(®) \begin{tabular}{r}
Neural networks \\

DACs enhance stability
of closed-loop designs

Designer's Guide to
noise analysis-Part 1

Operating systems
for the 80386

\end{tabular}

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Advanced functions
gravitate toward
monolithic ADCs

Finally ... Precisionin SURFACEMOUNTDEVCES

Yes, finally! Precision in a small package.
PMI's precision bipolar analog and CMOS converter product line is now offered in SMD. Write for our SMD brochure which lists the availability of 65 devices in various surface mount packages.
PMI's precision SMDs are available in commercial and industrial temperature ranges. The surface mount offerings include SO, SOL, LCC, and PLCC versions.

Less is More.

STD Bus ZT 8809
Single Board System for OEM applications.

Another manufacturer's "function-per-board" STD Bus card set with equivalent capability.

- PERFORMANCE (NEC V20 at 8 MHz clock speed)
- ON-BOARD MEMORY (520K)
- IBM PC HARDWARE COMPATIBILITY
- ON-BOARD I/O (2 serial: COM1, COM2; 1 Centronics: LPT1)
- DEVELOPMENT CAPABILITY (industry acclaimed Virtual System Console)
- OPERATING SYSTEM OPTIONS (STD DOS, VRTX, Multi-DOS, and more)
- COMPACTNESS (one board implementation)
- RELIABILITY (fewer connectors, components, boards)
- VALUE (Ziatech's single board system is $\$ 630$ less than the 5-board set pictured above*)

To learn more about how less (Ziatech's new single board system) is more (when compared to the 5-board set pictured above), call Ziatech at 805-541-0488. We'll send you a detailed comparison and all the technical data you'll need.

3433 Roberto Court
San Luis Obispo, California 93401
ITT Telex 4992316
Fax (805) 541-5088
Telephone (805) 541-0488

WHY YCP? SSTHET WWE CONSORTIUN.

"For a bunch of companies that don't always agree on everything, we sure were unanimous on VTC."

The VME Consortium needed an economical, yet highly functional VME bus interface chip, to minimize design time . . . and to help raise the VME standard to higher levels.
"We looked at the leading suppliers," said Joe Ramunni, consortium chairman (and president of Mizar), "and VTC came out on top. Their CMOS standard-cell ASIC approach gave us the high drive capability we needed, optimized for bus interfacing. And, it proved much more cost-effective, with higher performance, than gate array technology."

The VME Consortium is made up of such firms as Plessey Microsystems, Omnibyte Corporation, Mizar Inc., Ironics Inc., Heurikon Corporation, Matrix Corporation, and Clearpoint Inc., among others. What did they look for in a supplier?
"We needed a credible business partner," said Ramunni, "with a proven track record, who could provide a turnkey package . . . both design and fab. A supplier that could produce in quantity, and provide technical support to the market at large.
"We also needed a firm with an international marketing structure, because we expect this chip to be the de facto standard worldwide.
"But, we needed people we could work with, too. VTC had the right 'comfort factor'."
Jack Regula, consortium technical director (and VP-R\&D, Ironics) added: "Our requirements for high speed, high gate-count, low power consumption, and VME bus drive capability were all met well with VTC's 1-micron CMOS standard cell library. And we were extremely impressed with VTC's facilities, its people, and its customer list."

In the future, the VME bus chip (VIC) will become a standard cell within VTC's CMOS library, to allow customers to further customize the chip.

Shouldn't you be getting to know VTC, too? You'll be in good company when you do. Call or write us today, and we'll send you our short-form product catalog, which describes our product offerings in linear signal processing, high-speed CMOS logic, mass storage ICs, bipolar ASIC, and CMOS ASIC.

VTC Incorporated, 2401 East 86th Street, Bloomington, MN 55420. (In Minnesota, 612/851-5200.) Telex 857113.

CALL 1-800-VTC-VLSI

Side by side comparison of our data logger and theirs.

Wavetek has brought an exciting new dimension to data logging-small. Our Series 50 Data Logger is a fraction the size and considerably less expensive than the one on the right. And our data logger is light enough to be easily carried by mere mortals. When you compare the rest of the features, the competition drops right out of sight.

For instance, the Series 50 Data Logger scans 260 channels, provides digital and stripchart printouts and can operate on its internal battery for days, storing
up to 100,000 readings in nonvolatile memory.

Even more amazing is what the Series 50 measures, including:

- DC Volts and true RMS AC Volts
- Temperatures, 6 Thermocouple Types, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{K}$
- AC/DC Current
- DC Watts, AC Volt-Amperes
- dBw, dBm
- Frequency and Period
- Pulse Width, Time Interval
- Events (Counter)
- Resistance and Continuity
- Diode Junction Voltage

All are STANDARD FEATURES, not options! In addition, there are four independent A/D converters, so you can make four different types of measurements simultaneously.

We could go on for pages, but rather than weigh you down with specifications, we'd rather show you how Series 50 will make your job easier. Please call, or write for our brochure. Wavetek San Diego, Inc., P.O. Box 85265, San Diego, CA 92138. Tel. (619) 279-2200; TWX 910-335-2007.

330,000X Performance

The next generation DG411/12/13 series of CMOS quad analog switches combine high performance, precision and low power. Previous technologies have forced the trade-offs of speed for low power, or ON-resistance for leakage. But the DG400 family lets you maximize all these parameters.
Next generation performance is only the beginning. Siliconix' new 44 V silicon-gate CMOS technology is more rugged! 2500 V (min.) ESP (Electro Static Discharge Protection) meets category B of MIL-STD 883B, method 3015.2 for your toughest reliability needs.

The DG411 family is optimized for minimum charge injection and for TTL-compatibility: Either unipolar 12 V supply or split supply operation.

4 The performance product,
$r_{D S(O N,} x l_{S(O N)} x t_{O N} x P D$, indicates that the DG411 is 330,000 times better than the industry standard DG211.

Get a 330,000 X performance boost! Call Siliconix at 1 (800) $554-5565$ ext. 933 for a free DG411 sample and Design Kit.

On the cover: A/D-converter manufacturers are placing complex, high-speed designs on monolithic chips. And as architectural innovation rolls on, monolithic ADCs will continue to make quantum leaps in performance. See pg 116. (Photo courtesy A nalog Devices)

DESIGN FEATURES

Special Report: Monolithic high-resolution ADCs 116
Because ADC improvements will now be driven by architectural changes, you can expect to see phenomenal gains in these chips' performance in the near future.-David Shear, Regional Editor

Technology Feature: Data transformation 138 explains the basics of neural networks

Neural networks are best at solving problems for which no algorithm exists or for which an algorithmic solution is too slow.-Doug Conner, Regional Editor

Designer's Guide to noise analysis-Part 1

You can use a systematic analysis technique to determine the noise contributions of the individual elements in an electronic system, no matter how complex it is. This article, part 1 of a 2-part series, describes the noise-analysis technique.-Peter Fazekas, ILC Data Device Corp

Precision DACs enhance the stability of closed-loop designs

Closed-loop designs oftentimes require the use of DACs that have monotonic response and data readback. This combination is now available in off-the-shelf ICs; thus you'll find it simpler to design stable control loops with 16 bits of resolution and monotonicity.-Damien McCartney and Mike Curtin, Analog Devices, BV

Microcontrollers simplify the design of X-Y plotters

Modern μ controllers have reduced the amount of circuitry needed for a plotter controller to a single chip and a few motor-drive com-ponents.-Marc Birnkrant and Steve Beckwith, NEC Electronics Inc

Lithium cells keep CMOS RAM alive during line outages

The advent of CMOS RAM has lowered typical memory-backup power requirements to 2 to $3 \mu \mathrm{~A}$ at 2.0 V , even for memories of 1 M bits or larger, and now lithium batteries are feasible for such applica-tions.-Nicolas Muller and Henry Uebelhart, Renata, and Jack F Swartz, International Power Sources

Continued on page 7

EDN ${ }^{\text {(}}$ ISSN 0012-7515) is published 38 times a year (biweekly with 1 additional issue a month) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Electronics/Computer Group Vice President; Jerry D Neth, Vice President/Publishing Operations; JJ Walsh, Financial Vice President/Magazine Division; Thomas J Dellamaria, Vice President/Production and Manufacturing. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5191. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5191 and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\text {® }}$ at the Denver address. EDN ${ }^{\circ}$ copyright 1988 by Reed Publishing USA; Saul Goldweitz, Chairman; Ronald G Segel, President and Chief Executive Officer; Robert LKrakoff, Executive Vice President; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, $\$ 100 /$ year; Canada/Mexico, $\$ 115 /$ year: Europe air mail, $\$ 135 /$ year; all other nations, $\$ 135 /$ year for surface mail and $\$ 210 / y e a r$ for air mail. Except for special issues where price changes are indicated, single copies of regular issues are available for $\$ 6, \$ 8$, and $\$ 10$ (USA, Canada/Mexico, and foreign). Please address all subscription mail
to Eric Schmierer, 44 Cook Street, Denver, CO $80206-5191$.

Advances in voltage-referencecircuit performance give your applications the high accuracy and stability they require (pg 73).

EDN magazine now offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.

ExpressııII Request

TECHNOLOGY UPDATE

OS designers consign much of 386's power
to writers of applications programs
The designers of the 32 -bit $80386 \mu \mathrm{P}$ packed the device with so
many built-in hardware features to support complex multitasking
operating systems that no operating-system designer has yet made use
of them all.-Charles H Small, Associate Editor

Improved voltage-reference circuits 73 satisfy high accuracy and stability needs

In the last few years, reference manufacturers have markedly improved device performance. When it comes to accuracy, stability, and thermal drift specifications, today's IC references have truly impressive figures.-Tom Ormond, Senior Editor

PRODUCT UPDATE

PC-based CAE software 87
CMOS flash EPROMs 88
Mid-sized LCD controller 91
200M-sample/sec 8-bit A/D converter 94
DESIGN IDEAS
Compute square root of bipolar magnitudes 203
Counter controls its own clock frequency 205
Reduce ac-coupled flip-flop's dissipation 207
Swept amplitudes enhance signal generator 207
Alterable code enhances instructions 210

Continued on page 9

[^0]

TEK'S 1241 MICRO ANALYSIS SYSTEM: AT \$9,950, THE CHIPS ARE REALIY STACKED IN YOUR FAVOR!

Tek's 1241 microprocessor analysis system includes the Tek 1241 Logic Analyzer. The micro support package of your choosing. Plus performance analysis, storage and communications options. At a total price of $\$ 9,950$. If you're looking for a system to minimize your risk and maximize your return, this is the package you can bet on.
It's proven. The 1241 is known and accepted worldwide as the best of the leading
logic analyzers. It supports more than 45 microprocessors, microcontrollers and digital signal processors. That's more than any other logic analyzer. You can add additional micro support for as little as $\$ 400$.

It comes with a specialist.
Tek's dedicated logic analysis sales and applications engineers give you expert support whenever you need it.
It's the best deal on the table. For immediate value and long-term practicality, nothing else can touch it.
Call us. Talk to your local Tek sales representative, or call
1-800-245-2036
for more information about the total Tek 1241 package.

```
    VP/Publisher
    F Warren Dickson
VP/Associate Publisher/Editorial Director
            Roy Forsberg
            Editor
            Jonathan Titus
            Managing Editor
            John S Haystead
        Assistant Managing Editor
            Joan Morrow
            Special Projects
            Gary Legg
```

 Home Office Editorial Staff
 275 Washington St, Newton, MA 02158
(617) 964-3030
Tom Ormond, Senior Editor
Deborah Asbrand, Associate Editor
Joanne Clay, Associate Editor
Tarlton Fleming, Associate Editor
John A Gallant, Associate Editor
Clare Mansfield, Associate Editor
Dave Pryce, Associate Editor
Cynthia B Rettig, Associate Editor
Charles Small, Associate Editor
Dan Strassberg, Associate Editor
Chris Terry, Associate Editor
Ron Gilbert, Staff Editor
Valerie Lauzon, Staff Editor
Helen McElwee, Staff Editor
Steven Paul, Senior Production Editor
Editorial Field Offices
Margery S Conner, Regional Editor
Los Osos, CA: (805) 528-0833
Doug Conner, Regional Editor
Los Osos, CA: (805) 528-0865
Bob Cushman, Special Features Editor
Port Washington, NY: (516) 944-6524
Steven H Leibson, Regional Editor
Boulder, CO: (303) 494-2233
J D Mosley, Regional Editor
Arlington, TX: (817) 465-4961
Richard A Quinnell, Regional Editor
San Jose, CA: (408) 296-0868
David Shear, Regional Editor
San Jose, CA: (408) 997-5452
Maury Wright, Regional Editor
San Diego, CA: (619) 748-6785
Peter Harold, European Editor
0603-630782
(St Francis House, Queens Rd,
Norwich, Norfolk NR1 3PN, UK)
Contributing Editors
Robert Pease, Bob Peterson,
Don Powers, Bill Travis
Editorial Services
Kathy Leonard, Office Manager
Loretta Curcio, Nancy Weiland,
Sharon Gildea
Art Staff
Kathleen Ruhl, Art Director
Ken Racicot, Assistant Art Director
Chin-Soo Chung, Graphic Designer
Cathy Filipski, Graphic Designer
Production/Manufacturing Staff
William Tomaselli, Production Supervisor
Donna Pono, Production Manager
Andrew A Jantz, Production Assistant
Anda Lepordo, Production Assistant
Diane Malone, Composition
Graphics Director
Norman Graf
VP/Production/Manufacturing
Wayne Hulitzky
Director of Production/Manufacturing
John R Sanders
Director of Research
Deborah Virtue
Marketing Communications
Janice Molinari, Manager
Jennifer Ware, Communications Manager
Anne Foley, Promotion Assistant

EDITORIAL

Recently, the IEEE took action on behalf of underpaid engineers.
That's a step in the right direction, but the IEEE hasn't addressed the larger problem: Most people don't even know what an engineer is or what one does.

NEW PRODUCTS

Integrated Circuits 215
Components \& Power Supplies 231
Computers \& Peripherals 244
Test \& Measurement Instruments 256
CAE \& Software Development Tools 268
PROFESSIONAL ISSUES 297
Dick Burwen: mixing a love of engineering with a passion for hi-fi.
-Deborah Asbrand, Associate Editor
LOOKING AHEAD313
US position-sensor market to grow steadily through '91. Consider associated costs of nonimpact printers.
DEPARTMENTS
News Breaks 21
News Breaks International 24
Signals \& Noise 32
Calendar 42
Readers' Choice 100
Leadtime Index 108
Literature 286
Business/Corporate Staff 294
Career Opportunities 304
Advertisers Index 311

> Odds are $50-50$ your perfect ASIC is a perfect dud the first time you plug it in.

That's why Mentor Graphics lets you combine ASIC and board circuitry in a single simulation.

Trouble in ASIC paradise.

The big day has arrived.
Your first gate array is back from the foundry. With high expectations, you plug it into your board and power up.

It doesn't work.
Don't feel alone. Over 50\% of ASICs aren't operational when first installed in their target system. Even though 95% pass their foundry tests with flying colors.

An immediate solution.

Mentor Graphics shifts these even odds heavily in your favor with our QuickSim ${ }^{\text {TM }}$ logic simulator, which lets you simulate both your ASIC and board circuitry in a single run.

With QuickSim, you not only track the internal operations of your ASIC circuitry, but also its transactions with the system at large. If there's a problem, you see precisely where it's located, either inside or outside your ASIC. All in a single, interactive simulation environment, where you can view and graphically "probe" the circuitry created by our NETED ${ }^{\text {TM }}$ schematic editor.

Check out our libraries.

Library support is an ideal benchmark to gauge the true worth of an electronic design automation system. The more diverse and plenti-
ful the component modeling libraries, the greater the design capability. It's as simple as that.

By this simple, yet decisive measure, Mentor Graphics brings you unequaled design capability. While other EDA vendors scurry to produce their own ASIC libraries (with little guarantee of accuracy), more ASIC vendors put their libraries on Mentor Graphics workstations than any other. And in most cases, we're the first workstation supported, which means you have the first shot at exploiting new chip technologies.

With Mentor Graphics, you get a breadth of LSI and VLSI component models, both hardware and software based. All of which can be mixed with ASICs in a single simulation that cuts your run time to an absolute minimum.

To be continued.

So much for the present. We're already developing new systems EDA tools that will extend to every dimension of electronic product development. From high-level systems descriptions to CASE. It's what our customers expect. It's what we'll deliver.

It's all part of a vision unique to Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll-free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390 (in Oregon call 284-7357).

(Forward Thinking, Re

It takes more than desk-changing for two companies to merge. They need to have a shared vision of the world and the future.

With AMD and MMI, the calling was clear. To produce advanced programmable logic devices for a wide range of needs. To lower system costs. To develop higher performance designs. And to get your products to market as soon as possible.

We're delivering on this promise of the future in myriad ways. With a product line that doesn't stop halfway. With the first $10 n s$ parts for designs where speed's
important. In CMOS, we have the broadest line of parts, including the industry standard, C22V10. And for high density, no one can beat our programmable gate arrays. We've got the best selection of PAL parts around. (And no one sells more to the military.)

We're bringing new meaning to the term "product availability." Our combined manufacturing capacities mean we have more PAL chips coming out of our pipeline. Ready to be put into yours.

And more Field Application Engineers give you more answers to get

sponsive,_Meticulous)²

projects up and running.
Because it's impossible to create great designs without great software, we also offer PALASM ${ }^{\text {® }}$ software, the industry standard. We're investing heavily to keep PALASM as current as our hardware.

With the best network of distributors, we can now offer a whole new concept in distributor support: TestPro Centers. Now you can speed through programming and testing at authorized centers.

Just bring your logic pattern to your closest TestPro Center. They'll program and they'll test the parts to factory quality
standards. Relieving you of the burden of test vector generation.

And we'll always be here with immediate and expert help in getting your design moving. Just call AMD at (800) 222-9323.

Or write Advanced Micro Devices, Inc., 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088.

One try and you'll be sharing our vision, too.

> Advanced Micro Devices 7 Monolithic Memories [ili]

It's your choice.

PRODUCT DEVELOPMENT SCHEDULE
PAGE 2

Let's face it.

 Slipped development schedules and budget overruns can mean lost opportunities. Yet many traps that seriously delay a development schedule are quite complex, especially when they are compounded by problems that arise in cross development work.Like not knowing whether the errors you are getting from your prototype processor are real. Or losing bugs in the cracks between your development system and the prototype.

Fortunately, the answer to these complex problems is simpler than you might think. Because now Applied Microsystems offers what we call performance packages: complete, fully integrated development solutions, designed to meet your development requirements and to detect even subtle problems quickly.

Performance Packages that Live Up to Their Name.

Each package includes a powerful incircuit emulator, the only tool that can
successfully bridge the gap between host computer and protatype. With features like complex triggering, reliable memory, built-in target diagnostics, I/O simulation, and special interrupt handling.
And to complement the power of our emulators, we provide software tools that work with a variety of platforms and languages.

Whichever package you choose, you're getting the highest performanc

Invest now or pay later.

IF YOU STILL THINK ENOUGH MAXTOR

LET US DRIVE HOME

THERE AREN'T

 DRIVES TO GOAROUND,
A SIMPLE POINT.

Maxtor delivers more highcapacity drives than anybody in the industry. At very competitive prices.

More 380MB Winchester drives.
More 760MB
Winchester drives. More of everything we make. From our 140MB Winchester to our 800MB optical drive.

What's more, our subsidiaries Storage Dimensions and U.S. Design deliver production quantities of complete plug-and-play mass storage subsystems for PCs, workstations and minicomputers.

So when you're ready to outdrive the competition, think of the company that out-drives everybody. Maxtor.

Call 800-227-1817 (ext. Maxtor) for the Maxtor sales office or distributor near you.

Mastor

CIRCLE NO 162

Only HP can put real teeth into faster

Test development and execution speed. We know they're your top priorities. HP BASIC, * combined with our range of controllers and instrumentation, is the answer. Even if you're running on MS ${ }^{\text {TM }}$ DOS or the UNIX ${ }^{\text {TM }}$ operating system. And of course, it's all backed by HP's measurement expertise, and the product reliability you've come to count on from an industry leader

HP BASIC: Optimized for instrument control.

It's no secret that a critical element of automated instrument control is fast development time. That's where HP BASIC really shines. With power, versatility and ease of use. We invite you to find a better instrument control language.

A few examples:

- Fast program development with interactive editing, syntax checking and the ability to search and replace
strings, or move blocks of code easily - Optimized for I/O with advanced constructs to simplify otherwise complex tasks. Interrupts, high speed data transfers, automatic data formatting and branching on events can all be handled easily. Since HP BASIC was designed for instrument control, these capabilities are integral, not tacked on as an afterthought
- Structured programming lets you make your program modular with independent subprograms which can be re-used in other applications Constructs like CASE statements, IF-THEN-ELSE, WHILE, REPEATUNTIL and LOOP are useful for rapid program development and invaluable for program maintenance.
- Powerful computation lets you take advantage of a full range of matrix manipulations such as multiplication, inversion and scalar operations HP's complex number implementa-
tion allows for powerful arithmetic operations.
- Graphic capabilities are simple to program, yet powerful. One program statement can draw axes or grids, a second will plot your data, a third will label your plot and a fourth will provide a permanent copy

HP Controllers: The right horsepower for the job.

Hewlett-Packard provides a wide range of instrument controllers and operating systems to meet your performance needs, allowing you to choose the most cost effective control ler for your job.

Just look:

- Personal computers; the HP BASIC Language Processor allows you to use HP BASIC on the world's most prevalent operating system, MS DOS. It's available for the HP VECTRA or the IBM PC-AT

test development.

- Dedicated controllers up to 4 MIPS, HP's Series 300 controllers provide a dedicated, high performance system for maximum I/O throughput.
- HP-UX workstations. HP BASIC will also be available for use in the Series

Trim more time:

Deal with the pros.
Our sales, service and support team can get your test up and running when time is of the essence. With over 500 instruments, HP is the recognized industry leader in test and measurement.
Call HP for a free video. 1-800-752-0900, Dept 215R

300 HP-UX environment. Our implementation combines the ease-of-use and performance of HP BASIC with the full networking, multitasking and windowing capabilities of the UNIX operating system.

No matter the controller demand, HP makes it in the optimum package

HP BASIC

How to crack 386 protected mode.

Unlock selectors and descriptor tables. Break open task state segments (TSS) and call gates. Microtek's In-Circuit-Emulator (MICE) cracks 80386 protected mode with real-time, non-intrusive emulation to 20 MHz .

MICE unravels all the intricacies of the 80386, so you harness its full potential. Internal registers, including GDT and IDT base values are all directly accessible. And MICE also provides decoded access to all selector and descriptor bits, like privilege level, segment type and page accessed bits.

Use MICE as a stand-alone device, or integrate it into your development environment. MICE easily interfaces with the IBM^{\circledR} PC/XT/AT, VAX ${ }^{\circledR}$ Apollo ${ }^{\circledR}$ and Sun ${ }^{\circledR}$ computers.

And the 80386 emulation system is just one of our many embedded software development tools.

Our Software Analysis Workstation (SAW) delivers hardware-based, real-time software analysis in a source code environment. For source code development, our Microtec ${ }^{\circledR}$ Research products provide you
with C and Pascal cross-compilers, crossassemblers and debuggers for many popular microprocessors.

And MicroCASE ${ }^{\text {rM }}$ backs all of its products with solid applications support, both at the local and factory level.

Microtek enjoys a long track record of being first to market with quality support for many major microprocessors. We were the first alternative for 80386 emulation. We're first to provide non-proprietary support for 80386 protected mode. And you can count on the same support in the future.

For more information and product literature on our full line of MICE, call us toll-free at 1-800-547-4445.

Crack 80386 protected mode, and open the door to exciting design possibilities-with the best 80386 emulation system now available. From MicroCASE.

*Without the use of a proprietary "bond-out" chip. IBM is a registered trademark of International Business Machines. VAX is a trademark of Digital Equipment Corporation. Apollo is a trademark of Apollo Computer, Inc. Sun is a trademark of Sun Micro Systems.

DIGITAL FILTER CUTS NOISE FROM TI COMMUNICATIONS LINES

The S3541 digital-filter IC implements the C message-weighted, highpass, and 1-kHz notch filtering required by Tl-carrier communications lines installed in the US telephone network. The chip meets all the specifications of Bell Pub \#41009 (May 1975) and IEEE standard 743 (1984). It uses digital filtering-which provides manufacturing repeatability, zero temperature drift, and zero drift over time-to solve the noise problem, which is traditionally solved with analog filtering. Gould Inc's Semiconductor Div (Santa Clara, CA, (408) 246-0330) offers the device in a 28 -pin DIP for $\$ 17.95$ (1000).
-Steven H Leibson

LOGIC ANALYZER EXPANDS FROM 16 TO 64 CHANNELS

If you're looking for test equipment that expands with your needs, consider the Model 1230 logic analyzer from Tektronix (Portland, OR, (800) 245-2036). You can purchase the unit with 16 channels and then add capacity as your needs grow. The basic unit offers a built-in display with RS-170 output, nonvolatile storage for setups, glitch catching, and timing to 100 MHz . Your expansion options include additional data channels in groups of 16 (to a total of 64), a parallel port for dumping screen data to a printer, and a control-I/O port. You can choose the RS-232C or the IEEE-488 (GPIB) interface for remote control. The basic unit costs $\$ 2795$; delivery is four weeks. The 16 -channel expansion boards cost $\$ 1200$ each. Other options begin at $\$ 200$; delivery is 10 weeks.-Richard A Quinnell

FULL-FEATURE TIME-INTERVAL COUNTER COSTS \$3850

The SR620 time-interval counter from Stanford Research Systems Inc (Sunnyvale, CA, (408) 744-9040) costs $\$ 3850$ and allows you to make frequency, period, rise-time, fall-time, and phase measurements in addition to time-interval measurements. You can measure frequencies from 0.001 Hz to 1.3 GHz and time intervals to 1000 sec . The instrument measures time intervals with $30-\mathrm{psec} j i t t e r$ and $4-\mathrm{psec}$ resolution. You can make phase measurements from 0.001 Hz to 100 MHz with 0.001° resolution. The SR620 provides mean, min, max, and Allan variance statistics on as many as 1 million samples. Measurements are displayed on a digital front panel; alternatively, you can use an oscilloscope to display histograms using the oscilloscope's X-Y inputs. The instrument comes with RS-232C and GPIB interfaces and a Centronics printer port. An optional, oven-stabilized crystal timebase costs \$950.-Doug Conner

COLOR-PALETTE CHIP IS ALTERNATE SOURCE FOR PS/ $/$ GRAPHICS

Available in 35-, 45 -, and $80-\mathrm{MHz}$ versions, the VDA-176 color-palette IC from VLSI Design Associates (Campbell, CA, (408) 371-7400) provides a pin-compatible alternative to the IMS-176 from Inmos (Colorado Springs, CO), which is used in IBM's PS/2 computers and on VGA graphics boards. The color-palette chip incorporates a 256×18-bit RAM, three 6 -bit D/A converters, and output circuitry capable of driving standard RS-170 video cables. Packaged in a 28 -pin DIP, the $35-\mathrm{MHz}$ devices cost $\$ 10$ (1000).-Steven H Leibson

25-MHz CACHE CONTROLLER INTERFACES DIRECTLY TO 80386μ P

The A38152-25 Microcache from Austek (Mountain View, CA, (415) 960-1315) is a speed upgrade of the company's earlier $20-\mathrm{MHz}$ version. The device is a 4 -way set-associative controller that supports a 32 k -byte zero-wait-state cache memory and has a direct interface to an $80386 \mu \mathrm{P}$ and to four $8 \mathrm{k} \times 8$-bit static RAMs. The A38152-25 comes in an 84-lead PLCC and is available immediately in sample quantities for $\$ 145$.-David Shear

NEWS BREAKS

BED-OF-NAILS TEST PROBES HAVE 1-M Ω, 3.8-pF LOADING

The P651l and P6513 spring-loaded active test probes from Tektronix (Vancouver, WA, (800) 835-9433, ext 170) allow you to obtain high-fidelity waveform data using bed-ofnails fixtures, without loading down critical circuit nodes. The active hybrid probes have a $300-\mathrm{MHz}$ bandwidth, $1-\mathrm{M} \Omega$ resistance, $3.8-\mathrm{pF}$ input capacitance, and 50Ω output impedance. You can mount the probes on $100-\mathrm{mil}$ centers for bed-of-nails and other board-testing applications. The probes cost $\$ 225$; delivery is six weeks.-Doug Conner

DIGITAL CELL LIBRARY LETS YOU DESIGN 1.2- μ m CMOS ASICs

Designers of CMOS ASICs can now obtain a $1.2-\mu \mathrm{m}$ process and a digital-cell library from International Microelectronic Products (San Jose, CA, (408) 432-9100). The company plans to offer an analog-cell library for the process later this year. The double-layer-metal, double-poly CMOS process allows for system clocks running at as much as 40 MHz and provides typical gate delays of 300 psec . The digital-cell library, DCL 1.2, features 70 cells and includes a RAM, ROM, and PLA compiler. The price of the library is included in the NRE costs of your ASIC design. Typical NRE costs are between $\$ 40,000$ and $\$ 100,000$.-Richard A Quinnell

PRICE OF 12-BIT A/D CONVERTERS CONTINUES TO DROP

The MAXI72 from Maxim Integrated Products (Sunnyvale, CA, (408) 737-7600) is a 12 -bit, $10-\mu \mathrm{sec}$ CMOS A/D converter that costs just $\$ 10$ (1000). The device requires a 5 V and -12 V or -15 V supply; it converts an analog input ranging from 0 to 5 V . The result is available as a 12 -bit word or two 8 -bit words via a parallel 3 -state output. An on-chip voltage reference allows a full-scale temperature coefficient of $45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The MAXI7 is packaged in a 24 -pin, 0.3 -in.-wide DIP or a 24 -pin SOIC.-David Shear

OPTICALLY STORED DOCUMENTS ARE LEGALLY ACCEPTABLE

Three years of research by Cohasset Associates Inc (Chicago, IL, (312) 527-1550) has culminated in the book Legality of Optical Storage, a 320-page, looseleaf volume edited by Cohasset's president, Robert F Williams. By relating optical-storage methods to microfilm and magnetic storage techniques, the book concludes that a solid legal foundation exists for the use of optically stored documents in court proceedings and regulatory hearings. The book's $\$ 230$ price also covers a l-year subscription to an update service that tracks the incorporation of optical document storage in new laws and regulations.-Steven H Leibson

FLASH FEPROM APPROACHES EPROM STORAGE DENSITY AND COST

Flash EEPROMs offer two advantages over conventional UV EPROMs: onboard programmability and faster program and erase times. Their drawbacks, however, have been lower storage capability and higher cost. The 48F512 flash EEPROM from Seeq Technology Inc (San Jose, CA, (408) 432-7400) reduces these drawbacks with its 512kbit storage density and $\$ 33$ (100) price. The write time is $1 \mathrm{msec} / \mathrm{byte}$; the chip-erase time is 5 sec . The vendor specs the chip's endurance (the number of times the chip can be erased and rewritten) at 100 cycles.-Margery S Conner

THE COMPETITION IS STILL TALKING ABOUT THEIR 10-BIT FLASH ADC

WE'RE SHIPPING OURS

That's right - shipping. For years there's been a lot of talk about monolithic 10 -bit ADCs. The talk is over. The TDC1020 is a reality. The world's first monolithic 10-bit flash ADC is available from TRW LSI Products.
And the best news is the performance. It's going to be hard to beat. This truly state-of-the-art flash converter guarantees 10 -bit resolution at a 20 MSPS conversion rate over both commercial and military temperature ranges. Packaged in a 64 -pin DIP, its outstanding features include TTL interface, overflow flag, selectable output formats and guaranteed no missing codes. All you need is a standard $+/-5 \mathrm{~V}$ power supply and a challenging application.
The TDC1020 can help your equipment achieve the kind of performance
that you've been dreaming about for years. But beyond performance, the TDC1020 in your system will be a real cost and space saver too.
So stop listening to all the talk about 10-bit ADCs. The TDC1020 is here. Now! Try it in your medical imaging, broadcast video, military, process control equipment or any other demanding application.
Call for a full data sheet, pricing and immediate technical assistance. Production quantities are available right now from TRW LSI Products and our national distributors - Hall-Mark and Hamilton/Avnet.

TRW LSI Products -

 bringing the worlds of Data Acquisition and DSP together.
TRW LSI Products

 P.O. Box 2472La Jolla, CA 92038 619.457.1000

In Europe, phone: TRW LSI Products Munich, 089.7103.124; Paris, 1.69.82.92.41; Guildford (U.K.), 0483.302364
In the Orient, phone:
Hong Kong, 3.880629;
Tokyo, 03.234.8891; Taipei, 751.2062;
Seoul, 2.553.0901
© TRW Inc. 1988 - 712A03287

TRW LSI Products

NEWS BREAKS: international

STE BUS CARDS IMPLEMENT A LOW-COST, IBM PC-COMPATIBLE TARGET

In addition to providing MDA/CGA-compatible display capabilities, the $£ 195$ SPCGA STE Bus card from Arcom Control Systems Ltd (Cambridge, UK, TLX 94016424) includes sockets for as much as 256 k bytes of ROM/EPROM or 128k bytes of static RAM. Firmware available for the card allows ROM/EPROM on the SPCGA card to operate as a silicon disk, which appears to the system as the A drive in a normal MS-DOS environment. As a result, you can create a low-cost, 2-card IBM PC-compatible STE Bus target system by adding the company’s $£ 345$ SCPC88 8088 -based CPU card. In this configuration, the CPU card provides the system with as much as 256 k bytes of RAM. By selecting from a wide range of STE Bus-compatible I/O and signal-conditioning cards, you can tailor the system for use as an embedded controller in industrial-control applications. Because your target system will be IBM PC compatible, you can develop software for it on your IBM PC.-Peter Harold

LOW-FREQUENCY SPECTRUM ANALYZER HAS VARIETY OF ANALYSIS MODES

Although some of its main application areas lie in the realm of mechanical engineering, the SI-1220 multichannel spectrum analyzer's bandwidth-dc to 50 kHz -makes the instrument suitable for use in designing a variety of low-frequency and audiofrequency electronic systems, such as closed-loop control systems and hi-fi equipment. The analyzer is manufactured by Schlumberger Technologies' instrument division (Farnborough, UK, TLX 858245; in the US: Burlington, MA, (617) 229-4825). It provides two or four input channels, and it can simultaneously measure frequencyresponse functions between all its channel pairs. In addition, the analyzer has a maximum resolution of 1000 spectral lines, and it allows you to zoom to l-mHz resolution.

Its optional waveform generator provides continuous or burst-mode stimulation of your system with a variety of standard or user-defined waveforms. The instrument's standard sample memory is 256 k samples deep, but you can optionally expand it to a depth of 1 M samples. Its analysis features include logarithmic frequency resolution, octave analysis, twin-band analysis, and swept-sine frequency-response analysis. The analyzer's waterfall displays, with optional gray scales (Z-modulation), allow you to highlight system performance. A 2 -channel version costs approximately £13,000.-Peter Harold

SINGLE CHIP HOLDS FLOPPY-DISK-DRIVE CONTROLLER CIRCUITRY

The μ PD72068 CMOS chip from NEC integrates all the main functions of a floppy-disk-drive controller. The LSI circuit's die size is $6.33 \times 6.18 \mathrm{~mm}$. According to the Japanese press, engineers can use the chip to reduce the mounting area of floppy-diskdrive components to one-fifth the area of conventional controllers, and can expect to achieve floppy-drive data-transfer rates of 600 k bps. The chip dissipates 50 mW while operating and 0.5 mW while on standby. You can obtain samples of the part for $¥ 5000$ (about \$38) each.-Joanne Clay

ASICS OFFER 0.4-NSEC DELAY AND A MAXIMUM OF 129,000 GATES

Toshiba Corp has recently introduced the TCl20G Series master-chip ASICs, which feature a delay time of $0.4 \mathrm{nsec} /$ gate. The devices are fabricated with a $1-\mu \mathrm{m}$ process that forms transistor elements on the entire surface of the chip. The series comprises five devices having densities ranging from 38,000 to 129,000 gates. The chips are reportedly compatible with the company's earlier ASIC devices, but will cost 20% more.-Joanne Clay

The New 4180 Plug-In SpEED TRIALS.

- Multi-channel: two or four channel configurations.
- Unmatched single-shot capabilities.
- High speed, 200 MHz digitizing.
- 100 MHz analog input bandwidth.
- Real-time math functions.

- For your Free Speed

 Trial call: 800-356-3090 or 608-273-5008Nicolet Test Instruments Division P.O. Box 4288

5225-2 Verona Road Madison, WI 53711-0288

Nicolet Digital Oscilloscopes
 Speed. Using the latest designs in ADC technology, your input signal can be

 digitized at speeds up to 200 MHz (5 ns per data point) and saved for analysis. The wide band input amplifiers allow signals up to the 100 MHz Nyquist limit to be input without distortion. Sophisticated trigger setup displays allow you to accurately set the level, sensitivity, and slope to make one-shot transients easy to catch; eliminating the usual hit or miss guesswork. For multi-channel applications two 4180's can operate together in one mainframe producing a four channel scope with no degradation in speed or performance.Real-Time Math. In addition to the extensive post-processing capabilities in the mainframe, the 4180 has several useful routines which present computed results as live, real-time displays: $F F T$, MAX/MIN, $A+B, A-B, A \times B, A / B$, and AVERAGING.

Nicolet

$\$ 249$

The opportunity for automated, low-cost assembly is a key benefit of surface-mount technology, but is often wiped out by the high price of surface-mount components. Now, Mini-Circuits offers a new series of mixers to meet the pricing demands of SMT ... only $\$ 2.49$ in 1,000 quantity ($\$ 3.75$ ea. in quantity of 10) ... at a cost even lower than most conventionally-packaged mixers.

The SCM-1 spans 1 to 500 MHz with only 6.0 dB conversion loss, 45 dB LO-RF isolation, and 40dB LO-IF isolation. Housed in a rugged, non-hermetic 0.4 by 0.8 by 0.3 in . high (maximum dimensions) plastic/ceramic package. Spacing between connections is 0.2 in. The mixer is offered with leads (SCM-IL) or without leads (SCM-INL) to meet a wide range of pc board mounting configurations.
Each SCM-1 is built to meet severe environmental stresses including mechanical shock/ vibration as well as temperature shock. The operating and temperature storage range is $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Each SCM-1, designed and built to meet today's demanding reliability requirements, carries Mini-Circuits' exclusive 0.1\% AQL guarantee of no rejects on every order shipped (up to 1,000 pieces).
When you think SMT for low-cost production, think of Mini-Circuits' low-cost SCM mixers.

how wide is a wideteband amplifien

 $?$
10MHz to 4.2 GHz

With its ultra-wide 10 to 4200 MHz excellent isolation is offered over the bandwidth, Mini-Circuits' ZHL-1042J 100 mW amplifier is ideally suited for EW, TACAN, mobile radio, and satellite communications. A single ZHL-1042J can replace several "wideband" amplifiers in lab and production test setups. The three-stage, 27dB gain 50ohm class A design provides unconditional stability; any load impedance can be connected without concern for damage or oscillation. With 50dB reverse gain,
 entire band, critical for closelyspaced frequency tests. The noise figure of 18 dB at 10 MHz rapidly drops to 4.5 dB at 100 MHz and above; input SWR is 2.5 . Output at the +1 dB compression point is +20 dBm and the intercept point is +30 dBm .

The rugged heat-sinked 1.25 by 2.18 by 1.5 in . unit requires $15 \mathrm{~V}, 0.3 \mathrm{~A}$.
Price is $\$ 495$ ($1-9$ qty).
Immediate delivery, 1-year guarantee.
finding new ways
setting higher standards

This is the stuff reputations are built on.

A cell design with 100,000 gates. More than 1000 library elements. 2 MB of memory. And sub-micron HCMOS technology.

You can search high and low, but there's only one place in the world you can find a chip of such staggering complexity.

LSI Logic.
Designs like this are precisely why we're the \#1 domestic ASIC supplier with more than 4,000 working cell and array-based designs in the field.

And why our Modular Design Environment (MDE)" software is the best foundation for building killer cells.

MDE is the industry's most advanced design software for ASICs. It arms you with the capability to build today's most sophisticated cellbased designs. Easily. And with the smallest possible die size.

Besides MDE,LSI Logic delivers more than 400 LSI and VLSI building

High complexity Cell-Based ASICs require advanced tools like the MDE chip floorplanner to optimize delays and verify performance prior to layout.
blocks, including 16 and 32 -bit microprocessor cells and industry-standard processor and peripheral functions; the longest list of SSI and MSI functions; and memory compilers to develop exactly the RAM or ROM your chip requires.

And if your application calls for lower densities, that's covered, too. Because LSI Logic has more cost-effective cell-based solutions than you can imagine.

No matter what kind of Cell-Based ASIC you build, LSI Logic will deliver a fullytested prototype in as little as 4 weeks.

All in the production quantities you want, thanks to our advanced worldwide wafer fabrication, assembly, and test facilities.

So find out more about LSI Logic's Cell-Based ASICs by calling the sales office nearest you.

After all, we can help you make a killing.

LSI LOGIC

[^1]

You wouldn't do this with your AnalogVLSI devices.

You'll have to if you go to most ATE companies for a solution to today's sophisticated "system silicon" testing problems. Because all you'll get is a makeshift tester. And that means resigning yourself to man-months of custom hardware work integrating analog and digital instrumentation. And putting up with the long hours of low-level software development that go with custom solutions. Worse, you can expect these delays to cut your chances of getting your product to market on time.

Teradyne now has a simple answer to this complex testing problem. The A500 Analog VLSI Test System. It's the first of a new generation of systems specifically for AVLSI "system silicon" devices.
A test system that can help you cut critical product development time by months or even years.

One Test System, Once and for All

With AVLSI devices you won't get fast design feedback, unless you test individual components-the
"building blocks" of system silicon. And you won't comply with customer and industry requirements if you don't do complete "system" functional testing. With conventional test systems it means two of everything. Two testers, two test programs, two insertions, two data bases. And more than twice the time to get to market.

The A500 allows you to do it all with one system. So there's only one system to program. One insertion to make for both component and functional testing. And only one data base to work with. Which means significantly less time to market.

Vector Bus II": the Great Integrator

The heart of the A500 is Teradyne's unique Vector Bus II architecture. It integrates analog and digital VLSI test capability at the system level. Which means you won't have to build special applications hardware for every new device you design. Vector Bus II eliminates that costly custom-work bottleneck

Why accept it in an AnalogVLSI Test System?

with such features as TimeMaster ${ }^{\text {rw }}$ Synchronization, Mixed-Signal Event Control, and MultiSource Data Mixing.

A Picture's Worth a Thousand Keystrokes

 The A500 also revolutionizes program development. Our IMAGE ${ }^{\text {x }}$ (Interactive Menu-Assisted Graphics Environment) software gives you graphics programming as powerful as device designers' CAD/CAE tools. Using a mouse to control multiple windows, pop-up menus and software "power tools," you move ideas rapidly from mind to screen. And much faster to market.Teradyne's new A500 is the only test system with the features you need to win the race for Analog VLSI market opportunities. To find out more, call Beth Sulak at (617) 482-2700, ext. 2746. Or call your nearest Teradyne sales office or write: Teradyne, Inc., 321 Harrison Avenue, Boston, MA 02118.

'JRADYNAE

We measure quality.

SIGNALS \& NOISE

CAD systems can't replace breadboards

Thanks for printing Jim Williams's timely guest editorial ("Should Ohm's law be repealed?" EDN, March 3, 1988, pg 47). CAD systems certainly save time, especially when they're used for digital design. But claiming that a CAD system can eliminate the need for breadboarding analog circuits is like claiming that a text-processing package can produce a finished manuscript without any editing.
I would very much like to see EDN further explore the current status of analog circuit design. The gradual demise of analog courses in engineering schools is an important area of concern. Another is the replacement of simple analog circuits with complex programmable logic. Still another is the shunning, by digital-computer designers, of the analog computer, which is a well-
established, real-time, parallel processor.
Forrest M Mims III
Seguin, TX

A lesson in bridge building

I read with interest Jon Titus's editorial "Building bridges" (EDN, February 18, 1988, pg 53). It caught my eye because my son and I had a somewhat similar experience. Our experience was slightly different from Jon's, however, and as a result I believe I had a different outcome and a different lesson.
My son is in eighth grade. His science teacher provided a chance for the students to earn extra credit by designing a toothpick bridge that had to span approximately 11 in . and had to support a $10-\mathrm{lb}$ lead ball. Every student who tried would get some credit, those who built bridges
that supported the weight would get more credit, and the student who built the lightest bridge that supported the weight would receive the most points.

I felt that this assignment was a good chance to provide some home education on how to approach problems that you are not especially trained to handle. (I am an electrical engineer, and my Statics class was many years ago.) We first determined how strong a toothpick was. Then we built a few small trial structures to determine how much they would support. This experiment led us to a design that not only supported the weight but was also the lightest. We did it without calculations or detailed engineering. We used a logical step-by-step approach and trial and error. Although it wasn't the fastest approach, it got the job done.

My point is that too often we get

THEIR APPROACH.

It can be the scariest part of design.
When you turn your design - your "baby"-over
to the folks who will turn it into hardware.
Cross your fingers no longer. Standard Logic will do the job right and do it on time. The whole job. Or any part of it you want.

45 different embedded-capacitor, DIN-standard Metric Series logic cards in three different pin patterns and 15 sizes are available.

All aretin-lead-alloy-plated for whisker-free reliability.

OUR APPROACH.

They're perfect for your own proprietary bus, VME-bus, Multibus II, Futurebus or NuBus interfaces. We even provide matching extender cards, rugged chassis, enclosures and back panels.
Now you'll know when you push the button it'll work. Simply call or write: Standard Logic Inc., 4940 East
La Palma Ave.,
Anaheim, CA
92807.

714/779-2897.

STANDARD
LOGIC INC.
Bringing your designs to life.

THERE'S MORE IN STORE FROM SEEQ.

High-Speed ${ }^{2} 2 \mathrm{PR}$ ROMs. There's No Waiting

Org.	Part No.	Pin Out	$\mathbf{I}_{\mathbf{c c}}$	$\mathbf{T}_{\text {aa }}$	$\mathbf{T}_{\text {ce }}$	Packages
$2 \mathrm{~K} \times 8$	36 Cl 6	Same as bipolar PROM	100 mA	45 ns	30 ns	DIP. LCC
$4 \mathrm{~K} \times 8$	36 C 32	Same as bipolar PROM	100 mA	45 ns	30 ns	DIP. LCC
$2 \mathrm{~K} \times 8$	38 Cl 6	IEDEC STDE	100 mA	45 ns	30 ns	DIP LCC PLCC
$4 \mathrm{~K} \times 8$	38 C 32	IEDEC STDE	100 mA	45 ns	30 ns	DIP. LCC PLCC

All parts are available in MIL-STD 883. Class B.

There was a time when you couldn't consider E2PROMs for writeable control-store applications. Because their speeds couldn't keep up with today's faster microprocessors, without introducing wait states.

But with SEEQ's 16 K and 32 K CMOS parts, that's all changed. Their $45-n s e c$ speeds-along with insystem reprogrammability-are opening up new applications in areas like array processing, graphics and DSP. High-performance areas where slower $E^{2} s$ just can't make it.

That means your options in fast, non-volatile memory just got a lot broader than bipolar PROMs. And much more flexible. Because at 350 mW , our CMOS parts consume less than half the power of bipolar PROMs. While still delivering comparable output drive characteristics.

Available in JEDEC-approved bytewide pinouts, these E^{2} s operate over extended and full military temperature ranges.

SEEQ high-speed E ${ }^{2} P R O M s$ can also replace-and outperform - your other traditional alternative, slower E^{2} s combined with fast SRAMs. That simplifies designs by eliminating the need to load RAM for program execution. And, fast $\mathrm{E}^{2} \mathrm{~s}$ cut the number of required devices by more than half.

At SEEQ, we have a lot more in store. SEEQ Technology, Inc., 1849 Fortune Drive, San Jose, CA 95131.

Call Us On It: (408) 432-9550

the unlimited design benefits of miniature metal tubing.

design benefits number 505 and 506 REDUCING/EXPANDING

Small tubing diameters can be reduced or expanded up to 50% of the original diameter with exacting tolerances. The standard transition angle of 13° allows a means to regulate fluid or air flow, locate an internal or external position, or join one diameter to another.

You'll find a lot of design options in our small tubing booklet. Or talk directly to our design specialists at 1-800/321-6285.

Q

UNIFORM tubes, inc.

Collegeville, PA 19426-0992 • Telephone: 215/539-0700 TWX: 510-660-6107 • Telex: 84-6428 • FAX: 215/489-1150 In Europe: UTI U.K. 983-404049 • Telex: 869441 UTIUK G

CIRCLE NO 4

INTRODUCING THE HI-REL MAJOR PATRIOT AC FAN

Comair Rotron's Hi-Rel Major and Patriot tubeaxial AC fans are 10% more efficient, offer $10^{\circ} \mathrm{C}$ cooler bearing temperatures and provide as much as five years longer life for continuous operation.

- Operating temperatures range from $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ at 240 CFM
- Fan diameter is $6.75^{\prime \prime} \times 2^{\prime \prime}$ deep
- At $40^{\circ} \mathrm{C}$ Hi-Rel fans have an L10 Life of $102,000 \mathrm{hrs}$.

Comair Rotron's Hi-Rel fans continue the tradition of responding to the industry's increasing demand for higher reliability, precisely engineered airmovers.
Comair Rotron. The First Name in Forced Convection Cooling Technology.

For literature only call 800-367-2662. In NYS and for product or technical assistance call our application Engineering Dept. at (914) 246-3615.
wrapped up in the requirement that we must always have the slickest, best, fastest, and most state-of-theart tools to get the job done. Sometimes I wonder how anything was ever designed before we had HP calculators, personal computers, and engineering workstations. Many designs have been done without the aid of any of these tools, and hopefully many more will be in the future.

I am not a Luddite when it comes to using tools to do a better job. However, I think that our colleges are turning out students that need the latest equipment to get the job done. This situation has been caused in part by employers who expect engineers fresh out of school to be versed in the latest equipment and ready for design work. The end result is that the education the students receive is leaning more toward practical skills and less toward theoretical skills and a broad education. I believe that in the long run this situation will be detrimental to the engineer's ability to keep up with technology or adapt to a different technology should the job require it.

Let's not forget that you can accomplish a lot by using the best computer available (the one between your ears), a little common sense, and a logical approach to a problem. Sometimes the simplest solution is the best solution.
Joe Blaschka, Jr, P E
President
Adcomm Engineering Co
Kirland, WA

Sorry, wrong number

The phone number listed for Softaid Inc (Columbia, MD) on pg 253 of EDN's March 17, 1988, issue is incorrect. The correct number is (301) 964-8455.

New D/A Converters Expand Design Choices

AD7226/5 - 8-Bit with $\mu \mathrm{P}$ interface, buffered outputs with good sink current, single or dual supply, 1LSB accurate

MAX7645/AD7545A - 12-Bit multiplying, 100ns WR pulse, 1LSB gain error, low glitch, +5 V or +15 V supply with TTL/CMOS compatible

8-Bit dual multiplying

AD7528/AD7628 - $\mu \mathrm{P}$ interface and data iatches, 1% DAC matching, +5 V or +15 V supply and TTL/CMOS compatible

AD7523 - current output, TTL/CMOS compatible inputs, single +15 V supply, 1.5 mW power consumption

Latched 8-Bit multiplying

AD7542 - 12-Bit multiplying, 4-bit data input, 1LSB gain error, low glitch, single +5 V supply, 12 mW power consumption

MAX7624/AD7524 - $\mu \mathrm{P}$ interface and data latches, +5 V to +15 V supply and TTL/CMOS compatible, $37 / 5 \mathrm{~mW}$ power consumption

New 1988 Databook Details 65 Data Converter Devices

The devices above are but a sample of Maxim's growing line of D/A conversion products. The rest can be found in our new 1988 Data Conversion Databook which is FREE for the asking (see pg. 2). These devices are engineered in enhanced silicon-gate, bipolar or hybrid technologies and deliver superior performance- faster conversion speeds, greater accuracy and higher stability. What's more, they're all available in spacesaving $0.3^{\prime \prime}$ DIP or small-outline (SOIC) packages.

New A/D Converters Expand Design Choices

Complete CMOS 12-Bit, $3 \mu \mathrm{~S}$

DSP Analog Front End ($\mathrm{f}_{\mathrm{S}}=250 \mathrm{kHz}$)

MAX162 - with internal reference, +5 V and -12 V to -15 V supplies, $\mu \mathrm{P}$ interface, 215 mW power consumption, replaces AD7572 pin-for-pin

Complete 12-Bit, $5 \mu \mathrm{~S} / 12 \mu \mathrm{~S}$

AD7572 - internal reference, +5 V and -15 V supplies, $\mu \mathrm{P}$ interface, +5 V input range, 215 mW power consumption

Very low power, $\mathbf{5}_{\mu} \mathrm{V}$

THERMOCOUPLE

$$
\mu \mathrm{P} \text { controlled DAS }
$$

MAX133/4 - $\mu \mathrm{P}$ controlled integrating $33 / 4$-digit ADC with low external component count, 2.2 mW power consumption, DEMO KIT available

Sampling 8-Bit, 1.3 $\mu \mathrm{S}$

MAX150/AD7820 - Fast ADC with track/hold, no adjustments or clock required, internal reference (MAX150), easy $\mu \mathrm{P}$ interfacing

Complete 12-Bit, $3 \mu \mathrm{~s}$

AD578 - 12-Bit $3 \mu \mathrm{~S}$ ADC, internal +10V reference, adjustable internal clock, short cycle capability

12-Bit+sign, integrating

ICL7109 - 12-Bit+sign integrating ADC with binary output and $\mu \mathrm{P}$ interface, UART handshake mode for serial interfacing

8-Bit/8-channel with RAM

MAX161/AD7581-20 $\mu \mathrm{s} / 66.7 \mu \mathrm{~s}$ ADC with 8×8 Dual Port RAM for data storage, ratiometric capability, DMA operation

4-channel, 8-Bit, sampling

MAX154/AD7824 - Data Acquisition Systems with track/hold, $2.5 \mu \mathrm{~s}$ per channel, no clock required, internal reference (MAX154)

8-Bit, $4 \mu \mathrm{~S} / 15 \mu \mathrm{~S}$

MAX160/AD7574 - $\mu \mathrm{P}$ interface, single +5 V supply, ratiometric operation, no external clock necessary, 25 mW power consumption

Maxim Offers Free 100\% Burn-in

Maxim minimizes IC failures by improving designs, building parts better and testing them to an exent that commercial parts have never been tested before.

Every DIP is burned-in at $150^{\circ} \mathrm{C}$ for 24 hours-absolutely FREE. And all pins are designed to withstand over 2000 V of electrostatic discharge (ESD). This results in an incredibly low failure rate of 6.8 failures per billion hours of operation.

For the details on all of Maxim's data acquisition products, send for our new 1988 Data Conversion Databook.

For FREE SAMPLES or applications assistance call (408) 737-7600 or write Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, California 94086.

WITHALLTHIS GOING FOR YOU,

WHY SETTLE FOR ANYTHING LESS INACHIP CARRIER SOCKET?

CHIPAK ${ }^{T M}$ - it's the finest chip carrier socket on the market today. And the only one that combines all these important features in a single design.

In fact, everything about our CHIPAK sockets has been engineered for maximum reliability and installation ease.

Our closed-bottom design, for example, eliminates the danger of solder wicking - without the troublesome mylar covers required in open-bottom designs. Our GTH ${ }^{\text {TMM }}$ contact system grips the chip tightly in place and insures good-as-gold performance-without cumbersome chip retention clips.

In short, CHIPAK combines all the
features you'll ever want or need in a chip carrier socket. Low-profile design to save space. Convenient standoffs to aid cleaning and heat dissipation. Easy-access probe holes and easy-to-spot orientation guides to speed instal-- lation and testing. And finally, an easy-to-use chip extraction tool that, unlike others, accommodates every socket size - quickly and safely. With all this going for you, why settle for anything less? Available in sizes from
20 through 84 contact positions. Call or
write for complete details: Burndy Corporation, Norwalk, CT 06856. (203) 852-8337.

THE BEST CHIP EXTRACTION TOOL INTHE BUSINESS!
Foolproof. Easy to use. Convenient. One tool does it all. Accommodates full range of chip sizes.

NEW FROM TEK: ANALOG FUNCTION, ARBITRARY WAVEFORM AND SWEEP GENERATION in ONE COMPACT PACKAGE.

> The Tek AFG 5101 Programmable Arbitrary/Function Generator is the latest addition to Tek's TM 5000 family of proven, programmable, modular test instruments.
> An analog function generator, the
> AFG 5101 can generate standard sine, square and triangle waveforms, plus dc level, with frequencies from .012 Hz to 12 MHz and amplitudes of 10 mV to 9.99 V peak-to-peak, into 50 ohms. Waveforms can be continuous, triggered, gated or burst, from a
full range of triggering modes.
With synthesizer option, the AFG 5101 achieves frequency accuracies to .005\% (120 Hz to 12 MHz) over and above the . 2% frequency accuracies in the standard instrument.

An arhitrary waveform

 generator, the AFG 5101 uses two independent 12-bit by 8 K waveform memories to build any imaginable signal from an array of 8,192 horizontal addresses and 4,096 vertical addresses. Enter the waveforms manually from the front panel, from computer data -or select one of the unit's predefined, 1,000-point waveforms.A sweep generator, the AFG 5101 includes linear,

logarithmic and arbitrary sweeps, with any sweep usable in continuous, triggered, gated or burst mode. Users can receive instant frequency readout of breakpoints, notches, or response anomalies.
The applications are wide open. Use the AFG 5101 to drive sensors, timers, and other R\&D equipment. To simulate metal stress or vibration characteristics. To teach waveform theory to students. And much more.

Easy waveform editing capabilities ...non-volatile storage of up to 99 front panel settings and two 8K point waveforms ...binary block GPIB transfer ...two waveform memories plus third, execution memory - these and other features make the AFG 5101 a simple, powertul and uniquely flexible tool.

AVALLABLE IN THREE CONFIGURATIONS.

The first triple-duty test instrument of its kind, it is available in monolithic (AFG 5501), as a plug-in (AFG 5101), or in our Programmable Arbitrary Stimulus/Measurement package (EBS 5002).
Take 10% off with our package offer. Order the AFG 5101 in our Programmable Arbitrary Stimulus/ Measurement package and take 10\% off catalog prices.
For the full story on these and other Tek modular instruments, call 1-800-426-2200. Or contact your nearby Tektronix field office.
(Center photo) The AFG 5101 can be ordered in either monolithic version, top right, or as a plug-in for the TM 5000 series mainframes, top left. Or, combine it with the DM 5010 4.5 Digit Multimeter and DC 5009 135 MHz Digital Counter within a TM 5006 mainframe (EBS 5002), as shown at bottom, and take 10% off the normal catalog price.

Tektronix

CIRCLE NO 172

Trasy ASIC

Only from OKT:

Most complete ASIC building blocks. Most versatile design/package options. Most experienced ASIC technology.

Nobody but nobody puts ASIC technology together like OKI Semiconductor can.
Ease into ASIC with OKI as your close working partner-and you instantly support your VLSI application with the most comprehensive ASIC capabilities on the world market today. Bar none.
From gate array, standard cell and full custom chips to standard components to integration to advanced board level products, OKI alone puts you on the leading edge of ASIC technology and its complete implementation.

OKI: the totally logical choice.
Opt for OKI ASIC, and you open up your options across the board. Only OKI now offers the system designer the unique security and entry ease that only a proven track record in CMOS ASIC problem-solving can provide. This history of performance built up since 1977 has produced the widest range of solid building blocks yet: advanced ASIC products and packaging including surfacemount, backed up with the most flexible cell libraries, CAD/CAE design tools and development aids.
As your working partner, OKI ASIC expertise is available to you at any stage of the development process. We'll help you define system requirements, determine the most cost-effective product solutions and supply complete design softwareaccessible at your own workstation or through our regional design centers. And then we take it from there: with high
volume fabrication, assembly and testing completed in one of the world's most highly robotized manufacturing facilities.

Compare Total ASIC Capabilities	$\left\lvert\, \begin{aligned} & \frac{0}{0} \\ & \frac{\Sigma}{y} \\ & \mathbf{y} \end{aligned}\right.$	\%	u 0 0 0 0 0 in
Gate Arrays to 10K Gates	\bullet	-	
Standard Cells to 30K Gates	-	-	
Full Customs - Lowest Cost	-		
1.5 Micron Cell Library	-	-	\bullet
Macro Cells	-	-	
Bi CMOS	-		
High Density Surface Mount Packages	-		
Board Level Products	-		
Supporting Standard Products	-		
COB Technology (Chip on Board)	\bullet		
CAD/CAE Design Support	\bullet	\bullet	\bullet
Customer-Friendly Design Interface	\bullet	-	-
Regional Design Centers	\bullet	\bullet	-
Robotic Manufacturing	\bullet		

> ASIC Solutions from OKI: You can't beat the logic!

Please rush complete technical data/specs on OKI capabilities in:

$$
\begin{aligned}
& \text { () Gate Arrays } \\
& \text { () Standard Cells } \\
& (\quad) \text { Full Customs }
\end{aligned}
$$

() Please call: we have immediate requirements:

Now, high performance vacuum/pressure blowers that operate from 120 V/AC

Compact units feature brushless dc motors with integral controller and variable speed capability

VDC signal from a sensor or other device will control motor speed and adjust air performance from 0 to 100\%. Or, a second model provides manual speed control by means of a po-

These new Wind-
jammer® blowers combine electronics, motor, and fan system in a compact, cost-effective package that operates from a standard 120 VAC input. An exclusive Lamb Electric design, they were developed for demanding, limited space applications such as business machines, medical equipment and materials handling applications.

Just $5.7^{\text {" }}$ in diameter, the blowers have $1-2$ - or 3 -stage fans for performance from $50 " \mathrm{H}_{2} \mathrm{O}$ vacuum at 0 CFM to 110 CFM at $\mathrm{O}^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. With one version, a 0 to 10
tentiometer located in the blower housing.
These blowers also feature low noise performance and are UL/CSA component recognized. Get complete details by contacting AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. (216) 673-3451. Telex: 433-2140. Cable: LAMETEK.

LAMB ELECTRIC DIVISION CIRCLE NO 6

CALENDAR

31st Annual Instrument Society of America Power Symposium, St Petersburg, FL. Bill Blazier, Illinois Power Co, 500 S 27th St, Decatur, IL 62525. (217) 424-6622. May 23 to 25 .

Society for Information Display International Symposium, Anaheim, CA. Palisades Institute for Research Services, 201 Varick St, Rm 1140, New York, NY 10014. (212) 620-3388. May 23 to 27.

C Programming: Hands-on Workshop (short course), Washington, DC. Integrated Computer Systems, Box 3614, Culver City, CA 90231. (800) 421-8166; in CA, (213) 4178888. May 24 to 27.

Troubleshooting MicroprocessorBased Equipment and Digital Devices (seminar), Kansas City, MO. Micro Systems Institute, 73 Institute Rd, Garnett, KS 66032. (800) 247-5239; in KS, (913) 898-4695. May 24 to 27.

DOD-STD-2167A and DOD-STD-2168-Defense System Software Development (seminar), San Diego, CA. David Maibor Associates, Box 846, Needham, MA 02194. (617) 4496554. May 26 to 27.

Troubleshooting MicroprocessorBased Equipment and Digital Devices (seminar), Dallas, TX. Micro Systems Institute, 73 Institute Rd, Garnett, KS 66032. (800) 247-5239; in KS, (913) 898-4695. May 31 to June 3.

42nd Annual Frequency Control

 Symposium, Baltimore, MD. R L Filler, US Army Electronics Technology and Devices Lab, Attn: SLCET-EQ, Ft Monmouth, NJ 07703. (201) 544-2467. June 1 to 3.Personal Computer Interfacing for Scientific Instrumentation Automation (short course), Blacksburg, VA. Linda Leffel,CEC, Virginia Tech, Blacksburg, VA 24061. (703) 961-4848. June 2 to 4.

Record-Shattering CPUPerformance!

 Sustained 20-MIPS, 7-MFIop throughput in a 32-bit CMOS CPU and FPU. Nothing elsecomes close.

What happens when you blend our ultra-fast PACE Technology ${ }^{\mathrm{TM}}$ with MIPS, the top-performing RISC architecture?

Simple-a breakthrough of major proportions. A 32-bit CPU/Floating point processor set that delivers sustained throughput of 20-MIPS, and 7-MFlop single precision, LINPACK, or 4-MFlop double precision.
(Peak throughput exceeds 25-MIPS.)
There's more. The market-rattling performance of the PaceMips ${ }^{\text {TM }}$ R3000 and R3010 is supported by 256 K bytes each of high-speed instruction and data cache memory. The speed, as you might expect, is made possible by our $64 \mathrm{~K}, 16 \mathrm{~K}$ and 4 K SRAMs-the world's fastest-in $\times 1, x 4$ and $\times 8$ organizations.

If record-shattering performance interests you, you'll call our marketing HOT LINE today at (408) 734-9000 for more information. On pricing. Operating systems. Compilers. Development systems. And fast static RAMs.

The PaceMips R3000 and R3010. Ready now. With champion performance that can make your next system a winner, too.

PACE Technology is a trademark of Performance Semiconductor Corporation.
PaceMips is a joint trademark of Performance Semiconductor Corporation and

OTTO

Sealed Switches

Dry Desert to Wet World

Survival! That's what you can expect from OTTO precision snap-action pushbutton switches. Sealed to survive the rigors of industrial, commercial and military applications, these switches are available in momentary and alternate (push-on, push-off)
action, miniature and subminiature sizes, choice of front panel appearance and button colors.

Sealed against dirt and water. Electrical ratings from computer level to 10 Amperes. Contact resistance $<.025$ ohms.

International Summer Consumer Electronics Show, Chicago, IL. Consumer Electronics Shows, 2001 Eye St NW, Washington, DC 20006. (202) 457-8700. June 4 to 7.

FiberTour 88, Boston, MA. Joan Barry, Xpos, Box 8872, Salem, MA 01971. (617) 744-9767. Conference cosponsored by Lightwave magazine. June 7 to 8 .

ATE \& Instrumentation Conference East, Boston, MA. MG Expositions Group, 1050 Commonwealth Ave, Boston, MA 02215. (800) 2237126; in MA, (617) 232-3976. June 7 to 9 .

International Conference on Consumer Electronics, Rosemont, IL. Geriann Van Calbergh, 4924 N Cumberland, Norridge, IL 60656. June 7 to 10 .

25th Design Automation Conference, Anaheim, CA. MP Associates, 7366 Old Mill Trail, Suite 101, Boulder, CO 80301. (303) 530-4333. June 12 to 15 .

Nepcon East, Boston, MA. Cahners Exposition Group, 1350 E Touhy Ave, Des Plaines, IL 60018. (312) 299-9311. June 14 to 16.

Worst-Case Circuit Analysis (seminar), Honolulu, HI. Design and Evaluation, 1000 White Horse Rd, Suite 304, Voorhees, NJ 08043. (609) $770-0800$. July 11 to 13 .

CASE '88 (2nd International Workshop on Computer-Aided Software Engineering), Cambridge, MA. Pamela Meyer, Index Technology Corp, 1 Main St, Cambridge, MA 02142. (617) 494-8200, ext 1988. July 12 to 15 .

Siggraph, Atlanta, GA. Barbara Voss, Robert P Kenworthy Inc, 866 United Nations Plaza, Suite 424, New York, NY 10017. (212) 7520911. August 1 to 5.

DOYOU HAVE WHAT IT TAKES TO MAKE IT BIG IN ASICS?

Not long ago, designing ASICs wasn't even part of your job. Now it's the part everyone's counting on.

That's where Daisy comes in.

Daisy CAE tools are used by more ASIC designers than any other CAE workstations.

Because from schematic creation through post-layout

Simulation accelerator market share. Source: Prime Data, 1985 and 1986 unit shipments.
simulation, Daisy has what it takes to keep ASICs on time and on budget.

For example, our MegaLOGICIAN ${ }^{\text {NTM }}$ simulation
accelerator is seamlessly integrated with the schematic, so you can locate and correct design problems interactively. That means faster debugging and more time to improve
the quality of your design. Plus no other accelerator is as well supported,
with more than 170 design kits supplied by 70 different vendors. So you can build productivity instead of libraries.

Which may explain why more MegaLOGICIANs are in use today than all other accelerators combined.

Speaking of combining, you
can share a MegaLOGICIAN with a network of our 386based desktop workstations, for a high-powered low cost ASIC design environment.

And that's just the beginning.
With our library of more than 4,500 systemlevel components, you can include your ASIC in complete "real world" system simulations to ensure that your designs will be ready for production, instead of revision.

All of which makes Daisy today's choice for no-sweat ASIC success.

But what about tomorrow?
Gate counts are on the rise. If your tools run out of steam at 5,000 gates, so could your future.

No problem.
Our ASIC design tools glide through 20,000-
gate designs without even breathing hard.
In fact, new design kits already support arrays of over 100,000 gates.

So you'll never have to worry about hitting a dead-end.

But don't take our word for it, listen to what

Rockwell and other industry leaders have to say. For a free copy of "Making It Big In ASICs" call Daisy at 1 (800) 556-1234, Ext. 32. In California, 1(800) 441-2345, Ext. 32.

European Headquarters:
Paris, France (1) 45370012.
Regional Offices:
England (256) 464061;
West Germany
(89) 92-69060;

Italy (39) 637251.

Expand your

Enhance your design at any stage with RCA CMOS 6805 micros and SPI peripherals.

Your challenge is to increase system performance and capability while reducing board size.

Not an easy job. But certainly easier when you use our 6805 and 68 HC 05 micros and serial peripheral interface devices.

Extend your micro's power.

Many microcomputers rely on parallel I/O ports to communicate with peripheral devices. An inefficient method at best.

That all changes with the serial peripheral interface incorporated into our 68 HC 05 microcomputers.

This three-wire (plus device select) synchronous, fullduplex, serial communication system contains separate lines for input and output data, serial clock and device select. You don't have to sacrifice I/O ports to communicate off-chip: our 68HC05 micros can communicate with our own serial peripherals, the serial peripherals of other manufacturers, and even with other microcomputers via only three port lines.

True design versatility.

The real beauty of the SPI is that it eliminates limitations imposed by microcomputers.

For example, you can easily extend the amount of I/O or memory with SPI RAMs, I/O chips or shift registers. And the modular SPI bus gives you the ability to expand without losing lots of PC-board space. Reduced package sizes and minimized interconnect wiring lead to reduced board size.

And since you don't need complex software to
operate the bus, you save ROM space.
Right now, we can offer you a versatile family of peripheral devices, including 128 -byte and 256 -byte static RAMs, a real-time clock with RAM, an 8 -bit programmable I/O port, and a 10 -bit 8 -channel A/D converter. And more parts are coming soon, including a digital pulse-width modulator and a serial bus interface chip for networking microcomputers. These serial peripherals are also compatible with other microcomputer types.

Powerful family of micros.

We can provide 6805 microprocessors for external memory address, but the heart of our SPI system is the 6805 Series high-speed CMOS microcomputers:
68HC05 Microcomputers

Features	68HC05C4	$68 \mathrm{HCO5C8}$	$68 \mathrm{HCO5D2}$	68HC05D2A
Pins	40	40	40	28
On-Chip RAM (bytes)	176	176	96	96
On-Chip User ROM (bytes)	4160	7744	2176	2176
Bidirectional I/O Lines	24	24	28	16
Unidirectional I/O Lines	7 inputs	7 inputs	3 inputs	3 inputs
Timer size (bits)	16	16	16	16
Prescaler size (bits)	$*$	$*$	$*$	$*$
External timer 0scillator Serial peripheral interface	no	yes	no	yes
Serial communications interface	yes	yes	yes	no
*prescaler fixed as $\div 4$				no

Easy to prototype, too.
If you need another reason to choose our 6805 family, here it is: they're so easy to prototype with our Piggyback! We have the 68EM05C4 and 68EM05D2 Emulators, custom 40-pin packages that contain the C4/C8 or D2 micros with a Piggyback EPROM socket.

When installed with a 27C64 EPROM, these devices together become functionally identical to a CDP68HC05C4, CDP68HC05C8 or CDP68HC05D2.

Two final points: we'll give you fast turnaround, and a wide variety of packages.

For more information, call toll-free 800-443-7364, extension 22. Or contact your local GE Solid State sales office or distributor.

In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm, (08) 793-9500. GE Solid State

Our workstations areen those with a passion for F

While some companies sell a lot of computers because they make something for everyone, we sell a lot because we don't.

All the workstations we make, the applications that run on them, and the networking power that unites them with the other computers in your company were created for a select group of people.

Namely the engineers, product designers, software developers and other professionals who demand nothing less than ultimate compute performance.

People who clamor for access to processing power and graphics. Who possess an insa-
tiable appetite for information. And who can ill afford to endure the delays, limitations and obstacles that typically hinder the effort to attain it.

If you're such a person, you should have an Apollo workstation. For you'll realize the moment its screen is in front of you that the issue of performance is behind you.

An Apollo workstation will grant upon you enough dedicated compute power to keep your imagination charged permanently. Letting you choose from a compatible family of workstation systems whose prices start as low as a personal computer and whose perfor-

gineeredfor erformance.

mance extends to that of supercomputers.
These machines will grant you imagery so brilliant you won't want to blink for fear of missing something. With real time two- and three-dimensional graphics that render up to 16.7 million colors at 130,000 vectors per
second. And they'll open your eyes even wider with networking power and elegance.

Every Apollo workstation, from the Series 3000'" Personal Workstation" to our new Personal Supercomputer,'"' functions as a command center from which you have unequalled access to data, processing power, development tools, and applications.

So that every mainframe, minisuper, and microcomputer on your network is at your beck and call.

In a manner almost invisible to you, our workstations show you networking performance you probably thought impossible.

For with the industry's first implementation of Network Computing Architecture,'" they make your multi-vendor network appear as one computing environment.

Letting you run a single application on a network of computers by automatically dispatching portions of a program to the processors most qualified to execute them. And providing the tools to develop and debug code running on different machines.

All while freeing you to create applications, access network resources and even move from one operating environment to another with whatever language, menus and file names you define.

A fact that might inspire you to wonder if we don't engineer our workstations only for you.

Today, there is more than one way to measure computer performance. But when the criteria include processing power, graphics and network computing, nothing measures up to Apollo.

Why our high performance 22VIO PLD is the market leader:

First, all the great architectural features of the standard 22V10.

Including Macrocell I/O, so one part can be programmed to replace up to 10 different PLD devices, plus many additional logic configurations. Inverted or non-inverted, registered or combinatorial operating modes. As many registers as you want -1 to 10 . Synchronous Preset and Asynchronous Reset features. Configurable with up to 22 inputs and 10 outputs. A Variable Product Term architecture lets you easily tailor the 22 V10 for high performance in a wide variety of applications, without burdening the product term structure.

And you get the benefit of easy programming, using industry standard languages like CUPL ${ }^{\circledR}$ or ABEL $^{\text {TM }}$, standard programmers, or our handy QuickPro ${ }^{\text {TM }}$ programming accessory for PC or PC-compatible.

In other words, you get superb flexibility and ease of use. The 22 V 10 gives you the convenience of PLD design for logic functions in the 500 to 800 gate array complexity. But without the design complexity of gate arrays.

Now add Cypress CMOS leadership and you have the market-leading 22 V 10.

Blazing performance, with speeds to 25 ns combinatorial $/ 33.3 \mathrm{MHz}$ registered.

Quarter-Power for cool performance.
Optional windowed versions for the convenience of reprogrammability.

Skinny DIP or surface mount packaging. Greater than 2000 V ESD tolerance on every pin, and the ability to tolerate $\pm 10 \%$ power supply fluctuations.

No wonder this is such a best seller.
Get the databook that has the information you need on this great part, and you'll have the information you need on ALL our high performance parts.

CMOS high speed SRAM.
CMOS high speed PROM.
CMOS high speed PLD.
CMOS high speed Logic.

This databook, packed with high

 speed, low power parts, is yours for a phone call.DataBook Hotline: 1-800-952-6300

Ask for Dept. C42
1-800-423-4440 In CA
Ask for Dept. C42
(32) 2-672-2220 In Europe
(416) 475-3922 In Canada

[^2] 910-997-0753 ©1988 Cypress Semiconductor. QuickPro is a trademark of Cypress Semiconductor. CUPL is a registered trademark of Assisted Technology. ABEL is a trademark of Data I/O Corporation.

Time for a public-image boost

Electrical and electronic engineers should be pleased by IEEEpresident Russell Drew's recent call on the Office of Management and Budget (OMB) to review US government contract-award practices. Drew was responding to the publication of terms in a 1987 Navy contract under which a firm was supplying engineers at a $\$ 7.29$ hourly rate. That pay rate included the engineers' benefits. In a strong letter to Robert P Bedell, Administrator of the US Office of Federal Procurement Policy, Drew says he wants the OMB to " . . . ensure that degreed engineers are not receiving unrealistically low hourly rates in other Government contracts."

Drew's letter is a step in the right direction, as is his request that IEEE members report similar "wage-busting" contracts to the organization's US Activities Board (USAB) in Washington, DC, (202) 785-0017. We hope the USAB will listen to nonmembers, too. Exposing such low hourly wages is commendable, but the IEEE must follow through with more than calls for action. Unfortunately, the organization has little power beyond asking Government agencies to enforce hiring directives and policies.

Perhaps some of the IEEE's lack of strength results from the electrical engineer's poor public image. After all, why should anyone worry about an all-but-invisible profession? Few people can describe what an EE does or where such an engineer might work. Drew addresses engineering's PR problem in the April 1988 issue of The Institute. For example, he says that although most people perceive outer-space activities as the result of scientific endeavors, they are generally engineering triumphs. So, the IEEE acknowledges the problem, but Drew goes on to say that the organization doesn't know what to do about it.

As a partial solution, Drew suggests that individual members seek media coverage that draws attention to the IEEE and its role in the profession. That's the wrong approach. If people don't know much about engineering, why should they care about the IEEE? Drew's additional suggestions include putting on a presentation about engineering, supporting public-service activities, and getting involved with local education groups. These activities can enhance your image, but without a comprehensive plan, they'll do little to enhance the profession's.

So, I'm still wondering why an organization of 290,000 professional members in over 130 countries is calling on individuals to solve a problem it should have tackled years ago. It's time to get a complete electrical- and electronic-engineering PR plan and timetable from the IEEE. The goal must be to make engineers a visible part of society and to tell people what we do, who we are, where we work, why we engineer, and how we affect daily life.

This Year's Brightest a Variety

PACKAGE
PACKAGE

FULLY ISOLATED	MTP3055AP	60 V	0.15 OHMS	10 A	30 W
NON-ISOLATED	MTP3055A	60 V	0.15 OHMS	$12 \mathrm{~A}^{*}$	$40 \mathrm{~W} *$

[^3][^4]
Power FETs Come in of Colors.

Free Brighter Power Data Book.

Take an in-depth look at the bright side of Power MOS. Send for your free copy of the SGS-THOMSON Power MOSFET data book. It includes a wide range of industry standard Power MOSFETs-all of them available in SGS-THOMSON's revolutionary cost, space and time-saving ISOWATT220 and ISOWATT218"' packages.

Call 602/867-6259 now or
write: SGS-THOMSON
Microelectronics, 1000 East
Bell Road, Phoenix, Arizona 85022. The brighter your Power MOSFETs, the brighter your design's future.

ISOWATT220 and
ISOWATT218 are trademarks of SGS-THOMSON
Microelectronics.

SGS-THOMSON
NICROELECTRONDCS

National
 Semiconductor

Now anyone can draw on the power of the mainframe with a single chip.

INTRODUCING THE DP8344 - THE EASY, AFFORDABLE WAYTO IBM CONNECTIVITY

At last there's a one-chip solution to processing IBM 3270, 3299 and 5250 communication protocols - the programmable DP8344 Biphase Communications Processor.

The $B C P^{\text {w }}$ is easily integrated into cluster controllers, PCs, terminals and printers, so now anyone can design a plug-compatible interface for IBM mainframe and depart mental processors.

You can also use the DP8344 in a PBX or to build a gateway to various local- and wide-area networks.

You can use it in a protocol converter to give inexpensive peripherals access to the power of the mainframe. Or in a PC or IBM PS/ 2 to provide 3270 or 5250 terminal emulation.

In fact, providing IBM connectivity is now so simple and inexpensive that a host of new applications are being developed. The BCP has been designed in by more than 100 companies-including Hewlett-Packard,Local Data, Pathway Designs, Lee Data, Centronics, and Memorex.
© 1988 National Semiconductor Corporation $B C P$ is a trademark of National Semiconductor Corporation. IBM and PS/ 2 are registered trademarks of International Business Machines Corporation.

> IT GIVESYOU A LOT OF POWER IN A VERY SMALL SPACE

A full system, supporting all three IBM protocols can be implemented in an area not much larger than a credit card.
The BCP integrates an intelligent transceiver and a high-performance CPU on the same low-power CMOS chip.

Powerful enough to operate as the sole system processor, the BCP also incorporates a flexible bus interface with on-chip arbitration logic, enabling communication with other processors.

With a $20-\mathrm{MHz}, 50$-nanosecond T-state processor, 30 instruction types, full-function ALU, and an instructioncycle time ranging from 100 to 200 nanoseconds, the DP8344 supports the 3270 protocol using only 20 percent of the CPU bandwidth.

Fast and flexible interrupt and subroutine capabilities, with on-chip stacks, make the remaining bandwidth readily available for other system tasks. In fact, enough power is available to eliminate other system processors entirely.

IT COULDN'TBE MORE FLEXIBLE

The BCP features a softwareconfigurable transceiver that supports not only IBM 3270,3299 and 5250 protocols but also general eight-bit protocols.
A simple line interface connects the BCP to the communications line. The receiver includes an on-chip analog comparator and provides a TTL-level input for added flexibility.

WE'LL GIVE YOU ALLTHE
 SUPPORT YOU NEED

The DP8344 is backed by a development package that includes a demo/evaluation board with a monitor/debugger program, insystem emulation features, and demonstration software for complete 3270 terminal emulation on an IBMPC.

On the system level, we offer both 3270 and 5250 controller emulators and analysis tools.
Application support is available through a worldwide network of technical support centers.

For more information on the DP8344 BCP-the easy, inexpensive way for you to provide IBM connectivity - please contact your National Sales Engineer.

Or write National Semiconductor, MS 23/200,P.O. Box 58090 , Santa Clara, CA 95052-8090.

[^5]
Display technology is often the last thing you specify.

And the first thing your customer sees.

From a customer's viewpoint, there's only one real window into your product.

The display.
If it's inferior, your product is judged inferior. No matter how good it really is.

For flat panel displays, there's a simple, yet elegant solution. Planar's electroluminescent (EL) display. Why is EL the preferred display technology? Better viewing angle. Better brightness. Better contrast.

It adds up to superior performance.
So contact us today. Choose the flat panel display that surpasses all others from everyone's point of view.

For a brochure, please phone either
503-690-1100 or 503-690-1102, or write to

PLANAR SYSTEMS, INC.
1400 N.W. Compton Drive
Beaverton, Oregon 97006.
\qquad

The K450B Logic Analyzer and the 4074 Digital Storage Oscilloscope from Gould...

State-of-the-art test instruments for designers of today's superfast digital and data communications systems.

Powerful measurement capabilities...

 The K450B Logic Analyzer, with up to 80 channels at 100 MHz or 40 channels at 200 MHz and glitch capture across all channels, provides top performance. AND the 4074 DSO-the only 4 channel instrument with 400 MSample/Sec 8 bit converters on every channel-is the most sophisticated oscilloscope available for the high speed pulse measurementsrequired by electronics designers and test engineers. TOGETHER-they work as an integrated system without any of the compromises of hybrid systems; APART-two high performance instruments available for separate test applications.
ease of use...
We provide that on both the K450B and the 4074 with our AUTO SETUP facility. and fail-safe performance! Gould Electronics created the timing analyzer market in 1978 with the introduction of the first logic analyzer; and we were pioneers in DSO technology. Today we supply leading computer and telecommunications equipment makers with
logic analyzers and DSOs for digital design verification, hardware and software integration, component and subsystem test, hardware debug and digital remote diagnostics.
Wherever high performance test and analysis is required in digital electronics design, Gould is at the leading edge with a price/performance record second to none.

For further details, contact
Gould, Inc.
Test \& Measurement
19050 Pruneridge Avenue
Cupertino, CA 95014
1-800-GOULD 10

NCR keeps raising the standards for SCSI.

Finally, a cure for SCSI overheadaches.

NCR's 53C90 is the only chip that can give you fast, fast, fast relief from overheadaches. Using combination commands, dedicated sequential logic and dual-ranked registers for command pipelining, the 53 C 90 is quickest on and off the bus. Plus NCR implements complex bus sequencing in hardware, not time-wasting software.

Transfer rates? NCR's 53C90 delivers the SCSI bus maximum of 5.0 MBytes/sec synchronous and 3 MBytes asynchronous at 25 MHz for the full length of the bus.

How to get zapresistance, latch-up protection and the blessings of the FCC.

A big, wellconnected family.

NCR's family goes back to the "Mayflower" of SCSI controllers with the 5385 in 1982. The most recent offshoot-the high-performance 53C90A. Other family members include a single chip host bus adapter (53C400), an integrated buffer controller (53C300) and even an ASIC supercell for circuit designers. Plus we'll be there with SCSI II.

Raise your standards.

Because our chips have an edge in technology, they can help give you an edge in the market. So don't settle for the standard, call NCR today.

For documentation call our hot line 1-800-334-5454. Or write to, NCR Microelectronics, SCSI Products, 1635 Aeroplaza Drive, Colorado Springs, CO 80916.

For technical assistance, call 1-800-525-2252, Telex 452457.

Nar
The NCR 5380 and 53C90 families give you ESD protection up to 10,000 volts on the SCSI bus. NCR also provides controlled fall times to reduce the undershoot that could cause other CMOS chips to latch-up. Controlled assertion rates also reduce generated RFI, an important factor in winning FCC approval for the final product.

OS designers consign much of 386's power to writers of applications programs

Charles H Small, Associate Editor

The designers of the 32 -bit $80386 \mu \mathrm{P}$ packed the device with so many built-in hardware features to support complex multitasking operating systems that no operatingsystem designer has yet made use of them all. Consequently, you can exploit the remainder of the 386 's sophisticated hardware in your applications programs without the risk of colliding with the operating system.
The 386's $\mu \mathrm{P}$ designers envisioned an execution environment where a powerful operating system, running at the highest priority level, would completely control low-er-level tasks. These lower-level tasks would each run in their own virtual memory spaces and communicate with other tasks through carefully specified and restricted common memory areas.

In addition, the tasks would communicate with the operating system by making function calls through a protected call-gate mechanism. When the operating system relieved one task and gave control of the CPU to another task, a task-switching mechanism would handle the transferral chores with a single command (see box, " 386 architecture makes OS design easy").

But as yet operating-system designers have actually taken advantage of surprisingly few of these powerful, special-purpose facilities. Even Unix, running on a 386 , leaves virtually all the facilities of the 386 at your disposal for your applications. In fact, designers who wish to
embellish existing 386 operating systems by adding features, or those who want to combine several operating systems into one, have ample facilities remaining within the $\mu \mathrm{P}$.

OS need not be a mystery

When using the 386 's predecessors, applications programmers often clash with the operating system by using $\mu \mathrm{P}$ features reserved for the operating system. Although the inner workings of operating systems are by and large not well known to most applications programmers, any operating system is, after all, just another program and need not be mysterious.
The code in an operating system runs, generally, when one of four things happens:

- Operating-system call. The application program-or the user directly-requests the operating system to perform a function.
- Exception handling. The application program makes an error that it cannot by itself rectify.
- External interrupts. An external device, one which is not under the control of the CPU, demands attention.
- Timer interrupt. In timesliced systems, an internaltimer interrupt often initiates a complex series of decisions and actions on the part of the
operating system as it chooses which application program should get the next time slice.
The 386 's mechanisms for handling external interrupts and timer interrupts are completely conventional. An external device supplies the 386 with an 8 -bit, identifing vector as part of the external-interrupt handshake. The 386 uses the 8 -bit vector to find the beginning address of the appropriate interrupt handler in a 256 -entry table.

Timer interrupts for time-sliced, multitasking systems generally use the 386 's nonmaskable interrupt (NMI). Like virtually every other μ P's NMI, the 386's NMI causes the $\mu \mathrm{P}$ to jump directly to the start of the timer-interrupt routine using an address found at a predefined location.

The 386's extensive artillery takes aim at the first two jobs of an operating system: providing simple but common functions for applications programs, and handling task errors -or even better, keeping the tasks

T he 386's $\mu \mathrm{P}$ designers envisioned an execution environment where a powerful operating system would completely control lower-level tasks.
paged memory units, and the func-tion-calling and exception-handling mechanisms.
What makes Unix a portable operating system is its use of the lowest common denominator of the facilities available in all processors. Consequently, most Unix and Unix-like implementations for the 386 do not use the 386 's segmentation and protection facilities other than to set up
one segment for the entire system.
Similarly, other operating-system designers often write their opera-ting-system code in C in order to make their systems portable. C provides no constructs that use the segmentation and protection mechanisms of the 386. In the programming universe that the C language presupposes, the address space is linear and all pointers can
point to any place in the memory. Also, C assumes that all memory is undifferentiated, read/write memory. C compilers, therefore, do not generate code for the 386 's protection facilities. So, if you need to set up areas of protected memory under Unix, or any other operating system written in C, chances are that the entire protection mechanism of the 386 is at your disposal.

386 architecture makes OS design easy

The key to understanding how an operating system interacts with your application program when running on an 80386 lies in the addresscalculating hardware of this μ P's complex architecture.
Fig A shows the 386's internal registers. This diagram is quite familiar to anyone used to the 8086/186/286 family. In fact, if this diagram were all there was to the 386 's architecture, you would be justified in classifying it as just a souped-up 8086. But the 386's address-calculating hardware has hidden features.

Fig B reveals more of the processes. In 8086/ 186 fashion, the 386 combines, depending on addressing mode specified by an op code, the values in several registers: the value in a base register (from among the general registers); in an index

Fig A-The 80386's 32-bit register set bears a superficial resemblance to earlier members of the 8086 family.
register (optionally scaled by $1,2,4$, or 8); and in a displacement register. The sum of these three values is a 32 -bit effective address.

Descriptor registers are hidden

The major difference between the 386 and its forebears is the descriptor registers. Unlike the $8086 / 186$, which uses the segment registers' contents directly, the $80286 / 386$ uses the contents of the 16 -bit segment registers as pointers. Each of the six selector registers has a descriptor register associated with it. (These descriptor registers are hidden from the software engineer's view.) When an op code designates a 16 -bit selector register, the 386 also factors in addresses and attributes from the descriptor register. Thus when you command the CPU to load a selector register, it actually gets a selector-descriptor pair from a table.

A descriptor register holds a wealth of information. It has a 32 -bit base address and 16 -bit offset that sets the lower and upper limits (in 4 k -byte min increments) of the corresponding selector's memory segment. Each segment can encompass as many as 4 G bytes or as few as 4 k bytes. The 32 -bit sum of the descriptor's base address and the effective address is the linear address. (In virtual-memory systems, the page-address section further modifies the linear address to generate the physical address.)

In addition, the hidden attribute fields of a descriptor determine not only the length of a memory segment but also whether the segment is read-only memory, read-write memory, or executable code. Further the attributes specify the protection level of the memory segment. For example, you can set up a segment so that only tasks at a particular protection level can access it or so that tasks at differing levels can share the segment.

TECHNOLOGY UPDATE

Unix also makes no assumptions about I/O. Therefore Unix I/O drivers can use either the general-purpose memory-mapped I/O or the special-purpose I/O space of the 386 . Furthermore, Unix does not use the 386's ability to restrict access to I/O facilities depending on a task's I/O priority.
Even Unix System V version 3.1 exploits only two of the four levels of
software protection available on the 386: the Unix kernel at the highest level and all the tasks at the same lower level. Therefore, with the 386, two levels of software protection remain for your use as well.

Paged virtual memory

Because the 386's paging scheme is very similar to the paging scheme of AT\&T's μ Ps, however, Unix oper-
ating-system designers have taken advantage of the 386 's paging mechanism for AT\&T's Unix System V version 3.1, so you can't use it for applications or enhancements at all.
Unix function calls need only minimal CPU support. A Unix function call typically involves loading the function-call identifier and arguments into registers and then calling the operating system through a sin-

The selector-descriptor pairs also effect Intel's call-gate mechanism. With appropriate attribute bits set in a descriptor, a lower-level task can invoke a higher-level routine, such as an operat-ing-system primitive, by using a simple function call. The 386 also uses this call-gate mechanism for task switches, interrupt handling, and software traps. (Similar to a hardware trap, a software trap is an unconditional jump (through a vector) that is activated by an instruction rather than an external interrupt.)

Understanding the call gate mechanism

The call gate appears to the calling task exactly like any other memory area. But when the calling task makes a function call to a memory area designated as a call gate, the 386 automatically
changes the priority level to the level of the called function. When the called function finally returns control of the CPU to the original lower-level task, the 386 automatically resets the priority level. Other μ Ps require you to make a software trap to change priority levels. Only the 386 has this transparent call-gate mechanism.

Note that although any task can invoke a call gate, only a program running at the highest protection level can actually set up a call gate and modify the protection mechanisms inherent in the descriptor; the lower-level tasks can only read tables of selector-descriptor pairs.

The 386 also has an elaborate task-switching facility that saves and restores the entire state of the 386 with a single command.

Fig B—The 386's descriptor registers are hidden from the software engineer's view. Each of the six selector registers has a descriptor register associated with it. When an op code designates a 16-bit selector register, the 386 also factors in address limits and attributes in the descriptor register.

TECHNOLOGY UPDATE

gle location. Consequently, 386 Unix function calls use only a single call gate. If you wish to add custom functions to a 386 Unix system, you have plenty of call gates left over to use. Because of its large address range and numerous function-call gates, the 386 can easily contain several operating systems at once.

Real-time systems

Real-time systems such as Intel's kernel version of iRMX, named iRMK, strain the capabilities of the 386 even less than systems like Unix do. Real-time operating-system designers strive to minimize operat-ing-system overhead. Consequently, they tend to place all of the operating-system and applications code in RAM. They also try to minimize the amount of state-dependent information that must be saved when doing a task switch.

Intel's iRMK real-time kernel for the 386 puts all the kernel and task code in a single segment. The kernel and tasks all run at the highest priority level. The tasks make kernel calls with simple function callsthey don't use the task-gate mechanism. The kernel does not use the task-switching mechanism but instead relies on a much simpler software routine to save a task's state when doing task switches. You are

Because of its large address range and numerous function-call gates, the 386 can easily contain several operating systems at once.
operating system. You can tap their experience when planning your applications programs.

Operating-systems designers applaud the 386's 64-bit barrel shifters for graphics operations. Moving objects on a bit-mapped graphics screen involves reading the screen memory, shifting the bits, and writing the shifted bits back to the graphics RAM. Earlier 8086/186/286 bit-shifting mechanisms cannot handle as many bits as the 80386 can. Consequently, bit-shifting operations in the earlier μ Ps consume multiple CPU cycles. The 386 proves to be at least 12 times faster in this regard than its older siblings.

Operating-system designers also appreciate the 386 's built-in breakpoint registers. Other $\mu \mathrm{Ps}$ merely have single-stepping and software-trap mechanisms for debugging. Using software traps to set breakpoints means that you can break only on instruction fetches. The 386 's internal breakpoint registers work more like the word recognizers in the trigger sections of logic analyzers and in-circuit emulators.

In addition to breaking on instruction fetches, these registers can break on reads, writes, or specific data. Often the first evidence of a bad program is corrupted data. Single-stepping and setting software traps only allow you to examine program flow. The 386 's breakpoint registers allow you to break execution when they see corrupted data.

Experienced operating-system designers
therefore essentially free to extend the iRMK kernel in any way you wish.

Not all of the 386's facilities that operating-system designers find useful need to be reserved for the
also suggest that you take advantage of a very useful feature embedded in the 386 's companion numerical coprocessor: The coprocessor can remember the identity of the most recent task that did numerical calcu-
lations. If you restrict all your computations to one task, the multitasking operating system never has to save the state of the coprocessor when doing task switches. And not having to save and restore the state of the numerical coprocessor can eliminate considerable overhead.

Cache problems

Operating-system designers do wish that the 386 did not flush its entire cache during task switches. Some of the contents of the virtual memory controller's translationlookaside buffer (TLB) refer to operating-system program and data that must be present no matter which task is running.

Like the 68000 family, the 386 has single-bit test-and-set instructions. Operating-system designers like these instructions because they can use them to manipulate flags and semaphores in a single CPU cycle. When testing and setting status bits takes several cycles (as it does on most $\mu \mathrm{Ps}$), operating-system designers have to suspend interrupts during bit-manipulation operations to insure that the status didn't change while the operating system was checking the status bits. If you are writing real-time or multitasking code, you'll find these instructions can eliminate many of your critical-code lockouts too.

EDN

Article Interest Quotient (Circle One)

High 500 Medium 501 Low 502

WHO YA GONNA CALL TO ICE 68020 BUGS? ATRON BUGBUSTERS!

We recently received a competitive analysis written by a billion-dollar competitor of ours. In it, they rank incircuit emulation companies in order of importance. We were number one.

SO WHO'S ATRON?

Today, Atron is the number-one supplier of hardware-assisted software debuggers for 8088/80286/80386based PCs. Nine of the top ten software packages were written by Atron customers. Everybody from AST to Borland to Oracle to Zenith. Now, we can make the same claim in the 68020 marketplace.

Everybody from Apple (MAC IIs) to Wellfleet (datacom) will attest to the superiority of Atron's 68020 debugging technology. One Atron customer even said, "We sent our nonAtron ICE unit out several months ago for repairs; nobody around here seems to know or care if it's back yet. The Atron unit is the tool of choice.'

25-MHZ, REAL-TIME, EMULATION: SOONER OR LATER, YOU KNOW YOU'LL NEED IT.

Why invest in a slower emulator (especially one that costs more)? Some bugs only occur in real time, and you know your next design will be 25 mhz . Before Atron's state-of-the-art design, there was no such thing as a 25 mhz emulator. There still isn't another one anywhere near our price.

PROBE CAN TRACE IT THROUGH THE PIPELINE, SO YOU WON'T LOSE YOUR MIND.

The 68020 has an on-board pre-fetch pipeline. Without Atron's 68020 PROBE, your best software engineer will spend a lot of time figuring out which instructions actually execute, and then, which bus cycles go with those instructions. The 68020 PROBE eliminates all these
tedious mental translations and displays what the processor really did. The technology, called pipeline dequeueing, is only available from Atron. Because the Atron bugbusters are the only ones anywhere who've figured out how to do it. And it took us 100,000 lines of code. Consider it our contribution to your sanity. (It was a dirty job, but somebody had to do it.)

68020 PROBE SPECIFICATIONS

LET THE SOURCE BE WITH YOU.

Why spend all day doing mental translations between your C source code and the machine code in your target? These tedious operations are eliminated with Atron's source-level debugging capabilities.

Since PROBE uses a PC AT as its instrumentation chassis, you can get compiled code to its target via Ethernet, VAXNet, SUNNet, SCSI or RS-232. And whether you are compiling on a PC, a workstation or a VAX, Atron supports more objectmodule formats than anybody else (see specification box).

YOU'LL BE A BELIEVER AFTER A SHORT DEMONSTRATION.
So who ya gonna call? Bugbusters! Today. At 408/741-5900. Or send in the attached coupon.

NOW, TOTALLY INTEGRATED SCOPE-ANALYZER-STIMULUS TO SOLVE YOUR TOUGH ANALOG AND DIGITAL PROBLEMS.

OmniLab display demonstrates capture of an

imbedded analog glitch (in top trace) with time-aligned presentation of the waveform's digitized bit values (center) and numeric states.

Introducing OmniLab 9240 for interactive analog/timing/state analysis.

- Combine a 100 MHz digital oscilloscope with a time-aligned, $200 \mathrm{MS} / \mathrm{s} 48$-channel logic analyzer. Next add synchronized analog and digital stimulus generators. Then a remarkable new triggering system. What you have is the 9240 - a whole new class of instrumentation. Expressly designed to speed challenging analog and digital analysis. And get you from concept to product faster.
- The 9240 is based on an innovative new instrument architecture that merges high-speed universal hardware and seamlessly integrated software to create high-performance capabilities not available in separate instruments. Analog and digital traces are always time-correlated in a unique, single screen display. SELECT ${ }^{\text {TM }}$ triggering bridges scope and analyzer techniques. And OmniLab's stimulus generators can playback captured or edited signals.
- At the heart of the 9240 is SELECT triggering, the most straightforward and complete solution ever to triggering dilemmas. It's one system, operating with synchronized analog and digital views of your data. By combining conventional oscilloscope and analyzer triggering with powerful RAM truth tables - plus $\mathrm{min} /$ max time qualification as needed - SELECT triggering helps you analyze hardware, debug software, and integrate systems more easily.
- OmniLab ${ }^{\text {min }}$ is a generation ahead of conventional digital scopes that often hide rarely occurring faults because they only show you a few cycles out of millions. With its continuous monitoring, you can use SELECT triggering to quickly catch every occurrence

Logic timing analysis (top) of entire sequence for writing data to a floppy disk. Scope simultaneously displays detailed amplitude and multichannel timing information (bottom).
of rare events like metastable states, bus contentions, missing pulses, and buried noise glitches.

- The 9240 is like having a complete benchtop of instruments integrated with your PC/AT or compatible. Which you can easily customize for digital development, analog development, or a combination of both.

NO-COMPROMISE 9240 SPECIFICATIONS			
digital oscilloscope		LOGIC ANALYZER	
Digitizers: Bandwidth: Single-Shot Digitizing: Repetitive Sampling: Scale Factor: Record Length:	Two, 8 bit 100 MHz 34 S/s to $204 \mathrm{MS} / \mathrm{s}$ $680 \mathrm{MS} / \mathrm{s}$ $5 \mathrm{mV} /$ divto $10 \mathrm{~V} /$ div in $1-2-5$ sequence 4K (16K, 64 K optional)	Inputs: Asynchronous Clocking: Repetitive Sampling: Synchronous Clocking: Acquisition Memory: Disassembly Options:	48 , timing and state 34MS/s on 48 inputs; $204 \mathrm{MS} /$ s on 8 inputs $680 \mathrm{MS} / \mathrm{s}$ on 48 inputs 0 to $34 \mathrm{MS} / \mathrm{s}$ 4 K samples (16K, 64K optional) Over 150 microprocessors
ANALOG STIMULUS		digital stimulus	
Output: Cycle Length: Clocking: Functions:	8 mV to 8 V peak-to-peak, 8 bit 4 to 4 K samples (16 K optional) $34 \mathrm{~S} / \mathrm{s}$ to $34 \mathrm{MS} / \mathrm{s}$ Record, edit and playback	Outputs: Cycle Length: Timing: Functions:	24, 74F fri-state drivers 4 to 4 K samples (16 K optional) 34S/s to 34MS/s Record, edit and playback

- With OmniLab, your productivity will soar. Because you achieve results with fewer instruments. And in fewer steps than ever before. By no means least, the 9240 delivers the best price/performance you'll find anywhere, costing just $\$ 8900$ fully outfitted. And most importantly, without compromising a single high-performance spec. Not a one.
- For more information, call toll free 800/245-8500. In CA: 415/361-8883. Or write for complete literature.

르ㄹㅡㅡ르ㄹㅡㅡㅡㅡㅡㅡㅡㅡㄹ
INSTRUMENTS
702 Marshall Street, Redwood City, CA 94063 TELEX: 530942 FAX: 415/361-8970

Computer Integrated Instrumentation

*OmniLab and SELECT are trademarks of Orion Instruments, Inc.

THE CRIMP END

Basic Terminal Material. AMP terminals meet all common standards including MIL, CSA, and UL. High conductivity copper per QQ-C-576, tin plated per MIL-T-10727.

Maximum Contact, Maximum Tensile Strength. Inside of barrel is serrated or dimpled depending on wire size and type of crimp used. Position, depth, etc. are carefully controlled during manufacture. This is a critical part of terminal design.

TERMINALS

Bell or Funnel Mouth Entry. The insulation or the barrel mouth or both are used to direct wire into the barrel. Some versions specifically prevent thin-wall insulation from entering the crimp area.

The end

In fact, the terminal you need is probably right at hand.

Our terminals, and our tooling, have always been the standard the rest of the world compares to.

But suppliers get judged, too-on issues as complex as product availability and as simple as responding
to a simple (or not-so-simple) question or two. We know our job when we see it.

Test our reflexes.

Our real job is to be the kind of company you want to do business with.

So we take availability seriously, and make AMP products available the way you need them. From worldwide manufacturing and stocking to our nationwide network of AMP Autho-
rized Distributors, we offer the source that suits you.

You sometimes need parts in a rush. We've done something about that, too. We've taken our popular industry standard products-including terminals-and stocked up, nationwide.

Your Immediate Shipment Catalog is ready.

For thousands of products from switches to sockets, terminals to coax, and more, our Industry Standard Products Catalog is almost as good

THE WHOLE TOOLING STORY
 Terminal and crimping tool are mated by design and engineered to

 perform that way. This produces a uniform, certifiable crimp.AMP tooling is available to fit every production rate, and every budget.
as a warehouse around the corner.
And you can get your copy just by calling our Information Center and asking for it.

One number to call.

We've consolidated our information systems into a single toll-free number, with hours to cover the business day, coast to coast.

Call us. We can supply product literature. Answer technical questions about any of our catalog products. Guide you to the closest AMP Authorized Distributor.

Any question we can't answer, any problem we can't solve on the spot, will get priority attention. It doesn't matter if your concern is a big one or a little one. Your business matters to us.

For the name and location of your nearest AMP Authorized

Distributor, call the toll-free number.

We want to be your supplier.

AMP Interconnecting ideas $1 \cdot 800 \cdot 522 \cdot 6752$

42,000 dhrystones with a single

 32-bit RISC chip. Sustained. Seventeen MIPS. Real world MIPS. 25Mhz clock speed. Fifty MIPS by 1991. Blazing fast even with low-cost memory.
(5x the system speed of the 68030 or the 80386. More than $2 x$ SPARC.) In CMOS. On the shelf. Now.

Advanced Micro Devices' 29K. The next platform.

"Their new 030 board isnt really a singleboard computer.

 It's a single-board

 It's a single-board system.'

OEMs weren't prepared for the level of functionality our new MVME147 processor module delivers. On one standard VME card, it packs virtually all the functions you need to build a small, multi-user system.

How? Mainly through ASICs like the single-chip VMEbus interface and Peripheral Channel Controller. Plus high-density on-board DRAM (4 or 8 Mbytes), SCSI interface and Ethernet chip set. To even come close in functionality, it would take as many as five conventional modules.

Besides which, the 147 outperforms everything in sight. It takes maximum advantage of Motorola's new 32-bit MPU-the MC68030-coupled with a floatingpoint coprocessor. Both running at up to 25 MHz ,

And since the 147 features both UNIX ${ }^{\circledR}$ and real-time operating system support, you can plug it into your existing 020-based architecture and software base. So you achieve a level of integration never before possible, while protecting your existing investment. All of which gives you unprecedented price/ performance advantages for just $\$ 3747$ in OEM quantities of 100 .

To get an idea of what the future of VME looks like, call us today-toll free: 1-800-556-1234, Ext. 230; in California, 1-800-441-2345, Ext. 230. Or write: Motorola Microcomputer Division, 2900 Diablo Way, Tempe, AZ 85282.
UNIX is a registered trademark of AT\&T.

Approaching our technology from your point of view.

Improved voltage-reference circuits satisfy high accuracy and stability needs

Tom Ormond, Senior Editor

In the last few years, reference manufacturers have markedly improved device performance. When it comes to accuracy, stability, and thermal drift specifications, today's IC references have truly impressive figures. In all three areas, they easily outperform zener diodes.

IC voltage references employ one of two technologies-subsurface zener or bandgap. In the first case, a buried zener provides the basic reference output. Typically, this subsurface zener provides very good long-term stability and low thermal drift.

Bandgap references are more complex devices. To generate the reference level, they employ two transistors in combination with the emitter-base diode of a third transistor. As a rule, bandgap references are a little noisier than subsurface zener-type references, but their noise parameters are still very respectable and quite repeatable.

Given this narrow technology base, you might think that voltagereference choices would be rather limited. Such is not the case, however; you can find a good deal of differences in product offerings. Some references stress low power consumption, and others feature high accuracy and/or stability. You can even opt for programmable references. In fact, you can find references that are essentially applica-tion-specific.

Satisfying low-power applications
If you have an application where power consumption is critical, don't despair. Precision Monolithics, Motorola, and Datel all offer references that stress low power consumption.

You can reduce wideband noise to $160 \mu \mathrm{~V}$ p-p in the AD586 from Analog Devices by connecting a $1-\mu F$ capacitor to the noise-reduction pin. Using one potentiometer, you can also fine-trim the reference value to provide exactly 5.000 V or to develop application-specific values such as 5.12 V for binary applications.

Precision Monolithic's REF-43, a low-power, precision reference, provides a stable 2.5 V output that's impervious to variations in supply voltage, load conditions, or ambient temperature. The device is compatible with any application that requires a known stable voltage and is suitable for use in 8 -, 10 -, and 12 -bit data-acquisition systems, including those that operate from a single 5 V rail.

The reference's output voltage and temperature coefficient are both zener-zap-trimmed to ensure a tight $1.5-\mathrm{mV}$ initial output tolerance and a $10-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max thermal drift. An internal correction circuit reduces thermal curvature effects that are characteristic of many bandgap references.

Operating with supply voltages from 4.5 to 40 V , the REF- 43 shows less than $178 \mu \mathrm{~V}$ of output change over the full supply range-only 2
$\mathrm{ppm} / \mathrm{V} \max$. The unit requires only $450 \mu \mathrm{~A}$ of quiescent current and can deliver a $10-\mathrm{mA}$ output current with better than $20-\mathrm{ppm} / \mathrm{mA}$ load regulation.

The reference has a temperature output pin that lets you monitor a systems' ambient temperature. You can use this pin to develop a basic overheating indicator or in autocalibration routines.
The REF-43 is available in 8 -pin metal cans, ceramic DIPs, plastic DIPs, and 20 -contact leadless chip carriers. It comes in two operat-ing-range grades- -55 to $+125^{\circ} \mathrm{C}$ (B) and -40 to $+85^{\circ} \mathrm{C}$ (F and G). Units processed in accordance with MIL-STD-883 will be available by mid summer. Prices start at $\$ 3.75$ (100) for the REF-43GP.

Motorola offers the LM285/ LM385 Series, a line of micropower, 2-terminal, bandgap voltage-reference diodes. The references go

WRITE TODAY

for our new 100-page full line catalog. It has been revised and enlarged to include many new products And it contains complete specification data for fast, easy ordering. Get yours today.

For use on board, board-to-board or cable-to-board, Samtec $.025^{\prime \prime}$ sq. post interconnects provide reliable, gas-tight connections. A unique snap strip feature allows you to snap most strips to desired lengths. CONNECT TODAY with Samtec SUDDEN SERVICE for all of your $.025^{\prime \prime}$ sq. post interconnect needs.

through an on-chip trimming process that tightens initial output tolerances; they feature low dynamic impedance, low noise, and stable operation over time and temperature. Low operating-current requirements make these references suitable for micropower circuitry where extended battery life is a prime design requirement.
The references are available in two voltage versions (1.235 and 2.500 V) and in four initial-tolerance grades (1, 1.5, 2 , and 3%). Operating currents range from $10 \mu \mathrm{~A}$ to 20 mA . Dynamic impedance equals 1%, and wideband noise specs at 60 and $120 \mu \mathrm{~V}$ rms for the 1.235 and 2.5 V versions, respectively. Average temperature coefficient is 80 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and long-term stability measures $20 \mathrm{ppm} / 1000$ hours.
The LM285 and LM385 references are rated for operation over -40 to $+85^{\circ} \mathrm{C}$ and 0 to $70^{\circ} \mathrm{C}$, respectively, and are housed in TO-226AA (TO-92) plastic packages. Both versions of the LM385 are also available in surface-mountable plastic packages. Prices range from $\$ 1.10$ to $\$ 1.45$ (100).
Datel's VR-182 Series monolithic bandgap-type devices feature 2.455 V outputs. Designed for applications involving A/D and D/A converters that do not have an internal reference, they are also useful in voltage regulator circuits, switching power supplies, comparator circuits, and other analog signal-processing applications.
Maximum reference-current and power-dissipation ratings for the VR-182 devices spec at 120 mA (derated by $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and 300 mW , respectively. Temperature coefficients equal 100,50 , and $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for Models 182A, 182B, and 182C, respectively. Output tolerance equals $\pm 35 \mathrm{mV}(\pm 1.43 \%)$.
An active regulator around the bandgap circuit provides a 0.1Ω typ dynamic impedance over the 2 - to $120-\mathrm{mA}$ reference current range. In addition, the dynamic impedance is flat to 4 kHz , rising to only 1.2Ω at

A low-power precision reference, the $R E F-43$ from Precision Monolithics Inc requires only $450 \mu A$ of quiescent supply current. It features a $1.5-\mathrm{mV}$ initial output tolerance and a thermal drift of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$.

50 kHz . Other specifications include a $10-\mu \mathrm{V}$ output noise and $10-\mathrm{ppm} /$ 1000-hours long-term stability.
The low 2.455 V reference output allows you to use these units with 5 V logic supplies. In fact, you can use VR-182 Series references with supply voltages as low as 3.5 V . The devices are supplied in 2-lead, hermetically sealed TO-18 packages and operate over 0 to $70^{\circ} \mathrm{C}$. The A, B , and C models cost $\$ 0.75, \$ 0.90$, and $\$ 1.05$ (100), respectively.

High accuracy is no problem

Voltage references are inherently accurate devices. However, not all available references offer the same degree of accuracy. National Semiconductor's LM169 10.000 V unheated precision monolithic voltage reference, for example, has a 5 mV (0.05%) guaranteed initial accuracy $-1 \mathrm{mV}(0.01 \%)$ typ. It also features a guaranteed $8-\mathrm{ppm} / \mathrm{mA}$ load regulation and a $3-\mathrm{ppm} / \mathrm{V}$ line regulation. It has a guaranteed temperature coefficient of 3 to $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (depending on device grade) across its entire operating range. The LM169 is characterized and guaranteed over the -55 to $+125^{\circ} \mathrm{C}$ military range; the LM369 is characterized for the 0 to $70^{\circ} \mathrm{C}$ commercial range.

The reference fabrication cycle involves two separate trims-one for $\mathrm{V}_{\text {out }}$ (initial accuracy) and a second independent trim for temperature drift. This dual-trim technique optimizes temperature coefficient figures without compromising the accuracy parameter. Resistor networks are laser-cut (patent pending), rather than shaved or notched, to trim to the correct values. This scheme avoids resist drift problems attributable to electromigration.
The references also have pins available for postassembly trims for both temperature coefficient and accuracy. These pins allow users to compensate for changes in output voltage due to piezoelectric effects on the die from the die-attach or molding process, as well as any shift due to the high temperatures associated with some of the package sealing processes. You can trim the LM169 with a potentiometer in applications requiring additional accuracy. This $V_{\text {out }}$ trim does not affect the temperature coefficient.
LM369 references are available in four package styles-an 8-pin plastic miniature DIP, a surface-mount SO-8, a 3-pin plastic TO-92, and an 8 -pin metal TO-5 can. The LM169 is available in an 8 -pin metal can only.

Prices range from $\$ 1.50$ (100) for standard commercial-grade models to $\$ 19$ (100) for the highest grade military-operating-range versions.
Analog Devices also offers a voltage reference that satisfies highaccuracy requirements. The AD586 5 V reference features initial offset error and drift specs as low as 2.5 mV and 5 ppm , respectively. Housed in an 8-pin hermetic ceramic DIP, the unit is suited for operation as a system reference with 16 -bit D/A converters, power-supply controllers, and autocalibration systems.

Internal noise-reduction circuitry lets you reduce reference wideband noise by adding a single external capacitor. A proprietary buried zener diode and production laser trimming provide low error, low noise, and high stability over time and temperature.
Typical long-term stability is 15 $\mathrm{ppm} / 1000$ hours. Output noise measures $4 \mu \mathrm{~V}$ p-p in the 0.1 - to $10-\mathrm{Hz}$ band and is only $200 \mu \mathrm{~V}$ p-p to 1 MHz . By connecting a $1-\mu \mathrm{F}$ capacitor to the noise-reduction pin, you can reduce this wideband noise to $160 \mu \mathrm{~V}$ p-p. Using one potentiometer, you can also fine-trim the reference value to provide exactly 5.000 V or to develop applicationspecific values such as 5.12 V for binary applications. Total reference-

To optimize temperature-coefficient figures without compromising the accuracy parameter, National performs two independent trims on their LM169 references-one for $V_{\text {OUT }}$ (initial accuracy) and one for temperature drift.
output trim capability ranges from -100 to +300 mV .
The AD586's $100-\mu \mathrm{V} / \mathrm{mA}$ loadregulation capability provides output stability as the load current changes. The device requires a 10.8 to 36 V supply level to provide the 5 V output. It will supply as much as 10 mA of load current and dissipates 30 mW typ.
The AD586 is available in five performance grades. All versions are supplied in hermetic ceramic DIPs that are compatible with autoinsertion equipment, as well as dice that are tested to commercial-temp-erature-range specifications. Initial

For more information

For more information on the voltage references described in this article, contact the manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

Analog Devices Inc	Maxim Integrated Products	Precision Monolithics Inc
Box 9106	510 N Pastoria Ave	Box 58020
Norwood, MA 02062	Sunnyvale, CA 94086	Santa Clara, CA 95052
(617) 329-4700	(408) 737-7600	(408) 727-9222
Circle No 704	Circle No 707	Circle No 710
Datel Inc	Motorola Inc	
11 Cabot Blvd	Box 52073	
Mansfield, MA 02048	Phoenix, AZ 85072	
(617 339-3000	(602) 897-3842	
Circle No 705	Circle No 708	
Linear Technology Corp	National Semiconductor Corp	
1630 McCarthy Blvd	2900 Semiconductor Dr	
Milpitas, CA 95035	Santa Clara, CA 95051	
(408) 942-0810	(408) 721-5000	
Circle No 706	Circle No 709	

errors and temperature coefficients range from 2.5 mV and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to 20 mV and $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. References are available with 0 to 70 and -55 to $+125^{\circ} \mathrm{C}$ operating ranges. Depending on grade, prices range from $\$ 2.95$ to $\$ 7.65$ (100).
Another high-accuracy line comes from Maxim. Its MAX672 and MAX673 monolithic bipolar voltage references are pretrimmed to within $\pm 0.05 \%$ of 10 V and 5 V , respectively. Both references feature tight temperature stability (as low as 5.0 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ worst case), low current drain (1.4 mA max), and low noise ($10 \mu \mathrm{~V}$ p-p for the MAX673).
Maximum input voltage for both reference families specs at 40 V . Typical line-regulation figures range from 0.007 to $0.009 \% / \mathrm{V}$, and load regulation equals $0.002 \% / \mathrm{mA}$ max. In both cases, the regulation figures include the effects of self heating. All units are protected against output short-circuit conditions for an indefinite period.
You can use the trim terminal on the MAX672 and MAX673 to adust the output voltage over a $\pm 300-\mathrm{mV}$ range. This feature allows designers to trim system errors by setting the reference to a voltage other than 10 V or 5 V , including 10.240 V for binary applications. Adjusting this output has no significant effect on the device's temperature performance. The temperature-coefficient change is approximately $0.7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for 100 mV of output adjustment.
The MAX673 also provides a temperature-dependent output voltage on the Temp pin. This voltage is proportional to the absolute temperature and has a scale factor of approximately $2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The references are available characterized for operation over three ranges- 0 to $70,-40$ to +85 , and -55 to $+125^{\circ} \mathrm{C}$. They come in TO-99 and small-outline packages as well as in plastic DIPs. Prices range from $\$ 4.35$ to $\$ 10$ (100).
Device stability is a key factor when you're evaluating any electronic component. While high initial

Our best performance numbers yet.

Our new 8" Winchester offers an improved access time of 16ms. 1 GB of storage. And 35,000 hours MTBF.

Three of the best numbers in the business. That's quality. That's reliability. That's the performance you should demand. And we're delivering production quantities.

We offer multiple interface choices. HSMD. SCSI. IPI-2. ESMD. Plus our intelligent SCSI disk controller provides singleended or differential drivers and Common Command Set support for easy integration.

What's more, our new 8" disk drive has a
 dual-supported spindle that improves thermal off-track performance. And greatly increases shock tolerance. So call for more information. On this or any of our famous family of data storage products,

Or write Fuiitsu America, Computer Products Group, 3055 Orchard Drive, San Jose, CA 95134-2017.

You'll find we have all the right numbers.

A COMPANY WITH CHARACTER AND DRIVE
accuracy is an important reference parameter, accuracy vs temperature specs are just as significant. The LTZ1000 voltage reference from Linear Technology Corp is a monolithic IC designed for exceptionally low temperature drift- 0.1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ, $0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. With a long-term drift of less than $2 \mathrm{ppm} /$ month, the reference is aimed at applications such as $71 / 2$-digit meters, scales, and voltage calibrators.
The device die includes a 7.2 V reference with a temperature compensating transistor, a heater for temperature stabilization, and a temperature-sensing transistor. All the control and biasing circuitry are external to the die to maximize flexibility and long-term stability.

Operating current for the LTZ1000 equals 5 mA , and voltage noise measures $1.2 \mu \mathrm{~V}$ p-p. Heater resistance specs at 600Ω, and the buried zener has an impedance (at 5 mA) of 0.2Ω.

The LTZ1000 has an operating range of -55 to $+125^{\circ} \mathrm{C}$. In operation, the unit must be shielded from air currents; placing some thermal insulation around the package will optimize reference performance. Optimally, typical stabilized temperature is around $60^{\circ} \mathrm{C}$. However, you can operate it at either higher or lower temperatures. Housed in a TO-5 package, the LTZ1000 costs $\$ 35.50$ (100).

Programmability adds flexibility

For the most part, voltage references provide one fixed output level. However, some manufacturers offer programmable units that allow you to accommodate various referencevoltage needs. The TL431 and 431A ICs from Motorola are 3-terminal, programmable, shunt voltage references that operate as low-tempera-ture-coefficient zeners. They exhibit characteristics that make them viable replacements for zener diodes in applications such as digital voltmeters, power supplies, and op-ampbased circuitry.

Using two external resistors, you

A 0.1Ω typical dynamic impedance over the 2- to 120-mA reference current range is a key feature of the VR-182 references from Datel. In addition, the dynamic impedance is flat to 4 kHz , rising to only 1.2Ω at 50 kHz .
can program the references to output levels ranging from $\mathrm{V}_{\text {REF }}$ (2.5V) to 36 V . The 2.5 V reference level makes it convenient to obtain a stable reference from 5 V logic supplies. And because the units operate as shunt regulators, you can use them to develop either a positive or negative reference voltage source.

Output voltage tolerance specs at $\pm 1 \%$, and dynamic output impedance equals 0.22Ω. The references have a 1 - to $100-\mathrm{mA}$ sink current capability and an equivalent fullrange temperature coefficient of 50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$; they are temperature compensated for operation over the full operating range.

TL431M models are specified for operation over -55 to $+125^{\circ} \mathrm{C}$. TL431I and 431AI versions operate over -40 to $+85^{\circ} \mathrm{C}$, and $431 \mathrm{C} /$ 431AC models are specified for operation from 0 to $70^{\circ} \mathrm{C}$. The references are available in plastic TO-92, plastic DIP, ceramic DIP, and SOP-8 housings. Prices range from $\$ 0.54$ (100) for a TO-92 commercialgrade device to $\$ 3.42$ (100) for mili-tary-temperature-range units housed in ceramic DIPs.

Getting application-specific

Many peripheral devices on the market operate with a $12 \mathrm{~V} \pm 10 \%$ supply. In the worst case, the actual supply voltage level could be as low as 10.8 V . Lack of operating head-
room makes it very difficult to use a 10 V reference under such circumstances. You can go to a lower reference level, of course, but you'll waste a lot of potential resolution.

With an output level of 8.192 V , the AD689 from Analog Devices solves this problem. Although this output level might seem unusual, it works out to an even $2 \mathrm{mV} / \mathrm{LSB}$ for a 12 -bit converter. The device uses a proprietary, ion-implanted, buried zener diode and laser-trimming to optimize initial output accuracy and temperature coefficient.

It also includes the reference cell and an amplifier, which is lasertrimmed for low drift. You can make force and sense connections on both the amplifier output and ground to maintain the accuracy of the reference cell. This scheme allows you to combine the AD689 with boosters to drive long lines or high current loads without degrading reference accuracy at the load.

Reference line regulation ranges from ± 200 to $\pm 250 \mu \mathrm{~V} / \mathrm{V}$, and load regulation equals $100 \mu \mathrm{~V} / \mathrm{mA}$. Quiescent current equals 5 mA max, and power consumption specs at 66 mW . Output gain adjustment ranges from -3 to $+8 \%$. Output voltage drifts range from 5 to 25 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$; long-term stability equals $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The AD689 has an output noise spec (from 0.1 to 10 Hz) of $2 \mu \mathrm{~V}$ p-p.

The reference is available in five grades. The J, K, and L versions are tested and specified for operation over 0 to $70^{\circ} \mathrm{C}$; S and T units are tested and specified for -55 to $+125^{\circ} \mathrm{C}$ operation. All units are housed in 8 -pin ceramic DIPs. The AD689J costs $\$ 2.95$ (100). EDN

Article Interest Quotient (Circle One)

High 518 Medium 519 Low 520

THICK-FILM NETWORKS...FAST.

SPRAGUE When it comes to thick-film resistor, capacitor and r-c networks, Sprague means top

 quality and fast delivery. Anytime. Anywhere. Our precision networks are available T in SIPs, DIPs and surface-mount packages. We supply industry-standard parts and custom designs ... at competitive prices. Our new catalog covers brand new products: Type 201C Capacitor Networks, Type 206C R-C Networks, Series 800 Surface-Mount Networks, and molded-case SIP Mil Resistor Networks. For pricing or applications assistance, call our Customer Service Hotline at 603/883-9774. For our Thick-FilmProducts Catalog, RN-126A and Supplements, write to: Technical Literature Service, Sprague
Electric Company, P.O. Box 9102, Mansfield, MA 02048-9102.

The logic inchoosing National.

From design to delivery, no one is doing more than National to meet your advanced logic needs. In fact, no one even comes close.

Only we can offer you the Fairchild tradition of advanced logic technology and applications leadership. Plus our own industryrecognized expertise in manufacturing, packaging, and quality \& reliability. All backed by a management commitment to supporting you with service second to none.

Take a moment to examine the logic of our position. \begin{tabular}{c}
WE'RE CREATING

INDUSTRY STANDARDS

\hline

WE'RE CREATING

INDUSTRY STANDARDS

\hline
\end{tabular} You can expect stepped-up product development in both FAST" (Fair child Advanced Schottky TTL) logic and FACT" (Fairchild Advanced CMOS Technology) logic. Without resorting to padding the lines with resorting to padding the lines with

seldom-used parts impractical for high-speed logic designs. In FACT, 77 parts are available
today. And we're committing here In $\begin{aligned} & \text { InACI, } \\ & \text { today. And we're committing here }\end{aligned}$ and now to offer you a total of 150 commercial parts by January 1 . Including four LSI functions.

Now think FAST. We've got 135 parts on the shelf right now, 13 of which are LSI functions. 25 new parts will be added to stock by year end.

© 1988 National Semiconductor Corporation

FAST (Fairchild Advanced Schottky TTL) and FACT (Fairchild Advanced CMOS Technology) are trademarks of National Semiconductor Corporation

Abstract

\section*{ANNOUNCING A TOP-DOWN COMMITMENT TO FAST AND FACT LOGIC}

 -

And we've secured Hitachi and Motorola as world-class alternate suppliers for FACT logic to ensure availability even in peak demand periods.

WE'RE SETTING THE PACE IN QUALITY AND RELIABILITY

We were the first to implement $100 \% \mathrm{AC}, \mathrm{DC}$ and function testing. Our pioneering use of Statistical Process Control techniques from wafer fab through assembly enables us to ship both lines at defect rates of less than 50 ppm .

Our gains in reliability have been equally significant. For example, we process our FACT products with epitaxial silicon for improved latchup and ESD specifications. The result? The industry's first latch-up and ESD guarantees.

WE'RE LEADING THE FIELD IN MILITARY APPLICATIONS

No other logic supplier offers military customers so many products specifically designed to meet critical mil-specs. Including 77

MIL-STD-883C, 49 JAN Class B and 38 JAN Class S FAST parts. And 23 FACT Standard Military Drawings.

We can supply radiation-tolerant FACT products as well. And we even perform our own radiation testing with an in-house cobalt source.

WE'RE PROVIDING SOLUTIONS IN A VARIETY OF PACKAGES
 Our FAST and FACT products are available in a full range of package options, including PDIP, CDIP, SO, LCC, PLCC and Flatpak configurations.

WE'RE MAKING IT HAPPEN RIGHT NOW

With fully trained field sales, applications and product specialists located in 46 offices across the nation. A variety of dependable delivery programs from which to choose And a network of 20 distributors with more than 200 total branch locations

For details on the logic in choosing National, call today for our latest Advanced Logic Product Status Guide.
1-800-252-4488, ext. 730

AD767

FEATURES

Complete 12-Bit D/A Function On-Chip Output Amplifier High Stability Buried Zener Reference Fast 40 ns Write Pulse
Guaranteed for Operation with $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ Supplies
$0.3^{\prime \prime}$ Skinny DIP Package

AD767 Functional Block Diagram

PRODUCT HIGHLIGHTS

1. Complete 12 -bit DACPORT ${ }^{\text {m }}$ The AD767 is a complete voltage output DAC with voltage reference and digital latches on a single IC chip.
2. The input latch responds to write pulse widths as short as 40ns assuring direct interface with the industry's fastest microprocessors.
3. The internal buried zener reference is laser trimmed to 1000 volts with a $\pm 1 \%$ maximum error. The reference voltage is also available for external application.
4. The gain setting and bipolar offset resistors are matched to the internal ladder network to guarantee a low gain temperature coefficient and are laser trimmed for minimum full-scale and bipolar offset errors.
5. The precision high-speed current steering switches and on-board high-speed output amplifier settle within 1/2LSB for a 10 V full-scale transition in 3.0μ s when properly compensated.

DACPORT is a trademark of Aasalog Devices, Inc.

Bringing complete 12 -bit DAC functionality and performance to your designs no longer requires having to deal with all the problems associated with external components. Instead, it simply requires specifying our new AD767 or AD7245.
Both the AD767 and AD7245 feature an on-chip stable buried Zener reference, output amplifier and microprocessor interface logic. And these complete
functions come packed into skinny $0.3^{\prime \prime}$ DIPs. All this means you no longer have to deal with error budgets, product characterizations, or space constraints related to external components.

If digital interface speed is what you're after, the AD 767 responds to pulse widths as short as 40 ns , allowing it to be used with today's fastest processors. On the other hand, if low power dissipation is critical to your application, the LC²MOS AD7245 consumes only 65 mW . There's also

FINALIY,THE COMPLETE STORY ON COMPLETE 12-BIT DACS.

PODUCT DESCRIPTION

The AD7245 is a complete 12-bit, voltage-output, digital-to-analog Therer with output ampifier and zener voltage reference on a monolithic CMOS chip. No external trms are required to achieve

The part features double-buffered interface logic with a 12 -bit input register and 12 -bit DAC register. The data held in the b outpur of we converter The inpul register data is latched one rising edge of $C S$ and allows features such as power-on reset to be implemented All logic inputs are level triggered and are TTL and CMOS (5V) level compatible, while the control logic is speed compatible most microprocessors.

The erisors allow a number of ranges at the +10 V her using with dual supplies The output amplifier is capable of developing +10 V across a $2 \mathrm{k} \Omega$ load. linear compatuble CMOS (LCMOS) process and is packaged in a small, $0.3^{\prime \prime}$ wide, 24 -pin DIP.
a

FEATURES

Complate 12-Bit D/A Function
On-Chip Output Amplifier
High Stability Buried Zener Reference
Low Power (65 mW typ)
$0.3^{\prime \prime}$, Skinny DIP Package
8-Bit Bus Version Available: AD7248

GHLIGHTS
Thplete 12-bit DACFORT
The AD72 is a comp whe output amplifier is inherently of DAC, reference and designs.

The or Dual Supply Operation
The voltage-mode configuration of the AD7245 allows operation and supply rail. The part can also be operated

Low Power Consumption:
CMOS fabrication results in very low power consumption 65 mW typical in single supply). This low power allows the

Versatile Interface Logic
The high speed logic allows direct interfacing to most 16 -bit sessors. Additionally, the double buffered interface systems. The part also teatures an asich in CIR iput.

DACPORT is a trademank of Anelog Devices, lice.

While developing software for the B1-B Bomber radar system, Westinghouse Defense landed on a tough problem - integrating its computer resources. "We needed a complete network that would allow hundreds of software engineers across the country to interact, create, enhance and modify the software", says Ron Clanton, Manager of Software and Information Systems.

The solution was a network from Digital.
Remarks Clanton, "The network is so comprehensive, it extends even to the air in our Flying Software Lab. Giving us real-time, in-flight software testing and development capabilities. The Software Lab alone provides a cost savings of up to 98% versus traditional in-flight testing in the B1-B Bomber."

"A networked software engineering environment that helped Westinghouse Defense zero in on ways to cut in-flight test costs by 98\%."

"But our savings don't stop there," continues Clanton. "With the VAX" architecture and the VMS" operating environment, engineers both on the ground and in the air can react instantly to each other's modifications." He adds, "That's sharing their knowledge and expertise faster and more productively than they ever thought possible. Which, of course, provides for a better end product."

Clanton sums it up this way, "Our Digital network and The Flying Software Lab allow us to cut software development time and costs across the board. And that's increasing our productivity and ability to compete for similar projects."

To find out how Digital can give you a competitive edge, write: Digital Equipment Corporation, 200 Baker Avenue, West Concord, MA 01742. Or call your local Digital sales office.

The VME Volksclosure. \$995. Ready to Run.
 Finally. The economies of mass production catch up
 You do get a choice between two multiple-output power

with VME and Multibus II enclosures.

Introducing tíe Volksclosure, Electronic Solutions' economy model enclosure with turbo performance. All you do is add cards and peripherals for a complete, attractive desktop computer.

With the Volksclosure (also known as our Model One) everything comes standard: six VME or Multibus II slots, space for three half-height $51 / 4^{\prime \prime}$ disk drives, and a high-performance six-layer backplane all in a highly tooled enclosure with our handsome front panel that hides those ugly connectors and cables.
 supplies: 190 Watts with 19 A at +5 V or 270 Watts with 30 A at +5 V . You can also choose a J2 backplane for VME extended addressing or iLBXII for a Multibus II system. Most important, while the Volksclosure costs less, you don't get less. It fully reflects Electronic Solutions' commitment to quality and performance. For example, it meets UL and CSA safety standards and FCC Class A EMI/RFI specs to the letter.

The New Volksclosure. How to get a lot more mileage from your packaging budget. Call right now for complete details.

We'll FAX you the facts

Want the latest data in a hurry? Nothing is faster than Electronic Solutions' new "FAX the FACTS program. If you have a FAX machine, just call our " 800 " number, give us your FAX number and type of FAX machine, and the information you need from us. We'll FAX it to you immediately.

Electronit Solutions

PC-based CAE software supports large memories and high-resolution displays

The Workview 2000 and 3000 CAE software packages transcend the usual limitations of IBM PC-based design software by breaking the MS-DOS 640k-byte memory limit and by supporting high-resolution video-graphics cards and displays. In fact, the company says these products bring the capabilities of the workstation to PCs, performing schematic capture, analog and digital simulation, and local-area-network communications tasks.

Workview 2000 runs on 80286based computers and can use as much as 16 M bytes of RAM. Workview 3000 runs on 80386 -based machines and takes advantage of as much memory as you can stuff into your computer (to the processor's 4G-byte limit).

Both Workview 2000 and 3000 in-
clude the schematic-capture, simulation, waveform-processing, documentation, and network-communications tools offered in the company's earlier CAE products. In addition, the vendor has added a preplacement capability, which lets you create a file of your preferred component placement for later reference by the pc-board layout designer. Using this option, you can incorporate your knowledge of critical nodes-nodes that might be sensitive to delays caused by long trace lengths-into your design documentation. Workview does not, however, include a module for performing full pc-board layouts. Instead it passes net-list and pre-placement information on to pc-board layout packages from other vendors.

A database manager named

Viewfile acts as a schematic librarian, giving you more control over design changes. Viewfile performs the same functions for schematics and related design documents that sourae-code librarian or versioncont ol software provides for software projects. The module allows you to group schematics together in sets, to store these sets, to lock sets so they cannot be accessed, and to mark sets for viewing only, thus preventing unauthorized modifications.
The new versions of Workview also incorporate support for the T4 graphics display card from Microfield Graphics Inc (Beaverton, OR) plus the VGA and 8514/A display cards, which are both from IBM. Using the T4 or 8514/A, Workview 2000 and 3000 can create 1024×768 pixel displays.
Previous versions of Workview used the XNS network communications protocol. The new versions of the package can also handle the TCP/IP networking protocol. In addition, the company has added support for the EDIF (Electronic Design Interchange Format) Version 2 00 . Workview 2000 and 3000 cost $\$ 10,000$ and $\$ 14,000$, respectively, and will be available next month.
-Steven H Leibson
Viewlogic Systems Inc, 275 Boston Post Rd W, Marlboro, MA 01752. Phone (617) 480-0881. TLX 174242.

Circle No 700

[^6]
CMOS EPROMs feature in-circuit electrical erasing and reprogramming

If you need to update your EPROMbased code or data tables periodically, the 27 F 64 and 28 F 256 flash memories are 64 k -bit and 256 k -bit devices, respectively, that may fit your requirements. Each model lets you erase the memory in full and reprogram it in circuit-all within a few seconds.

Flash EPROMS are similar to EEPROMs in their ability to serve as alterable, nonvolatile memories. You program them one byte at a time. But, unlike EEPROMs, you erase the entire memory at once. In this respect they are more like conventional UV-EPROMs than EEPROMs. Although they are called EPROMS, you do erase flash memory electrically, thus securing simple and reliable in-circuit erasure in less than a second.

Both models are organized as byte-wide memories. The 27 F 64 is a direct socket replacement for JEDEC standard 64k-bit EPROMs. The 28F256, intended for new designs, has a 32 -pin configuration, which is an extension of the JEDEC standard for 256 k -bit devices. This extension lets you design a board that allows later EPROM replace-
ments (to 2 M bits) without any redesign.

You control the EPROMs' operations by writing commands into their control registers. The commands include setting the device to a read-only state, activating the erasure of the entire device, verifying byte erasure, programming a byte, or verifying the programming of a byte. These EPROMs are designed to safeguard against unintentional programming and erasures: You must issue the program or erase command twice, once to enable the command and the second to activate it.

These devices also incorporate other safeguards. They default to the read-only state at power-up and reset to the read-only state if you bring the programming voltage below 7 V . If you hold the programming voltage below 7 V , the erase and write functions are disabled and either device continues to operate as read-only memory. A reset command safely terminates an enabled erase or program command.

There is a limit on the reprogrammability of these flash memories: The company specifies that they can

[^7] requires less than a second. Reprogramming takes an average of $100 \mu \mathrm{sec} /$ byte.
withstand a minimum of 100 erase/ program cycles, exhibiting a failure rate less than 0.01% within that cycle range.

Neither the program nor erase commands stop on their own. Once you activate a command, you must issue either a reset or verify command to stop the process. The results of issuing these commands are cumulative, so that a series of short intervals between either a program or erase operation has the same effect as a single long interval. This feature helps minimize total programming time. It typically takes $100 \mu \mathrm{sec}$ to program one byte.

Both devices operate at 5 V and have a separate input pin for the programming voltage ($V_{P P}$). Both models are also available in two versions: One has a programming voltage of 12 V , the other, 12.75 V (the latter gives you erase and programming rates that are two times faster).

While you are erasing or programming these EPROMs, you must provide 30 mA at both supply and programming voltage pins. The demand at the programming voltage pin drops to $200 \mu \mathrm{~A}$ during read operations.

You can order these devices with a variety of speeds. The 28 F 256 has speeds of 170,200 , and 250 nsec. The 27F64 has access times as fast as 150 nsec.

Both devices come in windowless, ceramic DIPs. The 28 F 256 is also available in a 32 -lead plastic leaded chip carrier. The 250 -nsec version of the 27 F 64 costs $\$ 8$; the $250-\mathrm{nsec}$ 28 F 256 is available for $\$ 19.90$ $(10,000)$. - Richard A Quinnell

Intel Corporation, 3065 Bowers Ave, Dept W-424, Santa Clara, CA, 95051. Phone (800) 548-4725.

Circle No 701

The Z84C90: Two serial, three parallel ports and a counter/timer on one chip. Just think what you can do with it.

Zilog's Z80 SPCT, Killer I/0,"' gives you a true "System on Silicon."" With all the advantages of CMOS technology, Superintegration,"' and proven Z80 performance. Think of it as the door to a whole lot of new opportunities.

The Z80 Family: Still growing strong.

The Z80 remains the most commonly used so family microp continued to develop, so bave the advantages: the familiarity of uorking uith devices you know and trust. the tremendous value of being able to use softuare you've already developed, and, of course theres the impressite 280 performance.

As the Z80 Fanily has evolved through NMOS. CMOS. bigh-performance and high-integration, our commitment to 280 bas never wavered. Neu products have continued to be dereloped. Besides the 16 - bit Z280 and the nerl Z84C90-the Killer $1 / 0$-there are a fer more you really' ought to look at:
Z884C80/81 Z80-based systems GLU logic that can be used in every Z80 application

- 280180 the 21808 -bit MPU combines a Z80 CPU, no extra logic needed for Z80 peripherals
combines a $Z 80$ CPU uith an on-board combines a Z80 CPU with an on-board oscillator

Lots of I/O.

You're simply not going to get more serial/parallel I/0 anywhere. We've put together the most popular combination of discrete devices . . . two independent synch/asynch serial channels, two independent parallel ports, an 8-bit programmable port and four counter/ timers. And, since they're all fully compatible with PIO, SIO and CTC devices, you have the advantage of "commonality."

Lots of performance.

Superintegration and CMOS technology mean the Z84C90 provides plenty of performance and flexibility. 8 MHz speed for instance. Plus you've got four independent counter/timers and on-chip oscillator to work with. And the peripherals can be used in any combination you need. Lots of benefits.

You're designing with a highly integrated chip. And you're working with the familiar software and proven performance of the Z80 Family. That's enough to make the Killer I/O the best choice. But think about the lower cost you get from less real estate, lower manufacturing cost and reduced inventory. Think about improved time to market. Or the higher performance and reliability that come with super integration. And it's all off the shelf and backed by Zilog's proven quality.

So whether you're upgrading existing designs or looking for solutions in new applications like cellular phones, personal computers, industrial control, or data communications, you owe it to yourself to contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away.Zilog

SIEMENS

Mid-sized LCD controller eases window-display development

The software challenge of designing adequate interfaces between complex instruments and their users is becoming increasingly difficult to meet. Many large instruments are using CRTs and keyboards for this interface, but on smaller, (usually portable) instruments, LCD panels are showing up everywhere. The CY325 LCD-window controller eliminates most of the time spent on interface development. This device provides a high-level interface to many LCD panels that have as many as 240×64 pixels (8 rows $\times 40$ characters).

When using LCDs with an instrument, windows can greatly simplify the operation of the product. They can display soft-key status, pulldown menus, pop-up error messages, and many other sophisticated features. However the software tasks of monitoring and controlling windows is not a trivial task. The largest portion of time spent in interfacing to these LCDs involves the making of the software driver that controls the LCD itself-and the CY325 controller facilitates this task.

Generally, the LCD panel has a low-level controller on its pe board that takes parallel information and affects pixels on the screen. Instead of having to send low-level pixeloriented commands, the CY325 allows you to issue ASCII commands to create windows, erase windows, and draw bar graphs and logic waveforms. For graphics displays, this controller maps the image into a simple coordinate system within the selected window. You can display graphics and text in different planes within the same window.

The controller can communicate with your system via either a serial
or parallel interface, or both. Because of this flexibility, you can design complex distributed systems (the company's CY233 Local Intelligent Network Controller is particularly helpful in such applications).

The CY325 operates in two modes, command and display, and you can shift between them by issuing a one-stroke ASCII command. In the display mode, the device places the characters received on the screen at the cursor position. You can also clear a window, swap windows, and do a few other housekeeping operations. The display mode is the default mode at power up.

The command mode puts you directly in touch with the power of the controller. In this mode, you select a command by sending a character
followed by the appropriate parameter values.

You can make a box of any size you wish and control its operation yourself, or you can just use one of the 255 available windows. Using the predefined windows greatly simplifies the basic operation. In the latter case, you can even swap windows and keep all of the last window's control data on a stack. In addition, after finishing with a new window, you can swap back to the last window and pick up where you left off.
The command list includes various simply executed operations, such as histograph generation and logic and waveform display. To generate a histograph, for example, you use the command "Hn, y1, y2, ... yn" and follow it with a carriage return. This command automatical-

The ability to use both the serial and parallel interfaces allows the CY325 LED-window controller to work in conjunction with the CY233 network controller in distributed control applications.

2 to 48 VDC Outputs
- Automatic Current Sharing On All Outputs
- N+1 Capabilities
MuLTIPLE OUTPUT

350 to 1500 Watts

- 3 to 15 Outputs
-Single output

400 to 3000 Watts in $5^{\prime \prime} \times 8^{\prime \prime}$ Standard Package

- 155,000 Hrs. Demonstrated MTBF
E. Hot Plug-In

Fault tolerant ($\mathrm{N}+1$) POWER SYSTEMS

Expandable, 300 to 1800 Watts

- Internal IsolationDiodes (Option)

Powertec

A Bonar Power Supplies Company

WORIDCLASS IC ly makes a histograph with " n " elements whose values are "y1" through "yn". The histograph can be either horizontal or vertical.

Another headache you can avoid using this controller arises from the difficulty involved in creating quick responses to soft keys. When the operator presses a soft key, the instrument should usually give instant feedback to the user. It's important that the first key pressed has been received and acknowledged and also that any other keys are not accepted until the first one is acknowledged. Otherwise, the user might, in confusion, press the key repetitively and thus make the instrument unusable.

The CY325 has six soft-key inputs, which it constantly scans. The switch connected to these inputs is a momentarily closed mechanism. If you want hardware feedback, the switch should have an LED in parallel. When the user presses a key, the LED lights up and the CY325 accepts the key press. Immediately, the key input is reconfigured to be an output, and the line is kept low. This action causes the LED to remain on until the system acknowledges the key press. The CY325 is available in a 40-pin DIP and costs \$20 (1000).—David Shear

Cybernetic Micro Systems Inc, Box 3000, San Gregorio, CA 94074. Phone (415) 726-3000.

Circle No 702

IF YOU’RE DESIGNING DISK DRIVES AND HAVE ONLY USED OUR READ/WRITE CIRCUITSTHIS CHART IS FOR YOU.

Our Extended Family

If you're designing disk drives, you're probably already familiar with Silicon Systems. Chances are good that you are presently using one or more of Silicon Systems' Read/Write amplifier IC's in your HDD designs. But maybe you don't know that we also offer the industry's most extensive line of mass storage ASIC's.
The adjacent chart illustrates that Silicon Systems can also provide more than a score of circuits for pulse detection, data recovery, head positioning, spindle motor control, and controller electronics. And the list continues to grow.

The Mix-and-Match Design Approach

With Silicon Systems growing families of IC's for all the electronic functions in hard disk drives, many leading HDD designers are finding they can now easily mix-andmatch SSi products to implement their specific design features. This powerful design approach allows them to reduce board area, eliminate external passives, and lower costs by simplifying their designs.

Call Now! (714) 731-7110, Ext. 575

MICROPERIPHERAL IC SELECHION CHART

SSI Device Numbers		Head Type	\# of Channels	MaxInputNoise$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	Max Input Capaci- tance (pi)	Read Gain (typ)	Write Current Range (mA)	Power Supplies	Read/Write Data Port(s)
New	Oid								
HDD READ / WRITE AMPLIFIERS									
$32 \mathrm{R104B}$	104	Ferrite	4	2.4	23	35	15 to 45	$+6 \mathrm{~V},-4 \mathrm{~V}$	Differential, B-directional
$32 \mathrm{R104BLN}$	104 L	Ferrite	4	1.7	23	35	15 to 45	$+6 \mathrm{~V},-4 \mathrm{~V}$	Differential, Bi-directional
32R114	114	Thin Film	4	1.1	65	123	55 to 110	$\pm 5 \mathrm{~V}$	Differential/Differential
$32 \mathrm{R115}$	115	Ferrite	2, 4,5	1.8	20	40	30 to 50	$\pm 5 \mathrm{~V}$	Differential, Bi-directional
$32 \mathrm{R117}$	117	Ferrite	2, 4, 6	2.1	23	100	10 to 50	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TTL
32R177A	I17A	Ferrite	2, 4, 6	1.7	20	100	10 to 50	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TTL
$32 \mathrm{R188}$	188	Ferrite	4	2.4	18	43	35 to 70	$+6 \mathrm{~V},-5 \mathrm{~V}$	Differential, B-directional
32 R 501	501	Ferrite	4,6,8	1.5	23	100	10 to 50	$+5 \mathrm{~V}+12 \mathrm{~V}$	Differential/TTL
- 32R510A	510 A	Ferrite	2, 4, 6	1.5	20	100	10 to 40	+5 V + +12 V	Differential/TTL
-32R511	511	Ferrite	4,6,8	1.5	20	100	10 to 40	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TTL
-32R512	512	Thin Film	8	0.9	32	150	10 to 40	+5 V , +12 V	Differential/TTL
- 32 R 514	514	Ferrite	2, 4, 6	1.5	20	150	10 to 40	$+5 \mathrm{~V},+12 \mathrm{~V}$	Differential/TTL
32 R 520	520	Thin Film	4	0.9	65	123	30 to 75	$\pm 5 \mathrm{~V}$	Differential/Differential
32 R 521	521	Thin Film	6	0.9	65	100	20 to 70	+5 V , +12 V	Differential/TTL
- 32 R 522	522	Thin Film	4,6	1.0	32	100	6 to 35	+5 V , +12 V	Differential/TLL

SSI Device Numbers		Circuit Function	Features
New	Old		
HDD PULSE DETECTION			
$\begin{aligned} & 32 P 540 \\ & 32 P 541 \end{aligned}$	$\begin{aligned} & 540 \\ & 541 \end{aligned}$	Read Data Processor Read Data Processor	Time Domain Filter AGC, Amplitude \& Time Pulse Qualification, RLL Compatible
HDD DATA RECOVERY			
$\begin{array}{r} 32 D 531 \\ 320532 \\ 320533 \\ -320534 \\ -32 D 535 \end{array}$	$\begin{aligned} & 531 \\ & 532 \\ & 533 \\ & 534 \\ & 535 \end{aligned}$	Data Synchronizer Data Separator Data Synchronizer Dato Seporator Data Separator	Data Synchronizer/Write Precompensation Data Synchronizer/2, 7 RLL ENDEC Data Synchronizer/Write Precompensation Data Synchronizer/MFM ENDEC/Write Precompensation Data Synchronizer/2, 7 RLL ENDEC/Write Precompensation
HDD HEAD POSITIONING			
$\begin{aligned} & \text { 32H1O1A } \\ & 32 \mathrm{H} 116 \\ & 332 \mathrm{H} 567 \\ & 32 \mathrm{H} 568 \\ & \cdot 32 \mathrm{H} 569 \end{aligned}$	$\begin{aligned} & 101 A \\ & 116 \\ & 567 \\ & 568 \\ & 569 \end{aligned}$	Preamplifier-Ferrite Head Preamplifier-Thin Film Head Servo Demodulator Servo Controller Servo Motor Driver	$\begin{aligned} & A V=93, B W=10 \mathrm{MHz}, e_{n}=7.0 \mathrm{nV} / \mathrm{VHz} \\ & A V=250, B W=20 \mathrm{MHz}, e_{\mathrm{n}}=0.94 \mathrm{nV} / \mathrm{V} \mathrm{~Hz} \end{aligned}$ Di-bit Quadrature Servo Pattern: PLL Synchronization Track \& Seek Mode Operation; Microprocessor Interface Head Parking. Spindle Motor Braking

HDD SPINDLE MOTOR CONTROL

32M590	590	2-phase Motor Speed Control	$\pm 0.035 \%$ Speed Accuracy; Unipolar Operation
32M591	591	3-phase Motor Speed Control	$\pm 0.05 \%$ Speed Accuracy; Unipolar Operation
32M593	593	3-phase Motor Speed Control	$\pm 0.037 \%$ Speed Accuracy; Bipolar Operation

HDD CONTROLLER/INTERFACE

32B450A	450 A	SCSI Controller	Async transfer to 2MBPS; Initiate/Target Modes; Internal Drivers; CMOS
32C452	452	Storage Controller	20Mbits/sec; CMOS; Programmable; AIC-010 Compatible
32C453	453	Buffer Controller	Non-mux addressing to 16K; CMOS; AIC-300 Compatible
328545	545	Support Logic	Includes ST506 Bus Drivers/Receivers

FLOPPY DISK DRIVE CIRCUITS

$\begin{aligned} & 34 \mathrm{D} 441 \\ & 34 \mathrm{P} 570 \\ & 34 \mathrm{R} 575 \\ & 348580 \end{aligned}$	$\begin{aligned} & 451 \\ & 570 \\ & 575 \\ & 580 \end{aligned}$	Data Separator Read Data Path Read/Write Support Logic	High Performance Analog Data Separator, NEC 765 Compatible 2 Channel Read/Write With Read Data Path 2,4 Channel Read/Write Circuit Port Expander, Includes SA400 Interface Drivers/Receivers
TAPE DRIVER CIRCUITS			
35P550	550	Read Data Path	4 Channel Read/Write With Read Data Path

Async transter to 2MBPS; Initiate/Torget Modes; Internal Drivers: CMOS 20Mbis/sec; CMOS; Programmable, AlC-00 Compatible Includes ST506 Bus Drivers/Receivers

High Pertormance Analog Data Separator, NEC 765 Compatible 2 Channel Read/Write With Read Data Path
Port Expander, Includes SA400 intertace Drivers/Receivers

TAPE DRIVER CIRCUITS

'New New Numbering System Effective 10/V87

"Where we design to your applications."

200M-sample/sec 8-bit A/D converter provides $250-\mathrm{MHz}$ bandwidth

Assessing a converter's speed involves more than just looking at the conversion rate. You should consider both the input bandwidth and the input capacitance as well. The AD770 is an 8 -bit 200 M -sample/sec ADC with a full-power bandwidth of 250 MHz and an input capacitance of 19 pF . The device has an S / N ratio of 45 dB at 10 MHz and 30 dB at 100 MHz . This high-frequency S / N ratio falls short of the $48-\mathrm{dB}$ S/N ratio considered ideal for an 8-bit A/D converter, but it's better than the rates offered by any competing converters.

Until now, all of the available high-speed (greater than 100M samples/sec) ADCs had a bandwidth that was less than the sample rate. By providing a bandwidth greater than its sample rate, the AD770 offers some advantages that may not be obvious at first glance.

A high-speed front end is a plus in an ADC for many reasons. The 250 -

MHz bandwidth size in itself is important. The signal is attenuated 3 $d B$ at this frequency and has therefore lost 50% of its power. If you are interested in the amplitude of all frequencies in the passband, you need a flat response. Having a bandwidth of 250 MHz provides a flat response to the Nyquist frequency.

Another benefit of a wide bandwidth is that the input voltage can change drastically, but you don't have to wait for the front end to settle in order to proceed. Dramatic voltage changes can occur when using a multiplexed input to the ADC; the voltage can change the full voltage range between channels. Naturally, the faster the input is and the less time you must wait for the input to settle, the faster your system can acquire data.

When acquiring repetitive signals, a converter also exploits a wide bandwidth. The standard technique for acquiring repetitive
signals whose frequencies are greater than the sample rate is to sample one point on the waveform and then sample another on the next cycle, yet another on the next cycle, and so on. Eventually, the converter acquires all of the samples necessary to represent the waveform. With a wide input bandwidth, you can reproduce the input signal with less distortion.

When there are no errors, the comparators with references below the input voltage are all 1 s and all those above are 0s. When noise or offsets cause a comparator that is above the input to erroneously go high (or one below to go low), the decoder logic gets confused, resulting in a large error in the output. The error detection and correction circuitry in the AD770 detects these mistakes (called sparkle codes) and modifies the input to the decoder logic to eliminate these errors.

An evaluation board is available

The AD770 8-bit ADC uses three levels of pipelining to maintain a 200 MHz conversion rate. Overrange and underrange outputs indicate any out-of-range condition and can be ORed for a single out-of-range indication.

UPDATE

for the AD770. The AD EB770 includes a socket for an AD770, an input-signal buffer, and a trimmable reference generator. On the output side, the digital data is latched and buffered and available along with the output clock. The board also includes hardware to scale the output clock by factors of 2 through 16 , so you can interface slower logic analyzers to the output. An onboard DAC reconstructs the output.

The device can accept bipolar inputs, consumes 2100 mW , and requires power supplies of +5 and -5.2 V . The AD770 is packaged in a 40 -pin ceramic DIP and costs $\$ 175$ (100). The AD EB770 evaluation board without the ADC costs \$635. -David Shear

Analog Devices, Box 9106, Norwood, MA 02062. Phone (617) 3294700. TLX 924491.

Circle No 703

DATA ACQUISITION PROCESSOR ${ }^{\text {TM }}$

ONBOARD INTELLIGENCE FOR IBM PC/XT/AT

- analog and digital I/O to 150,000 samples/second
- 80186 coprocessorrealtime processing
- onboard software, including FFT
- run applications without programming
- direct access to Lotus 1-2-3
- full documentation with sample applications and tutorial - \$20
- digital I/O from \$995
- analog I/O from $\$ 1595$

Microstar
Laboratories

Rechargeable Lithium for Memory Back-up!

Moli Energy offers two standard MOLICEL® rechargeable lithium battery packs specially designed for memory back-up applications in computers, process control equipment, and portable devices. The packs use MOLICEL® "AA" size cells and can be constant voltage charged from any DC power source.

Reliable long life memory protection:

- Longer use than lithium primaries or alkalines - hundreds of cycles
- No memory effect problems
- Simple and inexpensive charge circuitry
- Low self discharge
- No voltage delay
- DOT and UL recognition

MOLI Energy Limited 3958 Myrtle Street Burnaby, B.C. Canada V5C 4G2

1-800-663-MOLI

CIRCLE NO 11

Use amlan Wrap-ID

 markers
to identify wire wrap pins.

\author{

- Speed wiring
 - Reduce errors
 - Simplify troubleshooting
}

White plastic markers (.019"thick) are friction fit over wire wrap pins of standard DIP sockets.
Every pin is permanently numbered on wiring side, with clear space in center for your socket number, etc. All standard sizes from 8 to 96 pins, each with its own distinctive marking color for added ease of identification

Call or write for data sheet, price list, and free samples.

[^8]
Hitachi's HD64180 Breeds Powerful New MPU Family

Thoroughbred horses are bred to be the best. Each successive generation refines and adds to the valuable traits of its ancestors. The same careful evolution also characterizes the growing Hitachi 180 family of high-integration 8-bit CMOS microprocessors. It started with the 64180 and now spans the range of general-purpose to application-specific.

The popular HD64180R and Z have earned the reputation of being the most powerful 8-bit microprocessors available. Each gives you the performance of a sophisticated 16-bit design, while maintaining 100% code compatibility with Z80 and 8080* families. Hitachi's HD64180R/Z simplify your high-performance designs and significantly reduce your system costs by integrating a multitude of powerful functions on chip, including an MMU, a twochannel DMAC, asynch ports, and much more.

The new 180-2TAT ${ }^{\text {Tu }}$ device features even higher levels of integration, to become a complete single-chip microcontroller! It has the same CPU and capabilities of the HD64180R/Z, but adds 16 K of onetime programmable ROM (EPROM), 512 bytes of RAM, an analog comparator, an extra timer, and I/O ports. The ZTAT construction gives you Zero Turn-Around Time, so you don't need to wait for mask ROM devices-the very day you finish design development, you're in production.

The 180-ZTAT also has the same software performance that has made the HD64180R/Z such champions. Off-the-shelf Z80 and 8080 family software runs up to 50% faster. And when you use the enhanced instruction set and the capability of addressing 1 Mbyte of memory, it's a whole new horse race!

Inherited

Hitachi's family of powerful thoroughbreds continues to grow. Soon we'll be announcing the 180-NPU (Network Processing Unit). This device combines a high-speed Multi-protocol Serial Communications Interface with the powerful 64180 CPU. Next, we'll have the 180 Standard Cell for incredible ASIC performance.

Complete 180-Family development support is available on the IBM-PC, DEC VAX, and HP64000* from Hitachi and leading third-party vendors (such as: Hewlett-Packard, Microtec Research, American Automation, Tektronix, and many others).

For more information on the growing 180-Family, contact your local Hitachi Sales Representative or Distributor Sales Office today.

Fast Action: To obtain product literature immediately, CALL TOLL FREE, 1-800-842-9000, Ext. 6809. Ask for literature number SB-105.
${ }^{\circ}$ Z80 and 8080 are registered trademarks of Zilog Inc. and Intel Corporation, respectively; IBM-PC, DEC VAX, and HP64000 are
0 registered trademarks of IBM Corp., Digital Equipment Corp., and Hewlett-Packard Corp., respectively.

Hitachi America, Ltd.

Semiconductor and IC Division
2210 O'Toole Avenue, San Jose, CA 95131
Telephone 1-408/435-8300

(0) HITACHI

We make things possible

Performance

Our ASICs

They're easy to design.They're ready on time. And first-time success is virtually 100%.

You've heard all about the excitement of ASICs.

They improve performance, lower costs and make many new designs possible.

But, unfortunately, you've probably also heard about one big potential problem: while many ASICs pass the tests specified by the designer, they don't always work in the real world. And that causes excitement you can do without.

How to get first-time success.

It starts with our Design Simulation Software. It's been rated the best in the industry by the people who should know-designers who have used it. Within three days, you can be up to speed, working at any of the major workstations in the industry, creating and revising your ASIC with ease.

The standard cell advantage.

You'll really appreciate the power of our standard cells, which allow you to integrate a whole system, including macros, memories, logic and peripherals, onto a single chip.

We have cells with effective gate length as small as 1.5μ (. 9μ coming soon). And doublelevel metal for higher-density chips that can handle higher clock speeds.

You can choose from a wide range of Supercells, including the leading-edge RS20C51 core micro, RAMs, analog functions, bit-slice processors, HC/HCT logic, Advanced CMOS Logic, and high-voltage cells.

If they aren't enough, we can even generate

Supercells to your specs.
And we're also in the forefront of silicon compiler technology. So we can offer you the ability to create designs that are heavily BUSstructured, with your ROMs, RAMs, PLAs and ALUs compiled right into the design.

We also bring you the resources of some very powerful partners, thanks to our alternatesource agreements with VLSI on standard cells; WSI on macrocells and EPROMs; and a joint-development agreement with Siemens and Toshiba on the Advancell ${ }^{\otimes}$ library of small-geometry cells.

Gate arrays, too.

If gate arrays are better for your design, you'll be able to choose from our full line up to 50,000 gates, with effective gate length as small as 1.2μ and sub 1 ns gate delays.

These gate arrays use "continuous gate" technology for up to 75% utilization. They are an alternate source to VLSI Technology arrays.

We also alternate source the LSI Logic 5000 series.

And we have a unique capability in high-rel ASICs, including SOS. Our outstanding production facilities here in the U.S. produce high-quality ASICs in high volume at very low costs.

It almost sounds exciting for something so boring, doesn't it?

For more information, call toll-free today 800-443-7364, ext. 25. Or contact your local GE Solid State sales office or distributor.

Of all the new products covered in EDN's February 18, 1988, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, use EDN's Express Request service, or refer to the indicated pages in our February 18, 1988, issue.

PRINTER

The DeskJet is a personal printer with laser-quality output. It employs inkjet technology, but prints high-resolution text and full-page graphics at 300 dots/in. (pg 290).
Hewlett-Packard Co.
Circle No 603

- COAXIAL CABLE

This subminiature ribbon coaxial cable is highly flexible. You can fold it upon itself, bundle it in rectangular or round sections, or group it with other cable for routing (pg 265).
Woven Electronics. Circle No 602

PLD PROGRAMMER

The Avpal PLD programmer accepts JEDEC files created by CUPL and other PLD programming languages (pg 314).
Avocet Systems Inc.
Circle No 605

- CONTROL SOFTWARE

Control EG is a menu-driven, dataacquisition, process-control software package that can monitor as many as 128 analog inputs and control as many as 32 analog outputs (pg 299).
Analog Devices.
Circle No 604

4 A/D CONVERTER

The CSZ5412-JC2 is a monolithic A/D converter that delivers $1-\mathrm{MHz}$, 12-bit performance at a low cost (pg 128).
Crystal Semiconductor
Corp.
Circle No 601

TEXAS INSTRUMENTS REPORTS ON MEMORY
 MANAGEMENT

IN THE ERA OF MegaChip

Memory management in the Era of MegaChip Technologies:

Memory-management ICs from you bring memory arrays up to

Memory systems are a prime area for significant improvements in overall system throughput. Read how Tl's memorymanagement ICs can get you in and out of memory faster no matter which processor you choose.

You can now solve a problem whose solution has eluded design eng neers for years: How to catch memor speeds up to CPU speeds. The soluti lies with TI's advanced memorymanagement circuits, and you can u them with whichever processor best suits your application.

Texas Instruments can help processor speeds.

A universal architecture enables these TI devices to work with - and enhance - virtually any high-speed microprocessor or bus structure, even custom engines.
In addition, your component count s cut because these are single-chip VLSI circuits. Your design time and effort are shorter and easier because of

TI's comprehensive Memory Management Design Kit (see page 4).

TI addresses your major memory-design concerns

To immediately improve memory-access time, use both main and cache memories, as shown in the block diagram. This approach can produce up to a 3X increase in system performance.

Frequently accessed data and instructions are stored in a few high-speed static random-access memories and "tagged" by a TI industry-standard cache controller (SN74ACT2151/4). These $2 \mathrm{~K} \times 8$ CMOS controllers are the fastest available and can support deep cache architectures of 16 K or even 32 K .

TI's MegaChip Technologies

Our emphasis on volume manufacturing of high-density circuits is the catalyst for ongoing advances in how we design, process, and manufacture semiconductors and in how we serve our customers. These are our MegaChip ${ }^{\text {TM }}$ Technologies. They are the means by which we can help you and your company get to market faster with better, more competitive products.
tions on chip to improve flexibility and speed and to allow for custom timing routines. This controller supports nibble- and page-mode access and scrubbing-mode refresh to increase memory output.

This scheme is cost-effective because slower, less expensive dynamic randomaccess memories (DRAMs) can be used for main memory.

When you must assure system integrity, use of an error-detection-and-correction (EDAC) circuit can improve system reliability 500 -fold. Since this approach is necessary with memory arrays larger than half a million bits, TI offers its leadership 32-bit EDAC.

The SN74AS632 detects dual-bit errors and detects and corrects single-bit errors while avoiding processor wait states. And at 25 ns for error detection, it meets your high-performance needs.
Interfacing between processor and main memory gets tougher as speeds increase. But TI has the SN74ALS6301 DRAM timing controller. It can handle any DRAM up to 1 Mbit and incorporates only the essential func-

Soon to come: An ASIC (applicationspecific integrated circuit) solution.
Reducing over/undershoot is accomplished by TI's 2000 Series buffers and drivers -25 -ohm series-damping resistors on the output prevent false reads at DRAM input. For example, the SN74BCT2828 driver can reduce undershoot by 40% compared to traditional approaches. TI's 2000 Series has a high-drive current suitable for VME and MULTIBUS ${ }^{\circledR}$ II bus structures.

You can use any or all of TI's memory-management ICs to obtain the superior performance that marks a market winner. And there's no design rule that says your memory-management chips and your CPU have to come from the same supplier.

The tools you need to design a high-performance memorymanagement system are between these
 \section*{covers:}

At $\$ 149$, the value of TI's Design Kit far outweighs its cost. In one compact file, we've included just about everything you'll need to bring your memory array up to speed. Everything, that is, except your imagination in creating your own unique product differentiators. Here's what you get:

- All necessary high-performance ICs, including
-SN74ACT2154 2K $\times 8$ Cache
Address Comparator
—SN74AS632 32-bit EDAC
-SN74ALS6301 16K to 1 Mbit DRAM Controller
-SN74BCT2828 10-bit Buffer/
Driver with series-damping resistor
-TIBPAL16R8-10 and TIB82S105B
High-speed Programmable-logic Devices for user-defined timing control
-TMS4464 256K DRAM
- Memory Management Applications Handbook containing applications reports and briefs that supply valuable insights into memory-management system design.
- Data sheets on TI circuits designed for efficient memory management.
- Memory-management-product software graphic-symbol libraries and supporting documentation for use with Futurenet ${ }^{\text {TM }}$ or Mentor Graphics ${ }^{\text {TM }}$ CAE systems.
For more information on TI's
Memory Management Design Kit, call 1-800-232-3200, ext. 3203, or contact your nearest TI field sales office or authorized distributor.

Texas Instruments Incorporated
SDV063ED800C
P.O. Box 809066

Dallas, Texas 75380-9066
YES, please send me more details on TI's universal memorymanagement ICs.

${ }^{\text {rw }}$ MegaChip is a trademark of Texas Instruments Incorporated.
Futurenet is a trademark of Futurenet Corporation. Mentor Graphics is a trademark of Mentor Graphics Corporation.
${ }^{\text {® MULTIBUS }}$ is a registered trademark of Intel Corporation.
$27-4510 \mathrm{~A}$

If you think HP board testers aren't affordable, think again.

If you want a complete board tester that meets your needs at a price you'll like, consider the new HP 3065ST.
It's surprisingly affordable, with many standard features not found on other board testers under \$100,000.

You get multi-user capability without the headaches of foreground/background systems. Automatically generated 6 -wire analog measurement. Analog functional testing. A vector application rate of 2.5 MHz . A high-speed digital library with more than 4,500 devices. 81 megabytes of mass storage. And more. All standard.

There's also complete software and fixture compatibility across the HP 3065 family. So you can start small and easily expand as you grow.

And like all HP board testers, the HP 3065ST is

CIRCLE NO 73
available with HP's exclusive 99\% Guaranteed Uptime program.*

Call HP today!

Get into affordable board test now. For more information, call 1-800-634-TEST. In Colorado, call collect: 303-669-9325.

$h p \begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

See us at ATE \& Instrumentation East

Shows < ± 0.7 LSB code width variation from ideal (definitely no missed codes)
CS5016 16-BIT DIFFERENTIAL NONLINEARITY AT 16μ SEC CONVERSION TIME

$1 / 2$

Sampling Rate: 1 MHz Full Scale: 3 Vpput Frequency CSZ5412 EFT PLOT WIT $100 \mathrm{~S} /(\mathbb{N}+$ D) 70.08 dB 100 kHz FULL SCALE INPUT

OUR12-T016-BIT CMOSAD converters LOON GREET OW PA PEER.

 $70^{\circ} \mathrm{C}$ Ambient Temperature. 60\qquad CL. 1.0 SMARTAnalog RELIABILTY

AND ARE THE WORID'S
BEST II ACTION.

1nyone can promise the world's best performance from monolithic CMOS AD converters. Only Crystal can prove it.

Get your hands on the evaluation board of a Crystal SMARTAnalog ${ }^{\text {ru }}$ device and you'll believe the breakthrough performance the plots on the opposite page promise.
Dynamic performance really is 92 dB SNR over a 25 kHz bandwidth, or 70 dB over 500 kHz .

Differential Non-Linearity of 16 bits with no missing codes is so outstanding we've published a DNL plot no one else dares to. - Stability over temperature is dramatically better than the competition across the entire military range.

- Our reliability far surpasses the alternatives, with less than 33 failures per billion operating hours (FITs).

What the plots don't show, you already know: monolithic A/D converters using CMOS technology mean lower design and assembly costs, higher relia-

DEVICE	STAIICTESTED ADCS				DYNAMIC FFT-TESTED ADCS				
Resolution	16	14	12	8	12	16	16	14	12
Conversion Time ($\mu \mathrm{sec}$) Throughput Speed (kHz)	$\begin{aligned} & 16 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 100 \end{aligned}$	1.3	$\begin{aligned} & 1.25 \\ & 1000 \\ & \hline \end{aligned}$	20	$\begin{aligned} & 16 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 100 \\ & \hline \end{aligned}$
Static Specifications: Linearity Error (\% FS, max) No Missing Codes (Bits)	$\begin{aligned} & +/-.0015 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & +1-.003 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & +/-.012 \\ & 12 \end{aligned}$	$8^{+1-.2}$	$\begin{aligned} & +/-.01 \\ & 12 \end{aligned}$	16	16	14	12
$\begin{aligned} & \text { Dynamic Specifications } \\ & \text { THD (\%) } \\ & S /(N+D)(d B) \end{aligned}$					$\begin{aligned} & .02 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & .007 \\ & 84 \end{aligned}$	$\begin{aligned} & .001 \\ & 92 \\ & \hline \end{aligned}$	$\begin{aligned} & .003 \\ & 83 \end{aligned}$	$\begin{aligned} & .008 \\ & 73 \\ & \hline \end{aligned}$
Power Dissipation (mW)	120	120	120	40	700	220	120	120	120
On-Chip Sample and Hold	YES								

The proof behind the promise: monolithic CMOS performance that beats even hybrids.
bility, lower power consumption, easier manufacturing and faster deliveries than hybrid or discrete designs can manage.

And our SMARTAnalog devices are the first with self-calibration at any timel temperature. Which ensures accuracy throughout their operating lives, correcting for gain, offset and even linearity errors. Automatically.

If that weren't enough, Crystal's SMARTAnalog line is the first line of 12- to 16-bit A/D converters with the converter, track/hold, digital interface, calibration circuitry and timing all on a single chip. So you can forget designing, building and characterizing discrete
devices while trying to correlate component specifications with system requirements.

Prove to yourself how our revolutionary SMARTAnalog technology makes hybrids a very expensive proposition, indeed. Call 512-445-7222 today for yourvery own 12-, 14 - or 16 -bit evaluation board. Or ask for a demonstration at your facility.

Either way, you'll know why seeing a SMARTAnalog converter in action makes our promises on the opposite page seem flat by comparison.

LEADTIME INDEX

Percentage of respondents

TRANSFORMERS Toroidal								
	0	25	50	13	12	0	9.7	7.3
Pot-Core	0	20	40	40	0	0	10.0	7.8
Laminate (power)	10	30	20	30	10	0	9.6	8.3
CONNECTORS Military panel	0	22	45	22	11	0	10.4	10.8
Flat/Cable	13	47	33	7	0	0	4.7	5.6
Multi-pin circular	0	25	33	25	17	0	11.6	9.4
PC (2-piece)	8	25	50	17	0	0	7.2	7.4
RF/Coaxial	13	47	27	13	0	0	5.2	5.3
Socket	12	63	19	6	0	0	3.7	4.7
Terminal blocks	19	31	37	13	0	0	5.7	5.4
Edge card	12	29	53	6	0	0	5.8	5.7
D-Subminiature	13	50	31	6	0		4.4	5.1
Rack \& panel	10	40	30	20	0	0	3.2	6.4
Power	20	30	40	10	0	0	5.4	5.5

PRINTED CIRCUIT BOARDS

Single-sided	0	71	29	0	0	0	3.7	5.4
Double-sided	0	25	75	0	0	0	6.5	5.8
Mult-layer	0	20	67	13	0	0	7.8	7.5
Prototype	6	81	13	0	0	0	2.7	4.3

RESISTORS Carbon film		32		5		0		4.2
	47		16		0		2.7	
Carbon composition	42	21	26	11	0	0	4.3	4.0
Metal film	30	25	45	0	0	0	4.1	4.4
Metal oxide	18	55	18	9	0	0	4.0	4.6
Wirewound	11	39	28	22	0	0	6.5	8.8
Potentiometers	5	53	32	10	0	0	5.2	6.1
Networks	19	38	24	19	0	0	5.7	6.3
FUSES								
	39	33	28	0	0	0	2.9	4.4

SWITCHES Pushbutton	10	50	35	5	0	0	4.6
5.8							
Rotary	0	33	47	20	0	0	7.6
6.1							
Rocker	0	55	36	9	0	0	5.4

WIRE AND CABLE

Coaxial	15	54	31	0	0	0	3.6	4.2
Flat ribbon	12	65	23	0	0	0	3.1	5.5
Multiconductor	13	47	40	0	0	0	4.1	4.6
Hookup	35	40	25	0	0	0	2.8	3.2
Wire wrap	31	46	23	0	0	0	2.8	4.2
Power cords	18	65	12	5	0	0	3.1	5.9
POWER SUPPLIES Switcher	7	43	21	22	7	0	7.9	7.4
Linear	0	29	50	14	7	0	8.6	7.7
CIRCUIT BREAKERS	20	27	13	33	7	0	8.7	8.0
HEAT SINKS	7	53	27	13	0	0	5.3	5.1
RELAYS General purpose	12	47	18	23	0	0	6.1	6.1
PC board	6	28	33	33	0	0	8.5	7.2

ITEM

RELAYS Dry reed	0	23	31	31	15	0	11.8
8.6							
Mercury	0	25	38	25	12	0	10.7
Solid state	0	25	33	33	9	0	10.8

DISCRETE SEMICONDUCTORS

Diode	23	36	18	14	4	5	7.0	7.0
Zener	5	44	17	22	6	6	9.2	7.3
Thyristor	7	27	33	33	0	0	8.5	8.8
Small signal transistor	13	37	31	13	6	0	6.9	7.4
MOSFET	0	37	36	27	0	0	7.9	10.2
Power, bipolar	0	45	18	37	0	0	8.3	9.3
INTEGRATED CIRCUITS, DIGITAL								
Advanced CMOS	7	20	40	27	6	0	9.5	9.6
CMOS	6	29	41	24	0	0	7.7	7.1
TTL	23	15	54	8	0	0	5.9	6.5
LS	21	22	43	14	0	0	6.1	5.9

INTEGRATED CIRCUITS, LINEAR

Communication/Circuit	10	40	40	10	0	0	5.6
8.7							
OP amplifier	20	27	33	20	0	0	6.4
Voltage regulator	16	28	39	17	0	0	6.4

MEMORY CIRCUITS

RAM 16k	11	34	22	33	0	0	7.7	9.7
RAM 64k	8	25	25	34	0	8	10.4	8.8
RAM 256k	7	14	36	0	14	29	15.8	10.0
RAM 1M-bit	0	13	37	0	25	25	17.5	12.5
ROM/PROM	0	34	33	22	0	11	10.3	11.0
EPROM 64k	0	25	42	25	0	8	10.3	9.5
EPROM 256k	0	42	25	25	0	8	9.3	9.3
EPROM 1M-bit	0	0	33	17	33	17	19.4	11.6
EEPROM 16k	0	13	37	37	0	13	13.2	10.6
EEPROM 64k	0	20	40	30	0	10	11.5	10.9
DISPLAYS								
Panel meters	9	36	46	9	0	0	5.8	6.7
Fluorescent	0	33	45	22	0	0	7.8	8.5
Incandescent	0	66	17	17	0	0	5.4	6.5
LED	10	53	21	16	0	0	5.3	8.1
Liquid crystal	15	15	39	31	0	0	8.4	10.5

MICROPROCESSOR ICs

8-bit	0	34	58	8	0	0	6.6
7.6							
16-bit	0	12	88	0	0	0	7.3
-bit	0	0	78	22	0	0	9.8

FUNCTION PACKAGES

Amplifier	0	22	45	33	0	0	9.3
Converter, analog to digital	8	17	42	25	8	0	9.8
Converter, digital to analog	10	20	30	40	0	0	9.2

LINE FILTERS

17	33	33	17	0	0	6.0	9.4

CAPACITORS

Ceramic monolithic	6	55	33	6	0	0	4.7	5.8
Ceramic disc	12	47	24	17	0	0	5.8	5.1
Film	0	57	29	14	0	0	5.7	4.8
Aluminum electrolytic	5	47	27	21	0	0	6.5	4.8
Tantalum	0	47	29	24	0	0	7.1	6.2
INDUCTORS								

[^9]
SIEMENS

Our new HSDA chip set puts design waste in its place.

Now you can discard those space-robbing, powerhungry multichip designs for High Speed Data Acquisition (HSDA) and transmission! Introducing Siemens remarkable new family of HSDA components...two highly integrated devices that can reduce your component count by 20 to 30 devices.

You'll appreciate the increased system performance. The added reliability. And of course, the miserly power consumption. What's more, you'll get all this efficiency without sacrificing the high-speed performance necessary for today's video, imaging and digital signal processing applications.

Intelligent $\mu \mathrm{P}$ compatible Data acquisition/generation System

- SDA 8800 Data Acquisition Controller (DACO)-

$2 \mu \mathrm{~m}$ CMOS-based, compact 68 -pin package, interface compatible with all $8086,80186,80286$ and 68000 -based systems with 8: 16- or 32 -bit bus widths

- SDA 8020 Data Acquisition Shift Register (DASR)
lets you read/write at 100 MHz multiplexed to 25 MHz . Compact 68 -pin design, easily cascaded for large cache memory and/or even lower clock rates
- SDA 8200 A/D Converter 6 -bit flash converter, 300

MHz conversion rate, high-quality conversion up to the Nyquist frequency

- SDA 8005 D/A Converter 8 -bit resolution, 150 MHz conversion rate
- SDA 8010 A/D Converter 8 -bit flash converter, 100 MHz conversion rate

Put complicated high speed designs where they belong. Specify Siemens HSDA chip set... the efficient solution.
For more information, call (408) 980-4534 or write:
Siemens Semiconductor Group, Integrated Circuits, Data Acquisition Marketing Department, 2191 Laurelwood Road, Santa Clara, CA 95054

In Europe write: Siemens AG, Infoservice, Postach 23 48, D-8510 Fuerth
Siemens National Distributors: Hall-Mark and Marshall
Siemens Regional Distributors: Advent Electronics, Inc., Almo Electronics,
Insight Electronics, Quality Components, Summit, Western Microtechnology

For nearly three decades, companies have drawn on Houston Instrument.

Select a Houston Instrument ${ }^{\text {TM }}$ plotter, and you're not only opting for the best price/performance on the market-you're choosing an industry leader with a proven track record. For nearly 30 years, companies have relied on HI for quality products, reliable service, and attractive prices.
Take HI's sleek new DMP-60 Series plotters-they're designed to impress even the most demanding CAD professional. Industry experts agree:
"Houston Instrument's DMP-61 delivers a remarkable combination of high speed, gorgeous plots, and very competitive price."

Editor's Choice
Dec. 22, 1987
HI's commitment to solid, innovative products is underlined by designed-in versatility. The SCAN-CAD ${ }^{\text {nu }}$ option lets a DMP-60 Series plotter double as a scanner. The Multi-Pen accessory speeds colorful, complex drawings. And HI's one megabyte buffer board lets the DMP-60 Series plot several originals-without tying up your computer.
Proven performance, proven value-that's HI plotters. Flexible. Fast. Accurate. Software compatible. Reliable. And backed by HI's PRIORITY RESPONSE ${ }^{T M}$ customer support programs which include overnight product-replacement service, leasing, and warranty coverage.

All this from an industry leader that companies have drawn on for nearly three decades-Houston Instrument.

Now it's your turn. Begin by calling 1-800-444-3425 or 512-835-0900 or writing Houston Instrument, 8500 Cameron Road, Austin, Texas 78753.

HOUSTON INSTRUMENT

A DIVISION OF MMETEK CIRCLE NO 77

TOSHIBA. NOW, IMB DRAMS

FIRST AGAIN. AND 256 K CRAMS.

Toshiba technology leads the way again with the development of Ultra Large Scale memory devices that feature high speed access times.

1 MB CMOS DRAMS

Toshiba, world production leader in CMOS, is delivering 1MB DRAMs. In three different access modes. With speeds of 85 , 100 and 120 ns. You have a choice of fast page mode, static column or nibble mode, as well as DIP, SOJ and ZIP packages.

TOSHIBA DYNAMIC RAMS						
Part Number	Org.	Process	Samples	Prod.	Speed Sorts Available	Pkg Options \& Comments
TC511000P/J/Z	$1 \mathrm{MbX1}$	CMOS	YES	YES	85100120	P/J/Z
TC511000AP/AJ/AZ	$1 \mathrm{MbX1}$	CMOS	4/88	5/88	$70 \quad 80 \quad 100$	P/J/Z
TC511001P/J/Z	$1 \mathrm{MbX1}$	CMOS	YES	YES	85100120	P/J/Z
TC511001AP/AJ/AZ	$1 \mathrm{MbX1}$	CMOS	4/88	5/88	$70 \quad 80 \quad 100$	P/J/Z
TC511002P/J/Z	$1 \mathrm{MbX1}$	CMOS	YES	YES	85100120	P/J/Z
TC511002AP/AJ/AZ	1MbX1	CMOS	4/88	5/88	$\begin{array}{llll}70 & 80 & 100\end{array}$	P/J/Z
TC514256P/J/Z	256 KX 4	CMOS	YES	YES	85100120	P/J/Z
TC514256AP/AJ/AZ	256 KX 4	CMOS	4/88	5/88	$\begin{array}{llll}70 & 80 & 100\end{array}$	P/J/Z
TC514266AP/AJ/AZ	256 KX 4	CMOS	4/88	5/88	$\begin{array}{llll}70 & 80 & 100\end{array}$	P/J/Z
TC514258P/J/Z	$256 \mathrm{KX4}$	CMOS	YES	YES	85100120	P/J/Z
TC514258AP/AJ/AZ	256 KXX 4	CMOS	4/88	5/88	$\begin{array}{lllll}70 & 80 & 100\end{array}$	P/J/Z
TC514268AP/AT/AZ	256 KXX 4	CMOS	4/88	5/88	$\begin{array}{llll}70 & 80 & 100\end{array}$	P/J/Z
TC524256P/J/Z	$256 \mathrm{KX4}$	CMOS	YES	2Q'88	100120	P/J/Z
TC524257P/J/Z	$256 \mathrm{KX4}$	CMOS	YES	2Q'88	100120	P/J/Z
TC521000P	256 KX 4	CMOS	YES	YES	N/A	P
TC41000L	$1 \mathrm{MbX4}$	CMOS	6/88	7/88	$\begin{array}{llll}70 & 80 & 100\end{array}$	L
THM81000S/L	1MbX8	CMOS	YES	YES	85100120	S/L
THM91000S/L	1 MbX 9	CMOS	YES	YES	85100120	S/L
THM91020L	$1 \mathrm{MbX9} 9$	CMOS	2/88	4/88	$\begin{array}{\|llll\|}70 & 80 & 100\end{array}$	L
THM8512L	$512 \mathrm{KX8}$	CMOS	YES	YES	85100120	L

- 1988 Toshiba America, Inc.

256K CMOS STATIC RAM

Toshiba's product development leadership continues. We were first with 16 K CMOS RAMs. First with 64K CMOS RAMs. And now first again-with 256 K CMOS static RAMs. This $32 \mathrm{~K} \times 8$ device features the lowest power consumption available today -only $5 \mathrm{~mA} / \mathrm{MHz}$. Lower than any competitive product. And we offer speeds to 85 ns .

TOSHIBA 256K CRAMs					
Part Number	Org.	Process	Speed	Standby Power	Package
TC55257APL-85	32KX8	CMOS	85ns	100μ AMAX	28PIN
TC55257APL-10	32KX8	CMOS	100 ns	100μ AMAX	28PIN
TC55257APL-12	32KX8	CMOS	120 ns	100μ AMAX	28PIN
TC55257APL-85L	32KX8	CMOS	85ns	30μ AMAX	28PIN
TC55257APL-10L	32KX8	CMOS	100ns	30μ AMAX	28PIN
TC55257APL-12L	$32 \mathrm{KX8}$	CMOS	120ns	30μ AMAX	28PIN
(AVAILABLE IN PLASTIC DIP AND SOG)					

Again Toshiba leads the way. With high speed access times. Now with Ultra Large Scale products. With ultra high quality. Toshiba. The power in memories.

TOSHIBA. THE POWER IN MEMORIES. TOSHIBA AMERICA, INC.

Choose Teledyne First!

AUTHORIZED DISTRIBUTORS

Alabama

Marshall Industries Huntsville, AL
(205) $881-9235$ Quality Components Huntsville, AL
(205) 830-1881

Arizona

Future/Cetec Electronics
Phoenix, AZ
(602) 968-7140

Marshall Industries
Phoenix, AZ
(602) 496-0290

California

All American
Torrance, CA
(213) 320-0240

All American
San Jose, CA
(408) 287-0190

Future Electronics
San Jose, CA
(408) 434-1114

Milpitas, CA
(408) 942-4600

Marshall Industries
Rancho Cordova, CA
(916) 635-9700

Future/Cetec Electronics
Chatsworth, CA
(818) 700-0914

Marshall Industries
Chatsworth, CA (818) 407-0101

Marshall Industries

El Monte, CA
(818) 459-5500

Future/Cetec Electronics Irvine, CA
(714) 250-4141

Marshall Industries
Irvine, CA 92718
(714) 859-5050

Future/Cetec Electronics
San Diego, CA
(619) 278-5020

San Diego, CA
(619) 578-9606

Micro-Die Systems
Torrance, CA
(213) 373-0687

Colorado

Future Electronics
Westminster, CO
(303) 650-0123

Marshall Industries
Thornton, CO
(303) 451-8383

Connecticut

Future Electronics
Bethel, CT
(203) 743-9594

Marshall Industries
Wallingford, CT
(203) 265-3822
Florida

All American
Miami, FL
(305) 621-8282

Chip Supply
Orlando, FL
(305) 298-7100

Future Electronics
Clearwater, FL
(813) 578-2770

Future Electronics
Altamonte Springs, FL
(305) 767-8414

Marshall Industries
Ft. Lauderdale, FL (305) 977-4880

Marshall Industries
Altemonte Springs, FL
(305) 767-8585

Marshall Industries
St. Petersburg, FL
(813) 576-1399

Quality Components
Tampa, FL
(813) 854-2614

Georgia
Future Electronics
Norcross, GA
(404) 441 -7676

Marshall Industries
Norcross, GA
(404) 923-5750

Quality Components
Norcloss, GA
(404) 449-9508

Illinois	Eden Praire, MN (612) $944-2200$
Advent Electronics	
Rosemont, IL	Missouri
(312) 298-4210	Marshall Industries
Future Electronics	Bridgeton, MO (314) 291-4650
(312) 882-1255	
Marshall Industries	New Jersey
(312) 490-0155	Future Electronics Mt. Laurel, NJ (609) 778-7600
Indiana	
Advent Electronics	Marshall Industries Mt. Laurel, NJ (609) 234-9100
(317) 872-4910 Marshall Industries Indianapolis, in (317) 297-0483	Future Electronics Fairtield, N.J. (201) 227-4346 Marshall Industries Fairfield, NJ (201) 882-0320
lowa	
Advent Electronics Cedar Rapids, IA (319) 363-0221	
	New York
	All American
Kansas	$\begin{aligned} & \text { Ronkonkoma, } N \\ & \text { (516) } 981-3935 \end{aligned}$
Marshall Industries Lenaxa, KS (913) 492-3121	Future Electronics Liverpool, NY (315) 451-2371
	Future Electronics
Maryland	Rochester, NY
All American	(716) 272-1120
Rockville, Maryland $\text { (301) } 251-1205$	Hauppage, LI, NY
Future Electronics Columbia, MD (301) 995-1222	(516) 273-2424 Marshall Industries Johnson City, NY

Marshall Industries Rochester, NY
(716) 235-7620

Future Electronics
Hauppauge, NY
(516) 234-4000

North Carolina
Marshall Industries
Raleigh, N.C.
(919) 878-9882

Quality Components
Raleigh, N.C.
(919) 876-7767

Future Electronics
Charlotte, N.C.
(704) 529-5500

Ohio

Hughes-Peters, Inc.
Cincinnati, OH
(513) 351-2000

Hughes-Peters Inc.
Columbus, OH
(614) 294-5351

Marshall Industries
Dayton, OH
(513) 898-4480

Marshall Industries
Solon, OH
(216) 248-1788

Marshall Industries
Westerville, OH
(614) $891-7580$

Oklahoma

Quality Components
Tulsa, OK
(918) 664-8812

Oregon

Cetec Future
Beaverton, OR
(503) 645-9454

Marshall
Beaverton, OR
(503) 644-5050

Pennsylvania
Marshall Industries
Pittsburgh, PA
(412) 963-0441

Pyttronic Industries
Montgomeryvill, PA
(213) 643-2850

Texas

All American
Richardson, TX
(800) 541-1435

Future Electronics
Richardson, TX
(214) 437-2437

Marshall Industries
Austin, TX
(512) 837-1991

Marshall Industries
Carroliton, TX
(214) 233-5200

Marshall Industries
Houston, TX
(713) 895-9200

Marshall Industries
EI Paso, TX
(915) 593-0706

Marshall Industries
Brownsville, TX
(512) 542-4589

Quality Components
Addison, TX
(214) 733-4300

Quality Components
Austin, TX
(512) 835-0220

Quality Components
Sugarland, TX
(713) 491-2255

Utah

Future Electronics Salt Lake City, UT
(801) 972-8489

Marshall Industries
Salt Lake, UT
(801) 485-1551

Washington
Future Electronics Redmond, WA
(206) 881-8199

Marshall Industries
Bellevue, WA
(206) 747-9100

Wisconsin

Marshall Industries
Brookfield, WI
(414) 797-8400

Taylor Electronic Co.
Mequon, WI
(414) 241-4321

Alberta

Future Electronics
Calgary Alberta
(403) 235-5325
Future Electronics
Edmonton, Alberta
(403) 438-2858

British Columbia
Future Electronics
Vancouver, B.C.
(604) 294-1166

Ontario

Future Electronics
Ottawa, Ontario
(613) 820-8313

Future Electronics
Dowsview, Ontario
(416) 638-4771

Quebec

Future Electronics
Pointe Claire, Quebec
(514) 694-7710

Future Electronics
St. Foy, Quebec
(418) 682-5775

Manitoba

Future Electronics
Winnipeg, Manitoba
(204) 339-0554

Seeking a +5V Supply Voltage Analog Switch?They Exist Here!

Teledyne Semiconductor's TSC44X precision CMOS analog switch family sets the standard in low supply voltage switch technology. Sharing the same 5 V or $\pm 5 \mathrm{~V}$ power supply levels modern CMOS data converters and operational amplifiers need, your designs now benefit from low 10 pA switch leakage current, 95 ohm "ON" resistance, and 1.5 mW power dissipation. Single supply operation from 3 to 18 V for battery powered systems. Full microprocessor compatibility too!

Switch architectures cover all your application needs from quad SPST to dual SPDT. Normally closed, open and mixed versions. The innovative TSC444 SPDT switch features a neutral, switch "OFF" position. On chip latches eliminate external components in μ-processor controlled systems. Disable latches for transparent operation. Standardize on the TSC44X family for your job today and tomorrow's breakthrough.

Pin compatible with many old, high supply voltage only parts like the DG221 and AD7590/1/2. Available in DIP or "SO" surface mount technology. Call or write for full information, design help and data sheets. Samples available now.

All devices are backed by Teledyne's reputation for quality, service and support - a reputation earned through 25 leadership years in the semiconductor industry.

Converter techniques once confined to hybrids are now emerging on monolithic chips. For example, manufacturers are offering ADCs that perform delta-sigma conversion techniques for lower-frequency applications. They're also producing ADCs that have self-calibration, which is useful in all converters. (Photo courtesy Crystal Semiconductor)

SPECIAL REPORT

> Improved manufacturing processes are already allowing manufacturers to realize innovative high-resolution-ADC designs on monolithic chips. Because ADC improvements will now be driven by architectural changes, you can expect to see phenomenal gains in these chips' performance in the near future.

Until the past year, engineers have had to stockpile their most innovative A/D-converter designs, because the available manufacturing processes simply couldn't put those designs onto monolithic chips economically. In fact, except for the introduction of succes-sive-approximation, integrating, and flash ADCs , the electronics industry saw no major changes in monolithic ADCs in the past 10 years.

Now, however, the manufacturing processes have finally caught up with the technology: Manufacturers are placing complex, high-speed designs on monolithic chips. ADC techniques first described years, if not decades, ago are now finding their way to monolithic devices, and the ADCs are reaping increased speed and resolution from these architectural changes. And as architectural innovation continues, you'll see the trend of the past year continuing: Monolithic ADCs will continue to make quantum leaps in performance.

Recently, for example, manufacturers have introduced subranging flash ADCs, self-calibrating ADCs, and delta-sigma ADCs, all monolithics. The subranging-flash conversion method will yield a great increase in ADC speed; delta-sigma conversion techniques will lead to much higher resolution.

Furthermore, papers presented at the 1987 and 1988 International Solid-State Circuits Conferences (ISSCCs) have offered a glimpse of future ADC technology. Highly parallel, pipelined subranging flash ADCs will be the rule for high-speed, high-resolution ADCs, and oversampling delta-sigma converters will take over the dc and lower-band audio applications. Crystal Semiconductor, for example, already offers products based on these two architectures.

12- and 16-bit ADC prices will plummet

You can expect manufacturers to introduce many high-resolution converters during the next few years. These new ADCs will provide the performance of
earlier high-resolution ADCs-which were pricey, mul-tiple-chip devices-yet will offer the benefits of monolithics: lower price, lower power consumption, and alternate sources. Consumer digital audio equipment will provide a major application for these chips in the next few years; it will help to drive the price of 16 -bit ADCs below that of today's 12 -bit ADCs, thus forcing the price of 12 -bit ADCs below $\$ 10$. As the price of 16 -bit ADCs drops, many OEMs will expect their engineers to design with them.

You may question the possibility of designing with 16 -bit converters: The noise and drift problems seem insurmountable. A 16 -bit converter with a 10 V range has a least significant bit (LSB) of $153 \mu \mathrm{~V}$; such a small voltage can easily be swamped by noise. To maintain the ADC's 16 -bit accuracy, the reference of a 16 -bit convèrter must have a temperature coefficient of at most $0.17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (25 to $70^{\circ} \mathrm{C}$). These numbers do indeed sound insurmountable, but you can use certain techniques to take advantage of the full resolution of 16-bit ADCs.

16-bit converters suit DSP applications

Such converters are useful, for example, in DSP applications: Digital signal processors don't require absolute accuracy. The important criteria are the ADCs' dynamic specifications-their total harmonic distortion, S / N ratio, in-band harmonies, intermodulation distortion, and input bandwidth. By keeping the signal pure (low distortion) and the noise floor low enough to analyze the signal, you can meet the needs of your digital signal processor.
It's difficult to design a system that's absolutely accurate to 16 bits, but it can be done. You need to design with this goal in mind from the start, by using proper grounding, shielding, and system-design techniques. You can take many approaches, however: For example, you could design the system to work in

Upgrading a system design from 12 bits to 16 bits requires more than merely replacing the ADC-you must upgrade your design techniques as well.
thermal equilibrium and use self-calibration once the temperature is stable. If your application is a highly digital system, where noise is everywhere, you could design the system to shut down all of the digital circuitry that might cause interference during the conversion process, thereby eliminating that source of noise.

When you're upgrading your design from a 12 -bit system to a 16 -bit system, you have to do more than merely replace the ADC. Some higher-resolution ADCs, especially the serial variety, are pin compatible with their lower-resolution versions. When your system requirements move from 12 to 16 bits, the noise floor and temperature drift must decrease by a factor of 16 (the LSB goes from 2.4 mV to $153 \mu \mathrm{~V}$ and the temperature coefficient goes from 2.7 to $0.17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$-this and other useful data is contained in a wall chart on data acquisition that's available from Datel). So even if you can use a 16 -bit converter as a drop-in replacement for a 12 -bit one, it's doubtful that your system will be accurate to 16 bits without considerable redesign.

Don't overkill on speed or resolution

When determining the conversion time your application will require of an ADC , keep the Nyquist criterion in mind-you must sample at a frequency at least twice that of the highest frequency of the input. In other words, you must filter the input so that the signals above half the sample rate are less than 1 LSB .

It is possible to undersample, which is to acquire data above the Nyquist frequency. If the incoming signal is band-limited so that it's between the sampling frequency and half of the sampling frequency, you can undersample the signal and extract the desired data.

Many applications require you to know the input bandwidth of the ADC, though it rarely appears on data sheets. Many ADCs have a bandwidth that's about half the sample rate. That bandwidth is sometimes not adequate. The bandwidth is a measure of the frequency at which the amplitude is attenuated by 3 dB ; however, attenuation actually begins at a much lower frequency. If you desire the amplitude of the signal to be constant across your band of interest, the system's response will be off by the lower frequency at which attenuation actually begins. Also, when you multiplex the input, the input to the ADC could change from the negative rail to the positive rail as you switch inputs. The maximum slew rate of the input will determine the settling time of switching inputs, which you must add to the total conversion time (or which you must overlap with the

Engineers are using ADCs in DSP applications, whose specification requirements differ from those of traditional, static-measurement applications. To facilitate your selection of an ADC for DSP applications, many manufacturers are placing dynamic specifications on ADC data sheets. (Photo courtesy Analog Devices)
conversion process if you're using an S / H amplifier).
Soon, all ADCs' data sheets will include the parts' bandwidth and other information useful in DSP applications. To ascertain the absolute accuracy of an ADC, manufacturers perform static testing on the devices. The traditional static tests don't determine an ADC's dynamic performance, however. If you're going to use the ADC in DSP applications, you need to perform dynamic testing to determine an ADC's signal-to-noise ratio, total harmonic distortion, intermodulation distortion, effective number of bits, and differential nonlinearity (Ref 1). Because it's costly to test ADCs, most manufacturers don't perform both static and dynamic testing on the same device. Crystal Semiconductor, however, offers two versions of each ADC it sells: The devices are identical except that the company performs static testing on one and dynamic testing on the other. In the future, you can expect to see dynamic-test data from all ADC manufacturers.

ADC manufacturers will also continue the trend toward including many functions on a single chip. For example, a complete data-acquisition system on a chip will include signal-conditioning circuitry, a multiplexer, an S / H amplifier, an ADC , and digital-control and interface circuitry. Vendors have been putting such complete data-acquisition systems into hybrid devices for some time, and it won't be long before they'll be able to fit the same circuitry on monolithic chips.

Another function that's finding its way onto mono-

This typical capacitive-DAC-based ADCthe Honeywell HADC574Z-uses successive approximation, today's most dominant conversion technique. As this die shot shows, the chip's circuitry is mostly analog.
lithic ADCs is sample-and-hold amplification. It has always been time consuming-and it's sometimes been costly-to design an S/H amplifier for a particular application (Ref 2). Many of today's ADCs solve that problem by including built-in S/H amplifiers. You must look carefully at these ADCs' data sheets, however, because in most cases, the S/H amplifiers are part of the conversion process and don't allow you to use very high frequencies. The limiting factor in S/H amplification is usually the aperture uncertainty or aperture jitter, which is the timing jitter that occurs during the transition from sample to hold.

The maximum frequency that an S / H amplifier can accurately work with is limited by the need to keep the input voltage within 1 LSB during the aperture-uncertainty time. For example, Honeywell's 12-bit HADC574Z ADC has a $25-\mu \mathrm{sec}$ conversion time, and its S/H function has $3-\mu \mathrm{sec}$ acquisition time, which would theoretically allow for $35.7-\mathrm{kHz}$ throughput. The S / H amplifier's aperture uncertainty is 20 nsec , which limits the input frequency to less than 2 kHz . When the input
is band-limited below 2 kHz , the internal S / H amplifier is enough; however, when the input is above this frequency, you must use an external S / H amplifier as well. Soon, manufacturers will begin to offer ADCs with good on-chip S/H amplifiers that are tuned to the ADCs, ensuring accurate performance.

Some ADCs offer on-chip references

ADC manufacturers have also begun to put voltage references on ADC chips. To maintain an ADC's 12-bitt accuracy over 0 to $70^{\circ} \mathrm{C}$, a voltage reference must have a temperature coefficient of less than $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. However, most of the on-chip references available now have temperature coefficients of about 10 times that value, so they're not particularly accurate. For certain applications, therefore, you may elect to use an external reference as well. (See Ref 3 for more information aboutt selecting a voltage reference.)

For ADCs that have resolutions greater than 12 bits, however, an external reference may itself cause problems. The circuit path between the reference and the

REPRESENTATIVE MONOLITHIC HIGH-RESOLUTION A/D CONVERTERS

MANUFACTURER AND MODEL	RESOLUTION (BITS)	THROUGHPUT/ CONVERSION TIME	INPUTVOLTAGE RANGE	POWER SUPPLY (V)	\qquad		
ANALOG DEVICES AD674A	12	$15 \mu \mathrm{SEC}$	$\begin{gathered} 0 \text { TO } 10,20 \pm 5, \\ \pm 10 \end{gathered}$	± 12 OR ± 15	390 TYP	-	
AD7550	13	40 mSEC	-	$\pm 5,+12$	44 MAX		NA
AD7552	12 PLUS SIGN	160 mSEC	-	$\pm 5,+12$	40 MAX		NA
AD7572	12	5μ SEC	0 to $5, \pm 2.5$	+5, -15	215 MAX	-	
AD7672	12	3μ SEC	0 TO $5,10, \pm 5$	$+5,-12$	179 MAX		
BURR-BROWN ADC80MAH-12	12	25μ SEC	$\begin{gathered} \pm 2.5, \pm 5, \pm 10 \\ 0 \text { TO } 5,10 \end{gathered}$	$\begin{aligned} +5, & \pm 12, \text { OR } \\ & \pm 15 \end{aligned}$	705 MAX	-	
CRYSTAL SEMICONDUCTOR CS5012/CSZ5112	12	100 kHz	± 5	± 5	250 MAX		-
CS5014/CSZ5114	14	56 kHz	± 5	± 5	250 MAX		-
CS5016/CSZ5116	16	50 kHz	± 5	± 5	250 MAX		-
CSZ5126	16	100 kHz	± 5	± 5	250 MAX		-
CSZ5316	16	20 kHz	± 2.75	± 5	250 MAX	-	-
CSZ5412	12	1 MHz	0 TO 3, ± 1.5	± 5	700 TYP		-
CS5501	16	$\begin{gathered} 4 \mathrm{kHz} \\ \text { (10-Hz MAX } \\ \text { BANDWIDTH) } \end{gathered}$	0 TO 4.5, ± 4.5	± 5	40 TYP		
DATEL ADC EK12B	12	24 mSEC	0 TO 10, ± 5	± 5	50 MAX		NA
ADC ET12B	12	24 mSEC	0 TO $10, \pm 5$	± 5	50 MAX		NA
ADC 800	15 PLUS SIGN	400 mSEC	± 5	± 5	35 MAX		NA
ADC 7109	12 PLUS SIGN	33 mSEC	± 5	± 5	15 MAX	-	NA
GE SOLID STATE ICL7112	12	40μ SEC	$\begin{aligned} & 0 \text { TO }-10, \\ & 0 \text { TO } 10 \end{aligned}$	± 5	60 MAX		
ICL7115	14	40μ SEC	$\begin{aligned} & 0 \text { TO }-5 \text {, } \\ & 0 \text { to } 5 \end{aligned}$	± 5	60 MAX		
HONEYWELL HADC574Z	12	35.7 kHz	$\begin{gathered} 0 \text { TO } 10,20, \\ \pm 5, \pm 10 \end{gathered}$	5, 12, OR 15	150 MAX	-	-
HADC674Z	12	59.5 kHz	$\begin{gathered} 0 \text { TO 10, 20, } \\ \pm 5, \pm 10 \end{gathered}$	5, 12, OR 15	150 MAX	-	-
HYBRID SYSTEMS HS574A	12	35.7 kHz	$\begin{gathered} 0 \text { TO } 10,20, \\ \pm 5, \pm 10 \\ \hline \end{gathered}$	5, 15	150 MAX	-	-
SP674A	12	59.5 kHz	$\begin{aligned} & 0 \text { TO } 10,20, \\ & \pm 5, \pm 10 \end{aligned}$	5, 15	150 MAX	-	-
MAXIM INTEGRATED PRODUCTS MAX162	12	3μ SEC	0 TO 5	5, -15	215 MAX	-	
MAX170	12	5μ SEC	0 TO 5	5, -15	250 MAX	-	
AD7572-5	12	5μ SEC	0 TO 5	5, -15	215 MAX	-	
MAX7109	12	33 mSEC	± 5	± 5	15 MAX	-	NA
MAX133/134	33/4-DIGIT	50 mSEC	$\pm .4 \mathrm{TO} \pm 4000$	± 5 OR +9	2.25 MAX		NA

NOTES:
LCC $=$ LEADLESS CHIP CARRIER
PLCC = PLASTIC LEADED CHIP CARRIER
SO = SMALL-OUTLINE PACKAGE
NA $=$ NOT APPLICABLE

Table continued on pg 122

ADC is full of offset and drift error sources. Different metals often create small voltages, much as a thermocouple does, that drift with temperature. One way around this problem is to use a Kelvin-sensed reference. This type of reference senses the voltage at the load, and uses that voltage for regulation, thus removing errors between the reference and the ADC. To obtain the greatest benefit from this approach, you should use an ADC that has multiple inputs for the reference, so that the sense from the voltage regulator can connect directly to the ADC chip.

You can get around many temperature-related drift problems by using ratiometric measurements. As long as the sensor and the ADC are using the same reference, the drift of the reference won't matter, because it will cancel out.

Flash techniques will become prevalent

Even though the majority of available ADCs are using successive-approximation or multislope-integration techniques, these conversion methods will soon step aside for the subranging-flash and delta-sigma methods. Flash conversion is by far the fastest conversion technique. A flash converter has a separate comparator for each of the possible digital output values. The input voltage is fed to all of the comparators. Comparators whose reference is below the input will all generate ones; those that have a reference above the input will all generate zeros. The output of all of the comparators goes to an encoder, which converts the data to a binary value.
The limitation of this approach is the number of comparators required-a 12 -bit converter would require 4095 comparators. To achieve the higher ADC resolutions, therefore, ADC manufacturers either use more than one internal flash converter or use the same converter more than once; this technique is called "subranging."
Crystal Semiconductor takes the latter approach in its CSZ5412, a 12 -bit, $1-\mathrm{MHz}$ subranging ADC (Ref 4). It uses a 2 -step technique: First, it samples the input into an S/H amplifier; then, once the input is held, the 6 -bit flash ADC converts the six most significant bits of the digital output and latches them. These six bits are also loaded into the 6 -bit DAC. The DAC's output is then subtracted from the input held in the S / H amplifier. The result of this subtraction is the remainder of the original input. The CSZ5412 includes a differential amplifier that multiplies this voltage by 64 to raise it to a value that the 6 -bit ADC can convert. The six least

Vendors can already put a complete data-acquisition system on a hybrid device; before long, they'll fit the same circuitry on a monolithic chip.

REPRESENTATIVE MONOLITHIC HIGH-RESOLUTION A/D CONVERTERS (Continued)

MANUFACTURER AND MODEL	RESOLUTION (BITS)	THROUGHPUT/ CONVERSION TIME	INPUTvoltage RANGE	POWER SUPPLY (V)	$\begin{aligned} & \text { POWER } \\ & \text { DISSIPATION } \\ & \text { (mW) } \end{aligned}$		
MICRO LINEAR ML2200	12 PLUS SIGN	31.7 kHz	± 2.5	± 5	400 MAX	-	-
ML2208	12 PLUS SIGN	31.7 kHz	± 2.5	± 5	400 MAX	-	-
ML2230	12 PLUS SIGN	31.7 kHz	± 2.5	± 5	400 MAX		-
ML2233	12 PLUS SIGN	31.7 kHz	± 2.5	± 5	400 MAX		-
MICRO POWER SYSTEMS MP7550	13	40 mSEC	-	$\pm 5,12$	44 MAX		NA
MOTOROLA MC145402	13	$\begin{gathered} 21.3 \mathrm{kHz} \\ \text { (ADC ONLY) } \end{gathered}$	± 3.2	$\pm 5 \mathrm{~V}$	50 TYP	-	-
NATIONAL SEMICONDUCTOR ADC1205	12 PLUS SIGN	100μ SEC	0 TO 5 OR ± 5	$5 \mathrm{OR} \pm 5$	25 MAX		
ADC1225	12 PLUS SIGN	100μ SEC	0 TO 5 OR ± 5	$5 \mathrm{OR} \pm 5$	25 MAX		
PRECISION MONOLITHICS INC ADC-9012	12	12.5μ SEC	0 TO 10	$\begin{gathered} 5,-12, \text { OR } \\ -15 \end{gathered}$	85 MAX		
SIGNETICS TDA1534	14	8.5μ SEC TYP	-	$\pm 5,-17$	640 MAX	-	
TELEDYNE SEMICONDUCTOR TSC500A	16 PLUS SIGN	-	± 4.2	± 5	15 MAX		NA
TSC804	12 PLUS SIGN	33 mSEC	± 5	± 5	20 MAX	-	NA
TSC850	15 PLUS SIGN	25 mSEC	± 5	± 5	35 MAX		NA
TEXAS INSTRUMENTS TLC32040	14	19.2 kHz	$\pm 1.5, \pm 3, \pm 6$	± 5	285 MAX	-	-

```
NOTES:
    LCC = LEADLESS CHIP CARRIER
    PLCC = PLASTIC LEADED CHIP CARRIER
    SO = SMALL-OUTLINE PACKAGE
    NA = NOT APPLICABLE
```

significant bits are then loaded into the output latch to form the full 12 -bit digital value.

One complete conversion takes $1.3 \mu \mathrm{sec}$. To achieve $1-\mathrm{MHz}$ throughput ($1-\mu \mathrm{sec}$ conversions), the CSZ5412 pipelines both the sampling process and the conversion process: It initiates the next hold command while the last result is being latched into the output. A second S / H amplifier also pipelines the acquisition of a sample by holding the input while the 6 -bit ADC determines the remainder.

The CSZ5412 uses self-calibration to ensure 12 -bit accuracy. An internal microcontroller performs the
calibration; it maintains the 64 graduated reference levels, the gain, and the offset of the 6 -bit flash ADC, and the gain and offset of the differential amplifier.

Subranging-flash techniques will be increasingly important in future ADCs. Speakers at this year's ISSCC discussed many such pipelined ADC designs that promise to realize high speed and high resolution. Analog Devices, for example, will soon be coming out with a 12 -bit ADC that has $200-\mathrm{kHz}$ throughput and a 14 -bit, $10-\mu \mathrm{sec}$ ADC, both of which use variations of the subranging-flash technique.

The other important conversion technique is the

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |

delta-sigma method. The delta-sigma technique uses oversampling and digital filtering to achieve high resolution. A delta-sigma ADC consists of an analog modulator and a digital filter. The modulator's output provides a single-bit result at a very high rate that the digital filter can process into a high-resolution output at a lower rate.

The advantage of using delta-sigma conversion is mostly a reduction in cost, both of the converter and, in some applications, of the system. One delta-sigma ADC, the Crystal Semiconductor CS5501, is mostly digital; the analog circuitry consumes only the lower
fifth of the device. The delta-sigma approach yields a device that's more digital than analog, so it's easier and cheaper to produce and will benefit from the shrinking geometries of the future.

Another advantage of the delta-sigma type of converter is that it includes a digital lowpass filter with a cutoff frequency of 0.1 to 10 Hz , so it eliminates common interference caused by ac power sources. Further, the serial output of this converter is ideal for use as input to a serial communication device, allowing the LAN-style connection of sensors. This scheme would facilitate the manufacture of high-resolution digital sensors, perhaps even on single chips.

A disadvantage of using the delta-sigma converter is that you'll require one converter for every channel. Because the digital filter contains historical data, you can't multiplex the input. Also, the filter's parameters are preset and may not fit your application. When evaluating these converters, consider the cost of getting the signals from the sensor to the multiplexed ADC. Serial digital cables are much less expensive than many analog cables, and digital transmission, by its nature, offers a number of advantages over analog transmission.
The Crystal CS5501 is a 16-bit delta-sigma converter with a bandwidth of 0.1 to 10 Hz , depending upon the clock rate. Also dependent upon the clock rate is the output-update rate, which is the rate at which the data is clocked out of the ADC. The CS5501's output-update rate varies from 40 Hz to 4 kHz . The company intends the ADC for use with low-frequency signals in such applications as scales and dc measurements.
The CS5501 includes self-calibration circuitry for system calibration. You could use the CS5501 in a data-acquisition system, for example (Fig 1). The calibration circuitry, along with an external multiplexer, will compensate for the gain and offset of the entire system.

In the near future, you can expect to see many more delta-sigma converters on the market. Crystal expects to have an 18-bit version of the CS5501 out before the end of the year; that chip will be pin compatible with the 16 -bit version.

ADC manufacturers have also begun to include selfcalibration circuitry on their monolithic ADCs. The most important advantage of self-calibration is that it lets you calibrate the device at any time. Self-calibration circuitry will appear in all types of converters over the next few years.

Micro Linear's ML2200 ADC family, for example,

Consumer digital audio equipment will help drive the price of 16-bit ADCs below that of today's 12 -bit ADCs, thus forcing the 12 -bit ADCs below $\$ 10$.
includes self-calibration (Ref 5). The parts' conversion algorithm is a version of successive approximation; the devices, which Micro Linear calls "algorithmic ADCs," have two distinct advantages: They require compensation only for the internal offsets and the times- 2 multiplier, and, compared with other types of converters, they have fewer components that require adjustment. The offsets of both the S / H amplifier and the times-2 amplifier are nulled before each conversion. The gain of the times- 2 amplifier is determined by the ratio of two capacitors. During calibration, the chip sets the gain by automatically adjusting the capacitor ratio with one fixed capacitor and one variable capacitor. The variable capacitor comprises a selection of smaller capacitors.

GE Solid State's ICL7112 and ICL7114 ADCs use a self-calibration scheme that employs a one-time-programmable (OTP) ROM to store the calibration values. The ICL7112 is a 12 -bit, $40-\mu$ sec converter; the ICL7114 produces a 14-bit result in the same $40 \mu \mathrm{sec}$.

Crystal Semiconductor also offers a line of selfcalibrating ADCs: The CS5012, CS5014, and CS5016 are 12 -, $14-$, and 16 -bit converters, respectively. They all use the popular successive-approximation technique. Instead of comprising the traditional resistor network, the DAC is an array of binary-weighted capacitors.

To achieve 16 -bit accuracy, the ADC's comparator and DAC must both be very accurate. The comparator's offset is measured during the track mode and subtracted from the input when the conversion begins, so the offset is nulled. The DAC consists of a number of binary-weighted capacitors. Each of these capacitors,

Adding some external passive components to the Maxim MAX133 integrating $A D C$ is all you have to do to provide the converter with a voltage divider that has a software-selectable range of $\pm 400 \mathrm{mV}$ to $\pm 4000 \mathrm{~V}$. The converter performs integrating A / D conversion by using a $\pm 40,000$-count residual-multiplication technique.
in turn, is made up of many small capacitors. The automatic-calibration feature maintains the DAC's accuracy by selecting the capacitors to adjust the overall bit weight.
Just because an ADC supplies self-calibration circuitry doesn't mean that the device will drift away from its specifications quickly-it just means you have the opportunity to make corrections whenever necessary. The ADCs from Crystal, for example, maintain their accuracy over time and temperature, and also perform self-calibration every time you apply power. They don't have an on-chip reference, however, so you may have to recalibrate for variations in the external reference you use.

Fig 1-The ability to perform system self-calibration, as the Crystal Semiconductor CS5501 does, allows you to compensate for the gain and offset errors of all of the system components. The CS5501 compensates for these errors by adjusting itself to counteract them.

This 12-bit, monolithic ADC (the MAX162 from Maxim Integrated Products) unites high speed with low cost: It offers a 3- μ sec conversion time and costs $\$ 23$ (100).

Most other ADC manufacturers will soon produce self-calibrating ADCs, either one-time-programmable ones, such as those from GE Solid State, or ones that calibrate on command, as do those from Crystal and Micro Linear.

12-bit jellybean ADCs

The market is about to see a major price reduction in 12 -bit ADCs, which are becoming commodity parts. Competition is fierce among the many companies that produce these parts: Even the price of high-speed ($3-\mu \mathrm{sec}$) converters is down near $\$ 20$. Remaining competitive in a commodity market usually means providing something that your competition doesn't. The range of 12 -bit ADCs, therefore, includes a lot of niche parts that are expressly intended for particular applications.

Complete analog interfaces are also beginning to arrive in the marketplace. Texas Instruments' TLC32040 comes in a 28 -pin package that contains a 2-channel input multiplexer, a programmable input filter, a 14 -bit ADC with an S/H amplifier, a 14-bit DAC, a programmable output filter, a voltage reference, a serial interface, and a clock with a programmable sample rate (Fig 2). The TLC32040 interfaces directly to the TMS320 family of digital-signal processors and handles the interface to your sensors. You can program the corner frequency of the switched-capacitor filters by using an internal divider and selecting the master clock frequency. The input bandpass filter is intended for telecomm applications; you can bypass it if it doesn't meet your needs.

Even though its die photo looks entirely digital, the CS5501 from Crystal Semiconductor is a 16-bit A / D converter. The only analog circuitry resides on the lower fifth of the chip-the rest of the chip comprises an FIR filter, an IIR filter, some control circuitry, and a serial interface. The chip uses the delta-sigma conversion technique for signals from dc to 10 Hz .

Another ADC that includes an output DAC on chip is the Motorola MC145402. This 13-bit ADC/DAC has an S/H amplifier, a voltage reference, and a serial interface. The ADC uses the same DAC that the output uses. To permit both input and output operations, the output has an S/H amplifier that can hold any value sent to the DAC while the DAC is being used in the A/D conversion. When the device is being used for both input and output, its maximum throughput rate is 16 kHz . When the part is being used for just A/D conversion, its maximum throughput rate is 21.3 kHz .

The Micro Linear ML2200/08 12-bit-plus-sign ADC is not necessarily easier to use, but it eases the burden on

Converters with 16-bit resolution are useful in DSP applications, which don't require absolute accuracy-it's the ADCs' dynamic specs that are important.

your system software because it includes many digital functions on chip. It contains a programmable sequencer, a double 8 -word buffer, limit alarms, a 16 -bit counter, and a $\mu \mathrm{P}$ interface. Because these functions are on chip, the ADC can perform many operations that would be time consuming to perform in software.

Note also that many $\mu \mathrm{P}$ and DSP chips have built-in serial interfaces, which are ideal for data acquisition. Most parallel-output ADCs can't keep up with the high-speed cycle times of DSP chips. Even when the DSP chip is using wait states, the ADC's 3 -state output must relinquish the bus quickly. If it can't, you may need to use a 3 -state buffer. ADCs that have built-in serial interfaces can easily interface to DSP chips that have built-in serial interfaces. To meet this need, ADC manufacturers are beginning to include serial interfaces on their ADC chips. The MAX170 from Maxim Integrated Products, for example, is a 12 -bit, $5-\mu \mathrm{sec}$ ADC with a serial output that comes in an 8-pin package.

Burr-Brown's ADC80 and most of Crystal Semiconductor's converters have both parallel and serial outputs.

Serial I/O helps solve problems

A further advantage of the serial interface is that it lets you easily isolate the digital system from the ADC. The digital section contains many sources of noise that get back into the analog signal and affect the accuracy of the conversion. Isolating the digital section from the analog section can help reduce this noise. It's much easier to isolate a serial interface than it is to isolate a 12 - or 16 -bit parallel bus. Maxim will soon introduce the MAX171, a serial ADC (based on the MAX170) that has an optoisolated output.

Integrating ADCs are still going strong

The activity in other areas of the ADC market has recently obscured the humble integrating ADC, but that type of converter is still selling well. Even the ancient 7109 12-bit integrating ADC is still going

Fig 2-An example of the continuing trend toward placing more functions on a single chip is the Texas Instruments TLC32040 Analog Interface Chip. This single chip contains a 2-channel input multiplexer, a programmable input filter, a 14-bit ADC with an S/H amplifier, a 14-bit DAC, a programmable output filter, a voltage reference, a serial interface, and a clock with a programmable sample rate.

IF YOU'RE NOT CONSIDERING OUR OP AMPS, YOU'RE NOT GETTING THE WHOLE PICTURE.

Teledyne Philbrick op amps. The front-runners for speed and accuracy. Fast settling over a wide bandwidth is the essence of high-performance op amps in sophisticated, high-speed data acquisition, microwave transmission and video/CRT applications. So it pays to specify the best: the 1467 and 1493 operational amplifiers from Teledyne Philbrick.

These Teledyne Philbrick designs are specially engineered to maximize DC characteristics and high-speed performance. The $1467,1 \mathrm{GHz}$ gain-bandwidth op amp ensures 70 ns settling times to $\pm 0.01 \%$ FS while providing ultra-low input offset voltage of $\pm 30 \mu \mathrm{~V}$ and input offset voltage drift of $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
The 1493, a dual 350 MHz gain-bandwidth op amp, features individual compensation and offset adjustments, FET inputs, 180ns settling times to $\pm 0.01 \% \mathrm{FS}$ and 80 dB isolation at 100 KHz .

Qualified to MIL-STD-1772, Teledyne Philbrick is a leading manufacturer of high-performance, high-reliability standard and custom microcircuits for industrial, medical, military and space applications world wide. Send for complete specifications or call us toll-free at 1-800-325-1330 (outside MA).

MIL-STD-1772 Qualified

- TELEDYNE PHILBRICK

40 Allied Drive, Dedham, MA 02026-9103, Tel: 617-329-1600 Fax: 617-326-6313

WEST:	U.K.:	JAPAN:
30423Canwood St.,	The Harlequin Centre	4th Floor
Suite 212	Southall Lane	Taiko No. 3 Bldg.
Agoura Hills	Southall	2-10-7 Shibuya-Ku
CA 91301	Middlesex	Tokyo 542, Japan
Tel: (818) 889-3827	UB2, 5NH, U.K.	Tel: 797-5251
Fax: 818-889-8215	Tel: 571-9596	Telex: $781-24335$
	Telex: 935008	Fax: 7975255

The subranging-flash conversion method will greatly increase ADC speed; deltasigma conversion techniques will lead to much higher resolution.
strong. Hybrid integrating ADCs have reached 22 -bit resolution, so you can expect to see an ongoing increase in the resolution of monolithic integrating converters.

Integrating ADCs usually cost less than $\$ 12$ (100), and designers will continue to use them in low-frequency and dc-measurement applications. One of the major advantages of integrating ADCs is that by selecting the appropriate integration time, you can eliminate much of the ever-present $60-\mathrm{Hz}$ interference.
The TSC500A from Teledyne Semiconductor is an integrating ADC building block that contains all the analog circuits you need to construct an integrating, dual-slope ADC. Your system μ P performs the digital functions. You can implement an ADC with any resolu-tion-as high as 16 bits plus sign-by changing the software. The manufacturer offers an evaluation kit that includes IBM PC-based software.
The TSC804 is useful for measuring more than a single input. The device is a 12 -bit integrating ADC that's similar to the 7109 and that has an 8 -channel (4-channel differential) multiplexer on the input.
The Maxim MAX133 integrating ADC also allows multiple inputs-it accepts as many as seven. The
manufacturer intended the multiplexer for automatic range selection in DMM applications. You add external resistors to create a voltage divider that has a softwareselectable range of $\pm 400 \mathrm{mV}$ to $\pm 4000 \mathrm{~V}$. The converter performs integrating A/D conversion by using a $\pm 40,000$-count residual-multiplication technique. During normal use of the ADC, you ignore the least significant digit. For high-resolution applications, you can read all the digits and average them over a number of readings (usually 10) to achieve full accuracy.

By using a 2 -step conversion process, the Teledyne TSC850 converts a signal 16 times faster than does the TSC800, allowing 40 conversions $/ \mathrm{sec}$. This approach converts the nine MSBs quickly and then uses a slower, more precise conversion to resolve the six LSBs.

Over the next few years, monolithic ADCs will make quantum leaps in speed and resolution. High-end ADCs -ones having resolutions of 16 bits and higher-will continue to develop as they have in the past: ADCs that exist as board-level products today will become modules, then hybrids, and finally monolithic ICs.

Remember, however, that merely using a very accurate converter in a system won't guarantee that your

Manufacturers of monolithic high-resolution ADCs

For more information on high-resolution ADCs such as those discussed in this article, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

Analog Devices Inc	GE Solid State	Micro Linear	Precision Monolithics Inc
Box 9106	10600 Ridgeview Ct	2092 Concourse Dr	1500 Space Park Dr
Norwood, MA 02062	Cupertino, CA 95014	San Jose, CA 95131	Santa Clara, CA 95054
(617) 329-4700	(408) 996-5000	(408) 433-5200 ext 412	(408) 727-9222
TLX 924491	Circle No 654	TLX 275906	Circle No 662
Circle No 650		Circle No 658	
	Honeywell Inc		Signetics Corp
Burr-Brown	1150 E Cheyenne Mountain Blvd	Micro Power Systems	811 E Arques Ave
Box 11400	Colorado Springs, CO 80906	3151 Jay St	Sunnyvale, CA 94088
Tucson, AZ 85734	(303) 577-1000	Santa Clara, CA 95054	(408) 991-2000
(602) 746-1111	TLX 452433	(408) 727-5350	Circle No 663
TLX 666491	Circle No 655	TWX 910-338-0154	
Circle No 651	Hybrid Systems Div	Circle No 659	Teledyne Semiconductor 1300 Terra Bella Ave
Crystal Semiconductor Corp	22 Linnell Circle	Motorola Semiconductor	Mountain View, CA 94039
4210 S Industrial Rd	Billerica, MA 01821	3501 Ed Bluestein Blvd	(415) 968-9241
Austin, TX 78744	(617) 667-8310	Austin, TX 78721	TWX 910-379-6494
(512) 445-7222	Circle No 656	(512) 928-6880	Circle No 664
TWX 910-874-1352		Circle No 660	
Circle No 652	Maxim Integrated Products 120 San Gabriel Dr	National Semiconductor	Texas Instruments Semiconductor Group
Datel Inc	Sunnyvale, CA 94086	2900 Semiconductor Dr	Box 809066
11 Cabot Blvd	(408) 737-7600	Santa Clara, CA 95052	Dallas, TX 75380
Mansfield, MA 02048	TWX 910-350-4114	(408) 721-6230	1-800-232-3200, ext 700
(617) 339-3000	Circle No 657	Circle No 661	Circle No 665
TLX 951340 Circle No 653			

WHENIT'S CRITICAL, OURADD CONVERTERS MAKEA DIFFERENCE.

The 4192 and 4193/95 500ns A/D converters from Teledyne Philbrick: the fastest speed for the most demanding applications.
Whether your device monitors a patient or measures electron spin in EMR, nanoseconds can make the difference. That's why, for any critical application, you should specify Teledyne Philbrick-for the fastest A/D converters in the industry.
Available in two standard configurations, the 4192, 4193 and 4195 12-bit converters feature 500 ns conversion time, power consumption as low as 1.7 W and tri-state output buffers for bus interfacing
The 4192 converter lets you select from three input ranges: 0 to $+10 \mathrm{~V}, \pm 10 \mathrm{~V}$ and 0 to +20 V . Factory laser trims adjust all parameters, eliminating the need for external circuitry. Sampling dynamic signals at better than 1.3MSPS can be achieved by combining these devices with the 4860 Track-Hold amplifier.
Specifically designed for fast, precise digitizing of analog signals, these devices also feature low harmonic distortion and excellent signal-tonoise ratio.

Qualified to MIL-STD-1772, Teledyne Philbrick is a leading manufacturer of high-performance, high-reliability standard and custom microcircuits for industrial, medical, military and space applications worldwide. Send for complete specifications. Or call us toll-free at 1-800-325-1330 (outside MA).

WEST:

30423 Canwood St.,
Suite 212
Agoura Hills
CA 91301
Tel: (818) 889-3827
Fax: 818-889-8215
U.K.:

The Harlequin Centre
Southall Lane
Southall
Middlesex
UB2, 5NH, U.K
Tel: 571-9596
Telex: 935008
Telex: 935008
Fax: 571-9442

JAPAN:

4th Floor
Taiko No. 3 Bldg.
2-10-7 Shibuya-Ku
Tokyo 542, Japan
Tel: 797-5251
Telex: 781-24335
Fax: 797-5255

A new idea for safe equipment protection
Shock-safe subminiature fuse-holders for TR 5 fuses
WICKMANN's newly designed fuse-holder range for internationally standardized and approved subminiature fuses, type TR 5, is available in two versions:

- front panel mounting with solder or plug in terminations - printed-circuit board mounting with solder pins

Meeting established fuseholder standards, $5 \times 20 \mathrm{~mm}$ performance is now available in a fraction of the size.
Yet another example of WICKMANN innovation.

Wickmann-Werke GmbH
Annenstr. 113 - Postbox 2520 - D-5810 Witten 6 Tel. 02302/6620. Telex 8229145 wwg d. Fax 02302/662111

CIRCLE NO 14

80C31/51

Microcontrollers A wide range in record time

A choice between 4,8 or 16 Kbytes of R0M, with on-chip RAM from 128 to 256 bytes, all CMOS.

Operating clock speeds range from zero up to 16 and even 18 MHz !

The MHS "Quick R0M" service can have customized samples or production parts delivered to your doorstep in just two or three weeks.

And for R0Mless 80C31/C32 parts, delivery worldwide is virtually instantaneous.

With over 7 million units delivered to date, MHS is one of the world's leading - and fastest - microcontroller suppliers.

Ask for a quotation today:

Tel. 408-986 9000, Tx. 299656

MATRA HARRIS SEMICONDUCTEURS BP 309 78054 SAINT-QUENTIN-YVELINES CEDEX FRANCE.
Tel. 1-3060 7000, Tx. 697317

The hybrid ADCs of yesterday are monolithic devices today. The monolithic ADC80MAH-12 from Burr-Brown, for example, was a hybrid that the company originally introduced about 10 years ago.
system's measurements will also be accurate. As you begin to design with ADCs that have resolutions higher than 16 bits, your design abilities will have to improve. Each time you design with a high-resolution ADC, you can learn a little more about optimizing a design to take advantage of the ADC's capabilities. When the 22-bit ADCs that now exist in hybrid form become monolithic and their prices drop to an affordable level, you'll have to be well versed in high-precision analog-design techniques in order to take advantage of them.

References

1. Coleman, Brendan, et al, "Coherent sampling helps when specifying DSP A/D converters," EDN, October 15, 1987, pg 145.
2. Little, Al , and Bob Burnett, " S / H amp-ADC matrimony provides accurate sampling," EDN, February 4, 1988, pg 153.
3. Knapp, Ron, "Selection criteria assist in choice of optimum reference," EDN, February 18, 1988, pg 183.
4. Mosley, J D, "Monolithic A/D converter delivers
$1-\mathrm{MHz}, 12$-bit performance at low cost," EDN, February 18, 1988, pg 128.
5. Fleming, Tarlton, "Monolithic, self-calibrating ADC includes sample-and-hold amplifier," EDN, January 21, 1988, pg 87.

IRONICS - THE REAL-TIME MULTIPROGESSING COMPANY

- Q Con

IV-3272 VMEbus FULL SPEED DATA TRANSPORTER

- CONNECT HIGH DATA RATE APPLICATIONS TO VMEbus

40 Mbytes $/ \mathrm{sec}$ gateway to the real-time world via standard and custom Daughter Boards

- INTERCONNECT VMEbus BACKPLANES VIA SMALL AREA NETWORK

Parallel I/0 Daughter Board allows $40 \mathrm{Mbytes} / \mathrm{sec}$ chassis to chassis transfers, with protocol.

- CUSTOMIZE INTERFACES TO YOUR OWN REQUIREMENTS

Well defined specification simplifies design of your own Daughter Boards. For example, a $12.5 \mathrm{Mbytes} / \mathrm{sec}$ Fiber Optic Link

- ADD MORE DATA TRANSFER INTENSIVE MULTIPROCESSING SUBSYSTEMS

32.8 Mbytes/sec (writes) dual-port transfer rate achievable using Ironics' Multiprocessing Engines ${ }^{\text {TW }}$ with Static Column Block Transfer ${ }^{\text {™ }}$ (SCBLT) Capability

- PROCESS DATA 'ON THE FLY' WITH ON-BOARD DIGITAL SIGNAL PROCESSOR

TI 32010,020 or C-25 DSP Chip is user-programmable
For further information on the unique IV-3272
FSDTT or on any of IRONICS' Real-Time
Multiprocessing Products, call or write for The
Ironics' Real-Time Multiprocessing Data Pack.

Telex 705-742, FAX 607-272-5787.

INTRODUCINGTHE IDEAL

A leader's work is never done.

No sooner do we invent the Programmable Gate ${ }^{\text {mi }}$ Array and with it a whole new category of logic devices, than we're already outdoing ourselves.

By adding a brand new, more powerful family of Programmable Gate Arrays, the 3000 series.

What's new and different?

Are the zebra's stripes white-on-black or black-on-white? Should you buy the Programmable Gate Array for its cost-effectiveness, short development cycle, off-the-shelf availability, or its 100% testability? Yes to both questions.

OOIC DEVCE. AGAIN.

architecture is also responsible for gate counts that range from 1200 in the XC 2064 to 9000 in the XC 3090.

Enough density for just about any logic application you can name.

Plus more flexibility in routing and gate utilization than you'll know what to do with.

THE ONLY

 LOGIC DEVICE YOU MAY EVER NEED.Like all Xilinx Programmable Gate Arrays, our 3000 series offers the same advantages you've come to know and love:

Gate array density.
User-programmability with unlimited reprogrammability.

No NRE or inventory risk.

100\% tested parts.
Low cost gate array type design tools.

And a development cycle that fits between paychecks.

Our Programmable Gate Arrays also make it simple to choose a logic device.

They simply make every other logic device obsolete.

With their new architecture, you'll have the speed you need, plus the density to get all your logic on one device.

A device with advantages no other technology can match.

So much less it isn't even funny. At least, not to them.

We can prove it, too.
We've prepared a study that lays out the cost comparison data in detail and, needless to say, we'd love to send you a copy. (There's also a nice thick data

Want to see how fast our new 3000 series is? Want to see it again?

Now stop and ask yourself,"Why should I use anything else?"

Good question, isn't it?

THE PRICE IS RIGHT, TOO.

We've told you about our improved speed.

And our increased density.

But we've saved the best news for last.

Using a Xilinx Programmable Gate Array costs less than using a conventional gate array.
book for those of you who are already true believers.)

Just call us toll-free at (800) 255-7778.

In California,(408)
559-7778. Or contact your local Xilinx sales representative or distributor.

The Programmable Gate Array from Xilinx. It's everything you've ever wanted. Again.

E. XIIINX
The Programmable Gate Array Company ${ }^{\text {"w }}$

[^10]
Even an error this smal entirely unacceptable.

0.00000000000000000000

would seem to us

00000000000000000000001

Abstract

At Schlumberger Instruments, there's no such thing as an error so small that it doesn't count. Absolute accuracy and reliability in measurement are our never-ending quest. We specialize in high-precision measuring instruments for aerospace, mechanical analysis, radio, telecommunications and electronics service. Wherever accuracy and reliability are crucial, Schlumberger Instruments are there. Year after year, we're investing strongly-for tomorrow. In 1987 alone, Schlumberger spent over $\$ 350$ million on R\&D, focusing on areas of fundamental research in measurement technology. We're committed to giving you measurements that are ever more accurate. Ever more dependable. And to get there, we're already at work eliminating errors so small they can't even be detected today.

Born to set tomorrow's standards in measurement reliability.

Schlumberger Instruments

/ T
 1 shop the specs

because it's my job. But I buy the product because it's my career."

WHAT YOU SHOULD KNOW ABOUT THE NEW PRODRIVE ${ }^{\text {m }}$ SERIES OF $3 ½$-INCH HARD DISK DRIVES FROM QUANTUM.

The numbers are the easy part. Either a product has them or it doesn't.

But you can't build a system out of specs.
You also need dedicated product-support people who will sit down and help you solve some tough engineering problems and put those specs to work.

Quantum is ready to deliver both.

Our new ProDrive Series of $31 / 2$-inch hard disk drives offers you the broadest range of capacities in the broadest range of interfaces in the industry. 42 and 84 megabyte formatted with embedded SCSI interface right now. And later this year, up to 168 megabytes, in SCSI, ESDI, and AT-Bus.Ten new drives in all.

All with access times of 19 ms or less.
With synchronous data transfers to the SCSI bus of 4 megabytes per second, and asynchronous data transfers of 2 megabytes per second.

With an MTBF of 50,000 hours.
And with DisCache,' Quantum's unique 64 kilobyte data-buffering scheme that can make our 19-ms drive perform like a 12-ms drive-or even faster, depending on your application.

But Quantum also offers you the people who can help you put those numbers to work in your own system. A dedicated team of engineering professionals who understand the particular needs of the systems designer-and can help meet those needs quickly, efficiently, cost-effectively.

The new ProDrive Series.The specs you want.The support you need.
That's what Quantum delivers.

Introducing the ProDrive Series

- $31 / 2$-inch form factor
- 42,84, 103, 120, 145, 168 MBs formatted
- SCSI, ESDI, AT-Bus
- 19 ms or faster average access time
- 64 KB buffer with exclusive DisCache ${ }^{\text {w }}$
- 50,000-hour MTBF
- $42,84 \mathrm{MB}$ SCSI
evaluation units AVAILABLE NOW
- 42, 84 MB AT-Bus units available early summer' 88

Quantum

Data transformation explains the basics of neural networks

Doug Conner, Regional Editor

For problems that digital computers can't readily solve, you might soon find that artificial neural networks offer a practical alternative. To obtain an overview of neural networks' capabilities, we developed two simple networks, we simulated them in software, and we built and tested one analog neural-network circuit.

The neural-network approach to data transformation is noteworthy for two reasons. First, neural networks are parallel computing architectures and therefore do not suffer the sequential bottlenecking problems that can occur when a serial processor tries to perform parallel processing. Second, neural networks aren't explicitly programmed with the algorithm that would solve the problem at hand; instead, they must learn to solve the problem.

The ability of feedforward neural networks (also called mapping neural networks) to learn a transformation isn't necessarily an advantage. Among the drawbacks are the need for training data sets (from which the networks can learn) and the need for a learning period. Moreover, neural networks are not well suited to problems requiring high accuracy.

Therefore, most problems for which a known algorithm exists are best solved by executing the algorithm on conventional computers. Neural networks can best solve problems for which no algorithm exists or for which the algorithmic solution is too slow.

Our simple example-a neural network that maps an input X to $\sin (\mathrm{X})$-illustrates the basics of neural
networks. A conventional approach to this problem would involve the use of an approximate mathematical function, such as Taylor's expansion, or the use of a lookup table filled with a series of X and $\sin (\mathrm{X})$ pairs. Of these two approaches, the latter more closely corresponds to a neural-network approach, although significant differences do exist (Fig 1).

With the lookup-table approach, a processor locates the table entries for X that bracket the X input value. Then, the processor interpolates (in the highly likely event that the input isn't identical to an X value in the table) to yield a $\sin (X)$ output. In contrast, a neural network does not perform interpolation. However, before it can convert any X to $\sin (\mathrm{X})$, it must learn to solve such problems. This learning requires a training data set, which could be the same X and $\sin (\mathrm{X})$ values that would go into a lookup table.

No relation to $\sin (\mathrm{X})$

During training, the neural network receives an X input, and a learning algorithm compares the neural network's response with the correct $\sin (\mathrm{X})$ value. The learning algorithm then adjusts weighting factors internal to the network in order to minimize the error between the network's output and the correct response. Note that the learning algorithm has no relation to the $\sin (\mathrm{X})$ function and would be equally useful for enabling the network to learn $\sqrt{\mathrm{X}}$ or e^{x}.

After running through a large number of sample

Because neural networks are parallel computing architectures, they aren't hindered by the bottlenecks that can result when a serial processor attempts parallel processing. Neural networks are best at solving problems for which no algorithm exists or for which an algorithmic solution is too slow.

Fig 1—This simple neural network approximates the transformation of X to $\sin (X)$. The network consists of six processing elements and 16 weights.

The term "feedforward" implies that no processing element output can be an input for a processing element on the same layer or a preceding layer.
pairs from the training set, the neural network, which initially was in some random state, will have learned to some extent the $\mathrm{X}-\mathrm{to}-\sin (\mathrm{X})$ transformation. Once the network has learned the transformation, the learning algorithm is no longer necessary. If the learning algorithm is removed, the network behaves like an analog lookup table: The network receives an input value and generates an output. The ability of the network to learn a transformation is limited by the architecture of the specific network and by the learning algorithm.

Neural-network basics

To understand how neural networks operate, you need to know some details about their design. Fig 1 shows a simple neural network that performs an approximate X-to-sin(X) transformation. A feedforward neural network typically comprises layers of interconnected processing elements. The term "feedforward" implies that no processing element output can be an input for a processing element on the same layer or a preceding layer.

The input layer typically performs no function other than the buffering of the input signal. The next layerthe hidden layer-gets its name from the fact that its outputs are internal to the neural network. Only one hidden layer is shown in Fig 1, but for complex mappings, additional layers might appear between the hidden layer and the output layer.
The interconnects convey analog values. Signals passing through the interconnects are multiplied by the weights associated with that particular interconnect.

Each processing element sums all its inputs and then performs a nonlinear transfer function on the sum, as shown in Fig 2. This nonlinear transfer function is also known as the activation function of a neural network. The activation function can take a number of different forms. Fig 3 shows some typical ones. To provide an offset term for the activation function, all processing elements receive a constant-source input, as shown in Fig 2.
Because the activation function limits the range of values generated by a processing element, you will typically have to scale the output of a neural network. For example, in Fig 1 the output is scaled between -0.8 and +0.8 .
Up to this point we have been discussing the details of a nonlearning neural network; all weights are fixed. During learning the learning algorithm modifies the interconnection weights to reduce the error at the output of the neural network. Ref 1 details a standard learning algorithm for feedforward neural networks. The learning algorithm in Ref 1 adjusts the weights connected to the output layer and then works backward toward the input layer, adjusting weights in each layer. Feedforward networks that use this learning algorithm are called back-propagation networks. Other learning algorithms are also available, and you can develop your own.
Except for simple cases, it is difficult or impossible to know in advance how well a particular neural network will perform in a given application. Therefore, simulation is important for developing neural networks.

Fig 2-In this depiction of a neural network's components, the inputs X_{1} through X_{N} come from either network inputs or from the outputs of other processing elements.

Most neural networks are currently being simulated and implemented on digital computers. By using the high speed floating-point processors now available, digital computers can perform simulations rapidly even though they are executing an inherently parallel process serially.
Two IBM PC/AT-compatible coprocessor boards suitable for neural-network simulation are the ANZA-Plus, from Hecht-Nielsen Neurocomputers Corp (San Diego, CA, (619) 546-8877), and the Delta FPP, from Science Applications International Corp (San Diego, CA, (619) 546-6290).

The ANZA-Plus coprocessor board supports a total of 2.5 million processing elements and interconnects and costs $\$ 14,900$, including software. The Delta FPP coprocessor board supports a total of 3.1 million processing elements and interconnects and costs $\$ 14,895$, including software. (Both companies also offer lower performance products with correspondingly lower prices.)
(a)

(b)

(c)

$X>1, Y=1$
$-1 \leq X \leq 1, \quad Y=x$
$X<-1, Y=-1$

Fig 3-Some typical activation functions include an exponential function that's often used (a), one (b) that's faster to compute in a simulation than the exponential function is, and another (c) that's fast to compute but that places more demands on the learning algorithm.

Neural-network simulation speeds are typically measured using the number of simulated interconnections per second; the ANZA-Plus and the Delta FPP each offer performance in the range of 1 to 10 million interconnections per second, depending on whether the network is in a learning or a nonlearning mode.
To understand how neural networks can be applied to problems, it is instructive to go through the steps involved in developing a simple analog neural network circuit. See box, "Neural network transforms X to $\sin (\mathrm{X})$," for a description of our experience in developing a neural network that performs the X to $\sin (\mathrm{X})$ transformation.

An adaptive filter

Feedforward neural networks do not restrict you to simple single-input and single-output applications such as the $\mathrm{X}-\mathrm{to}-\sin (\mathrm{X})$ example. Another simulation we developed was an adaptive filter using 41 taps of an input waveform. These 41 taps provide inputs to a neural network with eight elements in the hidden layer, as shown in Fig 4. This example uses a total of nine processing elements and a total of 345 interconnects.

Text continued on pg 144

Fig 4-In a 41-tap neural-network filter, each of the 41 inputs is connected to all eight processing elements in the hidden layer. This network has 345 interconnects and nine processing elements.

Neural network transforms \mathbf{X} to $\sin (X)$

To learn more about neural networks and to try the concepts in a circuit, we simulated and then built a circuit that performs the transformation of X to $\sin (\mathrm{X})$ for inputs from $-\pi$ to $+\pi$.

The first step was to learn enough about neural networks to understand the details of how they function and to be able to simulate them on a computer. To satisfy both of these requirements we attended a week long course presented by HechtNielsen Neurocomputers. This course taught us the basics about a variety of the most popular neural network architectures. We also learned to simulate neural networks on a PC/AT-compatible computer using the company's ANZA coprocessor board and Neurosoft software. The only prerequisites for this course were a basic familiarity with MS-DOS and a limited ability in C-language programming.
With the knowledge gained from the course, we were immediately able to start simulating neural networks. We decided to use the X -to- $\sin (\mathrm{X})$ transformation because it would demon-
strate the operation of a mapping neural network yet be simple enough to allow us to build the neural-network circuit.

We experimented with the feedforward network architecture shown in Fig 1 on pg 139. We tried various numbers of processing elements in the hidden layer and settled on five for the circuit. The hidden layer must have at least three processing elements to represent the basic characteristics of the X-to$\sin (\mathrm{X})$ transformation; additional elements improve accuracy, provided the learning algorithm can make use of the additional elements.

The Neurosoft software package provided with the ANZA coprocessor board would not allow us to modify the activation function. Because we anticipated the need to use a special activation function that would be easy to approximate with an electrical circuit, we decided to write our own simulation program for our X-to-sin(X) neural network.

Without the use of the ANZA coprocessor board to accelerate the floating-point computations required in a neural-network

Fig A-A simple analog circuit represents a neural network's processing element.
simulation, our simulation program ran quite slowly, so we took the opportunity to fill the empty 80287 coprocessor socket in our PC/AT. With the coprocessor installed, we saw at least a fourfold improvement in our simulation's execution speed, although the simulation still ran slower than did one running on the ANZA coprocessor board using the canned activation function. Nevertheless, we had the flexibility we needed, and speed was not a problem for the simple network we were simulating.

With a simulation of the neural network to perform the X- to$\sin (\mathrm{X})$ transformation, we were ready to translate the simulation into a circuit. Keeping in mind that we wanted to perform the function shown in Fig 2 on pg 140 with a simple analog circuit, we developed the circuit shown in Fig A.

The circuit is almost an exact analog representation of the desired processing element. Two differences are noteworthy. First, because weights can have both positive and negative values, our Fig A circuit provides complementary outputs, either of which can serve as an input to other processing elements. (We selected the appropriate polarity when installing the weight, or gain-setting, resistors.) The second difference is that our Fig A circuit employs a simple diode clamping circuit for the activation function. We didn't try to approximate a mathematical function such as one shown in Fig 3 on pg 141.
After we developed the Fig A circuit to approximate a processing element, we altered our simulation program to approximate the diode clamping we would be using for the activation function. The neural-network simulation relearned the X -to- $\sin (\mathrm{X})$ transformation, and the results of that simulation are the source of
the weights in Fig 1. The graphic results of the simulation are shown in Fig B.

Confident that our processing element provided an adequate approximation, we designed the
remainder of the circuit, shown in Fig C. We built the circuit, and its response is shown in Fig D. The only change we suggest is to temperature compensate the diode clamping voltages.

This same circuit can approximate $\sqrt{\mathrm{X}}, \mathrm{e}^{\mathrm{x}}$, and many other continuous functions of one variable; all that would change would be the 16 resistors that represent the weights.

Fig B-Shown here are the graphic results of the neuralnetwork simulation we developed to $\operatorname{map} X$ to $\sin (X)$. The input ranges from $-\pi$ to $+\pi$.

Fig D-The circuit shown in Fig C responds as shown here. The upper trace is the input at 2V/div; the lower trace is the output at $0.5 \mathrm{~V} / \mathrm{div}$. Sweep speed is $0.1 \mathrm{msec} / \mathrm{div}$.

Fig C-This analog circuit represents an implementation of the neural network shown in Fig 1 on pg 139.

> Neural networks aren't right for every application, but they do give you another option for solving design problems.

Fig 5-This figure shows the response of an adaptive neuralnetwork filter. The top trace shows the original signal. The middle trace is the original signal plus noise, which was applied to the 41-tap neural network filter. The bottom trace is the filter's output. The photo was taken after 200,000 learning samples. The noise source was random within frequency and amplitude limits.

The simulation for this network was run on the ANZA coprocessor board (the precursor to the ANZA-Plus). Fig 5 shows the neural network's response after 200,000 learning samples using the standard backpropagation learning algorithm.
The filter network example had no digital-filtering information programmed into it. We set the initial weights to random values. An interesting and sometimes frustrating feature of neural networks is that for all but the simplest cases, you have no idea how the network is mapping the input to the output. In the filter example you can run sample waveforms through the network and see the response, but that is all you are likely to find out about how the neural network is filtering a signal.
Working with mapping neural networks requires you to look at problems from a different perspective from the one most of us are accustomed to. The normal approach to solving a design or computational problem is to break the problem down into small units and develop an algorithm for each unit. Because neural networks do not require you to develop the algorithm for each unit, you can think of problems in terms of inputs, transformations and outputs.
For example, a typical control-system application can be viewed as a data-transformation problem. Although neural networks probably cannot compete for simplicity in standard linear control applications, neural networks do have potential in nonlinear applications. A neural-
network control system can learn to use nonlinear sensor information and drive nonlinear actuators without requiring you to develop the control algorithms or use lookup tables. You do, however, have to provide a training set.

Neural networks aren't right for every application, but they do give you another option for solving design problems. At present you are limited to either building neural networks at the component level or using virtual neural-network implementations.

Before you can expect to take advantage of the high speeds possible with parallel implementations of neural networks, integrated circuits that pack more neuralnetwork building blocks into one chip are needed. A number of different research organizations are currently working on the problem. As these neural-network building blocks become available, networks with large numbers of processing elements and real-time processing speed should become practical. The means of simulating large networks, however, is available right now.

Learning algorithms are the other factor that will determine the ultimate success of neural networks. This isn't to say the learning algorithms in use today can't learn well or quickly. It's just that large, multilayered, networks have considerable capability that demand sophisticated learning algorithms to realize their full potential.

Reference

1. McClelland, J L, and Rumelhart, D E (PDP Research Group), Parallel Distributed Processing, MIT Press, Cambridge, MA, 1986, pgs 318-330.

Article Interest Quotient (Circle One) High 485 Medium 486 Low 487

Think SAE
 Stanford Applied Engineering

F connectors, and card cages. Now they are using us as their manufacturing partner. We take total responsibility to design, fabricate, test and deliver a complete "engineered assembly." This allows the OEM to concentrate all their time and monies on marketing and developing new products - not on new and expanded manufacturing facilities and personnel.

Here's why our customers think of us for all phases of their OEM products:

- Engineered Assemblies backplane, wire wrap, card cage, connectors, PCBs, wiring, filters, power supplies, fans, mounting hardware, peripherals, and accessories; complete design, fab and test - ready for your functional test.
- Military MIL-28859/28754 backplanes, NAFI headers; PCBs to MIL-P-55110D.
- Commercial VMEbus, VERSAbus, S-100, DEC, STD, Multibus backplanes; PCBs, OPL to 16 layers, UL to 4 mils.
- Assembly and Test components, wiring and system.
- Connectors commercial and military.
- Filters EMI/RFI, emission test lab.
- Magnetic Components transformers, modules and filters.
- Card Cages custom, kits, and accessories.
- Wire Wrap semi and automatic, numerous formats and test.

Call, write or FAX for our "engineered assembly" brochure and your local representative/distributor...Think SAE!

Stanford Applied Engineering

3520 De La Cruz Blvd., Santa Clara, California 95054 • Ph: (408) 988-0700 • Fax: (408) 727-6438

Let's Stop All This Finger-Pointing And Get Down io Some Serious Name-balling.

When something goes wrong with a computer system, everybody wants to know whose fault it is.

We have a better idea.
Solve the problem first. Point fingers later.

As the leading supplier of high performance peripheral subsystems for VAXs, we've seen
our share of the unspeakable. But we've rarely seen the unsolvable. We're not just talking about emergency service, either. Anyone can come in, smell smoke, and replace the offending device. We're also talking about things that are much more subtle. Like when your system is red-lined and it's still just too \&@\$\%\#! slow.

We can look at a whole system and figure out what went south and why. Sometimes better than the people who built it.

You see, what our subsystems and services do best is make Digital Equipment's processors perform better.

And except for those people whose checks are signed "Olsen,"
we have more trained bodies in the field to back us up than any other company selling in the DEC marketplace.

So you want to call somebody names?

Call us. 800-333-2220.
We'll solve your problems faster than you can say "System Industries."
(s)

Iow cosi

MASTER DEIVEEY

EASIER DESICNS

SPRECIAL NEEEDS

We're meeting your needs, as well, with expert-based design aids. Cell and macro families for PCs and workstations. And a full-service design group.

Another way we can help is with Jerry L. DaBell's handbook,"Successful CellBased ASICs: A Simplified Strategy." Part 1 tells how to choose the best vendor for you. Part 2 tells you how to get better results with fewer headaches. It's required reading and yours free.

To get your "Strategy" and details on
Gould ASICs, call 1-800-GOULD 10. You'll like what you hear.

Manufacturer of Gould AMI

 Semiconductors.
ROHM Semiconductors

 Our reputation for reliability is spreading.
THIS SIGNAL GENERATOR SHOOTS DOWN ALL THE OTHERS

The new 2022C FM/AM Signal Generator is a solid, no-nonsense value that's loaded with every feature you need for manual and ATE use. There are no options to increase your cost.

The 2022C takes all the advantages of our popular 2022A and adds the extra fire-power of +13 dBm RF output for passivecomponent and intermodulation testing. You also get the added versatility of a built-in GPIB that's
there when you need it. Other additions inciude external FM input to allow dual modulation tests on receivers with sub-audible tone signalling and a memoryclear for security in military applications.
If your frequency range is between 10 kHz and 1.0 GHz , the 2022C will prove to be a very cost-effective solution with all the performance you need for AM, FM and $\phi \mathrm{M}$ measurements.

There's even more you should know about the 2022C: 100 Setting Storage \cdot Reverse Power Protection • Accurate and Level Output • Calibration and Diagnostics in Memory •Choice of Calibration Units •

For a demo or literature contact MARCONI INSTRUMENTS,
3 Pearl Court, Allendale, NJ 07401. 1-800-233-2955 • (201) 934-9050. Instruments

Now a network analyzer and a spectrum analyzer in one box. From HP.

The HP 4195A Network/Spectrum Analyzer. It's the one tool you've been waiting for to make development and production testing of your analog devices easier, more flexible-and at half the price of equivalent dedicated analyzer solutions and less than other combination units.

For the first time, you have a combination analyzer with a balanced set of specifications for both vector network and spectrum analysis functions. And, if that weren't enough, you can use it for impedance analysis, too.

The 10 Hz to 500 MHz range of the HP 4195A make it ideal for audio, baseband, HF, VHF, and IF applications. A unique feature is four-channel spectrum
measurement capability that accommodates four independent inputs. The unit features an internal flexible disk drive, color CRT, User Math, User Defined Functions, User Programs for customization-and it's softkey menu driven, making it extremely friendly. As usual, HP delivers value.

Call 1-800-752-0900, Ext. B215.
Ask for your free data sheet on the HP 4195A Network/Spectrum Analyzer. Find out how we got network and spectrum analysis tools with balanced performance into one box for half the price.

Designer's Guide to noise analysis-Part 1

A systematic approach facilitates noise analysis

You can use a systematic analysis technique to determine the noise contributions of the individual elements in an electronic system, no matter how complex it is. This article, part 1 of a 2-part series, describes the noise-analysis technique. Part 2 will show you how to develop an electronic spreadsheet for evaluating the system's overall noise performance as you modify the individual sections for low-noise performance.

Peter Fazekas, ILC Data Device Corp

The magnitude of the noise in a given system may determine whether the system operates as expected, operates marginally, or doesn't operate at all. When you begin a design, therefore, it's essential to consider the effects of the various noise sources throughout the system. Once you've determined the noise contributions of the individual components, you can optimize the system for low-noise performance by replacing or modifying the sections you identify as problem areas.

The task is a complex one, however. Many different noise sources can contribute to the total noise in a system, and when you optimize a particular circuit section to maximize its performance or minimize its noise contribution, you may inadvertently increase the noise in other sections. Systems that have a large
number of noise sources are often difficult to optimize for low-noise performance.

Tasks of this nature and complexity have long been a part of the business world in the form of "what-if" forecasting. The basic tool for this type of analysis is a spreadsheet program that presents statistical data in tabular form. An electronic spreadsheet can instantly show the effects of a change in any single parameter on the overall results. You can use this type of analysis to evaluate the effects of circuit changes on the overall noise performance of a system. Before you can perform such an analysis, however, you must first develop a mathematical model that represents the system in a suitable form.

The effects of noise in linear systems

The three types of noise you must consider when analyzing the performance of devices and circuits are thermal noise, shot noise, and 1/f noise (see box, "The physics of noise"). When optimizing the noise performance of a system, you'll have to determine the actual amount of noise voltage or noise current generated by each component.

If you apply a source having a voltage power spectral density of $\mathrm{P}_{\mathrm{v}}(f)$ In to a circuit with a voltage transfer function of $\mathrm{H}_{\mathrm{V}}(f)$, the resultant output-voltage power spectral density is

$$
\mathrm{P}_{\mathrm{V}}(\mathrm{f}) \mathrm{OUT}=\mathrm{P}_{\mathrm{V}}(\mathrm{f}) \mathrm{IN} \cdot\left|\mathrm{H}_{\mathrm{V}}(\mathrm{f})\right|^{2} .
$$

The three types of noise most important to electronic-circuit designers are thermal noise, shot noise, and l/f noise.

The rms value of the voltage represented by the output power spectral density is

$$
\sqrt{\overline{\mathrm{V}}_{\text {OUT }}}=\left[\int_{0}^{\infty} \mathrm{P}_{\mathrm{V}}(\mathrm{f})_{\text {OUT }} \cdot \mathrm{df}\right]^{1 / 2} .
$$

Referenced to the source, the rms value of the voltage is

$$
\sqrt{\overline{\mathrm{V}_{\text {OUT }}{ }^{2}}}=\left[\int_{0}^{\infty} \mathrm{P}_{\mathrm{V}}(\mathrm{f})_{\mathrm{IN}} \cdot\left|\mathrm{H}_{\mathrm{V}}(\mathrm{f})\right|^{2} \mathrm{df}\right]^{1 / 2} .
$$

You can represent the power spectral density of a noise source as either a voltage source, $\mathrm{P}_{\mathrm{V}}(\mathrm{f})$, in series with its generating resistance R, or a current source, $P_{\mathrm{I}}(\mathrm{f})$, in parallel with resistance R. You can convert from one type to the other in the following manner:

- The value of the voltage power spectral density divided by the series resistance squared gives the current power spectral density: $\mathrm{P}_{\mathrm{I}}(\mathrm{f})=\mathrm{P}_{\mathrm{V}}(\mathrm{f}) / \mathrm{R}^{2}$.
- The value of the current power spectral density multiplied by the parallel resistance squared gives the voltage power spectral density: $P_{V}(f)=P_{I}(f) \cdot R^{2}$.
For example, the voltage power spectral density of the noise generated by a resistance, R, is $\mathrm{P}_{\mathrm{V}}(\mathrm{f})=4 \mathrm{KTR}$; as a current power spectral density, the noise is
$P_{I}(f)=4 K T R / R^{2}=4 K T / R$.
You can also express the transfer function of the circuit as any combination of voltage or current input and voltage or current output. You should take care to use the correct form of the transfer function so as to match the input form to the type of output required.

Because the shape of an arbitrary filter can take a number of forms, the filter's $-3-\mathrm{dB}$ point alone can't define its noise characteristics. To determine total noise output, you can use the the concept of noise equivalent bandwidth (NEBW). The NEBW of a circuit is the bandwidth of an ideal filter (with vertical sides and identical midband gain) that passes the same amount of power that the real filter does. In this case, bandwidth is defined as the difference between the high and low corner frequencies of the ideal filter.

Therefore, the value of the power (voltage squared) due to a source $P(f)$ passed through a circuit with a transfer function $\mathrm{H}(\mathrm{f})$ is

$$
\overline{\mathrm{V}_{\text {out }}}=\int_{0}^{\infty} \mathrm{P}(\mathrm{f})_{\mathrm{IN}} \cdot|\mathrm{H}(\mathrm{f})|^{2} \mathrm{df} .
$$

If the function $\mathrm{P}(\mathrm{f})$ is independent of frequency (as with thermal or shot noise at low frequency) you can move it outside of the integral sign, which results in

The physics of noise

The three types of noise you generally need to consider when designing electronic circuits are thermal noise, shot noise, and 1/f noise.

Thermal noise derives its name from its characteristic change in magnitude as a function of temperature. Any material that conducts electricity does so as a result of the free electrons that exist in the volume of the substance. These electrons are in constant motion, randomly colliding with each other. On the average, these electrons are evenly distributed throughout the bulk of the material. However, because of their random action, they do exhibit a
statistical deviation from neutrality.

The effect of this deviation is to generate a voltage drop at the terminals of the conductor. The higher the temperature, the more energy the free electrons have, which greatly increases the probability that the electrons will be unevenly distributed. This uneven distribution results in a higher output voltage. Thermal noise, which is zero for a perfect conductor, also increases with an increase in the value of any resistance. The voltage power spectral density of thermal noise is $\mathrm{P}_{\mathrm{v}}(\mathrm{f})=4 \mathrm{KTR}$, where $\mathrm{P}_{\mathrm{v}}(f)$ is the frequency-dependent voltage power spectral
density, K is Boltzman's constant $\left(1.38^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}\right), \mathrm{T}$ is the temperature in ${ }^{\circ} \mathrm{K}$, and R is the resistance of the material in ohms.

Thermal noise exhibits no change in magnitude as a function of frequency, and can be considered to be white noise, whose name implies that all frequencies are present (just as all colors are present in white light). The contribution of white noise is limited only by the bandwidth of the circuit.

Shot noise is caused by the quantum nature of electron flow. In semiconductor devices, this effect is due to the random diffusion of minority carriers and the

$$
\overline{\mathrm{V}_{\text {out }}{ }^{2}}=\mathrm{P}(\mathrm{f})_{\mathrm{IN}} \cdot \int_{0}^{\infty}|\mathrm{H}(\mathrm{f})|^{2} \mathrm{df} .
$$

The second half of this equation, normalized to unity, is the NEBW of the circuit. The resulting NEBW is

$$
1 /|\mathrm{H}(\mathrm{fm})|^{2} \cdot \int_{0}^{\infty}|\mathrm{H}(\mathrm{f})|^{2} \mathrm{df},
$$

where $\mathrm{H}(\mathrm{fm})$ is the transfer function at the midband frequency, fm.

A sample calculation illustrates the approach. Let the filter be a simple first-order lowpass type with

$$
\mathrm{H}(\mathrm{f})=1 /\left(1+\mathrm{j}\left(\mathrm{f} / \mathrm{f}_{\mathrm{e}}\right)\right),
$$

where f_{c} is the $-3-d B$ frequency.
The midband gain, $\mathrm{H}(\mathrm{fm})$, is unity, and

$$
|H(f)|^{2}=1 /\left(1+\left(f / f_{\mathrm{C}}\right)^{2}\right) .
$$

Therefore, the NEBW is

$$
1 \cdot \int_{0}^{\infty} 1 /\left(1+\left(f / \mathrm{f}_{\mathrm{C}}\right)^{2}\right) \mathrm{df}
$$

Since, by definition, $\quad \int 1 /(1+\mathrm{U} \cdot \mathrm{f}) \mathrm{df} \quad=1 / \sqrt{\mathrm{U}}$ $\cdot \arctan (f \cdot \sqrt{\mathrm{U}})$, and the substitution $\mathrm{U}=1 / \mathrm{fc}^{2}$ can be made, the NEBW is

$$
1 /\left.\mathrm{f}_{\mathrm{C}} \cdot \arctan \left(\mathrm{f} / \mathrm{f}_{\mathrm{C}}\right)\right|_{0} ^{\infty}=\pi / 2 \cdot \mathrm{f}_{\mathrm{C}}-0=\pi / 2 \mathrm{f}_{\mathrm{C}}
$$

For a lowpass filter, the NEBW is $\Pi / 2 \cdot \mathrm{fc}$; for a highpass filter, the NEBW is $2 / \Pi \cdot f$ c.
The value $\sqrt{\mathrm{P}(\mathrm{f})}$ is often provided by component manufacturers and referred to as the equivalent input noise in units of volts per root hertz $(\mathrm{V} / \sqrt{\mathrm{Hz}})$ or amps per root hertz $(\mathrm{A} / \sqrt{\mathrm{Hz}})$. The rms voltage at the output of the filter having a flat input-noise spectral density is

$$
\sqrt{\mathrm{P}(\mathrm{f})_{\mathrm{IN}}} \cdot\left[\int_{0}^{\infty}|\mathrm{H}(\mathrm{f})|^{2} \mathrm{df}\right]^{1 / 2} .
$$

Evidently, this value is simply the input equivalent noise multiplied by the square root of the NEBW.

Filtered noise characteristics

Assuming that it's flat with respect to frequency, the total rms noise passed through a filter is the equivalent input noise multiplied by the square root of the NEBW. For example, a standard 741 op amp has a white-noise
random generation and recombination electron-hole pairs. At a given temperature and voltage, the current flowing through a semiconductor will be relatively constant. This current is the result of a large number of electrons flowing in the same general direction; each electron has a random component. It is this random component that causes shot noise. The current power spectral density of shot noise is $P_{I}(f)=2 q i$, where $P_{I}(f)$ is the fre-quency-dependent current power spectral density, q is the charge on one electron ($1.59^{-23} \mathrm{C}$), and I is the current flowing through the device. As is the case with thermal noise, shot noise is inde-
pendent of frequency to very high frequencies, and it can be considered to be white noise.

As its name implies, $1 / \mathrm{f}$ noise has a voltage power spectral density that varies as $\mathrm{P}_{\mathrm{v}}(\mathrm{f})=\mathrm{Kf} / \mathrm{f}^{\mathrm{a}}$, where $K f$ is a device parameter (such as $1 \mu \mathrm{~V}$ in the relationship $1 \mu \mathrm{~V} / \sqrt{\mathrm{Hz}})$ and a is a factor between 0.8 and 1.4 (but it's normally set to 1).

This type of noise exists in all electrical devices-it has been measured in bulk resistors, junction semiconductors, metal film, superconductors, and electrolytic solutions. Regardless of where it occurs or what causes it, noise that varies with frequency is usually called 1 /f noise. It's also
referred to as current noise, excess noise, flicker noise, semiconductor noise, and contact noise.
The cause of $1 / \mathrm{f}$ noise is not well understood, but current knowledge of this type of noise is drawn from a large pool of experimental data. Noise of this power spectral density is measurable and observable in the 10^{-6} - to $10^{6}-\mathrm{Hz}$ range, which agrees with theoretically predicted levels.

Because the magnitude of thermal noise is frequency independent over the circuit's bandwidth, it falls into the category of white noise.
floor that's specified as $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. If this noise passes through a filter with an NEBW of 10 kHz , the total rms voltage at the output is

$$
15 \mathrm{nV} / \sqrt{\mathrm{Hz}} \cdot \mathrm{NEBW}=1500 \mathrm{nV}
$$

If the noise spectral density is not independent of frequency, you'll have to evaluate the integral of

$$
\mathrm{V}_{\text {OUT }}=\left[\int_{0}^{\infty} \mathrm{P}_{\mathrm{V}}(\mathrm{f})_{\mathrm{IN}} \cdot|\mathrm{H}(\mathrm{f})|^{2} \mathrm{df}\right]^{1 / 2}
$$

Designers frequently use numerical methods for the integration because the integration is often complex.

A common noise spectral density that's frequency dependent is $1 / \mathrm{f}$ noise, which has a voltage power spectral density of $\mathrm{P}_{\mathrm{V}}(\mathrm{f})=\mathrm{en} / \mathrm{f}^{\mathrm{a}}$ (a is set at unity). The rms voltage due to this type of source is

$$
V_{\text {OUT }}=\int_{F_{L}}^{F_{H}}\left(e_{n} / f\right) d f=\left.e_{n} \cdot \log n(f)\right|_{F_{L}} ^{F_{H}} .
$$

If you take the low-frequency limit as 0 Hz , the output voltage is infinite. To have a true $0-\mathrm{Hz}$ limit, the circuit would have to exist in its On state for an infinite period of time. Even a measurement period of 30 days generates a low-frequency limit of only 0.00000039 Hz , thus limiting the total noise to a finite value.

You determine the total rms noise voltage by evaluating $\mathrm{V}_{\text {out }}$ with the appropriate frequency limits. These frequencies are the corner points of the ideal filter, represented by the NEBW. For example, assume you wish to calculate the rms noise voltage of a circuit with the following characteristics:

- First-order low-frequency corner at 0.3 Hz
- First-order high-frequency corner at 30 kHz
- $1 / \mathrm{f}$ noise source of $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz

The results of the calculations are

- Low-frequency corner: $f_{L}=0.3 \cdot(2 / \Pi=0.191 \mathrm{~Hz}$
- High-frequency corner: $\mathrm{f}_{\mathrm{H}}=30,000 \cdot(\Pi / 2)=47.124$ kHz
- Total rms noise voltage: $1 \mathrm{nV} \cdot \log _{\mathrm{n}}\left(\mathrm{f}_{\mathrm{H}} / \mathrm{f}_{\mathrm{L}}\right)=12.4 \mathrm{nV}$

Multiple filter combinations

In a system that has a number of filters in the noise path, each with different frequency characteristics, you'll have to combine these characteristics into a final result to determine the NEBW of the circuit. This process is often long and difficult because of the com-
plexity of the integrations. If an approximation of the NEBW is adequate, the following relationships are useful: If two first-order filters are in series, the combined filter has an NEBW higher than either one for highpass filters, and lower than either one for lowpass filters. If the ratio of the higher-to-lower corner frequency is R, then the ratio of the combined NEBW to the $-3-\mathrm{dB}$ corner frequency of the dominant pole is equal to $\Pi / 2 \cdot(1-(1 / 1+\mathrm{R}))$ for a lowpass filter and $2 / \Pi /(1-(1 / 1+R))$ for a highpass filter. The coefficient $(1-(1 / 1+R))$ adjusts the NEBW of the dominant frequency.

If more than two filters are in series, you should combine their characteristics by calculating the NEBW for the first two, and then combine the result with the next filter. You continue this process until you've considered all of the filters. For example, if there are two first-order lowpass poles, one at 10 Hz and the other at 45 Hz , the ratio R is 4.5 and the correction factor is $1-(1 /(1+\mathrm{R}))=0.818$. The NEBW of the dominant $10-\mathrm{Hz}$ pole is 15.7 Hz , and the combined NEBW of the two filters is $15.7 \cdot 0.818=12.85 \mathrm{~Hz}$.

Superposition and noise-source combinations

The superposition theory holds for noise sources in the frequency domain. In other words, if two independent sources, $V_{1}(t)$ and $V_{2}(t)$, are summed to form $V(t)$, the resultant power spectral density is $\mathrm{P}_{\mathrm{V}}(\mathrm{f})=\mathrm{P}_{1}(\mathrm{f})+\mathrm{P}_{2}(\mathrm{f})$. The implication is that when two sources are combined, the rms value of the result is equal to the root of the sum of the squares of the rms value of the individual sources.

You can extend this principal to an arbitrary number of sources. If you write the rms value of each noise source as V_{N}, the total output is

$$
\mathrm{V}_{\mathrm{T}}=\sqrt{\left.\mathrm{V}_{1}^{2}+\mathrm{V}_{2}^{2}+\mathrm{V}_{3}^{2} \ldots \mathrm{~V}_{\mathrm{N}}^{2}\right)}
$$

By using this theory, you can evaluate the total noise of a large system that has multiple noise sources. With this basic knowledge of the properties of electronic noise and how it behaves in electrical circuits, you've taken the first step in being able to predict the noise performance of entire systems. The next step is to understand the noise contributions of the individual components.

The dominant noise in bulk conducting material is thermal noise. The model used to represent bulk material is a noiseless resistor with an ohmic value the same as that of the bulk material, and an ideal noise source
(either in series with or parallel to the resistor). If the source is in series, it has a voltage power spectral density of $P_{V}(f)=4 \mathrm{KTR}$. If the source is parallel, it has a current power spectral density of $P_{I}=4 \mathrm{KT} / \mathrm{R}$. $\mathrm{P}_{\mathrm{V}}(\mathrm{f})$ and $\mathrm{P}_{\mathrm{I}}(\mathrm{f})$ are the voltage and current power spectral densities, respectively; K is Boltzman's constant ($1.38 \cdot 10^{-23}$ $\mathrm{J} /{ }^{\circ} \mathrm{K} ; \mathrm{T}$ is the temperature in ${ }^{\circ} \mathrm{K} ; \mathrm{R}$ is the resistance in ohms.

The actual noise measured may be greater than the predicted value. This additional noise is known as excess noise, and it has a 1/f spectral response. This noise is proportional to the voltage drop across the resistor and is usually defined by a quantity called the "noise index." The noise index (measured in dB) is the microvolts of noise per dc volts across the resistor in each decade of frequency. The amount of excess noise depends on the method of manufacture of the resistor. Carbon-composition resistors generally have a noise index in the range of +10 to -20 dB . Carbon-film resistors range from -10 to -25 dB , and metal-film resistors and wire-wound resistors range from -15 to -40 dB . Fig 1a illustrates the model.

You can model a junction diode (Fig 1b) by a resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$, which represents the ohmic region of the diode, in series with a current source $\left(I_{D}\right)$, which represents the diode current. The thermal noise of the diode has a current power spectral density of $\mathrm{P}_{\mathrm{I}}(\mathrm{f})=4 \mathrm{KT} / \mathrm{R}_{\mathrm{S}}$. The noise representing the current source has two components: shot noise and $1 / \mathrm{f}$ noise. Shot noise has a current power spectral density of $P_{I}(f)=2 q \cdot I_{D}$, where q is the charge on one electron. The $1 / \mathrm{f}$ noise has a current power spectral density of

$$
P_{I}(f)=\left(K f / f^{a}\right) I_{D}{ }^{A f} .
$$

You must determine the values of $K f, A f$, and a either experimentally or from curves provided by the manufacturer. $K f$ is a device constant, $A f$ is a process parameter, and a is a constant with a value near unity. The characteristics of the device and the nature of the circuit that it's used in determine the need to include the $1 / \mathrm{f}$ component in the overall evaluation.

Fig $\mathbf{1 c}$ is a simple model of a bipolar junction transistor (BJT). The three resistors produce current power spectral densities of $\mathrm{P}_{\mathrm{I}}(\mathrm{f})=4 \mathrm{KT} / \mathrm{R}_{\mathrm{B}}, \mathrm{P}_{\mathrm{I}}(\mathrm{f})=4 \mathrm{KT} / \mathrm{R}_{\mathrm{C}}$, and $P_{\mathrm{I}}(\mathrm{f})=4 \mathrm{KT} / \mathrm{R}_{\mathrm{E}}$. The base-current source contains components of shot noise and $1 / \mathrm{f}$ noise, and has a current power spectral density of:

$$
\mathrm{P}_{\mathrm{I}}(\mathrm{f})=2 \mathrm{q} \cdot \mathrm{I}_{\mathrm{B}}+\left(\mathrm{Kf} / \mathrm{f}^{\mathrm{a}}\right) \mathrm{I}_{\mathrm{B}}^{\mathrm{Af}} .
$$

Fig 1-You can use these models to evaluate the noise characteristics of passive and active components.

As its name implies, $1 / f$ noise is frequency dependent. Although it exists in all electrical devices, l/f noise is poorly understood.

The collector-current source has only a shot-noise term; it has a current power spectral density of

$$
\mathrm{P}_{\mathrm{I}}(\mathrm{f})=2 \mathrm{q} \cdot \mathrm{I}_{\mathrm{C}}
$$

You can modify the transistor model to suit the conditions under which you use it, adding second-order components as necessary. Resistors will contribute thermal noise to the model, and capacitors will alter the transfer function between the source of noise and the measurement point (the system's output).

Noise models for JFETs and MOSFETs

Fig 1d is a representative model of a JFET. The drain resistor $\left(R_{D}\right)$ and the source resistor $\left(R_{S}\right)$ contribute thermal-noise components that have current power spectral densities of $P_{I}(f)=4 K T / R_{D}$ and $P_{I}(f)=4 K T / R_{S}$. The drain current flows through the variable bulk resistance of the channel, which is not a semiconductor junction. For this reason, the noise power spectral
density is that of the equivalent channel resistance:

$$
\mathrm{P}_{\mathrm{I}}(\mathrm{f})=4 \mathrm{KT} / \mathrm{R}_{\mathrm{D}}+\left(\mathrm{Kf} / \mathrm{f}^{\mathrm{a}}\right) \cdot \mathrm{I}_{\mathrm{D}} \mathrm{Af}^{\mathrm{Af}},
$$

where R_{D} is the small-signal channel resistance at the operating point. Because the conductance of the channel $\left(1 / R_{D}\right)$ is equal to $2 / 3 . \mathrm{gm}$ (sat) over the normal biasing range, the current power spectral density is

$$
P_{I}(f)=8 \mathrm{KT} \cdot \mathrm{gm}(\mathrm{SAT}) / 3+\left(\mathrm{Kf} / \mathrm{f}^{\mathrm{a}}\right) \mathrm{I}_{\mathrm{D}}{ }^{\mathrm{Af}} .
$$

Note that a good silicon JFET has no observable 1/f noise, and its $K f$ coefficient is zero. Gallium arsenide JFETs do exhibit 1/f noise, and you'll have to include that noise in your calculations.

Fig 1 e is the model for a MOSFET. The formulas for the current power spectral density of the drain resistor and the source resistor are the same as those for the JFET, as is the formula for the drain-current power spectral density.

Fig 2-For evaluating op amps in various configurations, you can use the noise models shown here.

1988 Catalog

Test \& Measurement Instrumentation

Solutions for Research \&
Development,
Manufacturing,
Calibration
and Service.

Brace your shelf.

The new Fluke catalog is about to hit your desk, carrying the entire Fluke and Philips lineup of test and measurement gear. Twice as many pages, and twice as many T\&M products.

All backed by Fluke's ironclad support. Call your local sales office, or 1-800-44-FLUKE to get a copy. Then brace yourself - and your shelf - for the full weight of our global alliance.

To properly evaluate the noise contributions of active and passive devices, you must first construct an accurate model.

You can represent the model of a noisy op amp by a noiseless op amp (Fig 2a) and two noise sources, one a voltage source and the other a current source. Each of these sources has a white-noise component that's independent of frequency, and each sometimes has a significant $1 / f$ component.

In practice, you always set up an op amp as either an inverting amplifier (Fig 2c) or a noninverting amplifier (Fig 2b) that includes resistors in the circuit to set the gain. To simplify the evaluation of the magnitude of each noise source at the output of the amplifier, you can bring the sources outside the feedback loop.

Fig 2d shows the noninverting configuration. R_{1} and R_{2}, which are in parallel, simulate the current noise flowing in the feedback resistors, and the thermal noise of the two resistors is added to the value of E_{N} ' so that

$$
\begin{aligned}
\mathrm{E}_{\mathrm{N}^{\prime}}{ }^{2} & =\mathrm{E}_{\mathrm{N}^{2}}+\left(4 \mathrm{KT} \cdot\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{1} / / \mathrm{R}_{2}\right)\right)^{2} \\
\mathrm{I}_{\mathrm{N}^{\prime}} & =\mathrm{I}_{\mathrm{N}} .
\end{aligned}
$$

To obtain the inverting configuration, you can move the sources outside the feedback loop if you add the noise generated by the feedback resistors (Fig 2e). The sources take on the following new values:

$$
\begin{gathered}
\mathrm{E}_{\mathrm{N}}^{\prime 2}=\mathrm{E}_{\mathrm{N}}{ }^{2}+\left(4 \mathrm{KT} \cdot\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{2}\right)\right)^{2} \\
\text { and } \mathrm{I}_{\mathrm{N}}{ }^{\prime 2}=\mathrm{I}_{\mathrm{N}}{ }^{2}+\left(4 \mathrm{KT} / \mathrm{R}_{1}\right)^{2} .
\end{gathered}
$$

You can find out the op amp's noise characteristics from its data sheet. The data sheet usually gives the white-noise component (comprising thermal noise and shot noise) in $\mathrm{A} / \sqrt{\mathrm{Hz}}$ or $\mathrm{V} / \sqrt{\mathrm{Hz}}$, either of which is the square root of the power spectral density, and represents the amount of noise in a $1-\mathrm{Hz}$ segment of the spectrum. The data sheet usually gives the $1 / \mathrm{f}$ noise as the $1 / \mathrm{f}$ corner frequency, and, at this frequency, the amplitudes of the $1 / \mathrm{f}$ noise and the white noise are equal. Because the amplitude of the $1 / \mathrm{f}$ noise at a specific frequency is known, and the shape of the power spectral density curve is $\Pi(f)=\mathrm{Kf} / \mathrm{f}^{\text {a }}$, you can generate the equation for the overall curve. If you don't have a value for the a coefficient, you can set it to 1 without significant error.

Digitization noise

An A/D converter takes a continuous function of time and breaks it into discrete steps represented by a digital word. By its very nature, the digital representation of the voltage is an approximation. This approximation introduces a quantization error at each conversion,
which is observable as quantization noise. This noise is equal to the amplitude of 1 LSB of the A / D converter, multiplied by $\sqrt{12}$.

In general, electronic systems use two different types of transducers: passive and active. A passive transducer modifies a reference voltage or current according to external stimuli. Resistive strain gauges and carbon microphones are examples of passive transducers. An active transducer produces a current or voltage that is proportional to the external stimuli. Piezoelectric crystals and photovoltaic cells are examples of active transducers.

In analyzing each type of transducer for noise performance, consider that resistive components will contribute thermal noise, and active sections will contribute shot noise and (possibly) 1/f noise. In passive transducers, the power source adds to the total noise.

In addition, background acoustic noise from a microphone or mechanical vibration from a strain gauge can generate transducer-related noise in the system you're measuring. These factors are beyond the control of the electronic designer, and they set an upper limit on the system's signal-to-noise ratio. In a background-limited system, the electronic circuits contribute less noise than does the background, and no further electronic improvements are necessary.

Power-supply noise contributions

Further, don't ignore the noise contributions of the power supply. Every component that operates from the power supply has a limited ability to isolate noise at its supply terminals and prevent that noise from passing through to the circuit's output. This ability is called the power-supply rejection ratio (PSRR), and it's usually expressed in dB . For example, a PSRR of 20 dB means that the noise passing into the signal path from the power supply is attenuated by 20 dB . In the case of active components, this noise is multiplied by the stage gain.

The PSRR curve is not independent of frequency. It has approximately the same shape as a first-order lowpass filter: It's essentially flat until the breakpoint, and then it decreases at a rate of 20 dB per decade. To perform noise analysis, you apply a source (specifically, a source whose noise spectrum is identical to that of the power supply) to the input of the amplifier through a lowpass filter. This filter's attenuation characteristics should be the same as the PSRR curve of the amplifier. If, for example, the PSRR of the amplifier is 80 dB , the filter should have 80 dB of attenuation to the specified

FLUKE

 PHILIPS

Switch Hit

If you're like most test-and-measurement people, you have trouble finding automatic switching systems that hit both your budget targets and your testing needs. Not to mention your space constraints.

Meet the Philips System 21, a whole family of handy intelligent modules, all tied to a master unit with a single GPIB address.

You can start with just two unitsa master and slave-then expand as far
as you like, adding modules as your needs grow.

Your options include most common switching and I/O functions, plus an 18 GHz switch, an analog-to-digital converter, a user-adaptable module and much more.

And you only pay for the functions you need.

Which means you can build a working system for under a thousand dollars, and additions are even more affordable.

Plus you have Fluke service and support just a phone call away.

How's that for a hit?
Our free System 21 Catalog explains it all. For your copy, just call toll-free:
1-800-44-FLUKE ext. 77.

[^11]

ECA-2 is a high performance, low cost analog circuit simulator. ECA-2 2.31 includes more models, increased graphics capabilities, increased AC analysis speed, and expanded documentation. Now available for the MacIntosh.

ECA-2 Offers

- AC, DC, Transient
- Fourier, Temperature
- Worst-case, Monte Carlo
- Interactive or batch
- SPICE compatible models
- Twice as fast as SPICE
- Sine, Pulse, PWL, SFFM, and Exponential generators - Money back guarantee

ECA-Ace, a subset of ECA-2, $\mathbf{\$ 1 4 5}$
ECA-2 IBM PC or Mac ${ }^{5} 675$
Call 313-663-8810 For FREE DEMO disk

CIRCLE NO 16

breakpoint, and then should reduce its attenuation by 20 dB per decade.

Power-supply noise can take the form of white noise (both thermal noise and shot noise), $1 / \mathrm{f}$ noise, and noise at discrete frequencies such as 60 Hz . This noise usually has some form of bandlimiting, either in the power supply itself or outside the power supply. The attenuation of the filter limits the amount of noise entering the system.

Once you've analyzed both the noise characteristics of the components in an electronic system, and the way the system modifies the noise, you need only compile the results to understand the system's entire operation. Part 2 of this series will demonstrate a method for compiling the results with an electronic spreadsheet.

EDN

References

1. Bohn, D, Audio Handbook, National Semiconductor Corp, 1976.
2. Buckingham, M J, Noise in Electronic Devices \& Systems, John Wiley \& Sons, New York, NY, 1983.
3. Fitchen, F C, Low Noise Electronic Design, John Wiley \& Sons, New York, NY, 1973.
4. Lathi, B P, Signals, Systems \& Communications, John Wiley \& Sons, New York, NY, 1965.

Author's biography

Peter Fazekas is a senior design engineer at ILC Data Device Corp (DDC) (Bohemia, NY), where he's currently responsible for the design of hybrid microcircuits. Before joining DDC two years ago, he was employed by Spar Aerospace Ltd in Toronto, Canada. Peter holds a BA in science from the University of Toronto. In his spare
 time, he enjoys racquetball, scuba diving, and underwater photography.

Article Interest Quotient (Circle One) High 482 Medium 483 Low 484

12 BIT TIME \& FREQUENCY FOR \$3995!

TIME OR FREQUENCY AT THE PUSH OF A BUTTON.

The R350 is a PC-based 12-bit, 2-channel, 500 KHz , realtime, FFT spectrum analyzer. Sample 2 channels simultaneously. 32 K data buffers. Autosave spectrums to hard or floppy disk. Two modes of spectrum averaging. Fully differential inputs. Linear or log amplitude scaling. Amplitude and frequency cursor. Display spectrums 5 to 10 times a second. Print, store, retrieve and overlay spectrums. 500 KHz antialiasing filters on each channel, 80 db of dynamic range.

The R350 is a PC-based 12-bit Digital Oscilloscope. Sample 2 channels simultaneously at 1 MHz . 32 K data buffers per channel. EMI protected metal case with power supply. Switchable differential or single ended input impedance. Software-selectable gain ranges allow resolution of $200 \mu \mathrm{v}$ to 500 volts. Full analog and 100% digital triggering. Trigger adjust potentiometer. Fully differential inputs for signal integrity. Vertical waveform zooming. Autosave. Software drivers for
"C", BASIC, and Turbo-Pascal.

At Rapid Systems, 12 bit spectrum analyzers and digital oscilloscopes are no longer separate and distinct instruments, each with its own high cost.

Now you can afford both, in one PC-based instrument: the Rapid Systems R350.

A 12 bit, $1 \mathrm{MHz}, 2$-channel FFT analyzer and digital scope for only $\$ 3995$.

PC-based to make you more productive.
The R350 is PC-based, of course. All Rapid Systems instruments are PC-based: designed, manufactured and tested to be ready to operate, the minute you receive them.

Plug the R350 into a personal computer, slip in the software disk, and you're ready to go to work. Totally turnkey. It's that simple and easy to use.

Call now for a demonstration.

For your free copy of the new Rapid Systems catalog, to order, arrange a demonstration, or for further information, call or write Rapid Systems, 433 N. 34th St., Seattle, WA 98103. (206) 547-8311, Telex: 265017UR.

RAPID SYSTEMS

Changing the way we think about instruments.

High-resolution conversion

in the blink of an eye.

Get video speed, low power consumption, high resolution and superior price/performance with our new CMOS data converters.

We've expanded our line to include more CMOS flash ADC's, a charge balancing ADC, an SPI ADC and a DAC. All featuring single 5 V supply operation.

We also offer a new high-speed op amp especially wellsuited to driving ADC's or video cables.

4, 6 and 8-bit CMOS flash ADC's.

Choose from 4,6 and 8-bit ADC's. All operate at video speeds, with clocking speed and input bandwidth specified at 5 V . What makes these flash ADC's special is silicon-onsapphire construction, resulting in low cost, high speed, very low input capacitance, low power consumption and inherent latch-up resistance.

10-bit CMOS charge balancing ADC.

This 10-bit successive approximation ADC captures fast moving signals, providing excellent resolution.

It features a built-in fast track and hold, with conversion rates of 150 KHz and an input bandwidth of 1.5 MHz . Even at the maximum rate, power consumption is less than 20 mW .

10-bit CMOS serial ADC.

The CDP68HC68A2 is selectable for either 8- or 10-bit resolution and has an 8 -channel multiplexer allowing up to 8 channels of inputs. The device can be used directly with our CDP68HC05C4, C8 or D2 microprocessors or other similar SPI (Serial Peripheral Interface) buses.

8-hit CMOS R-2R video-speed DAC's.

These CMOS/SOS digital-to-analog converters operate

from a single 5 V supply at video speeds and can produce "rail-to-rail" output swings. Typical update rate is 50 MHz . Settling is fast (20 ns typical) to $1 / 2 \mathrm{LSB}$. "Glitch" energy is minimized by segmenting and bar graph decoding of upper 3 bits.

High-speed op amp.
Specially designed for use with data converters, the CA3450 op amp has excellent speed and transmission line driving capabilities.

For 10-bit accuracy, it settles to within $1 / 2 \mathrm{LSB}$ in 40 ns with a 2 V input signal. And it can drive up to four 50 ohm transmission lines.

ADC's	Res. Bits	Conv.Rate Hz	Power Diss. (MW)	Pkg. Leads	1 K Price
CA3304E	4	20M	30	16	2.95
CA3304AE	4	25M	35	16	4.50
CA3306CE	6	10 M	65	18	5.50
CA3306E/3306AE	6	15M	70	18	6.25/11.25
CA3318E/3318CE	8	15M	150	24	38.50/24.00
CA3310E/3310AE	10	150 K	15	24	6.00/8.00
CDP68HC68A2E	10	10K	15	16	3.75
DAC's					
CA3338E/3338AE	8	50M	100	16	6.00/8.40
OP AMP	UGBW Hz	Slew Rate (X10)	Iout MA	Pkg Leads	1K Price
CA3450E	200M	$300 \mathrm{~V} / \mu \mathrm{Sec}$	± 75	16	2.70

Data in a flash.

For data sheets of these new products, call toll-free 800-443-7364, extension 19. Or contact your local GE Solid State sales office or distributor.

In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm (08) 793-9500.

${ }^{4}$ WIIHTHE EXCEPTION
 or minatisoris AMERICAN GENERAL, 1908

"TG GOT POSSIBLITES, BUTMG FOR MY APPLCATOWN:

DESIGN ENGINEER, 1988

Over the centuries, people have looked at the latest in technology with a bit of skepticism. The Transputer from INMOS is no exception.

When we first introduced the Transputer, designers were indeed intrigued. They were impressed with our T800-a 32-bit floating point microprocessor with an average speed of 10 MIPS and the ability to sustain 1.5 MFLOPS or 4.0 million single precision whetstones. "Incredible," designers said. "But it's more than we can use."

Not true. The fact is as a stand-alone processor, the T 800 gives you benefits you can use every day. It runs programs even faster than Intel's combined 80386 and 80387 or Motorola's combined 68020 and 68881 . Plus, it requires significantly less memory to hold compiled code.

And, by increasing the number of Transputers, you can increase system performance proportionally
with no limit to the number of Transputers that can operate concurrently. Like linking seven T800's together to give you the processing power of a mighty Cray IS supercomputer.

Or you could use ten IBM add-in cards from INMOScarrying ten T800's each, to enable your desktop PC to deliver 150 MFLOPS. That's like having the power of $15011 / 780$ VAX machines right at your fingertips.

So take another look at the Transputer. It's not just a dream for the future, it's a high-performance product for today. And it's a technology that is already taking off.

TRANSPUTER
 Oinmos

[^12]
How to tame your power hog:

Spec-in Harris bipolar low-power op amps: power savings as good as CMOS op amps, AClike never before.

Portable systems designers: the compromising is over. O-V-E-R.

Now get the low-noise and high-speed performance you want - with the micropower consumption portable systems demand.

Low-power Harris op amps offer all the muscle of general-purpose amps, but only $1 / 30$ the power use. (HA-514X series amps typically draw just $45 \mu \mathrm{~A}$ per amplifier; new 515X amps only 200μ A per amplifier.) No other op amp comes close to matching this combination.

They're available as singles (5141 or 5151), duals (5142 or 5152) or quads (5144 or 5154); in cans, plastic and ceramic DIPs, and leadless chip carriers (LCCs).

Choose MIL-STD-883, commercial or industrial grades. They offer the big-time performance and small power drain you covet for battery-powered systems...audio filtering, summing, amplifying, remote sensor/ transmitters, and hundreds more.

With their single supply operation, these low-power bipolar amps mesh perfectly with our full line of static CMOS digital components. Harris Micropower Op Amps

	$\mathbf{5 1 4 1 / 4 2 / 4 4}$	$\mathbf{5 1 5 1 / 5 2 / 5 4}$
Supply Current $(\mu \mathrm{A} / \mathrm{Amp})$	45	200
Gain Bandwidth (MHz)	0.4	1.3
Slew Rate $(\mathrm{V} / \mu \mathrm{s})$	1.5	4.5

Call Harris Semiconductor Products Division. In U.S. phone 1-800-4-HARRIS, Ext. 1775, for information and samples.

In Canada: 1-800-344-2444, Ext. 1775.
"My designer wanted to cut my appetite. With Harris amps,
lm curedl" I'm cured!"

Precision DACs enhance the stability of closed-loop designs

Abstract

Closed-loop designs oftentimes require the use of D / A converters that bave both monotonic response and data readback. This combination of capabilities is now available in off-the-shelf ICs, and thus you'll find it simpler to design stable control loops with 16 bits of resolution and monotonicity.

Damien McCartney and Mike Curtin, Analog Devices, BV

Closed-loop designs require that the response of the control system be monotonic: For an increasing digital input code, the output voltage should never decrease and, preferably, it should always increase. Further, if the system operates in a noisy environment, or if it is located remotely from the master computer, there is the risk that invalid data may be written to the D/A converter controlling the loop. Data errors can have serious safety implications and cause loop instabilities.
Double-rank input registers with data-readback capability allow you to verify that a converter has received correct data before you update its output. Integrated D/A converters with guaranteed monotonicity-albeit often with limited resolutionhave been available for years. Converters capable of
data readback have become available more recently. Now, devices that combine 16 -bit resolution, guaranteed monotonicity, and readable double-rank registers are becoming available. One of these, a CMOS part with an unusual, voltage-segmented architecture, serves as a representative example and illustrates how you can advantageously use DACs such as these in your closed-loop designs.
The AD7846 (see box, "Voltage segmentation enhances DAC performance") inherently guarantees monotonicity. The device also incorporates a bidirectional input latch, so that you can both write data to and read data from the DAC's input. After verifying the data's validity, you can transfer the contents of the input latch to the secondary converter latch, updating the device's output.

End phantom memory

For instance, you can use the AD7846's monotonicity and readback function to enhance ATE system reliability. VLSI test systems can contain as many as $1000 \mathrm{D} / \mathrm{A}$ converters. Such testers need to run automatic diagnostic, calibration, and debugging routines to maintain reliable system performance. One debugging technique uses "phantom memory" to check if proper data has been written to the converter; the data in a phantom memory location should be the same as the data in the DAC's latch. Not only does this technique use $1 \mathrm{k} \times 16$ bits of RAM for 1000 converters, it doesn't guarantee that the data in a D / A converter is correct, especially if

Data errors can have serious safety implications and can cause loop instabilities.

the phantom memory is located at a distance from the D/A converters.

You can overcome both of these drawbacks by using a readback D/A converter. First, load the data word into the DAC's input latch. (On the AD7846 you use the $\overline{\mathrm{CS}}$ and R / \bar{W} control inputs.) Next, read the contents of the latch. (On the AD7846 you bring $\overline{\mathrm{CS}}$ low and $\mathrm{R} / \overline{\mathrm{W}}$ high.) Once you've applied the control signals, complete the data transfer. (On the AD7846 you do it by bringing the asynchronous LDAC control line low.) The analog equivalent of the digital word will appear at the output of the converter.

Pin driver resolves $300 \mu \mathrm{~V}$

If you're an ATE system designer, you'll recognize the circuit in Fig 1. It's a pin driver/receiver. Each pin on the device under test (DUT) may be a digital input or output. IC_{1}, an AD345, is the pin driver for the digital inputs, and IC_{2}, a dual high-speed comparator, is the
receiver for the digital outputs. The digital control circuitry determines the signal timing and format.
You set the pin-driver (V_{H} and V_{L}) and receiver voltage levels by programming the digital inputs to the DACs. The dc-parametric test routines close the loop by feeding back the pin voltage to the system controller. With 16-bit converters, you can use the D/A converters' resolution to compensate for input/output nonlinearities. Fine-tune the pin test voltage by incrementing or decrementing the converter inputs until you obtain the desired voltage. In a typical digital test system, the voltage span is -3 to +10 V . Accordingly, configure the AD7846s for $\pm 10 \mathrm{~V}$ operation. The resolution will correspond to $300 \mu \mathrm{~V}$ per LSB.

You can employ a high-precision reference for each pin-driver circuit. The circuit of Fig 1 uses an AD588, IC_{3}, to generate a $\pm 5 \mathrm{~V}$ tracking reference for the $\mathrm{V}_{\mathrm{REF}+}$ and $\mathrm{V}_{\text {REF- }}$ of the AD 7846 s . Internal circuitry in the D / A converter scales the reference input to produce an

Fig 1-Pin-driver/receiver circuits for VLSI test systems require numerous high-resolution D/A converters, as you can see. The four AD7846 D/A converters set the high and low logic levels for the AD345 pin driver and the AD9687 receiver. During a calibration cycle, the system controller can both write and read data from the converters' latches, eliminating the need for phantom memory.

Voltage segmentation enhances DAC performance

The AD7846 DAC, from Analog Devices (Norwood, MA), achieves ± 1-LSB differential linearity error and better than ± 2-LSB integral nonlinearity. In addition to a 16 -bit CMOS D/A converter, the IC incorporates a number of bipolar amplifiers, including an output buffer. All you need to do is supply a external reference voltage. The IC fits in a small 28 -pin dual-inline or surface-mount package.

At the heart of the AD7846 (Fig A) is a voltage-segmented D/A converter. It actually comprises three D/A converters, each with its own buffer amplifier. Two 4 -bit D/A converters, DAC_{1} and DAC_{2}, share a 16 -resistor string, but have their own analog multiplexers. (You apply the external reference voltage to this resistor string.) Another 12-bit R/2R D/A converter, DAC_{3}, operates in the voltage mode.

The 4 most significant bits of the 16 -bit digital code drive DAC_{1} and DAC_{2}; the 12 least significant bits control DAC_{3}. The MSBs select a pair of adjacent nodes on the resistor string and present the generated voltage to the positive and negative inputs of $\mathrm{DAC}_{3} . \mathrm{DAC}_{3}$ then interpolates between these two voltages to produce an analog output voltage. Because the voltages at successive nodes on the resistor string are always higher than those at the preceding node, the voltage applied to DAC_{3} will always be positive. Furthermore, if the DAC_{3} is monotonic, the overall converter will also be monotonic. (It is much easier to build a monotonic 12 -bit R/2R D/A converter than it is to build a 16 -bit one.)

The design of the AD7846 also compensates for the nonideal behavior of the amplifiers. Consider an 8 FFFH to 9000 H transition with an applied reference of

Fig A-This voltage-segmented D/A converter employs three internal D/A circuits and buffer amplifiers to ensure monotonic operation. The fast bipolar amplifiers deliver a settling time of $7 \mu \mathrm{sec}$ to $1 / 2 L S B$.
$\pm 5 \mathrm{~V}$. At the former code, DAC_{1} generates 0 V and DAC_{2} produces $0.625 \mathrm{~V} . \mathrm{DAC}_{3}$, therefore, will generate a 0.624847 V output. At $9000 \mathrm{H}, \mathrm{DAC}_{1}$ changes its output to 0.625 V and DAC_{2} switches to $1.25 \mathrm{~V} . \mathrm{DAC}_{3}$, receiving a zero code, will produce a 0.625 V output. If DAC_{1} 's amplifier has a $-1-\mathrm{mV}$ offset, however, the generated voltage will decrease to 0.624 V , a nonmonotonic response.
To prevent offsets from influencing monotonocity, DAC_{2} remains at 0.625 V while DAC_{1} "leapfrogs" from 0 to 1.25 V . At the same time, the input code to DAC_{3} is complemented. Now, offset in the amplifiers won't cause nonmonotonocity, because the outputs at both 8 FFFH and 9000 H are determined principally by the output of DAC_{2}, which doesn't change between the two adjacent codes. This scheme actually simplifies the multiplexers in DAC_{1} and DAC_{2} because the former has the even nodes as inputs, and the latter operates from the odd-numbered nodes.

Other useful features on the

AD7846, some of which are central to the accompanying article, are fast JFET amplifiers, a resistor feedback network, a track-and-hold amplifier, double-rank input registers whose outer rank can be read back, and a reset input. On a full-scale output swing of -10 to +10 V , the D / A converter settles to within $1 / 2$ LSB in $7 \mu \mathrm{sec}$. You can configure the internal feedback network for gains of 1 or 2 ; with a $\pm 5 \mathrm{~V}$ reference, the AD7846 generates a ± 5 or $\pm 10 \mathrm{~V}$ output. The addition of a track-and-hold amp to the output buffer amplifier reduces glitches at major code transitions, making the AD7846 useful in audio reconstruction and waveform generation. You can reset the D/A converter's output by selecting the $\overline{\mathrm{CLR}}$ and R / \bar{W} pin. Strobing to the $\overline{C L R}$ terminal with the R / \bar{W} pin low resets the output to 0 V if you configure the converter for unipolar operation; strobing the $\overline{\text { CLR }}$ terminal with the $\mathrm{R} / \overline{\mathrm{W}}$ pin high resets the output to 0 V if you're using a bipolar output range.

Double-rank input registers with datareadback capabilities allow you to verify that a converter has received correct data before you update its output.
output of $\pm 10 \mathrm{~V}$. The impedance seen looking into the DAC's reference terminals is typically $30 \mathrm{k} \Omega$, so the AD588's internal buffer amplifiers supply a total of 1.3 mA to the four DACs.

If your circuit board exhibits a large amount of trace resistance, you may encounter small voltage drops at the reference inputs of the converters, resulting in small gain and offset errors. You may want to compensate for these errors through a software calibration
cycle. However, if you need very high accuracy, you should buffer the reference inputs of each of the four AD7486s with separate amplifiers.

Program dynamic loads

You can expand the capabilities of your test system by adding a dynamic load. The circuit in Fig 2, though similar to that of Fig 1, includes three additional D/A converters embodied in two IC packages. The AD7547,

Fig 2-A complete circuit for testing digital logic needs dynamic-load capabilities. A dual 12-bit DAC and an AD7846 16-bit DAC control the sink and source current to stress the digital output of the device under test.
a dual 12 -bit D / A converter, controls the current-source and current-sink setup to stress the digital output of the DUT. The additional AD7846 sets the threshold logic level. If you're testing a TTL output, set the current source to 1.6 mA and the current sink to 400 $\mu \mathrm{A}$. For an ECL output, you'll need the current sink set to two different values: 20 mA for the $\mathrm{V}_{\text {OL }}$ level, and 7 mA for the $\mathrm{V}_{\text {он }}$. Configure the AD7846 for bipolar operation so that, when testing a TTL output, you'll be

Fig 3-RTDs use a 4-wire configuration to force a current through the sensor and monitor the corresponding voltage drop. Once calibrated, the RTD can offer high measurement accuracies over a wide temperature range.
able to set the crossover point between $\mathrm{V}_{\text {OH }}$ and V_{OL} at 1.6 V . (With an ECL output, use -1.3 V .) You can use the same reference-driving circuitry for this circuit as that of Fig 1.

RTD simulator mimics changing temperature

Many closed-loop temperature-control systems use resistance temperature detectors (RTDs). Commonly made from platinum, they operate over the -150 to $+600^{\circ} \mathrm{C}$ temperature range, which makes them ideal for industrial applications. Most RTDs are configured with four terminals (Fig 3). The current source forces a "known" current into the transducer, and two sense wires monitor the voltage drop across the RTD. Because the digital voltmeter has a high input impedance, the generated voltage at the input terminals of the meter is proportional to the resistance of the sensor.

You can build a portable battery-powered RTD simulator to test and calibrate the accuracy of any RTDbased temperature-monitoring system you might have. With the simulator, you can calibrate a system without bringing the controlled processes to their operating temperatures. In addition, the simulation of alarm conditions can test your control system's response to dangerous fault conditions. The circuit in Fig 4 uses an AD7846 to accurately simulate an RTD. In this case, the 16 -bit D/A converter generates calibration signals

Fig 4-You can use a battery-powered RTD simulator for field calibration of temperature-measurement systems. This circuit can accurately simulate RTDs with a temperature resolution and accuracy better than $0.1^{\circ} \mathrm{C}$.

You can build a portable battery-powered RTD simulator to test and calibrate the accuracy of any RTD-based temperaturemonitoring system you might bave.
that simulate RTD outputs with an accuracy of better than $0.1^{\circ} \mathrm{C}$. Furthermore, the low power dissipation (250 mW if you use low-power amplifiers such as the AD548) extends the battery life of handheld calibration meters.

Amplifer IC_{1} drives the n-channel MOSFET, Q_{1}, so that $\mathrm{V}_{\mathrm{EXC}}$, the excitation voltage, is equal to the voltage on the amplifier's inverting terminal. Install diode D_{1} to prevent any negative excursions at the gate of the MOSFET. Resistor R_{1} mirrors the constant current, $\mathrm{I}_{\mathrm{EXC}}$, from the RTD, setting up a voltage $\left(-\mathrm{I}_{\mathrm{EXC}} \cdot \mathrm{R}_{1}\right)$ at the output of amplifier IC_{2}. Resistors R_{2} and R_{3} and amplifier IC_{3} invert this voltage to supply a reference of ($\mathrm{I}_{\text {EXC }} \cdot \mathrm{R}_{1}$) at the $\mathrm{V}_{\text {REF }+}$ input of the AD7846. The D/A converter's output voltage is $\mathrm{D} \cdot \mathrm{I}_{\mathrm{EXC}} \cdot \mathrm{R}_{1}$, where D is the fractional code applied to the converter. Resistors R_{4} and R_{5} feed back a portion of this signal to the inverting input of IC_{1} to complete the loop. Therefore,

$$
V_{E X C}=I_{E X C} \cdot R_{1} \cdot D \cdot \frac{R_{5}}{R_{4}+R_{5}} .
$$

The simulated RTD resistance is

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{V}_{\mathrm{EXC}}}{\mathrm{I}_{\mathrm{EXC}}}=\mathrm{R}_{1} \cdot \mathrm{D} \cdot \frac{\mathrm{R}_{5}}{\mathrm{R}_{4}+\mathrm{R}_{5}} .
$$

In practice, you should limit $\mathrm{I}_{\text {ExC }}$ to 2 mA to minimize the self-heating effects in the RTD. Use a $4.7-\mathrm{k} \Omega$ resistor for R_{1} to program a $\mathrm{V}_{\text {REF+ }}$ of approximately

10 V maximum at the AD7846's input. Fig 4's R_{4} and R_{5} values permit you to simulate an RTD range from 427 to 1Ω; the $\mathrm{R}_{\text {ON }}$ of the MOSFET determines the 1Ω minimum. You can easily change the resistance range, however, by varying the ratio of resistors R_{4} and R_{5}.
If you use low input-offset-voltage amplifiers in this circuit (AD707s, for example), then offset calibration isn't necessary. You might, however, still have to reduce gain errors due to resistor tolerance and mismatch. If you replace R_{3} with a $9.1-\mathrm{k} \Omega$ resistor in series with a $2-\mathrm{k} \Omega$ potentiometer, you can perform a hardware gain adjustment. Alternatively, if the D/A converter is microprocessor controlled, you can include a gain factor in the RTD simulation algorithm. This simulation algorithm can also compensate for RTD nonlinearities (see box, "Callendar-Van Dusen equation describes RTDs").

Motor control positions to 2 arc-minutes

You can build a high-accuracy closed loop positioning system by combining the AD7846 with a 16 -bit resolv-er-to-digital converter. The monolithic R/D converter in Fig 5 has a programmable resolution of 10, 12, 14, or 16 bits, and accuracy options of 2,4 , or 8 arc-minutes. The 2S80 accepts a sine and cosine signal from the resolver and converts it into a 16 -bit word. A Busy signal informs the microprocessor when the output data is valid. The $\mu \mathrm{P}$ reads the information into its accumulator by selecting the Enable and Inhibit pins on the 2S80.

Because the AD7846 is monotonic at the 16 -bit level,

Callendar-Van Dusen equation describes RTDs

RTDs are not perfectly linear devices, but you can characterize them with the Callendar-Van Dusen equation. RTD meters can use the equation to linearize RTD-resistance variations over temperature, or you can use the equation to shape the linear D/ A-converter response to fit the characteristic RTD curve:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{R}_{0}+\mathrm{R}_{0 \alpha}\left[\mathrm{~T}-\delta\left(\frac{\mathrm{T}}{100}-1\right)\right. \\
& \left.\left(\frac{\mathrm{T}}{100}\right)-\beta\left(\frac{\mathrm{T}}{100}-1\right)\left(\frac{\mathrm{T}^{3}}{100}\right)\right],
\end{aligned}
$$

where $R_{T}=$ resistance at temperature T, $\mathrm{R}_{0}=$ resistance at $\mathrm{T}=0^{\circ} \mathrm{C}, \alpha=$ temperature coefficient at $\mathrm{T}=0^{\circ} \mathrm{C}\left(0.385 \Omega /{ }^{\circ} \mathrm{C}\right.$ for 100Ω platinum RTD), $\delta=1.49$ (typical value for platinum), $\beta=0$ at $\mathrm{T} \geq 0^{\circ} \mathrm{C}$, and $\beta=0.11$ (typ) at $\mathrm{T}<0$.

You can check the accuracy of the circuit in Fig 3 of the accompanying article by simulating a PT100 RTD. This platinum RTD with an R_{0} (resistance at $0^{\circ} \mathrm{C}$) equal to 100Ω has a temperature coefficient of $0.385 \Omega /{ }^{\circ} \mathrm{C}$. Thus,
its resistance ranges from 120Ω at $50^{\circ} \mathrm{C}$ to 290Ω at $500^{\circ} \mathrm{C}$.
Using hardware gain calibration and the Callendar-Van Dusen equation for curve fitting, you can simulate the RTD's resistance with an absolute accuracy better than $30 \mathrm{M} \Omega$ over the full operating temperature range. This error corresponds to a temperature accuracy of better than $0.1^{\circ} \mathrm{C}$.

Analog CAE is More Than SPICE.

It's the ability to predict manufacturing yields, find stressed components, and pick devices from libraries containing over 1,200 simple and complex devices. It gives you software-based instruments that act just like the instruments in your lab-except they make measurements that would be impossible with normal lab equipment.

Analog CAE is now all of this, and more-thanks to the Circuit Design Tool Kit and the popular Analog Workbench $^{\text {TM }}$ and PC Workbench ${ }^{\text {TM }}$ software. All are designed to work with a variety of CAE and CAD systems, simulators and models (including your own), and remote computers.

Why settle for SPICE alone when you can have a complete set of the most advanced design tools made today? See the latest in analog CAE for yourself: call 1-800-ANALOG-4, ask for a FREE Demo Disk or Video.

CIRCLE NO 67

1080 East Arques Avenue
Sunnyvale, CA 94086
408-737-7300 or 1-800-ANALOG-4

[^13]

Fig 5-This closed-loop positioning system has no loop instabilities and can position a load to an accuracy of less than 2 arc-minutes. The 2S80 resolver-to-digital converter IC provides an analog output proportional to velocity for tight speed control of a motor.
you can theoretically drive the motor in Fig 5 to within 1 LSB of the desired position. In practice, the feedback element, the 2 S 80 in this circuit, will restrict the overall accuracy. The top grade of the 2 S 80 has an absolute accuracy of ± 2 arc-minutes +1 LSB.

You program the microprocessor with the desired motor position. Until the desired and actual positions are equal, the processor will generate an error signal for the D/A converter, which, in turn, drives the motor in the proper direction through a standard control circuit implemented by IC_{1}, power amplifier IC_{2}, and associated circuitry. The error signal becomes progressively smaller until the desired motor position is finally reached. Both the 2 S 80 and AD7846 are 16-bit monotonic, making the loop inherently stable. Furthermore, the signal at the integrator output of the 2 S 80 relative to AGND is an analog voltage proportional to the rate of change of the input angle. You can use this velocity signal to provide velocity stabilization of the servo loops without having to add an expensive electromechanical tachometer. Configured for 16 -bit resolution, the R/D converter's maximum tracking rate is 16.25 rps .

You program the resolution of the 2 S 80 through SC1 and SC2. If both inputs are left unconnected, the resolution is 16 bits (two $100-\mathrm{k} \Omega$ internal resistors pull SC1 and SC2 high). You can change the resolution by grounding one or both of the inputs. The choice of resolution, however, will affect the selection of R_{4} and R_{6}, which scale the inputs to the device's internal integrator and VCO, respectively. Trim any offset
error by adjusting potentiometer R_{7}. You can operate the motor in a bidirectional mode by configuring the AD7846 for a $\pm 5 \mathrm{~V}$ output. The AD588 provides the $\pm 5 \mathrm{~V}$ tracking reference.

EDN

Authors' biographies

Damien McCartney is a senior design engineer at Analog Devices' CMOS Div in Limerick, Ireland, where he designs and develops DAC products. He has worked there for $3^{1 / 2} 2$ years. Prior to that, he worked for Centronics in both the US and Ireland. He holds a BE from University College in Dublin and an MSEE from Northeastern Univer-
 sity in Boston. Damien is a member of both the IEEE and its English cousin, the IEE. In his spare time, he runs, swims, and reads.

Mike Curtin has worked for the past five years at Analog Devices' CMOS Div. He is currently an applications engineer supporting the DAC product line. He holds a BSc degree in electronics from the National Institute of Higher Education in Limerick. His spare-time activities include squash, football, and reading.

Article Interest Quotient (Circle One)
High 494 Medium 495 Low 496

Lance Neibauer. Aircraft designer. His award-winning Lancair kitplanes are the nation's top-selling homebuilts. Now using the new HP-28S, the only calculator that can do symbolic algebra and calculus, retrieve and combine graphs instantly. HP Solve lets him enter his own formulas. More than 1500 functions and 32 K bytes of RAM make it the world's most powerful scientific calculator. John Marconi. Air pollution control engineer. Project leader for study on cancer-causing air pollutants. Needs to solve statistical and financial problems. In 1 ORTUOn takes Perfect job for the new a calculator packed with ${ }^{\text {Hp} 275 . ~ I s ~ t h e ~ t h e ~ o n y ~}$ scientific calcu- ПеF 10民AS, lator with business functions. It also offers easy-to-follow menus and optional solutions books. Hewlett-Packard's new range of calculators is built for your success. For the name of your nearest Hewlett-Packard dealer, call 1-800-752-0900, Ext. 215P

HEWLETT

One-fifith the power makes for one cool breakthrough in SMPS controllers

Announcing the world's first current mode switching power supply controller in cool-running CMOS.

The new TSC170 is the first of its breed. A current mode switching power supply controller in CMOS, not bipolar.

Why CMOS? Because the TSC170 uses just one-fifth the power of its pin-for-pin bipolar equivalent, the UC3846-2.7mA versus 17 mA . It ends heat sinking at high temperatures. With no compromise in performance.

The TSC170 makes your whole design run cooleror lots cooler depending on your application. It lets you eliminate transformers and power resistors. It gives you 25\% higher output drive current capability.
And Teledyne Semiconductor backs the TSC170's performance by guaranteeing start-up and dropout points so you can predict how it will work in your application. Bipolar controllers don't.
Choose from three 16-pin package styles-plastic DIP, CerDIP or space-saving SO surface mount.

Like all our cool-running CMOS ICs, the TSC170 comes with Teledyne's impeccable reputation for quality, service and support, earned over more than a quarter century in the semiconductor business.

Get the full story. Call today for a data sheet. Or ask for our Technical Hotiline and one of our applications engineers will be glad to tell you

rTELEDYNE SEMICONDUCTOR

DC to DC Power Simply

Have you ever been disappointed in switched capacitor, high voltage DC to DC converter output current capability? The CMOS TSC962 will look like it was designed just for you.

Low output resistance improves voltage transfer efficiency and increases current output. We guarantee a low 35Ω maximum output resistance for an 80 mA output current. THREE TIMES BETTER than existing parts. Input voltage range extends from 3 V to 18 V . CMOS technology keeps quiescent current to just $510 \mu \mathrm{~A}$.

Only two external capacitors are needed for a complete positive to negative converter. By using the unique FREQUENCY DOUBLER pin, even the capacitors size can be reduced. Plus an on chip 6.4 V zener for regulation applications.

More power, more functions and pin compatible to the SI7661, ICL7662, LTC1044 and ICL7660 parts. The TSC962 can be the standard DC to DC converter in your existing products and make your future designs easier.

Call or write for full information, design help and data sheets. Samples and production volume available now for you.

All devices are backed by Teledyne's reputation for quality, service and support - a reputation earned through 25 leadership years in the semiconductor industry.
Choose Teledyne First!

800-888-9966 415-968-9241
1300 Terra Bella Avenue Mountain View, CA 94039
TWX: 910-379-6494
FAX: 415-967-1590
CIRCLE NO 69

NDK: When timing is critical rely on the leader

Clock frequencies from 28 kHz to 70 MHz . Only from NDK
Tiny tornado. NDK's 1300 Series Compact Crystal Clock Oscillators pack up to 70 MHz in a package $0.52^{\prime \prime}$ on a side. That means you can pack higher frequency oscillators on a smaller board. They're perfect for high speed applications such as modems, computers and CAD/CAM workstations. And the 1300 Series offers the widest range of TTL and CMOS-
instruments, PCs and "harsh environment" applications.

Absolute quality control. Because we're the world's largest manufacturer of synthetic quartz crystals, we can establish and maintain absolute quality control. NDK unconditionally guarantees all of our crystal products to be free of impurities and defects. Thus, you can expect not only product spectrum.

NDK: Your single

 source. NDK offers the widest range of compact crystalNDK controls every step from growing our own crystals, to manufacture and testing. That's why you can rely on NDK.

Actual Size: $0.52^{\prime \prime}$ square. Less real estate. Full frequency range.

Think Small. These halfsize clock oscillators are ideal for rugged, high density board applications. Particularly portable compatible oscillators you'll find. Enable/ disable is standard. Dual frequency output is an option. longer product life, but absolutely accurate frequencies over the full NDK

clock oscillators, microprocessor quartz crystals, standard crystal clock oscillators and crystal filters available. And most products are available right off the shelf from NDK's nationwide network of stocking distributors

Free catalog. Free samples. Contact us for our free catalog. And if you're designing or prototyping a system, ask for free evaluation samples. We'll get back with samples.

NDK 1300 Series: Brodestrange of frequencies -28 kHz to 70 MHz . Low power/low heat CMOS. Choice of TTL, CMOS or dual-compatibility. Rise and fall times ($5,7,10 \mathrm{~ns}$). Fan out (2 or 5 TTL gates). Sealed, grounded metal case is ideal for harsh environments.
 Fast. Because at NDK, timing is everything.

NDK America, Inc.

20300 Stevens Creek Blvd., Suite 400
Cupertino, California 95014-2210
Telephone: (408) 255-0831
Telex: 352057 NDKCOLTD CPTO
Fax: (408) 725-0369

Microcontrollers simplify the design of X-Y plotters

Abstract

Modern μ controllers have reduced the amount of circuitry needed for a plotter controller to a single chip and a few motordrive components. Interrupt-bandling features can provide aid when you're developing the control firmware.

Mare Birnkrant and Steve Beckwith, NEC Electronics Inc

The μ controllers available today have so many on-chip features that control tasks have largely become a feat of software. Many of these devices have sufficient memory space, along with USARTs, interval timers, A/D converters, and multiple I/O ports, to handle control tasks that once would have required an entire CPU board. Microcontrollers with on-chip features such as these are well suited to the task of controlling an X-Y plotter.
Any X-Y plotter design requires two stepper motors. One motor drives a track feeder to move the paper along the Y axis, and the other motor drives a belt, with a pen attached, along the X axis. A solenoid controls the position of the pen. When you drive the solenoid, the resulting magnetic field produces a force sufficient for the pen to make contact with the paper. A limit switch senses when the position of the X -axis motor exceeds the plotter width.

Fig 1-The real-time output port on the $\mu P D 78312 \mu$ controller eliminates the need for external latches.

In order to perform these real-time control tasks, the plotter has to be able to interpret data from two control sources. One source is a matrix keyboard, usually located on the front panel of the plotter. Using such a keyboard, you manually transmit setup parameters and pen-position information to the plotter. Plot scaling, drawing speed, and paper size are typical examples of setup parameters.

To perform the real-time control tasks, the plotter has to be able to interpret data from two control sources.

Fig 2-To control the speed of the stepper motor, you sequentially alter the time between phase changes of the stator windings.

A serial-communication link, which connects the plotter to a computer, provides the other control source. A USART provides the handshake lines necessary for communications. This link can transmit the data to be plotted as well as setup parameters. The μ controller interprets the data stream and positions the pen to automatically create the drawing.

Features aid in real-time control

Not surprisingly, many μ controllers are available that possess the features necessary to handle all of these control tasks. In fact, some μ controllers have features optimized for the real-time control tasks: overseeing the X - and Y -axis motors, governing the solenoid (and therefore the pen), and sensing the width of the paper.
NEC's μ PD78312 μ controller, for example, contains

Fig 3-The Macro Service Transfer feature sends the phase data to the stepper motor with minimum CPU intervention.
a real-time output port (RTOP) that is well suited to the control of the two stepper motors. The RTOP consists of two 4 -bit buffer registers (P 0 H and P 0 L), an 8 -bit real-time port control register (RTPC), and an output latch for port 0 (Fig 1). Two on-chip programmable 16 -bit timers (timer 0 and timer 1) set interruptrequest flags (TMF0 and TMF1) to transfer the data in the buffer registers to the output latch.
To see how to use the RTOP to control the motors, consider the typical waveforms for the stator windings of a 2-phase stepper motor (Fig 2a). You must ensure that the firmware first determines in which direction to step the motors and that it then stores four data words into memory as a table (Fig 2b). The words, which contain the phase data for each of the windings, are sequentially sent to the RTOP to drive the motors in the desired direction. (To reverse the motor direction, you must reverse the word sequence.)

The time interval, t, fixes the time between phase changes and, subsequently, the motor speed. To control one of the motors, you program timer 0 to set the TMF0 flag at the end of the time interval. The TMF0 flag initializes the transfer of data from the low nibble of the RTOP (POL) to the low nibble of the output latch at Port 0 . Similarly, to control the time interval of the other motor, you program timer 1. The TMF1 flag initializes the transfer of data from the upper nibble of the RTOP $(\mathrm{P} 0 \mathrm{H})$ to the upper nibble of the output latch at Port 0 . Immediately following a data transfer to the output latch, the firmware loads the buffer registers with data from the memory table for the next step in the sequence.

The RTOP relies on its interrupt-handling scheme, which the vendor calls Macro Service Transfer, to transfer the data in the memory table to the RTOP buffer registers with only minimal CPU intervention

Interrupt-handling features reduce overhead

By their very nature, real-timecontrol systems are dependent on the efficient handling of interrupt requests. When an interrupt occurs, the μ controller must be able to service the request as soon as possible. The μ PD78312 μ controller (NEC Electronics, Natick, MA) utilizes conventional vectored-interrupt handling and, in addition, it incorporates two interrupt-handling features that reduce the amount of software overhead.

NEC calls the first feature Macro Service Transfer. In response to an interrupt request, the facility transfers data between memory and a specialfunction register without any software intervention. The μ controller has a number of separate Macro Service Channels located in the on-chip RAM, each of which consists of one 16 -bit register and two 8-bit registers. One of the 8 -bit registers, called the Macro Service Counter, de-
termines the number of trans-fers-as many as 256 are feasible. The counter decrements after each transfer.

The other 8 -bit register, called the Special Function Register Pointer, specifies which specialfunction register is involved in the data transfer. The 16 -bit Macro Service Pointer contains the source or destination memory address. In addition, an 8 -bit Macro Service Control Register, associated with each interrupt, selects the designated Macro Service Channel.

The second feature, which the manufacturer calls Context Switching, makes use of the eight sets of general-purpose register banks located in the internal RAM. Each bank consists of sixteen 8 -bit registers. You can pair two 8-bit registers to form a 16 -bit register. For example, two of the 8 -bit registers can function as the low-order and the high-order byte of a

16-bit accumulator.
When you enable the Context Switching feature, an interrupt request selects a register bank associated with the priority level of the interrupt. The new register bank loads a prestored vector address into the Program Counter (PC) while the current contents of the PC and Program Status Word (PSW) are saved in the RP2 and RP3 registers of the new register bank.

The program jumps to an interrupt routine pointed to by the new address in the PC and uses the new active register bank to perform the routine. When the routine is complete, the current active register bank transfers the saved words back into the PC and the PSW, respectively. Therefore, the firmware can select a new register bank for each interrupt request without needing additional software to save the current register contents.

Fig 4-When the keyboard scan routine determines which key has been depressed, the Context Switching feature selects a register bank with preloaded data to service the interrupt.
(see box, "Interrupt-handling features reduce overhead"). The firmware first initializes the Macro Service Channel for four data transfers corresponding to the four motor phases. Upon recognizing an interruptrequest flag, the Macro Service Controller transfers data from memory to the buffer registers. Following the fourth transfer, a vectored interrupt reinitializes the Macro Service Channel. This type of interrupthandling scheme allows the motor to be stepped four times with minimal CPU intervention. Fig 3's flow chart shows how to send data to the lower nibble of port 0 to control the stepper motor.

I/O, interrupt ports provide control links

One of the μ PD78312's I/O ports drives the solenoid that controls the pen height. To plot a point on the paper, the μ controller has to place this port in an active high state. The pen remains in the down position as long as the I/O port is in the active-high state. Driving the I/O port to its inactive-low state de-energizes the solenoid, allowing the pen to return to its up position.

If the program attempts to drive the pen beyond the maximum width of the plotter, a mechanical limit switch sends a command to the μ controller's nonmaskable interrupt (NMI) input. The edge-triggered interrupt initiates an NMI routine, which disables the X -axis stepper motor. To reset the X -axis motor, the routine initializes a counter to a count value equal to the width of the plotter.

To initialize the plotter and its limits at power-up, the Macro Service Transfer facility drives the X-axis motor to its limit. When the NMI signal occurs, the routine reverses the direction of the motor and places the pen position in the center of the plotter. During this centering motion, every fourth macro service step decrements the counter from the home position and provides a displacement to the other limit.

A scan routine interfaces to the keyboard

As mentioned earlier, the μ controller has to have a means of interfacing with each of the two control sources. A representative configuration of the keyboard control source, which serves as a good example, has 16 keys arranged in a 4×4 matrix. This keyboard interface occupies eight I/O ports on the μ controller. There are two types of keyboard, passive and active.

A passive keyboard, which is the most common, receives its power from the μ controller. To interface to a passive keyboard, the firmware must configure the eight I/O ports for four input and four output ports. The

Fig 5-Compared with a traditional CPU board for an X-Y plotter, a μ controller requires minimal external hardware (a). The schematic in b shows the hardware you need to use the μ PD78312 in an X-Y plotter application.

The time interval fixes the time between phase changes and, subsequently, the motor speed.

μ controller then sequentially applies a voltage to each of the four row lines of the matrix and monitors the column lines to determine if a key is depressed.

An active keyboard receives its voltage directly from the power supply, and thus you can take advantange of the μ controller's standby mode. The firmware must configure all eight I/O ports as input ports that connect to the column and row lines of the matrix. When a key is depressed, a line from the keyboard to one of the maskable interrupt input lines wakes up the μ controller. When awoken, it searches the I/O ports to find the depressed key. Fig 4's flow chart shows the software required to service either type of keyboard.

The μ PD78312's Context Switching feature aids the programmer in the development of the firmware for servicing the keyboard (see box, "Interrupt-handling features reduce overhead"). Depending on which key you depress, the feature selects one of the eight sets of general-purpose register banks located in the internal RAM. You can preload these register banks with data to service a particular key. A good example is the scaling-parameter data that the keyboard needs to select a plot-scale change.

The serial-communication interface provides the means of transferring plot data to the controller. Customarily, and in the case of the μ PD78312, this interface transfers data asynchronously or synchronously and consists of a serial data input, a serial data output, a serial clock output, and a clear-to-send input. The plot program accesses serial input data from an on-chip 8-bit receiver buffer register. Using a $12-\mathrm{MHz}$ crystal, a dedicated baud-rate generator is programmable for data-transfer rates of 110 to 38.4 k baud.

On-chip memory is sufficient for the job

The functions resident on the μ controllers of today can easily accomplish all of the control tasks that an X-Y plotter application demands. To understand just how much real estate and components you can save by using a design such as the one presented here, refer to Fig 5a. Fig 5b shows the hardware necessary to implement a complete μ PD78312 X-Y plotter design.

Of course a μ controller has to have enough memory space to accommodate all of the requisite control functions. The NEC μ controller does; it can access 64 k bytes of address space. The firmware for interpreting the input data and translating it to control the motors and solenoid is resident in the chip's 8 k -byte internal ROM. The ROM address space ranges from 0000 H to 1 FFFH. A vector table, located from address 0000 H to

003 FH , contains the interrupt branch addresses for the various interrupt requests.

The 256 -byte RAM occupies the address space from FE00H to FEFFH. The first 128 bytes of RAM are available as a scratchpad area. This arrangement places the eight banks of general-purpose registers in the top 128 -byte section. The special-function and control registers occupy the address space from FF00H to FFFFH.

EDN

Authors' biographies

Marc Birnkrant is an application engineer at NEC Electronics Inc in Natick, MA, where he is involved in sin-gle-chip-microcomputer technical support. He previously worked for the Link Flight Simulation Div of Singer, and he holds a BSEE from the University of Rochester in New York. Marc fixes up old homes and likes to ski in his off hours.

Stephen Beckwith is a senior application engineer at NEC and is also responsible for single-chip-microcomputer technical support. Before he began working for NEC, he was in the Navy for five years. Stephen attended the University of Lowell in Massachusetts.

Article Interest Quotient (Circle One)
High 488 Medium 489 Low 490

On Aprii 5th,Intel made a major announcement about advanced 32-bit embedded control technology.

On April12th,we'll explain it.

Intel unveiled three advanced embedded control technologies, two 32-bit embedded processors, and a radically new memory product line on April 5th.

On April 12th, seminars begin worldwide to show how to design significantly more powerful 32-bit systems that provide unparalleled price performance. The fully supported 80376 and 80960 families of embedded processors, and the breakthrough flash memory technology will be discussed in detail.

These free seminars will include lectures, comprehensive demonstrations, printed materials and a good lunch.

Youre invited.
Call (800) $548-4725$ for details, or to secure a spot.
And call now, as seating is limited, and we have a lot of explaining to do.

Alabama	Huntsville	4/29/88	Maryland	Baltimore	4/26/88	Pennsylvania	Philadelphia	4/12/88
Arizona	Tempe	4/18/88	Massachusetts	Boston	4/15/88		Pittsburgh	5/18/88
California	Anaheim	4/22/88	Michigan	Detroit	4/25/88	Texas	Austin	4/21/88
	Los Angeles	4/20/88	Minnesota	Minneapolis	4/14/88		Dallas	4/19/88
	San Diego	4/21/88	Missouri	St. Louis	5/19/88		Fort Worth	4/18/88
	Santa Clara	5/4/88	New Jersey	Kenilworth	5/13/88		Houston	4/20/88
	Van Nuys	4/19/88	New York	Binghamton	5/11/88	Virginia	Charlottesville	4/28/88
Colorado	Denver	5/3/88		Long Island	4/13/88		Tysons Corner	4/27/88
Connecticut	Stratford	4/14/88		Rochester	5/10/88	Washington	Bellevue	5/5/88
Florida	Ft . Lauderdale	4/28/88		Tarrytown	5/12/88	Wisconsin	Milwaukee	4/13/88
	Orlando	4/26/88	North Carolina	Charlotte	5/4/88	Canada	Montreal	5/24/88
Georgia	Atlanta	4/25/88		Raleigh	5/3/88		Ottawa, Ontario	5/25/88
Illinois	Chicago	4/12/88	Ohio	Cleveland	5/19/88		Toronto	5/20/88
Indiana	Indianapolis	5/17/88		Dayton	5/17/88		Vancouver, BC	5/6/88
Kansas	Kansas City	5/18/88	Oregon	Portland	5/6/88			

easmall but of yourcustomers.

Pushbutton-operated devices are much more marketable when the buttons respond in satisfying ways to the user's touch.

So we made our new SLP control panels a touch more responsive.
We increased button travel to a more comfortable . 050 "!
And we incorporated an enhanced con-

Actuator travel of $0.050^{\prime \prime}$ is more than twice that of conventional low profile keypads. ductive rubber pad, tested to ten million operations, that rewards the finger with a satisfying snap back when a button is actuated.
The result is a control panel that adds to a user's comfort and confidence, for about the same price as those that generate feelings of vagueness and uncertainty.

But that's not the only bright feature of these new controls.

You can also get them in fullface, LED lighted versions that show up unmistakably, even in broad daylight.

And each button can be made to light independently of its on/off status,
enabling the panel to guide a user through a sequence of operating steps.
These new panels are available off-the-shelf

Selective button lighting belps guide a user through a sequence of operating steps. in several standard arrays, or in custom packages with microprocessors, visual displays, special enclosures, or attachment cable included.

Making controls more responsive is just one of the many ways we can help you build competitive advantages into your products.
To make your designs easier to sell, more satisfying to use, or more costefficient to produce, call us at 815-235-6600.

Now your CMOS backup battery can be what you've always wanted it to be.

Just another component.

Forget those labor intensive methods normally required for printed circuit board mounting of batteries. Our new axial lead μ PowerCells ${ }^{\text {TM }}$ (Lithium Iodine 2.8V Solid CMOS Backup Cells) look like a resistor or capacitor. They're about the same size and they don't need special handling. You can put them on a sequenced tape reel for automatic printed circuit board insertion. And like most other components, μ PowerCells ${ }^{\text {TM }}$ can be wave soldered, cleaned and dried us-
ing normal procedures.
Once they're in place, μ PowerCells ${ }^{\text {TM }}$ are dependable. Their Lithium Iodine chemistry is the number one choice for powering cardiac pacemakers. And a performance study of over 1 million batteries in use shows that a useful life of more than 20 years can be predicted.

At 35 milliamp-hours, the axial lead μ PowerCell ${ }^{\text {TM }}$ will handle most CMOS backup problems. However, higher capacity versions to 1 amp hour are
available in a new space-saving rectilinear package. The Catalyst Research line includes modules for sensing power loss and transferring to battery backup as well as clock modules with battery built in.

Best of all, Catalyst Research μ PowerCells ${ }^{\mathrm{TM}}$ are priced like other components.

ACTUAL SIZE
For more information, call us at 301-296-7000 ext. 304.

Lithium cells keep CMOS RAM alive during line outages

> Until recently rechargeable nickel cadmium batteries were the only choice for memory backup. The advent of CMOS RAM has lowered typical memory-backup power requirements to 2 to $3 \mu \mathrm{~A}$ at 2.0 V , even for memories of $1 M$ bits or larger, and now lithium batteries are feasible for such applications.

Nicolas Müller and Henry Uebelhart, Renata, and Jack F Swartz, International Power Sources

In the past, an engineer was forced to design with nickel cadmium (NiCd) batteries and had to account for all their limitations: NiCd batteries have a high selfdischarge rate, require a sophisticated charging system for optimal performance, occupy a great amount of board space, cannot be wave soldered, and have disposal restrictions due to their poisonous cadmium content. CMOS RAM, however, doesn't need a backup power source with high drain capability. Moreover, NiCd batteries require three cells in series to satisfy such an application, but lithium batteries require only a single cell.
For a typical $250-\mathrm{mAhr}$ lithium cell, the calculated battery life at CMOS drain levels, operating continuous-
ly, is about nine years. Lithium cells need no recharging during their service life. Further, because lithium cells exhibit extremely low rates of self-discharge ($<1 \% / \mathrm{yr}$), they have a long shelf life if not subjectd to high temperatures or short circuits.

You should always calculate battery-backup capacity based on a 100% duty cycle, even if your system will receive its power mostly from the mains power supply. The battery's surplus capacity will compensate for leakage currents as well as the self-discharge of the battery caused by possible rises in ambient temperature.

Which lithium chemistry is right?

The lithium in a lithium cell forms only the anode material of the cell; manufacturers use a wide variety of materials for the cathode and electrolyte. The two main lithium-cell types are the liquid-cathode chemistries such as thionyl chloride ($\mathrm{Li} / \mathrm{SOCl}_{2}$) and sulphur dioxide $\left(\mathrm{Li} / \mathrm{SO}_{2}\right)$ and the solid-cathode types such as manganese dioxide $\left(\mathrm{Li} / \mathrm{MnO}_{2}\right)$ and carbon monofluoride ($\mathrm{Li} / \mathrm{CF}$). You must give careful consideration when selecting a lithium chemistry because each has advantages and disadvantages.

Liquid-cathode batteries have higher cell voltages and drain currents, but possess significant drawbacks such as a varying capacity dependent on cell orientation, caustic and polluting chemicals, and susceptibility to explosion. Consequently, liquid-cathode cells aren't suitable for user-replaceable applications. Although liq-

Because data retention now requires such little power, you can use primary cells.

uid-cathode cells have a high theoretical energy density, their actual energy density is lower because of the rugged construction techniques required to safely hold their reactive constituents.

For memory-backup applications, the most significant disadvantage of liquid-cathode cells compared to solid-cathode cells is, paradoxically, their higher cell voltage. Their 20% higher cell voltage over solid-cathode cells (3.6 vs 3.0 V) results in a 20% higher drain current for the same load. Therefore, a liquid-cathode cell requires a capacity 20% higher than a solid-cathode cell to achieve the same useful life. Note, however, that some older clock-chip designs, unlike memory ICs, have
a strict 3 V minimum requirement; in these cases, a single lithium cell won't suffice. The IBM PC employs a module containing two lithium cells in series to ensure adequate backup voltage.
Solid-cathode cells are available encapsulated in plastic. Encapsulated cells avoid the problems associated with exposed cells that have been mounted in holders or with solder tabs. Exposed cells, in time, can suffer the additional self-discharge arising from accumulated residue on the cell's surface. This residue can come from dust, soldering and washing operations, and handling. Encapsulation not only protects cells from the environment, but provides extra sealing against moisture diffu-

Fig 1-This circuit provides safe data retention during a power interruption.

Fig 2-A simple one-shot, $\boldsymbol{I C}_{3}$. detects a mains failure within a half cycle.
sion and electrolyte evaporation. It also reduces the possibility of shorting cells.
You can also obtain encapsulated cells with optional decoupling diodes. Memory-backup applications normally require two decoupling diodes: one to avoid discharge through the mains power supply when it's shut down and another to prevent the charging of the battery during normal power conditions.
Saving data during power outages requires more than simply plugging a battery into your circuit. Fig 1 shows the block diagram of a circuit that provides safe data retention during a power interruption. The CPU must be capable of early recognition of an interrupt if its power-fail routine is to store critical data in the buffered RAM before the voltage drops below the allowed tolerance of the processor. The circuit in Fig 2a detects a mains failure within a half cycle ($\mathrm{f}=60 \mathrm{~Hz}$, $\mathrm{t}_{3}<8 \mathrm{msec}$.) (Fig $\mathbf{2 b}$ is the timing diagram.)

If your system doesn't provide a $120-\mathrm{Hz}$ signal, you must monitor the input level to your power supply's voltage regulator with a comparator. The circuit in Fig 3a uses an Intersil ICL 8211, a special-purpose, lowvoltage detector. Because the input voltage to the regulator includes ac interference, the ICL 8211's hysteresis pin is connected (pin 2) to avoid forming unwanted pulses at the output of the device (Fig 3b). You must carefully select C_{1} (Figs 2a and 3a) to maintain a minimum voltage ($5 \mathrm{~V} \pm 5 \% \mathrm{typ}$) through the duration of the CPU's power-fail routine.

In most cases, the CPU can provide the power-on

Fig 4-If your CPU doesn't provide a power-on signal, you will need an additional $R C$ circuit such as this one. The circuit introduces an additional delay, $t_{0 N}$, after the power supply returns to its normal level, V_{N}, to protect the CPU from transients on the interrupt line caused by unstable returning mains power.
signal. If it can't, you'll need an additional RC circuit. Fig 4a shows a typical circuit, and Fig $\mathbf{4 b}$ shows its timing diagram. The RC circuit introduces an added delay, $\mathrm{t}_{\text {os }}$, after the power supply returns to its normal level, V_{N}, to protect the CPU from transients on the

Fig 3-A special-purpose, low-voltage detector provides superior performance to Fig 2's one-shot. Because the input voltage to the regulator includes ac interference, the ICL 8211's hysteresis pin (pin 2) is connected to avoid forming unwanted pulses at the output of the device.

You should always calculate battery-backup capacity based on a 100% duty cycle even if your system will be powered mostly by the mains power supply.
interrupt line caused by unstable returning mains power. You could possibly use the $+\mathrm{V}_{\mathrm{S}}$ level (see Fig 1) for this circuit's power supply, but such a scheme would result in additional drain on the battery and thus require a larger battery.

For this power on/off-reset application, the circuit in Fig 5a provides better performance than the preceding simple RC circuit. C_{4} in Fig 5a determines the time delay, t_{on}. Usually, you should select C_{4} so that the on delay is shorter than the off delay.

Aside from using a pair of decoupling diodes, you
have the choice of several other power-supply decoupling techniques. The circuits that follow assume a typical power supply with an output voltage of 5 V dc $\pm 5 \%$. As Fig 6a shows, diode D_{1} decouples the lithium battery from the power supply, preventing battery discharge through the power supply when it is off. When the power supply is operating normally from mains power, voltage to the buffered circuits drops by V_{1}, the voltage drop across D_{1}. If your application requires that your unbuffered and buffered circuits operate at the same voltage level, you must add a diode,

Fig 5-Again, the ICL 8211 provides better performance than a simple device. In this circuit, the ICL 8211 replaces Fig 4's Schmitt triggers.

Fig 6-Diode D_{1} decouples the lithium battery from the power supply. Diode D_{2} ensures that the buffered and unbuffered loads see the same voltage level. This scheme requires an adjustable regulator; if you select a fixed regulator, you will have to use a decoupling transistor (or relay) as in \boldsymbol{b}.

..IO THE ENDOS OF THE EARITH

ELECTROCHEM QUALITY LITHIUM POWER SOURCES

CELIEction!

Sometimes you need power in the most remote, hostile environments. like data gathering stations in sub-zero climates. That's a service call nobody wants to make.
In extreme cases like this, specifiers rely on incredibly powerful, dependable and long lasting Electrochem lithium batteries.
But you don't have to operate on a frozen tundra to experience the advantages of lithium power sources... they work in critical everyday applications like metering devices, memory backup, telemetry and many more.
Why lithium? Today lithium power sources represent a highly developed technology offering distinct advantages over other battery types... like high voltage, light in weight, adaptable to virtually any climatic condition, extremely reliable performance for years with no recharging required. In short, better overall operating efficiency.

Why Electrochem? We're a leader in lithium power sources, and we'll go to the ends of the Earth to meet your power source needs. But chances are we won't have to because we have a wide range of lithium batteries, and packs, for almost every conceivable application... in stock.
Our team of power source experts is ready to take on your next challenge. They'll introduce you to our exclusive CELLection program... to determine your needs and provide the most effective and efficient solution
When you need a reliable power source that will go to the ends of Earth, look no farther than Electrochem

For more information on
lithium power sources, and our CELLection program, call (716) 759-2828 and say "Hello, Electrochem!"

- ELECTROCHEM INDUSTRIES

DIVISION OF WIL SON GREATBATCH LTD.
10,000 WEHRLE DRIVE
CLARENCE, NEW YORK 14031
(716) 759-2828 TELEX: 91-386

If its power-fail routine is to store critical data in the buffered RAM before the voltage drops, the CPU must recognize the interruption early.

Fig 7-The circuit in b takes advantage of a lithium cell's drop in open-circuit voltage to respond to a query from the CPU with the cell's charge state.
D_{2}. If currents to the two loads are significantly different, you can add a parallel diode to diode D_{2} to compensate for the resulting difference in diode-voltage drops. In this configuration, you'd also need a variable regulator, adjustable over the required tolerance range.

If you have a fixed voltage regulator instead of an adjustable one, you can employ a decoupling transistor such as T_{1} in Fig 6 b to equalize the buffered and unbuffered supply voltages. This solution, however, is more complicated and expensive and requires additional board space. You should select T_{1} to have the lowest reverse-leakage current (I_{L}) possible to minimize battery drain. To eliminate T_{1} 's reverse leakage, you could replace it with a relay, but not all relays can conduct microamperes of current successfully. A mercury-wetted relay works best in this application.

To ensure uninterrupted memory backup, you must
check the battery's state during regular system maintenance or, in a critical application, you must employ a continuously operating battery-state monitor. Luckily, a direct correlation exists between the open-circuit voltage of an LiMnO_{2} cell and the cell's remaining capacity. Fig 7a is a graph of cell voltage vs remaining capacity. After a cell discharges by approximately 80%, you can detect a gradual drop in its output voltage. Liquid-cathode batteries, in contrast, do not exhibit this warning behavior; they have an abrupt voltage drop that occurs when they are fully discharged.
Fig 7b shows a typical circuit for monitoring the capacity of a lithium battery. After the system switches to power-supply operation, the CPU pulses the analog switch (74 HC 4066) and checks the state of the batteryfail output. You should use a reference level of 2.5 V to compensate for the 0.3 V drop across D_{3} that will occur during a power interruption. Also, don't forget to include the additional drain ($2 \mu \mathrm{~A}$ typ) of the 4066 when calculating the capacity of the battery.

EDN

Authors' biographies

Nicolas Müller is responsible for worldwide marketing sales and marketing for OEM lithium batteries for Renata $A G$ in Switzerland. He previously worked for several electronic component manufacturers in South America and Switzerland. Nicolas enjoys skiing and is an avid collector of model trains and trolleys.

Henry Uelbelhart is involved in the design and development of control and test systems for a fully automated production facility for Renata AG in Switzerland. Henry enjoys hiking and swimming and has traveled extensively throughout Europe.

Jack F Swartz is one of the founders of International Power Sources Inc in Natick, MA. He previously worked for the power supply division of General Instrument. Jack's leisure activities include photography and computer programming.

Article Interest Quotient (Circle One) High 497 Medium 498 Low 499

The Maxell Super Lithium Battery. Good for a decade, these lithium thionyl chloride batteries are hermetically sealed for super safety plus long shelf and service life. And at 3.6 volts, they supply the
 high energy
density you're looking for. Specify Maxell Super Lithium Batteries for critical applications where a safe battery is imperative.

Specify Maxell Super Lithium Batteries for quality and a name you can trust. When you need power and you need it safe, look for Maxell.

NOBODY TOOK US SERIOUSLY,

 WHEN WE ANNOUNCED THE MT RELAY.But then, we were shooting for the stars.
We felt, though, that that was the only way to show the world that something extraordinary could come out of Europe:

So in the beginning we prepared a list of proposed functions that would silence absolutely any critic.

Firstly we rather boldly decided to make the MT relay monostable. The non-polarized building principle in which no parts are premagnetized requires a significantly higher material cost. The advantage of a significantly increased packing density seemed to us to be worth it.

Then, the relay had to be compatible with the world standard. We wanted to offer our customers the maximum flexibility.

Re-adjustment was an additional point. We thought this should be completely done away with in the MT relay. An operating temperature range of from -55 to +70 degrees centigrade as well as a failure rate guaranteed never to exceed 0,5\% (of

course over the lifetime of the relay) also seemed to us to be a foregone conclusion.

But what really brought down the house for our critics in the beginning was our audacious assertion that one day this relay would be available with a power consumption of 400,200 and 150 mW . And at 5, 12, 24 or 48 volts.

Truly an ambitious claim.
Firstly, we had to invest heavily in material research in order to also guarantee in the world of micro technology that optimal conductivity and contact security could be obtained.

On the designer's drawing board, we had to lay the foundation for a completely new production technology. After all, no one had yet been capable of spooling a 25 micron thick copper wire without the danger of breaking it.

Yes, we had to do quite a few new things. Carefully examine new things. Find new methods.

The new MT Relay with its record-breaking minimal power consumption: 150 mW at 48 volts e.g. And all that at a delivery price right in the middle of the price spectrum. We would be happy to send you additional information about this extraordinary product

Company

Address

Responsible Party

Standard Telephon und Radio AG, CH-8055 Zurich
Friesenbergstrasse 75, Switzerland

FOR EMI SHIELDING COMPLIANCE:

Faced with designing or testing a product which must comply with one of the many commercial or military EMI specifications? You have two choices:
You can dig through the mountain of published material. . . and still not be much further ahead.
Or, you can make one easy phone call to Chomerics. Because whatever standards you're dealing with, our people know them inside and out. No other supplier delivers the combination of knowledge, products, and services to make your EMI problems disappear.

Design Help

Call us early on in the design phase of your product and take advantage of our no-charge EMI design review. We'll help you get it right the first time.

Applications Assistance

With your design criteria in mind, we'll look across the full range of EMI shielding possibilities, and provide detailed drawings and prototypes on short notice.

EMI Testing

Our depth of experience becomes very important when it's time to test your system. The fact that we operate comprehensive military and commercial testing facilities, with on-site design, applications support, and materials manufacturing, is a real advantage to our customers.

BEFORE CONSULTING THE SPECS, CONSULT THE SPECIALISTS.

Electrically Isolating Data Acquisition Systems

Guy Hoover
William Rempfer

Introduction

In data acquisition systems it is often necessary to electrically isolate the measurement points from the system controller. Reasons for the electrical isolation include the following: to allow floating measurements at high voltages; for safety, to reduce the danger of electrical shock, as might occur in medical applications; and to eliminate ground loops between measurement points and the system controller which can cause errors.

The data transmitted over the isolated lines can be either analog or digital. Analog signals have poor noise immunity and one isolator is required for each signal point. Traditionally, the highly noise immune, digitally encoded signals required many isolated lines for each channel. Now, with the LTC1090 family of serial data acquisition systems, it is possible to transmit eight channels of data with only four isolated lines. Each additional eight channels requires only one additional isolated line.

Both opto isolators and pulse transformers could be used to isolate the signals. However, since opto isolators tend to be smaller and less expensive than pulse transformers, they will be the only type of device considered here.

The circuit to be demonstrated is an eight channel data acquisition system with 500 V of isolation that uses the LTC1090 and four opto isolators. With the addition of another opto isolator, the circuit can be battery operated, drawing only $50 \mu \mathrm{~A}$ while taking a reading once every two seconds.

The number of channels can be increased to $16,24,32$, etc., with one additional opto isolator used to increase the num. ber of channels in multiples of eight. Up to 24 channels can be powered directly by the LT1021.

Circuit Description

The LT1021 powers the analog circuitry and provides an accurate reference. A 1Ω resistor isolates the reference from power supply transients.

The 4N28s in Figure 1 are very commonly used opto isolators. They provide only 500 V of isolation, however. If more isolation is desired, up to 2500 V of isolation can be obtained by using 4N25s with no other circuit modifications.

PNP transistors were chosen to drive the opto isolators to optimize signal fall time and clock rate. Dout of the LTC1090 is transmitted on the falling edge of SCLK. Data is clocked into the processor on the rising edge of SCLK. It is therefore necessary that the falling edge of SCLK have as little delay as possible through the opto isolator. This insures that Dout can be output by the LTC1090 in time to be captured by the processor on the rising edge of SCLK. NPNs could be used at slower data rates or if burning more current is not objectionable.

The current limiting resistors in the collectors of the opto drivers are chosen with the Current Transfer Ratio (CTR) of the opto isolator in mind. The output transistor of the opto isolator must have enough base current to drive the desired

Figure 1. Micropower, 500 V Opto Isolated, Multichannel, 10-Bit Data Acquisition System is Accessed Once Every Two Seconds
load. The base resistor on the opto output transistor is there to decrease the turn off time of the opto isolator.

The code written for the Motorola $68 \mathrm{HCO5}$ processor is available from Linear Technology. The code powers up the circuit, allows 6.0 ms for the $10 \mu \mathrm{~F}$ cap to charge to its final value, reads 9 channels in 12 ms , and then powers down until the next set of readings is required. Nine channel readings are required because, when the LTC1090 is powered up, a dummy read is necessary to initialize the device. The frequency of the ACLK generated by the 74 C 14 is not too critical. The software must provide a delay of at least two ACLK cycles between the time $\overline{C S}$ goes low and the first SCLK edge is generated. Another delay of 44 ACLKs is required during the time that $\overline{C S}$ is high between data transfers.

Alternatives

The circuit demonstrated in Figure 1 is capable of transferring serial data at about a 15 kHz rate, which is fast enough for many applications. For higher data transfer rates, pulse
transformers from companies such as Sprague or Pulse Engineering, or high speed opto isolators such as Hewlett Packard's HCPL2200 are available which can transmit data at the full 1 MHz rate that the LTC1090 is capable of.

Summary

The LTC1090 with its serial architecture is ideally suited for isolation applications. It requires only four isolated lines for eight channels of data and can be expanded by adding only one additional isolated line for each additional eight channels of data required. Possible applications for this and similar circuits are PC-based measurement systems, medical instrumentation and other applications where large common-mode voltages or ground loops exist.

For LTC1090 literature call 800.637.5545. For help with an application call (408) 432-1900, Ext. 361.

DESIGN IDEAS

Compute square root of bipolar magnitudes

Rand H Hulsing II
Sundstrand Data Control, Redmond, WA

In Fig 1, a single analog-multiplier IC calculates the square-root magnitude for bipolar input signals. You normally define the square root only for positive arguments, but this circuit generates $\sqrt{\mathrm{V}_{\text {IN }}}$ for positive inputs and

$$
-\sqrt{\left|V_{\mathrm{IN}}\right|}
$$

for negative inputs.
Although IC_{1} handles both input polarities, an output summing amplifier $\left(\mathrm{IC}_{2}\right)$ must combine the signals corresponding to each polarity, which appear on the separate load/summing resistors, R_{2} and R_{3}. The circuit produces $\pm 10 \mathrm{~V}$ output swings, limited to about 10 kHz by the multiplier's output amplifier (A). (This amplifier ensures equality in the $\mathrm{V}_{\text {out }}$ equation (Fig 1) by forcing the two terms within the brackets to have equal magnitudes.)
Fig 2 shows the circuit's output $\left(\mathrm{V}_{0}\right)$ superimposed on a $\pm 20 \mathrm{~V} p-\mathrm{p}$, triangle-wave $\mathrm{V}_{\text {IN }}$. Note that $\mathrm{V}_{0}=\mathrm{V}_{\text {IN }}$ at 0 V and at the 10 V peaks. You can create an inverting version of the circuit by swapping the Z 1 and Z 2 inputs

Fig 2-This photo shows Fig 1's V_{o} waveform superimposed on $V_{I N}-a 20 V p-p$ triangle wave.
(pins 3 and 8). As shown, the circuit delivers accuracy as high as $\pm 0.5 \%$, depending on the electrical grade of IC_{1}. If you can tolerate $\pm 5 \%$ accuracy, you can remove D_{1}, D_{2}, and R_{1}, and connect pin 4 directly to pin 7. EDN

To Vote For This Design, Circle No 750

Fig 1-These circuit connections enable a single analog multiplier $\left(I C_{1}\right)$ to calculate square-root magnitude for a bipolar input signal. Summing amplifier $I C_{z}$ combines the signals corresponding to each polarity.

Draw 20,000 Gouraud-shaded polygons a second... 90,000 3D vectors a second.
Choose 256 colors from 16.7 million.
Turn a desktop PC AT into a professional 3D CAD workstation with the Matrox SM-1281 graphics controller.

Based on the Matrox PG-1281 graphics processor for 2D workstations, the SM-1281's pipelined architecture has been optimized for sophisticated 3D processing. For the price of a single board, the SM-1281 gives your PC AT the performance of high-end 3D graphics systems.

- True workstation resolution [1280 $\times 1024$] ■ High-level 3D primitives Extensive display list capabilities Hardware hidden surface removal \quad Depth cueing \quad Programmable light sources ■ Z-buffering
One, two, three. Don't wait to see.

|-800-36|-4903

CIRCLE NO 86

DESIGN IDEAS

Counter controls its own clock frequency

Shantha Fernando

Arthur C Clarke Centre, Moratuwa, Sri Lanka
You can implement a finite-state machine by properly decoding the outputs of a binary counter. Driving the counter with a constant-frequency clock signal produces output states of equal duration. Fig 1's circuit, however, produces output states with different time intervals, as most applications require.

The analog multiplexer, IC_{3}, selects a timing resistor for the timer, IC_{1}. The timer's output clocks the counter
$\left(\mathrm{IC}_{2}\right)$ and the counter outputs drive the multiplexer's address inputs. The resistor values shown ($\mathrm{R}_{\mathrm{T} 0}$ through $\mathrm{R}_{\mathrm{T} 7}$) produce a chirped clock and an ascending sequence of output-state durations, but you can generate arbitrary durations by choosing other resistor values. You can obtain longer durations by increasing the resistor values or by inserting a digital divider between the timer and the counter.

EDN

To Vote For This Design, Circle No 748

Fig 1-In this loop, the multiplexer selects a timing resistor for the timer, which clocks the counter, IC ${ }_{z}$. The counter's resulting output-state durations depend on the values you select for resistors $R_{T 0}$ through $R_{T 7}$.

NOW YOU CAN DRIVE OUR SUBCOMPACTS.

Seagate's family of $31 / 2^{\prime \prime}$ hard disc drives.

As computers grow smaller, the demand for high-quality drives grows larger. But if you're looking for $31 / 2^{\prime \prime}$ drives for your small computer systems, you don't have a lot to choose from.

Except at Seagate.
We offer six $31 / 2^{\prime \prime}$ drives with 21 , 32 and 48 MB formatted capacities. You also have a choice of interfaces: SCSI or ST412 with RLL or MFM encoding. All with 28 msec access time.

Our $31 / 2^{\prime \prime}$ drives use Seagate's field-proven, proprietary stepper motors to achieve fast access times normally found only with more expensive voice coil actuators. using as little as 8 watts. And for added data integrity, the drives feature autopark with a balanced positioner.
All of Seagate's $31 / 2^{\prime \prime}$ drives are built with the precision and quality that have made us the world's leading independent manufacturer of $51 / 4^{\prime \prime}$ full-height and half-height hard disc drives.

Only Seagate has the worldwide, high-volume manufacturing efficiency to meet the growing demand for $31 / 2^{\prime \prime}$ drives.
When you're ready to go for a little drive, give us a call. 800-468-DISC.

Reduce ac-coupled flip-flop's dissipation

Dan Awtrey
Consultant, Garland, TX

Fast RC time constants can dominate power consumption in a conventional ac-coupled, RS flip-flop (Fig 1a). The 100 -nsec components shown, for instance, dissipate 10 mW -more than twice the dissipation of two LSTTL gates. By simply reconnecting R_{2} and R_{4}, ($\mathbf{F i g} \mathbf{1 b}$), you can halve the circuit's power dissipation and obtain other benefits as well.

Fig 1b's resistor connections eliminate dissipation in the circuit's inactive RC network. When $\mathrm{IC}_{\text {la }}$'s pin- 2 input is at logical zero, for instance, the dissipation in R_{1} and R_{2} is zero, because both ends of the resistors are at 5 V . Meanwhile, the logical zero at $\mathrm{IC}_{1 \mathrm{~b}}$'s output allows current flow in R_{3} and R_{4}, producing 3 V (logical one) at the pin- 5 input. Applying a negative-going edge to C_{2} toggles the flip-flop; then, a similar signal to C_{1} will toggle the flip-flop again. Note that in each case, the inactive network pulls the gate voltage to V_{CC} (and away from the gate input's linear region, which would dissipate additional power).
R_{2} and R_{4} also serve as pullup resistors for the gate outputs, ensuring that logical-one outputs reach the V_{CC} level for active- or passive-pullup gates. You can build the circuit with active- or passive-pullup, TTL or CMOS 2-input NAND gates.

EDN

To Vote For This Design, Circle No 749

Fig 1-To halve the power dissipation in the conventional accoupled RS flip-flop (a), simply reconnect R_{z} and $R_{母}$ as shown in b.

Swept amplitudes enhance signal generator

J Millar and T G Barnett
The London Hospital Medical College, London, UK

Adding Fig 1's circuit to an existing waveform generator provides a swept-amplitude function. That is, the $\mathrm{V}_{\text {out }}$ amplitude changes by a fixed amount on alternate zero crossings and remains constant during each full cycle. For the connections shown, the successive cycles grow in this manner to a $\pm 10 \mathrm{~V}$ maximum, return to a
$\pm 1 \mathrm{~V}$ minimum, and repeat. This capability is useful for evaluating certain biomedical sensors and electrodes, for instance, which may exhibit voltage-dependent characteristics that other test methods don't reveal.

The circuit provides a frequency range of dc to 100 kHz while preserving other waveform capabilities the generator may have (waveform type, swept frequency, gated operation, etc). In short, the circuit uses an analog divider $\left(\mathrm{IC}_{6}\right)$ to divide $\mathrm{V}_{\text {IN }}$ by a constant whose value changes with each successive cycle.

DESIGN IDEAS

Op amp IC_{1}, connected as a zero-crossing comparator, produces a square wave that is synchronous with the $\mathrm{V}_{\text {IN }}$ frequency. After being inverted by the

This output (from Fig 1) shows discrete levels which, for the 10-kHz $V_{I N}$ shown, have a duration of 0.1 msec each.

Schmitt-trigger gate $\left(\mathrm{IC}_{2}\right)$, this signal drives the clock input (pin 17) of the multifunction converter, $\mathrm{IC}_{3} . \mathrm{IC}_{3}$ includes an 8 -bit D/A converter and an up/down counter configured to count up, reverse at full scale, then count down and reverse at zero, and so on. The counter's output drives the converter to produce a 0 to 9 V staircase waveform at the output of amplifier IC_{4}. (Note that you can lower the staircase frequency by reducing IC_{3} 's clock rate. You can introduce a CD4040 binary counter between the timer and the converter, for example, to divide that signal by a suitable factor.)

The analog divider, IC_{6}, then divides successive $\mathrm{V}_{\text {IN }}$ cycles by successive discrete levels of the staircase waveform. Note that the divider and the op amps require $\pm 15 \mathrm{~V}$ supply voltages.

To Vote For This Design, Circle No 747

Fig 1-This circuit sweeps the amplitude of $V_{I N}$ by providing discrete levels of gain for each successive cycle, in a staircase pattern.

tiny SPDT switches absorptive... reflective

dc to 4.6 GHz tom $\$ 322_{50}^{95}$

Tough enough to pass stringent MIL-STD-883 tests, useable from dc to 6 GHz and smaller than most RF switches, Mini-Circuits' hermetically-sealed (reflective) KSW-2-46 and (absorptive) KSWA-2-46 offer a new, unexplored horizon of applications. Unlike pin diode switches that become ineffective below 1 MHz , these GaAs switches can operate down to dc with control voltage as low as -5 V ,
at a blinding 2 ns switching speed.
Despite its extremely tiny size, only 0.185 by 0.185 by 0.06 in., these switches provide 50 dB isolation (considerably higher than many larger units) and insertion loss of only 1dB. The absorptive model KSWA-2-46 exhibits a typical VSWR of 1.5 in its "OFF" state over the entire frequency range. These surface-mount units can be soldered to pc boards using conventional assembly techniques. The KSW-2-46, priced at only \$32.95, and the KSWA-2-46, at \$48.95, are the latest examples of components from Mini-Circuits with unbeatable price/performance.

Connector versions, packaged in a $1.25 \times 1.25 \times 0.75 \mathrm{in}$. metal case, contain five SMA connectors, including one at each control port to maintain 3ns switching speed.
Switch fast...to Mini-Circuits' GaAs switches.
finding new ways
setting higher standards

SPECIFICATIONS

Design Entry Blank

\$75 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone \qquad
Company
Division (if any)
Street \qquad
City \qquad State \qquad Zip \qquad
Design Title
Home Address \qquad

Social Security Number \qquad
(Must accompany all Design Ideas submitted by US authors)

Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date \qquad
Your vote determines this issue's winner. All designs published win $\$ 75$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

ISSUE WINNER

The winning Design Idea for the February 18, 1988, issue is entitled "Derive $\pm 15 \mathrm{~V}$ and 5 V from a 12 V battery," submitted by Andy Jenkins of Maxim Integrated Products (Sunnyvale, CA).

Alterable code enhances instructions

Noor Singh Khalsa
EG\&G Inc, Los Alamos, NM

By using a static RAM with built-in battery backup, you can create self-modifying code that enhances the instruction set of your μ P. The 8031, for example, has a built-in bit map, but you must address the bits directly. A few instructions (Fig 1) let you implement an indexed addressing scheme that dynamically alters the second byte of the bit-addressing instruction (which is the bit's address).

Fig 1-You can use these instructions to implement an indexed addressing scheme that dynamically alters the second byte of the 8031's bit-addressing instruction.

Fig 2-This external OR gate causes a complete overlap in the 8031's otherwise separate $64 k$-byte memory spaces for code and data.

The 8031 maintains a separate memory space for code and data. The Fig 1 scheme, however, requires that you combine these memory spaces by making them overlap. To do so, you simply OR the instruction-fetch signal (PSEN) with the external-memory read signal (RD) as shown in Fig 2. This circuit reduces the total memory space to 64 k bytes (instead of 64 k bytes each for code and data), but you gain the programming advantage of being able to mix the MOVX and MOVC instructions. For example, you can eliminate a CLR A instruction by using MOVX A,@DPTR instead of the MOVC a, @A+DPTR instruction.

EDN

To Vote For This Design, Circle No 746

"First universal circuit design l've seen...too bad it only runs at
 speed."

TI Programmable-array Logic devices direct to you from the Hall-Mark IMPACT ${ }^{\text {TM }}$ Design and Services Center.

Hall-Mark has a way to give your designs more performance. Economically. Quickly and easily. Hall-Mark can deliver the TIIMPACT PAL ${ }^{\circledR}$ family and help you get your product to market faster.

Whether you want TI PAL devices to program yourself or choose to use the Hall-Mark/Texas Instruments IMPACT Design and Services Center, you get the benefits of enhanced speed in your critical paths such
 as control logic, address decoding and sequence generation.

Hall-Mark can show you how to use the fastest family of bipolar PAL circuits in the industry today to gain new speed in your designs. The TI family also includes the fastest standard 22V10-family device available today: the TIBPAL22VP10-20. It is pin-compatible with slower, competitive 22V10 devices.

Now's the time to come up to speed with Texas Instruments IMPACT PAL devices from Hall-Mark. Give your Hall-Mark salesperson a call right now.

We deliver on Texas Instruments Technology.

[^14]
Colorado
 Denver (303) 790-1662 Connecticut Connecticut (203) 269-0100 Florida
 Ft. Lauderdale (305) 971-9280 Orlando (305) 855-4020 Tampa Bay (813) 855-5773 Georgia Atlanta (404) 447-8000 Illinois Chicago (312) 860-3800
 Indiana Indianapolis (317) 872-8875 Kansas Kansas City (913) 888-4747 Maryland Baltimore (301) 988-9800 Massachusetts Boston (617) 935-9777 Michigan Detroit (313) 462-1205 Minnesota Minneapolis (612) 941-2600

© 1988 Hall-Mark Electronics Corp./400-3008

Oklahoma
Tulsa (918) 251-1108
Pennsylvania
Philadelphia (215) 355-7300
Texas
Austin (512) 258-8848
Dallas (214) 553-4300
Houston (713) 781-6100
Utah
Salt Lake City (801) $972-1008$
Wisconsin
Milwaukee (414))997-7844

[^15]
Introducing The Wortis Most Advanced Power Supply Control IC.
 Load Current Demand

 and Inductor Current Responses
The CS-320 from Cherry Semiconductor Corporation

The CS-320. A power supply control IC so advanced it is the first to provide for unconditionally stable Hysteretic control.

The CS-320. A power supply control IC so advanced it is the world's first to offer power supply designers the option of working in any one of three modes of control: Hysteretic, Constant-Off-Time or Conventional (constant frequency).

The CS-320. A power supply control IC so advanced it offers better short circuit protection than any other control chip in the world.

Three Types of Control

The CS-320 offers power supply designers greater range and flexibility. While conventional control can be used, Hysteretic and Constant-OffTime are both superior. Conventional control does not instantaneously respond to load current demand. Hysteretic and Constant-Off-Time control, by comparison, do provide instantaneous response, which guarantees that the power supply will remain well-controlled and stable.

Cherry Semiconductor Corp., 2000 South County Trail, East Greenwich, RI 02818 (401) 885-3600 FAX (401) 885-5786 Telex: WUI6817157

Unconditional Stability.

Hysteretic control directly controls both the peak and valley inductor current. Additionally, slope compensation is not required. A power supply using Hysteretic control is free from subharmonic oscillation and is unconditionally stable. Figure 2 shows the response of a CS-320 controlled Hysteretic DC-DC converter to a 5:1 variation in load current.

Current Runaway Prevented

Unconventional Control of Short Circuits
The unique (patent pending) circuitry of the CS-320 prevents current runaway at or near short circuit conditions during high frequency operation.

All of these advances can be working for you, plus operation at up to 1 MHz , flexible current sensing, use in parallel operation of converters without master/slave designation, and Under Voltage Lockout with a choice of start/stop thresholds.

Excellent Application Support

Cherry Semiconductor is a leading producer of power supply control ICs. In addition to product innovation, CSC is recognized for helping customers to anticipate problems, arriving at workable solutions, and effectively integrating CSC ICs into end product designs.

Call or write for more information.

Aeroflex announces the new math forMIL-STD-1553 design engineers. In which threegoes into one just once

Dual port RAM with 8 K words of memory and full memory management

Dual decoder, encoder and protocol processor for Remote Terminal, Bus Controller and Bus Monitor

Low power dual

 redundant transceiversYou are looking at the most powerful, flexible and unique MIL-STD-1553B interface currently available. Bar none. Now, in one $2 \times 3.1^{\prime \prime}$ package, this new ARX 2427 Universal Bus Interface Unit (UBIU) combines all the functions it takes three competitive hybrids to perform. Fact is, of all hy brids today, only the ARX 2427 reduces interface and hardware time to absolute zero.

The powerful ARX 2427 contains a dual port RAM that's double-sided and double-buffered to eliminate contention problems and wait states. Data can be mapped into RAM blocks by subaddress or alternately stacked. Memory is accessed for read and write using address lines and a select line, treated as subsystem memory. The host system is therefore freed from critical

AEROIEX mICROELECTRONICS
timed response to Bus traffic and communication overhead is kept to a bare minimum. The unit also includes extensive error checking, which eliminates handling bad data. Fault monitoring plus many other features make the ARX 2427 clearly the most useful of 1553 interfaces.

So forget complex interconnect schemes. Forget special glue logic circuitry design
for subsystem compatibility Forget using up valuable PC board real estate. The ARX 2427 is the UBIU to remember when you want to solve your 1553 problems-once-and for all.

For additional information call toll-free: 1-800-THE-1553 or TWX 510-224-6417. Or write Aeroflex Laboratories Inc., Microelectronics Division, 35 South Service Road, Plainview, NY 11803.

8-BIT ADC

- Features $6.6-\mu \mathrm{sec}$ conversion rate
- Includes 8-channel multiplexer

Designed for $\mu \mathrm{P}$-based applications, the ML2258 is an 8-bit, SAR-type A/D converter, with a built-in 8 channel multiplexer. The on-chip sample-and-hold function features a 375 -nsec acquisition time and, combined with the ADC's $6.6-\mu \mathrm{sec}$ conversion rate, enables the device to digitize a $50-\mathrm{kHz}, 0-\mathrm{to}-5 \mathrm{~V}$ sine wave with less than -60 dB of harmonic distortion. The ML2258 is a pin-
compatible, enhanced alternatesource for the industry-standard ADC0808 and ADC0809. The $\mu \mathrm{P}$ interface of the ML2258 operates asynchronously to the converter clock, allowing the $\mu \mathrm{P}$ to utilize the A/D converter's speed while saving hardware and program space. The ML2258 operates from a 5 V supply and has an analog input range of 0 to 5 V . In 28 -pin DIP, $\$ 3.35$; in 28 -pin PLCC, $\$ 3.95$ (100).

Micro Linear Corp, 2092 Concourse Dr, San Jose, CA 95131. Phone (408) 262-5200.

Circle No 351

A/D CONVERTERS

- 500-nsec conversion speed
- Choice of input range

Combining thick- and thin-film hybrid technology, the 4192, 4193, and 4195 12-bit A/D converters feature a maximum conversion speed of 500 nsec. The 4192 has selectable input ranges of 0 to $10 \mathrm{~V}, 0$ to 20 V , and $\pm 10 \mathrm{~V}$. The 4193 has an input range of 0 to 5 V , and the 4195 has an input range of $\pm 2.5 \mathrm{~V}$. The 4192 is a plugin replacement for the Datel (Mansfield, MA) ADC500/505; the 4193 and 4195 are plug-in, higher-speed replacements for the MicroNetworks (Worcester, MA)

MN5345/46. By using this company's 4860 track/hold amplifier with the 4192/93/95 devices, you can achieve a digitizing rate of more than 1.3 M sample/sec. All these devices have a typical power dissipa-
tion of 1.72 W . The 4192 is housed in a 32 -pin, triple-width hermeticallysealed ceramic package. The 4193 and 4195 are housed in 40-pin, dualwidth hermetically-sealed ceramic packages. The devices are specified for operation over the 0 to $70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$ temperature ranges. MIL-STD-883B/S screening is also available. $\$ 382$ to $\$ 489$ (100).

Teledyne Philbrick, 40 Allied Drive, Dedham, MA 02026. Phone (617) 329-1600.

Circle No 352

S/H AMPLIFIER

- $100-\mathrm{MHz}$ sample rate
- 115-MHz analog bandwidth

Designed for use in high-speed, 12-bit data-acquisition and signalprocessing systems, the SHC601 S / H amplifier combines a $100-\mathrm{MHz}$ sampling rate with high accuracy and low distortion. Linearity error is $\pm 0.02 \%$ max, and harmonic distortion is -55 dB at 20 MHz . When used with flash A/D converters, the SHC601 significantly improves the signal-to-noise performance of these circuits. The amplifier acquires 2.5 V input step changes to 0.1% accuracy in 12 nsec, has a slew rate of $350 \mathrm{~V} / \mathrm{nsec}$, and an analog bandwidth of 115 MHz . The device comes in a 24 -pin ceramic DIP and has a specified temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} . \$ 392.50(100)$.

Burr-Brown, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. TWX 910-952-1111.

Circle No 353
Text continued on pg 218

MILITARY 16-BIT A/D's FIRSTIN THEIR CLASS

MIL-STD-1772 CERTIFIED

 MN5295/MN5290 \& MN6290High Speed:
MN5295: 17μ sec Max. Conversion Time MN5290: $40 \mu \mathrm{sec}$ Max. Conversion Time MN6290: 20 kHz Min. Sampling Rate Small 32-Pin Double-Wide DIP 14-Bit "No Missing Codes"
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operation MIL-STD-883 Screening

In the two speed classes of $16-b i t$ A/D's that have emerged, only one supplier designs its devices to meet all of your military and aerospace requirements: Micro Networks.

In the high-speed ($15-20 \mu \mathrm{sec}$) class, our MN5295/96 are the fastest ($17 \mu \mathrm{sec}$), smallest (by 31%), and only devices to offer $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation and MIL-STD-883 screening.

In the general-purpose ($40-50 \mu \mathrm{sec}$) class, our MN5290/91 offer these same advantages; while our MN6290/91 add an internal T/H, plus FFT testing for improved performance, ease of specification, and significant space savings.

And most critical to your designs, these are the only devices that operate over the extended military temperature range with full military screening.

MN5295/MN5296

The newest in our expanding line of highperformance, military, 16-bit A/D's are at the top of their class.

Fastest Conversion Time: $17 \mu \mathrm{sec}$ Max. (16 Bits)
Smallest Package by 31\%:
Double vs. Triple DIP
Widest Temperature Range:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Only Devices Available with 883 Screening
In the top speed class, our MN5295/96 excel, providing outstanding 16 -bit performance in a DIP package that is fully 31% smaller than any competitor's. No other supplier can meet your requirements for high-speed, highresolution, military A/D's. When your design demands the best, demand Micro Networks MN5295/96.

MN5290/MN5291

They're the best in their speed class of workhorse 16-bit A/D's. Specify them for all your applications that don't require the added performance of our MN5295/96.

Fastest Conversion Time in Their Class: $40 \mu \mathrm{sec}$ Max.
Smallest Package by 31% :
Double vs. Triple DIP
Widest Temperature Range:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Only Devices Available with 883 Screening
Like our MN5295/96, our MN5290/91 A/D's are ideal for any design where you need true 14 or 13-bit performance over an extended temperature range. These devices were the first 16-bit military A/D's. Since their introduction, their broad acceptance and proven performance have made them industry standards.

MN6290/MN6291

In a class by themselves, these FFT-tested sampling A/D's are ideal for traditional data acquisition and DSP applications.

Single Package Sampling A/D High Resolution/Sampling Rate:

16 Bits @ 20kHz
Signal-to-Noise Ratio: 84dB
Harmonics: -88dB
Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Available with MIL-STD-883 Screening

These devices eliminate the hassle of evaluating T / H specs that are difficult to understand and often don't relate.

For more detailed information, send for our comprehensive data sheets. For rapid response, call Russ Mullet at Ext. 208.

Micro Networks
324 Clark Street
Worcester, Massachusetts 01606
(617) 852-5400

Micro Networks
Advancing Data Conversion
Technology

MEMORY INTERFACE

- 2-chip interface set for memory boards
- LIM-EMS 4.0 and OS/2 compatible

The EL2010 2-chip set provides the Micro Channel interface for memory boards used with the IBM PS/2 Models 50 and 60 . The chips support

Let POMONA hand you the very best quality.

Oscilloscopes can cost up to $\$ 10,000$ or more, while its interconnecting test accessories amount to a minor purchase. So it just doesn't make good sense to buy cut-rate imitations that could put your test results in jeopardy. Since you want accurate readings, insist on the most reliable test products: POMONA.

For your FREE 1988 General Catalog, circle reader service number printed below
memory to 14.25 M bytes and are compatible with the LIM-EMS 4.0 memory standard. The EL2010 includes a full set of power-on setup registers, selectable ID codes, parity logic, RAM control, and decoding for one parallel port and two serial ports. The chip set can function in systems operating to 16 MHz and can replace as many as 30 ICs. Implemented in low-power CMOS, the EL2010 chips come in 84-pin plastic leaded chip carriers. The 2-chip set, $\$ 35$ (1000).

Edsun Laboratories Inc, 9 Spring St, Waltham, MA 02154. Phone (617) 647-9300. TLX 853664.

Circle No 354

GaAs STANDARD CELLS

- 6000 equivalent gates
- Toggle rates as high as 2 GHz

Fabricated in a gallium arsenide enhancement/depletion process, the QLSI standard-cell family supports LSI applications for as many as 6000 equivalent gates. The device's toggle rates, as high as 2 GHz , are two to three times faster than those of most bipolar silicon gate arrays. Two FET logic families are available: the ZFL and the SCFL cell families. The ZFL cells are similar to those used in the company's TQ3000 LSI gate array, which provides low-power gates capable of high fan-out at toggle rates reaching 1 GHz . The differential currentswitched SCFL cells are similar to silicon ECL logic, but have toggle rates as high as 2 GHz . The ability of the SCFL cells to operate from a

World's Fastest

32-bit CMOS EDC

FASTEST SPEED/LOWEST POWER

IDT49C460B: fastest speed, lowest power 32-bit EDC.

Your memories are getting bigger and with that comes higher error rates. Use the new, faster IDT49C460B to enhance data integrity. It corrects all single-bit errors, detects all double and some triple-bit errors.

Replaces 2960s. You can easily upgrade existing 2960 systems with the IDT49C460B because both devices use the same Hamming code. Your design benefits from faster speed, improved power consumption and a-to-1 reduction in chip count. Byte writes, byte operations and diagnostics are included.

Faster than bipolar. The IDT49C460B detects an error in 25 ns and corrects in 30 ns . Nothing is faster.

Lowest power. The only 32 -bit EDC in CMOS consumes just 95 mA commercial. Now you can get EDC faster than the fastest bipolar but with CMOS power.

Cascades to 64 bits. Only IDT offers you a simple, two chip solution for 64 -bit EDC. (The Tl632 cannot be cascaded to 64-bits; while the Am2960 approach requires 14 devices.)

16-Bit EDC

	IDT39C60A	IDT39C60-1	IDT39C60
Data to error detect	20 ns	25 ns	32 ns
Data to error correct	30 ns	52 ns	65 ns
Commercial I_{cc}	85 mA	85 mA	85 mA

Speed leadership in 16-bit EDC.

We also make a family of 16 -bit CMOS EDCs. All are 2960 pin compatible with improved output drive while consuming only $1 / 4$ the power.

The IDT39C60A is unquestionably the highest performance TTL compatible CMOS 16-bit EDC in the world. And more than just some "specs on paper," it's available now-in volume.

The IDT39C60-1 and IDT39C60 are equal in speed to both the 2960-1 and 2960.

Packages. $\square 48$-pin plastic and ceramic DIPs. $\square 52$-pin PLCC/LCCs.

The DATABOOK also contains complete information on our CMOS Static RAMs • specialty memory products such as FIFOs and DUAL-PORTs • ultra-fast RISC processors and bit-slice ALUs • MultiplierAccumulators and FloatingPoint Processors • TTL logic

- Data Conversion products
- ECL Interface products.

Cascadable. Up to 64 bits.

3236 Scott Blvd.
Santa Clara, CA 95054-3090
(408) 492-8314

FAX: 408 727-2328
single 5 V supply provides compatibility with existing silicon-based logic. The QLSI standard-cell ICs are available in both die and packaged form. Nonrecurring engineering charges start at $\$ 60,000$ and include design manuals and workstation software. Delivery, 16 weeks ARO.
TriQuint Semiconductor Inc, Group 700, Box 4935, Beaverton, OR 97076. Phone (503) 641-4227.

Circle No 355

SCSI CONTROLLER

- 4M-bytes/sec transfer rate
- Asynchronous SCSI interface

Reportedly twice as fast as the in-dustry-standard 53C80 chip, the pin-compatible L53C80 can transfer data as fast as 4 M -byte $/ \mathrm{sec}$. The L53C80 also corrects a problem in the original device that prevented designers from using the block-

mode DMA feature in new designs. The L53C80 also satisfies the SCSI asynchronous interface as defined by the ANSI X3T9.2 committee, and extends the range of this 2 M byte/sec standard. The device's built-in drivers handle 48 mA of current and connect directly to the SCSI cable. The power consumption of the L 53 C 80 is 15 mW (5 V at 15 mA). The device is available in a 48-pin DIP or a 44-pin plastic leaded chip carrier. In plastic DIP, the

L53C80PC-2 costs $\$ 6.65$; the L53C80PC-4 is $\$ 9(100)$.

Logic Devices Inc, 628 E Evelyn Ave, Sunnyvale, CA 94086. Phone (408) 720-8630.

Circle No 356

INTERFACE CHIP

- For Micro Channel add-on boards
- User-configurable programming

Designed for add-on boards for the IBM PS/2 personal computers, the EPB2001 user-configurable interface chip allows board manufacturers to program the chip for board ID and address ranges, which are essential requirements of the Micro Channel specifications. Built from EPROM technology, the EPB2001 incorporates high-current bus drivers and does not need external chips or jumpers to provide the Micro Channel interface. The device meets

A pollo brightens existing Domain ${ }^{\oplus}$ systems with an upgrade to display 256 colors from a 16.8 million color palette. Brooktree brightened Apollo's day with the RAMDAC that makes that palette economical.

all ac-timing and dc-drive requirements without any additional buffer components. The EPB2002 DMA arbitration chip works with the EPD2001 interface chip to integrate the additional logic required for DMA capability. The EPB2001 comes in a windowed 84-pin, J-lead surface-mount package and a windowless, 1-time programmable device. The EPD2002 comes in a

28-pin DIP and a 28 -pin J-lead package. \$12 (EPD2001); \$5 (EPD2002) $(10,000)$. Samples will be available this quarter; production of both versions is scheduled for the second half of 1988 .

Altera Corp, 3525 Monroe St, Santa Clara, CA 95051. Phone (408) 984-2800.

Circle No 357

12-BIT ADC

- 15- μ sec conversion time
- 150-nsec data-access time

The AD674A 12-bit A/D converter is pin-compatible with the AD574 but features a $15-\mu \mathrm{sec}$ conversion time. It has 3 -state buffers, a maximum data-access time of 150 nsec , and interfaces to most digital processors. The converter can read data as one 12 -bit word or as two 8 -bit bytes. Typical operation is under $\mu \mathrm{P}$ control, but you can also

implement a stand-alone mode. Specified for use with either $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ supplies, the AD674A provides 4 signal-input ranges of 0 to 10 V and 0 to 20 V (unipolar), and $\pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ (bipolar). The device includes an internal buriedzener reference trimmed to 10 V , which can drive external loads to 2 mA . The AD674A is available in 6 grades starting at $\$ 39.25$ (commercial) and $\$ 107.25$ (military) (100).

Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 935-5565.

Circle No 358

Brooktree

Brooktree Bt458. Triple 8-bit color RAMDAC. Available in speeds from 75 MHz to 135 MHz .
Colorboard upgrade for Apollo DN3000 and DN4000 Domain Systems. Provides 1024×800 screen resolution. Displays 256 colors from 16.8 million color palette.
Brooktree Corporation, 9950 Barnes Canyon Road, San Diego, California 92121. 1-800-VIDEO IC or 1-800-422-9040, in California.

PRECISION OP AMP

- $15-\mu V$ offset voltage
- High CMRR and PSRR

The LT1001 precision op amp features a maximum offset voltage of $15 \mu \mathrm{~V}$ and a maximum offset drift of $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. It's offered as a true second source to the industry part bearing the same designation. The device also features a maximum in-put-bias current of 2 nA , a CMRR of 114 dB , and a PSRR of 110 dB . Input noise is $0.6 \mu \mathrm{~V}$ p-p from 0.1 to 10 Hz . Maximum power dissipation
is 75 mW . Package options for the LT1001 include SOIC, PLCC, TO-99, and ceramic and plastic DIPs. From $\$ 1.10$ (100).

Raytheon Co, 350 Ellis St, Mountain View, CA 94043. Phone (415) 968-9211.

Circle No 359

ANALOG MULTIPLEXERS

- Single-ended or differential
- Offers versions having between 4 and 16 channels

Fabricated in CMOS, the HI-506A, HI-507A, HI-508A, and HI-509A are analog multiplexers that have transfer accuracies of better than 0.1% at sampling rates to 200 kHz . The analog inputs of the devices can withstand an overvoltage to 70 V $p-p$, and feature break-before-make switching. The HI-506A provides 16 single-ended channels; the HI507A, 8 differential channels; the

HI-508A, 8 single-ended channels; and the HI-509A, 4 differential channels. The input signal range for all channels of all devices is $\pm 15 \mathrm{~V}$, and crosstalk is limited to 0.005% of the voltage level when the channel is off. The multiplexers are packaged in ceramic or plastic DIPs, specified for 0 to $75^{\circ} \mathrm{C}$ or -55 to $+125^{\circ} \mathrm{C}$. Prices start at $\$ 13.50$ for the HI$506 \mathrm{~A} / \mathrm{HI}-507 \mathrm{~A}$, and $\$ 7.35$ for the HI-508A/HI-509A (100).

Burr-Brown, Box 11400, Tucson, AZ 85734. Phone (602) 746-1111. TWX 910-952-1111.

Circle No 360

Coilcraft is big in small inductors

Call Coilcraft for all your surface mount inductors-fixed, tuneable, transformers, or toroids.

Most are in stock, ready for immediate shipment. And all are priced incredibly low, even in small quantities.

To help you get started, we've prepared Experimenter's Kits with dozens of our most popular values.

For complete specifications, or to order your kits, call 312/639-6400.

Experimenter's Kits

Fixed Inductor Kit C100-\$125 $4 \mathrm{nH}-1,000 \mathrm{uH}, 64$ values (6 of each) Tuneable Inductor Kit C101-\$50 $100 \mathrm{nH}-10 \mathrm{uH}, 11$ values (5 of each)

NEW SIGNAL AMPLIFIERS AND POWER CONVERTERS GIVE YOU COMPLETE, GUARANTEED ISOLATION SOLUTIONS.

When you need to protect low-level analog signals from noise or high-voltage potentials, choose the industry's most advanced isolation solutions.

Easy-to-use, hermetic isolation amplifiers.
The patented capacitive ceramic isolation barrier of Burr-Brown's unique ISO102/106 buffer amps provides superior protection at extremely low cost:

- 1500 Vrms or 3500 Vrms isolation voltages, 100% tested and guaranteed;
- industry's first hermetic isolation amps;
- low priced, from 17.35* (ISO102).

Economical, isolated DC/DC converters.

PWS725/726 converters supply isolated, ± 7-to$18 \mathrm{VDC}, 40 \mathrm{~mA}$ outputs from single $7-18 \mathrm{~V}$ supplies. Use them with ISO102/106 amps for complete, low-cost systems:

- 1500 Vrms or 2500 Vrms isolation voltage protection;
- from \$22.35* (PWS725)

New distributed power system delivers lowest isolation cost-per-channel.
PWS740 modular DC/DC converter systems save board space and minimize multichannel isolation costs. Compact driver, transformer, and
rectifier components provide $30 \mathrm{~mA}, \pm 7$-to20VDC outputs with rated 1500 Vrms isolation:

- 8-channel isolation costs under \$5.50/channel*.
For complete details, contact your nearest sales office or Applications Engineering, 602/746-1111. Burr-Brown Corp., P.O. Box 11400, Tucson, AZ 85734.

BURR-BROWN* =3

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

ATTENUATORS

- 30- to $500-\mathrm{MHz}$ operating range
- $63.5-d B$ attenuation

This 7 -bit RF attenuator family features a $63.5-\mathrm{dB}$ attenuation capability in $0.5-\mathrm{dB}$ steps. The devices operate over a $30-$ to $500-\mathrm{MHz}$ spectrum, have a -55 to $+125^{\circ} \mathrm{C}$ range, and accommodate as much as 13 dBm of input power. Available in both DIP and connectorized versions, the attenuators operate from a 5 V supply. The DA0617 provides a 7 -nsec transition time, a $25-$ nsec total switching time, and $50-\mathrm{mV}$ peak transients. The DA0285 and DA0295 low-power alternatives offer CMOS and TTL compatibility, respectively.

DA0617, \$630; DA0285 and DA0295, \$511 (10).

Daico Industries Inc, 2139 E Del

Amo Blvd, Compton, CA 90220. Phone (213) 631-1143.

Circle No 365

RELAYS

- Designed for ATE applications
- Optically isolated to protect input logic and minimize EMI
Designed to replace electromechanical relays in ATE systems, C66 Series solid-state relays are optically isolated to protect input logic circuitry from output voltage transients, thus minimizing EMI problems. The C66-1 is a power instrumentation relay with an output rating of 800 mA at $\pm 180 \mathrm{~V}$ continuous. The maximum resistance and leakage current spec at 1Ω and 200 nA , respectively. The C66-2 features a continuous load
rating of $\pm 350 \mathrm{~V}$ at 300 mA . The output leakage current specs at 50 nA max and the on-resistance equals 7.2Ω max. With a $25-\mathrm{mA}$ input current, the turn-off time for both devices equals $300 \mu \mathrm{sec}$. C66-1, $\$ 64.35$; C66-2, $\$ 65.90$ (100). Delivery, stock to eight weeks ARO.

Teledyne Solid State, 12525 Daphne Ave, Hawthorne, CA 90250. Phone (213) 777-0077.

Circle No 366

CONNECTORS

- Feature 50Ω line impedance
- Designed for Ethernet systems

This Type N connector, termination, and splice series works with Ethernet systems. Available in coaxial Type N formats, the devices feature twist-on plug connectors for popular RG, Proflex Ethernet PVC, and Teflon-jacketed cables. Typical specifications include a nominal line impedance of 50Ω, a working voltage of $500 \mathrm{~V} \mathrm{rms} \mathrm{at} \mathrm{sea} \mathrm{level}$, VSWR of 1.3 max at 10 GHz . The insulation resistance equals 5000 $\mathrm{M} \Omega$ and the sea-level dielectric

withstanding voltage is 1500 V rms. $\$ 1.80$ to $\$ 2.80$ (OEM qty).

Cambridge Products Corp, 244 Woodland Ave, Bloomfield, CT 06002. Phone (203) 243-1761.

Circle No 367

MOSFETs

- Available in packaged or die form
- Drain-to-source voltage ratings range as high as 600 V
The 23 units in the Power MOS IV line offer usable current ratings as high as $22 \mathrm{~A}, 0.2 \Omega$ on-resistance ratings to meet low drive requirements, 800 pF input capacitance, and drain-to-source voltage ratings of 600 V max. The input capacitance values range from 2400 to 800 pF ,
and reverse transfer capacitance values are as high as 60 pF . The units are available in TO-3 packages and die form. TO-3 packages, $\$ 4.63$ to $\$ 28.86$ (100).

Advanced Power Technology, 405 SW Columbia St, Bend, OR 97702. Phone (800) 222-8278; in OR, (503) 382-8028.

Circle No 368

CONNECTORS

- Crimp-type contacts reduce installation time
- Compatible with all standard D subminiature connectors

Featuring crimp-insertable contacts, Sigma-D connectors can cut installation time and lower replacement costs. The units are fully compatible with all standard D-subminiature connectors. The connector shell material is steel, zinc-plated with yellow chromate. Tin-plated

shells are also available for applications where shielding is important. The insulators are black, glass-filled nylon, and the brass contact pins and phospher-bronze sockets have gold over nickel plating. The contacts are available on reels or in loose pieces. 10,000 -pin reel, $\$ 240$; 25 -pin shells, $\$ 0.33$ (500). Delivery, stock to six weeks ARO.

Vernitron Corp, Beau Products Div, Box 10, Laconia, NH 03247. Phone (603) 524-5101. TWX 710-364-1843.

Circle No 369

LIF CONNECTORS

- Feature 700-contact capability
- Offer various termination options

The N Series low-insertion-force (LIF) connectors are available in cable (120 and 700 positions) and rack-and-panel (110 and 350 position) versions. You can specify a model to handle either signal (5A) or power (9A) applications. The signal contacts feature a $0.1 \times 0.1-\mathrm{in}$. center-to-center grid and are available with a choice of crimp, soldercup, dip-solder, or wire-wrap termi-

CIRCLE NO 21

Cathode Ray Tubes

Thomas Electronics cathode ray tubes designed for Military, Commercial and Industrial applications from the most sophisticated avionics and photo-recording to the general computer terminal and medical display applications. Four production facilities to serve you best in Wayne, NJ - Los Angeles, CA - and Clyde, NY. Send for our new full color catalog, or contact us with your specific requirements.

THOMAS ELECTRONICS

100 Riverview Drive, Wayne, NJ 07470 / 201-696-5200 TELEX: 310-685-3326 / FACSIMILE: 201-696-8298

INTEL'S NEW 80960 FAMILY OF HIGHLY-INTEGRATED, HIGH-PERFORMANCE CHIPS, NOW AVAILABLE THROUGH ALL 58 LOCATIONS

Imagine microprocessors with an architecture that lets you take high-speed shortcuts to solutions for embedded applications.
Intel did, and they're in stock at Hamilton/Avnet.
Their 32-bit 80960 microprocessors were created with an entirely new architecture using RISC design techniques and many highly-integrated, on-chip features that give them the best functionality, flexibility and price/performance of any microprocessor for embedded applications.
FUNCTIONALITY: The 80960s are highlyintegrated, containing a high-performance FPU, interrupt controller, 512 K byte instruction cache, multiple register sets, 32-bit MUXed burst bus and self test

FLEXIBILITY: Since so many functions are embedded in the 80960s, they're easy-to-use in a wide range of embedded applications: Systems Controllers such as image processing. robotics and process control; Data Controllers, such as protocol handlers, data formatters and I/O controllers: Event Controllers, such as motor control, engine control and machine and instrument control.

PRICE/PERFORMANCE: They utilize the best of RISC design techniques to provide costeffective higher performance levels in embedded applications.
Plus, their ability to execute multiple instructions per clock cycle through increased parallelism allows exponential performance growth.

And, because of the high integration of functions, they take up less board real estate and consume less power.

Right now. Hamilton/Avnet can supply you with immediate delivery of 16 and 20 MHz versions, with 7.5 MIPS sustained operation.

Call Hamilton/Avnet today and you can begin building your nextembedded application solution with an architecture that can take you everywhere

For the Hamilton/Avnet location nearest you, call toll free: 1-800-442-6458 (1-800-387 6879 in Canada; 1-800-387-6849 in Ontario

and Quebec).
 HamiltonbAvnet

A NEW ARCHITECTURE

 THAT LEADS TO NEW SOLUTIONS IN EMBEDDED APPLICATIONS:
INTEL 80960 from HAMILTON/AVNET

nations. The power contacts are on 0.2×0.2-in. centers and are available with crimp, solder-cup, or 0.47 -in. wire-wrap type terminations. $\$ 73$ to $\$ 375$ (100). Delivery, 14 to 16 weeks ARO.
Hypertronics Corp, 16 Brent Dr, Hudson, MA 01749. Phone (617) 568-0451. TLX 951152.

Circle No 370

RECTIFIERS

- Mounted on heat sinks
- Feature 2500 V isolation

The CD6 family includes the CD63 dual-SCR module, the CD61 dualdiode module, the CD62 SCR/diode module, and the CS61 single-diode module. All units are available with $800,1200,1400$, and 1600 V blocking

voltage ratings and are isolated to 2500 V rms for 1 minute. The CD63 and CD62 devices are rated for continuous current operation at 150 mA , and the diode modules can control 160 mA . The glass-passivated devices are mounted and packaged on electrically isolated copper nickel heat sinks. $160 \mathrm{~A}, 800 \mathrm{~V}$ dual-diode module, $\$ 44.50$ (100).
Powerex Inc, Hillis St, Youngwood, PA 15697. Phone (412) 925-4422.

Circle No 371

POWER SUPPLIES

- Feature a 215,000-hour MTBF
- Designed to meet international safety standards

The SP3-40 Series 40W switching power supplies meet UL, CSA, and VDE safety standards. All three models utilize a single-ended forward converter topology that operates at a $45-\mathrm{kHz}$ switching frequency to achieve a 215,000 -hour MTBF. The units supply output combinations of 5 V and $12 / 12 \mathrm{~V}, 24 / 12 \mathrm{~V}$, or $12 / 5.2 \mathrm{~V}$. The minimum specified load on all outputs is 0%. Their efficiency equals $75 \% \mathrm{~min}$, and short-circuit protection is indefi-
\square AD7672

FEATURES

12-Bit Resolution and Accuracy Fast Conversion Time AD7672XX03-3 $\mathbf{~} \mathrm{s}$
AD7672XX05-5 5 s
AD7672XX10 - $10 \mu \mathrm{~s}$
Unipolar or Bipolar Input Ranges
Low Power: 110 mW
Fast Bus Access Times: 90ns
Small, 0.3", 24-Pin Package

PRODUCT DESCRIPTION

The AD7672 is a high-speed 12-bit ADC, fabricated in an advanced, mixed technology, Linear-Compatible CMOS (LC ${ }^{2}$ MOS) process, wh ch combines precision bipolar components with low-power, high-speed CMOS logic. The AD7672 uses an accurate high-speed DAC and comparator in an otherwise conventional successive-approximation loop to achieve conversion times as low as 3μ s while dissipating only 110 mW of power.
To allow maximum flexibility, the AD7672 is designed for use with an external reference voltage. This allows the user to choose areference whose performance suits the application, or to drive many AD7672s from a single system reference, since the reference input of the AD7672 is buffered and draws little current. For digital signal processing applications, where absolute accuracy and temperature coefficients may be unimportant a low-cost reference can be used. For maxumum precision, the AD7672 can be used with a high-accuracy reference such as the AD588. The on-chip clock-circuit may be used with a crystal for accurate definition of conversion time Alternatively the clock input may be driven from an external source such as a microprocessor clock.

AD7672 Functional Block Diagram
PRODUCT HIGHLIGHTS

1. Fast, $3 \mu \mathrm{~s}, 5 \mu$ s and $10 \mu \mathrm{~s}$ conversion speeds make the AD7672 ideal for a wide range of applications in telecommunucations, sonar and radar signal processing or any high-speed data acquisition system
2. L^{2} MOS circuitry gives high precision with low power drain (110 mW typ)
3. Choice of 0 to $+5 \mathrm{~V}, 0$ to +10 V or $\pm 5 \mathrm{~V}$ input ranges, accomplashed by pin-strapping.
4. Fast, sumple, digital interface has a bus access time of 90 ns allowing easy connection to most microprocessors.
5. Available in space-saving 24 -pin, $0.3^{\prime \prime}$ DIP or surface mount package.

AT 5uS,WE SET
 TELLS HOW WE BROKE IT.

When we introduced our AD7572, it set the monolithic 12 -hit AD conversion speedrecord at $5 \mu \mathrm{~s}$.

Now, our AD7672 establishes a new record with an even faster conversion time of only $3 \mu \mathrm{~s}$.

This blazing speed is reached with only 110 mW of power dissipation because the AD7672, like the AD7572, is manufactured on an advanced merged bipolar/CMOS process.

The 90 ns bus access time of the AD7672 affords easy interfacing with most microprocessors, while the +5 Vand -12 V nominal power supply voltages allow its use in PC and modem designs. All this is available in a narrow $0.3^{\prime \prime}$ DIP or a surface mount package.

The AD7672 also features unipolar or bipolar analog inputs that are selected by pin-strapping. This lets you avoid external circuitry for input range changing.

The 3μ s version of the AD 7672 is available for as little as $\$ 63.75$; the 5μ s version, from $\$ 37.40$; and the 10μ s model, from $\$ 28.05$ (1000 s s).

For more information on how the AD7672 can speed up your designs, call Applications Engineering at (617) 935 -5565, Ext. 2628 or 2629 . Or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106.

[^16]
Grayhill shrinks the I/D module tosave you space, money, and problems

This new series of space-saving I/O modules for control applications measures $0.40^{\prime \prime}$ deep and $1.00^{\prime \prime}$ high, compared to 0.60 " and 1.25 " for "standard" models, and reduces the length of a 16 -module rack by 4 inches! (The wide side is the same $1.70^{\prime \prime}$ as standard modules, for plug compatibility.)

Grayhill mini-modules consume 30\% less power than their big brothers, and offer immunity from false triggering caused by electrical transients (per IEEE-472). Using SMT construction, Grayhill shrinks the package, yet upgrades performance even compared to its own standard modules, much less anyone else's. AC output units have lower leakage current, DC output units offer faster switching, and AC input modules have a higher input impedance.

The new mini-modules come in all standard configurations, at pricing comparable to standard-size I/O modules.

They plug into 16 module racks without screws; a hold-down strip keeps them in place. Surface-mount LEDs with writing space provide status and function indication.

Using the new modules saves you cost at least four ways-you use a smaller rack, a smaller power supply, a smaller

enclosure, and you save the labor of screwing modules into place. And you get better performance besides.
What else could you ask for? How about local availability from Grayhill distributors worldwide! You get that too. So now your next step is send or call for free literature. Do it today.

COMPARISDN CHART

PHYSICAL CHARACTERISTICS	STANDARD I/O MODULES MINI I/O MODULES	
Module dimensions	$0.60^{\prime \prime} \times 1.70^{\prime \prime} \times 1.25$	$0.40^{\prime \prime} \times 1.70^{\prime \prime} \times 1.00$
16-position rack length	$14^{\prime \prime}$	$10^{\prime \prime}$
Installation	Individual screw-down	Hold-down strip
ELECTRICAL CHARACTERISTICS		
Power consumption/	18 milliamps	12 milliamps
module-AC output	No	Yes
Pass IEEE-472	$75 \mu \mathrm{~s}$ turn on	$20 \mu \mathrm{~s}$ turn on
Switching speed-DC output	$500 \mu \mathrm{~s}$ turn off	$40 \mu \mathrm{~s}$ turn off
Input impedance-AC input	$14 \mathrm{~K} \mathrm{Ohm} \mathrm{(120} \mathrm{VAC)}$	$22 \mathrm{~K} \mathrm{Ohm} \mathrm{(120} \mathrm{VAC)}$
	$45 \mathrm{~K} \mathrm{Ohm} \mathrm{(240} \mathrm{VAC)}$	$60 \mathrm{~K} \mathrm{Ohm} \mathrm{(240} \mathrm{VAC)}$

nite. The line and load regulation is 0.1% on the primary output and 0.5% and 3.0% on the auxiliary outputs. With natural convection cooling, the devices' operation is specified over a 0 to $70^{\circ} \mathrm{C}$ range. $\$ 129$. Delivery, stock to eight weeks ARO.
Power General, Box 189, Canton, MA 02021. Phone (617) 828-6216. TWX 710-348-0200.

Circle No 372

ISOLATION MODULES

- Available in 1- and 2-transformer versions
- Pass a 2000V high-potential test

The EPA045 Series Starlan isolation modules are available with one or two transformers (EPA 045-1 and -2, respectively). Designed for hub and node applications, the devices meet the specifications of the IEEE 802.3 standard. To comply with LAN

safety requirements, the transformers pass a 2000 V rms high-potential test between the primary and secondary windings (coil-to-coil in the - 2 version). The transformers have a $1: 1(\pm 5 \%)$ turns ratio and a maximum de resistance (both primary and secondary) of 1Ω. Maximum primary-to-secondary leakage inductance and interwinding capacitance are $8 \mu \mathrm{H}$ and 25 pF , respectively. Rise time is 100 nsec max.

EPA045-1, \$1.55 (1000); EPA045-2, $\$ 2.40$.

PCA Electronics Inc, 16799 Schoenborn St, Sepulveda, CA 91343. Phone (818) 892-0761.

Circle No 373

AMPLIFIERS

- Can operate in velocity and torque modes
- Include an integral power supply
Featuring an integrated power supply, the VXA Series pulse-widthmodulated amplifiers provide incremental and continuous motion control for de servos requiring as much as 384 W (768 W peak). These compact $8.7 \times 2.9 \times 7$-in., 4 -quadrant amplifiers can operate in velocity and torque modes. The devices' adjustable compensation simplifies servo system stabilization. Operating on 12 to 36 V ac or 14 to 50 V dc,

PACESEIT TR PRRONUCTIUITY Smart scopes, perfect setup! ! exsesthe the

 \$1795/\$2395 , new, fast pace for frequent measurements with automatic front panel setup. Nonvolatile memory for up to 20 front-panel setups (2246A). Time and voltage cursors. Exclusive SmartCursors ${ }^{\text {TM }}$ track waveform changes for voltage measurements. All backed by Tek's 3 -year warranty.

Call Tek direct for PaceSetter specs!
1-800-426-2200
Prices subject to change without notice Copyright 9988 . Tektronix, Inc. All rights reserved. TTA 906-A

WHEN REMA:MLIME IMPERMINE:

ABBOTT'S NEW M25; A HIGHER PERFORMANCE, 25-WATT SWITCHING POWER SUPPLY

Abbott's new M25 exceeds the performance of one of the best selling mil-spec power supplies; our own VN25. Our VN25 has been widely used in critical naval and airborne applications for over 10 years. Now the M25 offers higher performance in this proven design.
Higher Density. The M25 has a I $1 / 4$ inch lower profile than our VN25 while maintaining the same footprint. This adds up to a $\mathbf{4 5} \%$ reduction in volume.
Better Specs. By doubling the switching frequency, our M25 is 10\% more efficient, while at the same time providing a $\mathbf{2 3} \%$ wider operating temperature range.
Greater Reliability. By using innovative design techniques, the M25 achieves a 4-fold increase in MTBF.
EMI Compliance. All M25 standard units meet MIL-STD-46IB for emissions and susceptibility.

The M25 is encapsulated and hermetically sealed, and meets the stringent environmental requirements of MIL-STD-810C and MIL-S-90IC.

Abbott's new M25: higher performance in a proven design.
Call or send for specs and our full line catalog.
Abbott Transistor Laboratories, Inc. Power Supply Division, 2727 La Cienega Blvd., Los Angeles, CA 90034 (213) 936-8185. Eastern Office: (201) 461-44II, Southwest Office: (214) 437-0697, London Office: 0737-82-3273.

MODEL M25 SPECIFICATIONS

DIMENSIONS
Input frequency Input voltage Outputs Efficiency Ripple/noise Line regulation Load regulation EMI Environment

Input protection

Operating temperature range $-20^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$
Storage temperature range $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ MTBF* (ground benign)
Standard
176,000 hours
MTBF* (naval sheltered)
Standard
33,000 hours
*MIL-STD-2I7D ($50^{\circ} \mathrm{C}$ baseplate)
the amplifiers have a 1.01 form factor. $\$ 349$. Delivery, six to eight weeks ARO.

PMI Motion Technologies, 49 Mall Dr, Commack, NY 11725. Phone (516) 864-1000. TLX 510-2230007.

Circle No 374

FIBER POLARIZER

- Has an extinction ratio in excess of 40 dB
- Suitable for use with fiber-optic telecomm links

This single-mode fiber-optic polarizer provides an extinction ratio of $>40 \mathrm{~dB}$, and an insertion loss for transmitted light of $<0.5 \mathrm{~dB}$. It works by coupling light in the unwanted polarization state into a plasma wave that's supported on a thin film deposited on the fiber. The polarizer has an operating temperature range of -40 to $+85^{\circ} \mathrm{C}$; the

extinction ratio varies by $\pm 2 \mathrm{~dB}$. Versions are currently available with operating wavelengths of 1300 and 1550 nm . The polarizer is housed in a $45 \times 20 \times 10-\mathrm{mm}$ package with 1 m fiber pigtails. The company can adapt the technique for use with all types of single-mode optical fibers, including low and high birefringence types. Approximately £800 (10).

Sifam Ltd, Fibre Optics Division, Woodland Rd, Torquay, Devon TQ2 7AY, UK. Phone (0803) 63822. TLX 42864.

Circle No 375

DC/DC CONVERTERS

- Has 30W outputs
- 300-kHz typ switching frequency

The MTW Series of 30W de/dc converters includes four models, whose individual outputs are 12 V at 2.5 A , 15 V at $2 \mathrm{~A}, \pm 12 \mathrm{~V}$ at $\pm 1.25 \mathrm{~A}$, and $\pm 15 \mathrm{~V}$ at $\pm 1 \mathrm{~A}$. All models accept inputs from 18 to 40 V . Housed in a $1.95 \times 1.35 \times 0.5-\mathrm{in}$. package, the converters have a power density of 22.8 W/in. Switching frequencies range from 240 to 300 kHz , and the converters' efficiency rate is 84% to

Text continued on pg 243

PACESETITR PFREDRRMANCE 100 MHz scope, counter, timer,

 DMM - just \$2795 The utraversatili Tek 2236 from frequency, period and width to delay time and Δ time push-button easy-in addition to CRT display, you get digital readout display accurate to 0.001% and beyond. PaceSetter performance on a modest budget? Look at the 100 MHz , dualtrace Tek 2235 with the best of the basics - just $\$ 1575$!

Call Tek direct for PaceSetter specs!
1-800-426-2200
Prices subject to change without notice.
Copyright ${ }^{-1988, ~ T e k t r o n i x, ~ I n c . ~ A l l ~ r i g h t s ~ r e s e v e d . ~ T A A ~} 906$-B

Experience Counts.

EZ-PRO Emulators

Experience quick delivery, easy operation, fast development schedules. EZ-PRO ${ }^{\text { }}$ users reap the benefits of the C language fully integrated with advanced emulation tools, including precedence triggering, Deep Trace, ${ }^{\text {TM }}$ on-line code revisions, and performance analysis tools.

In addition to $\mathrm{IBM}^{\text { }} \mathrm{PC}$-XT/ AT, hosts include IBM Personal

System/ ${ }^{\text {TM }}$ Macintosh II, ${ }^{\text {TM }}$ VAX, ${ }^{\text {ry }}$ MicroVAX, ${ }^{\text {rus }}$ and Sun Workstation. ${ }^{\text {. }}$

EZ-PRO users also have the advantage of the best postsales support in the industry.

They know that their emulators are covered by

American Automation's 5 -year limited warranty.
Experience counts. Now with over 10 years experience, American Automation has designed more emulators than anyone. Count on EZ-PRO to provide the most cost/effective development support.

...AND MORE *Assumes EZ-PRO Development Station
connected to MSDOS host
86%. Additional features include short-circuit protection, input and output filtering, and an inhibit-function input. Environmental screening to MIL-STD-883 is available as an option. Single and dual output models, $\$ 453$ and $\$ 487$ (100), respectively. Delivery, stock to 8 weeks.

Integrated Circuits Inc, Box 97005, Redmond, WA 98052. Phone (800) 822-8782. TWX 910-443-2302.

Circle No 376

5-YEAR BATTERY

- Offers 1.23 Whrs of energy per $i n^{3}$
- 5-year (min) lifetime

The Model PS-1242 is a 12 V , sealed lead-acid battery. It's maintenance free, rechargeable, usable in any position, and suitable for both standby and deep-cycle applications. With a 4-Ahr capacity and a $3.54 \times 2.75 \times 4.01-\mathrm{in}$. package, the
unit offers 1.23 W-hrs of energy per in^{3}. The device delivers as much as 40A of high-rate discharge current. Battery lifetime is at 5 years min. You can recharge it between 200 to 500 times, depending on the average depth of discharge. \$16 (500).

Power-Sonic Corp, Box 5242, Redwood City, CA 94063. Phone (415) 364-5001. TLX 348400.

Circle No 377

KEYBOARD

- Meets MIL-STD-810C
- Keyswitches have 20 million actuation lifetime

The 30498-05, a standard Type $1 /$ Class 1 Qwerty full-travel military keyboard, features 59 metal-housed keyswitches that are mounted on a metal base. It meets the requirements of MIL-STD-810C as well as specifications for EMI/RFI and Tempest. Its keycaps are 0.5 in .

square and are mounted on 0.75 -in. centers. They are black with gray legends that are pad printed according to MIL-M-18012. The keyswitches utilize conductive rubber technology and are rated for 20 million actuations. The keyboard comes with an X-Y matrix for a standard output; optional serial and parallel interfaces are available. $\$ 1095$ (100). Delivery, eight to 10 weeks ARO.

IEE Inc, 7740 Lemona Ave, Van Nuys, CA 91409. Phone (818) 7870311. TLX 4720556.

Circle No 378

RACK-MOUNT PC/AT

- Features an $80286 \mu P$ and $1 M$ byte of RAM memory
- System meets EIA standards for installation in 19-in. rack
The QPC-7000 IBM PC/AT-compatible computer meets EIA standards for mounting in a standard $19-\mathrm{in}$. rack. A single-board computer (SBC), the QPC-521, occupies one slot of a 12 -slot passive backplane. The SBC features an 80286μ P operating at $10 \mathrm{MHz}, 1 \mathrm{M}$ byte of RAM, a socket for an 80287 coprocessor, a
floppy-disk controller, a SCSI Win-chester-disk controller, a serial port, a parallel port, and a clock/ calendar with battery backup. The remaining 11 slots are available for the user. The system has a 200 W power supply and a carrier assembly capable of handling three halfheight drives. The unit measures $19 \times 24 \times 8.75$ in. $\$ 2790$.

Qualogy Inc, 2241 Lundy Ave, San Jose, CA 95131. Phone (408) 434-5200. TLX 4993489.

Circle No 380

AI WORKSTATION

- Macintosh II PC equipped with a TI Explorer Lisp board
- Board runs Lisp software and accesses MAC II software
The microExplorer AI workstation, built in a Macintosh II personal computer, incorporates a coprocessor board that utilizes the Explorer Lisp $\mu \mathrm{P}$. The board can address as many as 12 M bytes of memory and occupies a single NuBus slot. All systems come with a run-time version of the Explorer software that reduces memory and mass-storage requirements. The software provides symbolic processing power, as

well as access to the large base of systems and applications software available for the MAC II. Explorer and Macintosh operating environments execute concurrently. The system includes a math coprocessor, and disk-storage space can be ex-
panded to 500 M bytes. A configuration with a 21 -in. monochrome monitor, 4 M bytes of memory, three 80M-byte disks, and development software costs $\$ 26,795$.

Texas Instruments Inc, Data Systems Group, Box 181153 DSG179, Austin, TX 78718. Phone (800) 527-3500.

Circle No 381

MODEM CARDS

- 14.4 k -bps full-duplex operation over 4-wire leased lines
- Boards conform to CCITT V. 33 and $V .29$ recommendations
The AJ 1441-1 and AJ 1441-1D 14.4 k -bps modem cards for the company's modular modem system provide synchronous, full-duplex operation over 4 -wire unconditioned leased lines with Trellis-coded modulation. They both meet the CCITT V. 33 recommendation at 14.4 k and 12 k bps, and CCITT V. 29 at 9600 , 7200 , and 4800 bps . The diagnostic features include a numeric display indicating signal quality and the ability to read the received signal quality of individual remote modems. An eye pattern generator is available as an option. The AJ 1441-1D provides disaster recovery via its unattended dial backup feature. AJ 1441-1, $\$ 2045$; in a case, $\$ 2295$; AJ 1441-1D, $\$ 2345$; in a case, $\$ 2595$.
Anderson Jacobson Corp, 521 Charcot Ave, San Jose, CA 95131. Phone (408) 435-8520.

Circle No 382

How to Get Your Multiple-Output Power System Shipped in Only 9 Days

Call the toll-free number below and ask for our Power Systems Department. Specify the voltages and currents you require. Also, tell us the operating features and accessories you need, such as voltmeters, ammeters, front panel controls, handles and chassis slides. We'll promptly call you back with a detailed description, firm price and a special model number to use when ordering. Then, in only nine days after we receive your order, we'll ship your power system to you...completely assembled, wired and tested.
If you prefer to select the complement of power supplies for your system, call us and ASK FOR OUR 52-PAGE CATALOG. It includes specs, drawings and prices for our full line of single, dual and triple output power supplies.

P.O. Box 638, Easton, PA 18044

Call toll-free (800) 523-9478 In Pennsylvania, call (215) 258-5441

COMPUTERS \& PERIPHERALS

IMAGE DISPLAY

- Updates images every 0.2 sec with 256 shades of gray
- 2048×1536 viewable pixels

The GMA 251 digital image display with an ultra-high-resolution 19-in. monochrome monitor provides a screen resolution of 2048×1536 viewable pixels. It can store 2048×2048 pixels and its scroll feature can access and display the entire image stored in memory. Incorporating a high-speed frame buffer, a D / A converter, and a display in one self-contained unit, the system achieves updates of images with 256 shades of gray every 0.2 sec . Astigmatism correction and dynamic focusing enhance the screen's resolution by providing image focusing in the corners as well as in the center of the screen. An optional WB (P45) phosphor with a high-contrast filter is available for high-contrast viewing. $\$ 16,250$. Delivery, 12 weeks ARO.
Tektronix Inc, Display Devices Div, Box 500, Beaverton, OR 97077. Phone (800) 835-9433.

Circle No 383

PRINTER ADAPTER

- HP's LaserJet Series II for IBM's System/36 and 38
- Card appears plug-compatible with an IBM 5219 printer
The I-0 8200HP LaserCard adapter plugs into the optional I/O slot at the rear of an HP LaserJet Series II printer. To an IBM System/36 or a System/38 computer, the card appears plug-compatible with an IBM

5219 printer and provides many of the features of IBM's 3812 printer. You can gain access to HP LaserJet fonts by specifying an IBM TypeStyle number in a DisplayWrite/36 word processor. The word processor supports A, B, D, E, G, H, L, M, N, Q, and R cartridges. An Auto DP mode provides automatic page orientation and font selection for printing 80,132 , and 198 column data. $\$ 995$.

I-O Corp, 2256 S 3600 W, Salt Lake City, UT 84119. Phone (801) 973-6767. TLX 383783.

Circle No 384

VXI BUS SYSTEM

- Instruments and test functions on a card
- Comes with an IEEE-488-to-VXI Bus interface

The Model 73A-PRT prototyping system is based on the VXI Bus standard. VXI stands for VME eXtensions for Instrumentation, and you can use the system in automatic testing areas. The unit contains an IEEE-488-to-VXI Bus interface located on the 73A-151 card and two wire-wrap cards for developing prototype instruments. The 73A-151 contains the VXI Bus slot-0 functions and hardware/software to communicate with an adapter card. The adapter card lets you connect to more than 60 of the company's fieldtested instruments. The system serves as a resource manager that oversees power-up self-test, module address allocation, and definition of system hierarchy. Each of the system's 13 card slots accommodates a VXI module that dissipates as much

More quality switching components from $\mathrm{P}_{\&} \mathrm{~B}$

Time Delay Relays

P\&B time delay relays combine precision, solid state timing circuits with our proven electromechanical relays. A wide selection of timing functions, timing ranges, degrees of precision and package styles permits you to select à unit with just the features you need.

CIRCLE NO 42
General Purpose Relays

One of the broadest lines of general purpose relays in the industry is available from P\&B. Open and enclosed styles are offered with various contact arrangements, contact materials, termination styles and coil voltages.

CIRCLE NO 43

P.C. Board Relays

For loads from dry circuit through 30 amps, P\&B P.C. board relays provide the features you need. Open, enclosed and sealed relays meet requirements established by international regulatory agencies.

CIRCLE NO 44

P\&B circuit breakers provide the quality you need

 at a price you can afford.
Quality and selection

Depend on P\&B circuit breakers for the highest
 standards of quality at an affordable price. Both thermal and magnetic/hydraulic types are offered in a variety of models. Many are UL recognized as supplementary protectors and CSA certified as appliance component protectors.

Value enhanced designs

We constantly evaluate, upgrade and expand our broad line of circuit breakers to meet your needs. OurW28 fuse replacement, thermal models give you
 the confidence of established designs and the pricing of current, automated technology. Both standard size and Mini-Mag series magnetic/hydraulic circuit breakers recently have been expanded to provide a broader range of circuit functions.

Service and application assistance

Should you need assistance in specifying
 or applying P\&B circuit breakers, our sales force of more than 400 sales representatives is well-trained and ready to serve you. P\&B circuit breakers are available off-the-shelf from our nationwide network of authorized distributors.

Specify P\&B circuit breakers with

 the utmost confidenceContact us today to find out more about P\&B circuit breakers. Potter \& Brumfield, A Siemens Company, 200 South Richland Creek Drive, Princeton, Indiana 47671-0001.

Call toll-free 1-800-255-2550 for the P\&B authorized distributor, sales representative or regional sales office serving your area.

Select the type that's right for your application.

Magnetic/Hydraulic
Mini-Mag breakers available in ratings from 0.25 through 30 amps, single to four pole designs. Standard size breakers; 0.25 through 50 amps , up through six poles. Broad range of trip curves and circuit functions, including dual coil models. Priced for volume applications in computers and office machines.
Thermal
Single pole push-to-reset, push/pull and toggle styles. Ratings from 0.25 through 60 amps . Variety of mounting and termination options. Consistent quality through automated manufacture.

Fuse Replacements
Functional replacements for fuse applications add value to your product. These inexpensive thermal units are ideal for power strip, appliance, marine and office machine applications. Approved by many international agencies.

SHARP FLAT PANEL DISPLAVS

Thinis
As any designer will attest, the latest rage in the electronics industry are liquid crystal and electro-luminescent flat panel displays. The reason for their popularity is clear - thin displays mean sleeker, more efficient designs. Sharp is the recognized leader in LCD and EL flat panel displays.

n.
With over 30 years experience in building the world's clearest, most reliable displays, Sharp is sure to make an LCD to fit your needs.

Of course, the most popular place to order your Sharp displays is Marshall Industries. In fact, Marshall is the only national distributor of Sharp LCDs. But that's the kind of privilege you expect when you have over 30
years experience serving the electronics industry.

When you need a clear display that fits just right, remember the leader in flat panel displays. Sharp. And remember the best place to find them. Marshall.

Because Marshall knows you can never be too sharp or too thin.
marshall San Diego (619) 578-9600*

MN Minneapolis (612) 559-2211* MO St. Louis (314) 291-4650* NC Raleigh (919) 878-9882* NJ N. New Jersey (201) 882-0320* Philadelphia (609) 234-9100* NY Binghamton (607) 798-1611* Long island (516) 273-2424*

Rochester (716) 235-7620* OH Cleveland (216) 248-1788* Dayton (513) 898-4480* Westerville (614) 891-7580 OR Portland (503) 644-5050* PA Pittsburgh (412) 963-0441* TX Austin (512) 837-1991*

Brownsville (512) 542-4589* Dallas (214) 770-0616* El Paso (915) 593-0706* Houston (713) 895-9200* San Antonio (512) 734-5100 UT Salt Lake City (801) 485-15 WA Seattle (206) 747-9100* WI Wisconsin (414) 797-8400

as $35 \mathrm{~W} . \$ 7490$.

Colorado Data Systems Inc, 3301 W Hampden Rd, Unit C, Englewood, CO 80110. Phone (303) 762-1640.

Circle No 385

PROTOTYPING CARD

- Includes Multibus II iPSB bus interface logic
- Terminals accept DIP, SIP, PGA, and discrete components

This Multibus II prototyping card provides interface circuitry for the Multibus II iPSB bus already tracked onto the board. It comes complete with bus drivers, an 8751 H microcontroller to control the Multibus II interconnect space, and a socket for an Intel message-passing coprocessor. The interface logic occupies 30% of the $233.3 \times 220-\mathrm{mm}$ board area. More than $260 \mathrm{~cm}^{2}$ of this area contains either wire-wrap or Speedwire terminals on a $0.1-\mathrm{in}$. pitch for DIP, SIP, and discrete components, and $80 \mathrm{~cm}^{2}$ of $0.1-\mathrm{in}$. matrix terminals suitable for pin-grid-array devices. The 8 -layer board includes three independent power-supply planes, a ground plane, and surface-mount decoupling capacitors. The interface logic allows you to isolate the board from the iPSB bus for test purposes. Documentation for circuit and microcontroller firmware comes with the package. $£ 850$.

Bicc-Vero Electronics Ltd, Flanders Rd, Hedge End, Southampton S03 3LG, UK. Phone (0703) 266300. TLX 477984.

Circle No 386
Bicc-Vero Electronics Inc, 1000 Sherman Ave, Hamden, CT 06514. Phone (203) 288-8001. TWX 510-227-8890.

Circle No 387

ETHERNET ADAPTER

- Provides $10 M$-bytelsec rate for the Macintosh II
- The IEEE-802.3-compatible board occupies one NuBus slot

The EtherLink/NB Ethernet adapter for the Macintosh II operates with the company's $3+$ or Apple's AppleShare network operating sys-

Faced with rad-hard semi-custom requirements? Flexibility and performance are waiting at the other end of the line.
Marconi's MACROSOS Design System employs a silicon-on-sapphire and self-aligning silicon gate process to achieve significant improvements in speed, higher packing densities and much greater radiation tolerance.

If you'd like to learn how this macrocell design style can offer almost unlimited functionality and a low-risk route to complex or mixed analogue and digital systems, call a Marconi Sales Engineer today at 516-231-7710. We're waiting to assist you.

Please send complete information on Marconi's MACROSOS Design System

Name

\qquad
Company
Address
City
\qquad
Phone
State Zip \qquad
(
Marconi
Electronic Devices, Inc. $\cdot 45$ Davids Drive, Hauppauge, NY 11788

OUR NEW 1600 WATT, MULTI OUTPUT POWER SUPPLY IS READY...

READY TO SOLVE
YOUR MOST
DEMANDING
HIGH POWER
REQUIREMENTS you can have a main output of 5 V @ 200A Plus four more outputs, up to 600 watts, in one small package.
Check the chart below.
READY FOR YOUR TOUGHEST SIZE REQUIREMENTS acdc electronics put 1600 W in a $5^{\prime \prime} x$ $8^{\prime \prime} \times 13^{\prime \prime}$ package. That makes it, the JFM Series the SMALLEST 1600W multi output power supply available. Anywhere.

READY FOR DELIVERY

Don't wait for the power supply you need.
You can have the output voltage combination you choose* in two weeks.
${ }^{*}$ From the model selection chart

READY WITH UNBEATABLE SPECIFICATIONS

Current monitor

\square Independent output inhibit, margining, monitoringInternal EMI filter meets FCC \& VDE Class ANo minimum load required on any outputFloating outputsSingle-wire paralleling30 Ms holdover storage

W/al

Wait until you see this power supply. Wait until you test it.
If you have a requirement for reliable high power with
flexibility in output voltagesdon't wait.
Call for an immediate demo. 619/439-4200.

1600W M MAIN OUT	$\mathrm{CH} 2$	CH3	CH4	CH5	$\begin{aligned} & \text { TABLEA } \\ & \text { AUX'S } \end{aligned}$	$\begin{aligned} & \text { TABLEB } \\ & \text { AUX'S } \end{aligned}$
5V/200A	TABLE A or B	TABLE A or B			$\begin{array}{r} 5 \mathrm{~V} / 60 \mathrm{~A} \\ 12 \mathrm{~V} / 30 \mathrm{~A} \end{array}$	$\begin{array}{r} 5 \mathrm{~V} / 30 \mathrm{~A} \\ 12 \mathrm{~V} / 15 \mathrm{~A} \end{array}$
5V/200A	TABLE A or B	TABLE B	TABLE A or B		$\begin{aligned} & 15 \mathrm{~V} / 24 \mathrm{~A} \\ & 24 \mathrm{~V} / 15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} / 12 \mathrm{~A} \\ & 24 \mathrm{~V} / 7.5 \mathrm{~A} \end{aligned}$
5V/200A	TABLE B	TABLE B	TABLE B	TABLE B		

9 sit

401 Jones Road, Oceanside, CA 92054.
TEL: 619/757-1880. TLX: 350227. FAX: 619/439-4243
tems. It can interface with a 10 M bps Ethernet network, using coaxial or twisted-pair wiring. An onboard transceiver drives twice the length of the IEEE-802.3 specification, which measures 1000 ft . The bus interface provides 32 -bit data transfers for high-speed network operation. According to the vendor, the use of VLSI components improves reliability and reduces power consumption. A 32 k -byte ROM provides automatic hardware identification and configuration of parameters to simplify installation and use. A 16 k -byte packet buffer permits reception of back-to-back packets, reducing network traffic. The board's design is based on the National Ethernet chip set. \$595.
3Com Corp, 3165 Kifer Rd, Santa Clara, CA 95052. Phone (408) 5626400.

COMPUTER BOARD

- Runs a $68030 \mu P$ and a float-ing-point coprocessor
- Accepts daughter boards to increase its functionality
The JT-68030SBC CPU card for VME Bus systems accepts a variety of daughter boards that increase its functionality. It runs a $68030 \mu \mathrm{P}$ and an optional 68881 or 68882 float-ing-point coprocessor. The board also provides 1 M or 4 M bytes of dual-port, parity-checked RAM, space for as much as 2 M bytes of EPROM, and two serial I/O lines. The daughter boards interface to the CPU card via a local 68020-style bus. Available daughter boards in-
clude memory expansion, SCSI interface, and prototyping modules. The JT-Duram daughter board provides an additional $1 \mathrm{M}, 2 \mathrm{M}, 4 \mathrm{M}$, or 8 M bytes of RAM, and either 6 or 8 RS-232C I/O ports. You can add two JT-Duram boards to the CPU card. The JT-SCSI daughter board is an intelligent disk and tape controller card. Its onboard $68020 \mu \mathrm{P}$ provides

DMA that can transfer data to and from as many as seven SCSI devices at data rates as high as 4 M bytes/ sec. The JT-Proto daughter board, which accepts Speedwire terminals on a $0.1-\mathrm{in}$. pitch, allows you to construct your own add-on boards. You can plug as many as three daughter boards into the CPU card to produce an assembly that still fits

into two VME Bus slot widths. These assemblies are suitable for running Uniplus+ V2.2 or OS-9 operating systems. The prices for the following models are approximate: JT-68030SBC, £3500; JTDuram from $£ 1000$ to $£ 4700 ;$ JTSCSI, £660; JT-Proto, £250 (100).

Integrated Micro Products, Number One Industrial Estate, Medomsley Rd, Consett, County Durham DH8 6TJ, UK. Phone (0207) 503481. TLX 537747.

Circle No 389

VIDEO MODULE

- Based on the company's solidstate image sensors
- Sensors' image can achieve intensity of 0.05 lux
The CCD video module is a video imaging system based on the company's solid-state image sensors (SSIS). It consists of an SSIS with

full drive, preprocessing, videoprocessing, and power-supply circuits. The two basic versions, models 56473 and 56474, for $525-$ and 625 -line TV systems, respectively, meet EIA or CCIR standards. The unit utilizes the NXA1011, -1021, -1031, and -1041 solid-state image chips that operate on the frametransfer principle, where each field of the picture frame is integrated within a photosensitive imaging region. CCD shift registers transfer the field data into storage during
vertical blanking. The data is then clocked out serially to produce the video signal. The sensors can provide recognizable images with a light intensity as low as . 05 lux. From $\$ 500$ to $\$ 600$.

Amperex Electronic Co, Imaging Products Group, Slatersville, RI 02876. Phone (401) 762-3800.

Circle No 390

DISK DRIVES

- 42 M to 168 M bytes of storage in $31 / 2$-in. sizes
- Interfaces for SCSI, IBM PC/AT bus, and ESDI
The ProDrive Series consists of 10 $3^{1 / 2}-$ in. disk drives with formatted capacities, ranging from 42 M to 168 M bytes. A variety of interfaces include a SCSI, an IBM PC/AT bus, and an ESDI. All drives in the series have average access times of 19 msec or less. A Discache buffer-

Samsungs CMOS Programmable Logic_{-}^{-}

management system decreases disk transaction times as much as 50%, resulting in an effective seek time of 12 msec in many applications. The drives' MTBF is rated at 50,000 hours. Evaluation units for the 42Mand 84 M -byte drives with integrated SCSI controllers are available. The units have a synchronous transfer rate of 4 M bytes $/ \mathrm{sec}$ and an asynchronous transfer rate of 2 M bytes $/ \mathrm{sec}$. 42 M -byte version, $\$ 520$;

80M-byte version, $\$ 845$.
Quantum Corp, 1804 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 432-1100. TWX 910-338-2203.

Circle No 391

CPU CARD

- Runs a $68070 \mu P$ on a singleEurocard board
- Allows daughter-board expansion

The SAC-700 single-Eurocard CPU board for VME Bus systems runs a $68070 \mu \mathrm{P}$ (a 68000-compatible processor with an on-chip DMA controller and a memory-management unit). Four 32-pin JEDEC sockets with battery backup are provided for CMOS static RAM, and two 32-pin sockets are provided for EPROM. The entire RAM area is dual-ported to the VME Bus and to the processor's local bus. The board also has two synchronous/asynchro-

nous serial I/O ports, one additional asynchronous serial I/O port, and a 16 -bit parallel I/O port. An expansion connector, which carries the 68070's data, address, and control buses allows you to add daughter boards to the CPU card. An alternative version with a right-angle expansion connector allows you to mount an expansion board in the same plane as the CPU board behind a 6 U front panel. The board's VME Bus interface has system-controller and slot-1 functions. From $\$ 595$.

Eltec Elektronik GmbH, Gali-

CPL゙ replaces bipolar PALs and cuts power.

Now you can directly replace the bipolar PALs in your existing design with Samsung CPL devices, and cut your power consumption 70%. There are no new development tools and no redesign required. And, best of all, there's no additional cost.

Unlike bipolar PALs, our UV-erasable CPLs are 100\% factory tested to assure you of top reliability. This reprogrammability feature lets you prototype designs before committing
 to production. And a special security bit prevents unauthorized duplication.

CPL Starter Kit for new designs.

Special software created by P-CAD for Samsung's

CPL Starter Kit lets you start designing quickly with our CPLs. The Kit includes the powerful CUPL software development package supporting both Samsung CPL20 and CPL24 devices, a CUPL manual, a CPL data book, and CPL samples. This easy-to-use kit is designed to work with any IBM PC XT/AT or compatible system, and costs only \$220.

CPL PARTS LIST	
$\begin{aligned} & \text { CPL 20: } \\ & \text { CPL16L8 } \\ & \text { CPL16R4 } \\ & \text { CPL16R6 } \\ & \text { CPL16R8 } \end{aligned}$	CPL24: CPL20L8 CPL20L10 CPL20R4 CPL20R6 CPL20R8
Speed options: 25 nsecs, 35 nsecs Power options (lcc max): 45 mA .70 mA Packages PDIP. Windowed CERDIP. PLCC, SOIC	
CPL DEVELOPMENT SUPPORT	
Device Programmers: Data I/O Digelec Kontron Oliver Advanced Engineering Stag Microsystems Varix	Development Software: ABEL" CUPL" PALASM* PLDesigner ${ }^{\text {I/ }}$

To order samples, a data book, or your CPL Starter Kit, call or write Samsung CPL Marketing at 408/434-5400.

[^17]
SAMSUNG

Semiconductor
3725 North First Street
San Jose. CA 95134-1708
CIRCLE NO 30

Well-Connected

... because CADdy is integrated. With PC-based CADdy, integration means one environment for Schematic Capture, PCB Layout and beyond.

- Features include symbol selection, dynamic placement, autonaming/numbering, BOM/Netlist, board pin/gate swapping with back annotation.
- CADdy manual routing is effective for analog and multi-layer boards.
- Optional Autorouters from 4 to 16 to 22 layers, gridless, rip-up retry, each with DRC and SMD capabilities.
- CADdy has a screen menu interface with programable function keys; unlimited zooms, grids, trace widths,
pads, text sizes, hatch/fill, dynamic dragging/rubberbanding, macros, EMS.
- Optional 2D/3D mechanical for packaging design.
- Available on XT, AT, 386, PS/2 with coprocessors and a wide range of graphic cards.
- Major pen plotters, laser printers, Gerber and Excellon are supported.

Now that's integration
to help you manage your projects and stay well-connected.

DID YOU KNOW?

Half of all EDN's articles are staff-written.

COMPUTERS
 \& PERIPHERALS

leo-Galilei-Strasse 10, 6500 Mainz 42, West Germany. Phone (06131) 50630. TLX 04187273.

Circle No 392
American Eltec Inc, 569 S Marengo Ave, Passadena, CA 91101. Phone (818) 449-1558.

Circle No 393

NETWORK BOARD

- Four complete PCs on one IBM PC/AT add-on card
- Connects to PC, ASCII, and ANSI terminals
The QuickLink-IV 4-user network on one IBM PC/AT add-on board has four complete PCs, each of which connect to terminals or modems via RS-232C or RS-422 interfaces. It's plugged into a file server's bus, providing multiuser power with the ability to share files and peripherals attached to the AT computer. You can use it with IBM PC, ASCII, and ANSI terminals as well as Hercules graphics terminals. The board utilizes four NEC V40, $8-\mathrm{MHz} \mu \mathrm{Ps}$. Each processor has 768 k bytes of no-wait-state memory. The board draws 2.5 A when supporting four users. Networking software includes Netware 286 and Novell's 4 -user ELS. If you want to serve more than four users, just add another board. $\$ 2295$.

Intercontinental Microsystems, 4020 Leaverton Ct, Anaheim, CA 92807. Phone (714) 630-3714. TLX 821375.

Circle No 394

IT'S IN THE CARDS

Our line of 18 signal switching cards is the widest variety anywhere, so you can configure a system to match your signal types without sacrificing system performance

SIGNAL INTEGRITY

To get the most from your test system, you must make sure your signals are switched without attenuation, distortion or alteration by the switching and interconnect s Since Keithley has more switching cards than anyone, you can be assured of signal integrity, no matter what the test Choose from:

Matrix	Most flexible
Scan/Multiplex	1,2, or 4 pole switching
Sensitivity	Currents to 40fA, voltages to 30 nV
High Level	Currents to 5 A, voltages to 1000 V
Bandwidth	Frequencies to 500 MHz Temperature Thermocouple cards with $<1 \mu \mathrm{~V}$ offset and built-in reference
Special Applications	Hall effect, nanovolt switching, Kelvin switching, universal adapter

Each of these switching capabilities is referenced in our new Switching Handbook

SYSTEM INTEGRATION

Keithley switches let you customize applications by mixing cards in two or 10 -slot mainframes \triangle For larger systems, you can connect up to five mainframes and program them at one IEEE-488 address \triangle
Keithley switching further simplifies system integration with digital I/O, triggers in/out, relay setup memory, inspect mode for determining relay configuration, and more A

SYSTEM PERFORMANCE

Our products are designed for compatibility, and you'll find the proof in easier system integration and smoother performance \triangle And in addition to switching, we also supply the full range of programmable measurement and source instrumentation for many test requirements \triangle Plus, our Application Engineering Department is always available to help you select the right instruments and configure them for peak system performance
Keithley Instruments Inc., 28775
Aurora Road, Cleveland, Ohio, 44139 a (216) 248-0400 -

Call or write the Information Center for more on Programmable Switches, Sources, and Measurement instrumentations Then find out how to receive your free copy of Keithley's new Switching Handbook with useful information and practical guidelines on getting maximum performance from your test systema

SOURCE • MEASURE • CONNECT
KEITHLEY

TEST \& MEASUREMENT INSTRUMENTS

MIL-STD-1553 TESTERS

- Plug into VXI bus
- Comply with USAF Mate guides

The $73 \mathrm{~S}-456$ is a 2 - to 8 -channel emulator/tester for the MIL-STD1553 bus, whereas the 73A-453 multimodal simulator/tester can test all devices that conform to MIL-STD1553. Both board-level products comply with the US Air Force's Mate (modular automatic test equipment) guidelines and plug into VXI (VME extensions for instrumentation) bus backplanes, such as the vendor's 73A system. The 73A system accommodates cards that use only the VXI bus's P1 connector or that also use its P2 connector.

Under the VXI standard, the 73S456 and $73 \mathrm{~A}-453$ are considered message-based devices. The 73S-456 tests 1553 bus controllers and re-mote-terminal simulators and can also serve as a bus monitor that stores 30 k words/channel max. You can program the $73 \mathrm{~A}-453$ to act as a bus controller, remote terminal, or bus monitor; it allows control of message formats. $73 \mathrm{~S}-456, \$ 7995$; $73 \mathrm{~A}-453, \$ 3200$. Delivery, 10 to 12 weeks ARO.

Colorado Data Systems Inc, 3301 W Hampden Ave, Unit C, Englewood, CO 80110. Phone (800) 237-2831; in CO, (303) 762-1640. TWX 910-933-0193.

Circle No 400

80386 ANALYSIS TOOLS

- Analyze software performance nonstatistically
- Operate at 20 MHz with no wait states

You use the 80386 probe and disassembler with the vendor's SAW (software analysis workstation) to trace, optimize, and verify
software performance in real time on your target system's hardware. The probe supports the 80386 's real and protected modes. When used with the vendor's interactive state analyzer or Softanalyst tools, it allows target-system operation at 20 MHz with no wait states or at 25 MHz with one wait state. The probe supports pipelined and nonpipelined
addressing and 16 or 32-bit dynamic bus sizing. The nonstatistical performance analyzer captures bus activity and displays it in 80386 assembly code. In multiprocessor systems, a time-aligned trace display allows you to correlate the activity of the processors. 80386 probe, $\$ 2500$; SAW, without host IBM PC or compatible computer, $\$ 24,690$.
Northwest Instrument Systems Inc, 19545 NW Von Neumann Dr, Beaverton, OR 97075. Phone (503) 690-1300.

Circle No 401

NOISE TEST SET

- Covers 6 to 18 GHz
- Tests with 16 selectable source impedances
The NP4 618 noise-parameter test set covers 6 to 18 GHz and can function under IEEE-488-bus control. It automatically determines the noise and the available gain of linear two-port devices driven from 16 selectable source impedances. A tuned power meter, which doesn't have any moving parts and which operates under $\mu \mathrm{P}$ control, calculates the noise power. The electronic load switches in less than 1 msec . The vendor reports that units remain in calibration for over a year. $\$ 56,160$. Delivery, 14 weeks ARO.
Automatic Testing and Networking Inc, 600 W Cummings Park, Suite 3400, Woburn, MA 01801. Phone (617) 935-3420.

Circle No 402

This impressive lightning display is power in its most primitive state. At Sorensen, we have devoted ourselves to the task of developing products that will effectively harness, manage and transmit power. The result of this endeavor is a comprehensive line of both high quality laboratory and industrial power supplies.

For example in our laboratory line we offer a complete selection of resistance, voltage and IEEE-488 programable power instruments. These include:
The XT Series. Fast, programmable 60-watt linear power supplies with low cost, low noise and low ripple, digital and analog display. Available in over 30 standard models and more than 1,500 user-specified configurations.

The QRD Series. Offering highspeed, high-performance with low noise. Available in 6 models, all halfrack mountable and free standing. 5 fully adjustable voltage and current ranges from 0-15 to 0-60 Vdc from 0.75 to 4 amps.

The SRL Series. Medium-power, high-efficiency, programmable, with low RMS ripple and pk-pk noise. The best selling power supply of its

type. Available in 14 models in 4 adjustable voltage and current ranges from 0-10 to 0-60 Vdc and 250 to 2100 W power.

The DCR Series. This series combines over 50 models of both single and three-phase input units. This includes the DCR-T series, an exciting, highly advanced concept in power supply design with built-in OVP. These units are fully remotecontrollable and provide greater

A Raytheon Company

5555 N. Elston Ave. Chicago, IL 60630
power, safety and flexibility than conventional supplies.

Most Sorensen power supplies are backed with our Five Year limited parts and labor warranty.

No other manufacturer can match Sorensen's experience and reputation in power supplies, earned over the past 44 years.

If you're interested in high quality power supply performance, and want a "lightning quick response" contact us at (312) 775-0843 or simply fill in the handy coupon and return to us.

NEW SONY/TEK CURVE TRACERS

NEW chassictive:

Durable, strong, and

 hardworking. Like their predecessor, the 576, the new 370 and 371 deliver day-in, day-out dependability. But they bring you much more than that.Smooth, fast, and powerful. Both the 370 and 371 have an easy-to-use front panel and time-saving features like no-wait hardcopy, push- RANGE button sequenc-
ing, and standalone or GPIB programmability. And the 371 can handle up to 3000 watts.
Part of a truly classic line.
The 370 and 371 combine the best of what's new with what's proven-including the Tektronix commitment to industry-leading service and support. To learn more, contact your local Tek represen-

 Peak Current Pulsed Max Peak Power Pnce
\longrightarrow
\square

Copynghtre 1987, Tetionx inc. Al righs resered. SeA. -87

INSTRUMENTS

ters on many measurements. On any range, it offers a full-scale display that extends to 3199 counts instead of the more commonly provided 1999 counts. This greater number of counts contributes to the instrument's improved resolution; for example, it permits the meter to measure 220 V ac with a resolution of 0.1 V rather than 1 V . The credit-card-size unit sports five dc-voltage ranges from 0.32 to 400 V ; four acvoltage ranges from 3.2 to 400 V ; and six resistance ranges from 320 to $3.2 \mathrm{M} \Omega$. The meter meets UL94V-2 flammability requirements. It features an overvoltage protection rating of 700 V and a case whose insulation is rated at 2 kV . When in its carrying case, the meter will withstand a fall of as much as three feet without sustaining damage. The range switch's life expectancy exceeds 2000 rotations. $\$ 49.95$.

Beckman Industrial Corp, 3883 Ruffin Rd, San Diego, CA 92123. Phone (619) 495-3240.

Circle No 404

68HC11 DEVELOPER

- Includes ICE and EEPROM programmer
- Plugs into PC Bus

The Micro-Aid/11A board plugs into the IBM PC Bus to provide complete development support for the Motorola $68 \mathrm{HC} 11 \mu \mathrm{P}$ family. The board incorporates an EEPROM programmer with zero-insertionforce sockets for EEPROMs in DIPs or leadless chip carriers, and an in-circuit emulator (ICE) that emulates the MC68HC11A8 in both sin-

NEW SONY/TEK

 CURVE TRACERS
HAPBD COPY: no wainul.

The new 370 and 371 curve tracers give you hardcopy without tying up your system. You keep right on working - measuring up to 3000 watts with the 371, programming the 576like front panel or over the GPIB, and using push-button sequencing to instantly call up any of sixteen different setups or comparison curves.
continuing cost of film. For example, you can use the Tek HC-100 plain-paper plotter, priced at only $\$ 775$.
With Tektronix, you can count on quality, reliability, and the support you need. For more information, contact your local Tek representative or call 1-800-835-9433, ext. 170.

No camera or

controller required. You get hardcopy without the trouble of connecting a camera or controller, and without the

NEW From

Model Parameter Optimization

Optimizing HSPICE

Meta-Software announces Optimizing HSPICE, incorporating full optimization into the HSPICE circuit simulator.
HSPICE is now a multi-target optimizer that supports all SPICE and HSPICE models. Optimization is included with HSPICE as a new feature, and is available to all HSPICE customers on Software Maintenance at no extra charge.
HSPICE is an integrated solution, optimizing not only DC currents for models, but also capacitance for AC analysis and transient parameters for transient analysis.
HSPICE effectively replaces the functionality of SUXES-10 with full multi-target optimization capabilities. No pre- or post-processing is required.

HSPICE is the result of more than ten years of research in both optimizing algorithms and in user interface. The optimizing function has been integrated into the core of HSPICE, resulting in optimum efficiency. Optimizing HSPICE results will always agree with HSPICE circuit simulation.

Special features of Optimizing HSPICE include:

- Incremental optimization technique, DC, AC and transient optimization
- Uses HSPICE language format
- Model, device, subcircuit and circuit level parameters may all be optimized
- Optimizing Results Targets include Device Currents, Capacitance, Power, Time Delays, Unity Gain Frequency and S Parameters

Meta-Software also offers an extensive Discrete Device Library, HSPLOT graphics post-processor, ATEM process characterization system, Discrete ATEM for characterizing BJTs, MOSFETs, JFETS, HEXFETs and diodes, MetaTestchip ${ }^{\text {™ }}$, and the Circuit PathFinder path timing analysis tool.

Other new features of HSPICE:

- Monte Carlo Analysis
- Pole Zero Analysis
- S Parameter Output
- Mixed Domain Analysis
- Instantaneous and RMS power
- Individual element temperature
- Measure Statement
- Multi-Gamma Model for MOS 6 Level
- Small Signal Network Analysis
- ALTER Statement
- Improved BSIM Model
- Data Statement

TEST \& MEASUREMENT INSTRUMENTS

gle-chip and expanded multiplexed modes. The ICE includes 64 k bytes of overlay RAM and allows 65,536 breakpoints. The trace memory is 2048 32-bit words. The software shipped with the board includes a symbolic debugger,
a crossassembler, and a program editor. The software that supports the programmer allows you to fill and examine memory and to erase, copy, and verify PROMs. $\$ 2395$.
Thorson Engineering Co, 6225 76th St SE, Snohomish, WA 98290. Phone (206) 334-4214.

Circle No 405

TEMPERATURE METERS

- Cover 200 and $1200^{\circ} \mathrm{F}$ and 200 and $650^{\circ} \mathrm{C}$
- Provide automatic overrange and polarity indication
The 2871 and 2872 are $31 / 2$-digit temperature-measuring panel meters that accept type J thermocouples terminated in plug-in connectors and that include cold-junction compensation. The 2871 runs off 120 V ac; the 2872 runs off 5 V dc. The vendor offers each with a choice of four calibration factors: 0 to $200^{\circ} \mathrm{F}, 0$ to $1200^{\circ} \mathrm{F}, 0$ to $200^{\circ} \mathrm{C}$ (with accuracy specified from -30 to $+200^{\circ} \mathrm{C}$), and 0 to $650^{\circ} \mathrm{C}$. The accuracy equals 0.2% of reading plus 1.8 to 2.5°, depending on the range. The units perform within specifications when the thermocouple's resistance is $\leq 50 \Omega$ (the equivalent of 50 ft of type J thermocouple wire), and they withstand 250 V between the thermocouple and power-line ground. $\$ 159$.

Simpson Electric Co, 853 Dundee Ave, Elgin, IL 60120. Phone (312) 697-2260. TLX 722416. Circle No 406

ROM EMULATORS

- Support access times as short as 50 nsec
- Emulate 1M-byte devices

The Romulator family of ROM emulators now includes a unit that permits access times as short as 50 nsec and another that emulates 1M-byte devices. Yet another unit allows the target system to write into the ROM emulator. The emulator family supports 8 -, 16 -, and 32 -bit target systems. The emulators are selfcontained; they don't use an I/O slot in the host computer. The units communicate via an RS-232C port. You can obtain host software for MS-DOS, Unix, VMS, and Macintosh operating systems. Eight-bit versions, $\$ 375$ to $\$ 565$; 16 -bit versions, $\$ 590$ to $\$ 965$; bidirectional versions, $\$ 575$ to $\$ 1225$; 1 M -word versions, $\$ 710$ to $\$ 1645$.
Grammar Engine Inc, 1021 Tipton Ct, Westerville, OH 43081. Phone (614) 882-6366.

Circle No 407

MODULATION ANALYZER

- Performs vector analysis from 50 to 200 MHz
- Calibration corrects quadrature and balance errors
The HP 8981A vector modulation analyzer utilizes a broadband, coherent, in-phase/quadrature demod-

IOtech...the choice is easy

19" Racks Made by Professionals. For Professionals.

FTor 20 years Knürr AG has been a major supplier in the area of 19 " systems.

The programme includes 19 " racks, 19 " cabinets, 19 " consoles, 19 " cardframes, 19 " chassis, 19 " fan units and many more products. The excessive range of accessories enables the economical installation of your electronics.

The latest introduction of the modular system Chasseleon ${ }^{\circledR}$ - a benchcase which is also a full 19 " chassis, even on telescopic slides and on chassis runners increases your possibilities even further.

19" systems by Knürr - a proof of competence. All over the world.

ulator to cover the $50-$ to $200-\mathrm{MHz}$ IF and carrier frequency range. The instrument uses a statistical calibration routine to enhance its accuracy, performs all the functions of the vendor's 8980A vector analyzer, and includes a front-end vector demodulator that handles a $35-\mathrm{MHz}$ in-phase/quadrature bandwidth. The calibration algorithm corrects for quadrature-angle error, inphase and quadrature-phase channel balance, and dc offsets. The calibration reduces the quadrature error to $\pm 0.5^{\circ}$, the in-phase/quadrature channel balance to $\pm 0.1 \mathrm{~dB}$, and the dc offset to $\pm 1 \%$ of full scale. This accuracy yields an image rejection spec of 50 dB . The unit can display in X-Y, "constellation," and "eye" modes. $\$ 29,000$. Delivery, 12 weeks ARO.
Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone local office.

Circle No 408

ANALYZER/SCOPE

- Has two channels, each with a 12-bit ADC
- Displays 1024-point FFT spectrum in real time
The R350 is a 2-channel FFT spectrum analyzer and digital oscilloscope based on an IBM PC or compatible computer. It features a $1-\mathrm{MHz}$ max sampling speed and a $500-\mathrm{kHz}$ max bandwidth. Each of its channels has its own 12-bit analog-to-digital converter, 32 k -word storage buffer, and digital signal processor. The analog inputs are differential for rejection of common-
mode noise, and each channel incorporates an anti-aliasing filter. You can select sensitivities from 1 $\mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$. The trigger modes include pretriggering, posttriggering, internal triggering, and external triggering. You can average from one to 64 spectra, and you can display spectra on a linear or logarithmic frequency scale. $\$ 3995$.

Rapid Systems Inc, 433 N 34th St, Seattle, WA 98103. Phone (206) 547-8311. TLX 265017.

Circle No 409

80C86 EMULATOR

- Zero-wait-state emulation at $\mu P s^{\prime}$ max clock speeds
- State-machine triggering and control

The ES 1800 host-independent, incircuit emulator emulates the 80C86 and 80 C 88 CMOS μ Ps from Harris and Intel. It performs transparent,
 Call toll-free: 800-356-9602 (ext. 502).

Telefax: 608-251-1076

New microlasers are expanding and refining laser applications through advanced diode-pumped, solid-state technology.

Amoco Laser Company's microlaser technology represents a quantum leap forward for laser light sources. Finally, alow noise, highly efficient, compact laser is available with operating voltage and lifetime characteristics that make microlasers a practical solution for many applications.

Consider the following line of infrared microlasers. They are available for immediate shipment for a wide range of uses in testing and inspection, optical alignment, materials characterizations, metrology, process monitoring,
spectroscopy, micromachining and microsurgery.

Product	Wevelength	Power
ALC106450	1064 nm	50 mw
ALC1064150	1064 nm	150 mw
ALC1320-25	1320 nm	25 mw
ALC1320-75	1320 nm	75 mw

All of the above lasers have a diffraction limited, TEMoo mode and are offered with linear or random polarization. A line of precision collimators is also available.

Want to learn more? Write for our videotape which more thoroughly explains Amoco's microlaser and its uses. Amoco Laser Company, 1809 Mill St., Naperville, IL 60540, or phone: 312-369-4190.
real-time, zero-wait-state emulation at the μ Ps' maximum-rated clock speeds. The emulator comes with the vendor's event-monitor system, which provides state-machine triggering as well as breakpoint and emulation control. The event-monitor system allows you to break on any combination of address, data, status, pass-counter, and logic-state

fields. You can obtain the Validate/ Soft-Scope high-level-language debugger and the Geneprobe symbolic debugger as options. Both debuggers run on the IBM PC/AT, PC/XT, or compatible computers. \$11,495.
Applied Microsystems Corp, Box 97002, Redmond, WA 98073. Phone (206) 882-2000. TLX 185196.

Circle No 410

8-CHANNEL RECORDER

- Eliminates galvanometers and styluses
- Has -3dB response at 5 kHz

The MT-9500 8-channel oscillographic recorder's only moving parts are its chart drive and thermal imaging paper. It can reproduce $3-\mathrm{kHz}$ analog signals with negligible attenuation; at 5 kHz , its response is -3 dB . The unit digitizes data with 12 -bit precision at 32 k samples/sec.

Every msec, it energizes the elements in its stationary printhead that span the highest and lowest amplitudes achieved by each signal during the last 32 samples. The printing elements are spaced 0.005 in. apart. You can select the side-byside display of $40-\mathrm{mm}$-wide channels or the overlapping display of two groups of four channels, each in a $160-\mathrm{mm}$-wide area. The stepper-motor chart drive allows you to advance the roll or Z-fold paper, at any integer value of speed, to run at 150 or 200 mm per sec or to run from 1 to 100 mm per sec, minute, or hour. The unit prints the chart grids

Your One-Stop Source for...

vcxos

Frequency:	TTL: 32 $\mathrm{kHz}-70 \mathrm{MHz}$ HCMOS: ECL: $\mathrm{kHz}-50 \mathrm{MHz}$ $8 \mathrm{MHz-200MHz}$ SINE: $8 \mathrm{MHz}-600 \mathrm{MHz}$
Deviation:	$\pm 30 \mathrm{ppm}$ to $\pm 200 \mathrm{ppm}$. Permits locking onto a stable source for $10-20$ years without adjustment.
Package:	$0.2^{\prime \prime}$ high DIP, pcb mount, or chassis mount with rf connector.

LINEAR APPLICATIONS
 VECTRON

The Crystal Oscillator Company

> VECTRON LABORATORIES, INC. 166 Glover Avenue. Norwalk, CT 06850 203/853-4433. TWX: 710/468-3796

TEST \& MEASUREMENT INSTRUMENTS
along with the data and includes facilities for event marking, time coding, and annotation. $\$ 12,950$. Delivery, four to six weeks ARO.

Astro-Med Inc, Astro-Med Industrial Park, W Warwick, RI 02893. Phone (800) 343-4039; in RI, (401) 828-4000. TWX 710-382-6409.

Circle No 411

IEEE-488 INTERFACE

- Lets multiple boards share DMA and interrupt channels
- Eliminates repeated parameter definition

The Personal488 is a device-driverbased IEEE-488 interface for the IBM PC, PC/AT, and compatible computers. Its new software, which the vendor claims is compatible with all popular MS-DOS- and PC-DOSbased languages, lets you employ a single definition of an instrument's parameters (eg, device name, IEEE address, and terminators), and thus enables you to write code that consumes as little as $1 / 5$ the memory needed by programs employing other approaches. When you install a driver in DOS, it remains there; you need not install it each time you use the computer. The interfaceboard hardware permits multiple boards to share the same DMA and interrupt channels, and a selectable wait-state generator makes the vendor's boards compatible with high-clock-speed computers that don't slow down during bus activity. $\$ 395$; board without software (for use with Asyst, Lotus Measure, and TBasic), \$295.

IOtech Inc, 23400 Aurora Rd,

Cleveland, OH 44146. Phone (216) 439-4091. TWX 650-282-0864.

Circle No 412

ASIC VERIFIER

- Accommodates 60-MHz max clock and data rates
- Uses "per-pin" architecture

The Logic Master XL-60 16- to 224channel ASIC-prototype verification system accommodates $60-\mathrm{MHz}$ clock and data rates. Its "per-pin" architecture is the same as that used in the vendor's $100-\mathrm{MHz}$ system. The architecture allows the independent assignment of all system resources to any pin. The system features $100-\mathrm{psec}$ edge placement and sampling resolution, 125 -psec frequency resolution, and $< \pm 1$ nsec skew after autocalibration. An automated fixturing system eliminates wiring and maintains a 50Ω transmission line to the device pins. The system accommodates DIPs and pin-grid-array packages. $\$ 180,000$ to $\$ 220,000$. Delivery, eight weeks ARO.

Integrated Measurement Systems Inc, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 626-7117.

Circle No 413

$18 \% ?$ - The First Fuse

Today's Fuse

Tomorrow's Fuses

BUSSMANN SOLID MATRIX ELIECTRONIC FUSES ARE READY FOR THE 21ST CENTURY.

New Bussmann solid-matrix fuses are a departure from conventional fuse design. Their solid-matrix fuse element has no surrounding air space, resulting in unique performance for electronic applications. In fact they extend the possibilities of design, previously inhibited by limited fuse performance. - Both Bussmann PC-Tron ${ }^{\oplus}$ and SMD Tron ${ }^{\oplus}$ (surface mount) fuses are distinguished by their excellent current limiting capability. Solid matrix construction rapidly extinguishes the arc and limits peak current in a predictable and repeatable manner when a fault occurs. Not only equipment but also circuit-board components are protected. Both fuses provide for automatic insertion and are completely sealed to withstand rigorous board washing. and for designs
locked into the conventional, sub-miniature fuse footprint, Bussmann offers Microtron ${ }^{\oplus}$-honest, reliable performance

```
Buss
```

in a familiar package. To obtain samples and literature on PC-Tron and Microtron and advanced information on the SMD Tron, call your Bussmann Sales Engineer or contact Bussmann directly. Bussmann Division, Cooper Industries, Box 14460, St. Louis, MO 63178, 314-394-BUSS.

TOUGH D-C APPLICATIONS? GIVE US A CALL.

BUSSMANN

NEW PRODUCTS

CAE \& SOFTWARE DEVELOPMENT TOOLS

FAX+TELEX

- Lets you use PC for both fax and telex
- Conforms to CCITT Group III standard

Proto.Fax Plus is a hardware-software package that lets you use your IBM PC or compatible as both a telex terminal and a facsimile terminal. The hardware portion consists of a full-length board that you can plug into any expansion slot of a PC that has at least 640 k bytes of RAM, a hard-disk drive, and MS-DOS 3.0 or higher version. You'll also need a CGA, EGA, or Hercules graphics adapter, and an IBM Graphics (dotmatrix) printer or a Hewlett-Packard or QMS laser printer. The software provides extensive on-line help and is menu-driven for ease of use. Its features include a call directory and automatic dial and answer. It can receive documents in background mode while you're working on another applications program in the foreground. A built-in editor lets you create text messages (you can also use a standard word pro-

cessor) and store them on disk for later transmission via telex, fax, or electronic mail. Fax transmission takes place at 9600 bps , with automatic fallback to lower speeds over noisy lines. The software works with any of the major telex carriers including FTC, Graphnet, ITT, MCI International, RCA, TRT, and

Western Union. Three versions of the package are available: Proto.call (telex only) or Proto.fax (fax only), $\$ 975$ each; Proto.fax plus (both fax and telex), $\$ 1595$.

American Teleprocessing Corp, 10681 Haddington, Houston, TX 77043. Phone (713) 973-1616. TLX 774444.

Circle No 415

CAE INTERFACE

- Between HP and other CAE systems
- Based on EDIF 200

The 74220A bidirectional EDIF (Electronic Design Interchange Format) interface lets you transfer schematic-capture data between the vendor's CAE tools and other, dissimilar, CAE tools. This standard interchange format lets you accept symbol libraries from ASIC vendors, for example, and return information about the finished design to the foundry. Version 200 of EDIF guarantees upward compatibility with future versions of the standard. The vendor's interface also works with data in EDIF 110 format, which the vendor's Printed

Circuit Design System and Engineering Graphics System uses. $\$ 15,000$. Delivery, eight weeks ARO.

Hewlett-Packard Co, Customer Information Center, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone local office.

Circle No 416

EXPERT-SYSTEM SHELL

- Runs in protected mode on 80386-based $\mu \mathrm{Cs}$
- Forward- and backward-chaining
TWAICE, a tool for creating rulebased expert systems, allows a domain expert to verify the knowledge base without having to learn any
programming language. The program's rule syntax is simple: You create rules and other knowledgebase components with the aid of a standard text editor. The tool then checks them for syntactic correctness and internal consistency, and you correct errors. After error correction, the software compiles final rules and taxonomy frames into a compact representation that the computer can load quickly. While you're building a knowledge base, you can use Why commands to find out the chain of reasoning that makes the program ask certain questions, and How commands to learn how the tool derived a particular result. (The package provides extensive on-line help on how to use the various commands.) This tool

TOGETHER WE FOUND THE ANSWER...

Analog In

HSCF24040

- 7th Order Monolithic Low-Pass Filter
- 85dB Dynamic Range
- Internal RC Anti-Alias Filter
- Sample/Hold Output Amplifier
- Low Power CMOS Technology

Ideal for 12-bit data acquisition systems, the HSCF24040 is unsurpassed as an anti-alias filter or a DAC output smoothing filter. The cutoff frequency of the active RC and switched capacitor sections is digitally programmable from 78 Hz to 20 kHz . The sample/hold rate and dc gain of the output amplifier are also programmable. Internal clocking of the HSCF24040 is controlled by an external reference clock or an optional crystal. This remarkable filter has less than 0.1 dB passband ripple and $>72 \mathrm{~dB}$ of stopband attenuation, yet requires no external components and consumes less than 150 mW of power!

HADC574Z/HADC674Z

- 12-bit Monolithic CMOS A/D Converter
- Improved 574/674 Alternate Source
- Transparent Sample/Hold Input Circuit
- Fast Conversion - $15 \mu \mathrm{~s}$-674, 25 $\mu \mathrm{s}$-574
- Low Power CMOS Technology

The HADC574Z and HADC674Z herald major performance breakthroughs. Honeywell's state-of-the-art BiCMOS process makes it possible to use ratioed capacitors instead of a traditional R-2R DAC in the HADC574Z/HADC674Z successive approximation A/D converters. The result is a built-in sample/hold function that allows sampling signals to 5 kHz without an external sample/hold amplifier. Also, transient noise on the analog input during conversion has been eliminated and no negative power supply is required. Even with all of these features, power consumption is less than $\mathbf{1 5 0 m W}$!

Signal Processing Technologies (SPT) has created a state-of-the-art product line that includes leading-edge DSP products, flash A/D converters with 10-bit 50MSPS (million samples per second) and 8-bit 125MSPS performance and high speed DACs with update rates to 400 MWPS (million words per second). SPT offers the highest performance ECL comparators, switched capacitor filters and high precision 12, 14 and 16-bit A/D and D/A converters available.

Signal Processing Technologies was established in 1983 to develop standard products for the worldwide digital signal processing and data conversion market based on Honeywell's production-proven semiconductor capability. These technologies include one micron CMOS, Bipolar and BiCMOS. In addition, an extensive amount of research and development is being conducted in sub-micron technologies.
Honeywell SPT is constantly pushing the frontiers of technology. Together, we can give your business a push.

For more Information on these and other SPT Products Call or Write:

Honeywell Inc. Signal Processing Technologies 1150 E. Cheyenne Mountain Blvd. Colorado Springs, CO 80906 (719) 540-3900 TELEX \#452433 EASYLINK \#62926148

Together, we can find the answers.

Honeywell

CAE \& SOFTWARE DEVELOPMENT TOOLS

has been available since 1985 for IBM mainframes, VAX machines, and 68000 -based workstations; the current version works on the IBM PS/2 Model 80, the Compaq 386, and other 80386 -based machines. The $\$ 7500$ price includes the vendor's MProlog development language (an implementation of Prolog) and two 1-week TWAICE training classes.

Logicware Inc, 237 Park Ave, Suite 2100, New York, NY 10017. Phone (212) 551-3536.

Circle No 417

SYSTEM BUILDER

- Automates system rebuilding upon source-code change
- Provides facilities for pre- and postprocessing

PolyMake version 2.1, which is modeled on the Unix utility Make, lets you define dependencies between the programs and modules of a software system. After making changes to the source code of one or more modules, you can run the utility to recompile the changed modules and link them with unchanged modules to build the new version of the system. New features introduced in this version include special dependencies for pre- and postprocessing, new dependency types, conditional constructs, and more powerful macros than those in previous versions. According to the vendor, this version runs as much as 10 times faster than do previous versions and consumes about 40% less memory. The program is compatible with the vendor's other tools, such as the Version Control System and the Librarian. To run the program, you'll need an IBM PC or compatible that has at least 256 k bytes of memory and that operates under MS-DOS version 2.0 or higher. $\$ 149$; users of previous versions can upgrade to version 2.1 for $\$ 50$.

Polytron Corp, 1700 NW 167th Pl, Beaverton, OR 97006. Phone (503) 645-1150. TLX 325800.

Circle No 418

CAE TRANSLATOR

- Sends data between P-CAD and AutoCAD
- Lets you add P-CAD drawings to documentation

The 2.0 version of PC-Trans provides bidirectional translation of data between the vendor's P-CAD CAE system and AutoDesk's Auto-

CAD system, via the AutoCAD .DXF file format. You can now create your pc-board outline with AutoCAD, reaching levels of detail that are not easy to do with P-CAD; you can then create a .DXF file and complete the design with P-CAD. The program translates the .DXF file into a P-CAD command macro that can create P-CAD sym-
bols and parts from the AutoCAD blocks; when you start P-CAD and execute the macro, you can watch the design being recreated. Because this version is also bidirectional, you can transfer P-CAD designs to AutoCAD or to any other CAE and documentation tool that can read the .DXF format. $\$ 495$ for new users; registered users of the unidi-

When it comes to high-speed laser diode packaging with true hermeticity, unmatched stability and stress resistance, TEK has it all.

Tektronix' family of electro-optic components provides unexcelled quality and proven performance that can give your products a competitive edge.

Now you can have it all-and on-time delivery too! Just dial 1-800-835-9433 and ask for Ext. 100. Your competitive edge . . . is just a phone call away.
rectional PC-Trans version 1.0 can upgrade to version 2.0 at no charge.

CAD Solutions Inc, 2880 Zanker Rd, \#103, San Jose, CA 95134. Phone (408) 943-1610.

Circle No 419

286 MULTITASKING

- Operates under PC-DOS and OS/2
- Builds systems with >32,000 objects

Smalltalk/V 286 is an object-oriented programming language for 80286- and 80386-based computers. It's an expanded version of Smalltalk/V for the IBM PC that allows multitasking and provides portability of applications from IBM PCs to Apple's Macintosh machines. You can build systems that have more than 32,000 objects and, because of the expanded-memory feature, objects can be larger than 64 k bytes. An enhanced debugger shows currently executing methods and highlights the source-code statement as it is executing; it allows you to inspect and change all objects and correct errors without exiting the debugger, and lets you single-step through the program or run it at full speed. The windowing system and animation features operate twice as fast as in the original Smalltalk/V, according to the vendor. This version also works with EGA and VGA displays. Smalltalk/V 286, \$199.95; upgrades from the vendor's Smalltalk/V, $\$ 75$.

Digitalk Inc, 9841 Airport Blvd, Los Angeles, CA 90045. Phone (213) 645-1082.

Circle No 420

IEEE-488 MANAGER

- Provides facilities for IEEE-488 network control
- Lets you use any number of IEEE-488 controllers
GPIB Manager software allows a real-time multitasking and multi-
user VME Bus system to control an IEEE-488 network. You can incorporate any number of IEEE-488 controller boards into the system and can attach as many as 15 devices to each board, which is the maximum number permitted by the bus specification. The software package consists of GPIB Manager, GPIB device drivers, sample device descriptors, a system test program, and sample application programs. The test program is for use during development and installation; it can generate GPIB commands, and you can use it to test the GPIB bus communications and timing. GPIB Manager runs as a background process under the 0S/ $9-68 \mathrm{~K}$ operating system; it configures and initializes the IEEE-488 bus, after which application programs can request GPIB-related commands for execution by the GPIB driver. The software package runs on the vendor's CC-91 VME-GPIB interface board,
which performs standard IEEE-488 functions such as controller, listener, and talker. GPIB Manager software, $\$ 750$; CC-91 interface board, $\$ 1675$.

Compcontrol Inc, 15466 Los Gatos Blvd, Suite 109-365, Los Gatos, CA 95030. Phone (408) 3563817. TWX 510-601-2895.

Circle No 421

SIMULATOR FOR MAC

- Simulates analog circuits on Mac II
- Has same options as earlier versions

PSpice is a simulator of analog electrical circuits that is widely used in its VAX, Sun, and IBM PC versions. The current release allows you to run the simulator on Apple's Macintosh II computer. Four optionsDevice Equations, Monte Carlo, Probe, and Parts Estimator-are
also available for the Macintosh II. Both Probe and Parts use Apple's standard graphics interface, so they work with all graphics devices for which Apple supplies device drivers. Pricing for the Macintosh versions: PSpice, \$1450; Device Equations, $\$ 550$; Monte Carlo, $\$ 550$; Probe, $\$ 700$; and Parts, $\$ 700$.

MicroSim Corp, 23175 La Cadena Dr, Laguna Hills, CA 92653. Phone (800) 826-8603; in CA, (714) 770-3022. TLX 265154.

Circle No 422

SCREEN EXTENDER

- Enables images 16 times larger than the Macintosh screen
- Lets you view your image at reductions of $25 \%, 50 \%$, or 75%

The Stepping Out II graphics program for the Apple Macintosh can create a virtual screen as much as 16 times larger than the machine's ac-

 investments ore ere mmathed this parilen meeting string inity of ocostly ircuits.arylene coating centio, Europe and
 Parylene Coating Service ng without compromise. 100 DEPOSITION DRIVE WSIN 54005
CLEAR LAKE, WISC EX 29.0220 $1-800-554-1697$ 4-1697
Subsidary of Union Carbide Corporation
ght 01988 Nova Tran Corp.

Spectrum Software's MICRO-LOGIC II ${ }^{®}$ puts you on top of the most complex logic design problems. With a powerful total capacity of 10,000 gates, MICRO-LOGIC II helps engineers tackle tough design and simulation problems right at their PCs.
MICRO-LOGIC II, which is based on our original MICRO-LOGIC software, is a fieldproven, second-generation program. It has a high-speed event-driven simulator which is significantly faster than the earlier version.

Timing Simulator
The program provides you with a top-notch interactive drawing and analysis environment. You can create logic diagrams of up to 64 pages with ease. The software features a sophisticated schematic editor with pan and zoom capabilities.

Shape Editor
A 200-type library of standard parts is at your fingertips. And for a new high in flexibility, a built-in shape editor lets you create unique or custom shapes.
MICRO-LOGIC II is available for the IBM ${ }^{\circledR}$ PC. It is CGA, EGA, and Hercules ${ }^{\circledR}$ compatible and costs only $\$ 895$ complete. An evaluation version is available for $\$ 100$. Call or write today for our free brochure and demo disk. We'd like to put you in touch with a top digital solution.

[^18]- Built-in shape editor
- Multiple delay models
- Printer and plotter hard copy

Schematic Editor

1021 S. Wolfe Road, Dept. E Sunnyvale, CA 94087
(408) 738-4387

[^19]

Proven Reliability ... 100\% Burn-In Tested

- 22 Mid. to 2,200 Mid.
- 6.3 WVDC to 63 WVDC
- $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- $\pm \mathbf{2 0} \%$ Std. ($\pm 10 \%$ Opt.)
- High Ripple @ 100KHz
- Solvent Tolerant Seal Std.
- Low ESR, Low ESL
- Tape \& Reel Available range of applications including high frequency filtering, high temperature ambients (up to $+105^{\circ} \mathrm{C}$), sinusoidal and nonsinusoidal waveforms, high ripple currents, and extremely low temperature $\left(-55^{\circ} \mathrm{C}\right)$ environmental applications. Type RZS offers the high reliability desired in automotive, telecommunications, industrial process control, medical instrumentation and power supply applications. Featuring excellent electrical characteristics across the entire temperature and frequency range including very low impedance, type RZS is designed for long life operation. The low ESL design provides high frequency performance beyond 100 KHz . The low ESR characteristics across the temperature and frequency range yield reliable cool operation at high ripple current levels. The solvent tolerant end seal design is perfect for use with many modern circuit board cleaning systems. Type RZS gives the designer a wide range of characteristics to choose from in a single series.

The source for Quality. Performance and Delivery.

CAE \& SOFTWARE DEVELOPMENT TOOLS

tual screen. Whenever the cursor hits the edge of the actual screen, the view of the image scrolls up, down, left, or right. You can use the program with CAE/CAD and wordprocessing applications programs to create large text and images, and then either work on a small scale or use a reduction to obtain an overall view of the drawing. The program is compatible with the Macintosh II and with Multifinder. $\$ 95$.

Berkeley System Design Inc, 1708 Shattuck Ave, Berkeley, CA 94709. Phone (415) 540-5536.

Circle No 423

WORM FOR UNIX

- Makes an optical-storage drive emulate a magnetic drive
- Works with three 12-in. and two $51 / 4$-in. drive models

Dorofile software lets you integrate a worm (write once/read many) optical drive into a Unix system. The package creates a new file system that causes the CPU to perceive the optical drive as a magnetic harddisk drive, yet grants access to optical storage. The software works with three 12 -in. drives (the LD1200 from Control Data/Phillips, Optimem's Model 1000, and Gigadisc's DG1001) and two $5.25-\mathrm{in}$. drives (Optotech's Model 5984 and Maxtor's Model 800S). Optical disks provide 2 G bytes of storage apiece and feature a life expectancy in excess of 10 years. You access the optical disk in the same manner as you would access disk or tape drives -via Unix-like commands and calls. You can connect the disk drive and controller directly to processors that already have SCSI interfaces, or you can add external SCSI controllers to systems that don't have them. The package comes on $1 / 4$-in. tape and includes a device driver. $\$ 3000$ (50).

Zetaco, 6850 Shady Oak Rd, Eden Prairie, MN 55344. Phone (612) 941-9480. TLX 290975.

Circle No 424

VAX GRAPHICS

- Lets you create logic diagrams and other line art
- Provides a menu mode for novices

You use the Draw interactive graphics program to create, revise, and display line drawings on a VAX workstation. It's suitable for logic diagrams, training aids, mechanical drawings, floor plans, maps, and other applications. The program's menu mode provides clear guidance and extensive on-line help for the novice. When you're familiar with the program, you can switch to the command mode, or to the tablet mode, which provides maximum precision and allows you to digitize line art. You can direct the output to a wide range of devices, such as pen plotters, laser printers, ink-jet plotters, and PostScript-compatible devices. The package comes with a library of more than 300 symbols, and you can build your own library of specialized symbols for your application. The program runs on VAX/VMS systems that have a VT-240, VT-340, or Tektronix dis-play-list graphics terminal or its equivalent. From $\$ 3500$.

Precision Visuals, 6260 Lookout Rd, Boulder, CO 80301. Phone (303) 530-9000.

Circle No 425

LANGUAGE

- Provides the Simula programming language on PCs
- Has cross-compilation support between operating sytems

The PC-Simula version of the Simula object-oriented programming language runs on IBM PCs. The vendor offers the language configured to run under the MS-DOS, Xenix, or OS/2 operating systems. The MS-DOS version, tested on an IBM PC/XT and PC/AT, requires 640 k bytes of RAM to run. The vendor tested the Xenix version under Santa Cruz Operation's Xenix

That's the typical power factor on Pioneer supplies with the power factor option. That means only Pioneer can give you 1000 watts of DC power from a standard UL 115 VAC, 15 amp wall plug. That's 300 more watts of usable power for system peripherals and accessories.
$115 / 230$ volt input strapping is eliminated. You can operate over a continuous range from 90-264 VAC.

You'll also get the added benefits of improved hold-up performance, reduced line harmonics between 10 and 150 kHz , and no AC line frequency sensitivity.

We offer the broadest high power line in the industry. From 250 to 2000 watts, single or multiple output, AC/DC or DC/DC. Standard units are certified to UL, CSA and IEC safety to Class I SELV levels and meet VDE and FCC conducted and radiated EMI specs.

With all options you might need, including built-in Single-Channel Battery Backup, Single-Wire Load Sharing, "connectorized" modules for hot-changing, or any of three dozen more.

No matter how tough your specs, chances are excellent that Pioneer has built one like it. Why not? We've shipped over 300,000 high power switchers.

And reliability? All supplies are 100% tested and given a 48 -hour, full-power burn-in. That's how we achieve MTBFs up to $250,000 \mathrm{hrs}$.

So if you'd like to turn up the output power on your next supply by over 30%, call us at 800-2331745. In Calif., 800-848-1745. Or write 1745 Berkeley Street, Santa Monica, CA 90404. FAX: (213) 453-3929. We're the only ones with .99 .

New Low Cost MMIC Amps: DC to 1.8 GHz bandwidths, Power to 20 dBm , and priced as low as 75 ceach.

Talk about a great deal. NEC's tiny new amps are available in wide bandwidths, a variety of packages, and they're designed to help eliminate your biasing and grounding problems.

And at 754 each in quantities of 500 you get both NEC quality and a better price than the so-called "low cost" amps.

Give us a call today. We'll work with you engineer-to-engineer to see that you get the right amps at the right price. And in most cases, we can ship them right off the shelf. NEC technology and quality -and CEL service. It's a powerful combination. Put it to work for you.

FREE DATA FOR DESIGNERS

For app notes and a full line Si MMIC specifications brochure, call, write or circle the number below.

3260 Jay Street, Santa Clara, CA 95054 (408) 988-3500
Western (408) 988-3500 Eastern (301) 667-1310
Canada (613) 726-0626

Europe NEC Electronics GmbH 0211/650301
CC 1987 California Eastern Laboratories

CIRCLE NO 48

DID YOU KNOW?

> EDN serves electronic engineers and engineering managers in more than 100 countries worldwide.

System V and under Microsoft Xenix, and the OS/2 version, on an IBM PC/AT running Microsoft OS/2; you need a computer with 1.5 M to 3 M bytes of RAM to run either version. All versions call for a computer with a math coprocessor and a hard disk. You can order cross compilers to transfer programs between MS-DOS and Xenix and between MS-DOS and OS/2. Singleuser licenses for the various versions, 10,000 to 15,000 Norwegian Kroner; cross compilers, 20,000 Norwegian Kroner.

Simula as, Box 4403, Torshov, 0402 Oslo 4, Norway. Phone (2) 156710.

Circle No 426

TURBO C DEBUGGER

- Provides breakpoints and singlestepping
- Switches between program and debugger screens

The A-COM debugger is a fullscreen, source-level debugger for use with Borland International's (Scotts Valley, CA) Turbo C programming tools. The debugger is menu driven: You select the most commonly used functions via function keys. You can set breakpoints to stop the program you're testing when it reaches specified statements. In addition, you can make your program run until it reaches a breakpoint, or you can execute it statement by statement; in the latter case, you have the option of skipping over the functions called by a statement, or of stepping through the functions. You can also toggleswitch the display between the debug screen, which shows you the statements as they run and variables as they change, and the program screen, which you normally see while running the program. $\$ 24.95$.

A-Com, 13511 NE 129th Pl, Kirkland, WA 98034. Phone (206) 8212192.

Circle No 427

Plessey Microsystems puts the 68030 in its proper place

...and doubles your VME processing power!

If you've been yearning to double the processing power and throughput of your VME system, the wait is over. Once again, Plessey Microsystems has taken the lead... with our new 68030-based PME 68-32 VME Single Board Computer. It puts all the power of the 68030 into the industry's fastest, most powerful and versatile VMEbus processor board. And we're not talking about a board that's under development. The PME 68-32 is here...right now!

Doubling Your Processing Power With...

- 68030 processor
- Optional 68882 floating point co-processor
- 4 Mbytes true dual-ported DRAM
- Cache burst fill capabilityzero wait states
-Two high-speed serial ports-up to $1 \mathrm{Mbit} / \mathrm{sec}$.
- Remote reset

- Mailbox interrupts
-Flexible dual-ported address mapping
- Complete VMEbus system control functions

Plus the Unique PEX Interface...
Our unique on-board PEX (Plessey Extension bus) Interface allows you to easily meet even highly specialized application requirements. You can put the functionality you choose onto the $68-32$ because it puts so many interface possibilities at your disposal, including SCSI and others like parallel I/O, Ethernet,* floppy disk, additional serial I/O...and more!
...And Smooth, Easy Upgrade Paths...
The PME 68-32 is part of a complete family of Plessey Microsystems processor boards incorporating the 68000 series of processors. That means minimal-or even zerosoftware changes from one product to the next. If you're using our 68020 -based processors now, you can easily upgrade to the PME 68-32...now!

...For Ultimate VME Strength.

With our 68030-based processors, Plessey continues to extend its lead in VME technology. And not just processors. We've got a host of new VME memory boards, I/O and controller boards, and systems and software. Call or write for details and make Plessey's ultimate VME strength your system's greatest strength.

[^20]
CAE \& SOFTWARE DEVELOPMENT TOOLS

FFT LIBRARY

- >300 data array sizes
- Math coprocessor speeds calculations

Two-Dimensional Prime Factor FFT is a subroutine library of fast Fourier transforms. Its prime-factor algorithm allows you a choice of more than 300 data-array sizes and,
according to the vendor, is both faster and more accurate than pow-er-of-2 algorithms. On an 80386based PC, you can perform frequency analysis on data sets as small as 2×2 data points and as large as $65,520 \times 65,520$ data points. Furthermore, the vendor claims that this is the first PC-based FFT product to calculate rectangular FFTs,

so that you can match the FFT calculation to an experimental array whose width is not equal to its length. You can call the routines from any high-level language; the manual provides interface examples for Turbo Pascal, Microsoft C, Lattice C, QuickBasic, Microsoft Fortran, Lahey Fortran-77, and assembly language. $\$ 159$.

Alligator Technologies, Box 9706, Fountain Valley, CA 92708. Phone (714) 850-9984.

Circle No 428

STRESS ANALYSIS

- For electronic and mechanical systems
- Includes import and export facilities

Reliability Prediction Program (RPP) 3.1 provides stress analysis of parts in accordance with MIL-HDBK-217. This version has more than 40 new features, including quality-level default values for all parts, junction-temperature default values for ICs, and voltage default values for transistors and diodes. The program now lets you make full use of the MS-DOS path features, and you can also transfer data freely between the program and ASCII files or dBASE III-compatible files. In addition, this version can exploit a math coprocessor (if your system has one) to increase calculation speed. Optional enhancements allow parts cataloguing, global data changes, batch input, and stress analysis in accordance with MIL-HDBK-1547. To run the program, you'll need an IBM PC/XT or PC/AT that has at least 512 k bytes of RAM and a hard-disk drive. RPP 3.1, $\$ 1700$; options, $\$ 500$ each.

Powertronic Systems Inc, Box 29109, New Orleans, LA 70189. Phone (504) 254-0383.

Circle No 429

SMART CARD EXTENDER EASY ON
 $\$ 195^{\circ 0}-\mathrm{PC} / X T$ $\$ 225^{\circ 0}$ - AT

- Allows card insertion and extraction without power on/ off cycles
- Saves time by eliminating DOS re-boots
- Reduces wear and tear on hard disk drives
- Extends host interface for hardware and software development and test
- A single switch controls the connection of all signals to and from the computer bus
- Patent pending

30 DAY NO RISK EVALUATION APPLIED DATA SYSTEMS 9811 Mallard Dr. Suite 203 Laurel, MD 20708
For more information call 800-541-2003

CIRCLE NO 331

MAVEFORM SYNTHESIZER

- For IBM-PC/XT/AT and compatibles
- Generates user-definable signal
- Up to 2000 points per envelope

$\$ 795.00$

478 E. Exchange St. Akron OH 44304 (216) 434-3154 TLX: 5101012726 1-800-553-1170

CIRCLE NO 334
68020 SBC
Only \$1298.50 (Qty. 100)

- 12.5 MHz 68020
- Centronics' PLL Por
-SASI/SCSI Port
- 256 KB EPROM (max.)
- $/ 0$ Expansion Port
- $8.8^{\prime \prime} \times 5.75^{\prime \prime}$

1 MByte DRAM - 4 RS-232 Serial Ports

TOD Clock w/battery -3.5/5.25" Floppy Controller - ROM Monitor/Diagnostics - Mounts on a $5.25^{\prime \prime}$ Drive

Optional: 2 MByte RAM, 4 MByte RAM w/MMU, 16.67 or 20 MHz versions, $68881 / 2$ FPC, additional seria and parallel ports: ARCNET LAN Color Graphics, UniFLEX or OS-9/68020 DOS, C, BASIC, PASCAL, FORTRAN, Assembler, Spreadsheet, Data Base Management. Also Available: 68030 version w/4 Mbyte RAM. GMX INC. 1337 West 37th Place, Chicago, IL. 60609 Ph. (312) 927-5510 TWX 910-221-4055 FAX (312) 927-7352 State-of-the-Art Computers Since 1975

Digital Control Intro \$200 Digital Filter Tutor $\$ 450$ Kalman Filter Tutor \$925
Practical hands-on training courses that run on the IBM PC. Ideal alternative to text books, seminars, and university courses. FREE demo disk available.
Engineering Tutorial Software 22338 Lull Street
Canoga Park, CA 91304 (818) 716-0816

CIRCLE NO 332

Not Copy Protected

DC/DESIGN ${ }^{\text {m }}$

Complete PCB
 Design Package ${ }^{5} 695$

ncludes Drattsman-EE" and DC/Check $+^{\text {"' }}$. each sold separately for 5395. Low-cost options include

C/Autorouter $1^{\text {². }}$.
5795
5195
C/Convert"' (Format Converten)
DC/Design for IBM PCs and compatibles leatures easy-to-use ation: interactive parts placement and routing design rule checking and complete, professional documentation

NEW HIGH-POWERED SYSTEMS* Includes High-Performance. Surface Mount Technology $32^{\prime \prime} \times 32^{\prime \prime}$ board size and 64 layer support. .Copy Protected DC/DESIGN IIM
DC/810 $\|^{1 \mathrm{~m}^{\mathrm{m}}}$
DC/CAD $\|^{\text {mom }}$
DC/Hi-Res ${ }^{\text {m" }}$ |optional|
Call
CALL TODAY TO ORDER! MONEY-BACK GUARANTEE
 CCOMPUTATION
Route 33 Sherman Square. Farmingdale, NI 07727
(201) $938-6661$
CIRCLE NO 335

UNIVERSAL E(E)PROM PROGRAMMER \$495 (Kits from \$165)

- No personality modules; Menu driven device selection. - Built-in Eraser/Timer option (\$50); Conductive foam pad.
- Direct technical support; Full 1 year warranty.
- Stand alone duplication \& verify (27XX parts).
- Quick pulse algorithm (27256 under 60 sec).
-27xx to 1 Mbit; $25 \mathrm{xx} ; 68 \mathrm{xx} ;$ CMOS; EEPROMS.
- 8741,-2,-4,-8,-8H,-9,-9H,-51,-C51,-52,-55, 9761 \& more.
- IBM-PC, Apple, CPM or Unix driver; Autobaud RS232.
- Offset/split Hex, Binary, Intel \& Motorola 8,16,32 bit.
- Manual with complete schematics.

VISA MC AMEX Call today for datasheets! B\&C MICROSYSTEMS

355 WEST OLIVE AVE. SUNNYVALE, CA 94086 PH: (408) 730-5511 FAX: (408) 730-5521 TELEX: 984185

O WAITING FOR COMPLETE, LOW PRICED, CHIP COMPONENT KITS

CC-1 Capacitor Kit contains 365 pieces, 5 ea. of every 10% value from 1 pf to $.33 \mu \mathrm{f}$. CR-1 Resistor Kit contains 1540 pieces; 10 ea. of every 5% valuefrom 10 號 10 megs. Sizes are 0805 and 1206. Each kit is ONLY $\$ 49.95$ and available for Immediate One Day Delivery!

Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD orders, or company P.O.'s with approved credit. Call for free detailed brochure

COMMUNICATIONS SPECIALISTS, INC.
Entire U.S.A. 1-800-854-0547
CIRCLE NO 333

Join Forces
Combine your larger ads with EDN Product Mart ads for a total marketing program.

EDN Product Mart

CIRCLE NO 336

Solenoid Valve Engineering Catalog

Send for the latest 40 -page Solenoid Valve catalog from Deltrol - Packed with useful information on full range of 2 \& 3 -way solenoid valves for most liquids and gases. Direct acting normally open and normally closed models with plastic-molded coils, brass or stainless bodies

DELTROL

controls

2745 S 19th St Milwaukee, WI 53215 Phone 414/671-6800 Telex 2-687

CIRCLE NO 338

UNIVERSAL LOGIC PROGRAMMER

- PROGRAMS,

READS, DUPL-
AND SECURES
HUNDREDS OF
20-AND 24-PIN
DEVICES

- 23 UNIVERSAL PIN DRIVERS WITH INDEPENDENT DAC ADC \& SLEW
FUNCTIONS FUNCTIONS PROGRAM AL-
MOST ANY MOSIC ANY MENU DRIVEN OPERATIONIS
EASYTO
EASARN AND
QUICK TO OPERATE
- CONNECTS TO ANY IBM COMPATIBLE VIA PARALLEL PRINTER PORT - EDITS FUSE DATA \& TEST VECTORS WITH FULL SCREEN EDITOR - TESTS WITH VECTORS \& SECURES AFTER PROGRAMMING - SUPPORTS ALL POPULAR PLD DEVELOPEMENT SOFTWARE - ONLINE HELP FUNCTION ONE YEAR WARRANTY - SELF CALIBRATING SAME DAY SHIPMENT - JEDEC FILE INPUT \& OUTPUT GOLD TEXTOOL ZIFIC SOCKET $\bullet 30$ DAY MONEY BACK GUARANTEE UPDATABLE VIA FLOPPY $\bullet E P R O M$ PROGRAMMERS ALSO TOLL-FREE TECH SUPPORT - JUST \$798

CALL FOR FREE DEMO DISK OR INFO 800/225-2102 BP MCOESTM
10681 HADDINGTON \# 190 HOUSTON, TX 77043 713/461-9430 TLX: 1561477 FAX: 713/461-7413 CIRCLE NO 340

Welded wire
construction
the better design
approach
 Design Guide to cut costs on chassis and enclosures

Our new Engineering Design Guide is loaded with tips and design ideas to reduce chassis and enclosure costs and improve performance using steel wire construction. For a free copy write:

TITCHENER E.H. Titchener, 28 Titchener Place, P.O. Box 1706, Binghamton, NY 13902 Phone 607-772-1161 FAX 607-771-0264 CIRCLE NO 343

CIRCLE NO 346

- Emulates 2716-27256 Eproms.
- Fast 19,200 Bps Transfer Rate.
- Menu Driven Eprom Selection.
- Non-Volatile Memory
- Pays For Itself With First Project.
- Software Included Free!

Development Hardware \& Software P. O. Box 2310 Bay St. Louis, MS $39521-2310$ Order Toll Free 1.800-255.GTEK (4835) Fax: 1.601.467.0935 Telex 315814 (GTEK UD)

MS \& Technical Support 1-601-467-8048

CIRCLE NO 341

4. Are you trying to swat down your own EMI problems? Eagle is dedicated to providing dependable magnetic shielding solutions with the most original design engineering available. We save you time. We save you money.

Call Eagle at (317) 297-1030 for problem design assistance, or write for FREE engineering design information packet \#03 and let us handle the squelching.

Eagle Magnetic Company Inc - PO Box 24283 Indianapolis, Indiana $46224 \cdot(317) 297-1030$ - FAX $317-299-1323$

CIRCLE NO 344

MIL QUALITY/

LOW PRICE CONNECTORS

Our JCM connectors deliver the same MILSPEC quality as SMA-types, without charging you for expensive materials and military paperwork. The JCM line offers commercial versions of SMA/SMB/SMC RF plugs, jacks, adapters, test jacks, cable sets and PC-mount cable terminations in popular sizes and types. Get MIL-C-39012 performance without the MIL price.
Call 800/247-8343 for a free JCM catalog (In MN: 507/835-6222)

EF JOHNSON COMPONENTS CIRCLE NO 347

- BYTEK's 135 is a SET Programmer, GANG

Duplicator, \& UNIVERSAL Device Programmer.

- Programs virtually all 24, 28, \& 32-pin (E) EPROMs.
- RAM expandable to 2 MegaByte.
- Optional support for 40 -pin EPROMs, Bipolar PROMs, 40-pin Micros, \& (E)PLD/GAL/FPLA
- 18-Month FREE WARRANTY and also 12-Month FREE DEVICE UPDATES.

Project: PCB + , now with VGR
The best bargain in PCB design software just got better. Project: PCB, with symbol/parts editors, schematic capture, board layout, interactive routing and auto-routing, is now available with VGR: a Variable Grid Router. Project: PCB+ offers userselectable routing grids, trace widths and via diameters. VGR can also access extra memory for larger boards.
Project PCB + is only $\$ 1500.00$ (EGA-compatible version).
Demo systems available.
DASOFT Design Systems, Inc.
1827-B Fifth Street, Berkeley, CA 94710
(415)486-0822

CIRCLE NO 345

Worried About EMI/RFI? USE ELECTRODAG ${ }^{\text {® }}$ SHIELDING COATINGS

- Air or Force Dry Formulations.
- UL Recognized for Good Adhesion.
- Line Proven, Easy Application.
- Stable Low Electrical Resistance.
- Choice of Copper, Nickel or Low Cost Silver Conductive Fillers.
- Prototype Service Available.

4. Acheson

1600 Washington Ave., Port Huron, MI 48060
Traliti 1-800-255-1908

TTC Low-Profile Plastic
Leaded chip Carrier Socket
Reliable products \& Reasonable price!

Special design makes the contact stably. To be a connector manufacturer, we specialize in the following items:

1. PLCCS-44P, 68P, 84P
2. IC Socket (Dual in line)- 6P, 8P, 14P, 16P $18 \mathrm{P}, 20 \mathrm{P}, 24 \mathrm{P}, 28 \mathrm{P}, 40 \mathrm{P}, 34 \mathrm{P}$ (4Rows)
3. Slot (Edge Card connector)- 36P, 50P, 62P 80P, 86P, 98P, 100
4. shunt (Mini Jumper)
5. Pin Header: $2 P-40$ (Single Row or Double Rows, Straight or Right Angle) ((OEMs are wellcome))

TTC

Shih Hsin Precision Corp. No. 2, Lane 75, San Jun Street, Shu-Lin Town, Taipe Taiwan, R.O.C. Tel: 886-2-6894655, 689-4656 Fax: 886-2-6894657 Telex: 33210 TTCCO

SAILOR PROGRAMMERS: NO WAITING FOR DOWNLOAD!
Directly controlled by IBM PC/XT/AT/PS2. Save you hours of download time each week. Virtual memory feature - requires no RAM modules even for megabit devices. Industrial quality.
Sailor-PAL: Supports PLDs from over 10 mfrs ; Bipolar, CMOS, EPLD, GAL, PEEL, and ECL. S/W driven, universal electronics.
Sailor-2,-8: 2 and 8 sockets, supports EPROMs up to 1 megabit, set and gang functions

ADVIN SYSTEMS, INC.
1050 East Duane
Sunnyvale, CA 94086
408-984-8600 TLX 5106005624
CIRCLE NO 350

72 DIGITAL I/O FOR PS/2

MODELS 50, 60, 80

- Users may modify or create new tables for additional processors.
= Produces listing, symbol table, and 8/16 bit binary Intel and Motorola hexcode.
- 5" DSDD for PC/MS DOS 2.0 or greater.
$\$ 99.95$ us $\quad \$ 139.95 \mathrm{CDN}$
- Portable C sourcecode is available

Woridwide shipping (AIRMAIL) \& handling included. Credit Card orders (\$139.95 CDN) pl
name on card and expiry date.

6800-Family Development Software
Combine our software and your editor for a powerful development system. Our C-Compilers feature a complete implementation (excluding bit fields) of the language as described by Kernigan \& Ritchie and yields $30-70 \%$ shorter code than other compilers. Our Motorola-compatible Assemblers feature macros and conditional assembly. Linker and Terminal Emulator are included. Wintek Corporation, 1801 South St., Lafayette, IN 47904. (800) 742-6809 or (317) 742-8428.

CIRCLE NO 755
To advertise in Product Mart, call Joanne Dorian, 212/463-6415

CHIP COILS DC-DC CONVERTERS PULSE TRANSFORMERS

Our Chip Coils is good for your miniaturization \& surface mounting. DC-DC Converters, pulse transformers \& band pass filters is now complete with excellent functions. We also supply choke coils, power chokes, linearity coils, toroidal coils, pulse transformers, coupling transformers, power transformers and others. Send for details today.

OEM and Agent Inquiries Invited

ABC TAIWAN ELECTRONICS CORP No. 422, Sec. 1, Yang Fu Rd., Yangmei 32627, Taoyuan, Taiwan, R.O.C
Tel: (03) 4788088 , Telex: 32379 ABCEC Fax: (03) 4755503

CIRCLE NO 767
ZIPPY SWITCHES 기NO: E91274
*FUll DETAILS AND SAMPLES ON REQUEST *OEM ARE WELCOME

VM TYPM SERIES

SHIN JIUH CORP. P.O. Box 10184 SHIN TIEN TAIPEI HSIEN, TAIWAN, R.O.C. TEL:(02) $9188512-5$ TLX: 33418 ZIPPY FAX: 886-2.9155765

CIRCLE NO 770

ELIMINATE DECOUPLING CAPACITORS

CAP-BUS* CAPACITOR/BUS BAR

Eliminate the decoupling capacitors and the power and ground traces from your PCB for more reliability. CAP-BUS® has a distributed capacitance of .05 micro-farads per lin. in., at 50 VDC with low inductance and low impedance. The capacitor and the bus bar have been joined together for CAP-BUS®; a more efficient capacitive decoupled power distribution system, increasing IC density on a two sided board

ELDRE COMPONENTS, INC. 1500 Jefferson Rd. Rochester. NY 14623 (716) 427-7280

CIRCLE NO 773

GP-IB, HP-IB CONTROL FOR YOUR PC, PC/AT and IBM PERSONAL SYSTEM/2 ${ }^{\text {w }}$

- Control instruments, plotters, and printers.
- Supports BASIC,C,FORTRAN and Pascal.
- Fast and easy to use. Thousands sold.
- Software library. Risk free guarantee.

Capital Equipment Corp. 99 South Bedford St. Burlington, MA. 01803
FREE demo disk. Call (617) 273-1818

CIRCLE NO 768

Flow

 Charting II + The New Plus for Fast Flowcharting FLOW CHARTING is new! lt's nowFlow Charting IIt, with more speed + more functions + more printing options; - 10 text fonts; 26 shapes; - Line mode can stop at a shape; - Backspace key can erase a line to its origin; - Free text entry anywhere, or select autocentering; - Vertical or horizontal printing; one chart or multiple charts.
Used by Fairchild, Bechtel and more than 500 other major corporations. Edit quickly and accurately - even major edits - with Flow Charting II + , the Specialist.
See your retail store or call:
PATION \& PATION
1-800-525-0082, Outside California 408-629-5376, California/International

CIRCLE NO 771

"D" SIZE PLOTTER

\$229500
RETAIL
s 169500
introductory OFFER

- Model PC 3600
- Repeatability $.001^{\prime \prime}$
- Speed at $7^{\prime \prime}$ Per Second
- Vacuum Paper Hold Down
- High Resolution Circles: Suitable for PCB Artwork
(415) 490-8380 ZERICON STEVENSON BUSINESS PARK BOX 1669 • FREMONT, CA 94538

PC-Based Servo System

System Elements: • Plug-in Motion Controller for 1,2 or 3 Axes - Servo Motor - Encoder • Design Software for PC • Power Driver \& Supply •Cables Base Price $\$ 1145$ Software Features: • Servo Modeling and Analysis • "Live" Communication • Storage Scope - Step and Frequency Response - Auto Tuning - Linear and Circular Interpolation - Contouring • User-Definable Programs Demo Disk $\$ 50$ Galil Motion Control 1054 Elwell Court, Palo Alto, CA 94303 (415) 964-6494

CIRCLE NO 769

Introduce new products and ilterature

Build awareness in the marketplace Supplement your advertising campaign

EDN Product Mart

CIRCLE NO 772

IEEE-488 CONTROLLER
 FOR PS/2

MODELS 50, 60, 80

- GPIB Compatibility
- Control Up to 14 Devices
- Selectable Addressing
- Software Included

1-800-553-1170

478 E. Exchange St., Akron, OH 44304 TEL: (216) 434-3154 FAX: (216) 434-1409 TLX: 5101012726

CIRCLE NO 775

Schematic and PCB Software

Create and revise schematics and PCBs quickly and simply with HiWIRE-Plus ${ }^{\text {® }}$ and your IBM PC. Use symbols from HiWIRE-Plus's extensive library, modify them, or create your own quickly and painlessly. Netlist, bill-of-materials, and design-checking utilities are included. HiWIRE-Plus is $\$ 895$ and comes with a thirty-day money-back guarantee.

Wintek Corp.

1801 South St., Lafayette, IN 47904 (800) 742-6809 or (317) 742-8428

CIRCLE NO 776

CIRCLE NO 779

IC SOCKETS-8, $14,16,18,20,22$, 24, 28, 40, 42, 48 contact LCC SOCKET-68 contact PLCC SOCKET-28, 32, 44, 52, 68, 84 contact series

Winpoint Electronic Corp. P. O. Box 89-80, Taipei, Taiwan, R.O.C. Office : No. 47, Chi-Wei St., San Chung City, Taipei, Taiwan, R.O.C. Tel: (02) 986-0208, 984-0209
Telex: 34227 WINPOINT Fax: 886-2.9838555

EPROM PROGRAMMER
Model EP-2B-87 with RS-232, MS-DOS or CP/M software. Programs: 2708, 2716, 2716B, TMS2716 2732, 2732A, 2732B, 2532, 2532A, 2764, 2764A 2712B, 27128A, 27256, 27512, 27513, 2564, MCM68764 N-MOS and C-MOS EPROMs; 2816A, 2864A EEPROMs; $8751 \mathrm{H}, 38 \mathrm{E} 70 \mathrm{MPU}$, Intel Motorola, and Tektronix formats. Stand alone copy verify, edit, 17 RS-232 commands. $\$ 395$ for 8 K byte buffer. Personality modules $\$ 18$ to $\$ 36$.

Optimal Technology
Earlysville, VA 22936
804-973-5482
CIRCLE NO 777

NEW! ADVANCED ACTIVE

 FILTER DESIGN SOFTWAREVersion 3.0 designs Lowpass, Highpass, Bandpass, Bandstop and ALLPASS filters with Butterworth, Chebyshev, elliptic and Bessel MFB, VCVS, biquad and state variable filter circuits - Interactive graphics for group or phase delay, gain, phase, impulse and step response of the complete filter or individual section imbernine fitters for system desion/analysis - Modify circuits to observe effects ($\$ 525$)) for IBM PC, XT, AT, PS/2

SPICE FILE CONVERSION OPTION AVAILABLE
RLM Research
Boulder, CO 80307-3630 (303) 499-7566
CIRCLE NO 780

SBX ANALOG I/O MODULES. Up to 16 analog inputs and 8 analog outputs $w / 12$ bit resolution on one card. Throughput rates from 3 kHz to 59 kHz . TTL or CMOS. Nonintelligent or intelligent w/FIFO I/O buffer and many preprogrammed modes of operation. Input filters, prog. gain amp, sample-hold.

ROBOTROL CORP

16100 Caputo Dr, Morgan Hill, CA 95037 (408) 778-0400

CIRCLE NO 782

WE PROVIDE SOLUTIONS TO MANY INTERCONNECT PROBLEMS...

- Test Adapters (Socketed LCC/PLCC/PGA)
- Test Clips (Surfaced Mounted SOIC/PLCC)
- 150 Types of Prototyping Board Adapters
- 125 Types of Programming Socket Converters
- Many Types of Emulator Pod Converters
- PGA/PLCC Extraction/Insertion Tools
- And Much, Much More..

[荡

Emulation Technology, ine.
2368-B Walsh Ave. • Bldg. D • Santa Clara, CA 95051 TEL: (408) 982-0660 • FAX: (408) 982-0664

CIRCLE NO 778
NO ENGINEER SHOULD BE WITHOUT ONE

America's most advanced Personal Programmer The Digital Media $1 Q-280$ can program 40 PIN devices. The most advanced firmware controlled pin driver system
available means you never have to worry about buying another expensive module or PAK again. The IQ'Personal Programmer line offers the power and features comparable to many of
the $\$ 5.000$ programmers, but at a fraction of the costs. Support for CMOS. NMOS. ECL. Bipolar. PROMs. EPROMs, eeproms, PLDs ePLDs. IFLs. FPLDs. up to 40 pindip packages. Altera, AMD. Atmel, Cypress. Excel. Fairchild. Fujitsu, GI,
Hitachi, Hughes, Intel Lattice Mitsubishi.Motorola. National. NEC, MMI. Samsung. Seeq Sierra. Signetics SMOS. T Toshiba, Waterscale and more. ALMOST 1000 DEVICES Whatever your need is. Digital Media can help you solve it. And you won't believe how little it costs.
Call (714) 751-1373 to receive a complete product specification package immediately

CIRCLE NO 781

Analog Circuit Simulation

NEW SPICE_NET \$295.00

 Make SPICE input files from schematic drawings using pull down menus and a mouse to draw and connect parts. Use an IBM PC with any UC Berkeley compatible SPICE program.
Simulation Programs

- IS_SPICE, $\$ 95.00$. Performs
AC, DC and Transient analysis.
- PRE SPICE \$200.00: Adds Monte Carlo Analysis, Sweeps, Optimization, libraries and algebraic parameter evaluation
for
IBM
PC's from intusoft
- Intu_Scope \$250: A graphics post processor works like a digital oscilloscope. Easy to use with all the waveform operations you will ever need.

CIRCLE NO 784

> WHAT'S NEW IN VME PACKAGING

Ready to use, 32-bit, integrated

VECTOR-PAC* system enclosures with
combined J1/J2 backplane, power
supply and cooling fans, assembled
in a fully accessible, removable
sub-rack. Plug in your cards and go.

See us at Electro Booth 1409
MASSIVE BUSBAR POWER DISTRIBUTION 3U-9U, 5-21 slot, J1/J2 backplane 175-450 watt power supply, U.L. Listed standard and custom models.

VECTOR ELECTRONIC COMPANY 12460 Gladstone Avenue Sylmar, CA 91342
818/365-9661 FAX 818/365-5718
800/426-4652 In CA 800/423-5659 Outside CA

Superconducting electronics explored
The 8-pg brochure PSP-1000 Picosecond Signal Processor describes the combination of a digital sampling oscilloscope and time-domain reflectometry which, according to the vendor, is functioning at the threshold of superconducting electronics. The publication presents background information, annotated illustrations, and specifications.
Hypres Inc, 500 Executive Blvd, Elmsford, NY 10523.

Circle No 435

Catalog contains analog products

The 520-pg 1988 Analog Product Catalog categorizes A/D converters, comparators, track/hold ampli-
fiers, switched capacitor filters, and D/A converters. It also includes advance information about many new products to be introduced this year, as well as application notes on flash converters, video DACs, and switched capacitor filters.
Honeywell Inc, Signal Processing Technologies, 1150 E Cheyenne Mountain Blvd, Colorado Springs, C0 80906.

Circle No 436

Scope helps you analyze

 high-speed waveformsThe vendor's $10-\mathrm{pg}$ brochure describes its SAS-812A digitizing oscilloscope with which you can observe and analyze ultra-high-speed waveforms. It discusses features such as jitter reduction, an autotrigger function, and remote control with an external controller via RS232C and IEEE-488 STD interfaces. Detailed descriptions, including illustrations, provide more information about applications such as rise and fall times, and evaluation of wide bandwidth differential amplifiers. The publication also includes an overview of the display screen, as well as specifications and options for the scope.
Iwatsu Instruments, 430 Commerce Blvd, Carlstadt, NJ 07072.

Circle No 437

High Precision ...Absolutely

There's no such thing as

 "almost precise." That's why you should select Hybrid Systems-the leader in 16-bit bybrid and monolitbic analog signal processing components.Your demand for high precision is absolute. So is ours. Since we introduced the industry's first 18 -bit DAC five years ago, Hybrid Systems has dedicated itself to creating high precision analog signal processing components that simply will not compromise your performance, or our position of acknowledged leadership in the field. As a result, we now offer an impressive family of 16 -bit products designed to make high precision as accessible —as it is essential-for your demanding applications.

In DAC's, choose from an exceptionally wide range of products including monolithic, microprocessor compatible, voltage output, and current output components. You can also select products that feature low cost or high accuracy - all with 16-bit precision.

In other areas, Hybrid has both the only true 16 -bit hybrid ADC on the market and the fastest with a $15 \mu \mathrm{sec}$. conversion time. Just as important, the additional 16 -bit products presently under development will continue the Hybrid Systems tradition of precision with breakthroughs in speed, cost, and accuracy in every type of analog signal processing component, including Data Acquisition Systems.

High precision. We insist on it. We deliver it. And we will never compromise it in any of our components, or in any of your applications . . . because it's simply too important to both of us.

GREAT NEWS! Hybrid Systems now offers a brand new, revolutionary 16-bit Sample/Hold component with dielectric absorption compensation. For more information, or to order our new catalog, call or write us today.
22 Linnell Circle, Billerica, MA 01821
617-667-8700.

Software development courses offered

This brochure describes the courses in languages, operating systems, and software engineering that are available. Four new courses in Advanced C Programming comprise Hands-On Workshop, Software Requirements and Specifications, Software Quality Assurance and Test-
ing, and Software Maintenance. The publication discusses the subjects and applications covered, hands-on activities, benefits, materials provided, authors and instructors, and locations. Three- and fourday programs, from $\$ 1095$ to $\$ 1395$.

Integrated Computer Systems, Box 3614, Culver City, CA 90231.

INQUIRE DIRECT

THE BROADEST SELECTION OF REGENERATIVE TRANSIENT VOLTAGE SUPPRESSORS

Unlike Zener

 diodes and varistors, Philips Breakover Diodes are regenerative. They collapse, absorb the transient, then reset to their original state. Available in Axial and TO-220 packages; in Single Asymmetrical, Single Symmetrical, or

Breakover diodes do not just limit the transient. They absorb it. Dual Symmetrical; in a range from 100 to 280 volts. All designed for use as superior alternatives to any transient surge protectors you currently use.

Test us as your primary, emergency, or secondary source supplier. Call (401) 232-0500 for more information or free samples.

DISCRETE SEMICONDUCTOR PRODUCTS GROUP
PHILIPS
Amperex Electronic Company, A Division of North American Philips Corporation, George Washington Highway, Smithfield, RI 02917, (401) 232-0500.
In Canada: Philips Electronics Ltd., 601 Milner Ave., Scarborough, M1B 1MB, (416) 292-5161.

App notes address interfacing problems

The publication Real World Interfacing Application Notes contains 12 application notes that shed light on common interfacing problems in the laboratory and in industry. It provides tips and expounds on useful circuits for interfacing thermocouples, thermistors, solid-state temperature sensors, pH probes, and piezoresistive pressure transducers to personal computers. It also deals with solid-state relays to activate 110 V ac lines, sensing incident light, and selecting an appropriate method of A / D conversion. These notes do not provide solutions for a particular interfacing problem, but rather guide you in the right direction. They provide sample circuits, and list references and companies for further information.

Real Time Devices Inc, Box 906, State College, PA 16804.

Circle No 439

Applications for power MOSFET IC

Application Note 28 focuses on the many uses of the TSC429 universal power MOSFET driver IC. It details the IC's parameters and tells you how the product can help with your

KEC ELECTRONICS, Inc.'s KE SERIES of high-power, single out-put DC switching power supplies combine high power and compact packaging to meet a broad range of applications. They are available in 750 and 1000 Watt configurations, with additional outputs up to 3 KW in the near future. KEC's quality manufacturing ensures reliable performance and operating integrity under the severest environments.
The KE SERIES single output switching power supplies feature PALS (Programmed Automatic Load Sensing) for load line drop compensation, power failure signal output, and remote programming. Additional features include voltage regulation, fancooling and built-in protection against overload and overvoltage conditions. All units are UL and CSA approved and

EMI filter conforms to FCC Class A on conduction noise.
KEC makes it easy to choose the exact power supply to meet your standards. Select from over 200 standard products or have KEC's engineers custom-design a precision switching power supply just for you. Discover the real Multiple Choice in power supplies-Discover KECII Write for your FREE literature and information kit or call KEC toll-free today!

1-800-255-5668

KEC ELECTRONICS, INC.
20817 Western Avenue, Torrance, CA 20501
(213) 320-3902, FAX (213) 618-1197
"KEC-BRINGING MORE POWER TO YOU"

LITERATURE

designs. The paper shows typical applications for the part-as a small motor controller, as a voltage doubler, as a voltage inverter, and as a high-power pulse-transformer driver.

Teledyne Semiconductor, 1300 Terra Bella Ave, Mountain View, CA 94039.

Circle No 440

Listing of test and measurement equipment

The vendor's 1988 Catalog of Laboratory and Field Service Test \& Measurement Equipment contains more than 75 new products ranging from digital multimeters to digital storage oscilloscopes. The $36-\mathrm{pg}$ booklet also lists complete specifications for at least 400 items, includ-

YOU CAN'T BEAT TEK AT ITS OWN GAME.

And 250 MSPS AD Converters with 1 GHz Track and Hold is the game.
Don't settle for second best. We have what you need now.

Call Tek direct:

 1-800-835-9433 Askfor IC Standard Products.

Brochure details VME power supplies

This 4-pg pamphlet outlines the specifications and features of the company's 200 and 400W VME plugin/multiple output power supplies. It also includes voltage/current selector charts, as well as outline and pin-connection drawings.

Electro-Dyn Corp, 90 Sparta Ave, Sparta, NJ 07871.

Circle No 442

IBM-PC based microcomputer development tools!

(8051 debug/simulator shown)
Your IBM PC can Assemble, debug and program (EPROM) code for these popular microcomputers:

Step

your

8096 8051

 8049 7000 code, watch registers \& memory change, interrupts occur, stack push \& pop. Flowgraph auto-documents code! You set breakpoints \& register traps, count machine cycles, and scan source code and symbols. Single-key commands prompt for arguments if needed. Have more fun and get more done! 8085 320 28 $\checkmark \vee v$ $\checkmark \vee v$ $\checkmark \vee v$ 8088

 and manual only $\$ 39.50$

CyberneticMicroSystems
P.O. Box 3000

San Gregorio, CA 94074 U.S.A.
(415) 726-3000 • Telex 171135 Attn: Cyber

CIRCLE NO 59

LITERATURE

Heeding data storage needs

The vendor's 8 -pg brochure features DEC-compatible storage-moduledisk interconnect subsystems and digital-storage, architecture-compatible disk drives. It discusses each product's advantages and provides specifications and illustrations.
Emulex Corp, Box 6725, Costa Mesa, CA 92626.

Circle No 443

How to use scope in three different applications
This series of application notes, How to Measure RMS Using the LeCroy 9400 Digital Oscilloscope, Linking the LeCroy 9400 to an IBM PCAT Via the RS-232C, and The 9400 Oscilloscope in Ultrasonics, examines three uses of the vendor's Model 9400 digital oscilloscope. AN ITI 001, the first note, presents a step-by-step procedure to calculate any waveform rms value. The second note, AN ITI 002, presents communication protocol and provides a short Basica interactive program that brings the remote control of Model 9400 into play. Finally, AN

Got an "on card" power distribution problem? Not enough real estate for a big modular supply? Don't want to use two card slots for any of the readily available "high profile" converters?

Well, Power General has the
LP-310/315 solution. These compact converters utilize surface mount manufacturing, high frequency design and unique thermal management techniques to achieve performance features such as:
0.375 inch height

- 25 watts output power
- $>500,000$ hour MTBF
- 2:1 input range
- 500 VDC input/output isolation
- Industry standard Pin-out
- Full five year warranty

Power General, utilizing the latest technology to provide complete, innovative solutions to your power needs.
FREE HANDBOOK!
Call for your free 1988 Power Supply Handbook
Put
Power General To Work For You!

A SUBSIDIARY OF UNITRPDDE CORPORATION 152 Will Drive, P.O. Box 189, Canton, MA 02021 (617)828-6216 TWX: 710-348-0200

FAX: 617-828-3215

CIRCLE NO 60

"Surface-Mount Technology Design Project",

LITERATURE

ITI 003 outlines traditional nonde-structive-test ultrasonic waveforms.

LeCroy Corp, 700 Chestnut Ridge Rd, Chestnut Ridge, NY 10977.

Circle No 444

App note features V/F converters

The application note AN-14: Designs for High Performance Volt-age-to-Frequency Converters, investigates circuit considerations when designing V/F converters. It also examines the advantages and drawbacks of various approaches to V/F conversion, and contains complete schematics for the converters.

Linear Technology Corp, 1630 McCarthy Blvd, Milpitas, CA 95035.

Circle No 445

Listing of MIL-STD and semicustom ICs

The vendor's product directory encompasses semicustom and radia-tion-hardened ICs, as well as MIL-STD-1553 and MIL-STD-1750 products. It describes each product, lists specifications, and includes block diagrams. Inside the cover pages, the $24-\mathrm{pg}$ catalog provides an overview of the company and a list of sales representatives.

UTMC, Communications Dept, 1575 Garden of the Gods Rd, Colorado Springs, CO 80907.

Circle No 446

LITERATURE

Memory data reference

The Memory Data Manual DL113, revision 4 presents specifications for the vendor's MOS static RAMs, dynamic RAMs, and PROMs, as well as CMOS and MECL memory technology and information about devices that meet military standards. A total of 12 chapters deals with support for system-level designs. The information includes pin assignments, packaging options, a list of basic features, electrical features, operating conditions, and timing diagram specifications. $\$ 1.35$ (25).

Motorola Inc, Technical Information Center, Box 52073, Phoenix, AZ 85072.

INQUIRE DIRECT

Public-domain software listing available

The 1988 Catalog of Public Domain PC Software (Shareware and User Supported Software) provides the classification of user-supported software, several drafting programs, and a 3D CAD program that has animation capabilities. The main body of programs covers 14 topics, including statistical process control, project management, surveying, flowcharting, heat load, and dBase III clone. Copying fee, $\$ 3 /$ disk (10).

Sector Systems Co Inc, 416 Ocean Ave, Marblehead, MA 01945.

INQUIRE DIRECT

PULL A LIGHT SWITCH.

FROM THIS... TO THIS.

Durel ${ }^{\text {"" }}$ Electroluminescent (EL) lighting from Rogers eliminates the wasted space, energy, and heat of incandescent bulbs.
EL is light years ahead: No catastrophic failure. No filament to break. Immune to shock and vibration.
Uniform surface brightness and color: A single Durel lamp can replace a group of individual incandescent bulbs and costly light pipes.
Low power consumption: Typically less than 2 mA per sq . in. at 115V, 400 Hz . Ideal for battery power and low-current drain applications.
Thin: Nominal thickness of $0.024^{\prime \prime}(0.6 \mathrm{~mm})$ for space-efficiency. Pliable: Flexibility permits bending to fit unique shapes.
High visibility in smoke/fog: Ideal for emergency lighting.
Call or write for information.

(1) ROGERS

Rogers Corporation, Special Products Division 645 West 24th Street, Tempe, AZ 85282 (602) 967-0624

CIRCLE NO 54

DID YOU KNOW?

EDN is distributed at every major electronics/computer show in the U.S., France, and Germany.

BUSINESS/CORPORATE STAFF

EDN's CHARTER

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.

275 Washington St
Newton, MA 02158
(617) 964-3030

F Warren Dickson
Vice President/Publisher
Newton, MA 02158
(617) 964-3030

Telex 940573
Diann Siegel, Assistant
Peter D Coley
VP/Associate Publisher/
Advertising Sales Director
Newton, MA 02
(617) $964-3030$
Ora Dunbar, As

NEW ENGLAND

John Bartlett, Regional Manager
Chris Platt, Regional Manager
199 Wells Ave
Newton, MA 02159
(617) 964-3730

STAMFORD 06904

George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th St
New York, NY 10011
(212)463-6419

PHILADELPHIA AREA
Steve Farkas, Regional Manager
487 Devon Park Dr
Suite 206
Wayne, PA 19087
(215) 293-1212
CHICAGO AREA
Clayton Ryder, Regional Manager
Randolph D King, Regional Manager
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60017
(312) 635-8800

DENVER 80206

John Huff, Regional Manage
44 Cook St
(303) 388-4511

DALLAS 75243
Don Ward, Regional Manager
9330 LBJ Freeway
Suite 1060
(214) 644-3683

SAN JOSE 95128

Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Regional Manager
12233 W Olympic Blvd
(213) 826-5818

ORANGE COUNTY/

SAN DIEGO 92715
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
rvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone Regional Manage
1750 SW Skyline Blvd, Box 6 (503) 297-3382

UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manage
27 Paul St
ondon EC2A 4JU UK
Telex: 914911, FAX: 01-628 5984

SCANDINAVIA

Stuart Smith
7 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984

FRANCE/ITALY/SPAIN

Alasdair Melville
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
WEST GERMANY/SWITZERLAND/AUSTRIA
Nolfgang Richter
Sudring 53
Nest Germany
Vest Germany
49-7451-7828; TX: 765450

SRAEL

Elan Marketing Group
13 Haifa St, Box 33439
Tel-Aviv, Israel
Tel: 972-3-268020
TX: 341667
EASTERN BLOC
Uwe Kretzschma
27 Paul St
london EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984

FAR EAST

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715
(714) 851-9422; Telex: 183653

TOKYO 160

Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Telex: J2322609 DYNACO

TAIWAN

Acteam International
Marketing Corp
6 F, No 43, Lane 13
Kwang Fu South Rd
Mailing Box 18-91
Taipei, Taiwan ROC
$760-6209$ or 760-6210
Telex: 29809
FAX: (02) 7604784
KOREA
BK International
Won Chang Bldg, 3rd Floor 26-3
Yoido-dong, Youngdungpo-ku
Seoul 150, Korea
Tel: 785-6665
Telex: K32487 BIZKOR

PRODUCT MAR

Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415

CAREER OPPORTUNITIES/
CAREER NEWS
Roberta Renard
National Sales Manager
103 Eisenhower Parkway
Roseland, NJ 07068
(201) 228-8602

Janet O Penn
Eastern Sales Manager
103 Eisenhower Parkway
201) 228 - 8610

Western Sales Manager
18818 Teller Ave
Suite 170
Irvine, CA 92715
(714) 851-9422

Maria Cubas
Production Assistan
(201) 228-8608

Susan M Campanella, Advertising/Contracts Coordinator
Nan Coulter, Advertising/Contracts Coordinator
(617) 964-3030

William Platt, Sr, Vice President, Reed Publishing USA

Cahners Magazine Division
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Group Vice President, Electronics/Computers
Tom Dellamaria, VP/Production \& Manufacturing
Circulation
Denver, CO: (303) 388-4511
Sherri Gronli, Group Manager
Eric Schmierer, Manager

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R
Westphal, Cahners Reprint Service, Cahners Plaza,
1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018
Phone (312) 635-8800.

Display sizes: $\mathbf{1 1}^{112^{\prime \prime}}, \mathbf{4}^{\prime \prime}, 6^{\prime \prime}, 9^{\prime \prime}, 12^{\prime \prime}, 18^{\prime \prime}$ \& $\mathbf{2 4 "}^{\prime \prime}$

ENERGY SAVING:
\square Electromagnetic, bi-stable operation \square No bulbs to replace
\square Maintenance-free
\square Indication remains with power loss
\square Power used only to change display
\square Use indoors or outdoors
$\square-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

P.O. Box H, Bay Shore, NY 11706 516-666-8000
TLX: 6711657 FAX: 516-666-8039

Call or write for full information

IDEAL FOR:

\square Instrumentation \square Industrial controls \square Timing Devices \square Toll Displays
\square Metering Displays \square Production Line Displays

Sil-Pad K-10 combines DuPont's thermally filled Kapton ${ }^{\circledR}$ polyimide film and high performance Sil-Pad rubber to provide superior heat transfer, excellent cut-through resistance and dielectric strength. Yet Sil-Pad $\mathrm{K}-10$ is a fraction of the cost of beryllia. Sil-Pad K-10 doesn't crack or fracture like fragile ceramic insulators. And, like all Sil-Pad products, Sil-Pad K-10 lowers your installed cost because it requires no grease.
Call Toll Free 1-800-328-3882 Today!

BERTOOUST T

5300 Edina Industrial BIvd. Minneapolis. MN 55435, (612) 835-2322

DC-DC CONVERTERS

To 25 Watts - From ERG -

 Your DC PowerHouse!

- ERG DC-DC CONVERTERS.

Inputs from 5 to 48 VDC. Outputs from 5 VDC to 1500 VDC. Single, dual, center-tap (+/-) outputs. Regulated and unregulated. Ask about our New Step-Down converters for battery-powered logic and other applications!

- SMART FORCE ${ }^{\text {TM }}$ INVERTERS FOR EL LAMPS! Smart Force DC-AC Inverters extend the useful life of Electroluminescent lamps. Power EL to backlight LCDs and membrane switches, and more! Ask about our New miniaturized \mathbf{P} Package Inverters!
Call today for complete product information and pricing:

rerEndicott Research Group. Inc.
2601 Wayne Street P.O. Box 269 Endicott, NY 13760
FAX: 607-754-9255
1986 ERG, Inc. Viss

DC-300 MHz Amplifier:

- 4 independent channels
- Gain of $5 /$ channel (cascaded gain: 625)
- $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ de stability
- $25 \mu \mathrm{~V}$ input noise

You can use the SR440 as a general purpose amplifier to improve the sensitivity of oscilloscopes, digitizers and spectrum analyzers. Power the SR440 with 120 or 240 Vac . NIM module format for dc operation also available: $\$ 850$ (model SR240).

Stanford Research Systems
1290 D Reamwood Avenue, Sunnyvale, CA 94089
TLX 706891 SRS UD, FAX 4087449049, TEL (408) 744-9040

We've Invented the Future of Instrumentation Software . . . Twice.

 With Words With Pictures

 With Words With Pictures}

Acquisition

Integrated libraries for GPIB, RS-232, A/D-D/A-DIO plug-in cards, and modular instruments.

Intuitive character-based function panels that automatically generate source code.

Front panel user interface with virtual instrument block diagram programming.

Analysis

Extensive libraries for data reduction, digital signal processing, and
statistical analysis.

Over 100 analysis functions plus all the built-in functions of your language.

Over 250 icons for computation and analysis.

Presentation

Flexible high-performance graphics and report generation.

Extensive graphics support for CGA, EGA, MCGA, VGA, and Hercules.

Macintosh Desktop Publishing compatibility.

The Software is the Instrument

LabWindows ${ }^{\text {THI }}-$

for the DOS-based PC and PS/2, with Microsoft QuickBASIC or C.

12109 Technology Boulevard
Austin, Texas 78727-6204
800/531-4742 512/250-9119

PROFESSIONAL ISSUES

DICK BURWEN

Mixing a love of engineering with a passion for hi-fi

Deborah Asbrand, Associate Editor

Most independent consultants work out of their homes, and Dick Burwen is no exception. The analog-circuit designer's home contains office space, an extensive technical library, and a basement laboratory equipped with signal sources, measuring instruments, a temperature chamber, and thousands of electronic parts.

Burwen differs from some consultants, however, in that he likes to listen to music while he works and so has punctured one laboratory wall with five shoebox-size holes through which he can hear his stereo. His audio system, moreover, is not your average assemblage of components. For one thing, he designed and built all of the signalprocessing equipment. For another,
the stereo employs 159 speakers, five giant speaker horns, and 17 stereo amplifiers. It also produces $20,000 \mathrm{~W}$ of power. "I can really rattle the dishes in the kitchen," he says.

For the past 38 years, Burwen has successfully mixed his love of engineering with his passion for highfidelity equipment. Having built a profitable consulting practice and

Webb Chapell
Burwen's quiet, inconspicuous manner belies a
tremendous energy and capacity for work.
constructed an internationally acclaimed home listening/recording studio, he could easily rest on his laurels. Yet he keeps pushing the limits of analog-circuit design. His latest efforts include designing ul-trahigh-efficiency switching-power amplifiers.

Shades of the career to come

Burwen's first move after college graduation foreshadowed the direction his career would eventually take. "When I got out of school, I retired for eight months," he says with a smile. "I went down to the basement to build a high-quality hi-fi set. It had an amp built into the base of the record player and it put out about 30 W of power, which was remarkable in those days. But by
the time I finished it, I realized that the people who could afford it didn't care, and that the people who did care couldn't afford it. It was what today you'd call 'high-end' gear."
His first employer was SpencerKennedy Laboratories, a pioneer in cable television. He developed the company's wide-band television distribution system, which brought television to rural communities. In Barre, VT, Burwen supervised the installation of huge horns on poles that would receive signals from Boston, MA, 90 miles away.

Eleven years and several jobs later, Burwen concluded that the corporate environment was not for him. He had no interest in pursuing managerial positions and preferred to work on his own. "I was doing

consulting on the side when I decided I would see if I could get into the business full time," he says. "I took a vacation, made some phone calls, and six weeks later, I had three clients, so I quit my job."

In the 27 years since, Burwen has done much engineering. Stacked in the back of his basement are more than 100 3-in. binders filled with his project notes. He has worked on a fascinating array of assignments, from the development of a correlation receiving system for satellites to automotive ignition systems. For Lafayette, an early electronicsparts dealer, Burwen designed a 200W ultralow distortion amplifier. He also consulted on military and space-related projects and helped design instrumentation to measure the moon's magnetic field.

A tremendous energy

Burwen's quiet, inconspicuous manner belies a tremendous energy and capacity for work. He prefers to juggle three projects at once, he says, "because I don't like to work on one project for more than six or eight hours a day." Not surprisingly, he has no truck with small talk. Asked how he happens to come by such interesting and diverse assignments, he answers simply, "When you charge as much money as consultants do, people only bring you the interesting projects." And in response to a question about his instant success as a consultant-he's made a total of two "cold" calls to prospective clients-he shrugs, "Word travels."

In 1965, with Matt Lorber and Ray Stata, Burwen founded Analog Devices, the Norwood, MA, manufacturer of integrated circuits. "I used to run around with a couple of op amps in my pocket to see if anyone wanted to buy them," he explains, with typical understatement. "I ran into Matt Lorber and Ray Stata who got into making them." It was Burwen who designed the company's first line of op amps and, later, of regulators and

SUB-MICROSECOND A/D CONVERTERS

DATEL's broad range of High Speed A/D converters give you the greatest choice available today from a single source. This combination of products coupled with DATEL's commitment to bringing you the fastest most precise and reliable A/D converters, will expand your design capability and enhance your system performance levels.

Speed up your designs with DATEL converters today.

Call or write for information on all DATEL data conversion products including complementary Track and Holds.

MODEL NUMBER	BITS OF RESOLUTION	THROUGHPUT CONVERSION TIME	(INCLUDING TRACK \& HOLD AMPLIFIER)
ADC-500/-505/-508		$500-800 \mathrm{nSec}$	
ADC-B500/-B505	12		$1.25-1.1 \mathrm{MHz}$
ADS-105/-106		750 KHz	
ADS-21/-22	10	425 nSec	
ADC-510/-515		50 nSec	
ADS-115/-116		900 nSec	
ADC-310		700 nSec	
ADC-5101	8	10 nSec	
ADC-815		50 nSec	
ADC-303		30 nSec	
ADC-304			
ADC-207			

references. He also developed multipliers, chopper-stabilized amps, and some of the company's early ICs.

In 1972, Burwen started his own company, Ohmtec Corp, which manufactured consumer and professional audio equipment. He calls the move "the biggest mistake of my life" and dismisses the business, which folded in 1976, as "a bad marriage." KLH, however, bought an Ohmtec subsidiary, Burwen Labs, and continued to manufacture some of its noise-reduction equipment under the name KLH Burwen Research.

Whatever the consequences, Burwen has worked on his own terms ever since becoming a consultant. He has also carefully preserved his independence, retaining his consultant status even while he was actively involved in Analog Devices. Resolutely confident of his engineering skills, he has attached his name to that of almost every company he's started: Burwen Labs, Burwen Research, Burwen Studios, and Burwen Technology.

Burwen's engineering expertise has fueled his passion for hi-fithough he has no ready answer as to where the roots of his hi-fi addiction lie. The most he can do is trace its history to his teenage interest in ham radios, which he was forced to abandon in favor of hi-fi equipment when amateur radio operation was banned during World War II.

World's best home stereo

In his youth, Burwen had assembled a 25 -speaker stereo system powered by a 3 W amp; however, in the early 1960s, when he and his young family moved into a small home of their own, the close quarters cramped his audio style. For 10 years, he'd been working on plans for a system that would generate not just better sound, but the world's best home-stereo audio. With that goal in mind, Burwen hired an architect to help him build a home that could accommodate such a project. Not surprisingly,

Burwen's meeting with the architect led to a new endeavor. "It turned out that the house would have cost more than I could afford, so I listened and watched the architect very carefully. I drew up my own plans and hired an engineer to do the framing of the structure. It worked out, fortunately."

Thoroughness is Burwen's hallmark. "Dick likes to do things in a big way," says Matt Lorber, who once again is Burwen's business partner, this time in Copley Controls, a Newton, MA, maker of dc servo amps. "He's a critical thinker, and he pursues things to an extent I've never seen before." The stereo system that Burwen built illustrates this point. (So does the security system that protects his two-story brick home. It, too, is a Burwen design.)

The listening/recording studio measures $48 \times 28 \mathrm{ft}$. There are no windows in the concrete foundation, and the basement ceiling is constructed of extra-heavy plaster. The system's 159 speakers terminate in five giant horns that dominate the room. Each speaker horn is $8 \times 8 \times 13$ ft . The walls of each horn are made of 4 -in. filled cinderblock. The speakers have a dynamic range of more than 105 dB .

In addition to the speakers, the system employs 17 stereo amplifiers. Burwen designed the array and crossover system. The 8500 W of amplifiers, together with the electronic crossover, give the system power equivalent to that of one $20,000 \mathrm{~W}$ amplifier. An estimated 2500 op amps power the system, and Burwen says he once counted a total of 1100 knobs on the many components. The control panel is 7 ft tall, and the $5-\mathrm{ft}, 9-\mathrm{in}$. Burwen has to stand on his toes to adjust the uppermost knobs.
The basement is also equipped for recording, and Burwen has acted as recording engineer for the dozen albums that have been made in his studio. "Dick is patient and intense," says Steven Schoenberg, a
local pianist who several years ago recorded an album of improvisational compositions at Burwen's studio. Indeed, Burwen's natural affability dissolves as soon as he begins to ready his system for a demonstration: Once the music starts to play, he stands looking downward, hands on his hips, listening to every note's acoustical travels.

The welcome invasion of digital

Aside from his home recording, Burwen produces master recordings for the Boston Philharmonic Orchestra, the Civic Symphony Orchestra of Boston, and the Banchetta Musicale, a chamber orchestra. Six years ago, he began recording with digital equipment, which he finds infinitely easier to use than the cumbersome analog apparatus he had previously used. "To record an 8 PM concert, I'd have to get to the hall at 2 PM to set up," he says. "I had my own noise-reduction equipment and analog tape recorders, about eight suitcases full of stuff. Now with three small suitcases that contain the main sound system and a complete spare, I make better recordings in 2-channel stereo digitally."

Although Boston boasts several fine recital halls, Burwen's favorite is the New England Conservatory of Music's 1100 -seat Jordan Hall. While other local auditoriums are acoustically "dead" or "dry," he says, Jordan Hall is "nearly perfect." Burwen's attentive ears, however, detect subtle differences even within such near perfection. "There are only four perfect seats," he adds. "They're right under the edge of the balcony on either side of the aisle."

Although a frequent concert goer, Burwen is an engineer first and a music lover second. "At the symphony, I listen to the instruments, but especially to the sound of the hall. I spend half of my time there visualizing how I would record the music."

Burwen expends much of his professional energy on Copley Con-

X-Y monitors for simulation, training, ATE, CAE/CAD/CAM or radar repeating. XKD can provide high performance XM-300 series monchrome stroke writers in a broad range of sizes, shapes, and phosphors without the usual long delivery times required for custom projects. So if your application requires an X -Y monitor with high writing speed, fast settling time and excellent edge focus, and if you require special configurations promptly without extra charges, call Skip McLaughlin now at (408) 395-3700.
trols, the 5 -year-old company he started with Lorber. As director of research, he designs all of the company's ultrahigh-efficiency switching power amps, which are used for, among other things, driving servo motors in motion-control systems and magnet coils in magnetic-resonance imaging systems. The switching technology allows Burwen to create amplifiers that produce from tens of watts to kilowatts in a volume of under $100 \mathrm{in}^{3}$. The products' efficiency, which exceeds 95%, allows them to dissipate less than 10% of the power dissipated by conventional linear amps. The lower dissipation permits the systems that use the amps to have smaller power supplies and to run at lower temperatures, hence to exhibit higher reliability.

Designing such amps is a delicate, painstaking process. To be successful at it, designers must be keenly aware of the subtleties of circuit components and pc-board layouts. The inductance of a 1 -in.-long etch run has been known to wreak havoc on switching-amplifier designs.
Burwen owns 25% of the company, but, true to form, retains a consultant's status vis a vis the firm. He also continues to operate his independent consulting firm, Burwen Technology, although he admits that his work for Copley Controls takes up most of his time. Unlike his earlier joint venture, he describes Copley Controls as "a good marriage." He still works out of his home laboratory, driving to Copley Controls' headquarters three times a week. The arrangement suits both Burwen and Lorber. "In the company environment, there are day-to-day matters that would be disturbing to Dick," says Lorber. "He wouldn't be able to devote his time to technical tasks."
Last year, tired of being "the only design engineer in the world without a computer," Burwen invested in a personal computer and bought software for stock-market trading,
word processing, and schematic drafting. He's an avid stock-market watcher and one of the first things he does on starting work each day at 6:30 AM is to log on to a subscription stock service.
But, betraying his analog background, he finds the long hours needed to set up the computer immensely frustrating. "Right now I'm trying to learn schematic drafting," he says, shaking his head. "I wasted so much time trying to get the machine started and configured. I spent six or eight hours a day getting my software installed and reading the books-but not doing anything useful."
At 61, Burwen shows few signs of slowing down. For the past three months, he's been involved in projects that have frequently required his attention from early morning to past midnight. He says-unconvinc-ingly-that he'd like to reduce the number of hours he works. Indeed, he ticks off a list of projects he has yet to complete. "See this pile of wires?" he says, pointing to a breadboard on a bench next to the electric organ. "It's a signal processor and an electronic replacement for the rotating speaker in the organ. It's been working like this for about 12 years. I don't know if I'm going to get to finish it or not."
When he does, he'll undoubtedly work to the accompaniment of a selection from his collection of "about six or eight hundred" recordings. "It's hard to work without music."

EDN

Article Interest Quotient (Circle One)

High 515 Medium 516 Low 517

Check Out Our Performance All players may cover the basics, but not many can play in our league. When making your first cut you should expect:

- No wait state emulation
- Source level and symbolic debugging
- File compatibility with HP, Intel, Tektronix, Motorola and more, including symbols
- IBM PC/AT and XT compatibility
- Variable trace depth to 4 K steps with or without a target CPU break or reset
- Trace-and-go with data stored to disk
- A wide range of supported microprocessors
- Easy re-configuration and compatibility with earlier model hardware
- Dual processor capability
- Memory read and write protection with trace and break
- Menus or direct system commands with an on-line manual
- Complete assembler, linker, and library utilities
- Free software support services
- Parallel interface high-speed data transfer

Best catcher in any league.

What separates the pros from the players is performance, and Sophia's SA98 is a pro.

It's not enough to say you can play the game. You need that extra talent, and stamina to last. The SA98 is the hottest new pro in the league. It'll move you from 8 - to 32 -bit microprocessors with ease. Sophia Systems is one of the oldest and largest teams in the development system league.

Dedicated to MDS/ICE

Sophia Systems is a pro in the MDS and ICE field. Founded and dedicated to supplying the most advanced systems. Keeping the user in mind.
Try it Out
Add our new SA98 to your line-up. We're convinced we can catch your best curve. And do it in less time and in more detail than anyone else. Give us a try.

U.S. \& European Headquarters:

Sophia Systems, 3337 Kifer Road, Santa Clara, CA 95051 (408) 733-1571
Corporate Headquarters:
Sophia Systems Co., Ltd., NS Bldg. 8F, 2-4-1 Nishishinjuku, Shinjuku-ku, Tokyo 160 03-348-7000 © 1988 Sophia Systems.
Sophia Systems is a registered trademark of Sophia Systems Co., Ltd.
ICE is a registered trademark of Intel Corporation.
MDS is a registered trademark of Mohawk Data Science Corporation.
IBM PC/AT and XT are registered trademarks of International Business Machines Corporation.

CAREER OPPORTUNITIES

		1988 Editorial Calendar and Planning Guide	
Issue Date	Recruitment Deadline		
June 9	May 19	CAE, Analog ICs, Test \& Measurement	
June 23	June 2	Data Communications, DSP, Components	
July 7	June 14	Product Showcase-Vol. I, Power Sources, Software	EDN News

Call today for information:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Ellen Sherwood (714) 851-9422
National: Roberta Renard (201) 228-8602

Senior Software \& System Engineers

heartbeat heard around the world... THERE'S NEVER BEEN A BETTER TIME TO CHOOSE GE

Innovation! Technical Leadership! It's happening at GE Medical Systems. Join a new team and engineering revolution in cardiac ultrasound as well as our expanding global efforts in CT, Magnetic Resonance and X-ray. Outstanding careers for "Thinkers \& Do'ers" with mid-project leader levels of computer sciencelengineering experience now open at Milwaukee, WI headquarters.

Software \& Systems-Ultrasound:

RealTime software design environment including C, VRTX, UNIX, 68010 micro-processor, digital signal processing, image analysis, color graphics, in-depth hardware diagnostics, creation/management of system development tools. Systems position(s) desire ultrasound, sonar or radar experience.

Software \&c Systems-Multi-Modality:

Software design environment involves C, UNIX PACS, INTEL, hi-performance networks, hi-resolution display systems, large scale archive system and data bases.

Our employee benefits package befits an industry leader. Please send your resume with salary history in strict confidence, to: EDN W416, GE Medical Systems, P.O. Box 414, Milwaukee, WI 53201

GE MEDICAL SYSTEMS

FLORIDA WANTS TOP TALENT!

DoD communications systems developers in Florida need top engineers with $10+$ years experience in:

```
Program Management
RF \& Digital Systems Engineering
VLSI/VHSIC
Signal processing
Phased arrays
Spaceborne power supplies
Avionics/space packaging
CAD systems
```

All candidates need current DoD clearance and BS or higher degree.

Karl Frederick (EDN 5)

 235 Cocoa Avenue Indialantic, Florida 32903
ELECTRONICS • AEROSPACE

 NATIONWIDE \$30-80KOpportunities for Engineers \& Professionals in Defense/Aerospace and Commercial Industries. Send Resume to:
JACK PORTER ASSOCIATES, INC. 385 Front St.N, Issaquah, WA 98027 (206)455-4928

All fees paid by client companies.

At Compaq, a first-place finish is only the beginning.

When you're setting the pace, you don't stop to rest.

Our people have taken us farther, faster than any company in history. Now Compaq is the industry leader in 80386 -based personal computers for business. In 1987, we became the fastest company to reach $\$ 1$ billion in annual sales. And our sprint to the Fortune 500 turned in a record time as well.

But getting out in front wasn't easy. Staying there is even tougher. It takes the careful planning and hard work of a team of talented professionals.

Compaq people are individual achievers. At the same time, they participate as part of a team. As a Compaq professional, you'll hit the ground running. Your voice will be heard and you'll share in the big picture.

Surface Mount Technology Engineers:

Challenge your surface mount technology experience in design, manufacturing, quality, reliability, and sustaining engineering. You'll have a hand in the process with your BS in Engineering and two years' experience in a high-volume manufacturing environment.

Systems Architects:

Design new products by investigating and evaluating system compatibility and performance of design alternatives and new technologies. You'll develop hardware compatibility tests and performance analysis tools.
Qualify with a BSEE, MSEE preferred, and three years' hardware background with a knowledge of microprocessorbased systems software. In addition, experience with CPUs/memory/bus architecture, numeric co-processors, file subsystems, network/communications, graphic subsystems and state machines is required.

Systems Software Engineers:
Evaluate, design and develop firmware, operating systems, device drivers and utility software for PC systems. You'll need a BSCS, BSEE or equivalent degree with four years' related experience in PC software development, 8086/286/386 Assembly/ 'C" language programming in MS-DOS, OS/2 and/or UNIX/XENIX operating systems.

Software Quality Assurance Engineers:

Put your design and development expertise to the test improving structural software. You'll help increase the reliability of PC systems and operating systems software. With a BSEE/BSCS and five years' software quality assurance or testing experience, the challenge is yours. Knowledge of "C" and 8086/286/386 Assembly language is essential.

Systems Support Analysts:

Put third party software/hardware through the paces to analyze Compaq products' level of compatibility and ensure compliance with industry standards. Your technical support and trend monitoring of new third party products put you on the forefront of systems development. You'll need four years' related experience in the microcomputer industry and a thorough knowledge of systems software, operating systems, languages and third party products.
You'll need a BS/BA in Engineering, Computer Science or related field. In addition, you need three years' experience in microsystems application and operations with expertise in micro-to-mainframe communications, multi-user systems software, multi-tasking environments, networking, and hardware for graphics, microprocessors and PCs.

Microprocessor Logic and ASIC Design Engineers:

Your skills in high-speed logic design and/or microprocessor system design put you out in front. You'll use flow charts and timing diagrams for digital design and analysis. Your experience should include vendor libraries, test vector generation, simulation checkout and TTL emulators for gate/array standard cell design. Familiarity with CAE systems used in logic design, and documentation is also necessary. Five years' experience should accompany your BSEE or related degree. An MSEE is preferred.

Failure Analysis Engineers:

As a Compaq Failure Analysis Engineer, you'll take the lead assuring quality and performance of Compaq products. Bring your BS in Electrical Engineering or Materials Engineering and three years' experience in failure analysis using SEM/EDS with you.

Can you run with the leader?

You won't know until you try. At Compaq, the freedom of our unique corporate environment helps foster the greatest creativity and highest levels of personal satisfaction. A career with Compaq means you'll have room to run. You'll play an important role and be recognized for your accomplishments.
Please submit your resume, salary requirements and the position for which you wish to be considered to:
Compaq Computer Corporation, Dept. EDN512-MW, P.O. Box 692000, Houston, Texas 77269-2000. Compaq is an affirmative action employer, $\mathrm{m} / \mathrm{f} / \mathrm{h} / \mathrm{v}$.

© 1988 Compaq Computer Corporation. All rights reserved.

Square D has always been a leader in the electrical industry since its beginning. Today, we're still innovating unique products, competing in márket after market and branching out into new field of technology.
Currently we are participating in the Smart House Venture, a consortium of many companies working together to develop the automated home of the future.

We are seeking creative individuals with experience in the development of high volume electronic and electromechanical products to join our growing electronic design team. These challenging positions will provide the successful candidate the opportunity to be responsible for product development from the market driven concept phase to high volume production.
We currently seek an individual that can combine their analog, digital, and software talents to create products for the home of the future. We also seek an individual with strong analog and magnetic experience.
To qualify for these positions, the successful candidates should have a BSEE degree and 3 to 5 years applicable experience in the design and production of high volume electronic products.
SQUARE D offers competitive compensation, generous benefits and a stimulating technical and career environment. You'll also enjoy the comfortable, affordable way of life in Cedar Rapids, lowa, a mid-size city set in the beautiful Midwest heartland.

For consideration, send your resume in confidence to:
Lisa J. Hughet
Technical Recruiter
SQUARE D COMPANY
3700 Sixth Street S.W. • Cedar Rapids, IA 52406
An Equal Opportunity Employer M/F/H

ARE YOUR IDEAS AHEAD OF OUR TIME?

Stonehenge, one of the most famous of all the classical megalith monuments, has long been an important part of the popular and scientific imagination. Its origin has been the cause of speculation for years, as scientists try to discern who had the intellect and ingenuity to create a celestial observatory of such astronomical significance and exactness.

What is clearly understood and shared these 4,000 years later is man's unceasing fascination with the heavens and his need to explore them for a better understanding of his place in time and space.

The construction of Stonehenge required remarkable genius and ability - and so will the endeavors we have planned at General Dynamics Space Systems Division.

You can now be a part of our exciting time in history. Your ideas and accomplishments could be chronicled for future generations to study as hallmarks of a brilliant epoch in space exploration.

We currently have opportunities available in the areas listed below for individuals with a technical degree or the equivalent combination of formal education and related experience. Government or aerospace industry background is preferred. If you are interested in one or more of these areas, please send your resume to: Professional Staffing, GENERAL DYNAMICS SPACE SYSTEMS DIVISION, MZ C2-7143-I207, P.O. Box 85990, San Diego, CA 92138. (Opportunities also exist in Huntsville, AL and Harlingen, TX.)

STRUCTURAL DESIGN

- Advanced Composite Structures
- Tank Structures
- Adapters
- Fairings
- Materials \& Processes
- Pre-Design
- Liaison
- Super Conducting Magnets
- Drawing Checkers

STRESS ANALYSIS

- Hand Analysis
- Finite Element Modeling
- Structural Test Support
- CAE
- Methods
- Advanced Composites

TEST \& EVALUATION

THERMAL/FLUIDS ANALYSIS

- Systems Modeling
- Space Environments
- Propulsion
- Cryogenics

AVIONICS

- EMI/EMC
- Electrical Power
- Instrumentation
- RF Systems
- Parts Engineering
- Harness Design/Installation
- Liaison
- Analog/Digital Circuit Design
- Avionics Systems
- Mechanical Packaging
- Control Systems
- Guidance \& Navigation

SYSTEMS

- Systems Requirements
- Systems Safety
- Environmental Engineering
- Security Engineer
- Software

DYNAMICS/ANALYSIS

- Launch Vehicle Transient Load
- Environmental Dynamics
- Acoustics
- Jettison Trajectory
- IRAD \& CRAD
- CAE

FLUID SYSTEMS DESIGN

- Pneumatic
- Hydraulic
- Propulsion
- Cryogenics

EDN Databank

Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Services, Ltd. has formed the EDN Databank. What is the Databank? it is a computerizad system of matching qualifilied candidates with positions that meet the applicant's professsional needs and desires. What are the advantages of this new service?

> - It's absolutely free. There are no fees or charges.

IDENTITY

- The computar never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and It's affiliated offices.
- Your Identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and carser objoctives will periodically be reviewed with you by a PSL professional placement person.
We hope you're happy in your current position. At the same time, chances are there is an Ideal job you'd prefer II you knew about it. That's why it makes sense for you to register with the EDN Databank. To do so, Just mall the complated form below, along with a copy of your resume, to: Placement Services, Ltd., Inc.

PRESENT OR MOST RECENT EMPLOYER

Parent Company

Your division or subsidiary:
Location (City, State)
Business Phone if O.K. to use:
Home Address: \quad City ___ Sip: \quad ___

Year Degree Earned	College or University	

POSITIONDESIRED
EXPERIENCE

Duties and Accomplishments: Industry of Current Empioyer:
\qquad

Reason for Change:

PREVIOUS POSITION:

Job Titie:
Employer: __ From:___ Type of Industry: ___ State: ___ Salary: ___ \quad ___
Division: ___

Duties and Accomplishments:COMPENSATION/PERSONAL INFORMATION

A Designer's
 Guide to Linear Circuits

Volume I:

This original, 186 -page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs, and discusses the theories behind all the design techniques presented.

A Designer's Guide to Linear Circuits

Volume II:

The reader response to Volume I was so positive that were offering Jim Williams' latest analog design articles-from 1983 to 1986 -in an all-new Volume II. An even bigger collection than before, Volume II is still written in the language of working engineers, but now covers the newest and more complex circuits and systems in 266 pages.

You can buy the volumes separately, or as a set. Either way, you'll have all the latest information on the most sophisticated linear ICs, from Jim Williams, one of the country's foremost linear-circuit designers.

Surface-Mount

 Technology Design Project

Now you can order copies of EDN magazine's exclusive hands-on surface-mount design series. This 48-page, four-color reprint follows the progress of EDN editor Steve Leibson as he designs a 2 MByte memory board using surface-mount technology. Leibson takes you from his initial concept through to the finished working product, and includes typical problems you might encounter and objectively reports about both good and bad design decisions made along the way.

A Designer's Guide to

Semicustom Integrated Circuits

Learn how to design a semicustom IC with this reprint. Based on EDN's own design experience, this nine-chapter booklet outlines the complete procedure used to design, fabricate, and test EDN 1, a chip with a 1200 equivalent-gate complexity. You'll not only learn the steps to take when creating JCs, but also the design/cost analyses and vendor-interface methods that lead to successful semicustom chips.

Please send the following:
copies of A Designer's Guide to Innovative Linear Circuits.
Volume I
Volume II

- $\$ 18.95$ (UPS)

1 $\$ 14.95$ (UPS)

- $\$ 19.95$ (non-USA)
\$23.95 (non-USA)
copies of the combined set of A Designer's Guide to Innovative Linear Circuits Volumes I \& II
- $\$ 29.95$ (UPS)
- \$39.95 (non-USA)
___ copies of Surface-Mount Design Project
- $\$ 7.95$ (UPS)
\$10.95 (non-USA)
copies of A Designer's Guide to Semicustom Integrated Circuits
$\square \$ 6.95$ (UPS)
- $\$ 10.95$ (non-USA)

Foreign checks must be drawn on a US Bank, issued in US currency.

Please print clearly. This is your mailing label.
Name \qquad
Title \qquad
Company

Address

City	
${ }^{*}$ Check or money order made out to EDN REPRINTS must accompany each order. No COD. Mass. residents add 5% sales tax.	EDN051288

We're overwhelmed with your response

To our semiannual contest in the January 7, 1988 issue of EDN. Thousands of you took the time to tell us which three ads in that issue were your favorites. But only one of you is the proud winner
of a new camcorder. He's Koray Wilkes, an engineer at Boeing Military Airplane Company.
Our congratulations to him and to the ten lucky winners of $\$ 25$ gift certificates. And our thanks to all of you who made this the most overwhelming EDN contest ever.
Keep a special lookout for the August 4, 1988
issue of EDN, when you'll have another chance to participate and win!

EDN

Abbott Transistor Labs Inc	
ABC-Taiwan Electronics Corp	284
ACCEL Technologies Inc	283
ACDC Electronics	250
Acheson Colloids Co	281
Acopian Corp	245
Advanced Micro Devices	-13, 70-71
Advin Systems	282
Aeroflex Laboratories Inc	214
American Automation	240
Ametek Inc	42
Amlan Inc	95
Amoco Laser Co	264
AMP	68-69
Amperex Electronic Corp*	288
Analog Design Tools Inc	175
Analog Devices Inc	82-83, 235
Apollo Computer	50-51
Applied Data Systems	280
Applied Microsystems Corp	14-15
Ashling Microsystems Ltd**	288
Atron	65
Bayer AG**	96-97
B\&C Microsystems	, 282, 283
Bergquist Co	295
BP Microsystems	281
Brooktree Corp	226, 227
Burndy Corp	37
Burr-Brown Corp	230
Bussman	267
Bytek Corp	281
CAD Software Inc	281
CADdy Corp	254
California Eastern Labs Inc	276
Capital Equipment Corp	284
Catalyst Research	190
Cherry Electrical	
Products Inc	2-213, 279
Chomerics Inc	200
Coilcraft	228
Comair Rotron Inc	34
Communications Specialists Inc.	280
Crystal Semiconductor	106-107
Cybernetic Micro Systems	291
Cypress Semiconductor	52
Daisy Systems Corp	46-47
Dasoft Design Systems Inc	
Data I/O Corp	C4
Datel	299
Deltrol Controls	280
Deltron Inc	232
Design Computation Inc	285
Digital Equipment Corp*	84-85
Digital Media Inc	285
Eagle Magnetic	281
EF Johnson Co	281
EH Titchener \& Co	281
Eldre Components Inc	284
Electrochem	195
Electro-Mechanics	282
Electronic Solutions	86
Emulation Technology Inc	285
Endicott Research Group	295
Engineering Tutorial Software	280
Everest Electronic Equipment Inc	
Ferroxcube	
Fujitsu Computer Products Group	
Fujitsu Limited**	
Galil Motion Control Inc	. 284
GE Plastics	
GE/RCA Intersil	
Semiconductors . . . 48-49, 98-9	9, 164-165
GIMIX Inc	
Gould Inc, Design \& Test System	

Need More Design Time?

US position-sensor market to grow steadily through '91

While different segments of the US market for industrial position sensors are expected to grow at strikingly varying rates over the next few years, the overall market prediction points to a healthy, steady growth through 1991, according to Frost \& Sullivan (New York, NY). Last year, the US market grossed $\$ 315$ million; by 1991, the total figure should reach $\$ 456$ million. For onboard automotive sensors, the research data indicates that, in spite of declining sales for autos made in the US, this market segment will nevertheless grow because of expected increases in the sale of light trucks.

Magnetostrictive sensors are expected to boast an 18% average annual growth through 1991: Sales in that year are expected to reach $\$ 39$ million, up close to 100% from the 1987 figure. This type of sensor takes advantage of the characteristic of some ferromagnetic materials (for example, iron, nickel, cobalt, and manganese) by changing size in response to a magnetic field. To date, the largest application for magnetostrictive sensors has been in electrohydraulic actuators, where the sensors can be embedded within the actuator piston for absolute-value positioning.
With primary uses in automated material handling and packaging machinery, photoelectric sensors should reach a total of $\$ 107$ million in sales by 1991. Manufacturers are finding these devices useful not just in measuring proximity or displacement but also in counting and identifying. Photoelectric sensors can also transmit information to other systems by sending logic-level data via a modulating LED light beam.
Among the newer devices, ultrasonic sensors will rise rapidly in industrial applications, from $\$ 5$ million in 1987 to $\$ 8$ million at the end of the forecast period. Although

their price tag-about $\$ 250$ each in small quantities-remains a real deterrent for more general use, ultrasonic devices have some big advantages. Most important, devices
based on that technology remain unaffected by harsh environments, where even photoelectric devices can falter.

Consider associated costs of nonimpact printers

The costs involved in owning a nonimpact printer include not only the price of the printer itself but also charges for service, consumables, paper, and electricity, advises CAP International Inc (Marshfield, MA). In fact, purchasers should consider specific applications as well as average monthly print volumes when trying to decide which kind of nonimpact printer suits their needs.
An analysis of the leading nonimpact printer types reveals four primary operating environments.
The first, the centralized dataprocessing facility, typically requires the production of more than 1M copies per month. Printers employed in such a facility run as fast or faster than 80 pages per minute and cost over $\$ 300,000$.
The second primary operating environment, a distributed data-processing site, is linked to or controlled by a central facility. Generally,
printers operating in such an environment produce 100,000 to 500,000 copies per month and operate at speeds between 35 and 80 pages per minute. They range in price from $\$ 15,000$ to $\$ 140,000$.
The third type of environment is an office cluster serving either a single department or a group that produces similar work. Nonimpact printers used in this environment produce between 5000 and 50,000 copies per month and run at speeds between 10 and 35 pages per minute. They cost between $\$ 3000$ and $\$ 35,000$.
The personal workstation that has five or fewer users is the final category of primary operating environment. A printer used as part of such a workstation produces between 5000 and 3000 copies per month and produces fewer than 10 pages per minute. Prices range from $\$ 1400$ to $\$ 8000$.

rugged plug-in

Tough enough to meet full MIL-specs, capable of operating over a wide -55° to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplifier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to

500 MHz and 0.5 to 1000 MHz , and NF as low as 2.8 dB .
Prices start at only $\$ 13.95$, including screening, thermal shock $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.

Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc supply voltage and get up to 28 dB gain with +9 dBm output.

The new MAN-amplifier series... another Mini-Circuits' price/performance breakthrough.

Nowt H $=$ XSense makes foday's current-sensing obsolete.

Old Method
This circuit uses a fractional value resistor (A) to measure current, causing a voltage drop which increases power losses. Its parasitic inductance also slows down switching speed. To offiset these losses, a lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ power MOSFET may be used, increasing circuit cost.

HEXSense offers 5-pin lead forms for vertical and horizontal pcb mounting.

HEXFET and HEXSense are trademarks of International Rectifier.

HEXSense, a new HEXFET power MOSFET with built-in current-sensing, reduces component count and design time - making conventional current-measuring methods obsolete.
Your circuit designs are simplified in less board space. Power and voltage losses disappear. Accuracy and bandwidth increase. In the end, your system performs better, more reliably.

It's all made possible by our HEXFET power MOSFET's superior quality, faster switching speed, built-in avalanche withstand capability, and now, current-sensing for control and protection.
In short, now you can design easier and more accurate, cost effective current-sensing circuits with the quality choice in power MOSFETs. Call (213) 607-8842 for technical data. Today.

New HEXSense Method

In this simple, cost effective circuit the current-sensing output connects to a virtual ground. Resistor (A) establishes a voltage-to-current ratio. With the Kelvin connected to the non-inverting input of (B), a highly accurate currentsense results.

AUTOMATIC SCHEMATIC.

FUTUREDESIGNER: DRAW LESS. DESIGN
MORE. Introducing FutureDesigner ${ }^{\text {TM }}$ the only advanced design entry workstation that lets you describe your circuit in compact, high-level terms and create more complex designs faster. FutureDesigner's flexible, new techniques encourage creativity and experimentation, helping you produce innovative products quickly and more accurately.

MULTIPLE DESIGN ENTRY MODES FOR SPEED AND FLEXIBILITY. Describe

 your circuit with any combination of structural and behavioral representations. Use schematics to enter the structural portions of the design, such as data paths in a memory array. For portions easier to describe behaviorally, like sequencers or decoders, simply enter equations, truth tables or state diagrams using on-screen input forms.
ADVANCED DESIGN VERIFICATION HELPS YOU GET IT RIGHT THE FIRST

TIME. For the behavioral portions of your design, use FutureDesigner as a "what if" tool to try different design approaches. Immediately verify that your circuit works as you intended. For the structural portions, design check tools detect and help you correct connectivity and other common design errors. Together these features significantly shorten the design iteration cycle.

LOGIC SYNTHESIS CONVERTS YOUR EQUATIONS INTO SCHEMATICS. Once

you've entered equations, state diagrams or truth tables, FutureDesigner's logic synthesizer eliminates redundant circuitry and optimizes your design for size/speed trade-offs. FutureDesigner is the only design entry workstation that will then automatically produce the correct schematics and integrate them with the total structural design.

MORE CHOICES IN TECHNOLOGIES, VENDORS AND SYSTEMS. Future-

Designer is technology independent. Choose the most convenient mix of TTL, PLDs, gate arrays or other ASICs from a wide range of semiconductor manufacturers. You can easily migrate from one technology to another without redesign.

FutureDesigner output is an industry standard, widely accepted by engineering service bureaus and semiconductor vendors. You'll also have access to both FutureNet ${ }^{\circledR}$ and other CAD systems for simulation and PCB layout.

Call us today and learn how a FutureDesigner workstation gives you the flexibility and accuracy to design innovative products faster.

1-800-247-5700 Dept. 121

[^0]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Manufacturing \square Foodservice \& Lodging
 \square Electronics \& Computers \square Interior Design \square Printing \square Publishing \square Industrial Research \& Technology \square Health Care \square and Entertainment. Specialized Consumer Magazines:
 \square American Baby \square and Modern Bride.

[^1]: LSI Logic Sales Offices and Design Resource Centers: Scottsdale, AZ 602-951-4560, Milpitas, CA 408-433-8000, San Jose, CA 408-248-5100, Irvine, CA 714-553-5600, Sherman Oaks, CA 818-906-0333, Denver, CO 303-756-8800, Altamonte Springs, FL 305-339-2242, Boca Raton, FL 305-395-6200, Norcross, GA 404-448-4898, Chicago, IL 312-773-0111, Bethesda, MD 301-897-5800, Waltham, MA 617-890-0161, Ann Arbor, MI 313-769-0175, Minneapolis, MN 612-921-8300, Bridgewater, NJ 201-722-7522, Poughkeepsie, NY 914-454-6593, Raleigh, NC 919-783-8833, Worthington, OH 614-438-2644, Beaverton, OR 503-644-6697, Trevose, PA 215-638-3010, Austin, TX 512-338-2140, Dallas, TX 214-788-2966, Bellevue, WA 206-822-4384, Calgary, Alta 403-262-9292, Paris, France 33-1-46212525, Israel 972-3-403741/6, Milan, Italy 39-39-651575, Tokyo, Japan 81-3-589-2711, Seoul, Korea 82-2-785-1693, Nidau/Biel, Switzerland 032-515441, Bracknell, United Kingdom 44-344-426544, Munich, West Germany 49-89-926903-0. © 1988 LSI Logic Corporation. Modular Design Environment and MDE are trademarks of LSI Logic Corporation.

[^2]: Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134, Phone: (408) 943-2666, Telex: 821032 CYPRESS SNJ UD, TWX:

[^3]: *Parts have identical electrical characteristics. I_{D} and P_{D} for the MTP3055A (TO-220) need to be derated by the designer depending on isolation used. For the ISOWATT220, this derating is already included.

[^4]: (C) 1988 All rights reserved SGS-THOMSON Microelectronics

[^5]: Advanced
 Peripherals

[^6]: Support for 16M to 4G bytes of memory and high-resolution displays makes the Workview 2000 and 3000 CAE packages for the PC competitive with workstations, according to the vendor.

[^7]: You can electrically erase these CMOS EPROMs and reprogram them in circuit. Erasure

[^8]: 97 Thornwood Road, Stamford, CT 06903 (203) 322-1913 Telex: 643647

[^9]: Source: Electronics Purchasing magazine's survey of buyers

[^10]: Xilinx, Logic Cell Array, XACT and Programmable Gate are trademarks and The Programmable Gate Array Company is a service mark of Xilinx, Inc. © 1987 Xilinx, Inc, 2069 Hamilton Ave,, San Jose, CA 95125,(408) 559-7778.

[^11]: John Fluke Mfg. Co., Inc., P.0. Box C9090, M/S 250C, Everett, WA 98206.
 U.S.: (206) 356-5400 CANADA: (416) 890-7600.

 OTHER COUNTRIES: (206) 356-5500.
 © Copyright 1988 John Fluke Mfg. Co., Inc. All rights reserved. Ad no. 1271-P21.

[^12]: INMOS, Colorado Springs, Colorado 80935. Tel. 719-630-4000, Orange County 714-957-6018, Santa Clara 408-727-7771, Denver 303-252-4100, Minneapolis 612-932-7121, Dallas 214-490-9522, Boston 617-366-4020, Baltimore 301-995-6952, Atlanta 404-242-7444. (1)

 INMOSTransputer $\#$ and IMSaretrademarks of the INMOSGroup of Companies. Motorolais a registered trademark of Motorola, Inc. Intelis aregistered trademark of Intel Corporation. VAX is a registered trademark of Digital Equipment Corporation. Cray is a registered trademark of Cray Research, Inc. IBM is a registered trademark of International Business Machines Corp.

[^13]: C 1987 Analog Design Tools, Inc.
 Analog Workbench and PC Workbench are
 trademarks of Analog Design Tools.

[^14]: Alabama
 Huntsville (205) 837.8700
 Arizona
 Phoenix (602) 437-1200
 California
 Bay Area (408) 432-0900 Orange County (714) 669-4100 Sacramento (916) 722-8600 San Diego (619) 268-1201 San Fernando Valley (818) 716-3300 West Los Angeles (213) 217-8400

[^15]: Texas NSTRUMENTS Authorized Distributor TMIMPACT is a trademark of Texas Instruments Incorporated.

 - PAL is a registered Monolithic Memories, Inc.

[^16]: Analog Devices, Inc., One Technology Way, P.0. Box 9106, Norwood, MA 02062-9106; Headquarters: (617) 329-4700; California: (714) 641-9391, (619) 268-4621, (408) 559-2037; Colorado: (303) 590-9952; Maryland: (301) 992-1994; Ohio: (614) 764-8795; Pennsylvania: (2115) 643-7790; Texas: (214) 231-5094; Washington: (206) 251-9550; Austria: (222) 885504; Belgium: (3) 237 1672; Denmark: (2) 845800; France: (1) 4687-34-11; Holland; (1620) 81500; Israel: (052) 28995; Italy: (2) 6883831, (2) 6883832, (2) 6883833; Japan: (3) 263-6826; Sweden: (8) 282740; Switzerland: (22) 315760 ; United Kingdom: (932) 232222; West Germany: (89) 570050

[^17]: c 1988 Samsung Semiconductor. Inc. CPL is a trademark
 of Samsung Semiconductor. Inc. PAL and PALASM are registered trademarks of Monolithic Memories. Inc. CUPL is a rrademark of Personal CAD Systems. Inc. IBM is a registered trademark of International Busines Machines. Inc. ABEL. is a trademark of Data
 PI. Designer is a rrademark of MINC. Inc.

[^18]: - Total capacity of 10,000 gates
 - Integrated schematic editor
 - Fast assembly language routines
 - Standard parts library of 200 types
 - Event-driven timing simulator

[^19]: MICRO-LOGIC II is a registered trademark of Spectrum Software.
 Hercules is a registered trademark of Hercules Computer Technology IBM is a registered trademark of International Business Machines, Inc.

[^20]: One Blue Hill Plaza, Pearl River, NY 10965-8541

