-\mathrm{Ahr}\) alkaline system and replace the lithium battery that comes with all IBM PC/AT computers. These clock batteries maintain power to the clock chip when the computer is turned off. The batteries also maintain the memory of the chip to prevent loss of the computer's system-configuration information. The 844 features a 4 -pin termination that lets it directly replace the original lithium battery in most 80286- and 80386-based systems. The 843 comes in a 3 -pin configuration. Unlike the 6.0 V OEM lithium batteries, the 843 and 844 employ no internal voltage-dropping resistors.

Thus, they have a lifetime spec of two to four years. \(\$ 11\).
Rayovac Corp, 601 Rayovac Dr,

Madison, WI 53711. Phone (608) 275-3340. TLX 190428.

Circle No 351

\section*{SENSOR}
- Designed to measure heat losses from any solid surface
- Temperature-independent operation

Essentially a metabolic rate indicator for inanimate systems, the Model MS-175 thermoelectric sensor is a flat-plate transducer that measures heat losses from any solid surface. When mounted on a motor housing, it can intercept a small fraction of the heat flow and thereby generate an electrical signal that's proportional to the local heat flux. Under normal load conditions, the transducer can deliver a steadystate signal that's independent of
either the ambient or the operating temperature. High steady-state signals indicate inefficiency or incipient failure. You can read out sensor output signals on any millivolt recorder, potentiometer, or data logger. \(\$ 125\).

ITI Co, Box 309, Del Mar, CA 92014. Phone (619) 755-4436.

Circle No 352

\section*{POWER SUPPLIES}
- Have wide-range input capability
- Feature 300,000-hour MTBF

PY Series single-output, openframe switching power supplies feature a 300,000 -hour MTBF rating. The supplies have an 85 to 132 V ac input range and are available with \(5,12,15\), and 24 V outputs. The family includes models with power outputs of 15 to 50 W. Each model features inrush current limiting and overvoltage protection. All but the

15 W models come with overcurrent protection as a standard feature. Each supply has a \(70 \% \mathrm{~min}\) efficiency rating, a \(16-\mu\) sec min holdup time, and \(\pm 3 \%\) regulation. The supplies' internal noise filters meet FCC B-Class requirements, and they provide full-load ratings at temperatures as high as \(50^{\circ} \mathrm{C}\). \(\$ 28\) to \(\$ 46\) (100). Delivery, four to six weeks ARO.
Shindengen America, 2649 Townsgate Rd, \#200, Westlake Village, CA 91361. Phone (805) 3731130.

Circle No 353

\title{
CADDOCK's Precision and Ultra-Precision Resistor Networks provide a designer's choice of performance that will optimize solutions in precision analog circuit designs.
}

\section*{Precision and Ultra-Precision Resistor 'Pairs' and 'Quads' deliver a selection of Ratio Tolerance to as tight as \(\pm \mathbf{0 . 0 1 \%}\) and Ratio Temperature Coefficient to \(2 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) combined with exceptional long-term stability.}

\section*{Standard Type T912 and T914 Precision and Ultra-Precision Resistor Networks.}

\section*{Custom Type T912 and T914 Precision and Ultra-Precision Resistor Networks.}

Custom models of these precision 'pairs' and 'quads' can include these special performance features:
- Resistance Values: from 1 K to 2 Megohms with maximum ratios of 250-to-1.
- Absolute TC: as low as \(15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\).
- Ratio TC: as low as \(2 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\).
- For Type T912/T914 data, circle Number 201.

\section*{Precision Decade Resistor Voltage Dividers and Current Shunt Resistor Networks deliver many optimum combinations of precision and temperature coefficient performance for high accuracy range-switching circuitry.}

\section*{Standard Type 1776 Precision Decade Resistor} Voltage Divider Networks.

The Type 1776 Precision Decade Resistor Voltage Dividers provide a family of networks that includes 3, 4 and 5-decade voltage dividers with ratios from 10:1 to 10,000:1. Standard performance includes a wide range of specifications in particular combinations that meet the most often requested requirements.
- Absolute Tolerances: from \(0.25 \%\) to \(0.1 \%\).
- Ratio Tolerances: \(0.25 \%, 0.1 \%\) or \(0.05 \%\).
- Absolute TC: from \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) to \(25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\).
- Ratio TC: from \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) to \(5 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\)
- Voltage Coefficient: As low as 0.02 PPM/Volt.

With 36 standard models to choose from, each circuit designer can specify the exact levels of performance required by each application.
- For Type 1776 data, circle Number 202.

\section*{Standard Type 1787 Precision Current Shunt Resistor Networks.}

The Type 1787 Current Shunt Resistor Networks achieve the combination of performance requirements necessary to meet the demands of precision current measurement circuits, including laboratory and bench-type instrumentation
- Resistance Values: 1 ohm,

10 ohms, 100 ohms and 1000 ohms.
- Absolute Tolerances: 0.25\%, \(0.1 \%\) or \(0.05 \%\).
- Absolute TCs: \(100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\), \(80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) or \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\).
There are now 12 standard models of the Type 1787 Current Shunt Resistor Networks available for 3 and 4-decade applications, and prototype quantities of many models are normally available from factory stock.

- For Type 1787 data, circle Number 203.

\section*{COUPLER}
- Requires no external power
- Converts current to isolated output voltage

The TLP590/591 photovoltaic coupler converts the current output from a TTL device to electrically isolated output voltage. It converts electrical signals to light by using a GaAs infrared LED. A series-connected photodiode array receives this light and generates a photovoltage. Because the driving circuit is completely isolated from the con-trol-signal circuits, you can use this photovoltage to drive power MOSFETs. The photovoltaic coupler provides enough voltage for direct MOSFET gate drive and thus requires no external power supply. \(\$ 2\) (1000). Delivery, 12 weeks ARO.

Toshiba America Inc, Semiconductor Products Div, 2692 Dow Ave, Tustin, CA 92680. Phone (714) 8326300 .

Circle No 354

POWER SUPPLIES
- \(\pm 0.05 \%\) line regulation
- 120,000- to 460,000-hour MTBF

The Olympian Series linear power supplies feature calculated MTBF ratings of 120,000 to 460,000 hours. These international units are rated from 6 to 115 W and conform to UL, IEC, CSA, and VDE requirements. With jumpers, they can accommodate ac inputs ranging from 100 to 240 V . Standard features include line regulation of \(\pm 0.05 \%\) for a \(10 \%\) line change, load regulation of \(\pm 0.05 \%\) for a \(50 \%\) load change, short-circuit and overload protec-
tion, and remote sensing. \(\$ 29.50\) to \$108 (25).

Tamura Corp of America, 1150 Dominguez St, Carson, CA 90746. Phone (213) 638-1790. TLX 664759. Circle No 355

\section*{DC/DC CONVERTERS}
- Provide 15 W single, dual, or triple outputs
- Have 0.33-in. mounting height

PKC-Series In-Card pc-board mounting, 15 W de/dc converters come in single-, dual-, or triple-output versions, and have 500 V dc input to output isolation. The converters provide outputs of 5,12 , or 15 V and are available for operation from 18 to 36 V , or 36 to 72 V inputs. Output voltage accuracy on tripleoutput versions is \(\pm 2.5 \%\) on all outputs. Their operating temperature range is -45 to \(+85^{\circ} \mathrm{C}\), and their MTBF is in excess of 200 years. Each converter comes in a \(3.15 \times 2.17 \times 0.42\)-in. package; however, its pins let you mount the package in a cutout in the pe board, thus reducing the mounting height to 0.33 in . This mounting height lets you position adjacent pe boards on a \(0.6-\mathrm{in}\). (3TE) spacing. The supplies are pin compatible with the vendor's PKA Series converters. 5V, singleoutput version, approximately \(£ 40\) (100).

Rifa AB, Power Products Div, 16381 Stockholm, Sweden. Phone (8) 757-5000. TLX 10948.

Circle No 356
Rifa Inc, Greenwich Office Park 3, Greenwich, CT 06836. Phone (203) 625-7300.

Circle No 357

Your Custom Precision and Ultra-Precision Resistor Networks from Caddock:

\author{
- Can be delivered in only 6 weeks ARO \\ - With total NRE charges typically under \(\$ 950^{00}\) \\ - Includes 10 prototype networks for your in-circuit evaluation. \\ \\ - Thin-Profile, Single-In-Line package design.
}

Type T1794 Custom Low TC Precision and Ultra-Precision SIP Resistor Networks.

Caddock’s Tetrinox \({ }^{\circledR}\) resistance films provide a wide choice of
 Absolute TCs, Ratio TCs and Networks precision tolerance specifications. Select the performance of your custom network from the following
- Resistance Values: from 500 ohms to 50 Megs.
- Absolute Tolerances: \(1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%\), \(0.10 \%, 0.05 \%\) and \(0.025 \%\).
- Ratio Tolerances: \(1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%\), \(0.10 \%, 0.05 \%\) and \(0.025 \%\).
- Absolute Temperature Coefficients: \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\), \(25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) and \(15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
- Ratio Temperature Coefficients: \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\), \(25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}, 10 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) and \(5 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- For Type T1794 information, circle Number 204.

Type 1789 Custom Low Resistance Value Precision SIP Resistor Networks.

Using Caddock's Micronox \({ }^{\circledR}\) resistance films, your low resistance custom networks can now include:
- Resistance Values: from 0.5 ohms to 10,000 ohms.
- Absolute Tolerances: \(1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%\), \(0.10 \%\) and \(0.05 \%\).
- Ratio Tolerances: \(1.0 \%, 0.50 \%, 0.25 \%, 0.20 \%\), 0.10\% and 0.05\%
- Absolute Temperature Coefficients: \(100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\), \(80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) and \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- Ratio Temperature Coefficients: \(80 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\), \(50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}, 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) and \(15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- For Type 1789 information, circle Number 205.

Caddock's high thru-put manufacturing capabilities provide cost-effective, on-time delivery of your custom resistor network requirements. Custom network designs are now in-production in quantities from 500 networks per year to as high as 500,000 networks per year.

> For fast solutions to your custom resistor network needs, call our Applications Engineers at Telephone No. (714) 788-1700.

CADDOCK
HIGH PERFORMANCE FILM RESISTORS

for your

COMPARE THESE BENEFITS
- Runs on Personal System/2 models 50, 60, and 80 (Micro Channel \({ }^{\text {m }}\))
- Most extensive software library - program in the language of your choice
- Highest performance available
- up to 1 M bytes \(/ \mathrm{sec}\) data transfer rate using NI Turbo \(488^{\text {mi }}\) gate array
- ON SRQ interrupt response
- Applications Monitor
- real-time error checking and program tracing with pop-up windows
- Best price/performance
- FREE technical support with toll
free telephone service
- 30-day money back guarantee
- 2-year warranty

National INSTRUMENTS

The Leader in IEEE-488
12109 Technology Blvd.
Austin, Texas • 78727-6204
CALL FOR FREE CATALOG
\(800 / 531\)-4742•512/250-9119
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l}
\hline & & & & & & & & & & \\
\hline
\end{tabular}

\section*{POWER SUPPLY}
- Designed to power disk drives - Rated for 400 W

The QX-11 switching power supply is meant for applications that include several 500 M -byte disk drives. The fan-cooled power supply is housed in a \(5 \times 3.4 \times 13.5-\mathrm{in}\). chassis and provides three fully regulated outputs. The supply is rated at 400 W and sustains 575 W peak for 10 sec. The supply features a 0 to \(50^{\circ} \mathrm{C}\) ambient-temperature operating range; an input surge-current limit; brownout protection; jumpers for \(115 / 230 \mathrm{~V}\) ac operation; and complete overload, overvoltage, and re-verse-voltage protection. The supply has a typical efficiency of \(75 \%\) and a holdup time of 20 msec . You can obtain remote on/off control and thermal shutdown as options. \(\$ 349\) (100).

Cherokee International Inc, 2841 Dow Ave, Tustin, CA 92680. Phone (714) 544-6665. TWX 510-101-0493.

Circle No 358

\section*{DIODE RECTIFIERS}
- Feature high efficiency
- Deliver 44A outputs

The 40CPQ050 and 40CPQ060 dualdie, center-tapped, Schottky-diode rectifiers have repetitive peak re-verse-voltage ratings of 50 and 60 V , respectively. Housed in TO-3P packages, the devices handle 44A and are highly efficient-their forward drop/junction measures only 0.63 V at \(25^{\circ} \mathrm{C}\). The units come configured with two anode input pins and have one cathode center-tapped
output pin integrated with the base plate. Each device has a nonrepetitive surge-current rating of 525 A , a peak reverse-current rating of 25 A (at \(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\)), a junction-to-case thermal resistance of \(0.6^{\circ} \mathrm{C} / \mathrm{W}\), and an operating junction-temperature range of -40 to \(+125^{\circ} \mathrm{C} .40 \mathrm{CPQ} 050\), \(\$ 6.41\) (100); 40CPQ060, \$6.58. Delivery, eight weeks ARO.

International Rectifier Corp, 233 Kansas St, El Segundo, CA 90245. Phone (213) 607-8837.

Circle No 359

\section*{DATA LINKS}
- Feature pin-selectable inputs and outputs
- Single-supply operation

The Series 5660 analog fiber-optic data links consist of a transmitter, a receiver, and a 50 m cable. The transmitter and receiver are housed in 24 -pin dual-in-line packages. Pertinent specs include a \(10-\mathrm{kHz}\) bandwidth, \(\pm 0.025 \%\) FS linearity, an \(80-\mathrm{dB}\) signal-to-noise ratio, and a \(100-\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) temperature coefficient. Transmitter and receiver fullscale input and output voltages are pin-selectable for 0 to 1,0 to \(2, \pm 5\), and \(\pm 1 \mathrm{~V}\). The transmitter and receiver modules operate from a single supply of 11.5 to 20 V . The receiver includes a 3-pole, active lowpass filter, which you can bypass to suit your application. \$200. Delivery, six to eight weeks ARO.

Dymec Inc, 8 Lowèll Ave, Winchester, MA 01890. Phone (800) 2251151; in MA, (617) 729-7870. TWX 710-348-6596.

Circle No 360

\section*{PROTOTYPE PANEL}
- Features 4-layer construction
- Includes area for PGA devices

The 8136-VME940-03D is a \(9 \mathrm{U} \times 400-\mathrm{mm}\) wire-wrappable panel for use in VME Bus applications. It features 4-layer construction-two full ground planes and two full \(\mathrm{V}_{\mathrm{CC}}\) planes-that maximizes power distribution. Integral surface-mounted decoupling capacitors increase distributed capacitance and decrease overall impedance, making the panel compatible with high-speed logic devices. The panel accommodates as many as 595 16-pin DIPs when you also use the PGA (pingrid array) areas for the ICs. The PGA areas withstand the high power dissipation that is typical of devices in PGA packages. \(\$ 1583\).
Augat Inc, Box 1037, Attleboro, MA 02703. Phone (617) 222-2202. TWX 710-391-0644.

Circle No 361

\section*{VF DISPLAY MODULE}
- For harsh environments
- Features single-supply operation

The \(31098-99\) is a shock-mounted, ruggedized 6 -line \(\times 40\)-character vacuum fluorescent (VF) display module for use in applications that require high tolerance to shock and vibration. The display operates over a -40 to \(+85^{\circ} \mathrm{C}\) temperature range and features \(5.05-\mathrm{mm}\)-high, \(5 \times 7\)-dot-matrix, blue-green characters. The module operates from a 5 V supply. Its internal \(\mu \mathrm{P}\) controls all display functions and easily in-
terfaces to an 8-bit parallel TTLcompatible ASCII data bus. The module displays the complete 96 character ASCII font set, as well as ECMA (European Computer Manufacturers Association) characters and scientific symbols. It can also display user-defined fonts, which you can download with software. \(\$ 4256\) (10). Delivery, six to eight weeks ARO.

IEE Inc, Industrial Products Div, 7740 Lemona Ave, Van Nuys, CA 91409. Phone (818) 787-0311, ext. 418. TLX 4720556.

Circle No 362

\section*{DC/DC CONVERTERS}
- Are compatible with 0.5-in. board-spacing applications
- Feature 0.02\% line and load regulation

The 4.5W Model 5D12.185 and Model 5D15.150 converters operate from 5 V inputs and deliver \(\pm 12 \mathrm{~V}\) at \(\pm 185 \mathrm{~mA}\) and \(\pm 15 \mathrm{~V}\) at \(\pm 150 \mathrm{~mA}\), respectively. Measuring only \(2 \times 2 \times 0.375-\mathrm{in}\)., they are compatible with applications involving boards separated by 0.5 in . The converters' key specifications include \(0.02 \%\) line and load regulation; \(10-\mathrm{mV}\) p-p output noise; \(0.3 \% / 1000\)-hour long-term output stability; 500 V de isolation; \(60 \%\) min efficiency; and 8 -hour min short-circuit protection. The converters also furnish a 6 -side shielded case and an LC filter that minimizes the amount of current noise that feeds back into the power bus. Their operating range spans -25 to \(+80^{\circ} \mathrm{C} . \$ 105\).
Calex Mfg Co Inc, 3355 Vincent Rd, Pleasant Hill, CA 94523. Phone (415) 932-3911. TLX 269888.

Circle No 363

\section*{Off-The-Shelf Rocker Switches To Fit Your Design Parameters}

Oak rocker switches are available in an assortment of designs, colors, sizes and styles to retrofit most existing design parameters. These attractive and highlyreliable switches are available in single or double pole, lighted, non-lighted or LED varieties. Choose from 6 standard colors and 9 profiles. Quick Connect terminations are standard, with other terminations available.
Oak rocker switches' off-the-shelf capability ensures prompt delivery. UL and CSA approved. Most have VDE, BEAB and SECV approval.
Contact: Oak Switch Systems Inc.
P.O. Box 517

Crystal Lake, IL 60014
Phone: 815/459-5000
Circle \(\mathbf{1 1 0}\) for Literature Circle \(\mathbf{1 4 9}\) for Sales Call

Lighted Pushbutton Switches Meet Military, Commercial Specifications
Oak's Optolite lighted pushbutton switches and indicators are available in a wide variety of sizes to meet most design requirements. They feature nine custom colors, eleven pushbutton styles, custom legends including dual lamp/split legends, and choice of mounting options.
A wide range of electrical ratings (dry circuit to 15 amps) and contact configurations are available in both alternate and momentary operation with up to 10 million duty cycles. The switches are UL, CSA listed and many are available with international approvals.
Contact: Oak Switch Systems Inc.

\section*{P.O. Box 517}

Crystal Lake, IL 60014
Phone: 815/459-5000

\section*{Standard and Custom Solenoids For Almost All Circuit Designs}

Oak Switch System's extensive line of rotary and linear solenoids include box frame, tubular, flat pack, and rotary selector. All are engineered and manufactured to meet stringent quality standards.
Oak has standard solenoids for virtually any force/stroke requirement. Oak engineers will also custom design rotary or linear solenoids to meet client specifications.
Contact: Oak Switch Systems Inc.
P.O. Box 517

Crystal Lake, IL 60014
Phone: 815/459-5000
Circle 113 for Literature Circle 152 for Sales Call

\title{
What you can't see is the experience.
}

Go ahead, look closely. Oak Micromotion membrane switch panels invite your rigorous inspection. From every angle, the quality is apparent. Colors are crisp, clean, and to your specifications. Graphics are exact. Options such as texture, LED's and tactile feel are just as you require.
And while you can feel the quality, you can't see Oak's more than 50 years of switch manufacturing experience. But you can sense it from the moment you call. You immediately know you're talking with professionals, people who know the demands of industrial and commercial environments.
Take a good look at Oak Micromotion membrane switch panels. You'll see high reliability, unlimited graphic design options, competitive prices and fast delivery. You might not see the experience, but the quality tells you it's there.

DNK Switch Systems Inc. P.O. Box 517 Crystal Lake, IL Phone: \(815 / 459-5000\)

\section*{RC NETWORK KIT}
- For prototyping surface-mount designs
- Includes assembly procedures

The 9000 kit is for assembling prototype resistor-capacitor circuits that employ surface-mount components. Each kit contains metallized ceramic substrates as well as instructions and examples of typical circuits. Five substrates are provided for
each of three circuit patterns to allow maximum flexibility in possible circuit configurations. Surfacemount components come assembled on a 10 -pin SIP (single-in-line package) substrate to minimize the size of the finished device. The instructions include a discussion of surfacemount assembly procedures. \(\$ 395\).

Debtek Inc, 503E Vandell Way, Campbell, CA 95008. Phone (408) 866-7286.

Circle No 364

\section*{OPTOCOUPLERS}
- Accept ac or dc inputs
- Feature \(1000 \mathrm{~V} / \mu \mathrm{sec}\) min CMR

HCPL-576X Series 8-pin, hermetically sealed optocouplers accept either ac or dc inputs, which lets them serve in either voltage- or currentsensing applications. Typical applications include monitoring a limitor proximity-switch, a relay-con-
tact, or a power-supply protection circuit. HCPL-5760, the standard product, is a single-channel, ac/dc-to-logic interface optocoupler; HCPL-5761 is the version tested to MIL-STD-883 Class B requirements for use in military and high-reliability systems. Each unit has a guaranteed operating range of -55 to \(+125^{\circ} \mathrm{C}\). Their CMR equals \(1000 \mathrm{~V} /\) \(\mu \mathrm{sec}\) min at a withstand-test voltage of 500 V . HCPL-5760, \$61.90; HCPL-5761, \$109.85.
Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Call local office.

Circle No 365

\section*{SOCKET SYSTEM}
- Handles 1 to 3 A current levels
- Available with tin-lead or goldplated contacts
The CHG wire-mount socket system is designed for signal-transmis-

\section*{Brushless DC fans use advanced} IC technology for greatly improved reliability and control.
A single chip incorporating "Hall" sensing and power electronics performs all commutation functions, replacing the printed circuit board assembly. Starting inrush current requirements are reduced for power supply savings-and various speed control methodologies can be accommodated to tailor output to thermal and acoustic variables. In fans from \(2^{\prime \prime}\) to \(41 / 2^{\prime \prime}\). Only from Nidec-Torin. For additional information, please call (203) 482-4422, ext 502. Or write: The Nidec Corporation, 100 Franklin Drive, Torrington, Connecticut 06790.

sion and logic-power applications requiring current ratings between 1 and 3A. Two contact options accommodate \(22 / 24\) or \(26 / 28\) AWG dis-crete-wire or prenotched ribbon cable on a \(0.1-\mathrm{in}\). grid spacing. You can select 1- and 2 -row sockets containing from 2 to 40 or 4 to 80 contacts without polarization or with center-bump polarization. The 2 -row military and DIN versions contain from 10 to 80 contacts and are available with or without the center bump. The contact plating includes a choice of \(0.1-\mu \mathrm{in}\). tin-lead (entire contact) or 10 or \(30 \mu \mathrm{in}\). of gold over \(50 \mu \mathrm{in}\). of nickel. \(\$ 0.96\) (1000) for a 1-row, 10 -position socket with \(30 \mu \mathrm{in}\). of gold plating and no center bump.

3M, Dept EP7-99, Box 2963, Austin, TX 78769. Phone (512) 834-1800.

Circle No 366

\section*{SOCKET}
- Has perforated construction that simplifies board cleaning
- Features insulator with 94V-0 UL rating

The PLCC-068 socket accepts 68-pin plastic leaded chip carrier (PLCC) devices. The socket is JEDEC-qualified for type-A carri-
ers and it has an \(8 \times 8\)-position contact array that places contacts on 0.050 -in. centers. Its glass-filled polyphenylene sulfide insulator has a \(94 \mathrm{~V}-0\) UL rating, and its preloaded, stamped-and-formed, cop-per-alloy contacts have a tin-lead plating. The socket features a compact low-profile design and perforated construction to ease board
cleaning. The socket's design lets you probe the chip-carrier pins in the circuit. The socket operates over a temperature range that spans -65 to \(+125^{\circ} \mathrm{C}\). \(\$ 3\) (100). Delivery, stock to eight weeks ARO.

Precicontact Inc, Box 798, Langhorne, PA 19047. Phone (215) 7571202.

Circle No 367

Emcor offers a choice of shielding solutions, all of which are tested to MIL STD 285. These enclosures combine high strength with modular options and attractive esthetics. Emcor's commercial EMI/RFI enclosures are fabricated from 14-gauge cold-rolled steel and are fully zinc-plated. Our Tempest-style enclosures provide even higher levels of attenuation. They are fabricated from 12-gauge cold-rolled steel, nickel-plated and feature a unique latching system and door design (patent pending).
Contact Emcor to discuss your EMI/RFI needs. Our engineering staff has the knowledge and experience to help solve shielding problems. We can also design modified and custom products.

Crenlo, Inc.
1600-4th Ave. N.W. Rochester, MN 55901 Phone 507-289-3371 FAX \#507-287-3405

\section*{COMPUTERS \& PERIPHERALS}

\section*{IMAGE SCANNER}
- Provides 300-dot/in. image scanning
- Scans at 16 -sec/page rate

The desktop IX-12F image scanner can scan documents for text, graphs, drawings, maps, and pictures and can enter them into a computer. It can scan images at a speed of \(16 \mathrm{sec} /\) page and can provide a resolution of 300 dots \(/ \mathrm{in}\). It offers 32 levels of halftones, a useful feature for photo reproduction. The scanner has a CCD sensor and a
halogen light source. An optional automatic document feeder can handle as many as 20 letter- or legalsize sheets of paper. The unit measures \(14 \frac{1}{2} \times 211 / 2 \times 31 / 2\) in. You can use an interface board to connect it to one of the vendor's personal computers or to an IBM PC, PC/AT, or compatible computer. Scanner, \(\$ 1495\); document feeder, \(\$ 595\).

Canon USA Inc, System Div, 1 Canon Plaza, Lake Success, NY 11042. Phone (212) 688-1200.

Circle No 368

\section*{STD BUS BOARD}
- Uses a 4.6-MHz \(64180 \mu \mathrm{C}\)
- Features an 8-channel A/D converter for data acquisition
The Model 8020 all-CMOS CPU board for the STD Bus uses a 64180 \(4.6-\mathrm{MHz} \mu\) controller chip. The board features three memory sockets, two of which have 32 k bytes of battery-backed RAM. The remaining socket contains Debug software. You can also use this socket to hold a 27 C 256 EPROM (CMOS) or, if allCMOS operation isn't required, a 27512 EPROM. The board's 64180 \(\mu \mathrm{C}\) has two RS-232C ports with programmable baud rates. The board also has a synchronous, halfduplex serial I/O channel and a Z80

PIO IC that provides two 8 -bit channels. An 8 -channel, 8 -bit A/D converter furnishes data acquisition through 0 to 5 V inputs. Other features of the board include two 16-bit and four 8-bit cascadable counter timers, one watchdog timer, two DMA channels, and a battery-
backed clock calendar. You can use the board's Debug firmware to link it to an RS-232C device or to an IBM PC or compatible computer. You can download Intel Hex-formatted code from your IBM PC or compatible and execute it in RAM with a breakpoint. The board's power requirements are 5 V at \(90 \mathrm{~mA}, 12 \mathrm{~V}\) at 1 mA , and -12 V at \(4 \mathrm{~mA} . \$ 395\); with A/D converter, \(\$ 445\).

C \(\mu\) Bit, 190 S Whisman Rd, Mountain View, CA 94041. Phone (415) 962-8237. TLX 797377.

Circle No 369

\section*{DISK COPIERS}
- Make duplicate floppy disks from hard disks or floppy disks
- Provide as many as 300 copies/ hour

MST Replica! Series diskette duplicators let high-volume software publishers make as many as 300 copies/hour of \(31 / 2\)-, \(5^{1 / 4}\)-, and 8 -in. double-sided media at each of their copy stations. The copiers can handle disks compatible with MS-DOSbased computers and with Commodore Amiga, Apple Macintosh, Atari, DEC, and Wang computers. A user-programmable batch mode permits the automatic duplication of several masters from either a hard- or floppy-disk original. The units can operate unattended after their initial setup. They can record serial numbers. You can order copiers whose options let you copy between various \(51 / 4-\) and \(31 / 2\)-in. floppy

\section*{CHINON: Scanning the future.}

Chinon's design engineers have a serious commitment to produce the most technologically advanced products that the mind of man can imagine.

That commitment has created subsystems, peripherals and components that could change the way we think about computers-and change the way computers are used.

The Scanner and the CD-ROM units pictured here are the types of products that continually move the leading edge forward. The Scanner could change the way business works by making true OCR technology more affordable and easier to use than ever before. The unique scanning head design means that the document to be scanned remains fixed, unlike other scanners that
can only accept a single sheet fed through the unit. It is also extremely compact and lightweight, and is designed to set new standards of cost-effectiveness.

CD-ROMS can provide users with access to databases that, only a few years ago, were possible only with a mainframe system.

Technology is still moving as fast as the best minds can advance it. At Chinon, our commitment to that progress keeps our products at the very forefront of the leading edge. We're bringing the future of computing to the needs of today.

Chinon America, Inc., 6374 Arizona Circle Los Angeles, CA 90045 (213) 216-7611 FAX: (213) 216-7646

\title{
The new HP PaintJet color graphics printer. Great color is only \(1 / 2\) the story.
}
(c) 1987 Hewlett-Packard Co

\section*{COMPUTERS \& PERIPHERALS}
disks or allow you to use an IBM PC, PC/XT, or compatible to copy disks intended for the IBM PC/AT and PS/2 or Apple II. From \(\$ 5500\).
Media System Technology Inc, 16812 Hale Ave, Irvine, CA 92714. Phone (800) 443-8515; in CA, (714) 863-1201. TLX 4992344.

Circle No 370

\section*{PRINTER ADAPTER}
- Lets IBM PCs or compatibles drive high-speed laser printers
- Provides access to laser-printer formatting features
The USA/PC enables IBM PCs or compatibles and IBM PS/2 computers to drive high-speed laser printers and Xerox ion-deposition printers. It drives high-speed laser printers by Datagraphics, HewlettPackard, IBM, Kodak, NCR, Siemens, and Storage Technology. Computers such as the PS/2 Model

80 and the Compaq 386, which employ \(80386 \mu \mathrm{Ps}\), or machines such as the PS/2 models 30 and 60 , which employ the \(80286 \mu \mathrm{Ps}\), can drive the Xerox 8700 and 9700 and the IBM 3800 at full speed. IBM PCs or compatibles and the PS/2 models 25 and 30 can drive the Xerox 4050 and 4060 ion-deposition printers, which feature maximum operating speeds of 50 and 60 pages/minute respectively. The unit also grants access to such printer features as an unlimited selection of type fonts, type
sizes ranging from four to 24 points, variable-line and -character spacing, variable-page width, and the capacity to print on both sides of a sheet of paper. \(\$ 9000\).
Spur Products Corp, 13469 Beach Ave, Marina Del Rey, CA 90292. Phone (213) 822-7100.

Circle No 371

\section*{SMART MODEM}
- Hayes AT-compatible 212A/103 modem
- Autoanswer and autodialing for DTMF and pulse
The MCM-MODEM is a self-contained Bell 212A/102 and CCITT V. 22 and V. 21 compatible modem on an STD Bus card. It supports the full Hayes AT command set with additional features: autoanswer and autodialing for both DTMF and pulse dialing, and call-progress monitoring. The modem has an

Description graphics printer for engineering use
\(80 \mathrm{dpi} ; 330\) colors at 90 dpi

\section*{It can also print a page of text in 30 seconds flat.}

CIRCLE NO 21

\section*{COMPUTERS \& PERIPHERALS}

FCC-registered data-access arrangement (DAA) for connection to the telephone line and a 8250 B UART-type interface to the STD bus. It's configured for 8 - and 10 -bit addressing and requires a total of eight consecutive I/O addresses. The board generates an interrupt whenever the following prioritized levels are active: received data available, transmitter holding register empty, receiver-line status, and modem status. The card is I/O mapped and processor independent -it can work with the 80186,8088 , 68008 , HD64180, Z80, or 8085 A . It
comes with an audible telephoneline monitor and an auxiliary RJ-11 jack for a separate telephone handset. The unit requires 5 V at 250 mA and -12 V at 40 mA ; it operates over 0 to \(65^{\circ} \mathrm{C} . \$ 395\).
WinSystems Inc, Box 121361, Arlington, TX 76012. Phone (817) 274-7553.

Circle No 372

\section*{LAN SERVER}
- Implements the ISO Open System Interconnection protocol
- Connects as many as 64 peripheral devices to a LAN

The CS/1-OSI LAN communications server implements the full 7-layer Open System Interconnection (OSI) protocol as defined by the International Standards Organization (ISO). It can connect as many as 64 computing and peripheral devices to a LAN. These devices can include

asynchronous, bit- and charactersynchronous, and IBM-3270 Category A devices. The server is also compatible with the Technical and Office Protocols (TOP) 3.0, a specification of the OSI protocols layered over Ethernet (IEEE 802.3). In addition to Ethernet, the server is available in versions for token-ring LANs (IEEE 802.5) and for the vendor's 5M-bps CSMA/CD broadband LANs. The server's architecture uses a \(16-\mathrm{MHz} 68020\) main \(\mu \mathrm{P}\) and several \(68000 \mu\) Ps to offload communication-processing tasks from the host. A network-user
log-in feature permits the independent configuration of each port in order to restrict access. The server also has a built-in packet generator, which lets you perform network diagnostics while the network is operational. Eight-port version, \$9900; 64 -port version, \(\$ 16,000\). OSI software, \(\$ 250\). Delivery, 90 days ARO.

Bridge Communications Inc, 2081 Stierlin Rd, Mountain View, CA 94043. Phone (415) 969-4400. TLX 176544.

\section*{Circle No 373}

\section*{\(\mu \mathrm{C}\) BOARD}
- Uses a CMOS 64180 microcontroller chip
- Has floating-point Basic interpreter resident in ROM

The Vitrax IX is a microcontroller board for digital control and data acquisition. It uses a CMOS \(64180 \mu \mathrm{C}\) that's compatible with the Z80 in-

struction set. The board contains a floating-point Basic-language interpreter in ROM, as many as 16 k bytes of EPROM-based user code, and 16 k bytes of CMOS static RAM that you can expand to 32 k bytes. In addition, the device has an onboard EPROM programmer for code generation. It provides 24 bidirectional I/O lines; two full-duplex asynchronous RS-232C channels with datatransfer rates as high as 18,200
baud; a Centronics printer port; an optional 8-channel, 10-bit CMOS A/D converter; and an optional realtime clock/calendar. The unit operates on a 5 V power supply with a current drain of less than 150 mA . It is supplied as a \(4 \frac{1}{2} \times 6^{1 / 2}\)-in. pe board in kit and assembled forms. Basic kit and manual, \$139.50; 8-channel, 10-bit CMOS A/D converter, \(\$ 39.50\); CMOS real-time clock/calendar, \(\$ 34.50\).
Sintec Co, 28 8th St, Frenchtown, NJ 08825. Phone (800) 5265960; in NJ, (201) 996-4093.

Circle No 374

\section*{ANALOG I/O CARDS}
- Provide 12-bit, 64-channel analog input
- Available with software drivers for OS-9/68000

The VME-68320-ADC and -68330DAC are VME Bus-compatible ana-

When you're looking for input on raster plotters, take a look at some major CalComp output. Twenty-four different versions from the fastest growing raster family in the world. (With more family members arriving soon.)

Every raster plotter incorporates more industry firsts, more choices. From simple, colorful business graphics to the complexity of super-dense integrated circuit design, mapping, etc.

The 5800 and 5700, our color and black-and-white electrostatic plotters, deliver speed, superior resolution, multiple configurations and A to E size plots.

For CAD graphics, PlotMaster \({ }^{\text {TM }}\) produces quick-check "A" size presentation-quality color.
Or plug ColorMaster \({ }^{\circledR}\) into your PC and through CalCompatibility, you can run the most popular business presentation graphics software.

log input and analog output cards, respectively. The VME-68320-ADC provides 64 single-ended or 32 differential input channels, which are digitized to 12 -bit resolution at a conversion rate of 50 k readings/sec. The input ranges for the A/D converter are 10 V for a unipolar input, or \(\pm 10\) or \(\pm 5 \mathrm{~V}\) for a bipolar input. A programmable gain amplifier on the front end allows you to introduce gain of \(\times 1, \times 2, \times 4\), or \(\times 8\), or a user-defined gain factor. A patch panel is provided next to each input connector so that you can add your own signal-conditioning circuitry. The VME-68330-DAC provides
eight 12 -bit analog outputs. You can select bipolar output ranges of \(\pm 2.5\), \(\pm 5\), or \(\pm 10 \mathrm{~V}\) or unipolar output ranges of 5 or 10 V . Both boards have onboard de/dc converters that allow them to operate from the VME Bus 5 V supply. Software drivers for the OS-9/68000 operating system are available for the boards. VME-68320-ADC, DM 2480; VME-68330-DAC, DM 1750.

EKF Elektronik Messtechnik GmbH, Weidekampstrasse 1A, 4700 Hamm 1, West Germany. Phone (02381) 12630. TLX 828621.

Circle No 375

\section*{DISK CONTROLLER}
- Board for Sun 3 workstations supports four SMD/SME drives
- Is the same size as Sun's triplehigh, triple-wide cards
An enhancement of the Rimfire 3200 , the Rimfire 3220 is a VME

Bus disk-controller board for Sun 3 workstations. The board has the same dimensions as do Sun's triplehigh and -wide cards, and it can support four SMD/SME drives via faceplate connections. It uses an \(80186 \mu \mathrm{P}\) to manage a 512 k -byte segmented cache memory; the cache eliminates unnecessary seek and rotational delays by prereading disk files that span track boundaries. The board can handle SMD E-drive data rates to 24 MHz and can burst data across the VME Bus at rates in

The first family? You bet. First in high-resolution 400 DPI color. First in pin-point accuracy with electronic registration. First in embedded controllers to save space. First with convenient ROM pack firmware. First with flexibility of over 2,000 line and area fill colors. And too many more firsts to talk about here.

There's also a national 800 helpline, 425 trained service persons, 46 service centers nationwide, 32 international field offices, and on-site service. And a single supply source.

Wedrawon your imagination."
Don't be the last to learn about the first family. Call 1-800-CALCOMP or write CALCOMP, P.O. Box 3250, Anaheim, CA 92803. In Canada, call (416) 635-9010.
excess of 30 M bytes/sec. Software support includes device drivers for Unix BSD 4.2 and SunOS. You can also obtain software that boots a Sun 3 workstation directly from the controller. \$3495.

Ciprico Inc, 2955 Xenium Lane, Plymouth, MN 55441. Phone (612) 559-2034.

Circle No 376

\section*{DISK CONTROLLER}
- Incorporates a disk cache to speed data transfers
- Handles four mixed-format flop\(p y\)-disk drives
To achieve disk access at data rates as high as 500 k bytes/sec, the FCM1 floppy-disk-drive controller card for G64 Bus systems incorporates 8 k

Over 10 million Canon
EN35 DC Micro Motors are working in computers, printers, VCRs, video disk and tape drives, and business and medical equipment of major OEM manufacturers worldwide.

Canon EN35s owe their enduring popularity to their exceptionally long life (up to 10,000 hours) ... compact size and light weight ... high power ... low mechanical and electrical noise (optional filter network lowers electrical noise even further) ... low vibration. Especially suited for capstan, ribbon and carriage drives; fans; paper transport drives for banking machines and other applications. Modifications available in OEM quantities.

Calloll u.S.A., INC. COMPONENTS DIVISION.

One Canon Plaza, Lake Success, NY 11042 Tel: (516) 488-6700 • FAX (516) 354-1114

bytes of onboard disk-caching memory and a DMA controller that regulates data transfer between the cache memory and floppy disk-drive controller. The Eurocard board interfaces with as many as four 3.5-, \(5.25-\), or 8 -in. floppy-disk drives and handles any combination of singleor double-sided, single- or doubledensity drives. The device operates from a 5 V supply and consumes 600 mA . You can obtain a driver for the OS9 operating system. £318.

Syntel MicroSystems, Queens Mill Rd, Huddersfield, Yorkshire HD1 3PG, UK. Phone (0484) 535101. TLX 51194.

Circle No 377

\section*{PHOTOPLOTTER}
- Achieves a resolution of 2540 dots/in.
- Accommodates film sizes to \(18 \times 24 \mathrm{in}\).
Suitable for use with pe-board CAD systems, the L1 drum photoplotter uses a raster-scan technique and a \(5-\mathrm{mW}\) focused-beam argon-ion laser to provide a resolution of 2540 dots/ in. The blue light emitted by the laser exposes low-cost orthochromatic film. The imaging area is \(25 \times 25 \mathrm{in}\). and supports standard film sizes as large as \(18 \times 24 \mathrm{in}\). The largest film sizes are exposed in less than five minutes. A vacuum holds the film against the inside of the drum during operation. The photoplotter links to a host computer via an RS-232C serial interface and accepts RS-274 (Gerber) photoplot data. It works with the company's S44 artwork editor and CAM workstation software. From 300,000 to \(400,000 \mathrm{Sw}\) Fr.

EIE Electronic Industrial Equipment SA, 15 rue Marziano, 1211 Geneva, Switzerland. Phone (022) 423260. TLX 429484.

Circle No 378

\title{
NEW PRODUCTS
}

\section*{12-BIT QUAD MDAC}
- Four 12-bit CMOS DACs on a single monolithic chip
- Each DAC provides two outputs

The CMOS HS-7584 contains four multiplying DACs, each having two current outputs and a separate reference input and feedback resistor. The double-buffered input structure accepts 12 -bit parallel data or 8-bit/ 4 -bit data, and interfaces with a \(\mu \mathrm{P}\). The use of thin-film resistors ensures 12 -bit accuracy, and each DAC is laser trimmed for linearity and gain matching. The device's cur-rent-output settling time is \(3 \mu \mathrm{sec}\) max. The converter operates from a single 5 V supply and draws 1 to 10 mA of current, depending on the input logic levels. The device comes

in a hermetic 40-pin ceramic DIP or a 40 -pin ceramic LCC. HS7584C, \$62; HS7584B, \(\$ 120\) (100). Delivery, six to eight weeks ARO.

Hybrid Systems, 22 Linnell Cir-

TV TUNER CONTROL
- Supports multiple tuning functions
- For use in either frequency- or voltage-synthesized tuners

The CA3263 provides interface control for TV/CATV tuning systems and can drive either frequency- or voltage-synthesizer tuners. Two logic-level inputs (0 or 5 V) operate the IC's bandswitch controller, whose outputs drive the supply voltages of the VHF, UHF, and Superband bands in the tuner. At a supply voltage of 12 V , the bandswitch controller's output voltages are \(11.3 \mathrm{~V} \min\) at a current of 30 mA . You can use its inverting and noninverting op amps to amplify error signals or serve as active-filter
elements with tuners using phaselocked loops. The IC comes in a 14 -pin DIP and costs \(\$ 1.00\) (100).

GE Solid State, Route 202, Somerville, NJ 08876. Phone (201) 6856994.

INQUIRE DIRECT

\section*{VOLTAGE DETECTORS}
- 2 to 16.5 V operation
- Three temperature ranges available

The MAX8211 and MAX8212 are programmable voltage detectors for use in power-supply monitoring applications. They contain a comparator, a \(1.15 \mathrm{~V}(\pm 40 \mathrm{mV})\) bandgap reference, and an open-drain N -channel output driver. The devices operate from a 2 to 16.5 V supply and draw a maximum supply current of \(15 \mu \mathrm{~A}\). The 8211 provides a \(7-\mathrm{mA}\) current-limited output sink when the threshold pin is below the reference voltage. On the 8212 , inputs above the reference voltage activate the output, which is not cur-
cle, Suburban Industrial Park, Billerica, MA 01821. Phone (617) 667-8700. TWX 710-347-1575.

Circle No 379

rent limited and can typically sink 35 mA . The hysteresis-type output can typically source 10 mA , allowing you to apply positive feedback for noise-free output switching. The applications include undervoltage and overvoltage detection, batterybackup switching, and powersupply fault monitoring. MAX8211MTY and MAX8212MTY in hermetic TO-99 metal cans for military applications, \(\$ 5.75\); MAX8211EPA and MAX8212EPA in 8-pin plastic DIPs for industrial and commercial applications, \(\$ 2.14\) (100).

Maxim Integrated Products, 510 N Pastoria Ave, Sunnyvale, CA 94086. Phone (408) 737-7600.

Circle No 381

DC/DC CONVERTER
- Provides eight isolated supply voltages
- \(\pm 7\) to \(\pm 20 \mathrm{~V}\) dc outputs

The modular PWS740 de/dc converter consists of three components: PWS740-1, housed in a TO-3 package, is a \(400-\mathrm{kHz}\) oscillator/driver that drives as many as eight separate power outputs; PWS740-2 is a trifilar-wound isolation transformer in a plastic package; PWS740-3 is a high-speed rectifier bridge in a plastic, 8-pin miniature DIP. By sharing a common power driver among several channels and using boardmounted transformers and rectifi-
ers, you can generate bipolar isolated power to \(\pm 30 \mathrm{~mA}\) for about \(\$ 6\) to \(\$ 8 /\) channel. PWS740-1, \(\$ 12.75\); PWS740-2, \$2.50; PWS740-3, \$1.25 (100).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 7461111. TLX 666491.

Circle No 382

\section*{A/D CONVERTER}
- 4-bit output
- 200M samples/sec

The AD9688 ADC guarantees no missing codes while performing 4-bit conversions at rates typically greater than 200 M samples/sec. The device uses a flash-converter architecture to provide 7-bit linearity, which equates to 0.0625 LSB for a 4-bit device, and you can stack multiple units to obtain 6-bit resolution via the overrange output terminal. The converter accepts analog input

signals between -2.7 and 3.0 V ; all digital inputs and outputs are ECL compatible. The device is pin compatible with the AMD AM6688. A small-signal bandwidth of 200 MHz (-3 dB) and low input capacitance of 13 pF eases the device's application in high-speed designs. The applications include ECM (electronic countermeasure), digital radio systems, and low-resolution radar guidance for smart munitions. Available in either an 18-pin ceramic DIP or a 20-pin ceramic LCC, the converter

Quadram's new Quad HPG \({ }^{\text {TM }}\) graphics adapter delivers unbeatable PC graphic capabilities. Brooktree makes it possible with an unbeatable triple 8-bit RAMDAC that provides 256 colors from a 16 million palette.

\section*{INTEGRATED CIRCUITS}
typically consumes \(<700 \mathrm{~mW}\) of power from 5 V and -5.2 V power supplies. From \(\$ 20\) (100).

Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 329-4700. TWX 710-394-6577.

Circle No 383

\section*{12-BIT ADC}
- 800-nsec conversion time
- Pin-programmable inputs

Performing a 12 -bit conversion in a maximum of 800 nsec and dissipating a maximum power of 1.9 W , the ADC-508 offers the best speed/ power ratio available in this type of product, according to the manufacturer. The converter's performance is a result of the digitally corrected, subranging architecture, which is enhanced by the use of a custom chip and laser-trimming techniques. The device's features include low

initial errors of 3 LSB for both offset and gain, CMOS/TTL compatibility, and 3 -state outputs. Other features not usually available in 12 -bit, high-speed converters are pins that provide different coding selections, an indication of signals that are above or below the fullscale range, and a means of improving throughput by putting the \(\mathrm{S} / \mathrm{H}\) function back into the sample mode
before the circuit completes the existing conversion. The ADC-508 has three pin-programmable input ranges: 0 to \(10 \mathrm{~V}, 0\) to 20 V , and \(\pm 10 \mathrm{~V}\). For commercial temperature range, \(\$ 330\); for military temperature range, \(\$ 399\).
GE Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Phone (617) 339-3000. TWX 710-346-1953.

Circle No 384

\section*{ADDRESS GENERATOR}
- Provides programmable address sequences
- Cascadable for greater addressing range

Suitable for use in DMA, database addressing, and waveform-synthesis applications, the PDSP1640A address generator allows you to generate complex 8-bit address sequences at speeds as high as 40 MHz . You can cascade devices to increase the

Brooktree Bt453. Triple 8-bit 40
MHz RAMDAC with 256 color lookup table. Monolithic CMOS.
Quadram Quad HPG. \(640 \times 480 \times 8\) high performance graphics adapter board for IBM PC family, IBM Personal System \(/ 2^{T M}\) Model 30 , and compatibles.
Brooktree Corporation, 9950 Barnes Canyon Road, San Diego, California 92121. 1-800-VIDEO IC or 1-800-422-9040, in California.
© Copyright Brooktree Corporation 1988. Quadram is a registered trademark of Quadram Corp. Quad HPG is a trademark of Quadram Corp. IBM Personal System/2 is a trademark of International Business Machines Corporation.

\section*{CUSTOM X-Y MONITORS OFF-THE-SHELF}

X-Y monitors for simulation, training, ATE, CAE/CAD/CAM or radar repeating. XKD can provide high performance XM-300 series monchrome stroke writers in a broad range of sizes, shapes, and phosphors without the usual long delivery times required for custom projects. So if your application requires an X-Y monitor with high writing speed, fast settling time and excellent edge focus, and if you require special configurations promptly without extra charges, call Skip McLaughlin now at (408) 395-3700.

\author{
(c) XKD 1987
}
addressing range. Two devices can generate 16 -bit addresses at speeds as high as 20 MHz , and four devices can generate 32 -bit addresses at 15 MHz . Five internal registers allow you to perform variable increment counting and conditional jumps to two internally stored branch addresses or to an externally generated address. A masking facility allows you to jam selected address bits. PDSP1640A, in a 28 -pin DIP, £35; PDSP1640, a \(20-\mathrm{MHz}\) version, £10 (1000).

Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wiltshire SN2 2QW, UK. Phone (0793) 36251. TLX 449637.

Circle No 385
Plessey Semiconductors, 9 Parker, Irvine, CA 92718. Phone (714) 472-0303.

Circle No 386

\section*{POWER OPTOCOUPLER}
- High-speed capability
- Can drive power transistors having ratings as high as 20A

Packaged in an 8-pin DIP, the TLP557 contains a GaAlAs LED and a high-gain, high-speed integrated photodetector. The device's output current is suitable for driving power transistors that have ratings to 20A. An external resistor between pins 6 and 7 of the device creates a constant-current output that provides a stable base drive for power transistors or modules. The optocoupler has an input threshold current of 5 mA and a switching speed of \(1 \mu \mathrm{sec}\), and operates from a 15 V supply. \(\$ 2\) (1000). Delivery, 12 weeks ARO.

Toshiba America Inc, ECBS,

Semiconductor Products Div, 2692 Dow Ave, Tustin, CA 92680. Phone (714) 832-6300.

Circle No 387

\section*{\(150-\mathrm{MHz}\) COMPARATOR}
- Complementary ECL output
- 9.5-nsec propagation delay

The \(150-\mathrm{MHz}\) CMP-08 comparator responds in 6.5 nsec to a \(5-\mathrm{mV}\) overdrive. The maximum response time over temperature is 9.5 nsec for the industrial-grade device and 12 nsec for the military device. The device offers improved stability in the transition region; the resulting oscilla-tion-free performance eliminates the need for a minimum slew-rate requirement for its inputs. The analog input range is -3 to 2.7 V when connected to a 5 V supply. It comes in an 8-pin miniature DIP. Industrial grade, \(\$ 3.35\); military grade, \(\$ 7.10\) (100).
Precision Monolithics Inc, Box 58020, Santa Clara, CA 95052. Phone (408) 727-9222. TWX 310-371-9541.

Circle No 388

\section*{ANALOG/DIGITAL ASICs}
- Provide as many as 2500 analog and digital components
- Include on-chip power Darlingtons

This family of five bipolar analog/ digital arrays ranges in complexity from 400 to 2500 components that you can customize with 2 -level metal. The arrays contain customizable tiles of \(I^{2} L\) and ECL logic elements, npn and pnp transistors,

\title{
Give your system the benefit of \(\leadsto\) NO doubt.
}

\title{
Add the advantages of voice verification to your product.
}

What if your system could make its own foolproof decisions about who uses it-and enable hands-free operation as well? Now, it can. With VoicePac \({ }^{\text {TTM }}\) speech verification technology, your system can be secured and controlled by the human voice. Integrating VoicePac into your product lets only authorized users start, stop, modify or control operation.
VoicePac is the economical, easy-to-use, biometric technology that permits the use of speaker verification in a variety of applications. A proven method of identifying and verifying users based on speech patterns that are unique to each individual, it opens up new opportunities for system integrators.

ECCO Industries, Inc. 130 Centre Street Danvers, MA 01923 617-777-7750/FAX: 617-774-7347 a competitive edge.

Already in development for such diverse applications as keyless/hands-free door locks, home arrest monitoring systems, ATM's and voicesecured computer workstations, VoicePac is the imaginative stroke that will give your product
designed for OEM use and includes this compact speech verification board with a variety of options to meet custom requirements.
Please send details on VoicePac to:
\begin{tabular}{ll}
\hline Name \\
Title \\
Company & \\
\hline Address \\
\hline & \\
City & \\
State & Zip
\end{tabular}

\section*{BIG-UITTLE GETS BOLDER © BRITER}

\section*{THE WORLD'S ONLY LCD DPM WITH SUPER-BRITE LED BACKLIGHTING.}

A cost-saving breakthrough! By using LED'swith 100 K hours of life...for backlighting, Modutec's new LCD BigLittle DPM's now provide high visibility in daylight, nightlight, any light. You have a choice of red or green economical backlighting plus plug-in compatibility with Modutec standard LCD Big-Little DPM's. Backlighting power is \(5,12,24\) VDC or 115 VAC. Displays are \(-20^{\circ} \mathrm{C}\) to \(+65^{\circ} \mathrm{C}\) operating and storage with \(31 / 2\) digits, \(1 / 2^{\prime \prime}\) high, full scale of 1999. Actual size: \(2.36^{\prime \prime} \mathrm{L}\). x \(.95^{\prime \prime} \mathrm{H} . \times .51^{\prime \prime} \mathrm{D}\). Enjoy the benefits of low power consumption with Modutec's LCD DPM featuring an LED look.

\section*{Additional features:}
* \(\pm 200 \mathrm{mV}\) or \(\pm 2 \mathrm{~V}\) input \(* 3\) power options: 9 V battery, \(\pm 5 \mathrm{VDC}\) or +5 VDC * Window or bezel mount
* Accuracy: \(\pm(0.1 \%+1\) count)

For a day/night demonstration, contact your local Modutec sales representative, distributor or MOD Center, nationwide.
and power Darlingtons. They also have standard analog functional blocks, including an RC- or crystalcontrolled oscillator, a bandgap reference, a 6 -bit D/A converter, a high-frequency op amp, a voltage reference, and an ECL reference. The npn transistors have an \(\mathrm{F}_{\mathrm{T}}\) of 3 GHz . The on-chip npn power Darlingtons can switch 200 mA , and you can configure them to create a \(200-\mathrm{mA}\) bridge output stage. Alternatively, you can use \(30-\mathrm{mA}\) pnp transistors to produce complementary output stages. The ECL elements have multiple emitters that allow you to produce stacked logic configurations that contribute to a high packing density and highspeed operation. You can configure inputs and outputs for TTL compatibility or as ECL-compatible inputs and outputs suitable for operation at frequencies as high as 200 MHz . The \(I^{2} L\) logic elements operate at speeds as high as 2 MHz . The arrays have a 15 V operating voltage range. The company provides VAX-based CAD software with schematic entry, SPICE simulation, and autolayout facilities, and an IBM-PC based system that uses PCAD software.

SGS-Thomson Microelectronics, 101 Blvd Murat, 75016 Paris, France. Phone (1) 45241716. TLX 611220.

Circle No 389
SGS-Thomson Microelectronics, 1310 Electronics Dr, Carrollton, TX 75006. Phone (214) 4666000.

\section*{Circle No 390}

\section*{GaAs MMIC}
- 1- to 20-GHz bandwidth
- 7-dB gain at 18 GHz

The UPG102 is the first in a series of new GaAs wide-band MMICs (monolithic microwave ICs) from NEC (Mountain View, CA). The device operates over an ultrawide frequency range from 1 GHz to 20 GHz and has a typical gain of 7 dB . The cascadable device has both its input

and output matched to \(50 \Omega\) and has a power output of 10 dBm at 1 dB of compression. Typical applications are as a driver amplifier in commercial, military, and high-reliability applications requiring extreme bandwidths. The MMIC is available in chip form as the UPG102P and in a hermetic, ceramic package as the UPG102B. From \(\$ 280\) (100).

\section*{California Eastern Laboratories}

Inc, 3260 Jay St, Santa Clara, CA 95054. Phone (408) 988-3500.

Circle No 391

HIGH-SPEED RAMDAC
- Operates to 175 MHz
- Offers 1024 colors plus a 256 -color window

The Bt461 second-generation highspeed RAMDAC incorporates a \(1024 \times 8\)-bit color look-up table, a \(256 \times 8\)-bit alternate palette, and a 32 -word overlay palette. Constructed in CMOS, the RAMDAC includes an 8 -bit DAC, a \(\mu \mathrm{P}\) interface, and multiplexers. Originally designed to operate at 135 MHz , the final characterization of the \(1.5-\mu \mathrm{m}\) process shows a typical operating speed of 170 MHz . Applications for the RAMDAC are those requiring the display of large numbers of colors, such as true-color imaging and multiwindow environments. The de-

\section*{Inside}

Control Point

\section*{PAGE TWO \\ New Single Board Computers}

The ZT 8808 and ZT 8809 are Ziatech's most IBM-compatible single board computers. The new computers feature a number of PC/XT peripherals, large on-board memory, and they support PC DOS, VRTX operating systems and user-developed ROM-based software.

\section*{PAGE THREE \\ First Extended Memory System on STD Bus}

Ziatech's new byte-wide STD Bus memory board extends the \(8088 / 8086\) family of processors' address space beyond 1 Mbyte via a memory-mapping technique called EMS. This memory board is supported in Ziatech's STD DOS systems for main memory expansion and as \(a\) RAM/ROM disk.

\section*{PAGE FOUR}

\section*{Free GPIB, STD Bus Literature}

Ziatech's STD Bus and IEEE 488 product lines are described in four separate catalogues. The Technical Data Book features the entire product line with separate technical guides also available on IEEE 488 products, STD DOS systems, and the Z-NET Local Industrial Network.

This new NEC V20-based Single Board STD Bus Computer, the ZT 8808, is the latest addition to Ziatech's fomily of single board computers (SBCs) for industrial control applications. The V20 microprocessor on the ZT 8808 is available in 5 or 8 MHz versions, giving the new SBC enhanced STD-8088 compatibility.

In addition to an on-board memory capacity of 512 Kbytes, the ZT 8808 contains several IBM PC/XT peripherals. These include three 16 -bit counter/timers, two serial ports, a Centronics interface, and an interrupt controller. This new SBC features support for both operating systems and ROM-based systems, and will be available in a CMOS version later this year. (See story, page 2, and/or check box \(A\) on the return card.)

\section*{New IBM PC/XT-compatible STD Bus Computers}

Ziatech's new ZT 8808 provides a high level of functionality on a single board STD Bus computer at a reasonable cost. Based on the NEC V20 processor, a superset of the 8088, this single board computer (SBC) was designed to support both PC DOS and PROM-based industrial control applications.
PC/XT Peripherals
Available in 5 MHz (ZT 8808) and 8 MHz (ZT 8809) versions, these SBCs contain IBM PC/XT peripheral devices such as three 16-bit counter/ timers, an interrupt controller, two serial ports, and a Centronics printer interface. 512 Kbyte on-board memory capacity and a wait state generator are also provided.
Software Development
The ZT 8808 and ZT 8809 are supported by STD DOS, Ziatech's implementation of PC DOS on the STD Bus. The PC compatibility of STD DOS allows
developers to run sophisticated development tools on the STD target system to prepare for use with PC DOS or a PROM-based application. The new SBCs are also supported by Ziatech's STD Prototype Development System, which aids in the development of applications that don't need operating system support. CMOS Version

The ZT 8808 and ZT 8809 will soon be available in CMOS versions for applications where low power consumption and extended temperature operation are required.

For more information on the ZT 8808/8809, check box \(A\) on the return card.

ZT 8808/8809 Functional Diagram

Ziatech's STD DOS Stand-Alone (SA) development system lets users develop STD Bus systems utilizing PC DOS or PROM-based operating software. The SA system is equipped with a monitor, keyboard and disk drives to enable it to function like a PC. Ziatech also offers a PC-assisted development system, which utilizes a usersupplied PC for its console and mass storage requirements.

\section*{About Control Point}

Control Point is a bimonthly newsletter published by Ziatech Corporation for OEMs and system integrators designing industrial automation and instrumentation applications.

Control Point examines the new products, applications, and issues in today's test and control industries.

Ziatech Corporation, established in 1976, manufactures STD Bus-based computers, development and operating systems for the STD Bus, and IEEE 488 interfaces for MULTIBUS, STD Bus, and personal computer systems.

For more information on Ziatech STD Bus and IEEE 488 products, return the Control Point postcard, or call Ziatech at 805-541-0488.

\section*{Ziatech Brings Extended Memory System to Industrial Busses}

The new ZT 8825 Extended Memory System from Ziatech is the first industrial bus memory board to use a unique memory-mapping technique which extends the amount of memory available to STD Bus systems. The ZT 8825 serves Ziatech's STD DOS systems in two different ways. It can function as a high speed, solid state disk, providing Ziatech's STD DOS systems with a 2 Mbyte PROM/RAM/BRAM disk capability. One RAMdisk can be configured (using multiple ZT 8825s) to contain many MBytes of data.

\section*{Expands Memory for STD DOS Systems}

The ZT 8825 also can be used as an expanded address main memory. In this role it expands the logical address space while occupying only 16 K of the base 1 Mbyte address space. The extended memory is mapped in the logical address space via map registers, which determine when and where the extended memory will be accessed. Lotus, Intel, and Microsoft jointly developed this technique, called the Expanded Memory System (EMS). EMS is becoming popular on PCs and is implemented in a growing number of PC software packages. The ZT 8825 also follows the "Enhanced Expanded Memory System," E \({ }^{2}\) MS, which is a superset of EMS.
Eight 32-pin JEDEC sockets
Eight 32-pin JEDEC sockets accept either EPROMs or RAMs in each grouping of four sockets. Battery backup is provided as an option.

For more information on the ZT 8825, check box B on the return card.

The ZT 8825 Extended Memory System is the first industrial bus memory board to use the Expanded Memory Specification (EMS).

\section*{ZT 8825 \\ Extended Memory System Features}
- Direct 20- and 24-bit addressing (STD-8088 compatible)
- Two sets (4 sockets each) of independently configured 32-pin JEDEC sockets
- Optional 1 Amp-hour lithium battery for RAMs (BRAM)
- No wait states required at 5 or 8 MHz for fast memory device types
- Supports various combinations of RAM (32K, \(128 \mathrm{~K}, 512 \mathrm{~K}\) chip size) and EPROM (16K to 1 Mbyte chip size)
- Supports PROM \& RAM disk configurations in STD DOS
- Supports EMS and \(E^{2} M S\) paging specifications
- 2 Mbyte maximum on-board storage, mappable in 16 K pages

\section*{Free STD Bus, GPIB Product Literature from Ziatech}

\section*{Technical Data Book Features Entire Ziatech Product Line}

Ziatech's 200-page Technical Data Book provides product descriptions, photos, functional considerations and technical specifications of Ziatech's entire STD Bus and IEEE 488 product line.

The Technical Data Book also contains a New Product Section featuring Ziatech's most recently introduced products. It additionally features a comprehensive STD-8088 system designer's guide and the STD8088 Bus specification.

For a copy of the Technical Data Book, check box \(C\) on the return card.

\section*{IEEE 488 Products}

A new l6-page brochure details Ziatech's line of IEEE 488 interfaces and driver software.

IEEE 488 interfaces for the IBM Personal System/2, the IBM PC, MULTIBUS systems and STD Bus systems are featured.

Complete descriptions and examples of Ziatech software support packages are also featured, including the new EZ.488, Ziatech's simplest driver software for integrating PC-based instrument systems.

\section*{STD DOS Systems}

A 24-page brochure describes Ziatech's line of PC DOS-based STD Bus systems, STD DOS.

Ziatech's STD DOS industrial computers execute PCcompatible software packages, both for system development and target operation. This brochure describes STD DOS architecture, performance, system configurations, options, software development, device driver software, and ordering information.

For a copy of the STD DOS brochure, check box \(F\) on the return card.

For a copy of the IEEE 488 brochure, check box \(D\) on the return card.

\section*{Z-NET Network} Technical Guide

A new guide to Z-NET, Ziatech's Local Industrial Network for STD Bus and PC systems, is now available. Z-NET, based on the ARCNET protocol and ViaNet software, is a simple-to-use network that extends the capability of Ziatech's STD DOS systems for industrial applications.

The Z-NET Technical Information and Configuration Guide provides a comprehensive introduction to this STD Bus and PC network, and includes ordering information.

For a copy of the Z-NET guide, check box \(E\) on the return card.

ARCNET is a registered trademark of Datapoint Corporation. ViaNet is a registered trademark of Western Digital Corporation. VRTX is a trademark of Ready Systems, Inc. IBM PC/XT and PC DOS are registered trademarks of International Business Machines Corporation.

\section*{ㅋ||ZIATEECH \\ 3433 Roberto Court}

San Luis Obispo, CA 93401 USA
ITT Telex 4992316
FAX (805) 541-5088
Telephone (805) 541-0488

\section*{INTEGRATED CIRCUITS}
vice provides the large palettes needed for superior graphics, and the \(32 \times 8\)-bit overlay palette gives the designer great flexibility in deciding what should run through the overlays, independent of the main graphics image. The device comes in a 132-pin pin-grid-array package and in three speed grades: \(135-\) \(\mathrm{MHz}, \quad \$ 245 ; \quad 110-\mathrm{MHz}, \quad \$ 204\); \(80-\mathrm{MHz}, \$ 176\).

Brooktree Corp, 9950 Barnes Canyon Rd, San Diego, CA 92121. Phone (619) 452-7580. TLX 383596.

Circle No 392

\section*{CMOS STATIC RAM}
- \(8 k \times 8\) bits
- Three speed versions

Pin-compatible with the 2764 EPROM family, the MCM6064 requires no clocking for the chip-enable pins when operating in a fully static mode. The device has both active-high and active-low enable pins. The device goes into its lowpower standby mode when either pin is not enabled. In standby mode, the device requires from \(100 \mu \mathrm{~A}\) \(\max\) to \(3 \mu \mathrm{~A} \min\), at 5.5 to 2.0 V , under typical operating conditions (a \(0.6-\) to \(1.0-\mu \mathrm{A}\) version is available). Inputs and outputs are TTL compatible, and the outputs can assume a 3 -state condition. The available speeds are 100,120 , and 150 nsec. Depending on speed selection, from \(\$ 3.36\) to \(\$ 4.64\) (500).
Motorola Inc, Technical Info Ctr, Box 52073, Phoenix, AZ 85074. Phone (512) 928-6705.

Circle No 393

\section*{CMOS DUAL DAC}
- Two 8-bit multiplying DACs
- Interfaces directly to DSP chips

Designed with a high-speed control interface, the TLC7528 encompasses two, 4 -quadrant 8 -bit multiplying D/A converters on a single monolithic chip. Its control signals can interface directly with the TMS320 family of DSP chips. The

device's DACs use a common 8 -bit input port. Each DAC consists of an inverted \(R / 2 R\) ladder, analog switches, and input data latches. Commercial grade, \(\$ 5.54\); industrial grade, \(\$ 8.15\) (100).

Texas Instruments Inc, Semiconductor Group (SC-775), Box 809066, Dallas, TX 75380. Phone (800) 2323200 , ext 700 .

Circle No 394

\section*{PS/2 CHIPS}
- Interface to IBM Micro Channel - Provide memory, I/O functions, and peripheral control

These chips provide a \(100 \%\)-compatible interface to the IBM PS/2 Micro Channel architecture. The 82C611 furnishes memory and I/O functions, and the 82 C 612 provides control of peripherals. The products target manufacturers of add-inboard adapters. The 82 C 611 replaces 10 to 15 TTL devices, and the 82 C 612 replaces 25 to 30 TTL devices. The MicroChips are available in 68 -pin PLCC and 80 -pin PFP (plastic flatpack) packages. 82C611, \$8.65; 82C612, 11.10 (1000).

Chips and Technologies Inc, 3050 Zanker Rd, San Jose, CA 95134. Phone (408) 434-0600.

Circle No 395

\section*{SUN 3/60 Compatible Memory}

> Available Now Only from Clearpoint 1-800-CLEARPT

Let your Sun \(3 / 60\) reach for the stars. Upgrade your system to the system maximum of 24 MB with high reliability Clearpoint memory. Each one megabyte SIMM is packed with eight 1 megabit DRAM DIPs, plus a megabit DRAM to support parity. Buy a set of four SIMMs and meet the basic Sun 3/60's 32 -bit performance. Add five SNX60 SIMM sets to your system-your Sun 3/60 can rival its higher-end family products at much less cost but with Clearpoint's uncompromising quality. All Clearpoint products come with a Lifetime Warranty, full Product Support, trade-ups credits when you upgrade ... and competitive pricing that's out of this world.

Write or call for Clearpoint's SUN family literature, our 1987/88
Catalog and the New Designer's Guide to Add-in Memory.
```

Sun is a trademark of Sun Microsystems. Clearpoint is the registered trademark
Clearpoint Research Corporation.

```


CLEARPOINT
99 South Street • Hopkinton, MA 01748-2202 U.S.A. 1-800-CLEARPT Telex: 298281 CLEARPOINT UR Massachusetts 617-435-5395/435-2301

\section*{TEST \& MEASUREMENT INSTRUMENTS}

\section*{SIGNAL GENERATOR}
- Covers 100 kHz to 1 GHz
- Has phase noise of -130 dBc at 100 MHz with \(20-\mathrm{kHz}\) offset
The SMX signal generator covers the frequency range from 100 kHz to 1 GHz , providing output levels from -137 to +13 dBm in \(0.1-\mathrm{dB}\) steps at better than \(1.5-\mathrm{dB}\) accuracy. At \(100 \mathrm{MHz}, 20 \mathrm{kHz}\) from the carrier, the phase noise is down at least 130 dB from carrier level. The generator provides both AM and FM at four fixed frequencies. An optional internal source modulates
the carrier at a frequency that you can vary continuously over a range of 10 Hz to 100 kHz . If you use an external source, you can obtain pulse-modulated output with \(2-\mu \mathrm{sec}\) rise and fall times. You can store 40 complete instrument setups and recall them from the nonvolatile memory in an instant, or you can fully control the generator via its standard IEEE-488 interface. \(\$ 5990\). Delivery, eight weeks ARO.

Rohde and Schwarz, 4425 Nicole Dr, Lanham, MD 20706. Phone (301) 459-8800.

Circle No 396

\section*{CONVERTERS}
- Connect RS-232C and RS-422 devices to IEEE-488 bus
- Have \(\mu P\) with \(64 k\) - or \(256 k\)-byte buffer

The GPIB-232CV and GPIB-422CV allow you to connect RS-232C and RS-422 devices to the IEEE-488 bus. They can interface to IEEE488 instruments and controllers and provide transparent data conversion in either direction. Each converter is based on a \(64180 \mu \mathrm{P}\) (which features an integral DMA controller) and either a 64 k - or 256 k -byte buffer. This hardware permits data transferral from bus to buffer at 900 k bytes \(/ \mathrm{sec}\). When connected to

a converter's serial port, the unit controls the rate at which the buffer empties. Each converter's \(\mu \mathrm{P}\) automatically interleaves inbound and outbound data transfers. An SROEMPTY feature allows multiple users to share a single RS-232C or RS-422 device. With 64k-byte buffer, \(\$ 495\); with 256 k -byte buffer, \(\$ 695\).

National Instruments Corp,

12109 Technology Blvd, Austin, TX 78727. Phone (800) 531-4742; in TX, (512) 250-9119. TLX 756737.

Circle No 397

\section*{PS/2 CONTROLLER}
- Connects data-acquisistion modules to PS/2 Bus
- Uses one Micro Channel slot to connect 10 modules

The PS/2 interface card, which occupies a single Micro Channel bus slot, connects the vendor's Series 500 data-acquisition system to the IBM PS/2 Model 50 and to higher models. The Series 500 chassis accommodates 10 data-acquisition modules from the vendor's catalog of 30 types, which include \(\mathrm{A} / \mathrm{D}\) and \(\mathrm{D} / \mathrm{A}\) converters; strain-gauge, thermocouple, and LVDT (linear variable differential transformer) signal conditioners; and digital I/O modules. The vendor supplies its software on \(31 / 2\)-in. disks for systems based on PS/2s. The latest software revision permits the transfer of data to applications software such as Lotus 1-2-3 and Asyst. \(\$ 770\).

Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (800) 552-1115; in OH , (216) 248-0400. TLX 985469.

Circle No 398

8-Trace Capability
\(\checkmark\) Alternate Triggering
2 Time Bases
3-Channel Input
\(\checkmark\) Clear, Bright Trace
0.5 mV

Sensitivity
2-Year Warranty
Coast-to-Coast Service

For immediate delivery or more information call toll-free 800-645-5104

In New York State
516-231-6900
For professionals who know the DEADER instruments Corporation difference.
380 Oser Ave., Hauppauge, NY 11788

\section*{TEST GENERATOR}
- Runs on MicroVAX 2000 and VAXstation 2000
- Produces in-circuit and functional test programs
VAXstation 2000 and MicroVAX 2000 can now run ATG-32 automatic test-generation software for the vendor's 227 X family of midrange combinational test systems. ATG-32 runs four to eight times faster on the VAX hardware than it does on the PDP-11 series. After you simulate your pe board with the company's HiLo-3 simulator, the Hipost.DTS intelligent postprocessor converts the results into testerspecific functional test models. The test-generation software then uses these models to produce a combinational test program with functional and in-circuit tests. GRnet, the vendor's networking system, includes a test-procedure-management application that automatically uses

Ethernet to transfer programs produced by ATG-32 from the VAXstation or MicroVAX to the tester. ATG-32 for VAXstation 2000, \(\$ 15,000\); for MicroVAX 2000, \(\$ 20,000\).

GenRad Inc, 300 Baker Ave, Concord, MA 01742. Phone (617) 369-4400.

Circle No 399

\section*{ETHERNET ANALYZER}
- Monitors network performance and isolates faults
- Includes lap computer acting as terminal emulator

The LAN Specialist is a portable system that allows you to monitor the performance of an Ethernet network and diagnose network faults. It consists of a briefcase-sized unit and an IBM PC-compatible lap computer running software that makes it emulate a DEC VT-220 terminal.

You can use the analyzer separately from a network in order to verify the proper operation of units you plan to interconnect. You can also connect the analyzer to an operating network to obtain an indication of which units are producing errors (for example, transmitting messages that frequently collide). The analyzer can make quantitative measurements of network performance; for example, it can calculate network utilization, total errors, errors by station, and errors by type. It can also generate traffic to simulate the effect of expanding the net-

\title{
Thermography enters
}

With the advent of the Hughes Aircraft Company Probeye \({ }^{\circledR}\) 7300 Thermal Video System, thermal imaging has entered a new age-the Age of Information.

In a single package, the Hughes Probeye 7300 Thermal Video System gives you a powerful, intelligent laboratory system with instant field diagnostic capability. Immediately select, store, quantify and analyze. And, most importantly, understand the information - with more speed and accuracy than ever before! Hughes has leapfrogged the competition with state-of-the-art features that can't be matched by any other system.

Start with superior resolution-240 infrared lines. Not just
the portable imager. Which means you can perform on-the-spot detection and analysis in up to 128 distinct levels.

All-electric operation does away with liquid nitrogen or argon gas. The imager uses ac or battery power for full field portability - it goes wherever the information originates.

Fully automatic operation allows you to concentrate on detection and analysis. Precise comparisons are facilitated by builtin features. There's no exhaustive training process. No delays. Just point and read. And, the design is extremely functional-in addition to the portable imager and attached CRT viewfinder, the system includes a processor with built-in, full-function keyboard and a high resolution RGB color monitor.

work, thus providing a measure of the network's ability to accommodate additional nodes and additional traffic. \(\$ 7600\). Delivery, four to six weeks ARO.
Cabletron Systems Inc, Box 6257, East Rochester, NH 03867. Phone (603) 332-9400. TLX 988059.

Circle No 400

\section*{DEVELOPMENT TOOLS}
- Let beginners develop microprogramming languages
- Work on IBM PC/AT

The QuickLearn microprogram Starter Kit consists of a group of microprogram development tools: the MicroStep Personal Development Station, a plug-in board for the IBM PC/AT; the MetaStep Microprogram Language System; the EZStep Target System, a microprogrammable system on a board, and a tutorial; and the MetaStep Pro-

grammer's Environment. The Programmer's Environment software uses a menu-driven interface to help you define a custom microprogram language specific to your system's architecture. It also guides you through the processes involved in language development: definition, assembly, linking, and formatting. \(\$ 6545\).

Step Engineering, 661 E Arques Ave, Sunnyvale, CA 94088. Phone (800) 538-1750; in CA, (408) 7337837. TWX 910-339-9506.

Circle No 401

\section*{VISION SYSTEM}
- Uses 80386 with 16-MHz clock and zero-wait-state static RAM
- Compensates for light-intensity variations

The Intellevue 386 vision computer is based on an \(80386 \mu \mathrm{P}\) with 1 M bytes of zero-wait-state static RAM and an 80287 math coprocessor. A pattern-transform function provides gray-scale pattern matching independent of linear and nonlinear changes in light intensity and pattern contrast. A camera-calibration feature allows the system to compensate for nonorthogonal cameras, perspective distortion, and skewing. The system's windowing function allows you to treat six image buffers as a single spreadsheet and to define source and target windows across the boundaries of individual buffers. The system has four camera ports with standard RS-170 camera interfaces. For program develop-

\title{
the information age
}

For details, specifications, and a hands-on demonstration, call or write today. We'll show you how a single system solution can put you into, and on top of, the Age of Information. Hughes Aircraft Company, Probeye Marketing, 6155 El Camino Real, Carlsbad, CA 92009, (619) 931-3617.

Precision performance even in limited space. Designed with a right angle lead exit, this ultra compact gage head is ideal for measurement in miniature fixturings and of small inside diameters. AC-powered, it features excellent linearity and a gaging range of \(\pm 0.010^{\prime \prime}\).

Measuring DISPLACEMENT, PRESSURE, ACCELERATION, FORCE/ WEIGHT, SLOPE/TILT, or VELOCITY? For nearly half a century, we've demonstrated our commitment to sensor technology with products for a variety of measurement applications

For complete information on the ultra compact gage head, write Schaevitz, U.S. Route 130 \& Union Avenue, Pennsauken, NJ 08110 or call our Hot Line: 609/662-8008.
Grid Scale: \(3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}\)
 Measures Precisely in Iight Paces

scharevitz

ment, the vendor supplies a version of the Basic language containing extensions for machine vision. You can also develop programs for the system using the Microsoft C compiler on an IBM PC-compatible computer. \(\$ 11,900\) without camera; \(\$ 14,900\) with camera. Delivery, 60 days ARO.

Intelledex, 4750 SW Research Way, Corvallis, OR 97333. Phone (503) 758-4700. TLX 752441.

Circle No 402

\section*{SMD ADAPTER}
- Works with Data I/O 120/121A programmers
- Gang programs 10 PLCC EPROMs

The Surface Mount Adapter works with Data I/O's 120/121A programmers and uses standard programmer instructions and readouts. It can gang program 10 PLCC (plastic leaded chip carrier) EPROMs on the programmer's 10 upper or lower sockets; you can employ two adapters simultaneously to program 20 devices. To use the adapter, you drop it into the programmer and lock it in place, then you place the master device containing the data to be copied in the first socket of the upper bank of 10 . The PLCC sockets are vertically oriented; after programming, you actuate an ejec-
tor to pop the devices out of the adapter. \(\$ 2000\). Delivery, four to six weeks ARO.

Program Automation Inc, 22706 Aspan St, Suite 308, El Toro, CA 92630. Phone (714) 859-8200.

Circle No 403

HANDHELD DMM
- Displays \(4 ½\) digits
- Provides \(0.05 \%\) basic dc accuracy

The 380451 4½-digit handheld multimeter's LCD readout provides dc accuracy of \(\pm(0.05 \%\) of reading + two digits). The unit provides visual continuity and low-battery indicators, and a data-hold feature that lets you observe readings after you've disconnected the probes from the circuit under test. You select functions and ranges via a 24 -position rotary switch. The meter's ranges cover 200 mV to 1 kV ac and \(\mathrm{dc} ; 2 \mathrm{~mA}\) to 10 A ac or dc; and \(200 \Omega\) to \(20 \mathrm{M} \Omega\). A \(0 \Omega\) adjustment applies to the lowest resistance range only; the other ranges require no adjustment. The meter has a built-in tilt stand for benchtop use. \(\$ 129\).

ExTech Instruments Corp, 150 Bear Hill Rd, Waltham, MA 02154. Phone (617) 890-7440. TLX 940913.

Circle No 404

\section*{CONTINUITY TESTER}
- Uses IBM PC or compatible as host
- Learns continuity from knowngood unit

You can buy the PC-CAT continuity/ discontinuity tester configured for either 128 - or 256 -point measurements and can expand it to handle as many as 64,000 points. You can choose a desktop, roll-around, or rack-mount model. The tester uses your IBM PC or compatible computer as a controller. Its PC-bus-compatible interface card also works in IBM's PS/2 Model 25 and PS/2 Model 30. Unlike some continuity testers, which merely determine whether the resistance is higher or lower than a fixed threshold value, the PC-CAT actually measures the value of resistance between selected points. This resistance-measuring capability lets you use the unit as a static in-circuit tester for loaded pc boards. To conduct high-volume testing, you mate the PC-CAT to bed-of-nails fixtures, which are available from other vendors. 128 point unit, \(\$ 2395\); 256-point unit, \(\$ 2995\).

CEI of Florida Enterprises Inc, 2050 2nd Ave S, St Petersburg, FL 33712. Phone (813) 822-3001.

Circle No 405

\section*{FUNCTION GENERATOR}
- Provides function-generator outputs for bench or ATE systems
- Has an optional, pulse-generator output
The Model-4434 function generator provides sine, triangular, square, and pulse waveforms from 5 to 50 MHz . It features normal, gate, triggered, and synthesized modes. It can vary the duty cycle and can generate signal trains that have variable initial phases. If you obtain the B-channel option, the instrument will also provide pulsegenerator functions such as adjust-

\section*{NEW SONY/TEK CURVE TRACERS}

\title{
BUS PROGRAMMABEE. SYSIEM BASE.
}

> New 370 and 371 curve tracers are like a programmable 576. Get full IEEE-488 bus compatibility, plus the front-panel familiarity that's so important for manual measurements. Use either to produce measurement setups and comparison curves, then store as many as you like on your PC, or up to sixteen of each in onboard memory.

The heart of a measurement system. Join your 370 or 371 with your PC, or the new Tek PEP 301
\begin{tabular}{|c|c|c|}
\hline RANGE & 370 & 37 \\
\hline Max Peak Vollage & 2000 & 3000 V \\
\hline Peak Current Pused & 20 A & 400 A \\
\hline Max Peak Power & 220 w & 3000 \\
\hline Price & \$17325 & \$19950 \\
\hline
\end{tabular}
(shown), and Tekware \({ }^{\text {Tw }}\) utilities, and enjoy the speed and accuracy of automatic devicetesting software. Do it all easily with a menu-driven interface. Other PC software makes it easy to archive and analyze test results.
Instant hardcopy. To complete the system, connect the Tek HC-100 plotter, for hardcopy with no waiting and no need for a camera. To find out more, contact your local Tek representative or call 1-800-835-9433, ext. 170.

able pulse width, single or double pulses, and adjustable rise and fall times. Each channel has a maximum output amplitude of 30 V p-p. You can drive the B channel directly from the function generator, or you can connect it to an external generator via the instrument's clock input. You can obtain more complex waveforms by summing two signals. The instrument's modulation modes include external FM and internal or external variable-rate AM. Its nonvolatile memory lets you store as many as 25 instrument setups. The instrument has an IEEE-488 interface. Single-channel version Fr fr

62,000; with B-channel option, Fr fr 80,000.

Schlumberger InstrumentsEnertec, 5 rue Daguerre, 42030 Saint-Etienne Cedex 2, France. Phone 77252264. TLX 300796.

Circle No 406
Solartron Instruments, 2 Westchester Plaza, Elmsford, NY 10523. Phone (914) 592-9168.

Circle No 407

\section*{EMULATOR}
- Supports 68030 at 20 MHz
- Dequeues data to provide intelligible trace display

The 68030 Probe/3 in-circuit emulator supports real-time emulation of Motorola's \(68030 \mu \mathrm{P}\) at clock rates to 20 MHz . To make the trace display intelligible, the unit's postprocessing program weeds out prefetched, but unexecuted, instructions and data. Though the

unit requires an IBM PC/AT or compatible computer for control, it provides both symbolic and source-level debugging support for code compiled on other machines, such as the Sun 4.2 BSD C compiler, Unix System V compilers that run on a DEC VAX or workstation, and Greenhills and Microtec Research compilers that run on a variety of computers. \(16-\mathrm{MHz}\) version, \(\$ 16,450 ; 20-\mathrm{MHz}\) version, \(\$ 18,450\).

Atron, 20665 Fourth St, Saratoga, CA 95070. Phone (408) 741-5900. TLX 989939. FAX (408) 741-1293.

Circle No 408

\section*{Ultra-Speed Memory:}

\section*{CAPTURE 640 MB IN 3.2 SECONDS}

\section*{Cluster units to 80 GB}

From Dataram: high-speed data acquisition and management for signal/image processing, logic analysis, AI, other advanced applications.
- FAST: \(200 \mathrm{MB} /\) sec bidirectional
- FLEXIBLE: up to 8 I/O ports
- ADAPTABLE: interfaces for VAX, MicroVAX, Gould, Star, Numerix, VME, and others
- EXPANDABLE: 8-640 MB/unit

\section*{FOR BROCHURE:}

Circle the Reader Response Number, or contact us directly for fastest response.

Dataram Corporation P.O. Box 7528

\section*{LIXI® MICROFOCUS over 100X magnification on CCTV.}

Detecting solderer vilds ond solder balls under leacaless carrier in a surface mount device
Find even the smallest defects before they find you.

Lixi's real-time X-ray and portability mean instant inspection on line. You can adjust your processes before bad products fill the pipeline More than a quality control tool, LIXI MICROFOCUS is your competitive edge in a tough market.

Send us a defective sample - we'll return a picture of the defect.

Better than a fixed cabinet type X-ray system - better image, greater magnification and lower cost. (Model shown LX-85-708 with optional accessories.) Lixi, Inc. 1438 Brook Drive Downers Grove, IL 60515, USA (312) 620-4646 Telex: 6871077 DKROB Telefax: (312) 620-7776

\section*{NEW PRODUCTS}

\section*{CAE \& SOFTWARE DEVELOPMENT TOOLS}

\section*{FUNCTION LIBRARY}
- Provides image-compression and -decompression functions
- Conforms to CCITT Group 3 and Group 4 image standards
The CCITT Function Library lets the vendor's TMS34010 graphics processor IC act as an embedded controller for facsimile, CD-ROM, image-scanner, and magnetic-storage systems, all of which have adopted the CCITT Group 3 and Group 4 standards in order to reduce a monochrome image's required storage space by a factor of 20 or more. The library consists of a compression function and a decompression function; both are written in TMS34010 assembly language. The routines come in source-code form (on a \(5^{1 / 4}\)-in. disk or on 1600 -bpi tape) and generate 38 k bytes of object code. You can call either routine from a C applications program. Pay-

ment of the \(\$ 3000\) license fee entitles you to make unlimited executable copies.

Texas Instruments, Semiconduc-
tor Group (SC-772), Box 809066, Dallas, TX 75380. Phone (800) 2323200 , ext 700.

Circle No 420

\section*{FILTER DESIGNER}
- Lets you design FIR and IIR digital filters
- Provides on-screen frequency-response plots

The DFD program lets you design FIR (finite-impulse response) and IIR (infinite-impulse response) digital filters, and runs on the IBM PC and compatible computers. You specify the desired characteristics, such as filter type, sampling rate, cutoff frequency, and passband and stopband ripple; the program then computes the configuration and component values that will most closely approximate the filter characteristics that you want. The FIRfilter types include multiband pass or stop types, differentiators, and Hilbert transformers. The program can design lowpass, highpass, bandpass, and bandstop filters of Butterworth, Chebyshev, or elliptic types.

\section*{\$169.}

Microcraft Corp, Box 513, Thiensville, WI 53092. Phone (414) 241-8144.

Circle No 421

\section*{IC DESIGN TOOL}
- Handles design from schematic entry to layout
- Includes analog and digital device libraries
Solo-1200 runs on a variety of desktop workstations-including the IBM PC/AT, Sun, Apollo, and DEC units-and allows you to design mixed analog/digital ASICs. The package provides circuit description via schematic capture or use of the Model hardware description language; switch-level simulation; fully automatic placement and routing; and test-vector generation. To ensure design integrity throughout
the design process, the package also contains a design manager that forces you to adopt good design practice. The system comes with a set of device libraries that include analog functions, gate-level and MSI-level components, 74LS family components, parameterized macros, and functional equivalents of the company's SystemCell standard cell library. Analog functions include 8 -bit A/D and D/A converters, multiplexers, op amps and comparators, oscillators, and voltage references. Digital functions include compacted high-complexity RAM blocks; ROM and PLA blocks are being added to the library. Price for a system that runs on an Apollo or Sun workstation, £29,000.

European Silicon Structures Ltd, Mount Lane, Bracknell, Berkshire RG12 3DY, UK. Phone (0344) 525252. TLX 847724.

Circle No 422

\section*{PL/M-TO-C TRANSLATOR}
- Translates existing PL/M programs to C
- Flags PL/M syntax errors in the list file
The PLC86, PLC51, and PLC80 are translators that convert programs written in PL/M-86, PL/M-51, and \(\mathrm{PL} / \mathrm{M}-80\) to equivalent programs in C, with comments. The translator checks the syntax of the PL/M-86 source file designated as input, flags any errors that it detects, and generates an output file in a tertiary language that is common to all three translators. The second phase translates the tertiary-language file into logically equivalent, compilable C source code. PL/M comments are transferred to the output file without changes. Any built-in functions for string manipulation and I/O that exist in the input file are converted to calls to external procedures. The C source code conforms to the Kernighan and Ritchie standard, with the addition of the enum data type. To run any of the three translators, you need an IBM PC, PC/AT, or a compatible computer that has at least 256 k bytes of RAM and runs under MS-DOS 2.1 or a later version. \(\$ 475\) each.

Micro-Processor Services Inc, 92 Stone Hurst Lane, Dix Hills, NY 11746. Phone (516) 499-4461.

Circle No 423

\section*{C DEBUGGER FOR VAX}
- Provides source-level debugging facilities for C programs
- Debugs code for 68000 -family \(\mu P s\)
Validate/XEL is a source-level debugger for C programs that runs on 68000 -family \(\mu\) Ps. This version of the debugger runs on VAX and MicroVAX workstations and consists of two portions: a source-level debugger and a C crosscompiler from Microtec Research (Santa Clara, CA). Two versions of the debugger are available: One is an inte-

grated tool that works with the vendor's ES 1800 in-circuit emulator and the target hardware; the other is a simulator that lets you debug your software before the target hardware is available. Both versions are window oriented, and both give you simultaneous views of the source code and the corresponding machine code, together with the contents of registers, variables, and stacks. The MCC68K crosscompiler creates compact code that is optimized for fast execution. From \(\$ 12,500\) for the MicroVAX version.
Applied Microsystems Corp, Box 97002, Redmond, WA 98073. Phone (800) 426-3925; in WA, (206) 8822000. TLX 185196.

Circle No 424

\section*{SIMULATOR}
- Provides high-frequency, nonlin-ear-analysis capability
- Helps you design large-signal circuits such as limiters and mixers

The Libra harmonic-balance simulation program combines linear analysis in the frequency domain with time-domain analysis of nonlinear elements. The package includes the vendor's Touchstone frequency-domain simulator for linear simulation. By extending the file to include appropriate models, you can add non-linear-analysis capabilities. The
simulator will show you time-dependent voltage waveforms at any node; time-dependent current into any nonlinear device; power density and total power; frequency-selective power; and frequency-selective voltage and current, including phase response. You can transfer all of the data from a simulation to a disk file. If you need steady-state response to sinusoidal waveforms, the package lets you obtain solutions based on the vendor's library of microwave components. A new large-signal and small-signal model for GaAs FETs improves the precision of nonlinear simulations of microwave active networks. The program currently runs on VAX/VMS workstations, Apollo Domain-IX workstations, and HP 9000 , Series 300 computers under the HP-UX operating system. Prices start at \(\$ 20,000\) and depend on the system configuration.
EEsof Inc, 5795 Lindero Canyon Rd, Westlake Village, CA 91362. Phone (818) 991-7530. TLX 384809.

Circle No 425

\section*{GaAs LOGIC LIBRARY}
- Has simulation models for gate arrays and standard cells
- Lets you create schematic net lists and test vectors

The ASIC Designer's WorkSystem has been augmented by a simulation model of TriQuint's (Beaverton, OR) TQ3000 GaAs gate array and simulation models for TriQuint's QLogic family of GaAs standard cells. These libraries let you use the vendor's Designer's WorkSystem to create schematic net lists and test vectors in the form that TriQuint requires for physical layout and manufacture of your design. The TQ3000 is an array of 3000 equivalent GaAs gates for applications that operate at frequencies as high as 1 GHz . The \(Q\)-Logic standard cells feature \(100-\mathrm{psec}\) gate delays, \(2-\mathrm{GHz}\) clock speeds, and integration levels as high as 1500 equivalent gates. TQ3000 design manual and

> "CASE and DEC combine... to offer CAE solutions that work!"

CASE Technology's new Vanguard CAE Design System, in combination with Digital's VAX-based engineering workstations, provides one of the most complete computer-aided engineering solutions available. The system includes schematic capture for PCB and ASIC design, digital logic simulation, circuit simulation and PCB design capabilities.

The strength of the Vanguard CAE design solution is its flexibility. With DECNet and DECNet/DOS, using VAX minicomputers and workstations linked with standard personal computers, an entire engineering facility can be networked, creating a completely integrated design automation environment.

The Vanguard system can also be utilized as a front-end CAE design tool for users that need to integrate existing
tools or as a facility solution for those interested in a single source for their CAE needs.

With more than 3000 installed systems worldwide, CASE Technology has developed a solid reputation as a premier supplier of professional CAE design tools. If you haven't seen what CASE has to offer, then now is the time.

CASE Technology Inc., 2141 Landings Drive,
Mountain View, California 94043
Phone (415) 962-1440; Telex 506513;
Fax (415) 962-1466

\footnotetext{
CASE TECHNOLOGY
"CAE Solutions Planned Right from the Start"
}
software libraries, \(\$ 3000\); Q-Logic design manual and software libraries, \(\$ 495\).

Tektronix Inc, CAE Systems Div, Box 4600, Beaverton, OR 97076. Phone (800) 547-1512; in OR, (503) 645-6464.

Circle No 426

\section*{DATABASE ANALYZER}
- Combines AI techniques with statistical techniques
- Can perform complex predictions on very large databases
IXL: The Machine Learning System combines statistical methods, symbolic data analysis, induction, and deduction to explore and reveal previously unknown data interdependencies and relationships in very large databases. You can specify the level of error you are willing to accept, the kind of rules that the program should use, and the con-

cepts (both exact and inexact) that the program should use in constructing the rules. The program presents its results in the form of the percentages of data elements that conform to each rule, with a confidence factor based on the variations in the database contents. The user interface is menu driven; it prompts you for all the information it needs, so you don't need any programming experience to use the program. To run the program, you'll need an IBM PC/XT, PC/AT, or a compatible computer that's equipped with at least 512 k bytes of

RAM and a hard disk. \(\$ 490\).
IntelligenceWare Inc, 9800 S Sepulveda Blvd, Suite 730, Los Angeles, CA 90045. Phone (213) 4178896.

Circle No 427

\section*{MATH SOFTWARE}
- Runs on 80386-based machines with 80387 or Weitek 1167
- Includes numeric analysis and matrix computation

The 386 -Matlab is a new version of the well-known Matlab (matrix laboratory) interactive mathematical software package for scientists and engineers. This version runs on 80386 -based computers that are equipped with an 80387 numeric coprocessor. A second version, 386/ Weitek-Matlab, runs on 80386-based machines that are equipped with the Weitek 1167 high-speed math coprocessor. Both versions run in

\title{
EDN INFO CARDS
}

> The Fastest, Most Cost-Effective Way to Generate Sales Leads!

EDN NEWS

the protected mode of the 80386 and can thus use all the memory in the system. The program accepts commands in standard mathematical notation, and its basic data object is a matrix that does not require dimensioning and that allows you to solve numeric problems in much less time than you'd need to write an equivalent program in Fortran, Basic, or C. The amount of physical memory in the system is the only limit on matrix or vector sizes, and on the number of variables that you can use. To run the program, you need an 80386 -based computer equipped with an 80287 or 80387 numeric coprocessor or the Weitek 1167 coprocessor; at least 1 M bytes of RAM; and an IBM CGA or compatible board, an IBM EGA or compatible, or a Hercules monochrome graphics card. 386-MATLAB, \$1495. 386/Weitek-MATLAB, \(\$ 1995\).

The Math Works Inc, 20 N Main St, Suite 250, Sherborn, MA 01770. Phone (617) 653-1415. TWX 910-240-5521.

Circle No 428

\section*{ENHANCED CAD}
- Lets you create artwork for complex microwave/RF circuits
- Can activate as many as 35 drawing files simultaneously

MiCAD II is an enhanced version of the vendor's earlier CAD program for designing microwave/RF circuits and subassemblies and for generating the corresponding artwork.

Added features in the user interface include the ability to create userdefined shapes, a rubberbanding capability, better prompts and help screens, and the ability to use single or dual monitors. The database can now handle large and complex designs such as stripline layouts and microstrip; in addition, you can now activate as many as 35 drawing files
simultaneously. A utility program lets you create a preliminary mask file, which you can later convert to another format (such as GDS II or Gerber) for use by your IC manufacturing service. You can run the program on an IBM PC, PC/XT, PC/AT, or compatible computer equipped with the Intel AboveBoard (or equivalent expanded

memory), or on a workstation such as the Apollo Domain, HP 300 Series, or Digital Equipment's VAXstation. For the IBM PC version, prices start at \(\$ 8400\), depending on options.

EEsof Inc, 5795 Lindero Canyon Rd, Westlake Village, CA 91362. Phone (818) 991-7530. TLX 384809.

Circle No 429

\section*{RECTIFIER ANALYSIS}
- Predicts dc and ripple output in rectifier circuits
- Accommodates a wide variety of load types
RectSim is a simulator program that runs on the IBM PC, PC/XT, \(\mathrm{PC} / \mathrm{AT}\), and compatible computers and provides fast and accurate performance predictions for capacitorinput rectifier circuits. The program can simulate single-phase, half-wave circuits, full-wave bridge
circuits, and symmetrical doubler circuits; it predicts de and ripple output voltages, de and rms currents, and power dissipation. The program can automatically run a series of simulations that sweep any specified parameters over any desired range of values. To run the program, your PC must have at least 128 k bytes of RAM and MS-DOS version 2.1 or higher. \(\$ 99\).

Design Automation Inc, 809 Massachusetts Ave, Lexington, MA 02173. Phone (617) 862-8998.

Circle No 430

\section*{CASE ANALYSIS TOOL}
- New features provide 33 types of analysis reports
- Lets you incorporate output in documents

Excelerator is a CASE tool that runs on the IBM PC, PC/XT, PC/AT, and compatibles and the

IBM PS/2 Model 50 and Model 60. Version 1.8 contains substantial enhancements, particularly a new ex-tended-analysis facility. This facility provides 33 types of analysis reports and 25 matrices, which help you evaluate the accuracy, completeness, consistency, and efficiency of system and database designs. The affinity-analysis feature identifies empty, incomplete, or redundant records, as well as screens and reports that have similar or equivalent contents. The data-modeling-analy-

\section*{DATA ACQUISITION PROCESSOR \({ }^{\text {TM }}\)}

ONBOARD INTELLIGENCE FOR IBM PC/XT/AT
- analog and digital I/O to 150,000 samples/second
- 80186 coprocessorrealtime processing
- onboard software, including FFT
- run applications without programming
- direct access to Lotus 1-2-3
- full documentation with sample applications and tutorial - \$20
- digital I/O from \(\$ 995\)
- analog I/O from \(\$ 1595\)

\title{
VF Technology... The Bright Deision
}

Futaba, a world leading manufacturer of vacuum fluorescent displays, offers a wide assortment of display tubes in many sizes and formats. Also, Futaba offers display modules with all the electronics required to refresh the display and easily interface with the host system.

\section*{GRAPHIC DISPLAY}

Both front glass phosphor, which provides maximum viewing angle and uniform surface appearance, and conventional back glass phosphor, with optimum brightness and software dimming capabilities, are available. All Futaba graphics modules offer complete drive electronics, bit mapped control with a DC/DC converter. All active components are surface mounted onto a single board.

\section*{DOT MATRIX MODULES}

Utilizing Futaba's dot matrix displays, a completely intelligent line of "dot modules" is available. Each includes all drive, power supply and microprocessor components surface mounted onto a single board. Surface mounted technology results in higher reliability and allows for a smaller overall package and lower cost. All dot modules require only a 5V DC power source and can accept parallel or 8 possible serial baud rates.

\section*{GRAPHIC DISPLAYS/MODULES}
\begin{tabular}{llccl}
\hline \begin{tabular}{l}
Futaba \\
Display
\end{tabular} & \begin{tabular}{l}
Futaba \\
Module
\end{tabular} & \begin{tabular}{c}
Pixels \\
(Row X Char.)
\end{tabular} & \begin{tabular}{c}
Brightness \\
(FT-L)
\end{tabular} & \begin{tabular}{l}
Module \\
Dimensions (in.)
\end{tabular} \\
\hline GP1005B & GP1005B03 & \(128 \times 64\) & 400 & \(7.28 \times 3.35 \times 1.77\) \\
\hline GP1006B & GP1006B04 & \(256 \times 64\) & 200 & \(9.84 \times 3.35 \times 1.77\) \\
\hline GP1009B & GP1009B03 & \(240 \times 64\) & 200 & \(6.2 \times 2.76 \times 1.57\) \\
\hline GP1010B & GP1010B01 & \(176 \times 16\) & 200 & \(7.32 \times 2.16 \times 1.70\) \\
\hline GP1002C & GP1002C02 & \(320 \times 240\) & \(100^{*}\) & \(7.10 \times 6.30 \times 1.60\) \\
\hline GP1004B & GP1004B03 & \(640 \times 400\) & 30 & \(9.65 \times 7.28 \times 1.85\) \\
\hline
\end{tabular}

DOT MATRIX DISPLAYS/MODULES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Futaba Display & Futaba Module & \begin{tabular}{l}
Char. \\
X Row
\end{tabular} & Dot Format & \begin{tabular}{l}
Char. \\
Ht. (in.)
\end{tabular} & Module Dimensions (in.) \\
\hline 20SD01Z & M20SD01 & 20X1 & 5X7 & 0.200 & 6.3X1.97X. 75 \\
\hline 20SD42Z & M20SD42 & 20x1 & \(5 \times 12\) & 0.344 & 7.1X2.16X. 88 \\
\hline 40SD02Z & M40SD02 & 40X1 & \(5 \times 7\) & 0.200 & 9.45X2.16X. 88 \\
\hline 40SD42Z & M40SD42 & 40X1 & \(5 \times 12\) & 0.344 & 9.45X2.16X.88 \\
\hline 202SD03Z & M202SD03 & 20x2 & \(5 \times 7\) & 0.200 & 6.7X2.56X. 90 \\
\hline 402SD04Z & M402SD04 & 40X2 & 5X7 & 0.200 & \(10.43 \times 2.56 \mathrm{X} .90\) \\
\hline MANY OTHER DISPLAYS & NEW MODULES AVAILABLE SOON & & & & \\
\hline IUTABA & Corpora Electronic & tion omp & Am ents & rica & \\
\hline
\end{tabular}

\footnotetext{
711 E. State Parkway
Schaumburg, IL 60173
}

\section*{CAE \& SOFTWARE DEVELOPMENT TOOLS}
sis feature locates records with missing, mislabeled, or multiple keys; compares connections on datamodel diagrams with data relationships described in the data dictionary; and checks data-modeling normalization. The extended struc-ture-analysis feature tracks the use of data at its lowest level to ensure that all data can be processed according to the design. Version 1.8 also lets you integrate Excelerator output with documents generated by Ventura's Desktop Publisher or printed on any laser printer that works with Adobe's PostScript command language. If you have an Excelerator and are covered by the warranty or the product-maintenance plan, you can change to version 1.8 at no charge; otherwise, the upgrade costs \(\$ 500\).

Index Technology Corp, 1 Main St, Cambridge, MA 02142. Phone (617) 494-8200. TWX 910-380-7014.

Circle No 431

DSP SOFTWARE
- Acquires, displays, and analyzes complex signals
- Lets you design FIR and IIR digital filters

Hypersignal and Hypersignal Plus are DSP (digital-signal processing) programs that run on IBM PC/XT, PC/AT, PS/2, and compatible computers. They allow you to acquire and display data from files, A/D converters, DSP-chip-emulator or -simulator programs, or serial communications links. You can display this data in single- or dual-waveform time-domain format, and em-
ploy zoom, pan, or random-frame access. You can generate a 3 -dimensional spectrogram or can plot the poles and zeros of an IIR (infiniteimpulse response) filter. The programs' signal-processing capabilities include FFT and inverse-FFT, convolution, recursive filtering, autocorrelation, and various waveform functions. Hypersignal Plus has all of the above features and further lets you design FIR (finiteimpulse response) and IIR digital filters, using the Kaiser Window method or other methods. Once your design is complete, the program can generate assembly-language source-code files representing the filter, for use by Texas Instruments 32000 -family DSP chips. Hypersignal, \$349; Hypersignal Plus, \(\$ 489\).

Hyperception, 9550 Skillman, LB 125, Dallas, TX 75243. Phone (214) 828-3508.

Circle No 432

\title{
Turn Good Ideas Into Good Articles
}

\section*{With EDN's FREE Writer's Guide!}

Would you like to get paid for sharing your clever engineering ideas and methods with your professional colleagues? If so, then send for EDN's new FREE writer's guide and learn how.

You don't need the skills and experience of a professional writer. And you don't need to know publishing jargon. All you do need are a little perseverance, your engineering skills, and the ability to communicate your ideas clearly.

Our new writer's guide takes the mystery and intimidation out of writing for a publication. It shows you how to write for EDN using

skills you already have. Plus, it takes you step-by-step through the editorial procedures necessary to turn your ideas into polished, professional articles.

Get your FREE copy of EDN's writer's guide by circling number 800 on the Information Retrieval Service Card or by calling Sharon Gildea at (617) 964-3030.

\title{
EDN PRODUCT MART
}

This advertising is for new and current products.

\section*{Please circle Reader Service number for additional information from manufacturers.}

\section*{WAVEFORM SYNTHESIZER}

- For IBM-PC/XT/AT and compatibles
- Generates user-definable signal
- Up to 2000 points per envelope

T
CUATECH
\(\$ 795.00\)

478 E. Exchange St. Akron OH 44304 (216) 434.3154 TLX: 5101012726 1-800-553-1170

CIRCLE NO 325

CROSS-16 META ASSEMBLER
- Table based \(8 / 16\) bit cross-assembler
- Uses manufacturer's assembly mnemonics.
- Tables \& Example Source files are included for ALl of the following processor families
\begin{tabular}{llll}
1802 & 3870 & 64180 & 6502 \\
65816 & 6801 & 6805 & 6809 \\
6811 & 68000 & 7000 & 8048 \\
8051 & 8085 & 8086 & 8096 \\
COP800 & SUPER8 & Z8 & 280
\end{tabular}
- Users may modify or create new tables for additional processors
- Produces listing. symbol table, and \(8 / 16\) bit binary Intel and Motorola hexcode
- \(5^{\prime \prime}\) DSDD for PC/MS-DOS 2.0 or greater \(\$ 99.95\) US \(\$ 139.95 \mathrm{CDN}\)
- Portable C sourcecode is available

Worldwide shipping (AIRMAIL) \& handing included. Credit Card orders is 139.95 CDN) please specity: Card number.

Universal Cross-Assemblers
P.O. Box 384, Bedford, N.S. Canada B4A \(2 \times 3\)

\section*{PAL \({ }^{\circ} /\) EPLD PROGRAMMER}

From \$689.00

Stand Alone/RS-232 Programs and Verifies 20/24 pin PLDs from MMI, TI, National Cypress, Lattice, AMD, Altera
PAL is a registered trademark of MMI.
From A Name You Can Trust

\section*{LOGICAL DEVICES INC.}

1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
1-800-331-7766 (305) 974-0967
Telex 383142 Fax (305) 974-8531
CIRCLE NO 326

\section*{SMART CARD EXTENDER}

EASY ON \({ }^{\mathbf{s} 1655^{00}-\mathrm{PC}} \mathbf{1 9 5 ^ { 0 0 }}\) - АT
PC/XT/AT and compatibles
- Allows card insertion and extraction without power on/ off cycles
- Saves time by eliminating DOS
re-boots
- Reduces wear and tear on hard disk drives
- Extends host interface for hardware and soft ware development and test
- A single switch controls the connection of all signals to and from the computer bus
- Patent pending

30 DAY NO RISK EVALUATION
APPLIED DATA SYSTEMS
9811 Mallard Dr. Suite 203
Laurel, MD 20708
For more information call 800-541-2003

\section*{WE PROVIDE SOLUTIONS TO MANY INTERCONNECT PROBLEMS...}

- Test Adapters (Socketed LCC/PLCC/PGA) - Test Clips (Surfaced Mounted SOIC/PLCC)
- 150 Types of Prototyping Board Adapters - 125 Types of Programming Socket Converters - Many Types of Emulator Pod Converters - PGA/PLCC Extraction/Insertion Tools - And Much, Much More

\section*{FT}

Emulation Technology, inc.
2368-B Walsh Ave. - Bldg. D • Santa Clara, CA 95051 TEL: (408) 982-0660 • FAX: (408) 982-0664 CIRCLE NO 327
\begin{tabular}{|c}
MINI-PBX \\
To Save Your Telephone Lines!
\end{tabular}

CIRCLE NO 330

\section*{SOLVE DECOUPLING PROBLEMS}

MICRO/Q capacitors with special pinout configurations give superior noise suppression, design ease. Solve special decoupling, routing problems for 8 -, 16-, or 32-bit microprocessors, ECL devices, and many other devices where power and ground are not at conventional positions. Rogers Corp., 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624

CIRCLE NO 331

8 CH at 100 MHz 8176 bits/CH 24 CH at 25 MHz 2044 bits/CH FOUR LEVELS SEQUENTIAL TRIGGER MORE THAN 4,000 COMBINATIONS OF TRIGGER CONOITA OU RECORD ONLY EVENTS OF INTEREST
FAST SCROLLING AND PAGING QUICK SEARCH AND LOCATE FEATURE BIN/OCT/HEX/ASCII DISPLAY BASE

\section*{(E) PROM/(E) PLD MULTIPROGRAMMER \({ }^{\text {TM }}\)} OFFERS 18/12 PROTECTION PLAN

BYTEK's new 135 is a SET EPROM Programmer, a GANG EPROM Duplicator, \& a UNIVERSAL Device Programmer. Complete stand alone operation via 25 keys, or PC hookup with RS232. With standard \(256 \mathrm{~K} \times 8\) RAM, the 135 supports more devices than any other production programmer, including 32 pin EPROMs. Can be easily expanded to support 40 pin EPROMs, 40 pin Micros, Bipolar PROMs \& Logic Array Devices. 18 MONTH WARRANTY \& 12 Month FREE Device Updates.
Model 135-E just \$11195.00
Call today: 1-800-523-1565
In Florida: (305) 994-3520
BYTEK Corporation
1021 S. Rogers Cir., Boca Raton, FL 33487
FAX: (305) 994-3615 TELEX: 4998369 BYTEK
CIRCLE NO 332

\section*{EPROM PROGRAMMER \$349}

THE EP-1's A GREAT VALUE \& HERE'S WHY: - READS, PROGRAMS, COPIES OVER 300 EPROMS AND EEPROMS FROM 29 MANUFACTURERS INCLUDING 2716-27513, 2804-28256, 27011 - READS \& WRITES INTEL, MOTOROLA, STRAIGHT HEX AND BINAAY - OPTIONAL HEADS PROGRAM INTEL 874X, 8751, 87C51, 8755 - MENUT-DRIVEN CHII SELECTION BY MFG \& PN N NO MOUULES - SPLITS FLLES BY BASE ADDRESS AND ODDIEVEN (16832 BIT) - ALL INTELIGENCE IN UNIT; Z80 MICROPROCESSOR BASED -5, 12.5, 21,25 VOLT PROGRAMMING FOR CMOS AND -A SUFFIX PARTS - FREE PCDODS SOFTWARE -RS232 TO ANY COMPUTER - GOLD TEXTOOL ZIF SOCKET -8 BAUD RATES TO 38,400 - SAME DAY SHIPMENT GENERATES, CHECKS CHECKSUMS - MONEY YAR WARAANTY - TWO FREE FIRMWARE UPDAT - MONEY-BACK GUARANTEE -UVERASERS FROM \(\$ 34.95\) CALL TODAY FOR MORE INFORMATION BPWCis MICROSYSTEMS 800/225-2102 713/461-9430 TELEX 1561477 10681 HADDINGTON \#190 HOUSTON, TX 77043

\section*{CIRCLE NO 334}

SYNCHRONOUS/ASYNCHRONOUS RS-422, RS-485, RS-232, CURRENT LOOP

SYNCHRONOUS COMMUNICATION
- 1 Mbaud data transfer rate
- DMA facility
- Byle sync, SDIC, HDLC
- RS-422, RS-485, RS-232

ASYNCHRONOUS COMMUNICATION
- Single/dual port option
- Selectable interrupt
- Address selectable
- Current Loop, RS-422, RS-485, RS-232

CUA TECH
INCDRPORATED

\footnotetext{
Leaders in Communication Technology
}

TOLL FREE: 1-800-553-1170
478 E. Exchange St. Akron, Ohio 44304 (216)434-3154 TLX:5101012726 FAX:(216)434-1409 CIRCLE NO 338

\section*{THE BETTER RAM TESTER}

WITH BETTER

\section*{COST/PERFORMANCE}

\section*{IST Model 6400}

ADVANTAGES:
- Tests most Static RAMs or DRAMs up to 1 Mbit
- Automatically rejects any out-of-tolerance device (in power consumption or speed) by testing operating current and access time.
- A software controlled edge deskew procedure generates the most precise timing waveforms for DRAMs testing.
- Tests function with a group of specialized test patterns to detect all possible faults.
- Interface to automatic IC handlers with front panel control sorting capability
- Stand alone or slave to a terminal or computer (via RS-232C) for de tailed test result display or failure analysis.
- Modular architecture eliminates set-up time when changing over from one device to another
- Low cost/high performance with one-year warranty. Price: \(\$ 2,500\)
487 Gianni Street
Santa Clara, CA 95054
FAX: (408) 980-1794
TELEX: 3724348 INF0 SCAN
FOR LOW COST/
HIGH PERFORMANCE, call:
(408) 988-1908
CIRCLE NO 333

\section*{New Low Price DC/DESIGN \({ }^{\text {IM }}\)}

\section*{Complete PCB Design Package \\ \({ }^{5} 695\)}

Includes Draftsman-EE \({ }^{\text {mm }}\) and \(D C /\) Check \({ }^{\text {m }}\). , each sold separately for \(\$ 395\). Low-cost options include DC/Autorouter \({ }^{\text {m }}\)
DC/Convert \({ }^{\text {tm }}\) (Format Converter)
DC/Design for IBM PCs and compatibles features easy-to-use menus for Schematic Capture; Net List, BOM, and Rat's Nest generation; interactive parts placement and routing; design rule checking; and complete. professional documentation
Save even more. Our DC/810 \({ }^{\text {tm }}\) Package includes DC/Autorouter (our low-cost 1-mil diagonal autorouter). Draftsman-EE and DC/Check + for only \$1,390.

Limited Time Offer:
Order by March 31, 1988 to receive a Free Upgrade worth up to \(\$ 1,255\), featuring Surface Mount, 64 layers, and Hi-Res support. Call for details.
Call to order with our 30-day money back guarantee Demo Package also available at \(\$ 50\).

DDESIGN
COMPUTATION
Route 33 Sherman Square, Farmingdale, NJ 07727 (201) 938 -6661

CIRCLE NO 336

\section*{DEVELOP ROMABLE SOFTWARE mrovith imuron}

ROM \(\mathrm{C} 86^{+*}\) is a software package that works in conjunction with the Aztec C86 \(\mathrm{c}^{\text {'ut }}\) compiler. ROM C86 provides a cost effective means of developing efficient, ROMable software for \(8088,8086,80188,80186\), and 80286 based microcomputers. The only hardware required is an XT/AT and a functional target system with a serial port.
WITH R0M-C86 YOU CAN
- Use "C" library functions including PRINTF

FPRINTF, SCAN, FSCAN, MALLOC, and CALLOC.
- Specity the size and location of the stack and heap.
- Download programs from an XT AT to target RAM via a serial link using the DBR86 loader debugger program and the DM86 target system monitor.
- Debug programs in target RAM using the powerful symbolic debugging capabilities provided by the DBR86 loader/debugger working in conjunction with the DM86 larget system monitor
- Use the HEXCON conversion program to convert relocatable. EXE files to extended hex format for down loading to an EPROM programmer.
ROM C86 Price - \(\$ 499\)
Call TOLL FREE 1-800-521-0714 Ext. 229
M.K. HANSEN COMPANY

634 Industry Drive, Seattle, WA 98188
Aztec c86c is a trademark of Manx Soflware Systems
CIRCLE NO 339

\section*{PC488}

\section*{\$145}

LOW COST PC/XT/AT INTERFACE FOR IEEE-488 (GPIP/HPIB)
- SHORT CARD FOR PC/XT/AT \& COMPATIBLES - 1 OF 6 INTERRUPT LEVEL
- UP TO 4 BOARDS PER COMPUTER
- CONTROLLER / TALKER / LISTENER
- INCLUDES SOFTWARE DRIVERS
- CUSTOM SOFTWARE SUPPORT AVAILABLE - COMPATIBLE WITH MOST IEEE488 SOFTWARE - QUANTITY DISCOUNTS Call today for datasheetll

\section*{B\&C MICROSYSTEMS}

355 West Olive Ave, Sunnyvale, CA 94086 VISA \& MC accepted.

We've upgraded our SBSxSCSI module to support BlockMode Psuedo-DMA transfers. That means CPUs without DMA can increase transfer speeds by not polling for READY on every byte. We've also added an optional Centronicscompatible printer port (SBSxSCSI/CEN). If you only need the printer port, save money with our low-cost SBSXCEN module. We also offer a Floppy-Disk Controller module (SBSxFDC) that handles \(31 / 2^{\prime \prime}, 5^{1 / 14^{\prime \prime}}\), and \(8^{\prime \prime}\) drives with SD, DD and HD formats.
Call or write for more information.
Single Board Solutions, Inc. 20045 Stevens Creek Blvd. Cupertino, CA 95014 (408) 253-0250

CIRCLE NO 343

\section*{ALPHACOM 42 \({ }^{\text {® }}\)}

The ideal printer for MEDICAL, SCIENTIFIC and INDUSTRIAL INSTRUMENTATION.
- Fast - 2 lines/sec.
- Quiet - Thermal Dot Matrix Printing
- Low Cost - Less than \(\$ 125\) in OEM quantity
- Plug-In Interface for Serial or Parallel Alphacom \({ }^{\ominus}\) is a Trade Name of BROWN KELLOGG, INC. 2108-C Bering Drive San Jose, CA 95131 (408) 436-0801

CIRCLE NO 346

\section*{D DESIGNED WITH \(300+I C ' S\) IN TWO WEEKS!}

In today's highly competitive electronics market, companies with the shortest development cycle will lead the market. At CDI-West we provide a development process shorting design time, increasing quality and saving money.
CDI-West is the largest CAD/CAM facility in California providing full \(\mathrm{E} / \mathrm{M}\) design and tooling. Our specialty is to provide fast turn-around of digital circuits with our CBDS PCB design system. We will take your Daisy, FutureNet etc. CAE netlist into our large IBM mainframe. Sizeable, high-density PCB's are placed, routed automatically, correct to your input specifications. We design to IPC and MIL-P-55110P standards and provide full documentation. We also provide Hybrid and SMT circuit design.

For More Information Contact
CIIICORPORPLIOR-UESt aivision of coiicormoration
911 Bern Court, San Jose, CA 95112 (408) 287-9140

CIRCLE NO 341
ZIPPY SWITCHES
9 No: E91274
*FUll DETAILS AND SAMPLES ON REQUEST *OEM ARE WELCOME

SHIN JIUH CORP.
P.O. Box 10184 SHIN TIEN TAIPEI HSIEN, TAIWAN, R.O.C. TEL:(02) 9188512-5 TLX:33418 ZIPPY FAX: 886-2.9155765

\section*{CIRCLE NO 344}

\section*{"D" SIZE PLOTTER}

- Speed at \(7^{\prime \prime}\) Per Second
- Vacuum Paper Hold Down
- High Resolution Circles: Suitable for PCB Artwork
> (415) 490-8380 ZERICON STEVENSON BUSINESS PARK BOX 1669 • FREMONT, CA 94538

\section*{CONTROL COMPUTER}

Our Multitasking Industrial Basic runs as fast as BASICA on the IBM PC/ATI. It can also handle interrupts, frequency inputs, bit manipulation, datalogging and more. The hardware includes 4 channels of Analog with 12-bit resolution 32 digital I/O lines, battery-backed calendar clock, keypad and display ports. 2 RS-232C serial ports, 96 K RAM, EPROM and EEPROM programmers, autorun mode, low power CMOS circuitry, 8 MHz Z80 CPU. Only \(4.5^{\prime \prime} \times 8^{\prime \prime}\). Stand-alone or expandable. Low cost optional software turns your IBM PC into a program development workstation. FREE CATALOG describes other models and accessories. Call 303-428-8540 for same day response.

0
OCTAGON SYSTEMS 6510 W. 91st Ave CORPORATION Westminster, CO 30030 CIRCLE NO 342

\section*{LEADLESS CHIP TO WIRE WRAP ADAPTERS}

Save prototyping time, these LCC, PCC and PGA socket adapters provide the designer with a labeled test point for each pin and are available for \(44,52,68\) and 84 pin chips. WW pins are on \(.3^{\prime \prime}\) centers. Unit pricing for the 68 pin version is \(\$ 49.00\) delivered from stock.

Antona Corporation
2100 S. Sawtelle Blvd., L.A., CA 90025
(213) 473-8995

CIRCLE NO 345

\section*{FREE CATALOG OF ELECTRONIC INSTRUMENTS FOR RENT}

1987-88 Rental Catalog is available from Genstar Rental Electronics, Inc. New equipment from major manufacturers includes analyzers, meters, generators, oscilloscopes, recorders, and more. Rental terms and conditions are included as well as toll free numbers of the U.S. inventory centers

6307 De Soto Avenue, Ste. J Woodland Hills, CA 91367 (800) 227-8409
(800) 331-3440 (in CA) CIRCLE NO 348

smARTWORK \({ }^{-}\)PCB Software. In a fraction of the time hand taping requires, you can create double-sided printed-circuit boards with smARTWORK and your IBM PC. The program's features include continual design-rule checking, automatic pad shaving, a silkscreen, and text for all three layers. smARTWORK with autorouting is \(\$ 895\) (without, \(\$ 495\)) and comes with a 30 -day money-back guarantee. Credit cards accepted. Write or call

Wintek Corporation
1801 South Street, Lafayette, IN 47904 (800) 742-6809 or (317) 742-8428

CIRCLE NO 758

MICRO/Q II
FOR A DECOUPLING CAPACITOR THAT SAVES SPACE, DEFEATS NOISE, IS SUITABLE FOR MILITARY APPLICATIONS AND BEATS HUMIDITY, HEAT AND COLD:
ROGERS MICRO/Q®॥
Rogers Corp., 2400 S. Roosevelt,
Tempe, AZ 85282. 602/967-0624

U.S. Instrument Rentals has just published its New 1988/89 Product Guide. This free 400 page guide to instrumentation provides information on most of the 5000 different models (from all major manufacturers) of electronic test and measurement and data processing equipment that USIR has in its inventory. The new Product Guide is a comprehensive, single-source reference book containing descriptions, photos, and technical data. Rent, lease, or purchase with immediate delivery. Call today for your free copy!
UNITED STATES INSTRUMENT RENTALS, INC. 2988 Campus Drive
San Mateo, CA 94403 (800) 824-2873

UNIVERSAL
E(E)PROM
PROGRAMMER KITS FROM \$ 95
- On board power supply (\(110 / 220 \mathrm{~V} \mathrm{AC}\)).
- No personality modules; Device selection by menu
- Direct technical support; Full 1 year warranty.
- User friendly software; Complete help menu.
- Quick pulse algorithm (27256 under 60 sec).
- All 24/28 pin parts to 1 Mbit; CMOS; EEPROMS.
- Micros: \(8741,8742,8748,8748 \mathrm{H}, 8749,8749 \mathrm{H}\) \& more.
- IBM-PC, Apple, CPM or Unix driver; Autobaud RS232.
- Offset/split Hex, Binary, Intel \& Motorola 8,16,32 bit.
- Manual with complete schematics.

VISA \& MC Call today for datasheets II
B\&C MICROSYSTEMS
355 WEST OLIVE AVE. SUNNYVALE, CA 94086 PH: (408) 730-5511 FAX: (408) 730-5521 TELEX: 984185 EPROM PROGRAMMER

CIRCLE NO 759

\section*{Great Designs Start With Tango-Schematic.'. Just \$495.}

Designs quickly come to life with Tango-Schematic's easy to-use drawing editor and extensive component libraries Features four line types, four text sizes, repeat and block functions, unique built-in word processor. Includes DRC, BOM, Wire List, Net List outputs and crisp plots, prints, or laserprints. The perfect front end to our popular Tango-PCB and Tango-Route board design systems.

For IBM PC/XT/AT/PS2. Just \$495. Full-function Demo Package: \$10. Order toll-free 800 433-7801. VISA/MC. Thirty-day money back guarantee.
ACCEL Technologies, 7358 Trade St., San Diego, CA 92121 Outside N., S. America contact HST Technology (Australia) Phone: 61-02-34-8499 FAX: 61-02-23-8771

CIRCLE NO 762

Flow Charting II+ The New Plus for Fast Flowcharting FLOW CHARTING is new! lt's now
Flow Charting II + , with more speed + more functions + more printing options; - 10 text fonts: 26 shapes; - Line mode can stop at a shape; - Backspace key can erase a line to its origin; - Free text entry anywhere, or select autocentering; - Vertical or horizontal printing; one chart or multiple charts.
Used by Fairchild, Bechtel and more than 500 other major corporations. Edit quickly and accurately - even major edits - with Flow Charting II + , the Specialist.
See your retail store or call:

\section*{PATTON \& PATTON}

\section*{800/672-3470, ext. 897 Califomia} 800/538-8157, ext. 897 National
408/629-5044 international)

Tiny: \(2 \times 1 \times 1 / 2\). 10 days.
Butterworth/Chebyshef - Bandpass/band reject/highpass/ lowpass - Ruggedized - NO MINIMUM - Price example: 6pole Butterworth approx \(\$ 87\) ea. Free catalog • For instant information, call our Engineering Hotline: (213) 473-0584.

2233 S. Barry Ave.
West Los Angeles, CA 90064 (213) 478-8224, Telex 3725291

CIRCLE NO 760

Glide Through PCB Design.
TangoPCB \({ }^{\text {ww }}\) Create the toughest board designs with powerful layout software that's a snap to use. Function-rich Tango-PCB supports eight layers, 1 mil grid, OrCAD" or Schema" netlist input, print/plot/ photoplot output, and more.
Tango Route" "Getimpessive completion nates and remarkable speed with Tango-Route, a four layer, eleven pass autorouter.

\section*{Just \$495 each.}

For IBM PC/XT/AT/PS2. Compare features and you'll buy Tango. Or try full-function Demo Package, just \(\$ 10\). Order toll-free: 800 433-7801. VISA/MC. Thirty-day money back guarantee.
ACCEL Technologies, 7358 Trade St., San Diego, CA 92121
CIRCLE NO 762

IEEE-488, PARALLEL, and SERIAL PORTS PLUS \(4 M\) BYTES of MEMORY
- Control any instrument. RS232 or '488.
- 4Mbytes of extended/expanded memory.
- Software library and memory manager.
- High speed DMA. Risk free guarantee.

Capital Equipment Corp.
99 South Bedford St.
Burlington, MA. 01803
FREE demo disk. Call (617) 273-1818

\section*{Measuring noise figure made easier}

Product Note 8970B/S-2, Applications and Operation of the HP 8970B Noise Figure Meter and HP 8970S Microwave Noise Figure Measurement System, describes how to measure noise figure from 10 to \(18,000 \mathrm{MHz}\). The publication examines the features and functions of the instruments and gives step-bystep instructions on different methods of measuring. It also serves as a general reference guide for the instruments.

Hewlett-Packard, 1820 Embarcadero Rd, Palo Alto, CA 94303.

Circle No 409

Computer-integrated manufacturing ideas
The 12-pg publication, The Role of Automated Information in Com-puter-Integrated Manufacturing, presents the company's philosophy toward computer-integrated manufacturing: to unify all production, administration, and engineering functions into one computer system. The vendor's goals include improved productivity and higher quality. The brochure also presents major concepts involved in integrating management information and plantfloor information.

Allen-Bradley Response Ctr, Dept 5234, Box 92846, Rochester, NY 14692.

Circle No 410

\section*{Guide to memory requirements}

The 1988 Designer's Guide to Add-In Memory describes a broad range of memory products from the very technical to the managementoriented. The \(80-\mathrm{pg}\) catalog contains information about buses currently in use; DEC's latest offerings; where to find the best price and performance for memory products; and a survey of performance and memory options available from IBM. Also included are the features for the HP-9000 and the MIPS and number of megabytes that are available for the Sun 4/2XX and Apollo DN 4000.

Clearpoint Inc, 99 South St, Hopkinton, MA 01748.

Circle No 411

\section*{Linear/digital ASICs characterized}

The 182-pg Exar/Exel Military Databook presents product specifications for military-compliant linear/digital ASICs and high-performance electrically erasable devices. It describes fabrication processes and procedures that are used to meet MIL-STD-883C. The fabrication descriptions appear in the sections on product assurance, documentation, military screening and qualification, and quality conformance inspection. Product data
sheets include device features, performance characteristics, materials, drawings, and schematics. Special sections deal with custom and semicustom linear, as well as digital and linear/digital ICs.
Exel Microelectronics Inc, Box 49007, San Jose, CA 95161.

Circle No 412

How to select the right
plotting software
The booklet Versatec Graphics Soft-ware-the complete software plotting solution helps you choose the right software for your particular needs. It covers four types of software: Versaplot, Versaplot Random, Versaplot Random Enhanced, and a variety of plotting utility packages. The publication differentiates between each type of software and contains a listing of all available packages.

Versatec, 2710 Walsh Ave, Santa Clara, CA 95051.

Circle No 413

\section*{App note explains frequency synthesizer}

Application note AN969 discusses the MC145159 phase-locked-loop frequency synthesizer, or more specifically, S/H phase detector. It explains that this phase detector is used as a fine-error signal and that the synthesizer also contains sepa-
rate power-supply pins for the analog phase detector, a lock-detect output, and on-chip logic for control of the dual-modulus prescaler.
Motorola Literature Distribution Center, Box 20912, Phoenix, AZ 85036.

Circle No 414

\section*{Catalog of lubricants}

Lubricants for Electric Contacts and Connectors is the vendor's catalog of specialty oils and greases. It covers four application areas: greases for sliding electric contacts, as in electric switches; oils for sliding contacts and potentiometers; potentiometer greases; and lubricants for stationary separable electric connectors. It describes lubricant properties and operating-temperature ranges and discusses lubricants you can use to help suppress arcing conditions.
William F Nye Inc, Box G-927, New Bedford, MA 02742.

Circle No 415

\section*{Software package presented}

This 2-pg data sheet focuses on the functions of the Com 2 software driver that provides control of the vendor's logic programmers. It features sections on auto-recall of preset parameters, color-enhanced displays, the main menu's device program sequence, and error statis-
tics. It also explains the system requirements and provides a list of devices that the vendor's logic-programmer family supports. Color illustrations and a diagram of the package complete the publication.
Stag Microsystems Inc, 1600 Wyatt Dr, Santa Clara, CA 95054.

Circle No 416

\section*{DSP products categorized}

The vendor's 1987 DSP Products Databook includes four categories of DSP products: DSP \(\mu \mathrm{Ps}\), microcoded support components, floatingpoint components, and fixed-point components. It also contains package information, application notes, and an appendix, which includes an ordering guide and a worldwide service directory. A guide to finding product data is provided inside the front cover. Numerous diagrams, tables, schematics, and listings complete the volume.
Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021.

Circle No 417

\section*{Test instruments described}

The TTC Telecommunications Test Instruments catalog provides information about the vendor's products, their applications, accessories, key features, mainframe options, and specifications. The featured product lines include Fireberd and Data

Sentry 10 data-communication analyzers, Model 124 drop and insert for T networks, and T-Berd T-carrier instruments, which analyze and monitor digital data-communication links, digital-communications simulators, and breakout boxes. Photographs and charts highlight the text.
Telecommunications Techniques Corp, 444 N Frederick Ave, Gaithersburg, MD 20877.

Circle No 418

Discussion of composite amplifiers
The 12-pg application note AN21: Composite Amplifiers discusses the compromises you must make in order to achieve optimal speed, drift, bias current, and noise and power output from an amplifier. It provides schematics and descriptions of composite amplifiers, which are suggested as alternatives to simple amplifiers. It describes several applications including a wideband FET input-stabilized buffer; a gaintrimmable wideband FET amplifier; a fast, stabilized noninverting amplifier; and a stabilized, ultrawideband amplifier with a slew rate exceeding \(3000 \mathrm{~V} / \mu \mathrm{sec}\).

Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035.

Circle No 419

\section*{EDN's \\ CHARTER}

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

\section*{EDN covers new products}
- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.

275 Washington St
Newton, MA 02158
(617) 964-3030

BUSINESS/CORPORATE STAFF

F Warren Dickson
Vice President/Publisher
Newton, MA 02158
(617) 964-3030
(617) 964-3030
Telex 940573

Diann Siegel, Assistant

\section*{Peter D Coley}

VP/Associate Publisher
Advertising Sales Director
Newton, MA 02158
(617) 964-3030

Ora Dunbar, Assistant/Sales Coordinator
NEW ENGLAND
John Bartlett, Regional Manager
Chris Platt, Regional Manager
199 Wells Ave
Newton, MA 02159 (617) 964-3730

\section*{STAMFORD 06904}

George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th St
New York, NY 10011
(212)463-6419

PHILADELPHIA AREA
Steve Farkas, Regional Manager
487 Devon Park Dr
Suite 206
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager Randolph D King, Regional Manager Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60017
(312) 635-8800

DENVER 80206
John Huff, Regional Manager
44 Cook St
(303) 388-4511

DALLAS 75243
Don Ward, Regional Manager
9330 LBJ Freeway
(214) 644-36

SAN JOSE 95128
Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Regional Manager
12233 W Olympic Blvd
(213) \(826-5818\)

ORANGE COUNTY/
SAN DIEGO 92715
Jim McErlean, Regional Manage
Jim McErlean, Regional Man
18818 Teller Ave, Suite 170
18818 Telle
Irvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone, Regional Manager
1750 SW Skyline Blvd, Box 6
(503) 297-3382

UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manager 27 Paul St
London EC2A 4JU UK
44 01-628 7030
Telex: 914911; FAX: 01-628 5984
SCANDINAVIA
Stuart Smith
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
FRANCE/ITALY/SPAIN
Alasdair Melville
27 Paul St
London EC2A 4JU UK
1-628 7030
elex: 91491
Telex: 914911; FAX: 01-628 5984
WEST GERMANY/SWITZERLAND/AUSTRIA
Wolfgang Richter
Sudring 53
7240 Horb/Neckar
West Germany
49-7451-7828; TX: 765450

\section*{ISRAEL}

Igal Elan
Elan Marketing Group
13 Haifa St, Box 33439
Tel-Aviv, Israel
Tel: 972-3-268020
TX: 341667
EASTERN BLOC
Uwe Kretzschmar
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984

\section*{FAR EAST}

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: (03) 366-8301
Telex: J2322609 DYNACO

\section*{TAIWAN}

Acteam International
Marketing Corp
\(6 F\), No 43, Lane 13
Kwang Fu South Rd
Mailing Box 18-91
Taipel, Taiwan ROC
Telex: 29809
FAX: (02) 760478

\section*{KOREA}

BK International
Won Chang Bldg, 3rd Floor 26-3
Yoido-dong, Youngdungpo-ku
Seoul 150, Korea
Tel: 785-6665
Fax: 784-1915
Telex: K32487 BIZKOR
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
New York, NY 10011
(212) 463-6415

CAREER OPPORTUNITIES/
CAREER NEWS
Roberta Renard
National Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8610

Dan Brink
Western Sales Manager
18818 Teller Ave
Suite 170
Irvine, CA 92715
(714) 851-9422

Maria Cubas
Production Assistant
(201) 228-8608

William Platt, Sr, Vice President, Reed Publishing USA Cahners Magazine Division
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Group Vice President, Electronics/Computers Tom Dellamaria, VP/Production \& Manufacturing

\section*{Circulation}

Denver, CO: (303) 388-4511
Sherri Gronli, Group Manager
Eric Schmierer, Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R
Westphal, Cahners Reprint Service, Cahners Plaza,
1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018.
Phone (312) 635-8800.

\section*{IF YOU'RE WASTING TIME LOOKING FOR THE BROADEST LINE OF SMD' PASSIVES,}

\section*{CUT IT OUT!}

II ndependent, idealistic, visionary - his own man. All descriptions which could be applied to both the creative genius and entrepreneur in their pursuit of an ideal.

Such a man was Benjamin Franklin, American statesman and distinguished scientist.

His first attempt to go it alone as a printer - an honest artisan - failed, and it was only his reserves of inner strength and single-mindedness which sustained him

It's a great pity he couldn't have set up here in Glenrothes. He would have found no shortage of help and

encouragement from well-established companies in the townBenjamin could even have bought all his paper supplies right here in Glenrothes

Here, in the heart of Scotland, he would have had the most breathtaking scenery in Europe to allay any homesickness and he could have played golf at St Andrews - before the folks back home in Massachusetts discovered the game.

If like Benjamin, you too are in pursuit of excellence, every-
thing you need is here.
We'd like your company.

\section*{GLENROTHES}

\author{
Deborah Asbrand, Associate Editor
}

Placement agencies' opportunities always sound so attractive. Their large recruiting advertisements in the Sunday editions of most newspapers list dozens of high-salaried jobs in many industries. Some recruiters, using more personalized tactics, place phone calls or write letters to individuals to inform them of job openings that might interest them. And, best of all, the only thing you have to do in order to plug into this network of job opportunities is send in a resume.

The system seems almost too good to be true, and, in most cases, it is. Recruiters do indeed have access to unadvertised job openings, and an individual represented by a reputable agency can benefit from inside contacts. Job counselors,
though, advise that recruiters handle only a small portion of available positions, and that anyone considering working with an agency should be aware that association with a disreputable firm could harm his or her career.

The two most common forms of placement service are search firms and employment agencies. Their methods of operation are different, but both types of business receive their commissions from the hiring company-which means that their primary allegiance is to the company, not to the job seeker.

\section*{Placement's elite}

Search firms constitute the upper crust of the placement industry. Companies generally hire search
firms to fill jobs that command salaries of \(\$ 50,000\) or more. Searchers are the true "headhunters": On receiving an assignment, they research their client's industry to identify the leading companies and then target talented employees who might be interested in the client company's job opening.

Search firms say that in their business, discretion is the name of the game. Their clients hire them to conduct judicious, thorough searches. To preserve their industry's sense of propriety, most search firms maintain low profiles and rarely advertise their services. Most politely decline to accept unsolicited resumes. As Jennifer Munro, president of a Greenville, SC, search firm, explains, "Search firms

\section*{PROFESSIONAL ISSUES}
are not for people who are looking for jobs."
The search-industry's particular etiquette is reflected in its trade jargon. Searchers don't "place" people, they "complete searches." And the searchers themselves aren't recruiters, they're "consultants."
Searchers, who get a fee equal to \(30 \%\) or more of the open position's salary, roll out the red carpet for clients. Munro's business, Consultants for Corporate Management, includes a researcher, recruiter, and reference checker on its fivemember staff. The company spends seven to 10 days researching a job opening, gathering information on the industry involved, and compiling the names of at least 350 candidates before it begins placing phone calls. After reducing the number of candidates to five or six front-runners, Munro meets with each, sometimes traveling cross-country to do so; she then presents her client with the finalists.
Electronics companies typically hire search firms to fill managerial positions such as director of engineering, director of research and development, or vice president of engineering. But they also carry out searches for hard-to-fill engineering specialties. Munro, for example, recently filled a \(\$ 60,000\) slot for a supervisor of ruby- and sapphirecrystal growing.
Search firms take great pains to
distinguish themselves from their distant relative, the employment agency. Most employment agencies work on a contingency basis-that

is, they don't receive their commission unless the company hires a candidate they've submitted.

\section*{Mercurial and competitive}

In contrast to the refined, low-key search industry, the contingencyagency business is mercurial and competitive. It's also booming, having grown \(30 \%\) between 1982 and 1984. As a result, an estimated 18,000 agencies now elbow for the attention of both job seekers and employers.
Most states require agencies to be licensed or registered, but do not
otherwise regulate or supervise them. The low overhead required to set up an agency-and the appeal of commissions that average \(20 \%\) of a position's annual salary-attracts many newcomers to the field each year. "There are a lot of guys working out of the trunks of their cars," says Carl Tomforde, a recruiter with the Littleton Group, a Littleton, MA, contingency firm. Tomforde adds that a one-person shop doesn't necessarily imply a fly-bynight business. "Some [recruiters] work out of their homes, and they probably do a fine job. They can hand-pick their candidates and can really give them the attention that they're looking for."

Unlike search firms, most contingency agencies are volume businesses. Because an agency doesn't receive a commission unless it comes up with a winning candidate, it's in the agency's best interest to forward as many resumes as possible, increasing the odds that one of the resumes will interest a company and result in a hire.

\section*{A tarnished reputation}

Not surprisingly, the cutthroat business practices that stem from employment agencies' constant vying for attention have accorded the placement industry a reputation on a par with used-car sales. Two professional associations that seek to promote a positive image are the

\section*{Guidelines for choosing an employment agency}
- Check out an agency's reputation just as you would evaluate any other business whose services you engage. Ask your friends about agencies they've used or with which they're familiar.
- Most states require employment agencies to be licensed or registered. Call your state's labor office and ask whether any complaints have been filed against any agencies that you're considering approaching.
- Ask about the agency's professional affiliations. Is it a member of the NAPC? Have any of its recruiters been designated Certified Placement Counselors by the NAPC? The NAPC lists its members geographically and by specialty in the Career Guide Handbook (\$19.95). For more information, write to the NAPC at 1432 Duke St, Alexandria, VA 22314 or phone (703) 684-0180.

\section*{PROFESSIONAL ISSUES}

National Association of Personnel Consultants (NAPC) and National Personnel Associates (NPA), both of which require members to adhere to ethical standards. NPA's occasional expulsion of a member, however, indicates the skewed nature of industry morality: The organization most often banishes members not for substandard behavior toward a client company or job hunter, but for infractions against another agency.

Despite the bad will created by unethical agents, contingency agencies can serve job hunters as yet another avenue to new employment. The NAPC estimates that its 2000 members place 50,000 individuals in jobs each year.

\section*{A bad rap}

Career counselors attribute some of employment agencies' image problems to job hunters' misperceptions. "In all fairness to the agencies, lots of people go to their offices thinking 'here's a person who'll find me a job'-an erroneous expectation," says Libby Pannwitt, vice president at Mulford Moreland \&

Associates, a Cupertino, CA, outplacement firm. "The agency's main job is to fill job openings, not to help the job seeker."

Other counselors advise people not to rely on agencies when looking for a job. "Agencies handle 10 to \(15 \%\) of available jobs, and that's about the percentage of job-hunting time that the job hunter should devote to them," says Ron Wade, a career-management counselor for

Career Directions (Needham, MA.)
Failure to thoroughly check out an agency can ultimately hurt a job hunter's reputation. Some agencies, for example, engage in mass mailing, sending out as many as 200 copies of an individual's resume. Such an inundation of the market makes it nearly impossible for a job hunter to keep track of his resume's whereabouts. It also makes it that much easier for word of a job-hunter's search to enter the rumor mill and find its way back to his or her employer.

Recruiter Carl Tomforde also counsels job hunters to keep a tight rein on an agency's activities and to avoid viewing an agency as a jobhunt panacea. "My advice to candidates who call is to continue doing their own legwork and their own networking."

EDN

\section*{Article Interest Quotient (Circle One)}

High 500 Medium 501 Low 502

\section*{What to look for in the agency you choose}
- Visit the agency to meet with one of its recruiters and to see its operations. Be suspicious of agencies that don't ask you to come in for an interview.
- Find out how your resume will be presented to prospective employers.
Find out whether the agency sends out copies of the resume you submit, or whether it formats your resume in a distinct agency style. Some agencies redo your resume, whereas others merely label your resume with a sticker that lists their name and contact information. Know whether your resume reflects you or the agency that you've sent it to.
- Ask to examine any documentation about you that the company plans to send out.

Know how the agency presents you-and
itself-to potential employers. Does it include a cover letter with the resumes it sends? Will your resume be mailed individually, or will the agency merely include your resume in a stack of others destined for the same company?
- Ask for the names of the companies to which your resume is being sent.
When looking for a job, discretion is the watchword. Many agencies conduct mass mailings, sometimes sending an applicant's resume to as many as 200 companies. They claim that mass mailings offer job candidates broad exposure. Ask the company how it decides which companies it will send your resume to. Exercise quality control and ask to see those companies' names.

\section*{Envision the future.}

At KLA, the success and growth we've experienced for over a decade has been extraordinary. As a result, we've cemented our position as a leader in automated optical inspection systems. In fact, we've captured and maintained over \(70 \%\) of the market share in both our two major product lines. And our sales have risen from \$42MM to approximately \(\$ 90 \mathrm{MM}\) in just the last four fiscal years.
This kind of dramatic growth is fostered by our vision and our commitment to new technology. KLA has a highly charged, goal-oriented environment - one that provides the best mix of variety, stability, and the challenge of our cutting-edge image processing technology. The following are just a few of the over 80 open requisitions (mostly new positions) that we have:
- Software Engineers (14 openings)
- Systems
- Image Processing
- Real-Time
- Applications
- Management and lead openings available
- Hardware Design Engineers (lead position also available)
- Mechanical Engineers
- Manufacturing Engineers
- Applications Engineers
- Test Engineers

For more information, send your resume, indicating position of interest, to KLA Instruments Corporation, P.O. Box 58016, M/S 5000, Santa Clara, CA 95052. We are an equal opportunity employer. Principals only, please.

\section*{CAREER OPPORTUNITIES}

1988 Editorial Calendar and Planning Guide
\begin{tabular}{|c|c|c|c|}
\hline Date & Deadline & Editorial Emphasis & EDN News \\
\hline Jan. 7 & Dec. 14 & Computers \& Software, Communications ICs & \multirow[b]{2}{*}{\begin{tabular}{l}
Closing: Dec. 21 \\
Mailing: Jan. 14
\end{tabular}} \\
\hline Jan. 21 & Dec. 30 & Microprocessors, Software, Components & \\
\hline Feb. 4 & Jan. 14 & Semicustom ICs, Computors \& Peripherals & \multirow[b]{2}{*}{Closing: Jan. 21 Mailing: Feb. 11} \\
\hline Feb. 18 & Jan. 28 & Materials \& Hardware, CAE, Power Sources & \\
\hline Mar. 3 & Feb. 11 & Communications, CAE, High-Speed Logic & \multirow{3}{*}{\begin{tabular}{l}
Closing: Mar. 3 \\
Mailing: Mar. 24
\end{tabular}} \\
\hline Mar. 17 & Feb. 25 & Graphics, Filters, Software/CAE & \\
\hline Mar. 31 & Mar. 10 & Power Semiconductors, Memory/Graphics, Fiber Optics & \\
\hline Apr. 14 & Mar. 23 & \begin{tabular}{l}
Communication Technology \\
Special Issue, \\
Communication Systems
\end{tabular} & \multirow[b]{2}{*}{\begin{tabular}{l}
Closing: Mar. 31 \\
Mailing: Apr. 21
\end{tabular}} \\
\hline Apr. 28 & Apr. 7 & Software, Industrial Computers, Interface ICs & \\
\hline May 12 & Apr. 21 & Analog Technology Special Issue, Analog Converters & \multirow[b]{2}{*}{\begin{tabular}{l}
Closing: Apr. 28 \\
Mailing: May 19
\end{tabular}} \\
\hline May 26 & May 5 & CAE, Software, Sensors/Transducers & \\
\hline June 9 & May 19 & CAE, Analog ICs, Test \& Measurement & \multirow[b]{2}{*}{\begin{tabular}{l}
Closing: May 29 \\
Mailing: June 16
\end{tabular}} \\
\hline June 23 & June 2 & Data Communications, DSP, Components & \\
\hline July 7 & June 14 & \begin{tabular}{l}
Product Showcase-Vol. I, \\
Power Sources, Software
\end{tabular} & \multirow[b]{2}{*}{\begin{tabular}{l}
Closing: June 23 \\
Mailing: July 14
\end{tabular}} \\
\hline July 21 & June 30 & Product Showcase-Vol. II, CAE, Test \& Measurement & \\
\hline
\end{tabular}

Call today for information:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Dan Brink (714) 851-9422
National: Roberta Renard (201) 228-8602

\section*{ENGINEERS}

At Northern Telecom, we're exceeding our own goals, achieving the doubling and redoubling of switching system capacity faster than our own ambitious timetable requires. Position your digital communications career a step ahead with the world's largest supplier of fully digital telecommunication systems. We currently have the following openings in the Research Triangle Park, NC area.
Research Triangle Park, near Raleigh, is rated among the top three areas for quality of life in the U.S. It offers a mild climate, with 4 seasons, close proximity to the Smokey Mountains and Atlantic Ocean, plus higher education opportunities at three renowned universities: Duke, NC State, and U. of N.C.

\section*{Packet Switching Engineers}

Requires a degree or equivalent, plus digital telephony experience. Experience must include the operation, administration and maintenance of packet switching networks and network control centers. Must be familiar with OSI protocols such as X. 25 and X. 75 .

\section*{ISDN Network Support Engineers}

Requires a BSEE/CS or equivalent, plus experience in data and voice communications. Experience must include technical support for packet switching networks and central processing equipment. Also requires an indepth knowledge of data communications, computer protocols and telecommunications.

\section*{ISDN Network Design Analysts}

Requires a BSEE/CS or equivalent, plus experience in data communications applications and design. Must be knowledgeable of OSI protocols, data transmissions media, LAN, WAN, SNA, NPSI and Packet Switching. A complete understanding of hardware/software requirements for data communications and packet switching is essential.

\section*{Artificial Intelligence Development Engineers}

Responsible for developing Artificial Intelligence software to automate the switching software system testing process including execution, monitoring and analysis. Requires an applicable degree; an MB or Ph.D preferred. Experience in software development and integration required. Must have a thorough working knowledge of LISP, Pascal and Artificial Intelligence development tools. Other requirements include a working knowledge of statistics, operations research, computer algorithms, large scale software development methodologies and software load building.

\section*{Technical Support Engineers}

Requires minimum 3 years recent telephony experience working with large digital central office switches of 5000 lines or more; knowledge of high level computer language (PASCAL); and experience with general telephone software. A technical degree is also required.
```

To apply, call our 24 hour, 7 days per week, toll-free number. No resume is required. 1-800-221-3333 Ext. R-14

```

If unable to call, interested applicants may send a resume to: Northern Telecom Inc., Professional Staffing, 800 Perimeter Park, Dept. 1318 (AT-702), P.0. Box 13010, Research Triangle Park, NC 27709. An equal opportunity employer \(m / f / h / v\).

\section*{Build Your Career in Communications.} ~L \(\begin{aligned} & \text { nurflierin } \\ & \text { telecoln }\end{aligned}\)

\section*{Design Engineers}

If you want to know about the quality of design opportunities at AMD today, just take a look at the projects you'll be working on.

\section*{Supernet}

The Supernet family is a good example of AMD's optimum use of technologies: three of the chips are CMOS; two are bipolar. Right now we're particularly interested in engineers with experience in bipolar circuitry, preferably in analog/linear IC design. Familiarity with high-speed data acquisition and data conversion is also desirable.

\section*{TAXIchip}

AMD's interface products have the speed and reliability to change the standards in PCB layout. If you'd like to be part of this, and if you can bring your experience with bipolar digital devices and familiarity with serial interface or controller products, we want to talk about the opportunities for you at AMD. Your specific responsibilities will be the design of CML \& ECL logic and analog interface products, and the logic circuit, and physical design of 2500 gate interface products.

\section*{Color Graphics IC}

AMD was the first to develop color palettes and our technology still leads the industry. Now we're looking to take our leadership even further. You can help us if you have CMOS analog and digital IC design experience, plus familiarity with workstation and IC design CAD tools.
In addition to advanced technologies, AMD offers design engineers real resources. For example, VALID, MENTOR, and CALMA workstations, and smart computer programs that eliminate much time-consuming backend work. You'll also find that our salary and benefits package is competitive.
Interested? If you feel your background qualifies you for these positions, then let us know right away. And if you happen to be in The Bay Area soon, please call. We'll work around your schedule to arrange a more detailed discussion about our technologies. Call Mike Gore at:

\section*{(408) 749-5555}

If unable to call during business hours, please forward your resume to Advanced Micro Devices, 901 Thompson Place, MS-57/0201, P.O. Box 3453, Sunnyvale, CA 94088 . We are an equal opportunity employer.

One great company

\section*{Market Development Engineer}

\section*{Automotive}

SGS-Thomson, a leading semiconductor manufacturer, has an immediate need for a Market Development Engineer in our corporate headquarters in Phoenix, Arizona. This excellent opportunity is for a self-starter who will be responsible for providing technical support to SGS-Thomson automotive customers including technical presentations and recommending new product development for automotive applications. Travel within the U.S. and Europe required. The successful candidate should have 3 years experience in design/applications of analog circuitry (radio, audio, motor controls preferred). BSEE or technical degree is required.
We can offer you an outstanding opportunity for personal and professional growth and development with an exceptional benefits package. For immediate consideration send your resume and salary history to: Jerry Quinn, HR/Box EDN, SGS-Thomson, 1000 E. Bell Road, Phoenix, AZ 85022.

Equal Opportunity Employer

\section*{THE EDN MAGAZINE/EDN NEWS} Recruitment Package
The most cost-effective way to reach the most professionals!

EDN reaches more than 137,000 engineers and engineering managers, the largest circulation in the electronics field. EDN News reaches EDN's U.S. circulation of more than 121,500 . And, when you place equivalent space in both the Career Opportunities section of EDN, and the Career News section of EDN News in the same month, you'll get a \(1 / 3\) discount off the EDN News rate!

EDN MAGAZINE/EDN NEWS Where Advertising Works.

\title{
EMERSON ELECTRIC:
}

\title{
EXCELLENCE IN ACTION FROM THE GROUND UP.
}

At the Government and Defense Group of Emerson Electric, excellence in defense and electronics is a tradition that goes back nearly 100 years. Today, we focus our expertise on a broad range of challenges - from target detection and identification for ground and airborne systems in both the radar and infrared regions as well as producing the world's most modern anti-armor systems. Rigid standards of performance and producibility are evident in every Emerson product. That's the reason for our steady growth and profitability. And that's the stable, challenging environment you'll find now as one of the following:

\section*{SOFTWARE DESIGN ENGINEERS}

Perform real-time signal processing software development in 6809, 68000 and 68020 microprocessors or assist in the design and development of test sys-
tems software and in application systems depending on your experience which must be in one or more of these languages: VAX, VMS, 1750A, FORTRAN, C, ADA, JOVIAL, FORTH, ROLM, Assembler, or ATLAS. An MS in Electrical Engineering or Computer Science/Engineering is preferred.

\section*{RADAR SYSTEMS ENGINEERS}

Seeking experienced engineers to design and produce modern coherent radar systems. Responsibilities include all elements of specification and system design, routinely provide technical presentations, and serve as the interface to our customers. BS in EE , Physics, or Math and 10 years radar design experience are desired.

\section*{SENIOR SYSTEMS ENGINEERS}

Lead the development of anti-armor missile launching and guidance systems as well as fire support and target acquisition systems. Experience in advanced system concepts synthesis, tradeoff studies, system error budget development, performance analysis and requirements derivation desired. MSEE/MSME (PhD desired) with \(10+\) years experience in optics, electrooptics, stabilization, electronic design, or real-time software would be a definite plus.

\section*{BUSINESS DEVELOPMENT ENGINEERS Radar and Armament Systems}

Exciting efforts are underway to break new ground with optic, electro-optic, laser, radar, and land navigation products and programs. To make the most of these opportunities, we seek seasoned engineers to take responsibility for new product definition, market analysis, business planning, and product introduction.
To qualify, you will need a BSEE (MSEE/MBA preferred) and 10-15 years experience with all aspects of anti-armor missile launching and guidance systems and/or fire support target acquisition systems. Prior military experience would be a definite plus. At Emerson, a century of excellence in national defense creates a future of opportunity for you. We offer you ongoing challenges, an excellent salary, and complete benefits. Plus we're located in St. Louis, one of the Midwest's most popular cities and an exciting environment for any lifestyle.
To explore these opportunities, please send your resume in complete confidence to:
Steve Borgmeyer
Emerson Electric Co.
Electronics and Space Division
Mail Station 4690, Dept. EDN
8100 W. Florissant Avenue
St. Louis, MO 63136
An equal opportunity employer. U.S. citizenship is required.

\section*{MANAGER ADVANCED RADAR SYSTEMS}

Our client, a medium sized Electronics Company, located in the Northeast, has an immediate need for an individual to manage a small group of Radar Systems Engineers. This activity is being formed to provide the company with direction in its radar systems business efforts.
The group will have responsibility for:
- the development of new concepts in radar systems.
- advising management on the expenditure of IR\&D funds.
- assuming a lead position on proposal efforts.
- maintaining technical support with customers.
- technical follow of in-house radar engineering projects.

An advanced degree in Electronic Engineering or Physics is required with a minimum of ten years' experience in radar system theory, signal processing, microwave systems and antennae.
The company is located near a medium sized urban area, with a wide spectrum of recreational facilities.

Call Graham Murray collect at (215) 968-0707 or send resume to:

\section*{If You're Looking For a Job, You've Come to The Right Place.}

EDN CAREER OPPORTUNITIES

First in Readership Among Design Engineers and Engineering Managers in Electronics

Gulton Data Systems is a leading supplier of Pulse Code Modulation (PCM) telemetry and telemetry-related equipment for major aerospace corporations and the U.S. Government. Gulton Data Systems offers a high technology environment in which to advance your professional career. Our key involvement in booster and missile systems, telemetry and command satellite systems and space instrument systems provides an ever-widening scope for career advancement and challenge.

\section*{SENIOR ELECTRONICS DESIGN ENGINEERS}

BSEE or MSEE. Minimum of 8 years experience in digital and analog design involving space/aerospace systems. Experience must include at least 2 years at project engineer level.

\section*{ELECTRONICS DESIGN ENGINEERS}

BSEE or MSEE. 3 to 5 years experience in digital and analog design. Some space/aerospace systems experience required.
Gulton Data Systems offers excellent benefits and a competitive salary commensurate with experience...plus ALBUQUERQUE!
Send resume to: Personnel, Dept. 2AL7, GULTON DATA SYSTEMS, 6600 Gulton Ct., NE, Albuquerque, NM 87109.
Gulton Data Systems is an Affirmative Action/Equal Opportunity Employer. U.S. Citizenship required.

\title{
EDN Databank
}

POSITIONDESIRED

Reason for Change

Job Tite:
Employer:
Division:
Duties and Accomplishments:

To help you advance your career. Placement Services, Ltd. has formed the EDN Databank. What is the Databank? it is a computerized system of matching qualified candidates with positions that meet the applicant's professional needs and desires. What are the advantages of this new service?

\section*{Professional Profile}

\section*{Announcing a new placement service for professional engineers!}
- It's absolutely free. There are no fees or charges.
- The computer never forgets. When your type of job comes up, It remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and It's afililiated offices.
- Your Identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewad with you by a PSL professional placement person.
We hope you're happy in your current position. At the same time, chancas are there is an Ideal job you'd prafer if you knew about it. That's why it makes sense for you to register with the EDM Databank. To do so, just mall the complated form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

PRESENT OR MOST RECENT EMPLOYER

Parent Company
Your division or subsidiary:
Location (City, State)
Business Phone if O.K. to use:
Home Phone (include area code): _ـ Business Phone if O.K. to use:
\(\qquad\)
\(\qquad\) From: \(\quad\) To \(\qquad\) City: \(\qquad\) State: -Type of Industry:

COMPENSATION/PERSONAL INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Years Experience & Base Salary & Commission & Bonus & \multicolumn{2}{|l|}{Total Compensation} & \multicolumn{2}{|l|}{Asking Compensation} & Min. Compensation \\
\hline Date Available & \multicolumn{3}{|l|}{\begin{tabular}{ll}
& I Will Travel \\
\(\square\) Light \\
\(\square\) Moderate
\end{tabular}\(\square\) Heavy} & \multicolumn{4}{|l|}{\(\square\) lown my home. How long?} & ant my home/apt. \\
\hline \(\square\) Employed & \(\square\) Self-Employed & \multicolumn{2}{|l|}{\(\square\) Unemployed} & \(\square\) Married & \multicolumn{2}{|l|}{\(\square\) Single} & Height & _Weight \\
\hline \multicolumn{2}{|l|}{Level of Security Clearance} & \(\square\) U.S. Citize & \(\square\) No & .S. Citizen & \multicolumn{4}{|l|}{\[
\begin{gathered}
\hline \text { My identity may be released to: } \square \text { Any employer } \\
\square \text { All but present employer }
\end{gathered}
\]} \\
\hline \(\square\) WILL RELOCATE & \multicolumn{3}{|l|}{\(\square\) WILL NOT RELOCATE} & OTHER & & & & \\
\hline
\end{tabular}

\title{
SEAROHME
}

\section*{On-line technical career opportunities}

Welcome to the job network of the future. A free service, with 24 -hour access to on-line career information. Exclusively for experienced technical professionals. Communicate directly with high-tech and Fortune 1000 companies. From your PC or terminal at home or at work, at your leisure. Confidentially. Enter or upload your resume for fast, direct response.

Whether you're just a little curious or actively pursuing a new job, you'll find what you're looking for on-line with BPI AdLine. Explore high-tech opportunities, employee benefits, everything you need to know about today's greatest career challenges.

BPI AdLine. The smart way to stay in touch.
Created by the same people who bring you the original BPI TECH FAIRS. You can also use BPI AdLine to check on dates, times and locations of upcoming TECH FAIRS in your area.

"We are not an employment agency.".

\section*{ADVERTISERS INDEX}

ACCEL Technologies Inc
AIDA . 116-117
Altera Corp 54-55
Ametek Inc. 152
AMP Inc
170-171
Amperex Electronic Corp* 183
Antona Corp 243
Applied Data Systems 241, 244
Applied Microsystems Corp 93
ASIX 12-13
AT\&T Technologies 69-71
Atron . 56
Augat-Interconnection Systems 41
Avis Rent-A-Car 167
Axelen Industrial Inc 242
B\&C Microsystems 243, 244, 245
Belden Electronic Wire \& Cable . . . 207
BKL Industries 127
BP Microsystems 242
Brooktree Corp 220-221
Brown Kellog Inc 243
Burr-Brown Corp 27
Bytek Corp 242
Caddock Electronics Inc204-205
CADdy Corp 68
Calcomp 216-217
Canon USA Inc 218
Capital Equipment Corp 245
Carroll Touch Inc* 81
Case Technology 235
CBM America 36
CDI Corp-West 243
Chinon America Inc 213
Chomerics Inc 237
Clearpoint . 225
Comlinear Corp 56
Connector Corp 68
Control Data 150-151
Crystal Semiconductor 16-17
Cybernetic Micro Systems . . . 48, 238
Cypress Semiconductor 25
Dale Electronics Inc 1
Data Display Products 199
Data I/O Corp
Dataram Corp 232
Deltron Inc . 210
Design Computation Inc 242
Digital Electronics Corp 87
Digital Equipment Corp* 168-169
Ecco Industries 223
Eldre Components Inc 244
Electro-Mechanics 244
Emcor Products/Crenlo Inc 211
Emerald Computers 76
Emulation Technology Inc 241
Fujitsu Microelectronics Inc* . . . 14-15
Futaba Corp of America 239
Gates Energy Products Inc 174
Gennum Corp 46
Genstar Rental Electronics 243
GE/RCA
Solid State . . 30-31, 148-149, 172-173
Glenrothes Development Corp . . . 258
Gould Inc, Test \&
Measurement Group 132-133
Greatlink Electronics Taiwan Ltd**. . 183

Hamilton Avnet Electronics . . . 141, 185
Harris Semiconductor/
Linear Products Div
C2
Heritage Systems Corp
Hewlett-Packard Co .
134, 214-215
Hilevel Technology Inc 125
Hitachi America Ltd*
88, 200-201
Houston Instrument 90
Hughes Aircraft Col
Industrial Products 228-229
Industrial Devices Inc 127
Information Scan Technology Inc . . 242
Inmos Corp 10-11, 195
Intel Corp 98-99
Intusoft . 244
I/O Tech** 240A-F
Janco Corp 208
John Fluke
Manufacturing Co Inc \({ }^{\star}\).22, 163
Kepco Inc 105-110
KeyTek Instrument Corp 36
Leader Instruments Corp 227
Linear Technology Corp 188
Lixi Inc . 232
LKPF Co . 34
Logical Devices Inc 241
Marconi Instruments* 197
Maxtor . 52
Mepco/Centralab 249
Micro Seven Inc 241
Microstar Laboratories 238
Midwest Components 80
Mini-Circuits
Laboratories3, 4, 28-29, 191
M K Hansen
Modutec Inc 224
Molex Inc 264
Multibus Manufacturers Group . . . 37-40
National Instruments 206
National Semiconductor
Corp.
146-147, 186-187
NEC Corp 44-45
Nidec Torin Corp 211
Oak Switch Systems Inc 209
Octagon Systems 243
OKI Semiconductor 130-131
Omation Inc 244
Orion Instruments 49
Patton \& Patton 245
P-Cad . 18-21
Philips Elcoma Div** 14-15
Philips Test \&
Measuring Instruments Inc** . 27, 81
Planar Systems 79
Precision Monolithics Inc 35
Prem Magnetics Inc 2
Qua Tech Inc 241, 242
Raytheon Semiconductor Div 61
Rogers Corp 242, 245
Rohm Corp 74
Samsung Semiconductor .94-95, 96-97
Schaevitz Engineering 230
Seagate Technology 165
Signal Transformer Co Inc C4
Silicon Systems Inc 102-103
Single Board Solutions 243
Sophia Computer Systems Inc 67
Spectrum Software 47
Sprague Electric Co 63
Stanford Research Systems Inc 48
Supertex Inc 86
System Industries 32-33
Taiwan Liton Electronic Co Ltd 202
TEAC Corp** 22
Tektronix Inc 42-43, 58, 143-145, 231
Teradyne Inc 50-51
Thorson Engineering Co 244
Toshiba America Inc 112-113
TRW/RF Devices 100
TTE Inc 245
United Technologies
Microelectronics Center* 115
Universal Cross-Assemblers 241
Universal Data Systems C3
US Instrument Rentals 245
VCH International 84-85
Westcor
244-245
Wintek Corp
128-129
Wilinx
222
Yamaha 82-83
Zax Corp 72-73
Zericon 243
Ziatech Corp 224A-F
Zilog Inc 193
Zippy Shin Jiuh Corp 243
Recruitment Advertising 254-261
Emerson ElectricNorthern Telecom
SGS Semiconductor
Walsh Engineering Placement Services*Advertiser in US edition
**Advertiser in International edition

\section*{LOOKING AHEAD}

EDITED BY CYNTHIA B RETTIG

\section*{Fax machines should see 25\%/ annum growth through 1991}

Speed, low cost, and ease of use-all of these advantages will combine to push US shipments of electronic facsimile machines to the \(1,000,000\) mark in the very near future, according to CAP International Inc of Marshfield, MA. CAP maintains that fax equipment is becoming as common in the office as are copiers and phone systems. Indeed, facsimile machines now present a reasonable alternative to overnight delivery systems. In 1987 alone, facsimile systems achieved an estimated \(90 \%\) increase in shipments over the 1986 rate. From 1987 to 1991, the US market should experience a compounded annual growth rate of \(25 \%\).
Network providers will benefit from related opportunities. Mirroring moves by voice-system and data-telecommunications-system vendors, network vendors will begin to offer enhancements and options to their services, such as store functions and forward-messaging capacity. Within the next five to 10 years, CAP expects network providers to find high-volume applications that will use both stand-alone facsimile machines and computer-based image transmitters.

\section*{TOTAL SHIPMENT OF HUMIDITY AND MOISTURE INSTRUMENTS}

\section*{Humidity/moisture devices to gross \(\$ 113.9 \mathrm{M}\) by 1992}

Within the next few years, new technologies and improvements in old ones will substantially increase the market for instruments that measure humidity and moisture, according to a Venture Development Corp (Natick, MA) study. In 1987, the market for such instruments was about \(\$ 80.7\) million; by 1992 , the total number of units shipped will represent \(\$ 113.9\) million in sales, reflecting a 7\% projected annual growth rate.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{US FAX MARKET: 1986 TO 1991} \\
\hline & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 \\
\hline YEARLY REVENUE OF BOTH FAX BOARDS AND STAND-ALONE MACHINES & \$712M & \$1093M & \$1361M & \$1542M & \$1675M & \$1723M \\
\hline SHIPMENTS OF FAX BOARDS & 2500 & 11,500 & 33,070 & 70,250 & 151,000 & 227,500 \\
\hline SHIPMENTS OF STAND-ALONE MACHINES & 191,000 & 365,000 & 490,000 & 605,000 & 655,000 & 715,000 \\
\hline & & & & OURCE: C & INTERNATI & NAL INC) \\
\hline
\end{tabular}

Annual unit shipments will increase minimally throughout the forecast period, averaging just 2.9\% through 1992. But revenue will grow more rapidly because, as technology improves and the use of electronic components increases, the selling price of each kind of instrument will rise proportionally.

The critical issue will be the replacement of organically based rela-tive-humidity measurement devices with measurement devices of more sophisticated design. Despite numerous humidity-measurement applications in various products, processes, and environments, humidity remains one of the most difficult environmental conditions to measure. A great many potential users have expressed dissatisfaction with the limitations of organically based instruments and the contamination and calibration-drift problems that advanced devices currently pose.

As more sophisticated products become available, this group of potential users will prove an important source of sales for vendors-as will a second group composed of those who have yet to appreciate the cost advantages, reliability, and accuracy of these instruments.

Molex Is Making The Connection Between... FLEXIBUITY

Eleven different components are your building blocks for thousands of interconnection solutions.

Molex's unique family of \(\mathrm{KK}{ }^{\ominus}\) connectors provide the flexibility you need to build interconnections precisely suited to your applications. Choose either tin or cost-effective selective gold plating, \(100^{\prime \prime}\) or \(.156^{\prime \prime}\) center spacing. Crimp, solder, or insulation displacement termination ...top, side, or bottom pin entry...break-to-size pin headers...they're all standard in thousands of demanding applications.

\section*{The \(\mathbf{K K}^{\ominus}\) connector is just one example of how we take a total systems approach.}

The \(\mathrm{KK}^{\oplus}\) System includes a complete line of wire termination tooling from simple hand crimp tools to the latest automated insulation displacement technology. The System also features sophisticated pinsetting equipment. Molex goes beyond merely supplying connectors to help today's manufacturers achieve lower installed costs.

\section*{Dependable service worldwide.}

Our multi-national organization offers you interconnection design, manufacturing, and technology from around the globe, with dependable supply and local service. Molex distributors stock the full line of flexible \(\mathrm{KK}^{\circledR}\) connectors for your every need.

Intensive QC programs provide reliable connectors that stand up to tough environmental conditions in a wide range of electronic applications.

Unique break-areay design allores you to order pin headers in bulk and break off the exact lengths you need to save on inventory and waste.

\author{
Service To The Customer...Worldwide
}

\footnotetext{
Corponate Headquarters: 2222 Wellington Ct., Lisle, IL 60532 USA, (312) 969-4550 • European Headquarters: Aldershot, England, (0252)318221
} Northern Asia Headquarters: Tokyo, Japan, 03-478-8777 • Southeast Asia Headquarters: Jurong Town, Singapore, 65-261-9733

\title{
Exotic Customs at UDS
}

The special requirements of data communications OEMs have resulted in some pretty exotic custom modem cards from Universal Data Systems.

Funny form factors are routine fare for our custom designers. Nooks, crannies and odd card configurations are no problem, given sufficient square inches of real estate. UDS engineers have even designed a circular 212A modem that fits in the back of a residential electric meter.

Non-standard modem functions are another specialty of the house. For example, UDS engineers have already designed and

For a generous sampling of UDS' custom design capabilities, ask for the new, free OEM modem brochure.

\title{
Dual Personality
}

\section*{Custom or standard, Signal's ingenious split bobbin designs offer flexibilityat a very rational price.}

You already know that Signal is the world leader in off-the-shelf transformers. What you may not know is that we're equally dedicated to our custom business.
But it's true. You can get any of the three transformers you see here as standard - or customized to your exact specs. From the versatile Split/Tran \({ }^{8}\) to the low profile Flathead \({ }^{\circledR}\) to the halfsized 2-4-1.
Whichever you choose, you'll also get Signal's innovative design.
It's become an industry standard. Because, unlike ordinary transformers which require shielding to obtain high isolation, ours separate the primary and secondary windings using the split bobbin design we pioneered. Not only does this guarantee high isolation, it delivers healthy savings as well.

As for customization, we give you the full treatment. Flexible modifications or custom designs. Fast quotes and prototypes. Even annual contracts.

Signal also meets important international standards. Our off-the-shelf units are UL recognized. Many of them meet VDE and offer optional CSA certification. What's more, every custom transformer is designed to meet UL standards, too.

And we deliver PRONTO. Standard prototypes are shipped within 24 hours. Your order is shipped factory-direct so there's no middleman...no hidden costs.

Analyze the full line yourself. Call or write for our free catalog: Signal Transformer, 500 Bayview Avenue, Inwood, NY 11696.

\section*{SPLIT/TRAN \({ }^{\text {® }}\)}

2500V RMS HIPOT. Non-concentric windings and low capacitive coupling. Available with 115 V or dual 115/230V primaries. Split secondary windings can be series or parallel connected.
8 pin type DST. 6 pin type ST and

\section*{FLATHEAD \({ }^{\circ}\)}

Ideal for low height, critical pe board power applications. 5 sizes from 2.5VA to 48 VA .
(Semi-
toroidal windings.)

\section*{2-4-1}

2500V RMS HIPOT. The signal for a \(50 \%\) cut in transformer size and weight at a significantly lower cost.
Six sizes from 2.4VA100VA.

Dual primary.

BUY DIRECT (516) 239-5771

\section*{Signal Transformer.}
```


[^0]:    Cahners Publishing Company, A Division of Reed Publishing USA $\square$ Specialized Business Magazines for Building \& Construction $\square$ Manufacturing $\square$ Foodservice \& Lodging $\square$ Electronics \& Computers $\square$ Interior Design $\square$ Printing $\square$ Publishing $\square$ Industrial Research \& Technology $\square$ Health Care $\square$ and Entertainment. Specialized Consumer Magazines:
    $\square$ American Baby $\square$ and Modern Bride.

[^1]:    Data I/O Corporation 10525 Willows Road N. E., P.O. Box 97046, Redmond, WA 98073-9746, U.S.A (206) 881-6444/Telex 15-2167 FutureNet 9310 Topanga Canyon Boulevard, Chatsworth, CA $91311-5728$ (818) 700-0691/Telex 910-494-2681
    Data I/O Canada 6/25 Airport Road, Sta 302, Mlississauga, Ontario Data I/O Japan Sumitomoseimei Higashishinbashi BIdg., 8F, 21-7, Higashi-Shinbashi, Minato-ku, Tokyo 105, Japar

[^2]:    GE/RCA/Intersil Semiconductors
    These three leading brands are now one leading-edge company. Together, we have the resources - and the commitmentto help you conquer new worlds.

[^3]:    Seeing is believing. Send me your VisInPak socket family design guide and demonstrator showing how to help me cut down on defects.

[^4]:    - Integrated schematic editor
    - Fast analysis routines
    - High-resolution graphic output
    - Standard parts library of $500^{*}$ types
    *IBM versions only.

[^5]:    MICRO-CAP II is a registered trademark of Spectrum Software.
    Macintosh is a trademark of McIntosh Laboratory, Inc. and is being used with express permission of its owner. Hercules is a registered trademark of Hercules Computer Technology
    IBM is a registered trademark of International Business Machines, Inc.

[^6]:    3525 Monroe Street
    Santa Clara, CA 95051

[^7]:    Ballantine Laboratories Inc Box 97
    Boonton, NJ 07005
    (201) 335-0900

    Circle No 718
    Datron Instruments
    c/o Wavetek Corp
    9191 Town Center Dr, Suite 450
    San Diego, CA 92122
    TLX 756953
    Circle No 719
    Datron Instruments Ltd
    Hurricane Way, Norwich Airport
    Norwich NR6 6JB England
    (0603) 404824

    TLX 975173
    Circle No 720
    Dowty RFL Industries Ine Powerville Rd
    Boonton, NJ 07005
    (201) 334-3100

    Circle No 721
    Electronic Development Corp 11 Hamlin St
    Boston, MA 02127
    (617) 268-9696

    TLX 951596
    Circle No 722

    Hewlett-Packard Co 1820 Embarcadero Rd
    Palo Alto, CA 94093
    Phone local sales office Circle No 723

    John Fluke Mfg Co Inc Box C9090
    Everett, WA 98206 (206) 347-6100

    Circle No 724
    Keithley Instruments Inc 28775 Aurora Rd
    Cleveland, OH 44139
    (216) 248-0400

    TLX 985469
    Circle No 725
    Racal-Dana
    Instruments Inc
    Box C-19541
    Irvine, CA 92713
    (714) 859-8999

    TLX 678341
    Circle No 726
    Rotek Instrument Corp
    Box 504
    Waltham, MA 02254
    (617) 899-4611

    Circle No 727

