Choosing a precision voltage reference
Serial techniques for microcomputer peripherals

Fast comparators
Software for multiple-PLD designs

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS
Innovations in hardware issembly process

No"boomerang effect" at Trend Circuits. Less than 1\% of our prototype boards ever come back.

Fast turnarounds in prototype circuit boards are great but not when the boards circle back again and again because of poor quality.

That "boomerang effect" costs precious time in proving your concepts and can end your chances to meet critical market windows.
types don't work. At Trend Circuits, we're specialists in rapid production of prototype boards that work first time out. That's because we're people who understand your language, your objectives and your pressures.

Further, fully one-third of our people are involved in inspection. We begin with incoming artwork, where we can quickly identify common design errors. And we continue with doubleand triple-checking right through to completion. As a result, less than a scant 1% ever come back. And that's good for both of us.

Now for speed. On a regular basis, we deliver doublesided boards within 24 bours, and multi-layer boards within five days. In fact, we're completing no less than 82% of all our work within five days.

Check our references.
You can verify our facts easily enough by talking to our customers. Simply phone and we'll put you in touch with people who've decided they won't accept compromise in quickly moving from design to finished prototype. They'll tell you why we're their logical choice for "noboomerang" boards. And why we should be yours.

TREDD CRCUITS
 PROTOTYPE BPECIALIBTB

44358 Old Warm Springs Blvd. Fremont, CA 94538-6148 415/651-1150

We deliver speed and quality.

Speedy turnarounds don't count for much if proto-

800/448-0550 (nationally) 800/448-0440 (in California)

Turnkey industrial networking for STD Bus and personal computers

Z-NET is a complete, simple to use network for industrial applications. Z-NET extends the capabilities of Ziatech's PC DOS-based STD Bus systems by allowing them to share information and resources with other STD systems and IBM-compatible personal computers.

ARCNET hardware protocol, ViaNet software

Ziatech's STD and PC network controllers are based on the well-established ARCNET protocol, and are supported by ViaNet, a software package from Western Digital that makes using the network as easy as making simple DOS calls.

Remote control for embedded systems

Z-NET was designed to meet the specific network needs of industrial STD Bus computers, which are typically unattended or embedded in equipment. Z-NET makes an ideal sub-network in a large factory or a total solution for smaller applications.
Ziatech's exclusive Virtual Network Console (VNC) lets a network manager control a remote node from his local STD or PC console. VNC capabilities let operators remotely reboot a node and remotely execute or download programs, eliminating the need for PROM installation or replacement.

A single network source

Z-NET is a complete network solution for industrial STD and personal computers, available now from an established source. The necessary hardware, software, cables, documentation, and applications support are all available from Ziatech, a leading manufacturer of STD Bus and IEEE 488 products.

Free industrial networking guide

For a complete technical brochure and configuration guide to a complete STD and PC network, call Ziatech today. (805) 541-0488
$=\|\sqrt{=}\| \sqrt{\text { comporation }}$
3433 Roberto Court San Luis Obispo, CA 93401 USA

ITT Telex 4992316
FAX (805) 541-5088
Telephone (805) 541-0488
ARCNET is a registered trademark of Datapoint corporation. ViaNet is a registered trademark of Western Digital Corporation. PC DOS and IBM are registered trademarks of International Business Machines, Incorporated.

PUNCH UP YOUR HASH A/DPERFORMANCE.

FREEZE VIDEO SIGNALS WITHA SAMPLE \& HOLD AMP LIKE THIS.

Introducing the VA730 HighSpeed Sample \& Hold Amplifier the only monolithic IC of its kind that operates in the 50 MHz range.

The only one that's available in surface-mount packaging, and in both commercial and military grades.
And the only one that's designed specifically to operate with 8-bit flash converters.
Best of all, not only is it less costly than expensive hybrids, it's priced well below competing Japanese monolithics.

The VA730 has an A/D converter reference power supply, a sample \& hold function, and an ECL clock output section operating to a frequency of 50 MHz .

It's available in a 14 -pin cerdip package, in a 20 -pin ceramic leadless chip carrier (LCC), and in die form.
The VA730 Sample \& Hold Amp is just part of VTC's broad line of Linear Signal Processing (LSP) ICS, which includes Op Amps to 500 MHz gain bandwidth . . . precision, highspeed, and fast settling, plus dual and quad . . . with no sacrifice in performance.

A/D Converters to 12 bits,
$1 \mu \mathrm{sec}$ conversion.
Flash Converters to 8 bits,

250MHz.

DACS to 12
bits, 100 nsec settling time.
A family of ECL and TTL High-Speed Comparators to 1.5 GHz .

Video Amps and Unity Gain Amps to 2000V/ $\mu \mathrm{sec}, 300 \mathrm{MHz}$. And Operational Transconductance Amplifiers to $50 \mathrm{~V} / \mathrm{\mu sec}$, 75 MHz .

Quite simply, if your analog application requires high performance, you should be specifying VTC's LSP ICS!
Most of these standard parts are also available as cells in our 6GHz Linear/Digital Bipolar Standard Cell Library, the VL3000.
They all feature $\pm 5 \mathrm{~V}$ operation, which means they help simplify your system power requirements, and reduce power consumption.

For samples and data sheets on the VA730, or any of our LSP products, call toll-free or write us today: VTC Incorporated, 2401 East 86th Street, Bloomington, MN 55420. (In Minnesota:
612/851-5200.)
CALL 1-800-VTC-VLSI

Side by side comparison of our data logger and theirs.

Wavetek has brought an exciting new dimension to data logging-small. Our Series 50 Data Logger is a fraction the size and considerably less expensive than the one on the right. And our data logger is light enough to be easily carried by mere mortals. When you compare the rest of the features, the competition drops right out of sight.

For instance, the Series 50 Data Logger scans 260 channels, provides digital and stripchart printouts and can operate on its internal battery for days, storing
up to 100,000 readings in nonvolatile memory.

Even more amazing is what the Series 50 measures, including:

- DC Volts and true RMS AC Volts
- Temperatures, 6 Thermocouple Types, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{K}$
- AC/DC Current
- DC Watts, AC Volt-Amperes
- dBw, dBm
- Frequency and Period
- Pulse Width, Time Interval
- Events (Counter)
- Resistance and Continuity
- Diode Junction Voltage

All are STANDARD FEATURES, not options! In addition, there are four independent A/D converters, so you can make four different types of measurements simultaneously.

We could go on for pages, but rather than weigh you down with specifications, we'd rather show you how Series 50 will make your job easier. Please call, or write for our brochure. Wavetek San Diego, Inc., P.O. Box 85265, San Diego, CA 92138. Tel. (619) 279-2200; TWX 910-335-2007.

Think of what an IBM or IBMcompatible PC could do with 25\% more power! Bigger system memory and/or enhanced work station performance could become instant reality.

NCR Power Systems now offers the additional power you need to improve the performance of 286 -based PCs or optimize the usefulness of 386 -based machines. Since this digital switching power system is identical in form factor and mounting requirements to
existing PC-AT supplies, it may be installed as a direct replacement in existing machines. It is internally fan-cooled.

The unit delivers 280 W (compared with the 220 W rating of typical earlier designs). Outputs are $+5,+12,-5$ and -12 VDC .

If you're designing a new compatible PC or implementing an especially power-hungry applica-

tion, this new NCR digital switcher will give your microcomputer the added muscle it needs. It can be a real performance enhancer for CAD/CAE/CAM/CIM, file serving, graphics and other work station capabilities.

For detailed specifications and prices, contact NCR Power Systems, 3200 Lake Emma Road, Lake Mary, FL 32746-3393. Telephone 1-800-327-7612.

N R

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

On the cover: Adrances in materials and bavdware can casc vour design through the production plase of the productdevelopment crelc. Sec per 148. (Plooto contisy Molex Ime)

DESIGN FEATURES

Special Report: Materials and Hardware

High density and performance are goals for today's VLSI- and SMTbased designs. Fortunately, advances in materials other than silicon are keeping pace with advances in integrated circuits.-Tom Ormond, Senior Editor

Programmable array serves as a controller for dynamic RAMs

Large memory systems that use dynamic RAMs often have varying requirements for control. A programmable gate array can offer flexibility to meet the needs of various memory-system applications.-Thomas Waugh, Xilinx Inc

Selection criteria assist in choice of optimum reference
It's not always easy to select the most suitable precision voltage reference for your application. An overview of selection criteria can help you make the choice.-Ron Knapp, Maxim Integrated Products

Serial techniques expand your options for $\mu \mathrm{C}$ peripherals

The Serial Peripheral Interface (SPI) bus of the MC68HC11 microcomputer is flexible enough to let you attach devices designed for other serial buses-Signetics' IIC peripherals, for instance, or ITT's IM family.-Naji Naufel, Motorola Inc

Programmable-delay ICs control system timing

Low cost, low power, and small package size extend the application of digital-to-time converters in system timing applications. By exploiting the programmability features of these devices, you can both simplify timing-system design and gain greater control of timing parameters.

- Craven Hilton and Jeff Barrow, Analog Devices Inc

Precision comparators ease

To simplify the task of designing high-performance circuits such as a crystal oscillator and an ATE pin receiver, you can use a comparator that combines low bias current, high gain, high speed, and 3-state outputs.-John Dutra and Barry Harvey, Elantec Inc

Continued on page 7

[^0]
FLUKK PHILIPS

Counter-fit

If you think all low-cost frequency counters are inferior imitations of precision lab instruments, guess again. Fluke has a new 120 MHz counter that's a perfect fit for test systems, bench tops and budgets.

Honest performance at only $\$ 995$.

The Philips PM 6666 counter delivers seven full digits of resolution at gate times of one second. More than 20 measurement functions. Automatic trigger-level setting. And first-rate input protection to

350 V . All packaged in a rugged, shielded metal case.

Add full programmability with the GPIB/ IEEE-488 option. A 1.1 GHz input. Or Philips' unique mathematically-controlled crystal oscillator timebase for precise measurements with no warm-up time.

All this performance is backed up by one of the most trusted names in instrumentation: Fluke, with service and support that's never more than a phone call away. So don't take chances. For genuine
solutions to fit your test and measurement needs, come to Fluke. For more information and complete specifications, phone 1-800-44-FLUKE ext. 77.

John Fluke Mig. Co., Inc., P.0. Box C9090, M/S 250C, Everett, WA 98206.
U.S.: (206) 356-5400 CANADA: (416) 890-7600.

OTHER COUNTRIES: (206) 356-5500.
© Copyright 1987 John Fluke Mfg. Co., Inc. All rights reserved. Ad No. 1071-P6666.

For help in designing with multiple PLDs, you can turn to a variety of recent software packages, which range from the simple to the very powerful (pg 61).

TECHNOLOGY UPDATE

PLD-design software meets the challenge of multiple-device PLD applications

Until recently, engineers have tried to implement as many logic functions as they could in a single programmable-logic device in order to use as much as possible of the device's internal circuitry.-Charles H Small, Associate Editor

Growing array of 1-chip dc/dc converters provides power for diverse applications
The increasing variety of chip-level de/dc converters is not only changing the way system designers structure conventional power supplies, but is also providing solutions to applications problems that were previously satisfied only by more costly and cumbersome approaches.-Dave Pryce, Associate Editor

New software tools run IBM PC software on a variety of 32-bit $\mu \mathrm{Ps}$

Most industry observers agree that the vast wealth of MS-DOS-based software is what gives the $8086 \mu \mathrm{P}$ family such a decided advantage over other μ Ps. That situation is changing, though.-Robert H Cushman, Special Features Editor
Buscon/88 West offers technical programs, 105 seminars, and presentations galore

All computer-bus users should put Buscon/88 West high on the list
of shows and conferences they plan to attend.-EDN Staff
PRODUCT UPDATE
Ripple-and-noise test module 119
Systems digital multimeter 123
D- and E-size electrostatic plotters 126
Monolithic A/D converter 128
$5^{1 / 2}$-digit programmable multimeter 130
DESIGN IDEAS
Comparator circuit monitors window events 235
MOSFETs provide low-loss rectification 237
Temperature sensor has 4 - to $20-\mathrm{mA}$ output 239
Derive $\pm 15 \mathrm{~V}$ and 5 V from a 12 V battery 240
Switch debouncer uses few parts 244
Continued on page 9

[^1]
The Gate Array WorkSystem Makes Layout As Easy As Pushing A Button.

IN A SERIES
Tektronix Aided Engineering

 array designs. From a single schematic entry environment. Just by pushing a button.

Developed by Tektronix as part of Tektronix Aided Engineering, the Gate Array WorkSystem eliminates the need for IC layout expertise. Because it gives you everything you need to quickly develop ASIC vendor-certified layouts.

And since you're controlling the layout from the schematic, you can tune your design using iterations of simulation and automatic layout to achieve your performance requirements.

The Gate Array WorkSystem creates a unique, performance-driven design environment integrating Designer's Database Schematic Capture (DDSC ${ }^{m}$) and industry-standard HILO-3 logic simulation with MERLYN-G" automatic physical layout.

The system also introduces vendorcertified TurnChip ${ }^{\text {m }}$ ASIC Layout Modules for knowledge-based, automatic control of MERLYN-G layout of specific array families.

Layout so automated you can place and route a 5000-gate array 100\% automatically. Just by pushing a button. With results so accurate that your layout is ASIC vendor-endorsed.

Using TurnChip modules, you can generate ASIC vendor-certified layout designs, then send them directly to the ASIC vendor. Which cuts your design time, lowers your costs and delivers complete control of your sensitive design data.

It's all part of Tektronix Aided Engineering. Integrated WorkSystems that take you beyond traditional CAE solutions. And into prototype verification, software development and testing, systems integration, mechanical design and manufacturing. All running on industrystandard platforms from Apollo ${ }^{*}$ and DEC $^{\text {m }}$ Best of all, it's from Tektronix. The name
you've always trusted to get the engineering job done. So you're assured of worldwide service, support and training. If you'd like to take control of physical layout, contact your local Tektronix, CAE Systems Division, sales office Or call 800/547-1512. Tektronix, CAE Systems Division, P.O. Box 4600, Beaverton, OR 97076-4600.

[^2]

OnlyMentor Graphics has brought abillion more products than any other electronic design automation vendor. gatestolight.
 In just 5 years, over a billion gates have flowed through our IDEA Series"' design automation systems. And that's a very conservative estimate.
 Which makes it seem all the more incredible that, before we came along, almost all electronic circuits were drafted and breadboarded by hand.
 Since then, our schematic capture and simulation tools have produced more circuits for
 A claim only Mentor Graphics can make.
 Along the way, we've pioneered schematic capture and simulation tools that are now industry standard. Like hierarchical design entry, which allows efficient management of even the largest designs. And MSPICE," which brings real interactivity and a graphics-oriented interface to analog simulation.
 At the same time, we've provided the depth and power required to work with very large designs. A macro language allows you to build a highly customized interface, one suited specifi-

cally to your particular productivity needs. And "case frames" allow very complex circuit patterns to be expressed in just a few keystrokes.

For simulation, our QUICKSIM" family brings you logic, timing, and fault simulation in a single, integrated package. Plus the ability to use a mixture of modeling techniques, including chip-based modeling with our Hardware Modeling Library." And you can call upon our Compute Engine" general-purpose accelerator to enhance standard workstation performance.

Once your design is complete and verified, our IDEA Series lets you express it in any standard physical form: PCB, full-custom or semicustom. We have a full set of layout tools for each. All fully compatible with our frontend tools.
As we head toward our next billion gates, we'd
like to make some of them yours. It's all part of a vision unique to Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390 (in Oregon call 284-7357).

Starting with ISDN is one thing. Finishing is something else.

It's possible to put together your own ISDN chip set. Subscriber controller here, power supply there, line card device from somewhere else.

But why? Advanced Micro Devices can deliver the whole connection.

The ISDN chip set that's

 made for each other.With AMD's five chip set, everything is included. All designed to work together. And to conform to the CCITT recommendations.

Am79C401 Integrated Data Protocol Controller.

Software made for our chip set.

Once you've got hardware, you'll probably be needing some software.That's easy.AMD has everything from low level device drivers to AmLINK, our LAPD software.

AmLINK implements software interfaces defined in the CCITT Q. $921 / 931$ recommendations. AmLINK is modular and it's independent of the
 operating system, giving you added flexibility. And, because you need it, source code is available.

We also provide well documented development boards that

The set is so highly integrated, you won't need extra chips for things like dialing and ringing.

Each of AMD's chips was designed to take advantage of the most efficient technology for its function, including bipolar and CMOS. The set consists of the Am79C30 Digital Subscriber Controller, the Am79C31A/312A Digital Exchange Controller, the Am79C32 ISDN Data Controller, and the Am7938 Quad Exchange Power Controller which works with the Am79C31A/312A. And it won't be long before we'll have protocol devices like the
come complete with demonstration software. Understanding the capabilities, flexibility and functionality of complex ISDN chips has never been easier.

Field trial proven.

There's one more good reason why you should pick AMD. Our ISDN chips are in field trials with Illinois Bell, Mountain Bell, the Deutsche Bundespost and others. The chips were certified in field trial test beds. And they're still in use today.

Get in touch with AMD for more information. Then get your product off to a great start. And finish.

Advanced Micro Devices il

901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088 Call toll-free (800) 538-8450 ext. 5000; inside California call (408) 749-5000.

It's your choice.

PRODUCT DEVELOPMENT SCHEDULE PAGE 2

Let's face it.
Slipped development schedules and budget overruns can mean lost opportunities. Yet many traps that seriously delay a development schedule are quite complex, especially when they are compounded by problems that arise in cross development work.

Like not knowing whether the errors you are getting from your prototype processor are real. Or losing bugs in the cracks between your development system and the prototype.

Fortunately, the answer to these complex problems is simpler than you might think. Because now Applied Microsystems offers what we call performance packages: complete, fully integrated development solutions, designed to meet your development requirements and to detect even subtle problems quickly.

Performance Packages that Live Up to Their Name.

Each package includes a powerful incircuit emulator, the only tool that can
successfully bridge the gap between host computer and prototype. With fea tures like complex triggering, reliable memory, built-in target diagnostics, I/O simulation, and special interrupt handling.

And to complement the power of ou emulators, we provide software tools that work with a variety of platforms and languages.

Whichever package you choose, you're getting the highest performan EDN February 18, 1988

Invest now or pay later.

development tools available.

Source Level Debugging for Intel Microprocessors

Our VALIDATE/SoftScope and VALIDATE/Soft-Scope 286 packages
are designed for any language producing complete Intel OMF information.

A PC-based, in-circuit source level debugger and simulator are closely cou-

pled with our ES 1800 emulator. You can use commands to examine variables on the fly, check contents of registers, and determine current position in code. And real-time trace is displayed as source level statements, machine instructions or bus cycles.

The packages also include a logic state analyzer probe, and provide up to 2 Megabytes of overlay memory plus full protect mode support for the 80286 .

Source Level Debugging for Motorola Microprocessors

The window-oriented VALIDATE/ XEL package combines our XEI sourcelevel debugger, a simulator and the MCC68K compiler with our ES 1800

emulator. The package also includes a logic state analyzer probe and our well-known SCSI interface option, that significantly decreases download time.
In addition to up to 2 Megabytes of overlay memory, you get target control from your source code; powerful "C" language macros for code patching,
remote control and simulation of I / O; plus user-definable windows for viewing registers, stacks and variables

High-speed Symbolic Debugging for Intel, Motorola and Zilog Microprocessors

OurVALIDATE/ES DRIVER package includes easy-to-use (menu-driven and remote control) software that smoothly links the host functions to the ES 1800 emulator. This allows the upload and download of programs, symbol tables and command files.

Also included are a logic state analyzer probe; the SCSI option for increasing download speeds by up to 30 times; plus up to 2 Megabytes of overlay memory.

To find out more about 8,16 or 32 -bit development solutions that save money in the long run, write Applied Microsystems Corp., P.O. Box 97002, Redmond, WA 98073-9702. Or call 1-800-426-3925 (In Washington, call 206-882-2000).

In Europe, contact Applied Microsystems Corporation Ltd., Chiltern Court. High Street, Wendover, Aylesbury, Bucks, HP22 6EP. United Kingdom. Call 44-(0)-296-625462.

"Why can't I have the power and reliability of industrial VMEbus hardware with my PC software?"

available for: industrial control, spreadsheets, communications, word processing, graphics, and more. Plus the rugged, high performance of VMEbus hardware - with multiprocessing, I/O, and faster throughput capabilities.

The perfect industrial computer system. Thanks to Xycom's XVME-682, it's now a reality. For the impressive details, write or call Xycom, today, for product literature.

TOSHBA. NOW, 1 MB DRAMS

AREA SALES OFFICES: CENTRAL AREA, Toshiba America, Inc. (312) 945-1500; EASTERN AREA, Toshiba America, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America, Inc., (408) 244-4070; SOUTHWESTERN (404) 368 O203. MAIOR ACCOUNT OFFICE POUGH KEEPSE MEW YAR KEEPSIE, NEW YORK, TOShiba America. Inc., (914) 462-5710: MAJOR ACCOUNT OFFICE, BOCA RATON, FLORIDA, TOSNiDa America. Inc., (305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, MOntgomery Marketing, InC (205) 830-0498; ARIZONA, Summit Sales, (602) 998-4850, ARKANSAS, MLL-REP ASSOCiaies, (512) 346-6331. CALIFORNIA (Northern) EIrepco, Inc., (415) 962-0660. CALIFORNIA (L.A. \& Orange County) Bager Electronics, 1 Inc . (818) 712-0011, (714) 957-3367, (San Diego County) Eagle Technical Sales, (619) 743-6550; COLORADO, Straube Associates Mountain States, inc., (303) 426-0890, CONNECTICUT, Datcom, Inc., (203) 288-7005, (312) 956 , 8240 R W KMF (314) 966 - 1977 . INDIAMA . (317) $842-3245$, LOUISIANA, MIL-REP AsSociates, (713) 444-2557: MAINE, Datcom, Inc.. (617) 891-4600; MASSACHUSETTS, Datcom, Inc., (617) 891-4600; MICHIGAN, Action Components Sales, (313) 349-3940

FIRST AGAIN. AND 256 K CRAMS.

Toshiba technology leads the way again with the development of Ultra Large Scale memory devices that feature high speed access times.

256K CMOS STATIC RAM

Toshiba's product development leadership continues. We were first with 16K CMOS RAMs. First with 64K CMOS RAMs. And now first again-with 256 K CMOS static RAMs. This $32 \mathrm{~K} \times 8$ device features the lowest power consumption available today-only $5 \mathrm{~mA} / \mathrm{MHz}$. Lower than any competitive product. And we offer speeds to 85 ns .

TOSHIBA 256K CRAMs					
Part Number	Organization	Process	Speed	Standby Power	Package
TC55257AF-85	$32 \mathrm{~K} \times 8$	CMOS	85 ns	$100 \mu \mathrm{AMAX}$	28 pin
TC55257L-10	$32 \mathrm{~K} \times 8$	CMOS	100 ns	$100 \mu \mathrm{AMAX}$	28 pin
TC55257AL-12	$32 \mathrm{~K} \times 8$	CMOS	120 ns	$100 \mu \mathrm{AMAX}$	28 pin
TC55257AL-85L	$32 \mathrm{~K} \times 8$	CMOS	85 ns	$30 \mu \mathrm{AMAX}$	28 pin
TC55257AL-10L	$32 \mathrm{~K} \times 8$	CMOS	100 ns	$30 \mu \mathrm{AMAX}$	28 pin
TC55257AL-12L	32 Kx 8	CMOS	120 ns	$30 \mu \mathrm{AMAX}$	28 pin

(Now available in Plastic Flat Pack.)

ULTRA LEADERSHIP

Again Toshiba leads the way. With high speed access times. Now with Ultra Large Scale products. With ultra high quality. Toshiba. The power in memories.
TOSHIBA. THE POWER IN MEMORIES. TOSHIBA AMERICA, INC.

- 1987 Toshiba America, Inc.

[^3]

68020 vs. 80386 Who wins? Microtek.

When choosing between the two leading 32-bit processors, don't let emulator support slow you down. NWIS is the exclusive U.S. source of Microtek in-circuit emulators for both. And for all their other family members as well, like the $68010,68000,80286,80186$ and 8086 . And many others.*

In fact, Microtek emulators have a long track record of being first to market with quality support for every major microprocessor. Which gives you shorter time-to-market and an assured expansion path for product upgrades.

Every Microtek emulator can be used as a stand-alone device, or as part of an integrated system. All use simple command structures and include a symbolic debugger for rapid insight into your software's real-time behavior. And each communicates with the IBM ${ }^{*} \mathrm{PC} / \mathrm{XT} / \mathrm{AT}$, VAX, MicroVAX, Apollo and Sun computers.

Microtek emulators are just one part of NWIS's complete line of embedded microprocessor sotware development tools.

Pioneering Microprocessor CASE
Circle 1 for literature

Circle 40 for demonstration

NORTHWEST INSTRUMENT SYSTEMS, INC.
P.O. Box $1309 \cdot$ Beaverton, OR $97075 \cdot 1-800-547-4445$

Our Software Analysis Workstation (SAW) brings you hardware-based, real-time software analysis in a source code environment. Including performance analysis, time-aligned dual processor trace, code coverage analysis, and Context Trace,", which lets you trace high-level events and related assembly-level code at the same time.

And for source code development, our Microtec ${ }^{\circ}$ Research products provide you with C and Pascal cross-compilers, cross-assemblers and debuggers for the same wide range of popular processors.

Best of all, NWIS backs all these products with solid applications support, both at the local and factory level. So let us become your single source for emulators and other microprocessor Computer-Aided Software Engineering (CASE) tools.

1-800-547-4445.

IBM is a registered trademark of International Business Machines. VAX and MICROVAX are registered trademarks of Digital Equipment Corporation. Microtec is a registered trademark of Microtec Research Inc.

SOFTWARE TOOL SIMPLIFIES SILICON-COMPILER-BASED DESIGNS

The ChipCrafter design software from Seattle Silicon (Bellevue, WA, (206) 828-4422) provides mainstream ASIC designers with the advantages of process-independent silicon compilers. Designing for silicon compilers usually requires a custom-IC-design background that most electronics engineers and electronics companies don't have. According to the vendor, the ChipCrafter tools allow any engineer who can design a standard-cell ASIC to design a compiler-based ASIC. Compiler-based designs let you select from a variety of foundries and processes in order to optimize speed, power, and cost considerations. The software package allows you to design at the standard-cell level or lower. It also lets you create state machines and complex control circuitry from behavioral inputs. The software provides automatic placement and routing of all elements, dividing standard cells where necessary for efficient design. Because all the design elements-including the standard cells-are compiler based, you can optimize the elements on an individual basis. For example, you can adjust the size of output transistors to meet drive requirements. The package supports scan-path testing; it automatically connects all flip-flops, registers, and counters. ChipCrafter is currently in Beta-site testing; delivery of production quantities will begin in May. The package costs \$59,000.-Doug Conner

PARALLEL-PROCESSING COMPUTER FEATURES OPEN ARCHITECTURE

Based on a distributed-memory, message-passing communications network, the Series 2010 parallel-processing computer from Ametek (Monrovia, CA, (818) 359-2835) lets you interface any processing node to standard VME Bus-compatible devices and local disk drives. Each node contains a $25-\mathrm{MHz} 68020 \mu$ P, a 68881 floating-point unit, lM byte of local memory that's expandable to 8 M bytes, and a VME Bus interface. Message passing is controlled among the nodes by automatic-message-routing devices (AMRDs) that contain five parallel channels and transfer data at speeds exceeding 20M bytes $/ \mathrm{sec}$. The languages available for the Series 2010 include C, Fortran 77, Unix, and Concurrent Lisp. The system uses a Sun-3 workstation as the front-end host. Pricing for the Series 2010 starts at $\$ 45,000$ for a 4 -node system. Each additional node you add to the system raises the performance spec by 4 MIPS.-J D Mosley

DMM IC OFFERS IMPROVED CURRENT RESOLUTION

Besides using the TSC816 digital-multimeter IC in handheld multimeters, you can use it for dedicated conversion and display of voltage, current, and resistance outputs from sensors and transducers. The DMM IC, from Teledyne Semiconductor (Mountain View, CA, (415) 968-9241), is an improvement over the earlier TSC815; it provides a $2-\mathrm{mA}$ current range with $1-\mu \mathrm{A}$ resolution. The device has 24 operating ranges covering voltage, current, and resistance measurements. Autoranging is provided for voltage and resistance measurements. The IC has on-chip liquid-crystal-display drivers and is available in a 68 -pin plastic leaded chip carrier (PLCC) for $\$ 13.20$ (100).-Doug Conner

LOW-COST ERASABLE-LOGIC DEVELOPMENT TOOL IS PC BASED

The $\$ 795$ PET100 erasable-logic development system from Pistohl Electronic Tool Co (Cupertino, CA, (408) 255-2422) combines the company's \$295 erasable-logic assembler and $\$ 495$ erasable-logic programmer with a test-vector-generation language and an EPROM programmer. The assembler generates JEDEC fuse maps from your Boolean equations; a 50 -rule expert system finds logic errors, suggests corrections, and pops up a WordStar-compatible editor with the cursor positioned at the error. The
erasable-logic programmer comprises programming hardware and the company's highlevel test language, WIOS. The system supports EEPLDs from Altera, Atmel, Cypress, AMI/Gould, ICT, and Monolithic Memories.-Margery S Conner

SIGNAL PROCESSOR COMES IN 10-AND 12.5-MHz VERSIONS

The ADSP-2100 digital-signal processor from Analog Devices (Norwood, MA, (617) $461-3881$) is now available in 10- and $12.5-\mathrm{MHz}$ versions (the ADSP-2100AJ and -2100AK, respectively). The vendor claims the product's speed and architectural efficiency make it the industry's fastest general-purpose DSP chip. According to the company, the ADSP-2100A can compute an in-place, complex 1024-point FFT in 3.0 msec , a speed comparable to that of dedicated FFT chips. The -2100AJ and -2100AK are code and pin compatible with the company's earlier 6 - and $8-\mathrm{MHz}(-2100 \mathrm{~J}$ and -2100 K) versions of the chip, and are available in 100-lead pin-grid arrays and 100 -lead PLCCs. The $10-$ and $12-\mathrm{MHz}$ chips, in PLCCs, cost $\$ 103$ and $\$ 133$ (1000), respectively; samples are available from stock. The vendor plans to introduce a military-temperature version of the $10-\mathrm{MHz}$ chip in the fourth quarter of 1988 . The company also offers a C compiler that generates source assembly code for the 2100 and 2100 A chips. The compiler conforms to the ANSI X3JIl draft, and it comes in MS-DOS, VAX/VMS, and Unix BSD 4.2 versions. Emulators and evaluation boards for the -2100A chips will be available in the second quarter of 1988.-Joanne Clay

INEXPENSIVE DIGITAL-FILTERING SOFTWARE RUNS ON YOUR PC

You can now purchase an integrated data-acquisition, -storage, and -analysis software package that also provides four types of digital filters: lowpass, highpass, bandpass, and band reject. The $\$ 1185$ package includes a data-acquisition program called Snapshot Storage Scope, the Snap-Calc analysis and monitoring program, and the new Snap-Filter program. The software was developed by HEM Data Corp (Southfield, MI, (313) 559-5607). If you already have the Snap-Calc and Snapshot Storage Scope programs, you can buy Snap-Filter for $\$ 395$. Snap-Filter lets you specify any filter as a finite-impulse-response or infinite-impulse-response filter. To order a demonstration disk, contact Andrea Tomaszewski at the above number.-J D Mosley

OPTION BOOSTS LASER-PROCESSING SYSTEM'S THROUGHPUT BY $\mathbf{1 5 \%}$

By adding the H844 vision-processing option to the M218 Laser Processing System from Teradyne's Industrial Consumer Div (Boston, MA, (617) 482-2700, TWX 710-321-1055), you can boost the system's throughput by 15% and improve its waferalignment success rate to better than 99.99%, the vendor claims. With the H844 option, the M218 system performs high-speed wafer alignment by using proprietary vision algorithms. The H844's user interface includes software windows, a mouse, pulldown menus, and graphics tools. The H844 is also available with an optical-characterrecognition feature, which reads alphanumeric characters printed on the wafer in standard fonts. The M218 system incorporates a Unix-based Sun workstation, a digitalsignal processor, an automatic-calibration facility, and an Ethernet interface. It performs precise link-cutting operations on a variety of silicon devices, including dynamic and static RAMs and gallium arsenide ICs. The H844 vision-processing option costs $\$ 40,000$; the optional optical-character-recognition feature is $\$ 20,000$. Delivery is 16 weeks ARO.-Joanne Clay

THE COMPETITION IS STILL TALKING ABOUT THEIR 10-BIT FLASH ADC

WE'RE SHIPPING OURS

That's right - shipping. For years there's been a lot of talk about monolithic 10 -bit ADCs. The talk is over. The TDC1020 is a reality. The world's first monolithic 10-bit flash ADC is available from TRW LSI Products.
And the best news is the performance. It's going to be hard to beat. This truly state-of-the-art flash converter guarantees 10 -bit resolution at a 20 MSPS conversion rate over both commercial and military temperature ranges. Packaged in a 64 -pin DIP, its outstanding features include TTL interface, overflow flag, selectable output formats and guaranteed no missing codes. All you need is a standard $+/-5 \mathrm{~V}$ power supply and a challenging application.
The TDC1020 can help your equipment achieve the kind of performance
that you've been dreaming about for years. But beyond performance, the TDC1020 in your system will be a real cost and space saver too.
So stop listening to all the talk about 10 -bit ADCs. The TDC1020 is here. Now! Try it in your medical imaging, broadcast video, military, process control equipment or any other demanding application.
Call for a full data sheet, pricing and immediate technical assistance. Production quantities are available right now from TRW LSI Products and our national distributors - Arrow, HallMark and Hamilton/Avnet.

TRW LSI Products bringing the worlds of Data Acquisition and DSP together.

TRW LSI Products
P.O. Box 2472

La Jolla, CA 92038 619.457.1000

In Europe, phone: TRW LSI Products Munich, 089.7103.124; Paris, 1.69.82.92.41; Surrey (U.K.), 0483.302364
In the Orient, phone: Hong Kong, 3.880629;
Tokyo, 03.234.8891; Taipei, 751.2062;
Seoul, 2.553.0901
© TRW Inc. 1988 - 712A03287

TRW LSI Products

NEWS BREAKS: intervational

SINGLE-BOARD Q BUS COMPUTERS RUN PDP-11 SOFTWARE

Featuring a DEC J-ll processor that has zero-wait-state access to as much as 4M bytes of parity-checked onboard dynamic RAM, the M80 and M90 quad Q Bus singleboard computers from Mentec Computer Systems Ltd (Dublin, Ireland, TLX 93309) can run unmodified DEC PDP- 11 operating systems and software. The M80's $15-\mathrm{MHz}$ processor provides a 30% improvement in speed over the company's earlier M70 singleboard computer; the M90's $18.5-\mathrm{MHz}$ processor provides a 60% speed improvement over the M70. The M80 and M90 each offer four serial-I/O ports, 32 k bytes of bootstrap EPROM, and an EEPROM that allows you to configure the board. The software-configurable boot program can step through as many as six different bootstrap calls, allowing you to use the board as a host processor in a variety of system configurations. The M80 will be available in OEM quantities by March 1988; a lM-byte version costs $£ 2500$ (50). The M90 will be available by May 1988. A 4M-byte version of the M90 sells for $£ 5150$ (50).-Peter Harold

LOW-COST LOGIC ANALYZER PROVIDES 32-CHANNEL, 25-MHZ OPERATION

Priced at $£ 1790$, the TAl000 logic analyzer from Thandar Electronics Ltd (St Ives, UK, TLX 32250) provides you with 32 state/timing channels that operate at 25 MHz . The instrument's trace memory amounts to 1 k bits/channel, and its external clock facilities include three independent clock inputs and five clock qualifiers. You can define as many as four 32-bit trigger/restart words, which you can logically OR together in each step of a 4-step trigger sequencer. Each step of the trigger sequencer also includes a l- to 256 -event counter. You can display timing or variable-format state information on the analyzer's 7-in. CRT, and you can analyze the information by using the instrument's trace-expansion facilities, its two screen cursors, and its reference memory. You can also perform automatic trace/reference-memory comparisons on any portion of the traced data. An optional feature lets you stop trace acquisition on trace/reference equality or inequality, or count the occurrences of these conditions. The instrument's price includes IEEE-488 and RS-232C control interfaces. Variablethreshold input pods and disassemblers for 8 - and 16 -bit μ Ps are available as op-tions.-Peter Harold

FIRMS PRODUCE FIRST TRON-BASED 32-BIT μ P AND PERIPHERALS

Hitachi, Fujitsu, and Mitsubishi have developed the first 32-bit microprocessor and peripheral chips based on the Tron architecture proposed by professor Ken Sakamura of Tokyo University. The chips are the result of the three firms' agreement to develop Tron μ Ps and peripheral circuits in three stages. Hitachi's development is the GMicro/200 32-bit μ P, which runs at 20 MHz and can perform 6 MIPS. The chip has sixteen 32-bit registers and can manage as much as 4G bytes of data. Hitachi manufactures the chip with a $1-\mu \mathrm{m}$ CMOS double-layer-aluminum process. The device measures $14 \times 14 \mathrm{~mm}$ and incorporates approximately 730,000 transistors. Samples of the chip will be available this spring; Hitachi will begin mass production of the device in the fall of 1988. Fujitsu plans to develop a 12- to 20-MIPS version of the GMicro/200 by the end of 1988, and Mitsubishi is scheduled to develop a $4.5-$ to $10-\mathrm{MIPS}$ version by the first half of 1989. Fujitsu has also developed three peripheral ICs for the 32-bit $\mu \mathrm{P}$: They include a DMA controller that can receive and send data at 27 M bytes $/ \mathrm{sec}$ without using the $\mu \mathrm{P}$, a tag memory with a 27 -nsec readout speed, and an interrupt controller.-Joanne Clay

In our YMEhus \& MULIIBUS II controllers, takeall three "wares" for granted

With Ciprico hardware, software, and humanware, you can make a more comfortable decision

We start by taking your time frame for designing a high performance microcomputer or supermicro as seriously as you. You'll receive an intelligent disk or tape controller board for evaluation as your schedule dictates.

That's humanware.
So is the experienced team we assign to help you get your board up and running. And our pledge to get back to you within four working hours any time you contact us during evaluation.

Software you can take for granted is a driver written by our engineering staff to take full advantage of your system's performance. MULTIBUS is a registered trademark of Intel Corp.

We can provide it with your board Visit our plant and you'll see how we develop new boards timely and reliably - with advanced design tools and a large library of proven firmware modules written in "C". Also, we have a comprehensive industry-leading ESD program, burn-in, 100\% in-circuit testing, and functional stress testing. In other words, you'll see you can take it for granted that every board

CIPRICO LISTENS. AND RESPONDS.
will arrive on time and ready to work (In rare cases, if repair is ever needed, take it for granted that we'll provide 48-hour turn-around.)

You'll even find us easy to work with.

Another thing to take for granted is our R\&D commitment to develop the highes performance controllers. One good example is our new Rimfire 3400. This intelligent VMEbus ESDI disk controller features a unique 512 Kbyte intelligent caching architecture and a command queuing software interface. For more information on all Ciprico controllers, for VMEbus and MULTIBUS I \& II, contact us now. CIPBUSIOwhen prompled. (In VA call $703-476-5255$)

tilny SPDT switeches
 absorptive... reflective

dc to 4.6 GHz tom $\$ 322^{35}$

Tough enough to pass stringent MIL-STD-202 tests, useable from dc to 6 GHz and smaller than most RF switches, Mini-Circuits' hermetically-sealed (reflective) KSW-2-46 and (absorptive) KSWA-2-46 offer a new, unexplored horizon of applications. Unlike pin diode switches that become ineffective below 1 MHz , these GaAs switches can operate down to dc with control voltage as low as -5 V , at a blinding 2 ns switching speed.

Despite its extremely tiny size, only 0.185 by 0.185 by 0.06 in., these switches provide 50 dB isolation (considerably higher than many larger units) and insertion loss of only 1dB. The absorptive model KSWA-2-46 exhibits a typical VSWR of 1.5 in its "OFF" state over the entire frequency range. These surface-mount units can be soldered to pc boards using conventional assembly techniques. The KSW-2-46, priced at only \$32.95, and the KSWA-2-46, at \$48.95, are the latest examples of components from Mini-Circuits with unbeatable price/performance.

Connector versions, packaged in a $1.25 \times 1.25 \times 0.75$ in. metal case, contain five SMA connectors, including one at each control port to maintain $3 n$ sec switching speed.
Switch fast... to Mini-Circuits' GaAs switches. finding new ways setting higher standards

transformers

$3 \mathrm{KHz}-800 \mathrm{MHz}$
 over 50 off-the-shelf models from \$295

Choose impedance ratios from 1:1 up to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*). Fast risetime and low droop for pulse applications; up to 1000 M ohms (insulation resistance) and up to 1000 V (dielectric withstanding voltage). Available for immediate delivery with one-year guarantee.

Call or write for 64 -page catalog or see our catalog in EBG, EEM, Gold Book or Microwaves Directory.

Suppress those

nasty little surges.

With Surgector"and GE-MOV ${ }^{*}$ surge suppressors.

Now, whether you're designing small consumer products, industrial controls, high-rel military and aerospace systems, or anything in between, we have a surge protection solution for you. Because if one of our GE-MOV varistors isn't exactly right for the job, then one of our Surgectors probably will be.

Leader in Varistors.

We have the broadest line of varistors in the industry, with a range from 5 V to 3500 V , including the highest-energy MOV's in the industry (up to 70,000 peak amps and 10,000 joules).

They're widely used for incoming ac line protection in power supplies, clamping circuits and low voltage supply protection.

They're available in a variety of packages, including axial leaded, radial leaded, leadless surface mount, high-energy modules and connector-pin configurations. And they're all available for fast delivery.

Inventor of Surgector devices.

Surgector devices respond rapidly and handle a lot of energy. So they're ideal for protecting
sensitive or expensive components from lightning strikes, load changes, switching transients, commutation spikes, electro-static discharge and line crosses.

How they work.

Surgector devices combine a zener diode and an SCR into one reliable, cost-effective device.

At low voltages, the Surgector is "off," representing high forward impedance (only 50 nA leakage current). The instant clamping voltage is exceeded, the Surgector turns "on" and the zener immediately starts conducting. Within nanoseconds, the SCR turns on to handle heavy currents. Destructive surges are shunted to ground.

Once the surge passes, the device makes a fast transition back to the "off" state. You can choose from two-terminal, three-terminal or bi-directional devices.

We'll help you decide.

To determine which of these powerful technologies is best for you, plug into our applications hotline and let our experts help you decide.

For more information, call toll-free 800-443-7364, extension 21. Or contact your local GE Solid State sales office or distributor.

If you're testing complexboards

You're facing one of test engineering's toughest challenges. VLSI boards like this one. But with a Teradyne L200 board tester on your side, complex test problems can be conquered quickly.

Stay in front of VLSI/VHSIC advances.
Start with the most advanced hardware for analog and digital testing. An L200 fires functional test patterns at 40 MHz rates. At up to 1152 test channels. Top speed is 80 MHz . That's 4 to 8 times faster than any competitor can deliver.

And the L200 hits test signal timing precisely. With up to 32 timing sets for drive phases and test windows. Its 250 ps programming resolution with zero dead time puts signal edges right where you want them.

Divide and conquer.

VLSI/VHSIC boards demand large, complex test programs. But the L200's distributed computer architecture simplifies matters.

Testing is controlled by a VAX computer. It sends tasks to specialized processors for rapid deployment of analog, digital, and memory tests.

here's a simple plan of attack.

Programmers will appreciate clustered VAX workstations. Graphics, like waveforms and shmoo plots, make heavy debug and analysis light work. Simulation and other tactics.

High-powered software tools tailor L200 test development to modern design techniques and test

	Test Channels	Maximum Pattern Rate	Channel Skew
L 297	1152	80 MHz	$\pm 1.5 \mathrm{~ns}$
L 293	576	80 MHz	$\pm 1.5 \mathrm{~ns}$
L 280 vx	1152	10 MHz	$\pm 10 \mathrm{~ns}$
L 210 vx	576	10 MHz	$\pm 10 \mathrm{~ns}$

L200 VLSI board test systems are the performance leaders.
strategies.
Precisely the caliber of tools you need to get tests up and running fast.
Take our LASAR simulator. It works closely with the L200 for both cluster and board-level testing. LASAR accurately predicts VLSI circuit responses and reports test program fault coverage.

Significantly, LASAR simulates L200 charac-
teristics. So test programs automatically include when to test board responses. And what response is expected. The result is uncompromising go/no go tests as well as precise guided probe or fault dictionary diagnosis.

A powerful ally.

L200's have proven themselves under fire at hundreds of advanced manufacturing sites worldwide. So if you're about to take on a new VLSI/VHSIC project, find out how to launch a winning test strategy. Call Daryl
Layzer at (617) 482-2700,

Ext. 2808 without delay.

We measure quality.

SIGNALS \& NOISE

Getting back to basics

The December 10, 1987, article, "An experimental graduate-engineering program opens up new study opportunities" (Professional Issues, pg 363), brings up another problem that is contributory to the one that concerns Daniel Sternlicht.

The level of education available to average high-school students deprives them of the broad base of knowledge that they need to build on in lower-level college classes. In a state that has a high functional-illiteracy rate and that boasts a highschool curriculum whose only required subjects are physical education and English, there's no chance that a high-school graduate can carry a college course load sufficient to complete an engineering degree in the allocated four years of 16 -credit semesters.

The education available to me (Central High School, Philadelphia,

PA, class of 1941) can't be duplicated now in any public school system dedicated to passing substandard students through a watered-down system where baseball is more important than biology, and Latin is passed over for linebackers.
If it takes two years in a junior college to achieve the level of education sufficient to tackle a technical
college course such as engineering, then, perforce, an advanced degree will be mandatory in that area, especially where licensing is required. Richard La Porte
Engineered Magnetics Inc Hawthorne, CA

As manufacturing goes, so goes the service sector?

Your December 10, 1987, editorial (pg 53) on the service-economy myth was excellent. Other articles show economists are now beginning to realize that service firms are not the salvation for this country.

Although you mentioned the service sector's low pay and poor job security, you left out the most glaring weakness of the service economy: Service firms such as law and accounting firms depend on the manufacturing sector.

If manufacturing falls flat on its

.050" MICROMINIATURE CONNECTORS

Card Edge Connectors

- Tested to over 5,000 cycles

- 10 through 100 pin versions
- 3 standard footprints CIRCLE NO 14

See us at NEPCON WEST '88 Booth 2234

EFEETHDDE ELECTRONICS, INC.

Connector Division

7447 West Wilson Avenue
Chicago, IL 60656
312/867-9600 • 800/323-6858
TWX: 910-221-2468 • FAX: 312/867-9130

Surface Mate Connectors

- Screw-down compression style
- Solderless surface mount
- Various heights available CIRCLE NO 94

SEEQ EEPROMS IN AVIONICS.

Change Flight Plans OnThe Fly.

IIn the high-flying world of avionics, things change fast. Things like flight plans, comm data, sensor information and other parameterized memory contents. They change so fast - in fact - that, until now, EEPROMs haven't been able to keep up.

Now SEEQ offers superfast E^{2} s that are right on target for avionics control-store applications - or any system where high-performance graphics, array processing or DSP are essential. With access times as low as 35 ns , SEEQ's CMOS E^{2} s deliver performance that's unmatched by other EEPROMs.

That means now you're no longer up in the air for fast, non-volatile memory solutions. Among your current options, bipolar PROMs give you speed, but they're gas-guzzlers when it comes to power. And a little hard to re-program when your product's not in the shop. By comparison, SEEQ 16 K and 32 K E^{2} s offer equivalent speeds, but consume less than half the power. So they can run with no-wait-state microprocessors - without running up your costs for power supplies and cooling equipment.

Your other alternative - slower E2s with battery-backed static RAMs - usually can't keep up the pace in high-performance systems. And they complicate your design, because you need to constantly load and unload RAM for program execution. Again, SEEQ E ${ }^{2}$ s resolve these speed/power dilemmas, while simplifying your designs. Plus their read/write cycles look just like a SRAM's, so they're easy to incorporate into your existing systems.

All of which makes SEEQ E ${ }^{2}$ s the only way to fly.
At SEEQ, we can help you with virtually any non-volatile memory application - from high-density E^{2} s to microcomputers with E^{2} on board. For information on the uses of our high-speed commercial or military $\mathrm{E}^{2} \mathrm{~s}$, call us today for our Application Note \# 27. SEEQ Technology, Inc., 1849 Fortune Drive, San Jose, CA 95131. (408) 432-9550.

Forget separate CPU, memory, and disk cards. A full PC clone is integrated onto the backplane of this STD BUS card cage!
Just plug in STD BUS I/O cards to implement your system. Then use all of your favorite DOS tools to write and debug your software.
Features:

- 4.77 MHz 8088 processor
- 512 K RAM, 56 K user EPROM
- CGA with RGB, composite outputs
- PC keyboard input port
- COM1 and COM2 RS232 ports
- Parallel printer port
- Floppy disk controller
- Clock option
- 16 STD BUS I/O expansion slots
- Runs Lotus 1.2-3, Flight Simulator, all languages
All at a cost less than multi-card STD BUS clone approaches. Call today for details.
*Clone/Cage ${ }^{\text {TM }}$ Micro/sys, Inc.
PC ${ }^{\text {TM }}$ IBM corp.
Lotus $1-2-3^{\mathrm{TM}}$ Lotus Devel. Corp. Flight Simulator ${ }^{\text {M }}$ Microsoft Corp.

II
MICRO/SYS
1011 Grand Central Ave. Glendale, CA 91201 (818) $244-4600$
face, service firms will come tumbling down. When service firms automate with computers to the extent that manufacturers already have, the layoffs that manufacturers are famous for will be nothing compared to the bloodbath we can expect in the service sector.
Glen Spielbauer,
Dallas, TX

MLL: Medium-level language

The article entitled "HLL cross compilers speed 1 -chip $-\mu \mathrm{C}$ software development" (EDN, December 24, 1987, pg 126) omitted all mention of Forth. Forth has been the high-level language of choice for microcontroller projects almost since the day they first came out. The only reason I can think of that regional editor Steve Leibson left Forth out of his article is that he is one of those ill-informed computer-language snobs who doesn't consider Forth a "real" high-level language.
Robert Johnson
Friedhoff Control Co
Duluth, MN
(Ed Note: Steve Leibson says he isn't an ill-informed computer-language snob. His research for the article uncovered no Forth languages for a single-chip computer. He'd like to hear from readers who know of any.)

Correction

In the schematic for the Design Idea "Circuit protects solenoids in dot printer" (EDN, December 10, 1987, $\mathrm{pg} 325), \mathrm{IC}_{6 \mathrm{~A}}$ pins 1 and 2 should be connected to ground.

WRITE IN

Send your letters to the Signals and Noise Editor, 275 Washington St, Newton MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity.

Now in-house prototyping is truly affordable.

Mills and drills circuits in minutes.

There's no reason to waste time and money sending out for prototype circuit boards any longer. With the new BoardMaker, you can make your own prototypes in your own lab directly from your PCB CAD-as fast as you need them.

No delays or rush charges.

BoardMaker engraves single and double-sided boards, forming conductor lines as small as 5 mil . (There is a throughplate option too.)

A $2^{\prime \prime} \times 3^{\prime \prime}$ board with medium density, for example, takes about 15 minutes. So you can save a week or more at every level of design development. You also save the money spent on outside sources, along with costly charges for rush service that can't compare with BoardMaker speed.

No chemicals.

BoardMaker is totally mechanical. There are no chemicals, no fumes, and no toxicity problems.

At $\$ 5,000$, pays for itself fast.

BoardMaker is revolutionary because it costs one-sixth the price of first generation prototype machines-and literally pays for itself after about a dozen boards. For more information, call (415) 883-1717 or use the reader card.

LOOK WHAT ELFVEN YEARE,2 MILION CPUS,AND 16 THOUSNDD BoARD AND SYSIEM BUIDERS AREDONG TOTHE WORID'SFRST OPEN SIADDARD BUS...

...THEYPRE MAKING IT STRONGER, POWERFUL, AND MORE POPULAR

Multibus I: Today's
Most Popular, Best
Supported And Easiest To Implement OEM Bus.

Back in 1976 when Intel introduced Multibus I, it was 8 -bits wide and supported the only major microprocessor then in existence, the 8080.

The world loved the open bus concept and jumped on the Multibus bandwagon. Quickly, Multibus I gained a level of acceptance that remains unequaled today.

And, while Multibus I has remained true to its foundation as a solid, dependable standard, it has undergone a carefully controlled evolution that has produced a thoroughly modern architecture. One capable of supporting the newest 32-bit microprocessors, as well as the first Multibus board ever built, in the same system!
This unmatched compatibility, coupled with the ability to absorb new technology, has made Multibus I today's most popular, most versatile, best supported and easiest to implement OEM bus architecture.

Foundation Of The Multibus Family.

In 1982, Intel introduced Multibus II, a totally new advanced bus architecture designed not to replace Multibus I, but to open

FASTER, MORE THAN EVER BEFORE.

in history has been able to do: successfully absorb more than a decade of rapid technological advancement without compromising compatibility. From one generation of products to the next.

And from one vendor to the next.

In part this is due to the architecture itself, refined over the years by IEEE committees. In part it is due to the series of bus extensions that have helped Multibus I keep pace with the performance of newer buses.
But, mostly, Multibus I's success can be attributed to more than 240 manufacturers who have added their ingenuity to develop over

2,000 different Multibus I products to solve a wider range of applications than any other bus. Period.

What's New On MUlTibus I TODAY?

Today's Multibus I is loaded with exciting new products incorporating the latest VLSI and specialized technologies. You can use it to solve new applications efficiently and economically. And breathe new life into existing Multibus I applications.

Without expensive redesigns. And, without abandoning the comfort and security of the bus that's supported more success stories than we can even count.
The Best Is Yet

To Come.
Recent months have seen many important new Multibus I hardware and software products. For the full story, circle the reader service number or contact the Multibus Manufacturers Group.

Each of the companies on the back of this ad will send you complete technical data

Multibus I provides 84 sq . in. of board space, large enough for high functionality, yet small enough to be economical in low density designs. The LBX and SBX bus extensions add low-cost memory expansion and I/O customization.
on their latest offerings. Plus timely announcements of future new products.

And, to keep your Multibus I library organized, we'll send you this convenient, indexed bookshelf binder absolutely free.

So don't delay. Find out what's new on Multibus I. And discover why the most successful commercial bus architecture in history is stronger, faster, more powerful, and more popular than ever!

CIRCLE NO. 98

WFRETIREFORYOUS

The companies listed below would like you to know that Multibus I is alive and well and prospering. Multibus I offers the broadest product family. Plus scores of new products incorporating the very latest technology.

Whether you're developing new applications or upgrading existing ones, these industry leading companies offer a wide range of Multibus I products to give you the competi-

	P.O. Box 1037 Attleboro, MA 02703 Contact: Dept. X2403 (617) 222-2202 FAX (617) 226-5257	-	-	-	-	-		-	-	245 West Roosevelt Road West Chicago, IL 60185 Contact: Peter A. Czuchra (800) 638-5022 In IL: (312) 231-6880
	1602 Newton Drive Champaign, IL 61821 Contact: Mike Heins (800) 482-0315 FAX (217) 359-6904	-	-	-	-	-	\bullet	-	- \quad.	2400C Bisso Lane Concord, CA 94520 Contact: Sales Admin. SBE, $N C$. (415) 680-7722 MCFOCOMPUTER BOAROS ANO SYSTEMS TWX 910-366-2116
	6790 Flanders Drive San Diego, CA 92121 Contact: Frank Hom (800) 854-7086 In CA: (800) 772-7086						-		-	3445 Fletcher Avenue El Monte, CA 91731 Contact: Mike Burton $\begin{aligned} & \text { (800) 227-0557 } \\ & \text { FAX (} 818 \text {) } 444-3953 \end{aligned}$
	Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051 (800) 548-4725	-	\bullet		-	-	-	-	\bigcirc	339 N. Bernardo Avenue Mountain View, CA 94043 Contact: Jerry Tennant (415) 964-5700 Scientific Micro Systems Telex 184160
INTERPHASE corporation	2925 Merrell Road Dallas, TX 75229 Contact: Sales Admin. (214) 350-9000 FAX (214) 350-1433				\bullet	-				53 Third Avenue Burlington, MA 01803 Contact: Kindra Alaimo (617) 272-8140 FAX (617) 273-5392
MICROBAR SYSTEMS.INC.	785 Lucerne Drive Sunnyvale, CA 94086 Contact: Bill Burton (408) 720-9300 FAX (408) 773-9475	-	-	\bullet	-	-	-	-	- -	6700 Sierra Lane Dublin, CA 94568 (415) 828-3000 Telex 910-389-4009 Products by Solution FAX (415) 828-1574
	10 Mupac Drive Brockton, MA 02401 Contact: Steve Cobb (617) 588-6110 FAX (617) 588-0498								\bullet	Use this convenient product reference guide to quickly locate the companies that offer the types of Multibus I products you need. CIRCLE NO. 98

The Multibus Manufacturers Group, or MMG, is dedicated to the proposition that everyone benefits from strong, open standards. Membership is open to hardware and software manufacturers, application integrators, end users and even students.

To learn more about what the MMG can do for you, contact Dan Fink, MMG executive director.
tive edge. Today. And long into the future.
For your free Multibus I Data Book plus future new product announcements, just return the reade service card. Or for faster response, call the MMG or one of the participating companies listed below.

Discover the many new reasons Multibus I is today's most popular, most versatile, best supported and easiest to implement OEM bus.

245 West Roosevelt Road West Chicago, IL 60185 Contact: Peter A. Czuchra (800) 638-5022

In IL: (312) 231-6880
2400C Bisso Lane
Concord, CA 94520
Contact: Sales Admin. SBE, $N C$.
(415) 680-7722

MICAOCOMPUTER BOARDS AND SYSTEMS

3445 Fletcher Avenue
El Monte, CA 91731
Contact: Mike Burton
FAX (818) 444-3953
339 N. Bernardo Avenue
Mountain View, CA 94043
Contact: Jerry Tennant
(415) 964-5700

Scientific Micro Systems

53 Third Avenue
Burlington, MA 01803
Contact: Kindra Alaimo
(617) 272-8140

6700 Sierra Lane
Dublin, CA 94568
Telex 910-389-4009
Products by Solution

Use this convenient product reference guide to quickly procale the companies that offter the types of Multibus 1

CIRCLE NO. 98

MCEBOMEIGBOM PoMaircusy
 THE ULTIMATE 1500 W POWERSYSTEM
 "Ultimate" . . . simply defined, it means the best! Without equal! And in the case of POWER-ONE's 1500 W Power System, we think you'll agree the description fits. Specify Up To 15 DC Outputs . . . From Stock. Fully modular design allows the user to specify a proven multiple

 output power system from a wide selection of single, dual and triple output power modules. Virtually any combination of output voltage and current ratings, including UPS capabilities, can be delivered from stock. No more time consuming and costly custom designs to contend with. Industry's Highest Power Density. POWER-ONE's International High Power Series represents the most compact multiple output power systems available today. Up to 1500 watts of multiple output power in an industry standard $5 \times 8 \times 11$ inch fan-cooled package.On-Board UPS Capability. Only POWER-ONE offers a completely self-contained on-board Uninterruptible Power System module providing unlimited battery back-up of up to 1000 watts of DC output power. Available off-the-shelf, these standard UPS modules mount entirely within the main enclosure of any POWER-ONE International High Power Series model.
A True World Market Power System. The International High Power Series meets the toughest safety requirements of VDE, IEC, UL and CSA, plus the EMI limits of VDE and FCC. Along with worldwide AC input capabilities, it is the clear choice for products marketed not only in the U.S. but internationally as well.

Introducing the world's most powerful desk.

SUN-4/110. THE FIRST SUPERCOMPUTING DESKTOP WORKSTATION.

This is the newest member of our extensive SPARC ${ }^{\text {M }}$ (for Scalable Processor Architecture) family of binary-compatible supercomputing workstations.

Sun-4/110 is a full 32-bit RISC machine that runs at a blistering 7 VAX 8 MIPS and .8 double precision Linpack MFLOPS.

It also has an ultra-smart, ultra-fast memory management unit that keeps memory active so it and you - can run at processor speeds.

Its graphics performance is just as thrilling. There's an optional 3D graphics accelerator you can plug right in, plus a dedicated, pipelined, frame buffer bus that moves solid and wire frame models so fast, you'll think you're at the movies.

You can crunch numbers with the same dispatch thanks to an optional floating point accelerator.

And you can expand main memory to a very hefty 32 Mbytes.

Which reminds us, the Sun-4/110's main memory has a unique cacheing scheme. It dynamically allocates up to 32 Kbytes of its static column DRAM memory to cache. So it's there when you need it. Yet, since it's really just a part of main memory, it doesn't cost you extra.

You see, the object here wasn't just to build a small, fast workstation.

It was to build a balanced workstation that

When is a desktop workstation not a paperweight? When it has this much software support.	
AI Environment	Imaging
Analysis/Design	Layout Verification
Animation	Logic/Fault Simulation
Auto Test Generation	Machining
Bio Engineering	Math \& Stat
Computational	MCAD
Chemistry	Molecular Modeling
Design/Drafting	Numerical Control
Doc. Config. Mgmt.	Schematic Capture
Earth Resources	Seismic Processing
ECAD	Silicon Compilation
Electronic Publishing	Simulation/Test
Engineering Graphics	Software Development
Expert Systems	Environment
FEA	Solids Modeling
Financial	Structural Analysis
Fluid Dynamics	Styling \& Appearance
Graphics	Modeling

delivers true supercomputing performance from every corner of its being. That just happens to sit on a desk.

And costs far less than a comparable machine. So there is no comparable machine.
$\overline{\text { SIT DOWN IN FRONT OF EVERY COMPUTER }}$ IN THE COMPANY.
The great power of Sun-4/110 allows you to now perform compute intensive applications on your own, right at your desk.

But its openness also allows you to run, transparently, any other computer in the company on your own, right at your desk. Thanks to Sun's Open Systems Network ($\mathrm{OSN}^{\mathrm{M}}$). The most comprehensive open system offering in the industry.

In addition, Sun-4/110 is designed to run our new SPARC based single UNIX ${ }^{\text {s }}$ standard operating system, a converged version of UNIX V and UNIX 4.2, that has, for the first time, a standard window system (X11/News), and a standard network file system.

Sun-4's Scalable Processor Architecture (SPARC) sends computing in a whole new direction.

Not only is this UNIX compatible with the huge base of existing UNIX applications, because it incorporates an application binary interface (ABI), it'll also run any and all SPARC based applications, straight off-the-shelf.

And because SPARC based UNIX is an open, non-proprietary OS - specifically designed for high performance computing, by the way - you can be sure there are going to be a lot of its applications around.

Not to mention lots of machines from lots of vendors to run them.

THIS IS WHERE YOU'LL WANT TO BE FROM NOW ON.

Every member of our SPARC based Sun-4 family, the Sun-4/110 included, incorporates another high performance standard.

The SPARC chip. An open, non-proprietary 32-bit RISC-based microprocessor.

SPARC chips are being built under license by some of the world's premier semiconductor houses. So they'll be competitively priced.

But unlike every microprocessor that's gone before, SPARC's scalability provides an uninterrupted growth path.

In fact, SPARC has so much headroom, in five years, it'll allow us to deliver a system that runs 100 MIPS.

For the price of a workstation.
SPARC's extendability even includes other Sun workstations. And allows us to upgrade Sun-3/110 and $3 / 140$ systems to Sun-4/110s with a simple board swap.

For more information about the new Sun-4/110 and the SPARC standard, call us at 800-821-4643, or 800-821-4642 in California. Or write Sun Microsystems, Inc., 2550 Garcia Ave., Mountain View, CA 94043.

And make the world's most powerful desk your own.
sun
microsystems
The Network Is The Computer"

(4) моtorola

Great advances have always displaced lesser theories.

 Introducing a revolution that will change forever the way you view the world of cell-based ASIC design.For centuries the earth was flat; it remained that way until someone brought us a new, and better, view of the world. Great advances have always given us new ways to see our world as well as new worlds to see. Now Motorola introduces its next revolution, destined to change forever the way you view the world of cell-based ASIC designs-the Silicon Compiler Modules. Until now all cell-based libraries have stifled creativity by limiting you to something pretty close, until now...

The new world of ASIC design.

Motorola's just taken a quantum leap in simplifying ASIC designs. Our new cell compilers let you set the parameters and priorities of over 20 different cells to your exact specifications, without compromise and without settling for something pretty close.

Cell-based semi-custom ICs using Motorola's cell compilers allow any ASIC user to totally customize cells to their specific needs. And Motorola's new silicon compilers allow you to individually control the functionality and performance of your logic units.

The advantages are as simple as they are momentous. By creating the most efficient cell layout, valuable silicon is saved, performance becomes a controllable variable, and the functionality levels can be optimized. Now you can accurately match chip space and circuit requirements at a fraction of the time and cost needed by any other system.

Design on the fly.

Cell efficiency is established from the smallest unit. Motorola has designed data path compilers and functional blocks to maintain efficiency and flexibility for every implementation. The result is the most compact system solution available. Since inflexibility at base level design quickly becomes multiplied in complex function cells, data path compilers are essential for quickly creating precise,
compact designs.
All Motorola silicon compilers are layout rule independent. They can be used in today's designs and, as the technology advances to make even smaller geometries possible, they'll continue to support your efforts without becoming obsolete.

Data path compilers	Functional Blocks
- Latch - ALU - D-Register - Barrel Shifter - Comparator - Incrementer/ - 3-State Buffer Decrementer - Counter - Parity Gen/ - Adder Checker - Multiplexer - Inverter - Register File - Serial IRWW Interface - Register File (SPI function) 2R/1W 	- I/O Port - PLA - Prescaler - RAM - ROM - Status/ Control Register - Timer - UART (SCI function)

How it works.

The menu-driven system makes it easy for anyone to use, simply select the function you need and go. Through schematic entry, input the parameters for the cell function you've chosen and the compilers build the correct implementation. On command the compiler executes according to your instructions, supplying all the proper
symbols and the function and performance parameters. Afterwards, the silicon compiler provides all pertinent information about the cell you've just designed.

Using parameters such as functionality, physical size and shape, aspect ratio, and transistor sizes, your cells will be automatically laid out in the most efficient plan.

Explore the new world of ASIC design. With Silicon Compiler Modules you'll discover the quickest, most accurate designs ever. Great advances from Motorola not only make life easier, they'll save you time and money too.

One-on-one design-in help.

Get an engineer-to-engineer update on using Motorola's Silicon Compiler Modules.

1-800-521-6274

Call toll-free any weekday, 8:00 a.m. to $4: 30 \mathrm{p} . \mathrm{m} ., \mathrm{M} . S . T$. If the call can't answer your questions we'll have a local ASIC specialist contact you. For published data on the Silicon Compiler Modules, complete and return the coupon below.

For over thirty years we've manufactured high quality standard and custom cable. Our ptoduct performance is unparalleled in the electronics industry. Be surewith Spectra-Strip. ${ }^{\text {© }}$
Quality We're one of the first cable companies to be awarded ship-to-stock status for OEM manufacturers. That proves the effectiveness of our quality assurance program. We're UL recognized and CSA certification is available upon request.

Diversity Our full line of cable allows you to buy from one source. If you're engineering a product that requires IDC termination in a standard flat ribbon cable, coaxial, high flex life, twisted pair, Twist ' N ' Flat, flat con-
ductor, Round 'N' Flat ${ }^{\text {© }}$ or $.025^{\prime \prime}$ center spacing

Spectra-Strip is the only call you have to make Reliability Advanced quality control procedures insure consistent accuracy, cable to cable. And our material return rate of less than one half of 1% proves it.
Delivery Our efficiency rating for on-time delivery is as close to perfect as you'll find. Standard products can be shipped immediately and custom cable can be delivered in 4 to 6 weeks
Designed, manufactured and delivered with you in mind. Connect to the best. For the name of your nearest Spectra-Strip distributor or rep, write Spectra-Strip, an Amphenol Corp. 720 Sherman Avenue, Hamden, CT
Or call (800) 57-CABLE In CT (203) 281-3200.
(c) SpECTRASTHIP 198 ?

DID YOU KNOW?

EDN serves electronic engineers and engineering managers in more than 100 countries worldwide.

CALENDAR

Microwave IC Technology (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. March 4.

Personal Computer Interfacing for Scientific Instrumentation Automation (short course), Blacksburg, VA. Linda Leffel, CEC, Virginia Tech, Blacksburg, VA 24061. (703) 961-4848. March 10 to 12.

Modern Electronic Packaging (seminar), San Diego, CA. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. March 15 to 17 .

Microelectronic Packaging and Surface Mounting (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. March 18.

10th Annual Conference for Inventors and Entrepreneurs, Denver, CO. Rocky Mountain Inventors Congress, Box 4365, Denver, CO 80204. (303) 443-3818. March 18 to 19 .

Neural Networks for Artificial Intelligence, Arlington, VA. Technology Transfer Institute, 741 10th St, Santa Monica, CA 90402. (213) 3948305. March 21 to 23.

Digital Signal Microprocessor and Microcomputer Chips and Development Systems (seminar), Cambridge, MA. Amnon Aliphas, DSP Associates, 18 Peregrine Rd, Newton, MA 02159. (617) 964-3817. April 4 to 6.

Microcircuit Interconnections and Assembly Methods (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 7.

Electrostatic Discharge (ESD): Concern or Over-concern? (semi-

Analog CAE is More Than SPICE.

It's the ability to predict manufacturing yields, find stressed components, and pick devices from libraries containing over 1,200 simple and complex devices. It gives you software-based instruments that act just like the instruments in your lab-except they make measurements that would be impossible with normal lab equipment. Analog CAE is now all of this, and more-thanks to the Circuit Design Tool Kit and the popular Analog Workbench $^{\text {TM }}$ and PC Workbench ${ }^{\text {TM }}$ software. All are designed to work with a variety of CAE and CAD systems, simulators and models (including your own), and remote computers.

Why settle for SPICE alone when you can have a complete set of the most advanced design tools made today? See the latest in analog CAE for yourself: call 1-800-ANALOG-4, ask for a FREE Demo Disk or Video.

CIRCLE NO 238

WIHOURCOUEGIONS TOOCNTEOWRONG.

CALENDAR

nar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 12.

Hybrid Microcircuit Technology (seminar), Fullerton, CA. California State University, Office of Extended Education, Fullerton, CA 92634. (714) 773-3080. April 18.

American Power Conference, Chicago, IL. Robert Porter, Chicago Institute of Technology, Chicago, IL 60618. (312) 567-3202. April 18 to 20 .

Instrument Society of America/ IEEE Columbus Conference and Exhibit, Columbus, OH. Sol Black, AT\&T Network Systems, Dept 11CB123430, 6200 E Broad St, Columbus, OH 43213. (614) 860-5605. April 19 to 20.

IEEE Instrumentation/Measurement Technology Conference (IMtc/88), San Diego, CA. Bob Myers, IMtc, 1700 Westwood Blvd, Los Angeles, CA 90024. (213) 4754571. April 19 to 22.

Modern Electronic Packaging (seminar), Raleigh, NC. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. April 20 to 22 .
Today's connector designers insist on connectors that can stand up to vapor phase and other high temperature soldering operations. That's why they insist on Rytonㅇ

Ryton PPS provides outstanding high temperature performance, dimensional stability, chemical and flame resistance. Combine these with Ryton's other outstanding physical and electrical properties and you get a resin that will increase both costcompetitiveness and performance capabilities.

With Ryton PPS, you can't go wrong.For more information, call today toll-free 1-800-53-RESIN.

Saratoga 64K SRAMs.
 Besides speed,
 25; 35; or 45-nsec speeds. Yet these
 parts. Besides our 64K TTL line, we're

our new TTL SRAMs have a lot going for them.

Fastst ic RAMs have been disappearir ast lately. Some, by going up in ack_d of vapor. Others, likeour new 64 Ks , by breaking speed barriers.

They're taking off fast for good reason. Because for one thing, our new SRAM family is the only one being made in BiCMOS bya U.S. manufacturer. So you get both the high speed of bipolar and the low power of CMOS. Putting the technology of tomorrow into your products today.

\section*{Old memories are

Old memories are going, going, gone.

No matter what memory technology you're now using, our BiCMOS parts can replace it directly. They're pin-for-pin compatible with all industry-standard SRAMs. So you can go on working with the design rules you know. Yet get the advantages of next-generation process technology.

Advantages like a choice of 20-

SRAMs draw no more current than conventional CMOS parts, while delivering twice the output drive. And they come in by- 8 and by-4 organizations, with all the popular packaging options. In both commercial and military temperature ranges.

Order some to go today.

All your SRAM systems can be
"go" today, with Saratoga's BiCMOS
shipping volume orders of our 4 K and 16 K TTL families, plus ECL SRAMs in 4 K and 16 K densities. These parts feature speeds as fast as 8 nsec , and full military temperature range operation.

So if you're not sure whether those other fast SRAMs are coming or going , check Saratoga. Call (408) 864-0500 today, or write Saratoga Semiconductor, 10500 Ridgeview Court, Cupertino, CA 95014.

At 2 Onsec
theyre going fast.

NOW YOUR RIGHTHAND CAN KNOW WHAT YOURLEFTISDOING.

Ever seem like your CAE and CAD people are playing for different teams? Especially when it's time to turn that hot new system design into a working board?

Chances are it's because your design systems can't communicate critical information from the engineer to the layout designer. So instead of a smooth handoff, you get hand-to-hand combat.

But now there's a system that
streamlines the way CAE and CAD teams work together.

It's Daisy's BOARDMASTER.' ${ }^{\text {mo }}$
The first automated system that plays by the rules of real-world system design.

Rules-driven PCB design puts

 CAE and CAD on the same team.With its rules-driven PCB design environment, BOARDMASTER gives engineers the flexibility to
specify key design rules in the schematic. Rules for signal priority. Ordering and termination for ECL nets. Package types and power definition. Pre-packaging and pre-placement priorities. Pin and gate swapping. And many other important design considerations.

This critical information becomes part of the design database and is passed directly to BOARDMASTER's powerful set

Bringing complete 12 -bit DAC functionality and performance to your designs no longer requires having to deal with all the problems associated with external components. Instead, it simply requires specifying our new AD767 or AD7245.
Both the AD 767 and AD 7245 feature an on-chip stable buried Zener reference, output amplifier and microprocessor interface logic. And these complete
functions come packed into skinny $0.3^{\prime \prime} \mathrm{DIPs}$. All this means you no longer have to deal with error budgets, product characterizations, or space constraints related to external components.

If digital interface speed is what you're after, the AD767 responds to pulse widths as short as 40ns, allowing it to be used with today's fastest processors. On the other hand, if low power dissipation is critical to your application, the LC ${ }^{2}$ MOS AD7245 consumes only 65 mW . There's also

Low Power 12-Bit D/A Converter

FEATURES

Complete 12-Bit D/A Function On-Chip Output Amplifier
High Stability Buried Zener Reference Low Power (65 mW typ)
Single or Dual Supply Operation
0.3", Skinny DIP Package 8-Bit Bus Version Available: AD7248

PRODUCT DESCRIPTION

The AD7245 is a complete 12-bit, voltage-output, digital-to-analog converter with output amplifier and zener voltage reference on a monolithic CMOS chip. No external trims are required to achieve full specified performance for the part.
The part features double-buffered interface logic with a 12 -bit input register and 12 -bit DAC register. The data held in the DAC register determines the analog output of the converter. The input register data is latched on the rising edge of $\overline{\mathrm{CS}}$ and WR and data is transferred to the DAC register under control of $\overline{\text { LDAC. An asynchronous } \overline{\mathrm{CLR}} \text { signal on the DAC register }}$ allows features such as power-on reset to be implemented. All logic inputs are level triggered and are TTL and CMOS (5 V) level compatible, while the control logic is speed compatible with most microprocessors.

The on-chip 5 V buried zener diode provides a low-noise, temperature compensated reference for the DAC. The gain setting resistors allow a number of ranges at the output: 0 to $+5 \mathrm{~V}, 0$ to +10 V when using single supply and -5 V to +5 V when operated with dual supplies The output amplfier is capable of developing +10 V across a $2 \mathrm{k} \Omega$ load

The AD7245 is fabricated in an all ion-mplanted high-speed linear compatible CMOS (LCㄹ ${ }^{2}$ MOS) process and is packaged in 1 small, $0.3^{\prime \prime}$ wide, 24 -pin DIP.

AD7245 Functional Block Diagram

PRODUCT HIGHLIGHTS

1. Complete 12 -bit DACPORT ${ }^{\text {TM }}$

The AD7245 is a complete voltage output 12 -bit DAC on one chip. This single-chip design of the DAC, reference and output amplifier is inherently more reliable than multi-chip designs.
2. Single or Dual Supply Operation: The voltage-mode configuration of the AD7245 allows operation from a single power supply rail. The part can also be operated from dual supplies to allow a bipolar output range.
3. Low Power Consumption:

CMOS fabrication results in very low power consumption (65 mW typical in single supply). This low power allows the part to be packaged in a small $0.3^{\prime \prime}$ wide 24 -pin DIP.
4. Versatile Interface Logic:

The high speed logic allows direct interfacing to most 16 -bit microprocessors. Additionally, the double buffered interface enables simultaneous update of the AD7245 in multiple DAC systems. The part also features an asynchronous $\overline{\mathrm{CLR}}$ input.

DACPORT is a trademark of Amelog Devices, lac.

FINALY, THE COMPLETE STORY ON COMPLETE 12-BT DACs.

an 8-bit bus version of the AD7245 (the AD7248) that loads in two bytes. Whether your need is determined by speed or power dissipation, it doesn't have to be limited by price. Our DACs come complete for as little as $\$ 8.40(1000 \mathrm{~s})$.

To find out how the AD 767 and AD 7245 can tend to your complete 12 -bit DAC needs, call Applications Engineering at (617) 935-5565 Ext. 2628 or 2629. Or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106.

Analog Devices, Inc., One Technology Way, P. O. Box 9106, Norwood, MA 02062-9106; Headquarters: (617) 329-4700; California: (714) 641-9391, (619) 268-4621, (408) 559-2037; Colorado: (303) 590-9952; Maryland: (301) 992-1994; Ohio: (614) 764-8795; Pennsylvania: (215) 643-7790; Texas: (214) 231-5094; Washington: (206) 251-9550; Austria: (222) 885504; Belgium: (3) 237 1672; Denmark: (2) 845800; France: (1) 4687-34-11; Holland: (1620) 81500; Israel: (052) 28995; Italy: (2) 6883831, (2) 6883832, (2) 6883833; Japan: (3) 263-6826;

Sweden: (8) 282740; Switzerland: (22) 315760 ; United Kingdom: (932) 232222; West Germany: (89) 570050

No other PROM or PLD vendor can make this statement:

${ }^{66}$ disi 9 bl 6

Building bridges

How many EE students could we expect to graduate if university professors were to tell each freshman engineering student the day before Spring break, "Go to Radio Shack, buy components, and build a working $10-\mathrm{GHz}$ FM receiver." Assume, for example, that the professors give the students no explanation and no background information, only a list of specifications. After vacation, the faculty tests the designs, but never explains why one or two work and the others don't. Instead, it's back to simple de circuits. Probably you couldn't find a better way to sour students on electrical engineering.
A ridiculous scenario? Maybe. But equally absurd situations do happen. During the past Christmas vacation, my son-an eighth grader-had to build a bridge out of toothpicks. The assignment included strict specifications for the length, width, and height of the span as well as the requirement that the bridge be able to support a $5-\mathrm{lb}$ brick. Someone with a bit of mechanical know-how might be able to build a reasonable bridge, but most 13 -year-olds don't have the vaguest idea of how forces act on bridges or on toothpick structures. The brick smashed most of the models and the teacher probably said, "Too bad, yours was a poor design."
Prior to vacation there was no preparation and no explanation of how bridges work. Likewise, after the bridges were tested there was no discussion of the lessons learned from the winning designs. Because the kids were never taught about structures and forces, they could have built 50 different bridge models, none of which could withstand the brick's force. The first thing most kids learn from the bridge-building experiment is that they hate building toothpick structures.
Also, because the teacher set a lofty goal that the kids couldn't reach without proper preparation, he taught them a subtle lesson: They are stupid. By diminishing our kids' self-esteem and their interest in new ideas, we destroy a precious resource-open, inquisitive minds.

The bridge-building assignment turns into an annoyance for the kids, who rebel against it, put it off until the last day of vacation, and give it as little attention as possible. Their reaction is easy to understand. Sometimes work assignments are a lot like toothpick bridges. I'm sure I've given people jobs to do without giving them the proper tools or without being sure they have the background and the skills to do the job. It's easy to assume that coworkers and subordinates share my enthusiasm and my goals, and that they have the same overall view of a project as I do. But it's not always so. When I make my next assignments, I'll try to remember the toothpick bridges.

P S: If one of your youngsters brings home specs for a toothpick bridge, drop the teacher a note and suggest instead a guest lecture by an engineer. Also, you might find someone who can give the kids a demonstration of how a mechanical-CAD system evaluates simple structures.

VME/PLUSgives view of your

Hold on to your seat. You're about to discover an entirely new level of VME performance.

Meet VME/PLUS. Our new family of VMEbus products with a host of sophisticated features that will

give
 VME/PLUS

your project the kind of performance you've only dreamed about.

VME/PLUS gives you a choice of microprocessors, including a 68030 running at 25 MHz without wait states. Complemented by 1 MB of local memory. There's also a new VSB interface on P2. Which lets you add lots of local memory and
I/O without
increasing bus overhead. You also get two serial ports and up to 4 MB of EPROM.
The result is system throughput that's way ahead of anything else in the VME world.

Think about the possibilities for real-time applications. For the first time, you can squeeze every ounce of performance from every processor. With no wasted overhead. And no stalls. But that's only the beginning. The newest

you a different competition.
 member of the VME/PLUS
 EPROM, so

family, CPU-32, comes with

a powerful new real-time, multitasking monitor called VMEPROM. It's resident in
there's no license required and no extra charge.

CPU-32 also includes full support for realtime operating systems and UNIX 5.3.

What this new technology means for you is unprecedented levels of speed and system throughput, exceptional reliability and - here's

the best part lower total system cost.

And if that's not enough, we also offer a full set of off-the-shelf peripheral boards and software. All VMEbus compatible. And guaranteed to cut the wait states out of your design cycle.

So if you're looking for the best way to stay ahead of your competition and your deadline, take a close look at

VME/PLUS.
Call us today at 1(800)BEST VME, and ask
 for our new 550-page, 1988 data book. You'll get such a great view of VME performance, you'll never look back.

VME at its best.

FORCE COMPUTERS, INC.
3165 Winchester Blvd., Campbell, CA 95008
Telephone (408) 370-6300
Telefax (408) 374-1146
FORCE COMPUTERS, GmbH
Daimlerstrasse 9 D-8012 Ottobrunn
Telefon (089) 60091-0 Telex 524190 forc-d
Telefax (089) 6097793

It's widely held that if you've seen one LED, you've seen them all. The same goes for things like terminal blocks and switches. A myth at times perpetuated by the very companies that make and market these products. With one notable exception.

Dialight Company

Passive components, actively engineered.

We believe that passive components are no less important than integrated circuits. An attitude that's reflected in the way we go about our work.

Our design team is constantly assessing the manufacturing techniques of OEMs in every important technology. Anticipating ways to make our products easier and more economical to design-in and install (our invention, the Circuit Board Indicator is a good example).

They'll spend months developing a new compound for our sealed switches. Or devising a reliable way of testing each and every one of our Circuit Board Indicators and LEDs. They'll lose sleep over milliohms of contact resistance, or a fraction of an inch clearance on our switch terminals.

It's an attitude that's ultimately reflected in the products we sell.

Dialight Circuit Board Indicators

A product concept we pioneered over fifteen years ago to facilitate fast, reliable circuit board installation of LEDs, the Dialight Circuit Board Indicator is designed to insert and wave solder in up to one fourth the time at up to one fourth the cost of non-packaged LEDs.

All 100% tested and available in hundreds of standard and custom designs including the latest super-bright gallium aluminum arsenide units.

Dialight Indicator Lights

No one makes more indicator lights for more applications than Dialight. Over a million designs accrued through fifty years of innovation. Incandescent, neon and LED units available in commercial and even the latest military configurations to meet MIL-L-85762A night vision requirements.

Dialight Switches

More than 100,000 designs that include illuminated pushbuttons, rockers, toggles and levers in a wide range of terminations, contact

ratings and mounting styles. All 100% tested. All customized to meet any application need.

Even sealed switches specifically engineered for board-mounted solvent washing with sealed O-rings to prevent seepage.

Kulka Terminal Blocks

Molded from special aggregates that in some models, withstand temperatures in excess of $155^{\circ} \mathrm{C}$. Making Kulka the only manufacturer to meet B, F and HT requirements of MIL-T-55164C.

Standard features include solid brass, nickel-plated screws, molded-in contacts and special plates that prevent overtorquing and breakage. All readily engineered into any conceivable custom or special order.

HHSmith Hardware

Spacers, stand-offs, handles, knobs and other components all available in an extremely wide
variety of sizes, configurations, and materials, as well as thread and finish specifications to meet any and every requirement. From the most basic and cost-sensitive to the most demanding Mil-spec applications.

Dialight, Kulka and HHSmith products that speak of rigorous quality control, exhaustive testing and the Company philosophy of design and engineering: the word passive may be used to describe our components, but never the way we build them.

Find out more about Dialight LEDs, Circuit Board Indicators, Indicator Lights, Switches, Kulka Terminal Blocks and HHSmith Components. Call us at 201-223-9400, or write Dialight Company, 1913 Atlantic Ave., Manasquan, NJ 08736, and ask for a free catalog today.

DIAUGHT•KULKA $\cdot H H S M I T H$

Engineering is the only commodity we sell.

Now you can unleash all the raw power of the 80386 for real-time applications. All you need is our new iRMK ${ }^{\text {tw }}$ real-time multi-processor kernel. It's the lean, clean core of a full-featured operating system.

Its blazing speed lets you keep up with the most demanding applications. Average interrupt response time is less than 10 microseconds. That's incredibly fast.

But more important is the iRMK
kernel's feature set. Which includes interrupt management, time management, mailboxes, semaphores, multitasking, and preemptive, priority-based scheduling.

And if you want more power, the iRMK kernel lets you use more processors. It's the only kernel that delivers multiprocessing support for the MULTIBUS® II Message Passing Co-processor.

Besides running fast, your application will also run right. Because we offer more reliability features than any other real-time kernel. Like user-defined objects. And priority adjusting semaphores (regions) to avoid deadlock.

And if your application requires features beyond what a kernel can deliver, we offer the iRMX ${ }^{\circ} 286$. A complete realtime operating system that runs onthe 80386 without modification.

In addition to basic kernel functions, it has reprogrammability, a human interface and on-target development.
iRMX 286 and the iRMK kernel are the latest developments in an operating system family we've been refining since real-time began for microprocessors. Currently, there are over half a million CPUs running iRMX, making it the most popular real-time O/S family in the world.

You'll also be glad to know that iRMX
operating systems are solidly in touch with the rest of the real-time world. Our OpenNET"' Network connects it toVAX/ VMS and even PC DOS compatibles.

REAL TIME COMPARISON			
	Interrupt Latency	Development Host	Regions
iRMK	$10 \mu \mathrm{sec}$.	PC-DOS	yes
iRMX 286	$13 \mu \mathrm{sec}$.	self hosted	yes
vaxeln	$33 \mu \mathrm{sec}$.	vaxvms	no

What's more, iRMK and iRMX are easy to get started with. Because they run on our industry standard family of open system MULTIBUS hardware. Including our new 20 MHz 80386

MULTIBUS I and II boards.We even offer complete systems for OEMs like our new 80386-based System 320.

And we top it all off with re-entrant compilers, debuggers, utilities, customer training and consulting. All designed to make your design task easier and faster. So why waste any more time? For a realtime response from Intel, call our toll-free number: (800) 548-4725, and ask for Literature Department W-392.

We'll mail a complete information packet within one working day.

And you'll see how quickly time flies when Intel is on your side.

MULTIBUS and iRMX are registered trademarks and OpenNET and iRMK are trademarks of Intel Corporation. © 1987 Intel Corporation

Molex Is Making The Connection Between...

 HIGH CURRENT 8 HIGH DENSITYFrom power supply to power distribution, Molex makes the connection.

Molex, the industry leader, now offers the most complete line of pin and socket connectors available. From standard wire-to-wire and wire-to-board versions, to the new high-performance "Mini-Fit Jr."

Mini-Fit Jr. meets today's demand for miniaturized desiǵn components.

With current handling capability of up to 9 amps per circuit, and a connector mating force of only 1.54 pounds per circuit, the Mini-Fit Jr. offers the ideal solution to your high current and high density interconnection requirements.

Molex is THE source for immediate delivery of pin and socket products.

Molex has factory stock and distributor inventory around the world. Our pin and socket connectors meet full UL, CSA, VDE, and EAMCL standards. Features include silo protected terminals, positive lock, and pull tabs. They're available in brass or phos-bronze, with tin or selective gold plating for low cost and high performance.

Molex has the pin and socket connector you need, in the size and configuration you need, for every discrete wire application.

Service To The Customer...Worldwide molex

Mini-Fit Jr. is our new generation power connector for your panel-towire, wire-to-wire, and board-towire applications.

TECHNOLOGY UPDATE

PLD-design software meets the challenge of multiple-device PLD applications

Charles H Small, Associate Editor

Until recently, engineers have tried to implement as many logic functions as they could in a single pro-grammable-logic device (PLD) in order to use as much as possible of the device's internal circuitry. Now, however, designers are realizing logic functions that are so complex that they must be mapped over several PLDs. This trend is particularly apparent for large state machines (see box, "Extending the classical state machine"), and it's straining the capabilities of many first-generation PLD-design software packages, which were designed to handle only one device at a time.

For aid in designing with multiple PLDs, you can turn to one of a number of more recent software packages. These packages range from simple, design-entry systems to very powerful packages that can select devices for you and partition designs semiautomatically or automatically.

You may be aware that multiple PLDs aren't the only solution to the problem of realizing extensive logic functions; you could employ one of the newer, very large PLDs instead. The manufacturers of these PLDs make available custom software packages that can handle logic specifications commensurate with the capacities of their devices. However, these large PLDs are not as fast as the fastest smaller PLDs, and many companies' inventory practices don't accommodate them, so you may, in some cases, still choose to gang several 20- or 24 -pin PLDs rather than adopt one of the more commodious architectures.

Multiple PLDs also make sense for designers who use PLD designs

Providing a semiautomatic logic partitioner, Data I/O Futurenet's Futuredesigner can fit your logic designs into multiple PLDs or a gate array.
only as an interim step, choosing to play it safe by prototyping large logic functions in PLDs before they realize the designs with gate arrays. For this kind of application, you might as well select the least expensive, most familiar parts.

Low-cost multiple simulation

Whatever your reason for developing a multiple-PLD design, you can choose from a fairly large assortment of design aids that range from simple to very powerful and come with prices ranging from nothing to tens of thousands of dollars. The lowest-cost package for multi-ple-PLD design is Signetics' Amaze -it's free to qualified customers. Amaze works with the firm's PLA (programmable-logic array) and PML (programmable macro logic) devices. When you use Amaze, you must manually partition and optimize your logic design. But once you've done this work, you can submit several compiled logic specifica-
tions to Amaze's simulator simultaneously to verify your multiple-PLD design automatically.

If you wish to design with PALs instead of PLAs, you can combine MMI's Palasm 2 and Royal Electronic's Logicsim (\$79). Like Amaze, Palasm 2 has an unbeatable cost/ performance ratio (it's free and it works) and it handles all of MMI's and AMD's programmable-logic devices. Palasm 2 is also like Amaze in that it requires you to partition your logic design manually. After you've derived the sets of Boolean equations for your partitioned design, you must submit your equations to Logicsim, because Palasm 2's simulator can handle only one device specification at a time.
Logicsim is a simple registertransfer logic (RTL) simulator that can handle several PLD specifications simultaneously as long as all the devices' signal names are consistent. In fact, it can work with any PLD-design software that produces

TECHNOLOGY UPDATE

Boolean equations. (Most PLD-design systems offer an option that lets you print out reduced Boolean equations no matter which designentry format you use-truth-table, schematic-capture, state-machine, state-diagram, or waveform.) You'll probably have to do some minor editing on the file of Boolean equations to put them in the right format for Logicsim.

As anyone who's ever attempted the task will testify, partitioning a logic function over several PLDs is a difficult task. The architecture of
the devices you select greatly influences the choices you can make in partitioning your design. A designer must also juggle such factors as device cost, device speed, power consumption, and alternate sourcing.

In general, there's no closed solution to the problem of selecting devices and partitioning and minimizing logic designs-especially for designs that use several asynchronous clocks or asynchronous preset and clear inputs. Given enough time and talent, a designer can massage
the equations of almost any design so that they'll fit into a particular device. Therefore, optimizing a logic design is an iterative process. Iterative processes, by their very nature, consume a lot of time, whether it's the designer's time or computer time.

If your budget can stand some greater expenditures, you can get more computer assistance: Futuredesigner from Data I/O Futurenet and LOG/iC from Kontron (Isdata in Europe) offer help in two different areas.

Extending the classical state machine

The theory of classical state machines predates digital electronics. Now that you can obtain PLDs that have computer-like features such as subroutine stacks and microprogrammed architectures, you'll need to extend the classical state machine to take full advantage of these devices' features and to employ modern hierarchical-design methods.

Theoretically, the most compact and abstract description of a Mealy state machine is the mathematician's 5-tuple:

$$
(\mathbf{I}, \mathbf{Z}, \mathbf{Q}, \omega, \delta)
$$

where vector I is the set of inputs to the state machine, vector \mathbf{Z} is the set of states, vector \mathbf{Q} is the set of outputs, and ω and δ are a pair of functions that relate inputs to next states and inputs to outputs, respectively.

Although the mathematical representation of a state machine serves to focus attention on the machine's elements, engineers do not find this mathematical representation particularly illuminating. They prefer, instead, to use a For-Next table (Fig Aa). In a For-Next table, each row of the table corresponds to a state of the state machine. The column headings correspond to the machine's inputs. At each intersection of a row and column are two elements: the output that the machine makes in response to the input and the next state of the machine.

But the more abstract, mathematical representation of a state machine does serve neatly as a starting point for describing state-machine extensions formally. Engineers have, for some time, employed an ad hoc, undocumented extension to the classical state machine by allowing for both regis-
tered, state-dependent outputs and asynchronous outputs (which are not accounted for in the mathematician's 5-tuple).

You can further extend the classical state machine in two ways: first, by replacing the input vector (I) with a more flexible menu vector (M), and second, by replacing the output vector (\mathbf{Q}) with a more powerful action vector (A). The menu

Fig A-You can extend the classical Mealy state machine (a) in two ways to accommodate new PLDs having microprogrammed architectures and return stacks. As b shows, you can first substitute a set of menu choices appropriate to each state for the fixed array of inputs in \boldsymbol{a} and then expand the notion of the output vector (\mathbb{Q}) in \boldsymbol{a} into the action vector (\boldsymbol{A}) in \boldsymbol{b}. The action vector allows the state machine to emit a sequence of outputs as well as jumps to and from submachines.

TECHNOLOGY UPDATE

Futuredesigner is, among other things, a semiautomatic logic partitioner. It derives partitioned logic equations for a multiple-PLD design if you first select the devices and then specify which logical output will be assigned to which PLD's output pin. Depending on the options you buy, Futuredesigner can also simulate multiple-PLD designs. Futuredesigner's pricing is complex: $\$ 7990$ for logic-equation, statemachine, and truth-table design entry (the price includes an IBM PC coprocessor board); $\$ 3990$ for sche-
matic capture; and $\$ 5500$ for a Cadat simulator plus $\$ 800$ for PLD/Cadat translation software.

Kontron's LOG/iC, on the other hand, can automatically select devices and partition your design, but only if you use PLAs; if you use other devices, you must perform device selection and partitioning manually. The PLA package is $\$ 1995$; packages for other devices and simulators cost more.

Besides LOG/iC, a number of other experimental automatic de-vice-selection, minimization, and
partitioning programs also prefer to work with the more flexible devices such as PLAs, or PLDs having programmable macrocells (the 22 V 10 or GAL (generic array logic) devices, for instance), rather than PALs, which have a more rigid architecture. Two recently announced software packages carry PLD-design automation a step further, however: They work with all PLDs, not just the flexible ones.

Hewlett-Packard's HP PLD design system, for example, runs on HP 9000 Series 300 workstations; it
vector (\mathbf{M}) is itself a set of vectors, each vector being the set of allowable inputs for a given state. The action vector (A) includes the classical output vector (Q) but also allows the state machine to enter or exit other state machines, perform a series of actions, or emit asynchronous outputs. The expanded state machine becomes, therefore:

$$
(\mathbf{M}, \mathbf{Z}, \mathbf{A}, \omega, \delta)
$$

To understand why you need a menu vector for complex systems, consider, for example, electricaldrafting programs. These programs can have more than 800 commands. To represent something as complex as a state machine, you would need a For-Next table having more than 800 columns, which is clearly far too cumbersome. Therefore, when you model a large state machine having many inputs, instead of having all the inputs active all the time and ranging them across the top of the For-Next table, you recast the For-Next table so that only the allowable inputs for each state-or each line of the table-are entered right above each action/next-state entry (Fig Ab). Note that with this menu-like representation, your For-Next table no longer needs to be rectangular; each state has only as many entries in the table as it has allowable inputs.

Meanwhile, the output vector (\mathbf{Q}) is replaced with the action vector (A). The action vector (A) allows you to break a large state machine up into a hierarchical design and to take advantage of newer PLDs' return stacks and microprogrammed architectures.

In response to an input, the expanded state machine's action vector (A) can emit the classical state
machine's single output (Q) as well as a series of outputs (assuming you have chosen a microprogrammed architecture to implement your state machine) or emit asynchronous outputs.

Additionally, the expanded state machine can invoke (or Enter) a lower-level state machine. Naturally, the action vector, A, also allows a corresponding Exit operation to leave a lower-level state machine and return control to the higher-level state machine. The term for a lower-level state machine is "submachine."

The classical state machine has no memory. It doesn't know where it came from; it knows only where it's going. To see how the concept of the submachine proves useful, consider a simple tape recorder. The recorder has buttons for stop, play, record, rewind, fast forward, and pause. The recorder's specification accepts the pause button as an allowable input when the recorder is playing, recording, rewinding, or fast forwarding. Further, the spec also states that pressing the pause button a second time should return the recorder to its previous state.

To model the operation of this tape recorder, a classical state machine would need four pause states-one each for the play, record, rewind, and fast-forward states. Modeling the recorder with an expanded state machine would involve only a single pause submachine. Pressing the pause button, in any allowable state, would cause the recorder state machine to invoke (or Enter) the pause submachine. The only allowable input to the pause submachine is the pause button. Pressing the pause button again causes the pause submachine to execute an Exit and return control to the recorder state machine.

TECHNOLOGY UPDATE

Even a low-cost PLD design system such as Amaze (from Signetics) can help you with multiple-PLD designs if its simulator can at least verify a multiple-PLD specification.
costs from $\$ 8000$ to $\$ 14,500$. (With the exception of HP PLD, all the software packages mentioned here run on IBM PCs; an IBM PC/XT or $\mathrm{PC} / \mathrm{AT}$ with a hard disk is just about mandatory for these programs because of their extensive device libraries and user screens.) When you use HP PLD, you first enter your logic design without worrying about device selection. The program then automatically selects devices and partitions your design over several devices, if necessary.

The HP PLD software package automatically selects devices and fits complex PLD designs into multiple devices as necessary.

Similarly, Minc's Logic Designer (\$4500) allows you to enter your logic design in a variety of designentry formats without first selecting a device. Logic Designer, too, searches its library of device types for the best fit for your logic specification. In contrast, older programs force you to try to compile your
design into a given device; if your design won't fit, you have no choice but to resubmit the logic equations after choosing a different part. This hit-or-miss method can prove to be time consuming and frustrating.

HP's HP PLD and Minc's Logic Designer take into consideration such device-specific factors as power consumption, pricing, and inventory restrictions when making an automatic device selection. Also, both packages have a new method of log-ic-design entry-waveform entry. Both packages allow you to employ a graphics editor to draw input and output waveforms from which the programs deduce logic equations. You could, for example, copy a $\mu \mathrm{P}$'s I/O signals from its hardware manual and combine the $\mu \mathrm{P}$'s signals with the waveforms from a peripheral IC's spec sheet. The programs then could automatically design a PLD that would serve as an interface between the $\mu \mathrm{P}$ and the peripheral IC-all without your having to write a single Boolean equation.

EDN

Article Interest Quotient
(Circle One)
High 509 Medium 510 Low 511

For more information . . .

For more information on the PLD-design software described in this article, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

Data I/O Futurenet Corp
10525 Willows Rd NE
Redmond, WA 98073
(206) 881-6444

Circle No 708
Hewlett-Packard Co Inquiries Manager 1820 Embarcadero Rd Palo Alto, CA 94303
Phone local office Circle No 709

Isdata GmbH

Haid-und-Neu-Strasse 7
D-7500 Karlsruhe 1
West Germany
Circle No 710

Kontron Electronics Inc 630 Clyde Ave
Mountain View, CA 94039
(415) 965-7020
(800) 227-8834

Circle No 711
Mine Inc
1575 York Rd
Colorado Springs, CO 80918
(303) 590-1155

Circle No 712
Monolithic Memories Inc 2175 Mission College Blvd Santa Clara, CA 05054 (408) 970-9700

Circle No 713

Royal Electronics Ltd
1314 Kilborn Ave Ottawa, Ontario, Canada (613) 723-0725

TLX 06989228
Circle No 714
Signetics Corp
Box 3409
Sunnyvale, CA 94088
(408) 991-2000

Circle No 715

It's not obvious because the STD BUS is usually hidden away, controlling your tollways, the temperature of your office, the quality of your manufacturing, and even the animation in the local fun park.

STD BUS anonymously helps build personal computers, bottle soft drinks, and even brings you the evening news. Why? Because the STD BUS provides the best all-around solution to process control, manufacturing automation, data aquisition and instrumentation.
STD BUS provides the widest range of 8- and 16bit processors and operating systems, plus the largest selection of industrial I/O cards available from any bus. The small-form-factor boards are rugged, reliable, and provide you with a building block

PL057
approach that ensures cost-effective systems design and maximum flexibility.

We're here, you just can't see us.
Find out if you have a hidden application for the STD BUS, call us today.

log	
mpute	
Sales	(803) 877-8700
Contemporary Control	
Systems, Inc.	(312) 963-7070
Enlode incorpo	
Incorporated	(703) 451-2043
atrix	(919) 833-2000
cro-	(818) 915-
izar	

Octagon Systems
Corporation (303) 426-8540 Pro-Log Corporation ... (800) 538-9570 Proteus Industries Inc. .. (415) 962-8237 R.L.C. Enterprises (805) 466-9717 Robotrol Corp. (408) 778-0400 Technology 80 Inc. (612) 542-9545 VersaLogic Corp. (800) 824-3163 WinSystems, Inc. (817) 274-7553 XYZ Electronics Inc. (317) 335-2128 Ziatech Corporation (805) 541-0488 National Instruments ...(512) 250-9119

An alternate source for ASICs? It's a piece of cake.

You designed an ASIC with one vendor's library and system. Now you need an alternate vendor. What do you do?

Introducing Netrans ${ }^{\text {TM }}$ universal netlist translator.

Call Gould. Our new Netrans ${ }^{\text {TM }}$ service frees you from being locked-in to any single vendor for ASIC solutions.
Just bring us your netlist. No matter whose cell library you used. No matter if you need a gate array or standard cell IC.
We'll use Netrans, ${ }^{\text {TTM }}$ the latest addition to our growing roster of expert-based design aids,
and convert your netlist to Gould format. Then your circuit can be produced under our rigorous SPC-assured quality conditions.

For details, call 1-800-GOULD-10. Or write: ASIC Solutions, Gould Inc., Semiconductor Division, 3800 Homestead Road, Santa Clara, CA 95051. Because Netrans ${ }^{\text {TM }}$ is reason to celebrate.

Manufacturer of Gould AMI semiconductors.

PM 3296A 400MHz

Upward mobility

The Philips PM 3296A. Not only the world's first 400 MHz portable, but also the only one that packs around this much value.

HIGHER PERFORMANCE

- Unprecedented 400 MHz Bandwidth. This breakthrough in portable technology produces sub-nanosecond performance all the way to the probetip.
- 24 kV CRT for optimum viewing. Writing speeds of up to 4 div/ns reveal the fastest signal details and narrowest glitches-even at the lowest repetition rates.
- Instant display at the touch of a button. Philips' Autoset intelligent beamfinder automatically selects amplitude, timebase and triggering for instant display of any input signal on any channel. Eliminating slow, error-prone manual signal-seeking.
- Built.in Programmability. For quick, correct measurements time after time, up to 75 front-panel settings can be stored in
menus, modified or recalled via Philips' proprietary infra-red remote control. No need for a separate computer or controller.
- IEEE Compatibility. Available at no extra cost in the PM 3296A, an IEEE-488 interface is ready for fast computer hook-up. Perfect for automatic measurement and computer-aided diagnostics and calibration.
- Choice of models: The 200 MHz PM 3286 A offers identical standard features. HIGHER VALUE
Innovative VHF technology with unprecedented ease of operation. Plus full programming capability at no extra cost. All for less than you'd pay for the next-best scope and IEEE interface add-on.
HIGHER SUPPORT
These Philips instruments also come with a 3-year warranty and all the technical and service assistance you need. From Flukethe people who believe that extraordinary technology deserves extraordinary support.

TEST THE DIFFERENCE

Call Fluke today at 800-44-FLUKE ext. 77 . And see how much more value a portable scope can pack.

John Fluke Mfg. Co., Inc., P.0. Box C9090, M/S 250C,
Everett, WA. 98206
U.S.: 206-356-5400 CANADA: 416-890-7600

OTHER COUNTRIES 206-356-5500
© Copyright 1987 John Fluke Mfg. Co., Inc.
All rights reserved. Ad No. 1076-P329X

PM 3295/96A • $400 \mathrm{MHz} \cdot$ OSCILLOSCOPES

Your next destination:

The ACLComputer Age.

The future belongs to computers and peripherals built with RCA Advanced CMOS Logic (ACL).

The pressure is on to make your systems smaller, faster, cheaper.

Some of your competitors are doing just that by incorporating ACL into their new designs. If you want to stay on the fast track, you can't afford not to consider ACL for your new designs.

The computer of the future.

Imagine a computer with power dissipation so low you could eliminate all cooling systems. Or design a sealed system to prevent dust problems.

And get dramatically improved reliability, thanks to the far lower heat generated. As well as far smaller system size.

You'd also be able to use it in a far wider operating temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$). Even in high-noise environments.

FAST* speed, CMOS benefits.

Advanced CMOS Logic gives you high speed (less than 3ns propagation delay with our AC00 NAND gate) and 24 mA output drive current.

But unlike FAST, it gives you a whole new world of design opportunity for computers, peripherals, telecommunications and other speed-intensive applications.

ACL dissipates less than $1 / 8$ Watt while switching, compared to $1 / 2$ Watt for a FAST IC (octal transceiver operating at 5 MHz). And quiescent power savings are even more dramatic: ACL idles at a small fraction of the power of a FAST IC.

In addition, ACL offers balanced propagation delay, superior input characteristics, improved output source current, low ground bounce and a wider operating supply voltage range.

Latch-up and ESD protection, too.

Latch-up concern is virtually eliminated, because ACL uses a thin epitaxial layer which effectively shorts the parasitic PNP transistor responsible for SCR latch-up.

And a dual diode input/output circuit provides ESD protection in excess of 2 KV .

A broad and growing product line.

Our line already includes over 100 of the most popular types (SSI, MSI and LSI). More are coming soon. And many are available in High-Rel versions.

All this at FAST prices.

Our ACL line is priced comparably to FAST. So you get better performance at no extra cost. Why wait, when your competition is very likely designing its first generation of ACL products right now?

Get into the passing lane, with RCA ACL from the CMOS leader: GE Solid State. Free test evaluation kits are available for qualified users. Kits must be requested on your company letterhead. Write: GE Solid State, Box 2900, Somerville, NJ 08876.

For more information, call toll-free 800-443-7364, extension 24. Or contact your local CE Solid State sales office or distributor.
*FASI is a trademark of Fairchild Semiconductor Conp.
In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm (08) 793-9500.

GE Solid State

Making this socket for automatic placement stumped the competition.

This socket had been made by a major RN competitor. New, more stringent customer specs needed for automatic placement of the socket on PC boards, stumped this supplier as well as many others. The RN "P/Q TEAM", working with customer engineers, responded quickly with modifications of a standard socket that included more precise dimensions and consistent quality in higher production quantities. $R N$ is now delivering precision, high reliability sockets to this major OEM for high speed, automatic assembly.

This is the RN "Partners in Quality Team" in action. It brings all of our engineering, production and quality control resources together with customer experts to solve socket and connector problems with speed and efficiency. Call on the RN "P/Q TEAM" for fast, certain solutions to your interconnect problems.

This is the socket that competitors could not make precisely enough to be assembled automatically. It is a modestly priced ICO series DIP socket. RN modified it to rigid customer specs and now produces it in large quantities of unvarying quality that meet the precise requirements of high speed assembly. Just one more example of the RN "Partners in Quality Team" solving difficult customer problems.

```
CIRCLE NO }10
```


Application Specific PGA Sockets

Robinson Nugent offers a wide variety of Pin Grid Array Sockets for your ASIC's. They feature: High temp bodies for wave soldering - Disposable pin carriers for zero profile contacts - Sizes, 8×8 up to 21×21 with unlimited configurations - Extraction tools available - Molded standoffs for socket body. Write today for complete new PGA catalog.

CIRCLE NO 103
"The RN 'P/Q TEAM' concept bringsall of our design, engineering and production skills to bear on your unique socket/connector problems. We work closely with your people to create solutions that are delivered on-time and defect-free. You have my personal guarantee on it."

R. A. Lindenmuth President/CEO

Write or call today for the comprehensive new brochure: "The RN P / Q Team in Action". You'll learn how smart companies are putting the brains, resources and experience of RN engineers to work to solve tough interconnection problems with speed and efficiency.

CIRCLE NO 104

100,000 12-BIT A/D CONVERSIONS-FREE

Get $3 \mu \mathrm{~s}$, 12-bit accuracy for the price of a 5 /s AD7572 converter.

The new 12-bit CMOS MAX162 from Maxim delivers a 40% increase in A/D conversion rate for the same price as the industry standard AD7572. That's over 100,000 more conversions per second-absolutely free.

The MAX162 packs on-chip a buried zener reference, three-state output drivers, high-speed microprocessor interface circuitry, internal or external clock options and maintains a low power drain of only 135 mW . It operates from +5 V and -15 V or -12 V supplies. And is pin for pin compatible with the AD7572.

If you have a design that uses the slower AD7572, you can upgrade to the MAX162 at no extra cost. If you're in the throes of a new design, you can rest assured that the MAX162 is the ticket for today's faster DSP applications.

Or get a low noise AD7572 from Maxim.

If your design is committed to the AD7572, consider this-Maxim's AD7572s (and MAX162s) deliver a $3 X$ reduction in noise over the original manufacturer. And every standard part we put into a DIP is burned-in at $150^{\circ} \mathrm{C}$ for 24 hours-at no extra charge. This results in an incredibly low failure rate of 6.8 failures per billion hours of operation.

In a smaller footprint than PLCC.

Only Maxim offers you both the MAX162 and AD7572 in the smallest surface-mounted package available-the SOIC. Our SOIC packages are subjected to rigorous lot qualifications, pressure pot, solder immersion and life tests. And thanks to advanced packaging materials developed specifically for surface-mount, over 99% of our SOICs survive these tests to become the most reliable surface-mount parts you can buy.* Anywhere.

So what will it be? A 3μ s MAX162 or a $5 \mu \mathrm{~s}$ AD7572? The price is the same. The choice is yours. And soon, that choice will include a military version screened to MIL-STD-883B
Rev. C requirements.
Call your Maxim representative or distributor today for data sheets and samples. Or write Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600. And tell them you'd like 100,000 12-bit A/D conversions-free.
*Maxim Reliability Report RR-IC 1987.

1VノXIノ

[^4]
Growing array of l-chip dc/dc converters provides power for diverse applications

Dave Pryce, Associate Editor

The increasing variety of chip-level de/de converters is not only changing the way system designers structure conventional power supplies, but is also providing solutions to applications problems that were previously satisfied only by more costly and cumbersome approaches. A single, low-power monolithic IC can supply the exact amount of voltage needed for specific pc-board functions, and high-power types can simplify the design and reduce the component count of many power supplies.

The conventional way to obtain multiple dc outputs is to generate them in the main power supply and then bus them to the needed points throughout the system. An alternative approach, and one that is becoming increasingly popular, is to use the power supply's main dc output (typically 5 V for computer systems) and distribute it to the various boards throughout the system for conversion to a different voltage by a small, monolithic de/dc converter. An example of this approach is shown in Fig 1, where three boardlevel converters generate $-5,15$, and $\pm 12 \mathrm{~V}$ from a standard 5 V bus.

Distributed power has advantages

Using a distributed approach gives you several advantages: It reduces the size and complexity of the main power supply, allows the local generation of the different voltages needed by analog circuits, and simplifies any subsequent design modifications. Not so obvious, but perhaps equally important, is that the distributed approach reduces regulation problems associated with voltage drops across lengthy wire

Fig 1-Monolithic dc/dc converters provide easy solutions to the need for different voltages throughout a system. Shown here are three converters, operating from a 5 V bus, that step up the bus voltage and/or invert its polarity.
runs (paricularly those carrying high current). Further, the localconverter approach minimizes decoupling problems.

Monolithic de/dc converters are also useful for generating higher voltages when operated from lowvoltage battery supplies such as 1.5 and 3 V . Some of the new CMOS converters are particularly efficient for low- to medium-power applications. Conversely, other de/de converters are specifically designed to convert a high input voltage, such as the -48 V from a telephone line, to a lower voltage for powering digital and/or analog systems.

Most monolithic de/de converters are essentially switching-regulator circuits that include the output switch, but not the usual bells and whistles associated with the typical PWM switch-mode control circuit. With the possible exception of some types that are capable of handling high voltages, de/dc converters are designed for ease of use and low end-system cost; any required
housekeeping features are usually built into the devices.

Converters take three forms

Depending on their input-voltage range and the output voltage (or voltages) they deliver, de/de converters take one of three basic forms:

- Boost (or step-up) converter (Fig 2a)-In this converter, the output voltage is higher than the input voltage. The higher output voltage is a result of the voltage developed across the inductor, which stores energy as a function of the switching frequency and the duty cycle.
- Buck (or step-down) converter (Fig 2b)-This converter's voltage is lower than its input voltage. The converter chops the input voltage into a pulse train. The switching duty cycle determines the output voltage, but the inductor voltage does not add to the input

Best performance ina supporting role.

voltage as is the case with the boost converter.

- Buck-boost (or step-up/stepdown) converter (Fig 2c)This converter's output voltage can be either higher or lower than its input voltage, depending on the duty cycle of the switching. This type of converter inverts the polarity of the output with respect to the input.
Typical examples of the currently available crop of low-power CMOS converters are two devices from Maxim Integrated Products. The MAX632 and MAX636 (Fig 3) are complementary in nature; both operate from an input voltage of 5 V , but the MAX632 provides a positive 12 V output, and the MAX 636 provides a negative 12 V output. Each device comes in an 8-pin plastic DIP.
These converter types are ideal for powering low-power analog circuits from a 5 V digital bus. They're relatively inexpensive and require very few external components. The MAX632 even includes a built-in diode, although you can use an external diode for greater efficiency, if you wish. For best results, the external diode should be a switching type such as the 1N4148 or the 1N5817 (Schottky).

Standard rectifier diodes designed to work at $60-\mathrm{Hz}$ line frequency don't function very well at switching frequencies in the $40-\mathrm{kHz}$ range. When used as shown in Fig 3, the MAX632 provides an output of 12 V at 25 mA (with about 85% efficiency) and the MAX636 provides an output of -12 V at 15 mA (with about 75\% efficiency) (Ref 1).

Model LM3578 from National Semiconductor is a versatile bipolar device that you can use as a step-up (boost) converter, a step-down (buck) converter, or (with the aid of an external transistor) a polarityinverting, step-up/step-down (buckboost) converter. Fig 4 shows the internal functions of the device, which has some unusual features. The input comparator stage has

Fig 2-A de/dc converter can take one of three basic forms. The boost converter (a) steps up the input voltage, the buck converter (b) steps down the input voltage, and the buck-boost converter (c) can either step up or step down the input voltage while inverting its polarity.

Fig 3-Low-power CMOS converters are ideal for providing the unique voltage requirements of analog circuits from a 5 V digital bus. Here, two different models provide 12 V (a) and -12 V (b) for different applications.
both inverting and noninverting inputs that simplify circuit design, and you can reference the external current-limit circuitry to either ground or the V_{S} pin.

Depending on the chosen configuration, you can take the output from either the collector or the emitter of the output transistor. The LM3578
operates from any dc voltage in the 2 to 40 V range and can supply output currents as high as 750 mA . The oscillator frequency is adjustable to 100 kHz , and duty cycles to 90% are possible. As is the case with many low- to medium-power de/de converters, the LM3578 comes in an 8 -pin DIP.

Although they also perform voltage conversion, the LTC1044 and LTC1054 from Linear Technology Corp operate differently than do the converters previously discussed. The LTC1044 and LTC1054 provide voltage conversion by means of a switched-capacitor method. The LTC1044 (Fig 5) is pin compatible with the popular 7660 type but has some improved performance specifications, including the capability of operating over a 1.5 to 9 V inputvoltage range without external protection diodes.

The LTC1044 is a CMOS device that's ideal for converting a low voltage from a battery (such as two 1.2 V mercury cells) to a 4.8 V supply for powering CMOS logic. The LTC1054 is a bipolar type that's pin compatible with the LTC1044/7660 types, but can utilize higher currents (it draws 100 mA ; the LTC1044 draws 20 mA). The LTC1044 and LTC1054 are versatile, low-power devices. You can use them to double, halve, or invert an input voltage. Both converters are packaged in 8-pin DIPs.

Resembling more a controller than a complete dc/dc converter, the RC4292 from Raytheon converts a negative input voltage to a positive and/or a negative output voltage. The RC4292 can accept a wide range of input voltages, from a minimum of -20 V to a maximum of -120 V , and can provide an output voltage from -24 to +24 V with a typical efficiency of 70%. The out-put-drive capability of this bipolar device is 350 mA . Although you can use the IC on a stand-alone basis, most applications of the RC4292 incorporate an external power transistor and a transformer.

One such application is shown in Fig 6, in which the RC4292 converts the off-hook telephone-line voltage of -48 V to a 5 V output suitable for powering digital circuits. The external power MOSFET drives the transformer, which steps down the supply voltage. By rearranging the output rectifier, you can provide a

Fig 4-This monolithic converter can step up, step down, or invert the input voltage. To invert the input voltage, the device (the LM3578 from National Semiconductor) requires an external transistor.

Fig 5-A good choice for powering CMOS logic, the LTC1044 from Linear Technology Corp uses two 1.2 V mercury cells as the input-voltage source in this application. The converter provides an output of 4.8 V at low current.
negative output; by using a transformer having multiple windings (along with two rectifiers) you can provide both positive and negative outputs.

Similar to the Raytheon RC4292 in their ability to handle high input voltages are the Si9100 and Si9102 from Siliconix. These D/CMOS types, however, include the power switch on chip and offer a somewhat more versatile architecture. These more-complex devices therefore require a 14 -pin DIP rather than the 8 -pin DIP of the RC4292. The Si9100 has an input-voltage range of 10 to 70 V and can supply 350 mA of output current. The Si9102 has an
input-voltage range of 10 to 120 V and an output-current rating of 250 mA .

Although you can use them without a transformer for nonisolated applications, the Si9100/9102 find principal use in transformer-coupled flyback- and forward-converter applications. Such applications include ISDN and PBX equipment, modems, and distributed-power systems. Thanks to their high inputvoltage ratings, you can operate these devices directly from the -48 V telephone line. The 120 V rated Si9102 can operate from -96 V double-battery telecommunications power supplies.

TECHNOLOGY UPDATE

Climbing to the high-power rung of the de/dc-converter ladder, you can find types from Linear Technology Corp, Lambda, and SGS that are capable of providing output currents from 1.5 to 10 A .

The LT1070 from Linear Technol-
ogy Corp has an input-voltage range of 3 to 60 V and can deliver 5 A output current; it's available in either a 5 -pin TO-3 package or a 5 -pin TO-220 package. The LT1070 is a current-mode control chip. This operating mode offers the advan-
tages of pulse-by-pulse current limiting and the reduction of the 90° phase shift in the inductor (Ref 2). Several high-power dc/dc converters are available from Lambda Semiconductors. The LSH6300 Series includes devices that have cur-

Fig 6-Useful in telecomm applications, this circuit uses the RC4292 from Raytheon to convert the off-hook telephone-line voltage of -48V to a 5 V output suitable for powering digital circuits.

VENDOR	REPRESENTATIVE MONOLITHIC DC/DC CONVERTERS							PRICE
	PART NUMBER	INPUT VOLTAGE (V)	OUTPUT VOLTAGE (V)	OUTPUT CURRENT (A)	OPERATING FREQUENCY (kHz)	PROCESS TECHNOLOGY	PACKAGE	
LAMBDA	LSH6325P	12 TO 35	5 TO 27	2	70	BIPOLAR	5-PIN TO-200	\$11.22 (100)
LINEAR TECHNOLOGY CORP	LT1070	3 TO 60	CIRCUITDEPENDENT	5	40	BIPOLAR	$\begin{aligned} & \text { 5-PIN TO-3 } \\ & \text { 5-PIN TO-220 } \end{aligned}$	$\begin{aligned} & \$ 9.60(100) \\ & \$ 7.45(100) \end{aligned}$
	LTC1044	1.5 TO 9	$\begin{aligned} & V_{\text {OUT }}=2 V_{\text {IN }} \\ & V_{\text {OUT }}=V_{\text {IN }} / 2 \\ & V_{\text {OUT }}=-V_{\text {IN }} \end{aligned}$	0.020	10	CMOS	8-PIN DIP	\$1.95 (100)
	LT1054	3.5 TO 15		0.100	35	BIPOLAR	8-PIN DIP	\$2.95 (100)
MAXIM INTEGRATED PRODUCTS	MAX630	2 TO 16.5	$V_{\text {OUT }}>V_{\text {IN }}$	0.375	75	CMOS	8-PIN DIP	\$3.50 (100)
	MAX638	3 TO 16.5	$\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}$	0.375	65	CMOS	8-PIN DIP	\$3.32 (100)
	MAX632	2 TO 12.6	12	0.325	50	CMOS	8 -PIN DIP	\$3.50 (100)
	MAX636	2 TO 16.5	-12	0.375	50	CMOS	8-PIN DIP	\$3.32 (100)
	MAX680	2 TO 6	$\begin{gathered} 4 \text { TO } 12 \\ -4 \text { TO }-12 \end{gathered}$	0.010	8	CMOS	8-PIN DIP	\$2.16 (100)
NATIONAL	LM3578	2 TO 40	$\begin{aligned} & V_{\text {OUT }}>V_{\text {IN }} \\ & V_{\text {OUT }}<V_{\text {IN }} \end{aligned}$	0.750	100	BIPOLAR	8-PIN DIP	\$1.40 (1000)
RAYTHEON	RC4292	-20 TO -120	-24 TO 24	0.350	100	BIPOLAR	8-PIN DIP	\$2.65 (1000)
SGS	L4962	9 TO 46	5 TO 40	1.5	150	BIPOLAR	16-PIN POWER DIP	\$1.50 (10,000)
	L4970	15 TO 50	5 TO 40	10	500	BCD	15-PIN MULTIWATT	\$4.50 (10,000)
SILICONIX	Si9100	10 TO 70	$\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}$	0.350	120	D/CMOS	14-PIN DIP	\$5.43 (100)
	Si9102	10 TO 120	$\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}$	0.250	120	D/CMOS	14-PIN DIP	\$5.97 (100)

Only Pioneer Power Supplies Deliver . 99 Power Factor

That's the typical power factor on Pioneer supplies from 400 to 2000 watts. That means only Pioneer can give you 1000 watts of DC power from a standard UL 110 VAC, 15 amp wall plug. That's 300 more watts of usable power for system peripherals and accessories.
$110 / 220$ volt input strapping is eliminated. You can operate over a continuous voltage range from 90264 VAC.
You'll also get the added benefits of improved hold-up performance, reduced line harmonics between 10 and 150 kHz , and no AC line frequency sensitivity.

We offer the broadest high power line in the industry. From 250 to 2000 watts, single or multiple output, AC/DC or DC/DC. Standard units are certified to UL, CSA and IEC safety to Class I SELV levels and meet VDE and FCC conducted and radiated EMI specs.
 characteristically drawn by a switcher into a sinusoidal waveform, in-phase with the line voltage.

With all options you might need, including built-in Single-Channel Battery Backup, Single-Wire Load Sharing, "connectorized" modules for hot-changing, or any of three dozen more.

No matter how tough your specs, chances are excellent that Pioneer has built one like it. Why not? We've shipped over 300,000 high power switchers. Worldwide.
And reliability? All supplies are 100% tested and given a 48 -hour, full-power burn-in. That's how we achieve MTBFs up to 250,000 hrs.

So if you'd like to turn up the output power on your next supply by over 30%, call us at $800-233$ 1745. In Calif., 800-848-1745. Or write 1745 Berkeley Street, Santa Monica, CA 90404. FAX: (213) 453-3929. We're the only ones with .99 .

Fig 7-This hybrid 2A dc/dc converter from Lambda integrates a monolithic control/power chip with a Schottky diode, thick-film resistors, and chip capacitors on a single substrate.
rent ratings of 2,3 , and 5 A . The LSH6300 types (Fig 7) are actually miniature hybrids packaged in a TO-220 case. In each of these devices, however, the monolithic section is the heart of the converter: It contains the regulator, error amplifier, comparator, oscillator, currentlimit circuitry, logic circuits, and output switching transistor.
The monolithic chip-along with a Schottky diode, thick-film resistors, and chip capacitors-is mounted on a ceramic substrate. You need to add only an external inductor and one or two capacitors to form a complete step-down de/dc converter. The LSH6300 converters are normally set for a 5 V output, but
you can program each device for higher voltages by adding a resistor between the output pin and the sense pin.
Finally, two more excellent examples of high-power dc/dc converters are the L4962 and L4970 from SGS Semiconductor. The L4962 is a bipolar device that has an input-voltage range of 9 to 46 V , an output-current rating of 1.5 A , and a maximum operating frequency of 150 kHz . The L4962 is housed in a 16 -pin power DIP. For high-power applications, the L4970 has an input-voltage range of 15 to 50 V and an out-put-current rating of 10 A . The L4970 is fabricated in a bipolar-CMOS-DMOS (BCD) process that

For more information

For more information on the de/dc converters discussed in this article, contact the following manufacturers directly or circle the appropriate numbers on the Information Retrieval Service card.

[^5]National Semiconductor Corp Box 58090,
Santa Clara, CA 95052
(408) 721-5000

Circle No 704
Raytheon Co
Semiconductor Div
350 Ellis St
Mountain View, CA 94043
(415) $968-9211$

Circle No 705

SGS Semiconductor Corp 1000 E Bell Rd Phoenix, AZ 85022 (602) 867-6100 Circle No 706

Siliconix Inc 2201 Laurelwood Rd Santa Clara, CA 95054 (408) 988-8000 Circle No 707
allows you to operate the device at frequencies as high as 500 kHz . Because of its high-current and highpower capabilities, the L4970 comes in a rugged 15 -pin package (called "Multiwatt") that has a long metal tab that aids in dissipating heat.
Although your present designs may not need the assistance of a $\mathrm{de} / \mathrm{dc}$ converter, chances are that future ones will. The use of a single system-supply voltage (usually 5 V) is increasing in popularity, and it's a simple matter to provide the required on-card voltages for analog circuits by using a small, monolithic de/dc converter that can step up or invert the bused voltage.
Monolithic converters can also simplify the design of your system power supply by combining several functions on a single chip. Although manufacturers of ICs are responding to the need for single-supply components by introducing new op amps, comparators, A/D converters, and other analog circuits, the use of the traditional dual-supply analog circuit will probably dominate most applications for an extended period. Whatever your application's needs, it's likely that one of the available dc/dc converters will satisy them.

EDN

References

1. Sherman, Len, "DC/DC converters adapt to the needs of low-power circuits," EDN, January 7, 1988, pg 145.
2. Williams, Jim, "Regulator IC speeds design of switching power supplies," $E D N$, November 12, 1987, pg 193.

Article Interest Quotient
 (Circle One)

High 515 Medium 516 Low 517

What do you need to build on a rough application concept?

AT\&T. Thecomp

onents of success.

Whether you're building a visionary home-or a breakthrough product or system-getting from concept to completion demands more than bricks and mortar, or metal and silicon.

There are other components that can make a critical difference in meeting your market window on time, and on budget.

We call them the components of successready for immediate delivery from AT\&T.
The component of commitment: here today, here tomorrow.
AT\&T is in the components business to stay. We have formed a separate unit, AT\&T Microelectronics, to bring our more than 100 years of electronic components experience to the marketplace. And, we have the capital, people, and technical savvy to meet our commitment to the future.

The component of innovation: AT\&T Bell Labs. Count on Bell Laboratories to help make your 'blue-sky' designs a reality. With everything from DSPs and optical data links, to custom designed products such as ASICs, multilayer boards, and power supplies. And throughout planning and manufacturing, count on AT\&T to keep your product up to the minute with the latest Bell Labs advances.
The component of quality. Through our Integrated Quality System, Bell Labs engineers work with our quality professionals to meet customer-defined criteria. At AT\&T quality is
our history-and our future.
The component of management involvement.
AT\&T Microelectronics gives you total support, right up to its president, Bill Warwick. If our solutions aren't on the money, call him at 1201 771-2900.

The component

 of quick response. With 12 plants and an extensive network of design centers and sales offices worldwide, AT\&T is ready to meet your volume demand for components. Ready with everything you need to get ideas off the ground and in the market-successfully.To learn why AT\&T is more than ever the right choice, just give us a call.

> DIAL1800372-2447

AT\&T Microelectronics Major Product Lines: ASICs
Digital Signal Processors Communication ICs
32-bit Microprocessors and Peripherals
Solid State Relays
Multilayer Circuit Boards HICs
Optical Data Links
Fiber Optic Components
Power Products
Transformers and Inductors
Wound Film Capacitors
© 1987 AT\&T

First, we cre lovative de

most innovative des introducing tomc

Concept 3 and Flexible Field are trademarks of Cadnetix Corporation. Sun Workstation and Sun Microsystems are registered trademarks and NFS is a trademark of Sun Microsystems, Inc. UNIX is a registered trademark of AT\&T.

ated today's gn tools. Now,were ows. Concept 3 .
 Cadnetix has been looking
 and networking. And both base their products on

into the future. Two years of research, development and strategic planning have culminated in a significant breakthrough in electronic design. Concept 3 is a standard platform from Sun Microsystems ${ }^{\circ}$ and a whole lot more. It's a new world of system design capability.

Emerging technologies demand a new set of design solutions. Advances in ASICs, highfrequency components and fine-line design are creating new challenges in engineering, design and manufacturing. A new level of CAE/CAD/CAM sophistication is required to get the job done, and stay competitive. Companies must have even tighter integration between engineering, design and manufacturing, plus open access to all the equipment that's needed to produce a product quickly.

That's why we developed Concept 3, the convergence of advanced design tools and open systems, and more. We've redesigned our tools from the database up, to meet your design future. Concept 3 is Flexible Field ${ }^{\text {Tw }}$ routing and high--frequency design. It's a global data structure designed to handle off-grid components. It's RISC-based simulation acceleration, extraordinary ease-of-use and a seamless data path from schematic to manufactured product.

Concept 3 is also Cadnetix and Sun. Front-to-- back system design on an industry-standard workstation. It's a perfect fit. Both companies have established reputations for delivering advanced technology. Both are committed to open systems

industry standards such as UNIX, Ethernet and NFS.'

Now you get ease-of-use, state-of-the-art design, and a UNIX workstation that runs all Sun third-- party software. We take full advantage of an open environment, so that Sun Workstations can share the network with Cadnetix systems and DOS PCs. It's the best balance of cost and performance available. Moreover, every workstation has access to the advanced capabilities of multiprocessor, RISC Engines for accelerated simulation, physical modeling or accelerated 100% routing.

The Cadnetix CAE Sun Workstation is a complete desktop solution, with tools for schematic creation, analog and digital simulation and ASIC design. The CAD/CAM Sun Workstation includes Cadnetix' industry--famous tools for PCB layout, routing, tooling, assembly and test. Cadnetix front-to-back CAE, CAD and CAM eliminate netlists, data conversions and design to manufacturing hold-- ups. It's a level of integration unmatched in the industry.
Take a look at Cadnetix Concept 3. Because it isn't enough to solve today's system design problems. You have to be ready for tomorrow's.

Because tomorrow's design problems demand solutions today.

Germanium Rectifiers: Oliver gives you the

 facts.| Device | Peak Vf
 at 1000 A | Rel. Eff. \%
 at 5 kW | Input V
 output | Relative dc
 ripple $\mathbf{m V}$ |
| :--- | :--- | :--- | :--- | :---: |
| Germanium | 0.60 | 86.5 | 188.8 | 80 |
| Schottky | 1.00 | 85.0 | 190.0 | 150 |
| Silicon A | 1.20 | 76.0 | 200.0 | 100 |
| Silicon B | 1.25 | 74.0 | 202.0 | 95 |

"'The more we study Rectification," says Oliver O Ward, President GPD and sometimes known as the Professor of Germanium, "the more we see that Silicon is clearly the outdated technology.
"Germanium Devices have much lower forward voltage drop, much lower ripple, considerably lower input voltage at a given current and, most importantly, a great improvement in efficiency.
'Thus the knowledgeable engineer can design smaller power supplies, with less energy consumption, with less heat dissipation and much better performance.
"The figures in the table come from field and laboratory tests carried out by one of the world's leading computer manufacturers. This company now uses Germanium rectifiers both in mainframes and in separate power supplies. Germanium is also the recommended technology for linear power supplies and for rectification in many circuits.
"To designers who specify Germanium Rectifiers, I unhesitatingly award an A.

To those still using old-fashioned Silicon, I respectfully suggest a careful re-reading of the known facts."

The latest GPD Catalogue contains facts and figures on Germanium Rectifiers, Photo Diodes, Small Signal Transistors and Power Devices up to 500 A ; all combining the inherent advantages of Ge technology with the GPD high standard of manufacture. Write, telephone or use the enquiry service.

CIRCLE NO 124

Germanium Power Devices
Corporation

[^6]
FOUROFTHEWORDS
 TOPNAME M PONERSUPPLEO
 LAMECN:NOCAH=R10 ADDRESSA VERYMPORTANL PONTOFVEW.

BOSCHERT, POWER PRODUCTS, STEVENS-ARNOLD, TECNETICS. ONE COMPANY... COMPUTER PRODUCTS.

Four separate business units, each with its own area of power supply expertise and market focus. Power Products for industrial systems and instruments. Stevens-Arnold for telecommunications and distributed power. Boschert for computer systems and computer peripherals. And Tecnetics for Mil-Spec and aerospace.

Together, the Computer Products team gives you the benefits of wide selection, shared resources, increased purchasing power, and a true global capability in manufacturing, distribution and service. Computer ProductsYour Partner in Power.

THE GLOBAL RESOURCE YOU NEED.

Over 1800 people and 400,000 square feet of facilities throughout North America, Europe and Asia. And 183 distributor locations worldwidethe largest distributor network for stocked power supply products in the world.

It means one-stop shopping. It means reliable, scheduled delivery anywhere, anytime. And it means a resource you can depend on from Minneapolis to Munich.

THE STANDARD AND CUSTOM PRODUCTS YOU WANT.

A major benefit of Computer Products' combined operations is that we are the source for the industry's widest selection of power supplies.

Open frame linears, open frame switchers, encapsulated power modules, cased switchers, high power switchers, and DC/DC converters. Including a wide selection of Mil-Spec switching power supplies and DC/DC converters. 2400 standard models to choose from-plus modified standard or custom versions which are derived from our proven designs.

POWER SUPPLY TECHNOLOGY THAT PUTS YOU AHEAD

Because each of our business units has a distinct, yet complementary product/market focus, we concentrate on the big picture in power supply technology. With six dedicated engineering teams at our facilities around the world, you benefit from products that are precisionengineered using the most advanced and reliable technologies available.

From high frequency switching and high power-densities to the industry's most advanced hybrid/surface-mount technology, we are developing the advanced power supply designs that you require for the products of tomorrow.

QUALITY AND RELIABILITY YOU CAN TRUST.

We believe in never-ending improvement in the quality of our products and services. From Statistical Process Control (SPC) and Computer Integrated Manufacturing (CIM), through Just-In-Time (JIT) production we are improving every phase of the manufacturing process.

Unlike many power supply companies, our offshore manufacturing facilities are our own. Not those of hard-to-control subcontractors. Our uniform worldwide quality standards can be strictly controlled from start to finish by our own program of quality at the source.

We deliver an unrivaled level of reliability in power supply performance. Including units with MTBF's over 400,000 hours and conformance to stringent Mil-Q-9858A requirements. With a satisfied and growing customer base of blue chip and emerging growth companies.

These companies, more and more, depend on the ever expanding capabilities of Computer Products to meet their power supply needs. With a full line of precision-engineered standard power supplies, custom product solutions, and a uniquely fresh perspective. Yours.

Your Partner in Power

Your Partner in Power

UNIVERSAL INPUT SWITCHING POWER SUPPLIES

Eliminate failures from improper input voltages and lower your total cost. This 50 watt switcher accepts any input voltage from 85 to 264 VAC without need for jumper wires or switches. The XL50-7601 offers 50 watts in a 40 watt package. Call for applications at other power levels.

NEW from

ㄱ) (51) COMPUTER PRODUCTS/BOSCHERT

LOW PROFIL 100 WATI DC/DC CONVERTERS

The WS series, a family of high power DC/DC converters, is ideally suited for telecom applications. 2:1 input voltage ranges are 18 to 36 VDC and 36 to 72 VDC. Supplied in a low profile case of $3.5^{\prime \prime} \mathrm{W} \times 5.5^{\prime \prime} \mathrm{L} \times 0.91^{\prime \prime} \mathrm{H}$, the unit features a power density of 5.7 W/cubic inch and efficiencies to 84%.

NEW from
 COMPUTER PRODUCTS/STEVENS-ARNOLD

25010600 WATा LOW PROFILE SWITCHERS

This new 250/400/600 Watt Series is designed for redundant power supply systems, providing current sharing for the main and auxiliary outputs. The modular design features one to seven outputs, 100 kHz switching, mag-amp regulation and efficiencies to 85%. Compactly packaged in a $2.75^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W}$ format.

지 (ㅐㅐ
NEW from
COMPUTER PRODUCTS/POWER PRODUCTS

> MIL-SPEC/AEROSPACE HIGH TECHNOLOGY CUSTOM POWER SUPPLIES

Specialists in Mil-Spec AC/DC power supplies and DC/DC converters. Computer Products/Tecnetics is certified to manufacture to MIL-Q-9858A, conforms to the guidelines of NAVMAT P4885-1 and has participated in major military programs such as F-16, Tomahawk, EA-6B, MSE and E2-C. Twenty-five years experience in engineering and manufacturing Mil-Spec power supplies.

Mil-Sper Power Supplies from COMPUTER PRODUCTS/TECNETICS

New software tools run IBM PC software on a variety of 32-bit $\mu \mathrm{Ps}$

Robert H Cushman, Special Features Editor

Most industry observers agree that the vast wealth of MS-DOS-based software is what gives the $8086 \mu \mathrm{P}$ family such a decided advantage over other μ Ps. That situation is changing, though: Several software packages now let your MS-DOSbased software run on non-8086family μ Ps. (The 8086 family includes the $8088,80186,80188,80286$, and 80386 chips.)
By today's reckoning, the value of readily available MS-DOS software is approaching $\$ 10$ billion. Most of it has been developed as a direct response by third-party software developers to the availability of the 8088 -based IBM PC. Thus, most of that software exists as 8088 or 8086 assembly-language instructions, which makes it unusable with other μ Ps (see box, "The IBM PC aberration").

Such a lopsided software situation couldn't go unnoticed, so it's no surprise that enterprising software developers now offer the means for running your MS-DOS-based software on other popular-or promis-ing- $\mu \mathrm{P}$ chips. Three new software packages don't involve the older and more obvious technique of inserting an 8086 -based CPU board into a computer. The non-8086 target $\mu \mathrm{P}$ of first choice is probably Motorola's 68020, but there is growing interest in other $\mu \mathrm{Ps}$, particularly those that promise extremely high-speed operation.

Two such software solutions are Phoenix Technologies' Software CoProcessor and Insignia Solutions' SoftPC. These packages simulate the IBM PC's hardware and software configuration within a non-

Multiple MS-DOS-based programs can run on workstations. The SoftPC program Insignia Solutions supplies pictorial representations of the IBM PC's monitor that indicate which programs are running. The screen shows Digital Research's GEM (including the calculator), as well as Lotus 1-2-3, Wordstar 2000, Sidekick, and Flight Simulator. Unix uses the window in the lower right corner of the screen to note its operations.

8086-based system. They also translate the 8086 instructions so that the MS-DOS-based program will operate properly. (Although the programs provide simulation as well as instruction-interpretation or -translation functions, you can call them translation programs for simplicity's sake.)

First, you must load the translation software into your target computer, then you can load and run an MS-DOS-based application program. The Phoenix and Insignia programs interpret each 8086 instruction as the target computer fetches it from memory; the software traps and decodes each instruction and remaps I/O and memory operations to suit the target system's configuration. The transla-
tion software simulates the IBM PC's resources, which include the MS-DOS code, the basic input-output system (BIOS) code, pertinent I/O devices, and possibly a graphics display. The software cannot simply interpret the MS-DOS-based program instruction by instruction, because the interpretation process would be too slow. Therefore sophisticated programming techniquessome possibly patentable-speed instruction processing.

For example, when the Software Co-Processor sees repetitive program structures, such as loops, it decodes their instructions only once. Thus, the translation software doesn't have to reinterpret the instructions when it encounters the loop again in the MS-DOS software.

TekCASE: HOW TO BREAK A PROJECT INTO PIECES. AND PUT IT TOGETHER AGAIN. RIGHT.

You know how to maintain control and ensure quality of a complex systems project: first you divide it into parts and work on them concurrently, then you put it back together again. You also know how seldom a project survives this kind of reassembly intact - frequently, the final result barely resembles the original intent. Tektronix, a developer of complex systems for many years, now introduces a solution to the problem. This solution is TekCASE: a complete set of software engineering tools and services to guide you through the specification, design, and documentation of even the largest and most complex systems projects. Tektronix supports the entire software development life cycle.

Finally, a flexible and extensible tool set that gives you forward and reverse traceability and verification. Thanks to Analyst/RT and Designer, only TekCASE provides auto-
matic transformation from specification to design and automatic conversion from code back to design. With the addition of Auditor, providing support for software developers complying with DOD-STD 2167, only TekCASE gives you uninterrupted visibility of your project from start to finish. And TekCASE runs on any VAX ${ }^{\circledR}$ configuration.

TekCASE is more than just a software tool set-it's a strategic partnership. From project concept to code and beyond, TekCASE provides support, service, and frequent product updates. So, whether your project is in parts, back together, or somewhere in between, TekCASE is there to help you make sure the pieces fit. For more information, contact your local Tektronix representative or call 1-800-TEK-WIDE, extension 682. Tektronix, Inc., Computer-Aided Software Engineering Division, P.O. Box 14752, Portland, Oregon 97214.

As a result, the software requires the target computer to run through only about eight to 10 target $\mu \mathrm{P}$ instructions to interpret each 8086 instruction.

The third software solution is Hunter Systems' XDOS, which is now undergoing final debugging. Rather than interpreting or translating 8086 instructions, the XDOS program converts the 8086 's instructions to equivalent instructions for the target $\mu \mathrm{P}$. Thus, before you run an MS-DOS-based program on your target computer, XDOS performs a binary-to-binary conversion that compiles the 8086 instructions into your target $\mu \mathrm{P}$'s instructions. Industry experts agree that the conversion approach is a very difficult challenge, but because the computer spends no time interpreting instructions as the application program runs, MS-DOS-based application programs should run faster
than they would under SoftPC or Software Co-Processor. However, keep in mind that each 8086 instruction compiles into an average of one and a half to two of the target computer's instructions. The compilation doesn't yield a 1-to-1 op-code-to-op-code translation ratio.

32 bits are a must

To be practical, all three software solutions require the processing speeds and memory capacities that today's 32 -bit $\mu \mathrm{Ps}$ furnish. With anything less than a 32 -bit $\mu \mathrm{P}$ in your target computer, execution speeds for converted or interpreted MS-DOS programs will drag when you compare their execution speed to what you'd expect from an IBM $\mathrm{PC} / \mathrm{XT}, \mathrm{PC} / \mathrm{AT}$, or a compatible computer. The translation programs require 32 -bit-wide memory simply to hold their simulation software efficiently. For example, In-
signia's software needs 3.5 M bytes of memory in your target computer system.

Even the XDOS program requires about 100 k bytes. Although it converts the 8086 instructions prior to running the program, it still must simulate the IBM PC's MS-DOS configuration for the program's use. Trials show that because XDOS requires a relatively small amount of memory, you can run it on powerful 16 -bit $\mu \mathrm{Ps}$, such as Motorola's 68010.

Cost is nominal

Fortunately, the cost of adopting these software techniques isn't high, at least not when compared with the $\$ 5000$ to $\$ 50,000$ necessary for a typical 32-bit Unix-based workstation or computer. Likewise, they're less expensive than plug-in boards that simulate the IBM PC's hardware.

The IBM PC aberration

In the ideal 32 -bit computer world, there would be no need for software-translation programs. Unix would be the universal standard operating system, and all programs would be written in C so that you could run them on any Unix system. Thus all $\mu \mathrm{Ps}$ would only be given a Unix operating system and a C compiler, and they would all be equal from the standpoint of software support.

But today the Intel $80386 \mu \mathrm{P}$ has an advantage over all other 32 -bit $\mu \mathrm{Ps}$, because it enjoys the heritage of what some call the IBM PC aberration. Just as the 16 -bit members of the 8086 family gained an overwhelming dominance in the 16 -bit arena because of the PC's popularity, so could the 80386 become dominant in the world of 32 -bit computers. The basis for the dominance is the $50,000-$ or-so programs written by third-party software developers for the IBM PC. If you want to view the magnitude of the software-development effect, just look on the shelves in your local software store or in the advertisements in personal-computer magazines. If you are concerned with designing embedded systems, just look at the many varied libraries of specialized MS-DOS-based software for industrial and scientific applications.
Most of these MS-DOS programs were written
in 8086 or 8088 assembly language so you can use them only on computers equipped with 8086 -family μ Ps. Typically, when such programs have been written in a high-level language, the supplier will not release the high-level-language source code. That leaves you without an easy conversion route to another $\mu \mathrm{P}$ family.

You can argue that the ideal Unix- and C-based 32 -bit world has indeed arrived. There are as many Unix-based personal computers now as any Unix visionary could have ever wished for. But the MS-DOS-software market dwarfs efforts on Unix's behalf. That in itself might not be a problem if it weren't for the third-party software developers who tend to write software for computers with a large market share. The software on the retail shelves bears this out. Buyers follow suit, buying software for the most popular computers.

So, because the software-translation techniques let other μ Ps share MS-DOS-based software, they may get OEM designers past the IBM PC aberration. Now designers can choose $\mu \mathrm{P}$ hardware based on its own technical merits and suitability for an application while still maintaining compatibility with the MS-DOS software world.

Insignia plans to sell its SoftPC packages through distributors for $\$ 595$. The SoftPC package runs on either a SUN-3 or on an Apple MAC-II computer, both of which use the $68020 \mu \mathrm{P}$. Hunter Systems and Phoenix plan to work with OEMs, but both say that their packages will cost about the same as Insignia's software. In some cases you won't have to buy the translation software. NCR (Dayton, OH) is considering bundling such programs with its 68020/30-based Tower computer system.

These software-translation packages also have other advantages. For example, when you run MS-DOS-based software on a Unixbased computer system, the MS-DOS software can capitalize on the Unix system's resources. Thus, not only is extensive multitasking possible, but so are multiuser and file-sharing operations. Also, such Unix-based systems are often ahead of the IBM PC when it comes to providing user-friendly mouse and graphics interfaces.

However, the layered Unix software can slow your computer. The
interpretive approaches to converting MS-DOS-based software, while fine for single-user computers, may bring multiuser-Unix systems to a halt. Performance depends to a great extent on the target system's μ P. Table 1 provides a preliminary look at the reported and projected performances of these systems in terms of the Dhrystone benchmark. Use the results with much caution. More accurate data will emerge as more users adopt these softwaretranslation techniques.

First, to provide a basis of comparison, Table 1 lists benchmark values for the 8088,80286 , and $80386 \mu \mathrm{Ps}$ in familiar computers. The original IBM PC and the later $\mathrm{PC} / \mathrm{XT}$ use 8088 s that run at 4.77 MHz . An Intel representative says that the company's benchmark tests yield about 400 to 500 Dhrystones for both computers.

The IBM PC/AT yields a wide range of Dhrystone rates because a wide range of clock speeds is now used in PC/AT and compatible computers. There are two sets of Dhrystone values for the 80386. The first, 6000 to 7000 Dhrystones, re-
sults from running 16 -bit 8086 code on the 80386 . The second set, 9000 to 10,000 Dhrystones, arises when the 80386 runs full 32 -bit code. The 80386 can run either type of code directly because the instruction bit patterns are identical. Keep in mind that, when the 80386 runs 8086 code from within the 80386 's protected mode, there is an additional 20% or so degradation in performance because the 80386 must trap the 8086 's memory and I/O instructions to protect the system.

Table 1 also supplies Dhrystone values for non-8086-family target $\mu \mathrm{Ps}$ as they run the Dhrystone pro-gram-in both target $\mu \mathrm{P}$ code and in 8086 code that runs through a translation program. The non-8086 μ Ps fall into two categories: re-duced-instruction-set computers (RISCs) and complex-instructionset computers (CISCs).

When a $68020(16 \mathrm{MHz})$ runs an MS-DOS Dhrystone program for an $8086 \mu \mathrm{P}$ by way of the Phoenix or the Insignia translation method, you reap about the same performance as you would from a PC/XT: 500 Dhrystones. A $68030(25 \mathrm{MHz})$

TABLE 1-ROUGH BENCHMARK COMPARISONS FOR SOFTWARE-TRANSLATION TECHNIQUE

$\mu \mathrm{P}$	CLOCK FREQUENCY (MHz)	OPERATING SYSTEM	COMPUTER	TRANSLATION TECHNIQUE	8086 CODE (DHRYSTONES) 1	NATIVE CODE (DHRYSTONES) 1
8088	4.77	MS-DOS 2.3	PCIXT	NONE	400 TO 500	400 TO 500
80286	6 TO 12	MS-DOS	PC/AT ${ }^{2}$	NONE	1000 TO 2000	1000 TO 2000
80386^{3}	20	MS-DOS 3.3	COMPAQ DESKPRO	NONE	6000 TO 7000	9000 TO 10,000
$\begin{aligned} & 68020 \\ & 68030 \end{aligned}$	$\begin{array}{r} 16 \\ 25 \end{array}$	UNIX	SUN-3	SOFTWARE CO-PROCESSOR SOFTPC	500 TO 2000	6000 TO 8000
$\begin{aligned} & 68020 \\ & 68030 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \end{aligned}$	UNIX	SUN-3	XDOS	2000 TO 3000	6000 TO 8000
32532	20 TO 30	UNIX	GENERIC ADD-IN CPU BOARD	SOFTWARE CO-PROCESSOR	1000 TO 40004	9000 TO 16,000
CLIPPER (C-100 AND C-300)	33 TO 50	UNIX V. 3	INTERPRO SERIES	SOFTPC	1000 TO 30004	8000 TO 16,000
CLIPPER (C-100 AND C-300)	30 TO 50	UNIX V. 3	INTERPRO-200	XDOS	5000 TO 10,0004	8000 TO 16,000
MIPS R2000		UMIPS/UNIX	M/1000	SOFTPC	3000 TO 50004	24,000

NOTES:

1. USE BENCHMARKS WITH CAUTION.
2. PCIAT SPEEDS DEPEND ON COMPUTER MODEL AND MANUFACTURER.
3. EXPECT A 20% DEGRADATION WHEN USING THE 80386 IN PROTECTED MODE.
4. TENTATIVE VALUES BASED ON MANUFACTURERS' PROJECTIONS.

POWER.

NA NA New Type 36DE Aluminum Electrolytic Capacitors feature high reliability and improved performance to meet your needs. The latest high gain electrode foils

 provide up to 2.3 Farads at 6.3WVDC in the largest case ($3.0^{\prime \prime} \mathrm{D} \times 8.625^{\prime \prime} \mathrm{H}$). An improved H CTCABC $\begin{aligned} & \text { electrolyte system results in lowe } \\ & \text { ESR values and increased ripple }\end{aligned}$ $+85^{\circ} \mathrm{C}$ and 120 Hz . Material improvements extend the operating temperature to $+95^{\circ} \mathrm{C}$ and the load-life capability to 2000 hours at $+85^{\circ} \mathrm{C}$. Choice of terminals includes a unique wire pin style to facilitate low-cost PW board mounting. For Engineering Bulletin 3432, write to Technical Literature Service, Sprague Electric Company, P.O. Box 9102, Mansfield, MA 02048-9102.
TECHNOLOGY UPDATE

should operate at about 2000 Dhrystones-the performance of today's PC/AT.

Preliminary tests indicate that when the same 68020-based computers use the XDOS translation software, they should reach or exceed PC/AT performance. Typically, a $68020 \mu \mathrm{P}$ would be running under Unix in a computer such as the SUN-3 workstation.

One of the fastest CISC $\mu \mathrm{P}$'s is National Semiconductor's 32532. The company claims that the device reaches an operating clock frequency of 30 MHz . Based on that clock frequency, Phoenix's Software CoProcessor should run MS-DOSbased software at about twice the speed of a PC/AT. Table 1 also provides some speculative estimates of performance levels for two RISC $\mu \mathrm{Ps}$: Intergraph's Clipper and MIPS's R2000. The estimates include SoftPC estimates for both RISC $\mu \mathrm{Ps}$ and an XDOS estimate

For more information

For more information on the software packages discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

Hunter Systems Inc 444 Castro St Mountain View, CA 94041 (415) 965-2400

Circle No 716

Insignia Solutions Inc

 1255 Post StSuite 625
San Francisco, CA 94109
(415) 885-4455

Circle No 717

Phoenix Technologies Ltd 320 Norwood Park S
Norwood, MA 02062
(617) 769-7020

Circle No 718
for the Clipper. The technical marketing staffs at both Intergraph and MIPS helped prepare the estimates.

Assuming that future performance matches that which the RISC suppliers promise-they talk of reaching 50 MIPS by the early 1990 s-it may be that RISC μ Ps will be attractive for running MS-DOS-based programs that can benefit from high execution speeds. But keep in mind that by definition RISC machines tend to use more
instructions than do CISCs. So although they operate faster, they require more instructions. Also, you can assume that Intel will continue expanding the capabilities of its 8086 family. Intel has broadly hinted that the future $80486 \mu \mathrm{P}$ will offer faster, more RISC-like instructions. Thus, instead of the 80386's average 4.4 clock cycles per instruction, the 80486 may require just two clock cycles.

So, at least, these software-trans-

WINS/Streams." The natural solution to UNIX connectivity.

Transparent. Portable. The natural evolution of TCP/IP for UNIX.․․ Such a natural, in fact, WINS/Streams is the UNIX V. 3 communications
standard. Truly life-sustaining. For more information, call 800-872-8649 (in California 800-962-8649) or send us this ad with

[^7]

C Cross Compilers

- Global Optimization

Features

- Produce Re-entrant, ROM-able Code
- Utilities include Linkers, Locators, Formatters, and Unique ROM Processor

Cross Assemblers

- Full Macro Capabilities
- Include Complete Utilities Set
- Support Relocatable, Combinable, and Absolute Segments

XDB Cross Debuggers

- Debug at C or Assembly Source Code Level
- User-Friendly Interface and Command Set

InterTools are available for VAX, SUN, Apollo, HP, IBM PC, and other engineering computers.

Demo Disks available.

- Powerful Assertion, Breakpoint Commands
- Direct Command Interface to Emulator

Intermetrics, Inc.

 Software Products Division 733 Concord Avenue Cambridge, MA 02138 (617) 661-0072Toll-Free: 1-800-356-3594

Intermetrics

lation techniques will run MS-DOSbased 8086 code on 32 -bit computers as fast as it runs on IBM PCs and PC/XTs. At most, the techniques promise to run MS-DOS-based programs much faster than they run on present, or will run on near-future 8086 -family μ Ps. But no one expects these techniques to upset the 8086 ; as Intel points out, these imitators will always be behind the 8086 family when it comes to software timeliness. After all, the MS-DOS-based software is really meant for use on 1981-vintage hardware, says Intel. What will soon count in the 32 -bit computer world is how well the computers run 32 -bit software, not how well they run old 16 -bit programs.

However, the software-translation techniques can add immediate value to new RISC μ Ps such as AMD's 29000. New μ P-chip manufacturers cannot offer libraries of software products as soon as their chips are available. So, the ability to run existing MS-DOS-based programs can help such chips survive while their supporters build up a repertoire of 32 -bit software.

Remember embedded systems

At first glance, these softwaretranslation approaches appear to benefit only desktop workstations and similar large computers. Designers of embedded systems will also find them useful, particularly the XDOS binary-translation approach, because it demands little additional memory. One example is when an OEM designer wants to place a specialized MS-DOS-based program for laboratory-data analysis into an embedded controller as an option for customers. Being able to select' an MS-DOS-based program for a non-8086-family computer opens a world of possibilities.

EDN

Article Interest Quotient (Circle One)
High 512 Medium 513 Low 514

Discover Fluoronics Resources

Fluorinert ${ }^{\text {TM }}$ Liquids-products that power Fluoronics Resources

*Fluoronics Resources:

An exclusive 3M combination of innovative products backed by research and development, manufacturing expertise, technical data and service assistance built on more than 35 years' experience of pioneering in fluorochemistry.

3 M has had a whole generation of experience in the development, manufacture and refinement of perfluorinated liquids. We first introduced these versatile liquids to electronics design, testing and production professionals in the fifties. Since then, Fluorinert Liquids have become the mainstays in electronic cooling, high reliability testing and vapor phase soldering.

Fluorinert Liquids, used as a direct contact heat transfer medium, offer a range of physical properties that make them particularly suitable for electronic uses. They are non-polar and exhibit no solvent action. They are colorless, low in toxicity, non-flammable and offer exceptionally high dielectric strength plus thermal and chemical stability. Most important, they have almost no chemical reactivity and they evaporate without leaving a residue on parts.

Buy the numbers

Our FC ${ }^{\text {TM }}$ numbers - FC-40, FC-70, FC-77, etc. - are used to identify Fluorinert Liquids that offer certain physical characteristics to meet specific application needs. These FC numbers are solely 3 M designations for various fluorochemical products.

Fluorinert Liquids are being used cost-effectively in cooling, high reliability testing and vapor phase soldering operations. When you are interested in applying these versatile liquids in your own production, 3M can provide an abundance of technical information and support.

Technical assistance: the main benefit of Fluoronics Resources

3M offers prompt assistance to help you solve many production and testing problems. We provide comprehensive technical recommendations for specific fluids. We consult with you on the proper application equipment and help you evaluate production methods and results. Our service bulletins bring you up to date on the most recent advances in vapor phase soldering and high reliability testing. Ask us about 3M's audiovisual materials and on-site application training seminars.

Discover Fluorinert ${ }^{\text {™ }}$ Liquids' heat transfer capability

What are your needs? A precise degree of temperature control? Fast, uniform heat transfer? High dielectric strength? Fluorinert Liquids offer the broad range of physical characteristics required in most applications.
Fluorinert Liquids are an effective direct contact heat transfer medium whether used in a liquid or vapor state. Their unique properties enable you to use them in contact with sensitive components and substrates.
Major differences between the various products in the Fluorinert Liquids family can be seen in their boiling points. These can range from $56^{\circ} \mathrm{C}$ to $253^{\circ} \mathrm{C}$. Should you need products with intermediate boiling temperatures, the 3M staff will work with you to fashion a product especially for your needs. It's an example of how 3M's Fluoronics Resources provide you with "customized" service to solve special problems.

Fluorinert ${ }^{\text {TM }}$ Liquids achieve accurate high reliability testing

It's a small world you work in. Where time ticks in nanoseconds and dimension is measured in Angstrom units. And as circuitry becomes more complex, a greater demand is placed on testing capability - not only in speed, but in higher reliability and accuracy.

Fluorinert Liquids meet those requirements by providing a controlled temperature environment and a high degree of electrical protection. They offer maximum compatibility between

the heat transfer medium and the device under test. Fluorinert Liquids reduce testing costs by reducing testing time substantially. They do this by rapidly reaching test temperature and providing precise and uniform temperature control. You'll minimize the number of faulty units by detecting defects before they become rejects.

These liquids provide cost-effective tests such as gross leak, thermal shock, liquid burn-in, ceramic crack detection, electrical environmental, temperature calibration and failure analysis/short detection
Fluorinert Liquids are specified in the MIL-STD's for thermal shock and gross leak testing.

THERMAL SHOCK TEST CONDITIONS

Military Standard 883-1011		Military Approved Fluorinert Liquids		
Test Condition	Hot Test Step 1	Cold Test Step 2	Hot Test Step 1	Cold Test Step 2
A	$100^{\circ} \mathrm{C}$	$-0^{\circ} \mathrm{C}$	Water, FC-40	Water FC-40, FC-77
B	$125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	FC-40, FC-70, FC-5311	FC-77
C	$150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$	FC-40, FC-70, FC-5311	FC-77
D	$200^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$	FC-70, FC-5311	FC-77
E	$150^{\circ} \mathrm{C}$	$-195^{\circ} \mathrm{C}$	FC-40, FC-70, FC-5311	Liq. N2
F	$200^{\circ} \mathrm{C}$	$-195^{\circ} \mathrm{C}$	FC-70, FC-5311	Liq. N2

GROSS LEAK TEST CONDITIONS			
Military Standards	Indicator Fluids	Detector Fluids	Absorption Fluids
	FC-40, FC-43	FC-72, FC-84	Do not apply
	FC-40, FC-43	FC-72, FC-84	FC-43, FC-75, FC-77
MIL-STD $202-112$	FC-40, FC-43	FC-72, FC-84	Do not apply

Discover higher yields in vapor phase soldering

Fluorinert Liquids have been the industry's fluid of choice since the vapor phase reflow soldering (VPS) process was introduced in 1975. There are a number of good reasons for this universal acceptance. VPS with Fluorinert Liquids produces highly reliable solder joints. The system reduces reject rates, increases production, and lowers production costs. With Fluorinert Liquids, you can be assured that your products will never be exposed to a temperature higher than the selected liquid's boiling point. (See above)

You'll avoid those problems usually associated with other systems shadowing, uneven heating, and overheating. The liquids are non-flammable. Their low surface tension helps them evaporate quickly from the work pieces without leaving a residue.

VPS with Fluorinert Liquids is especially suited for boards with high mass or complex geometries. The liquid vapors completely surround the assembly and penetrate remote recesses to heat all surfaces evenly. The vapors are 15 to 20 times heavier than air so they can be contained easily within the work area. The system offers an oxy-gen-free, non-corrosive environment to minimize rejects from oxidation contamination.

Some typical applications using Fluorinert Liquids in VPS include surface mounted leaded or leadless components, through-hole leads and wire-wrap pins, lead frame attachment, reflow of electroplated solder or tin and miscellaneous metal joining.

VPS SELECTION GUIDE

Fluorinert Liquid	Boiling Point	Typical Solders
FC-43	$174^{\circ} \mathrm{C} / 345^{\circ} \mathrm{F}$	$70 \mathrm{Sn} / 18 \mathrm{~Pb} / 12 \mathrm{In}$
		100 In
		$58 \mathrm{Sn} / 42 \mathrm{ln}$
		$58 \mathrm{Bi} / 42 \mathrm{Sn}$
FC-70, FC-5311	$215^{\circ} \mathrm{C} / 419^{\circ} \mathrm{F}$	$63 \mathrm{Sn} / 37 \mathrm{~Pb}$
FC-5312		$60 \mathrm{Sn} / 40 \mathrm{~Pb}$
		$62 \mathrm{Sn} / 36 \mathrm{~Pb} / 2 \mathrm{Ag}$
FC-71	$253^{\circ} \mathrm{C} / 487^{\circ} \mathrm{F}$	100 Sn
		$95 \mathrm{Sn} / 5 \mathrm{Ag}$
		$60 \mathrm{~Pb} / 40 \mathrm{Sn}$

Discover the unique cooling benefits of Fluorinert ${ }^{T m}$ Liquids

As the package size decreases, your need for more efficient heat dissipation increases in proportion. 3M Fluorinert Liquids are very efficient as a direct contact heat transfer medium, with the added advantage of having the high dielectric characteristics needed to meet stringent demands of the diversified electronics industry. We offer 11 liquids with boiling points that range from $56^{\circ} \mathrm{C}$ to $253^{\circ} \mathrm{C}$.
These stable liquids allow you to maximize power density and miniaturize your package. Yet they reduce failure rates and increase reliability.

Fluorinert Liquids are used in such demanding applications as:

- Radar transmitters • Power supplies
- High voltage transformers • Lasers
- Radar klystrons • Computer modules
- Computer memories • Fuel cells

Typical properties of Fluorinert Liquids used in cooling are:

Fluorinert Liquid FC-77 (English Units)	Liquid		Vapor
	Room Temp. ($77^{\circ} \mathrm{F}$)	Boiling Point $\left(207^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \text { Boiling Point } \\ & 207^{\circ} \text { F@/ATM } \end{aligned}$
Density lb. fl^{3}	111	100	0.85
Thermal Conductivity $B t /(h r r)\left(t^{2}\right)\left({ }^{\circ} F / f t\right)$	0.037	0.033	0.008
Specific Heat $\mathrm{Btu} /(\mathrm{lb}).\left({ }^{\circ} \mathrm{F}\right)$	0.25	0.28	0.23
Viscosity c.p.	1.42	0.46	0.02
Coefficient of Thermal Expansion $\mathrm{ft}^{3} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$	0.0008	0.0009	0.0015

Discover heating/curing with Fluorinert ${ }^{\text {TM }}$ Liquids

Because they maintain their vapor temperature with absolute precision, Fluorinert Liquids can be used in many heating and/or curing operations. They serve as heat transfer media in solder mask and polymer thick film applications and for polymer processing. The non-corrosive vapors will not support oxidation. Ideal where solvent flash-off is a problem.

Buscon/88 West offers technical programs, seminars, and presentations galore

All computer-bus users should put Buscon/88 West high on the list of shows and conferences they plan to attend. As in the past, the Buscon program offers training seminars and technical presentations, as well as commercial exhibits. Running from February 22 to 25 at the Disneyland Hotel in Anaheim, CA, Buscon has eight seminars for you to choose from. Four of the seminars run for a full day, but the other four are only a half day each.
One of Monday's full-day seminars is entitled "A technical look at bus structures and applications," and will give you a working knowledge of general bus structures in addition to an overview of today's popular buses and emerging bus technologies for future use.

If you'd rather spend your time taking a closer look at the Nubus, however, then attending "The Nubus; and a special Macintosh IINubus workshop" may be a day well spent. The morning portion of the seminar covers technical aspects of the Nubus's architecture. You'll learn about the bus's performance, its processor and architecture orientation, and how the bus supports multiprocessor operations. In the afternoon session, you'll learn about Apple's Mac II computer and how it implements the Nubus's architecture. Seminar leaders will also discuss the market for Mac II-compatible hardware.

For Multibus II users and Multibus II OEMs, another Monday seminar, "Designing with the messagepassing coprocessor," will supply information about how to design with and use the chip. During the discussions of message-passing coprocessor applications, the seminar
leader will also discuss topics ranging from bus basics to hardware and software development.

However, if you're already firmly in the VME Bus camp, "Choosing and using the new generation of VME Bus interface chips" may be more to your liking. The Mondayafternoon seminar will present the similarities and differences between the VME Bus interface chips that will soon make their debut. In this session, you'll also hear about guidelines that can help you determine which chip approach is best for your application. The seminar will include examples of pc-board designs that include the new VME Bus interface chips.

Another Monday-afternoon seminar will discuss the problems of designing a compatible product for IBM's Micro Channel architecture. Monday's technical seminars wind up with an afternoon session devoted to the VSB-a subset of the VME Bus. The VSB (VME Subsystem Bus) provides an alternative for data-transfer operations between multiple processors in a VME Bus computer system.

The seminar sessions also include two nontechnical programs. Monday's fourth all-day session affords you the chance to learn about selecting a manufacturer's representative, and Tuesday's schedule includes an all-day program devoted to partnership opportunities for US and Japanese companies.

Aside from the seminars, you can also attend technical programs on Tuesday, Wednesday, and Thursday at the Disneyland Hotel. The technical programs offer topics that will interest most bus users. You'll get a choice of hardware and soft-
ware presentations ranging from interface designs and bus structures to real-time operating systems and multiprocessing applications.

If you'd rather peruse the bus manufacturers' latest hardware and software products, Buscon won't disappoint you. The show has reservations for over 200 booth spaces in the Disneyland Hotel's exhibit area. The exhibits will be open on February 24th between 11 am and 5:30 pm , and also on the 25th between 11 am and 4:30 pm.

As in the past, Buscon's organizers (CMC, Norwalk, CT, (203) 8520500 or (714) 669-1201) plan a traditional Buscon party on the exhibit floor. Billed as the "all-aboard" industry reception, the get-together starts at $5: 30 \mathrm{pm}$ on Wednesday. Attendance is by invitation only, but the Buscon committee has a loose interpretation of what constitutes an invitation. No other show offers such an opportunity to visit with company marketing, sales, and technical people in such a relaxed, informal setting.

At the last Buscon show in the Boston area, the conferences, seminars, and exhibits drew approximately 2000 people. This winter, Buscon's organizers project attendance of at least 3000 participants. The Buscon show is small when you compare it to Wescon, Electro, or Comdex, but there's no better place to meet other bus users and industry experts.-EDN Staff EDN

Article Interest Quotient (Circle One)
High 506 Medium 507 Low 508

High-resolution conversion

in the blink of an eye.

Get video speed, low power consumption, high resolution and superior price/performance with our new CMOS data converters.

We've expanded our line to include more CMOS flash ADC's, a charge balancing ADC, an SPI ADC and a DAC. All featuring single 5 V supply operation.

We also offer a new high-speed opamp especially wellsuited to driving ADC's or video cables.

4, 6 and 8-bit CMOS flash ADC's.

Choose from 4,6 and 8-bit ADC's. All operate at video speeds, with clocking speed and input bandwidth specified at 5 V . What makes these flash ADC's special is silicon-onsapphire construction, resulting in low cost, high speed, very low input capacitance, low power consumption and inherent latch-up resistance.

10-bit CMOS charge balancing ADC.

This 10-bit successive approximation ADC captures fast moving signals, providing excellent resolution.

It features a built-in fast track and hold, with conversion rates of 150 KHz and an input bandwidth of 1.5 MHz . Even at the maximum rate, power consumption is less than 20 mW .

10-bit CMOS serial ADC.

The CDP68HC68A2 is selectable for either 8- or 10-bit resolution and has an 8 -channel multiplexer allowing up to 8 channels of inputs. The device can be used directly with our CDP68HC05C4, C8 or D2 microprocessors or other similar SPI (Serial Peripheral Interface) buses.

8-bit CMOS R-2R video-speed DAC's.

These CMOS/SOS digital-to-analog converters operate

from a single 5 V supply at video speeds and can produce "rail-to-rail" output swings. Typical update rate is 50 MHz . Settling is fast (20 ns typical) to 1/2 LSB. "Glitch" energy is minimized by segmenting and bar graph decoding of upper 3 bits.

High-speed op amp.

Specially designed for use with data converters, the CA3450 op amp has excellent speed and transmission line driving capabilities.

For 10-bit accuracy, it settles to within $1 / 2 \mathrm{LSB}$ in 40 ns with a 2 V input signal. And it can drive up to four 50 ohm transmission lines.

ADC's	Res. Bits	Conv. Rate Hz Power Diss. (MW) Pkg. Leads	1K Price		
CA3304E	4	20 M	30	16	2.95
CA3304AE	4	25 M	35	16	4.50
CA3306CE	6	10 M	65	18	5.50
CA3306E/3306AE	6	15 M	70	18	$6.25 / 11.25$
CA3318E/3318CE	8	15 M	150	24	$38.50 / 24.00$
CA3310E/3310AE	10	150 K	15	24	$6.00 / 8.00$
CDP68HC68A2E	10	10 K	15	16	3.75
DAC's					
CA3338E/3338AE	8	50 M	100	16	$6.00 / 8.40$
OP AMP	UGBW Hz	Slew Rate (X10)	Iour MA	Pkg Leads	1 K Price
CA3450E	200 M	$300 \mathrm{~V} / \mu \mathrm{Sec}$	± 75	16	2.70

Data in a flash.

For data sheets of these new products, call toll-free 800-443-7364, extension 19. Or contact your local GE Solid State sales office or distributor.

Embedded Power

CY4110

Single Board Computer

Cyclone Microsystems' VME Single Board Computers can accelerate your system development with a growing family of highly integrated embedded computers.

Our VME Single Board Computers feature a 68020 with co-processors supported by extensive memory, disk controllers, DMA, serial and parallel I/0.

The CY4110 and CY4180 Single Board Computers offer system designers the benefits of a highly integrated system coupled with the advanced performance of extensive local resources. Resources like a zero wait state cache, up to 16 Mbytes of dual ported DRAM, VSB Interface, and SCSI.

PDOS is a trademark of Eyring OS-9 is a trademark of Microware

Product development is enhanced by our support of the PDOS $^{\text {TM }}$ and OS- $9{ }^{\text {TM }}$ Real Time Operating Systems.

Accelerate your next system design with a powerful Single Board Computer packed with functionality. Call us at (203) 786-5536. And discover what our embedded power can do for your next system.

CYCLONE

MICROSYETEMS
25 Science Park, New Haven, CT 06511 (203) 786-5536 FAX (203) 786-5023 TELEX 643998

CY4180
High Speed Cache Memory Single Board Computer

SMD

Surface mount technology has assumed a strategic role in electronics.

To survive in the marketplace, more and more products need the cost savings, space efficiency and high performance of the surface mounted designs you're creating today.

When your circuits call for surface mounted trimming potentiometers and resistor networks, the answer is Bourns. Survival gear.

Customerized Technology: The Bourns Advantage

Bourns-more than any other resistive component manufacturerhas taken surface mount technology and optimized it to your manufac-

turing processes. We call it "customerized technology" and it means that you can be sure our components will work smoothly with your onsertion equipment; that it will stand up to the new-and hotter-SMD soldering techniques; and, that they will survive vigorous boardwashing. Customerized technology means that before we
design our product we even take into consideration how you test the board.

There's No Equivalent

Today you can select from more than 15 styles from Bourns Trimpot including the new 3304, the first 4 mm model that's both SMD compatible and automation friendly.

Bourns has also developed an extensive line of surface mount resistor networks. Included in the line are both molded PCC, SOIC, and now SOJ styles in standard JEDEC packages. All in all, nobody serves up SMD technology in so many ways.

Bourns always makes the extra effort. There's no equivalent.

NOW! Anti-Tombstoning Chip Resistors

BOURNS TRIMPOT BOURNS NETWORKS
After 40 years, there's still no equivalent.

[^8]

Bourns, Inc., 1200 Columbia Ave., Riverside, CA 92507; (714) 781-5500; TLX: 676-423; TWX: 910-332-1252; FAX: 714-359-5162

$: 111 \sqrt{1}$	4mm Square Sealed Single-Turn	4mm Square Open Style Single-Turn	1/4" Square Sealed Multiturn	.350" Square Sealed Multiturn
	MODEL 3314	MODEL 3304	MODEL 3269	MODEL 3272
Board Space	$1-\frac{.175}{(4.45)}$	$=-\quad-\frac{.150}{(3.8)}$		
Configuration	J-Hook, Gull Wing	Leadless Chip	Gull Wing	Gull Wing
Adjustments	Top	Top	Top, Side	Side
Packaging	Embossed Tape	Embossed Tape	Plastic Tubes	Plastic Tubes (Embossed Tape Optional)
Body Dimensions	.244'x.197'x.100''	. $15^{\prime \prime} \times .18^{\prime \prime} \times .094^{\prime \prime}$. 25 'x. 25 ' \times. $28{ }^{\prime \prime}$. 35 'x. 35 ' \times. 20 "
Standard Resistance Range (Ohms)	10Ω to 2 Megohms	5008 to 1 Megohm	108 to 1 Megohm	100Ω to 1 Megohm
Resistance Tolerance (Std.)	$\pm 20 \%$	$\pm 25 \%$	$\pm 10 \%$	$\pm 10 \%$
Absolute Minimum Resistance (Max.)	1% or 2Ω (whichever is greater)	5\%	$\begin{gathered} 1 \% \text { or } 1 \Omega \\ \text { (whichever is greater) } \end{gathered}$	$\begin{gathered} 1 \% \text { or } 1 \Omega \\ \text { (whichever is greater) } \end{gathered}$
Contact Resistance Variation (Max.)	1% or 3Ω (whichever is greater)	5\%	3% or 3Ω (whichever is greater)	$\begin{gathered} 1 \% \text { or } 3 \Omega \\ \text { (whichever is greater) } \end{gathered}$
Voltage Adjustability			$\pm 0.02 \%$	$\pm 0.02 \%$
Resistance Adjustability			$\pm 0.05 \%$	$\pm 0.05 \%$
Resolution	Infinite	Infinite	Infinite	Infinite
Insulation Resistance	200 vdc. 100 Megohms min.		500 vdc . 1,000 Megohms min.	500 vdc . 1,000 Megohms min.
Effective Travel			12 Turns nominal	12 Turns nominal
Maximum Exposure (Temperature/Time)	$215^{\circ} \mathrm{C} / 3$ minutes $265^{\circ} \mathrm{C} / 30$ seconds $300^{\circ} \mathrm{C} / 3$ seconds	$265{ }^{\circ} \mathrm{C} / 30$ seconds	$215{ }^{\circ} \mathrm{C} / 3$ minutes	$215{ }^{\circ} \mathrm{C} / 3$ minutes
Power Rating	300 Volts max. $70^{\circ} \mathrm{C}$..... 0.25 watt $125^{\circ} \mathrm{C}$. 0 watt	$\begin{aligned} & 50 \text { Volts max. } \\ & 70^{\circ} \mathrm{C} \ldots .0 .2 \text { watt } \end{aligned}$	300 Volts max. $85^{\circ} \mathrm{C}$..... 0.25 watt $150^{\circ} \mathrm{C}$. 0 watt	300 Volts max. $85^{\circ} \mathrm{C}$..... 0.25 watt $150^{\circ} \mathrm{C}$. 0 watt
Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature Coefficient	$+100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ nom.	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
Seal Test	$85^{\circ} \mathrm{C}$ Fluorinert*		$85^{\circ} \mathrm{C}$ Fluorinert*	$85^{\circ} \mathrm{C}$ Fluorinert*
Mechanical Angle	240° nominal	Continuous	16 Turns nominal	16 Turns nominal
Torque	100G-CM max.	3.0 oz-in. max.	3.0 oz-in. max.	3.0 oz-in. max.
Terminals	Hot solder dipped copper		Solderable pins	Solderable pins
Weight	Approx. 0.01 oz .		0.015 oz.	0.02 oz .

EDN SURFACE-MOUNT TECHNOLOGY

This Designer's Ready Reference chart provides a check list that you can use when you have completed your electronic design and are ready to pass the design on to a circuit-board engineer. Because there are many decisions you must make before a board can be laid out, you can use this check list to help prepare necessary design information.

DESIGN RULES

Type of design:

- SMT only
- Mixed SMT and through-hole components

Mounting:

- Component-side only - SMT solder-side only
- Both sides

DESIGN RULES FOR SMT COMPONENTS

CONFIGURATION	SPACING (IN)	
	TYP	MIN
SOIC (SIDE TO SIDE)	0.100	-
SOIC (END TO END)	-	0.025
SOIC (SIDE TO CHIP)	0.050	-
SOIC (END TO CHIP)	0.050	0.025
PCC TO PCC	0.100	-
PCC TO CHIP	0.050	-
CHIP TO SOT	0050	0.025
CHIP TO CHIP	0.050	0.025
LAND TO TRACE	0.008	-
TRACE TO TRACE	0.008	-
PAD TO TRACE	0.008	-
TRACE WIDTH INTO LAND	≤ 0.015	0.008
VIA PAD DIAMETER	0.037	0.025
VIA HOLE DIAMETER	0.020	0.013
PCC SOCKET CLEARANCE	0.200	-
LAND TO SILKSCREEN	-	0.010
TRACE TO BOARD EDGE	0.050	0.025
LAND TO WIDE TRACE	0.025	0.0125
TRACE WIDTH	0.008	-
VIA TO UNRELATED LAND	0025	0.008

DESIGN RULES FOR MIXED

 TECHNOLOGY| CONFIGURATION | MIN SPACING (IN.) |
| :--- | :---: |
| CHIP TO AXIAL LEAD | 0.075 |
| CHIP TO AXIAL BODY | 0.050 |
| SOIC TO DIP | 0.100 |
| AXIAL SIDE TO DIP SIDE | 0.100 |
| AXIAL END TO DIP END | 0.200 |
| DIP END TO DIP END | 0.200 |
| DIP SIDE TO DIP SIDE | 0.100 |
| SOIC SIDE TO DIP SIDE | 0100 |
| PCC TO DIP SIDE | 0125 |
| PCC TO AXIAL BODY | 0.100 |

DESIGN REQUIREMENTS FOR TEST

All test pads should be accessible from the same side of the board; usually the bottom.
The test pads should be at least 0.035 in. in diameter
As many of the test pads as possible should be put on 0.100 -in. centers The minimum space between test pads cannot be less than 0.050 in.
If the board tester supplies power to your circuit through test pins, use at least one test pad for each ampere of power. Thus, 5 V at 1 A requires one test pad for the power and one for the ground connection
All interconnect networks should have a test pad.
Determine whether you need access to unconnected or disconnected IC pins for testing purposes.
Test pads must be separated from the component lands.

MANUFACTURING

Identify the types and models of the machines used for pick-and-place operations.
Which solder-reflow method will be used?

- Infrared - Hand solder
- Laser
- Wave solder
- Vapor phase
- Hot air

Which type of cleaner will you use?

- Aqueous - Spray
- Solvent - Manual

Can selected components withstand manufacturing-process stresses?
What is the panel or board size you require?
Can you use a standard board or panel size?
What are the tooling specifications for assembly machines?
What will be the board's orientation?
What are the component orientations?
Are there any autoinsert or autoplace guidelines?
What are the edge clearances for wave soldering and for autoinsertion?

LAYOUT DETAILS

What is the maximum acceptable number of layers?
Do all components have designators and pins assigned to them?
Has the power-and-ground table been completed?
Have the critical-signal paths been identified?
Have the components that dissipate more than 1W been identified? Where must the power-supply bypass capacitors be placed?

BILL-OF-MATERIAL INFORMATION

Are all designators, part numbers, and quantities included?

- Are capacitor values listed in $\mu \mathrm{F}$ or pF units?
- Are the capacitor's working voltages specified?
- Are the capacitor's tolerances specified?
- Are the capacitor's dielectric materials specified?
- Are all resistor wattages specified?
- Are all resistor tolerances specified?
- Can multiresistor packages be split into individual resistors?
- Are inductor values, tolerances, and voltages specified?
- Are shielded and unshielded inductors clearly marked?
- Are connector specs included?
- Are connector pin assignments clearly identified?
- Are any ICs to be butt mounted?
- Can multidevice ICs be repackaged?
- Are all socket-mounted items clearly identified?
- Are crystals to be grounded?
- Are specifications included for all nonstandard parts?
- Have you included specs for hardware items?

TESTING

What is the minimum space needed between components for testing purposes?
What is the minimum test-pad size?
Are you using single- or double-side testing?
Will you be probing the top or bottom side of the board?
If bareboard testing is required, what is the grid spacing?
What bareboard test fixture will you use?
Is in-circuit testing required?

- If so, what is the grid spacing?
- Will the design use lands or separate pads for test?

Must you probe disconnected pins on ICs?
-What in-circuit test fixture will be used?
Do you require functional testing?

CIRCUIT-BOARD FABRICATION

How many layers will the board have?
Are there power and ground planes?
What is the board material's thickness; . 030 in., . 047 in ., . 062 in., or other? Is a silkscreen required?

- What size letters are necessary?
- Which board sides will require silkscreen legends?

What is the copper-plating process?

- Solder mask over bare copper (smobc)
- Smobe with tin plate
- Solder mask over tin plate

What is the solder-mask process?

- Wet or dry film - Color mask

If gold plating is required, what is the plating's thickness? Is partial gold plating required?

MECHANICAL

What is the board's size?
Are there any irregular cutouts?
Mechanical-drawing information:

- Are edge connectors shown?
- Is a pin-1 designation clearly noted for each connector?
- Are tooling holes located by dimensions or are they located on a panel?
- Is panelization required? If so, what size panel do you need?
- Is palletization required? If so, what size pallet do you need?
- How many tooling holes are required and what are their dimensions (in inches)?

1/4" Square Sealed Single-Turn MODEL 3325	5mm Square Sealed Single-Turn MODEL 3335
"J" Leads, Gull Wing	"J" Leads, Gull Wing, Through-Hole
Top, Side	Top
Plastic Tubes	Embossed Tape
. 35 'x. $26{ }^{\prime \prime} \times .22^{\prime \prime}$. 20 'x. $20^{\prime \prime} \times 16^{\prime \prime}$
10Ω to 1 Megohm	10Ω to $500 \mathrm{~K} \Omega$
$\pm 10 \%$	$\pm 20 \%$
1% or 2Ω (whichever is greater)	1% or 2Ω (whichever is greater)
1% or 3Ω (whichever is greater)	$\begin{gathered} 3 \% \text { or } 3 \Omega \\ \text { (whichever is greater) } \end{gathered}$
$\pm 0.05 \%$	$\pm 0.05 \%$
$\pm 0.15 \%$	$\pm 0.15 \%$
Infinite	Infinite
500 vdc. 1,000 Megohms min.	500 vdc. 1,000 Megohms min.
$215{ }^{\circ} \mathrm{C} / 3$ minutes	$215{ }^{\circ} \mathrm{C} / 3$ minutes
300 Volts max. $85^{\circ} \mathrm{C}$...... 0.5 watt $150^{\circ} \mathrm{C}$. 0 watt	100 Volts max. $85^{\circ} \mathrm{C}$...... 0.2 watt $150^{\circ} \mathrm{C}$. 0 watt
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
$85^{\circ} \mathrm{C}$ Fluorinert*	$85^{\circ} \mathrm{C}$ Fluorinert*
260° nominal	270° nominal
3.0 oz-in. max.	3.0 oz-in. max.
Solderable pins	Solderable pins
0.02 oz .	0.02 oz .

$: 111 \sqrt{1}$	1/8 Watt	1/10 Watt
Chip Resistors	MODEL CR1206	MODEL CR0805
Board Space	$\longrightarrow \left\lvert\,-\frac{.063}{(1.60)}\right.$	$\rightarrow-1=\frac{.049}{(1.25)}$
Resistance Range (Ohms), Tolerance and Temperature Coefficient	100Ω to 1 Megohm $\pm 1 \%, 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 478 to 1 Megohm $\pm 5 \%, 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10Ω to 47Ω $\pm 5 \%, 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} 47 \Omega \text { to } 1 \text { Megohm } \\ \pm 5 \%, \pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C} \\ 10 \Omega \text { to } 47 \Omega \\ \pm 5 \%, \pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power Rating	0.125 watt	0.100 watt
Maximum Operating Voltage (at $70^{\circ} \mathrm{C}$)	200 Volts	100 Volts
Maximum Ambient Temperature	$125^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Thermal Shock (Method)	$\pm 0.5 \%$ (MIL-R-55342, Para. 4.7.3)	
Low Temperature Operation (Method)	$\begin{gathered} \quad \pm 0.5 \% \\ \text { (MIL-R-55342, Para. 4.7.4/IS-30 Para. 3.6) } \end{gathered}$	
Short Term Overload (Method)	$\begin{gathered} \pm 0.5 \% \\ \text { (MIL-R-55342 Para. 4.7.5/IS-30 Para. 3.7) } \end{gathered}$	
High Temperature Exposure (Method)	$\begin{gathered} \quad \pm 0.5 \% \\ \text { (MIL-R-55342 Para. 4.7.6/IS-30 Para. 3.8) } \end{gathered}$	
Body Materials		

EDN SURFACE-MOUNT TECHNOLOGY JEDEC PACKAGE SHAPES AND DIMENSIONS

ADVERTORIAL

Multibus I Architecture Supports 32-Bit Transfers

32-bit transfers across the Multibus*I Architecture with a 256 Mbytes physical address space, (increased from 16Mbytes), and a 20Mbyte bandwidth within the IEEE 796 specification. "TRU-32" ${ }^{\ominus}$ defines the reserve lines in the P-2 backplane, giving a full 32 -bit data width to all 23 slots in the Multibus I specification. As faster, more powerful CPU designs emerge, the costs for todays newer technology in open-architecture buses have sky-rocketed. Migration reluctance from embedded, well established buses is understandable when faced with the reality of: costly hardware changes, timely software learning curves, and off-the-shelf incompatibility among the new buses. This new scheme will benefit those who develop, design or manufacture around the best supported and well defined open-architecture in the world.

CIRCLE NO 129

80386 SBC Executes "Tru-32" Specifications

The ZENDEX ZX-386 single-board computer incorporates the "TRU-32" specification with downward compatibility to all 16 -bit and 8 -bit Multibus I boards. A full function 32 -bit SBC, the $Z X-386$ can be used in present Multibus I systems executing standard 16-bit data width or Zendex will make available the "P-32" backplane, (4 to 23 slots), supporting the TRU-32 specification for 32 -bit applications. The board features a 16 MHz 80386 processor; 80387 numeric coprocessor; 82380 DMA controller; 8Mbytes dual ported one wait state DRAM; 4 EPROM sockets; two serial ports; 4Mbyte per second SCSI interface; and two SBX connectors. "TRU-32 Development Kits" are available and include Interface scheme, PAL equations, and license for $\$ 100.00$. ZENDEX CORPORATION (415) 828-3000

CIRCLE NO 130

Intelligent Multibus I Extender Board

A most useful tool to assist test technicians and engineers in trouble shooting Multibus I products has been designed and released by Zendex Corporation. The ZX-611 has sixteen LED's displaying buffered bus functions for 16 -bit, 8 -bit and the new 32 -bit Multibus I specification. Two on board switches control: 1) systems reset and 2) local power for insertion and extraction of boards in extension without removing system power. Support arms relieve connector pressure and contact problems inherent to the weight of bus boards on extension. In addition, terminal pins for $+5 v$ and ground are mounted on the board for oscilloscope and probe attachment along with plated thru holes on P1 for user selective test points. ZENDEX CORPORATION (415) 828-3000

CIRCLE NO 131

Modular I/O Flexibility Through SBX

As the ever increasing need for modular I/O intensifies a broad range of SBX Expansion Modules for the SBX specification have been developed. Expanding virtually any system with standard or custom designs, ZENDEX CORPORATION manufactures the largest selection of modules available. SCSI, Cmos SCSI, IEEE 488, HDLC, Modem, Servo controller, Stepper Motor controller, Encoder, Clock/Calendar, Disk controller, Dual Serial, A/D D/A Converter, and more. The ZENDEX ZX-564 mother board supports 6 SBX modules simultaneously, 8/16 bit transfers, 4 channels of DMA with user definable applications such as: Multiple Serial I/O, Industrial Control, Data Acquisition, and many more. ZENDEX CORPORATION (415) 828-3000

CIRCLE NO 132

This AD and all statements are those of: ZENDEX CORPORATION, 67øø SIERRA LANE,DUBLIN,CA. 94568 (415) 828-3øøø FAX (415) 828-1574 "ZENDEX" "ZX" and "TRU-32" are registered trademarks of the ZENDEX CORPORATION * Multibus is a trademark of Intel

Launch your design with a 40 MHz FIFO that can be accessed in 15 ns .

Make waves with your design. Launch it with the MK4505 BiPORT ${ }^{\text {" }}$ FIFO from SGS-THOMSON Microelectronics, the Winning Team.

At 15 ns , the MK4505 is one of the fastest single-chip FIFOs in the world.
The MK 4505 enables you to go full speed ahead now-without extra registers, extra buffers or extra costs.
Our FIFO's blazing 15ns access speed and 25 ns cycle time come from a unique combination of advancements including: 1.2μ full-CMOS technology, an eighttransistor BiPORT ${ }^{\text {'1" }}$ memory cell and $1 \mathrm{~K} \times 5$ pipelined architecture.
Separate rising edge-triggered read and write clocks assure transfer of data between two totally asynchronous systems.
A full complement of status flags lets you know how much is-or isn'tavailable, before it's too late.

	MK4505-25
Cycle time	40 MHz
Access time	15 ns
Almost full \& Almost empty status flags	Yes
Free-running clock inputs Separate read \& write enable inputs	Yes
Depth Width	Yes
Width \& depth expandable with no support logic	1024
Fully authorized second sourcing	Yes

Unrivalled speed and performance capabilities, coupled with ultrathin 300 mil DIP packaging make the MK4505 BiPORT FIFO the logical design-in choice for applications like digitized video and audio, image processing, high performance graphics, microwave and FDDI, RADAR return sampling and cache write buffering.

Two models are available: a Master (MK4505M) and a Slave (MK4505S). The MK4505M gives you all the control signals necessary for reliable, full speed width and/or depth expansion without adding extra logic.

Get your design right on course, right from the start with the MK4505, just one member of our complete family of FIFOs. Join the Winning Team-SGS-THOMSON Microelectronics.

Call or write for more information: 1000 E. Bell Road, Phoenix, Arizona 85022. 602/867-6259.

Join The Winning Team.
 The MK4505 FIFO is just one example of

 how SGS-THOMSON Microelectronics is working to exceed your expectations. Our semiconductor expertise covers everything from simple transistors to complex digital signal processing systems to full service application-specific capabilities. Join The Winning Team. Launch your design with SGS-THOMSON Microelectronics. You'll be a winner, too. For your free copy of our product literature package, call 602/ 867-6259. Or write SGS-THOMSON Microelectronics, 1000 E . Bell Road, Phoenix, AZ 85022.

PRODUCT UPDATE

Ripple-and-noise test module uses voltage-comparison technique

This ripple-and-noise test module, intended for use in testing switch-ing-regulated power supplies, plugs into the vendor's 6500 modular automatic power-supply test system. The difficulty of reproducing switching-supply ripple-and-noise measurements has caused friction between power-supply vendors and their customers. The manufacturer claims to have solved that problem by replacing more conventional noise-measurement techniques with a method based on voltage-level and duty-factor sensing.

Peak-to-peak measurements of switching-supply noise are notoriously difficult to reproduce because of their extraordinary sensitivity to the bandwidth of the measurement instrumentation's peak-detection circuits. To overcome this problem and to pinpoint whether noise is associated with a supply's switching action or its conversion of line-frequency ac to dc, a common noisemeasurement technique uses filters to separate switching-frequency noise from line-frequency-related ripple, and it uses an rms-to-dc converter to measure the filters' output. (A lowpass filter allows you to measure line-related noise components; a highpass filter passes the switching-frequency-related components.)

Because the supply's switching frequency is hundreds of times as high as the line frequency, it may seem as though you don't need filters with an especially sharp cutoff. However, only about $51 / 2$ octaves separate the seventh harmonic of the $60-\mathrm{Hz}$ power line from the most common switching-regulator frequency, 20 kHz . If, for example, you use a single-pole lowpass filter to eliminate switching-frequency volt-

This power-supply ripple-and-noise test module achieves improved measurement repeatability by using an unusual A/D-conversion technique in place of the more common filtering and rms-to-dc conversion methods.
ages, you'll find that a filter that attenuates by only a little more than 33 dB (that is, $<50 \times$) at 20 kHz still produces a greater-than-desired 3 dB of attenuation of voltages at the seventh line-frequency harmonic.

If you attempt to improve the rejection of switching-frequency noise by lowering the filter's cutoff frequency, you further attenuate ripple components at harmonics of the line frequency. If, instead, you
increase the sharpness of the filter's cutoff characteristic, you can introduce peaks into the filter's passband response, which, even with careful selection of the cutoff frequency, may affect measurements of line-frequency-related ripple. At the very least, you'll probably find it tricky to design filters that yield measurements someone else can reproduce.

Although it appears that the
trend toward higher switching-regulator operating frequencies will make it easier to obtain accurate ripple-and-noise measurements by using conventional techniques, remember that power-supply switch-ing-noise waveforms contain a significant amount of energy at harmonics of the switching frequency higher than the 33rd. Slew-rate and bandwidth limitations in most rms-to-dc converters cause errors in measuring waveforms with such high-frequency components, and these errors worsen as the switching frequency increases.

The manufacturer's test module makes reproducible ripple-andnoise measurements by eliminating filters and rms-to-dc converters entirely. The module, which achieves a $30-\mathrm{MHz}$ bandwidth, uses an unusual A/D-conversion technique and takes advantage of the fact that the switching-spike component of a power supply's ripple-and-noise

You can configure the $\mathbf{6 5 0 0}$ automatic pow-er-supply test system in many ways. An IBM PC/XT or compatible computer is a popular controller. You can choose voltage sources, dynamic loads, and measurement modules of several types. A 16 -slot backplane allows you to match system capabilities to your needs.

waveform normally has a low duty factor. The module adjusts a voltage comparator's reference input signal until its value is less than the ripple and noise under examination for a programmable, and normally small, fraction of the total time. By adjusting the fraction until the referencesignal value begins to increase rapidly, you determine the noise-pulse duty factor. The module then reports the value of the reference sig-nal-a value proportional to the ripple component of the ripple and noise. A 3 -channel module costs $\$ 3800$; a 7 -channel module sells for $\$ 4500$. Prices for the 6500 system range from $\$ 30,000$ to $\$ 500,000$; most configurations cost less than \$100,000.-Dan Strassberg

Intepro Systems Inc, 450 Bedford St, Lexington, MA 02173. Phone (617) 863-9500. TLX 510-601-8053.

Circle No 720

From Layout to Finished Board . . . In Minutes

Paths of insulation around copper traces are created by the precision router. The LPKF unit also performs drilling and contour milling to complete the circuit board production.

Now you can use the LPKF circuit board plotter with any Gerber CAD files to create a ready-to-stuff circuit board. This unique plotter is excellent for prototypes, film production, and even front-plate engraving.

- Mechanically plots double- and single-sided boards
- Boards can take surfacemounted components
- Single-sided boards in 10-15 minutes; complex, dense boards in 2 hours or less
- Compatible with any CAD system Gerber output
- No more waiting for prototypes or small runs

See us at NEPCON, Booth \#7135

LPKF CAD/CAM Systems, Inc. 18935 Monte Vista Drive
Saratoga, CA 95070
FAX: 408-395-5153
TEL: 408-354-1102
Distributor Inquiries Invited

The highest performance and highest integration, ever: Together on a single 16-bit chip.

The Z280 ${ }^{\text {Tw }}$ gives you a more powerful CPU and higher performance peripherals than you've ever seen on a 16 -bit chip. Think of it as a complete microsystem on a chip.
Unmatched performance.

Start with the most powerful 16-bit engine available, add on-board Cache, MMU and Burst Mode memory support - and you'll begin to understand the Z280's power and potential. ...powerful on-board peripherals...

Imagine the savings in cost and board size when you have peripherals like 4 DMA channels that'll give you transfers at $6.6 \mathrm{Mbytes} / \mathrm{sec}$, and a full-duplex UART.

	Z280 ${ }^{\text {TM }}$	80186	68070
Package	$\begin{aligned} & \text { 68-pin } \\ & \text { PLCC/CMOS } \end{aligned}$	68-pin LCC/NMOS	$\begin{aligned} & \text { 84-pin } \\ & \text { PLCC/CHMOS } \\ & \hline \end{aligned}$
Typical Power	375 mW	2W	800 mW (est)
Speed	10.25 MHz	$8-12.5 \mathrm{MHz}$	10 MHz
Memory Support	16 Mb Physical Paged	1 Mb Physical Segmented	16 Mb Physical 8 or 128 Segments
16-bit Registers	12 General	8 General	15 Dedicated
Instruction Pre-fetch	256-Byte Assoc. Cache; Burst Mode	6-Byte Queue	None
Multiprocessor Support	Local or Global	Local only	Local only
Wait Logic	Programmable	Programmable	Hardwire
DMA	4 Channels, 6.6 $\mathrm{Mb} / \mathrm{s} @ 10 \mathrm{MHz}$	$\begin{aligned} & \text { 2Channels } \\ & 2 \mathrm{Mb} / \mathrm{s} @ 8 \mathrm{MHz} \end{aligned}$	2 Channels, 3.2 Mb / s @ 10 MHz
Counter/Timers	316-bit	316-bit	216-bit
Serial I/O	1 Full-Duplex UART	None	1 Full-Duplex UART
DRAM Controller	10-bit Refresh	None	None
Price (100)	\$33	\$43	\$50

The choice is clear.

... and the glue to tie it all together.
With a DRAM Controller to support up to 1 MBit DRAMs and

Who has 10,000 silicon solutions on file?

The General.

Who will paint
 standard or modified linear IC's purple, form the leads to your spec, test them any way you wish, build them in a QPL plant to 883B, Rev. C and Class S, package them in SOIC, LCC, and PLCC packages? Who will use hybrid technology, screen to customer specifications, or modify an existing design?
The General will. That's who. More than 10,000 customer specific products including voltage regulators, pulse width modulators, protection circuits, operational amplifiers, core memory interface circuits, power drivers, power output stages, and transistor arrays have been built for our customers. We have built them to meet the most exacting needs and criteria. We test them to military or commercial temperature requirements.
Customer Specific Parts Are Half Our Business. From special labeling to full custom linear, you can depend on us to meet your exact needs. We'll work with you all the way. And we'll work
fast. Look to us for full custom IC's for automotive, motor control, power supply and military applications. Look to us for integrated power, high speed logic, and fast accurate linear circuits. They're the heart of our custom design and fabrication capabilities. Packages include DIPs to 40 pins, TO-3, 39, 66, 96, 99, 100, 101, 220, flatpack, PLCC, LCC, and SOIC.

Ask For Our Capabilities Brochure.
 Silicon General

 engineers work with you to carefully define a custom specification. You can get the ball rolling by writing for a copy of Capabilities
. A Sampling of Silicon General Specials. Brochure. Please write Silicon General, 11861 Western Ave., Garden Grove, CA 92641. Phone (714) 898-8121. TWX 910-596-1804. FAX (714) 893-2570.

PRODUCT UPDATE

Systems DMM lets you choose $8^{1 / 2}$-digit resolution or 100,000 readings $/ \mathrm{sec}$

Designed to be at home in a reference lab, on an engineer's bench, or in a test-equipment rack, the $\$ 5900$ Model 3458A digital multimeter offers a range of measurement speeds and resolutions that allow the instrument to tackle a wide variety of jobs. At its highest resolution, the DMM provides $81 / 2$-digit measurements; at its fastest speed, the multimeter takes 100,000 readings/sec. In addition, a precise timebase and a switchable, high-speed, track-andhold input path allow the instrument to digitize repetitive waveforms to 15 MHz .

For situations requiring highthroughput measurement, the DMM can take 100,000 readings/sec with $41 / 2$ digits of resolution. The instrument's standard acquisition memory holds 10,000 readings, and a $\$ 500$ option adds storage capacity for an additional 64,000 readings. To allow for additional storage capacity or for data analysis, the multimeter can pump readings out through an IEEE-488 port to a computer at the full 100,000 -reading $/ \mathrm{sec}$ rate. The company supplies a $\$ 1000$ control-and-analysis software package for the DMM; the package runs on the vendor's Model 9000 workstations.
For applications that don't require the DMM's full measurement speed but that could make use of additional resolution, the instrument can take $50,0005^{1 / 2}$-digit, 5000 $6{ }^{1 / 2}$-digit, or $6071 / 2$-digit readings/ sec. It performs 5 readings/sec when set to its maximum resolution of $81 / 2$ digits.
The instrument's internal input path incorporates an integrator with a $160-\mathrm{kHz}$ bandwidth. You can digitize repetitive signals with frequencies to 15 MHz by switching the input path to a track-and-hold

You can choose to take $\mathbf{1 0 0 , 0 0 0} 4^{1} 2 / 2$-digit measurements/sec or five $81 / 2$-digit measurements/sec with the Model 3485A DMM.
circuit and using the DMM's subsampling feature. The subsampling measurement technique takes a series of samples, one per cycle of the signal it's measuring. Following a trigger event that occurs once each cycle, the DMM waits longer (the increment is programmable) than it did during the previous cycle and then takes a sample. Over several cycles, the instrument builds a detailed picture of the signal's waveform. The DMM's sampling clock can operate at frequencies as high as 100 MHz , and it features less than 100 psec of jitter.

Automated test systems can readily use the DMM's flexible tradeoff between resolution and speed. The company claims that digital multimeters in automated test systems perform a large percentage of the measurements, so a faster DMM in such a test system will probably greatly improve overall system
throughput. In addition to the ability to take measurements quickly, the 3458A multimeter can perform as many as 200 function or range changes/sec and can take 250 autoranged measurements/sec.
To aid in making rapid range and function changes in a test environment, a program memory in the instrument stores measurement sequences that can be activated by the transfer of only a few bytes over the IEEE-488 interface. This program memory allows the DMM to make as many as 1000 limit checks/sec. You can calibrate the multimeter from its front panel (so it can remain in its system rack) with just two referenc-es-a $10-\mathrm{k} \Omega$ resistor and a 10 V reference source-and a short circuit.
The company, which incorporated its proprietary multimeter language (HPML, also used in its earlier 3457A DMM) in the instrument, asserts that its future DMMs will also

For extreme applications

 UPDATEsupport this language to ease future software changes. You can issue all of the HPML commands from the DMM's front panel as well as enter them through the instrument's IEEE-488 port.
The multimeter's accuracy specifications make it well suited for work in a reference laboratory. The company rates the instrument's dcvoltage accuracy at 0.5 ppm over 24 hours and 8 ppm over one year. An $\$ 800$ high-stability option improves that annual accuracy rating to 4 ppm . The linearity spec is 0.1 ppm over 24 hours and has been measured as being within 0.05 ppm of 10 V against the Josephson-Junction Array voltage standard developed by the National Bureau of Standards in Boulder, CO. You can command the DMM to perform an automatic calibration against its internal reference standards, which have known drift and temperature coefficients.

Because the DMM can measure both ac and de voltage and current, resistance, frequency, and period, it's likely to find a home on the test benches of engineers who need a high-precision, full-featured multimeter. Its dc-voltage measurements include five ranges from 0.1 to 1000 V with a maximum sensitivity of 10 nV , and its resistance ranges can measure impedances from 10Ω to $1 \mathrm{G} \Omega$ (full scale) with 2 -ppm accuracy. The ac-voltage scales, frequency counter, and period measurement accommodate signals with frequencies of 1 Hz to 10 MHz . The 3458A is available eight weeks ARO. A $\$ 160$ option extends the instrument's warranty period from one year to three years.

- Steven H Leibson

Hewlett-Packard Co, 3495 Deer Creek Rd, Palo Alto, CA 94304. Phone local office.

Now see what your hardware and software are really doing, in real time, without waiting for problems to repeat. Nothing else comes close to tools like these in Tek's DAS9200 Digital Analysis System:

- Register

 deduction.Acquire and disassemble up to 32 K samples of processor activity. The DAS9200 can show you the contents of the register before the problem occurred!

- Stack deduction.

Similarly, you can scroll through changes in a stack model and end the
painstaking process of tracking contents by hand.

- Data display. Watch as your variable space is modified by the software. No more trial-and-error to it-you can see when variables get clobbered.
- Subroutine trace. Follow the flow of high-level language subroutines using address symbolics.
- Performance analysis.

Plot execution times, times within subroutines, and more, for an invaluable graphic overview.

Monitor and integrate up to six 8-, 16 - or 32-bit micros at once! That's just one of many other ways the DAS9200 helps you beat the clock in system design. To learn more, contact your local Tek representative. Or call:
1-800-245-2036. In Oregon, 231-1220.

COMMITMENT: Silicon Systems commitment to mass storage technology is providing the industry with advanced IC's for hard disk, floppy disk, tape, and optical disk drive systems.

PRODUCTS: Underscoring this commitment, Silicon Systems now offers the industry's most extensive line of mass storage ASIC's. It's a growing line that provides IC solutions to meet the disk drive designer's needs in read/write, pulse detection, data recovery, head positioning, and controller electronics. Selecting from this extensive line of ASIC's, the designer can easily mix-and-match products to implement his specific feature set, taking advantage of the reduced interconnect requirements.

CUSTOMER BENEFITS: The powerful design approach made possible by the Silicon Systems' family concept enables the customer to simplify his disk drive designs and produce a product that exceeds his most demanding requirements. The use of these highly-integrated functionallycompatible circuits allows reduction of board area, the elimination of many external passives, the simplification of interconnections, and the lowering of costs-yielding superior performance in the end product.

Send for Disk Drive literature today. Silicon Systems, 14351 Myford Road, Tustin, CA 92680.
Phone: (714) 731-7110, Ext. 575.

Electrostatic plotters produce prints at 1 ips

Electrostatic raster-printing technology gives the 8500 Series monochrome plotters a plotting speed of 1 -ips. You can use the 24 - and 36 -in.wide plotters as a department or network resource because of their fast output speed. Yet the devices are priced in the $\$ 20,000$ range, so they're affordable for use with a single workstation or personal computer.

Electrostatic plotters use a linear array of wire nibs to place images on the medium. The wire nibs selectively conduct an electrical charge that discharges dots on the dielectric surface of the coated medium. The medium then passes through a toner bath, and toner particles are fused to the selected charged dots forming the image. The wire nibs of the 8500 Series plotters produce a resolution of $200 \mathrm{dots} / \mathrm{in}$.

Although electrostatic plotters are raster devices, the 8500 Series includes a controller that performs a vector-to-raster conversion. The controller accepts input in the HPGL (Hewlett-Packard Graphics Language) and Calcomp 906/907 vector data formats. The plotters include a Centronics parallel interface and an RS-232C serial interface that operates at speeds as high as 38.4 k baud.

The plotters use roll-feed media, and they can produce more than 100 plots with a single roll. You can choose among various types of media, including opaque, translucent, and vellum paper and clear and matte polyester films. The plotters each include a manual cutter for the media. The company also offers an automatic cutter and a take-up roll for paper output; with either of these options, the plotters can operate unattended.

The Model 8524 plots on 24-in.wide media and costs $\$ 19,900$, and

HPGL and 906/907 vector data inputs drive the rasterizing controllers of the 8500 Series plotters, allowing the plotters to operate with most popular graphics-software packages.
the Model 8536 uses 36 -in.-wide media and sells for $\$ 24,900$. The 8536 can produce an E-size drawing in 45 sec , and either machine can plot a D-size drawing in 36 sec . The plot time does not vary with image complexity. However, the controller must rasterize a full graphics image before plotting begins.

The plotters can print multiple copies of an image at the 1 ips plotting speed. You simply select as many as 999 copies at the control panel. The control panel also allows you to choose a line thickness ranging from 3 to 90 mils. Further, it lets you scale or rotate a drawing, create a mirror image, and change a drawing's point of origin. Each plotter includes a floppy-disk drive that you can use to store and retrieve various plotter setups. The vendor offers OEM discounts on the plotters, and production quantities are available now.-Maury Wright

Versatec, 2710 Walsh Ave, Santa Clara, CA 95051. Phone (408) 9882800. TWX 910-338-0243.

Circle No 719

If YOU'RE DESIGNING DISK DRIVES AND HAVE ONIY USED OUR READ/WRITE CIRCUITSTHIS CHART IS FOR YOU.

Our Extended Family

If you're designing disk drives, you're probably already familiar with Silicon Systems. Chances are good that you are presently using one or more of Silicon Systems' Read/Write amplifier IC's in your HDD designs. But maybe you don't know that we also offer the industry's most extensive line of mass storage ASIC's.
The adjacent chart illustrates that Silicon Systems can also provide more than a score of circuits for pulse detection, data recovery, head positioning, spindle motor control, and controller electronics. And the list continues to grow.

The Mix-and-Match Design Approach

With Silicon Systems growing families of IC's for all the electronic functions in hard disk drives, many leading HDD designers are finding they can now easily mix-andmatch SSi products to implement their specific design features. This powerful design approach allows them to reduce board area, eliminate external passives, and lower costs by simplifying their designs.

Call Now!
 (714) 731-7110, Ext. 575

MICROPERIPHERAL IC SELEGTION CHART

SSI Device Numbers		Head Type	\# of Channels	MaxInputNoise$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	Max Input Capaci- tance (pi)	Read Gain (typ)	Write Current Range (mA)	Power Supplies	Read/Write Data Port(s)						
New	Old														
HDD READ/WRITE AMPLIFIERS															
$32 \mathrm{R104B}$	104	Ferrite	4	2.4	23	35	15 to 45	$+6 \mathrm{~V},-4 \mathrm{~V}$	Differential, Bi-directional						
$32 \mathrm{R104BLN}$	104L	Ferrite	4	1.7	23	35	15 to 45	$+6 \mathrm{~V},-4 \mathrm{~V}$	Differential, Bi-directional						
32R114	114	Thin Film	4	1.1	65	123	55 to 110	$\pm 5 \mathrm{~V}$	Differential/Differential						
32R115	115	Ferrite	2,4,5	1.8	20	40	30 to 50	$\pm 5 \mathrm{~V}$	Differential, Bi-directional						
32R177	177	Ferrite	2, 4, 6	2.1	23	100	10 to 50	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differentiol/TIL						
32R117A	117A	Ferrite	2, 4, 6	1.7	20	100	10 to 50	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TIL						
$32 \mathrm{R188}$	188	Ferrite	4	2.4	18	43	35 to 70	$+6 \mathrm{~V},-5 \mathrm{~V}$	Differentiol, Bi-directional						
32R501	501	Ferrite	4,6,8	1.5	23	100	10 to 50	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TTL						
32R510A	510 A	Ferrite	2,4,6	1.5	20	100	10 to 40	$+5 \mathrm{~V}+12 \mathrm{~V}$	Differential/TL						
-32R511	511	Ferrite	4,6,8	1.5	20	100	10 to 40	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differentiol/TIL						
-32R512	512	Thin Film	8	0.9	32	150	10 to 40	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TIL						
-32R514	514	Ferrite	2, 4, 6	1.5	20	150	10 to 40	+5 V , +12 V	Differential/TIL						
32R520	520	Thin Film	4	0.9	65	123	30 to 75	$\pm 5 \mathrm{~V}$	Differential/Differential						
32 R 521	521	Thin Film	6	0.9	65	100	20 to 70	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TTL						
-32R522	522	Thin Film	4,6	1.0	32	100	6 to 35	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TIL						
SSI Device Numbers		Circuit Function			Features										
New	Old														
HDD PULSE DETECTION															
$32 P_{540}$	$\begin{aligned} & 540 \\ & 541 \end{aligned}$	Read Data Processor Read Data Processor			Time Domain Filter AGC, Amplitude \& Time Pulse Qualification, RLL Compatible										

HDD DATA RECOVERY

320531	531	Data Synchronizer	Data Synchronizer/Write Precompensation
.320532	532	Data Separator	Data Synchronizer/2,7 RLL ENDEC
320533	533	Data Synchronizer	Data Synchronizer/Write Precompensation
320534	534	Data Separator	Data Synchronizer/MFM ENDEC/Write Precompensation
322535	535	Data Separator	Data Synchronizer/2,7 RLL ENDEC/Write Precompensation

HDD HEAD POSITIONING

32H101A	101A	Preamplifier-Ferrite Head	$A V=93, B W=10 \mathrm{MHz}, e_{\mathrm{n}}=7.0 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$
32H116	116	Preamplifier-Thin Film Head	$\mathrm{AV}=250, \mathrm{BW}=20 \mathrm{MHz}, \mathrm{e}_{\mathrm{n}}=0.94 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$
-32H567	567	Servo Demodulator	Di-bit Quadrature Servo Pattern: PLL Synchronization
-32H568	568	Servo Controller	Track \& Seek Mode Operation; Microprocessor Interface
-32H569	569	Servo Motor Driver	Head Parking, Spindle Motor Braking

HDD SPINDLE MOTOR CONTROL

32M590	590	2-Phase Motor Speed Control	$\pm 0.035 \%$ Speed Accuracy; Unipolar Operation
322591	5991	3-Phase Motor Speed Control	$\pm 0.05 \%$ Speed Accuracy; Unipoar Operation
-32 M593	593	3-Phase Motor Speed Control	$\pm 0.037 \%$ Speed Accuracy; Bipolar Operation

HDD CONTROLLER/INTERFACE			
-328450A	450A	SCSI Controller	Async transter to 2MBPS; Initiate/Target Modes; Internal Drivers; CMOS
-32C452	452	Storage Controller	20Mbits/sec; CMOS; Programmable; AlC-010 Compatible
- 32 C453	453	Buffer Controller	Non-mux addressing to 16 K ; CMOS; AIC-300 Compatible
328545	545	Support Logic	Includes ST506 Bus Drivers/Receivers

FLOPPY DISK DRIVE CIRCUITS			
-340441	441	Data Separator	High Pertormance Analog Data Separator, NEC 765 Compatible
$34 \mathrm{P570}$	570	Read Dota Path	2 Channel Read/Write With Read Data Path
34R575	575	Read/Write	2,4 Channel Read/Write Circuit
348580	580	Support Logic	Port Expander, Includes SA400 Interface Drivers/Receivers

TAPE DRIVER CIRCUITS

| $35 P 550$ | 550 | Read Data Path | 4 Channel Read/Write With Read Data Path |
| :--- | :--- | :--- | :--- | send for mailers. Silicon Systems, 14351 Myford Road, Tustin, CA 92680.

[^9]
Monolithic A/D converter delivers l-MHz, 12-bit performance at low cost

For designs that require a highspeed, 12 -bit sampling A / D converter, consider using the CSZ5412JC 1 , a monolithic $1-\mathrm{MHz} \mathrm{A} / \mathrm{D}$ converter. This IC offers speed and accuracy that matches or exceeds the performance of hybrid alternatives while consuming a third of the power- 700 mW -and selling for only $\$ 180$ (100). This price includes the sample-and-hold circuitry that you must add to many competing hybrid devices.

Using a 2 -step flash A / D conversion to achieve its high speed and accuracy, the CSZ5412 incorporates self-calibrating circuitry, pipelined acquisition and settling times, and overlapped conversion cycles. The 2-step technique requires a track-and-hold amplifier, a 6 -bit flash A/D converter, a 6-bit D/A converter, and a differential amplifier-all of which are provided on the chip's
monolithic substrate.
The device's pipelined settling times, which are used in both the sampling and the conversion processes, give the converter its $1-\mathrm{MHz}$ throughput rate. The device can actually begin a conversion cycle while it's still operating on the previous sample. This process of overlapping the conversion cycles by using a pair of track-and-hold amplifiers results in a throughput time that's shorter than the device's conversion time.

The CSZ5412 uses several calibration techniques to ensure 12 -bit accuracy over time and temperature. For example, it has a referencegenerating circuit that provides 64 graduated reference levels; the circuit continually adjusts the levels to 12-bit accuracy. Further, an on-chip $\mu \mathrm{C}$ provides digital correction that calibrates the device's gain and offset and minimizes linearity errors at
the 64 segment boundaries.
You can connect the converter directly to a $\mu \mathrm{P}$'s data and control buses because it comes with an overrange output, 3 -state output buffers, and a flexible control interface. Alternatively, the device can operate in stand-alone mode, independently of microprocessor control. The converter specs a 3 V analoginput range. The device's total har-monic-distortion spec is 0.02%, and its dynamic range is 72 dB . You can also order a similar device, the CSZ5412-JC2, which has a $500-\mathrm{kHz}$ conversion rate and costs $\$ 115$ (100).-J D Mosley

Crystal Semiconductor Corp, Box 17847, Austin, TX 78760. Phone (512) 445-7222. TWX 910-874-1352.

Circle No 721

This 40-pin monolithic CMOS A/D converter is a low-power, low-cost, self-calibrating device that provides a 12-bit representation of an analog input signal at sampling rates as fast as 1 MHz .

Large PGA sockets? Small PGA sockets?

PRODUCT UPDATE

Rack-mountable, $5^{1} / 2$-digit programmable multimeter features 8-channel scanner

Combining two instruments in one half-rack-size enclosure, the Model 199 systems digital multimeter and scanner is a $\$ 1395$ instrument that provides $\$ 3000$ of functionality: Purchased separately, the devices would cost $\$ 3000$. You can order the Model 199 without its scanner option for $\$ 995$-a price lower than that of most other $51 / 2$-digital multimeters on the market.

The multimeter's mainframe features microprocessor control, which allows the instrument to control a switching module. The multimeter alone measures dc and ac voltage, dc and ac amps, ohms, and decibels. By adding the 8 -channel scanner option, you transform the instrument into a complete multichannel measurement system.

The instrument's sensitivity specs are $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega$, and 100 nA , and its best 1 -year dc-voltage accuracy is 0.007% of reading. You can take 150 readings/sec at a resolution of $41 / 2$ digits and store them in an internal buffer. You can trigger the readings externally.

The optional scanner, which you can install at your site, offers a switching speed of 400 channels/sec (including measurement time), 2 -pole and 4-pole switching, and less than $1-\mu \mathrm{V}$ thermal offset in switch contacts. The low thermal offset lets the Model 199 accurately switch and measure low signal levels. Further, the scanner's 4 -pole switching mode provides Kelvin-type (4-wire) resistance measurements.

The unit can switch and take measurements across 40 channels/ sec. The manufacturer specifies a $25-\mathrm{msec}$ internal delay between channel changes; this delay includes switch settling time as well as the

Combining an IEEE-488 digital multimeter and an 8-channel scanner in a single enclosure, the Model 199 offers $51 / 2$-digit precision and costs $\$ 1395$. Its Translator software lets you easily convert the code of your existing test programs for use on the 199.
time it takes to process a reading.
The multimeter, which you can program via its IEEE-488 bus, houses 500 memory locations. By using internal memory to store readings, the unit can reach its maximum speed of 150 readings/sec.

By adding the scanner, you can use the Model 199 as an 8 -channel data logger that operates either under computer control or as a stand-alone instrument. The data logger can take readings at intervals varying from 16 msec to 16.6 minutes, or it can take readings asynchronously, at the command of external control equipment. With the scanner, the multimeter can also subtract, divide, and compute the ratio of two values.

Translator, a program that lets you add the Model 199 to your existing automated-test system, yet make only minimal changes to any test software you've already written. Translator replaces lengthy IEEE488 device-dependent program code with short, mnemonic commands. It allows the multimeter to execute a program written for another multimeter or scanner when you place special translation statements at the beginning of your test program. The Translator software codes reside in the DMM's nonvolatile memory.
-J D Mosley
Keithley Instruments Inc, 28775 Aurora Rd, Cleveland, OH 44139. Phone (216) 248-0400. TLX 985469.

Circle No 722

Achiever:

Start with a complete, full performance, 512-digit system DMM. And then...

Over Achiever:

INSTALL the 8 -channel switching option for an integrated system-in one package. For datalogging and more applications...

The Model 199
 System DMM/Scanner

Put a complete DMM in your measurement system. Satisfy your measurement needs with the

Model 199's 51/2-digit resolution and 6 -function performance: DC and AC volts, , DC and AC amps, ohms (2and 4 -wire), and dB (for AC volts and amps). All standard-and so is the IEEE-488 interface.

You also get excellent Keithley sensitivity $(1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 100 \mathrm{nA})$, with 60 ppm accuracy*. And the 199 gives you the extras, like a 500 -reading internal memory, to help get the most from your most essential measurement instrument. Use the 199 on your bench or in a system-it's cost-effective and convenient in both situations. *DC volts, 90 days.

Fast-Where It Counts. The Model 199 isn't just fast, it's fast where it counts-in your high performance test system. You can synchronize the 199 to your system and achieve a rate of 150 readings per second, with $41 / 2$-digit resolution. Storing readings in the 500 -point memory frees your system controller for other work.

Stand-Alone Data

Logging. Use the Model 199 to track drift or other trends. Under front panel control, the 199 can be programmed to automatically store up to 500 readings at intervals from 15 ms to 16.6 minutes (over 5 days of data), or at any externally-triggered time interval.

More Performance, Maximum Utility.

- Enable a 30-reading running average filter to measure noisy signals.
- Use the ZERO function to subtract offsets or make measurements referenced to a user-defined baseline
- Display messages to prompt an operator in a semi-automated system.
- Save your DMM setup to avoid reprogramming the Model 199 on power-up.
- Automatically calibrate the Model 199 from the IEEE-488 bus on either front or rear inputs. Seal the front panel calibration lock switch for security.
- Reduce programming time-use the 199's non-volatile TRANSLATOR software to reduce the length of transmitted command strings, or to emulate the commands of an older DMM.

MAXIMUM READING RATES (Readings/Second) ${ }^{1}$

$\begin{aligned} & \text { RESO- } \\ & \text { LUTION } \end{aligned}$	Continuous Into Memory MUX:		External Trigger Into Memory MUX:		Triggered Via IEEE-488 Bus ${ }^{2}$ MUX:	
	OFF	ON	OFF	ON	OFF	ON
411/2-Digit	65	65	150	62	80	49
5112-Digit	35 (29)	9 (7.5)	40 (33)	9 (7.5)	34 (29)	(7.5)

OHMS	Continuous Into Memory MUX:	External Trigger Into Memory MUX:	Triggered Via IEEE-488 Bus ${ }^{2}$			
RESO-	MUX:					
LUTION	OFF	ON	OFF	ON	OFF	ON
$41 / 2$-Digit	43	20	47	20	30	18
$51 / 2$-Digit	$16(13)$	$9(7.5)$	$18(15)$	$9(7.5)$	$15(12.5)$	$9(7.5)$

${ }^{1}$ Reading rates are for fixed range readings with filters off, for $3 \mathrm{~V}, 3 \mathrm{k} \Omega$, and 30 mA ranges. $5^{1 / 2}$-digit rate is for 60 Hz operation. Values in parentheses are for 50 Hz operation.
${ }^{2}$ One shot on TALK.

STORAGE \& SCANNING CAPABILITIES

500-Reading Memory: Stores reading, range, and scanner channel.

Trigger: One shot or continuous from front panel, IEEE-488 bus, and rear panel BNC.
Programmable Reading Interval: 15 ms to 999.999 s .
Programmable Trigger Delay: 1 ms to 999.999 s.

WITH MODEL 1992 8-CHANNEL SCANNER

Programmable Configuration: 2- or 4-pole.
Programmable Channel Limit: 1 to 8.
Programmable Scanning Modes: Manual, step, and scan.
Ratio: Channels 2 through 8 referenced to Channel 1.

IEEE-488 BUS IMPLEMENTATION

MULTILINE COMMANDS: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD.
UNILINE COMMANDS: IFC, REN, EOI, SRQ, ATN.
INTERFACE FUNCTIONS: SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C0, E1.
All front panel functions and programs are available over the IEEE-488 bus, in addition to Status, Service Request, Output Format, EOI, Trigger, Terminator, Display Message, and Non-Volatile TRANSLATOR.
IEEE-488 address is programmable from the front panel.

MODEL 1992 SCANNER OPTION

CONTACT CONFIGURATION: 8-channel 2-pole, or 4-channel 4-pole.
CONTACT POTENTIAL: $<1 \mu \mathrm{~V}$ per contact pair.
MAXIMUM SWITCHING RATE: 40 channels/second, including Model 199 4½-digit DCV reading time.
CONNECTOR TYPE: Quick disconnect screw terminals, \#14 AWG maximum wire size.
MAXIMUM SIGNAL LEVEL: 200 V peak, 100 mA , resistive load.
CONTACT LIFE: $>10^{6}$ operations (at maximum signal level); $>10^{8}$ operations (cold switching).
CONTACT RESISTANCE: $<1 \Omega$.
ISOLATION BETWEEN ANY TWO TERMINALS: $>10^{9} \Omega$, $<75 \mathrm{pF}$.
ISOLATION BETWEEN ANY TERMINAL AND EARTH: $>10^{9} \Omega$, < 150 pF .
COMMON MODE VOLTAGE: 350 V peak between any terminal and earth.
MAXIMUM VOLTAGE
BETWEEN ANY TWO TERMINALS: 200V peak.
MAXIMUM VOLTAGE BETWEEN ANY TERMINAL AND MODEL 199 INPUT LO: 200V peak.
DIMENSIONS, WEIGHT: 25 mm high $\times 130 \mathrm{~mm}$ wide \times 170 mm deep ($7 / 8 \mathrm{in} . \times 5 \mathrm{in} . \times 61 / 2 \mathrm{in}$.). Adds $0.3 \mathrm{~kg}(8 \mathrm{oz}$.) to Model 199.

GENERAL

MAXIMUM READING: 302,999 counts in $51 / 2$-digit mode.
CONNECTORS: Measurement: Switch selectable front or rear, safety jacks. Digital: TRIGGER input and METER COMPLETE output on rear panel, BNCs.
WARMUP: 2 hours to rated accuracy.
TEMPERATURE COEFFICIENT $\left(0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-50^{\circ} \mathrm{C}\right.$): $< \pm\left(0.1 \times\right.$ applicable accuracy specification) ${ }^{1} \mathrm{C}$.
ISOLATION: Input LO to IEEE LO or power line ground: 500 V peak. $5 \times 10^{5} \mathrm{~V} \cdot \mathrm{~Hz}$ maximum. $>10^{9} \Omega$ paralleled by 400 pF .
OPERATING ENVIRONMENT: $0^{\circ}-50^{\circ} \mathrm{C}, 80 \%$ relative humidity up to $35^{\circ} \mathrm{C}$; linearly derate $3 \% \mathrm{RH} /{ }^{\circ} \mathrm{C}, 35^{\circ}-50^{\circ} \mathrm{C}$ ($0 \%-60 \% \mathrm{RH}$ up to $28^{\circ} \mathrm{C}$ on $300 \mathrm{M} \Omega$ range).
STORAGE ENVIRONMENT: -25° to $+65^{\circ} \mathrm{C}$.
POWER: $105-125 \mathrm{~V}$ or $210-250 \mathrm{~V}$, rear panel switch selected, 50 Hz or $60 \mathrm{~Hz}, 20 \mathrm{VA}$ maximum. $90-110 \mathrm{~V}$ and $180-220 \mathrm{~V}$ versions available upon request.
DIMENSIONS, WEIGHT: 90 mm high $\times 220 \mathrm{~mm}$ wide \times 330 mm deep ($3^{1 / 2} \mathrm{in}$. $\times 8 \frac{3}{8}$ in. $\times 12^{1 / 8}$ in.). Net weight 3 kg (6 lbs., 8 oz.).
ACCESSORIES SUPPLIED: Model 1751 Safety Test Leads, Instruction Manual.

ACCESSORIES AVAILABLE:	
Model 1992:	8-Channel Scanner
Model 1993:	Quick Disconnect
	Scanner Connector
Model 1998-1:	Single Fixed Rack Mounting Kit . . . 40.00
Model 1998-2:	Dual Fixed Rack Moun
Model 1651:	50-Ampere Shunt
Model 1681:	Clip-On T
Model 1682A:	RF Probe
Model 1685:	Clamp-On Current Probe 105
Model 1751:	General Purpose Test Lea
Model 1754:	Universal Test Lead Kit 25.0
Model 5806:	Kelvin Clip Leads 195.0
Model 7007-1:	Shielded IEEE-488 Cable, 1m 89.00
Model 7007-2:	Shielded IEEE-488 Cable, 2m 99.00
Model 7008-3:	IEEE-488 Cable, 0.9 m (3 ft .)
Model 7008-6	EE-488 Cable, 1.8m (6 ft)
MODEL 199 SYSTEM DMM/SCANNER 9995.00	
MODEL 199/1 with 8-Chan	SYSTEM DMM/SCANNER Scanner Option

[^10]
DC VOLTS (5½ Digits)

RANGE	$\begin{aligned} & \text { RESO- } \\ & \text { LUTION } \end{aligned}$		ACCURACY ${ }^{1}$ \pm (\%rdg + counts)		
			$\begin{aligned} & 24 \text { Hours }^{2} \\ & 23^{\circ} \pm 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { Days } \\ & 18^{\circ}-28^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \text { Year } \\ 18^{\circ}-28^{\circ} \mathrm{C} \end{gathered}$
300 mV	$1 \mu \mathrm{~V}$	$>1 \mathrm{G} \Omega$	$0.004+3^{3}$	$0.009+3^{3}$	$0.012+3^{3}$
3 V	$10 \mu \mathrm{~V}$	$>1 \mathrm{G}$ \&	$0.003+2$	$0.006+2$	$0.007+2$
30 V	$100 \mu \mathrm{~V}$	$11 \mathrm{M} \Omega$	$0.004+2$	$0.008+2$	$0.009+2$
300 V	1 mV	$10 \mathrm{M} \Omega$	$0.004+2$	$0.008+2$	$0.009+2$

${ }^{1}$ For $41 / 2$-digit accuracy, count error is 5 (except 15 on 300 mV range).
${ }^{2}$ Relative to calibration standards.
${ }^{3}$ When properly zeroed.
CMRR: $>120 \mathrm{~dB}$ at $\mathrm{dc}, 50 \mathrm{~Hz}$ or $60 \mathrm{~Hz}(\pm 0.05 \%)$ with $1 \mathrm{k} \Omega$ in either lead.
NMRR: $>60 \mathrm{~dB}$ at 50 Hz or $60 \mathrm{~Hz}(\pm 0.05 \%)$.
MAXIMUM ALLOWABLE INPUT: 300 V rms or 425 V peak, whichever is less.

TRMS AC VOLTS ($5^{1 ⁄ 2}$ Digits)

RANGE	$\begin{aligned} & \text { RESO- } \\ & \text { LUTION } \end{aligned}$	ACCURACY ${ }^{1}$			
		\pm (\%rdg + counts)		1 Year, $18^{\circ}-28^{\circ} \mathrm{C}$	
		$\begin{gathered} 20 \mathrm{~Hz} \\ -50 \mathrm{~Hz}^{2} \end{gathered}$	$\begin{gathered} 50 \mathrm{~Hz} \\ -200 \mathrm{~Hz}^{2} \end{gathered}$	$\begin{gathered} 200 \mathrm{~Hz} \\ -20 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 20 \mathrm{kHz} \\ -100 \mathrm{kHz}{ }^{3} \end{gathered}$
300 mV	$1 \mu \mathrm{~V}$	$2+100$	$0.35+100$	$0.15+200$	$2.0+300$
3 V	$10 \mu \mathrm{~V}$	$2+100$	$0.35+100$	$0.15+200$	$1.5+300$
30 V	$100 \mu \mathrm{~V}$	$2+100$	$0.35+100$	$0.15+200$	$1.5+300$
300 V	1 mV	$2+100$	$0.35+100$	$0.15+200$	$1.5+300$

${ }^{1}$ For $41 / 2$-digit accuracy, divide count error by $10 ; 41 / 2$-digit specifica-
tions apply for inputs $>200 \mathrm{~Hz}$.
${ }^{2}$ Sinewave inputs >2000 counts.
${ }^{3}$ Sinewave inputs $>20,000$ counts.
RESPONSE: True root mean square, ac coupled.
CREST FACTOR (ratio of peak to rms): Up to 3:1 allowable.
NON-SINUSOIDAL INPUTS ($>\mathbf{2 0 , 0 0 0}$ counts):
For rectified sine wave, add 0.3% of reading to above specifications for fundamental frequencies $<20 \mathrm{kHz}$.
For pulse waveforms, add 0.3% of reading for fundamental frequencies $<1 \mathrm{kHz}$, or 3.5% for frequencies $<10 \mathrm{kHz}$.
INPUT IMPEDANCE: $1 \mathrm{M} \Omega$ shunted by $<100 \mathrm{pF}$.
MAXIMUM ALLOWABLE INPUT: 300 V rms or 425 V peak, $10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$, whichever is less.
CMRR: $>60 \mathrm{~dB}$ at 50 Hz or 60 Hz ($\pm 0.05 \%$) with $1 \mathrm{k} \Omega$ in either lead.
SETTLING TIME: 1 second to within 0.1% of change in reading.

$\mathrm{dB}(\mathrm{ref}=1 \mathrm{~V}) \text { : }$	RESO-	$\text { ACCURACY } \pm \mathrm{dB}$$1 \text { Year, } 18^{\circ}-28^{\circ} \mathrm{C}$	
INPUT	LUTION	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	$20 \mathrm{kHz}-100 \mathrm{kHz}$
$\begin{gathered} -34 \text { to }+49 \mathrm{~dB} \\ (20 \mathrm{mV} \text { to } 300 \mathrm{~V}) \end{gathered}$	0.01 dB	0.2	0.4
$\begin{gathered} -54 \text { to }-34 \mathrm{~dB} \\ (2 \mathrm{mV} \text { to } 20 \mathrm{mV}) \end{gathered}$	0.01 dB	1.1	-

OHMS (5½ Digits)

RANGE	RESO-LUTION	NOMINAL I-SHORT	$\begin{gathered} \text { ACCURACY }{ }^{1} \\ \pm(\% \mathrm{rdg}+\text { counts }) \end{gathered}$		
			$\begin{aligned} & 24 \text { Hours }{ }^{4} \\ & 23^{\circ} \pm 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { Days } \\ & 18^{\circ}-28^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \text { Year } \\ 18^{\circ}-28^{\circ} \mathrm{C} \end{gathered}$
$300 \mathrm{~S}^{2}$	$1 \mathrm{~m} \Omega$	1.7 mA	$0.005+4^{3}$	$0.009+4^{3}$	$0.012+4^{3}$
$3 \mathrm{k} \Omega^{2}$	$10 \mathrm{~m} \Omega$	1.7 mA	$0.004+2$	$0.008+3$	$0.009+3$
$30 \mathrm{k} \Omega^{2}$	$100 \mathrm{~m} \Omega$	$160 \mu \mathrm{~A}$	$0.004+2$	$0.008+3$	$0.009+3$
300 k ת	1Ω	$50 \mu \mathrm{~A}$	$0.014+2$	$0.024+3$	$0.026+3$
$3 \mathrm{M} \Omega$	10Ω	$5 \mu \mathrm{~A}$	$0.02+2$	$0.03+3$	$0.03+3$
$30 \mathrm{M} \Omega$	100Ω	$0.5 \mu \mathrm{~A}$	$0.1+5$	$0.12+5$	$0.12+5$
$300 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$	$0.5 \mu \mathrm{~A}$	$2.0+5$	$2.0+5$	$2.0+5$

${ }^{1}$ For $41 / 2$-digit accuracy, count error is 5 (except 15 on 300Ω range).
${ }^{2} 4$-wire accuracy, $300 \Omega-30 \mathrm{k} \Omega$ ranges.
${ }^{3}$ When properly zeroed.
${ }^{4}$ Relative to calibration standards.
CONFIGURATION: Automatic 2 - or 4 -wire.
MAXIMUM ALLOWABLE INPUT: 300 V rms or 425 V peak, whichever is less.
OPEN CIRCUIT VOLTAGE: $<5.5 \mathrm{~V}$.

DC AMPS ($5^{1 ⁄ 2}$ Digits)

RANGE	RESOLUTION	ACCURACY ${ }^{1}$ \pm (\%rdg + counts) $\mathbf{1}$ Year, $\mathbf{1 8}^{\circ} \mathbf{- 2 8} \mathbf{C l}^{\circ} \mathrm{C}$	MAXIMUM VOLTAGE BURDEN
30 mA	100 nA	$0.05+15$	0.4 V
3 A	$10 \mu \mathrm{~A}$	$0.1+15$	2 V

${ }^{1}$ For $4 \frac{1}{2} / 2$-digit accuracy, count error is 20 .
MAXIMUM ALLOWABLE INPUT: 3A. Protected with 3A, 250 V fuse accessible from front panel.

TRMS AC AMPS ($5^{1 ⁄ 2} 2$ Digits)

RANGE	$\begin{aligned} & \text { RESO- } \\ & \text { LUTION } \end{aligned}$	ACCURACY ${ }^{1}$ \pm (\%rdg + counts) 1 Year, $18^{\circ}-28^{\circ} \mathrm{C}$		MAXIMUM VOLTAGE BURDEN
		$20 \mathrm{~Hz}-45 \mathrm{~Hz}$	$45 \mathrm{~Hz}-10 \mathrm{kHz}$	
30 mA	100 nA	$2+100$	$0.6+100$	0.4 V
3 A	$10 \mu \mathrm{~A}$	$2+100$	$0.6+100$	2 V

${ }^{1}$ Inputs >2000 counts. For $41 / 2$-digit accuracy, divide count error by $10 ; 4 \frac{1}{2}$-digit specifications apply for inputs $>200 \mathrm{~Hz}$.

RESPONSE: True root mean square, ac coupled.
CREST FACTOR (ratio of peak to rms): Up to 3:1 allowable at $2 / 3$ full range.
NON-SINUSOIDAL INPUTS: Specified accuracy for fundamental frequencies $<1 \mathrm{kHz}$.
MAXIMUM ALLOWABLE INPUT: 3A. Protected with 3A, 250 V fuse accessible from front panel.
SETTLING TIME: 1 second to within 0.1% of final reading. $\mathrm{dB}(\mathrm{ref}=1 \mathrm{~mA})$:

ACCURACY $\pm \mathrm{dB}$
1 Year, $18^{\circ}-28^{\circ} \mathrm{C}$

INPUT	RESOLUTION	1 Year, $\mathbf{1 8}^{\circ} \mathbf{- 2 8} \mathbf{~} \mathbf{~ H z - 1 0 ~} \mathbf{~ k H z}$
-14 to +69 dB		
$(200 \mu \mathrm{~A}$ to 3 A$)$	0.01 dB	0.6

Add the 1992 Scanner option to make the 199 an integrated, 8 -channel measurement system.

The Model 199 DMM/Scanner combination can switch and measure up to 40 channels per second. And the sensitivity of the 199 is accessible through the scanner-each set of contacts creates less than $1 \mu \mathrm{~V}$ contact error. You can also make low level resistance measurements-the scanner

Ratio $=\frac{\text { Channel } n}{\text { Channel } 1}$

($\mathrm{n}=2, \ldots 8$) can make 4-wire measurements on 4 channels or 2-pole measurements on 8 channels. Directly display Ratio for testing components to specific tolerances.

Use the Model 199 DMM/Scanner to evaluate multiple components, such as zener diodes, in a single test. Use the scanner in three different ways: Manual: Operate channels individually.
Step: Automatically increment through each channel at a defined interval.
Scan: Automatically scan a set of channels at a defined interval.

Put a complete measurement system in your DMM.

 Disconnect Scanner Connector Kit) to save different wiring setups.

Savings Through Integration

By combining two instruments in one, Keithley saves you:

- Valuable rack space: The 199 comes in a new, compact package.
- Learning time: Start up quickly by learning one instrument instead of two.
- Controller time: Reduced IEEE-488 bus handshake time.
- One IEEE-488 address. Access a single location.
- Cost: Use the Model 199 DMM/Scanner instead of up to 8 DMMs , a DMM and separate scanner, or an 8-channel datalogger.

Complete Confidence For Your Complete System.

Keithley recognizes your need for incorporating reliable instrumentation into your system. The high-reliability design and 2-year warranty of the Model 199 DMM/Scanner make it an excellent value. Order your Model 199 now on a 30-day money-back guarantee.

Model 196: Extended system performance.

When even smaller changes must be measured, the $61 / 2$-digit Model 196 System DMM provides the necessary extended performance. The 196 resolves changes as small as 1 part in $3,000,000$, and with excellent sensitivity. You can make these measurements with confidence: the 196 is accurate to 30 ppm (DC volts, 90 days). In addition, offset
compensated ohms eliminates errors caused by thermal contact potentials.

When high speed is your main concern, the Model 196 can take 3½-digit readings at 1000 per second into its 500-reading memory.

With front/ rear inputs, Voltmeter Complete and External Trigger signals, and IEEE-488 interface, the Model 196 provides full-rack systems capability-in a half rack case, at a half rack price.

FRONT PANEL PROGRAMS

Menu
Display Resolution $\mathrm{mX}+\mathrm{b}$
Hi/Lo/Pass
Multiplex On/Off
Save Setup
IEEE-488 Address
Line Frequency
Self Test
Set m,B Constants

Set Hi/Lo Limits Digital Calibration Reset to factory default conditions Offset Compensation
Zero Modify
Filter Constants dB Reference

	Sensitivity	Maximum Reading	Basic Accuracy
DCV	100 nV	300 V	0.003%
ACV	$1 \mu \mathrm{~V}$	300 V	0.15%
Ohms	$100 \mu \Omega$	$300 \mathrm{M} \Omega$	0.005%
DCA, ACA	1 nA	3 A	0.05% 0.6%

Complete Support For Your Application. Our full line of precision sources, scanners, and measurement instruments enables you to build a complete system of compatible Keithley components for your application. Incorporate powerful software packages such as ASYST and DADiSP to handle your data acquisition and analysis needs.

Our Application Engineers are available to discuss your difficult measurement requirements with you. We do more than just tell you how to operate our instruments-we offer suggestions to help you solve your measurement problems. Contact our Information Center to discuss your requirements with an Application Specialist.

1-800-552-1115

SOURCE • MEASURE • CONNECT

[^11]

Switching Power＇s feed back current sharing amplifier allows equal power supply loading and higher reliability，（Load sharing of better than 5% is achieved）．
The telecommunication industry gets true redundency and mainframe manufacturers can grow incrementally at low cost．

（⿴囗 125 to 4000 Watts
v $50^{\circ} \mathrm{C}$ Power Ratings
V Remote Sense
\checkmark Reverse Voltage Protection © Soft Start
■ Up to 400 Amps
『 Overvoltage Protection －Short Circuit Proof （ International AC Input －High Efficiency
\checkmark SELV Magnetics V Thermal Protection －Fully Regulated \checkmark Certified Safety

3601 Veterans Highway，Ronkonkoma，NY 11779 Tel．（516）981－7231－TWX：510－220－1528 Sunnyvale，Ca，Sales Office：（408）732－1230

Powerful products for over a decade！

Acromay has solutions for interfacing A/D, D/A and Digital I/O signals to the VMEbus.

Our extensive line of VMEbus-based products handles your interfacing applications for test and measurement, industrial control, or data acquisition.

If you need to interface with industrial sensors and industry standard field signals:

DC VOLTS OR CURRENTS
MILLIVOLT
THERMOCOUPLE
RTD
AC VOLTS OR CURRENTS
STRAIN GAUGE
PRESSURE
FREQUENCY
We have total solutions from the field wiring to the VMEbus.

PERFORMANCE

For basic A/D conversion, we've incorporated many operational features to improve overall throughput to your host processor.
For more advanced applications, Acromag's Data Acquisition Subsystem simplifies sensor interfacing and reduces host activity. So you can concentrate on processing the data while our on-board CPU handles routine tasks.

Function	In/Out	Max Signal Range**	Features	Product
High-Speed Analog I/O	16D/32SE* ${ }^{*}$ 2 out, opt.	$\pm 10 \mathrm{in} / \mathrm{out}$	12 Bit A/D, 67 K chan/sec throughput 12 Bit D/A	AVME9320 AVME 9321
High-Res Analog I/O	16D/32SE in 2 out, opt.	$\pm 10 \mathrm{~V}$ in/out	14 Bit A/D, 33K chan/sec throughput 12 Bit D/A	AVME 9330 AVME 9331
Analog Out	8 out	$\pm 10 \mathrm{~V}$, Vout $4-20 \mathrm{~mA}$, Iout	12 Bit D/A, $6 \mu \mathrm{sec}$ Vout, $25 \mu \mathrm{sec}$ Iout, throughput	AVME9210 AVME 9215
Data Acq. Controller	16D/32SE in, opt.	$\pm 10 \mathrm{~V}$	14 Bit A/D, 256 in, scans, linearizes, limit checks	AVME9100 AVME9110
Subsystem Expanders	16D/32SE in	$\pm 10 \mathrm{~V}$	High level expander	ECS9120
	16D in	$\pm 10 \mathrm{~V}$	Filtered inputs	ECS9121
	8D/16D in	$\begin{array}{\|c\|} \hline-6 \text { to }+60 \mathrm{mV} \\ -15 \text { to }+150 \mathrm{mV} \\ \text { Thermocouple } \end{array}$	250 V isolation, interface for TC, RTD, and Pressure with termination panels	$\begin{aligned} & \text { ECS9142-60 } \\ & \text { ECS9142-150 } \\ & \text { ECS9142-60B } \end{aligned}$
Digital I/O	64 in/out	0-30V in/out	8 in with latch and interrupt	AVME9480 AVME9481

*SE - Single ended D - Differential
**Most inputs and outputs have programmable ranges.

Acromog ${ }^{-1}$
30765 Wixom Road, Wixom, MI 48096 (313) 624-1541, Telex: 247354

SUPPORT PRODUCTS

Acromag's termination products interface to your field wiring using screw terminals and to the VME backplane using ribbon cable. I/O connections are at the rear of the boards.
The modular, high-accuracy analog signal conditioning system connects to any of our VME highlevel analog boards-like a termination panel. Available modules cover virtually all signal types and provide electrical isolation.

And we provide a comprehensive software support package for VERSAdos-with drivers, diagnostics, and a subroutine library in ' C '.

QUALIFICATIONS

Let Acromag's 30 years of experience in signal interfacing benefit you. When you need to interface analog or digital signals to the VMEbus, call or write today. For more information request "Acromag's Signal Interfacing Solutions for the VMEbus" bulletin.

TDK Has The Component Solutions To Fit Any Power Supply Challenge.

For frequencies above 100 kHz , choose TDK Power Ferrite Cores.

- TDK has newly developed 3 types of ferrite materials, $\mathrm{H}_{7 \mathrm{c} 1}, \mathrm{H}_{7 \mathrm{C} 4}$ \& $\mathrm{H}_{3 \mathrm{H}}$. These materials feature low power loss and high flux density with outstanding electromagnetic characteristics
- A wide range of reliable, TDK compact cores are available to meet all your power supply challenges, now including the new ultra-thin EPC core for low profile design.

From high power transformers to on-board DC to DC Converters, TDK offers top efficiency and operating stability.

- TDK low loss, high flux density Ferrite Cores are built into our highly efficient power transformers and inductors.
- TDK On-Board DC to DC Converters provide you with a choice of $0.3,0.8,1.5$ and 3 watt power ratings. They're designed for high density mounting and

READERS' CHOICE

Of all the new products covered in EDN's December 10, 1987, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, or refer to the indicated pages in our December 10, 1987, issue.

4 FM RECEIVER

The MC3362 IC is a narrowband-
FM, dual-conversion low-voltage (2V) receiver that incorporates all essential VHF-receiver functions, from the antenna input to the audio preamp output (pg 304).
Motorola Inc.
Circle No 605

- SWITCHING MODULES

FMP Series single-output switching modules come in low-profile, plastic-encased packages (pg 205). Kepco Inc.

C COMPILER

Turbo C is a C editor, compiler, and linker that runs on the IBM PC and compatibles (pg 179).

4 CMOS FIFO

The MK4505 is an edge-triggered, latched, expandable, and cascadable FIFO buffer that offers a 15 nsec access time (pg 59).
Thomson Components-Mostek Corp.
Circle No 601

DRAMATIC!

Now...Highest speeds AND production... 60/70/80ns 1Mb AND 256K DRAMS...

Exclusively from NMB Semiconductor - the high speed DRAM specialist - we've broken the speed barrier with FutureFast ${ }^{\text {m }} 256 \mathrm{~K}$ and 1 Mb DRAMS...first with access times of 60/70/80ns. This means designers can now have true " 0 " wait state systems without using complex, expensive cache memory techniques.

We've broken the delivery barrier too. NMBS offers much higher volume production than our competitors. These dramatic advances are made possible in the most advanced CMOS/VLSI plant in the world optimized for volume production of high speed DRAMS. With computerized operation and robot control in Class 1 ultra-clean rooms. Plus state-of-the-art design, processing and testing.

Available in the packages and organizations designers want for high performance projects.

More good news. We're now shipping qualification samples of our new 1Mb DRAM.

So for complete specs, evaluation units, quantity prices and delivery call NMBS - the high speed DRAM specialists - today. Prove to yourself that with FutureFast ${ }^{\text {M }}$ DRAMS, your future is now.

| TL! | NMB SEMICONDUCTOR
 CORPORATION |
| :---: | :---: | :---: |

11621 Monarch Street-Garden Grove, CA 92641 Telephone: (714) 897-6272
FAX: (714) 891-0895-TLX: 67-8486

The secret behind high-quality AMP cable assemblies: control.

We make the connectors, and the cable, and the tooling, so you can count on complete compatibility wherever you buy our cable assemblies.

Now we've structured a distribution system to make sure you get whatever you need, fast-from complex, small job lots to standard assemblies by the thousands.

We've provided our advanced tooling to cable co-operatives, valueadded distributors, and custom assemblers for fast response as well as prototype help. And AMP can accommodate very high volume needs direct, or supply the machinery and components you need to do it yourself.

AM| Interconnecting ideas

And still get AMP quality throughout.

For full information call (717) 780-4400 and ask for the AMP Cable Assemblies Desk. Or write AMP Incorporated, Harrisburg, PA 17105-3608.

LEADTIME INDEX

Percentage of respondents

PRINTED CIRCUIT BOARDS

Single-sided	0	74	21	5	0	0	4.7
Double-sided	0	46	50	4	0	0	6.0
Multi-layer	0	23	69	8	0	0	7.4
Prototype	5	85	10	0	0	0	3.4

RESISTORS

	35	45	20	0	0	0	3.0
3.6							
Carbon film	28	43	19	10	0	0	4.3
Carbon composition	15	50	35	0	0	0	4.3
4.4							
Metal film	11	56	22	11	0	0	5.2
4.8							
Metal oxide	4	46	32	14	4	0	7.2
Wirewound	7	55	31	7	0	0	5.2
Potentiometers	16	37	32	10	5	0	6.6
Networks							4.7
FUSES	54	38	8	0	0	0	1.8

SWITCHES								
SWushbutton	11	72	11	6	0	0	3.9	6.0
Rotary	5	67	11	17	0	0	5.5	7.3
Rocker	6	59	23	12	0	0	5.5	5.7
Thumbwheel	0	69	15	16	0	0	5.7	8.4
Snap action	0	64	29	7	0	0	5.3	5.6
Momentary	7	60	26	7	0	0	5.0	5.6
Dual in-line	0	50	20	30	0	0	7.8	6.4

WIRE AND CABLE

Coaxial	23	68	9	0	0	0	2.8
3.3							
Flat ribbon	26	42	32	0	0	0	3.8
Multiconductor	25	50	25	0	0	0	3.5
Hookup	23	65	12	0	0	0	2.9
Wire wrap	38	54	8	0	0	0	2.2
Power cords	28	56	12	4	0	0	10.8

POWER SUPPLIES

Switcher

6	41	29	24	0	0	7.2	10.1
0	55	27	18	0	0	6.6	9.5

CIRCUIT BREAKERS								
	7	33	27	33	0	0	8.3	8.2
HEAT SINKS	17	46	33	4	0	0	4.7	6.2
RELAYS General purpose	13	67	12	8	0	0	4.3	6.9
PC board	0	79	0	21	0	0	5.7	8.5

DISCRETE SEMICONDUCTORS

Diode	32	42	19	7	0	0	3.8
Zener	35	35	15	15	0	0	4.7
Thyristor	8	38	31	23	0	0	7.2
Small signal transistor	37	32	21	10	0	0	4.3
MOSFET	6	44	28	22	0	0	7.0
Power, bipolar	15	31	39	15	0	0	6.4

INTEGRATED CIRCUITS, DIGITAL

Advanced CMOS	0	50	33	17	0	0	6.8
9.3							
CMOS	10	38	38	14	0	0	6.4
TTL	21	42	16	21	0	0	5.8
LS	19	48	19	14	0	0	5.2

INTEGRATED CIRCUITS, LINEAR

Communication/Circuit	8	42	33	17	0	0	6.5
OP amplifier	17	33	22	28	0	0	7.1
Voltage regulator	11	42	26	21	0	0	6.6

MEMORY CIRCUITS

	0	46	27	27	0	0	7.8
RAM 16k	0	47	27	26	0	0	7.7
RAM 64k	0	20	47	33	0	0	9.5
RAM 256k	0	20	30	40	10	0	11.8
RAM 1M-bit	9	36	18	37	0	0	8.2
ROM/PROM	0	36	43	21	0	0	7.8
EPROM 64k	0	36	36	28	0	0	8.4
EPROM 256k	0	22	45	33	0	0	9.4
EPROM 1M-bit	0	40	30	30	0	0	8.3
EEPROM 16k	0	36	37	27	0	0	8.3
EEPROM 64k							
DISPLAYS	8	38	46	8	0	0	6.0
Panel meters	0	12	38	50	0	0	11.1
Fluorescent	0	33	34	33	0	0	8.8
Incandescent	18	32	41	9	0	0	5.6
LED	0	10	40	50	0	0	11.3
Liquid crystal							

MICROPROCESSOR ICs

8 -bit	28	27	18	27	0	0	6.5
1.8							
16-bit	8	50	17	25	0	0	6.7
32-bit	8	42	25	25	0	0	7.1

FUNCTION PACKAGES

Amplifier	0	50	38	12	0	0	6.4
10.2							
Converter, analog to digital	0	31	46	23	0	0	8.2
Converter, digital to analog	0	43	29	28	0	0	8.0

LINE FILTERS

0	63	12	25	0	0	6.8	7.6

CAPACITORS

Ceramic monolithic	21	32	37	10	0	0	5.5	6.3
Ceramic disc	26	30	29	15	0	0	5.6	6.5
Film	9	45	32	14	0	0	6.0	7.5
Aluminum electrolytic	12	42	27	19	0	0	6.4	7.2
Tantalum	15	41	29	15	0	0	5.9	7.1
INDUCTORS								

There are many $A C$ sources available today... but only $3 H$ offers the

 SERIICO OOOO

- IEEE-bus and front-panel keypad control of both forcing and measurement functions
- No switching noise (linear amplifier output stage)
- Excellent dynamic regulation (local feedback stabilization)
- Very low output impedance (no output transformer)
- Up to 100 A peak current
- Full frequency coverage $(40-4000 \mathrm{~Hz})$
- Dedicated Inrush Current Measure function, including 0.01 degree resolution of start point phase
- Full measurement function including rms voltage, rms current, true average power, power factor, positive and negative peak current, and inrush current
- Three pre-programmed waves available for continuous operation
- Programmable instantaneous three-wave amplitude sequencing (for transient applications)
- Programmable current limit
- Programmable Maximum RMS \& Peak Current (to protect both the product being tested and the AC source)
- Designed for parallel operation to provide high output power (up to 9KVA in single-phase configuration)
- Three-phase models feature independent programming of amplitude and phase angle for each phase

Experience quick delivery, easy operation, fast development schedules. EZ-PRO ${ }^{\text {® }}$ users reap the benefits of the C language fully integrated with advanced emulation tools, including precedence triggering, Deep Trace, ${ }^{\text {TM }}$ on-line code revisions, and performance analysis tools.

In addition to $\mathrm{IBM}^{\circledR} \mathrm{PC}-\mathrm{XT} /$ AT, hosts include IBM Personal

Experience Counts.

EZ-PRO Emulators

SIEMENS

The discreet alternative to discrete protection.

Introducing Siemens BTS 412A...the world's first fully-protected Smart SIPMOS ${ }^{\circledR}$ device.

Now you can be indiscrete with your system protection designs. Because instead of assembling a network of bulky discrete devices, you can plug-in a single integrated solution! It's a revolution in protection. called the Siemens BTS 412A.

This fully protected, power MOSFET Smart SIPMOS device eliminates the problems of multi-chip solutions. It's big on reliability. Small on space. And quick to alert you of potential problems, thanks to its integrated status feedback intelligence. Best of all, it gives you the comprehensive protection that once required an army of discrete devices. Now that's discreet protection!

Siemens BTS 412A. It's the world's first intelligent, fully-protected Smart SIPMOS device...and it's available now.

For more information, call 1-800-FET-APPS (in California call 1-800-422-FETS). Or contact your nearest
Siemens distributor or local sales office.
Siemens National Distributors: Hall-Mark and Marshall
Siemens Regional Distributors: Advent Electronics, Inc.
Almo Electronics, Insight Electronics, Quality Components, Summit and Western Microtechnology.
Siemens Regional Sales Offices:
Eastern Region Central Region
Littleton, MA
(617) 486-0331

Princeton, NJ
(609) 987-0083

Norcross, GA
(404) 449-3981

Siemens...

Rosemont, IL (312) 692-6000 Columbus, OH (614) 433-7500 Dallas, TX (214) 620-2294

Western Region

Orange, CA
(714) 385-1274

Cupertino, CA (408) 725-3586

your partner for the future.

SIPMOS is a registered trademark of Siemens AG
CG/2000-441A WLM 772

SPECIAL REPORT

Materials AND Hardware

Tom Ormond, Senior Editor

High density and performance are goals for today's VLSI- and SMT-based designs. Fortunately, advances in materials other than silicon are keeping pace with advances in integrated circuits. Innovative hardware is making it easy to mount, cool, interconnect, and shield VLSI- and SMD-populated assemblies.

VLSI devices are achieving increasingly high levels of performance, and surface-mount technology makes possible significant increases in circuit densities. Equally important, however, are the advances in material and hardware areas. These advances are converting the promises of VLSI and SMT into manufacturable, costeffective products.

This report will highlight innovations in six nuts-andbolts areas of system design:

- Fabrication processes, which are yielding improved resistance materials for high-resolution, low-current trimmers, and which are offering improved packaging techniques for microwave circuits (pg 150).
- Wired circuit boards, which can operate at gigahertz frequencies (pg 151).
- Molding technology, which yields not only unique pc-board configurations but also enclosures that you can tailor to your application (pg 152).
- Thermal-management technology, which can help you remove heat from dense, high-performance circuits (pg 154).
- Connectors (both fiber optic and electrically conductive), which are easing the interface to highdensity circuits (pg 155).
- Shielding, which can help you ensure electromagnetic compatibility at the enclosure or component level (pg 158).

Designed to efficiently transfer heat from pc-board components, thermal planes from Aavid are particularly well suited for use in sealed card cages that contain closely spaced boards.

Although such areas rarely receive their just due when it comes to press coverage, they are critical if you hope to successfully guide your design through the production phase of the product-development cycle.

- Fabrication processes

Today's variable-resistance devices (trimmers) typically include wirewound, bulk-metal, or cermet-film resistive elements. Devices from this last category have traditionally served applications requiring high resolution: Cermet-film elements offer essentially infinite resolution. In contrast, wirewound and bulk-metal elements both exhibit step-type resolution characteris-tics-because of the discrete windings around a mandrel in the former case and, in the latter case, because the photoetching process used to produce bulk-metal elements generally yields a serpentine pattern.

Cermet has exhibited a drawback, however. Oxidation can plague thick-film cermet trimmers when they're exposed to low-microampere (dry-circuit) currents. Cermet is essentially a metal-oxide ink: Dry-
circuit current levels cannot break down the oxidation layer (which forms at the junction of the wiper and the resistive element), and as a result, long-term cermettrimmer stability degrades.

To better adapt cermet to dry-circuit applications, Bourns has developed what it calls Palirium technology, in which islands of precious metal (usually a lowresistance gold compound) are deposited on a thick-film cermet element and cured at high temperatures. A wire wiper makes contact with the metal pads on the cermet resistance element. The wiper, made up of multiple contact points, reduces contact resistance by creating parallel current paths across adjacent islands.

The Bourns Trimpot II HPS trimmers are the first devices to employ this new technology. Their resistance values range from 0.5 to $100 \mathrm{k} \Omega$ with a tolerance of $\pm 10 \%$, and their resolution ranges from 0.15 to 0.35%. In company tests for contact-resistance variation, which were run at a current level of $5 \mu \mathrm{~A}$ on nominally $2-\mathrm{k} \Omega$ elements at $125^{\circ} \mathrm{C}$ over 2000 hours, drift was less than 0.5%. These results represent a greater than 300%

In applications involving dry-circuit current levels, oxidation layers seriously degrade the long-term stability of conventional cermet trimmers.

Although simple termination and easy maintenance are key features of the Pre-Cap fiber-optic connectors from Thomas \& Betts, they are also high-performance devices. Their mean insertion loss equals $0.12 d B$; the standard loss deviation measures $0.016 d B$.
performance improvement over conventional cermet variable-resistance elements. Indeed, these specs compare favorably to those of the more costly bulk-metal trimmers.

Handling microwave circuit needs

Other advances in film-deposition techniques are benefiting multilayer microwave circuits. DuPont has developed four proprietary technologies-PCM, PCS, LCM, and PPM- β-which it uses to fabricate microwave modules that accommodate surface-mount devices and thick-film resistors. The modules feature ceramic construction. DuPont uses photoforming techniques to provide conductor lines with square edges and smooth surfaces.

PCM (photoformed ceramic module) technology is a copper-based multilayer technology designed to provide excellent conductivity and via geometry. Resolution for lines and spaces equals 2 and 3 mils, respectively, and vias can have 4 -mil diameters.
PCS (photoformed ceramic substrate) technology, which is compatible with PCM, provides thin-film accuracy and control without the costs associated with conventional single-layer processes. PCS produces very-fine-line conductor traces using a polymer emulsion that becomes tacky when exposed to light. In the PCS process, the tacky area is toned using a conductor or oxide powder and then fired to set the pattern. PCS resolution approaches or exceeds that of thin-film technology: Resolution for lines and spaces equals 2 mils.

LCM (laminated ceramic module) technology is a low-temperature co-fired ceramic technology that uses
a proprietary dielectric film and specially formulated gold, silver, silver/palladium, or copper compositions. The technology provides a cost advantage vs thick-film multilayer schemes, and it outperforms high-temperature co-fired ceramics. LCM technology produces a dense hermetic structure that you can personalize by using existing thick-film or PCM technology.

Finally, the PPM- β (photoformed plastic module) technology, which is compatible with either rigid or flexible circuitry, produces 5 -mil lines and 25 -mil pads on a variety of substrates (as large as $12 \times 18 \mathrm{in}$.) with as many as four layers. In the fabrication cycle, a proprietary process plasma-etches a dielectric material to form blind and buried vias. These vias are more tolerant of thermal cycling than plated vias are, so PPM- β technology minimizes the problems that can occur when wavesoldering surface-mounted components. PPM- β 's polyimide dielectric offers a low dielectric constant and its bulk copper foil produces high conductivity.

- Wired circuit boards

The increasing number of high-speed designs employing ECL, advanced Schottky logic, high-speed CMOS, and even gallium arsenide are producing new challenges in the areas of circuit density and signal propagation. Kollmorgen Corp's Multiwire Div has developed a discrete wiring technology that offers

Featuring electrical characteristics that match those of ceramic materials, Thermal-Clad substrates from Berquist can serve as isolated mounting media for either packaged or unpackaged heatgenerating devices. The substrates feature three laminated layers: a base plate (usually copper or aluminum) bonded with an epoxybased, thermally conductive dielectric to a circuit layer (either copper or aluminum foil).

> Photoforming techniques are beginning to bridge the gap between the accuracy of thin film and the cost advantages of thick film.
solutions to many of the challenges that designers face when striving to realize high-speed circuits.

The Multiwire circuit boards feature a customized pattern of wires (4 or 6 mils) laid down on an adhesivecoated substrate. Polyimide insulation on the wires lets them cross without shorting (and eliminates the need for vias in internal layers), thereby increasing packaging density: A Multiwire board with one or two layers of wiring can readily replace a more expensive multilayer board.

The Multiwire board-fabrication process begins with a standard, copper-clad FR-4 base material. The cop-per-clad base laminate is then imaged and etched according to a format drawing. The format determines both the ground planes for power distribution and the board's controlled impedance. Adhesive material applied to the board provides a base for the placement of wires. The adhesive insulates the power and ground planes and serves as a foundation for the permanent interconnections.

A computer-driven numerically controlled wiring machine then writes insulated wires in a predetermined, repeatable pattern in accordance with the customer's net list. Each wire begins and ends at a hole location. Next, the wires are pressed into the adhesive and encapsulated by a cover layer of epoxy glass. This process locks every wire securely in place. Holes drilled at each plated-through-hole location serve a dual role, providing a junction for each wire as well as mounting holes for components.

The board then undergoes a chemical cleaning process, and insulation is removed from the wire ends. Copper is then plated in the holes to mechanically and electrically connect each wire to the wall of the hole. This interconnection exceeds IPC and military standards for bond strength and withstands multiple soldering and desoldering without damage to the hole barrel or interconnect.

Multiwire's Coaxe board illustrates the capabilities of the technology. By eliminating several problems detrimental to high-speed performance (propagation delays, crosstalk, reflections, and ground currents), the board allows designers to achieve speeds to 20 GHz .

Although the Coaxe circuit board resembles other Multiwire boards in appearance, its performance at gigahertz frequencies is quite different. Its characteristic impedance is exactly matched to application requirements. Time delay can be reduced to $1.2 \mathrm{nsec} / \mathrm{ft}$. The boards' 2×10^{-4} dissipation factor results in attenuations as low as $4.9 \mathrm{~dB} / \mathrm{ft}$ at 1 GHz .

The flexibility available with molding techniques allows Amerex to provide standard enclosures with custom molded options.

The Coaxe board combines the best features of coaxial cables and the packaging simplicity of pc boards. It features a coaxial wire that's small enough to be built into the board. As a result, it offers true 50Ω coaxial interconnections between circuit components. The 50Ω coaxial lead is embedded in the ground plane; you can specify coaxial wires for every interconnect on the board. Embedding the shielded leads in the ground plane minimizes return currents. The ground plane also serves as a heat sink for mounted chips. The Coaxe board accommodates either through-hole or surfacemounted components.

- Molding technology

Traditional pe boards have one primary mission-to mechanically support and electrically interconnect components on a 2-dimensional surface. Designers have had to use other components and structural elements to connect the pc board to the rest of the system. Now, molded circuit interconnects offer a new approach for packaging electronic components. These interconnects employ injection-molded thermoplastic parts that are selectively metallized. They can incorporate pe boards, connectors, chip carriers, and mechanical and structural elements.

Molded circuit interconnects are made from engi-neering-grade thermoplastics such as polysulfone, polyethersulfone, polyetherimide, and polyarylsulfone. The characteristics of these resins provide maximum continuous run temperatures as high as $180^{\circ} \mathrm{C}$ and heatdeflection temperatures to $210^{\circ} \mathrm{C}$. Electrical parameters are also impressive: Resistivity is $10^{+10} \Omega-\mathrm{cm}$, and in the gigahertz frequency range the dielectric constant is approximately 2.8 .

With permeabilities ranging to 350,000, Bomco's MuShield material is designed for applications in which EMI could be catastrophic to sensitive instruments.

With molded boards, thickness control is far superior to that of epoxy-fiber-glass laminates and is uniform over the entire board surface-tolerances reach ± 0.001 in. Molded-in holes are clean and free of drilling debris. Hole diameters can be as small as 0.3 mm (12 mils) with tolerances of $\pm 0.013 \mathrm{~mm}$ ($\pm 0.5 \mathrm{mil}$). The molding process places no limit on the form of holes and cutouts.

However, because of the flow characteristics of available resins and the molding pressure required to fill the molds, board sizes are currently limited to about 150 in^{2}. Moreover, the technology is most economical in high-volume applications (typically, more than 40,000 pieces) where you can amortize the cost of making the mold over the lifetime of the part. In addition, molded circuits are not very forgiving when it comes to engineering changes: Changes in circuit layout, for example, require changes in the mold. Finally, molded circuits are not compatible with multilayer constructions.

Bringing the technology to market

Triquest and Elite Circuits are two companies working together to develop molded circuit boards. Triquest builds the molds and produces the substrate boards; Elite provides the metallization and other finishing procedures.

Another molding-technology company is Pathtek; it is involved in volume production of a molded LED holder and interconnect for an electronic typewriter. The molded device uses the company's Mold-n-Plate
process (a 2 -shot imaging and selective-metallization system) to form circuit patterns on molded structures. The part aligns four LEDs in a molded holder, which serves as a mounting mechanism. By incorporating 2-sided, plated-through-hole circuitry into the plastic molding, this device replaces a single-sided circuit board and consolidates three components into one package.

Although the molded part and its conventional equivalent function identically, the molded part offers advantages in weight reduction and overall assembly costs. Weight, parts count, and subassembly labor operations for the molded and conventional implementations are 9.9 g vs 11.5 g , six parts vs eight parts, and three operations vs six operations.

An inside look at today's enclosures

Molding technology doesn't stop with boards. It's also finding application in the enclosure market, where modularity and versatility are key driving forces. A casual observer might miss most of the innovations in enclosure design because many of the advances are quite subtle.
The past few years have seen minimal alterations in basic enclosure design. Portable molded enclosures still come in two basic styles: the 1- or 2-piece clam-shell style, wherein users typically interface through the top surface; and the front/rear panel design, in which interfacing normally takes place through the panel sections. When you look beyond the basic styles, howev-

The high-speed active devices available today pose a number of problems for pcboard designers.

er, you'll find that vendors are offering a variety of enclosure features that are designed to let users more effectively package their products.

One development has been the introduction of specialty enclosures that include battery compartments. More recent innovations, from companies like Amerex, include display-window enclosures, speaker-grill enclosures, and low-profile enclosures. All of these off-theshelf specialty units incorporate molded-in features that can make your product look like it's enclosed in a custom housing.

- Thermal management

Board-level thermal management has been a major design consideration for many years. Today, though, designers are striving to cram more and more circuitry into smaller and smaller packages, and the resulting increase in power densities is making effective thermal management even more critical. Indeed, heat dissipation can reach levels that standard pe-board materials cannot handle effectively. Fortunately, vendors of substrate materials are addressing these dissipation problems.

Thermo-Clad substrates from Berquist serve as an isolated mounting medium for either packaged or unpackaged heat-generating devices. The substrates feature three laminated layers: a base plate (usually copper or aluminum) bonded with an epoxy-based, thermally conductive dielectric to a circuit layer (either copper or aluminum foil). This combination provides several important features in demanding surface-mount applications. It has electrical characteristics that match those of ceramic or epoxy-glass materials, but the composite substrate has much better thermal and physical characteristics than either material. Surface resistivity equals $7 \times 10^{9} \mathrm{M} \Omega$, and thermal conductivity measures $0.0136 \mathrm{~W} / \mathrm{cm} /{ }^{\circ} \mathrm{K}$. In addition, TCE (thermal coefficient of expansion) ranges from 8 to $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over an operating range of -36 to $+100^{\circ} \mathrm{C}$.

The dielectric layer holds the key to Thermal-Clad substrate performance. It rapidly transfers heat from the metal etched-circuit layer to the metal base plate while it simultaneously electrically isolates the two layers. The dielectric withstands processing temperatures as high as $400^{\circ} \mathrm{C}$ and features good breakdown performance- 2000 V for a 2 -mil-thick layer.

The design flexibility of Thermal-Clad substrates is especially useful in die-mounted assemblies. Substrate dimensions can range from less than $1 \mathrm{in}^{2}$ to $10 \times 16 \mathrm{in}$. To satisfy special requirements, Berquist can also alter

High density and reliability are possible with custom, multilayer ceramic substrates from DuPont. The Aegis part, suitable for multichip control boards, permits greater design freedom without sacrificing reliability.
performance characteristics by thickening a layer or changing layer materials. You can, for example, specify substrates that feature a heavy copper circuit layer to handle high currents and provide better thermal spreading characteristics. You can also request a substrate whose dielectric layer withstands 4000 V . In addition, Berquist can provide special base materials to optimize thermal expansion characteristics, for example.

Aavid Engineering takes a more traditional approach to solving thermal-management problems with its pcboard thermal planes. These planes are designed to efficiently transfer heat from pc-board components to the cold wall of a card cage and are particularly well suited for use in sealed card cages that contain closely spaced boards.

Made of aluminum or copper in thicknesses from 0.02 to 0.1 in ., the thermal planes are fabricated on numerically controlled equipment to achieve maximum hole-tohole layout density. It's possible, for example, to achieve $0.09-\mathrm{in}$. holes on $0.1-\mathrm{in}$. centers-a pattern that's particularly useful for chip carriers, for which heat dissipation from central pins can often be a problem.

The thermal planes are available with a number of different finishes. Aluminum planes can be black-anodized or finished with gold chromate. Copper planes are available with tin or nickel electroplating, black oxide, or a special high-emissivity dielectric coating that also has high thermal conductivity.

In addition to the basic thermal planes, Aavid also offers prepregnated sheets that let you bond the thermal planes to the pe board. The planes are also available

Based on a design employing shape-memory alloys, these imped-ance-matched, high-density connectors from Beta Phase offer a combination of zero insertion force and high contact force. In addition, you can actuate the devices electrically.
with epoxy-lined through holes to provide electrical insulation. The planes work with pe boards that have all kinds of through-hole components-ICs, transistors, resistors, diodes, rectifiers, and bridges.

The thermal planes add rigidity to the board and help to resist shock and vibration. Aavid provides complete design support for custom thermal-plane products. Using CAD equipment to analyze your board's thermal characteristics, the company can provide a plane that is optimum for an individual application.

- Connectors

Manufacturers of electrical connectors are offering devices with contact spacings in the millimeter range to help you get signals into and out of high-density boards. Fiber-optic-connector manufacturers are offering devices that are easy to terminate but that don't sacrifice performance. In addition, some manufacturers are taking a systems approach to product design and development.

Molex is one connector manufacturer that's emphasizing the systems approach. To reduce customers' costs, Molex is currently using robots to interconnect connectors to pc-board headers, to insert single-in-line modules into its SIMM sockets, and to insert daughter boards into edge connectors.

Increasing circuit densities are driving the trend toward metric center-to-center pin spacings. Although
the incremental difference between connectors with $1.25-\mathrm{mm}$ and $0.050-\mathrm{in}$. contact spacings might seem trivial (the standard $0.050-\mathrm{in}$. center-to-center connector requires about one mil more space per position than the $1.25-\mathrm{mm}$ connector does), the space savings can be significant for a 30 - or 40 -position connector.
Molex has developed a $1.25-\mathrm{mm}$ board-to-board hinged connector-a 2 -piece system with a mated height and width of $10.3 \times 6.7 \mathrm{~mm}$. Aside from helping designers maximize circuit-board density, the connector facilitates pc-board maintenance by allowing you to easily access the board surface. The connector mates on the coplanar (or board-edge to board-edge) axis, allowing you to rotate the board by as much as 90°. The connector also mates in the reverse direction to accommodate boards that are mounted in parallel.
The connector is basically designed for use on pe boards that house components requiring adjustments (potentiometers or trimmer capacitors) as the boards pass down an assembly line. The hinged connector uses a reliable, high-pressure tuning-fork-type contact system. The connectors feature plated phosphor bronze contact terminals. Solder tails are arranged in a staggered pattern to simplify the soldering process and to improve the connector's mechanical stability. Kinks in the solder tails keep the connectors properly positioned during soldering.

Mating and rotation lifetimes for these hinged connectors are 30 and 50 cycles, respectively. The connectors are available in 4 - to 20 -position sizes (even numbers only). The polyester housings have a $94 \mathrm{~V}-0$ UL flammability rating. Contacts are rated for 125 V at 1 A .

Pre-Cap Series connectors from Thomas \& Betts are compatible with SMA, ST, and FC fiber-optic-connector designs. Although simple termination and easy maintenance are key features of the connectors, they are high-performance devices nevertheless. Mean insertion loss equals 0.12 dB , and standard loss deviation measures 0.016 dB .

The connectors consist of a precision injection-molded ferrule assembly, a bayonet-type nut, a compression spring, and a retaining coupler ring. The ferrule is keyed and spring-loaded into the coupler to provide repeatable connector performance. The ferrule features a borosilicate-glass capillary, a zinc die-casted insert, and an injection-molded, self-reinforced thermotropic liquid-crystal polymer. The capillary measures $1 \times 10 \mathrm{~mm}$, has a $128-\mu \mathrm{m}$-diameter center hole (with a $+1 /-0-\mu \mathrm{m}$ tolerance), and features a beveled entry on one end to ease fiber insertion. The connector manufac-

Molded circuits offer designers an easy way to upgrade the packing density of a pc board.
turing process positions the capillary and the zinc insert within the molding die; the polymer is then injected to form the finished ferrule assembly.

Connector installation is quite simple. After preparing the cable's end, you simply place a small amount of medium-viscosity epoxy on the fiber and buffer and inject a low-viscosity epoxy into the ferrule. You then insert the fiber into the connector body and hold the cable in place by crimping the cable strength members. Next, you apply epoxy to the cavity of the strain-relief boot and then slide the boot onto the connector. After the epoxy cures, you scribe and break the fiber and then polish the interface.

The polishing operation produces a mirror-like finish on the fiber and the glass capillary. The polishing process removes only glass (rather than glass and ceramic, as is typical of many other connector-polishing operations), so there's no need to constantly monitor for fiber wear. The result is shorter termination time. Moreover, it's almost impossible to overpolish the ferrule tip.

A connector that never forgets

Miracle wire and wonder wire are just a few of the names given to a group of alloys whose potential for commercial applications is yet to be realized. Known as shape-memory alloys (SMAs), these metals have a physical structure that, through the application of heat, can be unlocked, rearranged, and programmed to take on new shapes. Forces exerted during the reshaping transition can be tremendous-as much as $50,000 \mathrm{psi}$.

Although SMAs were introduced more than 20 years ago, their inherent advantages were not fully exploited because of fabrication difficulties: The metals often popped back into their original shape during the manufacturing process, breaking equipment. In addition, batch-to-batch consistency was poor. In the last few years, however, manufacturers have overcome these problems, making it possible to economically realize the commercial potential of the metals.

About 20 alloys have shape-memory properties, but only a few-copper zinc aluminum, copper zinc nickel, and nickel titanium-are practical for commercial applications. The nickel titanium alloys are the most promising because they offer the best overall performance characteristics. They have twice the memory and are far more resistant to corrosion and cracking than are other SMAs, and they are lightweight and nearly as elastic as rubber (depending on the nickel titanium combination).

Beta Phase offers a line of pe-board connectors that

Featuring a $1.25-\mathrm{mm}$ contact-to-contact spacing, these hinged connectors from Molex use a high-pressure tuning-fork-type contact system and a polyester housing that has a 94V-0 flammability rating.
use this nickel titanium alloy. These connectors offer a combination of impedance-matched, high-density contacts, zero insertion force (ZIF), and high contact force. They allow you to make ZIF connections on three edges of a pe board. In addition, you can remotely or locally actuate the devices electrically-there's no need to physically access the connector. The connector can also function as a card guide and stiffener, providing good mechanical support for the board.

The connector consists of three basic parts-a shapememory element, a closing spring, and flexible-film circuitry that includes the contact pattern and a built-in heater. When you trigger the heater, the shape-memory element moves toward its original flat shape, engaging and opening the contact-closing spring. After inserting the board, you remove power from the heater. The shape-memory element closes, engaging the contacts with high normal forces- $100 \mathrm{~g} /$ contact in a typical connector. The polyimide-film flexible circuitry meets military standards.

Beta Phase's connectors offer a number of features. The use of flexible circuitry allows for $0.01-\mathrm{in}$. contacttrace spacings, and it's also possible to mix trace widths and center spacings to accommodate signal, power, and grounding needs. The connectors are also compatible with surface-mount applications. Because plastic molded bodies are not required for strength or support, each connector's profile, size, and weight are low. The use of shape-memory alloys also makes it easy to tailor

Surface mounted components do a lot more than merely reduce size

Today's demand for smaller and smaller electronic systems has fostered the creation of a large number of surface mounted chip components. This has resulted in the more efficient utilization of available PCB space with the net result of vastly reduced product size. That's the obvious advantage of surface mount. But there's more than just the obvious.
Improved electrical performance: Smaller, leadless components with shorter interconnections result in reduced stray capacitance and lower inductance allowing much faster operating speeds, faster rise times and higher frequency response.
Lowered manufacturing costs: Significant savings are achieved through elimination of the necessity for drilling
and plating thru holes in PCB's and by reduction in the overall PCB size and number of layers required.
Automated assembly: Surface mounted components permit the use of the latest automated assembly techniques leading to greater product consistency, higher reliability, better yields and a faster production capability.
Standardized designs: Component and packaging standards reduce product design efforts.

Shock and vibration resistance:

Due to their low mass, small size, and strong solder interconnects, surface mounted components have exceptional resistance to shock and vibration.

Product synergism: With a wide range of surface mounted configurations now available-ceramic capacitors, ceramic trimmer capacitors, fixed resistors, trimming potentiometers, inductors, ceramic resonators and ceramic filters-problems resulting from the integration of leaded and surface mounted devices have been significantly reduced.
To find out more about surface mounted components, write to Murata Erie North America, Inc., 2200 Lake Park Drive, Smyrna, GA 30080 or call 404-433-7878.

MURATA ERIE NORTH AMERICA, INC.

Board-level thermal management bas been a prime design consideration for many years, and SMT is increasing its importance.
the connectors for specific applications. For an application involving -55 to $+125^{\circ} \mathrm{C}$ operation, for example, the connector would employ an alloy that triggers above $125^{\circ} \mathrm{C}$.

- Shielding

Given the complexity of today's electronic circuitry, electromagnetic compatibility is a critical design consideration. EMI and RFI can propagate along a conducting medium or radiate through space. In either case, the electromagnetic energy can cause undesirable interference and degrade the operation of a receiving system.

The FCC has established limitations on radiated and conducted interference levels for all computer and peripheral devices according to the class of product. Class A devices include those found in commercial, industrial, or business applications. FCC Docket No 20780 states that, depending on frequency, emanations from a Class A device shall not exceed specific field-strength levels at 30 meters. Over frequency ranges of 30 to 88,88 to 216 , and 216 to 1000 MHz , the field-strength limitations are 30,50 , and $70 \mu \mathrm{~V} / \mathrm{m}$, respectively.

Although the FCC specifies maximum permissible interference levels from a system, the commission does
not tell enclosure manufacturers or system designers how to reduce emissions, and a battle is raging over how best to minimize radiation problems. Some see metal enclosures as the ideal solution for reducing EMI/RFI problems, though manufacturers of molded plastic enclosures contend that their products can provide acceptable electromagnetic compatibility.

The ideal EMI/RFI enclosure is a box (of metal or conductively coated plastic) without any seams or openings. Realistically, an effective cabinet is one that approaches these ideal qualities and provides access to internal components. The seams around all access points are crucial for maintaining good EMI/RFI integrity. The mating surfaces of all seams must be electrically connected, so you must use gaskets that feature high surface conductivity as well as good shielding properties. If different conductive materials are involved, they must be galvanically compatible to prevent a buildup of corrosion that can degrade gasket performance.

Instrument Specialties offers an extensive line of beryllium copper shielding strips for gasketing enclosure seams and openings. Beryllium copper does not absorb moisture or support fungus growth, and it isn't bothered by severe weather. It has excellent thermal

For more information . . .

For more information on the material and hardware products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or contact the following manufacturers directly.

Aavid Engineering Inc	Bomeo Inc	Elite Circuits	Molex Inc
Box 400	Box W	A DuPont Co	2222 Wellington Ct
Laconia, NH 03247	Malden, MA 02148	10117 Carroll Canyon Rd	Lisle, IL 60532
(603) 528-3400	(617) 321-4410	San Diego, CA 92131	(312) 969-4550
Circle No 675	Circle No 679	(619) 578-4144 Circle No 682	Circle No 686
Amerex	Bourns Inc		Thomas \& Betts Corp
Box 2815	1200 Columbia Ave	Emcor Products	920 Rte 202
Riverside, CA 92516	Riverside, CA 92507	Crenlo Inc	Raritan, NJ 08869
(714) 686-1400	(714) 781-5500	1600 W 4th Ave NW	(201) 685-1600
Circle No 676	Circle No 680	Rochester, MN 55901 (507) 289-3371	Circle No 688
Berquist Co	DuPont Electronics	Circle No 683	Triquest
5300 Edina Industrial Blvd	14 Alexander Rd		3000 Lewis \& Clark Hwy
Minneapolis, MN 55435 (612) 835-2322	Research Triangle Park, NC 27709 (800) 772-5420	Instrument Specialties Co Inc Box A	Vancouver, WA 98661 (206) 695-1234
Circle No 677	Circle No 681	Delaware Water Gap, PA 81329 (717) 424-8510	Circle No 689
Beta Phase Inc	Eastman Technologies Inc	Circle No 684	
1060 Marsh Rd	Pathtek Div		
Menlo Park, CA 94025	250 Metro Park	Kollmorgen Corp	
(415) 494-8410	Rochester, NY 14623	Multiwire Div	
Circle No 678	(716) 272-3100	250 Miller Pl	
	Circle No 687	Hicksville, NY 11801	
		(516) 933-8300	
		Circle No 685	

Quality is seen in every detail.

Does your equipment have LEMO Connectors?

THE QUALITY CHOICE

For technical data and catalog or the name of your local representative, please call or write: LEMO USA, INC.
P.O. Box 11488, Santa Rosa, CA 95406
[707] 578-8811

LEMO connectors feature the unique "Quick-Lok" self-latching quick connect-disconnect positive locking mechanism, gold plated contacts and rugged, space saving design.

> Product introductions indicate that connector manufacturers are striving to belp designers cope with production problems.
and electrical conductivity properties; it does not set under compression; and it is not affected by ozone, ultraviolet or nuclear radiation, EMP, or solvents.
The company's latest introduction is the Snap-tite clip-on shielding strip. The strips feature high holding power coupled with high electrical conductivity. They are well suited for high-vibration applications or situations where the available spring pressure cannot keep a gasket mounted securely. D-shaped lances clip into predrilled or prepunched holes, locking the gasket in place. Because Snap-tite gaskets require no friction for adherence, they are compatible with any type of surface. The strips come with various corrosion-resistant and high-conductivity plated finishes in standard or custom lengths.

Rather than implementing shielding yourself, you can buy enclosures that are already shielded. Manufacturers of plastic molded enclosures currently use two methods to control EMI/RFI. Most offer enclosures that are shielded with a conductive paint, a technique that's quite effective. Depending on the quantity of product involved, however, it can be an expensive solution. Amerex uses a second approach to shield its Unibox line of plastic enclosures. The company employs a family of die-cut Mylar and foil-laminated inserts, which slip into standard enclosures. These board shields are available in small quantities, and you can easily modify them to fit specific applications.

Conductive plastic materials hold great promise for shielding, but currently available materials cannot meet the cosmetic requirements of many applications. Material manufacturers are making progress in this area, however.

Meanwhile, Emcor has a line of metal enclosures that provide a good combination of shielding and accessibility. Designed to both contain and exclude radiated interference by reflecting and absorbing incident electromagnetic radiation, the enclosures feature a cabinet frame with 14 -gauge, 1.75 -in.-wide multiformed corner channels that are fully welded.

These frames support a static load of more than 3500 lbs without failing or permanently deflecting. The rugged construction is necessary to obtain and maintain the close-tolerance access openings required for proper EMI/RFI gasket sealing. The frames, along with all optional bolt-on components, are zinc-plated per MIL SPEC QQ-Z-325, Type II, Class 3. A highly conductive, galvanically compatible wire-mesh gasket, in combination with the optional components, provides EMI/RFI shielding around all openings.

The enclosures come in different styles and sizes. Both vertical and slope-front frames are available in 19and $24-\mathrm{in}$. widths with depths of $255 / 16$ and $319 / 16 \mathrm{in}$. The vertical frames come in 40 sizes, each in five different configurations. The slope-front units are available in eight sizes, each in four configurations. All emissioncontrol side panels are removable from the inside and flush-mount within the frame's side channels. Top and closure panels are constructed of 16-gauge, cold-rolled steel. All can accommodate adhesive-backed, foam-wire-mesh gasketing.

Shielding at the board level

You don't have to wait until you get to the enclosure level to address magnetic interference problems. Bomco's $\mathrm{M} \mu$ Shield material can prevent interference problems at the component level by diverting magnetic flux around sensitive circuitry. M μ Shield's permeability figures range from 200 to 350,000 (relative to the freespace permeability rating of 1).
Shielding applications fall into two categories: those where the shield must prevent fields from radiating, and those where the shield serves to prevent magneticfield penetration. Bomco stocks three general types of $\mathrm{M} \mu$ Shield material-high permeability, medium permeability, and high saturation - each of which can handle either application category.
High-permeability $\mathrm{M} \mu$ Shield material has a minimum permeability of 80,000 . Maximum permeability equals 350,000 , and the saturation point is approximately 7500 gauss after treatment. Medium M μ Shield material is normally used in conjunction with high-permeability material. It has a permeability of 12,500 to 150,000 with a saturation point of approximately 15,500 gauss. Permeability for high-saturation material ranges from 200 to 50,000 with saturation points of 18,000 to 21,000 gauss.
Bomco heat-treats all $\mathrm{M} \mu$ Shield material during manufacturing to ensure maximum permeability and low shock sensitivity. Should your shielding needs ever change, you can return the M μ Shield product for special heat treating. In addition, if you'd prefer to design your own shields, Bomco provides $\mathrm{M} \mu$ Shield material in coil, sheet, and tubing form.

Article Interest Quotient (Circle One)
High 485 Medium 486 Low 487

Expanding the Limits of Eyelet Technology

New Depths of Design Potential in Miniature Eyelet Parts Production

UTI

UTITEC, Inc.

169 Callender Rd., Watertown, CT 06795 - 203/945-0601 In Europe: UTI U.K. 983-404049 • Telex: 869441 UTIUK G

As technology advances in outer space and undersea, you will need resources to supply parts and components that fulfill the promise of high technology in design, materials, quality and cost efficiency. Utitec knows this. That's why it applies all the tools of Manufacturing Resources Planning (MRP) and Statistical Process Control (SPC) to the development and production of miniature, deep-drawn tubular parts.

Parts are fabricated to exacting tolerances and available in over 40 alloys. Lengths up to $2.5^{\prime \prime}$ and outside diameters as small as $0.020^{\prime \prime}$ can be achieved in length-todiameter ratios in excess of 40 to 1. Utitec's expert assembly facility is also available to give you 100% assurance from start to finish.

Explore your potentials with Utitec. Phone toll-free at 1-800-321-6285.

Schroff

FOR THOSE WHO WANT TO SYSTEMIZE WITHOUTHAVINGTO COMPROMISE

The Schroff Europac system is very simply the worldwide standard in microprocessor packaging.
The reason: The Schroff Europac system lets you standardize without having to compromise on either quality or performance. It's designed for VMEbus or Multibus ${ }^{\circledR}$ II architectures and meets IEEE, DIN, IEC, VDE and EIA standards. What's more, it can be configured with high-speed backplanes, power supplies and a wide range of accessories.
Schroff's microprocessor system is available either in piece parts or fully-assembled, tested and operational. Either way, you can depend on Europac to provide the reliability and performance you demand. And you can depend on Schroff to provide service you and your customers deserve. Whether your system is located around the corner, or around the world.
"Multibus ${ }^{\circledR}$ is a trade-mark of Intel".

[^12]

THE ONLY THING FASTER THAN ROCKWELLS MODEMS IS MARSHALL'S SERVICE.

At 14,400 bits-per-second, Rockwell's high-speed modems are a full generation ahead of the competition.

Which is why Rockwell modems can be found in high-speed network controls and multiplexers, personal computers and terminals, custom modems, facsimile, and desktop publishing equipment around the world. In fact, Rockwell is the
world's leading supplier of original equipment manufacturer modems.

And for the fastest delivery on the world's fastest modems, call Marshall Industries. At Marshall, we're dedicated to customer service. When you call, we'll quickly find the part you need with our extensive inventory tracking system. And speed your order to you by shipping same day. Or whenever you like.

So if you need to communicate at rates up to 14,400 bits-persecond, and need to do it in a hurry, call Marshall today.

Where you'll always get speedy service, but not a lot of fast talk.

Marshall

MN Minneapolis (612) 559-2211 MO St. Louis (314) 291-4650* NC Raleigh (919) 878-9882* N. New Jersey (201) 882-032 NY Binghamton (607) 798-1611 NY Binghamton (607) 798-1611* Long Island (516) 273-2424*

Mega Drams. Mega options.

MIIIMMI
dundrimidi
mam
Shathey

 772010
bager geyes
virut virut
H:H 1H:

Fast access from OKI:

CMOS 1 Meg DRAMs in great working shape.

Maintaining a leading edge in CMOS technology and packaging, OKI meets your fast DRAM specs with unique flexibility.

Anyway you look at it, OKI's fast-track CMOS knowhow has got the one megabit DRAM shaped up to go. Now. No matter how demanding your parameters may be in performance or packaging, it's easy to work it out with OKI.

Need super high speeds? Tell us to jump, and all we ask is 'how fast?'' OKI is shipping megabit Dynamic RAMs stripped down to 85 ns . (With 80ns on the way....and 60ns not far behind!)

Organization options? OKI offers both 1 Meg $\times 1$ and $256 \mathrm{~K} \times 4$ single-chip DRAMs. Both from the same die. To cut qualification time and expense, we built a bonding option into our basic chip design. Qualify one die, and you've got every OKI option covered!

Want more space-saving package solutions? OKI maintains a high profile in low profile memories - a complete range of package options to handle just about any real estate problem. Today and tomorrow. OKI package enhancements have been developed to carry you through upcoming DRAM generations: from 1-megabit to the 4- and even 16-megabit memories. CIRCLE NO 182

Need a tidier single chip than the DIP? Ask us about the new SOJ package that provides the megabit DRAM in J-lead surface mount. Or, get still more compactness with the OKI ZIP package's very narrow profile.

Also turning space problems on end: OKI's SIMM packages load 9 to 18 megabits onto a single easy-to-use module. An instant surface mount capability that packs up to 18 million bits into half the conventional space. And OKI's highly-automated production capabilities will be consolidating DRAMs in a TAB package too.

Mega DRAMs. Mega CMOS options.

OKI wouldn't have it any other way. Why should you?

Introducing sixteen DUAL-POR1

THE WORLD'S LARGEST FAMILY OF DUAL-PORT RAM:

Single-chip DUAL-PORTs provide the total solution for $\mu \mathrm{P}$-to- $\mu \mathrm{P}$ data transfer.

Say goodby to registers, multiplexers and nasty timing. Goodby to byte-bybyte handshakes. And goodby metastability worries.

An IDT DUAL-PORT RAM is a monolithic solution that eliminates all sorts of trickery, complexity and uncertainty from shared memory designs while giving you more control and more flexibility.

IDT DUAL-PORTs are remarkably easy to use: requiring only a simple, static RAM interface.
Choose from the world's largest family of monolithic DUAL-PORT RAMs.

Now you can chose the density you need, the access time and the control logic best for your system. (See table.) And ask us about custom modules.

IDT solves shared memory contention.

IDT DUAL-PORTs provide solutions for the three common design issues:

Interrupt logic: Provides a simple set/clear method for each processor to signal the other without adding parts to the board. Order: IDT7130, 7140, 71321, 71421.

Busy logic: Avoids interaction problems by detecting when both ports write to the same memory location. IDT has pioneered busy logic, particularly the MASTER/SLAVE concept, to eliminate write contention and system deadlock in wide bus applications. Order: IDT7130, 7132, 71321, 7133, 7140, 7142, 71421, 7143, 7M134, 7M144, 7M135, 7M145.

Semaphore flag logic: Allows either port to reserve a portion of memory under

software control. The semaphore flags indicate which side can use the shared memory space. Order: IDT71322, 71342.

Look what DUAL-PORTs can do!

By reading and writing to a common DUAL-PORT memory, activities such as task communication, system status and message passing are possible.
CPU $\leftrightarrow 1 / O$ processor
CPU \leftrightarrow disk controller
CPU \leftrightarrow video display controller
CPU \leftrightarrow communications controller
CPU \leftrightarrow LAN controller
CPU \leftrightarrow co-processor
CPU \leftrightarrow DSP processor
CPU \leftrightarrow robot joint processors
CPU \leftrightarrow task multi-processors
Ask for your FREE copy!
Call your local IDT representative or 1-800-544-7726 for copies of:

- Application Note AN-02 DUAL-PORT RAMs simplify communications in computer systems
- Application Note AN-9 DUAL-PORT RAMs yield bit-slice designs without microcode
- Application Note AN-14 DUAL-PORT RAMs with semaphore arbitration
- Short Form Catalog IDT's full product line covers ultrafast CMOS and BiCMOS Static RAMs, Application Specific Memories (FIFOs, DUAL-PORTs, Cache Tag, Synchronous RAMs) and bus interface Logic, Multiplier-Accumulators, EDC, MICROSLICE ${ }^{\text {TW }}$ bit-slice ALUs, Floating-Point Processors, Data Conversion and E^{2} Memories.

Microprocessor

Address
Write

Read
Data
Bugy
Interrupt
Semaphore

memories for $\mu \mathrm{P} \leftrightarrow \mu \mathrm{P}$ datata transter

J the fastest DUAL-PORTs: $35 \mathrm{~ns} \square$ the biggest and widest DUAL-PORTs: $4 K \times 8,2 K \times 16,8 K \times 8,16 K \times 8$ and $32 K \times 8$ MASTER/SLAVE combo for 32- and 64-bit expandable applications

(a) Hermetic LCC (b) Plastic and hermetic DIP (c) Standard and custom modules
(e) Plastic and hermetic PGA

WF'VE REDUCED THE COVER CHARGE ON EPROMS.

Our new plastic One-Time-Programmable CMOS EPROMs hand you ceramic performance at less than two-thirds the cost.
You'll get everything you expect from ceramics except the price. And you'll also get the versatility only plastic delivers.
Because, unlike fragile ceramics, our advanced plastic packages stand up to automated assembly. And you know what that can mean to manufacturing costs. Not to mention system reliability.

Of course, there's also the inherent benefit of OTPs. You can order as many as you want to minimize unit cost, but you only have to program what you need immediately. You can make last-minute code decisions without wasting inventory. Our plastic OTPs are CMOS, so they run
cooler than NMOS ceramics. And, they're available in densities that let you upgrade your system without changing your design: $128 \mathrm{~K}, 256 \mathrm{~K}, 512 \mathrm{~K}$, and soon, 1 Mb . All 100% pin and plug compatible with the ceramic EPROMs youre using now.

You won't have to sit on your hands waiting for delivery, either. We have plenty available, right off the shelf.

Call our Hot Line today at (800) 556-1234, Ext. 82; in California (800) 441-2345.You'll get great EPROM performance, without being held up for the cover charge.

FUJITSU

MICROELECTRONICS. INC
Technology That Works.

OB68K/VSBC20" with
 OMNIMODULES ${ }^{\text {m }}$

You work hard to find a 68020 single board computer that meets your I/O requirements. If you can't find one, your design and budget could be in trouble.
Our OB68K/VSBC20 with its OMNIMODULE modular I/O, adjusts to meet your I/O needs. It can give you just the right type for your specific application. It can even accommodate last minute changes in your I/O requirements. The OB68KIVSBC20's OMNIMODULE socket allows you to add more ports, through plug in I/O modules. You can add 2 more serial ports or 20 more lines of parallel I/O. Specialized interfaces such as GPIB or SCSI can also be added. Our prototyping module even allows you to implement custom I/O. And with an OMNIMODULE on board, the OB68KJVSBC20 still uses only one slot.
In addition to its modular I/O, the OB68KVSBBC2O comes standard with 2 RS232C async serial ports and a 16 -bit parallel port. The OMNIMODULE and on board serial I/O is brought out to your choice of front panel or P2 connector. On board parallel I/O is brought out to the P2 connector only.
The OB68K/VSBC20 is fast and flexible with a 12.5 MHz 68020 standard (16.7 and 25 MHz optional). Its 1 MB of parity-protected dual-access, low cost dynamic RAM operates at O -wait-states even at 16.7 MHz!

Additional features include:

- 68881 or 68882 Math

Co-Processor (optional).

- (2) 32-pin ROM sockets (up to 256 KB).

- Supports unaligned transfers (UAT).
- (1) 16 -bit and (1) 24-bit timer/counter.
- (7) prioritized interrupts.
- IEEE 1014 (Rev. C.I) compatible.
- 4 level VME BUS arbiter (optional).
- 2 year limited warranty.

Today your choice of OMNIMODULE's include:

- Kluge prototyping module.
- (2) async RS232C serial ports.
- (2) syn/async RS232C serial ports.
- (2) async RS422 serial ports.
- (20) lines of parallel I/O.
- SCSI controller.
- GPIB interface.
- And more to come!

For a free data sheet or to learn more about our OMNIMODULE modular I/O, contact our Marketing Manager, Peter Czuchra at 1-800-638-5022 or (312) 231-6880 in Illinois. Send $\$ 10.00$ for a detailed technical manual or a copy of our OMNIMODULE specification.

OMNIBYTE

OMNIBYTE CORPORATION

245 W. Roosevelt Road
West Chicago, IL 60185-3790
In IL (312) 231-6880
Fax No. (312) 231-7042
CALL TOLL FREE
1-800-638-5022
A Look At Today . . . A Vision Of Tomorrow.

YME \& NUIIBISE FOR2 YEARS BOARDS WRRADHE

> THE OB68KVVBC1 ${ }^{m}$ VME SINGLE BOARD COMPUTER

- Motorola 68000 12.5MHz 16/32 bit CPU (68010 and other speeds optional)
- 512 KB of dual-access, zero-waitstate DRAM with parity
- (4) 28 -pin ROM sockets
- (3) 16 -bit counter/timers
- (2) Omnimodule" I/O sockets for a wide variety of I/O (ie. 4 serial ports, 40 parallel lines)
- DMA controller (optional)
- VME bus interrupt generator (optional)
- Optional 4 level bus arbiter
- Two year limited warranty

THE OB68K/VIO ${ }^{\text {" }}$
VME UNIVERSAL I/O BOARD

- (4) Omnimodule I/O sockets for a wide variety of I/O (ie. 8 serial ports, 80 parallel lines)
- One (1) interrupt per Omnimodule (2) optional)
- Two year limited warranty

OB68K/ VME1-M ${ }^{\text {m }}$

 RUGGEDIZED VMESINGLE BOARD COMPUTER

- Available with MIL STD 883B parts
- 1OMHz 6800016132 bit CPU
(other speeds optional)
- (6) pairs of 28 -pin sockets for ROM/RAM
- System controller functions
- (2) RS-232C serial ports using (1) Z8530 SCC
- (2) 8-bit parallel I/O ports using (1) Z8536 CIO
- (3) 16-bit timer/counters (in Z8536)
- Omnibyte two year limited warranty

You can depend on Omnib 2 year limited warranty with over 90% repaired less down time Less than 1% are returned To you this means more satis quality boards, call our
 and fewer spares. Learn marketing Manager, Peter Czuchra today
Mar

OB68K/ VME1"' SINGLE BOARD COMPUTER ON THE VME BUS

- $12.5 \mathrm{MHz} 6800016 / 32$ bit CPU
- (8) pairs of 28 -pin sockets for RAM and ROM (up to 448 K RAM or 896K ROM)
- (2) RS-232C serial ports using (1) 68681 DUART
- (2) 8-bit parallel I/O ports using (1) 68230 PI/T
- System controller functions are supported
- (7) Prioritized bus or auto vectored prioritized interrupts
- Omnibyte two year limited warranty

OB68K1A'" MULTIBUS SINGLE BOARD COMPUTER

- 10MHz $6800016 / 32$ bit CPU
- $32 \mathrm{~K} / 128 \mathrm{~K} / 512 \mathrm{~K}$ of zero-wait-state dual-ported RAM
- Up to 192 K bytes of EPROM
- (2) RS-232C serial ports
- (2) 16 -bit parallel ports
- A triple 16 -bit timer/counter
- (7) Prioritized-vectored interrupts
- Omnibyte two year limited warranty

OB68K/OCTAL"

MULTIBUS SERIAL I/O BOARD

- (8) RS-232C or RS-422 serial I/O ports
- Individually programmable baud rates between 50 and 38.4 K baud
- (4) 68681 DUART chips
- (4) Multi-function programmable 16-bit counter/timers
- Omnibyte two year limited warranty

OMNIBYTE CORPORATION 245 W. Roosevelt Road West Chicago, IL 60185-3790
In IL (312) $231-6880$ MAGEX UR
inti. Telex:
Fax No. (312) 231-7042
CALL TOLL FREE
1-800-638-5022
A Look At Today . . . A Vision Of Tomorrow.

OB68K/MSBCI ${ }^{\text {m" }}$ MULTIBUS SINGLE BOARD COMPUTER

- 12.5 MHz 6800016132 bit CPU (other speeds and 68010 optional)
- $256 \mathrm{~K} / 512 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{M}$ bytes dualported; zero-wait-state RAM w/parity
- (4) RS-232C serial synchronous asynchronous multiprotocol I/O ports
- (1) isBX* expansion connector
- (4) 28 -pin ROM sockets (up to 256 KB)
- Optional memory management
- Omnibyte two year limited warranty
*iSBX is a trademark of Intel Corp.

OB68K230" MULTIBUS 96-BIT PARALLEL
I/O TIMER BOARD

- 96 bits of software definable parallel I/O
- (4) 68230 PIIT chips
- (4) 24 -bit timers
- 35 sq. in. of prototyping area
- Omnibyte two year limited warranty

Programmable array serves as a controller for dynamic RAMs

Large memory systems that use dynamic $R A M s$ often have varying requirements for control. A programmable gate array can offer the flexibility to meet the needs of various memory-system applications. In addition to integrating refresh circuitry, it contains sufficient logic to allow you to implement error detection and correction.

Thomas Waugh, Xilinx Inc

To produce cost-effective products with large amounts of memory, designers often prefer to use low-cost, high-density dynamic RAMs instead of the comparatively more expensive and less dense static RAMs. However, dynamic RAMs require control circuitry that static RAMs don't. To implement that circuitry in a single chip, you can use a programmable gate array. Such a device can provide refresh signals (the capacitor that makes up each dynamic memory cell must be recharged, or refreshed, typically once every two to four milliseconds), and it can provide the error detection and correction that can alleviate the headaches that the dynamic RAMs' susceptibility to soft errors can cause (see box, "Soft errors can cause hard problems").
You'll find several options available to you for dynam-ic-RAM controller designs. The simplest option is an
off-the-shelf standard LSI memory controller. The manufacturers of these parts combine $\mu \mathrm{P}$ interface logic with memory-access and memory-refresh circuitry on one chip. However, each memory system has unique timing and protocol requirements, so standard parts can't accommodate every system. Even though some manufacturers include some degree of programmability in their parts, desigrers must often employ glue logic, in the form of extra SSI or MSI packages, to meet system requirements.
Custom gate arrays provide a highly integrated solution. However, nonrecurring engineering costs, testing and simulation costs, inventory risk, and the long design cycle make the custom gate array unattractive for many designs.
The Logic Cell Array (LCA) device can overcome some of these difficulties. Its programmability gives the designer freedom to tailor the dynamic-RAM controller to the exact specifications of a memory system without external glue logic (see box, "LCA devices offer flexibility"). You can configure the LCAs to meet unique system requirements without the loss in integration posed by the SSI/MSI solution and without the costs and risks associated with the custom gate-array solution.
The 2000 -gate XC3020 LCA device is well suited for designing a dynamic-RAM controller. Not only does a single XC3020 incorporate dynamic-RAM control functions and error detection and correction, but the CMOS device also consumes less power than standard programmable controllers, which are typically imple-

A nuisance associated with dynamic RAMs is their susceptibility to soft errors.

mented in NMOS or bipolar technologies.
Consider a design example based on an $8-\mathrm{MHz} 8086$ $\mu \mathrm{P}$ that directly addresses 1 M bytes of memory made up of 32256 k -bit dynamic-RAM chips. A single LCA serves both as a dynamic-RAM controller and an error checker/corrector (ECC). The dynamic-RAM controller uses a $16-\mathrm{MHz}$ clock synchronized to the $\mu \mathrm{P}$'s clock and
resides between the $8086 \mu \mathrm{P}$ (along with its 8288 bus controller) and the system memory (Fig 1). Two '245type octal bus transceivers determine the communication direction (that is, whether the 8086 will read from or write to the dynamic RAM). The 8288 bus controller supervises the transceivers and can isolate the $\mu \mathrm{P}$ from the dynamic-RAM data bus by placing the transceivers

Fig 1-The 2000 logic gates in an XC3020 allow it to incorporate control and error-correction and -detection circuitry for an 8086-based system.

Fig 2-You can view the dynamic-RAM controller as consisting of the five basic blocks shown here.
in a high-impedance condition via the enable (EN) command.
The 8288 bus controller also decodes the $\mu \mathrm{P}$ status lines ($\mathrm{S}_{2}, \mathrm{~S}_{1}$, and S_{0}) and informs the dynamic-RAM controller whether it should perform a read or write operation. The dynamic-RAM controller then performs the appropriate operation, issuing a row-access strobe (RAS), a column-access strobe (CAS), and a write (W) signal, if necessary. The controller generates errorcorrection bits on each write operation, and it checks and corrects errors on each read operation. The controller also informs the $\mu \mathrm{P}$ if a memory access requires a wait state or if the controller has detected an error that it can't correct.
Fig 2 is a block diagram of the dynamic-RAM controller and error checker/corrector that reside in the LCA. The refresh timer uses a $16-\mathrm{MHz}$ clock to furnish a signal that informs the dynamic-RAM controller when to refresh the memory. Each of the 256 rows of memory in this system needs refreshing every 4 msec . The refreshing technique employed provides a combination of hidden and burst refreshes. The controller refreshes eight rows every $125 \mu \mathrm{sec}$, which corresponds to 4 $\mathrm{msec} \div 125 \mu \mathrm{sec}=32$ sets of eight refreshes during the

Fig 3-The modified Hamming code that the error checker/detector in Fig 2 uses conforms to this state diagram.

Soft errors can cause hard problems

Dynamic RAMs are much more susceptible to soft errors than static RAMs are. A soft error is the loss of data in a memory cell that is not permanently damaged. Rewriting the data in the cell corrects the error. This type of error is different from a hard error, which results when a memory cell is permanently damaged.

Usually alpha particles (helium nuclei) cause soft errors in dynamic RAMs. Alpha particles are normally present in the atmosphere, but the ones responsible for most soft errors are emitted by radioactive impurities in the IC package of the dynamic RAMs themselves. If an alpha particle hits a memory
cell, it can corrupt the cell's charge, causing a data-bit error.

Many people are under the impression that the likelihood of such an error is so slight that it can be safely ignored. Although this belief might have been true for the smaller memory systems of the past, it is no longer so. The size of memory systems today makes soft errors unacceptably likely.

A typical error rate for NMOS dynamic RAMs is about 0.12% per 1000 hours, which translates to an MTBF (mean time between failures) of 1000 hours/ $0.0012=833,333$ hours, or a little over 95 years. However, this spec is for only one RAM chip. The original IBM PC had 64 k
bytes of RAM, comprising thir-ty-six 16 k -bit dynamic RAMs. The MTBF of such a memory is about 833,333 hours $/ 36$ dynamic RAMs $=23,148$ hours, or just over $2 \frac{1}{2}$ years. This value is still probably acceptable. However, the 16 M -byte memories in common use today comprise 51225 k byte dynamic RAMs and have an MTBF of less than 10 weeks. This value is too low for many applications. Device and packaging improvements can reduce the probability of a soft error. However, the most effective means of minimizing such errors is to incorporate error detection and correction into the dynamicRAM controller.

> During a write cycle, the ECC circuitry generates six check bits, using a modified Hamming code, for a 16-bit data word.
specified refresh period (that is, $32 \times 8=256$ row refreshes every 4 msec).

The timing generator is a state machine triggered by the Address Latch Enable (ALE) command from the $\mu \mathrm{P}$ at the beginning of the processor cycle. The timing generator generates all the timing signals required to perform the memory accesses and refreshes. Its address multiplexer selects which address is sent to the dynamic RAM. During a read or a write operation, the multiplexer control signal from the timing generator selects a row address from the $\mu \mathrm{P}$ and strobes it with the RAS line. Then, the address multiplexer selects a column address from the $\mu \mathrm{P}$ and strobes it into the dynamic RAM with the CAS line. During a refresh
operation, a refresh address counter generates an 8 -bit address, which is selected by the address multiplexer. The RAS line strobes the refresh address into the dynamic RAM.

During a write cycle the ECC circuitry generates six check bits, using a modified Hamming code, for a 16-bit data word. The standard Hamming code requires five bits to provide single-bit error detection and correction. The added sixth bit (which is used for a parity check of the data and five check bits) allows the modified Hamming code to provide single-bit error correction and double-bit error detection. Fig 3 shows a state diagram for the ECC circuit.
During a read cycle, the ECC circuitry generates a

LCA devices offer flexibility

Devices such as the XC3020 Logic Cell Array, available from Xilinx (San Jose, CA), have user-programmable architectures, and consist of three types of configurable elements on a chip: a perimeter of I/O blocks (IOBs), a core array of configurable logic blocks (CLBs), and resources for interconnection.
The general structure of an

LCA is shown in Fig A. The perimeter of configurable IOBs provides a programmable interface between the internal logic array and the device package's pins. The array of CLBs performs user-specified logic functions. The interconnect re-sources-which are analogous to pc-board traces-carry logic signals among the blocks.

Fig A-An LCA device consists of an array of interconnected logic blocks surrounded on the periphery by I/O blocks.

A configuration program stored in internal static memory cells determines the user-defined logic functions and interconnections. The program is loaded when the power is turned on or when a program mode is enabled. The program data resides externally in an EEPROM, EPROM, ROM, or on a floppy or hard disk. The configuration is determined by an XACT development system, which operates in an IBM PC/AT or compatible with 640 k bytes of internal RAM, 1.5M bytes of extended memory, color graphics, a mouse, and DOS 3.0 or higher. The development system provides interactive design and editing along with logic and timing simulation.
The XC3020 has 2000 usable gates for logic functions. The internal static memory has a capacity for as many as 14,815 data bits, which control 64 configurable logic blocks and 58 I/O blocks. In addition, 3 -state internal buses facilitate wide wireAND functions.
new set of check bits from the data that's read from memory. The ECC circuitry compares these check bits with the check bits that were stored in memory to see if an error has occurred. If the comparison yields a correctable error, the ECC circuitry corrects it. When it detects a noncorrectable double-bit error, the ECC circuitry flags the $\mu \mathrm{P}$.

Memory cycles' timing requirements vary

The timing requirements for different memory cycles are shown in Fig 4. Fig 4a shows a memory cycle that requires that a word be written to memory with no wait states. After asserting a row and column address and strobing the dynamic RAM with the respective RAS and CAS lines, the controller asserts the W line to write the 16 -bit data word and the six generated check bits to the dynamic RAM.
A memory cycle that requires that a single byte be written to memory is more complicated (Fig 4b). First, the controller must read the word resident in the desired memory location and check it for errors. Then the controller inserts the new byte into the appropriate byte of the word. The ECC circuit generates a new set of check bits, and the newly formed combination of word and check bits is written to memory when the controller asserts the W line. This operation involves inserting two wait states and isolating the controller from the $\mu \mathrm{P}$ data bus to perform the read from memory. The controller issues a Hold command to the 8288 bus controller, which disables the ' 245 transceiver to isolate the controller from the data bus. Fig 5 shows a state diagram for the Hold and Wait logic circuitry.
Memory cycles that require a read from memory are shown in Fig 4c and Fig 4d. A read operation requires a minimum of one wait state-the penalty for implementing error correction and detection. The insertion of a wait state is unavoidable because of the time required to detect an error. If the ECC circuitry detects an error, two wait states must be inserted to allow time to correct the error. The corrected data along with the check bits are written back into memory when the controller asserts the W line.
A hidden refresh can occur when the $\mu \mathrm{P}$ is reading from or writing to some device other than memory, such as an I/O port. The address multiplexer selects a refresh address from the refresh address counter and applies it to the dynamic RAM. The timing generator issues an RAS command to execute the refresh.

A burst refresh (Fig 4e) occurs only if the refresh timer indicates that the required eight refreshes have

Fig 4-When performing the various read, write, or refresh operations, the controller's logic circuitry must provide the appropriate timing.

The dynamic-R AM controller takes advantage of the internal buses on the LCA.
not taken place during a $125-\mu$ sec refresh period. To execute the burst refresh, the controller must isolate the memory from the $\mu \mathrm{P}$ by issuing a Hold command, which disables the transceiver. The controller also inserts wait states and provides the number of refreshes required to complete the eight refreshes.

Fig 5-The Hold state diagram (a) illustrates the isolation of the μP from the data bus. Memory cycles that require wait states follow the Wait state diagram (b).

Some features of the 3000 family LCA architecture aid the design of the dynamic-RAM controller. Fig 6 shows a bit-sliced view of one of the address and data IOBs (input/output blocks) located inside the LCA. The IOB provides two paths to the CLBs (configurable logic blocks) on the chip. One is direct and the other is through a storage element, which you can configure as an edge-sensitive flip-flop or as a level-sensitive transparent latch. This circuit arrangement lets you latch addresses and data on a multiplexed bus, such as that used by an $8086 \mu \mathrm{P}$, into the LCA device. The ALE command from the 8086 latches the addresses into the dynamic-RAM controller. Data from the $\mu \mathrm{P}$ enters the same input pin and goes directly to the ECC circuit through the IOB's direct path. No external latches are necessary.

Fig 6-Data at an I/O pin on the XC3020 can be either latched into the device or passed directly to a CLB.

Fig 7-The dynamic-RAM controller makes use of the 3-state buffers placed on the XC3020's output registers.

MOL:MS
 increases the performance of our 8086-based Multibus SBCs by up to $\mathbf{3 0 \%}$.

Up to 1 megabyte of RAM onboard-no costly expansion modules needed . . . and that's just part of the picture.
Zero wait states, even at 10 MHz . . .
And a socket for the 8087 floating point coprocessor complete the masterpiece.
That kind of technical superiority is the Central Data trademark. Better board design, to offer more onboard features and substantial performance improvements, at a price that is equally impressive.
You'll find it in our complete family of 8086-based Multibus boards-including the latest addition, our CD21/8086V, that uses the high-performance NEC V30 chip to improve processor performance by up to 30% in some applications (and that's over and above the $30-35 \%$ performance advantage you'll find in our other 8086 SBCs).
And with it you get the service you've come to expect from us: an unparalleled record for on-time delivery, easy access to design engineers for help with integration problems, even custom board configurations for some applications.

The Complete Picture

Every 8086 board we make is 100% software compatible with Intel . . . absolutely. Why continue to pay more when Central Data guarantees software compatibility and increased cost-effectiveness? Call product manager Mike Heins today with any questions. He'll send specs and a copy of our catalog immediately, and you'll be ready to build design artistry into your Multibus applications.

Central

1602 Newton Drive, Champaign, IL 61821-1098

1-800-482-0315

(In Illinois 217-359-8010)
FAX 217-359-6904
*Multibus is a trademark of Intel Corporation.

STIMPSON "C-E" RIVETS...

..Provide the quality and savings needed for today's most common riveting applications.

STIMPSON "C-E" Rivets are available in brass or steel, along with a selection of enamelled colors and plated finishes to suit your design specifications.

The "C-E" Rivet, teamed with the C-1 or No. 500 machine, provides one of the most economical and versatile riveting systems available today.

Send for your free copy of STIMPSON'S latest Designer's Catalog, which illustrates our full line of "C-E" Rivets and our precision-built auto-
 matic riveting machines.

$$
\begin{aligned}
& 900 \text { SYLVAN AVE. BAYPORT, NY 11705-1097 } \\
& \text { (516) 472-2000 }
\end{aligned}
$$

Fig 8-The 3-state drivers attached to the internal bus on the XC3020 allow the multiplexing of addresses onto one line.

The ECC circuit in the dynamic-RAM controller utilizes the 3 -state buffer placed on the outputs of the output register of an IOB (Fig 7). During a memoryread cycle, for example, the controller puts the IOB output in a high-impedance condition, thereby allowing dynamic-RAM data on the data bus to enter the ECC circuit via the direct input path. If the ECC detects a data-bit error, it will correct the error and latch the corrected data word into the output register of the IOBs. The controller forces the dynamic-RAM outputs to a high-impedance condition and releases the corrected data onto the data bus by enabling the 3 -state output buffer. The corrected data is then read by the $8086 \mu \mathrm{P}$ and written back to the dynamic RAM simultaneously.

The dynamic-RAM controller also takes advantage of the internal buses on the LCA device. Because the drivers to the horizontal bus can be placed in highimpedance conditions, all of the row addresses, column addresses, and refresh addresses are multiplexed onto the same bus (Fig 8). The dynamic RAMs have access to this bus when the data is latched into the output registers of the IOBs. Enabling the correct 3 -state bus drivers forces the proper sequence of addresses. EDN

Author's biography

Thomas Waugh is an applications engineer with Xilinx Inc (San Jose, CA). His duties include application design and technical support. He previously worked at Johns Hopkins University's Applied Physics Lab. He received a BSEE degree from Stanford University and is a member of the IEEE. In his spare time he enjoys reading,
 swimming, and traveling.

Article Interest Quotient (Circle One) High 494 Medium 495 Low 496

MultibusSBC

- ply plifications

Now our innovative 80286-based SBC packs up to 4 Mb RAM onboard.

Central Data's design excellence set the industry standard with our slimmer, one-slot 80286 SBC with a megabyte of onboard RAM. Now you can get it with 2 or 4 megabytes onboard-no costly expansion modules needed.
But our CD21/8286's serious improvements in performance don't stop there.
Compare its I/O capabilities to Intel's 286/12. Along with a Centronics port, we offer 4 serial ports to Intel's two, one of them RS-232/422.
And for data management, besides the 82258 Advanced DMA controller socket Intel provides, the CD21/8286 builds in 8 additional multiplexed DMA channels.

Technical Superiority

That kind of technical superiority is the Central Data trademark. Better board design, to offer more onboard features and substantial performance improvements, at a price that is equally impressive.
With no sacrifice in other features you depend on in an 80286 board-such as an 80287 FPP socket, selectable synchronous/asynchronous LBX bus interface, up to 128 K of EPROM, and an SBX connector.
And of course, you also get the service you've come to expect from us: an unparalleled record for on-time delivery, easy access to design engineers for help with integration problems, even custom board configurations for some applications.

Intel Compatibility

Finally, the CD21/8286 is 100% software compatible with Intel models 286/12 and 286/10A . . absolutely. Why continue to pay more when Central Data guarantees software compatibility and increased cost-effectiveness? Call product manager Mike Heins today with any questions. He'll send specs and a copy of our catalog immediately.

1602 Newton Drive, Champaign, IL 61821-1098
1-800-482-0315
(In Illinois 217-359-8010)
FAX 217-359-6904
CIRCLE NO 140
*Multibus is a trademark of Intel Corporation.

Need a flexible VME partner?

Call SBE for VME solutions, particularly if your project is an industrial application, involves data communications, or requires real-time processing. We're a VME leader, and for good reasons.

In the last year alone, we've invested over $\$ 1.5$ million in workstations, development software, and an in-house surface mount capability - all so we can provide you with off-the-shelf and semicustom solutions that get you to market faster, and at a lower net cost.

We have powerful products currently available, including data communications
boards, dynamic RAM boards, and the VPU series of real-time processor units based on the 680X0 family of microprocessors. Advanced CPU, data communications and LAN/connectivity products are in the pipeline. These will be built around SBE's VBIC and VSAM gate arrays, which are also available for purchase.

We offer REGULUS*, an extremely powerful UNIX* ${ }^{*}$ compatible operating system which is designed around an efficient multitasking
real-time scheduler to provide real-time task support.

When you call SBE, you get the best engineering, the best manufacturing quality (because we control it in-house), and the best support in the industry.

MICROCOMPUTER BOARDS AND SYSTEMS
2400 Bisso Lane, Concord, CA 94520 FAX: 415-680-1427

For solutions in VME, call 1-800-221-6458

SMALL IS POMVERFUL I

Power Tronic's new PTS Series Switching. Power Modules are the smallest in the world and its compact DC:DC converters can meet the strictest requirements.
What's more, they are reliable due to their innovative design, rigid quality control and powerful production, which makes them versatile enough for all OEM applications.
Power Tronic For profitable OEM partnership.

WHEN BUYING SWITCHES REMEMBER THREE THINGS.

C\&K Components, The Primary Source Worldwide, ${ }^{\text {(8) }}$ celebrates its 30th anniversary by expanding your sources for switches.

For toggle, rocker, slide, DIP and thumbwheel switches, your source is the original C\&K Components, Inc.

For switchlocks, rotary and slide switches, your source is C\&K Clayton Division.

For snap-acting and metal-cased control switches, your source is the new C\&K/Unimax.

Whichever you choose, remember C\&K gives you the broadest selection of switching configurations to meet a variety of changing needs plus quality, quantity, performance, delivery and low-cost.

Need proof? Just send us your specs and description of your application, we'll quickly send you a sample switch that fits your needs. Without charge or obligation.

Or, call for our FREE literature.

c\&/U/Unimax
C\&K/Unimax
Wallingford, CT 06492 Tel. (203) 269-8701

Simplify your system with V25

The most powerful single-chip 16-bit CMOS microcomputer

Less is more. It's an engineering axiom. And the elegant proof is NEC's single-chip microcomputer: the 16 -bit CMOS V25.

Features? The V25 has more than we can list. Check these for a preview.
\square High integration: two full-duplex UARTs, 2-channel DMA, programmable interrupt controller, 2-channel serial and 24 parallel I/O ports, comparator, three 16-bit timers, time base counter, etc.
\square High speed: 16/32-bit temporary register/shifter, 16-bit loop counter, program counter and prefetch pointer, plus dual 16-bit data bus for simultaneous fetching of two operands.
\square Enhanced interrupt handling: 8 programmable priority levels, hardware context switching for 8 register banks, 8-channel macro service controller.
$\square 256$-byte RAM, 16K-byte ROM on-chip; ROM-less version available.Two stand-by modes: halt and stop.

\squarePackage: 84-pin PLCC.

L/S Band Power GaAs FETs: A New Era In Power Amplifiers.

Power amplifier technology has come a long way. Just consider NEC's new L/S band power GaAs FETs.

There's the NE345L-10B L/S-band GaAs FET with 10W of linear power or the NE345L-20B L-band GaAs FET with 20W of linear power.

	P1db	GL	Eff.
Part	(TYP)	$($ TYP	(TYP)

NE345L-10B 40 dbm 9 db 40\%@2.3 GHz NE345L-20B $43 \mathrm{dbm} 10 \mathrm{db} \quad \mathbf{4 0 \%}$ @ 1.5 GHz

With MTBF's that are orders of magnitude better than TWT's, no warm-up time, and no heavy power supplies, these parts are ideal replacements for TWT's in existing systems.

The NE345L series' excellent linear gain, high performance, and hermetically sealed ceramic packaging also make them the perfect choice for many applications: such as phased array radars, airborne navigation systems, studio/transmitter links, educational TV, and mobile satellites.

Contact CEL for more information, data sheets, or application support. Then see how your power amplifiers can truly come of age.

California Eastern Laboratories
3260 Jay Street, Santa Clara, CA 95054 (408) 988-3500
Western (408) 988-3500 Eastern (301) 667-1310
Canada (613) 726-0626
Europe NEC Electronics GmbH 0211/650301
CIRCLE NO 141

State of the art 1987.

Selection criteria assist in choice of optimum reference

Abstract

It's not always easy to select the most suitable precision voltage reference for your application. These devices often require parametric and economic tradeoffs. Further, parameters that are crucial in some systems are missing from or presented unclearly in many data sheets. An overview of selection criteria can belp you make the choice.

Ron Knapp, Maxim Integrated Products

In choosing a precision voltage reference, you should look beyond initial accuracy, temperature coefficient (TC), and cost. Other factors that determine the suitability of a reference for your application are the device's power dissipation, noise, long-term stability, package size, ease of use, TC linearity, and the manufacturer's definition of TC. Familiarity with these selection criteria will help you avoid unpleasant surprises when you characterize your prototype system.

Before going into the details of the various selection factors, it's useful to briefly review the different types of references available and to explain the principles of operation of each type. The overview will give you some insight concerning the performance you can expect from the various references. Reference circuits com-
prise three categories: bandgap cells, zener-diodebased references, and heated-substrate types. Most voltage references fall into the first two categories and derive their fixed output from a bandgap cell or a zener diode. The third type of reference obtains additional stability by mounting the bandgap or zener circuit on a heated substrate.

Bandgap references depend on the behavior of diodes (or the equivalent base-emitter junctions of transistors). The following equation predicts the operation of such junctions with a high degree of precision.

$$
\begin{aligned}
V_{B E} & =V_{G 0}\left(1-\frac{T}{T_{0}}\right)+V_{\text {BE } 0}\left(\frac{T}{T_{0}}\right) \\
& +\frac{n k T}{q} \ln \left(\frac{T_{0}}{T}\right)+\frac{k T}{q} \ln \left(\frac{I_{c}}{\mathrm{I}_{\mathrm{C} 0}}\right),
\end{aligned}
$$

where

- $\mathrm{V}_{\mathrm{G} 0}=$ the extrapolated bandgap voltage (about 1.2 V) at $0^{\circ} \mathrm{K}$
- $\mathrm{n}=$ process-dependent constant; value 1.5 to 3
- $q=$ charge of an electron
- $\mathrm{k}=$ Boltzmann's constant
- $\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$
- $\mathrm{I}_{\mathrm{C}}=$ collector current
- $\mathrm{T}_{0}=$ reference temperature for $\mathrm{V}_{\text {BEO }}$ and $\mathrm{I}_{\mathrm{C} O}$
- $\mathrm{I}_{\mathrm{C} 0}=$ reverse saturation current at T_{0}
- $\mathrm{V}_{\mathrm{BE} 0}=\mathrm{V}_{\mathrm{BE}}$ value for the conditions T_{0} and $\mathrm{I}_{\mathrm{C} 0}$.

The diode's temperature coefficient is large but predictable and repeatable ($-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ or $-3100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). Thus, you can achieve stability by balancing the diode's

The $V_{\text {BE }}$ equation's third and fourth nonlinear terms limit the performance of bandgap references by making a flat voltage/temperature response impossible.

TC with a TC of equal magnitude and opposite sign. Such a TC exists for the difference between the forward voltages of two diode junctions operating at different current densities. Because the ratio of mismatch governs the TC's value, the bandgap circuit is compatible with good IC design-parameter values should depend on accurate ratios based on layout geometry, rather than on absolute quantities that are difficult to control.

You can calculate the desired difference voltage $\left(\Delta V_{B E}\right)$ with high predictability, directly from the diode equation

$$
\Delta V_{B E}=\frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{1}}{\mathrm{~J}_{2}}\right),
$$

where J_{1} / J_{2} is the ratio of current densities. To obtain zero TC, you add the expression for V_{BE} to the one for $\Delta \mathrm{V}_{\mathrm{BE}}$, differentiate the sum with respect to temperature (T), and set this quantity equal to zero. The result is

$$
\mathrm{V}_{\mathrm{G} 0}=\mathrm{V}_{\mathrm{BE} 0}+\frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{1}}{\mathrm{~J}_{2}}\right) .
$$

Solving this equation for the J_{1} / J_{2} ratio tells you that an approximate 8:1 ratio gives the best result (a near zero TC). Scaling the transistor areas gives an IC designer accurate control of this ratio.

In a basic bandgap circuit (Fig 1), V_{BE} is the base-

Fig 1-A bandgap voltage reference generates the sum $\left(V_{B E}+V_{1}\right)$, in which the two voltages have equal and opposite temperature coefficients. The amplifier then raises the sum to a more convenient voltage level.
emitter voltage of Q_{1}, and $\Delta V_{B E}$ appears across R_{2}. The ratio of R_{1} and R_{2} scale $\Delta V_{B E}$ to a voltage $\left(V_{1}\right)$ whose TC cancels the TC of V_{BE}. The amplifier then raises the 1.2 V sum of V_{1} and V_{BE} (the bandgap-cell voltage) to a higher level at $\mathrm{V}_{\text {out: }}$: usually 2.5 to 10 V . Unfortunately, the amplifier multiplies noise as well. A 10 V scaled output, for example, increases the bandgap cell's noise voltage by an approximate factor of $8(10 \div 1.2)$.

Commonly available bandgap-reference voltages are $10,5,2.5 \mathrm{~V}$, and the bandgap-cell voltage itself, 1.23 V . Typical TCs range from 5 to $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The V_{BE} equation's higher-order, logarithmic third and fourth terms limit the performance of these references by making a flat voltage-temperature response impossible. What's more, some of the equation's coefficients are process-dependent-particularly n , which is related to the carrier mobility of dopant in the silicon. The quantity n poses a problem because you cannot easily determine its value by making electrical measurements during production.

Because most bandgap references are constructed in silicon monolithic form, they are relatively inexpensive ($\$ 3$ to $\$ 20$). Many designs employ curvature correction to compensate for the logarithmic nonlinearity in the TC, but none offer an exact cancellation.

Zeners have rock-bottom TCs

The second type of voltage reference-based on a zener diode-achieves TCs as low as $\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Zener diodes have a positive or negative TC, depending pri-

Fig 2-Zener diodes produce a zero-TC voltage near 5V-the level for which the mechanisms of negative-TC field-emission breakdown and positive-TC avalanche breakdown are in balance. However, the zero-TC ideal is difficult to achieve on a production basis.
marily on the breakdown-voltage value and to a lesser degree on the operating current. The zener breakdown involves two mechanisms: field-emission breakdown, which dominates below 5 V and produces a negative TC , and avalanche breakdown, which occurs above 5 V and yields a positive TC. Although complex and difficult to quantify, these breakdown mechanisms should be in balance at approximately 5 V , yielding a near-zero TC. Tests corroborate this contention (Fig 2).

Unfortunately, 5 V zener diodes exhibiting the utopian zero TC are difficult to produce. The problem is that the negative TC breakdown mechanism is flukey and difficult to reproduce consistently in production. The positive TC breakdown, on the other hand, is predictable and eminently repeatable for devices using routine semiconductor-production processes. Another charac-
teristic that's predictable and repeatable is the nega-tive-slope temperature characteristic of a forward-biased diode.

Because of the difficulty of producing a zero-TC zener diode that depends purely on breakdown mechanisms, it's evident that the TC of a zener-diode reference should not depend solely on the absolute zener breakdown voltage. A class of zener diodes, called TC zeners, takes a compensatory approach by balancing the negative TC of a forward-biased diode $\left(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ with the equal and opposite TC of a 5.6 V zener diode. The output voltage is therefore $6.3 \mathrm{~V}(0.7 \mathrm{~V}+5.6 \mathrm{~V})$. These references offer 5 - to $100-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCs and require operating currents from 0.5 to 7.5 mA . You must maintain the specified operating current to obtain the guaranteed TC.

Precision references need laser trimming

To achieve accuracies as tight as $\pm 0.01 \%$ in precision references, manufacturers use lasertrimmed thin-film resistors. Diffused resistors embedded within silicon exhibit not only hysteresis, but also high TC, poor TC matching, large voltage coefficients, and poor stability. Thinfilm resistors, deposited on the chip's surface, are found in such voltage references as the REF01, AD581, AD2700, and the MAX670.

The secret to the precision references' accuracy is to trim

Fig A-A staircase test matrix helps to optimize focus and power levels in a laser system used for trimming precision thin-film resistors.
the thin-film resistors by laser before attaching a lid to the package. This critical operation determines a reference's initial accuracy and its long-term stability. Fuse-link blowing and re-sistor-link trimming are alternative schemes for trimming the absolute voltage, but the chip area required with these methods makes them prohibitively expensive for tight-tolerance adjustments.

Thick-film resistors have insufficient stability for use in precision references; therefore, hy-

Fig B-After calibration, a laser-trim system cuts cleanly through a thin-film resistor. The calibration depends on the staircase setup technique of Fig A.
brid products such as the MAX670, AD2700, and AD2710 include TaN (tantalum nitride) or NiCr (nichrome) thin-film resistors, sputtered on a ceramic substrate of 99.6% alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. Before trimming each lot of references, the manufacturer determines the optimum settings for laser power and focus by executing a test matrix of experimental laser cuts.

For each power setting, the system makes a staircase trim pattern in which each right-angle turn marks an additional increment of focus (Fig A). After completion of the focusing and system-calibration steps, qualitycontrol personnel inspect the trim process every 30 minutes to ensure uniform cuts throughout the manufacturing lot. The system achieves extremely clean trims in this way (Fig B). To prove its stability, each device must maintain initial accuracy after trim during a 48 -hour, $150^{\circ} \mathrm{C}$ burn-in operation.

You can easily achieve a 1 -ppm/ ${ }^{\circ} \mathrm{C}$ TC by mounting a zener-reference circuit of reasonably low TC on a beated substrate.

The AD2700 and MAX670 series of hybrid references, for example, use a 1 N 827 zener diode-chosen for low noise, low dynamic impedance (10Ω max), and good TC linearity. (Why use a hybrid? Fabrication of these TC zener references involves a specialized process, involving extra steps not always available in a standard bipolar process.) The products' initial $10-\mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$ TC is that of the zener diode. Active laser trimming then lowers the TC by adjusting the zener-diode current, thereby creating additional 3 - and $1-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ product grades (see box, "Precision references need laser trimming").

The manufacturer calculates the required zener current using actual TC values, obtained through oven tests on unsealed devices. Note that the amplifier in Fig 3 supplies current to the zener, which in turn supplies an input voltage to the amplifier. To ensure circuit startup, R_{4} supplies current to the zener and the amplifier uses ground as its negative supply, thereby eliminating $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ as an unwanted stable state. Note that the amplifier in a zener reference contributes less output noise than does the amplifier in a bandgap reference, because the zener voltage requires less amplification.

Heater trades \mathbf{P}_{D} for stability

The third type of reference, based on either a bandgap or zener voltage, uses a local heater to maintain the substrate at a constant temperature, usually 10 or 15 degrees above the upper limit of the operating

Fig 3-The amplifier in this zener-diode reference bootstraps the zener voltage by delivering current to the zener while the zener delivers voltage to the amplifier. R_{\ddagger} provides start-up current to the zener.
range. If the circuit's TC is reasonably low (20 to 30 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$), such a reference can easily achieve a TC of 1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The disadvantage is power dissipation-an LM199 at $-55^{\circ} \mathrm{C}$, for example, requires as much as 28 mA at 15 V for the heater alone.

Also, the LM199's output voltage stabilizes at 1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ but the initial accuracy is only $\pm 5 \%$. To meet the $\pm 0.1 \%$ or $\pm 0.01 \%$ tolerances required in dataconverter applications, therefore, you must add a precision op amp and scaling resistors and then cope with these components' additional cost and error contributions. The proper evaluation of a reference application involves these issues as well as many of the following ones, which are not always covered explicitly in the data sheet.
Confusion surrounding the specification of temperature coefficient, for instance, is partly a matter of definition. Two definitions are popular. In the "box" method, $\mathrm{V}_{\text {out }}$ for an in-spec device must remain within a rectangle formed by $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$, and the maximum specified $\Delta V_{\text {OUT }}$ (Fig 4). $\Delta V_{\text {OUT }}$ is the product of the nominal output voltage ($\mathrm{V}_{\mathrm{NOM}}$), the specified TC , and the operating-temperature range. For the AD2700L,

$$
\begin{aligned}
\Delta \mathrm{V}_{\text {OUT }} & =\mathrm{V}_{\text {NOM }}(\mathrm{TC})\left(\mathrm{T}_{\text {MAX }}-\mathrm{T}_{\text {MIN }}\right) \\
& =10 \mathrm{~V}\left(3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)\left[85-(-25)^{\circ} \mathrm{C}\right] \\
& =3.3 \mathrm{mV} .
\end{aligned}
$$

In other words, $\mathrm{V}_{\text {out }}$ will change no more than ± 3.3 mV between any two temperatures in the operating range. This maximum change, added to the $\pm 2.5-\mathrm{mV}$ initial-accuracy spec, produces a total error band of 5.8 mV above and below the nominal $\mathrm{V}_{\text {OUT }}(10 \mathrm{~V})$.

The "butterfly" method, on the other hand, refers everything to $25^{\circ} \mathrm{C}$ and allows the manufacturer to use

Fig 4-In the "box method" of specifying TC, the operat-ing-temperature range and the maximum allowed change in $V_{\text {out }}$ form the sides of a rectangle, and the slope of the rectangle's diagonal becomes the TC.
different TCs in determining the error bands at temperatures above and below $25^{\circ} \mathrm{C}$ (Fig 5). The AD2710K, for example, specs a change of $\pm 0.9 \mathrm{mV}$ over the 25 to $70^{\circ} \mathrm{C}$ range $\left(10 \mathrm{~V} \times 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \times(70-25)^{\circ} \mathrm{C}\right)$. You must add to this the initial tolerance of $\pm 1 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$, resulting in a maximum possible error of $\pm 1.9 \mathrm{mV}$ at $\mathrm{T}_{\text {MAX }}\left(70^{\circ} \mathrm{C}\right)$.

Such systems as DVMs and data-acquisition instrumentation often use the box method for specifying total error, because users aren't likely to calculate accuracy using the TC specs. This approach has a disadvantage -the whole $3.3-\mathrm{mV}$ error change in the example of Fig 4 could occur between, say, 25 and $70^{\circ} \mathrm{C}$, yielding an effective TC of $7.33 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, which exceeds the maximum specified $\mathrm{TC}\left(3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$. A worst-case analysis over temperature, however, must allow for this much change anyway, regardless of where it occurs in the operating-temperature range.
Because temperature testing plus the reading and recording of data are costly, manufacturers usually base TC specs on only a few data points. These should include at least $25^{\circ} \mathrm{C}$ and the endpoints ($\mathrm{T}_{\text {MIN }}$ and $\mathrm{T}_{\text {MAX }}$). Using the endpoints alone, for example, can make the reference appear better than it actually is if the TC curve is symmetrical and parabolic.
You should avoid using "typical" specs for TC and absolute accuracy; only tested and guaranteed limits for minimum and maximum have meaning. A data sheet should also identify the temperatures used in the calculation of the device's TC. The AD2700L data sheet, for instance, lists $25^{\circ} \mathrm{C}$ plus the endpoints (-25 and $85^{\circ} \mathrm{C}$). The AD2700U data sheet lists these three as well as the extended endpoints of -55 and $125^{\circ} \mathrm{C}$.

Correction yields S curve

Although voltage-reference data sheets seldom specify TC linearity, the characteristic curves for $\mathrm{V}_{\text {OUT }}$ over temperature contain the most useful TC-linearity information that a manufacturer can provide. For bandgap references these curves are parabolic or S-shaped (Fig 6), depending, among other factors, on whether the device includes a linearity-correction circuit. The TC linearity of zener-based references depends mainly on the zener diode, and the reference will include one of two diode types, depending on the intended temperature range and the desired linearity (see box, "Zener diodes determine TC linearity").
Another important specification is noise, which appears on most data sheets as a typical value but seldom has a guaranteed limit. Because noise testing is diffi-

Fig 5-The "butterfly" method of TC specification normalizes the variation of Vout with respect to $25^{\circ} \mathrm{C}$. You then extend wing-shaped error bands to the operating-temperature extremes.

Fig 6—The AD581's Vour-vs-temperature characteristic has an S-shaped curve. This characteristic is typical for bandgap references that include correction circuits for TC linearity.
cult, manufacturers usually guarantee maximum values by performing sample testing only, if that. What's more, because a designer can easily filter or band-limit the higher frequencies by adding capacitors, noise specs cover the $0.1-$ to $10-\mathrm{Hz}$ range in nearly all cases. (The suppression of low-frequency $1 / \mathrm{f}$ noise, however, requires impractically large capacitor values.)
Data sheets usually specify noise in terms of $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$, an expression that allows you to calculate output noise for the bandwidth of interest. At the same time, you usually convert this quantity to the more useful $\mu \mathrm{V}$ p-p, especially for converter applications:

Bandgap references usually have a parabolis TC characteristic that assumes an S shape if the device includes circuitry to effect linearity correction.

First, multiply $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ by the square root of the system bandwidth to obtain the noise magnitude in nV rms. Then (assuming the noise has a Gaussian distribution), multiplication by 6 will give you the approximate peak-to-peak noise you can expect for that bandwidth.

Noise measurement is difficult

Lack of equipment is part of the difficulty manufacturers face in measuring noise. For example, Quantec makes a noise tester commonly used for testing op amps and transistors, but that instrument requires a nominal 0 V bias for the circuit node under test. Spectrum
analyzers make good noise testers, but not many have the dynamic range and the low noise floor necessary to measure, say, $10-\mu \mathrm{V}$ signals riding on 10 V dc. Frequency range is another complication. Spectrum analyzers come in high- or low-frequency models (above or below 100 kHz), so one model doesn't cover the measurement range needed for many applications- 0.1 Hz to several megahertz.

You can measure noise directly using a Tektronix storage oscilloscope with a 7A22 plug-in amplifier, which has $10-\mu \mathrm{V} /$ div sensitivity and selectable lowpass and highpass filters that cover 0.1 Hz to 1 MHz . The

Zener diodes determine TC linearity

The TC linearity for a zenerbased voltage reference depends on the type of zener diode in the device. Most hybrid references

Fig A-Alloy-diffused zener diodes feature a vertical configuration in which a top-surface bond pad forms the anode connection and the die substrate forms the cathode connection.

Fig B-The lateral geometry of ion-implanted zener diodes places both diode connections on the top surface of the chip.
include one of two types of TC zener (in die form), and only a few zener manufacturers can guarantee 5 - to $10-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ performance for these products. One zener type has an alloy-diffused junction in a vertical configuration (Fig A), wherein the anode serves as a bond pad on top of the die and the cathode as the substrate (backside) of the chip.

The other type of zener features an ion implant and lateral geometry (Fig B), and has both connections on top of the chip. For this type, the substrate must float unconnected, because the substrate is the junction of two zener diodes-one operating as a zener in the breakdown mode, and the other operating as an ordinary forward-biased diode. The zener voltage is 5.6 V ,

Fig C-An ion-implanted-zener reference such as the AD2700 exhibits a concave-down $T C$ characteristic and better overall linearity than does a diffused-zener type for the range -55 to $+125^{\circ} \mathrm{C}$.
lowpass settings don't include 10 Hz , however, and the amplifier's input-voltage limitation may require that you ac-couple the signal. The coupling capacitor then forms a highpass filter of a few hertz that precludes the use of the $0.1-\mathrm{Hz}$ highpass setting.

For a more convenient method of noise testing with a storage oscilloscope, you use a low-noise op amp configured for a gain of 100 , a $0.1-\mathrm{Hz}$ highpass input filter, and a $10-\mathrm{Hz}$ lowpass output filter (Fig 7). The gain boosts $10-\mu \mathrm{V}$ signals to 1 mV -within the range of most oscilloscopes-and allows use of an OP07A (whose $0.6-\mu \mathrm{V}$ p-p max noise contributes less than $60 \mu \mathrm{~V}$ p-p
noise at the output).
To measure noise, set the scope amplifier's verticalinput coupling to dc. Allow the filter to settle and the reference to warm up (about 30 sec in most cases). Clear the screen in storage mode and set the time base for single-trigger mode at $1 \mathrm{sec} / \mathrm{div}$. Set the scope to save mode or maximum screen persistence and measure the peak-to-peak noise for 10 sec . (Observation for 10 seconds is the accepted method, even though the time constant for 0.1 Hz is only 1.6 sec .) A scope photo based on this technique (Fig 8) shows about $20-\mu \mathrm{V}$ p-p noise for the AD581-typical for most bandgap references-
and when operated at the proper current, it produces a TC of 2 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$-a TC equal to and opposite that of the forward-biased diode. For this reason, nearly all temperature-compensated zener diodes have a total voltage of $6.3 \mathrm{~V}(5.6+0.7 \mathrm{~V})$. You can create a higher output voltage by connecting multiple forward-biased diodes in series with a highervoltage zener diode.
Both TC-zener types specify
$\mathrm{V}_{\text {OUT }}$ as $6.3 \mathrm{~V} \pm 5 \%$, but the actual tolerance for ion-implanted types is tighter (typically $\pm 40 \mathrm{mV}$, or $\pm 0.6 \%$), vs $\pm 300 \mathrm{mV}(\pm 4.7 \%)$ for alloy-diffused types. The tighter tolerance of ion-implanted zener diodes allows the reference manufacturer to target gain-resistor values more closely, do less laser trimming, and thereby provide better $\mathrm{V}_{\text {out }}$ stability.
TC linearity is the most no-

Fig D-The output of a diffused-zener reference such as the AD2710 provides excellent TC linearity from 0 to $70^{\circ} \mathrm{C}$, but suffers in linearity outside that range.
ticeable difference between the two zener types. The implanted zener's concave-down curve exhibits better overall linearity from -55 to $125^{\circ} \mathrm{C}$ (Fig C), but the diffused zener has better TC linearity from 0 to $70^{\circ} \mathrm{C}$ (Fig D). Both the forward-biased diode and the zener diode contribute to the nonlinearity, and these effects increase at low current.
Accordingly, most TC zeners have operating currents in the $0.5-$ to $7.5-\mathrm{mA}$ range, which is an order of magnitude higher than that of zeners normally found in an IC. High current (sufficiently beyond the value at the zener's breakdown voltage) also ensures low noise.
Though it's a tedious procedure, you can always characterize the reference over temperature and then compensate for the TC nonlinearity by using a temperature sensor, A/D converter, and software lookup table. The well-controlled ion-implant process offers a compromise solution, however-the use of zener diodes in which the TC curves and $25^{\circ} \mathrm{C}$ voltages are repeatable from lot to lot.

Often, the statistical data taken by the manufacturer on life-test samples is the best stability information you can obtain about a reference.

Fig 7-Introducing highpass and lowpass filters and a low-noise op amp lets you measure voltage-reference noise using a storage oscilloscope.

Fig 8-This scope photo shows the noise levels typical for a bandgap reference (upper trace) and a zener-based reference (lower trace). The scale is 10μ V/vertical div; 1 sec/horizontal div.
and about $5 \mu \mathrm{~V}$ p-p for the AD2700 zener reference.
Table 1 compares noise for these devices over different bandwidths.

Long-term stability

Long-term stability can be the most important spec in a reference application, but-as in the case of noisethis parameter seldom receives a thorough characterization in the data sheet. Most manufacturers specify stability as 25 to 100 ppm (typ) per thousand hours at $125^{\circ} \mathrm{C}$. They cannot accurately extrapolate this stability

TABLE 1-REFERENCE-NOISE COMPARISON

	NOISE $(\mu \vee \mathrm{p}-\mathrm{p})$	
	AD581 (BANDGAP)	AD2700 (ZENER)
0.1 TO 10 Hz	20	5
1 TO 100 Hz	50	8
1 Hz TO 3 kHz	220	30
1 Hz TO 300 kHz	600	200

data to other temperatures because those temperatures may activate other mechanisms of instability. Nor can they guarantee a maximum limit by testing all parts for 1000 hours, because 100% burn-in testing costs too much. (And in any case, the manufacturer cannot guarantee a reference's stability for the second 1000 hours.) The solution, therefore, is to either test samples only or to guarantee this spec "by design" (in other words, the manufacturer will replace customer parts that fail).

Often, the best reference-stability information that a customer can obtain is the statistical data taken by the manufacturer on life-test samples. Maxim, for example, records long-term stability for a set of sample devices operating continuously for several thousand hours at $55^{\circ} \mathrm{C}$ (a realistic operating temperature that is higher than the room ambient temperature but lower than $\mathrm{T}_{\mathrm{MAX}}$). Such data (Fig 9) for the AD2700, for instance,

GE Plastics

Product Craftsmanship.

The craftsmanship of the future. Humanizing technology. Meeting marketplace expectations for singular performance, durability and beauty, but efficiently mass-produced.
It begins with GE engineering plastics. Dynamic technologies. Breadth, depth, proven. Enhanced and accelerated by Integrated Computer-Aided Design, Engineering, Manufacturing (ICADEM ${ }^{\text {TM }}$). Advanced process development.
All the materials and tools of innovative product craftsmanship. An aggressive commitment of art and science-only from GE.

Output-current specs are misleading unless they specify $V_{\text {Out }}$ limits such as those in the spec for load regulation.

Fig 9-The average stability of AD2700 voltage references over 3600 hours at $55^{\circ} \mathrm{C}$ appears in the center curve. The upper and lower curves denote 2-sigma boundaries that encompass 90% of the 19 units tested.
shows that $\mathrm{V}_{\text {out }}$ drifts about $250 \mu \mathrm{~V}$ negative and then remains within $\pm 50 \mu \mathrm{~V}$ of that level. The center curve represents typical performance; the upper and lower " 2 -sigma" curves encompass 90% of the devices, based on the standard deviation of measured values.

$\mathrm{I}_{\text {OUT }}$ specs can be misleading

Output-current specs are misleading unless they specify $\mathrm{V}_{\text {out }}$ limits such as those included in the spec for load regulation. Note how this parameter reveals important differences in several reference devices. The AD2700, for example, has a 741-type output circuit that can sink and source current equally well within a range of $\pm 10 \mathrm{~mA}$. V V change in output current, resulting in a load regulation of $50 \mu \mathrm{~V} / \mathrm{mA}$ max.
The MAX671 has Kelvin outputs that provide load regulation of $10 \mu \mathrm{~V} / \mathrm{mA} \max$. The 10 V REF01 monolithic reference, on the other hand, has a simple emit-ter-follower output that can only source current (to ground); its load regulation is $1 \mathrm{mV} / \mathrm{mA}$ max over 0 to 10 mA . For the AD580, this same $1-\mathrm{mV} / \mathrm{mA}$ limit represents lower performance because $\mathrm{V}_{\text {out }}$ is only 2.5 V . The 10 V references AD581 and AD584 can source as much as 10 mA at $25^{\circ} \mathrm{C}$ but specify the load regulation ($500 \mu \mathrm{~V} / \mathrm{mA}$ max) to only 5 mA . These two devices have limited current-sinking capability over the MIL
temperature range. They guarantee $5-\mathrm{mA}$ source current over the full operating-temperature range.

Measure $\mathbf{V}_{\text {out }}$ vs $\mathbf{V}_{\text {SUPPLI }}$

Line regulation and power-supply rejection ratio (PSRR) are two other important parameters for voltage references. They represent the change in $V_{\text {out }}$ that results from fluctuations in supply voltage. Line regulation is a dc test whose results are usually expressed in $\mu \mathrm{V} / \mathrm{V}$ or mV / V. PSRR can be a dc test, but usually the test conditions for this parameter include a range of frequencies or a specific frequency. The line-regulation spec has the advantage that self-heating effects are included in the output-voltage change. PSRR, on the other hand, has more realistic test conditions. At 60 Hz in particular, self-heating effects average out but the power supply may offer poor regulation, degrading the stability of $\mathrm{V}_{\text {out }}$.

Finally, consider the implications of temperature hysteresis in your application. A reference output $V_{\text {out1 }}$ at temperature T_{1} should return to $V_{\text {ouT1 }}$ after you cycle the device to T_{2} and back to T_{1}. If not, the output exhibits hysteresis. The cause is thermal stress within the IC, which in turn causes expansion of the silicon with temperature-and this effect is aggravated by the contact of dissimilar packaging materials that have different coefficients of expansion. With the exception of that for the LT1021 (Linear Technology Corp, Milpitas, CA), voltage-reference data sheets rarely mention hysteresis.

EDN

Author's biography

Ron Knapp is a senior member of the technical staff at Maxim Integrated Products (Sunnyvale, CA). He holds a $B S$ in systems engineering from Boston University, an MSEE from Worcester Polytechnic Institute, and is vice president of the Northern California Chapter of The International Society for Hybrid Microelectronics (ISHM). In his spare time, Ron enjoys flying and sailing.

Article Interest Quotient (Circle One) High 491 Medium 492 Low 493

1988 ANALOG APPLCATIONS SEMINAR

Prentice Hall

 on the cutting edge of technical/reference publishing!FREE 15-DAY EXAM • FREE 15-DAY EXAM - FREE 15-DAY EXAM • FREE 15-DAY EXAM - FREE 15-DAY EXAM

Interfacing Sensors to the IBM PC

Willis J. Tompkins and John G. Webster
An indispensable, state of the art reference that presents hardware and software designs for interfacing a diversity of sensors to the IBM PC.
1988, 400 pp., cloth, 0-13-469081-8 \$55.33
Circle 146 for free 15-day exam
Digital Communications: Fundamentals and Applications
Bernard Sklar
Traces the signals and key processing steps from the information source, through the transmitter, channel receiver, and ultimately the information sink-with emphasis on system goals.
1988, 832 pp., cloth, 0-13-211939-0 \$53.33
Circle 147 for free 15-day exam
Telecommunications Measurements, Analysis, and Instrumentation Kamilo Feher and Engineers of Hewlett-Packard Limited
Indepth, all-in-one-source coverage of the engineering considerations and guidance necessary for understanding modern telecommunication measurements and related instrumentation and analysis techniques.
1987, 448 pp., cloth, 0-13-902404-2 \$56.00 Circle 148 for free 15-day exam

Advanced Digital Communications: Systems and Signal Processing Techniques Kamilo Feher

Features specialized chapters from well-known authorities to present the engineering concepts, theory, and applications of DIGCOM and DSP in breadth and depth. 1987, cloth, 0-13-011198-8 \$64.00

Circle 149 for free 15-day exam

Digital Spectral Analysis with Applications

 S. Lawrence Marple, Jr.Sifts through the vast assortment of performance claims of high-resolution spectral elimination to take an objective look at spectral estimation techniques. Includes software disk 1987, 480 pp ., cloth, 0-13-214149-3 \$44.00

Circle 150 for free 15-day exam

Microcomputer Hardware Design

D.A. Protopapas

Addresses fully the spectrum of today's microcomputer building blocks-including their principles and charac-teristics-with an emphasis on the external interfaces in real designs.
1988, cloth 0-13-581869-9 \$42.67
Circle 151 for free 15-day exam

Computer Networks: Protocols, Standards, and Interfaces
 Uyless Black

A complete and fully indexed overview of computer networks, including packet switches, personal computer systems, private branch exchange (PBX), local area networks (LAN), digital systems, and satellite systems. 1987, 448 pp., cloth, 0-13-165754-2 \$35.00

Circle 152 for free 15-day exam

Data Communication Technology James Martin and The Arben Group

Uses examples and case studies to provide an indepth understanding of the complex technology surrounding data communications networks. Enables readers to select appropriate communication lines, equipment, and software. 1988, 624 pp., cloth, 0-13-196643-X \$49.00 Circle 153 for free 15-day exam

Buchshaum's Complete Handbook of Practical Electronic Reference Data, Third Edition
Walter H. Buchshaum, revised by Robert C. Genn, Jr.

A comprehensive hands-on, fact-packed resource that contains all the data you need to design, build, test, and service virtually any type of electronic equipment. 1987, cloth 0-13-084633-3 \$34.95

Circle 159 for free 15-day exam
Order your copy of the Prentice Hall Professional/ Technical/Reference Catalog: Books for Computer Scientists, Computer/Electrical Engineers and Electronic Technicians for only \$2.00. (013-622804-6)

Circle 160 for free 15-day exam

TO ORDER FOR 15-DAY FREE EXAM:

Simply circle the appropriate number(s) on the Reader Service Card at the back of this magazine. Your book(s) will be sent to you for your 15-day exam. If you are satisfied, keep the book(s) and pay the purchase price plus postage and handling. Otherwise return the book(s) by the end of the 15 -day period and owe nothing. \qquad

Encyclopedia of

Encyopeniao CIRCUITS

System Identification: Theory for the User Lennart Ljung

A comprehensive and unified treatment of the system identification problem that provides readers with a firm grasp of underlying principles, main theoretical results, and algorithms so that practical problems can be approached confidently.
1987, 544 pp., cloth, 0-13-881640-9 \$50.00
Circle 154 for free 15-day exam

Electronic Systems Design: Interference and Noise Control Techniques
 John R. Barnes

Presents a comprehensive collection of practical techniques for designing and building electronic systems with minimal electrical noise and electrical interference problems. 1987, 244 pp ., cloth, 0-13-252123-7 \$32.00

Circle 155 for free 15-day exam
Encyclopedia of Integrated Circuits: A Practical Handbook of Essential Reference Data, Second Edition
Walter H. Buchsbaum, revised by Richard J. Prestopnik
Contains all the instant-reference data needed to select, use, and service the hundreds of integrated circuits available today. Gives specific manufacturers' part numbers. 1980, cloth, 0-13-275884-9 \$35.95

Circle 156 for free 15-day exam
Illustrated Encyclopedic Dictionary of Electronics, Second Edition
John Douglas-Young
Covers the state of the art-clearly, succinctly, and with hundreds of illustrations, circuit diagrams, charts, tables, and graphs-of virtually every major and minor topic in the field 1987, cloth 0-13-450701-0 \$34.95

Circle 158 for free 15-day exam

APPLICATIONS SLawrence Marple Jr.

Everybody promises, but nobody delivers a realtime, emulator-based C-debug environment like Arium's ECHO. 16-bit, true multitasking and UNIX-based, ECHO gives you more power, speed and menu-driven features to handle the 68000 and other μ Ps better than the HP 64000, or anything else.

Prove it to yourself. Read the screens below. Then ask any other development system-standalone or host control-to match them. We'll wait.

Now you know a few reasons (and there are plenty more) why ECHO should be your emulation tool for today's increasingly complicated software debugging.

Just words, you say, promises like all the rest?

Code Preview ${ }^{\text {TM }}$ lets you see where your code is going. You can follow calls and branches (to 99 levels) on the screen, to select the source line on which to trigger, then set and break in one keystroke! The highlighted trace display (in source) and stack trace window show the path your program took.

Stack-Relative Trigger lets you trigger on the addresses and values of stack-relative variables-a "must" for effective C-debug where the address of an automatic variable is different each time the function is called and is determined at execution. Here, a read of the local variable "nrecur" is included in the trigger sequence.

For a demonstration call
 800/862-7486(CA714/978-9531)

TimeStamp ${ }^{\text {Tu }}$ and variable display are two further features that are a must for real-time C-debug. Note the display of two instances of a structure in array "starray." The contents of these structures, as for any C variable, can be changed right on the screen.

D:WIDUT' LAT-CON" Connector System Laterals Logital

Lateral entry increases your output up to 400%, by eliminating rework and scrap without increasing labor costs.
That's why it's logical to terminate .050 " flat cable with LAT-CON connectors. In this unique system, the cover and socket are supplied joined on one side with the opposite side open. This permits fast and accurate lateral entry and termination of the flat cable when used with Panduit's unique, inexpensive tooling.

And the patented design makes it logical to use the same connector for both end and daisychain terminations, allowing you to cut your inventory costs and boost your productivity.

Panduit's logical LAT-CON system gives you all these benefits:

- Broad line of $.050^{\prime \prime}$ products, including sockets, card edge and transition connectors; three styles of headers.
Selective gold or tin plating options on high quality contacts.
- Applicable products U.L. recognized and MIL-C-83503 Intermateable.
Custom coding available without loss of contact.
Full line of time-saving termination tooling, including high volume reel-fed system... designed to lower your installed cost.

Be logical-go lateral. Call today for FREE Samples or a Productivity Improvement Demonstration.

1-800-323-2428 (In Illinois 1-312-887-1000)

\% INMIIT

ELECTRONICS GROUP
Tinley Park, IL 60477-0981
In Canada: Panduit (Canada) Limited CIRCLE NO 136

Visibility this, superb means high

- Super-Luminosity LED Lamps

Appearance	Radiation shape (mm)	Lens type			Model Ilo.	Luminous intensity (med)		Radiation color
		Colored diffusion	$\begin{gathered} \text { Colored } \\ \text { transparency } \end{gathered}$	$\left\|\begin{array}{c} \text { Colorless } \\ \text { transparency } \end{array}\right\|$				
						Kin	Typ	
Cylinder	5ϕ		-		GLSUR2K	1400	2000	Red
				O	G15UR2KI	1400	2000	
			\bigcirc		GLSUR3K	2400	3000	
				\bigcirc	GILUR3KI	2400	3000	
			\bigcirc		GL5UR46	250	400	
				0	GLSUR2K6	1400	2000	
	1.5¢			0	LT9550L	200	400	Red
		\bigcirc			LT9552L	80	200	
	$\begin{gathered} 7.5 \phi \\ \text { * } \\ \text { (Didromatic } \\ \text { LED lamp) } \end{gathered}$			\bigcirc	LT9550EL	120	250	Red
						80	120	Yellow-green
				\bigcirc	*2 LT9555EL	TBD	60	Red
							40	Yellow-green
	10¢			0	LT9512U	4000	5000	Red
		\bigcirc			LT9562U	700	1400	

*1 Orange is obtained when red and yellow-green are emitted simultaneously.
*2 Under development

- Specifications are subject to change without notice.

SHARP CORPORATION

The dawn of amazing brightness.
A new, ultra-bright LED line-up brought to you thanks to Sharp technology, among the best in the industry.
5,000 mcd from Sharp LED.
This incredible, ultra-brilliance is the result of Sharp's unique crystalgrowing and optical design technology. Sharp LEDs have a variety of advantages over the incandescent bulbs conventionally used for out door displays,

- Not only high brilliance but also high linearity, bringing dramatically improved visibility even in daylight. - Service life is much longer, about several tens of thousands of hours compared to 2,000 hours for incandescent bulbs. Dichromatic LED itself emits light in three colors - red, orange and yellow-green - and thus permits multicolor displays. Sharp's LEDs dramatically reduce your running costs and offer huge savings in maintenance time and work. When planning new outdoor displays, get a bright idea, ask for Sharp LEDs.

SHARP CORPORATION international Sales Dept. Electronic
Components Group 22-22, Nagaike-cho, Abeno-ku, Osaka 545, Japan
Phone:(06)621-1221 Telex:LABOMET A-B J63428 Fax: $061621-8478$,
NORTH AMERICA: SHARP ELECTRONICS CORPORATION Electron
Components Division Sharp Plaza, Mahwah. New Jersey 07430-2135. U.S A
Phone:(201)529-8757 Telex: 426903 (SHARPAM MAWA) Fax: (201)529-8759
EUROPE:SHARP ELECTRONICS (EUROPE) GmbH Electronic
Components Dept. Sonninstra/Be 3, 2000 Hamburg 1, ER. Germany
Phone:(040)23775-0 Telex:2161867 (HEEG D) Fax:(40)231480

Plessey Microsystems puts the 68030 in its proper place

...and doubles your VME processing power!

If you've been yearning to double the processing power and throughput of your VME system, the wait is over. Once again, Plessey Microsystems has taken the lead... with our new 68030-based PME 68-32 VME Single Board Computer. It puts all the power of the 68030 into the industry's fastest, most powerful and versatile VMEbus processor board. And we're not talking about a board that's under development. The PME 68-32 is here...right now!

Doubling Your Processing Power With...

- 68030 processor
- Optional 68882 floating point co-processor
- 4 Mbytes true dual-ported DRAM
- Cache burst fill capabilityzero wait states
-Two high-speed serial ports-up to $1 \mathrm{Mbit} / \mathrm{sec}$.
- Remote reset
- Mailbox interrupts
-Flexible dual-ported address mapping
- Complete VMEbus system control functions

Plus the Unique PEX Interface...
Our unique on-board PEX (Plessey Extension bus) Interface allows you to easily meet even highly specialized application requirements. You can put the functionality you choose onto the $68-32$ because it puts so many interface possibilities at your disposal, including SCSI and others like paralle! I/O, Ethernet;', floppy disk, additional serial I/O... and more!

...And Smooth, Easy Upgrade Paths...

The PME 68-32 is part of a complete family of Plessey Microsystems processor boards incorporating the 68000 series of processors. That means minimal-or even zerosoftware changes from one product to the next. If you're using our 68020 -based processors now, you can easily upgrade to the PME 68-32...now!

...For Ultimate VME Strength.

With our 68030-based processors, Plessey continues to extend its lead in VME technology. And not just processors. We've got a host of new VME memory boards, I/O and controller boards, and systems and software. Call or write for details and make Plessey's ultimate VME strength your system's greatest strength.

One Blue Hill Plaza, Pearl River, NY 10965-8541
(800) 368-2738, (914) 735-4661

Fax (914) 735-9527
9 Parker, Irvine, CA 92718 (714) 472-2586 Fax (714) 458-7084
2000 E. Lamar Blvd., Arlington, TX 76006
(817) 261-9988 Fax (817) 861-8730

Visit us at Buscon/West, Booth 619

PLESSEY and the Plessey symbol are registered trademarks of The Plessey Company plc.

CIRCLE NO 134

Serial techniques expand your options for $\mu \mathrm{C}$ peripherals

> The Serial Peripheral Interface (SPI) bus of the MC68HC11 microcomputer is flexible enough to let you attach devices designed for other serial buses-Signetics' IIC peripherals, for instance, or ITT's IM family.

Naji Naufel, Motorola Inc

Designers usually assume that basing a system upon a particular single-chip microcomputer unit (MCU) will restrict their choice of peripherals to those for which interface functions are available on the MCU or on subsystem chips of the same family. Unfortunately, peripheral family members may not be adequate to meet the needs of your application. For a system based on the Motorola MC68HC11, however, you can expand your options by attaching serial devices to the MC68HC11's SPI bus. This bus is adaptable enough to work with serial devices designed for other buses, such as the Signetics family of Inter-Integrated-Circuit (IIC) peripherals and the ITT family of Intermetall (IM) peripherals.

Although devices in the Signetics and ITT families aren't directly compatible with the $\mathrm{MC} 68 \mathrm{HC11}$ microcomputer, it's not difficult to attach them, as slave
devices, to the Motorola SPI bus. You'll find it fairly straightforward, for instance, to connect two relatively simple devices, a clock/timer from the IIC family and an EEPROM from the IM family, to the MC68HC11's bus. If you want to attach more complex devices from either family, you'll probably need to study the source documentation (Refs 1, 2, and 3), but the schematics and software routines that follow will be adequate as a starting point. For additional information about the registers to which the software routines refer, see box, "Three registers control the SPI."

Interbus connections are simple

The SPI consists of little more than an 8 -bit shift register with separate lines for incoming and outgoing data, and a third line that carries the shift clock. The protocol is simple; you set the interface for a read or a write operation and generate eight clock pulses to shift the data in or out, sending the most significant bit (MSB) first.

The IIC bus has a single, bidirectional data line and a clock line, but the transmission protocol is a little more complex; it requires both a start and a stop condition. In addition, the clock sequence consists of nine pulses; eight of these pulses shift the data bits in or out (MSB first), and the ninth allows a slave device to acknowledge receipt of the data byte.

The IM bus also has a bidirectional data line and a clock line, but in addition it requires an IDENT line that distinguishes between an address and a data byte.

Because you can configure the SPI lines as open-drain circuits, you can connect both the serial-input and serial-output lines to the bidirectional data line of a peripheral.

Fig 1-You need only three lines to connect the PCB8573 clock/ timer from the Signetics IIC family to the SPI bus of an MC68HC11A8 microcontroller.

Fig 2-Serial peripherals of the ITT Intermetall family, such as the MDA2601 EEPROM, need part of a parallel port for control purposes, as well as the SPI, for data transmission.

Unlike the other two buses, IM devices send the least significant bit (LSB) first. Therefore, if you're interfacing the SPI to an IM device, you must provide a software routine to reverse the bit order before sending and after receiving a data byte.

Fig 1 shows how to connect an IIC clock/timer chip to the SPI bus, and Fig 2 shows the connections for an IM EEPROM. In both cases, you have to connect the MOSI (master out, slave in) pins of the $68 \mathrm{HC11}$ microcomputer to the MISO (master in, slave out) pins and to the bidirectional data pin of the peripheral device. Because the MOSI pin is part of an internal open-drain circuit, you need a pullup resistor on the line.

For this type of configuration, you send data to the peripheral merely by writing the data byte to the shift register (SPDR). To receive data from the peripheral, you generate receive shift-clock pulses by writing $\mathrm{FF}_{\mathrm{HEX}}$ to the transmit register as if you were sending it. Again, because the MOSI line is part of an open-drain circuit, incoming data bits that are set to 1 don't affect the MOSI/MISO line status (which defaults to high because of the $\mathrm{FF}_{\text {HEX }}$ in the transmit register); incoming bits that are set to 0 , however, can pull the line low without difficulty.

IIC software uses only port D

The software that lets you emulate the IIC protocol takes advantage of the MC68HC11's ability to use its port D pins either as SPI pins (when the SPI is enabled) or as general-purpose, independent I/O pins (when the SPI is disabled). The sample software of Listing 1 (pg 203) makes use of this feature to generate the timing shown in Fig 3.
To initialize the interface, turn off the SPI (SPE=0) and set bits 3 and 4 of port D high to generate the idle

Fig 3-By turning off the SPI, you can use its pins as independent I/O lines. Thus, you can interface the MC68HC11 MCU to IIC peripherals without using any other ports, as this timing diagram shows.
condition of the MOSI and SCK lines. To send a byte to the peripheral, you first load the byte into the B accumulator and then generate a start condition by clearing bit 3 of port D while leaving bit 4 high. Next, you turn on the SPI; this action forces the SCK line low and the MOSI line high $(\mathrm{CPOL}=\mathrm{CPHA}=0)$ and causes the MCU to transmit the eight data bits.

When all the data bits have been shifted out, you
clear bit 4 of port D, then turn off the SPI and generate the acknowledge clock pulse by first setting, then clearing, bit 4 of port D. Finally, after the last byte has been sent, you call the Stop subroutine to generate a stop condition by setting bit 3 of port D high while bit 4 (the clock line) is in the idle (high) state.
Devices that use the IM bus examine the IDENT line; because this line must be held low throughout the

Three registers control the SPI

The SPI (Serial Peripheral Interface) allows you to use the MC68HC11 microcomputer's I/0 port D to communicate with a peripheral device over a simple serial link. The three main registers are the SPI control register (SPCR), the SPI data register (SPDR), and the SPI status register (SPSR) (Fig A).

The SPCR stores control words sent by the processor via the microcomputer's internal data bus. The SPE bit enables or disables the SPI; the CPOL bit determines the polarity (high or low) of the SCK clock line in the idle condition; the CPHA bit determines which edge of the SCK clock latches data into or out of the shift register; the MSTR bit determines whether the SPI will act as a master or as a slave; and the two SPR bits select the shift-clock rate. The DWOM bit, when set to 0 , configures the six port D pins as normal CMOS outputs; when set to 1 , it configures these pins as open-drain outputs.
The SPDR consists of a readdata buffer and a shift register. To write data to a peripheral, you load the shift register directly; a second write instruction, issued before the current byte has been completely trans-

Fig A-The SPCR, SPDR, and SPSR registers provide control of the SPI, transmit/ receive facilities, and status information.
mitted, will be ignored. During a read operation, however, an incoming byte is automatically transferred to the buffer as soon as the last bit has been clocked into the shift register; therefore you have one byte-time in which to fetch the byte, while the next byte is filling the shift register.

In the SPSR, the completion of a data transfer between the MCU (microcomputer unit) and the peripheral device, in either direction, sets the SPIF bit (transfer-complete flag). To clear
the SPIF, you must first read the SPSR and then read or write the SPDR. When the SPIF is set, failure to read the SPSR will inhibit any attempt to write to the SPDR. Attempting to write to the SPDR while a data transfer is in progress will set the WCOL bit (write-collision flag) and inhibit the write operation. To clear the WCOL bit, you must first read the SPSR and then write the data byte to the SPDR.

To communicate with the IM bus, you must reverse the bit order of each byte before sending it or after receiving it.

Fig 4-The IDENT line of ITT's line of Intermetall peripherals distinguishes between addresses and data. As you can see from this timing diagram, you need a separate port to control the IDENT line.
transmission of eight address bits and high while data is being read or written, you can't drive it from port D, which the SPI needs for serial data and shift clock pulses. Instead, drive the IDENT and other IM control lines from port B (Listing 2 (pg 204), Fig 4).

You initialize the SPI with CPOL $=\mathrm{CPHA}=1$. To send data to a peripheral, you force the IDENT line low and transmit the 8 -bit peripheral address. Then, while holding IDENT high, you send (or read) the eight data bits. When all the address and data pairs have been sent, you drive IDENT low and then high again to create a short pulse, which generates a stop condition.

As with the IIC bus, you transmit $\mathrm{FF}_{\text {HEX }}$ to generate shift-clock pulses for a read operation; the resultant high on the MOSI line doesn't interfere with incoming data bits. Remember, too, that the IM bus requires that you transmit the LSB first, whereas the SPI requires the transmittal of the MSB first; to meet this condition, the "flip" subroutine of Listing 2 reverses the bit order before you load a byte into the transmit shift register and after a complete byte has been assembled in the receive shift register.

Although the preceding diagrams and subroutine listings relate to specific peripherals, you can easily adapt the basic techniques to connect any peripheral of the IIC or IM families to the SPI bus of a $68 \mathrm{HC11}$-based
system. Conceivably, you can even apply the same principles to other families of serial peripherals to extend your options still further.

References

1. MC68HC11A8 HCMOS Single-Chip Microcomputer, Technical Data Sheet MC68HC11A8/D, Motorola Literature Distribution Ctr, Box 20912, Phoenix, AZ 85036.
2. Fenger, Carl K, "Bus links peripherals, multiple masters in low-speed network," $E D N$, April 3, 1986, pg 153.
3. CCU 2000/2030 microcontroller data sheet, ITT Corp.

Author's biography

At the time he wrote this article, Naji Naufel was an MCU applications engineer with Motorola (Austin, TX); since then he has become a product engineer responsible for testing 8-bit MCUs and improving yields. Naji holds a BSEE from the University of Texas. In his spare time, he enjoys tennis, photography, and flying radio-
 controlled model aircraft.

Article Interest Quotient (Circle One)
High 497 Medium 498 Low 499

LISTING 1-ICC BUS SUBROUTINE

* This subroutine transfers a byte from the HCll 's SPI to the IIC
*peripheral. Upon entry, data is in Acc B.
*w_start $^{\text {s }}$ is the entry point for sending a start bit.
*nostart is the entry point for transferring data without a
*start condition.

*


```
***************************************************************************
*This subroutine creates a stop condition
**************************************************************************
*
stop equ *
bclr portd,x $08 bring SDA low (bclr 3,portd)
bset portd,x $10 bring SCL high (bset 4, portd)
bset portd,x $08 bring SDA high (bset 3,portd)
rts return to caller
*****************************************************************************
* This subroutine sends an address byte, followed by a control
* byte in CONTROL
*************************************************************************
*
addrentl
\begin{tabular}{lll} 
equ & \(\star\) & \\
ldab & \#waddr & r/w=0 \\
bsr & wstart & send address with start condition \\
ldab & control & \\
bsr & nostart & send control byte without start \\
rts & & return to caller
\end{tabular}
```

```
**************************************************************************
```

**

* This subroutine reads a data byte

```
* This subroutine reads a data byte
```



```
*
```

*

read equ *
read equ *

 1daa #$$00
 1daa #$$00
 control
 control
 staa ack high ack bit (ack nonzero)
 staa ack high ack bit (ack nonzero)
 Listings continued on pg 204
    ```
        Listings continued on pg 204
```


LISTING 1-ICC BUS SUBROUTINE (Continued)

LISTING 2-IM BUS SUBROUTINE

```
*****************************************************************************
* This subroutine reverses the order of the bits in a byte. The input
* data is in Acc A, and the output is returned in Acc B. The action
* shifts the data out of the MSB side of Acc A into the MSB side of Acc B.
#**************************************************************************
*
\begin{tabular}{lll} 
flip & equ & \(*\) \\
& \begin{tabular}{ll} 
again \\
& stab \\
& asla \\
& rorb \\
& dec \\
& bne \\
& rts
\end{tabular}\(\quad\) temp & \\
& &
\end{tabular}
**************************************************************************
* This subroutine sends two bytes to the IM peripheral; the first byte
* is in ADDR, the second byte is in DATA.
**************************************************************************
*
im_send
\begin{tabular}{|c|c|}
\hline \(1 \mathrm{~d} x\) & \#\$1000 point \(X\) to register base address \\
\hline 1 da & ADDR address register \\
\hline bsr & flip reverse the bit order \\
\hline \(b \mathrm{clr}\) & portb,x\%00000001 clear IDENT (PBO) \\
\hline stab & spdr, \(x\) send byte (address register) \\
\hline 1daa & DATA get address \\
\hline bsr & flip \\
\hline brclr & spsr,x \%10000000 wait for SP]I flag \\
\hline bset & portb, \(\mathrm{x} \% 00000001\) set IDENT (PB0) \\
\hline stab & spdr,x send word \\
\hline brelr & spsr,x \%10000000 wait for SPI flag \\
\hline bclr & portb,x \%00000001 \\
\hline bset & portb,x \%00000001 toggle IDENT (PBO) \\
\hline rts & return to caller \\
\hline
\end{tabular}
```


AGood Deal. A Good Deal Faster.

Right now Key Tronic has thousands of top quality 101 keyboards in stock at competitive prices.

Also available is our popular 102 model in ten European languages.

Because we manufacture and stock the 101 and 102 at three different locations around the world, you won't have to wait for delivery. Regardless of your deadline or location.

The 101 and 102 are built to KeyTronic's high standards of quality. Standards that have made KeyTronic the world's leading independent
keyboard manufacturer. Take our 100 million cycle guarantee, for example.

What's more, the keyboards are switch selectable to work with standard or enhanced PCs, XTs, ATs, as well as most compatibles. And like all our keyboards, the 101 and 102 have the famous Key Tronic touch that really makes a difference in
Our inventory's in stock. Ready for immediate delivery.
speed and productivity. Whether you
 choose the 101 or 102 , orders placed on Monday will be shipped by Friday. So quality worth waiting for

101s and 102s can be shipped within five days of your order: really requires no waiting at all. For a good deal on a great keyboard, call your local KeyTronic representative today. Or call Key Tronic, OEM Sales at (509) 928-8000.

key tronic

- Ziltek's wide variety of STD-Bus boards will add new life to your system and will simplify your software and hardware development. With an assortment of more than 80 board variations and over 100 different varieties, Ziltek ASTD Series boards will meet your system design requirements.
- Ziltek ASTD Series boards provide an easy software development environment and reduce development time without tying up input/output ports. And, Ziltek can provide all of your necessary microprocessor design and development tools, including a variety of boards, software, and support tools.

Greating the future! IEF-ENTHITE/bx. 8
 In-Circuit Emulator

- Ziltek continues to meet the growing needs of technology with the ICE-ENGINE Series real-time InCircuit Emulator.
- The ICE-ENGINE Series completely support 8 bit, 16 bit and 32 bit microprocessor's hardware/software development.
Outside U.S. \& Canada, Contact:
ADTEK SYSTEM SCIENCE CO., LTD.
1-16-6 Tennocho, Hodogaya-ku, Yokohama, Kanagawa 240 JAPAN
Telephone: 81-45-331-7575 FAX: 81-45-331-7770
* Now Ziltek Supports:

Z80A, Z80B, Z80C, Z80H, 8085, 80C85, 8035, 8039, 8040, 8048, 8049, $8050,8748,8749,8750,8031,8032,8051,8052,8751,8752,80 C 31$, 80C32, 80C51, 80C52, 87C51, 87C52, 85C154, 6809, 68A09, 68B09,6809E, 68A09E, 68B09E, 64A180R0P, 64B180ROP, 64180ROF, 64B180ROF, 64A180ROCP, 64B180R0CP, 641802, Z180, 8086, 8088, 80C86, 80C88, 80186, 80C186, 80C188, V20, V30, V40, V50, 68000, 68008, 68010

* Coming soon:

6301V, 6301X, 6301Y, 6303R, 6303X, 6303Y, 63701V, 63701X, 63701Y, 68HC11, 80C186-16, V25, V35, 80286, 80386-16/20

* Planning

Z8, Super 8, 68HC05, Z280, 80286-16, 68030, V60

ZILTEK ${ }_{\text {camponamon }}$

A subsidiary of Adtek System Science Co., Ltd. 1651 E. Edinger Ave., Santa Ana, CA 92705

New 52-page 1988 catalog

Acopian single, dual and triple output power supplies featured in our new catalog for 1988 are shipped in three days. Included are PC-boardmounting and chassis-mounting mini modules. DC-DC converters. General-purpose modular supplies with outputs to 200 Vdc and current ratings to 32A. Narrow-profile supplies a mere $1.68^{\prime \prime}$ thin. Plug-in
supplies. MIL-tested supplies. Unregulated supplies for driving relays and displays. Supplies with broad adjustment ranges. Our rackmounting power supplies and systems, and redundant output systems are shipped in nine days. The catalog contains complete specs and pricing information. Call or write for your copy.

P.O. Box 638, Easton, PA 18044

Call toll free (800) 523-9478
P.O. Box 2109, Melbourne, FL32902

Call toll free (800) 327-6817

Programmable-delay ICs control system timing

Low cost, low power, and small package size extend the application of digital-totime converters in system timing applications. By exploiting the programmability features of these devices, you can both simplify timing-system design and gain greater control of timing parameters than you can by using analog time-delaying methods.

Craven Hilton and Jeff Barrow, Analog Devices Inc

Accurate control of pulse timing is extremely important in digital electronic systems in those applications where system requirements dictate digital control of delays. Until now, you've had to use an analog method, employing a high-speed comparator to detect the incremental delays on a linear ramp, and a D / A converter to set the threshold level of the comparator. This design uses as much as one watt of power; now, however, monolithic digital-to-time converters (DTCs), such as the AD9500, accomplish the same function while only dissipating 300 mW . You can use the AD9500 to control time delays having intervals as small as 10 psec in a full-scale span of 2.5 nsec min .

Fig 1-This test configuration, typical of virtually all electronic measurement systems, comprises four blocks: stimuli, control, measurement, and the device under test.

Some circuit examples illustrate the benefits of using a monolithic DTC in such applications as LSI and VLSI automatic test systems, which present significant challenges in pulse generation and distribution. For instance, although you can achieve repeatable delays of less than 100 psec by using an analog technique with an RC time reference, this method will not provide you with variable delays having such short intervals. The key to the flexibility of the monolithic DTC is the device's programmability.
Fig 1 is a generic block diagram of virtually all

By exploiting a DTC's programmability, you can simplify timing-system design and gain more precise control of timing
parameters.
electronic measuring systems. Such a system can evaluate any device (the device under test, or DUT) for virtually any performance criteria if you apply the proper stimuli and use the appropriate measurement circuits. This electronic measuring system will serve as a model for the timing circuits throughout the remainder of the text.

One way to exploit the programmability of the DTC is to use two DTCs triggered from the same clock to program both the leading and trailing edges of an output pulse. This application is illustrated in Fig 2a. The first DTC $\left(\mathrm{IC}_{1}\right)$, which produces the leading edge of the output pulse, drives the clock input of IC_{3}, a D-type flip-flop whose D input is tied to a logic one. After IC_{1}

Fig 2-Two DTCs control the output's leading and trailing edges in this digitally controlled pulse generator. The timing diagram in b brings out the fact that the leading edge of the output pulse, Q_{0}, occurs after an interval equal to the propagation delay plus the programmed delay.

Fig 3-Providing precise delay matching in critical applications, this circuit uses multiple DTCs to compensate for differences in the delays inherent in different signal paths. The closed-loop circuit provides a deskewing function.
clocks the one through the flip-flop, the second DTC $\left(\mathrm{IC}_{2}\right)$ resets the flip-flop, thereby producing the falling edge.
At a time equal to the propagation delay plus the programmed delay of the first DTC (Fig 2b), the flip-flop produces the leading edge of the output pulse. Because the propagation delays of the two DTCs cancel each other, the width of the output pulse is exactly the difference between the programmed delays of the two DTCs. You can determine the programmed delay of each DTC from

$$
\mathrm{t}_{\mathrm{D}}=\mathrm{t}_{\mathrm{PD}}+\frac{\mathrm{XX}_{16}}{\mathrm{FF}_{16}}\left(\mathrm{R}_{\mathrm{SET}} \mathrm{C}_{\mathrm{SET}}\right)
$$

The circuit of Fig 3 provides precise delay matching for those applications in which you need to distribute a

Fig 4-Using DTCs configured to start and stop the oscillation, this digitally programmable oscillator gives you complete control over the start-up, shutdown, and frequency of oscillation.

> You can use multiple digital-to-time converters to construct oscillators, deskewing circuits, and accurate delay-measurement systems.
number of pulses and maintain good coherence between those pulses. Because individual test circuits may have extraneous delays in the signal paths to the DUTs, close matching in the initial tester delays will not be sufficient to guarantee close matching between the delivered pulses. The combination of programmable deskewing circuitry and the closed-loop calibration scheme of Fig 3 allows you to compensate for the timing variations in the circuit paths during your test-system setup cycle.

During the setup cycle, the closed-loop system measures the delay to each input pin of the DUT. It then modifies the delay values stored in each of the DTCs until the input pulses arrive at the DUT's pins simulta-
neously. This method allows you to match the delays to the DUT to a resolution of 20 psec for a full-scale delay period of 5 nsec .

Programmable oscillator

Fig 4 shows that you can also create a digitally programmable oscillator by using three DTCs. IC_{1} acts as a start-up pulser to trigger the other two DTCs, which are configured as astable oscillators interconnected in a wired-OR configuration. You can generate the start-oscillation pulse locally, or you can use the system power-up-reset signal to generate the startoscillation pulse. Because the DTC is edge triggered and the oscillator is stable in either the oscillating or

DTC uses analog, digital internal circuitry

Fig A displays the AD9500 along with the external circuitry required to configure it as a DTC. An 8-bit word sets the output voltage of the IC's internal D/A converter. The DAC's output voltage in turn establishes a threshold for the highspeed voltage comparator. You can latch the input word to the AD9500 by applying a one to the latch-enable input of the device. Alternatively, if you want to change the value of the input on the fly, hold the latch-enable input at logic zero and the latches will remain transparent.

Because the DTC controls precision delays for high-speed signals, its delay-path inputs and outputs are designed to be ECL compatible. The IC's differentialI/O structure affords maximum timing-noise immunity wher you interface the chip to either 10 K or 100 K logic. For less demanding applications that use 10 K ECL circuitry, you can use the on-chip ECL reference and operate the chip in a single-ended mode.

Fig A-Using both analog and digital internal circuitry, the AD9500 requires only a resistor and a capacitor as external components in programmable-delay applications. $R_{S E T}$ and $C_{S E T}\left(C_{E X T}+C_{I N T}\right)$ provide a reference for the internal timing-control circuit. The ramp generated by the $R_{S E T} / C_{S E T}$ time reference remains linear despite the effects of time, temperature, and supply-voltage variations.

The DTC's time reference is RC based; it serves as the ramp generator and as a timebase for the on-chip DAC. Because the DAC's gain is proportional to the time reference, any change in the ramp's slope is compensated by the DAC's gain. This compensation reduces the effects of environmental changes on full-scale
time and timing linearity.
You determine the full-scale delay of the device through your selection of external, passive components. Although the recommended range of full-scale delays is from 2.5 nsec to $100 \mu \mathrm{sec}$, you can extend delays beyond $100 \mu \mathrm{sec}$ if you can tolerate a degradation of the linearity and
nonoscillating mode, a single pulse from IC_{1} will start the oscillation. By grounding the trigger input on either IC_{2} or IC_{3}, you can stop the oscillation.

As Fig 4 shows, each DTC resets itself as it triggers the alternate DTC. The programmed delay of each device is determined by the equation given earlier. This delay, in turn, determines the output frequency of the oscillator, which is simply the reciprocal of the sum of the two propagation delays plus the two programmed delays.

When you need to measure a time delay, you can use two DTCs in conjunction with two comparators, a D-type flip-flop, and a successive-approximation register (SAR) as illustrated in Fig 5a. Flip-flop IC_{3} serves
as a coincidence detector. The first DTC $\left(\mathrm{IC}_{1}\right)$ varies the delay of the pulse applied to the D input of the flip-flop. The coincidence detector serves as a time comparator, whose function is analogous to that of a voltage comparator in a successive-approximation A/D converter.

The clock input to the flip-flop is delayed by a period equal to the unknown ECL delay. The circuit compares the first cycle of the $1-\mathrm{MHz}$ clock with the unknown delay and checks to see if the delay is greater than half-scale. Then it checks for one-quarter or threequarters scale, one-eighth or seven-eighths scale, and so on. At the end of the test process, then, the output of the SAR provides an 8-bit representation of the delay through the DUT. To measure TTL-circuit delays, you

Fig B-Timing characteristics for the digital-to-time converter are shown in this timing diagram. The illustration shows the relationship between the digital delaycoefficient data and the latch-enable strobe. The text delineates the limits you should observe for the various inputs, in order to obtain proper operation of the DTC.
repeatability of the delay. At
the other end of the spectrum, if you choose a full-scale range of 2.5 nsec, then the smallest incremental delay available to you is 10 psec .

The maximum delay trigger rate is 100 MHz , but an offset adjustment in the device allows you to operate two DTCs in a ping-pong fashion to double the
trigger rate. The IC's maximum differential nonlinearity is $\pm 1 / 2$ LSB at $25^{\circ} \mathrm{C}$ and $\pm 1 \mathrm{LSB}$ over the operating-temperature range. Maximum integral nonlinearity for the device is ± 1.25 LSB for full-scale delays of 100 nsec or more over the operat-ing-temperature range.
The timing characteristics of the AD9500 are illustrated in

Fig B. Lines 1 and 2 show the timing relationship between dig-ital-delay coefficient data and the latch-enable strobe. The minimum latch-enable pulse width is 2 nsec . The data setup time for the input latch is a maximum of 2.5 nsec , and the hold time is a minimum of 4.5 nsec. You must allow at least 25 nsec from the rising edge of the latch-enable pulse before you trigger an event, otherwise the internal DAC might not have time to settle.

Lines 3, 4, and 5 of Fig B show the relationship of the output to the reset and trigger events. The total delay through the DTC is the sum of the propagation delay and the programmed delay. The propagation delay equals the delay through the differential input stage, the comparator, and the delay attributable to ignoring the first, nonlinear portion of the ramp. The last of these components increases with full-scale delay.

Fig 5-Operating in similar fashion to a successive-approximation A/D converter, this circuit allows you to make precise delay measurements. The circuit in a handles ultrafast ECL circuitry; you can easily modify it to accommodate TTL circuits. The timing diagram in \boldsymbol{b} illustrates the timing characteristics at various points in the circuit.

> A successive-approximation process in the time domain, similar to that commonly used in the voltage domain in ADCs, yields an accurate delay-measuring system.
add an AD9686 comparator between the Q output of the second DTC $\left(\mathrm{IC}_{2}\right)$ and the input to the unknown-delay circuit, and an AD96685 comparator between the output of the unknown-delay circuit and the flip-flop.

To calibrate the circuit of $\mathbf{F i g} \mathbf{5 b}$, you insert a shorting strap in place of the unknown-delay circuit to eliminate extraneous circuit delays and the flip-flop's setup time. To null the circuit, apply a digital code of 00_{16} to IC_{2} and adjust potentiometer R_{S}. This adjustment varies the propagation delay through IC_{2}. The
calibration is complete when the output of the SAR is also 00_{16}. You must apply start-conversion pulses during the calibration. This calibration procedure is equally valid for the modified, TTL-delay configuration. Fig $5 \mathbf{b}$ shows the timing for a typical conversion cycle.

You can use the circuit of Fig 6a to measure the settling time of analog signals-for example, the output of a D / A converter. The operation of this circuit is similar to the operation of the digital delay detector, but it uses a voltage-input window comparator in place

Fig 6-You can measure the settling time of analog signals by using the circuit in a. The operation of this circuit is similar to that of the digital delay detector in Fig 5a. A typical analog voltage-settling waveform is illustrated in \boldsymbol{b}.

Representation of the range of high quality Melcher power supplies. SWITCHING POWER SUPPLIES AND THE SELECTION RANGE:

THE STANDARD RANGE FOR A THOUSAND APPLICATIONS

Our range of switching power supplies is enormous. It is the result of long experience, close collaboration with customers and a constant pursuit of innovative, yet practical designs.

And this range is steadily growing. Manufacturers and application engineers from industry, transport, communications, defence technology, power utilities, medicine and even entertainment electronics contact us with ever changing requirements. With requests that can only be met by a flexible specialist having inhouse development and manufacture.

However, a great many requirements are already fulfilled with our standard power supply models or with their optional features. With switching regulators up to 300 W, DC/DC converters and chopper supplies up to 50 W ; with single and multi-voltage devices, fixed or adjustable; for extreme temperature ranges or quality requirements; with different mounting or connection possibilities etc.

Out of this, thousands of variations can be produced at short notice. For a copy of our short-form catalogue, just give us a call.

SUPPLYING GREAT PERFORMANCE:

MELCHER AG, CH-8610 Uster/Switzerland, Ackerstr. 56 Tel. 01-941 3737
of the coincidence detector, and down counters in place of the SAR.
Fig 6b shows a typical analog voltage-settling waveform, as well as the output of a window comparator that uses a constant high-frequency strobe. This continuousclock method produces ambiguous results because the signal comes into the error-band window during three clock periods. The circuit of Fig 6a, however, produces a single strobe per cycle of the analog signal and homes in on the correct measurement in the following manner.
The first DTC $\left(\mathrm{IC}_{1}\right)$ controls the timing of the DUT switching. The second DTC (IC_{2}) delays the latchenable strobe to the high-speed window comparators. The start-conversion pulse initiates the down counters to a full-scale setting. On each cycle of the clock, the counter decrements and the strobe to the window comparator moves back closer to the time when the DUT is switched. Because the circuit starts at full-scale time, the first strobe occurs well after the DUT has settled. As successive clocks arrive, the circuit causes the strobe to back up until the DUT signal falls out of the range of the window comparator. As a result, the window comparator stops the down counter, whose output represents the settling time of the DUT.
To compensate for extraneous circuit delays, you can adjust the $\mathrm{R}_{\text {SET }}$ potentiometer. Insert a shorting strap in place of the DUT and change the window reference voltages V_{A} and V_{B} to -1.28 V and -1.32 V , respectively . Then adjust $\mathrm{R}_{\text {SET }}$ until you receive a zero output from the down counters. When you reset the voltages for the window around the DUT's output and the conversion takes place, the output of the down counter will represent the propagation delay plus the settling time of the DUT.

EDN

Authors' biographies

Craven Hilton is a marketing engineer at Analog Devices Inc's Computer Labs Div (Greensboro, NC). An AAS graduate of the Technical College of Alamance, he's worked at ADI for 11 years. Craven's spare-time activities include golf and aquatic sports.

Jeff Barrow is a senior design engineer in charge of designing high-speed analog ICs at ADI's Computer Labs Div. A 6-year employee at ADI, he obtained a BSEE from the University of Arizona. Jeff is a member of IEEE and Tau Beta Pi. His hobbies include astronomy, mathematics, and woodworking.

Mizar opens anew fiontier of VME design capabilities

And shortens the distance between concept and reality

24 ADDRESS LINES

16 DATA LINES

41 CONTROL LINES

KEC ELECTRONICS, Inc.'s KE SERIES of high-power, single out-put DC switching power supplies combine high power and compact packaging to meet a broad range of applications. They are available in 750 and 1000 Watt configurations, with additional outputs up to 3 KW in the near future. KEC's quality manufacturing ensures reliable performance and operating integrity under the severest environments.
The KE SERIES single output switching power supplies feature PALS (Programmed Automatic Load Sensing) for load line drop compensation, power failure signal output, and remote programming. Additional features include voltage regulation, fancooling and built-in protection against overload and overvoltage conditions.
All units are UL and CSA approved and

EMI filter conforms to FCC Class A on conduction noise.
KEC makes it easy to choose the exact power supply to meet your standards. Select from over 200 standard products or have KEC's engineers custom-design a precision switching power supply just for you.
Discover the real Multiple Choice in power supplies-Discover KEC!! Write for your FREE literature and information kit or call KEC toll-free today!

1-800-255-5668

KEC ELECTRONICS, INC.
20817 Western Avenue, Torrance, CA 20501
(213) 320-3902, FAX (213) 618-1197
"KEC-BRINGING MORE POWER TO YOU"

Precision comparators ease oscillator and data-converter design

To simplify the task of designing high-performance circuits such as a crystal oscillator, V / F converters, A / D converters, and an ATE pin receiver, you can use a comparator that combines low bias current, high gain, high speed, and 3-state outputs.

John Dutra and Barry Harvey, Elantec Inc

Over the years, analog designers have come to regard voltage comparators much as in the old saying about persons of the opposite gender: "You can't live with them, but you can't live without them." Comparators have a well-deserved reputation for being temperamental. For example, most comparators have a tendency to oscillate, which can cause them to yield meaningless results. One way to defend your products from the effects of such unseemly behavior is to lavish exquisite care on the comparators, both in analyzing and designing the circuits that use them and in laying out the pc boards that house them. For instance, you must drive the comparators from low-impedance sources, and you must be careful to connect bypass capacitors to the proper circuit-ground point.
To simplify the task of obtaining valid comparisons at high speed in such demanding applications as data converters and oscillators, you can employ fast, low-bias-current comparators such as the EL2018 and EL2019. These comparators don't require the lavish
care that their more temperamental counterparts do, and you can use them effectively in such applications as

- A crystal oscillator
- A pair of V/F converters, each having 0.01% of full-scale rms nonlinearity relative to the best-fit straight line, and a maximum output frequency you can set higher than 10 MHz
- Two 12 -bit successive-approximation A/D converters, one of which has $1.5-\mu \mathrm{sec}$ total conversion time
- A high-voltage pin receiver with output multiplexing, such as those found in some automatic test systems.
Fig 1 shows a crystal oscillator that oscillates at the crystal's $20-\mathrm{kHz}$ to $20-\mathrm{MHz}$ series-resonant frequency. It uses the EL2018 as a high-gain, wideband linear

Fig 1-This crystal oscillator uses an EL2018 as a high-gain, wideband linear amplifier.

Most comparators have a tendency to oscillate, which can cause them to yield meaningless results.

Fig 2-This simple V/F converter is based on the charge-balancing principle. The converter uses only one IC-an EL2019 comparator.
amplifier. Compared with simpler oscillators, this circuit provides superior immunity to load and powersupply variations. It loads the crystal with 50Ω in series with 32 pF , the preferred values for many crystals. DC feedback via R_{1} and R_{2} holds the comparator's negative input at 0 V . By adjusting $\mathrm{R}_{1}, \mathrm{R}_{2}$, or $\mathrm{V}_{\text {REF }}$, you can maintain the required voltage at the comparator's negative input while causing a small variation in the output duty cycle. If you choose R_{1}, R_{2}, or $V_{\text {REF }}$ incorrectly, the circuit may oscillate at a subharmonic of the desired frequency.

V/F converter's clock input can reach 25 MHz

The circuit shown in Fig 2 is a charge-balancing V/F converter whose output is a pulse train with a repetition rate proportional to the input voltage. Although you can control the output frequency, you can't control the shape of the output pulses. Except as a secondorder effect, the frequency of the circuit's clock input does not affect the V/F-conversion scale factor; the

Fig 3-Adding an analog switch to Fig 2's V/F converter improves the circuit's temperature sensitivity.
clock frequency does establish an upper limit for the output pulse rate-the maximum output rate is half the clock frequency. You can use a clock whose frequency is as high as 25 MHz , and the circuit will make conversions with 0.01% of full-scale rms nonlinearity relative to the best-fit straight line.

The EL2019's output can change state only at posi-tive-going clock edges. Normally, the comparator's output is in the high state, $\mathrm{V}_{\text {OH }}$, and Q_{1} is saturated, so no current flows in D_{1}. The comparator's positive input is, therefore, essentially at ground potential, and the comparator compares the voltage at its negative input (the summing node, V_{1}) to ground. If you apply a positive input, node V_{1} goes positive, causing the comparator output to drop to the low state, $\mathrm{V}_{\text {oL }}$, at the next positive-going clock edge. The low comparator output turns Q_{1} off and allows the voltage at the comparator's positive input to rise to approximately 1.4 V . In no event can the summing node become as positive as 1.4 V , because Schottky diodes D_{2} and D_{3} will clamp it at a lower voltage. Therefore, the differential voltage at the comparator input will cause the comparator output to return to V_{OH} at the next positive-going clock edge.

Charge-balancing action occurs when the comparator output drops from $\mathrm{V}_{\text {OH }}$ to V_{OL}. When the comparator output is at $\mathrm{V}_{\mathrm{OH}}, \mathrm{C}_{2}$ charges to $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{D} 3}$. When the comparator output drops to $\mathrm{V}_{\text {oL }}$, current flows through $\mathrm{C}_{1}, \mathrm{D}_{2}, \mathrm{C}_{2}$, and the comparator's output stage, causing charge to redistribute itself between C_{1} and C_{2}. Because C_{1} is much larger than C_{2}, the change in voltage across C_{1} will be much smaller than the change in voltage across C_{2}.

When a charge is delivered through D_{2}, the initial current is on the order of several milliamps, but it sags within tens of nanoseconds and continues to decay thereafter. Short clock pulses limit the time for charge to transfer fully to C_{1}, thus making the scale factor slightly clock-rate dependent at high frequencies.

Diode drops cause temperature sensitivity

The output frequency is given by the equation:

$$
\mathrm{F}=\mathrm{V}_{\mathrm{IN}} \div\left[\mathrm{R}_{1} \mathrm{C}_{2}\left(\mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{D} 3}-\mathrm{V}_{\mathrm{D} 2}\right)\right]
$$

where R is in ohms, C is in farads, and F is in hertz. Note that although C_{1} doesn't appear in the equation, you don't have complete freedom in selecting it. C_{1} must be much larger than C_{2}, but it must not be so large that the change in voltage across C_{1} during a single clock cycle (which is approximately equal to the change in
voltage across C_{2} multiplied by $\mathrm{C}_{2} / \mathrm{C}_{1}$) is small compared to the comparator's noise level. The tradeoff in C1's value is that it should not be so large that it takes too much time to count and average the output pulses, but it should not be so small that it causes excessive output frequency jitter. If the input signal is so large (or C_{1} is so small) that in a single clock period C_{1} charges to the point where D_{2} and D_{3} conduct, the output will not latch. The pulse rate will rise to its maximum possible value-half the clock frequency.

The clock frequency can be as high as 25 MHz for V/F linearity of 0.01% of full scale. The voltage-to-frequency conversion remains linear for output frequencies about as high as 45% of the clock frequency. The circuit's input-offset voltage is predominantly that of the EL2019. The V/F scale factor is reasonably constant over temperature, because of the constant logic levels at the EL2019 output and the low voltage drop across the Schottky diodes, D_{2} and D_{3}. These diodes are the major source of calibration sensitivity to $f_{\text {CLOCK }}$.

Use analog switch to improve stability

Fig 3 shows an improved version of the V/F-converter circuit. In Fig 3's circuit, a DG303A analog switch is used as a dpdt switch to connect C_{2} either from $\mathrm{V}_{\mathrm{REF}}$ to ground or from ground to the summing node. For Fig 3,

$$
\mathrm{SF} \approx \mathrm{~V}_{\mathrm{REF}} \times \mathrm{R}_{1} \times \mathrm{C}_{2} .
$$

Charge transfer between the drive and signal portions of the analog switch is the major error source in this circuit. Note that Fig 3's scale-factor expression, unlike that of Fig 1, contains no temperature-dependent terms.

Fig 4a shows the schematic of a 12 -bit successiveapproximation A/D converter. The 25 HCT 04 is faster than the traditional 2504 successive-approximation register, and the AD565A D/A converter provides a typical $150-$ nsec settling time at the summing junction. The EL2018 provides a 20-nsec typ response time and draws only 0.2 LSB of bias current. The required output swing of 0.8 to 2.0 V , divided by the voltage gain of 40,000 , yields an input uncertainty of only 0.02 LSB, which is less than the system noise and the comparator's thermal noise. A breadboard of this circuit had only about 0.1 LSB of noise, peak to peak.

Fig $\mathbf{4 b}$ shows that the maximum delay times of the components yield a $4-\mu \mathrm{sec}$ worst-case conversion time. In practice, the breadboard version of this circuit achieves its specified accuracy at a conversion time as

One way to defend your circuits from comparators' unseemly behavior is to lavish exquisite care on the comparators.
short as $2.5 \mu \mathrm{sec}$ with no resistance at the summing junction, and $1.8 \mu \mathrm{sec}$ with $3.9 \mathrm{k} \Omega$ from summing junction to ground; the circuit's noise is still acceptable.

Star grounds don't work at these speeds, so the breadboard employs a copper ground plane with all wires draped physically close to the plane. The analog

Flip-flop succeeds where latch often failed

You can model the EL2018 as an input comparator followed by a simple logic latch that's followed in turn by an output 3 -state TTL buffer (Fig A). The EL2019 replaces the latch with a full master/slave flip-flop-the input and output stages are the same as those in the EL2018 (Fig B).

High-speed comparators have traditionally had output latches. The latches aren't just for data storage; their purpose is to help suppress oscillations. Clearly, when a comparator's latch is set to latch mode, no coupling from output to input can ever cause sustained oscillation. Generally, you need to hold the latch in transparent mode for only a short time (in comparison with the time it would take a signal to propagate through the comparator IC.) Thus, a quick pulse on the latch-enable pin allows the latch to capture new data without connecting the output to the input long enough for the comparator to build up an oscillation.

A significant problem with the latch enable is that it can influence the comparator's decision no matter what you do to prevent such influence-it is, after all, an analog input to an analog circuit element. Even though you just want it to strobe the output, it does more-all too often it affects the accuracy of the comparisons.

A master/slave flip-flop, as in the EL2019, solves the problem

Fig A-The EL2018 comparator (a) has three major sections-an input comparator followed by a simple logic latch, which is followed in turn by an output 3-state TTL buffer. The transfer function of the comparator (b) shows that an input voltage change of approximately $100 \mu \mathrm{~V}$ causes an output change of approximately 4 V , which is a voltage gain of approximately 40,000 .
circuitry is located in one compact region away from all digital lines, and the comparator output is routed with rigid coaxial cable to prevent noise feedback. During
the conversion, the current drawn from the signal source by the A/D input varies rapidly. To prevent these current fluctuations from destroying the conver-
altogether. At no condition of the clock input can an analog signal pass through the device. Rather, a comparison of the inputs propagates to the output only after a positive-going clock edge; the analog input is completely quantized as the digital output.

The master/slave configuration offers other benefits as well. Because the analog input requires about 4 nsec of input setup time before the clock edge, the clock edge itself can't influence the analog comparison. That is, the clock edge has a zero setup time and the comparator ignores it because it doesn't meet the setup requirement. Latched comparators, in contrast, allow both clock edges to influence the analog output.

The master/slave flip-flop gives the comparator virtually infinite gain; that is, a very small input can determine a full logic-output swing. In fact, the small input noise of the EL2019 ($5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ yields $30 \mu \mathrm{~V}$ rms thermal noise) is greater than any measured gain error. You can say that the EL2019 has only offset and thermal noise errors, which is a boon to A/D conversion. Finally, in many comparator applications, such as delta modulators, an external flip-flop follows the comparator; in such circuits, the EL2019 saves external components.

Fig B-The EL2019 (a) is similar to the EL2018, except that it replaces the EL2018's latch with a full master/slave flip-flop. The transfer function of the EL2019 (b) exhibits essentially infinite voltage gain because of the EL2019's master/slave flip-flop.

Fast, low-bias-current comparators can simplify the task of obtaining valid comparisons at high speed in demanding applications.

Fig 4-A 12-bit successive-approximation A/D converter (a) that uses the EL2018 and an AD565 D/A converter achieves a 4 - μ sec total conversion time. The timing diagram for this circuit (b) shows that D/A-converter settling consumes approximately 80% of the total time.
sion accuracy, the signal source must maintain a constant output level, so the signal source must have low ac output impedance and must be local to the analog section. Incidentally, it's not at all necessary or useful to clamp the D/A output with Schottky diodes; inexpensive 1 N 914 s perform quite satisfactorily.
The A/D converter of Fig 5a uses the TRW

TDC1012, one of the fastest monolithic TTL-input, 12 -bit D/A converters available. The converter's output current is 0 to -40 mA . Few practical amplifiers can support 12 -bit accuracies with 40 mA of load current; therefore, a 25Ω load resistor converts the current to a -1 V signal, which fits comfortably within the DAC's output compliance. When the DAC's full-scale output is

Fig 5-You can design an $\boldsymbol{A} / \boldsymbol{D}$ converter (a) capable of performing a complete 12-bit conversion in 1.5 usec by using an EL2019 comparator, a TDC1012 D/A converter, and a high-speed successive-approximation register. The timing diagram (b) shows that the 1.5- μ sec converter's settling time is only approximately 40% of the total.

You can use fast, low-bias-current comparators in such applications as a crystal oscillator, data converters, and a bigh-voltage pin receiver.

1 V , the LSB value is $244 \mu \mathrm{~V}$, which is clearly a very small signal for the comparator to resolve. When an EL2018 with its latch permanently enabled is substituted for the EL2019 in this design, the small signals drive the EL2018 output into its linear operating output range, and code feedback causes errors of several LSBs.

You can overcome these difficulties by using a comparator, such as the EL2019, that has virtually infinite gain. Because the output of the EL2019 can change only after the clock edge, no linear feedback or uncertainties exist. In the EL2019 version of the circuit, the conversion accuracies are limited by the DAC's linearity and
the noise of the EL2019's front end. Further, because of the EL2019's master/slave flip-flop, the circuit's timing relationships are precisely defined and synchronous clock noise is eliminated (see box, "Flip-flop succeeds where latch often failed").
The clock of the $1.5-\mu \mathrm{sec} \mathrm{A} / \mathrm{D}$ converter has an unusual duty cycle. You can see the need for this duty cycle by referring to Fig $\mathbf{5 b}$, which shows the timing relationships in the $1.5-\mu \mathrm{sec} \mathrm{A} / \mathrm{D}$ converter. Note that R_{X} and R_{Y} independently adjust the high and low times of the clock signal. You could improve this A / D converter's speed by another 20% or so by using a "speed-up clock" approach (Refs 1 and 2). In systems that provide

Comparators combine high gain, low bias current

To see where the EL2018 and EL2019 fit into the spectrum of available IC comparators, you can examine their key specifications beside those of two indus-try-workhorse comparator families, the general-purpose 111/311 and the high-speed 685 . The EL2018 and EL2019 offer significant improvements over the general-purpose, 111/311-class comparators. And although the EL2018 and EL2019 appear to be slower than the high-speed, 685 -class devices, they're actually faster in many applications.

The EL2018 and 2019 offer a combination of high gain and low bias current that you can't obtain from the high-speed 685class devices without adding large numbers of external components. Besides raising costs and consuming pc-board space, the added components slow the 685-class comparators, in most cases, to a speed no greater than that of the EL2018/2019.

For example, the EL2018 and -2019 spec a typical response time of 20 nsec, which is approximately 10 times as fast as the

311's response time, but only about $1 / 2$ to $1 / 4$ the speed of most 685 -class devices.

An ideal comparator would have an input bias current of zero; the EL2018/2019's typical input bias current (at room temperature) is $100 \mathrm{nA}-40 \%$ that of 111/311-class devices and no more than 0.5% to 1% that of 685 -class parts. An ideal comparator would have infinite voltage gain, something the EL2019 achieves, in effect, by using a master/slave output flip-flop. The gain of the EL2018, which has a conventional output latch, is comparable to the gain of the $111 / 311$ and is more than 10 times as great as that of 685class comparators.

The outputs of the EL2018 and EL2019 retain full TTL compatibility when you operate the comparators from supply voltages anywhere in the ± 4.5 to $\pm 16.5 \mathrm{~V}$ operating range. If the positive supply voltage is 12 V or greater, the devices produce output levels compatible with the inputs of CMOS logic devices operating from a 5 V sup-
ply. Each comparator has a chipselect input, which you can use to force its output to a high-impedance state without affecting the input circuits. When its output is disabled, a comparator's power dissipation is halved. You can safely parallel the outputs of many comparators as long as you enable only one device at a time and allow it sufficient turn-off time before you enable the next.

Regardless of the supply voltages, the EL2018 and EL2019 operate normally when their inputs are 3 V smaller in magnitude (2 V typ) than the supply voltages. Although many comparators malfunction or even suffer damage when you apply large differential inputs, the EL2018 and EL2019 continue to perform within their specifications after you apply such signals. The only requirement is that you maintain each input within the specified operating range; for example, with $\pm 15 \mathrm{~V}$ supplies, the units will correctly respond to a $5-\mathrm{mV}$ input-voltage difference immediately after you remove a 24 V (26 V typ) differential input.

Augat ZIP sockets use only half the space of DIP.For twice the memory on your board.

Now, Augat makes it easier to utilize ZIP packaging technology and double your board performance. With ZIP sockets that take up half the space of DIP.

They're the end-to-end, side-to-side stackable solution. With flat top and tapered tails for easy, pick-and-place automatic insertion.

Available now with high-reliability gas-tight contacts.

They come in 16, video DRAMS. Send us your size and we'll send you a sample. Free. Plus an insertion and extraction tool for a perfect fit.

20 and 24 -pin footprints. For 256K DRAMs, 1-Mbit Tob biew Now youcan socket DRAMs side to side and end to end. tos site ennd end toend. ICs and

Get ahead in the space race. With ZIP sockets. More innovation that works from Augat. The people you can count on to make the link between you and what's new in packaging technology. My footprint size is $\square 16$ pins $\square 20$ pins $\square 24$ pins. My application is Name Company Street Address
 Tel
Mail to: Augat, Inc. EDN021888 Interconnection Components Division, 33 Perry Avenue, Attleboro, MA 02703, (617) 222-2202. FAX: 6172220693

Iuch
 INTERCONNECTION COMPONENTS

A crystal oscillator that uses the EL2018 comparator as a high-gain, wideband linear amplifier can provide superior immunity to load and supply variations.
higher analog input voltages, the comparator would let you extend the circuit's resolution to 16 bits.
Some unusual properties of the EL2018 and EL2019 can prove useful in such applications as a pin receiver for automatic test equipment (Fig 6). For example, the comparators' input stages can handle signals as large as $\pm 12 \mathrm{~V}$ in any combination, and the comparators have 3 -state output capability, which can halve the device's power dissipation while maintaining input circuits in the active mode. (See box, "Comparators combine high gain, low bias current.")

In Fig 7's circuit, when $\overline{\mathrm{CS}}$ (pin 5) is at V_{IH}, the device's output impedance is high and the supply current is 50% of its active-output value, yet the input stage and latch continue to function, allowing you to clock multiple comparators simultaneously and read the outputs sequentially. The ability to capture data on

Fig 6-This multiplexed ATE pin receiver takes advantage of the comparators' 3 -state outputs to capture the states of many analog signals simultaneously and read them back sequentially.
many lines at a time and read it back sequentially is useful in large test systems, which may have as many as 1000 comparators, only 10% of which are active at one time.

The 50Ω resistors in series with the outputs of each comparator limit the fault currents, which can flow because the output stage of the comparator turns on faster than it turns off. Without the current-limiting resistors, the aforementioned output-stage characteristic could cause momentary short circuits across the comparator's power-supply lines. You can clock the input latch at speeds as high as 30 MHz , and you can scan the outputs at a $5-\mathrm{MHz}$ rate.

EDN

References

1. Cornell, Jon E, "Great Gator Giveaway-Part 3: Winning data-converter circuits," EDN, August 18, 1982, pg 125.
2. Sidman, Steven, and Steven Harris, "Hardware methods improve 1-chip A/D converters," EDN, February 5, 1987, pg 139.

Authors' biographies

Jon Dutra is currently applications manager at Elantec (Milpitas, CA). He holds a BSEE from California State Polytechnic University at San Luis Obispo, an MSEE from the University of California at Davis, and an MBA from the University of California at Berkeley. In his spare time he enjoys amateur radio, flying, and
 teaching his new son old tricks.

Barry Harvey is a senior design engineer for high-speed analog ICs at Elantec. He previously worked for Precision Monolithics, Siliconix, and AMD. He holds an MSEE from Stanford University and has been granted two patents. In his spare time, he enjoys running, playing guitar and mandolin, and programming his per-
 sonal computer.

FLUK目
 ${ }^{(1)}$

PHILIPS

The smart scope for people who hate to wait

The Philips microcomputer－controlled PM 3050 Series．The only 50 MHz scopes in the world smart enough to find and display the signal－ automatically．

SMART PERFORMANCE

－Autoset finds the signal at the touch of a button．Philips＇intelligent beamfinder auto－ matically selects amplitude，timebase and triggering for error－ftee instant display of any input signal on any channel．
－16KV CRT for optimum viewing．When it comes to brilliance，clarity and spot quality， nothing in its class shines brighter．
－LCD Panel for confident，ata－glance operation．A valuable information center， it instantly displays all instrument settings and parameter values．With no mistakes．
－Auto－Triggering＂thinks for you＂．This built－ in intelligence provides fast，accurate，prop－ erly－triggered signals up to 100 MHz ．
－IEEE Compatibility．The PM 3050 Series is the only family of 50 MHz scopes with an add－on IEEE－488 interface option for fast computer hook－up．
－Choice of Models．Single timebase or delayed sweep versions are available．

SMART SUPPORT

Philips PM 3050 Series also comes with a 3 －year warranty and all the technical and service assistance you need．From Fluke－ the people who believe that extraordinary technology deserves extraordinary support． SMART BUY
For about what you＇d pay for the next－best scope you get innovative engineering that＇s
a lot more productive and easier to use． Plus plug－in modularity and IC micro－ electronics for reliability you＇ve never seen in this class before．So why wait any longer？

TEST THE DIFFERENCE

So call Fluke today at 800－44－FLUKE ext．77．And find out how smart your next oscilloscope buy can be．

John Fluke Mfg．Co．，Inc．，P．O．Box C9090，M／S 250C，
Everett，WA． 98206
U．S．：206－356－5400 CANADA：416－890－7600 OTHER COUNTRIES 206－356－5500
（c）Copyright 1987 John Fluke Mfg．Co．，Inc． All rights reserved．Ad No．1075－P305X

FLபKく日

200 MHz
Universal Frequency Counter
Model $712 \$ 525.00$
CIRCLE NO 96

5 MH:

Sweep/Function Generator Model 422 \$650.00 CIRCLE NO 97

Quality and Reliability

 with the world famous Simpson 260° and continues with the development of the Professional Series
520 MHz
 Universal Frequency Counter Model 713 \$675.00
 CIRCLE NO 96

The Professional Series of test instruments are characterized by the uncompromising quality and exceptional reliability by the are synonymous with Simpson. The commitment to
that satisfy the needs of the professional began over 50 years ago

SIMPSON ELECTRIC COMPANY
853 Dundee Avenue, Elgin, Illinois 60120-3090
(312) $697-2260$ • Telex $72-2416 \cdot$ FAX (312) 697-2272

New microlasers are expanding and refining laser applications through advanced diode-pumped, solid-state technology.

Amoco Laser Company's microlaser technology represents a quantum leap forward for laser light sources. Finally, a low noise, highly efficient, compact laser is available with operating voltage and lifetime characteristics that make microlasers a practical solution for many applications. Consider the following line of infrared microlasers.
They are available for immediate shipment for a wide range of uses in testing and inspection, optical alignment, materials characterizations, metrology, process monitoring,
spectroscopy, micromachining, andmicrosurgery.

| Product | Wavelength | Pow |
| :---: | :---: | :---: |
| AlC106450 | 1064 nm | Om |
| ALC1064150 | 1064 nm | 150 mw |
| ALC1320-25 | 1320 mm | 25 mw |
| ALC1320-75 | 1320 nm | 75 m |

All of the above lasers have a diffraction limited, TEMoo mode and are offered with linear or random polarization. A line of precision collimators is also available.

Want to learn more? Write for our videotape which more thoroughly explains Amoco's microlaser and its uses. Amoco Laser Company, 1809 Mill St., Naperville, IL 60540, or phone: 312-369-4190.

Amoco Laser Company CIRCLE NO 195

New dual 16-bit DAC saves space, time, and money.

CONTROL LOGIC

DAC725P GIVES YOU TWO LATCHED 16-BIT D/A CONVERTERS IN A LOW COST PLASTIC DIP.

The new DAC725P dual 16-bit D/A converter conserves valuable board space and requires no external parts to interface directly to 8-bit buses. High performance, compact size, and low cost make DAC725P ideal for ATE, robotics, precision process control, waveform synthesis, and other multiple-DAC applications.

Easy to Use

DAC725P simplifies design tasks. Data is loaded in two 8 -bit bytes. Separate lines for CHIP SELECT, LATCH CONTROL, and CLEAR *U.S. unit prices, in 100s.
provide maximum design flexibility. A single CLEAR pin may be used to reset the DAC's outputs to zero during system initialization.

Unique Features

- each channel complete with double-buffered input port, precision buried-zener reference, DAC, and low noise $V_{\text {оut }}$ op amp;
- 14-bit monotonicity over $0 /+70^{\circ} \mathrm{C}$;
- high speed serial or parallel data input;
- $\pm 0.003 \%$ linearity error;
- $\pm 5, \pm 10 \mathrm{~V}$ output ranges;
p

- 4μ s settling time ($\pm 0.003 \%$ FSR)'
- low cost plastic 28-pin DIP;
- from \$34.90*

Ask your Burr-Brown sales engineer for full details, or contact Applications Engineering, 602/746-1111. BurrBrown Corporation, PO Box 11400 , Tucson, AZ 85734.

Number 7 in a series from Linear Technology Corporation

DC Accurate Filter Eases PLL Design

Nello Sevastopoulos

Philip Karantzalis

The LTC1062 is a versatile, DC accurate, instrumentation lowpass filter with gain and phase that closely approximate a 5th order Butterworth filter. The LTC1062 is quite different from presently available lowpass switched capacitor filters because it uses an external (R, C) to isolate the IC from the input signal $D C$ path, thus providing $D C$ accuracy. The $D C$ accurate output, pin 7 of Figure 1, is buffered by an internal op amp from the switched capacitor network. The output of the switched capacitor network drives the bottom of C 1 . The input and output appear across an external resistor and, the IC part of the overall filter handles only the AC path of the signal. A buffered output is also provided (Figure 1) and its maximum guaranteed offset voltage over temperature is 20 mV . Typically the buffered output offset is $0-5 \mathrm{mV}$ and drift is $1 \mu V /{ }^{\circ} \mathrm{C}$. The use of an input (R, C) also provides other advantages, such as lower noise and antialiasing.

With commercially available PLLs, the loop filter is designed by the user to optimize the loop performance. For a variety of applications, a 1st or 2nd order lowpass passive or active R, C filter will do the job. When minimum output jitter and good transient response are required simultaneously, the design of the loop filter becomes more sophisticated. For instance, a fast transient response implies wide filter bandwidth and a reduced VCO output jitter implies minimum ripple at the VCO input. This is achieved by high outband attenuation of the lowpass filter. The LTC1062 provides the above requirements as well as economy and cutoff frequency programmability to be used advantageously in PLL designs.

The circuit of Figure 2 illustrates the use of the LTC1062 as a loop filter. The power supplies for the circuit are a single 5 V

Figure 1.8Hz 5th Order Butterworth Lowpass Filter
for the PLL and $\pm 5 \mathrm{~V}$ for the LTC1062. The CMOS PLL is a CD4046B. The LTC1062 can also be used with a single 5 V with some additional level shifting (see AN20). Phase detector \#2 drives a diode-resistor limiter combination to make the voltage at input R of the LTC1062 swing from one diode above ground to one diode below the 5 V supply. Additionally, the two 5 k resistors establish a maximum AC impedance to keep the LTC1062 in its operating region and to bias the VCO input at its mid point when phase detector \#2 switches into a three-state mode.

An empirical design procedure for input frequencies less than 5 kHz ($\mathrm{f}_{\mathrm{N}} \leq 5 \mathrm{kHz}$, Figure 2) is illustrated below:

- Given the minimum input frequency value, the cutoff frequency, f_{c}, of the LTC1062 should be chosen as:

$$
1 / 6\left(f_{\operatorname{INM}(\mathbb{N})}\right) \leq f_{0} \leq 1 / 4\left(f_{\operatorname{IN}(\mathbb{M} \mid \mathbb{N})}\right)
$$

The internal (or external) clock frequency of the LTC1062 should be 150 to 250 times the desired cutoff frequency, f_{c}.

- The capacitor Cosc setting the LTC1062's internal oscillator should be chosen by:

$$
C_{0 S C}=\left(\frac{130 \mathrm{kHz}}{250 \times f_{\mathrm{c}}}-1\right) \times 33 \mathrm{pF}
$$

By further decreasing the value of Cosc, the internal clock frequency of the LTC1062 increases and the damping of the loop also increases.

- By letting the value of $\mathrm{C}=0.047 \mu \mathrm{~F}$, the LTC1062 input resistor R should be:

$$
\mathrm{R} \simeq \frac{5500 \mathrm{k} \Omega}{\mathrm{f}_{\mathrm{c}}(\mathrm{~Hz})}
$$

Note: For this application, the loop filter is not required to be maximum flat and, therefore, the (R, C) values of the LTC1062 can be within $\pm 5 \%$ tolerance.

To illustrate the performance difference between a lowpass passive R, C loop filter and the LTC1062, the circuit of Figure 2 was tested for a PLL with a $60 \mathrm{~Hz} \pm 10 \%$ input fre-

Transient response (A) and jitter (B) of the PLL with a passive R, C loop filter. The output frequency of the VCO is 6 kHz and the $\div \mathrm{N}=100$.

Transient response (C) and jitter (D) of the PLL with the LTC1062 used as a loop filter. The VCO output frequency is 6 kHz and the $\div \mathrm{N}=100$. The jitter is reduced to the internal jitter of the VCO.

Figure 3
quency range and with $\div \mathrm{N}=100$. Then, the PLL's VCO output could be used to drive the clock input of a precision switched capacitor filter, such as an LTC1060A set up in a 100:1 clock to center ratio, and configured as a 60 Hz sharp notch or bandpass filter. Figure 3A shows the transient response of the loop when a passive R,C loop filter, Figure 4, is used. The input frequency is shifted from 54 Hz to 60 Hz and the loop takes 820 ms to settle within 5% of its steady stable value. The corner frequency of the R, C passive filter is 22 Hz . The natural frequency of the loop is approximately 10 Hz and the damping factor less than 0.1. Figure 3B shows the jitter at the VCO output under the above conditions. A $30 \mu \mathrm{~s}$ jitter with fout $=6 \mathrm{kHz}$ corresponds to 18% instantaneous frequency inaccuracy. This makes the PLL VCO output unusable as a

Figure 4. Lowpass R, C Filters used for PLL Example
clock generator for a tracking switched capacitor filter. A small improvement in the VCO output jitter could be achieved by further decreasing the filter's cutoff frequency; this, however, would further penalize the circuit's settling time.

Figures 3C and 3D show the PLL performance when an LTC1062 is used as a loop filter. The corner frequency f_{c} of the LTC1062 was set at $9.5 \mathrm{~Hz}(\sim 1 / 6 \mathrm{f} \mathrm{fN})$ and its internal clock was set for $2.4 \mathrm{kHz}\left(\sim 252 \times \mathrm{f}_{\mathrm{c}}\right)$. The settling time of the loop was 320 ms and the damping factor was optimally set to 0.7 . The $1 \mu \mathrm{~S}$ VCO output jitter, fout $=6 \mathrm{kHz}$, was measured over 5 periods and it is attributed to the inherited jitter of the VCO internal circuitry. With the LTC1062 used as a loop filter, the circuit's jitter corresponds to 0.12% frequency error. This is quite adequate to drive the clock input of 0.3% accurate switched capacitor filters, such as LTC1059A or LTC1060A.

For Filter literature call 800-637-5545. For help with an application call (408) 432-1900, Ext. 361.

DESIGN IDEAS

Comparator circuit monitors window events

T G Barnett
London Hospital Medical College, London, UK
The Fig 1 circuit is a window comparator that generates an output pulse for each event that occurs within a specified window. That is, each output pulse signifies an input voltage pulse or level change that exceeds $\mathrm{V}_{\text {REF }}$ low but not $\mathrm{V}_{\text {Ref high }}$.

The monostable multivibrators $\mathrm{IC}_{2 \mathrm{~A}}$ and $\mathrm{IC}_{2 \mathrm{~B}}$ produce a $10-\mu$ sec pulse at their Q output in response to a rising edge at their A input (Fig 2). Comparator $\mathrm{IC}_{1 \mathrm{~B}}$ produces a rising edge when the input exceeds $\mathrm{V}_{\text {Ref }}$ low, and comparator $\mathrm{IC}_{2 \mathrm{~A}}$ produces a rising edge when the input exceeds $\mathrm{V}_{\text {REF }}$ high .

NOR gates $\mathrm{IC}_{3 \mathrm{~A}}$ and $\mathrm{IC}_{3 \mathrm{~B}}$ form a bistable latch whose Q output (when low) disables $\mathrm{IC}_{4} . \mathrm{IC}_{4}$ (unless disabled) produces output pulses in response to falling edges at the $\mathrm{IC}_{1 B}$ comparator output. You set the width of these pulses by selecting the C_{3} capacitor value. As shown, the circuit can handle an input waveform containing 0 to 2 V amplitudes and $10-\mathrm{Hz}$ to $10-\mathrm{kHz}$ frequency components. The supply voltage is 5 V .

EDN

To Vote For This Design, Circle No 749

Fig 2-In response to an input signal (a), the Fig 1 circuit's ICs produce outputs (b) that depend on the input's relationship to high and low reference voltages.

Fig 1-This window comparator can serve as a pulse-height discriminator-the circuit generates an output pulse for each input-pulse height between $V_{\text {ReF low }}$ and $V_{\text {ReF high. }}$

WE'RE TAKING A POUNDING IN THE KEYBOARD BUSINESS.

We planned it that way. In fact, we invested millions of dollars to make it happen.

Millions of dollars to let us pound, push, tap, shove and otherwise automatically test our keyboards before we let them out the door.

Every key. Every switch. Every time.
And all this after we've already built them to the industry's toughest standards on one of the industry's largest, fully automated keyboard manufacturing lines.

So whether the box you receive from us contains a compatible IBM PC/XT keyboard, PC/AT keyboard, switchable PC/ XT-AT board, our new IBM RT 101 keyboard, or one we've customized especially for you, there's one thing you can depend on.

The keyboard in the box will work
the first time you take it out of the box. And continue working as smoothly as the day it was new, through over 50 million operations.

And we back that promise with a full 1-year warranty.
If you'd like to see how reliable our keyboards really are, call us at (408) 727-1700 for a complete list of local distributors and representatives. Or write Fujitsu Components of America, Inc., 3320 Scott Boulevard, Santa Clara, California 95054-3197. Hit us with everything you've got. You'll find us hard to beat.

FUJITSU

FUJITSU

COMPONENT OF AMERICA INC

MOSFETs provide low-loss rectification

William Chater

The Aerospace Corp, Los Angeles, CA
Rectifiers strongly affect the efficiency of a low-voltage power supply. Silicon diodes, for example, carry a 0.7 V forward-voltage penalty. You can avoid much of the power dissipation and heat burden associated with diode rectifiers by using the high-efficiency MOSFET rectifiers shown in Fig 1. This approach is especially useful in vacuum work, where the lack of convection cooling limits the allowable power dissipation.

The secondary of the transformer shown in Fig 1 maintains opposite-polarity $V_{D S}$ voltages across the MOSFETs Q_{1} and Q_{2}; it reverses these polarities once per input cycle. With each change of polarity, the secondary voltage also toggles the MOSFETs' on/off states by causing the output of each comparator ($\mathrm{IC}_{1 \mathrm{~A}}$ and $\mathrm{IC}_{1 \mathrm{~B}}$) to switch between the comparators' supply rails. As a result, a unidirectional and nearly constant current flows from the transformer's center tap through the load and back through each MOSFET in turn.

In Fig 2, note how an IRFF110 MOSFET's familiar first-quadrant curves extend into the less familiar third quadrant. In particular, note that the channel is off for V_{GS} less than 3 V (first quadrant) and fully on for $\mathrm{V}_{\text {GS }}$ in the 4 to 6 V range (third quadrant). Thus, by switching

Fig 2-These characteristic curves for an IRFF110 MOSFET show how it can simulate a nearly ideal diode when you simultaneously switch its $V_{D S}$ and $V_{G S}$ voltages.
the V_{GS} level you can simulate a diode with very low on-resistance and low forward bias. What's more, this approach avoids activating the MOSFET's parasitic diodes, which usually prevent the application of MOSFETs as rectifiers.

In the circuit shown in Fig 1, the comparators' open-collector outputs provide a rapid transition to the

Fig 1-Using MOSFET switches in place of diode rectifiers, this full-wave rectifier circuit produces a $5 \mathrm{~V}, 1 \mathrm{~A}$ output at 97% efficiency.

It's the same old story. Static RAM suppliers come out with new claims base on, what else, speed. And with everybody touting speed, they all start looking alike. Until you look at reliability.

That's where INMOS breaks the mold.
At INMOS we've developed SRAMs that give you high performance without compromising reliability.

We've achieved that reliability with innovations
like using layered refractory metals to reduce electromigration and eliminate stress voiding, interlevel shorts and to reduce contaminates.

At the transistor level we use lightly doped drains to inhibit hot electron effects, yielding transistors that will last more than a century.

So if you're tired of the same old line about the same old stuff, call INMOS. Our $25 n \mathrm{n}$, 64K SRAMs will make you look at chips in a whole new way.

RELIABLE 64K CMOS SRAMs Inmos

DESIGN IDEAS

low state, but the $1-\mathrm{k} \Omega$ pullup resistors produce a slower transition to the high level. The MOSFETs thus avoid conduction overlap by turning off rapidly and turning on slowly. Diodes D_{1} and D_{2} offer protection by clamping the comparators' inverting-input voltages with respect to the negative supply voltage (pin 4). These diodes are normally superfluous, however, because the MOSFETs' low forward drop won't allow the diodes to turn on.

Using a square-wave input, this circuit can produce a $5 \mathrm{~V}, 1 \mathrm{~A}$ output with 97% efficiency (resistive losses are 60 mW , and each transistor dissipates another 60 mW). For even lower losses, you can parallel two MOSFETs
for each switch. Using diode rectifiers, the efficiency would be about 90%. The use of a sine-wave input also lowers the circuit efficiency but not to the level of a diode-rectifier version: The duty cycle of the switches in Fig 1 goes from almost 50% with a square-wave input to about 20% with a sine-wave input. Consequently, the switches deliver greater-amplitude current pulses to the load filter, which increases the power dissipation.

EDN

To Vote For This Design, Circle No 746

Temperature sensor has 4 - to $20-\mathrm{mA}$ output

Art Kapoor
Precision Monolithics Inc, Santa Clara, CA

The Fig 1 circuit's current-transmitter output (4 to 20 mA) is proportional to temperature. The transmitter accepts an 8 to 40 V supply voltage, exhibits a PSR better than $0.0003 \% / \mathrm{V}$, and provides $\pm 1 \%$ accuracy over the -50 to $+150^{\circ} \mathrm{C}$ temperature range after calibration. IC_{1} 's temperature-proportional output $\mathrm{V}_{\text {TEMP }}$ lets the chip serve as a temperature sensor as well as a 2.5 V reference. $\mathrm{V}_{\text {temp }}$ equals 0.55 V at $25^{\circ} \mathrm{C}$ and has a
temperature coefficient of $1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
The micropower, single-supply op amp IC_{2} buffers the current drain on $\mathrm{V}_{\text {TEMP }}$, which can supply no more than 50 nA . The second op amp $\left(\mathrm{IC}_{3}\right)$ regulates $\mathrm{I}_{\text {out }}$ as illustrated by the equation for current summation at the op amp's noninverting input:

$$
\mathrm{I}_{\text {oUT }}=\frac{\mathrm{V}_{\text {TEMP }}\left(\mathrm{R}_{6}+\mathrm{R}_{7}\right)}{\mathrm{R}_{2} \mathrm{R}_{8}}-\frac{\mathrm{V}_{\text {SET }}\left(\mathrm{R}_{2}+\mathrm{R}_{6}+\mathrm{R}_{7}\right)}{\mathrm{R}_{2} \mathrm{R}_{8}} .
$$

Fig 1-This circuit generates a 4- to 20-mA current output that is proportional to temperature. Gain and offset trims do not interact.

DESIGN IDEAS

You obtain the variation of $\mathrm{I}_{\text {OUT }}$ with temperature by differentiating the transfer function:

$$
\frac{\Delta \mathrm{I}_{\mathrm{OUT}}}{\Delta \mathrm{~T}}=\frac{\frac{\Delta \mathrm{V}_{\mathrm{TEMP}}}{\Delta \mathrm{~T}}\left(\mathrm{R}_{6}+\mathrm{R}_{7}\right)}{\mathrm{R}_{2} \mathrm{R}_{8}}
$$

The formulas show that the gain and offset trims do not interact if you trim the gain first. To trim the gain, first place the sensor $\left(\mathrm{IC}_{1}\right)$ in an ice-water bath $\left(0^{\circ} \mathrm{C}\right)$ and, if necessary, adjust the offset-trim potentiometer $\left(R_{5}\right)$ so that $I_{\text {out }}$ is greater than 4 mA . Record $\mathrm{I}_{\text {out }}$. Next, place the sensor in boiling water $\left(100^{\circ} \mathrm{C}\right)$. Adjust the gain-trim resistance $\left(\mathrm{R}_{6}+\mathrm{R}_{7}\right)$ so that $\mathrm{I}_{\text {out }}$ produces the desired $\mathrm{mA} /{ }^{\circ} \mathrm{C}$ ratio:

$$
\text { OUTPUT RATIO }=\frac{\Delta \mathrm{I}_{\text {OUT }}}{\Delta \mathrm{T}_{\text {OPERATING }}}=\frac{16 \mathrm{~mA}}{\Delta \mathrm{~T}_{\text {OPERATING }}} .
$$

If the transmitter is to operate over -50 to $150^{\circ} \mathrm{C}$, for example, then

$$
\begin{aligned}
\text { OUTPUT RATIO } & =\frac{16 \mathrm{~mA}}{150^{\circ} \mathrm{C}-\left(-50^{\circ} \mathrm{C}\right)} \\
& =\frac{16 \mathrm{~mA}}{200^{\circ} \mathrm{C}}=0.08 \mathrm{~mA} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Suppose the $\mathrm{I}_{\text {OUT }}$ value that corresponds to $0^{\circ} \mathrm{C}$ is 6.3 mA . Then at $100^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\left.\mathrm{I}_{\text {OUT (100 }}{ }^{\circ} \mathrm{C}\right) & =\mathrm{I}_{\text {OUT }\left(0^{\circ} \mathrm{C}\right)}+100^{\circ} \mathrm{C}\left(0.08 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\right) \\
& =6.3 \mathrm{~mA}+8 \mathrm{~mA}=14.3 \mathrm{~mA} .
\end{aligned}
$$

TABLE 1-GAIN-TRIM VALUES

| TEMPERATURE
 RANGE | \mathbf{R}_{6}
 (FIXED) | \mathbf{R}_{7}
 (VARIABLE) |
| :---: | :---: | :---: |
| $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ | $10 \mathrm{k} \Omega$ | $5 \mathrm{k} \Omega$ |
| $-15^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$ | $6 \mathrm{k} \Omega$ | $3 \mathrm{k} \Omega$ |
| $-50^{\circ} \mathrm{C}$ TO $150^{\circ} \mathrm{C}$ | $3 \mathrm{k} \Omega$ | $2 \mathrm{k} \Omega$ |

Therefore, you should adjust R_{6} so that $\mathrm{I}_{\text {our }}=14.3 \mathrm{~mA}$ while the sensor is at $100^{\circ} \mathrm{C}$.

Finally, you can adjust the offset at any temperature $\mathrm{T}_{\text {AMBIENT }}$ without affecting the gain trim:

$$
\mathrm{I}_{\text {OUT }}=\frac{16 \mathrm{~mA}\left(\mathrm{~T}_{\text {AMBIENT }}-\mathrm{T}_{\text {MIN }}\right)}{\Delta \mathrm{T}_{\text {OPERATING }}}+4 \mathrm{~mA} .
$$

At $20^{\circ} \mathrm{C}$ in the above example,

$$
\begin{aligned}
\mathrm{I}_{\text {OUT }} & =\frac{16 \mathrm{~mA}}{200^{\circ} \mathrm{C}}\left(20^{\circ} \mathrm{C}-\left(-50^{\circ} \mathrm{C}\right)\right)+4 \mathrm{~mA} \\
& =9.6 \mathrm{~mA} .
\end{aligned}
$$

Table 1 shows the R_{6} and R_{7} values required for various temperature ranges.

Derive $\pm 15 \mathrm{~V}$ and 5 V from a 12 V battery

Andy Jenkins
Maxim Integrated Products, Sunnyvale, CA

Parts for the triple-output dc/dc converter shown in Fig 1 cost about $\$ 11$ in 100 -piece quantities. The circuit converts the 12 V output of a lead-acid battery to isolated $\pm 15 \mathrm{~V}$ supply voltages plus a nonisolated 5 V supply voltage.
IC_{1} is a switching-regulator chip normally used in step-up applications, but the transformer and circuit shown allow the device to provide a step-down function as well. The chip generates a $45-\mathrm{kHz}$ signal that drives the gate of MOSFET Q_{1}.
Q_{1} turns on when the gate voltage is high, causing a linear increase in T_{1} 's primary current, which stores energy in a magnetic field. The field starts to collapse as Q_{1} turns off, reversing the voltage polarity on all windings and causing the voltage on each secondary winding to increase. These secondary voltages then deliver energy to the outputs by forward-biasing the Schottky diodes $\mathrm{D}_{1}, \mathrm{D}_{2}$, and D_{3}. When the 5 V output rises above a desired level, feedback to the chip causes an internal error comparator to turn off the gate signal to Q_{1}.

The secondary-winding ratios set the output-voltage levels, and close coupling between the trifilar windings

DESIGN IDEAS

assures good load regulation for the $\pm 15 \mathrm{~V}$ supplies (regulation is about 2% for a 10 to 100% load change). For better regulation, you can set the output voltage higher and add linear regulators. The inductors L_{1} and L_{2} block high-frequency ringing from the transformer that would otherwise boost the $\pm 15 \mathrm{~V}$ outputs out of spec when lightly loaded. For best regulation, you should provide minimum loads of 10% for the 15 V supplies and 20% for the 5 V supply.
The circuit can accommodate the 8 to 16 V range associated with the terminals of a lead-acid battery. What's more, the protection network made up of resistor R_{1} and zener diode D_{4} allows the circuit to withstand 50 V for 1 msec -a classic overvoltage test that simulates the load dump of an automobile's alternator when you turn off the ignition. For an input change of 8 to 16 V , the 5 V output's line regulation is typically 0.2%.

Battery current is about 600 mA for nominal operation, but current peaks in the primary winding can be 4A or more. Therefore, you should provide good-quality ground connections and short, low-impedance connec-
tions to the transformer and the MOSFET. Close decoupling using ceramic and electrolytic capacitors also reduces output noise. With proper circuit layout, the output noise is about 50 mV at the 5 V output and 30 mV at the 15 V outputs.
The transformer, constructed with a ferrite pot core that offers low loss and minimal magnetic leakage, has a primary inductance of about $21 \mu \mathrm{H}$ for the power levels shown. You must choose a core size and material that will handle the 4A peak currents without saturation. The 15 V secondaries have 2.9:1 turns ratios, which provide the desired 3:1 voltage ratio after covering the rectifier losses. Actual turns are as follows: the primary, $11 \frac{1}{2}$ turns; the 15 V secondaries, $11^{1 / 2}$ turns each; the 5 V secondary, four turns. High circuit efficiency (about 75% at full load with a 12 V input) eliminates any need for a heat sink on the MOSFET.

EDN

To Vote For This Design, Circle No 747

Fig 1-This triple-output de/dc converter requires only one IC.

PG-1281 virtually redefines "high performance".
With this new Matrox color display processor at the heart of an IBM PC AT, 386 PC, or compatible, a true professional workstation is born. Enhanced by four custom gate arrays, the PG-1281 is the fastest TMS34010-based board in the world today... and you have all the power of high-priced workstations at a fraction of the price!

- 1280×1024 resolution • Full 64-bit bandwidth $\cdot 100,000$ vectors/second $\cdot 100$ million bits/second BITBLT \cdot Up to 1.5 Mb on-board RAM - Downloadable user code for easy application development - Optimized drivers for major CAD packages - Compatibility with all current graphics standards: Windows, X Windows, CGA, VDI, PGA, and more... • Optional highspeed 3D coprocessor and EGA/VGA add-on modules.

If you need the best graphics performance available today, you need the PG-1281.
For more details call us - fast!

In Canada, call (514) 685-2630. IBM and IBM AT are registered trademarks of International Business Machines Corporation. Windows is a trademark of Microsoft Corporation.

Design Entry Blank

\$75 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co 275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry. Name \qquad
Title \qquad Phone

Company
Division (if any)
Street \qquad
City \qquad State Zip

Design Title
Home Address \qquad

Social Security Number \qquad
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date
Your vote determines this issue's winner. All designs published win $\$ 75$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

ISSUE WINNER

The winning Design Idea for the November 12, 1987, issue is entitled "Step-up converter produces 5 V from 1.5 V ,' submitted by Gerald Grady of Maxim Integrated Products (Sunnyvale, CA).

Switch debouncer uses few parts

Bill McClelland
Stahl Research, Port Chester, NY

When debouncing is important, designers often use an spdt switch for an spst function ($E D N$, October 29, 1987, pg 252). You can debounce an spst switch, however, using a single Schmitt-trigger inverter (Fig 1).

Fig 1-This simple spst switch debouncer relies on the inverter's internal pullup resistor. An external resistor allows use of a CMOS gate.

The TTL inverter (74LS14) has an internal $16-\mathrm{k} \Omega$ pullup resistor that pulls the gate input high when the switch is open. As you close the switch, the $4.7-\mu \mathrm{F}$ capacitor discharges on the first contact; if the switch contacts bounce open, the internal resistor limits the capacitor's recharge to a rate sufficiently slow to prevent an undesired gate transition before the contacts again close. Note that the circuit correctly debounces the switch for both opening and closing. If you add an external pullup resistor (dotted lines), you can use a CMOS Schmitt-trigger gate $(74 \mathrm{HC} 14)$ and a smaller ($0.1 \mu \mathrm{~F}$) capacitor.

EDN

To Vote For This Design, Circle No 750

NOW YOU CAN DRIVE OUR SUBCOMPACTS.

Seagate's family of $31 / 2^{\prime \prime}$ hard disc drives.

 -they're power savers,

As computers grow smaller, the demand for high-quality drives grows larger. But if you're looking for $31 / 2^{\prime \prime}$ drives for your small computer systems, you don't have a lot to choose from.

Except at Seagate.
We offer six $31 / 2^{\prime \prime}$ drives with 21 , 32 and 48 MB formatted capacities. You also have a choice of interfaces: SCSI or ST412 with RLL or MFM encoding. All with 28 msec access time.

Our $31 / 2^{\prime \prime}$ drives use Seagate's field-proven, proprietary stepper motors to achieve fast access times normally found only with more expensive voice coil actuators.
 using as little as 8 watts. And for added data integrity, the drives feature autopark with a balanced positioner. All of Seagate's $31 / 2^{\prime \prime}$ drives are built with the precision and quality that have made us the world's leading independent manufacturer of $51 / 4^{\prime \prime}$ full-height and half-height hard dise drives.

Only Seagate has the worldwide, high-volume manufacturing efficiency to meet the growing demand for $3^{1 / 2} 2^{\prime \prime}$ drives.
When you're ready to go for a little drive, give us a call. 800-468-DISC.

What makes Grayhinl the industry's favorite IIIP Swithh?

The Difference in Performance. .

Grayhill DIP switches are the popularity leaders, and the number one reason is their reliable long-term operation. Talk about performance! Our exclusive spring-loaded ball contact system provides up to 10,000 cycles at logic loads, plus these additional performance benefits: high contact pressure for sure, solid switching; positive wiping action to assure clean contacts throughout the switch life; and immunity to shock and vibration.

What's more, you can specify your DIP switches as you want them:
Actuation choice: rockers or slide (raised or recessed), toggles, or side actuated. Number of positions: 2 to 12. Circuitry: SPST, DPST through 4 PST, SPDT, DPDT, BCD and hexadecimal.

The Difference in Production..

Top performance in the field goes hand-in-hand with ease of handling in your plant:

- Bases are epoxy-sealed; optional top seal provides further protection during cleaning
- Our QC reduces yours-we do 100% electrical inspection, 100% pin straightening
- Machine insertable switches available

The Difference in Procurement...

Grayhill DIP switches are not only competitively priced, but features that are extras elsewhere are standard at Grayhill. For even greater purchasing convenience, most types are available off-the-shelf. Choose your preferred source-you can order direct from Grayhill or from your local authorized distributor.
The Grayhill difference has made our DIP switches the industry's favorite. Make them your favorite, too. Start by requesting your FREE copy of Grayhill Catalog No. 1 with complete specifications.

Now from Grayhill!

Machine Insertable DIP Switch

- Compatible with leading TO-116

IC insertion equipment

- Cartridge packed for easy loading
- 4 through 10 station switches

561 Hillgrove Ave. • PO Box 10373
LaGrange, IL 60525 USA
Phone (312) 354-1040 • FAX (312) 354-2820
TLX \& TWX 190254 GRAYHILL LAGE

STATIC-RAM IC

- Provides 1M-bit memory
- Screened to MIL-STD-883

The MEM-84000 hybrid IC comes in a $1.25 \times 1.25 \times 0.15-\mathrm{in}$. hermetic flatpack and uses four TTL-compatible $32 \mathrm{k} \times 8$-bit RAM chips to implement its 1M-bit memory. The unit's 100 -nsec access time, $64 \mathrm{k} \times 16$-bit memory organization, and -55 to $+125^{\circ} \mathrm{C}$ operating temperature range suit it for use with 16- or 32-bit CPUs in military processor applications. Data transfers to the device are made using 16 address
lines, 16 data lines, and standard read, write, and enable lines. You can use external decoding to expand the unit's memory to any width or depth. The unit operates from a 5 V supply. Its low-power CMOS construction allows battery backup, which prevents data loss in the event of power failure. The unit retains data even when operating on battery voltages as low as 2 V . $\$ 750$. Delivery, stock to 90 days ARO.

ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600. TWX 310-685-2203.

Circle No 385

MICROCONTROLLER

- Has three more ports than the 87C51 microcontroller
- Features 56 I/O pins

The 7-port EPROM-based SC87C451 microcontroller has all the features of the industry-standard 87 C 51 and three more 8 -bit, bidirectional ports. The three ports provide 24 additional I/O pins, which you can use in telemetry, printer, process-control, and diskdrive applications; you can also use the unit to advantage in distributedprocessing applications. You can program one of the three ports for

3 -state control. Using four handshaking pins, you can load the unit via a $\mu \mathrm{P}$ system as you would a RAM. The microcontroller stores its control program in 4 k bytes of EPROM; you can quickly test various prototype control programs by erasing the control program in the EPROM through the microcontroller's quartz window and loading a new control program. In a 68 -pin PLCC, $\$ 95$; in a 64 -pin ceramic DIP, $\$ 85$ (100).

Signetics Corp, 811 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 991-2000.

VIDEO MULTIPLEXER

- Features eight channels
- Has $300-\mathrm{MHz}$ bandwidth

The DG538 8-channel video multiplexer has low drive requirements and provides TTL compatibility, ad-dress-latch data readback, a $300-$ MHz bandwidth, and $-97-\mathrm{dB}$ crosstalk at 5 MHz . The unit's analog signal range allows $\pm 5 \mathrm{~V}$ signal swings, eliminating the need for a bias circuit and coupling capacitors at the multiplexer's input and output. All of the monolithic IC's signal lines are fully isolated from adjacent signal lines, and the unit features 55Ω on-resistance and 8 -pF max drain capacitance. Applications for the unit include high-quality video systems, wideband information-distribution systems, cable and studio TV equipment, and medical imaging systems. In a 28 -pin DIP, $\$ 11.52$; in a PLCC, $\$ 13.01$ (100).

Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 988-8000.

Circle No 387

A/D CONVERTER

\author{

- Offers 10-bit resolution
 - Provides 20M-samples/sec
}

According to the manufacturer, the TDC1020 is the first monolithic flash A/D converter to offer 10 -bit resolution at a guaranteed 20 M sample/sec rate. Its target applications include radar and studio-quality video systems. The device is also suitable for use in medical-imaging applications and for high-speed data conversion. The converter operates over the commercial temperature range and comes in a 64-pin DIP. \$295 (1000).

TRW LSI Products, Box 2472, La Jolla, CA 92038. Phone (619) 457-1000.

Circle No 388

SHIFT REGISTER

- Multiplexes and demultiplexes 8-bit data streams
- Offers ECL-compatible inputs

The SDA-8020 is a $4 / 8$-bit shift register for use as an interface between high-speed A/D or D/A converters and the memories in a data-acquisition system. Featuring ECL-compatible signal inputs, the device can demultiplex an 8 -bit data stream having a clock speed as high as 100 kHz into four parallel 8-bit TTL data channels having a clock speed 25% less than that of the serial
clock. Conversely, a multiplexing mode can reverse this action. The cascadable shift register has two clock outputs, and all its external control signals are TTL compatible. It provides special signals to drive high-speed CMOS static RAMs. The chip is packaged in a 68 -pin PLCC and consumes 1.5 W . $\$ 70$ (100).

Siemens Corp, 2191 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 980-4577.

Circle No 389

DTMF RECEIVER

- Detects all 16 DTMF tone pairs
- Combination decoder and filter

The G8870 receiver on a chip is a combination Touch-Tone decoder and filter. It detects all 16 DTMF tone pairs and converts them to code. It can also distinguish sound frequencies that approximate DTMF signals from actual DTMF
signals, selectively passing only the latter to the output bus. The device consumes 35 mW max. It comes in an 18 -pin DIP or a 20 -pin plastic leaded chip carrier. $\$ 5.25$ (100).

California Micro Devices Corp, Microcircuits Div, 2000 W 14th St, Tempe, AZ 85281. Phone (602) 9214540.

Circle No 390

CMOS COMPARATORS

- Low current consumption
- Duals and quads available

Fabricated in LinCMOS, the TLC393 (dual) and TLC339 (quad) micropower comparators consume only 5% of the current normally required by their pin-compatible bipolar counterparts, the LM393 and LM339. When the micropower comparators are operating from a 5 V supply, the typical power dissipation of each independent compara-

Quadram's new Quad HPG ${ }^{\text {TM }}$ graphics adapter delivers unbeatable PC graphic capabilities. Brooktree makes it possible with an unbeatable triple 8-bit RAMDAC that provides 256 colors from a 16 million palette.

tor in the micropower chips is only $50 \mu \mathrm{~W}$; the response time is typically $2.5 \mu \mathrm{sec}$ at 5 mV of overdrive. The TLC393 and TLC339, like the LM393 dual and LM339 quad, have open-drain outputs that can interface to a variety of loads and supplies and to logic functions. In contrast to the 393 and 339 types, two other LinCMOS types, the TLC3702 dual and the TLC3704 quad have push-pull outputs that eliminate the need for external pullup resistors for driving capacitive loads. All four micropower LinCMOS comparators operate from single-supply voltages of 3 to 16 V for versions in the commercial and industrial temperature
ranges or 4 to 16 V for versions in the military temperature range. A variety of DIP and SO packages are available. Plastic-DIP commercial devices, from $\$ 0.52$ to $\$ 0.73$ (100).

Texas Instruments Inc, Semiconductor Group (SC-764), Box 809066, Dallas, TX 75380. Phone (800) 2323200 , ext 700.

Circle No 391

CMOS 12-BIT DAC

- Performs 4-quadrant multiplication
- Features TTLLCMOS-logic compatibility
The DAC7545 buffered, 12-bit multiplying D / A converter is a pin-compatible replacement for industry standards such as the AD7545 and PMI7545. The device features 12 -bit $\mu \mathrm{P}$-interface logic and loads data as 12 -bit data words. It processes data when the Chip Select and Write

pins are both at logic lows. Because it is a multiplying DAC, it supplies output that is the product of the digital input code and an external analog reference signal. The DAC's reference input can vary between $\pm 20 \mathrm{~V}$; with the addition of external op amps at its output, the device can perform 4-quadrant multiplication. The converter features $10-\mathrm{nA} \max$ output leakage and $70-\mathrm{pF}$ max output capacitance. In a plastic DIP, $\$ 8$; in a small outline package, $\$ 9.20$; in a ceramic DIP, $\$ 9.50$ (100).

Burr-Brown, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. TLX 666491.

Circle No 392
Continued on pg 253

Brooktree

MN6227/MN6228

12-Bit Sampling A/D's
Sampling Rate: 33 kHz Minimum Input Bandwidth: 16.5 kHz Minimum Testing: Frequency Domain (FFT) Signal-to-Noise Ratio: 70dB Minimum Harmonics: -80dB Minimum
Price: \$74/100's

You are looking at the first commerciallyavailable, FFT-tested, high-speed, 12-bit, sampling A/D converters specified for digital-signal-processing applications. MN6227 and MN6228 are 33kHz A/D's with internal track-and-hold amplifiers. They are ideally suited for radar, sonar, spectrum and vibration analysis, voice and signature recognition, and other contemporary DSP applications. Unlike traditional successive-approximation A/D's without track-hold amplifiers,
these true sampling A/D's maintain nearideal signal-to-noise ratios independent of increasing analog input frequencies. They are made for the frequency domain.

Note the FFT spectra (right) and the data plot (top right). They clearly demonstrate the ability of these devices to maintain SNR with increasing input frequencies. In our frequency-domain testing, these devices operate in a manner that simulates a
digital spectrum analyzer with a known lowdistortion input signal. The output spectra yield precise, practical measurements of signal level, noise level, signal-to-noise ratio, harmonic distortion, and input bandwidth... the keys to specifying for DSP applications.

This plot of actual recorded data demonstrates MN6227/ 6228 's ability to maintain near-ideal SNR with increasing input-signal frequency, while A/D's without companion track-holds show rapid (6dB/octave) SNR degradation.

MN6227/6228 are the first A/D's in our new MN6000 series. The 12 and 16 -bit converters in this series all contain internal, user-transparent, track-hold amplifiers that enable each device to accurately sample and digitize dynamically changing input signals with frequency components up to the Nyquist frequency (one-half the sampling rate).

MN6227/6228 have a full 8 or 16 -bit μ P interface and are packaged in small, low-profile, 28-pin ceramic DIP's, with the industrystandard MN574A pinout.

For detailed information on MN6227/6228, send for our comprehensive data sheet. For rapid response and a copy of our 384page catalog of data conversion products, call Russ Mullet at (617) 852-5400, x 208.

Micro Networks
 324 Clark Street Worcester, Massachusetts 01606 (617) 852-5400

Micro Networks

Advancing Data Conversion Technology

Introducing OrCAD Verification and Simulation Tools

With unsurpassed performance on a PC, you'll discover that nothing comes close to OrCAD's features and price.
Benchmark the specifications for yourself. We guarantee satisfaction, or your money back!

- Event driven, 12-state functional simulator
- Exceeds 10,000 events/sec. on an 8 MHz AT without additional hardware
- Over 14,000 gate capacity
- Logic analyzer display format. Virtual screen displays 50 channels
- 10 breakpoints can be set as AND/OR condition of up to 16 signals
- User selectable minimum and maximum delays
- Input stimulus is easily defined with an integrated pop-up editor
- Includes component models of TTL, ECL, CMOS, Memory devices, and easy to use utility for creating custom models
- Of course, OrCAD's excellent support: technical staff to answer questions, 1 year of free product updates, and a trained sales and support network

Call or write today for our FREE
 Demo Disk and brochure.

OrCAD
 Spremem coponation

1049 S.W. Baseline St. Suite 500 Hillsboro, Oregon 97123
(503) 640-5007

1. WA, OR, MT, ID, AK Seltech, Inc. 206-746-7970
2. N. CA, Reno NV Elcor Associates, Inc. 408-980-8868
3. So. CA Advanced Digital Group 714-897-0319
4. Las Vegas, NV, UT, AZ, NM, CO Tusar Corporation 602-998-3688
5. ND, SD, MN, W. WI Comstrand, Inc. 612-788-9234

Contact your local OrCAD Representative for further information
6. NE, KS, IA, MO Walker Engineering, Inc. 913-888-0089
7. TX, OK, AR, LA

Abcor, Inc.
713-486-9251
8. MI, E. WI, IL

Cad Design Systems, Inc. 312-882-0114
9. IN, OH, KY, WV, W. PA Frank J. Campisano, Inc. 513-574-7111
10. TN, NC, SC Tingen Technical Sales 919-878-4440
11. FL

High Tech Support 813-920-7564
12. $\mathrm{DE}, \mathrm{VA}, \mathrm{MD}, \mathrm{DC}$ MGM Visuals 703-352-3919
13. MS, AL, GA Electro-Cadd 404-446-7523
14. E. PA, NJ, NY Beta Lambda, Inc. 201-446-1100
15. CT, RI, MA, VT, NH, ME DGA Associates, Inc. 617-935-3001

INTEGRATED CIRCUITS

QUAD LINE DRIVER

- CMOS device operates from supply voltages of 4.5 to 15 V
- Conforms to RS-232C and CCITT V.24/V. 28 specifications
The CMOS HMC14C88 is a replacement for the TTL 1488 bipolar quad line driver. The inputs are compatible with both TTL and CMOS levels and are nominally centered to switch at 1.4 V . The outputs switch to within 75% of the supply rails while driving RS-232C line loads of 3 to $7 \mathrm{k} \Omega$. The outputs are also short-circuit protected, provide a minimum power-down output impedance of 300Ω, and have a propagation delay of less than 2 $\mu \mathrm{sec} . \$ 0.72$ (1000).

HMC, 1235 Walt Whitman Rd, Melville, NY 11747. Phone (516) 673-6505.

Circle No 393

QUAD POWER DRIVER

- Output current to 2.5A
- Output voltages to 60 V

The SG3645 quad driver for stepper motors comes in a 16 -pin Batwing package. Each of its four open-collector Darlington outputs has a breakdown voltage rating of 60 V and a current rating of 2.5 A . A common enable signal can enable or disable all four outputs simultaneously. Each of the device's four channels have TTL-compatible inputs and integral transient-suppression diodes in the outputs. The circuit has a thermal shutdown

SINGLE-SLOT /AT SOLUTIONS AVAILABLE NOW!

CAT902
$10 \mathrm{MHz}, 1$ wait: Up to 1 meg RAM. 128 K PROM: Dual floppy controller: SCSI hard disk interface: parallel and 2 serial ports: EGA and 80287 optional: Keyboard port, speaker, reset / key lock / turbo ports

CAT910

CAT900 Features plus: EGA extended resolution (1280×800): CGA and monochrome modes: $1280 \times 800,640 \mathrm{x}$ $480,640 \times 350$, and 640 x 200 resolutions

CAT901
$12 \mathrm{MHz}, 0$ Wait: Dynamic clock speed change: Up to 4 meg RAM. 64 K PROM: PROM set-up routines: Dual floppy controller: ST506 hard disk interface: 1 parallel and 2 serial ports: EGA and 80287 optional: Keyboard port, speaker,
reset / keylock turbo ports

CAT900

$12 \mathrm{MHz}, 0$ wait: Up to 8 meg RAM. 64 K PROM: 1 parallel and 2 serial ports: EGA and 80287 optional: Keyboard port, speaker, reset, keylock, turbo port

CAT912
CAT902 features plus: EGA extended resolution (1280×800): CGA and monochrome modes: 1280
x 800, $640 \times 480,640 \mathrm{x}$ 350 , and 640×200
resolutions

QUANTITY CUSTOM DERIVATIVES AVAILABLE

PACKAGING SUPPORT

- Backplanes - Card Cages - Fans - Plug-In Power Supplies - Low Profile Enclosure - Small Footprint Enclosure - Industrial Chassis - Rack Mount Chassis Design

Diversified Technology

CALL 1-800-443-2667
IN MS 601-856-4121
P.O. BOX 748 • Ridgeland, MS 39158

CIRCLE NO 28

We'll give you an inch... and 1200 WATTS

Where other manufacturers require $11^{\prime \prime}$ or more in a 1200 watt design, JETA gives you the same output power ratings plus an extra inch. So you can fit even more into your CAD/CAM/CAE systems, mini-main frames or communications products.

For compact high-current single and multiple output power supplies from 500 to 2200 watts, contact JETA.

See EEM pages D1706-1708

POWER SYSTEMS, INC.
2675 Junipero Avenue \quad Signal Hill, CA 90806 - Tel: 213/427-OO95 ■ TWX:510-101-1804 ■ FAX: 2134262417
feature. The SG3645 is specified for operation at junction temperatures from 0 to $125^{\circ} \mathrm{C}$. Samples are available from stock. $\$ 2.65$ (100). Delivery, 60 days ARO.

Silicon General, 11861 Western Ave, Garden Grove, CA 92641. Phone (714) 898-8121. TWX 910-596-1804.

Circle No 394

SERVO AMPLIFIER

- 250W capability
- $30-\mathrm{kHz}$ PWM frequency

The AMC-250 contains a complete de velocity servo amplifier that provides protection against output short circuits, overheating, and overvoltage. The device also has a compensation adjustment to opti-

Custom Linear Power in less than 10 days and it's UL recognized. You give us the specs... and we deliver the power you want... fast!

Whether you only need a few watts or hundreds of watts... our linear power supplies deliver the performance to get your system up and running fast and the reliability to keep it there.
Thirty-three standard mechanical configurations and 20,000 pre-assembled regulator combinations mean low prices and delivery in as little as 10 working days.
And because all our power supplies are built with pre- UL recognition, you don't have to worry about our power supplies holding up your system UL approval.
Get the full story on worry free linear power from Xentek. Call or write today for our free information package.

Xentek
The Heart of Your System

[^13]
mize response, and an adjustable current limit. The device doesn't require an external heat sink or forced-air cooling for most duty cycles, even at its maximum output of $\pm 50 \mathrm{~V}$ at $\pm 5 \mathrm{~A}$. The device operates at any supply voltage from 20 to 50 V and measures $1.62 \times 2.75 \times 0.75 \mathrm{in}$. \$149.

Advanced Motion Controls, 15921 Haynes St, Van Nuys, CA 91406. Phone (818) 989-4480.

Circle No 395

V/F CONVERTER

- Full-scale frequency of 2 MHz
- Maximum nonlinearity of $\pm 0.005 \%$
The AD652 can perform a V/F conversion to 14 -bit accuracy (16 -bit resolution) in 32.77 msec at 2 MHz . The internal 5 V reference can supply 10 mA to an external load. You can apply an external clock to the device, in synchronous mode, to set its full-scale frequency. The AD652 is pin compatible with the AD651 and VFC100 synchronous V/F converters. The device operates from a

INTEGRATED CIRCUITS

12 to 18 V supply for unipolar operation or from a ± 6 to $\pm 18 \mathrm{~V}$ supply for bipolar applications. The packaging options include a 20 -terminal PLCC or a 16 -pin ceramic DIP. The device is available in three temperature ranges and two accuracy grades. $\$ 6.95$ to $\$ 13.65$ (100).

Analog Devices, Literature Ctr, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 935-5565. TWX 710-394-6577.

Circle No 396

DRIVERS

- Provide 32 channels
- Feature 80 and 300 V ratings

The HV55 and HV56 300V drivers and the HV57 and HV58 80V drivers combine high-speed, low-power CMOS logic with high-voltage DMOS outputs. The HV55 and its reverse-shift complement, the HV56, have 32 open-drain, 300 V N -channel outputs, each of which can sink 100 mA . A built-in, $8-\mathrm{MHz}$ shift register controls the outputs and offers polarity and blanking control. The combination of the two control features provides flexibility for driving flat-panel displays. The HV57 and its reverse-shift complement, the HV58, have 32 push-pull, 80 V outputs, each of which can source or sink 20 mA . You can use these units to drive nonimpact printers and electroluminescent, plasma, and liquid-crystal displays. The devices come in 44-pin PLCC J-lead packages. From $\$ 6.34$ (1000).

STANDARD AND CUSTOM

OPTICAL SWITCHES

100 STANDARD VARIATIONS

- Direct Honeywell and TRW replacements.
- Analog, TTL, DTL, and CMOS interface
- Pin or Wire leads.
- Complete CUSTOM Capabilities.
- Dock-To-Stock certified.
- Statistical Process manufacturing Control.
- Prompt and Courteous customer service.
For over 20 years HEI has designed and built optical switches and assemblies to the strictest of specifications
CALL FOR OUR NEW CATALOG 612-443-2500

CIRCLE NO 30

go the extra mile... LOWER component-toambient temperature gradient throughout entire product line.

JETA's hybrid thermal design ensures the lowest component-toambient temperature gradients to keep your products running cool, calm and collecting data.

This construction actually utilizes the power supply's chassis to function as a heat sink-the result of JETA's mechanical engineering emphasis. After all, with everyone using more or less identical electronic components, how else are you going to make a better box? By having more M.E.'s devoted to superior thermal management.

For cooler operating high-current single and multiple output power supplies from 500 to 2200 watts, contact JETA.

See EEM pages D1706-1708

POWER SYSTEMS, INC.
2675 Junipero Avenue ■ Signal Hill, CA 908 O6
Tel: 213/427-OO95 ■ TWX: 51O-1O1-18O4 ■ FAX: 2134262417

CONFIGURE-YOUR-OWN

MIL SPEC • HICH RELIABILITY

 POWER SUPPLIES
A HIGHER LEVEL OF PERFORMANCE

INTRODUCING EL 2000 SERIES Complete AC to DC and DC to DC multi output systems.

MORE BENEFITS

Save Space: Completely protected AC-DC systems with rugged high density packaging to 8 watts $/ \mathrm{in}^{3}$.
Less Heat: Efficiencies to over 80\% with next generation circuitry.
Higher Reliability: MTBF to 500,000 hours with conservative design criteria including NAVMAT guidelines.

MORE CHOICES

- Up to 8 DC outputs to 500 watts.
- $1 \varnothing, 3 \varnothing$ and DC inputs.
- $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation.
- Mil-Std-704A-D, 1399 and 1275 input surge and spike protection.
- Meets many provisions of Mil-Std-810D, Mil-E-5400 and Mil-E-16400.

Call or write for our new EL 2000 Catalog today!

ARNOLD MAGNETICS CORPORATION

INTEGRATED CIRCUITS

Delivery, six to eight weeks ARO.
Supertex Inc, 1225 Bordeaux Dr, Box 3607, Sunnyvale, CA 94088. Phone (408) 744-0100. TWX 310-683-9143.

Circle No 397

SMPS REGULATOR

- Features on-chip 1.25A switch
- Operates from 3 to 60 V

The LT1072 regulator IC includes an on-chip 1.25 A output switch and comes in either a 5 -pin TO-3 or TO-220 package. The SMPS (switchmode power supply) unit operates over a 3 -to- 60 V input voltage range, and you can synchronize it with a system clock that operates from 48 to 70 kHz . The regulator uses an adaptive antisaturation switch drive that permits a wide range of load currents at low-saturation voltage and high operating efficiency. The IC operates in all standard switching configurations, including the buck, boost, flyback, and forward configurations. Designers with little experience in switch-regulator applications will find the chip easy to use: It features a built-in oscillator; integral control and protection circuitry; and built-in circuitry for producing a fully isolated flyback regulator, thus eliminating the need for optocouplers or extra transformer windings. A shutdown mode, which you activate externally, reduces total standby-operation current to $50 \mu \mathrm{~A}$ typ. In a TO-220 package, $\$ 4.25$ (100).
Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035. Phone (800) 637-5545; in CA, (408) 432-1900.

Circle No 398

Everything You've Ever Wanted From A DC/DC Converter

We're now offering one of the industry's largest selections of $D C / D C$ converters. We believe we've crammed more features into these tiny devices than any other manufacturer yet. Features we think you're going to like.

- LOW COST
- Surface mount technology for rugged performance and small size
- Over 450 standard models
- Regulated and unregulated outputs
- Standard 1000 VDC isolation
- Six-sided shielding
- Wide operating temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- Input and output filtering
- Customs available
- And much, much more!

Ask your Burr-Brown sales representative for complete details. Or call 602-746-1111. Burr-Brown Corporation, PO Box 11400, Tucson, AZ 85734.

BURR-BROWN ${ }^{\text {® }}$

Your Partner In Quality

CIRCLE NO 33

with 5 outputs... to 2200 WATTS

Main output to 300A. Our 2200 watt, UL/CSA/VDE/IEC compliant, power supply offers 1 to 5 outputs. Standard features include DC OK, FCC EMI filter, power fail, remote inhibit, remote margining, electronic soft start and moremany of which would be costly options elsewhere.
High reliability is derived from a reduced component count, high-voltage transistor V-I load reshaping for maximum SOA and careful thermal management to ensure the best operating environment for critical components.

For reliable high-current single and multiple output power supplies from 500 to 2200 watts, contact JETA.

See EEM pages D1706-1708

CMOS EEPROMs

- 55-nsec read access time
- Serial programming I/O channel

The IDT78C16 is a 16 k -bit EEPROM featuring a 55 -nsec access time; it's pin compatible with slower ($150-\mathrm{nsec}$) types. Along with the $55-$ nsec access time, the IDT78C18 features a serial-I/O channel that allows rewrites independently of the target system's $\mu \mathrm{P}$. Additionally, you can write to both devices in the customary, parallel manner. Both devices have onboard charge pumps for generating programming supervoltages from a single 5 V supply. The IDT78C16 and IDT78C18 are
available in a variety of ceramic DIP and LCC packages. From $\$ 15$ (100).
Integrated Device Technology Inc, Box 58015, Santa Clara, CA 95052. Phone (408) 727-6116. TWX 910-338-2070.

Circle No 399

6-BIT ADC

- Features 75M-sample/sec encode rate with no missing codes
- Processed to MIL-STD-883B rev C
The AD9000 flash A/D converter guarantees a minimum encode rate of 75 M sample/sec. You can use it in telecommunications, electronic-warfare-systems, and radar-guidance applications. The device features dc specifications of ± 1-LSB max differential and integral nonlinearity, and ± 1.5-LSB max initial offset error. Its dynamic linearity specs at ± 0.5 LSB typ, when measured with a $15-\mathrm{MHz}$ input signal. It

features a $42-\mathrm{dB}$ signal-to-noise ratio, $44-\mathrm{dB}$ in-band harmonics, and 46 -dB 2-tone intermodulation rejection. An overflow bit lets you cascade converters to achieve higher resolution without reducing the sampling rate. AD9000SD/883B rev C, in a 16 -pin DIP, $\$ 110$; AD9000SE/883B rev C, in a 28 -pin LCC, $\$ 120$ (100).
Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 935-5565. TWX 710-394-6577.

Circle No 400

Sing it ! Say it! Play it!...now in high fidelity! The new enhanced VP620E Voice Processor converts 20 Hz to 7.0 kHz audio inputs into ADPCM encoded digital data for hard disk recording on your PC/XT / AT/386 or compatible. Playback flawless, authentic audio when and where you want it from background DOS commands.

Just plug it in, load menu driven software and 29 MB will give you 1 hr . of full fidelity digital audio from your PC. Its quick, easy and suprisingly affordable.

Use it for telecommunications, broadcasting, robotics, interactive video, process control prompting, and other off-screen operator interface applications.

Call 1-800-338-4231 (not Ca.) for facts on the new VP-620E 16 kHz board that will make your PC sing!

Y○U LIKE TO WRITE, RIGHT?

Then EDN wants you, providing you also have an EE degree and at least two years' circuit-design experience. We seek individuals who want to be Boston-based technical editors for this top electronics publication.
To qualified individuals, EDN offers an attractive salary, industry-wide recognition, high job satisfaction, and the ability to keep abreast of.

- Advanced Technology
- Exciting New Products
- State-of-the-art circuit and system-design techniques
If you thrive on meeting challenges head-on..
If you are an effective, technical communicator...then send your resume and salary requirements in strict confidence to: Roy Forsberg, Editorial Director, EDN, Cahners Building 275 Washington St., Newton, MA 02158-1630, 617/964-3030 CIRCLE NO 37

LASER-DIODE DRIVER

- GaAs laser-diode current modulator
- Minimum bandwidth of 1.5 GHz

The LDCM 1500 A is a monolithic laser (or LED) driver for use in analog or digital fiber-optic systems. The device offers a minimum bandwidth of 1.5 GHz and a frequency response as high as 2.5 GHz . You can configure the input as either single-ended or differential. The bias current and the modulation current are both rated at 70 mA , and both are adjustable. The LDCM 1501 A comes in a 10 -pin surfacemount package. LDCM 1500A chip, $\$ 33$ (100). Delivery for prototypes, four to eight weeks ARO.

Microwave Semiconductor Corp, 100 School House Rd, Somerset, NJ 08873. Phone (201) 563-6530.

Circle No 401

DUAL 16-BIT DAC

- Double-buffered input register
- 14-bit monotonicity

The DAC725 is a dual, 16 -bit DAC that incorporates dual, double-buffered data latches, a precision internal buried-zener voltage reference,

X. 25 Software Before you make a decision, make a phone call.

- C source code license
- Rsys ${ }^{\text {TIN }}$ PAD option
- Certified-Telenet, Tymnet, DDN, European PTTs
- Multiple X. 25 line capability
- On-line configuration
- Runs on any hardware for which a C compiler exists

One phone call can save you tens of thousands of dollars and cut many months off your product development schedule. Let us give you more details on the benefits of Gcom X. 25 and show you how affordable superior data communications software can be.

㽞
Gcom, Inc.
Specialists in Computer Communications County Bank Plaza, 102 E. Main, Suite 509 Urbana, IL 61801
Phone (217) 328-7800 Telex: 910-240-1477

CIRCLE NO 35

or... 1500 or 1800 watts in the same box.

Whether you need 1500 or 1800 watts, JETA satisfies your power supply need with a single case size. So if your system requires higher power ratings in the future, you won't have to worry about fitting in a new power supply . . . saving you both time and money
As with all JETA power supply designs, these units undergo our standard "beat-up" tests to assure continued performance under operating conditions that your system will probably never seefrom powering-up into short circuit and no-load conditions to short circuiting the unit at full load-over and over again. Finally, they get a 24 -hour burn-in.
For cost-effective, performance proven, high-current single and multiple output power supplies from 500 to 2200 watts, contact JETA.

See EEM pages D1706-1708

POWER SYSTEMS, INC
2675 Junipero Avenue mignal Hill, CA 90806
Tel: 213/427-OO95 ■ TWX: 51O-1O1-18O4 ■ FAX: 2134262417

INTRODUCING 2AG FUSES

The world's smallest glass fuse.

Actual size: $0.177^{\prime \prime}$ diameter x $0.58^{\prime \prime}$ long; Slo-blo ${ }^{\star i}$ and fast-acting types, rated: $1 / 4 \sim 7 \mathrm{~A}, 250 \mathrm{~V}$ or less.
Now you can get 3AG reliability and performance in a new economical subminiature size. Our Slo-blo ${ }^{\circledR 8}$ and fast-acting fuses are perfect for p.c. board and other limited space applications. Order them in bulk, or on tape and reel for high speed automatic insertion. New mating 2AG p.c. board fuse clips are also available.

INTEGRATED CIRCUITS

and output op amps. The device provides 16 -bit resolution and 14 -bit monotonicity over temperature. The output range is $\pm 10 \mathrm{~V}$, and the settling time for a full-scale step is 4 μ sec. Integral linearity error is $\pm 0.003 \%$ of full scale. The design employs two DACs and two CMOS gate-array latch chips. The device loads data in two 8-bit bytes and provides separate lines for functions such as chip select, latch control, and clear. The device comes in a 28 -pin plastic DIP. $\$ 34.90$ (100).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (602) 7461111. TLX 666491.

Circle No 402

DUAL-POWER OP AMPs

- Deliver output currents as high as 2.5 A
- Protected against de short circuits to supply rails

The TCA2465 consists of dual-power op amps housed in a 9 -pin power single in-line package. Each op amp within the device is internally compensated and can supply peak output currents as high as 2.5 A . They operate from supply voltages between $\pm 3 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The op amps are internally protected against output short circuits to either supply rail and against thermal overloads. Operating from $\pm 10 \mathrm{~V}$ supplies, the op amps have a minimum open-loop gain of 70 dB at 100 Hz , a minimum common-mode input voltage range from -10 to +7 V , and a typical slew rate of $2 \mathrm{~V} / \mu \mathrm{sec}$. Under the same conditions, the output voltage can typically slew to $\pm 8.5 \mathrm{~V}$ at 1 kHz for a 4Ω load. The short-circuit current is typically 1 A . The permissible differential input voltage ranges from the negative to the positive supply rail. TCA2465, $\$ 2.90$; TCA2465A, a 16-pin DIP requiring external compensation, $\$ 2.40$ (1000).

Siemens AG, Zentralstelle für Information, Postfach 103, 8000 Mu nich 1, West Germany. Phone (089)

${ }_{f}$ your product requires a custom designed Keyboard and you require peace of mind, Laube Technology will supply both. We can design, build tools and begin actual production usually within 8 to 10 weeks from your goahead. You deliver us the concept, we'll deliver you the Keyboard.

LA로를
Laube Technology
6400 Variel Avenue Woodland Hills, CA 91367-2518 USA Telephone: (818) 703-1188
Fax: (818) 716-0422

CIRCLE NO 39

.and we'll back it up! 750 watт multiple output battery backup supply.

For safe and orderly system shutdown in the event of blackout or even brownout situations, choose our battery backup switching power system.
JETA's proven multiple output power supply technology combines with a dual-stage charger, boost converter and 48 V battery to provide your system with unlimited holdup time (depending on battery capacity) in the event of AC line failure.

2-YEAR WARRANTY on all models

At JETA, we back up all our power supplies with a full two-year guarantee. After we beat them up and then burn them in, we're confident that you'll receive the finest high-current power supplies built.
For single and multiple output power supplies from 500 to 2200 watts, contact JETA. We back them up.

See EEM pages D1706-1708

POWER SYSTEMS, INC.
2675 Junipero Avenue i Signal Hill, CA 90806 Tel: 213/427-0095 ■ TWX: 510-101-18O4 ■ FAX: 2134262417

- Available in 2SV solderable PC or 2SDV depluggable versions
- Both versions truly subminiature, .45" high x $.52^{\prime \prime}$ deep
- Available in 2-16 positions End stackable
- Accepts \#16-\#24 AWG wire
- Rated 10A/150V UL \& CSA Standards
Screw type terminals also available in $2 M$ Series

REED DEVICES INC., 525 Randy Road, Carol Stream, Illinois 60188
Tel. (312) 682-4100 TWX 910-252-2118
In Canada: AUGAT Electronics, Inc., Missisauga, Ont. (416) 677-1500
Visit us at NEPCON WEST '88 Feb. 23-25, Booths 2452-3

INTEGRATED CIRCUITS

2340. TLX 5210025.

Circle No 403
Siemens Components Inc, 2191 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 980-4500.

Circle No 404

CONTROLLER

- Features 3.8-mA max quiescent current
- Has dual totem-pole outputs

TSC170/171 CMOS switching regulator ICs run at one-fifth the quiescent supply current of the equivalent, bipolar UC3846/3847. The lower supply current eliminates the need for high-wattage power resistors in off-line switching topologies. You can employ the current-mode control to parallel two or more power supplies for higher-power applications. The controller's dual to-tem-pole outputs can directly drive power MOSFETs or bipolar transistors. The units' output voltage swing equals the supply voltage, and each output's 50 -nsec rise and fall times ($1000-\mathrm{pF}$ capacitive load) minimize power dissipation in the MOSFET switches. Each unit also features an internal voltage reference and undervoltage-lockout and soft-start capability. When in the off state, the TSC170 has low outputs and the TSC171 has high outputs. In a 16 -pin plastic DIP, $\$ 4$; in a 16-pin wide-body small outline package, $\$ 4.25$ (100).

Teledyne Semiconductor, 1300 Terra Bella Ave, Mountain View, CA 94039. Phone (415) 968-9241. TWX 910-379-6494.

Circle No 405

TWO-PIECE CONTECTORS FROM THOMAS \& BETTS. BEYOND THE STANDARDS.

Ansley ${ }^{\circledR}$ Two-Piece Connectors are built with quality you can anticipate for problems you can't - providing superior electrical and mechanical integrity in board-to-board packaging applications.
Ansley ${ }^{\circledR}$ standard, inverse and half-DIN connectors exceed DIN-41612 standards, incorporating a pre-loaded, dual cantilevered female contact for smooth, sequential engagement. That means maximum reduced mating/unmating cycles and longer life.

The ultra-low mating force contact design feature of our female Ansley ${ }^{\circledR}$ High Density and Expanded DIN connectors ensures superior contact wipe, for optimum electrical performance - the best in the industry.
Our male Flex-Fit ${ }^{\text {TM }}$ compliant contact design for press-fit applications accommodates a wide range of finished hole sizes and board thicknesses. Contact geometry virtually eliminates any chance of cut-through, and minimizes through-hole wall deformation.

The Flex-Fit ${ }^{\text {TM }}$ compliant contact also exceeds all stringent test requirements of MIL-STD-2166.

Challenge Us. Whether it's for a quality two-piece connector beyond the "standard", or one meeting your specific requirements, call us... not only for standard, inverse, halfDIN and high pin count connectors, but for board expansion and surface-attached back-

Thomas\&Betts

Electronics Division

[^14]
plane connectors, too. For more information, and a FREE copy of our "Compliant Pin Technology: A User Perspective" brochure, write or call Thomas \& Betts Corporation, 1001 Frontier Rd., Bridgewater, NJ 088070993; (201) 685-1600.

Bud Racks-Engineered to your highest design standards

Hundreds of styles, sizes and colors to meet your needs...immediately available from stock. Or let us design a special rack for you.

Bud East, Inc.
4605 East 355th Street
P.O. Box 431 Willoughby, Ohio 44094 (216)946-3200 TWX 810-427-2604

Bud Industries, Inc.

Bud West, Inc.
7733 West Olive Avenue
P.O. Box 1029

Peoria, Arizona 85345-0350
(602) 979-0300

TWX 910-951-4217

When it comes to enclosures, we've got you covered.

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

POWER SUPPLY

- Has isolated, fully regulated outputs
- Features a 5VI40A main output

The 300W Model NQF 300 features four fully isolated and regulated outputs that have better than $\pm 1 \%$ line, load, and cross regulation. Its transient recovery time equals 500 μ sec for 50% load steps, and its main output is preset to $5 \mathrm{~V} / 40 \mathrm{~A}$. You can specify any combination of $5,12,15$, or 24 V for the three auxiliary outputs; the current can range to 10 A pk on output 2 , and 5 A on outputs 3 and 4. Each output has full overload and short-circuit pro-
tection. You can select input ranges. of 90 to 132 or 180 to 246 V ac, 47 to 440 Hz . The supply meets UL, CSA, VDE, IEC, and BS safety standards and contains VDE standard RFI line filters. $\$ 345$ (50).
Intelligence Power Technology Inc, 2111 Howell Ave, Anaheim, CA 92806. Phone (714) 937-1301.

Circle No 351

POWER RESISTOR

- Housed in TO-220 power package
- Features $\pm 1 \%$ standard tolerance

Housed in a TO-220 power package, the MP820 Kool-Tab device is a 20 W heat-sink-mountable power resistor. The resistor employs a noninductive design that makes it suitable for high-frequency and power-switching circuitry. Its resistance values range from 10Ω to $1 \mathrm{k} \Omega$ and its standard tolerance equals $\pm 1 \%$. The resistor features a silicone case, which protects it from the environ-

ment, and a low profile, which permits you to fit it into tight spots. Its single-screw mounting design simplifies the task of attaching it to a heat sink. $\$ 1.90(1000)$ for a 50Ω device. Delivery, six weeks ARO.
Caddock Electronics, 1717 Chicago Ave, Riverside, CA 92507. Phone (714) 788-1700. TWX 910-332-6108.

Circle No 352

COAXIAL CABLE

- Highly flexible for easy bending, routing, and stowing
- Available with six to 64 signal conductors

This subminiature ribbon coaxial cable is highly flexible. You can fold the cable upon itself, bundle it in rectangular or round sections, or group it with other cable for routing. To terminate each signal set, you secure the signal conductor and companion drain wire to the appropriate connector terminals. The vendor can provide custom-designed multilayer paddle cards or pc boards to eliminate impedance mismatch. You can order the cable in varying lengths, with six to 64 signal conductors, single or dual drain

wires, and impedances of 50 to Charlotte, NC 28266. Phone (803) 130Ω. \$1.25/ft (100 ft).
Woven Electronics, Box 667850,

963-5131.
Circle No 353

INTERRUPTER MODULE

- Consists of a GaAlAs emitter and a hybrid photodetector
- Features a built-in daylight-suppression filter

The SFH 910 differential photo interrupter module contains TTLcompatible circuitry that provides a counting pulse and a directional
pulse that let you detect the direction of motion. The unit consists of a GaAlAs IR emitter and a hybrid photodetector. The photodetector encompasses a split photodiode with amplifiers, Schmitt triggers, and evaluation logic; the module also features a built-in daylight-suppression filter. Both the counting-pulse and directional-recognition signals

WORKING PROTOTYPES IN HOURS?

DESKTOP
 AUTOMATED WIREWRAPPING

WITH THE PDS 2400:

> Now you can turn your circuit designs into working prototypes in hours. The PDS 2400 automated wirewrapping system is small and quiet enough to fit in any environment.

Features:

- Fully automatic wirewrapping:
- Automatic fault detection and recovery;
- Data preparation software accepts netlist input from popular CAD packages.

From CAD...

For more information, call us at: (514) 337-6072

ROBDTILS
5905 St. François Rd., Montreal, Quebec, Canada H4S 1B6
Helping man turn visions into reality...
are npn open-collector outputs compatible with TTL circuitry. You can use the module to encode mechani-cal-shaft rotation speed and direction. It accepts code wheels with slot widths as small as 0.85 mm . You can obtain a 96 -slot code wheel as an option. SFH 910, $\$ 5.60$ (1000); disc, $\$ 0.73$.

Siemens Components Inc, Optoelectronics Div, 19000 Homestead Rd, Cupertino, CA 95014. Phone (408) 725-3520.

Circle No 354

RESISTORS

- Withstand 50 kV in air or 100 $k V$ in oil
- Are available in 1, 2, or 5% tolerance levels

Produced by depositing a ruthenium oxide thick film onto a highpurity ceramic base, T40 Series high-voltage resistors can withstand a dc voltage as high as 50 kV in air or 100 kV when immersed in oil. The series includes three types with resistance values ranging from $1 \mathrm{k} \Omega$ to $4 \mathrm{G} \Omega, 1 \mathrm{k} \Omega$ to $15 \mathrm{G} \Omega$, and 1 $\mathrm{k} \Omega$ to $45 \mathrm{G} \Omega$, respectively. The resistances are available with tolerances of $\pm 1, \pm 2$, or $\pm 5 \%$ and temperature coefficients of $\pm 25, \pm 50$, or $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. A sleeve over the resistor protects it from mechanical damage and provides electrical insulation. From $£ 3$ to $£ 10(1000)$.
Welwyn Electronics, Bedlington, Northumberland NE22 7AA, UK. Phone (0670) 822181. TLX 53514.

Circle No 355
IRC Inc, Box 1860, Boone, NC 28607. Phone (704) 264-8861. TLX 469902.

Circle No 356

Mallory-brand Aluminum Electrolytics

Selecting this outstanding capacitor line just became an even wiser decision.

Because the company that makes them is now easier to work with. When RTE bought Mallory's aluminum electrolytic business, they didn't change a great product. It's still made on the same production lines by the same skilled work force.

What did change was the level of customer service - at the plant and in the field - to make it easier for you to get specifications, samples or engineering help, and check delivery schedules. Now when we give you a shipping date, we meet it or beat it 99% of the time!

How has all this been accomplished?
At the plant, by adding seasoned specialists, an in-
house CAD-assisted engineering department, and a computerized order entry/customer service expediting system.

In the field, by assigning all Aerovox M aluminum electrolytics to the service-driven rep and distributor organization of our sister RTE company, Aerovox Inc., one of the world's largest capacitor makers, and a leading supplier of EMI filters.

So, next time you need aluminum electrolytics, call your Aerovox rep, or us, direct... because our product is still outstanding. And now, so is our service!

Now we're

COMPONENTS \& POWER SUPPLIES

DELAY LINES

- Available with a variety of impedance values
- Feature delays as long as 1000 nsec
Housed in 24-pin DIPs, the EPA059, EPA060, and EPA061 Series 20-tap delay lines provide 20 - to 1000 -nsec delays. Each unit has four 50Ω lines with 20 - to $200-$ nsec delays, six 100Ω units with $20-$ to $1000-$ nsec delays, and five 200Ω devices with 20 - to $1000-$ nsec delays. Nominal tap-to-tap delays for all three series are $1,2.5,5$, and 10 nsec for 50Ω lines; $1,2.5,5,10,25$, and 50 nsec for 100Ω lines; and $1,2.5,5,25$, and 50 nsec for 200Ω lines. Maximum output rise times range from 3 to 20 nsec for 50Ω units and 3 to 100 nsec for the 100 and 200Ω lines. All lines have their outputs on pin 23. Inputs are on pin 1 for the EPA060 units and on pin 2 for EPA059 and EPA061 Series devices. $\$ 5.82$ (1000) for the EPA $059-100 \mathrm{~B}$, a 100Ω, $100-$ nsec total-delay unit with a 5 -nsec/ tap delay.
PCA Electronics Inc, 16799 Schoenborn St, Sepulveda, CA 91343. Phone (818) 892-0761. Circle No 357

MIXER

- Operates over 2- to $26-\mathrm{GHz}$ range
- Housing has removable SMA connectors

The Model DBL2-26 biasable mixer operates over the $2-$ to $26-\mathrm{GHz}$ range and provides IF signals from 1 to 500 MHz . It utilizes a selfadjusting bias arrangement in which the dc-bias level is reduced as the LO (local-oscillator) power is in-

Push button backup.

Low-cost backup for HP9000 users.

For all the times you've wanted a simpler, smarter, more reliable way to backup your data, Bering has the answer.

Introducing ECHO. Automatic tape backup you can count on time after time after time.

Our ECHO 40MB tape backup drive is compatible with all HP9000 Series $200 / 300 / 500$ users. It incorporates the kind of sophisticated features you'd expect from an expensive drive. Yet it's priced at about balf the price of comparable systems.

ECHO doesn't sacrifice quality, either. It's extremely reliable, with built-in error corrections that let you rest assured you're not missing anything.

At the push of a button, your ECHO drive can copy 40 MB of data from your hard disk, creating a "mirror image" of your

files. Other features like off-line operation let you perform backup or restore without a CPU. ECHO's timed-backup lets you automatically backup a project without being present. Menu-driven selections and LCD displays make operation easier. And at 2.4MB per minute, ECHO's backup is very fast.

Last, but not least, ECHO uses the latest space-saving 3M DC2000 mini tape cartridges-a tidy little addition to over-crowded work areas.

For a data sheet or more information, call us at 800 BERING 1.
Bering Industries, 240 Hacienda Ave., Campbell, CA 95008.

BERING

Innovative storage for Hewlett-Packard
ECHO is a trademark of Bering Industries. HP9000 ECHO is a trademark of Bering Industries. HP9000
Series 200/300/500 are trademarks of Hewlett-Packard

New

 Instruments
μ P-based Programmable E/I dc Calibrator

Model 520/A
The Model 520/A is micro-processor based and is compatible with IEEE-488, (GP-IP).
The height is only $31 / 2$ inches, features current mode outputs from 10 nanoampers (nA) to 110 milliampers (mA), in 2 ranges, with extraordinary compliance of 100 Vdc . Even with this power, ideal for transducer instrument testing ($4-20$ and $10-50 \mathrm{~mA}$), the accuracy is $\pm 0.005 \%$!
The voltage mode has 3 ranges with outputs from 100 nV to 110 Vdc and optional to 1100 Vdc . Compliance current is 100 mA . The one year accuracy is $\pm 0.002 \%$.
All ranges and both modes resolve to 1 ppm . A crowbar zero provides a reference for this essential value.

Availability: 60 days.
Price: $\$ 3,150$. 1000 V option $\$ 595$.
Engineering Contact: Bob Ross
Tel: (617) 268-9696
FAX: (617) 268-6754
CIRCLE NO 89

AC Voltage Reference System
 Remotely Controlled Multiple Output

System 408
1 to 8 AC Voltage outputs independently and remotely controlled, variable and simultaneous in a single $5 \frac{1}{4^{\prime \prime}}$ high chassis.
A phase angle of 0° and 180° is also programmable.
All functions programmed via IEEE-488 (GP-IB) interface bus.
Some applications: Synthesize linear velocity sensors, simultaneous calibration of multiple instrumentation and data logging systems without multiplexing delays. Simulation of transducers. For design, evaluation and calibration of accelerometers, amplifiers, A/D converters, digital and analog meters.
Specifications include: Range: 10 mV to 30 Vac resolved to 1 mV . The compliance current is:
50 mA . The accuracy is: \pm (0.05% of setting
+15 mV). Output frequency (synchronized to an external sine wave stimulus): at a selected, fixed frequencies between 10 Hz and 400 Hz

$$
\begin{array}{lll}
\text { Price: } & \begin{array}{l}
\text { Main frame: } \\
\\
\text { Output modules: }
\end{array} & \begin{array}{l}
\$ 3,995 \\
\$ 895 / \text { each }
\end{array}
\end{array}
$$

Engineering Contact: Bob Ross
Tel: (617) 268-9696
FAX: (617) 268-6754
CIRCLE NO 90
ELECTRONIC DEVELOPMENT CORP.
11 Hamlin St., Boston, MA 02127
Tel: (617) 268-9696
TLX: 951596 (ELECDEVCO BSN)

Programmable Joysticks.

The Model 860 series of miniature forceoperated controls.

Whatever your requirements, you can easily program the microprocessor controlled conversion of these joysticks for either an RS232 or RS422 port.
The Model 860 series, in fact, is designed for easy compatibility through most serial ports. And more.
With these controls, precise positioning is now easier than ever. The secret is built-in operator assistance, a dead band at null and an exponential transfer curve. Single-element positioning and high slew rates are both easily obtained.
There's a choice of standard or custom packages, too, with pushbutton or paddle switches
To program yourself for more information on these programmable joysticks, write or call:

Measurement Systems, Inc.
121 Water Street, Norwalk, CT 06854, U.S.A. (203) 838-5561 CIRCLE NO 47

Introducing Major DC and Patriot DC with optional ThermaPro-V Technology. High pressure capabilities for computer and telecommunications applications, combined with ThermaPro-V, make Major DC and Patriot DC a design engineer's answer to complex cooling problems.
Comair Rotron's Major DC and Patriot DC with patented feathered edge blades offer wide voltage input and extended performance ranges. Simplified circuits, increased options, quiet ball bearing operation and an all metal venturi are now available in a single fan for multiple use.
ThermaPro-V Technology, Voltage Regulated, Programmable, and Thermally Speed Controlled.
Comair Rotron. The First Name in Forced Convection Cooling Technology

12 North Street Sawyer Industrial Park, Saugerties, N. Y. 12477-1096 Telephone: (914) 246-3615 TWX 910-333-7572 Telex: 551496
creased. It has a usable LO power range of 10 dBm . The typical conversion loss is 9 dB with 0 dBm LO power. The mixer requires a bias dc of 12 V at 8 mA . It's also available for use at 15 V . The mixer is supplied in a drop-in housing that features removable SMA connectors. The housing measures $1 \times 1 \times 0.375$ in. $\$ 1195$. Delivery, 90 days ARO.

RHG Electronics Laboratory Inc, 161 E Industry Ct, Deer Park, NY 11729. Phone (516) 242-1100. TWX 510-227-6083.

Circle No 358

TRIMMERS

- Rated for 500 mW at $70^{\circ} \mathrm{C}$
- Feature 1000-hour full-load life

The adjustable screw design of each CT-9 Series 18 -turn trimmer resistor permits actuation of a worm gear that turns a wiper assembly around the trimmer's circular resistive element. The trimmers' resistance values range from 10Ω to $5 \mathrm{M} \Omega$. Their multicontact precious-metal wipers have low 1% contact-resistance variations. The trimmers are rated for $500-\mathrm{mW}$ at $70^{\circ} \mathrm{C}$ and are derated to 0 W at $125^{\circ} \mathrm{C}$. Their other specs include a 300 V dc max voltage rating, a 200 -cycle rotational life, and a $360-$ g-cm shaft torque rating. Sealed with O-rings, the trimmers pass leak tests at $85^{\circ} \mathrm{C}$ and can withstand soldering temperatures of $350^{\circ} \mathrm{C}$ for as long as 3 sec . Their operating range spans -55 to $+125^{\circ} \mathrm{C}$. $\$ 0.79$ (5000).

Mepcopal, 11468 Sorrento Valley Rd, San Diego, CA 92121. Phone (619) 453-0332.

Circle No 359

PRESSURE SENSOR

- Interfaces with most harsh media
- Temperature compensation over 0 to $50^{\circ} \mathrm{C}$

The Model 84 pressure sensor is available in gauge and sealed-gauge

ranges from 5 to 300 psi and in absolute ranges from 5 to 50 psi . Its accuracy is $\pm 0.5 \%$. The unit has a stainless-steel housing, which uses silicone oil to couple a diffused piezoresistive sensor to a convoluted, flush, stainless-steel diaphragm. The diaphragm interfaces with most harsh media. Integral lasertrimmed resistors provide tempera-
 16×16 MAC available.
We've combined low power consumption and the intrinsic rad-hardness of our CMOS/SOS with real-time image processing, real-time radar processing, computer graphics and digital communications.
Investigate our large family of Digital Signal Processors. Call A Marconi sales engineer today at 516-231-7710.
You'll see why we're in the fast lane.

Please send details on Marconi's 16×16 MAC Please send information on Marconi's entire family of DSP devices
Name \qquad Company
Address \qquad
City
State
Zip

Phone

From the company that truly knows both military and VME

It took a company that knows both VME and military specifications to design and build the first fully militarized VMEbus boards. . . Plessey Microsystems. Only Plessey offers the totally VME-compatible PMV 68 family of modules for military environments. Processor boards. RAM, EPROM and EEPROM boards. Bubble memory. Even a board for interfacing the VME bus with the $1553 B$ bus. Plus custom Mil VME capabilities.

Full Mil Compliance

Each Plessey military VME board features MIL-STD-883C level B components to meet MIL-E-5400 (airborne), MIL-E-16400 (naval), MIL-E-4158 (ground mobile) and MIL-STD-810 (environmental) specifications. Other features include a

bonded aluminum thermal management layer, custom devices and extensive BITE facilities.

Complete ATR Systems Packaging

 PMV 68 boards can be furnished separately or assembled into rugged, custom-configured ATR boxes.Plessey also offers a full range of commercial VME boards, software and development systems for immediate system development.

From the One and Only Source

 for True Mil-Spec VMEJust call or write for all the details from the one company that truly understands both VME and military applications Plessey Microsystems. The ultimate supplier for Mil Spec VME.

Plessey

Microsystems

USA

One Blue Hill Plaza
Pearl River, NY 10965
Tel: (914) 735-4661
TWX: (710) 541-1512

9 Parker

Irvine, CA 92718
Tel: (714) 472-2586
Suite 600
2000 E. Lamar Blvd.
Arlington, TX 76006
Tel: (817) 261-9988

FRANCE

BP 74.7-9 rue Denis Papin 78914 Trappes Cedex Tel: (1) 30.51.49.52 Telex: 696441

GERMANY

D-6090 Rüsselsheim Bahnhofstraße 38 Tel: (061 42)68004 Telex: 17614293

UNITED KINGDOM

Water Lane, Towcester
Northants NN127JN
Tel: (0327) 50312
Telex: 31628
ture compensation and calibration over 0 to $50^{\circ} \mathrm{C}$. For a $1.5-\mathrm{mA}$ supply current, the nominal output span equals 100 mV . The device is $\pm 1 \%$ interchangeable. $\$ 50$ (OEM qty). Delivery, stock to six weeks ARO.

IC Sensors Inc, 1701 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 432-1800.

Circle No 360

2-COLOR LEDs

- Combine red and green LEDs in one package
- Luminous intensities range to 8 $m c d$

Housed in a 3-lead, industry-standard T-1 $3 / 4$ package, HLMP-4000 bicolor LED lamps contain a red chip and a green chip. The leads are spaced on $0.05-\mathrm{in}$. centers, with the center lead providing the commoncathode connection. The viewing angle is 65°. The typical luminous intensity, at a $10-\mathrm{mA}$ forward current, measures 5 mcd for the red chip and 8 med for the green chip. $\$ 0.46(10,000)$.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 361

TRANSISTORS

- Have collector breakdown voltages as high as 300 V
- Maintain gain at high collector currents

The ZTX-554, $-555,-556$, and -557 are high-voltage medium-power pnp
transistors. The ZTX-554 and -555 have collector-emitter breakdown voltages of 125 and 150 V , respectively; both have a gain of 50 to 300 at a collector current of 300 mA . Their maximum collector current equals 1 A , and their power rating specs at 1W. The ZTX-556 and -557 have collector-emitter breakdown voltages of 200 and 300 V , respec-
tively; both have a gain of 50 to 300 at a collector current of 50 mA . You can obtain all the devices in TO-92 cases. You can also order the ZTX555 and ZTX-557 transistors in sur-face-mount packages that come on $16-\mathrm{mm}$ tape for use with automatic placement equipment. $\$ 0.17$ to $\$ 0.20$ (1000).

Ferranti Electronics Ltd, Fields

> Europe's Finest Switch-Mode Supplies Now in U.S.A.

Powerline and Farnell, two of Europe's leading and most respected power supply manufacturers, announce the availability of their Switching Power Supplies in the U.S.A.

- 40-550 Watts
- 1-5

Outputs

- Most standard units available from stock
- Most

 models with UL, CSA,VDE and IEC certification

- Modifications welcomed

For complete technical specifications or information on price and delivery, please call our Applications or Sales Departments.

[^15]
COMPONENTS \& POWER SUPPLIES

New Rd, Chadderton, Oldham, Lancashire OL9 8NP, UK. Phone 061-624 0515. TLX 668038.

Circle No 362
Ferranti Electric Inc, 87 Modular Ave, Commack, NY 11725. Phone (516) 543-0200. TLX 6852104.

Circle No 363

POWER SUPPLIES

- Offer power levels of 25 to 150 W
- Feature 20-msec min holdup time

Housed in enclosures that are UL recognized and CSA certified, the 34 models in the Mustang series of switching power supplies provide output powers of $25,50,70 / 80,100$, and 150 W . All models feature an input EMI filter, inrush-current limiting, output-voltage adjustment, built-in overload protection, and typical operating efficiencies of 70 to 75%. Low-line to high-line regulation equals 0.4% and no-load to full-load regulation equals 0.8%. All models have a $20-\mathrm{msec}$ min holdup time. From $\$ 59.50$ (1000).

Computer Products Inc, 2900 Gateway Dr, Pompano Beach, FL 33069. Phone (305) 974-5500. TWX 510-956-3098.

Circle No 364

PRESSURE SENSORS

- Designed for hostile media in harsh environments
- Can sense from 15 to 300 psig

ST2000G Series pressure transducers are suitable for measurement of hostile media in harsh environments. Encased in rugged stainless-

Solid state AML manual controls

A Hall effect integrated circuit is the key to reliability and long life in these solid state pushbuttons, rockers, and paddles from the industry standard AML line. Simple to install and easy to wire, they can interface directly with microprocessors and other types of logic level circuitry.

These manual controls are designed with human factors in mind. For wide angle visibility, LED lighting is available. A variety of colors and legends offer additional design flexibility.

These products are UL and CSA recognized, and feature an 18-month warranty.

For more information or a FREE catalog covering our full line of manual controls, write MICRO SWITCH, Freeport, IL 61032. Or call 815-235-6600.

CIRCLE NO 108

Compact size, up to 4-poles

These tactile feedback and short travel pushbutton switches from the PB Series have a display area of just . $32^{\prime \prime}$, making them ideal for tight spaces. Yet they can incorporate up to four SPDT circuits.
Touch feedback PBs use a spring loaded actuator. To reduce travel and operating force, the short travel version uses a leaf spring actuator. Momentary action is provided.

These switches feature round-hole mounting and handle up to 11 amps . Buttons are available in black, red, and green for design flexibility.

For more information or a FREE catalog covering our full line of manual controls, write MICRO SWITCH, Freeport, IL 61032. Or call 815-235-6600.

steel packages, the transducers each feature an IC sensor element and signal-conditioning circuitry. They have pressure-sensing capability that ranges from 15 to 300 psig (pressure per square inch of gravity). You can obtain the tranducers with either 1 to 6 V de or 2.5 to 12.5 V dc for each pressure range. Their sensor output options include
full-scale spans of $5 \mathrm{~V} \pm 200 \mathrm{mV}$, and zero-pressure offsets, trimmed to within $\pm 100 \mathrm{mV}$, that allow you to interchange transducers without recalibrating. All the transducers feature temperature compensation to within $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$. The sensors are optimized for 0 to $70^{\circ} \mathrm{C}$ operation but will operate from -40 to $+85^{\circ} \mathrm{C}$. The transducers' operating

YOU TELL US WHAT YOU NEED YOUR LITHIUM BATTERY TO DO.

> WELL TELL YOU WHICH ONE OF OUR THOUSANDS OF CONFIGURATIONS DOES IT.

> THE CELLECTION"" PROCESS WE'VE DEVISED IS SO SIMPLE, YOU'LL WONDER WHY OTHER PEOPLE HAVENT DONE IT TOO.

саLL the cellection hotune: (716) 439-4653 and our technical specialists will contact you within one week to discuss your specific requirements. For standard applications, recommendations are provided within 48 hours.
A variety of lithium-based cell chemistries is available to meet the needs of specific applications. A broad range of sizes, terminations and pack configurations is available.

DIMISION OF WILSON GREATBATCH LTD. 10,000 WEHRIE DRIVE
CLARENCE, NEW YORK 14031 (716) 7592828 TEEX: 91386 FAX: (716) 7598879
caused by fluctuations in the received optical power. The link has a minimum accuracy of 0.3% and a response time of 2 msec max. The transmitters have LED indicators for power, overrange, and underrange signals. The receivers have LEDs and open-collector outputs to indicate overrange and lock conditions; the lock condition indicates that the receiver is accepting valid signals. \$900/pair.

EOTec Corp, 420 Frontage Rd, West Haven, CT 06516. Phone (203) 934-7961.

Circle No 367

BURN-IN SOCKETS

- Available in 20- to 68-position versions
- Feature housings rated for $200^{\circ} \mathrm{C}$ operation
These low-insertion-force, burn-in sockets come in 20 - to 68 -position

versions. They accept square, plastic chip carriers with J leads on $0.05-\mathrm{in}$. centers. The units feature liquid crystal polymer housings rated for continuous operation at $200^{\circ} \mathrm{C}$. You can obtain them with three types of contacts: beryllium copper rated to $200^{\circ} \mathrm{C}$, beryllium copper rated to $150^{\circ} \mathrm{C}$, and phosphor bronze rated to $125^{\circ} \mathrm{C}$. The contacts feature nickel-boron platings. The sockets have metal-locking frames that reduce insertion
forces, and positive ejection systems that facilitate manual or automatic loading and unloading and that also improve heat exchange. Their insertion life specs at 5000 cycles min. From \$8, depending on model and quantity.

Mark Eyelet Inc, 63 Wakelee Rd, Wolcott, CT 06716. Phone (203) 7568847. TWX 510-600-7291.

Circle No 368

SUPPRESSORS

- Designed primarily for field installation
- Feature a short-circuit failure mode
420 E 2 Series transient voltage suppressors are suited for field installation on equipment that has inadequate levels of transient protection. Each model has two pairs of circuits with line-to-line and line-to-ground protection. The family includes de-

Specialists In High Performance Lubricants

Meeting critical design parameters for:

- Low volatility
- Wide temperature range
- Extended service life Call (714) 660-9414 or write for more information.

Experts in Specialty Lubrication BRAY PRODUCTS DIVISION 16715 Von Karman, Suite 230 Irvine, California 92714

We want to power your next field test.

Let us show you how much a dryfit ${ }^{\circledR}$ sealed lead-acid battery can improve your product credibility! Just give us your applicafion specs and we'll match them with the dependable dryfit battery you need.

Whether primary power or standby, dryfit is the right battery for the job. Because, dryfit is the original gelled electrolyte, re-combination sealed lead-acid battery. The only one of its kind with patent protected advantages for extended cycle life. The one with longer float life. And the one with the easiest charging techniques and the proven leakproof construction!

Just look at the broad range of critical applications where dryfit outperforms ordinary batteries:

Backup power-
 UPS

Computers
Electronic scanners/Point of sale equipment Security/Fire alarm systems
Telecommunications

Primary Power-

Portable medical equipment
Robots
Wheelchairs
Photographic equipment

When there's no excuse for failure.

In what is perhaps the most highly publicized "field test" of its kind, six dryfit marine batteries powered the computers onboard the Stars © Stripes ${ }^{\text {Tm }}$ for the yacht's dramatic 1987 America's Cup win! The dryfit Prevailer batteries served as sole source of power for the yacht throughout the Cup races, running not only the computers, but also the all important navigation system and video camera equipment.

The same proven technology that has made dryfit the best selling battery in Europe for decades has been harnessed to meet marine needs and named dryfit Prevailer ${ }^{\text {™ }}$. Featuring superior endurance and dependability characteristics, the new marine battery eliminates winter storage problems, can be used and charged at any angle and will even survive an accidental submersion.

Putling us to the test begins with one quick, free call to

1.800-4dryfit

If you have a need for customized batteries, let's talk. We can design and manufacture battery packs of any size and configuration to meet your exact specs.
vices with operating line voltages of $\pm 12, \pm 25, \pm 28, \pm 36, \pm 50$, and $\pm 60 \mathrm{~V}$ max; the maximum clamping voltages (at 2000A) spec at 22,44 , $46,60,80$, and 95 V , respectively. You can make electrical connections easily, using two screws for line connections and three fork terminals for equipment connections. The suppressors feature a short-circuit
failure mode. Their maximum standby current equals $5 \mu \mathrm{~A}$ and their line throughput resistance specs at 12Ω. All the suppressors operate from -55 to $+100^{\circ} \mathrm{C}$. From \$24 (100).
General Semiconductor Industries Inc, 2001 W Tenth Pl, Tempe, AZ 85281. Phone (602) 968-3101.

Circle No 369

> INTERCONNECT SYSTEMS DIVISION, MICRODOT INC. gives you a broad range of quality interconnecting devices.

The INTERCONNECT SYSTEMS DIVISION-MICRODOT INC. has a longstanding worldwide reputation as a respected supplier of a broad array of electronic/ electromechanical connecting devices and specialty cable. The INTERCONNECT SYSTEMS DIVISION charter encompasses the engineering and manufacture of high-reliability MIL-Spec and commercial electronic/electromechanical connectors. CIA products include: MIL-Spec circular \& custom hermetic connectors. MALCO manufactures an array of high density microminiature "D" connectors meeting MIL-C83513, coaxial connectors \& cable, high density circular connec-
tors, backplane assemblies \& headers QPL'd to MIL-C-28754, telephone module plugs \& jacks, as well as " D " subminiature crimp and board side connectors \& assemblies.

For additional information write: INTERCONNECT SYSTEMS DIVISION, MICRODOT INC., 201 Progress Drive, Montgomeryville, PA 18936, (215) 699-5373. TWX: 510-661-8206.
(8)

INTERCONNECT SYSTEMS DIVISION MICRODOT INC.
"Helping Industry Put Things Together With World-Class Products" ${ }^{\text {Tw }}$

DC/DC CONVERTER

- Delivers 5V at 15 A
- $400-\mathrm{kHz}$ switching frequency

The Model BWT-130 switch-mode de/dc converter converts an unregulated 48 V dc input to a regulated 5 V output at currents ranging to 15 A . The converter has a $5.7 \mathrm{~W} / \mathrm{in} .^{3}$ power density and an 80% min efficiency. The fixed-frequency operation is 400 kHz , and the noise is less than 0.5% p-p from de to 20 MHz . Other features include a $0.2 \% \max$ load regulation, 0.1% max line regulation, overvoltage protection, current limiting to $18.8 \mathrm{~A}, 2000 \mathrm{~V}$ dc min input-output isolation, and a typical no-load power consumption spec of 0.5 W . The operating range, with natural convection, spans -20 to $+60^{\circ} \mathrm{C}$. $\$ 300$.

Bowmar/White Technology Inc, 4246 E Wood St, Phoenix, AZ 85040. Phone (602) 437-1520.

Circle No 370

TRIMMERS

- Designed for high-density applications
- Sealed to withstand board-washing processes
The RJ-4 and ST-4C are singleturn, cermet trimmers. The RJ-4 is housed in a TO-18-type package, which measures $0.193 \times 0.177 \mathrm{in}$. It

Choosing the right fan for your application is easy, when you choose PAPST. Simply because PAPST offers the broadest line of AC and DC tubeaxial fans in the world.
We also offer you some of the newest and most innovative. Like our new 48-volt DC MULTIFAN, our new sleeve bearing 80 mm DC MULTIFAN, 6 -inch DC fans with speed sensing or alarm circuitry, and our latest 25 mm SLIM LINE series of AC fans.
All PAPST fans are designed to deliver high reliability, low noise, and low power consumption. They all feature the PAPST concept of Mechatronics

- electronic commands efficiently converted into direct mechanical movement. And theyre all backed by one of the largest sales and technical support organizations in the country.

So if you don't want to waste a lot of time finding the wrong fan, spend a little time and call or write for our free catalog. It will help you find the fan you need. Fast.

PAPST MECHATRONIC CORPORATION. Aquidneck Industrial Park,
Newport, R1 02840. (401) 849-8810
Telex 952092 1-800-551-6245
(Continental USA except for MA)
1-800-262-5226 (MA only)
CIRCLE NO 207

There's a quiet revolution in cooling. And PAPST is the leader:

Score a Whole In One

Score the MS-DOS-Compatible System On a Chip from NEC

Now you can score on your next round of systems designs and parlay your MS-DOS investment. Simply use our CMOS V25 ${ }^{\text {TT }}$ Whole in One ${ }^{\text {TMW }}$ - the new 16 -bit microcomputer on a chip from NEC.

It lets you tee off with features like a 16 -bit ALU, two full-duplex UARTs, true STOP and HALT modes, and a whole lot more.
The result is a master performance with a two-cycle data bus (250 ns minimum information transfer time) and ultra-highspeed interrupt service (typically $5 \mu \mathrm{~s}$).

Keeping score? In direct match play, EDN and Byte benchmark tests show the V25 clearly higher in performance.

MS-DOS is a trademark of Microsoft Corporation. Whole in One and V25 are trademarks of NEC Electronics Inc.

Really Learn the Score

Check out the V25's real strengths. Full support, for one. It's here now with hardware and software tools including EPROM/OTP parts. And you're supported by regional design centers with an increasing number of application engineers.

Stand-alone ICE and PC-based mini-ICE use our relocatable assembler and C compiler to provide powerful development capability for system designers.

Production is another winning shot. The V25 is in full production in multiple fabs with high yields allowing very competitive pricing. Now add NEC's traditional high quality and leadership in CMOS manufacturing for a par-beating system on a chip.
For complete technical documentation and the number of your local Distributor Pro Shop, call 1-800-632-3531. In California, call 1-800-632-3532 and score your own Whole In One: the V25 from NEC.
${ }^{\circ}$ Copyright 1987 by NEC Electronics Inc.

NEC Electronics Inc.

401 Ellis Street, P.O. Box 7241
Mountain View, CA 94039

Rack Mount PC-AT's

with $1,2,5$, even 10 systems in a single box!

If you're into PC Bus systems, then I-Bus speaks your language. We make board-level PCs and PC-ATsusing a passive backplane with the central processor on an expansion-sized board. Great for field serviceability, great for future updating.

We have rack mount, tabletop and wall-mounting chassis with $6,8,9,12$, 15 and 20 slots, PC and PC-AT backplanes, complete with power supplies and wiring. And there's a choice of five different I-Bus CPU boards with $80286,8088,80188$ or V40 processors.

To make a computer, you just stick one of our CPU boards into one of our chassis slots, then add any of the thousands of available add-on cards. You can divide up the slots any way you want for multiple processors, so you can get five 3 -slot computers in a single 15 -slot chassis.

Call us today for all the details.

Call Toll Free (800) 382-4229
in Calif. call (619) 569-0646

IFUS
The Full Service PC Bus Company 5780 Chesapeake Court San Diego, CA 92123

COMPONENTS \& POWER SUPPLIES

has a power rating of 500 mW and is available in top- or side-adjust configurations. The ST-4C measures $0.177 \times 0.197 \times 0.091 \mathrm{in}$. It's available with top adjustment. Both trimmers have a resistance range of 10Ω to $2 \mathrm{M} \Omega$ and a standard tolerance of 20% (10% tolerance is available). Both of them also have a 1% max CRV (contact-resistance variation) and are sealed with an O-ring, which enables them to withstand a variety of board-washing procedures. RJ-4, \$1.10; ST-4C, \$0.77 (1000).

Mepcopal Co, 11468 Sorrento Valley Rd, San Diego, CA 92121. Phone (619) 453-0332.

Circle No 371

KEYBOARDS

- Feature an optional remote barcode reader
- Come bundled with an enhanced version of Smartkey

G80-2000 Series keyboards have an identical layout to the IBM 3270 keyboard, with 24 function keys along the top and 10 keys on the left. Normally, only software written for the 3270 recognizes the extra function keys. However, the vendor's keyboards come bundled with an enhanced version of Smartkey so that users of IBM PC/XT, PC/AT, or compatible computers can take advantage of the extra keys. You can obtain N-key rollover, LED ac-tuation-indicators, and programmable autorepeat as options. You can order the keyboards with a lowprofile housing that conforms to DIN standards. All the keyboards come with US/International, French, and German character layouts. You can also obtain custom versions of the keyboard that offer other layouts. $\$ 900$ with all options.

Cherry Electrical Products, 3600 Sunset Ave, Waukegan, IL 60687. Phone (312) 360-3500.

Circle No 372

Academic Press is launching a new series of books for high technology professionals. To write these books, we are seeking authors in such fields as:

- 32-bit microprocessor systems
- ASIC technologies
- data acquisition and conversion
- sub-micron IC technologies
- semiconductor manufacturing and QC
- test and measurement systems
- telecommunications and ISDN
- surface mount devices
- multiprocessing technologies
- and similar topics on the leading edge of electronics.
For those who can "write the book" on hot electronics topics, Academic Press will pay generous royalties and back their efforts with intensive promotion and marketing campaigns. Editorial guidance and support will be an important part of the writing process.

If you are interested in being an author, contact: Harry Helms, Senior Editor Electronics and Electrical Engineering Academic Press
1250 Sixth Avenue, San Diego, CA 92101 or call (619) 699-6840.

CIRCLE NO 57

COMPUTERS \& PERIPHERALS

CLUSTER CONTROLLER

- Can control 10 devices 800 ft from a PC
- An 80186 offloads I/O tasks from the host CPU
The CC9000 is an 80186 -based communications control device. It provides eight serial and two parallel ports and can control devices located as far as 800 ft from the host PC. Since the host connection is compatible with a StarLAN interface, you can connect each unit to the host via a StarLAN hub or minihub interface card. The unit handles full-duplex operations and programmable baud rates from 50 to 38.4 k baud. The host connection takes place via inexpensive, unshielded twisted-pair telephone wire. Using its $\mu \mathrm{P}, 512 \mathrm{k}$ bytes of RAM, and proprietary system software, the unit offloads some of the I/O tasks from the host. It supports

PCs and terminals running the MS-DOS-compatible PCMOS/386 multiuser operating system from Software Link. 8-port unit, $\$ 1295$; upgradable 4-port unit, $\$ 1295$.

Star Gate Technologies Inc, 33,800 Curtis Blvd, Eastlake, OH 44094. Phone (800) 782-4283; in OH, (216) 951-5922.

Circle No 407

PEN PLOTTER

- Organizes plot data to minimize pen movements
- Plots at 30 ips on axis at a $2 g$ acceleration rate

The 1023 pen plotter provides a plotting speed of 30 ips on axis at a 2 g acceleration rate; its diagonal
plotting speed is 42 ips diagonally at a 2.8 g acceleration rate. A lookahead feature keeps the pen moving at high speed when a line changes direction by $<45^{\circ}$. One of its two $68000 \mu \mathrm{Ps}$ controls servo motion and linear pen motion, and the other controls data communications and management. Communications take place via an RS-232C interface with speeds to 19.2 k baud. A data-management algorithm organizes plot data to minimize pen movements and pen changes. The algorithm searches the data structures stored in memory to plot the vector closest to the current pen position. An 8 -pen rotating turret gives you a choice of eight colors or pen types. An optical sensor determines the type of pen selected and automatically adjusts pen force and velocity. Adjustable pinch rollers can handle media sizes from $8.5 \times 11 \mathrm{in}$. to $25 \times 36 \mathrm{in}$. The plotter also has an

MTBF of 3000 hours. $\$ 4895$.
CalComp, 2411 W La Palma Ave, Anaheim, CA 92801. Phone (714) 821-2142.

Circle No 408

GRAPHICS BOARD

- Color graphics board for STD bus has an ACRTC processor
- Board attains drawing speeds of 2 million pixels/sec

The HRG-1000 is a color graphics board for the STD bus that features a Hitachi ACRTC graphics processor. The board can attain draw-

End the connector compromise...

1. LIF RACK \& PANEL CONNECTORS

2. MULTIPIN WITH 8-200 AMP CONTACTS

3. MIL-C-28748A RELIABILITY

in electronic power supplies

Only Hypertronics ends the compromise in power supply connectors for backplane subassembliesin military, computer and other electronic systemsby combining Low Insertion Force (LIF) power, signal and MIL spec reliability in a single rack \& panel connector.

Our modular design gangs power contacts, rated from 15 to 200 amps , with low-insertion-force signal contacts. Combine these design alternatives with high current/small size performance of the Hypertac ${ }^{\circledR}$ contact-for unique cost and space efficiency.

And now our L Series connectors have been proven to MIL-C-28748A performance standards.

Now you can have it all...in rack \& panel
connectors for power and signal applications ranging from power supply to portable disc drives.
End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC ${ }^{\circledR}$:

Inserting pin into hyperboloid sleeve.
\square)

HYPERTRONICS CORPORATION
"New Horizons in Connectors"
16 Brent Drive, Hudson, MA 01749 (617) 568-0451 Telex 951152 FAX 617-568-0680

* ENHANCED STATISTICS now providing Histograms for Bus Utilization, Absolute time from Trigger and Search on General Pattern in Trace, in addition to Histograms for Bus Activity Distribution between user defined Address Windows and Bus Levels.
* 96 channels Board Based Stat Analyzer with a 2K Trace Buffer.
* Trigger on 32-bit Address Window, 32-bit Data (any byte xx), 32 Discrete Signals (any x) and Bus Levels.
* Store Qualifiers on Address Window, Bus Levels, both or none.
* Time Tag for Elapsed time between samples.
* Two RS232 ports enables Transparent operation from ASCII terminal.
* Trigger Output and External Signal Input.
* VBT-160 from \$3,350; VBT-320 from \$4,900.

DID YOU KNOW?

EDN is distributed at every major electronics/computer show in the U.S., France, and Germany.

COMPUTERS \& PERIPHERALS

ing speeds of 2 million pixels/sec. When used with an analog monitor, it can provide 16 simultaneous colors from a palette of 4096 colors. The board also works with TTL RGB input color monitors that have resolutions ranging from 320×200 pixels to more than 800×600 pixels. It includes $25-\mathrm{MHz}$ and $32-\mathrm{MHz}$ video output clocks and is programmable for the number of horizontal pixels, the number of lines, and synchronization rates. The board supports multiple screens, panning, zooming, windows, clipping, and more than 20 high-level drawing commands including lines, rectangles, polylines, polygons, circles, ellipses, and ares. The board occupies an 8-byte block in the I/O or expanded I/O space. It requires 5 V at 2.2A typ. $\$ 664$.

Cobra Systems, 14,700 Main St, Suite 3, Bellevue, WA 98007. Phone (206) 641-2759.

Circle No 409

JITTER REMOVER

- Removes jïtter on data from a master port
- Distributes reconditioned data to four ports

The DR-10 removes jitter from asynchronous data present on a master port and redistributes it to four auxiliary ports. It also removes jitter on data received from any of the four auxiliary ports prior to sending the data to the master port. All ports are RS-232C compatible and the redistributed data is time delayed by one byte. The unit operates full duplex at data rates from 300 to 9600 bps . The master port is configured as DCE (data communications equipment) and the auxiliary ports are configured as DTE

The Tornado. An awesome, highly visible power in nature. Man's many methods to harness the power of nature can be called an art. At Sorensen, we have turned that art into a science by designing a comprehensive line of high quality power sources that range from laboratory and industrial power supplies to digital-to-analog interface units and modular switching power supplies.
For example, our DCR series of high power laboratory power supplies offers you a choice of over 50 models in several voltage ranges from 0-7 Vdc to $0-600 \mathrm{Vdc}$ with power levels from 400 to 20,000 watts. Every model in the DCR series contains, as standard, the features you need for a wide range of applications from bench top to integrated test and burn-in systems.

In addition to the DCR series we produce a full line of off-the-shelf and semi-custom as well as custom power supply

assemblies. With over 400 different power instruments from which to choose, you can be sure of finding a quality power supply unit that will meet your particular requirements.
All Sorensen power instruments are designed and built to last. That's why we back them

A Raytheon Company

5555 N. Elston Ave. Chicago, IL 60630
with our Five Year limited parts and labor warranty.

It's not just "hot air" when we say that no other manufacturer can match Sorensen's experience and reputation in power supplies, earned over the past 44 years.

If you're interested in high quality power supply performance contact us at (312) 775-0843 or simply fill in the handy coupon and return to us.

(data terminal equipment) to allow transparent insertion of the device in an RS-232C line. You can install one or two independent channels in a $13 / 4$-in. standard 19 -in. rack enclosure. The unit also has a battery backup option that powers the unit for more than 10 hours when ac power is removed. Single-channel unit, $\$ 1195$; dual-channel unit, \$1695.

Young Design Inc, 7882 Tyson Oaks Circle, Vienna, VA 22180. Phone (703) 448-8939.

Circle No 410

FRAME STORE

- 1024×2048-pixel logical resolution
- Provides onboard color-image processing

The FS1000 Frame Store board provides IBM PC/ATs and compatible computers with image-processing

capabilities. The board is based on a $68010 \mu \mathrm{P}$; it has 2 M bytes of video RAM and a Brooktree Bt453 color palette IC that provides as many as three overlay colors and displays as many as 256 colors from a palette of 16 M colors in the video image. Onboard image-processing capabilities include image compression, zoom, and scrolling. The device sends the image to a standard RGB color monitor. Address mapping in the video RAM allows you to position single or multiple images anywhere on the screen. The text/graphics overlay facility allows you to add informa-
tion to the screen without destroying the video-image information. A software library of image-processing routines is available for the board. To expand the board's imageprocessing capabilities, you can link it to a Data Translation (Marlborough, MA) DT7020 32-bit floatingpoint array processor, via the Data Translation DT-connect bus. This connection lets you avoid using the PC/AT bus to transfer information between the two boards. The vendor is developing a piggyback frame grabber for the board. The FS1000 comes in two versions: one for use with NTSC color signals, one for use with PAL color signals. It costs $\$ 4995$, including a manual and sample programs.

Camtrel Computer Systems Ltd, Unit 101, Cambridge Science Park, Milton Rd, Cambridge CB4 4FY, UK. Phone (0223) 61506. TLX 94012250

Circle No 411

PERIPHERAL DEVICE

- Offers 4-channel data acquisition for IBM PC or compatibles
- Acquires data at 1- to $500-\mathrm{kHz}$ sample rates
The R414 peripheral device for the IBM PC provides four data-acquisition channels. Its sampling rates range from 1 to 500 kHz , and its 8 -bit A/D converter triggers on an internal or external analog signal. You can adjust the unit's gain so that the analog-input-voltage range spans 10 mV to 320 V p-p. All of the unit's inputs have diode protection.

The unit comes with user programs and subroutines written in C, Turbo Pascal, or Basic. You can obtain software that lets you operate the unit as a digital oscilloscope or spectrum analyzer; digital-signalprocessing hardware is also available. $\$ 295$.
Rapid Systems, 433 N 34th St, Seattle, WA 98103. Phone (206) 5478311. TLX 265017.

Circle No 412

COLOR MONITOR

- Has automatic frequency scanning
- Provides graphics resolution to 800×600 pixels
The Spectrasync 1437 is a color monitor with automatic frequency scanning from 15.5 to 37 kHz horizontally and from 50 to 90 Hz vertically. The monitor automatically adjusts the aspect ratio (the horizontal

and vertical dimensions and positions) to preset values. This adjustment allows the monitor to maintain the image on the screen at the desired size regardless of the scanning frequency. The monitor can be used with the IBM PS/2; the IBM PC, PC/XT, PC/AT, and compatibles; and the Apple Macintosh II. It supports IBM's CGA, EGA, PGA, VGA, and MCGA graphics stand-

How to stay current on glue logic.

Samsung's Advanced AHCT CMOS Logic Family meets the demands of your new 16 - and 32-bit designs for high speed, high drive and low power.

Available now.

Our Advanced AHCT CMOS Logic Family has a selection of 109 part types available in production quantities now, increasing to 157 parts by 20 ' 88 . This means you can design AHCT into your product now and move immediately into production.

If you need to reduce power in your existing designs, Samsung's AHCT gives you pin-for-pin, part-for-part replacement for ALS and FAST. ${ }^{\text {"w }}$ It fits right in and reduces power ten-fold. Yet Samsung

KS74AHCT PARTS LIST

AHCT does not have a premium price. It costs the same as ALS. Plus, our surface-mount (SOIC) package option is moving into production.

Rugged and reliable.

Designed into each part is a minimum of 200 mA latch up protection and a minimum of 2000 V ESD protection. So you won't have to worry about them.

Write or call Samsung AHCT' CMOS Logic Marketing at 408/434-5400 for free samples and a data book.

Single Output Up To 400A

ReLIABLE SYSTEM POWER. PERIOD.

Case 10
750 to 2000 Watts
$5 " x 8 " \times 11^{\prime \prime}$
$\mathrm{N}+1$ Redundancy
$A C$ and $D C$ Inputs
1 to 5 Outputs
50A Auxiliary Mag Amp Output Ch 2

For $5 \times 8 \times 11$ "slot" switching power supplies from 750 to 2000 Watts, the Qualidyne Case 10 is all you need to know. MTBF of 150,000 hours. Single or multiple (up to 5) fully regulated outputs from 2 to 48 VDC. Precision paralleling for $\mathrm{N}+1$ redundancy. AC and DC input voltages. Safety listings from UL, CSA and TUV. Compliance with IEC 380 \& VDE 0806. FCC 20780 Class A filtering. Nothing fancy, just reliable slot power-period.

THE SWITCHER FIT FOR YOUR NEEDS

Qualidyne Systems, Inc.
3055 Del Sol Boulevard, San Diego, CA 92154 (619) 575-1100 Telex: 709029 FAX: 6194291011 (800) 445-0425 In Calif. (800) 237-6885

CIRCLE NO 60

920 Rathbone Avenue
P.O. Box 1528

Aurora, Illinois 60507 USA
FAX 312/844-4286
$312 / 844-4300$

STANDARD GRIGSBY We Switch The World

COMPUTERS \& PERIPHERALS

ards and can accept TTL digital or analog video inputs. The 14 -in. diagonal screen has a $0.31-\mathrm{mm}$ pitch and provides graphics resolutions as high as 800×600 pixels. Three frontpanel RGB pushbuttons let you select from seven text colors. When all three buttons are off, the display is monochrome. An optional tilt/swivel base is available. $\$ 849$. Tilt/swivel option, $\$ 29$.

Idek America Inc, 204 S Olive St, Rolla, MO 65401. Phone (314) 3647500.

Circle No 413

PRINTER

- Provides laser-quality output for $\$ 995$
- Prints text at speeds of 120 cps

The DeskJet is a personal printer with laser-quality output. It employs inkjet technology, but prints high-resolution text and full-page graphics at 300 dots/in. It prints text at speeds of 120 cps for laserquality text and 240 cps for draft quality. The printer features an automatic cut-sheet feeder (to 100 sheets) and a front-loading design for quick reloading of paper. It can accommodate US letter, legal, and European A4 paper sizes, as well as manually fed \#10 business envelopes. The printer has Courier, Courier Bold, and Courier Compressed fonts built in. Two accesso-ry-cartridge ports extend the available font types. These ports also provide memory expansion (to 256 k bytes of RAM) for soft fonts and provide an interface for an FX-80 printer emulation cartridge. The printer has a 16k-byte buffer and

New 150KHz switcher. 4.3 inches high. 50 to 1500 Watts. SELV. And loaded.

- 8 mm primary-secondary and 4 mm primary-ground spacings for a SELV (Safety Extra Low Voltage) power supply per IEC 380/VDE 0806. UL recognized, CSA certified. VDE/IEC certified by TÜV Rheinland. - On-board dual-choke filter meets FCC Class A. - MIL STD 810D certified. - 75-80\% efficiency. - Soft start. - Power on LED. - Remote on/off, optically isolated.
- Remote error sensing. - Voltage adj $+10,-30 \%$.
- Overvoltage protection. $115 / 230 \mathrm{~V}$ a-c selectable input. - 300 V d-c input. - Current share (1500 W).
- The 300W and 1500 W models have undervoltage protection.
- Holding time: 20 msec . min, 30 msec typ.
- Supplied fully enclosed for industrial applications.

All built-in. No extra cost.*

Shown: 300-Watt Model RAX 12-25K (Output 12V/25A).
*Price complete:
50W - \$199
100W - \$289
175W - \$380 300W - \$520 1500W - \$1450 Quantity discounts available.

24 MODELS OF HEAVY DUTY, INDUSTRIAL GRADE, FET-BASED SWITCHING POWER SUPPLIES KEPCO/TDK SERIES RAX

If Belden can't deliver the lead wire you need you're out of luck!

Standards, specials, colors galore. UL and CSA listed configurations in temperature ratings from $80^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. The most complete line of standard lead wire types and sizes. And custom design capabilities to meet the most demanding electrical and physical operating environments.

If you're looking for quality lead wire, talk to Belden. You won't find a better source, anywhere. Call or write for our lead wire catalog today.

Belden Wire And Cable,
P.O. Box 1980, Richmond, IN 47374.

Phone: 1-800-BELDEN-4

BELDEN

COOPER
 INDUSTRIES

WHAT'S NEW FOR THE IBM PS/2

Wire wrap VECTORBORD ${ }^{*}$

High speed prototyping boards
for manual or semi-automatic
assembly. Solderable versions
also. Both with impedance
matched extenders.

USES SMD CAPS AND SOCKET PINS
Opposing v/g planes reduce crosstalk.

- Connectors, brackets, and accessories. Available for all PS/2 Models and IBM-PC, XT, \& AT.

Vectorbord plus For $1 B M P S / 2$

Call or send for brochure.

[^16]
COMPUTERS \& PERIPHERALS

employs the company's PCL printer language. Either an RS-232C or a Centronics parallel port serves as the computer interface. $\$ 995$.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 414

COMMUNICATION BOARDS

- Provide either eight or 16 serial ports for the IBM PS/2
- Feature communications for multiuser operating systems

PS-COM/X Series boards for the IBM PS/2 models 50, 60 , and 80 feature either eight or 16 asynchronous serial communications ports per board. You can mount as many as four of these 16 -channel boards on the $\mathrm{PS} / 2$ Bus to provide 64 serial ports. You can select data-transfer rates from 50 to 56 k baud for each port. The boards use high-speed 16450 UARTs and are compatible with the DOS, OS/2, Xenix, Unix, Theos, Pick, QNX, and PC-MOS operating systems. Each port provides full modem control. You can mount as many as $16 \mathrm{RJ}-45$ connectors in a compact, shielded extension that mounts on the faceplate connector extending from the board. The connector allows you to use multiple boards in a system that has either RJ-45 or RJ-11 cabling. COMware software allows DOS to access as many as 64 COM ports. 8 -port version, $\$ 895$; 16 -port version, $\$ 1295$.

DigiBoard Inc, 6751 Oxford St, Saint Louis Park, MN 55426. Phone (800) 344-4273; in MN, (212) 9228055.

Circle No 415

C MODULA 2 PASCAL

Cross-Compiler Systems

- High performance, fieldproven software development systems producing extremely compact, fastexecuting, ROMable output code.
- Each cross-development package includes:
- C, Modula 2, or Pascal Cross-Compiler
- Macro Relocating CrossAssembler
- Object Code Librarian
- Object Module Linker
- Hexadecimal Format Loader [S-Records, Intel Hex, TEK Hex]
- Standalone Support Library [EPROMable, with full floating point support]
- All languages can be intermixed with assembly language
- Targets supported:

```
6301/03 6801/03 6809 68HC11 68000/08/10/12 68020/881/851 32000/32/81/82
```

- Available for following hosts: VAX: VMS/UNIX/ULTRIX PDP-11: UNIX/TNIX/VENIX 68000: UNIX System V PC, XT,AT: MS-DOS
PowerNode: UTX/32

UNIX: TM of AT\&T Bell Labs. VAX, VMS, PDP-11. ULTRIX: TM of Dig. Equip. Corp. TNIX: TM of Tektronix Inc VENIX: TM of VenturCom PowerNode: UTX/32: TM of Gould Inc.

INTROL CORPORATION
647 W. Virginia Street Milwaukee, WI 53204 [414] 276-2937 FAX: (414] 276-7026

RAM BOARD

- Provides $4 M$ bytes of $i L B X-I I$ memory for Multibus II systems
- Has a refresh mode suited to video acquisition

The FAB104 Multibus II-compatible memory board provides 4 M bytes of parity-checked dynamic RAM, which is sent to an iLBX-II bus on its P2 connector. The board supports 8 -, 16 -, 24 -, and 32 -bit data transfers, and 26 -bit addressing on the iLBX-II bus. It has a readaccess time of 375 nsec and a writeaccess time of 250 nsec. You can program a variety of board parame-ters-including its base-address and refresh modes-via the Multibus-II interconnect space, which is supported on the iLBX-II bus. One of the board's refresh modes is designed to allow the board to acquire video information and support im-age-processing operations in real time. The board typically draws
3.5 A from its 5 V supply. FrFr 34,200.

Centralp Automatismes, 16 rue Gabriel Peri, 92120 Montrouge, France. Phone (1) 42533617. TLX 632380.

Circle No 416

I/O BOARD

- Provides a serial and a parallel port
- Serial port is addressable as either COM1 or COM2

The IO/AT is an I/O board for the IBM PC, PC/XT, PC/AT, PS/2 models 25 and 30 , and fully compatible computers. It provides a $25-\mathrm{pin}$ parallel port, which you can address as LPT1, LPT2, or a user-selectable port. It also provides a 9-pin serial port that you can address as COM1, COM2, or a user-selectable port. An NS16450 UART chip provides the interface to the serial port. An op-

tional 25 -pin serial port is also available. You can access the additional serial port by connecting a ribboncable assembly to the board. If you install four of the boards, each with the optional serial port, in your PC, the PC will be able to communicate with as many as eight serial devices. The board has no switches or jumpers to set, so a particular configuration is completely software controlled. Once the address selections have been made, they are stored on the board in static RAM that's pow-

VI-200 ${ }^{\mathrm{mm}}$ Series

NICOR
 Component Solutions For Your Power System

NPUT
Nominal (Range)

POWER
$50-75-100-150-200$ Watts

OUTPUT
Hominal (Nolystable)

$24(20-30)$
VDC
80.90%
S72
$2.4^{n} \times 4.5^{n} \times 0.5^{n}$

No Room Left For Your Power Supply? Talk To VICOR!

VI-200's deliver as much as 200W from 5.5 In. ${ }^{3}$
Write for our application note,
"Power Systems Size Reduction with High Density DC-DC Converters."

Beyond FET: SIIT, from Tokin.

Tokin introduces SIT (Static Induction Transistor), an all new high-power vertical field effect transistor featuring unsaturated current and low drain-to-source resistance.

Tokin accomplished this by minimizing gate resistance and high frequency signal loss. And its heat-proof design and nagative temperature coefficient eliminate spot concentrations of current and reduce thermal discharge.

This means SIT can be used for a wide range of practical high-frequency, high-power applications, from high-power ultrasonic devices to induction heaters, from power supplies for lasers to amplifiers and transmitters.

Put some punch in your performance. Call us now.

Applications of SIT

Electrical Characteristics (Ambient Temperature: $25^{\circ} \mathrm{C}$)

Tokiln
Tokin Corporation
Head Office
Hazama Bldg 5-8, Ni-chome, Kita-Aoyama
Minato-ku, Tokyo 107, Japan
Minato-ku, Tokyo 107, Japan
Tel: Tokyo (03) 402-6166 Fax: Tokyo (03) 497-9756 Telex: 02422695 TOKIN J

Tokin America Inc.
2261 Fortune Drive, San Jose, California 95131, Tel: 408-432-8020 Fax: 408-434-0375

Chicago Branch

Presidents Plaza 1, Suite 200N, 8600 W. Bryn Maw Chicago, IL 60631 Tel: 312-380-0030 Fax: 312-693-8334

München Liaison Office
Elisabethstraße 21, 8000 München 40, Bundesrepublik Deutschland
Tel: (089) 2717522 Fax: (089) 2717567 Telex: 524537 tokin d
You can reach our agents by phone: London $01-837$ 2701: Paris $1-453475$ 35; Milan (0331) 678.058 Munich (089) 5164-0; Seoul (02) 777-5767: Taipei (02) 7311425; Hong Kong 3-315769; Singapore 747-8

COMPUTERS \& PERIPHERALS

ered by a lithium battery. The boards measure $4.3 \times 4.2 \mathrm{in}$. and are FCC Class B certified. IO/AT board with one serial and one parallel port, $\$ 119$; with two serial and one parallel ports, \$139.

Boca Research Inc, 6401 Congress Ave, Boca Raton, FL 33487. Phone (305) 997-6227. TLX 990135.

Circle No 417

HANDHELD TERMINAL

- Contains DTMF communications circuit
- Features 2-line, 32-character display
The MultiPortable pocket-size data terminal uses an 8-bit $\mu \mathrm{P}$ that features communication circuits for DTMF (dual-tone multifrequency) and tone transmission. The $\mu \mathrm{P}$ also provides audio-tone monitoring and pulse-width timing for tone detection. The terminal has 64 k bytes of internal memory, an 8-bit parallel port, an RS-232C port, and three I/O and control ports. The package includes a 66 -character qwerty keyboard and a 2 -line, 32 -character liq-uid-crystal display. An optional 1200 -bps modem transfers data via two RJ-11 telephone-jack interfaces. When functioning as a voice terminal and "smart" telephone, the unit stores names, addresses, and numbers in a directory that enables it to perform automatic dialing. One edge of the terminal contains a Memocard access port. This port can transfer and accept data from a credit-card-size memory card containing an EEPROM. The unit measures $61 / 2 \times 33 / 4 \times 1^{1 / 4} \mathrm{in}$. and weighs about 12 oz . Terminal with optional modem, $\$ 650$; 2k-byte Memocard, \$79; 8k-byte Memocard, $\$ 139$.

Multimil Inc, 670 International Parkway, Suite 190, Richardson, TX 75081. Phone (214) 644-7724. TLX 286258.

Circle No 418

Series 225 Programmable High Voltage Power Supply

Integrated IEEE 488 Interface Programmable Operating Modes 0.001\% Regulation 0.1\% Setting \& Monitor Accuracy Low Ripple E Noise Diagnostic Self:esting Load Protective Circuitry Laboratory E System Applications

| MODEL | HV OUTPUT |
| :---: | :---: |
| $225-017$ | 0 to $\pm 1 \mathrm{kV} @ 30 \mathrm{~mA} \mathrm{DC}$ |
| $225-03 \mathrm{~F}$ | 0 to $\pm 3 \mathrm{kV} @ 10 \mathrm{~mA}$ DC |
| $225-05 \mathrm{~F}$ | 0 to $\pm 5 \mathrm{kV} @ 5 \mathrm{mADC}$ |

The Leader in High Voltage for Tivo Decades
121 New South Rid., Hicksville, NY 11801
(516) 433-3110 • TWX 510-221-2144

CIRCLE NO 65

DID YOU KNOW?

Half of all EDN's articles are staff-written.

EDN

© 1988 Sharp Electronics Corporation, Sharp Plaza, Mahwah, N.J. 07430

INTRODUCING AN EPROM DEVELOPMENT OF MEGALITHIC PROPORTIONS.

Sharp presents its new line of high performance, high density CMOS EPROMs and OTPs.

BIPOLAR FAST

Our EPROMs are the perfect choice for today's high speed microprocessors. With current access times as fast as 55 ns , they're hard to beat. What's more, some offer bipolar compatibility.

CMOS EFFICIENT

Sharp EPROMs won't burden your system with power demands.
Because they consume as little as 60 mA (worst case) during normal operation. And they all offer TTL compatibility
with fully static operation. And Sharp offers EPROMs with densities from $64 \mathrm{~K}(8 \mathrm{~K} \times 8$) up to 128 K in a convenient $16 K \times 8$ configuration. And Sharp is developing even higher density chips for the future.

Whether you choose the flexibility of Sharp EPROMs or the cost advantage of our OTPs, you can be assured of onshelf availability. And know you're getting state of the art $1.2 \mathrm{mi}-$ cron CMOS technology.

So next time

NEW PRODUCTS

CAE \& SOFTWARE DEVELOPMENT TOOLS

DESIGN KIT

- Lets you evaluate memory-management performance
- Includes graphics-symbol libraries

Memory-management design kit SN74MMDK01 consists of technical data, application information, libraries of schematic-capture graphics symbols, and samples of the vendor's memory-management ICs. The documentation includes data sheets for each of the sample devices and related products, and the vendor's Memory-Management Applications Handbook. You can use the symbol libraries, which are from Logic Automation and FutureNet, on the FutureNet and Mentor Graphics CAE systems; Logic Automation also supplies behavioral-simulation models for the memory-management devices in the kit. These devices include dynamic-RAM controllers, cache-address comparators, error-detection and -correction circuits, and memory drivers. You can use the kit either to shorten the design time of a memory system or to evaluate performance improvements gained by using the vendor's devices. $\$ 149$.

Texas Instruments Inc, Semicon-
ductor Group (SC-780), Box 809066, Dallas, TX 75380. Phone (800) 2323200 , ext 700 .

Circle No 373

CONTROL SOFTWARE

- Monitors as many as 128 analog inputs
- Drives as many as 32 analog outputs

Contro EG is a menu-driven, dataacquisition, process-control software package that can monitor as many as 128 analog inputs and control as many as 32 analog outputs. It can also display bar graphs, annunciators, and history stripcharts of all channels. The program runs on an IBM PC or a compatible computer and works with the vendor's RTI800 Series of analog and digital plug-in boards. Tables built into the software automatically provide thermocouple linearization and input scaling. You can save the setup conditions and recall them later as needed; once you have specified the configuration of I/O boards and signal-conditioning modules, the program makes the I/O interface transparent to you. You can automate all aspects of a process,
(Division of Seiko Group) NPC is the technical pioneer and leader of I.C. manufacture of digital filters for CD players

DIGITAL SIGNAL PROCESSING

- SM5831F

Digital Video Filter 4 to 8 tap variable FIR $\mathrm{f} \mathrm{clk}=15 \mathrm{MHz}$ Package: 64PIN FPP

- SM5828
- Video Shift Registor 8 bit word, 1 to 128 variable step $\mathrm{f} \mathrm{clk}=20 \mathrm{MHz}$ Package: 24PIN DIP
- SM5805

4 PCM Audio Digital Filter -
121 th order filter $\times 2 \mathrm{ch}$.
Package: 28PIN DIP

- $\overline{\text { SM5 }} 5$
48×8 bit Muitiplier $\dagger \mathrm{mac}=45 \mathrm{nS}$ Package: 48PIN DIP
- SM5810
416×16 bit Multiplier
$\dagger \mathrm{mac}=65 \mathrm{nS}$
Package: 64PIN DIP/68PIN PGA
SPECIAL FUNCTION
- SM6100

48 bit A/D Converter Conversion time $2.1 \mu \mathrm{~s}$ No S/H required μ P-bus compatible Package: 20PIN DIP

- PLL2001
- PLL Frequency Synthesizer f in = up to 200 MHz
Package: 16PIN DIP
- $\overline{\text { SC6433 }}$

4 B/W TV Camera Sync. Generator NTSC or CCIR
Packge: 22PIN DIP

- SM8530B

4 IEC Bus Interface Controller Meets IEEE-488 (GP-IB)
Package: 40PIN DIP
For Technical Information, Sample Requests and Orders U.S. Sales Distributor:

E SEPONIX CORPORATION

2151 O'Toole Ave.
Suite L
San Jose, CA 95131
TEL: (408) 922-0133
TOLL FREE: 1-800-237-4590
FAX: (408) 922-0137
TLX: 9102405802/SEPONIX USA
Seeking New Sales Rep.

CIRCLE NO 66
and you can change system parameters (such as alarm limits) while collecting data. The typical scanning rate on an IBM PC/AT is 64 channels/sec. $\$ 500$.

Analog Devices Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 461-3359. TWX (710) 394-6577.

Circle No 374

IC-SIMULATION MODEL

- Lets you simulate a board using BIT components
- Works with popular CAE programs

You can order SmartModel logicsimulation models for four components manufactured by BIT (Bipolar Integrated Technology Inc): the

B3018A/B2018 16×16-bit fixedpoint multiplier; the B3011/B2011 multiplier-accumulator; the B3210/ B2210 5-port register file; and the B3110/B2110 floating-point multiplier. The vendor will soon offer a model for BIT's B3120/B2120 float-ing-point ALU. You can use the models with most popular CAE programs and with a variety of workstations. Workstation licenses cost $\$ 950$ each for the B3011/B2011, B3018/B2018, and B3210/B2210, and $\$ 1800$ each for the B3110/B2110 and B3120/B2120.

Logic Automation Inc, 19500 NW Gibbs Dr, Beaverton, OR 97006. Phone (503) 690-6900.

Circle No 375

DATA PLOTTER

- Lets you process and plot data from a variety of sources
- Works with files and data-acquisition software
Tech*Graph*Pad is a tool for plotting data that you've collected from laboratory experiments, prototype tests, or engineering analyses. It accepts data directly from data-acquisition software, from files generated by spreadsheets, from text editors (ASCII format only), or from its own built-in editor. The program can generate linear, log, and R -Theta plots; perform polynomial curvefitting; and do spline, Bezier, and Savitsky-Golay data smoothing. You can direct the output to the screen for display by a Hercules or compatible monochrome-graphics adapter, or by an IBM CGA, EGA, or compatible color-graphics adapter. You

For complex designs, HELIX is the "what if" simulator!

When designing large systems, printed circuit boards or VLSI/VHSIC chips, simulation becomes an invaluable aid. Logic, switch level and circuit simulators are excellent tools for validating design implementations. Silvar-Lisco's Helix Behavioral Simulator takes you one giant step further. In addition to design validation, system architects now can optimize the design itself through analysis of various implementation alternatives.

With Helix you can define and test your system concepts first. If the concept works, you move down to the register level. Then the gate level. Multi-level throughout. If it doesn't work, you can rethink the concept and probe Helix with additional design alternatives. In the end, you will get the best design. The first time.

Helix is a vital component of Silvar-Lisco's Architectural Design Series. Incorporating
design capture, simulation and design libraries, the Architectural Design Series gives you the competitive edge.
Be a design winner! Contact Silvar-Lisco today!

SILVAR-LISCO OFFICES

Corporate Headquarters 1080 Marsh Rd.
Menlo Park, CA 94025
TEL: (415) 324-0700
WATS: 1 (800) 624-9978
TWX: 910-373-2056
FAX: (415) 327-0142.
European Headquarters
Leuven, Belgium
TEL: 32-16-200016
TWX: 221218
FAX: 32-16-236076
Far East
Nihon Silvar-Lisco
Tokyo, Japan
TEL: 81-3-449-5831
FAX: 81-3-449-4040

CAE \& SOFTWARE DEVELOPMENT TOOLS

have complete control over the scaling and the placement of axes, labels, and notations. For hard copy, you can use a wide variety of plotters and dot-matrix printers. To run the program, you'll need an IBM PC, PC/XT, PC/AT, or a compatible computer that's equipped with at least 512 k bytes of RAM and runs MS-DOS version 2.0 or later. $\$ 275$.

Binary Engineering, 100 Fifth Ave, Waltham, MA 02154. Phone (617) 890-1812.

Circle No 376

WAVE-SOLDER CONTROL

- Allows off-line programming of wave-soldering machines
- Lets you write parameters to EPROM

The ElectroSave software package -which runs on the IBM PC, $\mathrm{PC} / \mathrm{XT}, \mathrm{PC} / \mathrm{AT}$, and fully compati-

ble computers-allows you to perform off-line programming of the vendor's $\mu \mathrm{P}$-controlled Econopak II wave-soldering system. By following the program's menu selections and prompts, you can create a file containing a complete set of operating parameters for the production run of a given board type; the parameters include preheat temperature, flux density, solder temperature, wave height, and conveyor
speed. You can later recall the parameters for display on the screen or on the system printer, and you can change any or all parameters. When you are satisfied with the values, you can download the file, via an RS-232C link, to the Econopak II machine for execution of a soldering run. You can also upload parameters stored in the machine for archival storage in an EPROM. To run the program, you'll need an IBM PC or compatible computer that's equipped with the IBM Monochrome Display and Printer Adapter (or equivalent) and an Epsoncompatible dot-matrix printer. The package comes with a ribbon cable to connect the Econopak machine to the PC's serial port; it also comes with EPROM chips, and a program disk with a backup copy. $\$ 1195$.

Electrovert USA Corp, 4330 Beltway Pl, Arlington, TX 76018. Phone (817) 468-5171.

Circle No 377

Cooling

"Intelligent" cooling for rackmounted card cages. Internal control system monitors airflow temperature and adjusts McLean's Card Cooler fan trays, fan packages and packaged blowers for best efficiency and lowest noise level. Even distribution of redundant cool, clean air eliminates hot spots. Get the facts!

MCLEAN

70 WASHINGTON RD., PRINCETON JUNCTION, NJ 08550 (609) 799-0100 = TWX: 510-685-2543 = FAX: (609) 799-1081 553 CONSTITUTION AVE., CAMARILLO, CA 93010 (805) 987-5046 TELEX: 18-2223 п FAX: (805) 987-4048

SOFTWARE TOOL

- Program development for $\mu \mathrm{Cs}$ without in-circuit emulation
- Runs on an IBM PC

This version of the chipForth soft-ware-development environment allows you to write and debug software for Intel's 8051/8031 family of microcontrollers without using an in-circuit emulator. Instead, chipForth provides interactive program development, using only the on-chip RAM of the $\mu \mathrm{C}$ and a ROM emulator. You can write programs that use only the on-chip RAM and ROM of the $\mu \mathrm{C}$ or programs that use the 8051 's 64 k bytes of external data and program space. You can also implement systems with overlapping data and program space. The development environment uses the Forth programming language combined with an editor, an assembler, and a compiler. This development software runs on an IBM PC, $\mathrm{PC} / \mathrm{XT}, \mathrm{PC} / \mathrm{AT}$, or a compatible computer linked to the target system via a serial port. The Forth multitasking kernel that is supplied uses as few as 40 bytes/task. It imposes no overhead on the $\mu \mathrm{C}$'s interrupt handling and does not affect its bit-handling capabilities. £1800.
Computer Solutions Ltd, Canada Rd, Byfleet, Surrey KT14 7HQ, UK. Phone (09323) 52744. TLX 946240 (Request ref 19012265).

Circle No 378

TERMINAL EMULATOR

- Allows IBM PCs to emulate 3270 workstations
- Includes a communications card for the PC

The PC70 hardware/software package allows one or two IBM PC, $\mathrm{PC} / \mathrm{XT}, \mathrm{PC} / \mathrm{AT}$, or compatible computers to operate as IBM-3270 BSC (binary synchronous communications) workstations. The package includes a full-length add-in card that you can configure as the PC's COM1
or COM2 port, and terminal-control software that performs the 3270 em ulation. You can link the card both to the host and to another PC, enabling each to operate as a 3270 workstation. Both workstations can use their own printers. If you don't use the second workstation facility, you can employ the second port on the card to drive a line printer di-
rectly. You can link the package to the host system via a null modem or via a modem/line driver connected to a leased line. $£ 850$.

Sipher Designs (Electronics) Ltd, Unit 14, St George's Industrial Estate, White Lion Rd, Amersham, Bucks HP7 9JQ, UK. Phone (02404) 5335. TLX 83293.

Circle No 379

THE 60A IS MORE THAN A LOGIC PROGRAMMER.

At \$2495*, the 60A Logic Programmer is a very affordable way to get into logic. This high-quality programmer supports nearly 300 of the most popular PLDs. And its flexible architecture lets you buy only what you need today and upgrade tomorrow.
Now the 60A is more than a dedicated logic programmer. With support for 120 popular EPROMs, it is the most versatile programmer in its price range. To switch from PLDs to EPROMs, simply change adapters.
With the 60A, your PC, and Data I/O's family of compatible software tools, you can build a complete

[^17]logic development system right at your desk. $A B E L^{\text {Tw }}$, the industrystandard logic design software, lets you describe your circuits using any combination of boolean equations, truth tables, or state diagrams. Then add PROMlink ${ }^{\text {™ }}$, interface and file management software, to control programming from your PC .

For just $\$ 2495$, the 60A gives you logic programming and a lot more.

1-800-247-5700 Dept. 735
 －Hewlett－Packard style commands
－Automatic error indication BASIC ON SRQ Gers 300 K by tes DMA transiers over boards／computer Up to four IEEE 7210 compatible software
NEC Serial／Parallel／in tetrupt channel sharing －DMA antible with popular ling BASICA
 BASIC，Turbo BASC，
 Pascal．${ }^{2}$ ，who
Latice C ，Microso oft Fortran．

 par warranty
FREE ${ }^{\text {Cen }}$ ond for youride

CAE \＆SOFTWARE

MICROWAVE SIMULATOR

－Simulates nonlinear microwave circuits
－Harmonic－balance techniques for nonlinear aspects

Microwave Harmonica is a general－ purpose software package for the design and simulation of nonlinear microwave circuits that operate in a time－periodic or quasiperiodic steady－state mode．The program can simulate amplifiers，passive and active frequency multipliers，mix－ ers，and voltage－controlled oscilla－ tors；it can also analyze 2－tone inter－ modulation distortion in microwave circuits．For the linear portions of the circuit，the program uses a fre－ quency－domain description that al－ lows you to model passive micro－ wave components and to introduce experimental information as needed．A set of generalized para－ metric equations can describe non－ linear devices in the time domain； for simulation purposes，the state variables are described by means of their spectral components（harmon－ ics），which represent the true un－ knowns．The voltage and current harmonics are then described by 1－ or 2－dimensional FFTs．$\$ 25,000$ ．

Compact Software Inc， 483 Mc － Lean Blvd，Paterson，NJ 07504. Phone（201）881－1200．

Circle No 380

ASIC EXPERT SYSTEM

－Lets you capture your ASIC de－ sign expertise
－Builds knowledge base for opti－ mizing ASIC designs

Knowledge Consultant is a software tool that lets you graphically cap－ ture your design expertise in a knowledge base．The vendor＇s Logic Consultant expert system can use the knowledge base to optimize your ASIC logic designs by reducing propagation delays and decreasing the gate count．Using the built－in graphics editor，you first draw an antecedent circuit using foundry－
ON HEWLETT PACKARD＇S TWO NEWEST
SCIENTIFIC CALCULATORS

HP－27S Scientific Calculator for the technical manager

Both science and Business in one unique calculator － 6.7 K bytes of available RAM
－Over 250 functions
－Logs，exponentials，trig，hyperbolics －Conversions for angles，hours
－Coordinate transformations
－Binary math and conversio
－Mean，standard deviation －Number lists；edit，sort，store －Forecasting，curve fitting －Time value of money：percent change －Present value，future value
－Amortization and table printout
－Algebraic uperating logic
－HP Solve（for solving custom formulas without programming）
－ 10 appointments and alarms，clock／calendar －On screen menus
－ 2 line $\times 22$ character display
Mfr．Sugg．Ret．${ }^{1110}$
$\$ 77$

| New Business Calculators | |
| :---: | :---: |
| －17B | HP－19B
 －All key features of the
 HP－12C and 17B
 － 6500 bytes available
 RAM
 －Business graphics
 －Textdata base
 applications
 － 4 lines $\times 23$
 character LCD display
 －Over 450 functions |
| IHP－12C ke | |
| dures | |
| M | |
| HP Solve | |
| line $\times 22$ charac | |
| LCD display
 －Over 250 functio | |
| | |
| ${ }_{\substack{\text { Mrf．Sugg．} \\ \text { Ret．} \mathrm{s} 110}} \mathbf{\$ 7 7}$ | |
| | Mfr．Sugg Ret．f175 |

Infra－red printer and solution books available for all 4 new calculators

【h $\begin{array}{cc}\text { HEWLETT } & \text { Authorized } \\ \text { PACKARD } & \text { Hewlett－Packard } \\ \text { Dealer }\end{array}$

CALL TOLL FREE 800－621－1269 EXCEPT ILLINOIS，ALASKA CANADIAN TOLL FREE 800－458－9133

6557 N．Lincoln Ave．，Chicago，IL 60645 312－677－7660

SURIVED.

unit still provided a steady .8 amp of

In a Navy test, a Tomahawk cruise missile exploded into a concrete building. When the dust settled, little remained but gravel and fragments of casing.

And the Abbott model C28D0.8 you see here.

Its aluminum baseplate and an adjustment cap were ripped off in the blast. But reconnected on a workbench, the
current - just as it was designed to.
Abbott Transistor Laboratories, Inc. 2721 South La Cienega Blvd.,
Los Angeles, CA 90034. (213) 936-8185
When reliability is imperative ${ }^{\circledR}$
specific component-library symbols; then you draw the consequent circuit, a less obvious but more efficient circuit that provides the same functionality. You also define the port, mapping between the two circuits. The knowledge compiler then verifies that the two circuits are logically identical and determines the speed and area factors for each of the circuits. If the knowledge you are adding is already in the knowledge base, the program so informs you; otherwise it compiles the

knowledge into the knowledge base. The system runs on a Mentor Graphics (Beaverton, OR) workstation. $\$ 49,500$.

Trimeter Technologies Corp, 200 Hightower Blvd, Suite 100, Pittsburgh, PA 15205. Phone (412) 787-8630. TWX 510-601-3773.

Circle No 381

IC DESIGN TOOL

- Provides a common user interface for design tools
- Allows foundry-independent IC design

The Spirit IC design environment provides you with a stable user interface through which you can access a variety of proprietary or commercial IC design tools. The user interface remains the same even if you add to or change the set of design tools, so you don't need to learn a new user interface for each
tool. In addition to the user interface, the tool set has a design manager, a design database, and a foundry interface that allow you to meet the requirements of different silicon foundries. System-management software allows the system administrator to create and change information about users, projects, foundries, libraries, and process parameters. Spirit targets fully custom IC design teams and is available for use on the Apollo Domain 3000 workstation, HP-9000 Series 300 and 500 computers, and the PCS Cadmus computer. Approximately gld 175,000 (including a tool set).

Integrated Circuit Design BV, Box 3132, 7500 DC Enschede, The Netherlands. Phone (053) 306455. TLX 72280.

Circle No 382

HAND-HELD TERMINALS A FEW PEARLS FROM THE OYSTER RANGE

 ||l||||| A re you wasting time and money developing and manufacturing a hand-held terminal? Why, when Oyster's extensive range has a unit with the specification and field-proven reliability you need?The range starts with simple ASCII keyboards and goes right on up to sophisticated programmable, batterypowered terminals. The units on the left are just a few examples of what we can offer.

For OEMs we have a special engineering service, enabling us to customise any of our standard units to specific requirements.

If you can't see exactly what you want, then give us a call.

Applications include:
ㄴ||||l|
\|ㅔ||l|il PROCESS CONTROL
1640 Fifth Street,
Santa Monica, CA 90401 Tel: (213) 395-4774.
Telex: 65-2337.
Facsimile: (213) 393-6040
301 Daniel Webster Highway, Merrimack, NH 03054 Tel: (603) 429-2566 IN HIGH POWER IS OVER

WAIT UNTIL YOU READ

THIS You can have up to 5 outputs with unlimited flexibility of output voltage and current combinations with acdc electronics' NEW 1600W power supply. That's UNLIMITED combinations! Check the chart below.

DON'T WAIT . . . SEETHE SMALLEST 1600W

 PACKAGE acdc electronics has packaged 1600 W into a $5^{\prime \prime} \times 8^{\prime \prime} \times 13^{\prime \prime}$ profile. That makes acdc's JFM Series the SMALLEST 1600W multi output switch mode power supply available. Anywhere!
THE WAIT FOR
 INDEPENDENT
 AUXILIARY OUTPUTS IS

OVER Each JFM auxiliary output is an independent, swich mode power supply which eliminates all cross regulation problems. Additional standard features-never before offered on a high power multi-include: remote sense, margining and inhibit . . . on each auxiliary output.

And, to troubleshoot your system, independent LED's indicate output out-of-tolerance and identify the faulty output. WAIT NOT Don't wait for the power supply you need. Any output voltage combination listed in the model selection chart will be delivered in two weeks! WAIT UNTIL YOU TEST THESE SPECIFICATIONS

- Internal EMI Filter meets FCC \& VDE Class A
- All outputs are floating
- No minimum load required on any output
- Single-wire paralleling (main output)
- Current monitor
- 30 Ms holdover storage

Rभा1)?

Are you working on a design requiring high power and multiple outputs? With flexibility in output Voltages? Do you need a demo now?
The solution is ready \& waiting for your call. 619 439-4200.

| 1600W M MAIN OUT | LTI
 CH2 | CH3 | CH4 | CH5 | $\begin{aligned} & \hline \text { TABLEA } \\ & \text { AUX'S } \end{aligned}$ | $\begin{gathered} \hline \text { TABLEB } \\ \text { AUX's } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{~V} / 200 \mathrm{~A}$ | $\begin{aligned} & \text { TABLE } \\ & A \text { or } B \end{aligned}$ | $\begin{aligned} & \text { TABLE } \\ & \text { A or B } \end{aligned}$ | | | $\begin{array}{r} 5 \mathrm{~V} / 60 \mathrm{~A} \\ 12 \mathrm{~V} / 30 \mathrm{~A} \end{array}$ | $\begin{gathered} 5 \mathrm{~V} / 30 \mathrm{~A} \\ 12 \mathrm{~V} / 15 \mathrm{~A} \end{gathered}$ |
| 5V/200A | TABLE
 A or B | TABLE B | TABLE A or B | | $\begin{aligned} & 15 \mathrm{~V} / 24 \mathrm{~A} \\ & 24 \mathrm{~V} / 15 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 15 \mathrm{~V} / 12 \mathrm{~A} \\ & 24 \mathrm{~V} / 7.5 \mathrm{~A} \end{aligned}$ |
| 5V/200A | TABLE B | TABLE B | TABLE B | TABLE B | | |
| 1500w wow | | 800w 750 w | 500w | $\text { 300w } 220 \mathrm{w}$ | $175 w_{135 w^{2}}$ | $w_{40 w^{15 w}}$ |
| 1600w | 1000 w | | | | | |

actic electronics 园

401 Jones Road, Oceanside, CA 92054.
TEL: 619/757-1880. TLX: 350227. FAX: 619/439-4243

NEW PRODUCTS

TEST \& MEASUREMENT INSTRUMENTS

Z80/64180 EMULATOR

- Emulates Z80H at full speed with no wait states
- Provides $8 k \times 48$-bit words of high-speed trace memory
The EL 800 in-circuit emulator performs zero-wait-state emulation of the $\mathrm{Z} 80 \mathrm{H} \mu \mathrm{P}$ at 8 MHz and the HD64180 at 6 MHz without preempting any interrupts. To minimize propagation delays, the device uses a hybrid circuit rather than the more common passive connection. The emulator plugs into the target $\mu \mathrm{P}$ socket and drives the $16-\mathrm{in}$. cable back to the emulator. The emulator itself is packaged as a group of $8.5 \times 11 \times 0.85-\mathrm{in}$. modules that stack on top of one another and snap together to make electrical as well
as mechanical connections. A single power supply energizes all of the units. You need to purchase only one module; you add features-for example, 64 k to 256 k bytes of overlay memory with optional battery back-up-by adding modules. Your personal computer (running MS-DOS 3.0 or higher and having 640 k bytes of RAM) acts as host; you connect the emulator to either the COM1 or COM2 port. You can display the $8 \mathrm{k} \times 48$-bit words of trace memory in several ways: for example, you can restrict the display of write instructions to those that write to data space. $\$ 4850$.

Applied Microsystems Corp, Box 97002, Redmond, WA 98073. Phone (206) 882-2000. TLX 185196.

Circle No 420

IN-CIRCUIT EMULATOR

- Emulates Z80, 68000, 80186, and $80188 \mu \mathrm{Ps}$
- Optional state and timing analyzer
Hosted by an ASCII terminal or a computer, the HP 64700 Series em-
ulator/analyzer performs transparent, real-time emulation and analysis of systems based on the Z80, 68000,80186 , and 80188μ Ps. Optional versions can also perform 16channel logic-state analysis at 25 MHz and timing analysis at 100 MHz . You can trigger the logic analyzer without breaking the emulated processor's program execution. All units include an emulation analyzer with which you can trace the code flow. Using the analyzer, you can prestore and time-tag instructions and qualify the trace specifications with sequences of as many as eight system states. The hardware includes a code-coverage
analyzer; it provides a history of the memory addresses that the $\mu \mathrm{P}$ reads from or writes to during program execution. 8 -bit $\mu \mathrm{P}$ without logic analyzer, $\$ 8900$ to $\$ 12,500$; 16 -bit $\mu \mathrm{P}, \$ 11,300$ to $\$ 14,650$.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 421

PHOTONIC ANALYZER

- Includes light source and receiver
- Handles modulation frequencies as high as 3 GHz
The HP 8702A photonic analyzer system is a design and analysis tool for high-bandwidth (that is, high-bit-rate) optoelectronic components. Such components include transmitters, receivers, couplers, and fibers used in long-haul fiber-optic communications systems. The analyzer extends microwave-network analysis techniques (and, optionally, timedomain analysis techniques) to equipment that modulates and transmits light waves. The system, which can include both a lightwave source and a lightwave receiver, measures modulation bandwidth, responsivity, modulation and detection sensitivity, dynamic range, linearity, attenuation, and delay. A synthesized $300-\mathrm{kHz}$ to $3-\mathrm{GHz} \mathrm{RF}$ source provides the modulating signals, and a calibrated 3 -channel receiver measures the magnitude and phase of demodulated signals. The time-domain option enables the ana-

Taiwan Liton Electronic Co., Ltd.
12th FI., 25 Tunhwa S. Rd., Taipei, Taiwan, ROC
lyzer to make pulse-dispersion measurements. Analyzer, $\$ 28,000$; time-domain option, $\$ 4800$; singlemode or multimode light source, $\$ 12,700$; lightwave receiver, $\$ 5000$. Delivery, eight weeks ARO.

Hewlett-Packard Co, 1820 Embarcadero Rd, Palo Alto, CA 94303. Phone local office.

Circle No 422

Z280 EMULATOR

- Supports 16M-byte address space
- Handles the μ P's 8- and 16-bit buses

The Z280 IceAlyzer is an in-circuit emulator for Zilog's Z280 μ P. With the addition of an RS-232C-interfaced ASCII terminal, the system supports the Z280's $10-\mathrm{MHz}$ maximum clock rate, 16M-byte address space, memory manager, extended I/O addressing, and both the 8- and

16 -bit buses. You can set 32,000 hardware breakpoints so that they take effect individually or in regions and on read, write, or fetch cycles. To debug ROM-based systems, you can overlay 256 k bytes of RAM anywhere in the Z280's address space. The unit has built-in tests for common target-system hardware faults. It also performs software-performance analysis. $\$ 7995$.
Softaid Inc, 8930 Rte 108, Columbia, MD 21045. Phone (800) 4338812; in MD, (301) 964-8455.

Circle No 423

PROGRAMMER

- Programs small lots during development
- Supports vendor's programma-ble-device line
The MagicPro memory and logic programmer runs on a PC busbased personal computer and is

suited to programming small quantities of the vendor's devices. It provides 20 lines that address 1 M bytes and has 16 -bit-wide I/O. A cable connects the PC Bus short card to a pair of ZIF (zero insertion force) sockets that, without adapters, accommodate DIP devices having 24, 28,32 , and 40 pins in rows on 0.3 and 0.6 -in. centers. Socket adapters enable the programmer to handle LCC and PGA (pin-grid-array) packages. The product's support software comes on a $5^{1 / 4}-\mathrm{in}$. disk. $\$ 995$.

Waferscale Integration Inc, 47280 Kato Rd, Fremont, CA 94538. Phone (415) 656-5400. TLX 289255.

Circle No 424

the low profile answer to the high power question . . .

The next time you ask yourself how to get all that power into such a small space, think of Intronics.

Introducing our new 100 Watt triple output, low profile DC/DC converter.
The KZ 400 Series does the job of three single output converters in a much smaller area-saving you valuable board space. It costs significantly less than individual converters and saves time and money on installation and inspection.
Designed primarily for the telecommunications, computer and instrumentation markets, the KZ 400 is metal encased with six-sided shielding and comes with a number of standard features. With 20 standard single and triple output models to choose from, it boasts a wide input range of 20-60 VDC and 36-72 VDC.

The KZ 400 delivers an impressive 80% typical efficiency and has a fixed switching frequency of 200 KHz . Line/load regulation specifications are $\pm 1 \%$ main channel and $\pm 5 \%$ auxiliaries. The unit is available in PC board and side mount models.

Get all the power you need at a lower cost-while increasing valuable board space. And at Intronics, you
also get dependable service and product support. Call Intronics today at (617) 964-4000 about the new 100 Watt KZ 400 triple output DC/DC converter-the answer to your high power needs.

FAX 617-527-3310

PC-BOARD TESTER

- Locates defective components
- Learns and stores signatures of device and board pins
The portable Board Wizard locates defective components on pc boards. It can learn and store characteristic signatures at each pin of knowngood boards and devices such as ASICs and PLDs. The tester compares the stored signatures against signatures measured on the board under test. The unit can also conduct comparisons by referring to a library of signatures for 74-series TTL devices. $\$ 3495$.

Suan Technologies (USA) Inc, 18437 Saticoy St, Suite 8, Reseda, CA 91335. Phone (818) 996-1386.

Circle No 425

COUNTERS

- Count at 200- and 520-MHz rates
- Display uses eight 0.56 -in.-high LEDs

The 712 is a $200-\mathrm{MHz}$ counter; the 713 is virtually identical, but it handles frequencies to 520 MHz . The 712 has two channels, the 713 three. Besides indicating a signal's frequency, both units totalize from 10

Hz to 10 MHz , and measure period and frequency ratios from 10 Hz to 2.5 MHz and time intervals from 0.5 $\mu \mathrm{sec}$ to 0.2 sec . Their time bases spec $\pm 5 \mathrm{ppm} / \mathrm{yr}$ aging and $\pm 10 \mathrm{ppm}$ temperature stability from 0 to $50^{\circ} \mathrm{C}$. The instruments include $1-\mathrm{MHz}$ lowpass filters with selectable attenuation; in the self-check mode, each instrument displays the
frequency of its $10-\mathrm{MHz}$ internal timebase. The counters' 8-digit displays use 0.56 -in.-high LEDs and provide overflow, gate, microsecond, and kilohertz indicators. Model 712, \$525; Model 713, \$675.

Simpson Electric Co, 853 Dundee Ave, Elgin, IL 60120. Phone (312) 697-2260. TLX 722416.

Circle No 426

BYTEK's NEW 135 MULTIPROGRAMMER" OFFERS $18 / 12$ PROTECTION PLAN

THREE PROGRAMMERS IN ONE.
With the addition of the 135 MultiProgrammer ${ }^{\text {mi }}$ BYTEK has provided a true Universal Programming Site. The 135 is a SET EPROM Programmer, a GANG EPROM Duplicator, and a UNIVERSAL DEVICE Programmer, designed for Engineering Development, Production and Field Service Environments.
BYTEK's new 135 MultiProgrammer" is a High Performance Instrument setting new standards for Universal Device Support and Flexibility at affordable prices.
VERSATILE: With standard 256 K BYTE of RAM, expandable to 2 MegaByte, the 135 supports more devices than any other production programmer on the market today. The 135 provides EPROM programming capabilities of virtually any $24-28$ and 32 -Pin EPROM and EEPROM from 16K to MegaBit Devices. The 135 can Program SETS of Devices, 16- and 32-Bit Wide. As a GANG EPROM Duplicator, it copies up to eight (8) devices from RAM, with options for 16 Devices.
COMPATIBLE: The 135 offers Terminal and Computer Remote control, Data I/O* compatible+.

FLEXIBLE: The 135 can easily be expanded to program 40-Pin EPROMS, Bipolar PROMs, Logic Array Devices, EPROM Emulation, and 40 Pin Micro Devices.
18/12 PROTECTION PLAN: BYTEK offers High Performance, unsurpassed quality, and product reliability. BYTEK is the first to offer a full EIGHTEEN MONTH WARRANTY, and TWELVE MONTH FREE Device Support Updates.

BपाIEB

> Call us today at: 1-800-523-1565

Mastercard or Visa is accepted In Florida call 1-305-994-3520

BYTEK Corporation

Instrument Systems Division
1021 S. Rogers Cir., Boca Raton, FL 33487
Tel: (305) 994-3520 FAX: (305) 994-3615

BYTEK International

511 11th Ave., So. Minneapolis, MN 55415 Tel: (612) 375-9517 FAX: (612) 375-9460
Telex: 4998369 BYTEK

* Data I/O is a Registered Trademark of Data I/O Corporation. +Some limitations may apply.

VHSIC VERIFIER

- Operates at 100 MHz
 - Accommodates 448 channels

The Logic Master XL 100 prototype verification system supports $100-$ MHz clock and data rates. The vendor claims that this speed exceeds the test requirements of VHSIC-Phase-II parts and that the sys-
tem's 100 -psec edge placement, 125 psec frequency resolution, and 448-channel capability are appropriate for at-speed verification of ECL and GaAs ASICs. The system comes with an automatic tool for speeding fixture fabrication, reducing wiring errors, and maintaining a 50Ω device environment. The system, which can contain 16 to 224 bidirec-
tional channels or 32 to 448 split pattern-generation and data-acquisition channels, provides 12 timing sets, each consisting of two edges; you can assign any timing set to any pin. With 128 bidirectional channels, $\$ 250,000$.

Integrated Measurement Systems, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 6267117.

Circle No 427

AUTOMATED BRIDGE

- Measures series and parallel capacitance and loss
- Shows loss as Q, resistance, conductance, or dissipation
The $7600 \mu \mathrm{P}$-controlled automated bridge makes 3 -terminal measurements of series and parallel capacitance and loss. The bridge operates at 1 MHz , and it lets you add programmable external bias voltages of $\pm 100 \mathrm{~V}$ or $\pm 200 \mathrm{~V}$. It makes as many as 70 readings/sec and can display losses as resistance, conductance, dissipation, or Q. The bridge can display the actual measured capacitance or it can display the difference between the measured value and a user-entered nominal value either as a percentage of the nominal or as a difference. The bridge can automatically select full-scale capacitance ranges of 1.9900 pF through 1990.0 pF , or you can choose the range manually. When making remote measurements, the bridge automatically compensates for capacitance of cables of selectable length. The instrument features a real-time clock for time and date stamping of hard-copy records, and three interfaces: Centronics parallel, RS-232C
serial, and IEEE-488 high-speed parallel. \$12,500. Delivery, 16 weeks ARO.

Boonton Electronics Corp, 791 Rte 10, Randolph, NJ 07869. Phone (201) 584-1077.

Circle No 428

LINEAR IC TESTER

- Performs go/no-go tests and measures parameters
- Tests more than 150 op amps and voltage comparators
The Model $750 \mu \mathrm{P}$-based benchtop linear IC tester tests more than 150 types of single, dual, triple, and quad op amps and voltage comparators. It performs both go/no-go and parametric tests on such devices. When performing go/no-go tests on an op amp, the tester first verifies that the device is closed-loop stable. The tester then ascertains whether the device's output can swing to at
least 75% of the supply voltage. Next, it measures the device's gainbandwidth product and compares this measurement against a predetermined limit. When operating in the parametric-measurement mode, the tester can perform 10 types of tests and provide quantitative data; it can run the tests in sequence and can hold the data on its display until you issue a command for it to proceed to the next test. $\$ 2495$.

Information Scan Technology Inc, 487 Gianni St, Santa Clara, CA 95054. Phone (408) 988-1908.

Circle No 429

SUPPLY TESTER

- Hosted by MS-DOS-based PC
- Has Basic-language software that supports 14 tests
The Model 701 power-supply tester can reside on a desktop. It utilizes an MS-DOS-based IBM PC-compat-

ible computer as a controller. The software supports 14 tests, which include current-limit and voltage adjustments, a p-p noise test, combined line- and load-regulation measurements, and, for multipleoutput supplies, cross-regulation measurements. The programming language is Microsoft Basic. Including computer, $\$ 11,950$.

Condor Inc, 2311 Statham Parkway, Oxnard, CA 93033. Phone (805) 486-4565.

Circle No 430

SPECTRUM ANALYZER

- Covers 100 Hz to 4.2 GHz
 - Can resolve 3-Hz bandwidth

The 2383 spectrum analyzer covers the frequency range from 100 Hz to 4.2 GHz and can display a full-bandwidth sweep on a single screen. Its minimum resolution bandwidth is 3 Hz and its high-level accuracy is $\pm 1.5 \mathrm{~dB}$ with any control settings and at any specified operating temperature, even at 4.2 GHz . Its built-in tracking generator eliminates fre-quency-drift-induced impairment of swept-frequency synchronous meas-
urements. The instrument's intermodulation is better than -90 dBc , and its residual responses are below -110 dBm . An optional active probe permits you to take high-level measurements with minimal loading at frequencies as high as 1.25 GHz . The IEEE-488 interface permits a high-speed dump of the screen display to a host controller. $\$ 41,950$. Delivery, 60 days ARO.
Marconi Instruments, 3 Pearl Ct, Allendale, NJ 07401. Phone (201) 934-9050.

Circle No 431

PLD PROGRAMMER

- Operates with an MS-DOS-computer host
- Programs 20- and 24-pin devices The Avpal PLD programmer accepts JEDEC files created by CUPL and other PLD-programming languages. It permits you to load files directly from disk into a
buffer, edit the files, check PLDs to make sure they are blank, program PLDs from the buffer, read a chip into the buffer, and save the buffer contents to disk. The programmer also lets you read the status of a PLD's security fuse; blow the fuse to prevent unauthorized copying of the device; and display, print, or modify the device's fuse map. The unit consists of a card, which plugs into IBM PCs and compatible machines, and a remote head, which contains a zero-insertion-force socket and connects to the card via a cable. The MS-DOS-based software is menu driven. The programmer handles 20 - and 24 -pin PLDs made by Monolithic Memories, National Semiconductor, and Texas Instruments. \$395.

Avocet Systems Inc, Box 490, Rockport, ME 04856. Phone (800) 448-8500; in ME, (207) 236-9055. TLX 467210.

Circle No 432

[^18]CADdy Corporation
3 Crossroads of Commerce
Rolling Meadows, IL 60008
CADṠy

BUSINESS/CORPORATE STAFF

EDN's
 CHARTER

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.

275 Washington St
Newton, MA 02158
(617) 964-3030

F Warren Dickson
Vice President/Publisher
Newton, MA 02158
(617) 964-3030

Telex 940573
Diann Siegel, Assistant
Peter D Coley
VP/Associate Publisher/
Advertising Sales Director
Newton, MA 02158
(617) 964-3030

Ora Dunbar, Assistant/Sales Coordinator
NEW ENGLAND
John Bartlett, Regional Manager
Chris Platt, Regional Manager
199 Wells Ave
Newton, MA 021
617) 964-3730

George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th St
New York, NY 10011
(212) $463-6419$

PHILADELPHIA AREA
Steve Farkas, Regional Manager
487 Devon Park Dr
Suite 206
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager
Randolph D King, Regional Manage
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60017
312) 635-8800

DENVER 80206
John Huft, Regional Manage
44 Cook S
(303) 388-4511

DALLAS 75243
Don Ward, Regional Manager
9330 LBJ Freeway
Suite 1060
(214) 644-3683

SAN JOSE 95128

Walt Patstone, Regional Manage
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Regional Manager
2233 W Olympic Blvd
(213) $826-5818$

ORANGE COUNTY/
SAN DIEGO 92715 , McErlean Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA
(714) 851-9422

PORTLAND, OREGON 9722
Pat Dakin, Regional Manager
Walt Patstone, Regional Manager
1750 SW Skyline Blvd, Box 6
(503) 297-3382

UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manager
27 Paul St
ondon EC2A 4JU UK
44 01-628 7030
Telex: 914911; FAX: 01-628 5984

SCANDINAVIA

Stuart Smith
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-6285984

FRANCE/ITALY/SPAIN

Alasdair Melville
27 Paul St
London EC2A 4JU UK
$01-6287030$
Telex: 914911; FAX: 01-628 5984
WEST GERMANY/SWITZERLAND/AUSTRIA
Wolfgang Richter
Sudring 53
7240 Horb/Necka
West Germany
49-7451-7828; TX: 765450

ISRAEL

Igal Elan
Elan Marketing Group
13 Haifa St, Box 3343
Tel-Aviv, Israel
Tel: 972-3-268020
TX: 341667
EASTERN BLOC
Uwe Kretzschmar
7 Paul St
London EC2A 4JU UK
$01-6287030$
Telex: 914911; FAX: 01-628 5984

FAR EAST

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
rvine, CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160
Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Telex: J2322609 DYNACO

TAIWAN

Acteam Internationa
Marketing Corp
6F, No 43, Lane 13
Kwang Fu South Rd
Mailing Box 18-91
Taipei, Taiwan ROC
760-6209 or 760-6210
Telex: 29809
FAX: (02) 7604784
KOREA
BK International
Won Chang Bldg, 3rd Floor 26-3
Yoido-dong, Youngdungpo-ku
Seoul 150, Korea
Fax: 784-1915
Telex: K32487 BIZKOR
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415

CAREER OPPORTUNITIES/
CAREER NEWS
Roberta Renard
National Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8610

Dan Brink
Western Sales Manager
8818 Teller Ave
Suite 170
Irvine, CA 92715
(714) 851-9422

Production Assistan
(201) 228-8608

Susan M Campanella, Advertising/Contracts Supervisor Nan Coulter, Advertising/Contracts Coordinator
(617) 964-3030

[^19]

When your eyes need high quality displays, you need the Toshiba ST LCD.

Once again Toshiba has made a breakthrough in display quality. Clear and beautiful displays are achieved with the ST LCD. The LCD for the new age. And for your eyes. Now, by employing a new operating mode, this module provides excellent readability from a viewing angle perpendicular to the LCD panel. This was difficult to achieve with conventional LCDs. The aim was to make our LCD easier on the eyes. We succeeded with the ST LCD. Just another improvement in the man-to-machine interface by Toshiba.

ST LCD Module Specifications

| Model name | Number of dots | Duty | Dot pitch (mm) | Outline dimensions
 $(\mathbf{m m})$ | EL Back Light
 (Option) | Recommended
 controller |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| TLX-1181* | 640×400 | $1 / 200$ | 0.35×0.35 | $276 \times 168 \times 12$ | Yes | T7779 |
| TLX-932 | 640×200 | $1 / 200$ | 0.375×0.375 | $293 \times 97.6 \times 14$ | No | T7779 |
| TLX-561 | 640×200 | $1 / 200$ | 0.35×0.49 | $275 \times 126 \times 14$ | Yes | T7779 |
| TLX-711A * | 240×64 | $1 / 64$ | 0.53×0.53 | $180 \times 65 \times 12$ | Yes | T6963C** |
| TLX-341AK * | 128×128 | $1 / 64$ | 0.45×0.45 | $93.2 \times 86.6 \times 12$ | No | T6963C |

*Under development, **Built-in controller

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

SINGLE CARD DATA ACQUISITION

DSP-16 is a single card for the IBM PC or compatibles. Real-time 16 bit data acquisition on 2 input and output channels at up to 50 kHz simultaneously. User programmable TMS32020 or TMS320C25. 512K or 2 Meg buffer. Concurrent sampling and anti-alias filters. Complete with software for applications and program development, common language interfaces.

Ariel
110 Greene St., NY, NY 10012 Call (212) 925-4155

CIRCLE NO 325
EPROM PROGRAMMER

PC BASED OR

STAND-ALONE / RS-232
From A Name You Can Trust

LOGICAL DEVICES INC.

 1201 N.W. 65 th PlaceFt. Lauderdale, FL 33309
1-800-331-7766
(305) 974-0967

Telex 383142 Fax (305) 974-8531
CIRCLE NO 328

8051

PC based emulators for the 8051 family (8051, 8751, 8052, 8752, 8031, 8032, 8344, 80C452, 80C152, 80535, 80C451) - PC plug in boards - Powertul Macros with IF.ELSE, REPEAT - Command driven User interface WHILE structures
with static windows - 16 MHz real time emulation - Single step in PLIM-51 and C.51 - 128 K emulation memory \quad Symbolic debugging with in-line assembler - 48 bit wide, 16 K deep trace bufter. . No disassembler with loop counter $\begin{aligned} & \text { - No external boxes } \\ & \text { - Execution time counter }\end{aligned}$ - Trace can be viewed during emulation! PRICES: 32K Emulator for $8031 \$ 1790$, 4 K Trace $\$ 1495$ CALL OR WRITE FOR FREE DEMO DISK! Ask about our demo VIDEO!
nOHaU
CORPORATION
51 E. Campbell Ave. \#107E, Campbell, CA 95008 (408) 866-1820
CIRCLE NO 326
DSP Video Coprocessor

Berkeley Varitronics Systems of Piscataway, N.J. introduces a Video Coprocessor Board for the IBM PC/AT/386 computer. The board utilizes Texas Instruments TMS32020 DSP chip along with a full frame TV buffer.

The board also contains its own TMS monitor with utilities to read, write and modify video, data and program memory. This unique tri-ported memory access provides the user with facility to perform picture manipulations in real time.

A comprehensive "TOOLBOX"' is also provided with each board for picture analysis. \$2495.00 (stock)

Berkeley Varitronics Systems, Inc. 133 Fleming St.
Piscataway, New Jersey 08854
201-752-7775
CIRCLE NO 329

FREE!

Switching Power Supply Catalog

- Complete performance data for 46 multiple output switchers (160 to 700 watts), 16 single output switchers (150 to 520 watts; $5-48$ volts) - Up to 31% smaller packages with power densities to 4 watts/in ${ }^{3}$ for design flexibiilities • Organized for easy selection by recommended primary OEM product application.
For your free catalog, call 1-800-223-TODD, 516-231-3366, or write:

50 Emjay Blvd., Brentwood, NY 11717

CIRCLE NO 327

LCD readability taken to new heights!

- Fluorescent backlighting and Supertwist technology produces a high contrast display with a wide viewing angle.
- Available in 3 sizes: 400×640, 200×640 and 128×256.

Torrance, CA 90505 (213) 530-3530
Europe/UK: (0959) 76600

SMART CARD EXTENDER EASY ON
 \qquad

 PC / XI/ AT and compant- Allows card insertion and extraction with out power on/ off cycles
- Saves time by eliminating DOS re-boots
- Reduces wear and tear on hard
 disk drives
- Extends host interface for hardware and software development and test
- A single switch controls the connection of all signals to and from the computer bus
- Patent pending

30 DAY NO RISK EVALUATION APPLIED DATA SYSTEMS 9811 Mallard Dr. Suite 203 Laurel, MD 20708 For more information call 800-541-2003

EPROM \& PLD Programmers
Supports over 400 devices by: Altera, AMD, Cypress, Fuiitsu, Hitachi, Intel, Lattice, Mitsubishi, MMI, National, NEC, SEEQ, SGS, TI, Toshiba, VLSI. Software driven by IBM PC. Lotus 1-2-3 like user interface. Free demo disk.
Sailor-2: Dual Socket EPROM Set/Gang.
\$ 575
Sailor-8: Eight Socket EPROM Set/Gang \$ 975
1 MB buffer memory (set of eight 27010) . . . free data up/down load software. free
Sailor-PAL: Logic Devices
$\$ 1175$
ONE/D Inc
1050 E Duane Ave, Sunnyvale, CA 94086 (415) 969-9900

CIRCLE NO 334

Schematic-Capture Software from Wintek

Create and revise schematics quickly and simply with HiWIRE ${ }^{\text {a }}$ and your IBM PC. With a click of the mouse button, select a symbol from our extensive library: with a few more clicks, add connecting wires. Netlist, bill-of-materials, and smARTWORK ${ }^{\text {© }}$ cross-checking utilities included HiWIRE is $\$ 895$ and comes with a 30 -day money-back guarantee. Credi cards accepted.

Digital Control Intro \$200 Digital Filter Tutor \$450 Kalman Filter Tutor \$925

Practical hands-on training courses that run on the IBM PC. Ideal alternative to text books, seminars, and university courses. FREE demo disk available.

Engineering Tutorial Software

 22338 Lull Street Canoga Park, CA 91304 (818) 716-0816CIRCLE NO 332

Cable Assemblies

OFTI exceeds in supplying you with the very best in cable assemblies. All factory tested, our assemblies are low loss, skillfully prepared and available with a wide range of connector options.
Count on OFTI to exceed in solving your fiber optic application problem with high performance cable assemblies, connectors and termination equipment.
Pictured above are cables terminated with OFTI singlemode Biconic, SMA, NTT PC, STC and multimode Biconic connectors.

Your Fiber Optic Connection
Optical Fiber Technologies, Inc. 5 Fortune Drive Billerica, MA 01821 Tel.: (617)663-6629
CIRCLE NO 335

LOW COST PC/XT/AT INTERFACE FOR IEEE-488 (GPIP/HPIB) - SHORT CARD FOR PC/XT/AT \& COMPATIBLES - 1 OF 6 INTERRUPT LEVELS - 1 OF 2 DMA CHANNELS - UP TO 4 BOARDS PER COMPUTER - CONTROLLER / TALKER / LISTENER - INCLUDES SOFTWARE DRIVERS - COMPATIBLE WITH MOST IEFE488 SOFTWARE PACKAGES FOR THE IBM PC - QUANTITY DISCOUNTS

Call today for datasheetl!
B\&C MICROSYSTEMS
355 West Olive Ave, Sunnyvale, CA 94086 PH: (408)730-5511 FAX: (408)730-5521 TELEX: 984185 VISA \& MC accepted.

AUTOROUTER USES
ARTIFICIAL INTELLIGENCE TECHNIQUES
AutoPCB 3.2 is a professional quality, PC-based PCB design system. No co-processor board is required. It features schematic capture, interactive part placement and route editing, and includes AutoROUTE, a powerful autorouter that uses artificial intelligence techniques to identify optimal routing patterns, such as the S turn and C patterns shown above, as part of the routing process. All layers of multilayer boards are routed simultaneously (up to 24). Post processors for photoplotters and drill tapes are available. A large, 4500 component part library lets you start designing boards immediately. A 30-day, full refund guarantee is provided.

PRO. LIB, Inc.
624 E. Evelyn Ave., Sunnyvale, CA 94086 Tel. (408) 732-1832, FAX 408-732-4932

CIRCLE NO 333

5W REGULATED, SINGLE \& DUAL OUTPUT ECONOMY DC/DC CONVERTERS, E SERIES - 5W Max. Output © $75^{\circ} \mathrm{C}$

- $\pm 0.3 \%$ Line/Load Regulation Ambient
-20mV P-P Typ. Output Ripple
- Single and Dual Output Models
- 5 Input Voltage Ranges
- 100MOhms @500VDC Isolation
- Efficiency @ FL 70\%, Typ.
- $2^{\prime \prime} \times 2^{\prime \prime} \times .375^{\prime \prime} 6$-sided shielded
- Efficiency @ FL 70\%, Typ
- Optional ON/OFF Control for
- 5 Output Voltage Ranges Battery Operation
Prices from $\$ 44.00$ ea. (100 's), Delivery stock to 3 wks. CONVERSION DEVICES, INC.
101 Tosca Drive, Stoughton, MA 02072
Tel. (617) 341-3266, TLX 920014
CIRCLE NO 336

FREE Demo Disk: 1-800-553-9119 SCHEMA's success is the talk of the CAE industry and thousands of satisfied SCHEMA owners know why. Incredible speed, ease of use, and power have made SCHEMA a best-selling schematic capture program for engineering professionals the world over Now, SCHEMA II is available. SCHEMA II sells for $\$ 495$ and supports most common IBM PC/XT/ AT configurations. Please call today for a free SCHEMA II demo disk.
OMATION

OM,
CIRCLE NO 339

SBX ANALOG I/O.
The RBX388 has 16 S.E. or 8 diff. analog inputs and 8 analog outputs, all on a single width SBX module of approx. 10 sq . inches. 12 bit resolution on both inputs and outputs. Resistor programmable gain for inputs. Several jumperable ranges for outputs. Onboard microprocessor provides optional continuous automatic scanning of inputs. Can replace two or more modules of many of our competitors.

ROBOTROL CORP.
16100 Caputo Drive, Morgan Hill, CA 95037 (408) 778-0400

CIRCLE NO 340

STOP NOISE IN PGA, LCC PACKAGES
PGA MICRO/Q decoupling capacitors provide low-inductance, high-frequency noise decoupling for PGA, LCC packages on complex board layouts. Fit under PGA or LCC sockets use no extra board space. Choose from many pinout configurations. Rogers Corp., 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624.

CIRCLE NO 343

TOROIDAL POWER TRANSFORMERS
Custom design using proprietary software Fast prototyping - Quick deliveries and split orders - Compliance with UL, CSA, VDE as required - More than 100 Standard design transformers available "off the shelf". Also: Toroidal Isolation and Audio Transformers

(B) MANUFACTURING INC.

250 Wildcat Rd., Downsview, ON M3J 2N5 Tel. (416) 667-9914, Fax. (416) 667-8928

PROGRAMMERS
FOR IBM PC/XT/AT

Select Device with vender name \& type number directly

- Enable user to set up Program Pulse Width. Vpp. Vcc, Over - program Pulse Width \& Iteration Counts. - Capable of set $\& 8 / 16 / 32$-bits wide-word programming - Built in Intellec Hex. Tektronix Hex. Motorola S. Hexadecimal. JEDEC transmission formats
- Suspend to DOS for operation of DOS utilities XP6000 Adapter \& cable installs in PC for connecting program mer externally

XP6001 1 -socket 1 M -bits EPROMs programmer XP6002 8 -socket 1 M -bits EPROMs programmer 160 | $\$ 375$ |
| :--- | XP6003 1 -socket MCS-48 micros programmer $\$ 215$

$\$ 270$ 2 YEARS GUARANTY +30 DAYS MONEY BACK WARRANTY Xender Corporation 2824, KENNEDY BLVD., JERSEY CITY, NJ 07306 Xender $\begin{aligned} & \text { 2824, } 201-659-2258 \text { Tlx: } 9102404444 \text { CHAMPION } \\ & \text { TEL }\end{aligned}$

```
CIRCLE NO }34
```


IBM PC/XT/AT ENGINEERING SOFTWARE FOR THE ELECTRONIC PACKAGING INDUSTRY

HEATB5: Thermal Analysis of Electronic Equipment - A complete computerized solution to Thermal Analysis studies of Electronic Components, Assemblies, PCBS and Enclosures. Provides a fast and practical method of analysis.

NATFRE: Vibration Analysis of PCBS.

- Calculates Natural Frequency, max deflection and max design goal deflection of PCBS subjected to sine or random vib COLDPLT: Compact Heat Exchanger Design. - Determines thermal design parameters of coldplate designs typically utilized for cooling high density electronics.
WT: Weight Analysis of Electronic Equipment
- Weight analysis without performing tedious manual cal culations. Output generates a detall weight analysis report.

EMP ENGINEERING

(516) 361-8921
R.O. BOX 1000 , NESCONSET, N.Y. 11767

CIRCLE NO 344

Frose PAMPHLET

128 North Park Street, East Orange, NJ 07019

 201/672-2140CIRCLE NO 342

DATA ACQUISITION DIRECT TO DISK

SDI Signal to Disk Interface for hours of real-time signal data storage using an IBM PC. Record/playback 2 channels, 16 bits, up to 50 kHz per channel. 50 or 250 Mbyte Winchester drives, 800 Mbyte optical. SCSI interface supports up to 7 drives! Advanced graphics-assisted cut \& paste editing. Tape recorder simulation. From \$3495.

Ariel Corp.

110 Greene St., NY, NY 10012
Call (212) 925-4155
CIRCLE NO 345
NO ENGINEER SHOULD BE WITHOUT ONE

America's most advanced Personal Programmer The Digital Media IQ-280 can program 40 PIN devices. The most advanced firmware controlled pin driver system expensive module or PAK again. The IQ Personal Programmer line offers the power and features comparable to many o the $\$ 5,000$ programmers, but at a fraction of the costs Support for CMOS, NMOS, ECL, Bipolar, PROMs. EPROMs,
eEPROMs, PLDs, ePLDs. IFLs, FPLDs, up to 40 pinDIP packages. Altera, AMD, Atmel, Cypress, Excel. Fairchild. Fujitsu, GI NEC MMI. Samsung. Seeq Sierra Signetics SMOS T Toshiba. Waferscale and more. ALMOST 1000 DEVICES! Whatever your need is. Digital Media can help you solve it. And you won't believe how little it costs.

Call (714) 751 -1373 to receive a complete product specification package immediately

IBM COMPATIBLE RS232 EASI-DISK 3½-51⁄2" FLOPPY DATA STORAGE \& TRANSFER SYSTEM

Information Transfer toffrom Non IBM Compatible Systems toffrom IBM \& Compatibles: (Over RS-232 or 488 Interface).

- Reads \& Writes MS DOS Disks
- RS-232/488 I/O
- Rugged Portable Package/battery option

ASCII or Full Binary Operation

- Baud Rate 110 to 38.4 K Baud
- Automatic Data Verification
- Price $\$ 895$ in Singles-OEM Qtys. Less. 28 other systems with storage from 100 K to 35 megabytes. ADP ANALOG \& DIGITAL PERIPHERALS, INC. 815 Diana Drive Troy, Ohio 45373 TWX 810/450-2685 513/339-2241

CIRCLE NO 349

Spring Contact Probes

With more than 10 years' experience in manufacturing spring contact probes. we have over 100 different kinds of contact probes specialized for testing bare PCBs. We also offer probes for testing in-circuit PCBs For full detalls. why not contact us today!

C.C.P. Contact Probes Enterprise Co., Ltd.

CIRCLE NO 752

Only a Specialized Manufacturer Could Provide Versatile and Economic Products

GENERAL SILICONES CO., USA 650 W Duarte 305 , Arcadia CA 91006 , U.S. S .A. 650. (81818 445-6036. Telex: 3716189 GScuil
Fax: $818-4456084$

RS-232C/422A USERS:
BI-DIRECTIONAL CONVERTER for EXTENDED USE
Convert RS-232C to RS-422A and/or RS-422A to RS-232C $\$ 49.95$

Guaranteed satistaction. Bi-directional first-ouality wersatio Converter: Extends cabie lengths up to 4,000 teet' Bit rates up to 90 K Buad. (Two $\mathrm{B} \& \mathrm{~B}$ B A - -222200 N Converters can extend your RS-232C capability yp to $4,000 \mathrm{tt}$.)
 comected
Requires 12 DCC at 100 ma. Optional power supply available for

$$
0
$$

Order Direct from Manufacturer TODAY and SAVE: SAME-DAY SHIPMENT! MONEY-BACK GUARANTEE!

Batteries, batteries, batteries.

- Batteries built to meet your specifications
- Battery designs to power your equipment and application
- Batteries from the world's largest independen supplier of battery packs.

```
# Request our FiEE catalog issing & & ELECT
Aequest our FREE catalog Ilisting B \& B ELECC
compretensive ine of RS-23CC intertace and \(\underset{\sim}{\square}=\) monitorings equipment.
```


Cell grading and sorting, injection molding, tool

B\&E electrunirs

1518B Boyce Memorial Drive, P.O. Box 1040 Ottawa IL 61350
Phone: 815-434-0846
and die, vacuum forming, shrink wrapping divisions all under one roof
(7) Alexander Batteries NEW PRODUCT/OEM DIVISION
P.O. Box $28880 \quad$ Phone: $619-480-444$ San Diego, CA 92128 Fax: 619-480-1351

CIRCLE NO 350 CIRCLE NO 751

SYNCHRONOUS/ASYNCHRONOUS RS-422, RS-485, RS-232, CURRENT LOOP

T
CUA TECH
incorparated
Leaders in Communication Technology

TOLL FREE: 1-800-553-1170
478 E. Exchange St. Akron Ohio 4430 (216)434-3154 TLX:5101012726 FAX:(216)434-1409 CIRCLE NO 754

GP-IB, HP-IB CONTROL FOR YOUR PC PC/AT and IBM PERSONAL SYSTEM/2 ${ }^{\text {w }}$

- Control instruments, plotters, and printers.
- Supports BASIC,C,FORTRAN and Pascal.
- Fast and easy to use. Thousands sold.
- Software library. Risk free guarantee.

Capital Equipment Corp 99 South Bedford St. Burlington, MA. 01803 FREE demo disk. Call (617) 273-1818

FREE
Design Guide
to cut costs on chassis and enclosures

Our new Engineering Design Guide is loaded with tips and design ideas to reduce chassis and enclosure costs and improve performance using steel wire construction. For a free copy write
TITCHENER E.H. Titchener, 28 Titchener
 Place, P.O. Box 1706, Binghamton, NY 13902 Phone 607-772-1161
FAX 607-771-0264

E \& H Field Probes

\$495

EDN "Readers Choice" (6/25/87)

Makes finding E \& H Field emissions easy!
Use with any o-scope or spectrum analyzer. Set in cludes three H and two E field probes, extension handle, case, documentation, two year warranty. Preamp with battery charger, optional. Call, write to order or for brochure.

THE EP-1's A GREAT VALUE \& HERE'S WHY:

- READS, PROGRAMS. COPIES OVER 300 EPROMS AND EEPROMS FROM 29 MANUFACTURERS INCLUDING 2716-27513, 2804 -28256, 27011 - READS \& WRITES INTEL. MOTOROLA, STRAIGHT HEX AND BINARY - OPTIONAL HEADS PROGAAM INTEL 874X, 8751, 87C51, 8755 - MENU-DRIVENCHIP SELECTIONBYMFG P PN: NO MODULE - SPLITS FILES BY BASE ADDRESS AND ODD/EVEN (16832 BIT) - ALL INTELLIGENCE IN UNIT; Z8O MICROPROCESSOR BASED - 5, 12.5, 21,25 VOLT PROGRAMMING FOR CMOS AND - A SUFFIX PARTS - FREE PC-DOS SOFTWARE \quad RS232 TO ANY COMPUTER - GOLD TEXTOOL ZIF SOCKET - 8 BAUD RATES TO 38.400 - SAME DAY SHIPMENT - ONE YEAR WARRANTY - GENERATES CHECKS CHECKSUMS - TWO FREE FIRMWARE UPDATES CALL TODAY FOR MORE INFORMATION
BP MICROSYSTEMS 800/225-2102 713/461-9430 TELEX 1561477 10681 HADDINGTON \#190 HOUSTON, TX 77043 CIRCLE NO 761
ZIPPY SWITCHES
 NO: E91274
*FUll DETAILS AND SAMPLES ON REQUEST *OEM ARE WELCOME

בITPY SHIN NUW Coorp. P.O. Box 10184 SHIN TIEN TAIPEI HSIEN, TAIWAN, R.O.C. TEL:(02) $9188512-5$ TLX: 33418 ZIPPY FAX: 886-2-9155765

Analog Circuit Simulation

NEW SPICE_NET $\$ 295.00$

 Make SPICE input files from schematic drawings using pull down menus and a mouse to draw and connect parts. Use an IBM PC with any UC Berkeley compatible SPICE program. Simulation Programsfor

- IS_SPICE, \$95.00. Performs $A C, D C$ and Transient analysis.
- PRE_SPICE \$200.00: Adds Monte Carlo Analysis, Sweeps, Optimization, libraries and algebraic parameter evaluation
- Intu_Scope \$250: A graphics post processor works like a digital oscilloscope. Easy to use with all the waveform operations you will ever need.

IBM
PC's from intusoft
(213) 833-0710
P.O. Box 6607 San Pedro, CA 90734-6607

CIRCLE NO 759

SuperCAD ${ }^{\text {mu }}$
 Schematic entry Software for the IBM $^{\circledR}$ PC \& Compatibles
 $\$ 99^{00}$
 COMPLETE PACKAGE

\star Easy-to-use schematic entry program for circuit diagrams, visible on-screen and pulldown menus
\star Supports popular graphic standards. mouse and printers
\star Powerful editing and drawing commands. including automatic drawing of digital busses
\star Extensive digital analog and discrete parts libraries (Over 1,000 parts!')
\star In-depth, readable instruction manual has many examples and illustrations

* Software includes part building netlisting design rule checking and bill of materials programs
MENTAL AUTOMATION.NE Q ORDERS/INFORMATION:

Mental Automation, Inc., Dept. S-9, 5415 136th Place S.E., Bellevue, WA 98006 or call (206) 641-2141 Sisa/MasterCard orders accepted!

CIRCLE NO 762

- PS/2 models
products are
- PS 2 models - 386 tower models
- 286/386-type PC/AT models
- Mini Tiger' super compa
- Cubic Baby A
- PC $/$ XT models
 Visit us at CeBIT'88 (Hall 6, Booth \#G64) or contact us today for more information on how Lead Year's Tiger Power make your electronics great!

2 y 㯺
Lead Year Enterprise Co., Ltd. 3F, No. 481, Chung Hsiao E.., Rd., Scc. 6. Taipei, Taiwan, R.O.C
TIGER POWER P.O. BOX $53-352$ Taipei Tel: 886-2-7857858 Th: 10862 LFADYEAR Fax: $886-2-7857852$

CIRCLE NO 765

How to put a low cost temperature gauge on everything.

Label's center spot turns black when surface to which it is affixed reaches specified temperature. Single- or multi-spot labels with pre-determined increment of ratings: $100^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$ to $600^{\circ} \mathrm{F}\left(316^{\circ} \mathrm{C}\right) .1 \%$ accuracy guaranteed. 1 thru 8 ratings on each monitor with various increments. Self-adhesive, removable. TEMPIL DIVISION, Big Three Industries, Inc. 2901 Hamilton Blvd., South Plainfield, NJ 07080 Phone: (201) 757-8300 Telex: 138662

CIRCLE NO 760

ANALOG CIRCUIT ANALYSIS ECA-2 2.30
ECA-2 2.30 includes more models, increased graphics capabilities, and expanded documentation.

- AC, DC, Transient - Twice as fast as SPICE
- Fourier Temperature
- Worst-case Monte Carlo
- Worst-case, Monte-Carlo
- Full nonlinear simulato
- Interactive or batch
- SPICE compatible models
- Over 500 nodes
- Detailed 525 page manual
- Detailed 525 page manual - Sine, Pulse, PWL, SFFM,
and Exponential generators - Money back guarantee

ECA-2 Apollo $\$ 3000$. Apollo Evaluation Kit $\$ 380$. ECA-2 IBM PC/XT/AT/PS-2 \$675. PC Evaluation Kit $\$ 95$ Call 313-663-8810 For FREE DEMO disk

E(E)PROM PROGRAMMER \$495

- Built in Timer Eraser option (\$50); Foam pad; - No personality modules; Menu selection of devices;
- User friendly software; Complete help menu;
- Direct technical support; Full 1 year warranty:
- Direct technical support; Full 1 year warranty
- Stand alone duplication \& verify ($24 / 28$ pins);
- Quil $24 / 28$ pin parts to 1 Mbit: CMOS EEPROMS:
- All $24 / 28$ pin parts to 1 Mbit, CMOS, EEPROMS;
- IBM-PC, Apple, CPM or Unix driver; Autobaud RS232
- Offset/split Hex, Binary, Intel \& Motorola 8, 16, 32 bit;
- Kits from $\$ 95$. Manual with complete schematics.

Call today for datasheets!!
B\&C MICROSYSTEMS
355 WEST OLIVE AVE., SUNNYVALE, CA 94086
Ph: (408) $730-5511$ VISA \& MC
CIRCLE NO 766

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

"D" SIZE PLOTTER

\$229500 RETAIL
\$169500 introductory OFFER

- Model PC 3600
- Repeatability $.001^{\prime \prime}$
- Speed at 7" Per Second
- Vacuum Paper Hold Down
- High Resolution Circles: Suitable for PCB Artwork

(415) 490-8380 ZERICON STEVENSON BUSINESS PARK
 BOX 1669 - FREMONT, CA 94538

CIRCLE NO 776

- D DESIGNED WITH $300+$ IC'S IN TWO WEEKS!
 In today's highly competitive electronics market,

 companies with the shortest development cycle will lead the market. At CDI-West we provide a development process shorting design time, increasing quality and saving money.CDI-West is the largest CAD/CAM facility in California providing full E/M design and tooling. Our specialty is to provide fast turn-around of digital circuits with our CBDS PCB design system. We will take your Daisy, FutureNet etc. CAE netlist into our large IBM mainframe. Sizeable, high-density PCB's are placed, routed automatically, correct to your input specifications. We design to IPC and MILP -55110P standards and provide full documentation. We also provide Hybrid and SMT circuit design.

For More Information Contact
CDICORDORDtIOR-URSt
Division of cinicorporation
911 Bern Court, San Jose, CA 95112 (408) 287-9140

CIRCLE NO 779

CIRCLE NO 782

CIRCLE NO 777

15 WATT TRIPLE OUTPUT DC-DC CONVERTER Integrated Circuits Inc. announces its model MT02812T which provides both +5 VDC at 2 amps and $\pm 12 \mathrm{VDC}$ at 208 mA from a nominal 28VDC input. These 15 watt converters are hermetically sealed in metal packages that measure only $1.95^{\prime \prime} \times 1.35^{\prime \prime} \times 0.50^{\prime \prime}$ and provide typical efficiencies of 80% over the full input range of 16 to 40 VDC. Thick-film hybrid circuitry is used to provide extremely small size and highest reliability. This unique design employs high frequency switching techniques for optimum performance and features full input/output isolation through use of an opto-coupler in the feedback loop
Additional features include short-circuit protection, an internal ripple filter, and an inhibititinput. Operating case temp. is - $55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, with environmental screening available as an option The price is $\$ 390$ (100 quantity) and delivery is stock to 30 days. Integrated Circuits Inc., 10301 Willows Road, Redmond, WA 98052 (206) 882-3100, TWX 910-443-2302.

CIRCLE NO 780

NEW! ADVANCED ACTIVE

FILTER DESIGN SOFTWARE

Version 3.0 designs Lowpass, Highpass, Bandpass, Bandstop and ALLPASS filters with Butterworth, Chebyshev, elliptic and Bessel response NOW calculates values for National MF-10, Reticon, MFB, VCVS, biquad and state variable filter circuits Interactive graphics for group or phase delay, gain, phase, impulse and step
response of the complete fiter or individual section Combine filters response of the complete tilter or indivivual section Combine filters for system design/analysis Modify circuits to observe effects
$(\$ 525)$ for IBM PC, XT AT. PS/2

SPICE FILE CONVERSION OPTION AVAILABLE
RLM Research
P. 0. Box 3630
Boulder, CO 80307-3630 (303) 499-7566
CIRCLE NO 783

No waiting for complete, low
PRICED, CHIP COMPONENT KITS
CC-1 Capacitor Kit contains 365 pieces, 5 ea. of every 10% value from 1 pf to $.33 \mu \mathrm{f}$. CR-1 Resistor Kit contains 1540 pieces; 10 ea. of every 5% value from 102 to 10 megn.
Sizes are 0805 and 1206 . Each kit is 0 NLY $\$ 4995$ nd Sizes are 0805 and 1206. Each kit is ONLY $\$ 49.95$ and
available for Immediate One Day Delivery! available for Immediate One Day Delivery!

Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD orders, or company P.O's with approved credit. Call for free detailed brochure.

CIRCLE NO 778

DPROM
RS232 Downloadable PROM ($32 \mathrm{~K} \times 8$)

- Eprom emulator for 2716's - 27512's
- Supports 8, 16, or 32 bit wide busses
- Non-Volatile memory standard
- Up to 19200 Baud
- Accepts Intel Hex formats
- 150 ns access time standard

30 DAY NO RISK EVALUATION
APPLIED DATA SYSTEMS
9811 Mallard Dr. Suite 203
Laurel, MD 20708
For more information call 800-541-2003
CIRCLE NO 781

CIRCLE NO 784

Publications feature

VME Bus and VME/Plus
The 560-pg VME Data Book 1988 is the vendor's second edition of its data book on VME Bus products. Published simultaneously, the technical brochure on VME/Plus examines several growth-oriented architectural features. The data book contains nine chapters with numerous photos and illustrations. A prod-uct-selection matrix arranged in columns introduces each chapter. Further, a product guide helps you to locate the products you are looking for easily and quickly. The brochure features the most recent VME/Plus 32-bit devices. It also contains previews of products in the design stage, which are scheduled for release this year.
Force Computers Inc, 3165 Winchester Blvd, Campbell, CA 95008.

Circle No 435

Optoelectronics guide and data book

The two publications, Optoelectronics Selector Guide (SG87/D) and Optoelectronics Data Book (DL118/D), are divided into product sections: emitters/detectors, isolators, slotted switches, and fiber-optic compo-
nents. The data book contains 65 new products and their applications and includes a new section on optoelectronic chips or die. Both books contain an industry cross reference and a reliability section.
Motorola Inc, Technical Information Center, Box 52073, Phoenix, AZ 85072.

Circle No 436

Document describes robotics

The 110-pg booklet Robotics...Start Simple, and Structuring Manual comprises three main sections: the fundamentals of robotics; applications and ideas; and structuring for basic automation-system elements of a nonservo robot, including a back-cover fold-out reference chart. You can use the publication as a guide to structuring a robot in the Cartesian coordinate system from standard components.
Mack Corp, 3695 E Industrial Dr, Flagstaff, AZ 86002.

Circle No 437

Digital storage oscilloscopes presented

This 6-pg, 4-color fold-out provides information about two of the vendor's digital storage oscilloscopes, the DS-6612 and DS-6411. The brochure describes each instruments' control panel in detail and lists fea-

tures and specifications. Ample illustrations are included.
Iwatsu Instruments, 430 Commerce Blvd, Carlstadt, NJ 07072.

Circle No 438

Booklet covers lithium products

This $28-\mathrm{pg}$ manual deals with lithium batteries and power modules. Besides summarizing information on the vendor's complete line of products, the publication focuses on applications, and environmental, safety, and quality data. Its array of products and procedures includes industry-standard button cells for low-cost consumer and computer

Offer an ideal way to:

- Introduce new products.
- Build awareness in the marketplace.
- Supplement your advertising campaign.
- Promote catalogs, literature or price sheets.
- Test an advertising message.

For further information, contact Lauren Fox, EDN Info Cards Manager, at (203) 328-2580. * Numbers represent actual responses.

LITERATURE

memory backup applications, as well as applications in process control, data acquisition, portable equipment, and factory automation.

International Power Sources Inc, 10 Cochituate St, Natick, MA 01760.

Circle No 439

Choosing op amps

 and data-conversion productsThe 8-pg Product Selection Guide features more than 80 operational amplifiers and data-conversion products. It provides information about single, dual, and quad op amps; and low-offset-voltage, lowpower, low-bias-current, low-noise, high-slew-rate, and wideband amplifiers. The booklet's specification listings for 8 -, 10 -, and 12 -bit-resolution ADCs and DACs simplify the selection of converter products.

Precision Monolithics Inc, Box 58020, Santa Clara, CA 95052.

Circle No 440

Safety-device options

This 4-pg brochure deals with the company's safe interface controls for intrinsically safe circuits and lists specifications for the vendor's Series 17, 27, and recent Series 37 controls. It reviews applications, operational modes, and FM-, UL-, and CSA-approved models. The pamphlet also provides an abbreviated

HIGHPROGRAMMING YIELDS

PROGRAMMERS

A complete range of low priced separate products to meet your individual specific requirements (with device manufacturers' approvals).
C41 up to 1 M bit EPROMs E9C 8 gang EPROM \& editing E12C gang/set EPROM 1011 Bipolar PLD (logic) 1012 Bipolar PROM / EPROM 1013 set EPROM (to $32 / 40$ pin) 1014 EPLD \& CMOS PLD

Options cover single chip micros simulators, PLCC, IBM/VAX remote drivers and ELAN LOG/iC compilers. Ask for our DEMO DISKS.
Prices start at \$995.

CIRCLE NO 92
version of the National Electric Code from the National Fire Protection Association (Quincy, MA). To help you locate the areas where intrinsically safe controls are needed, it highlights hazardous location Classes I, II, and III.

Warrick Controls Inc, Box 460, Royal Oak, MI 48068.

Circle No 441

Coverage of memory cards in credit-card format

This brochure discusses the Envoy family of microchip memory cards, which features EEPROM, EPROM, and ROM memory in a credit-card format. It provides overall specifications, EPROM/CMOS/OTP Series and EEPROM/CMOS Series specifications, a product guide, and con-

Turn Good Ideas Into Good Articles

With EDN's FREE Writer's Guide!

Would you like to get paid for sharing your clever engineering ideas and methods with your professional colleagues? If so, then send for EDN's new FREE writer's guide and learn how.

You don't need the skills and experience of a professional writer. And you don't need to know publishing jargon. All you do need are a little perseverance, your engineering skills, and the ability to communicate your ideas clearly.

Our new writer's guide takes the mystery and intimidation out of writing for a publication. It shows you how to write for EDN using skills you already have. Plus, it takes you step-by-step through the editorial procedures necessary to turn your ideas into polished, professional articles.

Get your FREE copy of EDN's writer's guide by circling number 800 on the Information Retrieval Service Card or by calling Sharon Gildea at (617) 964-3030.

nector specifications. The card cutouts are pocketed in the back cover of the brochure for easy accessibility.

General Instrument Microelectronics, 2355 W Chandler Blvd, Chandler, AZ 85224.

Circle No 442

A catalog of
microwave products
The vendor's 1988 92-pg, 4-color catalog highlights microwave measurement components, instruments, and systems in the dc to $60-\mathrm{GHz}$ range. General information before each major product group helps you to make the best choice for your particular needs. The book also features complete specifications for precision measurement components; the K Connector coaxial product line,
operates to 46 GHz ；and a new line of $40-\mathrm{GHz}$ fixed attenuators．Other new products include vector net－ work analyzers，scalar network ana－ lyzers，swept－frequency synthesiz－ ers，sweep generators，and RF analyzers．

Wiltron Co， 490 Jarvis Dr，Mor－ gan Hill，CA 95037.

Circle No 443

Static RAMs and programmable logic devices

The company＇s $102-\mathrm{pg}$ catalog pro－ vides specifications for its complete line of high－performance PLDs and memory devices．It includes de－ tailed information about advance－ ments in E^{2} CMOS PLD technology， the GAL（generic array logic） 39 V 18 ，and the GAL 16Z8，as well as specifications for the $\mathrm{E}^{2} \mathrm{CMOS}$ GAL and high－speed static RAM devices．Further，the publication features application notes and a
sales office directory．
Lattice Semiconductor Corp， Literature Services Dept，Box 2500， Portland，OR 97208.

Circle No 444

Graphics aid for surface－mount drawings

This surface－mount footprint tem－ plate assists you in generating printed－circuit artwork．It includes the most commonly used component shapes，and it provides accurate scale match $(\times 4)$ to the vendor＇s line of artwork design aids．\＄7．25．

DMC Designmaster，Box 876， Camarillo，CA 93011.

INQUIRE DIRECT

Programmable sweep generators available

This 6－pg brochure discusses the vendor＇s 6300 Series of 0.01 －to $20-\mathrm{GHz}$ programmable sweep gen－

erators．It describes the series＇op－ eration，display，frequency，and power sweep，as well as its ease of calibration and user programming． It also includes complete specifica－ tions for the series．

Marconi Instruments， 3 Pearl Ct ，Allendale，NJ 07401.

Circle No 446

Noise problems？ Soundmat L F^{TM} is a real noise＂stopper．＂

The noise stops here．
－ロ～\wedge^{\circledR}
One Burt Drive，Deer Park，NY $11729 \quad 516-242-2200$ 3002 Croddy Way，Santa Ana，CA 92704 714－979．9202 Send for your free noise control bulletin no．709，today．

Our newly expanded Handbook of Personal Computer Instrumentation for Data Acquisition，Test，Measurement， and Control contains more than ever before．It has everything you＇ve ever wanted to know，and much more． Almost 300 pages include：
－A tutorial－A chapter on available software
－An applications section
－Example programs
－System configuration guides
－Technical specifications
This \＄15 value is FREE for the asking．Write on your company＇s letterhead to：

The New PCI Handbook，Burr－Brown Corp． Intelligent Instrumentation
1141 West Grant Rd．，\＃131，Tucson，Arizona 85705
BURR－BRONNO

Leaded or surface mountonly Coilcraft gives you all these inductor options

They're all here-from 10 mm tuneables to surface mount inductors. And they're all in stock, ready for immediate shipment.

Our handy Experimenters Kits make it easy for you to pick the right parts. And our low, low prices make them easy to afford, whether you need five parts or five hundred thousand.

If you don't have our latest RF coil catalog, circle the reader service number. Or call Coilcraft at 312/639-6400.

Experimenters Kits

To order call 312/639-6400

Tuneable inductors

"Slot Ten" 10 mm inductors $0.7 \mathrm{uH}-1143 \mathrm{uH}$
18 shielded, 18 unshielded
(3 of each)
Kit M100 \$60 $.0435 \mathrm{uH}-1.5 \mathrm{uH}$

Fixed inductors $4 \mathrm{nH}-1,000$ uH

64 values (6 of each)
Kit C100 \$125
Fixed inductors
Axial lead chokes
$0.1 \mathrm{uH}-1000 \mathrm{uH}$
25 values (5 of each)
Kit F101 \$50

Change is coming for performance reviews, but it's slow and painful

Deborah Asbrand, Associate Editor

The good news about performance appraisals is that companies are finally starting to take them seriously. The bad news is that the review process is still so dreaded and steeped in misunderstanding that improvements are minimal.
"Performance appraisal is a no-win situation," concedes Bob Glen of the Naval Weapons Center at China Lake (CA). Glen recently managed a project that involved revamping the performance-appraisal system used for 5000 employees at the China Lake and San Diego naval bases. Conducting an evaluation and being evaluated, Glen said at the IEEE's 1987 conference on engineering careers, are "probably the most stressful things you can do. But there's no way around them."
It's small wonder, then, that for most employees, annual reviews entail the strained nervousness of a
superpower summit conference. Employees step into their manager's office and wait to hear the category or label-unsatisfactory, satisfactory, or above average-to which the year's 50 -odd weeks of work have been reduced. But subordinates aren't the only ones who shudder at the thought of yearly assessments. Managers report that they feel just as much, and maybe more, tension.
The problem with performance

> Appraise ($\partial-\mathrm{praz}$): 1. To set a value on, estimate the amount of $\mathbf{2}$. To evaluate the worth, significance, or status of; especially, to give an expert juagment of the value or merit of -Webster's Ninth New Collegiate Dictionary
appraisals is that many businesses pay them only lip service. Instead of serving as an opportunity for a manager and subordinate to meet and constructively discuss the latter's professional strengths and weaknesses, the annual event is, by design, an exercise in paperwork by which the employer substantiates salary increases and promotions. For most workers, reviews are empty rites of the workplace: Employees need feedback on their performance every day, not just one day a year. And since few managers are trained to provide such support, companies are left with the task of salvaging some usefulness from a system of infrequent reviews.
Human-resource professionals gamely try to help. Performance appraisal is a favorite topic among training professionals, says Patricia Galagan of the American Society of Training and Development (Alexandria, VA). The organization's monthly magazine, Training and

PROFESSIONAL ISSUES

Development Journal, runs several articles each year on implementing and improving performance-appraisal systems. Galagan, the magazine's editor, says the publication's 50,000 readers are hungry for information on the topic because "professionally, they believe it's important." But fueling their interest, she adds, are "the companies they work for," many of which are looking to improve their review systems.

Indeed, after years of viewing employee evaluations as a necessary evil, more American businesses are waking up to the advantages they can derive from a well-planned per-formance-appraisal system. Until recently, human resources was the stepchild of corporate culture, says Gary Latham, chairman of the University of Washington's management and organization department. But currently, he says, "there's the realization that we've put maximum efforts into finance and technology, and that we now have to put as much emphasis on our internal systems."

Many corporations, too, are seeking to eliminate cost-of-living salary increases and adopt a pay-for-performance system. Implementing merit pay, though, leads many businesses back to their appraisal processes. "Companies are finding that they can't begin to pay for performance until they're able to define what good performance is," says Audrey Ellison, marketing manager for Organizational Dynamics, a Burlington, MA management-training and consulting firm.

Also attracting employers' interest is the important role that review documents play in lawsuits that employees file against former employ-ers-and the large sums that courts have been awarding employees for damages. For example, nine laid-off employees of Miles Inc, the maker of Alka Seltzer, sued the company for age discrimination. They claimed that they were given pink slips because of their ages, not their job performance; Miles countered that
only the workers who performed most poorly were dismissed in the company-wide layoff. Miles lost the suit and in August 1986 was ordered to pay the workers $\$ 1.63$ million in damages. Key to the fired employees' victory were copies of their performance reviews, which contained glowing descriptions of their abilities.

The paper chase

Parting with time-honored systems, though, is not easy. Many companies, for example, believe that revamping their evaluation forms can bring substantive change to their review systems. Studies, however, show that the arrangement of evaluation-form questions or the way they're phrased has little bearing on a review system's effectiveness. "Generally, all of the tools

seem to work if the people using them believe in them," says Pat Gallegos, personnel director for Evans and Sutherland Computer Corp, a Salt Lake City, UT maker of highend graphics terminals. "Whether you use a blank sheet of paper or a ranking system doesn't really matter."

Relinquishing old attitudes about performance appraisal is even more difficult. The review process is an emotional mine field for managers and employees alike. "There's a lot of fear surrounding the process on both sides," says Richard Swanson, director of the University of Minnesota's training and development research center. "Supervisors don't feel comfortable being in a godlike position and judging people. So they avoid it."

Newly promoted or ill-trained managers are often unprepared for the hurt feelings and deflated egos that result from poorly conducted reviews. Don Wilson says that on first becoming a manager at Bell Laboratories in the 1960s, he expected to conduct performance reviews in the workmanlike fashion that he performed his other responsibilities. He quickly recognized his mistake. "I didn't think about how I was shaping the person on the other end of the process," he says. "It was only when I saw people were hurt that I realized how devastating [the performance review] can be to selfesteem."

Performance appraisals bring "a great deal of trauma to both parties," says Wilson, now a telecommunications researcher for Bell Communications Research in Morristown, NJ. Thirty-five years of reviewing and being reviewed have convinced Wilson of the futility of ranking, rating, and categorizing employees. "We're spending a lot of energy trying to measure very small differences between people and placing a great deal of importance on those differences."

Engineers, in particular, scoff at the quirks of the review process, so much of which hinges on the skillsand idiosyncracies-of the manager conducting the evaluation. Few per-formance-appraisal problems are oc-cupation-specific, but consultants and researchers agree that engineers, whose field is so precise, chafe at the personal and subjective process of job reviews. "People in engineering always say that performance appraisals aren't objective or measurable enough," says Norman Smallwood, a partner of Novations Group Inc, a Provo, UT, consulting firm. "But the simple truth is that [judging] performance is always subjective."

The chief obstacle to achieving more communication and less measurement is management's reluctance to abandon the once-yearly

PROFESSIONAL ISSUES

review system. Feedback needs to occur regularly, human-resource officials say, not one day each year. Latham points to sports as the best example of how frequent discussions benefit performance: Coaches "don't wait until the end of the season to let people know what they're doing wrong."

Once-a-year reviews attempt to accomplish too much in too little time. In addition to covering an employee's job performance and rating, the review discussion often includes pay increases, possible promotion, and career guidance. As a result, employees leave their manager's office shell-shocked. "People are told that they're average performers, [and] they start to stew," says Smallwood. "Then they're told about a salary increase-which, because they're still stewing, they may not even notice-and then the manager says 'Now let's talk about your career.'"
Yet persuading companies to dismantle a system of annual reviews is difficult because most can't envision a replacement for it. "Companies want to part with it because it's not working, but the question they ask is 'how?'" says Ellison.
Experts agree that the first step to solving review-process problems is to conduct performance appraisals several times a year. Often, appraisals constitute the only opportunity employees have of receiving feedback on their work, and "they need to be done at least quarterly to do any good," says Latham. "Think about the surprise quizzes that you took in school. When you arrived in class, the teacher announced the quiz and instructed you to place your books under your seat. You hated it, but, boy, did you study for that class. Performance is at a maximum in that kind of class."
At the very least, says Latham, salary and promotion reviews should be conducted independently of performance reviews, particularly if employees are asked to perform
self-evaluations. "Self-evaluations are worthwhile so long as money and promotion opportunities aren't tied to them," Latham says. "Then it's like asking the person to testify against himself."
The next task is helping managers to kick their dependence on the paperwork of the process and learn the art of constructive conversation. "Managers need to learn to explain their position," Gallegos says, "not defend it."

Feel like a number

The good news for employees is that the authors of human-resource studies are now turning their attention from the tools of appraisal to the targets of those tools-the employees. Researchers are examining how people respond to interviews and the ways in which they can disagree without feeling defensive.
A more humane system of appraisal, however, seems a long way off. The June 1987 issue of Training and Development Journal contained a monograph entitled "An uneasy look at performance appraisal," which has been widely cited by training professionals. In the article, the late Douglas MacGregor criticized the cold, assembly-linelike quality of most review systems. "As far as the assumptions of the conventional appraisal process are concerned," MacGregor wrote, "we still have what is practically identical with a program for product inspection."

MacGregor's theories are not controversial. Indeed, they are in close agreement with those of other industry experts. So, why has his monograph generated so much commentary? Because it's 30 years old, a reprint from a 1957 issue of the Harvard Business Review. EDN

Article Interest Quotient
 (Circle One)

High 518 Medium 519 Low 520

Sophisticated PCB CAD

 at a Practical Price

All the features of a $\$ 75,000$ Engineering Workstation on AT and 386 Personal Computers -- and at an affordable price!

- 1 mil data base, $32^{\prime \prime} \times 32^{\prime \prime}$ area, up to 30 layers \& 200 IC's.
- Automatic and Interactive Placement aids, including Dynamic Rubber-banding, Connection Length Measurement, Auto Part Swapping, Gate and Pin Swapping, and other aids.
- Interactive Routing on any grid from 1 mil upwards, i.e., $5,10,15,20$, 25, 50, etc. Thru, Blind and Buried Vias of Standard and Micro size.
Filled tracks and pads at the CRT.
- Fine Line Design -- 2 tracks between IC's. Track Segment thickening. Angles at 90,45 and 1 degree.
- Auto Routing (optional)
- Auto Air Gap Checking
- 2-D Documentation capability
- 3,000 Library parts included
- Full SMD and Analog Board design supported
- Post Processing to matrix printer and wet ink plotter
- Optional Gerber Post Processing
- Optional 400 IC Capability
- PADS-SuperRouter -- a Rip up and Reroute Router capable of 100% completion
- PADS-CAE -- A revolutionary front end Logic Capture System

> Evaluation Package of all Software on 4 Disks with Manual $\$ 50$ refundable upon purchase

CAD Software, Inc.

P.O. Box 1142, Littleton, MA 01460 (800) 255-7814

CAREER OPPORTUNITIES

| 1988 Editorial Calendar and Planning Guide | | | |
| :---: | :---: | :---: | :---: |
| Issue Date | Recruitment Deadline | Editorial Emphasis | EDN News |
| Mar. 17 | Feb. 25 | Graphics, Filters, Software/CAE | Closing: Mar. 3
 Mailing: Mar. 24 |
| Mar. 31 | ,Mar. 10 | Power Semiconductors, Memory/Graphics, Fiber Optics | |
| Apr. 14 | Mar. 23 | Communication Technology Special Issue, Communication Systems | Closing: Mar. 31 |
| Apr. 28 | Apr. 7 | Software, Industrial Computers, Interface ICs | Mailing: Apr. 21 |
| May 12 | Apr. 21 | Analog Technology Special Issue, Analog Converters | Closing: Apr. 28 |
| May 26 | May 5 | CAE, Software, Sensors/Transducers | Mailing: May 19 |
| June 9 | May 19 | CAE, Analog ICs, Test \& Measurement | Closing: May 29 |
| June 23 | June 2 | Data Communications, DSP, Components | Mailing: June 16 |
| July 7 | June 14 | Product Showcase-Vol. I, Power Sources, Software | Closing: June 23 |
| July 21 | June 30 | Product Showcase-Vol. II, CAE, Test \& Measurement | Mailing: July 14 |

Call today for information:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Dan Brink (714) 851-9422
National: Roberta Renard (201) 228-8602

Home in on an extraordinary career at GE Government Electronic Systems Division. If you are an engineer with the ability to create sophisticated Sonar systems, there is tremendous future within range.
Our Undersea Systems Department is a recognized leader in ASW technology for Surface Ship and submarine based systems. We continue to expand our technology and program base through our reputation for delivering quality products and well funded IR\&D programs.
As ASW technology continues to grow, you owe it to yourself to grow with the leader.

Systems Engineers
 opportunities currenty exist in:

-Large Scale Combat Systems Analysis;
Design \& Development

- Acoustics \& Signal Processing
- Algorithm development
- Sensor systems design \&e development
- Control systems engineering
- Reliability/Maintainability/

Human Factors

Hardware Engineers

hep design the future by working in:

- Advanced architecture and design
- CMOS gate array development
-Power supply design
- Analog or digital circuit design (board and component level)
- Transmitter design
- Electronics Packaging/Cabinet Design

Software Engineers

opportunity to advance if you're experienced with:
-Real time software development

- Architecture and design of embedded programmable processors (68000 or similar processor)
-Top down structured design in ADA or Fortran (UYK-43 desirable)
-Software Quality Assurance in accordance with MILL-S-52779
-Configuration Management in accordance with MIL-S-483

Test and Evaluation

Engineers
with experience in:
-Detailed test plan development

- Facilities layout
-Top level test documentation
- Subcontract management
-EMI/EMC Engineering
Additional positions are available. For prompt response forward your resume to: GE-Government Electronic Systems Division, Code EDN, Box 4840, CSP-4-48, Syracuse, NY 13221

GE Government
Electronic Systems

[^20]
Everyone wants engineers who can walk on water.

If you're an engineer who rises above the crowd, Compaq will send you soaring.

Compaq people are innovative and independent. At the same time, they participate as part of a team. This "can do" environment has helped us design the most sophisticated personal computers for business use.

Surface Mount Technology
 Engineers:

Challenge your surface mount technology experience in design, manufacturing, quality, reliability, and sustaining engineering. You'll have a hand in the process with your BS degree in engineering and two years' experience in a high-volume manufacturing environment.

Sustaining Engineers:

Qualify with a BSEE or BSME plus three years' experience in the following areas: digital and analog component evaluation and failure analysis; electromechanical failure analysis and problem resolution specifying electrical and mechanical component requirements (resistors and capacitors through VLSI and ASICs); SMT components; component supplier interfacing on specifications and quality improvement; disk drives. Experience in INTEL 80286/80386 Assembly language programming is preferred.

Product Quality Assurance Engineers:

Help us maintain the highest user satisfaction ratings through quality assurance management. From statistical process control, to formulating quality assurance procedures, to establishing workmanship standards, the challenge is yours. To qualify, you'll need a

BSEE degree and two years' experience with disk drives, keyboards, power supplies, or printed circuit boards, and failure analysis at the component level.

Diagnostic Test Engineers:

Manage hardware and software diagnostic testing with state-of-the-art automatic test equipment. Your BSEE or MSEE degree should be complemented with at least two years' related experience in designated ATE test fixtures/bed of nails fixtures with a background in power supply testing and transmission line theory as related to fixturing.
Familiarity with Teradyne L200 and Genrad test equipment, " C " and Assembly programming languages, using industry standard architecture and MS-DOS in an 80286/ 80386/8086 environment is essential.

Component Test Engineers:

You'll ensure quality control through engineering analysis, device characterization, and failure verification of digital and linear devices such as: custom ASICs,
complex microprocessors and peripherals, advanced CMOS logic, static and dynamic memories, and other precision components.
You should have a BSEE and three years' experience in either ATE component test equipment, analog testing, printed circuit boards, component/incircuit boards, or vendor quality inspection and supplier selection.

Vendor Quality Engineers:

Coordinate device qualifications with vendors and purchasing. You'll lead the way conducting tests and evaluating design and redesign peripheral problems to main tain the highest user satisfaction ratings through quality control. You must have at least two years' experience with peripherals and project management, plus a BSIE or BSEE degree.

Cost Reduction Engineers:

Provide innovative solutions to cost reduction problems by creating designs to meet the requirements of established goals. You should have a BS in EE, EET,

We expect a little more.

or other related engineering field, with two years' experience in digital systems design. In addition, you should have excellent communication skills and the ability to move multiple projects toward completion.

Packaging Engineers:

Provide direct packaging engineering support for manufacturing operations, as well as product development support through improved packaging designs. Your BS in ME, Packaging Engineering, or equivalent, plus three years' related experience qualifies you for this challenging position. Excellent interpersonal skills are required to develop strong working relationships with outside vendors, contractors and consultants, as well as with multiple internal organizations.

Microprocessor Logic and ASIC Design Engineers:

Challenge your expertise in high-speed logic design and/or microprocessor system design using flow charts and timing diagrams for digital design and detailed design analysis.

Your experience should include vendor libraries, test vendor generation, simulation checkout, and TTL emulators for gate array standard cell design. Familiarity with CAE systems used in logic design, test vector generation, simulation checkout, and documentation is also necessary. You must have five years' related experience plus a BSEE or equivalent degree; an MSEE degree is preferred.

Systems Software Engineers:

Evaluate, design, and develop firmware, operating systems, device drivers, and utility software for PC systems. You'll need a BSCS, BSEE or equivalent degree with four years' related experience in PC software development, 8086/286/386 Assembly/ "C" language programming in MS-DOS, OS/2, and/or UNIX/XENIX operating systems.

Systems Architects:

Design new products by investigating and evaluating system compatibility and performance of design alternatives and new technologies. You'll develop hardware
compatibility tests and performance analysis tools.
Qualify with a BSEE, MSEE preferred, and three years' hardware background with a knowledge of microprocessor-based systems software. In addition, experience with CPUs/memory/bus architecture, numeric co-processors, file subsystems, network/communications, graphic subsystems, and state machines is required.

Graphics Display Manager:

Coordinate and manage the definition, development and procurement of display subsystems. You'll provide compatible systems and develop high resolution products for engineering workstations, desktop publishing, and related applications.
You must have a BSEE or BS in Physics; an MS is preferred. Eight years' experience in electronics design engineering and management, including five years in design of computer equipment is necessary, as well as the ability to manage technical professionals in an engineering development environment.

Can you walk on water?

Maybe you won't know until you try. Compaq offers competitive salaries, comprehensive benefits and an unequaled work environment. We have a variety of openings for select professionals within the company. If you're interested in one of the above positions-or any other-submit your resume and salary requirements to:

Compaq Computer Corporation, Dept. EDN21888-RM, P.O. Box 692000, Houston, Texas 77269-2000. Compaq is an affirmative action employer, $\mathrm{m} / \mathrm{f} / \mathrm{h} / \mathrm{v}$.
Please specify the position for which you wish to be considered.

ARE YOUR IDEAS AHEAD OF OUR TIME?

Stonehenge, one of the most famous of all the classical megalith monuments, has long been an important part of the popular and scientific imagination. Its origin has been the cause of speculation for years, as scientists try to discern who had the intellect and ingenuity to create a celestial observatory of such astronomical significance and exactness.

What is clearly understood and shared these 4,000 years later is man's unceasing fascination with the heavens and his need to explore them for a better understanding of his place in time and space.

The construction of Stonehenge required remarkable genius and ability - and so will the endeavors we have planned at General Dynamics Space Systems Divison.

You can now be a part of our exciting time in history. Your ideas and accomplishments could be chronicled for future generations to study as hallmarks of a brilliant epoch in space exploration.

We currently have opportunities available in the areas listed below for individuals with a technical
 degree or the equivalent combination of formal education and related experience. Government or aerospace industry background is preferred. If you are interested in one or more of these areas, please send your resume to: Professional Staffing, GENERAL DYNAMICS SPACE SYSTEMS DIVISION, MZ C2-7143I155, P.O. Box 85990, San Diego, CA 92138. (Opportunities also exist in Huntsville, AL and Harlingen, TX.)

STRUCTURAL DESIGN

- Tank Structures
- Adapters
- Fairings
- Materials \& Processes
- Pre-Design
- Liaison

FLUID SYSTEMS DESIGN

- Pneumatic
- Hydraulic
- Propulsion
- Cryogenics

THERMAL/FLUIDS ANALYSIS

- Systems Modeling
- Space Environments
- Propulsion
- Cryogenics

AVIONICS

- EMI/EMC
- Electrical Power
- Instrumentation
- RF Systems
- Parts Engineering
- Harness Design/Installation
- Liaison
- Analog/Digital Circuit Design
- Avionics Systems
- Mechanical Packaging
- Control Systems
- Guidance \& Navigation

SYSTEMS

- Systems Requirements
- Systems Safety

DYNAMICS/ANALYSIS

- Launch Vehicle Transient Load
- Environmental Dynamics
- Acoustics
- Jettison Trajectory
- IRAD \& CRAD
- CAE

STRESS ANALYSIS

- Hand Analysis
- Finite Element Modeling
- Structural Test Support
- CAE
- Methods

TEST \& EVALUATION

HOW MUGH SHOULD YOU BE ERTHINGG IN $1988 ?$ All new, 1988 Engineering Salary Survey will show you the exact value of your experiencel II's yours frief by calling 1-800-362-8600 ext. 201.

With so many changes in technology, how can you keep up with trends in engineering salaries, careers and the latest advances?

All new survey provides comprehensive answers

Call or write today, and you'll have the latest data right at your fingertips. You'll find out:

- How salaries are directly affected by your area of specialization in engineering;
- How your experience level plays an enormous part in determining your salary;
- What technical specializations are in most demand and how much of a premium many firms are willing to pay for your expertise.
It's the most comprehensive National Salary Survey we've ever published.

Gain new insight into your own progress

The new 1988 Survey will not only give you a thorough assessment of where your skills and expertise fit into today's marketplace. You'll also get valuable information to help ensure that your career and salary will never be blocked or shortcircuited. The new Survey provides a series of charts and graphs to help you understand your own progress, assess where your career is headed and develop strategies to make sure you're staying in the mainstream of your career.

In short, it's "must reading" for anyone who's interested in maximizing their chances of success.

Best of all it's FREE

The new, 1988 Engineering Salary Survey and Career Planning Guide is published as a free service to the profession. As the leading recruiting firm that specializes exclusively in engineeringand staffed only by degreed engineerswe want to assist you in establishing and achieving your professional objectives.

Call 1-800-362-3600, ext. 201 today
Or, write to the address below. Either way, your copy will be mailed to you free.

Encineering Career Soar With Smiths Industries

A pioneer in the avionics industry, Smiths Industries, SLI Avionic Systems Corporation, Grand Rapids Operation, has grown to international leadership in the research, design, development and manufacture of high-technology guidance and navigation systems. We currently have the following positions available:

Guided Wave Optics Specialist

Senior Engineer needed to augment existing optical rate sensor development group chartered to develop and put into production a passive fiber optic gyro. Requires strong analytical and "hands-on" development skills in the field of single-mode guided wave optics.

Position offers growth potential and future promotional opportunities for individual with proven leadership, communication and organizational skills. MSEE or MS Physics with applied electrooptic orientation required. PhD preferred

Principal Staff Engineer

BS/MS in EE/CS; PhD desirable. Requires 3-7 years of professional experience in voice recognition, communications and information theory, particularly detection, estimation and stochastic processes. Background in pattern matching, AI and phonetics is important. Experience with DSP processor architecture is essential. Program/technical management responsibilities require ability to perform competitive analysis, develop system specs and cost analyses, and prepare/present proposal packages. Direct interface ability with DoD and aircraft customer communities is essential.

Senior Engineer

MS or PhD in Electrical Engineering or equivalent with minimum 3 years experience in avionic systems. Areas of concentration to include application of advanced technology to Vehicle Management, Guidance and Control, customer contact, presentation skills and project management capability essential. Must demonstrate ability to formulate and validate concepts and perform preliminary design.

Avionics System Design Engineers

Requires background in analyzing system requirements, specifying software requirements, human factors aspects of cockpit and control/display layout, or system integration and test of navigation weapon delivery or flight management avionic systems. BS or MSEE or equivalent or minimum of 5 years experience required.

Section Manager Materials Engineering

BS in Metallurgy, Chemistry, or Materials Science, and 7-10 years experience, including supervision. The desirable candidate will have Materials Engineering experience in an Aerospace Instrument or Electronic Systems Company including familiarity with printed wiring board fabrication and assembly techniques, meta finishing, heat treatment and general metallurgy.

Group Manufacturing Engineer

Qualified candidates will have a minimum of 5-10 years experience in the design or manufacture of printed wiring board and/or electronic chassis, preferably in a military or electronics environment. This new position will be responsible for establishing and coordinating a team to interface with design and quality engineering and to insure product design producibility to cost

Selected candidate will be a highly promotable and motivated individual with a strong interest in manufacturing cost control. A minimum of BSEE or BSME is required; MS preferred.

Maintainability/Testability Engineer

BSEE with 5 years experience in Maintainability Engineering per MIL-STD-470, performing Quantitative M Analyses, M Predictions, fault catalogs, M Demo Procedures, Demos, Demo Reports, Test Tolerance Analyses and preparing LRU/SRU Test Specifications and Test Requirements Documents (TRDs) on digital avionics.
Smiths Industries offers a leader's compensation and benefits package including relocation assistance. Our location in Grand Rapids, Michigan offers endless recreational activities and a lower-than-national-average cost of living. To be considered, please forward your resume including salary history to:
Judy Percy
Manager of Technical \& Professional Staffing

SMITHS INDUSTRIES
SLI Avionic Systems Corporation
Grand Rapids Operation
4141 Eastern Ave. SE.
Grand Rapids, MI 49518-8727
Equal Opportunity/Affirmative Action Employer

Zenith Electronics. Uniquely positioned for tomorrow. In Computers. Digital and stereo television. VCRs and more.
At Zenith, we're embarking on a bold, new course toward market leadership. Our resulting expansion has created the following openings in the Microcircuits Division of our Reynosa, Mexico/McAllen, Texas twin-plant operation.

MANUFACTURING PROCESS ENGINEER

This position is responsible for the programming, set-up and operation of automatic pick-and-place equipment and for troubleshooting the mechanical and electrical problems that occur with these systems. Also responsible for training maintenance personnel and recommending layout and artwork changes to products in order to improve their manufacturability.
A BSME and a demonstrated understanding of electro-mechanical principles in automatic component placement systems required.

INDUSTRIAL ENGINEERING SECTION MANAGER

Reporting to the Manager of PCB Assembly, this position is responsible for directing the activities of the Industrial Engineering Group who support all the major product lines in this microcircuit manufacturing facility. Included is the development, modification and documentation of the process. flow diagrams, visual line aids for the assembly operations and labor rate standards and line balance audit. Also responsible for reviewing equipment capacity and performing operational analysis time studies.
Experience in the fabrication of conventional and SMD PC Board assembly is required. Familiarity with polymer, thick film or chip and wire microcircuits would be beneficial. BSIE required.

QUALITY ASSURANCE ENGINEER

This individual will establish the measurements and process controls necessary to detect entry of any factors that might adversely affect product quality or reliability. Also, this position will develop and implement quality levels and appropriate defect classification for quality rating of assembled products.
A BSEE or equivalent along with 2 years experience in the setting-up and usage of statistical process controls is required.

TEST EQUIPMENT SECTION MANAGER

Reporting to the Plant Manufacturing Engineering Manager, this position will be responsible for developing and implementing test systems and production equipment improvements which will result in improved reliability and overall performance. This individual will also manage test systems maintenance, spare parts inventory and upgrades to existing equipment.
Requirements include a BSEE and practical experience with the programming and maintenance of integrated manufacturing line test equipment (i.e., Everett Charles, Zehntel, H.P., Gen Rad and Teradyne systems).

ELECTRICAL ENGINEER

Laser Systems

Position involves maintaining equipment for optimum performance of laser systems, which will include development of laser trim programs, and training personnel in set-up and operations.
Requires a Bachelor's degree in Electrical Engineering, AAS in Electronics or equivalent experience with at least 3 years experience in a production support environment. Practical experience in programming and maintenance of computer-controlled resistor adjust laser trim and substrate scribe systems such as Teradyne, Chicago Laser and Photon also required.
Already breaking ground in a variety of market areas, Zenith is poised for even greater success. We offer an excellent salary and benefits package, including full relocation. For confidential consideration, please send your resume, including salary history, to: Zenith Electronics Corporation of Texas, 6601 S. 33rd Street, McAllen, TX 78503. Attn: Mike Haynes. No phone calls, please. An Equal Opportunity Employer M/F/H/V.

Abbott Transistor Labs Inc

ABC-Taiwan Electronics Corp
.305
Academic Press/A Division
of HBJ Publishers
ACCEL Technologies Inc.
ACDC Electronics
Acopian Corp
Acromag Inc
ADPI
Advanced Micro Devices
Aerovox Mallory
Airpax Corp/Cambridge Div.
Alexander Batteries
Amco Engineering
American Automation
Amoco Laser Co
AMP Inc.
Amphenol/Spectra-Strip
Analog Design Tools Inc
Analog Devices Inc
Antex Electronics
Applied Data Systems
Applied Microsystems Corp
Ariel.
Arium Corp
Arnold Magnetics Corp
AT\&T Technologies
Augat Termination Products
Augat-Interconnection Components
Avocet Systems Inc
B\&B Electronics Mfg Co
B\&C Microsystems .
Belden Wire \& Cable
Bering Industries Inc
Berkley Varitronics
Bertan Associates Inc
Bourns Inc
BP Microsystems
Brooktree Corp
Bud Industries Inc
Burr-Brown Corp
BV Engineering
Bytek Corp
CAD Software Inc
CADdy Corp
Cadnetix Corp
California Eastern Labs Inc
Capital Equipment Corp
Carlingswitch
Castrol Inc
CCP Contact Probes Enterprise
CDI Corp-West
Central Data Corp
Ciprico Inc
C\&K Components Inc
Coilcraft
Comair Rotron Inc
Communications Specialists Inc
Computer Products Inc
Conversion Devices Inc
Cyclone Microsystems Inc
Cypress Semiconductor
Daisy Systems Corp
The Dan Pepper Co
Data I/O Corp
Deltron Inc
Densitron Corp
Design Computation Inc
Dialight Components
Digital Media Inc
Diversified Technology
EG\&G Almond Instruments
EH Titchener \& Co
Elan Digital Systems
Electrochem
Electro-Mechanics
Electronic Development Corp
Electronic Solutions
Elek-Tek
EMP Engineering
Endicott Research Group
Engineering Tutorial Software
Epson America Inc
Ferranti Electric**
Force Computers Inc
.283
.323
.307
. 208
.138
.320
12-13 267
.277
320
.312
146
231
142-143
.44
$\because 45$
50-5
18, 322
14-15
317, 319
194-195
256
81, 82-83 .262
.2227
.319 .319

318, 321, 323
.292
.269
.317 297
109-114 .321
.248-249
.264
232, 257, 327
.322 311
.331
.314
.84-85
182

Fujitsu Components of America Inc*
Fujitsu Limited**
Fujitsu 'Microelectronics Inc* 168
Gates Energy Products Inc
GCOM Inc
77

GE Plastics

General Silicones

259

GE/RCA Intersil

Semiconductors28-29, 68-69, 106-107
Germanium Power Devices
Gould Semiconductor* 86
Grayhill Inc .66

HEI Inc.
HEI Inc
Heurikon Corp
Hypertronics Corp
I-Bus Systems Inc
ILP Manufacturing Inc
Inmos Corp
Instant Board Circuits Corp
Integrated Device
Technology Inc
Integrated Circuits
Intel Corp
Intermetrics Inc
International Rectifier
Introl Corp
Intronics
Intusoft
I/O Tech
JETA Power

Systems

Co Inc

6, 67, 229
KEC Electronics Inc 18
Keithley Instruments . 131-136
Kepco Inc
291
Key Tronic
Laube Technology
Lectromagnetics Inc
Lemo USA Inc
Linear Technology Corp
Littelfuse Inc
.

Logical Devices Inc
LPKF:CAD/CAM Systems
3M Fluorinert
Maple Systems
Marconi Electronic Devices
Marshall
.322

MathSoft Inc
c.

Matrox Electronic Systems Ltd
Maxim Integrated Products
….......... 124
Integrated Products …................. 243
Measurement Systems Inc 302
stems Inc
Mentor Graphics Corp
Methode Electronics Inc
Micro Dot Inc/Malco
Micro Networks
O ..
Micro Switch .

Micro/Sys

Mini-Circuits
Laboratories
Mizar Inc.
Molex Inc
Motorola Semiconductor
Products Inc
42-43
Multibus Manufacturers Group
Murata Erie North America Inc
NCR Power Systems
NEC Corp
NEC Electronics Inc
NMB Semiconductor Corp
Nohau Corp
Northwest Instrument Systems
OKI Semiconductor
Omation Inc
Omnibyte Corp

One/D

Optical Fiber Technologies/(OFTI)
OrCAD Systems Corp
Oyster Terminals
Panduit Corp
Papst Mechatronic
Philips Elcoma Div**

Philips Test \& Measuring
Instruments Inc**

Phillips Chemical Co .

Plessey Microsystems

\& Custom Products

Plessey Optoelectronics**

Power Conversion

Powerline
Power-One Inc
Powertronic
Precision Monolithics Inc

Qua Tech Inc 320, 323
Qualidyne Systems Inc 290
Robinson-Nugent Inc 70-71
Robotrol
Rogers Corp

Rohde \& Schwarz**

Samsung Semiconductor

Samtec Inc

Saratoga Semiconductor
SBE Inc
Schroff
.47

Seagate Technology
Seeq Technology Inc . 33

Seponix

299

SGS-Thomson Microelectronics 116-117
Sharp Corp
Sharp Electronics
Siemens Components Inc*
Silicon General
Silicon Systems Inc
Silvar-Lisco
Simpson Electric Co
Single Board Solutions
Sonnenschein Batteries Inc
Sorensen Co
The Soundcoat Co
Spectrum Software
Sprague Electric Co
Standard Grigsby Inc
ers Group
Stimpson Co Inc
Sun Microsystems
Switching Power Inc
Taiwan Liton Electronic Co Ltd
Tatum Labs
TDK Corp.
Tektronix Inc .
Tempil Div
Teradyne Inc
Thomas and Betts Corp
Todd Products Corp
odd Products Corp -
Tokin Corp .
Toshiba America
Inc/Semiconductor Div*
Toshiba Corp
Trend Circuits
TRW/LSI Products
Utilec Inc
Vicor
Vishay **
Visionics Corp
V-Metro
VTC Inc

LOOKING AHEAD

EDITED BY CYNTHIA B RETTIG

Parallel processing spurs high-end-computer growth

Parallel-processing architectures will account for 26% of the growth in the worldwide high-performance computer market from 1986 to 1991, according to a report by Electronic Trend Publications (ETP) of Saratoga, CA. In 1985, total revenues from systems shipped in this market equaled $\$ 20$ billion. In 1990, revenues will be $\$ 39.6$ billion, and 48% of all systems shipped will incorporate some form of parallel-processing design. Although mainframes and superminicomputers will represent 87% of the 1990 market's dollar value, a new class of computersincluding minisupercomputers, data processors, array processors, and symbol processors-will account for more than $\$ 1$ billion of the market's value. The value of the total installed base of parallel-processing machines, which was $\$ 173.5$ million in 1986 , will rise to $\$ 264.9$ million by 1991.

In the early stages of the market's growth, the demand for parallelprocessing machines will come primarily from the scientific and technical fields. However, as 1990 approaches, the drawbacks of alternative processing methods will augment the growth of parallel-processing systems. ETP's report points out a number of these drawbacks. In the first place, single-processorbased architectures are reaching their theoretical limits in terms of speed. Further, I/O linkages in ap-plication-specific array processors and networks can be slow. Finally, general-purpose minicomputers and mainframes will simply prove unsuitable for high-performance computing, for which application-specific systems will prove necessary.

Because parallel processing uses multiple arrays of CPUs simultaneously, it can achieve speeds 10 to 100 times faster than can the older, uniprocessor systems. Hardware or

hardware-related issues crucial to parallel processing include VLSI circuitry, gallium arsenide ICs, megabit-memory-chip development, improved internal channel speeds, hybrid optoelectronic circuitry, and better technology for cooling circuitry. All of these key elements are either under development or already available.

EMI/RFI market to exceed $\$ 8$ billion by 1993

From 1983 to 1986, the market for EMI-shielding equipment and facilities grew from $\$ 540$ million to more than $\$ 1$ billion. By 1993, the market will exceed $\$ 8$ billion, according to MIRC (Market Intelligence Research Co) of Mountain View, CA. Increased demand from government, military, and industrial sectors will drive this healthy growth rate.
The sophistication of modern electronic equipment and a heightened awareness of security needs have made EMI a critical issue. Industry in general has become more concerned about how EMI influences product performance, and the government and military sectors are placing increasing emphasis on protection from security leaks. At the same time, EMI-shielding products are steadily growing more dependa-

Software development for paral-lel-processing systems is proceeding more slowly, however. ETP identifies three major stumbling blocks in this area: the design of operating systems specifically geared for parallel operation, confusion about a standard for higher-level languages, and the problem of designing appropriate language compilers.
ble, more attractive in price, and better looking.
MIRC divides the market for EMI-shielding equipment and facilities into two major segments: architectural shielding structures and shielding for electronic equipment. Suppliers of architectural shielding structures are striving to provide turnkey services to customers. Among their products are windows with such features as wire mesh and transparent conductive coatings; room enclosures, which include both welded stand-alone and modular products; doors and walls; and building materials and related services. Suppliers of electronic-equipment shielding offer such products as paint; zinc are spray; plating; conductive plastics; and minor products such as conductive foils, tapes, gaskets, and sealants.

Tough enough to meet full MIL-specs, capable of operating over a wide -55° to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplifier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 500 MHz and 0.5 to 1000 MHz , and NF as low as 2.8 dB

Prices start at only $\$ 13.95$, including screening, thermal shock $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.

Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc supply voltage and get up to 28 dB gain with +9 dBm output.

The newMAN-amplifier series... another Mini-Circuits' price/performance
breakthrough.

| | FREQ. RANGE (MHz) | GAIN dB | | MAX. OUT/PWR \dagger | $\begin{aligned} & \mathrm{NF} \\ & \mathrm{~dB} \end{aligned}$ | DC PWR $12 \mathrm{~V} \text {. }$ | $\begin{aligned} & \text { PRICE } \\ & \$ \mathrm{ea} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | t_{L} to f_{u} | min | flatness+† | dBm | (typ) | mA | (5-24) |
| MAN-1 | 0.5-500 | 28 | 1.0 | 8 | 4.5 | 60 | 13.95 |
| MAN-2 | 0.5-1000 | | 1.5 | 7 | 6.0 | 85 | 15.95 |
| MAN-1LN | 0.5-500 | | | 8 | 2.8 | 60 | 15.95 |
| \triangle MAN-1HLN | 10-500 | | 0.8 | 15 | 3.7 | 70 | 15.95 |

$+\dagger$ Midband $10 \mathrm{f}_{\mathrm{L}}$ to $\mathrm{f}_{\mathrm{U} / 2}, \pm 0.5 \mathrm{~dB} \quad+\mathrm{IdB}$ Gain Compression Δ Case Height 0.3 ln . Max input power (no damage) +15 dBm ; VSWR in/out 1.8:1 max.

Cost-effective high voltage power MOSFETs you can depend on

Available Packages With Corresponding Rds(on) Values

Most HEXFETs now in stock for immediate delivery!

Some so-called high voltage power MOSFETs just can't seem to deliver what they promise. But HEXFETs offer exceptional stability in three new optimized high voltage families: $800 \mathrm{~V}, 900 \mathrm{~V}$ and 1000 V . Each voltage is paired to a specific Rds(on) value for the best cost-per-amp ratio. So you can spec just what you need without straining your design budget.
Our high voltage TO-3 HEXFETs can handle your heavy industrial and hi-rel requirements. For less demanding applications, you can choose TO-220 or TO-3P case styles.

No matter how you mix and match these HEXFETs, they all provide faster switching and high blocking voltage capabilities. Plus
guaranteed repetitive avalanche and dynamic dv/dt ratings - two extra safety margins at no extra cost.
The complete HEXFET power MOSFET line is described in our new 1987 catalog. Write for your free copy. Or call (213) 607-8842.

| Voltage
 Ratings | TO-3, TO-3P and TO-22OAB | | TO-3 and TO-3P | |
| :---: | :---: | :---: | :---: | :---: |
| 800 V | 6.5Ω | 3.2Ω | 2.0Ω | 1.2Ω |
| 900 V | 8.0Ω | 4.0Ω | 2.5Ω | 1.6Ω |
| 1000 V | 11.5Ω | 5.6Ω | 3.5Ω | 2.0Ω |

> Number 1 in power MOSFETs

> International TgR Rectifier

THE UNISITE 40 PROGRAMMER: BECAUSE STATE-OF-THE-ART IS A STATE OF CHANGE.

PROGRAMMFING TECHNOLOGY THAT SUPPORTS ADVANCED DESIGNS TODAY AND TOMORROW. The Uni-

 Site ${ }^{\text {TM }} 40$'s universal programming technology is the fastest and easiest way to keep up with new devices and packages. Its software-configured pin driver system provides a single site for programming any DIP device up to 40 pins, including PLDs, PROMs, IFLs, FPLAs, EPROMs, EEPROMs and microcontrollers. The same site accommodates the most popular surface-mount packagesPLCCs, LCCs and SOICs.And now the UniSite 40 is also a gang/set programmer. With the new SetSite ${ }^{\text {TM }}$ module, you can program and test as many as eight devices, up to 40 pins each, simultaneously.

INSTANT ACCESS TO NEW DEVICES.

The UniSite 40's universal pin driver

electronics stores device-specific instructions on a $31 / 2^{\prime \prime}$ micro diskette. To update your UniSite 40 with the latest device releases, simply load a new master diskette.

FAST, EASY PROGRAMMING. Menuoriented operation with step-by-step prompts makes programming simple.

Or bypass the menus and zoom directly to specific operations by selecting key commands. Help messages are available whenever you need assistance.
To speed parts selection, the UniSite 40 provides a built-in list of devices. And you can save your most frequently-used programming parameters for instant recall.

DESIGN FREEDOM FOR TOMORROW.

When leading-edge designers use the latest devices in their designs, they need the programming freedom only the UniSite 40 provides. Call Data I/O ${ }^{\circ}$ today and ask about the UniSite 40. Because state-of-the-art never stops changing.

1-800-247-5700

Dept. 611

[^0]: EDN ${ }^{\circ}$ (ISSN 0012-7515) is published 38 times a year (biweekly with 1 additional issue a month) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Electronics/Computer Group Vice President; Jerry D Neth, Vice President/Publishing Opera tions; J J Walsh, Financial Vice President/Magazine Division; Thomas J Dellamaria, Vice President/Production and Manufacturing. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5191. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5191 and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\oplus}$ at the Denver address. EDN ${ }^{\circledR}$ copyright 1988 by Reed Publishing USA; Saul Goldweitz, Chairman; Ronald G Segel, President and Chief Executive Officer; Robert LKrakoff, Executive Vice President; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, $\$ 95 /$ year; Canada/Mexico, $\$ 110 /$ year; Europe air mail, $\$ 135 /$ year; all other nations, $\$ 135 / y e a r$ for surface mai and $\$ 200 /$ year for air mail. Except for special issues where price changes are indicated, single copies of regula issues are available for $\$ 6, \$ 8$, and $\$ 10$ (USA, Canada/Mexico, and foreign). Please address all subscription mail to Eric Schmierer, 44 Cook Street, Denver, CO 80206-5191.

[^1]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Manufacturing \square Foodservice \& Lodging
 \square Electronics \& Computers \square Interior Design \square Printing \square Publishing \square Industrial Research \& Technology \square Health Care \square and Entertainment. Specialized Consumer Magazines: \square American Baby \square and Modern Bride.

[^2]: WorkSystem, DDSC, and MERLYN-G are trademarks of Tektronix, Inc. TurnChip is a registered trademark of Tektronix, Inc. HILO is a registered trademark of GenRad, Inc. Apollo is a registered trademark of Apollo Computer, Inc. DEC is a trademark of Digital Equipment Corp.

[^3]:

 Straube Associates Mountain States, Inc., (303) 426-0890; CANADA, BRITISH COLUMBIA, Components West, (206) 885-5880; ONTARIO, Electro Source, Inc., (416) 675-4490, (613) 726-1452.

[^4]: Distributed by Anthem/Lionex, Bell/Graham, Hall-Mark, and Pioneer. Authorized Maxim Representatives: Alabama, (205) 830-4030; Arizona, (602) 860-2702; California, (408) 727-8753, (619) 278-8021; (714) 739-8891; Colorado, (303) 841-4888, Connecticut, (203) 754-2823; Florida, (305) 365-3283; Georgia, (404) 992-7240; Idaho, (503) 620-1931; Illinois, (312) 956-8240; Indiana, (317) 849-4260; lowa, (319) 377-8275; Kansas, (316) 838-0884, (913) 339-6333; Maryland, (301) 799-7490; Massachusetts, (617) 449-7400; Michigan, (313) 968-3230; Minnesota, (612) 944-8545; Missouri, (314) 291-4777, Montana, (503) 620-1931; Nevada, (408) 727-8753; New Jersey, (609) 933-2600, (201) 428-0600; New Mexico, (505) 884-2256; New York, (516) 752-1630, (315) 437-8343; North Carolina, (919) 846-6888; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 386-4888; Oregon, (503) 620-1931; E. Pennsylvania, (614) 895-1447; W. Pennsylvania, (609) 933-2600; South Carolina, (704) 365-0547; Tennessee, (404) 992-7240; Texas, (214) 386-4888, (512) 451-2757, (713) 778-0392; Utah, (801) 266-9939; Virginia, (301) 621-1313; Washington, (206) 453-8881; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (604) 439-1373, (613) 726-9562, (514) 337-7540.
 Maxim is a registered trademark of Maxim Integrated Products. 01987 Maxim Integrated Products.

[^5]: Lambda Semiconductors 121 International Dr Corpus Christi, TX 78410 1-800-255-9606
 Circle No 701
 Linear Technology Corp 1630 McCarthy Blvd
 Milpitas, CA 95035
 (408) 432-1900

 Circle No 702
 Maxim Integrated Products
 510 N Pastoria Ave
 Sunnyvale, CA 94086
 (408) 737-7600

 Circle No 703

[^6]: Australia Eastern Crest (Pty) Ltd., 21 Shierlaw Avenue, Room 4, Canterbury, Victoria 3126. Tel: (03) 836 6818. Tlx: 790-38783 EAST. Austria Omni Ray GmbH, Vertriebsbüro Wien, Prinz Eugen-Strasse 36, A-1040 Wien. Tel: 0222-65 64 31. Tlx: 132712 omray a. Benelux BV DIODE Laboratorium Voor Electronentechniek, Hollantlaan 22,3526 AM Utrecht, Holland. Tel: 030-884214. Tlx: $47388 /$ Rue Picard Str. 202, 1020 Bruxelles, Belgium. Tel: 02-4285105. Tlx: 25903. Denmark E. V. Johanssen Elektronik A/S, Titangade 15, DK 2200 Copenhagen N. Tel: 0451-83 90 22. Tlx: 16522 . France Davum, Dept TMC, 11 Rue Racine, PO Box 28, 93121 La Courneuve. Tel: 836-84-01. Tlx: 210311F (PUBLI). West Germany Protec GmbH. Margreider Platz D8012 Ottobrun. Tel: 089-6097001. Tlx: 529298. Italy Esco Italiana Spa, 20099 Milano, Via Modena, 1. Tel: (02) 2409241/2409251. Tlx: ESCOMI 322383./Eurelettronica SrL, Sede, 20145 Milano, Via Mascheroni 19. Tel: 049-81 851. Tlx: 39102 THOMELEC. Norway Nordisk Elektronik (Norge) A/S, Mustadsvei 1, Postboks 91 -Lilleaker, Oslo 2. Tel: 0752-13300. Tlx: 856-16963 (AJCO NM). Sweden Satt Electronics AB, Agency Sales Division, PO Box 32006 , S-1el: $08 / 8126$ 11 Stockholm. Tel: 08/81 0100 . Tlx: 10884. Switzerland Omni Ray AG, Industriestrasse 31, CH-8305 Dietlinkon. Tel: $01-8352111$. Tlx: 53239 omni ch. UK Representative Winslow International. Rassau Industrial Estate, Ebbw Vale, Gwent NP3 5SD. Tel: 0495309117 Tlx: 498903.

[^7]: c 1987, The Wollongong Group. Inc. WINS/Streams is a trademark of The Wollongong Group. Inc All other product names are registered trademarks of their respective manufacturers.

[^8]: Bourns, Inc., 1200 Columbia Avenue, Riverside, California 92507; (714) 781-5050; TLX: 676-423; TWX: 910-332-1252; FAX: 714-781-5700. European Headquarters: Zugerstrasse 74, 6340 Baar, Switzerland: 042-333333; TLX: 868722; FAX: 042-319017. Benelux: 070-874400; TLX: 32023. France: 01-40033604; FAX: 01-40033614. Germany: 0711-22930; FAX: 0711-291568. Ireland: 021-357001; FAX: 021-357443. United Kingdom: 0276-692392; FAX: 0276-691037. Asia Pacific Headquarters: 1401 Citicorp Centre, 14th Floor, 18 Whitfield Road, Hong Kong: (852) 5-702171; TLX: 82953 BAPHK HX; FAX: 852-5-664341; CBL: BOURNSASPA HONGKONG. Singapore: (65) 339-3331; FAX: (65) 339-1116.

[^9]: *New New Numbering System Effective 10/N87

[^10]: Prices and specifications subject to change without notice.

[^11]: WEST GERMANY: Keithley Instruments GmbH / Heiglhofstr. 5 / 8000 München 70 / 089-71002-0 / Telex: 52-12160 / Telefax: 089-7100259
 GREAT BRITAIN: Keithley Instruments, Ltd. / 1 Boulton Road / Reading, Berkshire RG 2 ONL / 0734-861287/| Telex: 847047 / Telefax: 0734-863665
 FRANCE:
 Keithley Instruments SARL / 3 Allee du 10 Rue Ambroise Croizat / B.P. 60 / 91121 Palaiseau/Cedex / 1-6-0115 155 / Telex: 600933
 NETHERLANDS: Keithley Instruments BV / Avelingen West 49 / 4202 MS Gorinchem / P.O. Box 559 / 4200 AN Gorinchem / 01830-35333 / Telex: 24684
 SWITZERLAND: Keithley Instruments SA / Kriesbachstr. 4 / 8600 Dübendorf / 01-821-9444 / Telex: 828472 / Telefax: 0222-315366
 AUSTRIA: Keithley Instruments GesmbH / Döblinger Haupstr. 32 / 1190 Wien / 0222-314-289 I Telex: 134500 / Telefax: 0222-315366
 ITALY:
 Keithley Instruments SRL / Viale S. Gimignano 4/A / 20146 Milano / 02-4120360 or 02-415640 / Telefax: 02-4121249

[^12]: Schroff Inc. 170 Commerce Drive Werwick, R. I. 02886-Tel. (401) 732-3770 Telex 952175 - Telefax (401) 738-7988 Production in U.S., Europe and Japan Our Representative for Canada: A. C. Simmonds + Sons Ltd.

 975 Dillingham Road - Tel. (416) 8398041 Pickering Ontario LIW 382. Tx 06981383

[^13]: 760 Shadowridge Drive • Vista, CA 92083 • (619) 727-0940 • TWX: 910-322-1155 • FAX: (619) 727-8926
 XENTEK - the first word in Custom Linear, Standard Linear, Custom and Standard Switchers, Extreme Isolation Transformers, Line Conditioners and Custom Military Power Conversion Equipment.

[^14]: Other quality Thomas \& Betts products include: IDC Cable and Connector Systems, DIP \& VLSI Sockets, Fiber Optic Systems and Flexible Interconnects.

[^15]: [TI POWERLINE
 10 Cochituate Street
 Natick, MA 01760
 TEL: 617-655-7987
 TWX: 5101003630
 FAX: 617-655-7984

[^16]: VECTOR ELECTRONIC COMPANY 12460 Gladstone Avenue Sylmar, CA 91342 818/365-9661 FAX 818/365-5718

 800/426-4652 in CA
 800/423-5659 Outside CA

[^17]: *U.S. price list only.

[^18]: Schematic capture: Dynamic symbol call-up...automatic naming/numbering...rubberbanded connections...edge-of-sheet and bus symbols...expandable library.

 Component data base: Defines/manages data flow between schematic and PC Board. Automatic features - file naming, multisheet management, B.O.M., netlist optimization, backannotation, layer mangement, project archiving.

 PCB Layout: Components dynamically positioned with rotate or mirror (for SMD)...auto-ratsnest...pin/gate/component swapping...component dragging with connections...ground planes with hatching...user-defined pads, vias, trace widths...output to major pen plotters...optional Gerber and Excellon.

 CADdy Autorouter: Standard and High-performance.
 Full-Featured Drafting: Mechanical auto-dimensioning with tolerancing, construction aids, calculators, savable parameters, and more.
 For additional information call:
 Toll-free 1-800-CADDY11 (in Illinois 1-312-394-7755).

[^19]: William Platt, Sr, Vice President, Reed Publishing USA
 Cahners Magazine Division
 Terry McDermott, President, Cahners Publishing Co
 Frank Sibley, Group Vice President, Electronics/Computers Tom Dellamaria, VP/Production \& Manufacturing

 ## Circulation

 Denver, CO: (303) 388-4511
 Sherri Gronli, Group Manager
 Eric Schmierer, Manager
 Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R Westphal, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018 Phone (312) 635-8800

[^20]: US. Citizenship Required - minorities, females, handicapped and Vietnam Era Veterans encouraged to apply. No agencies please.

