PC graphics packages ease programming tasks

VLSI chip helps implement factory networks Phase-locked-loop ICs EDN's technical-article database index

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

1

TDR Yesterday

TDR Today

The HP 54120T: precise TDR measurements never before possible.

Throw away the calculators and slide rules. Toss out the CRT camera, the pencils and the scratch paper. Enter an unprecedented realm of TDR measurement that is powerful, fast, accurate, and easy to use. The HP 54120T Digitizing Oscilloscope and TDR with 20 GHz bandwidth and 10 ps resolution will make your life a lot easier.
Match bandwidth to system requirements.
The software we developed for the HP 54120T enables you to accurately match bandwidth to the speed of the device under test. Normalization* then corrects for reflections and imperfections caused by connectors and cables. You measure the device-not the connecting hardware-for error-free readings.
In addition, the HP 54120T features unmatched speed and convenience. HP Auto-Scale gets waveforms to the screen
quickly, automatic measurements produce test results fast, English-like commands via HP-IB make programming easy, time and voltage markers customize measurement parameters, hardcopy documentation is available at the push of a button. And there are numerous other features we simply can't get into a single ad.
Call HP today!
1-800-752-0900, Ext. F215.
Application notes are yours for the asking. They include "Improving TDR Network Analysis," "TDR Fundamentals," and other technical data. You'll see for yourself what the HP 54120T can do for your design, characterization and test applications.
*Normalization is accomplished using the Stanford Bracewell Transform. The Bracewell Transform is under license from Stanford University.

There are two sides to this story.

Side One:
Highly integrated 16-bit industrial computer
Ziatech's NEC V50-based single board computer, the ZT 8816, packages the features of several STD boards into a unique, dual-sided surface-mount design. The ZT 8816 tackles demanding industrial applications with a 16 -bit data bus, an 832 K on-board memory capacity, a real-time battery-backed clock, AC/DC power-fail protection, DMA controller, an interrupt controller, two serial channels, and three counter-timers.

For the rest of the story...
Free Technical Brochure
Call today for the ZT 8816 Technical Data Sheet and the 24page STD DOS Technical Brochure. With more information on what the ZT 8816 can do for your industrial application, you may start seeing the Ziatech side of the story.
(805) 541-0488

Side Two:
IBM AT-compatible industrial computer
The ZT 8816 is more than just the most advanced STD Bus computer hardware on the market today. It is designed to operate PC DOS or ROM-based user programs such as the VRTX multitasking kernel. Development tools are available to provide a large range of target system software architectures. STD DOS V50 on the ZT 8816 delivers IBM AT performance and compatibility with optional networking, EGA video, disk and bubble memory subsystems, multiprocessing, and a device driver library. Ziatech's exclusive Virtual System Console supports easy development through a host PC by transparent resource sharing.

3433 Roberto Court
San Luis Obispo, California 93401 USA
ITT Telex 4992316
FAX (805) 541-5088

"For a bunch of companies that don't aways agree on everything, we sure were unanimous on VTC."

The VME Consortium needed an economical, yet highly functional VME bus interface chip, to minimize design time . . . and to help raise the VME standard to higher levels.
"We looked at the leading suppliers," said Joe Ramunni, consortium chairman (and president of Mizar), "and VTC came out on top. Their CMOS standard-cell ASIC approach gave us the high drive capability we needed, optimized for bus interfacing. And, it proved much more cost-effective, with higher performance, than gate array technology.'
The VME Consortium is made up of such firms as Plessey Microsystems, Omnibyte Corporation, Mizar Inc., Ironics Inc., Heurikon Corporation, Matrix Corporation, and Clearpoint Inc., among others. What did they look for in a supplier?
"We needed a credible business partner," said Ramunni, "with a proven track record, who could provide a turnkey package . . . both design and fab. A supplier that could produce in quantity, and provide technical support to the market at large.
"We also needed a firm with an international marketing structure, because we expect this chip to be the de facto standard worldwide.
"But, we needed people we could work with, too. VTC had the right 'comfort factor'."

Jack Regula, consortium technical director (and VP-R\&D, Ironics) added: "Our requirements for high speed, high gate-count, low power consumption, and VME bus drive capability were all met well with VTC's 1-micron CMOS standard cell library. And we were extremely impressed with VTC's facilities, its people, and its customer list."

In the future, the VME bus chip (VIC) will become a standard cell within VTC's CMOS library, to allow customers to further customize the chip.

Shouldn't you be getting to know VTC, too? You'll be in good company when you do. Call or write us today, and we'll send you our short-form product catalog, which describes our product offerings in linear signal processing, high-speed CMOS logic, mass storage ICs, bipolar ASIC, and CMOS ASIC.
VTC Incorporated, 2401 East 86th Street, Bloomington, MN 55420. (In Minnesota, 612/851-5200.) Telex 857113.

CALL 1-800-VTC-VLS

CIRCLE NO 14

Vibration analysis with stop and hold.

EKG and hemodynamic waveforms.

A/D, amplifier development and calibration.

Complex waveforms for servo drives.

Radar/sonar envelope simulation.

Digital testing and troubleshooting.

Dual tones for telephone testing.

Noise added to any waveform.

Standard waves at the push of a bution.

We've been making waves for 25 years. Now it's your turn.

A quarter-century ago, Wavetek brought you the first waveforms produced by a solidstate function generator. Now our Model 75 Arbitrary Waveform/ Function Generator puts you in control.

Model 75 lets you generate waveforms without entering x / y coordinates. Thumbtack and rubberband modes allow easy development and editing of any waveform. There are also nine standard functions which you can use at the push of a button.

Waveforms are stored in nonvolatile memory, with more than 4,000 vertical points and 8,000 horizontal points of resolution. They can be played back at any rate, up to 500 ns per point.

By linking two or more Model 75's together, you can superimpose waveforms to introduce phase displacement or other special effects. And at the low price of $\$ 2295$, you might want to buy several.

For literature or to arrange an amazing demonstration, call or write Wavetek San Diego, Inc., P.O. Box 85265, San Diego, CA 92138. Phone (619) 279-2200; TWX (910) 335-2007.

The Bettman Archive Inc.

Making something very small can be truly revolutionary.

At first people scoffed. Some laughed out loud. But the people's car set a new size standard for an entire industry.

Sizes are still shrinking in the micro-miniature world of cable and connector technology at

Precision Interconnect. We're designing the critical link between man and machine. These complete interconnect systems, usually using 38 AWG conductors, can be terminated to standard connectors with flex-strain reliefs or contain active devices within custommolded housings.

To make these cable systems increasingly smaller, lighter, more rugged, and more comfortable to use without compromising signal fidelity, flex-life, or reliability is a continuing challenge presented to us by manufacturers of leading-edge medical equipment around the world.

Our expertise, increasing with each unique problem we
solve, ensures that reliability is designed in, built in, and tested. So we can solve big problems. With small, but revolutionary, innovations.

PRECISION INTERCONNECT

16640 S.W. 72nd Avenue, Portland, OR 97224 (503) 620-9400

Offices in San Francisco, Boston,
Wilmington and Düsseldorf

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

On the cover: Pressure sensors and transducers are achieving high marks for performance, thanks in part to device manufacturers using CAD/CAE techniques. See pg 106. (Photo courtesy Nova Sensors)

SPECIAL REPORT

Pressure sensors and transducers
By employing CAD/CAE and new fabrication technologies, pressure sensor and transducer manufacturers have been able to improve product performance without exacting any price penalties. In the siliconbased sensor area, in fact, prices are actually going down as performance figures improve-a combination that opens up a host of new applications.-Tom Ormond, Senior Editor

DESIGN FEATURES

CAE software uses algorithms instead of schematics

Drawing logic schematics isn't the only way to create ASIC designs. You can also use algorithms to automatically generate the net list for your hardware design-and you can do so in about one-tenth of the time that it often takes to complete a schematic.-Jay R Southard, Algorithmic Systems Corp

Single VLSI chip
 helps you implement EPA factory networks

The Enhanced Performance Architecture (EPA), a subset of the MAP specification, allows networks to provide fast, noise-immune communication over short distances. By applying a single VLSI chip that implements most of the EPA functions in silicon, you can speed your network's response time without a huge software-development effort.-Rhonda Alexis Divvin and Anne-Marie Larkin, Motorola Inc

Static system design 159 exploits low-power CMOS features

Static CMOS architectures let you customize a design for optimum performance and minimum power dissipation. Capitalizing on the characteristics of CMOS means addressing clock-frequency control before starting the initial design process.-Walter J Niewierski, Harris Semiconductor
EDN Technical-Article Database Index
EDN's semiannual database index lists articles published from
November 1987 to April 1988 in EDN, EDN News, Electronic
Design, Electronics, Electronic Products, Computer Design, and ESD.
Continued on page 7

EDN ${ }^{\circledR}$ (ISSN 0012-7515) is published 40 times a year (biweekly with 1 additional issue a month, except for July which has 3 additional issues) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Electronics/Computer Group Vice President; Jerry D Neth, Vice President/Publishing Operations; J J Walsh, Financial Vice President/Magazine Division; Thomas JDellamaria, Vice President/Production and Manufacturing. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) $388-4511$. Second-class postage paid at Denver,
CO $80206-5800$ and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\text {® }}$ at the Denver CO $80206-5800$ and additional mailing offices. POSTMASTER: Send address corrections to EDN ${ }^{\oplus}$ at the Denver
address. EDN ${ }^{\circ}$ copyright 1988 by Reed Publishing USA; Saul Goldweitz, Chairman; Ronald G Segel, President and address. EDN
Chief Exyright 1988 by Reed
Chedive Officer; Robert LKrakoff, Executive Vice President; William M Platt, Senior Vice President. Annual chief Executive Officer; Robert Krakoff, Executive Vice President; Wiliiam M Platt, Senior Vice President. Annual all other nations, $\$ 135 / y e a r$ for surface mail and $\$ 210 / y e a r$ for air mail. Except for special issues where price changes are indicated, single copies of regular issues are available for $\$ 6, \$ 8$, and $\$ 10$ (USA, Canada/Mexico, and foreign). Please address all subscription mail to Eric Schmierer, 44 Cook Street, Denver, CO 80206-5800.

Fluke breaks the old mold.

The Fluke 37. A bold new shape emerges with more features for the money than any other bench DMM. Period.

Dollar for dollar, the new Fluke 37 is unbeatable. In addition to its breakthrough design - with built-in handle and storage compartment - it has all the high-performance features of the world's best, most reliable $31 / 2$ digit DMMs.
Autoranging, to eliminate guesswork. Audible Continuity, so you don't have to look at the display. An exclusive analog and digital display, for the best view of the signal being measured. Superior EMI shielding. And user-friendly features like auto self-test, auto battery test and autopolarity. All this, plus a two-year warranty.

And, how many other $\$ 249$ bench meters give you these features? Min-Max recording, for monitoring signals. 38 components dedicated exclusively to input protection. Relative mode, to help you calculate changes in readings. And Fluke's patented Touch Hold, to give you an extra set of hands when you're taking critical measurements.

None. Not at \$249. Not at any price.
For your nearest distributor or a free brochure, call toll-free anytime 1-800-44-FLUKE, Ext. 33.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 37
\$249*
0.1% basic dc accuracy
Analog/Digital Display
Volts, Ohms Amps, Diode Test
30 kHz AC bandwidth
Fused 10A Range
Integral handle, storage compartment
2-year warranty
*Suggested U. S. list price, effective January 1, 1988.

Third-party graphics-software packages for IBM PCs and compatible computers can ease your software-writing chores (pg 55).

EDN magazine now offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.

TECHNOLOGY UPDATE

Third-party PC graphics packages
 55 streamline your programming tasks

Attention-grabbing, colorful graphics can dramatically enhance the software you write, regardless of whether you're developing it for your company's internal use or for customers.-Margery S Conner, Regional Editor

Limited selection of monolithic PLL ICs 65 suffices for current applications

Monolithic phase-locked-loop (PLL) circuits provide an elegant way to achieve frequency demodulation or digital selection of frequency.
-Tarlton Fleming, Associate Editor

PRODUCT UPDATE

Video and system controller IC 83
Data logger 86
Industrial IBM PC/AT-compatible system 88
Digital scope 90
Modular 1500W power system 92
DESIGN IDEAS
Transistor powers low-dropout regulator 205
8031 routines expand address space 205
555 timer turns beep into warble or chirp 209
Single-chip $\mu \mathrm{P}$ controls resolver 209
Thermistor measures respiration rate 214
Continued on page 9

[^0]

128 TIIMES THE MEMORY DEPTH AND LIGH TYE YEAS AHEAD Of THE COMPEITION.

Only the Tek DAS9200 with its new 92A90D acquisition module gives you a memory depth of 128K bits-per-channel128 times the depth provided by the most popular alternatives. No wonder it alone lets you see so much, so easily, for so many complex applications.

- Better-than-ever multiprocessor support.
Now get the depth of overlapping data you need for debugging designs involving processors like
the 68030, 88100, and 80386-up to six at a time.

- Timestamping without

 penalty. For correlating multiprocessor interactions, the 92A90D lets you place a 44-bit timestamp value on every transaction stored at no cost to your 128 K memory depth.
- Selective data suppres-

sion. To help you analyze 131,072 90-channel bus
cycles in one acquisition, Tek provides high-resolution color, highlighting, address symbols, and your choice of tailorable display formats.
You can choose an overview of subroutine activity or program branches, a full assembly listing, or a format that shows every bus transaction in order. To find out more about the Tek DAS9200 Digital Analysis System, the most powerful problem-solver around, contact your Tek representative, or call 1-800-245-2036.
In Oregon, 231-1220.

```
VP/Publisher
    Peter D Coley
VP/Associate Publisher/Editorial Director
            Roy Forsberg
            Editor
        Jonathan Titus
        Managing Editor
        John S Haystead
        Assistant Managing Editor
        Joan Morrow
        Special Projects
        Gary Legg
        Home Office Editorial Staff
2 7 5 \text { Washington St, Newton, MA 02158}
        (617) 964-3030
        Tom Ormond, Senior Editor
        Deborah Asbrand, Associate Editor
        Joanne Clay, Associate Editor
    Tarlton Fleming, Associate Editor
    John A Gallant, Associate Editor
    Clare Mansfield, Associate Editor
    Michael C Markowitz, Associate Editor
        Dave Pryce, Associate Editor
    Cynthia B Rettig, Associate Editor
    Charles Small, Associate Editor
    Dan Strassberg, Associate Editor
        Chris Terry, Associate Editor
            Valerie Lauzon, Staff Editor
            Helen McElwee, Staff Editor
    Julie Anne Schofield, Staff Editor
    Steven Paul, Senior Production Editor
            Editorial Field Offices
    Margery S Conner, Regional Editor
        Los Osos, CA: (805) 528-0833
        Doug Conner, Regional Editor
        Los Osos, CA: (805) 528-0865
    Steven H Leibson, Regional Editor
        Boulder, CO: (303) 494-2233
        J D Mosley, Regional Editor
        Arlington, TX: (817) 465-496
    Richard A Quinnell, Regional Editor
        San Jose, CA: (408) 296-0868
        David Shear, Regional Editor
        San Jose, CA: (408) 997-5452
        Maury Wright, Regional Editor
        San Diego, CA: (619) 748-6785
        Peter Harold, European Editor
                0603-630782
        (St Francis House, Queens Rd,
        Norwich, Norfolk NR1 3PN, UK)
            Contributing Editors
        Robert Pease, Bob Peterson
            Don Powers, Bill Travis
                Editorial Services
        Kathy Leonard, Office Manager
        Loretta Curcio, Nancy Weiland,
                Art Staff
    Kathleen Ruhl, Senior Art Director
    Ken Racicot, Associate Art Director
        Chin-Soo Chung, Staff Artist
            Cathy Filipski, Staff Artist
        Production/Manufacturing Staff
William Tomaselli, Production Supervisor
    Donna Pono, Production Manager
Danielle M Biviano, Production Assistant
    Linda Lepordo, Production Assistant
        Diane Malone, Composition
            Graphics Director
                Norman Graf
    VP/Production/Manufacturing
                Wayne Hulitzky
Director of Production/Manufacturing
            John R Sanders
            Business Director
                Deborah Virtue
        Marketing Communications
        Janice Molinari, Director
    Anne Foley, Promotion Manager
    Sara Morris, Promotion Assistant
```


EDITORIAL

Establishing a tariff that funds US R\&D efforts might be a suitable alternative to mandating artificially high semiconductor prices.

NEW PRODUCTS

Integrated Circuits 222
Components \& Power Supplies 231
Computers and Peripherals 237
Test \& Measurement Instruments 243
CAE \& Software Development Tools 246
PROFESSIONAL ISSUES 255
Milt Scovill's long and winding road.-Deborah Asbrand, Associate Editor
LOOKING AHEAD 267Surveys quiz CASE users and vendors. . . PC-board ATE market toreach $\$ 1.1 \mathrm{~B}$ by ' 93 .
DEPARTMENTS
News Breaks 21
News Breaks International 24
Signals \& Noise 31
Calendar 42
Readers' Choice 96
Literature 254
Business/Corporate Staff 259
Career Opportunities 260
Advertisers Index 266

> Odds are $50-50$ your perfect ASIC is a perfect dud the first time you plug it in.

That's why Mentor Graphics lets you combine ASIC and board circuitry ina single simulation.

Trouble in ASIC paradise.

The big day has arrived.
Your first gate array is back from the foundry. With high expectations, you plug it into your board and power up.

It doesn't work.
Don't feel alone. Over 50\% of ASICs aren't operational when first installed in their target system. Even though 95% pass their foundry tests with flying colors.

An immediate solution.

Mentor Graphics shifts these even odds heavily in your favor with our QuickSim ${ }^{\text {TM }}$ logic simulator, which lets you simulate both your ASIC and board circuitry in a single run.

With QuickSim, you not only track the internal operations of your ASIC circuitry, but also its transactions with the system at large. If there's a problem, you see precisely where it's located, either inside or outside your ASIC. All in a single, interactive simulation environment, where you can view and graphically "probe" the circuitry created by our NETED ${ }^{\text {TM }}$ schematic editor.

Check out our libraries.

Library support is an ideal benchmark to gauge the true worth of an electronic design automation system. The more diverse and plenti-
ful the component modeling libraries, the greater the design capability. It's as simple as that.

By this simple, yet decisive measure, Mentor Graphics brings you unequaled design capability. While other EDA vendors scurry to produce their own ASIC libraries (with little guarantee of accuracy), more ASIC vendors put their libraries on Mentor Graphics workstations than any other. And in most cases, we're the first workstation supported, which means you have the first shot at exploiting new chip technologies.

With Mentor Graphics, you get a breadth of LSI and VLSI component models, both hardware and software based. All of which can be mixed with ASICs in a single simulation that cuts your run time to an absolute minimum.

To be continued.

So much for the present. We're already developing new EDA tools for systems design that will extend to every dimension of electronic product development. From high-level systems descriptions to CASE. It's what our customers expect. It's what we'll deliver.

It's all part of a vision unique to Mentor Graphics, the leader in electronic design automation. Let us show you where this vision can take you.

Call us toll-free for an overview brochure and the number of your nearest sales office.

Phone 1-800-547-7390 (in Oregon call 284-7357).

Our new 7.5 ns PAL $^{\circledR}$ device is fast enough to prove that standard logic shouldn't set the standard anymore.

It's also fast enough to finally let today's new microprocessors run at the speeds for which they were designed-breathtaking. Raising your standard.

How fast would you like your standard logic?

How about faster than any TTL logic around? Even FAST ${ }^{\text {m }}$ or AS? You've got it with the 7.5 ns PAL device.

And the fact that you can config-

ure it yourself means you can get exactly what you want.

If you want to redesign something, you change the PAL device. Not the board.

Not only is this the fastest way to get high speed logic, it's also the most practical. One 7.5 ns PAL device replaces two to six standard TTL devices.

Which cuts down on board size.
And cuts down chances for a device failure.

What to give the microprocessor that has everything.
We suggest the first PAL device that can keep up with it.

The 7.5 ns PAL device runs at 74 Mhz . It can deliver the speed the new high performance microprocessors need.

Processors like the 29 K , the 386 and the 68030.

This PAL device delivers 25% more speed than any other PAL device.

We even have the fastest 22 V 10 .
Our 15ns 22Vl0 runs at 50Mhz. That's 10ns faster than anyone else on the market. And it lets you run at twice the rate of the new 25 Mhz microprocessors.

We've been shipping 20 pin 10ns

PAL devices for eighteen months. And now you can get the new 24 pin 10ns PAL device as well.

There's plenty of service and support to get and keep your project moving. And all our fast PAL devices are available in volume when you need them. Now, for example.

For all the facts about our fast PAL devices, drop us a line. Or call us at (800) 222-9323.

Because you can never be too fast.
Advanced Micro Devices \boldsymbol{A} Monolithic Memories
901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088.
PAL is a registered trademark of Advanced Micro Devices, Inc. FAST is a trademark of National Semiconductor Corporation. ©1988 Advanced Micro Devices, Inc.

Highperformance workstations.

Thehighest performance development tools.

Now you can build a high performance development environment around the engineering workstation you already own. And get your embedded microprocessor designs completed more quickly and with less effort than ever before.

Your Sun, Apollo or DEC workstation has the processing power and high resolution graphics. Applied Microsystems adds the debuggers, utility software and excellent emulation you need to complete your system. Only Applied Microsystems can make all of these pieces work together seamlessly.

Our ES 1800 Series of emulators provide the most powerful transparent emulation system available anywhere.
in a closely coupled development environment. What's more, VALIDATE is supported by a rich library of linkers, loaders, compilers and assemblers.

Add the real-time, transparent emulation capabilities of our ES
you the largest overlay memory capability in the industry.

Make your workstation work even harder.

Get full value from your investment in engineering workstations.

| Operating
 Host
 Honvironment
 Operating System | | Microprocessors/
 Microcontrollers | Software Utilities
 Languages | Tools |
| :--- | :--- | :--- | :--- | :--- | :--- |

We offer debug and development tools with a difference: they are integrated solutions for virtually any development environment.

Source or symbolic debugging for Intel, Motorola, and Zilog. Plus the best emulation.

The VALIDATE family of source and symbolic debuggers and host control software has been specifically tailored by Applied Microsystems to work with our emulators

1800 Series of 16 -bit and 32 -bit emulators, and you have the most powerful emulation system anywhere. The high speed SCSI interface option lets you upload and download files more than twenty times faster than with RS 232 . Our Advanced Event Monitor System lets you precisely control emulation with logical statements of system conditions. The ES 1800 also gives

Applied Microsystems can turn your workstation into the heart of a high performance microprocessor development environment.

To find out more, write Applied Microsystems Corporation, P.O. Box 97002, Redmond, Washington, USA 98073-9702. Or call (800) 426-3925, in Washington call (206) 882-2000.

In Europe contact Applied Microsystems Corporation Ltd., Chiltern Court, High Street, Wendover, Aylesbury, Bucks, HP22 6EP, United Kingdom. Call 44-(0)-296-625462.
UNIX is a registered trademark of AT\&T. AMC-228

> Applied Microsystems Corporation
"I hear you. So tell me more and let's figure
"Listen, the future of this product line is riding on my next design automation decision. Not to mention my job."
"Well, first, we're feeling enormous pressure to get products out faster. The key is designs that'll go through manufacturing the first time. If we're going to stay competitive, we've got to tackle the overall product development process-and it starts right here in design."

Look, HP's gone through the same thing. Our own divisions deal with the same problem daily. We came up with a solution called DesignCenter. It combines our electronic design automation tools with the rest of the process to produce a high degree of manufacturability right from the start-in design."
"That's exactly what we need. A single data path from design right on through production and out the door. If we could somehow combine electronic design with microprocessor development and mechanical engineering and tie it into manufacturing and test, we'd be a lot happier. Are you saying HP can do that for us now?" "We're not there 100\% yet. Nobody is. But that's the whole idea behind our DesignCenter. Right now, we've got the broadest set of EDA tools there is. Match them up with the HP test and measurement tools you've used for years, and you'll be way ahead of the game."
"We've always counted on HP test equipment. But how does that relate to your EDA tools?"
"We were able to bridge the gap between design and prototype test. Now you can create higher quality tests-faster, too-by transferring data directly between our logic analyzers and simulation. And the design and layout tie directly into HP board test systems."
"That's terrific. But testing is only one part of the process. We're making decisions on everything from ASICs and PLDs to microwave hybrids to multi-layer PCBs. And they all have different parts and technologies. I'll tell you, it's impossible to keep up."
"We agree, it's a big problem. But that's the reason we have digital, analog, and microwave CAE tools for design, simulation, and layout. We even support it all with information management to handle the tough tradeoffs your team has to make in choosing between all the technologies and complex interactions." "There's one thing that's always a concern. We've got systems in here from some of your competitors. If we go with HP, can you fit into our existing environment?"
"Absolutely Using either off-the-shelf or customized interfaces, we'll help you integrate HP tools into your existing systems. And, since HP supports EDIF and IGES standards, you'll have the flexibility you need down the road."
"Speaking of standards, tell me about your platforms."

> "Well, HP is among the industry leaders in standardization because the marketplace is demanding it. Our family of workstations and servers supports UNIX and networking standards. They thrive in a multi-vendor environment, making it easier to get your job done right the first time. That's the bottom line these days." "I get the feeling you understand that we're interested in a lot more than just tools. I mean, you seem to be talking about more than hardware and software."
"I am. HP is totally committed to this idea of getting more correct-by-design products through your plant. We are talking about a lot more than the tools. We'll sit down with you and help create a system that meets your needs ... not ours or somebody else's. And I mean we'll get right down to solving problems and training your people. That's what we do better than anyone else."
"I want to keep talking about this whole thing. And I want to include some other engineers, too. What are you doing next Wednesday?"
"I've got a feeling I'll be back here."
"Right."
"Name a time".
The dialogue continues . .
More and more project managers are talking to HP about EDA tools and DesignCenter. Start a dialogue today. Call toll free. Ask for information on HP Electronic Design Automation and bridging the gap from design to prototype test: 1-800-752-0900, Ext. C215.
\$3 whenten memen

HARTING/Austria, Vienna, Tel. 0222-686818-0 HARTING/Belgium, Relegem, Tel. 02-465.42.40 HARTING/France, Fontenay-sous-Bois Cedex, Tel. (1) 48770626 HARTING/Great Britain, Biggin Hill, Tel. (0959) 71411.HARTING/Italy, Pioltello (Milan), Tel. 02-92100847. HARTING/Japan, Yokohama, Tel. 045-931.5718

SOME THINGS CAN'T BE COPIED.

That's something we at HARTING learned long ago. For instance, our engineers and designers invested years of hard work to develop our "HARTING Industrial HAN ${ }^{\oplus}$ Connector". Their goal was to get every little detail just perfect so that state-of-the-art production processes and high-tech robots could be used to produce the definitive connector.
Well, our HAN ${ }^{\circledR}$ Connectors were a big success worldwide - and they still are. Of course, it didn't take long before similar connectors with similar names hit the market. But the original HAN ${ }^{\circledR}$ still hasn't been equalled. Because it's unique - just like your fingerprints. After all, it's the only one produced in completely automated high-tech production facilities. Each individual component part is made of the very best material available. And each part has to go through a whole series of quality-control stations. That's how we manage to make sure that every $\mathrm{HAN}{ }^{\circledR}$ Industrial Connector that leaves our plant is absolutely perfect. And the millions of our connectors in use throughout the world today are proof of this unpreeedented reliability.

World headquarters: HARTING ELEKTRONIK GmbH
P. O. Box 1140 - D-4992 Espelkamp West Germany
(05772) 47-1-TX 972310-11 he d

CONNECT UP WITH QUALITY WITH HARTING.

HARTING/Netherlands, AM Etten-Leur, Tel. 01-608-35400 HARTING/Norway, Oslo, Tel. 02-647590 • HARTING/Sweden, Spanga, Tel. (08) 7617980 • HARTING/Switzerland, Schwerzenbach, Tel. 01-8255151 • HARTING/USA, Chicago, Tel. (312) 519-7700

How to crack 386 protected mode.

Unlock selectors and descriptor tables. Break open task state segments (TSS) and call gates. Microtek's In-Circuit-Emulator (MICE) cracks 80386 protected mode with real-time, non-intrusive emulation to 20 MHz .

MICE unravels all the intricacies of the 80386, so you harness its full potential. Internal registers, including GDT and IDT base values are all directly accessible. And MICE also provides decoded access to all selector and descriptor bits, like privilege level, segment type and page accessed bits.

Use MICE as a stand-alone device, or integrate it into your development environment. MICE easily interfaces with the IBM^{\circledR} PC/XT/AT, VAX ${ }^{\circledR}$, Apollo ${ }^{\circledR}$ and Sun ${ }^{\circledR}$ computers.

And the 80386 emulation system is just one of our many embedded software development tools.

Our Software Analysis Workstation (SAW) delivers hardware-based, real-time software analysis in a source code environment. For source code development, our Microtec ${ }^{\circledR}$ Research products provide you
with C and Pascal cross-compilers, crossassemblers and debuggers for many popular microprocessors.

And MicroCASE ${ }^{\text {TTM }}$ backs all of its products with solid applications support, both at the local and factory level.

Microtek enjoys a long track record of being first to market with quality support for many major microprocessors. We were the first alternative for 80386 emulation. We're first to provide non-proprietary support for 80386 protected mode. And you can count on the same support in the future.

For more information and product literature on our full line of MICE, call us at (408) 253-5933.

Crack 80386 protected mode, and open the door to exciting design possibilities - with the best 80386 emulation system now available. From MicroCASE.

NEWS BREAKS

8-BIT HALF-FLASH ADC INCLUDES TRUE SAMPLE/HOLD AMPLIFIER

The LTCl099 from Linear Technology Corp (Milpitas, CA, (800) 637-5545) is a halfflash 8-bit A/D converter that converts in $2.5 \mu \mathrm{sec}$ typ. A true sample/hold amplifier is included on the chip; it allows the ADC to convert 5V p-p signals at as much as 167 kHz , or signals with slew rates as high as 20V/usec. The LTCl099 is pin compatible with the AD7820 and the ADC0820; these older devices can complete the A/D conversion in $1.5 \mu \mathrm{sec}$, but have pseudo-S/H amplifiers that can accept signals with a maximum slew rate of $0.1 \mathrm{~V} / \mu \mathrm{sec}$ or a bandwidth limit of 7 kHz . (To acquire signals with higher frequencies, these older devices require an external S / H amplifier, which is usually expensive.) The LTC1099 costs \$8 (100).-David Shear

EVALUATION MODULE PROVIDES INTERFACE TO CONSUMER FLECTRONIC BUS

The SEM-200 Smarthome evaluation module from CyberLynx (Boulder, CO, (303) 444-7733) provides easy access to the Consumer Electronic Bus (CEBus) currently being developed as a standard under the sponsorship of the EIA. The CEBus is a low-cost, multimedia LAN designed to interconnect appliances, audiovisual equipment, and other household devices. The $\$ 450$ SEM-200 acts as a network node and LAN analyzer that monitors network traffic. You can connect a PC or a dumb terminal to the unit's RS-232C interface to observe activity on the CEBus network. The module provides digital inputs and relay outputs that allow you to add CEBus capability to a wide range of product prototypes. CyberLynx and Texas Instruments (Dallas, TX) are jointly developing a line of interface ICs for the CEBus.-Steven H Leibson

PC/AT GPIB INTERFACE OFFERS 1-MHz DMA TRANSFERS

If you have an IBM PC/AT or compatible computer, you can use the AT-GPIB expansion card from National Instruments (Austin, TX, (515) 250-9119) to speed your IEEE-488 communications. This $\$ 495$ interface lets your 80386- or 80286 -based computer communicate with as many as 13 instruments at data-transfer speeds reaching 1 M byte/sec. Bidirectional FIFO buffers let the device read at 1 M byte/sec, write at 700 k bytes $/ \mathrm{sec}$, and execute GPIB commands at 320 k bytes $/ \mathrm{sec}$. The AT-GPIB comes with the NI-488 software package, which includes BASICA, Quick BASIC, and a binary MS-DOS device driver with more than 30 IEEE-488 functions. The board can use one of 11 selectable lines to interrupt the host PC.-J D Mosley

ANALOG MEASUREMENT MODULE OFFERS 50-kHz THROUGHPUT

For applications requiring 16 -bit A/D conversions, you can select the AMM2 Master Analog Measurement Module from Keithley Instruments (Cleveland, OH, (216) $248-0400$) for $50-\mathrm{kHz}$ data transfer. The $\$ 1155$ module offers 16 single-ended or eight differential analog inputs, a crystal-controlled oscillator for jitter-free FFT analysis, and an external trigger. The AMM2 provides programmable operating parameters that let you control gain and configure inputs. The unit automatically performs internal calibration when used with the manufacturer's Soft500 and Quick500 data-acquisition software.-J D Mosley

MICROCOM NETWORKING PROTOCOL INCLUDED ON MODEM CHIP SET

Sierra Semiconductor (San Jose, CA, (408) 263-9300) is changing the program of its SCllOll modem processor: The new version, the SCllO13, will implement the Microcom Networking Protocol (MNP). This protocol has been used for many years to provide error-free communications in the banking industry. The MNP is a data-
communications protocol for full-duplex, error-free communication over ordinary voice-grade telephone lines. Software-communication packages use similar techniques, but these tend to be machine dependent. MNP exists in firmware within the modem, so any computer or terminal can be used. The protocol includes a data-compression algorithm that provides an effective data rate as high as 2900 bps with a 2400 -bps modem. The SCllO13 modem processor and the SCllOO6 modem analog peripheral together cost $\$ 33.50(25,000)$. You'll also need some extra components such as a RAM, a USART, and some logic circuits; you can obtain all the necessary parts for \$7.50. In effect, you'll be able to build a modem that implements the MNP for less than \$ll over the cost of producing a standard 2400-bps modem.-David Shear

GRAPHICS CHIP AND MATH COPROCESSOR INCREASE DRAWING SPEED

The TMS34020-the latest version of the TMS34010 graphics processor from Texas Instruments (Dallas, TX, (800) 232-3200 ext 700)—can make use of the company's new TMS34082 floating-point coprocessor to accelerate graphics functions such as coordinate transformations. In addition, the 34020 has 25% more microcoded graphics primitives, so it can render the primitives faster than can software-based primitives. All 34010 object code is upwardly compatible with the 34020 . The 34010 has a 32-bit internal and a 16 -bit external data bus; the 34020 has an internal and an external 32 -bit data bus. The 34020 runs at from three to 20 times the speed of the 34010. Samples of both the 34020 graphics processor and the 34082 math coprocessor will be available in the fourth quarter of 1988 at $\$ 500$ each; production quantities will be available in the first quarter of 1989. You can expect to see the price of the 34020 drop by an order of magnitude within the next 18 months.-Margery S Conner

INTERFACE UNIT CONVERTS SCSI TO ETHERNET

The Nodem allows you to connect your personal computer to Ethernet via your computer's SCSI port. The unit is completely external; it doesn't use your computer's expansion slots, and it has its own wall-mounted power supply. You adapt the unit to your system configuration by using software supplied with the unit. The Nodem works with IBM PCs and compatibles, the IBM PS/2, and the Apple Macintosh. It's transparent to AppleTalk.

The units are made by Adaptek (Milpitas, CA, (408) 945-8600), but will be marketed primarily by LAN-system suppliers and value-added resellers. The standard Ethernet version will cost approximately $\$ 545$; the Cheapernet and twisted-pair versions will sell for about $\$ 595$. The units will be available with software for Macintosh systems in September; software for IBM systems will be available in early 1989.-Richard A Quinnell

MULTITASKING, RESIDENT BASIC COMPILERS TARGET EMBEDDED SYSTEMS

The MTBasic compilers from Softaid Inc (Columbia, MD, (301) 964-8455) provide multitasking Basic and a kernel operating system for diskless, embedded-processor systems employing the Zilog Z80 or Z280, the Hitachi 64180, or the Intel 8088μ Ps. The compilers reside in a ROM on the target system and offer a conventional programming environment similar to that provided by compilers running on personal computers. The vendor supplies source code for each compiler, allowing you to tailor features of the language for your specific application. Each compiler costs $\$ 6500$. -Steven H Leibson

THE COMPETITION IS STILL TALKING ABOUT THEIR 10-BIT FLASH ADC

WE'RE SHIPPING OURS

That's right - shipping. For years there's been a lot of talk about monolithic 10 -bit ADCs . The talk is over. The TDC1020 is a reality. The world's first monolithic 10 -bit flash ADC is available from TRW LSI Products.
And the best news is the performance. It's going to be hard to beat. This truly state-of-the-art flash converter guarantees 10 -bit resolution at a 20 MSPS conversion rate over both commercial and r.ilitary temperature ranges. Packaged ir a 64 -pin DIP, its outstanding fe ares include TTL interface, overflow flag, selectable output formats and guaranteed no missing codes. All you need is a standard $+/-5$ V power supply and a challenging application.
The TDC1020 can help your equipment achieve the kind of performance
that you've been dreaming about for years. But beyond performance, the TDC1020 in your system will be a real cost and space saver too.
So stop listening to all the talk about 10 -bit ADCs. The TDCl020 is here. Now! Try it in your medical imaging, broadcast video, military, process control equipment or any other demanding application.
Call for a full data sheet, pricing and immediate technical assistance. Production quantities are available right now from TRW LSI Products and our national distributors - Hall-Mark and Hamilton/Avnet.

> TRW LSI Products -
> Bringing the worlds of Data Acquisition and DSP together.

TRW LSI Products Inc.
P.O. Box 2472

La Jolla, CA 92038 619.457.1000

In Europe, phone: TRW LSI Products Inc. Munich, 089.7103.124;
Paris, 1.69.82.92.41;
Guildford (U.K.), 0483.302364
In the Orient, phone:
Hong Kong, 3.880629;
Tokyo, 3.487.0386, 3.461.5311;
Taipei, 751.2062;
Seoul, 2.553.0901
TRW Inc. 1988 - 712A02887
TREI
TRW LSI Products Inc.

NEWS BREAKS: international

ADA COMPILERS MAKE TRANSPUTERS SUITABLE FOR MILITARY SYSTEMS

If you're using Inmos Transputers in embedded systems for military contracts, you'll probably be required to write the system software in the Ada programming language. Two compilers being developed by Alsys SA (La Celle Saint-Cloud, France, TLX 697569; in the US: Waltham, MA, (617) 890-0030) can help. The compilers generate code for any of the Inmos 16- and 32-bit integer Transputers or the IMS-T800 floating-point Transputer. One is a cross-compiler that runs on DEC VAX computers under VMS; the other is a host compiler that runs under MS-DOS on IBM PCs and compatibles to which you've added a T800-based add-in card. For a medium-sized VAX, the cross-compiler is expected to sell for around Fr 250,000 . The PC-based host compiler will probably cost around Fr 50,000.

Although these compilers won't be available until the middle of 1989, you can start software development now by using one of the company's currently available VAXbased validated Ada compilers. Because all the company's Ada compilers share a common-root front-end and intermediate code, the software you write with one of the available compilers will recompile to Transputer code when run through the Transputer's Ada compiler. To meet military-hardware requirements, Inmos (Bristol, UK, TLX 444723; in̨ the US: Colorado Springs, C0, (719) 630-4000) plans to introduce a version of the T800 Transputer that's qualified to MIL-STD-883C during the first quarter of 1989. The company will follow that product with military versions of the 16and 32 -bit integer Transputers later the same year.-Peter Harold

SIFMENS AND AMD AGREE TO DEVELOP PIN-COMPATIBLE ISDN CHIP SET

Siemens Components (Munich, Germany, TLX 521000; in US: Santa Clara, CA, (408) 980-4500) and Advanced Micro Devices (Sunnyvale, CA, (408) 732-2400) have agreed to jointly develop and supply ICs for the telecommunications and data-communications industry, with emphasis on an ISDN chip set. You will be able to obtain pin-compatible devices from both companies, selecting from a set of 15 devices (13 Siemens chips and two AMD chips) that are based on a common architecture. PSB2llO ISDN terminal adapter circuit, PEB2085 ISDN subscriber-access controller, and the Am'79C401 integrated data-protocol controller. The companies will begin by offering each other's parts; then they'll exchange manufacturing technology to build a true alternate-source capability for the entire set of devices.-Richard A Quinnell

TOSHIBA FORMS TUNNEL JUNCTION FROM SUPERCONDUCTOR MATERIAL

According to reports in the Japanese press, Toshiba Corp has created a thin-film technology for high-temperature superconducting material that may make commercial superconducting computer chips possible. The company has successfully combined lead and yttrium-based superconductor material, forming a tunnel junction. The firm used this procedure to make a prototype, and confirmed that the device's voltage could be used in on/off switching functions. These results reportedly represent the first time anyone has confirmed such a function in a superconducting device.-Joanne Clay

How to Beat EMI/RFI Once and For All!
 With high performance TDK EMI/RFI components

 Ceramic Capacitors

With recent advances in digitization and integration, electronic circuits require a higher degree of reliability than ever before. Advanced circuits and devices now have to overcome expanding EMI environments and the tighter international EMI/RFI standards enforced by the FCC, CISPR, and DIN. TDK technology can help.

Our expertise in ferrite and other materials technology has produced an outstanding line of noise-beating components, all manufactured according to integrated production processes. We offer every kind of EMI/RFI filter imaginable-from power source filters to through hole filters-to combat noise from the low to high frequency range.

Our products include ferrite cores, amorphous magnetic materials, ceramic capacitors, varistors, radio wave absorbent materials, and electromagnetic shielding materials. All carry the TDK guarantee of reliability, and are suitable for a variety of applications, including advanced computers, automobile electronics, and OA and FA equipment.

And with TDK, you get more than noise-combatant components. You also get our full support services, whether it's a matter of constructing an electromagnetic wave anechoic chamber, or devising the right measurements.

C든is at your service. CEL, TDK's Component Engineering Laboratory in Torrance, CA, can assist you by custom designing and test manufacturing TDK EMI/RFI
Components to meet your specific requirements. Call (213) 530-9397.

Ferrite Beads/Ferrite Chip Beads

Common Mode Choke Coils /Line Choke Coils (SF Type)

TDK Electromagnetic Compatibility Technology - At Your Service!

终TDK

[^1]

Tough enough to meet full MIL-specs, capable of operating over a wide -55° to $+100^{\circ} \mathrm{C}$ temperature range, in a rugged package ...that's Mini-Circuits' new MAN-amplifier series. The MAN-amplifier's tiny package (only 0.4 by 0.8 by 0.25 in.) requires about the same pc board area as a TO-8 and can take tougher punishment with leads that won't break off. Models are unconditionally stable and available covering frequency ranges 0.5 to 500 MHz and 0.5 to 1000 MHz , and NF as low as 2.8 dB .

Prices start at only $\$ 13.95$, including screening, thermal shock $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, fine and gross leak, and burn-in for 96 hours at $100^{\circ} \mathrm{C}$ under normal operating voltage and current.
Internally the MAN amplifiers consist of two stages, including coupling capacitors. A designer's delight, with all components self-contained. Just connect to a dc supply voltage and get up to 28 dB gain with +9 dBm output.

The new MAN-amplifier series... another Mini-Circuits' price/performance breakthrough.

	(MHz)
MODEL	f_{L} to f_{u}
MAN-1	$0.5-500$
MAN-2	$0.5-1000$
MAN-1LN	$0.5-500$
-MAN-1HLN	$10-500$

$+\dagger$ Midband $10 \mathrm{f}_{\mathrm{L}}$ to $\mathrm{f}_{\mathrm{U} / 2}, \pm 0.5 \mathrm{~dB} \quad \dagger \mathrm{ldB}$ Gain Compression
Δ Case Height 0.3 In . Max input power (no damage) +15 dBm ; VSWR in/out 1.8:1 max.
finding new ways ...
setting higher standards
\square Mini-Circuits

one-piece design defies rough handling foom

- Each unit undergoes high-impact shock test
- Unexcelled temperature stability, $.002 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
- 2 W max. input power (SMA is 0.5 W)
- BNC,SMA and N models (TNC, consult factory)
- Immediate delivery, one-year guarantee
- 50 ohms, dB values,
$1,2,3,4,5,6,7,8,9,10,12,15,20,30$, and 40
- 75 ohms dB values, $3,6,10,15,20$ BNC only
- Price (1-49 qty.)

CAT (BNC) \$14.95 SAT (SMA) \$17.95
NAT (N) $\$ 19.95$
finding new ways ...
setting higher standards
Crn
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500

Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

*Freq. (MHz)	Atten. Tol. (Typ.)	Atten. Change, (Typ.) over Freq. Range		VSWR (Max.)	
		DC-1000	$1000-1500$	DC-1000 MHz	$1000-1500 \mathrm{MHz}$
$\mathrm{DC-1500} \mathrm{MHz}$	± 0.3	0.6	0.8	1.3	1.5

*DC-1000 MHz (all 75 ohm or 30 dB models) $\mathrm{DC}-500 \mathrm{MHz}$ (all 40 dB models)
Model Availability
SAT (SMA) CAT (BNC) NAT (N)
Model no. = a series suffix and dash number of attenuation.
Example: CAT-3 is CAT series, 3 dB attenuation.
Precision 50 ohm terminations only $\$ 7.95$ (1-24) DC to $2 \mathrm{GHz}, 0.25 \mathrm{~W}$ power rating, VSWR less than 1.1 BNC (model BTRM-50), TNC (consult factory) SMA (model STRM-50), N (model NTRM-50)

You wouldn't do this with your AnalogVLSI devices.

You'll have to if you go to most ATE companies for a solution to today's sophisticated "system silicon" testing problems. Because all you'll get is a makeshift tester. And that means resigning yourself to man-months of custom hardware work integrating analog and digital instrumentation. And putting up with the long hours of low-level software development that go with custom solutions. Worse, you can expect these delays to cut your chances of getting your product to market on time.

Teradyne now has a simple answer to this complex testing problem. The A500 Analog VLSI Test System. It's the first of a new generation of systems specifically for AVLSI "system silicon" devices. A test system that can help you cut critical product development time by months or even years.
One Test System, Once and for All
With AVLSI devices you won't get fast design feedback, unless you test individual components-the
"building blocks" of system silicon. And you won't comply with customer and industry requirements if you don't do complete "system" functional testing. With conventional test systems it means two of everything. Two testers, two test programs, two insertions, two data bases. And more than twice the time to get to market.

The A500 allows you to do it all with one system. So there's only one system to program. One insertion to make for both component and functional testing. And only one data base to work with. Which means significantly less time to market.

Vector Bus II"': the Great Integrator

The heart of the A500 is Teradyne's unique Vector Bus II architecture. It integrates analog and digital VLSI test capability at the system level. Which means you won't have to build special applications hardware for every new device you design. Vector Bus II eliminates that costly custom-work bottleneck

Why accept it in an AnalogVLSI Test System?

with such features as TimeMaster ${ }^{\text {mi }}$ Synchronization, Mixed-Signal Event Control, and MultiSource Data Mixing.

A Picture's Worth a Thousand Keystrokes

The A500 also revolutionizes program development. Our IMAGE ${ }^{\text {m }}$ (Interactive Menu-Assisted Graphics Environment) software gives you graphics programming as powerful as device designers' CAD/CAE tools. Using a mouse to control multiple windows, pop-up menus and software "power tools," you move ideas rapidly from mind to screen. And much faster to market.

Teradyne's new A500 is the only test system with the features you need to win the race for Analog VLSI market opportunities. To find out more, call Beth Sulak at (617) 482-2700, ext. 2746. Or call your nearest Teradyne sales office or write: Teradyne, Inc., 321 Harrison Avenue, Boston, MA 02118.

IERADNE

We measure quality.
\square AD9500

FEATURES
10ps Delay Resolution
2.5 ns to $+100 \mu \mathrm{~s}$ Full Scale Range

Differential Inputs
Separate Trigger and Reset Inputs
310 mW Power Dissipation
APPLICATIONS
ATE
Pulse Deskewing
Phase Correction
High Stability Timing Circuits
Waveform Generators

PRODUCT DESCRIPTION

The AD9500 is a digitally programmable delay generator which includes virtually all the circuits needed for generating time delays for digital pulses. It provides 256 programmed delays in a user-specified full scale range which can be varied from more than 100μ s to as little as 2.5 ns . On the latter scale, it can resolve increments as small as 10 picoseconds.

Its output is delayed from the input by a time which is directly proportional to the 8 -bit digital input code. Using groups of AD9500 devices is an excellent way to adjust signal timing skews and delays in various system applications

Differential TRIGGER and RESET control inputs are designed primarily for ECI. signal levels but will also function with analog and TTL levels. An on-board ECL reference midpoint allows both to be driven by either single-ended or differential ECL circuits.
Two temperature ranges and three packages are available. For industrial temperatures of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, order the AD9500BP or the AD9500BQ. The "P" suffix indicates a 28 -pin PLCC; the "Q" designates a 24 -pin ceramic "skinny" DIP with 0.3 " package width. For extended temperatures of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, order the AD9500TE (28 -pin LCC) or AD9500TQ (24-pin skinny" DIP).

AD9500 Functional Block Diagram

PRODUCT HIGHLIGHTS

1. The AD9500 delay generator is an extremely versatile but remarkable, casy-to-use timing device. A few basic configurations can be expanded and extended into multiple applications
2. Accurate control of pulse timing is critical for all digital electronic systems, and many systems require that delays be controlled digitally. Until now, the majority of systems using that technique used discrete LSI devices which may consume up to one watt or more of power. The AD9500 performs the same function with 300 mW of power.
3. Like a high speed counter, the AD9500 can be programmed with a binary digital word. This makes the unit a variable delay device, in effect, a digital-to-time converter (DTC The digital input word scales the time reference of the AD9500 in essentially the same way a digital word scales voltage or current references in a DAC

SIGNALS \& NOISE

EE seeks source of basic, general-purpose algorithms

The company I work for designs medical test equipment, and most of our work involves 8-bit microprocessors in embedded-control applications. We use IBM PCs and compatibles as development tools, and there is plenty of software for that environment. However, there is no source that I can find for writing the fundamental algorithms that we take for granted in a high-level language. What I'm very anxious to find are sources for algorithms in general terms that can solve the problems we often encounter.
For instance, floating-point routines, sine, cosine, tangent, square root, graphics, and ASCII-to-binary routines are becoming much more important to our needs. Where can the fundamental algorithms be found to implement these functions?

The ideal solution for me would be
a reference book (or books) that described at a flowchart level how to code these algorithms independently of a specific processor. This method allows the designer to pick the best hardware solution without depending on the availability of some special-purpose software that is written for only one $\mu \mathrm{P}$.
In the accompanying table, I've listed some of the particular needs that I've run across; it's a wish list of mysteries I'd love to see revealed.
If you could suggest some places
to look or publications that answer some of these questions, I'd appreciate it very much. I think this need is shared by a great many engineers. Perhaps someday your magazine could publish the solutions to these algorithms in generic format.
Alan Clark
Dynatech Nevada
Carson City, NV
(Ed Note: We'd like to enlist the readers' help on this one. If you know of any sources for the algo-

FUNCTION	
FLOATING POINT	ADESCRIPTION SUBTRACT, MULTIPLY, DIVIDE
TRIGONOMETRY	SINE, COSINE, TANGENT
SQUARE ROOT	INTEGER AND FLOATING-POINT SOLUTIONS
INTEGER TO FLOATING	CONVERSION
FLOATING TO INTEGER	CONVERSION
GRAPHICS	HOW TO MODEL A BIT-MAPPED PLANE; ROUTINES FOR DRAWING A LINE BETWEEN TWO POINTS; CIRCLES AND OTHER SHAPES
ASCII TO INTEGER	CONVERT ASCII STRING TO SIGNED/UNSIGNED INTEGER
INTEGER TO ASCII	CONVERT INTEGER TO SIGNED/UNSIGNED ASCII STRING

HIGH FREQUENCY low cost

The $I H-150$ is a small, lightweight, accurate non-contact current sensor for measurements up to 150 amps dc or ac peak, from dc to 200 kHz .

These Hall-effect units provide complete isolation, and do not impose a serious load on the measured circuit.

Request complete technical data today.

Board-mountable

cUR-日年T G=NEOR Reads dc to 200 kHz

Features:

- High Frequency
- Reads dc to 200 kHz
- Low Cost
- Mounts on PC Board or Bulkhead
- Made in the U.S.A.

Bulkhead-mountable

Model IH-150 Non-contact Current Sensor

6120 Hanging Mass Rid. Orlando FL 32807 Phone: 407-678.6900 TWX: 810.853-3115 FAX: 407-677-5765

SIGNALS \& NOISE

rithms Alan is seeking, please send the information to the Signals \& Noise Editor, EDN, 275 Washington St, Newton, MA 02158. We'll publish the information in this column in a future issue.)

Fault-critical applications need bugless processors

Steven H Leibson's article "Faulttolerant design spans terrestrial and space applications" (EDN, April 28, 1988, pg 180)-while naturally, in the space available, is able to offer only superficial treatment of this important subject-is particularly timely with regard to Intel's announcement of its 80376 microprocessor for embedded applications.

Embedded processors, especially high-end 32 -bit machines, are primarily intended for fault-critical applications such as those outlined in Steve's article. To use a processor in
a fault-critical application, one must have a high level of confidence in that processor's integrity-its freedom from undocumented faults that can lead to abnormal behavior. The 80386, upon which the 80376 is based, however, is becoming notorious for its number of errors, and Intel's Stepping Information (essentially a bug list showing possible ways to work around those bugs) is now at Revision D, and possibly even at Revision E. Is this an architecture one can have confidence in for a critical application?

That question leads me to a crucial point that Steve doesn't mention in his article: the problems of com-mon-mode faults and the question of software in redundant systems.

The inexperienced may be tempted to think that redundancy is a potential panacea, but that's not so. Suppose that you construct a dual-redundant system, using the same processor and the same soft-
ware in each channel. If that processor contains a fault that causes the system to crash for some combination of data and instructions, both channels will fail simultaneously.

What is needed is a processor that has been proven to contain no bugs, and that behaves in a predictable manner for such cases as illegal op codes. Such a processor would not, of course, protect against erroneous (but legal) software operations, but it would remove at least one level of uncertainty from the design of fault-critical systems. Such a processor is already commercially available: It has a RISC architecture, 32 -bit data, predictable behavior, and an architecture that has been mathematically verified to be correct. I refer, of course, to the MAS1908 Viper, which is available from Marconi and supported by Assurance Systems. Unfortunately, in the US this device seems to suffer from the NIH ("not invented here") syn-

ACOMPLETE LISTOF SWITCHING POWER SUPPLY COMPANIES LARGER THANASTEC.

We've sold over 14 million switching power supplies in the past 10 years. More than any company. Anywhere. Not to mention largest market share. So says a recent industry study.*
Yet some people still draw a blank when they hear the name Astec.

Until now.

Your Standards Will Never be the Same.

The long list of Astec standard power supplies comes from proven OEM designs that have put us in our place atop the market.

Ranging from 30 to 1500 watts, our standards give you power to be your best. Without the costs and delays of designing your own.

And with our large local stock and quick distribution, most models are only hours away-thanks to our manufacturing capabilities that can turn out 4 million power supplies a year. Each undergoing tough computer testing and 100% burn-in to ensure over 200,000 hour MTBF.

Get a Taste of Foreign Customs.

When you need switching power supplies, Astec's overseas operation keeps costs down and quality up.

So all you supply is the need. And we'll supply the power. Exactly what you want.
Which won't be a problem, since our U.S. headquarters provides sales, engineering and service
around the nation.
To learn more about The Real Power or to locate the distributor nearest you, call Astec now: 800-7AS-TEC7, ext. 11. Or write: Astec USA, 2880 San Tomas Expressway, Santa Clara, CA 95051; (408) 748-1200.
We look good on paper. And better in your designs.

[^2]

The Real Power

For tighter cross-regulation and higher efficiency in your switching power supplies.

Coilcraft's new mag amp toroids are the low-cost way to precisely regulate multiple output switched mode power supplies.
Compared to conventional linear or switching regulators, mag amp control increases efficiency, simplifies circuit design, lowers EMI, and improves reliability-especially at higher output levels.
And only Coilcraft can give you mag amps off the shelf at truly affordable prices.
Start with our handy Mag Amp Experimenter's Kit.
It contains 6 styles of 1 and 5 amp coils (2 each)
with volt-time products from 42 to
372 V- $\mu \mathrm{sec}$. To order Kit P206 (\$100) or
for more information, call 312/639-6400.

drome, so I and others will have to continue to ensure our safe descent into Logan Airport at night, in a thunderstorm, by the unproven (but not disproven) power of prayer.
Cris Whetton
President
Assurance Systems
Levittown, PA

Resistor would solve discharge-current problem

The Schmitt-trigger switchdebounce circuit appearing in the Design Idea "Switch debouncer uses few parts" (EDN, February 18, 1988, pg 244) will ultimately be unreliable, because excessive discharge current from the $4.7-\mu \mathrm{F}$ capacitor will damage the switch contacts (S1). This problem would be even more troublesome should the designer choose a switch designed for low-current switching (an appropriate choice for the type of circuit shown). A 220Ω resistor in series with the switch would solve the problem and leave the circuit's performance essentially unaffected.
Rod Deakin
Director of Engineering Services Arix Corp
San Jose, CA
(Ed Note: In fact, the circuit contains a number of problems. The author is submitting a corrected version of the Design Idea; it'll appear in a future issue of EDN.)

Omission

Part 5 of the Decade 90 Series (EDN, April 28, 1988, pg 180) neglected to mention the location of Fail-Safe Technology Corp, a consulting firm specializing in reliablesystem design. The company is based in Los Angeles, CA.

WRITE IN

Send your letters to the Signals and Noise Editor, 275 Washington St, Newton, MA 02158. We welcome all comments, pro or con. All letters must be signed, but we will withhold your name upon request. We reserve the right to edit letters for space and clarity.

Programmable IC Filters Easy To Design With Improved Performance

Filters are basic building blocks required in many systems applications. Most are built using discrete op amps, resistors, capacitors and inductors. This approach works for precision applications, but requires manual tuning of the elements. Once designed, these filters cannot be changed easily.

An alternate approach has been available for some time where the analog signal is sampled. This makes it tuneable with a clock. The circuit can be efficiently integrated on-chip using switched capacitor filter technology. This approach has been successful when used for application specific filters, however, for general-purpose filter applications it has its shortcomings: (1) the devices are difficult to use and require lots of external support circuitry; (2) very little software exists to help with the design process; (3) the devices typically exhibit excessive noise characteristics and change in value of programmed center frequency or selectivity (Q); (4) the devices only handle up to 20 kHz center frequency. Users have had to be very knowledgeable about sampled filters to successfully build one.

A new family of general purpose dual 2nd order programmable filters from Maxim, the MAX260-268, provide some solutions that can be used for precision applications over a wide frequency range.

Microprocessor or PinProgrammable

Under microprocessor control the MAX260/261/262 filters can be programmed for center frequency ($\mathrm{f}_{0}-$ 6-bits) and selectivity (Q - 7-bits). Filter characteristics can be reprogrammed in milliseconds. If $\mu \mathrm{P}$ control is not desired, pin programmed versions of
the MAX263/264/265/266 provide hard-wired control. The MAX265 and 266 resistor programmed filters provide infinite Q and center frequency resolution for precisely tuned notches and applications which require fine Q control. The MAX267/268 dedicated bandpass filters round out the family.

In addition to the MAX260 programmable filters, Maxim offers the DC-accurate, "zero offset" MAX280 filter in an 8-pin package. And, for continuous non-switched filtering applications, including anti-aliasing, the MAX270 family of digitally programmed RC active filters will be introduced later in 1988.

Programming the Filter from a PC

Complex nth order filters can be designed effortlessly in minutes with a MAX260-268 and Maxim's powerful software. This software reduces hours of searching through filter textbooks and performing hand calculations to a few simple keystrokes. It is PC-based, menu-driven and easy to use. A designer need only specify the basic parameters: type of filter (highpass, lowpass, bandpass, notch or allpass), and the frequency response. The 6color graphics routine then plots the simulated frequency response of the composite complex filter, so it can be examined on the computer screen to optimize its performance for desired results before you build it. For development work, the filters can even be programmed by connecting them to a PC's printer port without requiring $\mu \mathrm{P}$ programming or adjustments.

Improved Performance

Center frequencies of the MAX260 family range from .01 Hz to 140 kHz . This extends bandwidth up to six times higher than previous switched capacitor filters. 100 uV Wideband RMS noise represents less than $1 / 2$ LSB in a precision 12-bit system. The MAX260268 4th order and MAX280 5th order filters are three to four times quieter than
(Please see Programmable Filters on back)

Replace Two DG211's With The MAX333

Aquad Single Pole Double Throw $(4 \times$ SPDT $)$ analog switch from Maxim can now replace two DG303s, two IH5043s, or a DG211 plus DG212-at a lower price per channel than any of the alternatives.

The MAX333 is specifically designed for large volume applications such as disk drives, environmental controls and telecom.

At $\$ 2.37$ (1000-up), the cost per channel for the MAX333CPP-2 is less than \$0.60!

Four Switches in One

A single pole double throw (SPDT) switch is really two switches that are operated by a single command. When one of the switches is turned on (closed), the other switch is simultaneously turned off (opened). An SPDT analog switch is therefore ideal for switching between two input signals.

The MAX333 quad SPDT switch has four distinct SPDT switches on a single chip. Previously, the best a designer could get was two SPDT switches in a package.

Guaranteed +12V Operation

In addition to dual supply operation guaranteed over $\mathrm{a} \pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$, the MAX333 can operate with just one supply where ground serves as the negative supply. Single supply operation is guaranteed for supplies ranging from +10 V to +30 V . Electrical specs for

Programmable Filters (cont'd)

Maxim's Family of Filter Products				
Part No.	Freque	ncy Range	Prog. Interface	Price*
Dual 2nd Order-Universal Filters				
MAX260	0.01 Hz	to 7.5 kHz	Microprocessor	\$6.50
MAX261	0.40 Hz	to 57.0 kHz	Microprocessor	6.50
MAX262	1.0 Hz	to 140.0 kHz	Microprocessor	7.50
MAX263	0.4 Hz	to 57.0 kHz	Pin Strap	6.50
MAX264	1.0 Hz	to 140.0 kHz	Pin Strap	7.50
MAX265	0.4 Hz	to 57.0 kHz	Resistor and Pin Strap	6.50
MAX266	1.0 Hz	to 140.0 kHz	Resistor and Pin Strap	7.50
Dual 2nd Order-Bandpass Filters				
MAX267	0.4 Hz	to 57.0 kHz	Pin Strap	6.50
MAX268	1.0 Hz	to 140.0 kHz	Pin Strap	7.00
Dual 2nd Order-Lowpass RC Filter				
MAX270	1.0 Hz	to 25.0 kHz	Pin Strap or Microprocessor	5.00
5th Order Lowpass Filter-Zero DC Offset				
MAX280	0.1 Hz	to 20.0 kHz		3.55
Universal 2nd Order Filter				
MF10	0.1 Hz	to 30.0 kHz	Resistor	1.70
* 1000-up.				

filters like the MF-10. Dynamic Range is in excess of 88 dB !
1% clock-to-fo ratio accuracy and only 5ppm/ ${ }^{\circ} \mathrm{C}$ variance in center frequency and gain are guaranteed over the full military temperature range.

No External ComponentsMinimum Size

The MAX260 filters eliminate up to 8 resistors needed to program previous filters. All filters are available in DIPs and $0.3^{\prime \prime}$ wide SOIC surface mount packages at no extra cost.

Ease of Design

A sample bandpass filter with the following desired parameters:

Center frequency (fo)	$=15.6 \mathrm{kHz}$
Pass bandwidth	$=15.6 \mathrm{kHz}$
Stop bandwidth	$=46.8 \mathrm{kHz}$
Max. passband ripple	$=1.0 \mathrm{~dB}$
Min. stopband attenuation	$=20 \mathrm{~dB}$

Using the filter software, the order (number of poles), $\mathrm{f}_{\mathrm{o}}, \mathrm{Q}$ and number of sections is determined. The software generates the digital coefficients required by the filter, ' N .' 'The values of ' N ' are listed in Figure 1, as well as the chosen clocks and mode selection.

In this example, two 2nd order filter sections are required. This can be implemented using one MAX262.

Both halves of the filter operate in Mode 1 (Fig. 2) and use the same clock source, which is switched from 1 MHz to 2 MHz and 3 MHz , resulting in center frequencies of $15.6 \mathrm{kHz}, 31.3 \mathrm{kHz}$ and 47.0 kHz , respectively (Fig. 3).

Replace Two DG211's (cont'd)
12 V operation are shown on the data sheet as well as the specs for typical analog supplies of $\pm 15 \mathrm{~V}$. The MAX333 does not require a separate +5 V logic supply for either single or dual supplies and is completely TTL/CMOS logic compatible.

Only 2 mW Power Dissipation

The MAX333 requires only $130 \mu \mathrm{~A}$ positive supply current and $10 \mu \mathrm{~A}$ negative supply current. Its analog signal range includes both the positive and negative supplies. ON resistance is 140 ohms and ON leakage only 0.2 nA . OFF leakage is 0.02 nA with a turn off time of just 50ns.

The MAX333 makes a useful flying capacitor multiplexer that multiplexes two channels differentially, removing any common mode signal present. Line rejection in industrial applications benefits from such an arrangement because the circuit can reject line interference and present the signal conditioning amplifier with an improved signal to noise ratio.

In telecommunications, the switching between different banks of channels is more cost effective with a MAX333. Not only is the cost per channel lower, but the device requires less board space than the alternativesespecially if the surface mount (SOIC) package is used.

In disk drive circuits the MAX333 enables multiplatter or disk read/write amplifier circuits to be switched into a common data separator/servo control circuit.

The MАХЗз3 complements Maxim's broad line of proprietary analog switches and multiplexers. Maxim supplies both industry standard analog switches (DG200, DG300, IH5040, and IH5140 families) and 'improved' proprietary devices such as the low power, high speed MAX331/332, an upgrade of the popular DG201/202.

> FREE \star Filter Booklet (CIRCLE 10)

Analog Switch Book

(CIRCLE 11)
Comprehensive descriptions and application information on
Maxim's analog switch and
filter devices.
For immediate applications assistance, call (408) 737-7600 or write Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, California 94086.

> HP humbly introduces the highest performance multimeter in the world.

100,000 readings per second and Cal Lab accuracy.

Lots of people claim they have the best multimeter, but we're just going to let the specs do the talking. You'll see we've created a multimeter that doesn't present you with a bunch of trade-offs-you can have speed and accuracy.

- 100,000 readings per second at $41 / 2$ digit resolution. If you need $51 / 2$ digit resolution, you'll get it at 50,000 readings per second.
- Remarkable throughput rate-change a function and change a range, take
a measurement and output to the bus 200 to 300 times per second.
- Calibration standard accuracy and $81 / 2$ digits.
- Modest price: $\$ 5,900.00$ *

To get complete technical specifications before you order an HP 3458A DMM for your system, call 1-800-752-0900, Dept. A215.

HEWLETT
PACKARD

Save nanoseconds on logic.

And months on design.

Logic Automation's model cell library now contains all RCA Advanced CMOS Logic circuits. Any other approach to logic design is a waste of time.

You know the advantages of CMOS, such as low power dissipation, high noise immunity and wide operating temperature range.

And you probably know that AC/ACT logic adds a new dimension to CMOS: advanced speed.

But you may not know that this faster logic can now be designed-in much faster.

System-level AC/ACT simulations.

RCA AC/ACT is the first advanced-speed CMOS logic to have all its circuits (more than 100 and growing rapidly) available as SmartModelst in Logic Automation's library.

These sophisticated behavioral-level models don't need the computing power of a mainframe. So you can use them on just about any popular engineering workstation.

But what really sets SmartModels apart is their technique of Knowledge-Based Design Verification. Each model has been worked on by engineers and systems designers who know the design problems you're most likely to encounter when using parts from the AC/ACT library.

If any of these errors does occur, it is immediately pinpointed. You get the exact time, location and nature of the problem.

All circuits are checked for timing (including setup, hold, frequency and pulse width), and usage (specific checks for each device).

The result is far less prototyping. Which means savings of months. And thousands of dollars.
A new world of design possibilities.
RCA AC/ACT gives you the speed of FAST.*

But power dissipation and idling power are small fractions of FAST ICs.

So, for example, you can design a computer that doesn't have a cooling system. Or a sealed system to prevent dust problems. Or dramatically reduce your system's size.

System-level simulations eliminate the need for prototypes, saving time and money
In addition, AC/ACT gives you latch-up and ESD protection. All this at FAST prices.

And these circuits are available in Military/Aerospace versions for the most demanding applications.

Start saving time on both logic and design right now, by calling toll-free 800-443-7364, ext. 29.

Or contact your local GE Solid State sales office or distributor.
In Europe, call: Brussels, (02) 246-21-11; Paris, (1) 39-46-57-99; London, (276) 68-59-11; Milano, (2) 82-291; Munich, (089) 63813-0; Stockholm (08) 793-9500. ${ }^{+}$SmartModel is a registered trademark of Logic Automation, Incorporated.
${ }^{*}$ FAST is a trademark of National Semiconductor Corporation.
General Electric Company, U.S.A

GE Solid State

OKI DSP cmos

True 22-bit Floating Point - 100ns cycle

New OKI 699210 - Internal memory doubled

Solid PC-based Development Support - High-level assembler

OKI System Technologies for Customer Solutions

The OKI DSP ఒ々-bit Floating Point flexibility, on a single CMOS chip.

\author{

+ Expanded on-board RAM and ROM + Powerful instruction expansion + High-speed cycle times + Unique application ease.
}

OKI gives you a big lift in Digital Signal Processing. With the fastest-growing family of CMOS devices and high-level support tools on the market today. Only OKI now offers true floating point CMOS DSP solutions, because we target our system technologies to customer needs.

The OKI DSP chips.

Now joining our widely-applied 6992 DSP: the new code-compatible OKI 699210, setting new benchmarks in both price and performance. A 1.5 micron CMOS design, the new $\mathbf{2 1 0}$ significantly expands your DSP capabilities-at a significantly lower cost.

We built in twice as much internal memory: 512×22-bit words of data RAM; $2 \mathrm{~K} \times 32$-bit words of instruction ROM. 210 instructions have been expanded to include a power-down mode, save and recover modes, as well as the ability to inhibit post-normalization. Plus programmable wait states for interfacing with slow memory.

Both single-chip DSPs, 6992 and 210, can be configured for floating point format, fixed data format or logical data format. Both offer 100ns instruction cycle times. And any code written for the 6992 can be run on the 210 .

The OKI DSP support.

All our device-family innovations are enhanced by OKI's complete family of DSP support tools. These cover every development and programming function involved in any DSP design effort. Quickly, simply and cost-effectively.

Your total development process is PCbased, using OKI's own DSP hardware and software tools. Plus you can assemble in high-level mnemonics, with our Intermediate Language Assembler. Makes programming easier since the pipeline is invisible, while still producing very efficient code.

CIRCLE NO 50

We've made debugging easier too. With SIM92/210 software for simulation, and the EVA92/210 board for evaluation. To handle emulation, we can supply an ICE for realtime development. Or use our special PC-AT cards. The first is a digital card for ICE-less emulation. The other provides 12-bit ADC-DAC conversion, with programmable sampling rates and antialiasing filter.
It's all here: high-level math processors plus a high-level development process. True DSP solutions, simplified by the industry's most committed system technologies.

OKI DSP - Set yourself up!

Please send complete DSP technical data package for:
\square OKI 6992 - 22-bit Floating Point CMOS DSP.
\square OKI 699210 - 22-bit Floating Point CMOS DSP.
\square Call me. I have immediate requirements.
Tel:(__)
Name/Title
Company
EDN080488
Please clip coupon to business card or letterhead and return to:
DSP Customer Service, OKI Semiconductor,
650 N. Mary Avenue, Sunnyvale, CA 94086. (408) 720-1900.

Introducing Major DC and Patriot DC with optional ThermaPro-V Technology. High pressure capabilities for computer and telecommunications applications, combined with ThermaPro-V, make Major DC and Patriot DC a design engineer's answer to complex cooling problems.
Comair Rotron's Major DC and Patriot DC with patented feathered edge blades offer wide voltage input and extended performance ranges. Simplified circuits, increased options, quiet ball bearing operation and an all metal venturi are now available in a single fan for multiple use.
ThermaPro-V Technology, Voltage Regulated, Programmable, and Thermally Speed Controlled.
Comair Rotron. The First Name in Forced Convection Cooling Technology.

$\mathrm{T}_{P \text { fromp }}^{\text {her }}$
 For literature only call 800-367-2662. In NYS and for product or technical assistance call our application Engineering Dept. at (914) 246-3615.
 COMAIR $=$ ROTRON
 12 North Street Sawyer Industrial Park, Saugerties, N. Y. 12477-1096

 Telephone: (914) 246-3615 TWX 910-333-7572 Telex: 551496CIRCLE NO 18

Tight Schedule? Complex Project? Tough Problems?

Add MicroDimensions to Your Team

Let MicroDimensions assist you - with complete hardware and software development services.

> -We can help you with part of a project you prefer not to handle - or all of the job from start to finish
> -Hardware design facilities include a complete electronic design lab including CAD design toos \& PC layout
> -Software development capability in a wide range of languages, environments, including VAXVMMS, and the $68 \times x$ family
> -System integration services include system design, prototyping, assembly and testing
> -Our specialties include VME, MAP, communications, and process control. We have extensive servo experience
> -We are proud of our proven record of performance on schedule, within budget
> -A prestigious client list including many Fortune 100 companies

For a corporate brochure contact Bruce R. Knox, President
MicroDimensions, Inc.
7345 Production Drive
Mentor (Cleveland), Ohio 44060
Phone: (216) 974-8070 • FAX: (216) 974-1648

CALENDAR

International Conference on Handheld Computing, Corvallis, OR. Eric Gakstatter, ICHC, 301 NE Byron Pl, Corvallis, OR 97330. (503) 752-5456. August 4 to 6.

CASE Benchmarks: A Product Comparison Seminar, Atlanta, GA. Digital Consulting Inc, 6 Windsor St, Andover, MA 01810. (617) 470-3870. August 10 to 12.

Microwave Circuit Design I: Linear Circuits (short course), College Park, MD. University of Maryland Center for Professional Development, University Blvd at Adelphi Rd, College Park, MD. (301) 9857195. August 15 to 19.

Microwave Circuit Design II: Nonlinear Circuits (short course), College Park, MD. University of Maryland Center for Professional Development, University Blvd at Adelphi Rd, College Park, MD. (301) 985-7195. August 22 to 26.

Midcon, Dallas, TX. Electronic Conventions Management, 8110 Airport Blvd, Los Angeles, CA 90045. (800) 421-6816; in CA, (213) 772-2965. August 30 to September 1.

Surface Mount '88, Marlborough, MA. MG Expositions Group, 1050 Commonwealth Ave, Boston, MA 02215. (800) 223-7126; in MA, (617) 232-3976. August 30 to September 1.

Modern Electronic Packaging (seminar), Santa Clara, CA. Technology Seminars, Box 487, Lutherville, MD 21093. (301) 269-4102. September 7 to 9.

International Test Conference, Washington, DC. Doris Thomas, ITC, Box 264, Mount Freedom, NJ 07970. (201) 267-7120. September 12 to 14.

Worst-Case Circuit Analysis (seminar), Boston, MA. Design and Evaluation, 1000 White Horse Rd, Suite

BREAKIHROUGHS IN POWER,

SPEED AND VOLTAGE ...

HICH VOLTACE

Pa85/PA88

- MOSFET Technology
- 450 Volis
- 1000V/risec Slew or 2mA IQ

MIDEBAND
WA01

- 5000V/ $/$ s
- 100MHz
- 400 mA

SUPER POWER

PA03
-1KW

- $\pm 75 \mathrm{~W}$
- 30A

For more information, call our Application Hotline... (800) 421-1865
or ask for our NEW
AMPLIFIER HANDBOOK!
... 176 pages of data and applications information on $\mathbf{2 3}$ models.

Describes 65 choices including military versions and high-performance gradeouts.

\square PEX $^{\circ}$

Dedicated to excellence

APEX MICROTECHNOLOGY CORP. • 5980 N. Shannon Rd. • Tucson, AZ 85741 USA • (602) 742-8600 BELGIQUE (02) 219.58.62 - CANADA (416) $821-7800$ - DEUTSCHLAND (BRD) (06152) 61081 - FRANCE (1) 69.07 .08 .24 ISRAEL (03) 9233257 - ITALIA (02) 6131341 - NEDERLANDEN 01620-81600 - NIPPON (03) 244-3511 - NORGE (2)500650 ÖSTERREICH (1) 505-15-22-0 - SCHWEIZ (042) 412441 - SVERIGE (08) 7959650 - TAIWAN (02) 5361157 - UK 084468781 CIRCLE NO 51

Low Current High Isolation Auto Insertion Opto-Isolators

CALENDAR

304, Voorhees, NJ 08043. (609) 7700800. September 12 to 14.

C Programming Workshop (short course), Seattle, WA. SSC, Box 55549, Seattle, WA 98155. (206) 5273385. September 12 to 15.

12th International Fiber Optic Communications and Local Area Networks Exposition, Atlanta, GA. Information Gatekeepers, 214 Harvard Ave, Boston, MA 02134. (800) 323-1088; in MA, (617) 2323111. September 12 to 16.

Connector and Interconnection Technology Symposium, Dallas, TX. Electronic Connector Study Group, 104 Wilmot Rd, Suite 201, Deerfield, IL 60015. (312) 940-8800. October 3 to 5.

IEEE International Conference on Computer Design: VLSI in Computers and Processors, Port Chester, NY. Gail Clanton, IEEE, 1730 Massachusetts Ave NW, Washington, DC 20036. (202) 371-1013. October 3 to 5.

Autotestcon, Minneapolis, MN. Steve Palmer, Unisys, 3333 Pilot Knob Rd, Eagan, MN 55121. (612) 456-2349. October 4 to 6.

Buscon/88 East, New York, NY. Conference Management Corp, 200 Connecticut Ave, Norwalk, CT 06856. (203) 852-0500. October 4 to 6.

Electronic Imaging Conference East, Boston, MA. MG Expositions Group, 1050 Commonwealth Ave, Boston, MA 02215. (800) 223-7126; in MA, (617) 232-3976. October 4 to 6.

Power Electronics East, New York, NY. Conference Management Corp, 200 Connecticut Ave, Norwalk, CT 06856. (203) 852-0500. October 4 to 6.

1201 N.W. 65 th Place, Fort Lauderdale, FL 33309
*Some devices require optional Adaptors - PAL is a Trademark of Monolithic Memories Inc

SIEMENS

Announcing a 27 Billion Dollar backer for your Siemens ASIC team.

Siemens, a proven winner in electronics with $\$ 27$ billion in sales, just entered the U.S. ASIC market. And our team is geared for the ASIC circuit.
With our first effort, we've combined ECL and CML technology in one gate array family. This means you can now design-in the ideal combination of super ECL speed with economical, high-density CML performance on one chip...everytime. You no longer must compromise the speed you need for the power you don't. In addition, speed/power programming, as well as I/Os designed for both ECL $10 \mathrm{~K} / 100 \mathrm{~K}$ and TTL interfaces give you the flexibility you need.
And that's just the start. Coming down the home stretch are more Siemens entries...1.5/1.2 micron CMOS standard cells and 1.2/1.0 micron CMOS sea of gates arrays. Use our sea of gates CMOS family for quick turn logic and memory on one chip or design your high-performance, cell-based ASICs utilizing the common

ADVANCELL ${ }^{\text {TM }}$ ASIC library and guarantee yourself compatible second sources.
The Siemens ASIC team's responsive service and technical innovation provides you with the winning edge.

Siemens... your partner for the future.

(C) 1988 Siemens Components, Inc.

ADVANCELL is a trademark of Siemens AG, or licensed from Toshiba or General Electric Co., USA
in certain countries.
CG/2000-460 WLM 795
CIRCLE NO 52
For more information on how to put your design into high gear write to Siemens Components, Inc., ASIC Marketing, 2191 Laurelwood Road, Santa Clara, California 95054. Or call ASIC Marketing at 408/980-4568, and see for yourself how Siemens is making the difference on the ASIC circuit.

Siemens

Quality Assurance
Siemens
Siemens
ASIC
Siemens

In the time it takes other graphics engines to draw a few lines...

Texas Instruments TMS 34010 (2\%)

Hitachi HD63484 (20\%)

AMD Am95C60 (17\%)

Intel 82786 (25\%)

ours gives you the whole picture.

THE FIRST FULLY PROGRAMMABLE GRAPHICS PROCESSOR WITH ON-CHIP ACCELERATION

You can have the fastest calculations in the world but if your system's graphics are slow, your system is slow. National's latest addition to its Advanced Graphics Chip Set - the DP8500 Raster Graphics Processor (RGP) - is the fastest graphics engine on the market.

This 20-Mhz CMOS chip features a bus cycle time of 100 nanoseconds on back-to-back vector and block operations.

It gives you blazing speed in line drawing, BitBLT, fills, polygons, character drawing, and windowing-regardless of the number of bit planes. It also controls screen refresh.

COMPLETE FLEXIBILITY

The RGP gives you the programmability of a general-purpose processor, so you can optimize your system for specific applications. Or differentiate it from your competitors through proprietary algorithms.

The RGP, with our DP8511 BitBLT processing unit, is also the only

National DP8500 Raster Graphics Processor graphics solution that effectively allows you to select either planaror pixel-oriented operation on-the-fly. So you no longer have to lock yourself into one architecture or the other.

The RGP handles the very highest-resolution CRTs and printers, including laser printers. And it supports any type of memory.

It also gives you the right "hooks" and the right architecture for moving into 3D and solids modeling applications.

A COMPLETE SET OF CHIPS

Our Advanced Graphics Chip
Set also includes

- two BitBLT processing units
- four video clock generators
- four video shift registers
- three video RAM controllers
- a growing list of video DACs

Why high performance designers are so excited about the new PLD 7C330 State Machine:

50 MHz operation
Low power: 120 mA

As state machines go, this one goes the fastest. With the highest functional density available.

A system that lets you design state machines that can execute control sequences at a full 50 MHz without even breathing hard.

High performance designers are excited by the extensive features, led by the richness of 256 product terms.

By this part's ability to deliver twice the performance and density of previous generation PLDs, with about half the power.

By the ease of programming, using popular programming languages and machines.

And by the ability to design the highest performance state machines, with 1000 to 1500 gate functionality, using reprogrammable PLD technology.

See for yourself. Get our Preview Kit.

Our Preview Kit, with demo floppy and technical paper, even includes application ideas, like our step-by-step design example showing you how to create a 16×4 programmable multiplexer using a single CY7C330.
You'll also get the databook that has the information you need on this great part, and on ALL our high performance parts.

CMOS high speed SRAM.
CMOS high speed PROM.
CMOS high speed PLD.
CMOS high speed Logic.

PLD 7C330 Preview Kit and Data-

 Book. Yours free, for a foll-free call. DataBook Hotline: 1-800-952-6300 Ask for Dept. C43 (32) 2-672-2220 In Europe (416) 475-3922 In Canada

CYPRESS SNJUD, TWX:

Spend it here

A guest editorial in the June 21st Wall Street Journal describes the causes of today's memory-chip shortages and defends the 1986 semiconductor pact between Japan and the US. According to the author, the Japanese priced dynamic-RAM chips below cost in the early 1980s in order to drive US manufacturers out of the DRAM business. Thus, they aimed to secure the world's semiconductor markets for the Japanese manufacturers. It's true that dumping products into a market can force out domestic suppliers-as many US DRAM manufacturers found out. However, the semiconductor pact took an illogical and shortsighted approach that continues to hurt US semiconductor suppliers and consumers.

In essence, the pact forces Japanese suppliers to charge a "fair" price for their DRAM chips. However, by raising prices to artificially high levels, we give foreign manufacturers extra profit, and we fund their research. The pact gives US industries some time to regroup, but that time is hard to put a price on. As an alternative to the pact, the US could impose a tariff, but according to the Journal's contributor, a tariff would result in immediate shortages-although the author doesn't explain why. Also, multinational companies could circumvent any tariff by purchasing low-cost DRAMs in overseas markets where tariffs don't exist.

In most cases, tariffs are counterproductive-companies use them as a shield against foreign competitors. After all, if the government forces up the price for a commodity, there's no incentive for domestic companies to increase manufacturing productivity or take any other measures to compete against low-cost foreign imports. But a short-term tariff on imported semiconductors just might work. If semiconductor prices must go up, I'd rather have the extra money stay in the US than go to fund Japanese researchers' next DRAM breakthrough.

So, let's eliminate the "fair" prices and let the Japanese and others charge what the market will bear. Then let's have the US government impose a tariff on every foreign DRAM that enters the US, whether it's in a tube of chips or in a telephone manufactured in Hong Kong. We'll set the tariff at $\$ 1$ per chip.

The funds collected from the tariff will go to an industry-research group such as Sematech and to US university labs working on semiconductor research. However, a semiconductor-tariff law must have a few restrictions. First, no one will be permitted to license or transfer any of the tariff-funded research information or process technology to a foreignowned or -dominated company. Second, the tariff will diminish to zero over the next two years, and it won't be reimposed. If we detect dumping again, however, a tariff will go into effect again. To get the ball rolling, I'll contribute $\$ 1$ for every foreign-made DRAM chip in my PC-even though I bought them before the dumping started. Just tell me where to send the check.

Noonecan so butwe solve

Everyone thought gate arrays would be a great solution to their semi-custom design needs. Then they designed one and discovered that "semi-custom" translated into "expensive", "time consuming" and "risky."

PGAs let you spot system problems before they become a real headache. No more risking large sums of money and time

The solution to the solution.

Meet the Logic Cell" Arraythe first Programmable Gate Array. It's a high density CMOS chip of unmatched technology that's user programmable where it's easiest for you to program - in software.

Your development cycle is cut to a week or two instead of six months. So you can get your product to market that much sooner.
makt hat much sooner.

10

to verify your design in hardware. And if you need to change your design you can do it in a matter of minutes. Not months. And you won't have to spend any more money.

9000 ways to get ahead of schedule.

The Am2000 series has densities from 1000 to 2000 usable gates and the Am3000 series has densities from 2000 to 9000 usable gates. With those densities (we'll have even higher densities later), you need fewer parts to get the same functions as

ve the problem, d the solution.

EPLDs or discrete logic.
There is no other PGA technology available today. And over 5000 designers are already using it.

Even getting started is easy.
Your investment is minimal. You don't have to finance months of NRE. You can get started for the price of a PC(which you probably already have) and some software.

PGAs are the epitome of the just-in-time product. They are the only gate arrays stocked in production quantities at your distributor. And they're programmable instantly. Which means you can go from design to production as fast as you need to.

Even overnight.

See for yourself.

Contact us for a free diskette that gives you a detailed product overview, an interactive session where you can plug in your own design criteria and find out how PGAs can help your design. Part of the PGA development software is included so you can get started saving time and money right away.

Just call (800) 222-9323. Or drop us a line.

Advanced Micro Devices il

901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088. © 1988 Advanced Micro Devices, Inc Logic Cell is a trademark of Xilinx, Inc

Launch your design with the FIFOs that came in first.

You can't think FIFOs without thinking of the Winning Team first-SGS-THOMSON Microelectronics. We launched the standards our competitors continue to follow.

	MK4505	MK45264/5	MK4503	MK4501
Organization	$1 \mathrm{Kx5}$	$64 \times 5 \times 2$	$2 \mathrm{~K} \times 9$	512×9
Cycle Time	40 MHz	13.3 MHz	12.5 MHz	12.5 MHz
Access Time Range	$15-25 \mathrm{~ns}$	$55-70 \mathrm{~ns}$	$65-200 \mathrm{~ns}$	$65-200 \mathrm{~ns}$
Depth Expandable	x	-	x	x
Width Expandable	x	x	x	x
Packaging	300 mil $24 / 20$ Pin DIP	300 mil 24 Pin DIP	600 mil 28 Pin DIP	600 mil 28 Pin DIP $32 ~ P L C C ~$
Status Flag E, Empty. F, Full. HF Half Full. AF, Almost Full. AE, Almost Empty.	E, F	E, F	E	E
Availability				

- Sampling now
** Off the shelf-4 wks. depending on package and speed
**Off the shelf -8 wks. depending on package and speed
The industry standard 512×9 MK4501 and $2 \mathrm{~K} \times 9$ MK 4503 use a CMOS RAM-based BiPORT ${ }^{\text {TM }}$ architecture: two ports operate at fully independent data rates and provide simultaneous read/write capability.
With blazing 15 ns access speed and 40 MHz serial I/O rates, the $1 \mathrm{~K} \times 5 \mathrm{MK} 4505$
puts FIFOs on the fast track. The MK4505 is also the first FIFO to support two independent, asynchronous free-running clock inputs with a full complement of status flags, eliminating the need for extra registers and buffers. Plus, you can get all that speed and performance in an ultrathin space-saving 300 mil DIP. The SGS-THOMSON Master and Slave concept-another first-allows simpler, more economical width and depth expansion.

Want bidirectional FIFO performance?
Try the MK45264/5, a unique combination of two FIFOs on a single chip, for fully asynchronous operation...again an SGS-THOMSON first.

With surface mount packaging, commercial and military grade devices, it's easy to see why SGS-THOMSON is the industry leader in FIFOs.
We have the production capability and the advanced technology to meet your delivery, pricing, performance and quality demands. And SGS-THOMSON will continue its leadership with FIFOs of higher density, faster speed and innovative architectures.

Join the Winning Team.
 FREE MEMORY DATA BOOK
 If second best isn't good enough for you, send for the facts that prove we're the FIFO leader. You'll find them in our free Memory data book. For your copy call 602/8676259 or write SGS-THOMSON Microelectronics, 1000 E . Bell Road, Phoenix, AZ 85022.

DEECO SEALTOUCH DISPLAY SYSTEM. SEALS IN PERFORMANCE. SEALS OUT DIRT AND MOISTURE.

If there's one thing you don't need, it's dirt and moisture seeping into your display system and disrupting its performance. The DeeCO SealTouch display system is the best solution for your most demanding industrial applications.

Designed especially for harsh environments, SealTouch delivers consistently reliable performance under the most threatening conditions.

The SealTouch display system is a 3-part module consisting of flat-panel display and sealed I-R Touch panel, mounted on a controller card with VT100 text emulation and extensive drawing graphics. All within an absolute minimum footprint.

Easy-to-use touch software, pop-up menus and convenient button draw routines make SealTouch easy to design-in and simple to use. The system's programmable touch sensitivity allows you to easily implement protection against annoying false triggers. What's more, the SealTouch infra-red beam diagnostics continuously monitor system performance, assuring you of consistent reliability.

Don't take chances with any other display system. Call or write for full product information, Let SealTouch seal in performance for your design. And seal out dirt and moisture.

TECHNOLOGY UPDATE

Third-party PC graphics packages streamline your programming tasks

Margery S Conner, Regional Editor

Attention-grabbing, colorful graphics can dramatically enhance the software you write, regardless of whether you're developing it for your company's internal use or for customers. When you're writing software for IBM PCs and compatible computers, however, you'll find that addressing the PC's graphics hardware is a difficult task. To lighten your programming chores, consider using third-party graphicssoftware packages.
Third-party graphics packages for PCs come in varying degrees of complexity. Many are simply libraries of graphics subroutines that you'd otherwise have to write yourself. These packages range from general-purpose libraries (often called graphics toolkits), to libraries of specialized scientific subroutines. Other third-party packages include a graphics editor that helps you develop your display format in a hurry, and a complex graphics platform that offers a complete graph-ics-programming environment. By taking advantage of any these packages, you can develop graphics displays faster and for a wider variety of display adapters than you could on your own.
Until recently, most C and Pascal compilers for the IBM PC provided minimal support for color graphics displays. Third-party packages have filled that graphics void. However, since EGA and VGA adapters -with their relatively high resolu-tion-have become commonplace, the compiler vendors have beefed up the graphics libraries available with their compilers.

Borland International (Scotts Val-

Although the Halo '88 graphics library explicitly supports only 2-D renderings, you can develop 3-D renderings with it. Mega CADD (Seattle, WA) used Halo ' 88 as the graphics library for its Mega CADD 3D, a CAD software package.
ley, CA), for example, which sells two of the most popular versions of C and Pascal, now also offers the Borland Graphics Interface (BGI). BGI is a common graphics interface: Whether you're programming in Borland's Turbo C or Turbo Pascal, the graphics library is the same. A further advantage of using BGI is that if you're developing software for resale, you don't have to pay a royalty fee, as you do when you use most of the third-party packages for that purpose.

Keep in mind, however, that BGI is essentially just a library of primitives, which are the basic graphics commands, such as the commands to draw a point, line, circle, and polygon, and the commands to fill a circle and a polygon. Third-party graphics packages not only offer more-elaborate graphics commands, but also give you the option of programming in coordinates other than Cartesian ones. (Cartesian coordi-
nates are specific to a particular display.)

Toolkits complement compilers

If your compiler already includes a good amount of graphics support, the complexity of your application's graphics will determine whether you'll need to lay out the extra money for a third-party graphics package. Chuck Batterman, graphics manager for Borland, explains: "If you don't need the high-level windowing and world coordinates supplied in the third-party packages, then BGI will do the job for you. And if you do need the more exotic graphics, then you can get your feet wet with the BGI and know that the third-party system is a reasonable investment." In other words, if you don't know whether you need a third-party package, you can find out by using the graphics supplied with your compiler to create a prototype of your display.

MICRO-1OGCIIII. The CAE tool with a 10,000 -gate digital simulatrof for your PC.

Spectrum Software's MICRO-LOGIC II ${ }^{\circledR}$ puts you on top of the most complex logic design problems. With a powerful total capacity of 10,000 gates, MICRO-LOGIC II helps engineers tackle tough design and simulation problems right at their PCs.
MICRO-LOGIC II, which is based on our original MICRO-LOGIC software, is a fieldproven, second-generation program. It has a high-speed event-driven simulator which is significantly faster than the earlier version.

Timing Simulator
The program provides you with a top-notch interactive drawing and analysis environment. You can create logic diagrams of up to 64 pages with ease. The software features a sophisticated schematic editor with pan and zoom capabilities.

Shape Editor
A 200-type library of standard parts is at your fingertips. And for a new high in flexibility, a built-in shape editor lets you create unique or custom shapes.
MICRO-LOGIC II is available for the IBM ${ }^{\text {® }}$ PC. It is CGA, EGA, and Hercules ${ }^{\circledR}$ compatible and costs only $\$ 895$ complete. An evaluation version is available for $\$ 100$. Call or write today for our free brochure and demo disk. We'd like to put you in touch with a top digital solution.

[^3]- Built-in shape editor
- Multiple delay models
- Printer and plotter hard copy

Schematic Editor

Bracium
1021 S. Wolfe Road, Dept. E Sunnyvale, CA 94087
(408) 738-4387

TECHNOLOGY UPDATE

Halo '88 from Media Cybernetics, for example, gives you the choice of specifying graphics positions in Cartesian, world, or normalized world coordinates. Unlike Cartesian coordinates, world coordinates are not specific to a particular display. Normalized world coordinates are world coordinates expressed as a number between zero and one.

World coordinates are useful when your software may have to run on a variety of graphics boards, because display coordinates vary from one board to another. If you use Cartesian coordinates, you must know the resolution of each supported graphics device, and your software won't be device independent. With Halo '88's implementation of world coordinates, you specify the resolution of the graphics, and Halo ' 88 maps the coordinates in your program to the device coordinates of your display adapter.

Because the compilers' graphics libraries have graphics drivers that access the EGA and VGA boards directly through the hardware, they are not device independent. Device independence allows a graphics program developed for one board-say, a nonintelligent EGA-to run on another board, such as an intelligent graphics-coprocessor-based board. When you use a device-independent program, you can specify your system's board at run time, and the program will then automatically send the correct level of information to that board. For the EGA, for example, the software must calculate the position of each pixel; for a board based on Texas Instruments' (Houston, TX) TMS34010, the software only needs to send the graphics primitives.

Third-party packages support a wide range of EGA and VGA boards that offer resolutions beyond the

IBM standard, as well as boards with graphics coprocessors. Halo '88, for example, supports 144 different display adapters.

Also keep in mind that the graphics libraries supplied with compilers don't support a wide range of hardcopy output devices, but third-party packages commonly support a plethora of plotters and printers.

Port software from OS/2

A third-party graphics package that provides for portability between MS-DOS and the forthcoming OS/2 is crucial for you if your software will have to run under both operating systems. The Graphics Development Toolkit (GDT) from Graphics Software Systems is available in both OS/2 and MS-DOS versions, and their source code is compatible. GDT also supports IBM's new 8514/A intelligent display adapter. Because IBM hasn't re-

REPRESEN MANUFACTURER	TATIVE THIRD-P AN PACKAGE				$7 \forall J S \forall d$ Ogyn 1					ACKA PRICE	AGES FOR IBM PCs NOTES
COURSEWARE APPLICATIONS INC	DRAWBRIDGE	-	-		-					\$129	GRAPHICS EDITOR DETERMINES, COORDINATES, AND GENERATES CALLS FROM POSITION OF MOUSE: METAWINDOW VERSION IS $\$ 49$
ITHACA SOFTWARE INC	HOOPS	-					-			\$575	ORGANIZES PRIMITIVES INTO SEGMENTS IN HIERARCHICAL DATABASE; ALSO RUNS ON SUN, DEC, AND MACINTOSH SYSTEMS
GRAPHICS SOFTWARE SYSTEMS INC	GRAPHICS DEVELOPMENT TOOLKIT	-		-	-	-	-	-	-	\$495	SOFTWARE THAT USES MS-DOS VERSION IS PORTABLE TO OS/2
METAGRAPHICS SOFTWARE CORP	METAWINDOW	-	-	-	-	-	-	-	-	\$195	HAS DOS-RESIDENT DRIVER: BINDINGSPECIFIC VERSION FOR C COMPILERS IS \$95
	METAWINDOWIPLUS	-		-			-	-	-	\$275	LINKABLE LIBRARY: GENERATES .EXE FILE
	METAWINDOW/PREMIUM	-		-			-	-	-	\$495	LINKABLE LIBRARY WORKS WITH INTELLIGENT COPROCESSOR-BASED BOARDS
MEDIA CYBERNETICS INC	HALO '88	-	-	-	-	-		-	-	\$325	
SCIENTIFIC ENDEAVORS CORP	GRAPHIC	-	-	-						\$395	MATH FUNCTIONS AND BASIC GRAPHICS PRIMITIVES

TECHNOLOGY UPDATE

leased much information about this board's hardware, writing to it through an interface such as the GDT's is the best way at present to ensure that your software will run on the board.

Virtually all graphics toolkits must appeal to two different kinds of customers: the programmer who uses the graphics features only in programs for his or her company's internal use, and the programmer who uses the packages to develop a software-based product. Metagraphics lets you choose from three versions of its graphics package. The standard Metawindow package costs $\$ 195$ and supports a wide variety of compilers for C, Pascal, and Fortran. The company also offers a version for $\$ 95$ that supports either Microsoft C, Turbo C, or Turbo Pascal. Both these packages have DOS-resident drivers. Every time you run the program, you must first load the graphics driver into memory. (The driver can also be deleted from memory from the DOS level.) These programs are best for personal use or internal company use.

For $\$ 275$, you can obtain Metawindow/Plus, which includes a linkable graphics library; your application program links in only the graphics functions it actually uses, and it consists of a single .EXE file. Further, the code for Metawindow/ Plus is more compact than that of the DOS-resident driver version. The Plus version also supports display adapters with resolutions higher than those of the standard EGA and VGA boards. The $\$ 495$ Metawindow/Premium is also linkable, and it supports display adapters that have onboard graphics coprocessors, such as the Genesis 1280 from National Design (Austin, TX), which is based on TI's TMS34010.

Down-and-dirty math library

If you're developing software that will display graphs of specialized math functions rather than using more general-purpose graphic elements, such as windows, consider

Fig 1—This robot comprises elements stored in four segments: the base, the upper arm, the lower arm, and the torch. Because of the hierarchical relationship among the elements, a command to rotate the base will cause the arms and the torch to rotate along with it. The robot was developed at Cornell University with the Hoops graphics package.
using Graphic from Scientific Endeavors. Its $\$ 395$ price includes source code. The software performs all the calculations for a high-resolution Tektronix format of 4096×3120 pixels and shrinks it down to suit the lower-resolution EGA/VGA format. It stores the higher-resolution display on disk. Because most printers, even inexpensive ones, have higher resolution than the VGA's 640×480 pixels, you can print out a high-resolution hard copy of your math functions

Because the functions are compu-tation-intensive, it's best to use the Graphic package with a math coprocessor. For example, a $6-\mathrm{MHz}$ PC/AT without a math coprocessor takes about 90 seconds to complete a typical plot with 600 trigonometric function calls; with a math coprocessor, it takes under 10 seconds.

With any of these graphics libraries, you still have to figure out the coordinates at which you want graphical elements such as windows
and icons to appear. This task can quickly become tedious unless you use a package such as Courseware Applications Inc's Drawbridge, a graphics editor that lets you position the elements on the screen with a pointing device such as a mouse. Once you've determined the placement of the elements, Drawbridge determines all of the coordinates and generates the library calls needed to display them. Drawbridge does not contain the subroutines themselves; instead, it acts in conjuction with a graphics library. It currently supports the Microsoft C, Turbo Pascal, and Turbo C libraries ($\$ 129$ each), and the Metawindow package (\$49).
If your graphics needs are com-plex-that is, if you require lots of transformations and 3-D manipula-tions-you may be able to justify using a graphics platform such as Hoops from Ithaca Software Inc. Hoops supports 2-D and 3-D rendering as well as hidden-line removal

LOW ESR\&MORE.

AT Sprague Type 550D Solid-Electrolyte Tantalex ${ }^{\circledR}$ Capacitors, designed for use in power

 P T T T T T T Current capability. Maximum ESR for a $300 \mu \mathrm{~F}$, MANY SMPS NEEDS 6 VDC unit is only 0.045Ω at 100 kHz . Additional advantages include small size, long life, exceptional capacitance stability and hermetic sealing to withstand severe environments. Capacitance values: 5.6 to $330 \mu \mathrm{~F}$. Voltage ratings: 50 to 6 WVDC. Write for Engineering Bulletin 3548 to Technical Literature Service, Sprague Electric Co., P.O. Box 9102 , Mansfield, MA 02048-9102.
UPDATE

and shading from multiple light sources.

Most graphics libraries are procedural; they comprise many detailed, explicit drawing instructions, but have no structure that relates the various elements of the display. Hoops stores the display's graphical elements in a hierarchical database. The software lets you manipulate the display by creating the graphical elements and defining the relationships between the elements. Once you've established the relationships between the elements, you can modify the image (change the perspective, say) with just a single command.

The database's basic units are segments, or named places in the database where you can store related primitives. You create a graphics element by grouping the primitives that describe the element into a segment. Then you use declarative commands to define which elements in the database will be displayed, where they'll be displayed, and how they'll be rendered (in other words, what attributes they'll have, such as color or pattern).

The primitives in a segment are drawn according to the attributes set within the segment. Because the

Fig 2-This tree illustrates the hierarchical relationship among the segments of the robot in Fig 1. Any attributes, such as color or pattern, that are set for a segment can be inherited by the segment below it.
segments are related hierarchically, if a segment doesn't specifically set the attribute, it inherits the attribute setting from the segment that precedes it in the hierarchy.

The robot in Fig 1 provides an illustration of this characteristic. The display shows both the robot itself and a selection menu. As you can see from Fig 2, the robot figure breaks down into four components: the base, the upper arm, the lower arm, and the torch. The primitives used to draw the lower arm, for example, are stored segments corresponding to that component. The color attribute is set to yellow. The segment under the lower-arm segment contains the primitives for drawing the torch. You don't have to specify the yellow color again for the torch, because it will inherit that

For more information

For more information on the graphics packages discussed in this article, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

Courseware Applications Inc
475 Devonshire Dr
Champaign, IL 61820
(217) 359-1878

Circle No 705
Ithaca Software Inc
The Clinton House
Ithaca, NY 14850
(607) 273-3690

Circle No 706
Graphics Software Systems Inc
9590 SW Gemini Dr
Beaverton, OR 97005
(503) 641-2200

TLX 4994839
Circle No 707

Media Cybernetics Inc
8484 Georgia Ave, Suite 200
Silver Spring, MD 20910
(301) 495-3305

Circle No 708
Metagraphics Software Corp
269 Mount Hermon Rd
Scotts Valley, CA 95066
(408) 438-1550

Circle No 709
Scientific Endeavors Corp
Route 4, Box 79
Kingston, TN 37763
(615) 376-4146

Circle No 710

Microprocessor Support Made Simple

National
Semiconductor

Now you can mold the silicon to fit the logic. Not the other way around.

PROGRAM OUR GENERIC ARRAY LOGIC ANYWAY YOU WANT. REPROGRAM ANYTIME YOU WANT

These new GAL* devices emulate the full range of PAL ${ }^{*}$ archi tectures with 100 percent socket compatibility. They can even be configured to all the in-between architectures - like a 16R1 or 20R7.

You can also change architectures during the design process. And when your design is complete, you can move functions from pin to pin to simplify your board layout. You can even make changes during manufacturing - without huge penalties.
The one-device-does-all approach not only gives you unlimited design freedom, it also reduces parts counts and inventories and decreases your system costs.

REAL TESTABILITY

The first PLDs to use electrically erasable CMOS technology, GAL devices are instantly erasable and reprogrammable. (No time-consuming trips to the UV lamp.) And we guarantee 100 erase/write cycles.

This makes them ideal for prototyping and for pattern changes or

[^4]

Another advantage of CMOS technology is that these new devices are just as fast as bipolar but consume less than half the power - as little as 45 mA active and 25 mA standby.
And because they consume less power, you'll have fewer cooling problems and a much more reliable system.

REAL SOFTWARE SUPPORT

GAL devices are fully supported by industry-standard development
tools, including ABEL, CUPL, ${ }^{\text {m }}$, and PLAN."' You don't need any sophisticated or expensive upgrades.
And you don't need any special programming hardware either. Almost all hardware manufacturers support GAL parts on existing models.

So get real design freedom. These new devices are like putty in your hands.

Call National - for information on GALs or any other type of PLD. We're the only manufacturer that offers three different technologies - ECL,TTL, and EECMOS.

For a free copy of our new pro grammable logic brochure, call your local National sales engineer, authorized distributor, or National Semiconductor, MS23/200, P.O. Box 58090, Santa Clara, CA 95052-8090, 1-800-252-4488, ext. 733.

DRAMATICI

Now...Highest speeds AND production... 60/70/80ns 1Mb AND 256K DRAMS...

Exclusively from NMB Semiconductor - the high speed DRAM specialist - we've broken the speed barrier with FutureFast ${ }^{\text {M }} 256 \mathrm{~K}$ and 1 Mb DRAMS...first with access times of $60 / 70 / 80 \mathrm{~ns}$. This means designers can now have true " 0 " wait state systems without using complex, expensive cache memory techniques.

We've broken the delivery barrier too. NMBS offers much higher volume production than our competitors. These dramatic advances are made possible in the most advanced CMOS/VLSI plant in the world optimized for volume production of high speed DRAMS. With computerized operation and robot control in Class 1 ultra-clean rooms. Plus state-of-the-art design, processing and testing.

Product Line Summary				
Series*	Access Time	Organization	Package**	Availability
$\begin{aligned} & \text { AAA2800 } \\ & 256 \mathrm{~K} \end{aligned}$	$60 / 70 / 80$ (ns)	$256 \mathrm{Kx1}$	$\begin{aligned} & \text { P-DIP } \\ & \text { PLCC } \\ & \text { C-DIP } \end{aligned}$	Production Production Production
AAA1M100 $1 \mathrm{Mb}$	$\begin{aligned} & 100 / 120 \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & 256 \mathrm{~K} \times 4 \\ & 1 \mathrm{Mbx1} \end{aligned}$	$\begin{aligned} & \text { P-DIP } \\ & \text { SOJ } \\ & \text { ZIP } \end{aligned}$	Production Production Production
AAA1M200 1 Mb	$60 / 70180$ (ns)	$\begin{aligned} & 256 \mathrm{~K} \times 4 \\ & 1 \mathrm{Mbx} 1 \end{aligned}$	$\begin{aligned} & \text { P-DIP } \\ & \text { SOJ } \\ & \text { ZIP } \end{aligned}$	$\begin{aligned} & 2 \text { Q88 } \\ & 2 \text { Q88 } \\ & 2 Q 88 \end{aligned}$
- All Series avail			IS and SIPS a	for each series

Available in the packages and organizations designers want for high performance projects.

More good news. We're now shipping qualification samples of our new 1 Mb DRAM.

So for complete specs, evaluation units, quantity prices and delivery call NMBS - the high speed DRAM specialists - today. Prove to yourself that with FutureFast ${ }^{\text {tM }}$ DRAMS, your future is now.

SEMICONDUCTOR DIVISION

9730 Independence Ave. • Chatsworth, CA 91311 Tel: 818/341-3355, FAX: 818/341-8207, TLX: 651340

Limited selection of monolithic PLL ICs suffices for current applications

Tarlton Fleming, Associate Editor

Monolithic phase-locked-loop (PLL) circuits provide an elegant way to achieve frequency demodulation or digital selection of frequency. As a result, PLL ICs have become vital components in modern TVs, car radios, frequency-shift-keyed (FSK) systems, and disk-drive electronics. You might expect, then, to find a robust market for PLL circuits.

Currently, though, domestic IC companies offer a sparse selection of new PLL devices. This lack of activity is surprising when you consider the extensive applications support that was once available to an engineer intent on designing a phaselocked loop into his system. It's doubly surprising when you consider the current emphasis on designing discrete-component PLL circuits for frequency-agile, military-RF systems. The truth is that much PLL work has moved offshore, along with the design and manufacture of certain high-volume, PLL-based products-car radios, for instance. Fortunately, enough applications remain in the US to support a continuing demand for domestically produced PLL ICs.

A PLL is a small servo system in which negative feedback forces the frequency of a voltage-controlled oscillator (VCO) equal to that of the applied signal, f_{IN} (Fig 1). This action causes the PLL to sense and track the f_{IN} frequency, thereby reconstructing $f_{\text {IN }}$ and removing noise in the process (which is a form of filtering).

If you monitor the VCO's input instead of its output, the PLL will function as a frequency-sensing device suitable for FM detection or

Fig 1-The basic phase-locked-loop circuit is a small servo system. The voltage output is proportional to frequency, and the frequency output is a noise-free equivalent of $f_{I N}$.

FSK demodulation. These two configurations (taking the PLL's output from the VCO's input or its output) account for most applications. If you add a divide-by-M counter at the input and a divide-byN counter within the loop, at the VCO output, the PLL can also produce a digitally selectable frequen$\mathrm{cy}, \mathrm{f}_{\mathrm{IN}}(\mathrm{N} / \mathrm{M})$.
Many low-frequency applications (approximately 1 MHz and below) use the industry-standard CMOS PLL, whose generic part number is 4046. Manufacturers of this type include GE/RCA, Motorola, National Semiconductor, and Signetics. The Motorola MC14046BCP is a representative part: It costs $\$ 0.93$ in quantities of 100 .

The 4046 devices include two types of digital phase detectors on chip. (Most other PLLs feature one type, not both.) Your 4046 application determines whether a type I or type II phase detector is most ap-
propriate, and you then make external connections for including that detector in the loop.

Type I vs II phase

The type I phase detector is simply an XOR gate. The output signal, after passing through an external lowpass filter, produces a linear ramp in which the amplitude is proportional to the phase (0 to 180°) between $f_{\text {IN }}$ and the onboard VCO signal. The ramp reverses and repeats when the PLL is out of lock, forming a sawtooth waveform. The type I phase detector provides the widest lock range (the $f_{\text {IN }}$ range for which the loop will remain locked) for input signals with a duty cycle of 50%. When the loop is locked at the VCO's free-running frequency, the phase detector generates a dc level at half the ramp amplitude-equivalent to a 90° phase difference.

If nonzero phase in the locked condition is unacceptable, you can

OP-07 Performance At 1/6TH THE POWER

3.6 mA

4.0 mA
. . . No speed sacrifice.

OP-07

And at $1 / 20$ th the input bias current, too! PMI's new OP-97 beats even JFET op amps at $+125^{\circ} \mathrm{C}$! OP-97 drops directly into existing OP-07 sockets immediately saving power and delivering greater accuracy.

Check the specs for yourself:			
	OP-97	OP-07	
V	25	25	$\mu \mathrm{V}$ Max
TCV ${ }_{\text {OS }}$	0.6	0.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Avo	300	300	V / mV Min
I_{B} @ $25^{\circ} \mathrm{C}$	± 100	$\pm 2,000$	pA Max
I_{B} @ $125^{\circ} \mathrm{C}$	± 250	$\pm 4,000$	pA Max
$\mathrm{I}_{\text {SY }} @ \pm 15 \mathrm{~V}$	600	4,000	$\mu \mathrm{A}$ Max

If it's precision you need, PMI wrote the book. Circle the reader service number or call 1-800-843-1515.
Precision Monolithics Inc. A Bourns Company
Santa Clara, California, USA 408-727-9222
use the type II (edge-controlled) phase detector, which ignores waveform duty cycles by operating on the two input signals' positivegoing digital edges. While in the locked condition, the phase detector allows no phase difference between the VCO and f_{IN} signals. The type II detector provides a large capture range (the range of $f_{\text {IN }}$ for which an unlocked PLL can achieve the locked condition) that is independent of the external filter's time constant.
When unlocked, the detector produces a high or low de level according to the relative frequency values for f_{IN} and the VCO signal (vs the ac output of a type I detector). This circuit, also known as a phase-frequency detector, was an important advance in the development of PLLs at the time of its introduction.

Exar and Signetics are noted for their PLL product lines. Exar's XR-210, for example, suits FSK applications and includes a VCO, an XOR-gate phase detector, and a voltage comparator. The device operates with a 5 V supply over frequencies of 0.5 Hz to 20 MHz . Housed in a 16 -pin ceramic DIP, an XR-210CN sells for $\$ 2.78$ (100).

The more-complex XR-2211, sec-ond-sourced by Raytheon, also fits data-communications tasks such as tone decoding and FSK demodulation. The 2211 has an analog-multi-plier-type phase detector (Gilbert cell) that subtracts the two input signals. It provides outputs for lock detection and FSK demodulation, and it operates from 0.01 Hz to 300 kHz . Exar's version costs $\$ 2.89$ (100).

For applications that require temperature stability, Exar's precision XR-2212 PLL operates from 0.01 Hz to 300 kHz and exhibits a $20-\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient of the VCO frequency. The XR-2212 comes in a 16 -pin DIP and costs $\$ 2.88$ (100).

Signetics uses a bipolar process in its high-frequency NE568 design in which the f_{T} for the npn transistors
exceeds 6 GHz . The result is a $150-$ MHz PLL suitable for incorporation in satellite receivers, fiber-optic video links, and VHF-range FSK demodulators.

Realizing that proper pc-board and component layout is essential at high frequencies, Signetics includes an evaluation circuit with the NE568's data sheet, as well as a pc-board pattern and parts list. According to the manufacturer, with a good layout and surface-mount capacitors, the device demodulates $\pm 10 \%$ deviations from a $70-\mathrm{MHz}$ IF and exhibits a linearity error of less than 4%. An NE568N comes in a 20-pin DIP, draws 60 mA from a 5 V supply, and costs $\$ 1.79$ (100).

Digital vs analog PLLs

Although overwhelmingly digital, most PLL ICs are called analog PLLs because their VCO input is an analog error voltage. The SN74LS297 from Texas Instruments, however, is all digital. The device has a counter and increment/ decrement circuit in place of the conventional lowpass filter and VCO. To program the counter, you use a 4 -bit digital word, which corresponds to setting the filter time constant in an analog PLL circuit. (Both types of adjustments tradeoff
loop bandwidth and phase jitter.) The SN74LS297's operating-frequency range is dc to 50 MHz . A 16-pin, plastic-DIP version costs $\$ 11.69$ (100).

Unlike the discrete-IC PLLs discussed so far, Sierra Semiconductor's PLL34M exists only as a CMOS cell in the vendor's semicus-tom-ASIC library. This standardcell PLL circuit operates at 30 MHz (or as high as 60 MHz , with tweaking by the manufacturer). It includes a phase detector, I/O drivers, and a bandgap reference for setting the VCO frequency. The chip area is 3224 mils ${ }^{2}$. By combining the PLL334M with other cells in the library-you have a choice of 250 digital, 50 analog, and 20 EEPROM cells-you can configure an ASIC suitable for use as a data separator in disk drives, for example. You can buy a PLL34M, plus 500 logic gates, enclosed in a 44-pin surface-mount package for $\$ 3.50(100,000)$.

Prescalers offer alternatives

Siemens combines its PLLs with appropriate prescaling circuits to produce ICs capable of handling the high frequencies involved in digital channel selection in TVs and radios. These products are partial PLLs because they operate in conjunction

For more information

For more information on the PLL products discussed in this article, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

Exar Corp

2222 Qume Dr
San Jose, CA 95131
(408) 732-7970

Circle No 712
Motorola Semiconductor Products Inc
3501 Ed Bluestein Blvd
Austin, TX 78721
(602) 244-6900

Circle No 713
Siemens Components Inc
2191 Laurelwood Rd
Santa Clara, CA 95054
(408) 980-4500

Circle No 714

Sierra Semiconductor Corp
2075 N Capitol Ave
San Jose, CA 95132
(408) 263-9300

Circle No 715

Signetics Corp

Box 3409
Sunnyvale, CA 94088
(408) 991-2000

Circle No 716
Texas Instruments
Box 225012
Dallas, TX 75265
(214) 995-6611

Circle No 717

High Class Low Pass

High performance comes in a very small package with this seven-pole elliptic switched capacitor filter. Its excellent out-of-band rejection and low DC offset are useful in anti-aliasing and signal reconstruction tasks. Its unmatched performance features:

- Small size
- Latchup-free operation
- Low power CMOS technology
- Low passband ripple
- Low noise

The RF6609 analog filter is suitable for use in telecommunications, biomedical, or instrumentation applications. Its small size fits easily into portable devices.

Check our specs and you will see that this 8 -pin DIP filter meets your compact low pass needs.

```
                        2.0
```

 12.7
 Div

EG\&G Reticon's high quality products are supported by technical expertise. Questions? Contact a sales office.

Western Region	$408245-2060$
So. California	$714583-2250$
Central Region	$312640-7785$
Eastern Region	$617745-7400$
Japan	$042333-8111$
England	0734788666
West Germany	$08992692-666$

with an external tuning chip that contains the VCO. Model SDA 3202-2, for instance, includes an RF amplifier, a phase-frequency detector, and a serial-data $\mu \mathrm{P}$ interface. Counter circuits on the chip can scale signal frequencies as high as 1.3 GHz . The phase detector then compares the result with a 7.8125 kHz reference (obtained from an onboard oscillator divider and an external crystal). In an 18-pin DIP, the device draws 55 mA from a 5 V supply. It's priced at $\$ 4.63$ (100).

Siemens uses the same approach in its SDA 2121; a device that helps provide digital tuning in AM and FM radio receivers. The CMOS chip can accept a VCO input as high as 35 MHz (AM) or 150 MHz (FM). It comes in a 20 -pin DIP and costs $\$ 5.14$ (100).
Similarly, the TBB 200 is a CMOS PLL circuit optimized for use in $\mu \mathrm{P}$-controlled mobile telephones and radios. When added to an external VCO tuner and prescaler, the chip forms a compact system suitable for use in circuits operating above 900 MHz . The TBB 200 comes in a 14 -pin DIP and costs $\$ 5.61$ (100).

EDN
Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514

WHERE VISION AND TECHNOLOGY MEET 345 Potrero Avenue Sunnyvale, California 94086-4197

We Introduce an Exceptionally Reliable New EEPROM in CMOS Blaxing Speed from a DRAM Controller $\square 400$ MOSFETs Superb in Ruggedness.

Saman
 amsung

Harnessing our manufacturing strength, we become the first to produce this demanding technology in volume.

CPL reduces power dissipation up to 70% compared to bipolar PALs.

Since the beginning, Samsung Semiconductor has been known for its manufacturing expertise.

Samsung's commitment to CMOS technology is also long-standing.
Today, our new CPL (CMOS Programmable Logic) product line draws on both of those strengths.
It is a product line at the cutting edge of technology, and we are uniquely positioned to manufacture it-and manufacture it in volume.
What the introduction of CPL means is that, for the first time, there is a viable low-power alternative to bipolar PALs.
It's viable both because we are offering CPL in volume. And because we're making it affordable-comparable in cost to bipolar parts.
In short, we're taking CMOS Programmable Logic, once and for all, out of its high-priced niche. To make low power a reality. And make com-
pact systems more feasible than ever.
What will CPL do for you as a designer?
It will let you cut your power consumption 70% by directly replacing the bipolar PALs in your existing design. With no new development tools. And with no redesign.
In new designs, you'll have a head start on reducing power consumption.
And there's another critical advantage. Unlike bipolar PALs, Samsung's UVerasable CPL devices are reprogrammable. Which means that we're in a position to ship 100% tested parts. We subject every CPL device, in fact, to programming, AC , and functional testing.
CPL-low in power, 100% tested, and produced in volume by a manufacturing giant-is here to stay. Request a databook and samples today, and get started with this winning technology now.

The CPL Parts	
CPL 20	CPL 24
CPL16L8	CPL20L10
CPL16R4	CPL20L8
CPL16R6	CPL20R4
CPL16R8	CPL20R6
	CPL20R8
Speed options: 25 nsecs, 35 nsecs.	
Power options (Icc max.) 45 mA, $70 ~ m A$	

To The Forefront.

You can develop a CPL design with existing tools. Or you can use our Starter Kit and start prototyping immediately.

Developing new, low-power designs with Samsung CPL is easy. And to make it that much easier, we're offering a low-priced CPL Starter Kit.

The Starter Kit includes a software package developed by Personal CAD Systems and based on CUPL,'" the most powerful high-level language for designing programmable logic. And it also includes samples of Samsung CPL20 and CPL24 devices, which are supported by the Starter Kit.
Since CPL devices are reprogrammable, this means the Starter Kit includes everything you'll need to prototype and debug your design.
And you'll be doing that in short order. The CUPL software runs on any IBM PC/XT/AT or compatible system, and it lets you choose from a variety of options for entering your design-including truth tables; state diagrams and ASM flow charts (for describing sequential designs); and high-level equations.
CUPL power tools provide logic minimization, available in three
algorithms for improved optimization; DeMorganization (helpful when negating complex expressions); and simulation, to help you verify your design.

Comprehensive documentation includes a logic "template" file for design ease; a fuse map and expanded prod-uct-term information; a chip diagram illustrating pin assignments; and a symbol table of all variables. In addition to the CUPL software, Samsung's CPL Starter Kit includes: - CPL20 and CPL24 samples. - A CPL data book.

- A manual for the CUPL software.
- A Programmable Logic User Guide (PLUG) diskette, which lets you browse interactively through the workings of programmable logic. - "My First PAL Design," a booklet that leads you step by step through programmable logic design.

At just \$220, Samsung's CPL Starter Kit is a bargain. Request ordering information today and get started designing-in low power.

Our new 1- and 4-meg DRAM Controller is also a sysfem accelerafor. If can give you

from

 ur new 1 - and 4-meg DRAM Controller doesso much for system speed that we've named it The Accelerator.

If you're a designer attracted to speed, you're going to want to design it in.

The KS84C21/22 DRAM Controller supports interleaving, and it supports the fastest access modes of the newest DRAMs.

It radically reduces parts count and engineering effort compared to PALbased designs and interfaces to all major microprocessors.

But above all, it effectively increases the speed of your memory arraygiving you performance exceeding 80 ns from 120 ns DRAMs.* Which
versions. One has an externally programmable register, for prototyping and moderate-volume applications. The other version is the first and only mask-programmed DRAM controller ever developed anywhere, and it eliminates still more logic parts.

To make it easier to get started with The Accelerator, we've made up a sample kit.

Request yours today and start designing-in speed!

Samsung's DRAM Controller.

Part	RAMs Supported	Package
KS84C21-25CL	$256 \mathrm{~K}, 1 \mathrm{MB}$	68 -pin PLCC
KS84C22-25CL	$256 \mathrm{~K}, 1 \mathrm{MB}, 4 \mathrm{MB}$	84 -pin PLCC

*System dependent.

EEPRPOMS

0ur CM0S 64 K EEPR0M Is an Entirely New Breed.

Feature by feature it's as good or better. But besides using less power, it also consumes less money.

Vhen you stack it up against the leading competitors, our new CMOS 64 K EEPROM is, in a word, better.
It uses less power ($100 \mu \mathrm{~A}$ vs. $150 \mu \mathrm{~A}$ standby current, 30 mA vs. 50 mA active current). It's exceptionally fast.

And it's available at much lower cost.
The part is available in volume right now.

In reliability, it's superb-far more reliable than requirements call for In 1000 hours of testing in the key areas of endurance, WHTS, HOPL, and WHOPL-with industry-standard testing procedures-there were zero failures experienced.

We think what all this means is that our new CMOS 64 K EEPROM is simply the most sensible choice on the market.

But don't take our word for it. Request our reliability report, data sheet, and samples today. Then compare it for yourself.

Product Specification Samsung 28C64 Leading Competifor's		
ISB (standby current)	$100 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$
ICC (active current)	30 mA	50 mA
TAA (address access time)	200 ns	200 ns
TRC (read cycle time)	200 ns	200 ns
TWC (write cycle time)	$2-5 \mathrm{~ms} /$ byte	$2-5 \mathrm{~ms} /$ byte
VCC	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$
Page mode	Yes	Yes
Endurance (write cycle)	10,000	10,000
Data retention	10 years	10 years
Packaging	DIP, PLCC	DIP, PLCC

The KM28C64/65 at a glance.

$8 \mathrm{~K} \times 8$ CMOS EEPROM $=28$-pin JEDEC byte-wide memory pinout (DIP, PLCC) $=$ Single 5V $\pm 10 \%$ Vcc supply \quad Performance: 200/250ns \quad Current: standby ($\max) 100 \mu \mathrm{~A}$; active $(\max) 30 \mathrm{~mA}=32$ byte page write: $5 \mathrm{~ms} \pm 4$-cell bridge for enhanced reliability $=$ Write completion indicator: Data polling, Rdy/busy (for KM28C65) ■ Endurance 10,000 cycles $■$ Data retention 10 years

The Most Reliable Battery-Backed SRAMs Arent SRAMs at All.

Tfymecsap-20

They're EEPROMs from Samsung.

\intince EEPROMs don't require batteries to retain data during power loss, they are, of course, inherently more reliable than devices that do-such as SRAMs.

Because of the relative costs, however, it wouldn't occur to most designers to use an EEPROM where conventional thinking calls for an SRAM-even with the improvement in reliability that there'd be.

But those relative costs are changing.
Today, SRAMs cost more than they once did. And Samsung's EEPROMs, in fact, now compare favorably in price.

Which means that if you want reliability, there's every reason to start using these EEPROMs - and making your next battery-backed SRAMs, Samsung EEPROMs.

There are, of course, additional applications at which we excel. Our entire EEPROM family-including our new 64 K CMOS part-is also superbly suited to rugged applications such as communications, instrumentation, robotics, and industrial control.

All Samsung EEPROMs are guaranteed to provide endurance in excess of 10,000 write cycles and data retention of 10 years. And they meet or surpass all other industry standards for performance, reliability, and quality.

Most important of all, our EEPROMs are available in large quantities from stock-so you avoid escalating lead times as well as high prices.

EEPROM performance, reliability, and availability-all at low cost. To start taking advantage of them, request samples, a data sheet, and a reliability report today.

Samsung CMOS and NMOS EEPROMs.

Part Type	Organizafion	Speed	Features	Tochmology	Pinout	Avallabillity
KM28C64P	$8 \mathrm{~K} \times 8$	200,250	Data Polling, 32-byte Page Mode, Low Power, 5 ms (max) write time	CMOS	28 pin	From Stock
KM28C65P	$8 \mathrm{~K} \times 8$	200,250	Data Polling, 32-byte Page Mode, Low Power, 5 ms (max) write time	CMOS	28 pin	From Stock
KM2816AP	$2 \mathrm{~K} \times 8$	250,300,350	10 ms (max) write time	NMOS	24 pin	From Stock
KM2817AP	$2 \mathrm{~K} \times 8$	250,300,350	Ready/Busy, 10ms (max) write time	NMOS	28 pin	From Stock

In linear, what Samsung gives you can be stated easily.

MORE.

a data Converter That Does More.

Samsung's new KSV3110 data converter is a technological feat that we're rather proud of.

On a single chip, it offers independent 8-bit flash A/D and 10-bit D/A functions. And with an operating range of DC to 20 MHz , it's faster than any other part available that does both. Also unique, it gives you an auxiliary circuit, which can be used to do impedance matching within
 the chip.

What's good about having all this on one chip, of course, is that it saves you real estate and money-and also cuts power drain. And,
 at the same time, boosts system reliability.

In short, the KSV3110 doesn't just do more. It does way more.
Samsung's 3110 Series Combination A/D-D/A Converfers.

Part Type	Resolution		Linearity		Conversion Speed	Industry Part
	A/D	D/A	A/D	D/A		
KSV3110N-10	8 bits	10 bits	$\pm 1 / 2$ LSB	$\pm 1 / 2$ LSB	20 MSPS	
KSV3110N-9	8 bits	10 bits	$\pm 1 / 2$ LSB	± 1 LSB	20 MSPS	
KSV3110N-8	8 bits	10 bits	$\pm 1 / 2$ LSB	$\pm 2 \mathrm{LSB}$	20 MSPS	
KSV3110N-7	8 bits	10 bits	$\pm 1 / 2$ LSB	$\pm 4 \mathrm{LSB}$	20 MSPS	
KSV3100AN-8	8 bits	10 bits	$\pm 1 / 2$ LSB	± 2 LSB	20 MSPS	UVC3101
KSV3100AN-7	8 bits	10 bits	$\pm 1 / 2$ LSB	$\pm 4 \mathrm{LSB}$	20 MSPS	UVC3101

Volune Leadership In Conventional a/d and D/A...

As a company that does remarkable things in the manufacturing arena, Samsung is in a superb position to produce high-quality conventional data converters cost effectively and in volume.

And that's just what we do.
Which means that if you use data converters in large quantities, you simply won't find anyone it makes better sense to do business with.

The Samsung \mathbf{A} / \mathbf{D} and D / \mathbf{A} Lines.

Part Type	Resolution		Linearify		Conversion Speed	Industry Part
	A/D	D/A	A/D	D/A		
KSV3208N	8 bits		$\pm 1 / 2$		20 MSPS	
KAD0820ACN	8 bits		$\pm 1 / 2$		$1.5 \mu \mathrm{sec}$	ADC0820BCN
KAD0820AIN	8 bits		$\pm 1 / 2$		$1.5 \mu \mathrm{sec}$	ADC0820BCJ
KAD0820BCN	8 bits		$\pm 1 \mathrm{LS}$		$1.5 \mu \mathrm{sec}$	ADC0820CCN
KAD0820BIN	8 bits		± 1 LS		$1.5 \mu \mathrm{sec}$	ADC0820CCJ
KAD0808IN	8 bits		$\pm 1 / 2$		$100 \mu \mathrm{sec}$	ADC0808CCN
KAD0809IN	8 bits		± 1 LS		$100 \mu \mathrm{sec}$	ADC0809CCN
KDA0800CN		8 bits		$\pm 1 / 2$ LSB	* 100 nsec	DAC0800LCN
KDA0801CN		8 bits		± 1 LSB	* 100 nsec	DAC0801LCN
KDA0802CN		8 bits		$\pm 1 / 4$ LSB	* 100 nsec	DAC0802LCN
KDA0806CN		8 bits		± 2 LSB	* 150 nsec	DAC0806LCN
KDA0807CN		8 bits		± 1 LSB	* 150 nsec	DAC0807LCN
KDA0808CN		8 bits		$\pm 1 / 2$ LSB	${ }^{*} 150 \mathrm{nsec}$	DAC0808LCN
KS7126CN	3-1/2 digit		$\pm 1 / 2$		333 msec	TSC7126
KS25C02	CMOS 8-bit successive approx. register					DM2502
KS25C03	CMOS 8-bit successive approx. register					DM2503
KS25C04	CMOS 12-bit successive approx. register					DM2504

AND In Op AMPS, Regulators, Comparators, Timers, and More.

Across the entire spectrum of high-volume linear devices, in fact, Samsung-being a manufacturing leader-offers a combination of reliability and competitiveness in price that has given these devices tremendous acceptance in the marketplace.

It's a market we're strongly committed to, and we have more than 250 industry-standard ICs available for immediate delivery now.
If by chance you aren't buying linear devices from Samsung, it will make sense for you to look into us.

> Solutions Tailored To Specific High-Volume Needs. For Those Who Simply Need More.

A particular specialty that Samsung offers in linear is in the area of specific, rather simple solutions tailored to certain very high-volume applications.

We have developed devices for use in such highvolume areas as telephones, car stereo, and household appliances-among many others.
If you have a need for a high-volume, tailored linear device on this order, we may have the device you need-and if we don't, we'd like to talk about making it for you.

Our line of simple speech synthesis chips-designed for use primarily in electronic toys and answering machines-is one particular example of the kind of low-cost solution we can offer.
To learn about others, please contact us.
Our Speech Synthesizers.

Part	Function	Application
KS5901A	Voice synthesizer (external ROM)	Sound information answering machines
KS5902XX	Voice synthesizer (internal ROM)	Toys; simple sound generation
KS5911	Voice recording and reproducing (talking back type)	Talk-back answering machines
KS5912XX	Natural sound generation	Toys; natural sound effect

Major Linear ICs		
Regulators		
3T Positive		
KA78TXXCF		3 Amp
$\begin{aligned} & \text { KA78TXXCT } \\ & \text { LM317T } \end{aligned}$		3 Amp
		1.5 Amp
MC78XXCT		1 Amp
MC78MXXCT		0.5 Amp
MC78LXXACZ		0.1 Amp
LM723CN		0.1 Amp
3T Negative		
KA337T		1.5 Amp
		1 Amp
		0.5 Amp
MC79MXXXACZ		0.1 Amp
Switching		
KA78S40CN		KA3524N
REF Voltage		
KA431CZ (TL431CLP) KA431N (TL431CP)		KA336Z-2.5,5
		KA385Z-1.2
Comparafors		
KA319N (LM319N)		LM2903N
KA361N (LM361N)		LM311N*
KA710CN (LM710N)		LM3302N
KS374N (TLC374N)		LM339N/AN*
LM2901N		LM393N/AN*
Op Amplifiers		
KA301N/AN (LM301N)* KA733CN (LM733CN)		LM348N*
		LM358N/AN*
KA9256 (POWER AMP)		LM741CN*
KF351N (LF351N) LM2902N		MC1458N*
		MC3303N
LM2904N		MC3403N*
LM324N/AN*		MC4558N*
Telecommunication ICs		
KA2410N Tone Ringer		
KA2411N Tone Ringer		
KA2418N	Tone Ringe	/bridge diode
KA2412FN Speech Network		
KA2413N DTMF		
KS5808N DTMF (MK5089)		
KS5805AN Pulse (MK50992)		
KS5805BN Pulse (MK50993)		
KS55820N DTMF/Pulse		
KT3040J CODEC Filter		
KT5116J CODEC		
LM567N* Tone Decoder		
LM567LN Tone Decoder (Low Power)		
KS5812N	Quad UART	
Timers		
KS555N (CMOS)*		NE555CN*
KS555HN (CMOS)**		NE556CN*
		NE558CN
RS-232 Interfaces		
MC1488N*		MC1489/AN*
Audio ICs		
LM386N 0.5 Watt Power Amp		
KA2201N 1.2 Watt Power Amp		
KA2206 2.3 Watt Dual Power Amp		
KA22062 4.6 Watt Dual Power Amp		
	5.8 Watt Du	al Power Amp
KA22101 23 Watt Power Amp		
KA2243 AM/FM IF \& DET		
KA22441 FM IF \& DET		
KA22495 FM Front End		
KA2263 FM MPX		
45 other audio ICs available		
Video ICs		
A2914A Color TV VIF/SIF		
KA2153 NTSC Chroma \& Deflection		
KA6101 Video R.G.B. Interface		
40 other v	ideo ICs ava	ilable
Others		
KA2580AN (UDN2580AN)		
KA2588AN	(UDN2588	
A2651N (UCN5815AN)		
KA2615 LED/Lamp Driver		
KA2616 LED/Lamp Driver		
KA2284 5 Dot LED Meter Driver		
KA2286 5 Dot LED Meter Driver		
KA2288 7 Dot LED Meter Driver		
KA2181 Infrared Amp		
KA8301 Motor Driver IC		
KS5803AN Infrared Transmitter		
MC3361N FM IF Amp		
*Also available in surface mount package (SOIC)		

TRANSISTORS

We Launch a New 1500 volt
 P0With over 500 transistors, Samsung is among the world's Transistor

 largest producers. Ouf 1500-volt parts break ground even for us.
s a producer of transistors, Samsung sits squarely among the very largest in the world.

There is virtually no transistor need we can't fill-with a high-quality part, and at an advantageous price.

Our entire line of more than 500 transistors, in fact, is in full production and available from stock.

You can order anything from our list now, and get immediate delivery.
At present, we are introducing state-of-the-art, 1500 -volt power transistorstransistors so difficult to produce that only one other company makes them.
We also provide 100 types of SOT-23s, ideal for both hybrid and surface-mount applications, plus TIP Series, MJE Series, and TO-92 transistors.
Many are listed here, but for a complete list of Samsung transistors, please turn to the back of this issue and request it.

Transistors From Samsung

1500-Volt Power TR

2.5 amps	5 amps	6 amps
KSD5010*	KSD5012*	KSD5013*
KSD5014	KSD5016	KSD5017
3.5 amps		
KSD5011*		
KSD5015		
*Damper diode built-in transistor		
SOT-23		

BCX70G

BCX71G MMBR5179

MMBT4403 MMBTA43

The new 1500-volt transistors af aglance.

Designed for high-voltage switching systems and industrial motor controls, the eight new Samsung 1500-volt power transistors utilize the TO-3PF fully isolated plastic package.

TIP140F TIP140T TIP141F TIP14IT TIP142F TIP142T TIP145F TIP145T TIP146F TIP146T TIP147F TIP147T
TIP102 TIP126
TIP105 TIP127

MJE SERIES

MJE170	MJE210	MJE800
MJE171	MJE340	MJE801
MJE172	MJE350	MJE802
MJE180	MJE700	MJE803
MJE181	MJE701	MJE2955T
MJE182	MJE702	MJE3055T

TO-92

2N3904	2N5210	MPSA42
2N3906	2N5400	MPSA43
2N4123	2N5401	MPSA55
2N4124	2N5550	MPSA56
2N4125	2N5551	MPSA70
2N4126	2N6427	MPSA92
2N4400	2N6428	MPSA93
2N4401	2N6515	MPSH10
2N4402	2N6517	MPSH17
2N4403	2N6520	MPSH20
2N5086	MPSA05	MPSH24
2N5087	MPSA06	PN2222A
2N5088	MPSA14	PN2907A
2N5089	MPSA20	

200 other types also available.

Power MOSFETs just don't come any more rugged than ours.

The Wori Is hugged

xhaustive testing has proven Samsung's line of over 400 indus-try-standard power MOSFETs to be unsurpassed anywhere in ruggedness. They've been shown to withstand 2J at 500 V , and in addition, each part has been screened to M I L - S T D - 750 specifications.

Our recently published ruggedness application note thoroughly documents the superior ruggedness of these parts, and we invite you to complete the coupon at the back of this insert to request a copy. We'll rush it to you.

In the past several months, our MOSFETs have been qualified at an exceptionally large number of major accounts. We continue to offer the entire line with competitive pricing.

SamsungMOSFETs directly replace parts from IR and Motorola. ${ }^{\circledR}$ And since they are one of the broadest lines on the market, you can get just about anything you need. Both N and P channel parts are available, as are a variety of packagesincluding leadformed TO-220s, state-of-the-art TO-247 FULL PACK and DPAK.
What more could you ask?

Samsung's SSH20N50-available only from us-improves reliability, simplifies assembly, and minimizes mounting hardware, because it's a direct replacement for two IRFP450's. There's less to go wrong, and less to mount.
TO-247 Full Pack IRF430 N-Channel Types IRF431 IRFS130 IRFS450 IRF432 IRFS140 SSS4N70 IRF430 IRFS150 SSS6N70 IRF441 IRFS230 SSS10N70 IRF441 IRFS240 SSS4N60 IRF443 IRFS250 SSS6N60 IRF450 IRFS330 SSS8N60 IRF451 IRFS340 SSS15N60 IRF452 IRFS350 SSS20N50 IRF453 IRFS430 SSS25N40 IRFS440
TO-3P Package N-Chamnel Types IRFP120 IRFP422 IRFP121 IRFP423
IRFP122 IRFP430 IRFP122 IRFP430
IRFP123 IRFP431 IRFP123 IRFP431
IRPP130 IRFP432 IRFP131 IRFP433 IRFP132 IRFP440
IRFP133 IRFP441
SSM4N50 SSM20N50
SSM4N45 SSM4N45 SSM20N45
SSM5N40 SSM5N40
SSM25N40 SSM25N40
SSM5N35 SSM5N35 SSM25N35 SSM7N20
SSM8N20 SSM8N20
SSM7N18 SSM7N18
SSM8N18 SSM8N18
SSM7N15 SSM3N70 SSM3N70
SSM4N70 SSM4N70 SSM6N70 SSM7N12 $\begin{array}{ll}\text { SSM10N70 } & \text { SSM8N12 } \\ \text { SSM4N60 } & \text { SSM12N10 }\end{array}$ $\begin{array}{ll}\text { SSM4N60 } & \text { SSM12N10 } \\ \text { SSM6N60 } & \text { SSM10N10 }\end{array}$ $\begin{array}{ll}\text { SSM6N60 } & \text { SSM10N10 } \\ \text { SSM8N60 } & \text { SSM12N08 }\end{array}$ $\begin{array}{ll}\text { SSM8N60 } & \text { SSM12N08 } \\ \text { SSM15N60 } & \text { SSM10N08 }\end{array}$ $\begin{array}{ll}\text { SSM15N60 } & \text { SSM10N08 } \\ \text { SSM4N55 } & \text { SSM12N06 }\end{array}$ SSM6N55 \quad SSM10N06 SSM8N55 SSM12N05 SSM15N55 SSM10N05 IRFP140 IRFP442 IRFP141 IRFP443
IRFP142 IRFP450 IRFP142 IRFP450
IRFP143 IRFP451 IRFP143 IRFP451
IRFP150 IRFP452 IRFP151 IRFP453 IRFP152 SSH3N70 IRFP153 SSH4N70
IRFP220 SSH6N70 IRFP220 SSH6N70
IRFP221 SSH10N70 IRFP221 SSH10N70 IRFP222 SSH4N60
IRFP223 SSH6N60 IRFP223 SSH6N60
IRFP230 SSH8N60 IRFP230 SSH8N60
IRFP231 SSH15N60 IRFP231 SSH15N60
IRFP232 SSH4N55 IRFP232 SSH4N55
IRFP233 SSH6N55 IRFP233 SSH6N55
IRFP240 SSH8N55 IRFP240 SSH8N55
IRFP241 SSH15N55 IRFP241 SSH15N55
IRFP242 SSH4N50 IRFP242 SSH4N50
IRFP243 SSH20N50 IRFP250 SSH4N45 IRFP251 SSH20N45 IRFP252 SSH5N40 IRFP253 SSH25N40 IRFP320 SSH5N35 IRFP321 SSH25N35 IRFP322 SSH7N20 IRFP323 SSH8N20 IRFP330 SSH7N18
IRFP331 SSH8N18 IRFP331 SSH8N18
IRFP332 SSH7N15 IRFP332 SSH7N15
IRFP333 SSH8N15 IRFP333 SSH8N15
IRFP340 SSH7N12 IRFP340 SSH7N12
IRFP341 SSH8N12 IRFP342 SSH12N10
IRFP343 SSH10N10 IRFP343 SSH10N10
IRFP350 SSH12N08 IRFP350 SSH 12N08
IRFP351 SSH10N08 IRFP351
IRFP352
SSH10N08 IRFP353 SSH10N06
IRFP420
SSH12N05 IRFP420 SSH12N05
IRFP421 SSH10N05

TO-3P Package

 P-Channel Types IRFP9121 IRFP9221 IRFP9122 IRFP9222 IRFP9123 IRFP9223IRFP9130 IRFP9230 IRFP9130 IRFP9230
IRFP9131 IRFP9231 IRFP9131 IRFP9231
IRFP9132 IRFP9232 IRFP9132 IRFP9232
IRFP9133 IRFP9233 IRFP9140 IRFP9240 IRFP9141 IRFP9241 IRFP9142 IRFP9242 IRFP9143 IRFP9243
TO-3 Package N-Chamnel Types IRF120 IRF242 IRF121 IRF243 IRF122 IRF250 IRF123 IRF251 IRF130 IRF252 IRF131 IRF253 IRF132 IRF320 IRF133 IRF321 $\begin{array}{ll}\text { IRF140 } & \text { IRF322 } \\ \text { IRF141 } & \text { IRF323 }\end{array}$ $\begin{array}{ll}\text { IRF141 } & \text { IRF323 } \\ \text { IRF142 } & \text { IRF330 }\end{array}$ $\begin{array}{ll}\text { IRF143 } & \text { IRF331 } \\ \text { IRF150 } & \text { IRF332 }\end{array}$ $\begin{array}{ll}\text { IRF151 } & \text { IRF333 }\end{array}$ $\begin{array}{lll}\text { IRF151 } & \text { IRF333 } \\ \text { IRF152 } & \text { IRF340 }\end{array}$ IRF153 IRF341 IRF220 IRF342 $\begin{array}{ll}\text { IRF221 } & \text { IRF343 } \\ \text { IRF222 } & \text { IRF350 }\end{array}$ $\begin{array}{ll}\text { IRF222 } & \text { IRF350 } \\ \text { IRF223 } & \text { IRF351 }\end{array}$ IRF230 IRF352 IRF231 IRF353 IRF232 IRF420 IRF233 IRF421 IRF240 IRF422 IRF241 IRF423
P-Ch Package P-Channel Types IRF9120 IRF9220 IRF9121 IRF922 IRF9122 IRF9222 IRF9123 IRF9223 IRF9130 IRF9230 IRF9132 IRF9232 IRF9133 IRF9233 IRF9140 IRF9240 IRF9141 IRF924 IRF9142 IPF9242 RF9143 IRF9243

TO-220 Package -Channel Types IRF510 IRF741 IRF511 IRF742 RF512 IRF743 RF513 IRF820 RF520 IRF821 $\begin{array}{ll}\text { IRF521 } & \text { IRF822 } \\ \text { IRF522 } & \text { IRF823 }\end{array}$ $\begin{array}{ll}\text { IRF522 } & \text { IRF823 } \\ \text { IRF523 } & \text { IRF830 }\end{array}$ RF530 IRF831 IRF531 IRF832 $\begin{array}{ll}\text { IRF532 } & \text { IRF833 } \\ \text { IRF533 } & \text { IRF840 }\end{array}$ $\begin{array}{ll}\text { RF533 } & \text { IRF840 } \\ \text { RF540 } & \text { IRF841 }\end{array}$ | RF540 | IRF841 |
| :--- | :--- |
| RF541 | IRF842 | RF542 IRF843 RF543 SSP3N70 $\begin{array}{ll}\text { RF610 } & \text { SSP4N70 } \\ \text { RF611 } & \text { SSP4N60 }\end{array}$ $\begin{array}{ll}\text { RF611 } & \text { SSP4N60 } \\ \text { RF612 } & \text { SSP6N70 }\end{array}$ $\begin{array}{ll}\text { RF612 } & \text { SSP6N70 } \\ \text { RF613 } & \text { SSP6N60 }\end{array}$ $\begin{array}{ll}\text { IRF613 } & \text { SSP6N60 } \\ \text { IRF620 } & \text { SSP6N55 }\end{array}$ $\begin{array}{ll}\text { RF620 } & \text { SSP6N55 } \\ \text { RF621 } & \text { SSP4N60 }\end{array}$ $\begin{array}{ll}\text { SSF621 } & \text { SSP4N60 } \\ \text { SSP4N55 }\end{array}$ SSP4N55

SSP4N50 $\begin{array}{ll}\text { RF623 } & \text { SSP4N50 } \\ \text { SSP4N45 }\end{array}$ $\begin{array}{ll}\text { RF631 } & \text { SSP5N45 }\end{array}$ $\begin{array}{ll}\text { RF631 } & \text { SSP5N40 } \\ \text { RSP5N35 } & \text { SSP5N }\end{array}$ $\begin{array}{ll}\text { RF633 } & \text { SSP5N35 } \\ \text { SSP7N20 }\end{array}$ $\begin{array}{ll}\text { RF640 } & \text { SSP7N20 } \\ \text { SSP8N20 }\end{array}$ IRF641 SSP7N18 $\begin{array}{ll}\text { IRF642 } & \text { SSP7N18 } \\ \text { SSP8N18 }\end{array}$ $\begin{array}{ll}\text { IRF642 } & \text { SSP8N18 } \\ \text { IRF643 } & \text { SSP7N15 }\end{array}$ $\begin{array}{ll}\text { IRF643 } & \text { SSP7N15 } \\ \text { IRF710 } & \text { SSP8N15 }\end{array}$ $\begin{array}{ll}\text { IRF710 } & \text { SSP8N15 } \\ \text { IRF711 } & \text { SSP7N12 }\end{array}$ $\begin{array}{ll}\text { IRF711 } & \text { SSP7N12 } \\ \text { IRF712 } & \text { SSP8N12 }\end{array}$ $\begin{array}{ll}\text { IRF712 } & \text { SSP8N12 } \\ \text { IRF713 } & \text { SSP12N10 }\end{array}$ $\begin{array}{ll}\text { IRF720 } & \text { SSP12N10 } \\ \text { SSP10N10 }\end{array}$ $\begin{array}{ll}\text { IRF720 } & \text { SSP10N10 } \\ \text { IRF721 } & \text { SSP12N08 }\end{array}$ $\begin{array}{ll}\text { IRF721 } & \text { SSP12N08 } \\ \text { SSP10N08 }\end{array}$ IRF723 SSP10N08 $\begin{array}{ll}\text { IRF723 } & \text { SSP12N06 } \\ \text { IRF730 } & \text { SSP40N06 } \\ \text { IRF731 } & \text { SSP10N06 }\end{array}$ $\begin{array}{ll}\text { IRF731 } & \text { SSP10N06 } \\ \text { IRF732 } & \text { SSP12N05 }\end{array}$ $\begin{array}{ll}\text { IRF732 } & \text { SSP12N05 } \\ \text { IRF733 } & \text { SSP10N05 }\end{array}$ IRF740

P-Chamel Types

 IRF9510 IRF9610 IRF9510 IRF9610 IRF9511 IRF9611 IRF9513 IRF9612 IRF9520 IRF9613 IRF9521 IRF9620 IRF9522 IRF962 IRF9523 IRF9622 IRF9523 IRF9623 IRF9531 IRF9630 IRF9531 IRF9631 IRF9532 IRF9632 IRF9533 IRF9633 IRF9540 IRF9640 IRF9541 IRF9641 IRF9543 IRF9643TO-126 Packer N-Chanmel Types IRFAIZ0 IRFAIZ

TURN

to coupon on back page to request MOSFET samples and ruggedness application note.

DRAMS

lMbDRAMs!

 4 smectavatio

They're in CMOS, they're fast, and they lead the ranks of a formidable family of DRAM products.

As the latest DRAM addition to our line of leadership memory products, Samsung now offers several 1-megabit
times, and as our reliability report shows, are highly reliable. internally developed CMOS technology, they are low in power consumption, offer extremely fast access

Part Type	Organ.	Feafures	Speeds	Packages	Avail.
KM41C1000	1 M x 1	Fast Page mode	100,120	DIP,ZIP,SOJ	Now
KM41C1001	1 M x 1	Nibble mode	100,120	DIP,ZIP,SOJ	2Q '89
KM41C1002	1 M x 1	Static Column mode	100,120	DIP,ZIP,SOJ	3Q '88*
KM44C256	$256 \mathrm{~K} \times 4$	Fast Page mode	100,120	DIP,ZIP,SOJ	3Q '88
KM44C258	256K x 4	Static Column mode	100,120	DIP,ZIP,SOJ	3Q '89
KM41256	$256 \mathrm{~K} \times 1$	Page mode	120,150	DIP,ZIP,PLCC	Now
KM41257	256×1	Nibble mode	120,150	DIP,ZIP,PLCC	Now
KM41464	$64 \mathrm{~K} \times 4$	Page mode	120,150	DIP,ZIP,PLCC	Now
KM4164	64 K x 1	Page mode	120,150	DIP	Now

We offer our complete DRAM line in all industry-standard packages.

Please contact us today for reliability reports and data sheets.

SAMSUNG

Semiconductor

Midcon"/88

THE LARGEST AND MOST PRESTIGIOUS OEM ELECTRONICS EXPOSITION IN TEXAS IS EVEN BETTER THIS YEAR!

Check these reasons and discover why you REALLY can't afford to miss Midcon/88
Midcon/88 is New. New exhibits, new programs, new learning experiences
New Opportunities. The chance to meet face-to-face with the leading designers and manufacturers of the newest and most advanced electronics products.

New Technical Program. Leading experts discuss the latest technological breakthroughs and advancements. Sure to help you grow professionally and be more valuable to your firm.

New Solutions to Technical Problems. Meet with design engineers who offer new solutions through new technology and products.

ADD IT ALL UP!!! YOU REALLY CAN'T AFFORD TO MISS MIDCON/88

Packaging Makes the Difference

If you want your system to look its very best, look to Electronic Solutions.
The first thing you'll find is that the beauty we add to your board level system is a lot more than skin deep. It will look better, sell better, and work better in an Electronic Solutions enclosure, for a lot of reasons:
Engineered Cooling for maximum performance from the new, highdensity cards.
Built from Experience: We've been the enclosure experts since board-level systems began.

Safety and EMI/RFI Approvals by UL, CSA, TUV(IEC380) and the FCC.
FI SP IIN FCC
Off the Shelf or Built to Order: From simple needs like paint and labeling to complete reshaping for the most unusual requirements - we do it all. Most of the time we have a big head start.
See how packaging can make the big difference to your system. Give us a call today on our toll-free Complete Enclosures
 numbers.

Electronic Solutions
UNIT OF ZERO CORPORATION
Want the latest data in a hurry? Nothing is faster than Electronic Solutions' new "FAX the FACTS" program. Call our " 800 " number and give us the informaWe'll FAX it to you immediately.

PRODUCT UPDATE

Video and system controller IC promises low-cost $16 / 32$-bit color computers

Used in conjunction with the company's $68070 \mu \mathrm{P}$, the 66470 video and system controller IC allows you to build a complete $16 / 32$-bit processing and color display system, using as few as 10 ICs. You can also utilize the device with other 68000 family μ Ps. The 66470 incorporates a dynamic RAM controller for video/ system RAM, display control logic, a pixel accelerator, and an interface for an optional graphics coprocessor. Its system-controller functions include reset frequencing, address decoding, interrupt, DTACK generation logic, and a watchdog timer.
The dynamic RAM controller supports dynamic RAMs with capacities as high as 1 M bit, and the address decoding provides chip selects for as much as 1.5 M bytes of video/system RAM, 0.5 M bytes of ROM, and 1 k byte of peripheral I/O space. You can configure as much as 1 M byte of the RAM as video memory, containing 4 - or 8 -bit pixels to provide 768×560-pixel 16 -color, or 384×280-pixel 256 -color displays, respectively. Lower screen resolutions are also possible. You can program the video start address anywhere within the 1 M byte of video RAM; each screen pixel occupies either a nibble or a byte in memory, thus simplifying the fetching of pixel information for modification by the system's CPU or the 66470's pixel accelerator. You can configure the video RAM for logical or physical screen modes and generate either full screens or screens with a programmable border color.
The video-display logic provides a digital output for use with an external D/A converter or color look-up table. The display timing is compatible with European, Japanese, and US standards for TV and Teletext.

Using the 68070/66470 chip set, this single-Eurocard board contains all the components required to implement a 16/32-bit color computer, and still has room to spare.

You can synchronize the 66470 with a TV signal or with another 66470, and a RAM-control mechanism allows you to operate the video RAM as a frame grabber.
Associated with the video RAM are two areas of memory that contain instructions to control the display. The first of these, designated the image control area (ICA), is accessed before the start of each frame-that is, during the display's vertical retrace period. The second area, designated the dynamic control area (DCA), contains as much as 64 bytes of information for each horizontal line in the display. The instructions in the dynamic control area for a particular display line are fetched and executed during the horizontal retrace period that precedes the display of that line.
The ICA/DCA instruction list in-
cludes instructions to reload the video start address, generate a processor interrupt, and change the border color. You can also include instructions to control a back-end processor that's connected to the video output port. The ability to change the video start address on a frame-by-frame or line-by-line basis allows you to achieve a variety of special effects, including horizontal and vertical smooth scrolling, or division of the screen into a number of horizontal subscreens.
To manipulate individual pixels in the image, you can use the 66470 's on-chip pixel accelerator rather than the system CPU. This accelerator can perform pixel operations in a single instruction cycle that would take several instruction cycles if you performed them using the 68000's instruction set. Operations that the
pixel accelerator can perform include copying source pixels to destination pixels, exchanging source and destination pixels, transferring source pixels to destination pixels with an associated color change to the current foreground or background color, changing pixels to the current foreground or background color according to a bit-map, and testing pixel color.
You can make most of these operations conditional on whether or not the source pixel's color coincides with the currently defined transparent color. Other pixel accelerator operations, which can execute concurrently with some of the operations described above, include horizontal zooming or shrinking of the display by a factor of 2 , transparency test inversion, and a range of logical operations on the result of the pixel operation.
The pixel accelerator doesn't operate as a coprocessor that needs to
take control of the CPU's address and data bus. Instead, you use the CPU to set up the required pixel operation in the pixel accelerator, then use the CPU to move data to and from registers in the pixel accelerator. The pixel accelerator is automatically triggered to perform the pixel operation when the CPU writes data to the appropriate register.
To further speed image manipulation, you can program the pixel accelerator to operate with implicit addressing. In this mode, the appropriate register in the pixel accelerator is automatically connected to the dynamic RAM's data bus when the CPU reads or writes data from or to memory. As a result, you can execute many pixel operations with a single 68000 move instruction. In addition to controlling the pixel accelerator from the system's main CPU, you can also control it via the 66470's coprocessor interface.

The 66470 is a CMOS part that operates from a single 5 V supply and draws a maximum operating supply current of 65 mA at a clock frequency of 30 MHz . It is packaged in a 124 -pin quad flatpack, surfacemount package. Initial samples of the 66470 have been implemented in a gate array and are available at a cost of around $\$ 50(100)$. The company expects that full custom parts with enhanced functionality will be available in 1989 at a cost of around $\$ 25$ (100), but that a high-volume price for the $68070 / 66470$ chip set will be around $\$ 30$ by 1991.

-Peter Harold

Philips, Components Division, 5600 AM Eindhoven, The Netherlands. Phone (040) 757189. TLX 51573.

Circle No 726
Signetics Corp, 811 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 991-4571.

Circle No 727

See EEM Vol. C, pgs. 1185-1190

Big 8-bit performance. Tiny 18 -pin package. Miniscule price.

Introducing the smallest $Z 8$ microcontroller yet, the high-performance Micro8" (Z86C08). Just imagine what you'll be able to do with all this capability, packed into a DRAM-sized chip. For what amounts to pocket change.

The 78 Family: Still setting the standards.

From the frrst, the 28 microcompuier bas been one of the midustry nest cxamples of simplitity and elegance. The most sophisticated microcontroller family continues to grow:

Toduy, there is 28 support for every phase of your system development. from prototying to full production. Along with devices you know and Irisi, there are new parts with an whecesing number of options and feature for your devign. Recenily, the 78 is found in such diverse wes as fans puppy door controllers, twduction bot plates, and bigh performance bard disk controllers, printers, and local area networks (LAN).
since demand for 28 products, and their umportance to the indlustry conilinues to increase, we are developus Super 8^{*} is not dearly estabiabled as the high end 28 , and the Mioro8 can be expected to sate as mico un with be other new 78 Fanily memberc you should be Retping an gee on are:

- 786091 High-performance CMOS ROMess microcontroller
- 286610 Low cos 28 pin GMOS, has 22110 lines and 41 byies
of on board
- 786021 SK ROM 28 , bas 32110 lines. 2 levels of sectuity

Mighty strong performance
First of all, the Micro8 features the high-end Z8 architecture. Then there's 128 bytes of RAM, two counter/timers, two single-supply analog comparators, and low power consumption. Not to mention all the advantages of Superintegration" and CMOS technology.
Mighty powerful protection
The Micro8 may be tiny, but it's as bullet-proof as they come. You get brown-out protect and a watchdog timer, for instance. You get an operating range of 3-5.5V. And you get CMOS I/0 levels and hysteresis for noise protection.
Mighty impressive bit bang for your buck
The Micro8 gives everything you want in an 8 -bit microcontroller. In the smallest package you've ever seen. For about a buck and a half. Plus you're working with the familiar software and proven performance of the Z8 Family. And it's all backed by Zilog's solid reputation for quality and reliability.

You really ought to see for yourself just what the mighty Micro8 can mean to your design application. Why wait? Contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Avenue, Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away. Zilog

ZILOG SALES OFFICES: CA (408) 370-8120, (714) 838-7800, (818) 707-2160, CO (303) 494-2905, FL (813) 585-2533, GA (404) 923-8500, IL (312) 885-8080, MA (617) 273-4222, MN (612) $831-7611$, NJ (201) $288-3737, \mathbf{O H}$ (216) 447-1480, PA (215) 653-0230, TX (214) 231-9090, CANADA Toronto (416) 673-0634, ENGLAND Maidenhead (44) (628) 39200, W. GERMANY Munich (49) (89) 67-2045, JAPAN Tokyo (81) (3) $587-0528$, HONG KONG Kowloon (852) (3) 723-8979. R.O.C.: Taiwan (886) (2) 731-2420, U.S. AND CANADA DISTRIBUTORS: Anthem Electric, Bell Indus., Hall-Mark Elec., JAN Devices, Inc., Lionex Corp., Schweber Elec., Western Microtech., CANADA Future Elec., SEMAD.

Data logger acts as system analyzer in both benchtop and field environments

If your embedded-control application includes the 6800 or 68000 family, consider using the Step- 120 Mo bile Incident Logger (MIL). Although it's geared specifically for the automotive industry, the unit offers a combination of features that also make it suitable for use as a system analyzer in both benchtop and field environments.
The MIL requires an IBM PC or compatible computer to act as a host for data transfer and for initialization. Once initialized, however, the unit operates independently of the host and doesn't need to remain connected to it. Nonvolatile RAM in the unit retains the setup conditions and the acquired data, so you can use the data logger to collect data in the field as well as on the test bench.

The unit records three types of data: processor-bus data, RAM variables, and external events. You can specify match (or comparison) words for each data type, using the match words for triggering and for data filtering. When filtering, the unit stores only those samples that meet the match-word conditions. The data logger can store 32 k samples, which you can configure as a single-sample memory or as four 8 k -sample memories for repeated sample runs.

The bus section of the unit monitors the behavior of the processor. The unit will record a 16 -bit address bus, an 8 -bit data bus, and a 3 -bit status bus. (You can upgrade these bus widths to 24 bits, 16 bits, and 8 bits, respectively.) In addition, you can have the unit monitor a series of RAM addresses that you've defined. The data logger then records any transactions at those addresses.

A special feature of the unit is its code-coverage mapper. This mapper

This multipurpose instrument functions as a data logger, logic-state analyzer, and chart recorder. Together with a host computer, the Step-120 Mobile Incident Logger offers a versatile tool for embedded-control applications.
records all addresses within a 64 k address range that have been accessed by a particular type of bus cycle. You can use this feature to verify that test programs completely exercise your code. You can also use it to identify frequently used sections of code, highlighting areas where improvements in code efficiency would have the greatest impact.

The data logger has four analog channels and eight event channels. The analog inputs have a selectable range of 0 to 5 V or 0 to 20 V ; they offer 8 -bit A/D resolution. The event channels work at logic voltages, but can tolerate as much as 125 V continuously.

When you've collected your data, you must use the host computer to retrieve it. Once the host contains the data, you can access that data in a variety of ways. You can view the complete data record with the data
types interleaved chronologically, or you can examine only one or two data types. You can plot the analog data as a function of time. And you can view the bus activity as dissassembled code or as source code from some C compilers.

The unit operates from dc power with a 9 to 16 V input range, which reflects the instrument's automotive orientation. Its operating-temperature range is -25 to $+65^{\circ} \mathrm{C}$, and it tolerates vibration and mechanical shock. Without a host, the data logger costs $\$ 14,900$ and is available for delivery within 30 days ARO.
-Richard A Quinnell
Step Engineering, 661 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 733-7837.

Circle No 728

IGBTs. The ${ }_{\wedge}$ comparisons.

Compare Power

Compare Speed

The choice is now obvious when you require both power and switching speed in your power systems. Insulated Gate Bipolar Transistors (IGBTs) offer both.
Similar to Bipolar, IGBTs have high conductivity with faster switching speeds ($t f=0.5 \mu \mathrm{~S}$ typ). And like MOSFETs, IGBTs have high input impedance/high speed with lower on-resistance (as low as 8 m).

So now, for applications like low-noise inverters and servo-motor drives, there really isn't any reason to compromise. The solution you've been looking for is available: IGBT. The performance combination that doesn't make you give up one thing to get another.

Leading the way, again, this time with the broadest line of IGBTs anywhere in the world. Toshiba.
TOSHIBA AMERICA, INC. Semiconductor Products Division

Compare Selection

[^5]
Industrial IBM PC/AT-compatible system employs an $80386 \mu \mathrm{P}$ and 23 STD Bus slots

Targeting industrial-control applications, the STD Busmaster-386 system couples a $16-, 20-$, or $25-\mathrm{MHz}$ $80386 \mu \mathrm{P}$ to the STD Bus. Compatible with the IBM PC/AT and MS-DOS, the system provides 23 STD Bus slots. It also includes a watchdog timer and an individual interrupt acknowledge/disable function.

The system operates in high-vibration and electrically noisy environments, and works over a 0 to $70^{\circ} \mathrm{C}$ temperature range. The company packages the system in an ano-dized-aluminum card cage that you can mount in an EIA-standard 19-in. rack or a NEMA-rated box.

To couple the 80386 to the STD Bus, the designers partitioned the system into two functional and physical sections. The $80386 \mu \mathrm{P}$ resides on a PC/AT card that hosts as much as 16 M bytes of 32 -bit dynamic RAM and an optional 80387 math coprocessor. The board plugs into a passive 3 -slot PC/AT-compatible mother board that is positioned in the upper portion of the card cage.

A second PC/AT-compatible board includes a video controller that is EGA, CGA, and Hercules compatible. The multifunction card includes two serial ports, a parallel port, a dual-floppy-disk-drive controller, and a SCSI host adapter. The company offers an optional ST-506 Winchester controller or LAN-controller board for the third slot. In addition, you can integrate the board of your choice in the system.

The lower portion of the card cage houses the 23 STD Bus slots and a 24th slot that interfaces the PC/AT bus to the STD Bus. A plug-in board acts as the interface between the

An 80386μ and a 23-slot STD Bus card cage suit the STD Busmaster-386 system for industrial applications that require more computational power than typical STD Bus CPU cards offer.
two buses. The 24th slot employs a DIN connector. The 80386 can address 128 k bytes of 8 -bit STD Bus memory and 504 contiguous 8 -bit I/O locations.
The STD Bus operates as if a 4 -, 6 -, or $8-\mathrm{MHz} \mathrm{Z80}$ were the CPU. The bus-interface card passes wait states, generated by STD Bus cards, directly to the 80386 . The CPU automatically inserts wait states on memory and I/O accesses to the STD Bus to emulate a Z80. You can select the STD Bus's clock frequency to be the CPU clock frequency divided by 2 or 4 , or you can select it to be 7.16 or 3.58 MHz .
Eight 3 -slot groups generate individually vectored interrupts that you can separately enable and disable. You can enable or disable the watchdog timer with software. You
can program timeout selection to 0.25 or 1.0 sec . The system's brownout reset activates a system reset when the $V_{\text {CC }}$ drops below 5 or 10% (the percentage is software selectable) of the nominal inputs.
The company offers models for MS-DOS version 3.3; Unix-386 System V; Xenix System V; and QNX, a real-time version of Unix. The company will offer 8088- and 80286based systems and a system with only eight STD Bus slots. A $16-\mathrm{MHz}$ model with no DRAM installed, a 23 -slot card cage, and MS-DOS costs $\$ 3995$. Delivery, stock to 90 days.-Maury Wright
Computer Dynamics Sales, 107 S Main St, Greer, SC 29651. Phone (803) $877-8700$.

Circle No 731

THETHRIL LOF DESIGNING A A SUPPORTCRCUTRY ENDSINAFLASH.

The thrill of designing voltage references, input buffers, timing, and adjustment circuitry is gone. We do it for you. And in hybrid

FFT of HS 1068 Flash Converter, Fin $=1.123 \mathrm{MHz}$, Fsample $=20 \mathrm{MHz}$ packages smaller than you'd expect for flash converters alone.

Consider these three "pop-in" converters. Our 8-bit HS1068 flash A/D samples at 20 MHz minimum, has no spurious or missing codes, aperture jitter of only 60 ps , and true $1 / 2$ LSB 8-bit 47dB signal-to-noise ratio. Our 8-bit SP1070 samples at 25 MHz minimum and requires only $1 W$ of power. And our dual-flash SP1072 provides the performance of two SP1070s while saving you considerable real estate.

FFT of HS1068 Flash Converter, Fin $=9.678 \mathrm{MHz}$, Fsample $=20 \mathrm{MHz}$

Naturally, we test each device to ensure maintenance of SNR as input frequencies climb. They'll be distor-tion-free in your hypersensitive DSP applications.

And, we are the only company you can rely on to deliver full MIL-STD-1772 and MIL-STD-883C, self-contained, hybrid flash converters off the shelf. For data sheets, or a copy of our 382-page 1988 catalog, write SIPEX Corporation, Six Fortune Drive, Billerica, MA 01821, or call 1-800-272-1772. In Massachusetts call (617) 663-7811.

Digital scope simultaneously captures data from two sources at 500 M samples/sec

When Tektronix engineers set out to design the Model 2440 digitalstorage oscilloscope, the company was concerned, of course, with performance and price. But equally important was ease of use; using the scope had to feel natural to people accustomed to using high-performance analog scopes. The result is a product that looks and acts much like a familiar analog instrument, yet provides many more features and operating conveniences. According to Tektronix, it offers the industry's highest real-time sampling rate- 500 M samples/sec.

The instrument's predecessor, the Model 2430A, which the company will continue to sell, has achieved a high degree of acceptance. The 2440 has the look and feel of the 2430 A , but its $300-\mathrm{MHz}$ vertical bandwidth improves on the earlier model's bandwidth by a factor of 2 ; its ability to take 500 M samples/sec betters its predecessor's ability by a factor of 5; and its greatest sweep speed ($2 \mathrm{nsec} /$ div in equivalent-timesampling mode) is faster by a factor of 2.5 . (In real-time sampling mode, the 2440 's 100 -nsec/div max sweep speed is 5 times that of the 2430A.)

Moreover, the 2440 sacrifices none of the 2430A's performance. The simultaneous sampling of two inputs, 8 -bit resolution, $2-\mathrm{mV} / \mathrm{div}$ max sensitivity ($200 \mu \mathrm{~V} /$ div in average mode), and 1024-point record length are unchanged, as are the $6.3 \times 13 \times 18.9$-in. dimensions and the $24-\mathrm{lb}$ weight. Furthermore, the cost of the 2440 is only 29% more than that of the 2430A.

Its conveniences include auto setup that automatically configures the sensitivity and sweep speed to let you see the waveform at the input you select in the mode of your

The front panel of the 2440 digital-storage oscilloscope intentionally resembles those of high-performance analog scopes, because market research has indicated that users want scopes whose operation is intuitive to them.
choice. Auto pass/fail testing allows you to define a waveform envelope. You can then operate the scope unattended, and if any waveform falls outside your predefined envelope, the scope will store it and record the time at which it occurred. An automeasure mode can, among other things, provide a numeric display of 20 parameters of a captured waveform.

The scope's dual timebases provide many display modes. For example, you can delay the A or B sweeps by a number of B-trigger events that you select ($2^{16} \max$). You can also supply your own sampling clock with a frequency from 1 to 100 MHz . A glitch-capture feature enables the scope to recognize pulses that are 2 nsec wide at the 50% amplitude points (at any sweep speed-with 85% probability). Ex-
cept at the highest sweep speed, such pulses could fall between samples.

Among the unit's interfacing features is an IEEE-488 port that can send waveforms, cursor measurements, and instrument configuration to a company HC 100 color pen plotter, an HP 7400 Series plotter, or an HP Think-Jet printer. A rearpanel output also provides an analog representation of the channel-2 waveform. The price of the 2440 is $\$ 11,500$, and the 2430A costs $\$ 8900$.
-Dan Strassberg
Tektronix Inc, Box 1700, Beaverton, OR 97075. Phone (800) 4262200.

Circle No 725

When You WantFast 1 Mb EPROMs.

Mitsubishi delivers with a family of $150 \mathrm{~ns}, \mathrm{CMOS}$ 1 megabit UV EPROMs. Available now. And, for applications requiring even higher performance, 120 ns versions are on the way.

Now, you can combine the advantages of fast access times and low power CMOS operation in the organizations and pin-outs you need.

There's a 128 K x 8 that's pin-compatible with 1 Mb mask ROMs for easy conversion when you reach high volume production. Another device offers the JEDEC-standard pinout allowing easy upgrade from lower density $E P R O M$ s. Plus, there's a $64 \mathrm{~K} \times 16$, ideal for applications requiring wider data paths. And, they're all available in 150 ns speeds. From Mitsubishi.

When You Want Cost-Effective Packaging Options.

If you want all the advantages of Mitsubishi EPROMs, but don't need to reprogram, Mitsubishi's $1 \mathrm{Mb}, 200 \mathrm{~ns}$ CMOS OTP ROMs provide cost-effective alternatives for volume production.

And, for maximum flexibility, Mitsubishi's 1 Mb OTP ROMs are available in PDIP and PLCC packages, with SOP available soon.

For fast EPROMs, or cost-effective packaging options, call or write: Mitsubishi Electronics America, Inc., Semiconductor Division, 1050 East Arques Avenue, Sunnyvale, CA 94086. (408) 730-5900.

MITSUBISHI EPROMs				Access Time (ns)	Package (CERDIP)	MITSUBISHI OTP ROMs				$\begin{array}{\|l} \hline \text { Access } \\ \text { Time (ns) } \end{array}$		Package Options
	Density	Organization	Part No.	100120150170200250			Density	Organization	Part No.	200	250	
CMOS	128K	$16 \mathrm{~K} \times 8$	M5M27C128K	■ ■	28 pin	CMOS	256 K	$32 \mathrm{~K} \times 8$	M5M27C256	\square		28 pin PDIP and SOP
	256 K	$32 \mathrm{~K} \times 8$	M5M27C256K	- \quad -	28 pin		1 Mb	$128 \mathrm{~K} \times 8$	M5M27C100	\square		32 pin PDIP, PLCC and SOP
	512K	$64 \mathrm{~K} \times 8$	M5M27C512AK	- ■	28 pin		1 Mb	$128 \mathrm{~K} \times 8$	M5M27C101	■		32 pin PDIP, PLCC and SOP
	1 Mb	$\begin{aligned} & 128 \mathrm{~K} \times 8 \\ & 64 \mathrm{~K} \times 16 \end{aligned}$	M5M27C100K/M5M27C101K M5M27C102K		$\begin{aligned} & 32 \text { pin } \\ & 40 \text { pin } \end{aligned}$		1 Mb	$64 \mathrm{~K} \times 16$	M5M27C102	■		40 pin PDIP and 44 pin PLCC
NMOS	64K	$8 \mathrm{~K} \times 8$	M5L2764K	-	28 pin	NMOS	64 K	$8 \mathrm{~K} \times 8$	M5M2764		■	28 pin PDIP
	128K	$16 \mathrm{~K} \times 8$	M5L27128K	-	28 pin		128K	$16 \mathrm{~K} \times 8$	M5M27128		-	28 pin PDIP
	256K	$32 \mathrm{~K} \times 8$	M5L27256K	-	28 pin		256K	$32 \mathrm{~K} \times 8$	M5M27256		\square	28 pin PDIP and SOP
	512 K	$64 \mathrm{~K} \times 8$	M5L27512K	- ■	28 pin		512 K	$64 \mathrm{~K} \times 8$	M5M27512		\square	28 pin PDIP and SOP

[^6]
NEW 2400 BPS CCITT V. 22 BIS SINGLE-CHIP MODEM

- One-chip multi-mode modem IC for V. 22 bis / V. 22 / V. 21 and Bell 212A/ 103 applications
- FSK (300 BPS), DPSK (600,1200 BPS), or QAM (2400 BPS) encoding
- All modem functions included in a single chip
- Integrated DSP for high performance adaptive equalization receive capability
- Fully compatible with SSI K212, K221, and K222 1-chip modems
- Interfaces directly with standard microprocessors (8048, 80C51 typical)
- Single +12 V or +5 V supply
- CMOS technology for low power consumption (120 mW @ 5 V)
Silicon Systems now offers the industry's most highly integrated modem IC-the SSI K224. It is a single-chip modem IC that provides all the functions needed to construct a V. 22 bis compatible modem, capable of 2400 BPS full-duplex operation over dial-up lines. The SSI K224 offers excellent performance and a high level of functional integration in a single 28 pin DIP. This device meets world-wide standards and supports all modes of operation, allowing both synchronous and asynchronous communication. The SSI K224 is ideal for use in either free-standing or integral system modem products such as lap-tops, P.C.s and portable terminals, or wherever full-duplex 2400 BPS data communications over the 2 -wire switched telephone network is desired The SSI K224 is pin and software compatible with the SSI K212, K221 and SSI K222 single-chip modem IC's, allowing system upgrades with a single component change.
For more information on the SSI K224 and the complete SSI K-Series modem IC family, contact: Silicon Systems, 14351 Myford Road, Tustin, CA 92680 Phone: (714) 731-7110, Ext. 575.

Modular 1500W power system suits fault-tolerant designs

By using the 29D Series modular power supplies with the company's Powersystem enclosures, you can implement 2 -, 4 -, or 6 -supply faulttolerant subsystems. The supplies' power ratings range from 225 to 300 W . A 6 -supply fault-tolerant subsystem can provide 1500 W . When used in parallel, the supplies feature automatic load sharing. The family of products targets applications in telecommunications, data communications, and computer systems.

To implement a fault-tolerant subsystem, you simply connect one more supply than you need. For example, six 300 W supplies actually provide 1800 W in parallel, but only provide 1500 W when a supply fails. The company offers isolation diodes for failed supplies, and the enclosures allow for "hot plug-in"-in other words, they let you replace a supply without taking the system off line.

The supplies provide five isolated floating outputs with voltages ranging from 5 to 24 V dc. The first output supplies 5 V and 30 or 40 A . Outputs 2 through 5 offer combinations of $5,12,15$, and 24 V .

The supplies meet all domestic and international safety standards. They require 110 or 220 V ac input power, which is field selectable. You can adjust the first four outputs to $\pm 5 \%$ of the nominal output voltage. The fifth output tracks the first output. The supplies' line regulation is $\pm 0.2 \%$ on all outputs. The first four outputs provide $\pm 0.2 \%$ load regulation. The semiregulated fifth output features a $\pm 5 \%$ load regulation. A step-load change or a 25% shift in rated maximum load causes an output change of less than 3%. The output recovers to within 1% in less than $400 \mu \mathrm{sec}$.

Six modular power supplies in parallel implement a 1500W fault-tolerant subsystem when mounted in the Powersystem enclosure. The enclosure offers "hot plug-in" capability; that is, it lets you replace a supply without taking the system off line.

To create fault-tolerant subsystems, you can connect the supplies in parallel. You can parallel the first output of a supply only with the first output of another supply. However, you can parallel outputs 2 through 4 within the same supply or with outputs from other suppliesas long as the outputs have equal voltages and polarities. When connected in parallel, outputs 1 through 4 share current proportionally within $\pm 10 \%$ of each output's $50^{\circ} \mathrm{C}$ current rating (for forced-air cooling). You can't use the fifth output for parallel connections.

The enclosures are 7 in . high and $17 \frac{1}{2}$ in. deep, and the widths vary: The 2 -, 4 -, and 6 -supply units are 5.7, 11.3, and 19 in . wide, respectively. A supply with isolation diodes and outputs of $5 \mathrm{~V} / 30 \mathrm{~A}, 12 \mathrm{~V} /$ $3.75 \mathrm{~A}, 12 \mathrm{~V} / 2.25 \mathrm{~A}, 24 \mathrm{~V} / 3 \mathrm{~A}$, and $12 \mathrm{~V} / 2.25 \mathrm{~A}$ costs $\$ 508$ (25). The enclosures range from $\$ 158$ (25) for a 2 -supply unit to $\$ 484$ (25) for a 6 supply unit. Both the supplies and the enclosures are available from stock.-Maury Wright

Bonar Powertec, 20550 Nordhoff St, Chatsworth, CA 91311. Phone (818) 882-0004. TLX 277483.

Circle No 730

LET THIS NEW MODEM CHIP make liff east for you

The Only 5-Volt, 2400 BPS, l-Chip Modem For Low-Power Applications

 If modem chips have a place in your company's products, here's how a new lowpower single-chip modem from Silicon Systems can make life easier for everyone.Now your product designers can put this new l-chip 2400 BPS modem into their designs and replace three or more oldstyle modem IC's. The K224L draws less than 120 mW from a single 5 -volt supply, eliminating the need for additional power supplies and making integration of the modem function possible in lap-tops, portable terminals, and other batteryoperated applications.

Your marketing department will be happy to know that this single chip fully supports all the world-wide operating modes-V. 22 bis, V.22, V.21, and Bell 212A/ 103. They'Il like the competitive edge that state-of-the-art single-chip modem technology can give to your company's products. And, of course, your management team can only be proud of an engineering and marketing group that has the good sense to make the most of such innovative components that enhance the features of your products, reduce costs, and boost company sales.

Call Now! (714) 731-7110, Ext. 3575

For more information on the new Silicon Systems 73K224L, or any of SSi's fully compatible K-Series 1-chip modems, contact: Silicon Systems, 14351 Myford Road, Tustin, CA 92680.

"Where we design to your applications."

If you want to increase the value of your PWB real estate, Du Pont can help you do it.

With VACREL ${ }^{*}$ photopolymer film solder mask. The material that enables you to reliably encapsulate dense circuitry and tent via holes, permitting more electrical functions in less PWB real estate; to let you create higher density PWBs than ever before.

Instead of placing vias and components on separate areas of the board, you simply design vias under the components. And because VACREL tents the vias, solder stays only in the places where you want it; you avoid bridging, shorts, and contamination. It's also easier to clean under components.

In addition, you use less solder, minimizing assembly weight, because you're only covering connections. Hole-filling defects are also avoided. The bottom line is VACREL can increase assembly yields and cut manufacturing costs per function allowing you to get the most from your PWB real estate.

If you want more value out of your PWB real estate, ask for VACREL photopolymer film solder mask. It's the right material for PWB designs. Just call Du Pont at 1-800-237-4357. Or write: Du Pont Company, Room G-51176, Wilmington, DE 19898.

READERS' CHOICE

Of all the new products covered in EDN's May 12, 1988, issue, the ones reprinted here generated the most reader requests for additional information. If you missed them the first time, find out what makes them special: Just circle the appropriate numbers on the Information Retrieval Service card, refer to the indicated pages in our May 12, 1988, issue, or use EDN's Express Request service.

TURBO C DEBUGGER

The A-COM debugger is a full-screen, source-level debugger for use with Borland International's (Scotts Valley, CA) Turbo C programming tools (pg 276).

A-Com.

Circle No 605

$33 / 4$-DIGIT DMM

The DM79 can provide 10 times the resolution supplied by $31 / 2$-digit meters on many measurements (pg 258).

Beckman Industrial Corp. Circle No 604

RACK-MOUNT PC/AT

The QPC-7000 IBM PC/AT-compatible computer meets EIA stand-
ards for mounting in a standard
19-in. rack (pg 244).
Qualogy Inc.
Circle No 603

- CMOS EPROMs

The 27 F 64 and 28 F 256 flash memories are 64 k -bit and 256 k -bit devices, respectively, that feature in-circuit electrical erasing and reprogramming (pg 88).
Intel Corp.
Circle No 601

5-YEAR BATTERY

The Model PS-1242 is a 12 V , sealed lead-acid battery. It's maintenance free, rechargeable, usable in any position, and suitable for both standby and deep-cycle applications (pg 243).
Power-Sonic Corp.
Circle No 602

NEW 500 MEGASAMPLES/SEC 300 MHz DIGITAL PORTABLE

TEK PUSHES THE LIMIT...

AT THE PUSH OF A BUTTON.

AUTO SETUP

AUTO MEASURE

AUTO PASS/FAlL

AUTO SEQUENCE

ONLY FROM TEK.

The new Tek 2440 Digital Oscilloscope is the only portable offering a $500 \mathrm{MS} / \mathrm{s}$ sampling rate-on two channels simultaneously.

Capture signals competitors can't.

Complete confidence in results.

You can digitize, store and process single-shot phenomena to 200 MHz and repetitive signals to 300 MHz . At the touch of a button.
This is a scope built for solving tough problems fast.

Exclusive Tek digital features let you capture glitches as short as 2 ns with continuous sampling; automatically catch intermittent failures in babysitting applications; and see waveform changes virtually as they occur thanks to the high update rate.

With the 2440's $500 \mathrm{MS} / \mathrm{s}$ sample rate, 8 -bit vertical resolution, and 0.0015% crystal-controlled timebase accuracy, you'll have complete confidence in the accuracy of your waveform data. You'll know what you're seeing is what's actually happening in your circuit.

The 300 MHz 2440 and 2432 , along with the 150 MHz 2430 A , drive like the scopes you're used to. They feature a familiar front panel and simple, one-level menus.

A digital family you already know how to use.

Built-in automation simplifies operation even more. The scopes set up at the touch of a button. And you can characterize waveforms instantly: press another button and read out your choices from 21 different measurements.

On the design bench, the 2400
DSOs are effective standalone test systems. Full GPIB programmability, pass/fail testing and time-saving measurement sequencer make them equally powerful system components. With off-the-shelf software you can fully automate measurements and extend waveform analysis.

Don't settle for less. Get the total performance package only Tek delivers, feature for feature, spec for spec.

Powerful system components.

WHEN THE MEASUREMENT COUNTS, COUNT ON TEK.

No matter what you measure, Tek measures best.

The standard of excellence in portable scopes.

Analog or digital, standalone or automated, no other portables match Tek 2400 Series Oscilloscopes for sheer breadth of line, range of performance and wide choice of options.

Their proven reliability and built-in versatility are a result of Tek's dedication to superior waveform acquisition tailored to individual needs.

> Answers at the touch of a button.

Six four-channel analog oscilloscopes combine pushbutton simplicity and leading-edge performance. They bring unprecedented efficiency to your design lab, production line or field service site.

The top-of-the-line 2467 with Tek's patented microchannel plate CRT even makes single-shot pulses to 350 MHz visibleat the touch of a button.
A complete range of options further extend each scope's capabilities.
Scope for scope, feature for feature, Tek has the best solution for your measurement needs.

Ask your Tek representative for a demonstration. With the 2440 joining the family, there's an even

Call Tek for details.

 better selection-in sample rate, performance and price. For more information, please return the reply card or call Tek direct:1-800-426-2200.

Our networks give more for less... less space, less time, less cost.

Mepco/Centralab thick-film networks save space and design time in all of your circuits - computer, communications, military, automotive, industrial control and instrumentation.
Choose from our broad range of highly integrated standards - cost-effective conformal networks, EMI/RFI networks, ECL terminators, MIL-R-83401 networks, capacitor banks, and more. We can also custom-design a space-saving unit to meet your requirements, including MIL designs.
With quality-designed Mepco/Centralab networks, you get the extra advantage of ordering just one part instead of many discrete components. So you simplify your purchasing, handling, stocking and assembly operations. And, since you only have to install a single part that's 100% pre-assembled and tested, you automatically improve your system's electrical and mechanical performance, and its overall reliability.
Look into space-saving, time-saving Mepco/ Centralab networks for your commercial, industrial and military-grade products. They're your assurance of high reliability, plus just-intime delivery and competitive pricing.
Ask for our catalogs. Write to Mepco/ Centralab - the active leader in passive components.

FDDI.
 From deskwork to network.

Good news for networks!
The X3T9.5 Task Group, under the procedures of ANSI Accredited

Standards Committee X3, has reaffirmed approval of the Media Interface Connector (MIC) for the proposed FDDI (Fiber Distributed Data Interface) Physical Layer Medium Dependent (PMD) document.

More good news! AMP has the complete fiber optic interconnection system-the AMP OPTIMATE Fixed Shroud Duplex System-that meets all FDDI PMD requirements. And includes all the physical components you need to make your fiber optic network a reality.

Of special note: the transceiver -the first of its kind-is capable of operating at data rates up to $125 \mathrm{Mb} / \mathrm{s}$. Available in standard or raised (+5 v) ECL logic, it gives you a compact, board-mount data link in a single 24 pin module. Reliable duplex mating
and electro-optic conversion are now easier than ever.

All system components, in fact, are easy to install and reconfigure. Our field termination kit makes short work of attaching duplex connectors to fiber cable. And because all interconnections use a floating interface, you get consistent, low-loss mating (0.6 dB typical) throughout.

You can also order complete, custom-built cable assemblies from us. Either way, you'll have the assured compatibility that comes from dealing with only one supplier for all your FDDI interconnection components. A supplier whose capability
in fiber optic technology is everything you'd expect from the world's largest connector company.

For technical literature and more information, call 1-800-
522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.

CIRCLE NO 77

By employing CAD/CAE and new fabrication technologies, pressure sensor and transducer manufacturers have been able to improve product performance without exacting any price penalties. In the silicon-based sensor area, in fact, prices are actually going down as performance figures improve-a combination that opens up a host of new applications.
$9{ }^{\circ}$

Pressure sensor and transducer manufacturers are offering less expensive, yet more capable, devices through the use of a largely automatic micro-machining process of producing silicon wafers.
 (Photo courtesy Micro Switch)

Pressure sensors and transducers

Tom Ormond, Senior Editor

Improved performance at a lower cost is the ultimate goal of any product designer. When it comes to strain-gauge-type pressure sensors and transducers, manufacturers have achieved this goal and made the devices practicable for numerous applications in the automotive, medical, and military fields. In addition, advances in device-fabrication and -packaging techniques allow today's pressure sensors and transducers -including devices based on older piezoelectric and linear-variable-differential-transformer (LVDT) tech-niques-to easily handle the harshest industrial environments. Manufacturers are also integrating more electronics into the device package, which makes it easier for users to apply the sensors and transducers.

Amplifiers represent one type of integration. Although most of today's transducers generate usable unamplified outputs, you can get products that offer logic-level output signals while operating from low voltage supplies. Transducer manufacturers also include integral electronics that address thermal-related problems. Just about every transducer available today includes temperature-compensation circuitry, which allows the units to provide very accurate output readings in environments involving significant temperature variations. On the other hand, some manufacturers also offer uncompensated products for those users working in a benign environment, who don't want to pay for something they don't need.

Three of the most popular sensor technologies are strain-gauge (piezoresistive), LVDT, and piezoelectric. Nowadays, you'll find that most of the newsworthy
technological developments concern strain-gauge types of sensors. These devices typically use one of three sensing elements: an unbonded metallic-filament strain gauge, a bonded metallic-foil strain gauge, or a bonded piezoresistive (semiconductor) gauge. Regardless of element technology, however, strain-gauge sensors and transducers find their way into diverse applications.

Solid-state sensors-where the action's at

Gulton Industries' GMS110 Series of pellicloid thinfilm strain-gauge transducers, for instance, fit demanding military as well as aerospace applications. Packaged in a welded, hermetically sealed housing, the solid-state devices are available in versions that measure full-scale absolute or gauge pressures of 15 to 5000 psi .
The sensors consist of a thin-film circuit deposited on a micromachined silicon diaphragm. Pressure across the diaphragm produces strain in the metal-film sensing elements, causing slight changes in their resistances. These sensing elements are configured as a 4 -arm, fully active strain-gauge bridge with integral trimming resistors. The fabrication process places the compensation resistors close to the sensing elements to minimize thermal shift in the span and zero parameters: 0.005% full-scale output (FSO) $/{ }^{\circ} \mathrm{F}$ max.
The GMS110 Series operates from 10 V dc; the transducer output is $2.5 \mathrm{mV} / \mathrm{V} \mathrm{min}$. Repeatability and hysteresis are 0.05% FSO max, and nonlinearity equals $\pm 0.25 \%$ max. The overall operating range spans -320 to $+350^{\circ} \mathrm{F}$; the compensated range is -65 to $+250^{\circ} \mathrm{F}$. The transducers cost $\$ 1050$.

Strain-gauge-type transducers find their way into diverse applications.

Featuring 0.2-mV/kPa sensitivity, Motorola's MPX2000 Series temperature-compensated transducers spec $\pm 0.05 \%$ full-scale linearity over -40 to $+125^{\circ} \mathrm{C}$.

Designed to provide absolute-pressure measurements in low-pressure applications, NPH Series sensors from NovaSensor are available in 0 - to $7-\mathrm{kPa}$ (approximately 0 to 1 psi) and 0 - to $15-\mathrm{kPa}$ versions (approximately 0 to 2 psi). The 0 - to $7-\mathrm{kPa}$ unit provides an unamplified output voltage of 75 mV . In OEM quantities, NPH sensors cost $\$ 12$. NovaSensor attributes its ability to achieve such a price/performance ratio to CAD-analysis and advanced-silicon-etching (micromachining) techniques (see box, "Computerbased techniques facilitate sensor design").

The NPH Series specifies respective nonlinearity and hysteresis errors of $\pm 0.2 \%$ and $\pm 0.05 \%$ max. Thermal hysteresis is less than $\pm 0.25 \%$ FSO, and thermal error is 1% max over the 0 to $70^{\circ} \mathrm{C}$ compensated operatingtemperature range. The sensors are also available in uncompensated versions, as are models that provide differential-pressure readings. All models are compatible with noncorrosive gas and moist-air media. A pressure port with an outside diameter of $3 / 16 \mathrm{in}$. is standard, but similar tubes or vent holes for either TO-5 or TO-8 packages are available to satisfy specific OEM requirements.

Endevco's strain-gauge Model 8515B is a rugged, miniature transducer designed for applications requiring surface-pressure measurements. It utilizes a sculp-

Offering 1- and 2-psi FS measurement ranges, NPH sensors from NovaSensor feature maximum nonlinearity and hysteresis errors of ± 0.2 and $\pm 0.5 \%$, respectively.
tured, piezoresistive pressure-sensing diaphragm and readily mounts on curved surfaces without affecting laminar-air or hot-gas flow. For a flush fit, you can recess the transducer and lead wires into the mounting surface. The transducer includes a protective screen to protect against particle impingement.

The $\$ 495$ transducer is available in full-scale versions of 15 psia (pounds per square in. absolute) (Model 8515B-15) and 50 psia (Model 8515B-50). The 0.03×0.25-in. case contains hybrid temperature-compensation circuitry that stabilizes operation over the -65 to $+250^{\circ} \mathrm{F}$ temperature range. Full-scale output measures 300 mV . For the 8515B-50 and 8515B-15 versions, sensitivity is $6 \pm 2 \mathrm{mV} / \mathrm{psi}$ and $20 \pm 6.7 \mathrm{psi}$, respectively. Combined nonlinearity (hysteresis, nonrepeatability, and nonlinearity) equals 0.5% FSO. Thermal zero shift measures 4% max.

SCC Series strain-gauge transducers from Sensym are designed for cost-sensitive applications where precise accuracy over a wide temperature range is not a critical design consideration. Typical applications include pneumatic controls, automotive diagnostics, medical equipment, and environmental controls. Each member of the series costs $\$ 9.90$ and features an IC sensor element housed in a single-in-line package. You have a choice of three devices with full-scale pressure

Computer-based techniques facilitate sensor design

Thanks to CAD and
micromachining techniques, the latest generation of silicon sensors are sophisticated devices with performance levels far exceeding those found in oldertechnology chips. Chips with onboard, laser-trimmed calibration and temperature-compensation resistors, for example, are now available in high volume. You can also buy extremely lowpressure sensor chips-less than 1 psi full scale-in large quantities. Today, maximum sensor output nonlinearity is routinely 0.25%.

All these achievements require the most elaborate design, analysis, and manufacturing automation tools and techniques available. Finite element modeling (FEM) programs, for instance, are mechanical-analysis tools that designers can use to predict the operation and performance of complex 3-dimensional shapes such as sensors. Such tools allow designers to calculate and optimize the sensitivity, nonlinearity, resonant frequency, and damping coefficients of new sensor structures before making commitments to expensive tooling.

In addition, FEM programs enable designers to predict the difficult, but important, interactions between the chip and the package. High-performance, high-speed computer workstations, and programs such as ANSYS, make it possible to obtain highly accurate results. By reducing the development time
and experimental tooling and materials costs, modeling significantly reduces sensor cost. In effect, a designer can build, test, and optimize a sensor on the computer before any investment in actual hardware takes place.

Circuit-analysis software performs a function similar to that of FEM. According to the application requirements, the computer will integrate the sensor's electrical performance with that of the signal-conditioning circuitry. Designers can, for example, test active correction coefficients and temperature coefficients before actually building a sensor. And, they can use feedback from such computer testing to modify the required chip and circuit specifications to increase performance or decrease cost.
Test, calibration, and trim procedures also have become more sophisticated as the complexity of sensor chips increases. For advanced sensor systems, designers must use computers and modeling to obtain cost-effective solutions for electrical-design, manufacturing, test, calibration, and final-trim specifications.

As users demand sensors with higher accuracy specifications, the need for precision and longterm stability in semiconductor diffused or implanted resistors becomes crucial. Silicon process modeling can predict process variations. These predictions provide input on device specifications and distributions in these specifications before fabrication
of the first chips begins. Sensor designers can use these same models to evaluate new processing concepts for improvements in product yield, longterm stability, and device reliability.
After defining and modeling device specifications, designers must convert their engineering concepts into hard tooling.
Again, computer-design systems are essential. Computer-graphics terminals can quickly and accurately digitize the various mask levels necessary to fabricate sili-con-based sensors. These systems can also rapidly implement design modifications to speed up development schedules.
Computer-aided test systems complete the computer-aided design/analysis process. During the release of early-productionrun sensors, computer-aided test systems provide designers with immediate feedback on device performance and correlate this information with design goals. Computer-aided test systems also give engineering and manufacturing groups continuous, online, up-to-date, readily available information on yield and on the distribution of crucial specifications for mature sensors already in production.

Acknowledgment

EDN would like to thank Kurt Peterson and F Pourahmadi of NovaSensor for their invaluable assistance in supplying background information for this box.

Transducers are available for applications where low cost is more critical than is precise accuracy over a wide temperature range.

Housed in convenient, low-cost single-in-line packages, Sensym's SCC Series sensors are designed for applications where precise accuracy is not a prime system consideration.
ranges of 5,15 , and 30 psig (pounds per square in. gauge). All units feature internal temperature compensation for operation over 0 to $50^{\circ} \mathrm{C}$. Although optimized for this temperature range, SCC sensors do operate from -40 to $+125^{\circ} \mathrm{C}$. The guaranteed span-temperature error is less than 0.75% FSO, and the combined linearity, hysteresis, and repeatability error is less than 0.5\% FSO.

IC Sensors' Models 151 and 154 are solid-state straingauge devices that utilize a 316 stainless-steel housing to provide compatibility with most harsh media. The devices are available in gauge-, sealed-gauge-, and absolute-pressure versions that handle full-scale readings of 5 to 300 psi . Static accuracy is $\pm 0.25 \%$, and the operating range spans -10 to $+80^{\circ} \mathrm{C}$.

Model 154 includes integral laser-trimmed resistors that provide calibration and temperature compensation over the 0 to $50^{\circ} \mathrm{C}$ range. When the sensor is drawing a $1.5-\mathrm{mA}$ supply current, the nominal output span is 100 mV . For the Model 151, you must provide compensation by using three external resistors (the manufacturer supplies the correct resistance values). Again, for a $1.5-\mathrm{mA}$ supply current, the nominal output span equals 100 mV . The zero-pressure output equals $\pm 1 \mathrm{mV}$, and the zero and span temperature coefficients correspond to $\pm 1 \%$. The sensors cost $\$ 60$ (OEM qty); delivery is stock to 60 days ARO.

Motorola's MPX2200 silicon, piezoresistive pressure

Compatible with various liquid and gas media, PT11 sensors from Revere feature a full-scale measurement capability ranging from 100 to $10,000 \mathrm{psi}$.
sensors each contain, on-chip, a monolithic shear-stress strain gauge, diffused thermisters, and a thin-film resistor network. The pressure sensors are laser trimmed and therefore provide span and offset calibration as well as temperature compensation over -40 to $+125^{\circ} \mathrm{C}$.

The MPX2200 Series costs $\$ 10$ in quantities of 50,000 and is available in either basic-element packages for absolute- and differential-pressure measurements or in ported packages for measuring differential, absolute, gauge, gauge-vacuum, gauge-axial, and gauge-axialvacuum pressure. Over the 0 - to $30-\mathrm{psi}(0$ to 200 kPa) absolute- and differential-pressure ranges, the sensors' 0 - to $40-\mathrm{mV}$ analog output is extremely linear. At $25^{\circ} \mathrm{C}$, the linearity equals $\pm 0.1 \%$ FSO typ and $\pm 0.25 \%$ FSO max. The sensitivity is $0.2 \mathrm{mV} / \mathrm{kPa}$, and the typical zero-pressure offset is $\pm 0.05 \mathrm{mV}$. Temperature effects
on hysteresis, full-scale span, and offset are $\pm 0.5 \% \mathrm{FS}$, $\pm 0.5 \% \mathrm{FS}$, and $\pm 0.5 \mathrm{mV}$, respectively.

Micro Switch's 14PC Series are also piezoresistive, strain-gauge types residing on a silicon chip, but these sensors feature four piezoresistors, an integral sensing diaphragm, and are enclosed in miniature, wave-soldercompatible packages. Internally, an elastomer O-ring surrounds the pressure-sensitive diaphragm, leaving it exposed to pressure media applied through the ports, which are ultrasonically welded in place. You can select seal material to fit specific application requirements.

The series is available in both gauge- and differentialmeasurement versions with full-scale pressure ranges of 5,10 , and 15 psi . Repeatability and hysteresis accuracy translates to $\pm 0.75 \%$ FSO. Linearity is 0.5% full scale. The sensors operate from 10 V dc supplies and dissipate 20 mW . Their full-scale output, when operating from a 10 V dc supply, equals 250 mV . The price is $\$ 10.24$ (500).

Handling harsh environments

Model 1224 pressure transducers from Foxboro/ICT boast a proprietary 316 stainless-steel/oil-media interface that isolates the solid-state piezoresistive sensing element from excessive shock and vibration. The units' 0 - to $100-\mathrm{mV}$ output has a $\pm 0.02 \%$ repeatability spec. Available in both gauge-pressure and absolute-pressure versions that cover full-scale pressure ranges from $15 \mathrm{psig} / \mathrm{psia}$ to 5000 psig , the sensors cost $\$ 135$. Standard devices have $\pm 0.5 \%$ FSO max static accuracy; $\pm 0.25 \%$ is available as an option. Maximum thermal error is $\pm 2 \%$ FSO over the -20 to $+180^{\circ} \mathrm{F}$ compensated temperature-operating range. The devices are designed specifically to accommmodate rugged operating conditions and come with a 3 -year warranty.

Revere's PT11 pressure sensor finds use as a primary control component in hydraulic systems, air-conditioning systems, engine monitoring, refrigeration units,

Designed for applications requiring surface-pressure measurements, Endevco's Model 8515B transducer features hybrid temperature-compensation circuitry for stable operation over -54 to $+121^{\circ} \mathrm{C}$.

compressors, and industrial-control systems. The seven models that make up the line feature full-scale measurement ranges spanning 100 to $10,000 \mathrm{psi}$. The average combined error for any unit equals $\pm 0.05 \%$.

The 100 -psi sensor is constructed of 2024-T351 aluminum; the $250-$, $500-$, $1000-$, $3000-$, $5000-$, and $10,000-\mathrm{psi}$ devices are constructed of \#17-4 PH stainless steel. The minimum burst-pressure limit for all models is greater than 500% of range, and the safe-overrange limit is 200% of full scale. The supply voltage can be 12 V ac or dc. The full-scale output is $2 \mathrm{mV} / \mathrm{V} \pm 20 \%$, and the operating range covers -40 to $+150^{\circ} \mathrm{F}$. Prices range from $\$ 40$ to $\$ 57$, depending on quantity.

The TJE high-precision, wet/wet differential-pressure transducer, available from Sensotec, is engineered for pressure ranges of 50 to 500 psi . The bidirectional device sells for $\$ 950$, specs 0.1% full-scale accuracy, and

Offering full control of variable-speed pump motors, the 150 B and 150C transducers from Robinson-Halpern are designed to solve measurement and control problems in sprinkler-system water tanks.

Transducers with low power consumption and logic-level electrical outputs are ideal for remote or portable applications.

is designed to accommodate fluid or gas media in both ports. Features such as stainless-steel construction and built-in overload protection provide a high degree of durability in harsh industrial environments. The bond-ed-foil, strain-gauge-type Model TJE employs a 10 V dc supply to produce a standard $2-\mathrm{mV} / \mathrm{V}$ output; a 4 - to $20-\mathrm{mA}$ output is optional. The operating range extends from -65 to $+250^{\circ} \mathrm{F}$. Zero-offset and span temperature effects are both $0.25 \% /{ }^{\circ} \mathrm{F}$.

Viatran's 22 Series strain-gauge-type transducers are available with either a mV/V output (Model 122,
$\$ 479$) or 1 to 6 V dc output (Model 222, $\$ 525$). The use of military-grade components makes possible a -60 to $+250^{\circ} \mathrm{F}$ operating range. The units are available in versions with full-scale pressure-measurement capabilities of 50 to $10,000 \mathrm{psig}$ and psia . All feature an accuracy of better than $\pm 0.4 \%$ FSO.

The transducers are compensated for an operating range of 70 to $170^{\circ} \mathrm{F}$. Temperature effects on span and zero are $\pm 2 \%$ max. Model 122 operates from a 10 V ac/de supply voltage, whereas Model 222 operates from either 12 or 28 V dc. The full-scale output for the 122

Manufacturers of pressure sensors and transducers

For more information on pressure sensors and tranducers such as those discussed in this article, contact the following manufacturers directly, circle the appropriate numbers on the Information Retrieval Service card, or use EDN's Express Request service.

varies from 1 to $2 \mathrm{mV} / \mathrm{V}$. Long-term stability equals $\pm 0.25 \%$ max for six months, and repeatability is better than $\pm 0.1 \%$ FSO. The units will mount in any position and have proof- and burst-pressure specs of 1.5 and 5 times rated pressure, respectively.

The SA devices from Data Instruments are designed to work in applications demanding a rugged, reliable transducer. The units' design isolates the pressure measurand from the electronic hybrid circuitry, allowing the transducers to accommodate media such as oil, gas, saline solutions, blood, hydraulic fluids, alcohol,
freon, ammonia, acids, and gasoline. Full-scale pressure ranges extend from 15 to 50 psia and 100 to 5000 psis (pounds per square in. sealed gauge). Each device is computer-trimmed for calibration and temperature compensation to ensure unit-to-unit interchangeability of $\pm 1 \%$. The transducers' 5 V output precludes the need for external amplification. Accuracy (including the effects of nonlinearity, hysteresis, and repeatability) is within $\pm 1 \%$ of span. Long-term stability measures $\pm 1 \%$ FSO over one year.

The SA transducers function from supply voltages in

Midwest Components Inc

1981 Port City Blvd
Muskegon, MI 49443
(616) 777-2602

Circle No 678
MKS Instruments Inc
6 Shattuck Rd
Andover, MA 01810
(617) 975-2350

TWX 910-240-8005
Circle No 679

Motorola Semiconductor Products

Box 20912
Phoenix, AZ 85036
(602) 244-6900

Circle No 680
NovaSensor
1055 Mission Ct
Fremont, CA 94539
(415) 490-9100

TLX 990010
Circle No 681
Paine Corp
2401 S Bayview St
Seattle, WA 98144
(206) 329-8600

Circle No 682
PCB Piezotronics Inc
3425 Walden Ave
Depew, NY 14043
(716) 684-0001

TWX 710-263-1371
Circle No 683
Piezo Electric Products Inc
212 Durham Ave
Metuchen, NJ 08840
(201) 548-2800

Circle No 684
Revere Corp of America
Box 56
Wallingford, CT 06492
(203) 269-7701
TLX 844387
Circle No 685
Robinson-Halpren Co
1 Apollo Rd
Plymouth Meeting, PA 19462
(215) 825-9200
TWX 510-660-8637
Circle No 686
Schaevitz Engineering
Route 130 \& Union Ave
Pennsauken, NJ 08110
(609) 662-8000
TWX 710-892-0714
Circle No 687
Sensotec Inc
1200 Chesapeake Ave
Columbus, OH 43212
(614) 486-7723
Circle No 688
Sensym Inc
1255 Reamwood Ave
Sunnyvale, CA 94089
(408) 744-1500
TLX 176376
Circle No 689
Setra Systems Inc
45 Nagog Park
Acton, MA 01720
(617) 263-1400
Circle No 690
Siemens Components Inc
Special Products Div
186 Wood Ave S
Iselin, NJ 08830
(201) 321-3400
Circle No 691

(

Thermometrics Inc
808 Hwy 1
Edison, NJ 08817
(201) 287-2870

TLX 844387
Circle No 692
Trans Metrics Inc
5325 Naimon Parkway
Solon, OH 44139
(216) 248-2229

TWX 810-427-2059
Circle No 693
Transducer Systems Inc
Box 341
Kulpsville, PA 19443
(215) 256-4611

Circle No 694
Transducers Inc
14030 Bolsa Lane
Cerritos, CA 90701
(714) 739-1991

Circle No 695
Transducers \& Systems Inc
Twin Lakes Rd
North Branford, CA 06471
(203) 481-5721

Circle No 696
Unimeasure Inc
7055 NW Grandview Dr
Corvallis, OR 97330
(503) 757-3158

Circle No 697
Vernitron Corp
Vernitech Div
300 Marcus Blvd
Deer Park, NY 11729
(526) 586-5100

Circle No 698

Viatran Corp

300 Industrial Dr
Grand Island, NY 14072
(716) 773-1700

TWX 710-260-1353
Circle No 699
West Coast Research Corp
Box 25061
Los Angeles, CA 90025
(213) 478-8833

Circle No 700
Yellow Springs Instrument Co Inc
Box 279
Yellow Springs, OH 45387
(513) 767-7241

Circle No 701

Stainless-steel construction and built-in overload protection provide a high degree of durability in harsh industrial environments.

the 9 to 20 V dc range. Although the units have a 30 to $185^{\circ} \mathrm{F}$ compensated operating-temperature range, they will function from -67 to $+257^{\circ} \mathrm{F}$. Thermal effects on span and zero-offset voltages are $\pm 1 \%$. All units include reverse-polarity and RFI protection as standard features. They cost $\$ 209$.

Foil-gauge units satisfy low-power needs

Boasting a current consumption of only 1 mA , Trans Metrics' P21L transducers are well-suited to applications where low power consumption is a primary design consideration. In addition, the units provide a 0 to 5 V output from 5 V de supplies. They employ foil strain gauges bonded to the nonwetted side of a machined stainless-steel diaphragm-type sensor. There is no contact between the measured fluids and the electrical circuits, so the transducers accommodate any corrosive fluid that does not attack stainless steel.
Relative-, absolute-, compound-, vacuum-, and differ-ential-pressure types are available in full-scale measurement ranges of 15 through $15,000 \mathrm{psi}$. All models cost $\$ 395$. The transducers will operate over the -30 to $+180^{\circ} \mathrm{F}$ range and are compensated for operation from 0 to $160^{\circ} \mathrm{F}$. Zero-balance and nonrepeatability-error specifications are $\pm 2 \%$ FSO and 0.2% FSO, respectively. The static error band (including nonlinearity, hysteresis, and nonrepeatability) measures $\pm 1 \%$ FSO for models below 150 psi and $\pm 0.5 \%$ FSO for all others.
The signal-conditioning circuitry consists of a low dropout regulator, a voltage doubler, a negative-voltage converter, and an amplifier. Because of the nega-

Developed for laboratory and biomedical use, PPS-1 sensors from Thermometrics monitor changes in both pressure and temperature.
tive-voltage converter, P21L transducers provide an output of 0 V at zero pressure, thereby eliminating the need to trim out any voltage offset. The signal-conditioning circuitry also contains field-adjustable zerobalance and span potentiometers. These adjustments are located behind weather-tight plugs.

The Model PA194SH from West Coast Research is a micropower transducer ideal for use in salt water, corrosive fluids, and hostile environments. Capable of working in a submerged condition, it operates from approximately 1 mW and provides a full-scale output of 1V or higher. High sensitivity is a key feature of the PA194SH. At 600 ft of water, for example, it is capable of resolving 1 part in $72,000(0.0014 \%)$. Output nonlinearity is less than 0.05%. The unit is available with an output converter or transmitter to yield either BCD, 4to $20-\mathrm{mA}, 0$ to 5 V , or other control-signal outputs. The submersible version costs $\$ 1250$; a reduced-sensitivity version (1 part in 24,000) is available for $\$ 850$.

Medical uses-no problem for foil units

The PPS- 1 from Thermometrics costs only $\$ 76$ and is designed for invasive use in measuring pressure at selected anatomical sites, and, more specifically, for use in thermal-dilution catheters and wedge-pressure catheters. It does accommodate noninvasive applications, too, however. The sensor features a distal tip mount, which attaches to a catheter tube. The silicone rubber diaphragm is at the front face of the sensor, and the

Offering wet/wet media compatibility, Micro Switch's 14PC Series is assembled using a TAB (tape automated bonding) process and elastomer O-ring seals.

the beat goes on....

 . . . WITH SENSYM AT THE HEART.

Pressure Sensors

Sensym offers the industry's broadest line of solid state pressure sensors. For example, the new SCX series pressure sensors offer:

- Guaranteed precision over temperature: 1% max!
- Calibrated zero: $300 \mu \mathrm{~V}$ max!
- 26 models. From 0-1 psi up to
0-100psi
- $\$ 15$ each in 100 piece quantities

Solid-State Accelerometers
Sensym offers the latest in micromachined semiconductor accelerometers. They're available in ranges from 2 g's to 200 g's.

And, for only $\$ 57$ each in single piece quantities.

Visit us at the Sensors Expo
Booth \#814

- Sunnyvale, CA 94089

Sensor Handbook
F $\quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{E}$

The new 1988 handbook features over 200 pages of the latest product and application information on:
\square Solid State Accelerometers Silicon Pressure Sensors
\square Media Isolated Transducers
\square Ultra Low Pressure Series ($10^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ Full Scale)
Sensor Modules
Call us today for your free copy.

Transformer-based transducers have long operational life and feature excellent resolution.

rear section serves as a shank that attaches to the catheter. Three wires and an atmospheric vent tube extend from the shank.
The sensor measures pressures over the range of -30 to +300 mm of mercury (Hg), and it operates over the range of 15 to $45^{\circ} \mathrm{C}$. Overpressure capability extends from -100 to +1200 mm . The sensor operates from 5 to 10 V dc supply voltages. Sensitivity at $25^{\circ} \mathrm{C}$ equals 5 to $10 \mathrm{mV} / \mathrm{V} / \mathrm{mm} \mathrm{Hg}$. Zero balance is $\pm 75 \mathrm{~mm} \mathrm{Hg}$, and the combined linearity and hysteresis error equals $\pm 2 \mathrm{~mm}$ Hg . The zero-drift spec (over time and temperature) measures $0.3 \mathrm{~mm} \mathrm{Hg} /{ }^{\circ} \mathrm{C}$ max and $3 \mathrm{~mm} \mathrm{Hg} / 24$ hours, respectively.

The number and variety of available strain-gauge transducers attests to their popularity. Nonetheless, other technologies still command a piece of the market. LDVT transducers represent one such technology. Compared with strain-gauge types of sensors, LVDT transducers rely on a transformer coil for the sensing element. Such transducers are unaffected by mechanical strain, making them extremely reliable.

LVDT transducers find an industrial home

Robinson-Halpern's Models 150B and 150C pressure transducers feature a wide zero- and span-adjustment capability that makes them well-suited to solving pres-sure-measurement and -control problems in auxiliary water tanks such as those used for sprinkler systems. The $\$ 325$ units can provide precise liquid-level measurement in elevated tanks or water towers even if the instrumentation is located at ground level. Using only a small portion of their pressure-range capability, they maintain full control of variable-speed pump motors. Users can compress the transducers' span from 100 to

Combining varied media compatibility with low cost, Model 151 and 154 sensors from IC Sensors measure full-scale pressures from 5 to 300 psi with $\pm 0.25 \%$ accuracy.
15% of the rated range, and suppress the zero-offset voltage by as much as 85%. Zero and span controls are externally accessible.
Models 150B and 150 C measure the pressure of liquid or gas media in gauge, differential, or absolute units. They are available in nine versions featuring full-scale capabilities of 1.5 to 300 psi ; accuracy is $\pm 0.5 \%$ of the user-calibrated range. The devices operate over the -40 to $+176^{\circ} \mathrm{F}$ range, and they are temperaturecompensated over the 25 to $150^{\circ} \mathrm{F}$ range. Their castaluminum housing has a NEMA-1 rating. An internal regulator, which features polarity-reversal protection, allows the devices to operate from unregulated power sources.

The P-3061, a member of the P-3000 Series from Schaevitz, has a low-pressure-measurement-range capability. It is available in gauge- and differentialpressure versions capable of measuring 0 to 2 in . of water to 100 psi . The transducer operates from an unregulated 10 to 32 V de supply, consumes only 1.2 mA , and provides a 0 to 5 V dc output. The P-3061's total static error is less than $\pm 0.5 \%$ of its full-range output (FRO); a $\pm 0.25 \%$ FRO spec is available as an option. The operating range extends from -40 to $+175^{\circ} \mathrm{F}$. The cost is $\$ 300$.

Kaman Instrumentation Corp also employs inductive technology in its pressure-sensor offerings. The KP1911 high-temperature pressure-measuring system is an integrated transducer system that operates at temperatures of $1100^{\circ} \mathrm{F}$. It includes a pressure sensor/ transducer (with 50,000-psi capability), cabling, and signal-conditioning circuitry. The cabling has two sections joined by a transition connector-a metalsheathed high-temperature section, and a flexible twisted-pair section that connects to the system's electronics.

The sensor can operate in media such as liquid sodium, steam, plastics, and petrochemicals. The system output is an analog voltage directly proportional to the applied static or dynamic pressure. The sensor uses internal impedance variations to measure static and dynamic absolute pressure. Gauge- and differential-pressure-measurement versions are also available. The gauge sensor has a vent that provides an atmospheric reference, and the differential sensor includes a tube that allows you to provide a dry-gas reference pressure.
The KP-1911's housing is alloy 718; the cable sheath is alloy 600 . The patented 2 -coil sensor design in essence cancels temperature effects and provides a compensated operating range of -100 to $+1000^{\circ} \mathrm{F}$. Each sys-

If you think HP board testers aren't affordable, think again.

If you want a complete board tester that meets your needs at a price you'll like consider the new HP 3065ST.

It's surprisingly affordable,
available with HP's exclusive 99\% Guaranteed Uptime program*

Call HP for

 your free videotape!1-800-752-0900, ext. J215.
For a free videotape on
the HP board test family, or
more information, call today. with many standard features not found on other board testers under \$100,000.

You get multi-user capability without the headaches of foreground/background systems. Automatically generated 6-wire analog measurement. Analog functional testing. A vector application rate of 2.5 MHz . A highspeed digital library with more than 4,500 devices. 81 megabytes of mass storage. And more. All standard.

There's also complete software and fixture compatibility across the HP 3065 family. So you can start small and easily expand as you grow.

And like all HP board testers, the HP 3065ST is

hr HEWLETT PACKARD

This DC-operated linear displacement sensor incorporates unique monolithic circuitry and ratiometric design for accurate, repeatable measurements - at very affordable prices.

With an operating temperature range of $+32^{\circ}$ to $+160^{\circ} \mathrm{F}$ and linearity at 0.25% full range, our DC-LVDT operates efficiently in tough environments.
Measuring DISPLACEMENT, PRESSURE, ACCELERATION, FORCE/WEIGHT, SLOPE/TILT, or VELOCITY? For nearly half a century, we've demonstrated our commitment to sensor technology with products for a variety of measurement applications.
For complete information on the DCLVDT, write Schaevitz, U.S. Route 130 \& Union Avenue, Pennsauken, NJ 08110 or call our Hot Line: 609/662-8008.
Grid Scale: $3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$

At Last... High Pefformance DC-LVDTS Become AFFORDABLE

HP's perfect balance between price and performance in logic analysis.

The balance is called value! And nobody can put more value on your bench than HP. With the HP 1650A and HP 1651A, you get powerful capabilities at prices that keep the bottom line where you like it-low.

HP Logic Analyzers:

the extra measure.
The exceptional value stems from HP's proprietary "logic-analyzer-on-a-chip" technology which integrates state analysis, timing analysis and acquisition memory on a single IC. You get features like 25 MHz state $/ 100 \mathrm{MHz}$ transitional timing on all channels and two independent analyzers in a single instrument.

If your application is digital hardware, or if you're working with popular 8-bit μ Ps, choose our 32-channel HP 1651A at only $\$ 3,900$.

For your 8-, 16-, or 32-bit $\mu \mathrm{P}$ development applications, choose the 80 -channel HP 1650A analyzer at only $\$ 7,800$. It offers full support for most popular μ Ps including the Motorola 68020 and the Intel 80386.

Both analyzers are capable of crossdomain triggering which lets you simultaneously capture and display state and timing information with time correlation for powerful cause/ effect problem solving. Each has a built-in disc drive for storage of setups and measurements. And additional software tools to make your measurement
 tasks easier.

Call HP for your free video!

 1-800-752-0900, Ext. 215VGet a hands-on feel for our HP 1650A and HP 1651A logic analyzers with our demo video and literature. They're free!
 You'll see how we balanced price and performance-perfectly.

There's an easier way to

make sure it's rugged.

Order GE/RCA Rugged MOSFETs, the only ones with an "R" on the label. Because the wrong device can ruin your creation.

Two years ago an independent testing company compared GE Ruggedized MOSFETs with all leading competitive units. The results were even better than we expected.

In this test conducted by Associated Testing Laboratories, Inc., the ruggedness of 25 GE IRF-series MOSFETs was compared with 25 devices from each of four competitors. As you can see, the GE parts significantly outperformed the others.

Today, the situation is different.
Because our MOSFETs are more than twice as rugged as they were then. Yet our ruggedized MOSFETs cost no more than competitors' standard MOSFETs.

A powerful combination.

We've achieved this by combining the rugged technology of GE products with the outstanding manufacturing, quality control and cost-effectiveness of RCA power
MOSFETs. So we can bring you the best line
of rugged PowerFETs in the industry. And the benefits are considerable.

Why you need Rugged FETs.

Our Rugged MOSFETs are fast. But they're not fragile.

They're designed, tested and guaranteed to withstand a specified level of circuit-induced electrical stress in breakdown avalanche mode.

When you design with our Rugged devices, you can eliminate zener diodes, snubbers and other costly circuitry.

So you save money. And by simplifying your design, you improve system reliability.

Just as important, these devices give you a margin of error.

Because you can never be sure when your system will be subjected to voltages beyond what you expected.

And if you're designing for applications that routinely have to handle surges and transient voltages, these devices are perfect.

A wide selection of drop-ins.

We have more than 200 parts in distributor stock. And they're drop-in replacements for virtually any N -channel devices.

So why take chances, when you can improve your system performance and reliability at no added cost?

For more information, contact your local GE Solid State sales office or distributor. Or call toll-free 800-443-7364, extension 28.

New 150KHz switcher. 4.3 inches high. 50 to 1500 Watts. SELV. And loaded.

- 8mm primary-secondary and 4mm primary-ground spacings for a SELV (Safety Extra Low Voltage) power supply per IEC 380/VDE 0806. UL recognized, CSA certified. VDE/IEC certified by TÜV Rheinland.
- On-board dual-choke filter meets FCC Class A.
- MIL STD 810D certified. - 75-80\% efficiency. - Soft start.
- Power on LED. Remote on/off, optically isolated.
- Remote error sensing. - Voltage adj $+10,-30 \%$.
- Overvoltage protection. $115 / 230 \mathrm{~V}$ a-c selectable input.
- 300V d-c input. - Current share (1500W).
- The 300W and 1500 W models have undervoltage protection.
- Holding time: 20 msec . min, 30 msec typ.
- Supplied fully enclosed for industrial applications.

All built-in. No extra cost.*

Shown:
300-Watt Model
RAX $12-25 \mathrm{~K}$
(Output 12V/25A).
*Price complete:
50W - \$199
100W - $\$ 289$
175W - $\$ 380$
$300 \mathrm{~W}-\$ 520$
1500W - \$1450 Quantity discounts available.

24 MODELS OF HEAVY DUTY, INDUSTRIAL GRADE, FET-BASED SWITCHING POWER SUPPLIES KEPCO/TDK SERIES RAX

KEPCO.

THE POWER SUPPLIER ${ }^{\text {w }}$

CAE software uses algorithms instead of schematics

> Drawing logic schematics isn't the only way to create ASIC designs. You can also use algorithms to automatically generate the net list for your bardware design - and you can do so in about one-tenth of the time that it often takes to complete a schematic.

Jay R Southard, Algorithmic Systems Corp

Using algorithms to design your hardware can simplify and clarify the design process as well as reduce by as much as 90% the amount of time and money you spend on it. Although engineers customarily associate schematic design with hardware and algorithmic design with software, this need not always be the case. Hardware and software are really just media for implementing your design. Schematics and algorithms, on the other hand, are design methods.

The Ascyn synthesizer transforms your algorithm directly into an ASIC foundry's net list. It also simulates designs, determines clock rates, and automatically generates test vectors. The package, written in LISP, is an artificial-intelligence logic synthesizer that can run on VAXs and personal computers.

Using this synthesizer, you can program your de-
sign's algorithm and then either compile it for a simulation run, or synthesize a net list for a specific ASIC foundry's process. After the software generates a net list, the ASIC foundry can tell you how much the circuit will cost to make.

The synthesizer is neither a schematic-capture package nor a silicon compiler. Silicon compilers work by converting high-level schematic specifications into ASIC layouts. The synthesizer, on the other hand, translates algorithms directly into net lists. How the manufacturer lays out the hardware devices is irrelevant to the algorithmic synthesizer's operation.

The algorithmic synthesizer isn't great for every type of design. Designs larger than 10 pages of Ascyn code probably won't fit in 10,000 -gate gate arrays, which are generally the largest available. Moreover, any synthesized ASIC will of course be faster than the corresponding algorithm running on a standard computer, but it's unlikely to be more than 50 times faster at best.

Synthesized designs can be larger and slower than carefully crafted, schematic designs. At the 1000 -gate level, the average synthesizer-generated ASIC is about 10% larger than the best schematic implementation of the same function. However, at about 2000 gates and above, the algorithmic synthesizer is better than schematic capture at minimizing chip size because a synthesizer looks over the entire IC and finds shareable resources.

You can't make a general, quantified comparison of
the speed of an algorithmically designed ASIC with the speed of a schematically designed ASIC. Rather you must evaluate them on a case-by-case basis.

Three key traits characterize synthesizer

The synthesizer's ability to transform algorithms into net lists stems from three key characteristics of the package: its frequent use of master-slave registers, its method of assigning operators to operations, and the way it implements Boolean functions.

Although the master-slave register plays only a minor part in schematic designs, it's fundamental to algorithmic designs. If you write in any computer language:

$$
\mathrm{B}:=\mathrm{B}+\mathrm{A}
$$

what you really mean is:

- Sample the values of variables on the right-hand side of the assignment operator.
- Perform the indicated operation (in this case an addition).
- Hold the resulting value.
- Update the values of the variable on the left-hand side of the assignment operator with the held results.
This sequence defines exactly what a master-slave register does.

The synthesizer's master-slave registers have three inputs: data (word-wide), latch enable (a single-bit signal), and clock. If the latch-enable signal is 0 , then the register retains its stored value; if it's 1 , then the register gets updated in accordance with the data input, the clock, and the master-slave rules. In Figs 1, 2 , and 3 , the master-slave registers are boxes with parallel data inputs and a latch-enable single-bit signal. The clock line is implicit.

Operators vs operations

The synthesizer's second key characteristic is its method of assigning operations to operators. For the purposes of this article, operations are the primitive elements of an algorithm. They are the instructions that apply to specific variables at specific times. In contrast, operators are the primitive elements of a schematic. They represent the objects that are eventually connected together to make an integrated circuit. Good logic design involves the art of packing the required operations into the least expensive, highestperformance set of operators.

Fig 1-The algorithmic logic synthesizer transforms a simple limit-checking code fragment into this circuit.

Fig 2-The synthesizer automatically condenses the redundant operations in (a) into a single operator in (b).

Using the synthesizer, you can try various design options. You can, for example, write a series of operations either sequentially or in parallel. Thus you can write two lines of operations sequentially:

$$
\mathrm{A}:=\mathrm{A}-1 \quad \mathrm{~B}:=\mathrm{B}+\mathrm{A}
$$

or in parallel:

$$
\begin{aligned}
&(\mathrm{par} \\
& \mathrm{A}:=\mathrm{A}-1 \\
& \mathrm{~B}:=\mathrm{B}+\mathrm{A})
\end{aligned}
$$

The parallel construction includes two operations in a single cycle. The synthesizer can implement the sequential operations with only a single physical operator that can alternately add or subtract (such as an ALU), but not do both at the same time. The parallel version, on the other hand, needs two physical operators to execute both operations simultaneously: It's faster but it requires more hardware.

In some cases, the synthesizer only has to assign a
separate operator to each operation. For instance, consider this small fragment of code in Fortran:

> .NOT. (LIMIT .EQ. (COUNT + 1))

The corresponding piece of Ascyn code is:
(not (= limit (inc1 count))

Working under the assumption that these operations must execute in one clock cycle, the synthesizer transforms this algorithm into the circuit in Fig 1 (the program can generate schematics of this sort at any point in the design cycle). The thick lines in Fig 1 highlight word-wide data paths; the thin line is an unregistered, single Boolean signal (a "wire" variable in the Ascyn language). For this simple algorithm, every operation has its own operator.

Now consider a slightly larger piece of code:

$$
\begin{aligned}
& \text { (if }(\text { not }(=\operatorname{limit}(\text { inc1 count))) }(\text { setn-word count } \\
& \text { (inc1 count))) }
\end{aligned}
$$

According to the rules of the Ascyn language, the synthesized hardware must execute these operations in one clock cycle. The hardware must therefore perform two "incl" operations in parallel. Fig 2 a meets this requirement by including two "incl" operators, but that solution is very inefficient.

The synthesizer solves the problem by recognizing that both "incl" operations increment the same variable ("count"); it then synthesizes by applying its fan-out rule and generates the circuit in Fig 2b.

To see how the synthesizer would handle a slightly more complicated design, consider the following set of operations that must be sequential (Program 1):
$($ setn-word A $(-(+$ A B) D)) (setn-bit BOOL
$(=\operatorname{LIMIT}(-\mathrm{C} D)))$

If you designed the circuit so that each step is performed separately, you would create the configuration in Fig 3a. The synthesizer, however, recognizes that because these operations are sequential and not parallel, they can share operators (Fig 3b). This streamlined circuit substitutes a multiplexer and a little more control wiring for a subtractor-a good tradeoff.

Note the control box in Fig 3a. Normally, a hardware designer designs everything in the data path except the code for the control section (the data path includes all
the registers and arithmetic operators through which data is processed). Programmers later specify the control code so that the data path executes the higher-level algorithm desired at the time. In contrast, the synthesizer automatically generates all code for the data path, including the control code.

When you want to estimate an ASIC's performance, algorithmic design facilitates identifying the critical path, which is difficult to do from schematics. In the Fig 3 designs, for example, the critical path depends on the control code. With one control code, the critical path might flow from A and B through the +, MUX, - , and $=$ operators all the way to BOOL. With another control code, the critical path might only flow through the +, MUX, and - operators (Program 1, in fact, defines this path). Thus you can easily determine the critical path if you look at the algorithm; but if you just look at the schematic, the critical path is obscure.

To further illustrate this point, consider that a second algorithm exists that generates the same data path as the previous algorithm but not the same control section:

```
(set n - word A (- C D))
(set n - bit BOOL (=(-(+ A B)D)LIMIT))
```

It's possible to determine the different critical paths by

Fig 3-The synthesizer maximizes the use of expensive operators, such as the subtractor in (a) by employing a multiplexer for sequential operations (b).

A synthesized ASIC is not likely to be much more than 50 times faster than the same algorithm running on a standard computer.

analyzing the algorithms, but not if you look at the schematics-which are identical.

The third key element of the Ascyn synthsizer is its Boolean implementation, which differs from the more common Boolean reduction. Most Boolean reductions produce sets of sum-of-products expressions. By DeMorgan's law, these expressions can be realized as 2 -level NAND-NAND implementations. But NANDNAND implementations are not always practical. Consider the high fan-in NAND gate in Fig 4a. Such high fan-in gates pose two problems: They are slow, and they're not available in gate arrays. In fact, if you do find an 8 -input NAND-gate entry in your foundry's cell library, it's almost certain to be a macro that expands into the primitive cells in Fig 4b.

In many cases, the particular high fan-in gate that you need is neither a primitive nor a macro available in a given foundry's library. If you were using normal design methods, you would use the next highest size available and simply tie off some of the inputs. In comparison, if the Ascyn synthesizer can't find exactly the right size in the cell library, it generates from primitives the size needed. To do this, the synthesizer uses a series of rules that transforms and minimizes gates. For example, if an 8 -input NAND gate does not exist, the synthesizer generates the circuit in Fig 4b.

By analogy, you might expect that the synthesizer would transform a 5 -input NAND gate into the set of primitives in 5a. Instead it goes beyond simple Boolean reduction, and applies DeMorgan's law several more times to generate the circuit in Fig 5b. In this way, the synthesizer achieves optimal Boolean implementation. Not only does the design in Fig 5b have one less gate than the one in Fig 5a, but in some circumstances, it's also faster.

The step-by-step designing of a complex ASIC algorithmically provides a more practical example of how the synthesizer works. Consider a closest-threat

Fig 4-Simple Boolean reducers often produce results that require high fan-in NAND gates (a). In actuality, such gates in a foundry's cell library are macros that expand to the circuit in (b).

Fig 5-The synthesizer develops the exact-sized gate required. Although (a) is one possible expansion of a 5-input NAND gate, the synthesizer repeatedly applies DeMorgan's law to achieve an even simpler circuit (b).
alert subsystem. The system monitors a scanning device (such as a radar or video detector) and then determines and reports the object nearest to a selected set of X,Y coordinates. First, a master processor specifies a set of X,Y coordinates. The ASIC then checks these coordinates against the next frame of data from the scanning device and all subsequent frames until the master selects a new set of coordinates. When the ASIC detects a new closest threat, it alerts the master processor, which then can obtain the current closest object's X,Y location (the alert signal remains high until the next such interrogation) (Fig 6).

The closest-threat alert subsystem executes algorithms to perform five tasks:

- Input coordinates from the master processor.
- Output coordinates and alarm the master processor.
- Process the pixel data from the scanner.
- Compute the distance from detected objects to the coordinates supplied by the master processor.
- Update the closest threat and alert the master processor if necessary.
Before deciding that an ASIC is the best way to implement the closest-threat subsystem, you must first determine the throughput requirements of the subsystem. The distance calculation seems to be the most critical; the other algorithms seem much less computationally complex. The scanning device scans 256 lines of 256 points each. A frame consists of a framing bit followed by 65,536 data bits. A data bit of 1 indicates that an object exists at the point then being scanned in the frame.

If X_{L} and Y_{L} are the X and Y values of the coordinates selected by the master processor, then the distance from $\mathrm{X}_{\mathrm{L}}, \mathrm{Y}_{\mathrm{L}}$ to any (X, Y) coordinate is:

$$
\sqrt{\left.\left(\mathrm{X}-\mathrm{X}_{\mathrm{L}}\right)^{2}+\left(\mathrm{Y}-\mathrm{Y}_{\mathrm{L}}\right)^{2}\right)} .
$$

This simple formula is very computationally intensive however. The following algorithm approximates $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ without recourse to squaring or square roots:

$$
\begin{gathered}
\mathrm{g}=\text { MAXIMUM }\left\{\begin{array}{l}
|\mathrm{a}| \\
|\mathrm{b}|
\end{array}\right. \\
\mathrm{l}=\text { MINIMUM }\left\{\begin{array}{l}
|\mathrm{a}| \\
|\mathrm{b}|
\end{array}\right. \\
\mathrm{c}=\frac{7}{8} \mathrm{~g}+\frac{1}{2} \mathrm{l}
\end{gathered}
$$

APPROXIMATE SQUARE ROOT $=$ MAXIMUM $\left\{\begin{array}{l}\text { c } \\ g\end{array}\right.$
The subsystem must process 65,536 bits (or pixels) per frame. The number of frames per second depends on the scanning device; the device in this example displays 60 frames per second (a typical number). The subsystem must therefore have a throughput rate of about 4 M pixels/sec or better.

Standard $\mu \mathrm{P}$ won't work

You can rule out using a standard $\mu \mathrm{P}$. The fast magnitude-approximation algorithm needs about 20 instructions. At a clock rate of 16 MHz , and assuming 4 cycles per instruction (both are optimistic estimates), an advanced standard $\mu \mathrm{P}$ can do no better than 0.2 M distance computations per second.

You could try other algorithms. For example, you could buffer a frame's worth of data and perform a spiral search. Or, rather than use an approximation, you could note that $(d+1)^{2}=d^{2}+2 d+1$, and compute successive values of distance recursively from the beginning of a scan. Using the synthesizer, you can evaluate both the advantages and disadvantages of these two algorithms.

Another hardware option to consider is a programmable logic device (PLD). Unfortunately, the arithmetic required for this application immediately disqualifies
standard PLDs because the carry action of multibit arithmetic implements poorly as a sum-of-products Boolean function.

Yet another possibility is to use a ROM. The distance calculation is completely combinational-it doesn't require saving any data from one input to the next. Because the X and Y inputs are 8 bits each, the resulting distance may be as large as 360 , thus requiring 9 bits. This magnitude implies a $64 \mathrm{k} \times 9$-bit ROM, which is hardly a standard size. Even if you did have such a part, you would still need some auxiliary logic to implement the other, system-oriented, parts of the problem (eg, comparison against current minimum, alerting the master processor).

Code implements distance calculation

The code in Listing 1 implements only the distance calculations and does not include any I/O functions. The first line names the ASIC as "mag," and declares the default integer word size to be 9 bits wide. The next section, starting with the keyword "def," declares the types of the variables-in this case "input," "output," and "wire" ("wire" variables are unregistered, singlevalue Boolean variables).

The last section, starting with "always," defines the algorithm. The keyword "always" starts an endless loop that executes everything that follows continuously. The Ascyn language uses a prefix notation, so that ($>=x$ xl) denotes a conditional test that is true if x is greater than or equal to xl , and is false otherwise. Therefore, when the first three program lines following the "always" says:

$$
\begin{aligned}
& \text { (if }(>=\mathrm{xxl}) \text { (set-word dx }(-\mathrm{x} \mathrm{xl}) \text {) } \\
& \text { (set-word dx }(-\mathrm{xl} \mathrm{x})))
\end{aligned}
$$

Fig 6-The closest-threat alert subsystem processes a high-speed bit stream from a scanning device and gives a master processor the coodinates of the closest object.

Three key characteristics of the syntbesizer give it the ability to transform algorithms into net lists.
this code fragment means that if x is greater than or equal to $x l$, then $d x$ is assigned the value $x-x l$; otherwise, $d x$ is assigned the value $\mathrm{xl}-\mathrm{x}$. In other words, this code fragment guarantees that $d x$ is the positive difference between x and xl . (Comments start with a ";" and continue to the end of the line.)

The second program line treats dy similarly. The next program section finds the minimum and maximum of $d x$ and dy. In this case, if $d x$ is greater than or equal to dy, the code does two things in parallel: It assigns the value of $d x$ to g, and it assigns the value of $d y$ to l. The parallel action is exactly the opposite when dy is greater than dx .

The next section creates the approximation c according to the algorithm. The operator \gg is a right-shift command and can take several options, including an option for the number of bits to shift. Note that $7 / 8=1-1 / 8$. Finally, the program selects the maximum of g or c to be the d output.

In order to submit this program to the synthesizer and discover how fast the algorithm will run, you obviously must choose a foundry's cell library. For the closest-threat subsystem, several are available. This
example uses the California Devices Inc (CDI) $2-\mu \mathrm{m}$ double-level metal-cell library.

To estimate the maximum frequency, the synthesizer analyzes the critical path, taking fan-out capacitive loading into account. This estimate stops short of actually converting the net list into a physical layout and calculating the speed based on the chip's geometry -that's the task of the foundry. The package's simulator estimates that the ASIC's maximum clock frequency will be 4.57 MHz .

Further, this algorithm consumes 742 physical cells of a CDI gate-array chip. The cell count indicates how expensive production is going to be. The average gatearray chip comprises 2,000 of these cells, and the foundry makes up to 10,000 -gate chips available (chips with more gates cost more of course).

These manufacturing specifications do not apply to other foundries. To see how large this design will be (and how much it will cost and how fast it will run) using other foundries' gate arrays or standard cells, you must resynthesize the algorithm using their libraries.

In this case the CDI chip is an acceptable size. If it weren't but you only needed a 10% improvement, you

```
LISTING 1-BASIC DISTANCE-CALCULATION ALGORITHM
(system mag 9
    (def
        (x input word *) (x| input word *) (dx wire word *)
        (y input word *) (yl input word *) (dy wire word *)
        (g wire word *) (I wire word *)
        (c wire word *) (d output word *)
        )
        (a)ways
; dx = absolute value of ( }x-x|
    (if ()=x x|) (set-word dx (-x x|)) (set-word dx (-x| x)))
; dy = absolute value of (y - yl)
    (if ()= y yl) (set-word dy (-y yl)) (set-word dy (-yl y)))
; g and l are max and min of absolute values
    (if (>= dx dy)
        (par (set-word g dx) (set-word I dy))
        (par (set-word g dy) (set-word l dx)))
; c=7/8g+1/2 1
        (set-word c (+ (>> 1). ; 1/2 1+
        (-g(>)gbit-0 3)))) ; 7/8 g
; approximate square root = max of g , c
    (if (>=cg) (set-word d c) (set-word d g))
        ))
```

might try altering the fan-out ratio. However a 10% change often isn't sufficient, and you must consider more radical measures.

Pipelining shortens critical paths

One possible measure is pipelining. It gives you a larger design but a shorter critical path. Yet pipelining also changes the chip's operation because the outputs are delayed some number of cycles behind their associated inputs. The rest of the system must be able to accommodate this latency.

You have the option of pipelining the distance calculation. This sort of pipelining is very easy to effect. Just designate some of the variables to be "saved" variables rather than as unregistered ("wire") variables. Selecting variables l and g is a good choice because they are roughly in the middle of the algorithm (Listing 2). Thus pipelining here yields the greatest improvement in performance for the least cost. The first pipeline stage calculates l and g from dx and dy . The second stage uses l and g to calculate c and d. Except for the declarations of the type of variables, the code is unchanged from Listing 1.

Selecting the same foundry's library as before, and
resynthesizing, yields a chip that runs at 7.72 MHz instead of 4.57 MHz . However, the chip now consumes 842 physical cells instead of 742 . So far, this result is exactly as you would expect: You've traded time for space. You could make more pipeline stages. For example, dx and dy could be pipeline registers-so could c. Each time you add a pipeline stage, you should improve the throughput at the expense of increased chip area.

One of the primary advantages of an ASIC over standard parts is that you can achieve exactly the right I/O configuration as well as exactly the right computation on a system-by-system basis. Depending on the processor bus to which you are connecting, the data bus could, for example, be bidirectional. If you are using one of the Intel processors, you might find that the address and data buses were multiplexed. A standard chip that does not meet the processor's interface requirements requires extra chips for the interface. On the other hand, you can change the I/O algorithm to accommodate such processor-bus variations.

The processor needs to be able to load the ASIC with new values of xl and yl (Listing 3). In specifying I/O, for example, you can assign some of the processor's

Text continued on pg 134

LISTING 2-DISTANCE ALGORITHM WITH PIPELINING

```
(system mag 9
    (def
            (x input word *) (x| input word *) (dx wire word *)
            (y input word *) (yl input word *) (dy wire word *)
            (g saved word *) (l saved word *) ;pipeline registers
            (c wire word *) (d output word *)
            )
        (a)ways
; }dx=\mathrm{ absolute value of (x - xl
            (if (> = x x|) (set-word dx (-x x|)) (set-word dx (-x| x)))
; dy = absolute value of (y - y|)
    (if (>= y yl) (set-word dy (-y yl)) (set-word dy (-yl y)))
; g and l are max and min of absolute values
    (if (>= dx dy)
            (par (setn-word g dx) (setn-word l dy ))
            (par (setn-word g dy) (setn-word l dx)))
; c=7/8g}+1/2
            (set-word c (+ (>> 1) ; 1/2 1 +
            (-g(>>ggit-0 3)))) ; 7/8 g
; approximate square root = max of g , c
    (if (>= c g) (set-word d c) (set-word d g))
    ))
```


LISTING 3-MEMORY-MAPPED I/O TO CUSTOMIZE ASIC FOR A μ P

;The processor expects to receive an interrupt when the closest threat changes.

```
(system com 9
    (def
        (ad-hi input word 8 0 *) ; The inputs are only
        (ad-10 input word 8 0 *) ; 8 bits wide,
        (do input word 80 *) ; When used in a 9-bit operations, msb will be 0
        (di tri-state word *)
    ; di will be hi-impedence unless explicitly set during a clock cycle
        (rd input bit *)
        (wr input bit *)
        (xc saved word *)
        (yc saved word *)
        (dc saved word *) ; saved value of current distance
        (intfl saved bit *) ; generate an interrupt if the newly calculated
        (int output bit *) ; distance chages from the old value of dc
        (x| saved word *)
        (yl saved word *)
        (y saved word*)
        (x saved word *)
        (fr input bit*)
        (pi input bit *)
        (restart saved bit *)) ; hold until next
    (always
        (set-bit int intfl) ; int is always the same as interrupt flag
        (if wr
            (if (reduce and ad-hi) ; ad-hi all ones
            (par (set-bit restart bit-1) ; resync calculation
                        (if (bit-lsb ad-lo)
                                (setn-word yl do) ; odd -> set new yl
                (setn-word xl do))))) ; even -> set new xl
    (if rd
            (if (reduce and ad-hi) ; ad-hi all ones
                (par (setn-bit intfl bit-0) ; clear pending interrupt
                        (if (bit-1sb ad-lo)
                                    (set-word di yc) ; odd -> send current yc
                                    (set-word di xc))))) ; even }->\mathrm{ send current xc
; now input frame sync and manage }x\mathrm{ and }y\mathrm{ counters,
    (if fr
            (par (setn-word x 0) (setn-word y 0)
            (if restart
                        (par (setn-bit restart bit-0) ; clear pending restart
                            (setn-word de 511)))) ; and set de to max.
            (if (bit-msb y) () ; too many rows - wait for frame sync
            (if (bit-msb x)
            (par (setn-word x 0) (setn-word>
```


Fig 7-Adding data and address buses to the ASIC customizes it for a particular μP.
memory-address locations to the ASIC. If the processor writes to an even address in the FFXX ${ }_{\text {HEX }}$ block, it loads a new xl value, and similarly loads a new yl value if the address is odd.
If the processor reads an even address in the FFXX $_{\text {HEX }}$ block, the chip will output the closest threat's x coordinate for the duration of the read signal. If the address is odd, the chip outputs the yl coordinate, and the processor generates the "Read" and "Write" signals, which the chip then inputs.
The chip maintains the x and y values; these values are derived from the framing bit ("fr") that comes from the scanning device. Fig 7 reflects these modifications in the initial closest-threat-alert diagram. When synthesized, the completed chip uses 1342 gates and operates at 4 MHz .

EDN

Author's biography

Jay R Southard is the president of Al gorithmic Systems Corp (Braintree, MA). Previously he worked for MetaLogic, MIT"s Lincoln Lab, Draper Labs, and General Instruments. Jay received a BA from Grinnel College and an MSEE from Stanford. He belongs to the IEEE.

Article Interest Quotient (Circle One) High 497 Medium 498 Low 499

Be An Author!

When you write for EDN, you earn professional recognition. And you earn $\$ 75$ per published magazine page.

EDN publishes how-to design application information that is read by more than 137,300 electronics engineers and engineering managers worldwide. That's an audience that could belong to you.

If you have an appropriate article idea, send your proposal and outline to: John Haystead, 275 Washington Street, Newton, MA 02158-1630.

For a FREE EDN Writer's Guidewhich includes tips on how to write for EDN and other technical pub-lications-please circle number 800 on the Information Retrieval Service Card.

First in Readership among Design Engineers and Engineering Managers in Electronics.

The 32-bit floating point processo

Expert support complements leading-edge technology.

NEC is the front-runner in DSP technology. The proof? Our μ PD77230 32-bit Floating Point Processor with 13.4-MFLOPS performance is now in mass production.

And we back it with enhanced support services. To speed your programming, we offer a complete set of development tools and an EPROM version. DSP applications specialists are waiting to give you expert advice and the latest application notes at our worldwide network of support centers.

For a faster, easier design-in, call NEC. We'll give you leading-edge DSP technology and support to match.

from the DSP pioneer.

Junko Sunaga
Application Engineer
Semiconductor Application
Engineering Division.
CIRCLE NO 63

FEATURES

Fast Settling
500 ns to 0.01% for 10 V Step
1.5μ s to 0.0025% for 10 V Step
Slew Rate: $75 \mathrm{~V} / \mu \mathrm{s}$
Total Harmonic Distortion (THD): 0.0003\%
>1000 pF Capacitive Load Drive Capability with $10 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate

Input Offset Voltage: 0.25 mV max Input Offset Drift: $3 \mu V /{ }^{\circ} \mathrm{C}$ max
Open Loop Gain: $250 \mathrm{~V} / \mathrm{mV}$ min
Noise: $4 \mu V$ p-p max, 0.1 Hz to 10 Hz

PRODUCT DESCRIPTION

The AD744 makes a breakthrough in the high speed BiFET market by offering guaranteed maximum settling to 0.01% in 750 ns . It also offers the excellent dc characteristics of the AD711 BiFET family with enhanced slew rate, bandwidth and load driving capability.
The single-pole response of the AD744 provides fast settling: 500 ns to 0.01% typically, and 750 ns maximum. This feature, combined with high de precision, makes the AD744 suitable for use as a buffer amplifier for 12-, 14- and 16-bit DACs and ADCs. Furthermore, the AD744's low total harmonic distortion (THD) level of 0.0003%, low noise and gain bandwidth product of 13 MHz make it an ideal amplifier for demanding audio applications. It is also an excellent choice for high speed instrumentation amplifiers and for use in active filters.
The AD744 offers optional custom compensation for additional design flexibility. This external compensation allows the AD744 to drive capacitive loads up to 2000 pF and greater with full stability, making the AD744 outstanding for use as a coaxial cable driver. Alternatively, external decompensation may be used to increase the gain bandwidth of the AD744 to over 200 MHz at high gains. This makes the AD744 ideal for use as an ac preamp in digital signal processing (DSP) front ends.

AD744 Settling Characteristics 0 to +10 V Step
PRODUCT HIGHLIGHTS

1. The AD744 offers exceptional dynamic response. It settles to 0.01% in 500 ns and has a 100% tested minimum slew rate of $50 \mathrm{~V} / \mu \mathrm{s}$.
2. The combination of Analog Devices' advanced processing technology, laser wafer drift trimming and well-matched ionimplanted JFETs provide outstanding dc precision. Input offset voltage, input bias current and input offset current are specified in the warmed-up condition and are 100% tested.
3. The AD744 has a guaranteed and tested maximum voltage noise of $4 \mu \mathrm{~V}$ p-p, 0.1 to 10 Hz .
4. The AD744 is a high speed BiFET op amp that offers excellen performance at competitive prices.

THIS PAGE SETTLES THE QUESTION OF WHO THI FISTESTSETHLIMCBH.10

A lot of companies say they have fastsettling, high-performance BiFETamps. But our AD744 settles to 0.01% in 500 ns and to 0.0025% in $1.5 \mu \mathrm{~s}$-making it the world's fastest-settling, highest-performance BiFET. This superior settling, combined with excellent dc performance, makes the AD744 unbeatable for active filters, and for buffering DACs and ADCs up to 16 bits.

The AD744, with a total harmonic distortion of just 0.0003%, low noise, a clean pulse response, and a gain bandwidth product of up to 200 MHz , is also ideal for digital signal processing and audio applications.

If you work in communications, you'll appreciate the AD744's ability to drive loads greater than 2000 pF with full stability. And you'll also appreciate the fact that the AD 744 can drive a 1000 pF
 cap load while maintaining a slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$.

The AD744 isn't our only outstanding BiFET, either. The AD711 single, AD 712 dual, and soon the AD 713 quad, settle in $1 \mu \mathrm{~s}$ with the same high resolution as the AD744. If low power with precision is critical, try our AD548 single or AD648 dual.

Whichever BiFET your application requires, you'll find our products deliver excellent performance at an excellent price. For example, the AD744 starts at only $\$ 2.25$; the AD711 at $\$.80$; and the AD548 at $\$.75$ (100s).

If you'd like to see more proof on why we can say we make the best BiFETs, call Applications Engineering at (617) 935-5565, ext. 2628 or 2629 . Or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106.

Introducing 100 MHz performance for $\$ 3465$ in a general purpose digitizing oscilloscope.

- Instant Hardcopy Output
- Full Programmability
- Automatic Measurements
- Pushbutton Automatic Set-up
- Advanced Logic Triggering
- Easy to Use

The new HP 54501A Digitizing Oscilloscope is, without a doubt, the general purpose digitizing oscilloscope you've been waiting for. It does what most analog scopes will do and it provides additional performance capabilities found in the most expensive digitizing oscilloscopes.

Compare at twice the price.

The combination of low price, high performance and a full set of features makes the HP 54501A the best scope available, even when compared feature-for-feature to competitive scopes costing up to twice as much.

An intuitive operating interface makes the HP 54501A extremely easy to work with. And it's packed with features that make setups and measurements a snap-including

HP Auto Scale, dual timebase windowing and four separate set-up memories.

You get versatile, programmable 100 MHz measurement capability. Plus there are passive probes and a new TV/video pod among a wide selection of accessories that make your job even easier.
Call for a free video and a discount. 1-800-752-0900, Ext. K215.
Free Video: to see the HP 54501A in action, ask for our free application demo video that pro vides all the details.
\$800 Discount: for a limited time, get an \$800 Discount when you buy an HP 54501A/HP 8116 Pulse Generator combination. Ask for details when you call.

HEWLETT
PACKARD

AREA SALES OFFICES: CENTRAL AREA, Toshiba America, Inc., (312) 945-1500; EASTERN AREA, Toshiba America, Inc., (617) 272-4352; NORTHWESTERN AREA, Toshiba America, Inc., (408) 737-9844; SOUTHWESTERN REGION, Toshiba America, Inc., (714) 455-2000; SOUTH CENTRAL REGION, Toshiba America, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc., (404) 368-0203; MAJOR ACCOUNT OFFICE, Fishkill, New REGION, Toshiba America, Inc., (714) 455-2000; SOUTH CENTRAL REGION, Toshiba America, Inc., (214) 480-0470; SOUTHEASTERN REGION, Toshiba America, Inc.. (404) $368-0203$; MAJOR ACCOUNT OFFICE, Fishkill, New
York, Toshiba America, Inc., (914) 896-6500; BOCA RATON, FLORIDA, Toshiba America, Inc., (305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, Montgomery Marketing, Inc., (205) $830-0498 ;$ ARIZONA, Summit Sales, York, Toshiba America, Inc., (914) 896-6500; BOCA RATON, FLORIDA, Toshiba America, Inc.., (305) 394-3004. REPRESENTATIVE OFFICES: ALABAMA, Montgomery Marketing, Inc., (205) 830-0498; ARIZONA, Summit Sales,
(602) 998-4850; ARKANSAS, MIL-REP Associates, (512) 346-6331; CALIFORNIA (Northern) Elrepco, Inc., (415) 962-0660; CALIFORNIA (L.A. \& Orange County) Bager Electronics, Inc., (818) 712-0011, (714) 957-3367, (San

Remember,
 Toshiba Is Producing

 The

 The Line Non-Volatile

Only Toshiba volume production can give you the non-volatiles you need - in the leading edge densities you want.

For high reliability, low
cost and automatic insertion capability, select OTPs in densities to 1 Mb . Choose from a wide selection in EPROMs, including one of the fastest 1 Mb available.

PARTNO.	ORG.	PROCESS
	EPROM	
TMM2764AD~	$8 \mathrm{KX8}$	NMOS
TMM2764ADI	$8 \mathrm{KX8}$	NMOS
TMM27128AD~	$16 \mathrm{KX8}$	NMOS
TMM27128ADI	$16 \mathrm{KX8}$	NMOS
TMM27256BD~	$32 \mathrm{KX8}$	NMOS
TMM27256BDI	$32 \mathrm{KX8}$	NMOS
TC57256AD	$32 \mathrm{KX8}$	CMOS
TMM27512AD	$64 \mathrm{KX8}$	NMOS
TMM27512ADI	$64 \mathrm{KX8}$	NMOS
TC571000D	$128 \mathrm{KX8}$	CMOS
TC571001D	$128 \mathrm{KX8}$	CMOS
TC571024D	$64 \mathrm{KX16}$	CMOS
	ONE TIME	PROGRAMMABLE
TMM2464AP	$8 K X 8$	NMOS
TMM2464AF	$8 \mathrm{KX8}$	NMOS
TMM24128AP	$16 \mathrm{KX8}$	NMOS

PARTNO.	ORG.	PROCESS
ONE TIME PROGRAMMABLE		
TMM24128AF	$16 \mathrm{KX8}$	NMOS
TMM24256BP	$32 \mathrm{KX8}$	NMOS
TMM24256BF	$32 \mathrm{KX8}$	NMOS
TC54256AP	32KX8	CMOS
TC54256AF	32KX8	CMOS
TMM24512AP	$64 \mathrm{KX8}$	NMOS
TMM24512AF	64KX8	NMOS
TC541000P	$128 \mathrm{KX8}$	CMOS
TC541001P	$128 \mathrm{KX8}$	CMOS
ROM		
TC53257P	32KX8	CMOS
TC53257F	32KX8	CMOS
TC531000AP/AF	$128 \mathrm{KX8}$	CMOS
TC531001AP	$128 \mathrm{KX8}$	CMOS
TC534000P	512KX8	CMOS

And in ROMs, you can get up to 4 Mb in CMOS today.

Nobody else offers you so many options in high density non-volatile memories with the production capabilities to deliver in volume.

Why deal with a herd of suppliers to get all the non-volatiles you want. Just remember Toshiba, the heavyweight in nonvolatiles.
Toshiba. The Power in Non-Volatile Memories.
tOSHIBA AMERICA, inc.

[^7]
Our ASIC line line-up is only nalt
 y the story.

When it comes to delivery of high-quality, reliable ASICs, S-MOS wrote the book.
We did it in collaboration with our manufacturing affiliate, Seiko Epson. With 18 years of CMOS experience, Seiko Epson is one of the world's most advanced CMOS IC manufacturers.

Through Seiko Epson's high-yield manufacturing technology, we ship millions of ASIC units a month, and
with a reject rate of less than $.0001 \%$. That's our quality story.

Now we've added a new chapter on design. At our advanced R\&D design facility, engineers from S-MOS and Seiko Epson are developing new software to simplify circuit design, simulation and the creation of new megacells for our extensive cell library.

Of course, you can still take advantage of our established design
tools because S-MOS supports such workstations as Daisy, Mentor, Calma and PC-based systems using FutureNet, OrCAD and ViewLogic.

Our proprietary LADS simulator will speed up the design process. The S-MOS engineering team will support you from concept to production.

If you are looking for an ASIC program that can make your designs best sellers, call us. (408) 922-0200.

Remember when cramming more into less space was fun and games? Now it's your job.

Streamline with our SLICs: BORSHT functions on one chip.

Back then it was phone booths and Volkswagens. Today it's line cards in PBXs, key systems, switching units and more.

Different cases, same principle: success demands getting more from available space. Taking efficiency to the extreme.

That demands our solidstate SLICs. Their robust Dielectric Isolation processing makes "hot plug-up" latch-up a thing of the past.
Six years ago, designers began eliminating bulky discrete components, using our monolithic SLICs to increase system reliability and decrease costs.

Today - 5 million parts later - you'll find our SLIC

March, 1959: A college "stuffing team" crams 20 people into one phone booth and claims a world record.
solutions working around the globe, flexible enough to comply with the telecom world's ever evolving standards.

Here're more numbers: HC-5504, HC$5504 \mathrm{~B}, \mathrm{HC}-5502 \mathrm{~A}, \mathrm{HC}-$ 5502B; voltages: $+5,+12$, -48 (long lines), -24 (short lines); temperatures: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; packages: DIPs and PLCCs.

Because Harris SLICs are customer-defined, you're not locked into an architecture that could lock you out of the future.

Decide your own course in line card design...call us! In U.S. phone 1-800-4HARRIS, Ext. 1420. In Canada: 1-800-344-2444, Ext. 1420.

Single VLSI chip helps you implement EPA factory networks

The Enhanced Performance Architecture (EPA), a subset of the MAP specification, allows networks to provide fast, noise-immune communication over short distances. By applying a single VLSI chip that implements most of the EPA functions in silicon, you can speed your network's response time without a buge software-development effort.

Rhonda Alexis Dirvin and Anne-Marie Larkin Motorola Inc

If you're building or extending a factory network that includes intelligence, programmable controllers, and systems that must respond quickly to their controlling computer, you'll find the Manufacturing Automation Protocol (MAP) too slow for your purposes. To let machines or sensors send status information and command acknowledgment to their controlling computer quickly, you can implement the Enhanced Performance Architecture (EPA), a streamlined version of the MAP specification that takes into account the networking requirements of the workstations, PCs, and intelligent machines in a factory environment-requirements that are vastly different from those of large computers.

Fig 1-A broadband network connects the major nodes of a MAP system, which uses all seven layers of the ISO/OSI model. Local carrierband networks connect the smaller computers to sensors and intelligent machines that require high performance and short response times.

The EPA, created by the SP-72 committee of the Instrument Society of America (ISA) and the MAP Enhanced Performance Architecture Task Group, accommodates a wide variety of machines by dividing the total network into a hierarchy of subnetworks, each of which could meet a different set of performance requirements (Fig 1). The Process Industries Special Interest Group also played an important part in pressing for and helping to define the EPA.

The initial MAP specification concentrated on creating a backbone network in the factory to provide

The Enbanced Performance Architecture provides a bigh-performance, low-cost link between process-control stations and a MAP network.
communication among the large computers at the administrative level. This type of communication did not need to be especially fast; several seconds might elapse between file transfers, for instance. On the lower level of the factory, however, machines such as numerical controllers and robots need to perform information transfers at much shorter intervals (tenths of milliseconds, in some cases). At present, it's not possible to obtain this high performance if all communications must pass through the full seven layers of the OSI protocol, which the MAP uses. Further, it takes significant memory and horsepower to run all seven layers. If your task is merely to provide a network for the low-cost machines at the factory's lower level, you probably won't be able to justify the expense of all that memory and horsepower.
The EPA solves that problem by specifying only layers 1 and 2 , an interface, and layer 7. The remaining layers (3 through 6) perform functions that are not needed in the low-level nodes served by the EPA. The interface between layer 2 and layer 7 puts the data into a format compatible with the Manufacturing Message Specification (MMS). Reducing the number of layers of ISO/OSI software not only yields an improvement in network performance (because EPA nodes execute fewer instructions to perform a given function), but also

Fig 2-Mini-MAP nodes serve small machines and programmable controllers. They communicate with backbone nodes via MAP/EPA nodes and a router.
reduces software-design costs, because the system designer has fewer layers to deal with.
For one thing, the specifying bodies chose broadband technology as the physical layer for the backbone of the MAP, because it can operate over long distances (miles) and because it has high noise immunity. EPA subnetworks, on the other hand, operate only over distances of 500 to 1000 ft ; they could therefore use either carrierband or baseband technology in the physical layer. Both of these technologies are far less expensive than broadband technology.

Today's broadband modems cost from $\$ 700$ to $\$ 1500$ and require a head-end remodulator (one per network), which sells for around $\$ 10,000$. Carrierband modems cost from $\$ 400$ to $\$ 600$ and require no head-end remodulator. This price comparison does not take into consideration the fact that carrierband technology will soon be available in silicon form-a fact that will drop the carrierband price to approximately $\$ 100$ per node. Carrierband technology also lets you save on space, because you'll probably need only one board instead of two to accommodate the hardware. The primary reason to choose carrierband over broadband, therefore, is economic.

When considering alternatives to broadband technology, the specifying bodies preferred carrierband over baseband for several reasons, including cost: Carrierband is somewhat less expensive than baseband. More important, however, is that carrierband has much better noise immunity, because it frequency-modulates a constant-amplitude carrier signal instead of ampli-tude-modulating a constant-frequency signal, as the baseband technique does. Its higher noise immunity makes carrierband more suitable for use in an electrically noisy factory environment.

EPA subnetworks contain a variety of node types

The Enhanced Performance Architecture embraces several different types of stations that fulfill different purposes; the types include Mini-MAP, MAP/EPA, and router nodes (Fig 2). Mini-MAP nodes can communicate only with each other and with MAP/EPA nodes over the subnetwork, using the 3-layer EPA architecture. Direct communications of this type are easy and efficient. The MAP/EPA node is also a carrierband device, but it contains facilities for converting data from 3 -layer format to 7 -layer format and vice versa.

All the communications between a Mini-MAP node and a backbone node take place via a MAP/EPA node and a router. The MAP/EPA node performs all of the
conversions between the 3-layer EPA architecture and the 7 -layer MAP architecture. The router is a 3-layer device that can segment data frames to ensure that they conform to the maximum size limitations, both on the backbone side and on the EPA-segment side. It also contains both broadband hardware that connects to the backbone network, and carrierband hardware that connects to the EPA segment (subnetwork). Routers' frame-segmenting capability is the reason that the specifying bodies preferred routers over bridges or gateways as the links between the backbone and EPA segments. Bridges are too simple and can only filter addresses; gateways, which perform full protocol conversion, are more complex and more expensive than is necessary for the MAP/EPA link.

Redundancy maintains network integrity

A subnetwork may contain multiple MAP/EPA nodes, both to provide redundancy and to improve performance. If one of the MAP/EPA nodes fails, another one can perform the same functions; it thus prevents the subnetwork from being isolated from the backbone. If you expect to have a substantial amount of network traffic between the subnetwork and the MAP back-
bone, you should consider providing more than one MAP/EPA node in order to maintain acceptable levels of performance. Indeed, the MAP specification requires that a subnetwork contain at least two MAP/EPA nodes before it can be classified as an EPA segment.

EPA functions allow very simple nodes

One function that was not in the original MAP specification but was added to the EPA is the IEEE 802.2 Logical Link Control (LLC) type 3 Acknowledged Connectionless Service. This function allows EPA station A to ask station B a simple question, such as "What is your temperature?" While station A still holds the token, station B can respond immediately with a simple answer (for example, " $58^{\circ} \mathrm{C}^{\prime}$ "). This function can achieve response times of around $5 \mu \mathrm{sec}$, because station B doesn't have to obtain the token and then establish a new communication link.

By using the LLC type 3 feature, you can greatly reduce the cost of attaching simple devices to an EPA segment of the network. Temperature and pressure sensors, for example, do not need to participate in the token-passing ring; they only have to be able to respond properly when they're sent an LLC type 3 request

ISO/OSI model specifies seven layers

The MAP specification is based on the International Standards Organization's Open Systems Interconnect (ISO/OSI) model primarily because the ISO/OSI model already has widespread international support. Now the US federal government, too, has chosen the ISO/OSI model for the new networking procurements described in the Government Open Systems Interconnection Profile (GOSIP) document.

The ISO/OSI model breaks the communications task into seven sections, or layers. Each layer has a duty to perform or a service that it must provide to the layer immediately above it. ISO specifies what services must be
provided, but it doesn't specify the manner of implementing them. Table A shows the name and function of each layer of the

ISO/OSI model. Immediately above layer 7 are any user application programs, which are not part of the ISO/OSI model.

TABLE A-THE SEVEN LAYERS OF THE ISO/OSI MODEL

NAME	FUNCTION
LAYER 7-APPLICATION	PROVIDES ALL SERVICES THAT ARE DIRECTLY COMPREHENSIBLE TO APPLICATION PROGRAMS
LAYER 6-PRESENTATION	TRANSFORMS DATA TO AND FROM NEGOTIATED STANDARDIZED FORMATS
LAYER 5-SESSION	SYNCHRONIZES AND MANAGES DIALOGUES
LAYER 4-TRANSPORT	PROVIDES TRANSPARENT RELIABLE DATA TRANSFER FROM END NODE TO END NODE
LAYER 3-NETWORK	PERFORMS MESSAGE ROUTING FOR DATA TRANSFER BETWEEN NODES
LAYER 2-DATA LINK	MANAGES ORDERED ACCESS TO THE MEDIUM AND DETECTS ERRORS INVOLVED IN THIS PROCESS
LAYER 1-PHYSICAL	ELECTRICALLY ENCODES AND PHYSICALLY
	TRANSFERS DATA OVER THE MEDIUM

EPA networks use carrierband technology as the medium because it's less expensive than broadband and bas better noise immunity than baseband.

TABLE 1-LLC TYPE 3 PRIMITIVES PROVIDED BY THE MC68824

ACKNOWLEDGED CONNECTIONLESS DATA-UNIT TRANSMISSION SERVICE

PRIMITIVE	DESCRIPTION
L_DATA ACK.request	USED TO SEND A DATA UNIT WITH
	ACKNOWLEDGMENT TO ANOTHER NODE
L_DATA ACK.indication	USED TO INDICATE THE RECEPTION OF A
	NON-NULL, NONDUPLICATE LSDU FROM A
	REMOTE DATA-LINK NODE
L_DATA ACK_STATUS.indication	USED TO INDICATE WHETHER THE
	PREVIOUS LSDU TRANSMISSION REQUEST
	WAS SUCCESSFUL

ACKNOWLEDGED CONNECTIONLESS DATA-UNIT EXCHANGE SERVICE

PRIMITIVE	DESCRIPTION
L_REPLY.request	USED TO REQUEST AN ACKNOWLEDGED CONNECTIONLESS DATA-UNIT EXCHANGE
L REPLY.indication	USED TO INDICATE RECEPTION OF AN RWR FRAME
L_REPLY_STATUS.indication	USED TO CONFIRM RWR FRAMES

REPLY DATA-UNIT PREPARATION

PRIMITIVE	DESCRIPTION
L_REPLY_UPDATE.request	 USED TO INDICATE THE NEED TO UPDATE A RESPONSE
L_REPLY__UPDATE_STATUS.indication	USED TO CONFIRM THAT A RESPONSE WAS UPDATED

frame. Very simple hardware can provide them with this ability; the node can consist merely of an enhanced token-bus-controller chip, a carrierband chip, some memory to hold the response, and some mechanism for updating the memory as required.

VLSI chip embodies the EPA functions

To meet the requirements for low cost and high performance that are driving the development of the EPA, you can apply a device such as the MC68824 token-bus controller (TBC), which implements the EPA functions in silicon. Motorola recently enhanced the chip so that it now implements both the Media Access Control (MAC) portion of the IEEE 802.4 standard and the Receiver portion of the IEEE 802.2 LLC type 3 Acknowledged Connectionless Service (Table 1 summarizes the latter).
These services provide a means, at the data-link level, of sending a message from one node to another and of receiving an acknowledgment message without establishing a separate data-link connection. This feature yields the very fast response time that the applications require. In addition, the MC68824 provides two
separate methods of bridging: hierarchical and IBMdefined source routing. The chip allows the user to choose between powerful address mechanisms that permit group-address recognition and multidrop operation.
Some of the MC68824's enhancements include a re-duced-data-structure mode for increased performance, a FIFO option for increased reliability, and a busanalyzer mode that lets you run the TBC as a powerful protocol analyzer. The chip can now perform serial data transfers over the network at speeds ranging from 10 k to 12.5 M bps, and it can accommodate system clock rates from 10 to 16.67 MHz .
The MC68824 functions as an intelligent peripheral device to a host microprocessor. The TBC is a full MC68000 bus master; it has on-chip DMA facilities for managing tables and frame buffers located in shared memory, and these DMA facilities transfer data frames to and from a shared memory with minimal intervention from the host $\mu \mathrm{P}$. A fully linked buf-fer-management scheme allows the queueing of frames during transmission and reception. You can configure the TBC bus interface to handle both 8 -bit and 16 -bit

Fig 3-An EPA node consists of an enhanced TBC, a host CPU, memory shared by the host and the TBC, and a modem. The node can be very simple, because it needs to implement only the lower three layers of the ISO/OSI model.
data transfers in either Motorola/DEC or Intel/IBM data formats. Fig 3 shows the MC68824 in a typical intelligent system environment.

EPA is one of chip's three operational modes

The MC68824 has three main operational modes: the TBC mode, the EPA mode, and the bus-analyzer mode. In the TBC mode, which is the default mode, the MC68824 provides a full MAC implementation as well as support for LLC types 1 and 3 . Running the TBC in its default mode allows the host $\mu \mathrm{P}$ to perform the LLC functions (or equivalent functions) in software.

In the EPA mode, the MC68824 performs the receiver functions of the Acknowledged Connectionless Service of the LLC sublayer, as well as operating normally when it receives a nonrequest-with-response frame. The receiver portion of LLC type 3 is the most timecritical, and it performs much better when implemented on chip.

To use the EPA mode, the host must set a bit in the initialization table, and must also add an LSAP (Link Service Access Point) table to the end of the initialization table. This table has an entry for each of the 128 possible individual LSAPs and one for each of the 128 group LSAPs. Each LSAP entry contains user information as well as LSAP status information (such as whether or not the LSAP is active). For each active LSAP, the host prepares a response and puts the pointer to the response in the corresponding entry of the LSAP table. The host also updates the response when necessary.

When a receiving station running in EPA mode finds a Request with Response (RWR) encoded in the frame control of an incoming frame, the station looks at the corresponding LSAP entry in the LSAP table. If the

RWR frame requests data, the receiving station will return the data that the LSAP entry points to, provided that the LSAP is active. If the LSAP is not active, the station returns a NACK. If the RWR frame does not request data, the station merely returns an ACK (if it has received the frame correctly) or a NACK (if it has received the frame incorrectly).

In the bus-analyzer mode, the MC68824 is not part of the logical ring, but it receives all frames. This feature makes the TBC an ideal chip for use in a protocolanalyzer application. In this mode, the TBC timestamps all frames, so it can measure the elapsed time between network events.

Host, TBC communicate through shared memory

The TBC also makes use of a simpler data structure. The MC68824 and the host communicate with each other through shared memory. This shared memory comprises two tables and some buffer structures that store received frames or frames awaiting transmission. The two tables are called the initialization table and the private area.

The initialization table contains the initial parameters that the host loads into the private area by giving the Initialize command at power-up or after a reset. The table also holds the command-parameter area, the interrupt status words, some statistics, and, if the TBC is running in the EPA mode, an LSAP table.

The command-parameter area has two main uses: The host employs it mainly to pass parameters to the TBC in conjunction with a command, and the TBC uses it to return parameters to the host in response to a command. The TBC continuously updates two Interrupt Status Words (ISWs) to indicate status changes. Flags in the ISW, filtered by an interrupt status mask,

You can now obtain a single VLSI chip that implements most of the EPA functions, as well as standard token-bus-controller functions, in silicon.
determine whether or not a particular event will generate an interrupt. ISW1 keeps track of events that relate to the local system. For example, one of the flags in ISW1 informs the host that the TBC has received a data frame. ISW2 keeps track of events that relate to the network. One of the flags in ISW2, for example, informs the host that the TBC has detected a duplicate MAC address on the network.

The statistics area of the initialization table holds network statistics, such as "number of who_follows events." The host may collect all the statistics or may disable the collection of two items (Tokens_passed and Number_of tokens_heard). Also, the TBC keeps track of various types of modem errors in the statistics area.

The private area contains mainly MAC operational parameters and statistics; therefore, the TBC uses it primarily as an extra storage area. Hi_Priority_ Token_Hold Timer, for example, is a MAC operational timer that you can specify in the private area if you use the priority option. IEEE 802.4 specifies this and many other timers. Among the MAC statistics kept in the private area is the Last Token_Rotation_Time, which is the observed time measured from token arrival to token arrival.

The private area also holds the pointers to the various buffer structures used for receiving and transmitting data frames. After power-up or reset, the host
initializes the private area by storing the appropriate values in the initialization table and then issuing the Initialize command. After initialization, the host can view or modify the private area by issuing the appropriate commands. However, in order to avoid conflicts, the host must not directly access the private area while the TBC is participating in a network.

Linked buffers hold frame queues

The TBC uses linked buffer structures (Fig 4) to provide four transmit queues and four receive queues in accordance with the IEEE 802.4 message-priority scheme. The fully linked buffer structures consist of frame descriptors, buffer descriptors, and data buffers. Each frame descriptor contains control information pertaining to a frame sent or received, plus links to the next frame descriptor and to the buffer descriptor. The buffer descriptor contains the data buffer's attributes, such as the user-specified offset, which points directly to the data in the data buffer. This feature is useful for appending upper-layer protocol headers without moving the data. Each buffer descriptor also contains links to the next buffer descriptor (if there is one) and to the data buffer. Finally, the data buffers contain the actual data.

This linking scheme makes it easy for the host's software to build data frames: The scheme lets each

MAP uses IEEE 802.4 token-bus protocol

At the physical and data-link layers, the MAP uses the tokenpassing bus protocol specified by IEEE standard 802.4. The protocol was chosen because it's deterministic; that is, the maximum allowable time for any station to access the medium is known. A token bus is also very flexible, because its topology allows you to add stations to or delete them from the network without disrupting network operations. The token-bus protocol also clearly defines error-related functions such as recovery from lost or multiple tokens, tokenpassing failures, inoperative
transmitters or receivers, and duplicate station addresses.

A token is a specific bit sequence in the frame-control portion of the frame. When a station holds the token, it has the right to transmit. When that station has finished transmitting all of its frames, or when the timer that tracks the station's maximum token-holding time (which is specified by the user) has timed out, the station passes the token to the station having the next lower address. This process continues until the station with the lowest address passes the token back to the sta-
tion with the highest address.
The station that holds the token periodically polls stations that are connected to the bus (but are not currently part of the logical ring) to see if any station wishes to join the logical ring. If a new station does wish to join the ring, the sending station patches the new station into the ring as its logical successor. For example, if the sending station, A, receives a valid reply from station E, station A patches station E into the ring by making E (instead of B) the logical successor to A.

Our new ultra high density SIMM socket is a perfect fit for your new chip. Row after row.

We listened to what you want... in products and service

Our new ultra high density $.050^{\prime \prime}$ SIMM socket fits the nextgeneration in-line memory modules like they were made for each other. They were.

With zero insertion force, proven contact design, and high-temperature plastics, our new SIMM sockets meet all your requirements.

The Texas Instruments investment in leading-edge products pays off when you're trying to get your design to market faster. And our experience in semiconductor and interconnect technology enables TI to be early to market with products like high density SIMM sockets that mate with the latest in-line memory modules.

Our new line offers the features you expect, with some extras TI thinks you deserve, like detailed engineering data, local field sales engineers to help with design solutions, fast sample delivery, and state-of-the-art manufacturing capabilities under statistical process control. Our ship-to-stock program from TI plants worldwide will complement your just-in-time manufacturing.
$T I$ is a perfect fit-in quality high density products and service. Give us a call.

Texas Instruments Incorporated
P.O. Box 809065

Dallas, Texas 75380-9065

Get to know our new Ultra High Density family. Send for free samples and data on the new $.050^{\prime \prime}$ SIMM socket or call us at 1-617 699-5242.
My application is: \qquad

NAME

TITLE

COMPANY
ADDRESS
CITY STATE ZIP

Providing a subnetwork with multiple MAP/EPA nodes not only yields higher performance, but prevents malfunctions from isolating the subnetwork.
software layer append the header information to the data by simply changing a pointer or offset. The MC68824 can also run in a reduced-data-structure mode that combines the frame descriptor, buffer descriptor, and data buffer as one structure.
The reduced-data-structure mode is well suited for receiving frames in systems that require very high throughput rates, because it requires fewer linking operations than the full data structure does, and, therefore, it's faster. In some applications, the higher performance that you get from the reduced data structure is more advantageous than the power and flexibility of the full data structure.

The TBC has a flexible command set

The host processor commands the TBC to perform various functions by writing the appropriate command to the TBC command register. Initialization commands configure the TBC for operation after a hardware or software reset. These commands include Reset, Offline, Load Initialization Table Function Code, Initialize, and Idle. Idle causes the TBC to join the ring.
Mode commands set or clear various modes of TBC operation; the Set/Clear In_Ring_Desired command is typical of this category. Three commands pertain to the transmission of data frames: Start, Stop, and Restart. Parameter commands allow the host to modify or read TBC parameters such as function codes, the pad-timerpreset register, and some of the parameters that reside

Fig 4-The shared memory holds frame descriptors (FDs), buffer descriptors (BDs), and data buffers. The private area holds operational parameters and pointers to the first FD of each message to be queиed.
in the private area.
Test commands allow the host to run diagnostics while the TBC is in the off-line state; these commands test the host/TBC interface, the transmitter, the receiver, and the serial sections of the TBC, as well as the internal sections of the TBC.

Finally, two commands allow the TBC to provide management services to the physical layer of the node. The TBC's serial interface conforms to the IEEE 802.4 Standard Serial Interface. The Standard Serial Interface specifies a set of $10 \mathrm{I} / 0$ signals, which are used for data transfer when the TBC is in the MAC mode, and for passing station-management information when the TBC is in the station-management mode.

EPA is gaining acceptance

The Enhanced Performance Architecture fulfills a requirement of the factory floor that the MAP did not previously address: the ability to provide sensors and intelligent machines with a low-cost, high-performance link to the MAP network. However, the fast response times that the EPA requires were initially very difficult to achieve. The EPA is only now starting to gain acceptance because of the emergence of devices such as the MC68824 Enhanced TBC.

EDN

Authors' biographies

Rhonda Alexis Dirvin is LAN VLSI program manager at the Microprocessor Products Group, 68000 Operations, of Motorola Inc (Austin, TX). She holds a BSEE from Cornell University and is a member of the IEEE.

Anne-Marie Larkin is currently applications manager for data-communications and networking products at the Microprocessor Products Group, 68000 Operations, of Motorola Inc (Austin, $T X)$. She received a BSEE from the University of Tennessee.

Article Interest Quotient (Circle One) High 488 Medium 489 Low 490

You need a partne

rship that works.

In today's highly competitive marketplace, it takes more than technology and tools to meet your ASIC needs. It takes a long-term partner you can count on. One who's ready to help you turn your hot idea into an even hotter new product.

At Fujitsu Microelectronics, we believe that the only way we can achieve our goals is to help you achieve yours. So weve committed our technical, financial and human resources to providing you with the ASIC technology, tools and trust you need to meet your objectives. From design support through volume production of your advanced VLSI ICs. The heart of your new products.

When you shake hands with Fujitsu, you get more than just a business deal. You get the industry's most experienced volume producer of ASIC devices as a working partner.

We become an extension of your ASIC design team, providing you with a nationwide network of field application and technical resource engineers, ready to offer local technical support on both products and tools.

You also get ASIC sales and marketing support to help you smooth out all the administrative wrinkles.

Plus coast-to-coast technical resource centers, fully equipped with easy-to-use design tools. And local training and twenty-four hour design facilities, so you can work whenever inspiration strikes.

All supporting the most advanced process and manufacturing technologies in the industry, including CMOS, ECL, BiCMOS and LSTTL.

All of which is structured for the fast design input-to-prototype turnaround, design security and timely delivery of volume production you need to get to market faster.

It all adds up to a partnership that works. Which, after all, is everything an ASIC partner should be.

Everything an ASIC partner should be.

Shows $< \pm 0.7$ LSB code width variation from ideal (definitely no missed codes)
CS5016 16-BIT DIFFERENTIAL NONLINEARITY AT 16μ SEC CONVERSION TIME

CSZ5412 FFT PLOT WITH 100 kHz FULL SCALE INPUT

OUR 12-TO 16-BIT CMOSA/D CONVERTERS LOOK GREAT ON PAPER.
 AND ARE THE WORID'S BEST IN ACTION.

4nyone can promise the world's best performance from monolithic CMOS A/D converters. Only Crystal can prove it.

Get your hands on the evaluation board of a Crystal SMARTAnalog ${ }^{\text {TM }}$ device and you'll believe the breakthrough performance the plots on the opposite page promise.
Dynamic performance really is 92 dB SNR over a 25 kHz bandwidth, or 70 dB over 500 kHz .

Differential Non-Linearity of 16 bits with no missing codes is so outstanding we've published a DNL plot no one else dares to. - Stability over temperature is dramatically better than the competition across the entire military range.
Our reliability far surpasses the alternatives, with less than 33 failures per billion operating hours (FITs).

What the plots don't show, you already know: monolithic A/D converters using CMOS technology mean lower design and assembly costs, higher relia-

DEVICE	STAIIC-TESTED ADCs				DYNAMIC FFT-TESTED ADCs				
Resolution	16	14	12	8	12	16	16	14	12
Conversion Time ($\mu \mathrm{Sec}$) Throughput Speed (kHz)	$\begin{aligned} & 16 \\ & 50 \end{aligned}$	$\begin{aligned} & 14 \\ & 56 \end{aligned}$	$\begin{aligned} & 7 \\ & 100 \end{aligned}$	1.3	$\begin{aligned} & 1.25 \\ & 1000 \end{aligned}$	20	$\begin{aligned} & 16 \\ & 50 \end{aligned}$	$\begin{aligned} & 14 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 100 \\ & \hline \end{aligned}$
Static Specifications: Linearity Error (\% FS, max) No Missing Codes (Bits)	$\begin{aligned} & +/-.0015 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & +1-.003 \\ & 14 \end{aligned}$	$\begin{aligned} & +1-.012 \\ & 12 \end{aligned}$	$8^{+1-.2}$	${ }_{12}^{+/-.01}$	16	16	14	12
$\begin{aligned} & \text { Dynamic Specifications } \\ & \text { THD (\%) } \\ & \text { S/(N+D) (dB) } \\ & \hline \end{aligned}$					$\begin{aligned} & .02 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & .007 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & .001 \\ & 92 \end{aligned}$	$\begin{aligned} & .003 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & .008 \\ & 73 \\ & \hline \end{aligned}$
Power Dissipation (mW)	120	120	120	40	700	220	120	120	120
On-Chip Sample and Hold	YES								

The proof behind the promise: monolithic CMOS performance that beats even hybrids.
bility, lower power consumption, easier manufacturing and faster deliveries than hybrid or discrete designs can manage.

And our SMARTAnalog devices are the first with self-calibration at any time/ temperature. Which ensures accuracy throughout their operating lives, correcting for gain, offset and even linearity errors. Automatically.

If that weren't enough, Crystal's SMARTAnalog line is the first line of 12 - to 16 -bit A/D converters with the converter, track/hold, digital interface, calibration circuitry and timing all on a single chip. So you can forget designing, building and characterizing discrete
devices while trying to correlate component specifications with system requirements.

Prove to yourself how our revolutionary SMARTAnalog technology makes hybrids a very expensive proposition, indeed. Call 512-445-7222 today for yourvery own 12-, 14-or 16-bit evaluation board. Or ask for a demonstration at your facility.

Either way, you'll know why seeing a SMARTAnalog converter in action makes our promises on the opposite page seem flat by comparison.

[^8]

512-445-7222: CAIL TODAY

World's Fastest CMOS
 20ns Multipliers \& 25ns MACs

Why use someone else's multipliers and MACs when you can have the world's fastest? Now! From IDT!
Use the IDT7216 and IDT7217 Multipliers and IDT7210 MAC to improve the speed of your system.

43\% faster. The IDT7216 and IDT7217 multipliers run at an incredible 20 ns . And the IDT7210 MAC speeds along at a fast 25 ns . These $\times 16$ DSP building blocks from IDT combine lowpower CMOS with ultra fast speeds.

Industry standard. All are designed to drop-in and replace the industry standard, slower multipliers/ MACs. So upgrading your design is easy.

MIL-STD-883 compliant. IDT is the recognized leader in providing highperformance CMOS to the military.

Packages. Available now in 68-pin PGAs, PLCCs and LCCs.

Applications. Ideal for fast, real time DSP applications such as \square Radar/sonar \square Image processing and \square Telecom.

The ultimate performance for floating point coprocessors.

If you're looking for a high-performance coprocessor, the IDT721264 and IDT721265 coprocessor chipset is the winner! It runs at a blazing 33 Mflops and a cool 500 mW . And a single multiplier does a 1 K Radix 2 FFT in 1.8 ms .

Higher speed, $1 / 10$ th the power. Upgrading any system based on the WTL1264/1265 will bring you higher speed at 1/10 the power. Same pinout. Same software.

Low profile package. Our cooler CMOS allows us to offer this chipset in a 144-pin PGA (no heat sink needed).

Applications. Radar/sonar \square Medical \square Image processing and $\square \mathrm{CAD} / \mathrm{CAM}$, to name a few.

Ask for your FREE Data Book!

Everything you want to know about the world's fastest DSP logic is in our new, 1800 page 1988 DATABOOK. Call your local IDT representative or (408) 492-8225 and ask for your FREE copy.

The DATABOOK also contains complete information on our CMOS Static RAMs • specialty memory products such as FIFOs and DUAL-PORTs - ultra-fast RISC processors and bit-slice ALUs • EDC

- Data Conversion products
- ECL Interface products
- TTL logic.

Static-system design exploits low-power CMOS

> Static CMOS architectures let you customize a design for optimum performance and minimum power dissipation. Capitalizing on the characteristics of CMOS means addressing clock-frequency control before starting the initial design process.

Walter J Niewierski, Harris Semiconductor

As every engineer knows, CMOS μ Ps combine low power with high performance: A CMOS μ P's power dissipation is directly related to its frequency of operation. Reducing the operating frequency from 16 MHz , say, to 1 MHz , allows the power-supply current to drop proportionately. An NMOS or bipolar μ P's supply current, on the other hand, remains the same regardless of how you manipulate a system's throughput-rate spec.

An NMOS system can be bulky

The benefits of CMOS vs NMOS are readily apparent when you compare datasheet operating specifications. An NMOS $80286 \mu \mathrm{P}$, for example, has a typical powerdissipation spec of 3 W ($\mathrm{I}_{\mathrm{IC}}=600 \mathrm{~mA}$ at 5.25 V). In contrast, a CMOS $80 \mathrm{C} 286 \mu \mathrm{P}$, when running at a clock rate of 16 MHz , has a maximum operating current of 260 mA .
Operating power also has a ripple effect through a
system design. Usually you have to add NMOS memory and NMOS or bipolar peripherals to support an NMOS device. Depending on the size of your system, power requirements may be 25 to 30 W , and you may well have to specify a larger and heavier 50 W power supply to accommodate future expansion.

You also have to account for the fact that temperatures within an NMOS system can rise significantly. It's not unusual for the temperature of an NMOS or bipolar die to rise 40 to $60^{\circ} \mathrm{C}$ during operation, and fans and heat sinks are necessary to compensate for this increase. Oftentimes, the system also requires an air filter for the fan. Obviously, you have to design an enclosure large enough to hold all of this equipmentfans, bulky power supplies, and heat sinks.

Because CMOS devices dissipate less power, you can specify smaller power supplies. Lower power dissipation also means that the system will run at a lower ambient temperature. Heat sinks and fans are unnecessary, and vents can be shut to ensure a clean operating environment. Sealed enclosures can also be smaller and lighter.

For these reasons, many NMOS- and bipolar-device architectures are now available in CMOS. Furthermore, CMOS technology is amenable to static-circuit design, and NMOS is not. Static circuits allow you to customize your design to balance speed requirements and power considerations.

Static ICs run on any clock frequency from dc to the maximum circuit operating specification. In a dynamic circuit, if the clock frequency falls below a manufactur-er-specified minimum, the circuit can lose or alter data,

Static circuits run on any frequency from dc to the maximum circuit operating specification.
and thus the memory cells require refreshing at a certain rate to maintain valid data. You can put a static $\mu \mathrm{P}$ in a standby mode simply by stopping the clock signals, and even if you stop the external clock indefinitely, the device will retain data. When you reinitiate the CPU clock signal, the system starts up where it left off.

The ability to stop the clock also allows you to perform single-step operations during system development. This valuable method of debugging allows you to inspect the system bus and other functions for proper operation by manually stepping through the clock cycles. Single-stepping-and therefore the elimination of real-time data transfers-can simplify debugging significantly.

By taking advantage of opportunities to manipulate the system clock during your initial design, you can mix and match standby, low-frequency, and high-frequency
operations to achieve the most performance for the least power. You can design a $\mu \mathrm{P}$ system that allows the software executive routine to power down the entire system or just portions of the system not in use (certain I/O sections, for example, or file-maintenance areas).

A clock controller eases design

To ease the implementation of static-operating modes in CMOS systems, clock controllers are available for various μ Ps. Fig 1 illustrates a CMOS system configuration using a Harris 82C85 static clock controller to interface directly to the maximum-mode status lines $\left(\overline{\mathrm{S}}_{2}, \overline{\mathrm{~S}}_{1}\right.$, and $\overline{\mathrm{S}}_{0}$) of either a Harris 80 C 86 or $80 \mathrm{C} 88 \mu \mathrm{P}$. The three control lines ($\overline{\mathrm{S}_{2}} / \overline{\mathrm{Stop}}, \overline{\mathrm{S}}_{1}$, and $\overline{\mathrm{S}}_{0}$) on the 82 C 85 let you control the operation of the system clock with $80 \mathrm{C} 86 / 80 \mathrm{C} 88$ software. Essentially, the $\mu \mathrm{P}$ controls the clock by issuing a Halt instruction in software.

The status lines of the 80C86/80C88 identify the type

Fig 1-The 82C85 clock controller interfaces directly to an $80 C 86$ or $80 C 88$ CPU operating in the maximum mode. When the controller detects a Halt instruction, it stops the clock.

Fig 2-A CMOS peripheral such as the 82 C 55 can control a clock controller's stop, start, and slow or fast operations.
of bus cycle that the CPU is starting to execute, and are accessible only during maximum-mode operation. Typically, a bus controller uses these status lines to decode the current bus-cycle status of the CPU. Fig 1's truth table shows the status lines for different bus transactions. When operating in the maximum mode, the CPU places the $\overline{\mathrm{S}}_{2}, \overline{\mathrm{~S}}_{1}$, and $\overline{\mathrm{S}}_{0}$ lines in a 111 state followed by a 011 state to indicate a Halt instruction. The control lines on the 82 C 85 automatically decode this state sequence to halt the system clock.

You can use a peripheral such as a programmable interface (in this case, the 82 C 55 A) to stop the clock by using the $\overline{\mathrm{S}}_{2} / \overline{\text { Stop }}$ line as a stand-alone Stop command (Fig 2). You must tie the $\overline{\mathrm{S}}_{0}$ and $\overline{\mathrm{S}}_{1}$ pins of the 82 C 85 to V_{CC} to emulate a logic 111 state before applying a logic 0 to the $\overline{\mathrm{S}}_{2} / \overline{\text { Stop }}$ line to stop the clock. To place the 82C85 clock controller in a stop-oscillator mode, you tie the F/C line low. In this mode, the 82C85 stops the clock synchronously whenever it detects a Halt instruction. Regardless of whether the controller is operating in the fast or slow mode, it will decode a Halt instruction. Table 1 compares the four operating modes of the 82C85.

Stop the clock!

The 82 C 85 also offers another way of stopping the system clock. The start-input line on the 82C85 provides independent clock control. A level-triggered ac-tive-high input overrides any stop condition. You can control the start-input line, for example, by using an 82C59A priority-interrupt controller (Fig 2). The INT

TABLE 1-COMPARISON OF 82C85's OPERATING MODES

| OPERATING
 MODE | DESCRIPTION | POWER |
| :--- | :---: | :---: | :---: |
| LEVEL | | | PERFORMANCE

output pin of the 82 C 59 A connects directly to the start-input pin of the 82 C 85 and the INTR pin of the 80C86/80C88 μ P. An external event (such as a key depression) can produce an 82 C 59 A interrupt request, which causes the 82 C 85 to start the system clock.
If your system must operate continuously but power

During the initial design of a static CMOS system, the designer should anticipate circumstances in which the system can be stopped or run more slowly.
consumption is a concern, you can utilize the slow mode on the clock controller to divide the clock outputs by 256. The 82C85 has a SLO/FST pin that determines the speed of the system clock. When you apply a logic 1 to the $\overline{\mathrm{SLO}} / \mathrm{FST}$ pin, the frequency of the CLK and CLK50 outputs equals the crystal frequency divided by 3. A logic 0 on the $\overline{\text { SLO} / F S T ~ p i n ~ m a k e s ~ t h e ~ f r e q u e n c y ~ o f ~}$ the CLK and CLK50 outputs equal to the crystal frequency divided by 256.
If you are converting an NMOS or bipolar system to CMOS technology, each device you replace achieves a power savings. Table 2 shows typical power-supply currents for devices in an 80 C 88 -based system with an 82C85 static clock controller. When the CPU operates at 5 MHz (that is, with a $15-\mathrm{MHz}$ crystal frequency), the total system draws 72 mA (less than 400 mW). The slow mode ($20-\mathrm{kHz}$ CPU frequency) reduces the powersupply current by a factor of $3(24 \mathrm{~mA})$. This mode maintains continuous operation yet gives you the option to switch the system to full speed at any time.

The two stop modes offer the alternative of fast clock turn-on or minimum power dissipation. In the stopclock mode, the main system oscillator continues to run and permits full-speed operation to resume within three CPU clock cycles (600 nsec at 5 MHz) after the fast mode is reinitiated. The main crystal oscillator

Fig 3-An on-chip bus-hold circuit maintains a valid CMOS logic level on its external pin when a driving source goes to a highimpedance state.
continues to run at 15 MHz (for a $5-\mathrm{MHz}$ system).
The stop-oscillator mode stops the system clock and the main crystal oscillator. The standby supply current for the system referred to in Table 2 is $752.7 \mu \mathrm{~A}$, which is less than 4 mW at 5 V . When you restart the crystal oscillator, the frequency and amplitude can vary significantly. After the amplitude reaches a specified amplitude, the 82 C 85 counts 8192 oscillator cycles to ensure crystal stabilization. The stabilization time guarantees that the clock outputs turn on within the specification limits and with the proper phase relationship.

The choice of operating modes depends upon system

TABLE 2-SYSTEM CURRENT DRAIN WITH AN 82C85 CLOCK CONTROLLER

TYPICAL-SYSTEM DEVICES	MODES			
	STOP-OSCILLATOR	STOP-CLOCK	SLOW	FAST
82C85	$24.4 \mu \mathrm{~A}$	14.1 mA	16.9 mA	24.7 mA
80 C 88	$106.6 \mu \mathrm{~A}$	$106.6 \mu \mathrm{~A}$	$173.0 \mu \mathrm{~A}$	23.8 mA
82C82	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$6.5 \mu \mathrm{~A}$	1.7 mA
82C86	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$14.0 \mu \mathrm{~A}$	1.4 mA
82C88	$3.8 \mu \mathrm{~A}$	$3.8 \mu \mathrm{~A}$	$14.3 \mu \mathrm{~A}$	3.5 mA
82C52	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$72.0 \mu \mathrm{~A}$	$151.2 \mu \mathrm{~A}$
82C54	$1.0 \mu \mathrm{~A}$	$3.5 \mu \mathrm{~A}$	$915.0 \mu \mathrm{~A}$	$943.0 \mu \mathrm{~A}$
82C55A	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$1.2 \mu \mathrm{~A}$	$3.2 \mu \mathrm{~A}$
82C59A	$509.0 \mu \mathrm{~A}$	$509.0 \mu \mathrm{~A}$	$520.0 \mu \mathrm{~A}$	$580.0 \mu \mathrm{~A}$
HD-6406	4.97 mA	4.97 mA	5.09 mA	5.12 mA
74HCXX PLUS OTHER ICs	$90.0 \mu \mathrm{~A}$	$90.0 \mu \mathrm{~A}$	$110.0 \mu \mathrm{~A}$	2.9 mA
HM-6516	$1.9 \mu \mathrm{~A}$	$1.9 \mu \mathrm{~A}$	$132.0 \mu \mathrm{~A}$	$820.0 \mu \mathrm{~A}$
HM-6616	$12.0 \mu \mathrm{~A}$	$12.0 \mu \mathrm{~A}$	$52.5 \mu \mathrm{~A}$	6.3 mA
TOTAL WITH 6406	5.72 mA	19.8 mA	24.0 mA	71.9 mA
TOTAL WITHOUT 6406	$752.7{ }_{\mu} \mathrm{A}$	-	-	-
CPU FREQUENCY	dc	dc	20 kHz	5 MHz
CRYSTAL FREQUENCY	dc	15 MHz	15 MHz	15 MHz

 15X faster than existing systems.

Rev-up your emulation performance.
Do it faster and better than ever before. The SA98 from Sophia combines the flexibility to go from 8 - to 32 -bit microprocessors, and is fully compatible with IBM's PC/AT or XT. The SA98 is setting the pace as the price/performance leader.
Parallel Interface
Get a real speed boost over traditional RS-232 type interface with Sophia's unique parallel interface. You'll gain an 8 X improvement in down load time. Optimize portability between IBM PC/AT, XT, or compatibles with Sophia's MS-DOS software drivers.

Unmatched Performance
Sophia's proprietary Direct Access Controller doesn't sidetrack ICE performance. It cuts through the curves others have to follow. The SA98, at high-speed, down loads to the target memory. Makes memory and data I/O modifications during program execution. Has full symbolic debugging. And you can view and augment trigger and trace conditions on-the-fly.
Dual Processor Emulation Used in tandem, two SA98's emulate two separate 8 - or 16 -bit microprocessors simultaneously on a single host. Set your independent debug triggers, and

High
owered
esponse

Clock control is the key to designing a min-

 imum-power system.

Fig 4-In CMOS devices with gated inputs, a low logic level on the $\overline{S T B}$ line turns the Q_{1} and Q_{2} FETs off so that a transition on the data-input line doesn't draw power-supply current.
priorities. The stop-clock mode delivers the fastest response and return from standby operation, but does so at the expense of higher power dissipation than the stop-oscillator mode. The stop-oscillator mode minimizes power dissipation, but has a longer response time.

Although clock control is key to low-power performance in a static CMOS system, there are other factors of which you should be aware. For example, when the input-voltage level on a CMOS device approaches the minimum $\mathrm{V}_{\text {IH }}$ (high-level voltage) or maximum V_{IL} (low-level voltage), the p- and n-channel FETs can partially turn on. This condition produces a low-resistance path between V_{CC} and GND and results in excessive power-supply current. Therefore, you must tie all CMOS inputs to V_{CC} or GND in some manner when they are not in use.

Pull-up/down resistors are the most common method of ensuring CMOS input-voltage-level specifications. The resistors maintain valid CMOS voltage levels when a driving source is in a floating high-impedance state. This technique, however, suffers from some disadvantages. First, extra resistors are necessary, which increases both board real estate and cost. Second, the circuit's power dissipation increases because the driving source must supply extra current to the resistors. Needless to say, if you can avoid using pull-up/down resistors, you can improve overall system performance.

Fig 3 shows the bus-hold circuitry that the 80 C 86 , $80 \mathrm{C} 88,82 \mathrm{C} 55 \mathrm{~A}$, and 80 C 286 devices include to eliminate the need for pull-up/down resistors. When no driving source is present or when a driving source is in a floating high-impedance state, the on-chip circuitry maintains a valid CMOS logic level on specific inputs.

The circuit will maintain this valid CMOS level until an external source overdrives the affected input. The external device must source or sink approximately 400 $\mu \mathrm{A}$ to overdrive the input. Because the bus-hold circuits are active, their current requirements are similar to the leakage currents for an active device: The circuit typically draws less than $10 \mu \mathrm{~A}$ when it isn't switching. This current is in contrast to the current drawn through a $10 \mathrm{k}-\Omega$ pull-up resistor: $500 \mu \mathrm{~A}$ when the logic level is low.

Excessive current drain can also result when the input circuitry of a CMOS device responds to voltage transitions unrelated to its operation. A typical system has bus transceivers and latches attached to the system bus. The input circuitry of these devices undergoes many signal transitions unrelated to the functional operation of the devices themselves. These unrelated voltage transitions switch the input circuitry of a CMOS device, causing an increase in power dissipation. In addition, if the system bus experiences a high-impedance state (a floating condition), it could result in an indeterminate logic state internal to an attached CMOS device.

You can eliminate excessive current drain due to unrelated input transitions by using bus tranceivers and latches with gated inputs. The Harris Series 82 C 8 X bus transceivers and latches (such as the $82 \mathrm{C} 82 /$ 83/86/87) let you gate their data inputs when not in use (Fig 4). When the strobe line (STB) is in a active-low state, the upper p-channel FET (Q_{1}) and the lower n-channel FET (Q_{2}) turn off. This action removes V_{CC} from the input circuitry so that no supply current flows to GND during unrelated input transitions and the circuit doesn't respond to floating inputs.

EDN

Author's biography

Walter J Niewierski is a marketing manager at Harris's Semiconductor Product Div in Melbourne, FL. He previously worked for Ford Motor Co and Burroughs Corp before joining Harris eight years ago. Walt has a BSEE from the University of Michigan and enjoys coaching little-league baseball in his spare time.

High 494 Medium 495 Low 496

Get in on the excitement with Marshall and Rockwell ISDN Technologies.
Like the R8070 T-1 PCM-30 Transceiver, which incorporates CMOS technology and is capable of processing digital signals that meet the requirements for D4, extended superframe and PCM-30 formats. Or Rockwell's latest ISDN offerings, the R8069 Line Interface Unit and the R8071 DMI Link Layer Controller.

Get your products to market quicker. Connect to public or private ISDN networks worldwide. Develop ISDN PRI capability over T-1 or PCM-30 lines. Build a T-1 interface rapidly, with considerable space and component savings. And take advantage of applications that include workstation to PBX, PBX to computer, host to host, and LAN to WAN. Or design your own.

With Rockwell ISDN Technologies, all you need to meet your networking needs.

And all from Marshall. Tomorrow, if you want. So to get in on the excitement there's only one thing to do.

Give Marshall a buzz today.

CA Ivine (714) 859-5050* Los Angeles (818) 407-4100 San Diego (819) 5789600°

CT Connecticut (203) 265-3822*
FL. Ft. Lauderdale (305) 977-4880 Oriando (407) 767-8585* Tampa (813) 576-1399*
GA Atlanta (404) $923-5750^{\circ}$
I. Chicago (312) 490-0155

IN Indianapolis (317) 297-0483 KS Kansas City (913) 492-3121. Wichita (316) 264-6333* MA Boston (617) 658-0810* MD Maryland (301) 840-9450*
in Michigan (313) $525-5850^{*}$

MN Minneapolis (612) 559-2211 MO St. Louis (314) 291-4650* NC Raleigh (919) 878-9882* NJ N. New Jersey (201) 882-0320 NY Binghamton (609) 234-9100* NY Binghamton (607) 798-1611 ${ }^{\circ}$

[^9]Brownsville (512) 542-4589* Dallas (214) 233-5200* EI Paso (915) 593-0706. Houston (713) 895-9200* San Antonio (512) 734-5100* UT Salt Lake City (801) 485-1551* WI Wisconsin (414) 797-8400

SLIC ICs.

Choose RIFA for the world's leading family of Subscriber Line Interface Circuits. First in the field with monolithic SLIC production, we now offer the widest selection, to suit every application.
Many of our industry-standard devices are now second-sourced; our leadership in bipolar production techniques guarantees space-age reliability.

PBL 3736.
Originally designed for Central Office use, also recommended for high-quality PABX applications. Full-line interfacing in compact CERDIP package. On-board voltage switching regulator cuts power dissipation and the need for special heat sinking. Features include polarity reversal and a digital interface for efficient operating parameter control.

PBL 3762.
High-performance, resistive-feed SLIC designed for PABX. Excellent longitudinal-to-metallic balance, 63 dB min, 70 dB typical, meets FCC requirements easily. Special $-40^{\circ} \mathrm{C}$ version for outdoor use, eg in Subscriber Loop Carrier Systems.

PBL 3739.
Special version of PBL 3736 designed for very high density PABX line cards. Built-in switching voltage regulation, very low heat dissipation, in 44-pin J-lead Quad CERPAC for surface mounting.

Call up RIFA and discover the fullest set of data, longest experience and genuine design partnership.

We're in the lead

403 International Pkwy
Richardson, TX 75085-3904
Telephone (214) 480-8300
Telefax (214) 680-1059

ERICSSON

RIFA is a member of the Ericsson Group

1988 88

Technical-Article Database Index

(November 1987 through April 1988)

Including EDN, EDN News, Electronic Design, Electronics, Electronic Products, Computer Design, and ESD
With compliments from EDN

To use this database . . .

(Photo courtesy Dallas Semiconductor)

Look for the topic of interest in the keyword index. If your topic isn't one of the keywords, try a related, but less specific, topic. Then go to the appropriate page in the database and scan the article titles, which are listed alphabetically within each keyword category. Information provided in each listing includes article title, author, company, magazine name, issue date, starting page number, and article length.

For more information on the articles listed, please contact each magazine directly.

EDN
Cahners Building 275 Washington St
Newton, MA 02158
(617) 964-3030

EDN News
Cahners Building
275 Washington St
Newton, MA 02158
(617) 964-3030

Computer Design
119 Russell St
Littleton, MA 01460
(617) 486-9501

Electronic Design
10 Holland Dr
Hasbrouck Heights, NJ 07604 (201) 393-6052

EDN's Technical Article Database Index is now available on floppy disk. See the order form on pg 202.

1988

Technical-Article Database Index

(November 1987 through April 1988)
 Keyword Index

Advertising 174
Amplifiers 174
Analog switches 174
Arithmetic chips/circuits 174
Artificial intelligence 174
Audio 174
Automati 174
Batteries 174
Board-level computers 174
CMOS logic 174
CMOS technology 174
Cache memory 174
Capacitors 174
Clock circuits 174
Communications ICs 174
Comparators 174
Computer applications 179
Computer firmware 179
Computer languages/compilers/ interpreters 179
Computer operating systems/system software 179
Computer software, application generator 179
Computer software, communications networking 179
Computer software, design applications 179
Computer software, graphics 179
Computer software, other 179
Computer software, performance measurement 179
Computer software, production test 179
Computer software, program development 179
Computer subsystems/peripherals, other 179
Computer systems/system design, other 179
Computer-aided design/engineering (CAD/CAE) 180
Computer-aided manufacturing/ testing (CAM/CAT) 180
Conferences/conventions/shows 180
Connectors 180
Consumer electronics 180
Corporate appointments/developments/ strategies 180
Crystals/crystal oscillators 180
Data acquisition systems/techniques 183
Data communications systems techniques 183
Data converters 183
Data processing 183
Desktop computers 183
Development systems 183
Digital multimeters (DMMs) 183
Digital signal processing 183
Digital voltmeters (DVMs) 183
Discrete components, other 183
Disk controllers 183
Disk-drive testers/testing 183
Display drivers 183
Displays 183
Distributed processing 183
Engineering workstations 184
Fiber optics 184
Filter circuits 184
Floppy-disk drives 184
Frequency synthesizers/synthesis/ measurement 184
Function generators/generation 184
GPIB instruments. 184
GaAs technology 184
Gate arrays 184
Graphics boards 184
Graphics circuits 184
Graphics systems 184
Hardware/interconnection, other 184
Heat sinks/cooling devices 184
Imports/exports 184
In-circuit emulators/emulation. 184
Industrial electronics. 189
Instrument interface systems 189
Instrumentation amps 189
Instrumentation/design aids \& services/ measurement, other 189
Integrated circuits/semiconductor devices/ 189circuit design, other
Interconnection systems 189
Linear circuits 189
Local-area network architecture/design design standards 189
Logic analyzers/analysis 189
Logic arrays/systems 189
Mainframe computers 189
Marketing/markets/pricing 190
Memory controllers 190
Memory devices 190
Microcomputer buses/interfacing 190
Microcomputers 190
Microprocessor buses 190
Microprocessor support chips 190
Microprocessors 193
Military electronics 193
Minicomputers 193
Modems. 193
Motor control circuits 193
Motors/motor controllers 193
Multiprocessing 193
Multiuser computer systems 193
Network analyzers/analysis 193
Network architecture/design/design standards (nonlocal) 193
Networking ICs 193
Office automation 193
Op amps 193
Optical storage 193
Optoelectronics 194
Oscillators 194
Oscilloscopes 194
Parallel processing 194
Parametric/functional testing 194
Personal computers 194
Plotters. 194
Power converters 194
Power semiconductors 194
Power supplies 194
Printed circuits 194
Printed-circuit processing 194
Printers 194
Process control 194
Processors, special-purpose (array, front-end, etc) 194
Production testing techniques 194
Production/manufacturing/testing, other 199
Programming 199
Prototyping boards/systems 199
Relays. 199
Resistors 199
Rigid-disk drives.

EDN TECHNICAL-ARTICLE DATABASE

A

Advertising

Advertiser Product Database-May-October 1987. Staff; EDN NEWS, 12/87, pg 36, 1.5 pgs.
Selective growth and new DRAM cells share the IEDM spotlight. Cole, Bernard C, Managing Editor; Electronics, 11/26/87, pg 109, 2 pgs.

Amplifiers

Cut noise in isolated circuits with variable-carrier amplifier. Burt, Rod, Burr-Brown; Electronic Design, 04/14/88, pg 101, 3.5 pgs.
High-speed buffers help solve problems in circuit applications. Underwood, Bob, Maxim Integrated Products; EDN, 01/21/88, pg 137, 5.5 pgs .

Isolation amplifiers break ground loops and achieve high CMRR Fleming, Tarlton, Associate Editor; EDN, 12/24/87, pg 97, 5.5 pgs.
Micropower op amp offers simplicity and versatility. Rahim, Zahid, Signetics; EDN, 01/07/88, pg 181, 7 pgs.
Simple techniques help you conquer op-amp instability. Siegel, Barry L, Elantec; EDN, 03/31/88, pg 181, 8 pgs.
Transimpedance amps: fast yet accurate. Palmer, Wyn, Analog Devices; Electronics, 01/07/88, pg 151, 4 pgs.
Use of transimpedance amplifiers minimizes design tradeoffs. Hansford, Alan, Analog Devices; EDN, 11/26/87, pg 205, 7.5 pgs .

Analog switches

Eliminate the guesswork in analog-switch error analysis. Moore, Stephen, Siliconix; EDN, 11/26/87, pg 219, 7 pgs.

Arithmetic chips/circuits

Building-block chips are busy widening DSP horizons. Leonard, Milt, Senior Editor; Electronic Design, 03/31/88, pg 68, 7.5 pgs.
Floating-point milestone: Single-chip processors. Lineback, J Robert, Managing Editor; Electronics, 03/17/88, pg 77, 1 pg.
Newest floating-point processors blur architectural distinctions. Wilson, Ron, Senior Editor; Computer Design, 04/15/88, pg 32, 6 pgs.

Artificial intelligence

Digital signal processing and AI inherent in consumer electronics. Staff; Electronic Design, 01/07/88, pg 144, 2 pgs.

Audio
Analog filtering: top gun for audio. Ambrose, John, Exar; ESD, 01/88, pg 97, 3.5 pgs .

Automatic test equipment/techniques

Design for testability creates better products at lower cost-Decade 90 Part 3. Leibson, Steven H, Regional Editor; EDN, 03/31/88, pg 135, 8.5 pgs.

Military ATE: capability up, tester inventory down. Novellino, John, Associate Editor; Electronic Design, 01/21/88, pg 68, 8 pgs.
Pioneering engineers begin to adopt board-level automatic test generation. Strassberg, Dan, Associate Editor; EDN, 03/17/88, pg 57, 7.67 pgs.
B

Batteries

Focus on rechargeable batteries: Economic portable power. Grossman, Morris, Senior Editor; Electronic Design, 03/03/88, pg 118, 6.5 pgs.

Board-level computers

Big RISC boxes bust out all over. Vaughan, Jack, Managing Editor; $E S D, 04 / 88, p g 24,1 p g$.
Board vendors turn to systems approach. Wilson, Dave, Editor; ESD, 04/88, pg 17, 2 pgs.
DSP card fits IBM PC. Bridges, Jim, Communications Automation \& Control; EDN NEWS, 03/88, pg 1, 1 pg.
Fax-board makers carve out niches. Harbert, Tammi, Senior Editor/ News; EDN NEWS, 04/88, pg 12, 1 pg.
Interface turns Mac II into GPIB controller. DeSantis, Tom, IOtech; EDN NEWS, 04/88, pg 29, 1 pg .
Low-cost, rugged commercial computers fit military needs. Conner, Margery S, Regional Editor; EDN, 12/24/87, pg 151, 7.5 pgs.
Plug-in boards let your personal computer perform parallel-processing tasks. Mosley, J D, Regional Editor; EDN, 02/04/88, pg 89, 5 pgs.
STE Bus vies for share of US STD Bus domain. Harold, Peter, European Editor; EDN NEWS, 04/88, pg 1, 1 pg.

CMOS logic

$\mathrm{AC} / \mathrm{ACT}$ logic supplies the glue for bus interface. Funk, Richard E, GE Solid State; Electronic Design, 04/14/88, pg 121, 5 pgs.
CMOS VLSI sets the direction for new ICs. Wilson, Ron, Senior Editor; Computer Design, 12/87, pg 79, 9 pgs.
Chip sets for PC/AT compatibles support faster μ Ps and shrink board size. Conner, Margery S, Regional Editor; EDN, 11/12/87, pg 79, 4 pgs.
Controversy, user doubts continue to embroil advanced CMOS logic. Wilson, Ron, Senior Editor; Computer Design, 03/01/88, pg 24, 2 pgs.
Managing power makes CMOS logic systems shine. Curtis, Rick, Texas Instruments; Electronic Products, 03/15/88, pg 30, 6 pgs.
Understand CMOS flash ADCs to apply them effectively. Demler, Michael J, Datel; EDN, 01/21/88, pg 127, 6.5 pgs.

CMOS technology

Is BiCMOS the next technology driver. Cole, Bernard C, Managing Editor; Electronics, 02/04/88, pg 55, 3 pgs.
Jedec simplifies selection of BiMOS, CMOS gate arrays. LaBuda, Virgil P, Motorola; Electronic Design, 03/17/88, pg 107, 8 pgs.
Overcome testing hurdles posed by new CMOS logic. Pino, Dave, Hall, William, National Semiconductor; Electronic Design, 01/21/88, pg 109, 4 pgs.
Understand CMOS flash ADCs to apply them effectively. Demler, Michael J, Datel; EDN, 01/21/88, pg 127, 6.5 pgs.

Cache memory

Cache controllers flare memory bottleneck. Bursky, Dave, Executive Editor; Leonard, Milt, Senior Editor; Electronic Design, 03/31/88, pg 25, 5 pgs.
Cache tag RAMs hasten main memory response. Leonard, Milt, Senior Editor; Electronic Design, 03/03/88, pg 19, 3.5 pgs.

Capacitors

Capacitors chip in for surface-mounting and switching supplies. Biancomano, Vincent, Technology Editor; Electronic Design, 03/88, pg 25, 5 pgs.
Special Report: A big cast of SMD passives hits center stage. Shereff, Jesse, Contributing Editor; Electronics, 02/04/88, pg 103, 6 pgs.

Clock circuits

Interface a real-time clock chip to the IBM PC or Apple II. Khan, Adnan, GE Solid State; Alexander, Mark, GE/Intersil; EDN, 11/12/ 87, pg 209, 7 pgs.

Communications ICs

Boost fast modem throughput by analyzing dial-up lines. Berger, Bill, Rockwell International; Electronic Design, 11/12/87, pg 113, 3.5 pgs. Data-compression chip eases document-processing design. Silver, David, Kofax Image Product; Williamson, James, Advanced Micro Devices; Computer Design, 11/15/87, pg 101, 3 pgs.
Dial-up modem chip sets get smaller, faster. Chester, Michael, Southwestern Editor; Electronic Products, 01/15/88, pg 22, 6 pgs.
ISDN data must conform to analog telecom networks. Hardwick, Steve, Siemens Components; Electronic Design, 11/12/87, pg 105, 3.5 pgs.
Interface the ISDN to your PC with a voice/data board. Gulick, Dale, Crowe, Charlie, Advanced Micro Devices; Electronic Design, 12/10/ 87, pg 85, 4 pgs.
LAN chip makers grapple in a turbulent market. Cole, Bernard C, Managing Editor; Electronics, 04/14/88, pg 87, 3 pgs.
MAPcon takes on factory network configuration. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 04/14/88, pg 95, 2 pgs.
Mainframe network chips ease big interfacing blues. Cormier, Denny, Senior Technical Editor; ESD, 01/88, pg 17, 2 pgs.
Mimic's next challenge: Slashing production costs. Naegele, Tobias, Military/Aerospace Editor; Electronics, 11/26/87, pg 121, 3 pgs.
New choice in crossbar switching: the IC. Lineback, J R, Managing Editor; Electronics, 01/21/88, pg 32, 1 pg.
Processor and communication ICs. Mokhoff, Nicolas, Senior Editor; Electronic Design, 02/18/88, pg 83, 8.5 pgs.
Software changes smart modem to smart scope. Alunkal, John, Codex; Holley, Paul, Holley; Electronic Design, 12/10/87, pg 99, 4.5 pgs.
StarLAN transceiver makes easy connections for office PC. Paetau, Jens, Exar; Electronic Design, 02/04/88, pg 79, 6 pgs.
Telecomm ICs offer improved functions for telephone- and PABX-system designs. Pryce, Dave, Associate Editor; EDN, 01/07/88, pg 55, 5.33 pgs.

Comparators

Analog comparators achieve high speeds, but application challenges remain. Shear, David, Regional Editor; EDN, 01/07/88, pg 75, 5.5 pgs.
CMOS comparators surpass bipolar devices. Andrews, Peter, Granahan,

Three if by air...

All
 from GE

The combined forces of GE, Intersil and RCA-now \#1 in High-Rel CMOS, and a leader in linear and power-give you a powerful ally for all your military needs.

There's more to choosing a military semiconductor supplier than finding the right parts. You need a technological partner who is as committed to the business as you are. A partner with the experience, expertise and production capabilities to serve this demanding market.
more than 1.5 million ASICs last year. We offer rad-hard and non-rad-hard, Class S and Class B ASICs.

With decades of military experience, fully-equipped design centers worldwide, and software that is exceptionally easy-to-use, we can help you translate your ideas into silicon fast. With firsttime success of virtually 100%.

You can use our new silicon compiler technology to create designs that are heavily bus-structured, with ROMs, RAMs, PLAs and ALUs right in them.

Or choose from dozens of fullycharacterized cells to design ASICs to more than 10,000

That's why you should take a close look at what the merger of three great brands-GE, RCA and Intersil-means to you.

ASICs

GE Solid State is a leading supplier of High-Rel ASICs. Many ASIC companies concentrate only on front-end design. We're strong in design, but equally strong in volume production. In fact, we shipped
gates. With die sizes up to $150,000 \mathrm{mil}^{2}$. Our range of ASIC technologies is impressive, including bulk silicon from 1.5 micron to 7 micron; 1.5 micron silicon-on-sapphire; single- and double-level metal.

All supported by a team of experienced, dedicated HighRel designers and engineers.

Logic

RCA invented CMOS. And
LOGIC

RCA Class S and Class B CMOS logic has long been the first choice for military and aerospace systems. For both radhard and non-rad-hard applications.

The CD 4000 series, introduced over 18 years ago, includes hundreds of devices proven in dozens of successful tactical programs.

We increased speed tenfold with the $54 \mathrm{HC} / \mathrm{HCT}$ family, which now includes more than 250 types and is fully compliant to 883 B Rev. C.

We tripled the speed again with our $54 \mathrm{AC} / \mathrm{ACT}$ series, matching bipolar ALS in speed. These devices can be used to replace LS and ALS circuits at only a small fraction of the power consumption.

And our newest line, now being introduced, is 54 HCS/HCTS

The " S " indicates that this family is made on sapphire substrate.

HCS/HCTS is just like HC/HCT except for two important advantages: the speed of $\mathrm{AC} / \mathrm{ACT}$; and radiation hardness (over 200K Rads, screened to Class S).

INTERSIL

Intersil's commitment to the military market goes back to 1974.

Today, Intersil can offer you more than 300 JAN QPL and 883B, Rev. C devices, including analog switches, multiplexers, JFETs, voltage converters, power-supply-management ICs, UARTs, EPROMs, timers and data acquisition products.

Plus one of the world's broadest lines of analog-to-digital and digital-to-analog converters and extremely sophisticated DSP devices.

There are currently more than 10,000 active Intersil customer source-control drawings on file.

Rad-Hard CMOS/SOS

If you're designing aerospace or strategic military systems, CMOS/SOS should be your choice. That's because the sapphire substrate gives you totally isolated n and p devices, for high speed and outstanding radiation hardness.

The advantages of CMOS/ SOS are available in rad-hard ASICs, RAMs and HCS/HCTS logic. CMOS/SOS devices are the key to the success of major

CMOS/SOS structure uses sapphire substrate to insulate the n - and p-transistors from each other. This structure is highly resistant to transient radiation, total-dose radiation, and single-event upsets.
military programs like Milstar and

Minuteman

small ICBM. CMOS/SOS is virtually latch-up free under transient radiation.
It has extremely high tolerance to single event upset (SEU) caused by radiation. For example, SRAMs typically have SEU of 2×10^{9} errors/bit/day. SOS offers a very high total dose tolerance: all the way from 100 K Rads to "MEGARAD" dosage.

We know, because we invented SOS.

1750A PROCESSOR

When Rockwell needed super-reliable, proven, rad-hard components for their 1750A processor (used in the new small ICBMs), they turned to us.

We responded with the ASIC that did the job: the MIL-STD 1750A embedded processor.

The processor has speed >700 KOPS (dais mix). The CPU uses six LSI logic chips implemented with our standard cells.

RAMs

We're delivering rad-hard 16 K SRAMs, screened to Class S, in high volume.

These 16 Kx 1 RAMs are latchup free; with SEU of 2×10^{10} errors/bit/day; transient upset rate $>10^{10}$ Rads/second; and total dose tolerance $>100 \mathrm{~K}$ Rads (Si). Access time is 80 ns typical at $25^{\circ} \mathrm{C}$ (post-Rad access time is 150 ns).

Our 4 Kx 1 and 1 Kx 4 rad-hard SRAMs are being qualified to

M38510 Class S.
Also, we offer $64 \mathrm{~K}(8 \mathrm{Kx} 8)$ and 256K (32Kx8) non-rad-hard high-rel SRAMs.

Power

We're among the leaders in high-rel power, with more than 200 QPL Bipolar and MOSFET devices.

We invented the logic-level high-rel MOSFET, which has a 5volt gate drive.

Another invention of ours, the IGT, achieves a 10:1 improvement in on-state resistance over conventional power MOSFETs when operating in the 400 -to500 volt range.

And we now offer Rugged MOSFETs, which can withstand high levels of avalanche energy.

GE Solid State has been awarded more engineering development contracts for radhard MOS than any other semiconductor supplier.

GE Solid State has the only DESC approved MOVs in the industry. And we can screen any of our 248 GE-MOV® Varistors to your high-rel requirement.

Manufacturing

Except for GE-MOVs, which are made in Dundalk, Ireland, all GE Solid State wafers are fab-

ricated in the U.S.A.
Our main high-rel plant is in Findlay, Ohio. One of the world's most efficient front ends, Findlay boasts a state-of-the-art high volume wafer fab plus complete military/aerospace assembly and test facilities, JAN certified to Class S.

Findlay turns out more highrel CMOS devices than any other plant in the world... about 5 million per year. 1.5 micron devices are now being produced, with 1.25 and submicron capabilities planned for the near future. Findlay uses a Class 10 wafer processing area.

More important than the advanced equipment used at

Findlay is a stable, very experienced work force that has been engaged in high-rel IC production for two decades.

The Intersil plant in Santa Clara, California, is also certified for JAN 38510 CMOS and bipolar production. High-rel power discretes are fabricated and assembled at our very efficient Mountaintop, PA, plant.

PACKAGING

Our hermetically-sealed packages provide a protective environment for our high-rel chips.

You can choose from ceramic dual-in-line, ceramic flat packs,
leadless chip carriers and pingrid arrays in a variety of lead finishes.

We provide packages with up to 132 terminals or more. And we have sizes for chips as large as 400×400 mils.

Your Strategic Partner

This is only a sample of what the combined forces of GE, RCA and Intersil-the new GE Solid State-can offer you. For example, our line includes CMOS bipolar and BiMOS linears; CMOS micros and peripherals; and an Emulating and Programmable Chip set that can be used to implement new architectures or to emulate existing ones.

Why not partner with the world's premier high-rel CMOS supplier? Call for a copy of our High-Reliability Capabilities brochure. 800-443-7364, extension 26.

偖

EDN TECHNICAL-ARTICLE DATABASE

Mark, Texas Instruments; EDN NEWS, 01/88, pg 24, 1.5 pgs.
Precision comparators ease oscillator and data-converter design. Dutra, John, Harvey, Barry, Elantec; EDN, 02/18/88, pg 219, 9 pgs.

Computer applications

RISC systems to lead the way in computation-intensive design jobs. Staff; Electronic Design, 01/07/88, pg 78, 2 pgs.
When are MFLOPS really MFLOPS. Aseo, Joseph, West Coast Technical Editor; ESD, 03/88, pg 38, 5 pgs.

Computer firmware

Chip sets for PC/AT compatibles support faster μ Ps and shrink board size. Conner, Margery S, Regional Editor; EDN, 11/12/87, pg 79, 4 pgs.

Computer languages/compilers/interpreters
Bare Machine Ada solves real-time problems. Seymour, Burch, Gould; Computer Design, 03/01/88, pg 58, 5 pgs.
C compilers team up with other development tools to ease system design. Falk, Howard, Contributing Editor; Computer Design, 04/15/88, pg 44, 4 pgs.
C interpreters and incremental compilers function as interactive development tools. Terry, Chris, Associate Editor; EDN, 01/21/88, pg 57, 3.33 pgs.

Coding languages to change little as libraries offer reusable code. Staff; Electronic Design, 01/07/88, pg 96, 1 pg.
Combine forth with other tools for rapid software development. Payne, W H, Sandia Laboratories; Electronic Design, 01/21/88, pg 103, 4 pgs.
Digital signal processing: Chips are here, but software isn't. McLeod, Jonah, Managing Editor; Electronics, 03/31/88, pg 57, 3 pgs.
Languages coupled with fast processors for high throughput. Aseo, Joseph, West Coast Technical Editor; ESD, 02/88, pg 26, 1 pg.
Novel architecture backs high-level languages. Case, Brian, Olson, Tim, Advanced Micro Devices; Electronic Products, 02/15/88, pg 35, 5 pgs.
Object-oriented languages reorient programming techniques. Wilson, Ron, Senior Editor; Computer Design, 11/01/87, pg 52, 6 pgs.
Optimize supercomputer code with vectorizing compilers. Dodson, David S, et al, Convex Computer; Electronic Design, 03/03/88, pg 79, 6 pgs.
Raise programmer productivity with C-language extension. Marrin, Ken, Software Consultant; Electronic Design, 02/18/88, pg 113, 4 pgs.
Run a computer flight simulator with a modified Ada. Seymour, Burch, Gould; Electronic Design, 01/21/88, pg 97, 3.5 pgs.
Software opens door to MS-DOS applications for non-PCs. Falk, Howard, Contributing Editor; Computer Design, 01/15/88, pg 22, 2.5 pgs.
To assure software success, choose a suitable language. Schindler, Max, Software Editor; Electronic Design, 03/31/88, pg 113, 10.5 pgs.

Computer operating systems/system software

CAE/CAD suppliers catch some sun. Collett, Ronald E, Senior Technical Editor; ESD, 03/88, pg 30, 1 pg .
Developers target Unix and Ada with real-time kernels. Falk, Howard, Contributing Editor; Computer Design, 04/01/88, pg 55, 11.5 pgs.
First tron microprocessor gets Japan into the 32-bit fray. Lineback, J R, Managing Editor; Electronics, 01/21/88, pg 31, 1 pg.
Instruction-set architecture prepares systems for 1990s. Bursky, Dave, Executive Editor; Electronic Design, 02/04/88, pg 33, 5.5 pgs.
Is the U.S. headed for a fall by rushing toward unix standards. Young, Jeremy, Managing Editor; Electronics, 02/04/88, pg 31, 1 pg.
Onboard kernels for VME Bus boards. Travis, Bill, Contributing Writer; EDN NEWS, 12/87, pg 1, 1 pg.
Real time calls the VMEbus. Wilson, Dave, Editor; ESD, 12/87, pg 26, 1 pg .
Real-time operating systems. Small, Charles H, Associate Editor; EDN, 01/07/88, pg 115, 17.5 pgs.
Satisfactory operating systems for workstations remain elusive. Staff; Electronic Design, 01/07/88, pg 98, 1 pg.
Sleight of hand makes MS-DOS multitasking. Aseo, Joseph, West Coast Technical Editor; ESD, 12/87, pg 47, 3 pgs.
Software opens door to MS-DOS applications for non-PCs. Falk, Howard, Contributing Editor; Computer Design, 01/15/88, pg 22, 2.5 pgs.
Supercomputer software: The floodgates are opening. Young, Jeremy, Managing Editor; Electronics, 03/03/88, pg 75, 3 pgs.
Toward faster and portable real-time operating systems. Schindler, Max, Software Editor; Electronic Design, 01/21/88, pg 31, 5 pgs.
UNIX and 386 find perfect match. Aseo, Joseph, West Coast Technical Editor; ESD, 04/88, pg 30, 1 pg.
Unix licensees up in arms over the Sun-AT\&T deal. McLeod, Jonah, Managing Editor; Electronics, 01/21/88, pg 33, 1 pg.
Until OS/2 comes along. Clarke, Robert M, Contributing Writer; ESD, 04/88, pg 77, 3 pgs.
Update: 80386 operating systems. Myrvaagnes, Rodney, Associate Editor; Electronic Products, 02/01/88, pg 18, 1.5 pgs.
When are MFLOPS really MFLOPS. Aseo, Joseph, West Coast Technical Editor; ESD, 03/88, pg 38, 5 pgs.

Windowlike user interfaces link systems and applications. Williams, Tom, Western Managing Editor; Computer Design, 04/01/88, pg 34, 6 pgs.

Computer software, application generator

Automatic programming could boost productivity threefold. Staff; Electronic Design, 01/07/88, pg 94, 1 pg.
Computer software, communications/networking
Networking software. Wright, Maury, Regional Editor; EDN, 03/03/88, pg 103, 7 pgs.

Computer software, design applications

Advanced tools finally start to automate software design. Schindler, Max, Software Editor; Electronic Design, 11/27/87, pg 61, 7.5 pgs .
Autorouters debut in PC-based CAE arena. Harbert, Tammi, Senior Editor/News; EDN NEWS, 01/88, pg 8, 3 pgs.
CASE tools. Terry, Chris, Associate Editor; EDN, 04/28/88, pg 111, 7.5 pgs.
CASE tools emerge to handle real-time systems. Falk, Howard, Contributing Editor; Computer Design, 01/01/88, pg 53, 14 pgs.
CASE tools square off to analyze a real-time system. Schindler, Max, Software Editor; Electronic Design, 04/28/88, pg 103, 10 pgs.
'Evaluate model types before simulating logic circuits. Moffat, Kent, Carter, Don, Mentor Graphics; EDN, 03/17/88, pg 187, 5.5 pgs.
New software tools run IBM PC software on a variety of 32 -bit μ Ps. Cushman, Robert H, Special Features Editor; EDN, 02/18/88, pg 93, 3.83 pgs.
PLD-design software meets the challenge of multiple-device PLD applications. Small, Charles H, Associate Editor; EDN, 02/18/88, pg 61, 4 pgs.
Simple worksheet predicts attenuation of digital signals. Doyle, Greg J, Control Data; Electronic Design, 03/31/88, pg 93, 4 pgs.
Software lets you design first, pick PLD later. Warrington, Gene, Minc; EDN NEWS, 03/88, pg 10, 1 pg .
Software will level the road for parallel processing. Staff; Electronic Design, 01/07/88, pg 100, 1 pg .
Spice extensions dynamically model thermal properties. Filseth, Eric, Analog Design Tools; Jachowski, Mike, Precision Monolithics; EDN, 04/14/88, pg 169, 10 pgs.
Timing reports: real-time CASE systems emerge. Aseo, Joseph, West Coast Technical Editor; ESD, 01/88, pg 20, 1 pg.

Computer software, graphics

AI beefs up gray-scale correlation. Silver, William M, Schatz, David, Cognex; ESD, 03/88, pg 89, 3 pgs.
Computer-supported graphics ease software specifications. Schindler, Max, Software Editor; Electronic Design, 03/03/88, pg 87, 9 pgs.
Estimating kernels from amplitude spectra. Krukar, Richard, University of New Mexico; ESD, 12/87, pg 35, 2 pgs.
Image restoration techniques. Wilson, Scott R, University of New Mex ico; ESD, 12/87, pg 39, 3 pgs.
Interactive image processing using X windows. Rasure, John, et al, University of New Mexico; ESD, 12/87, pg 32, 2 pgs.
Windowlike user interfaces link systems and applications. Williams, Tom, Western Managing Editor; Computer Design, 04/01/88, pg 34, 6 pgs.
Computer software, other
Supercomputer software: The floodgates are opening. Young, Jeremy, Managing Editor; Electronics, 03/03/88, pg 75, 3 pgs.

Computer software, performance measurement

Digital signal-synthesis tools model real-world environments. Kafadar, Karen, Hewlett-Packard; EDN, 11/12/87, pg 239, 7.5 pgs.
Computer software, production test
Pioneering engineers begin to adopt board-level automatic test generation. Strassberg, Dan, Associate Editor; EDN, 03/17/88, pg 57, 7.67 pgs.
Computer software, program development
Customer training and reverse engineering promise to escalate the acceptance of CASE. Terry, Chris, Associate Editor; EDN, 03/17/88, pg 73, 4 pgs.
Program-generation tools for PCs ease IEEE-488 system integration. Harold, Peter, European Editor; EDN, 04/14/88, pg 71, 6.33 pgs.

Computer subsystems/peripherals, other

A new look at analyzing peripheral performance. Hospodor, Andy, I/O XEL; Computer Design, 03/15/88, pg 94, 4 pgs.
Alternative computer architectures reduce bottlenecks. Hess, James W, Ohmeda; EDN, 11/12/87, pg 271, 8 pgs.
Input technologies extend the scope of user involvement. Williams, Tom, Western Managing Editor; Computer Design, 03/01/88, pg 41, 9.5 pgs .

Computer systems/system design, other
For cost/performance, partition RISC system on bus parameters. Cates,

EDN TECHNICAL-ARTICLE DATABASE

Ron, VLSI Technology; Electronic Design, 11/12/87, pg 121, 6 pgs.
RISC systems to lead the way in computation-intensive design jobs. Staff; Electronic Design, 01/07/88, pg 78, 2 pgs.

Computer-aided design/engineering (CAD/CAE)

ASIC verification: Chasing a moving target. McLeod, Jomah, Managing Editor; Electronics, 11/26/87, pg 79, 3 pgs.
Automating test vectors cuts chip development time. Lukanc, Jeffrey A, et al, VTC; Electronic Design, 11/27/87, pg 73, 3.5 pgs.
Autorouters debut in PC-based CAE arena. Harbert, Tammi, Senior Editor/News; EDN NEWS, 01/88, pg 8, 3 pgs.
CAE: On a continuum between known techniques, new challenges. Staff; Electronic Design, 01/07/88, pg 72, 2 pgs.
CASE tools. Terry, Chris, Associate Editor; EDN, 04/28/88, pg 111, 7.5 pgs.
Create linear ASIC macros without Spice nightmares. Orgain, Cheryl, Analog Design Tools; Electronic Design, 12/10/87, pg 77, 3 pgs.
Customer training and reverse engineering promise to escalate the acceptance of CASE. Terry, Chris, Associate Editor; EDN, 03/17/88, pg 73, 4 pgs.
Design tools advance to keep pace with system complexity. Goering, Richard, Senior Editor; Computer Design, 12/87, pg 103, 8 pgs.
Developing CAE tools target top-down design of complex systemsDecade 90 Part 2. Leibson, Steven H, Regional Editor; EDN, 03/17/ 88, pg 131, 7 pgs.
EDIF translators begin to open up CAE/CAD systems. Goering, Richard, Senior Editor; Computer Design, 12/87, pg 30, 1.5 pgs.
Improved autorouting makes old algorithm do new tricks. Mazzullo, Tony, ECAD; Electronic Design, 04/28/88, pg 83, 3.5 pgs.
Keep pc boards reliable with thermal-analysis tools. LaBonte, Mike, et al, Valid Logic Systems; Electronic Design, 04/28/88, pg 79, 4 pgs.
Laying out mixed chips takes IBM days, not weeks. Naegele, Tobias, Military/Aerospace Editor; Electronics, 02/18/88, pg 76,1 pg.
Logic simulation on personal computers: Friend or foe. Milne, Bob, Senior Editor; Electronic Design, 03/03/88, pg 50, 9 pgs.
Modeling strategies simplify board-level simulation. Goering, Richard, Senior Editor; Computer Design, 03/01/88, pg 29, 4.5 pgs.
Routing your way through pe-board design tools. Milne, Bob, Senior Editor; Electronic Design, 04/28/88, pg 58, 10.5 pgs.
Silicon compilers still struggling toward widespread acceptance. Andrews, Warren, Contributing Editor; Computer Design, 02/15/88, pg 37, 6 pgs.
Simulate analog circuit boards without Spice's shortcomings. Walsh, Kevin, Electrical Engineering Software; Electronic Design, 02/04/88, pg 75, 4 pgs.
Simulation accelerators address throughput issues. Goering, Richard, Senior Editor; Computer Design, 03/15/88, pg 42, 5 pgs.
Simulation puts zip into circuit board design. Spadaro, Joseph J, Associate Editor; Electronic Products, 04/01/88, pg 34, 8 pgs.
Software for translating CAE simulation into test vectors. Chester, Michael, Southwestern Editor; Electronic Products, 02/15/88, pg 13, 3 pgs.
Solutions begin to surface for linking board design and test. DeSena, Art, ADS Associates; Computer Design, 03/01/88, pg 34, 5 pgs.
Speed DSP simulation, design with CAE-library function blocks. Grossman, Robert M, DSP \& CAE Consultant; Electronic Design, 04/28/ 88, pg 92, 4 pgs.
Speed digital filter design with smart multiplier chip model. Johnson, Tony, Logic Automation; Schnettler, Tim, Texas Instruments; Electronic Design, 04/28/88, pg 97, 5 pgs.
Spice extensions dynamically model thermal properties. Filseth, Eric, Analog Design Tools; Jachowski, Mike, Precision Monolithics; EDN, 04/14/88, pg 169, 10 pgs.
Will 386-based PCs ignite a desktop CAE explosion. Bassak, Gil, Managing Editor; Electronic Design, 02/04/88, pg 62, 7.5 pgs .
Worst-case timing analysis ensures board reliability. Rizzatti, Lauro, Wasilewski, Mary, Teradyne; Computer Design, 11/15/87, pg 90, 6 pgs.

Computer-aided manufacturing/testing (CAM/CAT)

Solutions begin to surface for linking board design and test. DeSena, Art, ADS Associates; Computer Design, 03/01/88, pg 34, 5 pgs.

Conferences/conventions/shows

A torrent of future products at the solid state conference. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 67, 1 pg .
Board vendors turn to systems approach. Wilson, Dave, Editor; ESD, 04/88, pg 17, 2 pgs.
Buscon spotlights ASICs, standards and partnerships. Lieberman, David, Senior Editor; Computer Design, 04/01/88, pg 21, 4 pgs.
Buscon/88 West rings in a new year. Lieberman, David, Senior Editor; Mayer, John H, Senior Associate Editor; Computer Design, 02/15/88, pg 128, 2 pgs.
Complexity, specialization, and speed high-light ISSCC. Cormier, Denny, Senior Technical Editor; ESD, 02/88, pg 23, 2 pgs.
Electro/88. Strassberg, Dan, Associate Editor; Computer Design, 02/15।

88, pg 128, 5 pgs.
Evolutionary advances and some surprises revealed at ISSCC. Wilson, Ron, Senior Editor; Computer Design, 02/01/88, pg 21, 1 pg.
ICCAD: Logic synthesis and parallel processing. Phillips, Barry W, Technology Editor; Electronic Design, 11/12/87, pg 33, 2.5 pgs.
IEDM technical program to air key advances. Leonard, Milt, Senior Editor; Electronic Design, 11/27/87, pg 35, 3 pgs.
ISSCC announcements promise strong impact on system design. Wilson, Ron, Senior Editor; Computer Design, 04/01/88, pg 29, 2.5 pgs.
Largest-ever Electro adds software to its showcase of electronics technology. Fleming, Tarlton, Associate Editor; EDN, 04/14/88, pg 87, 3 pgs.
Look for hot developments in every area at the ISSCC. Cole, Bernard C, Managing Editor; Electronics, 12/17/87, pg 103, 2 pgs.
Marching toward automation and higher throughput. Chin, Spencer, Associate Editor; Electronic Products, 02/01/88, pg 16, 1.5 pgs.
Nepcon highlights the dominant role tape-automated bonding is taking. Lyman, Jerry, Packaging/Production Editor; Electronics, 02/18/88, pg 104, 2 pgs.
PCs, ASICs, solar cells, and microwave chips light up Wescon program. Biancomano, Vince, Technology Editor; Electronic Design, 11/12/87, pg 85, 3 pgs.
System integration comes to the Macintosh II. Wilson, Andrew, Executive Editor; ESD, 03/88, pg 28, 1 pg.
Wescon/87. Strassberg, Dan, Associate Editor; EDN, 11112/87, pg 139, 3.5 pgs .

Connectors

Fiber-optic connectors come down in price. O'Connell, Patricia, Managing Editor; EDN NEWS, 02/88, pg 23, 2 pgs.
Materials and hardware. Ormond, Tom, Senior Editor; EDN, 02/18/88, pg 149, 11 pgs.
Specialty cabling creates versatile and streamlined network systems. Graeber, George C, Crouch, Ronald A, Brand-Rex; Electronics, 02/ 04/88, pg 119, 4 pgs.
Surface-mounting connectors seek brighter day. Chin, Spencer, Associate Editor; Electronic Products, 02/01/88, pg 31, 4.5 pgs.

Consumer electronics

Consumer. Staff; Electronics, 01/07/88, pg 84, 2 pgs.
Digital audio tape gets closer in U.S.. Iversen, Wesley R, Industrial \& Consumer; Electronics, 12/17/87, pg 32, 1 pg.
In Las Vegas, the action's in three-inch CDs. Iversen, Wesley R, News Bureau-Chicago; Electronics, 01/21/88, pg 33, 1 pg.
Integration will turn the wheels of automotive electronic design. Staff; Electronic Design, 01/07/88, pg 142, 2 pgs.
Military and commercial applications demand tailored high-reliability ICs. Martin, Steven L, Contributing Editor; Computer Design, 01/15/ 88, pg 37, 5 pgs.

Corporate appointments/development/strategies

Betting the company on a high-priced plant. Waller, Larry, News Bureau -Los Angeles; Electronics, 04/28/88, pg 95, 1 pg.
Can U.S. chip profits pay for a new generation of fabs. Lineback, J R, Managing Editor; Electronics, 02/18/88, pg 81, 2 pgs.
Executive outlook: crash isn't changing plans-yet. Staff; Electronics, 12/17/87, pg 91, 6 pgs.
Has Silicon Valley lost its zing. Young, Jeremy, Managing Editor; Electronics, 11/12/87, pg 127, 3 pgs.
Intel's ambitious game plan in embedded chips. Cole, Bernard C, Managing Editor; Electronics, 04/14/88, pg 97, 4 pgs.
Intergraph will hawk Clipper to all comers. Curran, Laurence, Managing Editor; Electronics, 11/12/87, pg 88, 2.5 pgs.
Motorola confirms RISC effort as pressure on 68000 builds. Lineback, J R, News Bureau-Dallas; Electronics, 12/17/87, pg 31, 1 pg.
Selling to the military: Is it about to get easier. Naegele, Tobias, Military/Aerospace Editor; Electronics, 03/31/88, pg 83, 3 pgs.
Sematech aims to put fab in operation by this summer. Lineback, $J R$, Managing Editor; Naegele, Tobias, Military/Aerospace Editor; Electronics, 01/21/88, pg 34, 0.5 pgs .
TI finds a new way to predict package reliability. Lyman, Jerry, Packaging/Production Editor; Electronics, 03/31/88, pg 87, 2 pgs.
Transforming a risky startup into a solid supercomputer company. Manuel, Tom, Managing Editor; Electronics, 03/03/88, pg 62, 2 pgs.
Users backing Motorola's 88000 chip band together and join the RISC battle. Manuel, Tom, Managing Editor; McLeod, Jonah, Managing Editor; Electronics, 04/14/88, pg 31, 1 pg.

Crystals/crystal oscillators

Design method yields low-noise, wide-range crystal oscillators. Hillstrom, Tim L, Hewlett-Packard; EDN, 03/17/88, pg 141, 5 pgs.

TheBlues always helpyou see things more clearly.

If you've been singing for higher contrast Liquid Crystal Displays, Seiko Instruments has some happy news for you.
Thanks to the unique blue characters on their LCD modules, seeing what's on the screen is easier than ever.

Another big advantage of getting the blues from Seiko is their extremely wide viewing angle. The widest available for small LCDs. So your customers can read the screen from positions that are comfortable to them. Little extras that mean a lot when it comes to making a design decision.

If all this sounds good, there's one

type modules. Making a visible improvement in your products easy. Quick. And free of retooling costs.

And, with a variety of these easy-to-read modules ranging from 1×16 to 4×40, Seiko's bound to have what you need.

Call Seiko Instruments today at (213) 517-7770 and ask about their LCDs with the blue characters. It'll give you, and your customers, a whole new outlook on your products.
Seiko Instruments, USA, Inc. Electronic Components Division
2990 West Lomita Blvd.
Torrance, CA 90505
(213) 517-7770

FAX (213) 517-7792
 more feature that'll be music to your ears. Plug-in compatibility.

Simply drop in the new modules wherever you were using Seiko's parallel interface, TN

Seiko Instruments

without the workout.

If you spend time working with IC or Discrete semiconductors, you should get to know our DIGESTs. Because they can make your work go a whole lot easier.

Quickly compare electrical specs, packages, pinouts; find alternate sources or replacement information; or go directly from generic or part numbers to technical and manufacturer data. All at your fingertips...your own personal library at your desk.

Involved with MIL SPEC or Hi-Rel components? Our Hi-Rel/ Military Digest can lighten your load. Simplified cross-referencing and a user-friendly format eliminate time-wasting searches through QPL's, MIL-STD 1562,

DESC drawings and manufacturer catalogs. Searches that previously took hours can be done in minutes.

And to keep up with the latest technology, the DIGESTs feature optional Updates, automatically sent to you either quarterly or semiannually.

We offer the DIGESTs separately, discount them in quantity, and, of course, all DIGESTs carry our 30-day moneyback guarantee. We also lease our database on magnetic tape.

To find out more about how the DIGESTs can simplify your workload, call our toll-free numbers.

The D.A.T.A. DIGESTs: getting out the work doesn't have to be a workout anymore.

EDN TECHNICAL-ARTICLE DATABASE

D
Data acquisition systems/techniques
Transform your IBM PC into a $61 / 2$-digit voltmeter. Haigh, Geoffrey, Analog Devices; Electronic Design, 02/18/88, pg 119, 4 pgs.
Vendors offer a range of data-acquisition and -control boards for the Macintosh II. Conner, Doug, Regional Editor; EDN, 03/03/88, pg 57, 4.33 pgs.

Data communications systems/techniques

Boost fast modem throughput by analyzing dial-up lines. Berger, Bill, Rockwell International; Electronic Design, 11112/87, pg 113, 3.5 pgs.
Build an ISDN interface for VMEbus workstations. Komanecky, Mark, et al, AT\&T Bell Laboratories; Electronic Design, 04/14/88, pg 129, 4 pgs.
Communications. Staff; Electronics, 01/07/88, pg 75, 2.5 pgs.
Computers are on the verge of the open-systems era. Manuel, Tom, Managing Editor; Gosch, John, News Bureau-Frankfort; Electronics, 04/14/88, pg 68, 2 pgs.
From systems to standards, the pace quickens in networking. Runyon, Stan, Managing Editor; Electronics, 04/14/88, pg 67, 1.5 pgs.
Software changes smart modem to smart scope. Alunkal, John, Codex; Holley, Paul, Holley; Electronic Design, 12/10/87, pg 99, 4.5 pgs.
The race to interconnect computer networks is on. Curran, Lawrence, Managing Editor; Electronics, 04/14/88, pg 70, 3 pgs.
Wide-area nets explode as standards emerge. Shandle, Jack, New Products Editor; Electronics, 04/14/88, pg 75, 3 pgs.

Data converters

A-D and D-A converters to leap in resolution and speed. Staff; Electronic Design, 01/07/88, pg 106, 1 pg.
CD -player design requires an accurate 16 -bit D / A converter. Highton, Frederick J, Burr-Brown; EDN, 11112/87, pg 225, 5.5 pgs.
Converters digitize signals for DSP. Malone, Bob, Sylvan, John, Analog Devices; EDN NEWS, 01/88, pg 24, 1 pg.
Data capture matches flash converter speeds. Lechner, Alexander, et al, Siemens Components; Electronic Design, 03/31/88, pg 101, 6 pgs.
For A/D converter specs, read between the lines. Colotti, James J, Eaton; Electronic Products, 04/15/88, pg 53, 5.5 pgs.
Improve converter resolution with $\mu \mathrm{P}$ tracking techniques. Carlson, Brian, Hootman, Joe, University of North Dakota; Electronic Design, 02/04/88, pg 97, 4.5 pgs.
Make programmable sine oscillator from quad DAC chip. Wong, James, Precision Monolithics; Electronic Design, 02/04/88, pg 103, 3.5 pgs.
Mixed process technologies drive D-A converters to higher performance. Mayer, John H, Senior Associate Editor; Computer Design, 03/01/88, pg 63, 4 pgs.
One-chip ADCs reach 2 GHz ; others hit 18 -bit accuracy. Runyon, Stan, Special Projects Editor; Electronics, 02118/88, pg 77, 1 pg.
Programmable-delay ICs control system timing. Hilton, Craven, Bar row, Jeff, Analog Devices; EDN, 02/18/88, pg 209, 7.5 pgs.
S/H amp-ADC matrimony provides accurate sampling. Little, Al, Burnett, Bob, Harris; EDN, 02/04/88, pg 153, 12 pgs.
Special Report: High-resolution arrives for ADC chips and hybrids. Riezenman, Mike, Contributing Editor; Electronics, 01/07/88, pg 13s, 6 pgs.
Understand CMOS flash ADCs to apply them effectively. Demler, Michael J, Datel; EDN, 01/21/88, pg 127, 6.5 pgs.

Data processing

Data processing. Staff; Electronics, 01/07/88, pg 65, 4 pgs.

Desktop computers

PS/2 products proliferate. Lewis, Sasha, Northwestern Editor; Tuck, Barbara, Associate Editor; Electronic Products, 12/15/87, pg 15, 1.5 pgs.

Development systems

Development systems evolve toward integrated, host-independent solutions. Falk, Howard, Contributing Editor; Computer Design, $04 / 01 /$ 88, pg 44, 6 pgs.
PC-based emulators gain performance edge. Goering, Richard, Senior Editor; Computer Design, 02/01/88, pg 26, 2 pgs.

Digital multimeters (DMMs)

DMM adopts varied guises. Jessen, Kenneth, Hewlett-Packard; EDN NEWS, 02/88, pg 1, 1 pg.
High-performance DMMs and calibrators bring standards-lab specs to the benchtop. Strassberg, Dan, Associate Editor; EDN, 02/04/88, pg 57, 6.5 pgs.
The system DMM becomes a far more powerful tool. Berg, Rex A, Hewlett-Packard; Electronics, 03/17/88, pg 123, 4 pgs.

Digital signal processing

A potpourri of DSP. Bond, John, Technology Communications; ESD, 01/88, pg 67, 6 pgs.
Analog filtering: top gun for audio. Ambrose, John, Exar; ESD, 01/88, pg 97, 3.5 pgs.
Building-block chips are busy widening DSP horizons. Leonard, Milt, Senior Editor; Electronic Design, 03/31/88, pg 68, 7.5 pgs.
DSP chip speeds VME transfer. Cooper, John, Ironics; ESD, 03/88, pg 47, 3 pgs.
DSP's big conference enters the real world of products. Young, Jeremy, Managing Editor; Electronics, 03/31/88, pg 63, 1.5 pgs.
DSPs finally find floating point. Taylor, David, et al, Zoran; ESD, 01/88, pg 81, 3.5 pgs.
Digital filtering: the right stuff for video. Williams, Bob, Ampex; Prater, Jim, NCR Microelectronics; ESD, 01/88, pg 91, 3.5 pgs.
Digital signal processing: Chips are here, but software isn't. McLeod, Jonah, Managing Editor; Electronics, 03/31/88, pg 57, 3 pgs.
FFT-based filter design boosts radar system's prowess. Cox, Roger, United Technologies Microelectronics; Electronic Design, 03/31/88, pg 81, 4 pgs.
FFT-specific chips crunch frequency-domain data. Cormier, Denny, Senior Technical Editor; ESD, 12/87, pg 20, 1 pg .
Novel DSP boards break through speed bottlenecks. Phillips, Barry W, Technology Editor; Electronic Design, 02/18/88, pg 132, 13 pgs.
Selection method steers designers to best DSP solution. Daly, Alexander, E-Systems; Computer Design, 03/01/88, pg 53, 5 pgs.
Speed DSP simulation, design with CAE-library function blocks. Grossman, Robert M, DSP \& CAE Consultant; Electronic Design, 04/28/ 88, pg 92, 4 pgs.
Speed digital filter design with smart multiplier chip model. Johnson, Tony, Logic Automation; Schnettler, Tim, Texas Instruments; Electronic Design, 04/28/88, pg 97, 5 pgs.
The next century's DSP chips promise gigaflops throughput. Staff; Electronic Design, 01/07/88, pg 118, 1 pg

Digital voltmeters (DVMs)

Transform your IBM PC into a $61 / 2$-digit voltmeter. Haigh, Geoffrey, Analog Devices; Electronic Design, 02/18/88, pg 119, 4 pgs.

Discrete components, other

A different touch: force-sensing resistors. Yaniger, Stuart, Interlink Electronics; EDN NEWS, 03/88, pg 8, 1 pg.
Components. Staff; Electronics, 01/07/88, pg 98, 3 pgs.

Disk controllers

Building tomorrow's disk controller today. Reynolds, Jim, Randall, Dave, Andromeda Systems; Electronic Products, 12/15/87, pg 47, 3.5 pgs.

Multifunction chip steers hard disk drives. Holm, Robert E, Intel; ESD, 04/88, pg 67, 5 pgs.

Disk-drive testers/testing

2M-byte diskettes need special tests for quality control. Hartke, Jerome L, Media Sciences; EDN, 03/03/88, pg 127, 6 pgs.

Display drivers

High-resolution LCD panels change demands on driver electronics. Fenger, Carl, Muhlemann, Kurt, Philips/Faselec; EDN, 04/14/88, pg 157, 5 pgs.
Innovations in monolithic display drivers improve flat-panel cost/ performance ratios. Wiegand, Jim, Associate Editor; EDN, 02/04/88, pg 75, 3.67 pgs.
Take care when choosing controllers for flat-panel displays. McManus, Colin, Digital Electronics; EDN, 04/28/88, pg 209, 8 pgs.

Displays
Building cheaper active-matrix LCDs. Iversen, Westey R, News Bureau -Chicago; Electronics, 01/21/88, pg 38, 0.5 pgs.
Color flat-panel displays strut their stuff at SID. Bursky, Dave, Executive Editor; Electronic Design, 04/28/88, pg 22, 4 pgs.
Electroluminescent panels move to center stage. Van Stroh, Rolland W, Planar Systems; Electronic Products, 03/01/88, pg 64, 4.5 pgs.
Flat panels shine in autos, test, and portables. Wilson, Andrew, Executive Editor; ESD, 02/88, pg 32, 1 pg.

Distributed processing

Distributed processing provides low-cost acceleration. Goering, Richard, Senior Editor; Computer Design, 04/01/88, pg 32, 2 pgs.

EDN TECHNICAL-ARTICLE DATABASE

E

Engineering workstations

Portable workstations to take on functions of desktop computing. Staff; Electronic Design, 01/07/88, pg 82, 1 pg.
Supercomputing gives workstations a shot. Ohr, Stephan, Executive Editor; Till, Johna, Associate Editor; Electronic Design, 04/14/88, pg 39, 3 pgs.
Will 386-based PCs ignite a desktop CAE explosion. Bassak, Gil, Managing Editor; Electronic Design, 02/04/88, pg 62, 7.5 pgs.

F

Fiber optics

Fiber-optic connectors come down in price. O'Connell, Patricia, Managing Editor; EDN NEWS, 02/88, pg 23, 2 pgs.
Fiber-optic sensor systems move to new markets. Coco, Donna, Staff Editor; EDN NEWS, 01/88, pg 10, 2 pgs.
Fiber-optic transmitters and receivers enhance data-link performance. Ormond, Tom, Senior Editor; EDN, 03/31/88, pg 57, 5 pgs.

Filter circuits

Digitally programmable 1-chip filters yield lower-cost data-acquisition systems. Fleming, Tarlton, Associate Editor; EDN, 03/1\%/88, pg 83, 4.67 pgs .

Floppy-disk drives

2M-byte diskettes need special tests for quality control. Hartke, Jerome L, Media Sciences; EDN, 03/03188, pg 127, 6 pgs.

Frequency synthesizers/synthesis/measurement

Digital signal-synthesis tools model real-world environments. Kafadar, Karen, Hewlett-Packard; EDN, 11/12/87, pg 239, 7.5 pgs.
Digitize analog functions using simple procedures. Ellis, George, Industrial Drives; EDN, 03/31/88, pg 153, 5 pgs.

Function generators/generation

Function generators for all seasons. Yates, Warren, Associate Editor; Electronic Products, 12/15/87, pg 42, 4 pgs.
Signal generators will boost speed and expand versatility. Staff; Electronic Design, 01/07/88, pg 138, 1 pg.

G

GPIB instruments
Personal computer-based instrument control: a tale of two buses. Nowlin, William C, Canik, Robert, National Instruments; ESD, 01/88, pg 30, 4.5 pgs .

GaAs technology

Designing with GaAs logic. Cates, Ron, Vitesse Semiconductor; ESD, $03 / 88, p g 63,4 \mathrm{pgs}$.
Exclusive-OR inputs give you many uses for GaAs flip-flop. Deierling, Carl, GigaBit Logic; Electronic Design, 12/10/87, pg 59, 4.5 pgs.
GaAs ICs begin to make inroads into silicon territory. Andrews, Warren, Contributing Editor; Computer Design, 02/01/88, pg 37, 6 pgs.
Gallium arsenide digital ICs complement ECL families in high-speed applications. Gallant, John, Associate Editor; EDN, 03/03/88, pg 79, 6 pgs.
Rockwell's design used for 8-bit GaAs processor. Waller, Larry, News Bureau-Los Angeles; Electronics, 02/18/88, pg 74, 1 pg.
Will ASICs propel GaAs out of its niche. Waller, Larry, News Bureau -Los Angeles; Electronics, 02/18/88, pg 40, 0.5 pgs.

Gate arrays

Programmable array serves as a controller for dynamic RAMs. Waugh, Thomas, Xilinx; EDN, 02/18/88, pg 169, 6.5 pgs.

Graphics boards

Video and graphics-The twain shall meet. Lawcewicz, Tad, Wang, Robert, Imagraph; ESD, 04/88, pg 55, 2.5 pgs.
What's new-an electronic imaging '87 review. Wilson, Andrew, Executive Editor; ESD, 12/87, pg 17, 2 pgs.

Graphics circuits

Chip set combo transforms images at low cost. Mannix, Charles, Ivex; ESD, 12/87, pg 54, 4 pgs.
Data-compression chip eases document-processing design. Silver, David, Kofax Image Product; Williamson, James, Advanced Micro Devices; Computer Design, 11/15/87, pg 101, 3 pgs.

Graphics chips forge high-res boards for PCs, workstations. Mokhoff, Nicolas, Senior Editor; Electronic Design, 03/17/88, pg 62, 10 pgs.
Graphics pipeline merges off-the-shelf and semicustom ICs. Wilson, Ron, Senior Editor; Computer Design, 12/87, pg 25, 2 pgs.
Picking the right computer graphics chip. Myrvaagnes, Rodney, Associate Editor; Electronic Products, 11/15/87, pg 26, 8.5 pgs.
Specialized processors aim at graphics, imaging jobs. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 73, 1 pg.
VGA chip sets. Mosley, J D, Regional Editor; EDN, 03/17/88, pg 119 , 6.5 pgs .

VGA chips offer design opportunities and latest IBM compatibility. Williams, Tom, Western Managing Editor; Computer Design, 11/15/87, pg 50, 2.5 pgs.

Graphics systems

3D PC graphics. Macdonald, Sarah, Matrox; ESD, 02/88, pg 53, 3.5 pgs.
AI beefs up gray-scale correlation. Silver, William M, Schatz, David, Cognex; ESD, 03/88, pg 89, 3 pgs.
Design a graphics board for an IBM personal computer. Grimes, Jack, Shankman, Richard, Intel; Electronic Design, 03/17/88, pg 87, 6.5 pgs.
Focusing on image enhancement. Dawson, Ben, Imaging Technology; ESD, 03/88, pg 83, 3 pgs.
Graphics supercomputers tackle real-time visualization. Williams, Tom, Western Managing Editor; Computer Design, 03/15/88, pg 21, 2.5 pgs.
Graphics visualization is a real eye opener. Manuel, Tom, Managing Editor; Electronics, 03/17/88, pg 91, 2 pgs.
In search of a PC video bus standard. Wilson, Andrew, Executive Editor; ESD, 03/88, pg 26, 1 pg.
Interactive image processing using X windows. Rasure, John, et al, University of New Mexico; ESD, 12/87, pg 32, 2 pgs.
Landscape generation: a changing perspective. Chen, Yin-Pao, Simulator Systems; ESD, 02/88, pg 44, 4 pgs.
Lasers and liquid crystals project large images quickly. Stepner, David, Greyhawk Systems; ESD, 01/88, pg 47, 3 pgs.
Manage design trade-offs in high-end graphics board. Whitton, Mary C, Sun Microsystems; et al, Electronic Design, 03/17/88, pg 77, 7 pgs.
Putting your PC in pictures. Masraff, Anthony, Omnicomp Graphics; ESD, 03/88, pg 101, 2 pgs.
Stereoscopic 3D imaging. Weissman, M A, Microscience; ESD, 04/88, pg 59, 4 pgs.
Video and graphics-The twain shall meet. Lawcewicz, Tad, Wang, Robert, Imagraph; ESD, 04/88, pg 55, 2.5 pgs.
What color is color. Wilson, Andrew, Executive Editor; ESD, 01/88, pg 38, 4.5 pgs.
Windows for workstations: A menu for multitasking. Alexander, Tom, University of Washington; et al, ESD, 03/88, pg 74, 4.5 pgs.

H

Hardware/interconnection, other

Interconnection bottlenecks will dominate future VLSI designs. Staff; Electronic Design, 01/07/88, pg 104, 2 pgs.

Heat sinks/cooling devices

Cooling devices take the heat from SMDs. Strassberg, Dan, Associate Editor; EDN, 12/10/87, pg 97, 8.5 pgs .
Cooling high-speed ECL coventionally. Gupta, Omkarnath R, Gupta Packaging Technologies; Edmundson, Neil, Fairchild Semiconductor; Electronic Products, 11/15/87, pg 44, 4.5 pgs.
Materials and hardware. Ormond, Tom, Senior Editor; EDN, 02/18/88, pg 149, 11 pgs.

I

Imports/exports

France. Staff; Electronics, 01/21/88, pg 74, 4 pgs.
Italy. Staff; Electronics, 01/21/88, pg 78, 3 pgs.
Japan. Staff; Electronics, 01/21/88, pg 61, 5 pgs.
Overseas market report. Staff; Electronics, 01/21/88, pg 59, 2 pgs.
United Kingdom. Staff; Electronics, 01/21/88, pg 70, 4 pgs.
West Germany. Staff; Electronics, 01/21/88, pg 66, 4 pgs.

In-circuit emulators/emulation

Focus on in-circuit emulators. Novellino, John, Associate Editor; Electronic Design, 11/12/87, pg 139, 5 pgs.
HLL cross compilers speed 1-chip- $\mu \mathrm{C}$ software development. Leibson, Steven H, Regional Editor; EDN, 12/24/87, pg 127, 9 pgs.
In-circuit emulators ease development of hardware for 80386-based applications. Strassberg, Dan, Associate Editor; EDN, 03/03/88, pg 69,

Satisfy everyone with Toko's new ultra-compact universal input switchers.

Try us for size! Toko's new MOSFET power supplies are the smallest switchers in their class - with power densities to 2.45 watts per cubic inch and 15,30 and 50 -watt models that stand a miniature $1^{\prime \prime}$ high.
Toko satisfies your need for smaller size without sacrificing power. Utilizing our broad experience in inductor technology, we engineered these new power supplies with MOSFET switching circuits and switching frequencies over 100 kHz .
Additionally, our state-of-the-art "wireless" copper thin film transformer design helps achieve lower switching noise, greater efficiency, and eliminates the chances of an open winding or a short.
To ensure reliability, Toko features $105^{\circ} \mathrm{C}$ electrolytic capacitors and 20% derating of all components.

SERIES	$\begin{gathered} \text { AC } \\ \text { INPUT } \\ \text { VOLTAGE } \end{gathered}$	$\begin{aligned} & \text { RATED } \\ & \text { POWER } \end{aligned}$	\# OUTPUTS	$H^{\text {INCHES }}{ }^{\text {L }}$		
MK	85-132	150W	1	3.8	6.7	2.4
MW	85-264	15W	3	1.0	4.3	2.4
MW	85-264	30W	3	1.0	5.9	2.4
MW	85-1321	50W	3	1.0	6.1	3.7
MW	170-264*	100W	4	1.6	7.8	4.4

- Universal 85-264V. Input on MW15 and 30
- 80\% Efficiency
- FCC Class B
- Designed to Meet UL \& CSA
- Thin, Eurocard, Flex Power Method - Jumper selectable.

Best of all, Toko offers these power supplies at prices so low that they compete with larger, conventional supplies. Our two-year warranty backs our commitment to high performance.

More power and less space ... at the right price. You really can satisfy everyone with Toko's new switchers. For complete details, contact Toko America, 1250 Feehanville Drive, Mt. Prospect, IL 60056
(312) 297-0070, FAX (GIII): (312) 699-7864

TOKO AMERICA, INC.
Your strategic partner... for all the right reasons.

$$
\begin{aligned}
& \text { Total Contract } \\
& \text { Electronic } \\
& \text { Manufacturing } \\
& \text { Has A New } \\
& \text { Name: } \\
& \text { PHILIPS } \\
& \text { CIRCUIT } \\
& \text { ASSEMBLIES }
\end{aligned}
$$

You've known us for years as Mepco/ Centralab Circuit Systems, North American Philips SMD ${ }^{\circledR}$ Technology Center, and Interconics - building networks, custom printed circuits and ceramic hybrid circuits, and providing surface-mount, through-hole and mixed-technology assembly services.

Now, we've joined together as a fast-growing division of North American Philips Corporation:

Philips Circuit Assemblies

It's easy to say. And it says a lot.
Philips Circuit Assemblies offers America's broadest range of contract electronic manufacturing and packaging capabilities to help reduce the time to bring your products to market. Immediate services available to you are: computer aided design, engineering,

State-of-the-art Materials Management

Philips Circuit Assemblies achieves planned throughput and meets critical JIT delivery schedules by using a proven MRPII (Manufacturing Resource Planning) program. This provides total material control and tracking through the entire manufacturing process.

Engineering Support

The Philips Circuit Assemblies engineering team can work with you from the outset of your project to answer key questions about layout, placement and testing. We optimize your designs for peak manufacturing efficiency and performance. And provide size reductions at the lowest cost.

Quality Control

The Total Quality Control (TQC) program at Philips Circuit Assemblies is based on building products right the first time. All employees receive ongoing training aimed at developing their skills to meet Philips' high standards of quality workmanship.

In addition, SPC (Statistical Process Control) systems monitor, plot and analyze trends in manufacturing variables to prevent problems before they occur.

Full-service Test and Repair

Philips Circuit Assemblies performs in-circuit, functional, burn-in and stress testing. Customdesigned hardware/software are provided through our experienced test engineers. Test engineers and technicians offer worst-case analysis and recommendations for improving circuit performance.
At the 26,000 square-foot Custom Repair Center, electronic and electromechanical diagnostic and repair functions are performed on in-warranty, out-of-warranty and third-party circuit card assemblies or finished products.

Flexible Automated Assembly Systems

Through Philips Circuit Assemblies you can upgrade your own assembly line with renowned Philips MCM Modular Placement Systems. Philips Placement Systems are the world's standard for flexible, cost-effective automation of SMT circuit assembly.

Far East SMT Production

In Singapore, Philips Circuit Assemblies' sister company, SMT Circuit Assembly, provides contract assembly services and leading-edge technology to support your manufacturing operations in the Pacific Basin.

Worldwide Components Purchasing

The international procurement leverage of Philips assures you greater economy and availability of materials from established suppliers around the world.

Nothing even comes close to the total electronic manufacturing services from Philips Circuit Assemblies. To put Philips Circuit Assemblies to work for you, call 1-800-522-7752 (in Wisconsin, 414/785-6359). To receive our Capabilities Catalog, write to: Philips Circuit Assemblies, Corporate Advertising, 2001 W. Blue Heron Blvd., Riviera Beach, FL 33404.

Mendelsan Electranics ๆuc.

CONTROL YOUR HOME OR BUSINESS FROM YOUR IBM*PC OR PC/AT COMPATIBLE

 This card is what you need to TURN ON \& OFF lights, machinery, and other electrical orIBM PC* DATA ACQUISITION AND CONTROL ADAPTER \& DISTRIBUTION PANEL provides the capability to control and
monitor processes within a sensor base system.

IBM PC*DATA ACQUISITION AND CONTROL ADAPTER provides an easy to use interface for accessing the ANALOG and DIGITAL I/O. Integrates analog, binary and time/ counter devices on a single adapter card.

Up to tour IBM DATA ACOUISITION AND CONTHOL ADAPIERS can be attached to an

Four analos
Four analog input channels (12 -bit resolution)
Two analog output channeis (12-bit resolution)
16-channel digital output port
Programmable sampling rates provided by a
32-bit timer
Event counter, programmable rate generator. or
programmable time delay provided by a 16 -bit user time
counter
-The Distribution Panel has

- Screw lerminals pronded to anach devices to the distribution panel Shielded grounds for twisted parr terminations Shieided co
interferce
USES
Chromatography. Electrochemistry. Energy management. Elec ronic testing. Process control. Data logging. Robotics.
Some parameters commonly monitored or controlled include Pressure. Fiow, Displacement Voltage, Light intensity Rotationa speed.
Some instruments or devices that may utilize the Adpoter are Chromatographs. Spectrophotometers. Pressure gages. Relay controis Level gauges. Load cells. Conductivity cells. ph Meters.
- techmical data

ANALOG INPUT: The analog input functions of the adapter oper ate in eigher programed or interrupting mode. The analog inpu functions provide 12 -bit relative accuracy. RESOLUTION - 12 Dits

THIS IS AN ORIGINAL IBM* PRODUCT !!!

OUR LOW! LOW! PRICE FOR BOTH UNITS

IBM* DATA ACQUISTION AND CONTROL ADAPTER \#6451502 ORGINAL COST \$1275 IBM* ADAPTER DISTRIBUTION PANEL \#6451504 ORGINAL COST \$245

INCLUDES TURBO PASCAL DEMO SOFTWARE W/SOURC CODES, ADDRESSES ANALOG \& BINARY INPUT \& OUTPUT MODULES

PER SET

Shipping \& Handling \$6.50
3.33 pgs.

Modular emulator yields real-time data. Pasternack, Irene, Applied Microsystems; EDN NEWS, 02/88, pg 14, 1.5 pgs .

Industrial electronics

Industrial. Staff; Electronics, 01/07/88, pg 86, 2 pgs.

Instrument interface systems

Computer cards won't replace traditional instruments. Staff; Electronic Design, 01/07/88, pg 132, 2 pgs.
Interface turns Mac II into GPIB controller. DeSantis, Tom, IOtech; EDN NEWS, 04/88, pg 29, 1 pg.

Instrumentation amps

Instrumentation amps begin to challenge op amps. Graeme, Jerald, Burr-Brown; Electronics, 04/28/88, pg 125, 4 pgs.
Instrumentation/design aids \& services/measurement, other
Personal computer-based instrument control: a tale of two buses. Nowlin, William C, Canik, Robert, National Instruments; ESD, 01/88, pg 30, 4.5 pgs .
Quality will be the dominant force in future circuit designs. Staff; Electronic Design, 01/07/88, pg 150, 2 pgs.
Test \& measurement. Staff; Electronics, 01/07/88, pg 77, 3 pgs.
Testing will become an integral part of the design process. Staff; Electronic Design, 01/07/88, pg 134, 1 pg.
Versatility is a necessity for tomorrow's test instruments. Staff; Electronic Design, 01/07/88, pg 136, 1 pg.

Integrated circuits/semiconductor devices/circuit design,

other
Opportunity knocks for new optocouplers. Jamison, Richard, et al, Hewlett-Packard; Electronic Products, 11/01/87, pg 57, 4 pgs.
Programmable-delay ICs control system timing. Hilton, Craven, Barrow, Jeff, Analog Devices; EDN, 02/18/88, pg 209, 7.5 pgs.
RISCy business. Harbert, Tammi, Senior Editor/News; EDN NEWS, 12/87, pg 1, 1.5 pgs.
Semiconductors. Staff; Electronics, 01/07/88, pg 92, 4 pgs.
Token-bus-controller interface must resolve family disparities. Polansky, Paul, Motorola; EDN, 03/17/88, pg 167, 9.5 pgs.

Interconnection systems

Molded circuits require attention to new design techniques. Williams, John, ICI Electronics; EDN, 01/21/88, pg 161, 5 pgs.
New package technology supports soaring IC and system complexityDecade 90 Part 4. Leibson, Steven H, Regional Editor; EDN, 04/14/ 88, pg 141, 8 pgs.
VLSI and VHSIC designs push improved backplane development. Mayer, John H, Associate Editor; Computer Design, 01/01/88, pg 84, 5 pgs.

L

Linear circuits

Analog ICs. Goodenough, Frank, Senior Editor; Electronic Design, 02/ 18/88, pg 63, 5 pgs.
Analog arrays will boast dedicated structures such as 12 -bit ADCs. Staff; Electronic Design, 01/07/88, pg 108, 1 pg.
Analog's major move to new markets. Curran, Lawrence, Managing Editor; Electronics, 12/17/87, pg 79, 2 pgs.
Create linear ASIC macros without Spice nightmares. Orgain, Cheryl, Analog Design Tools; Electronic Design, 12/10/87, pg 77, 3 pgs.
Evolution, not revolution, marks most future linear IC advances. Staff; Electronic Design, 01/07/88, pg 110, 1 pg.
Linear semicustom shifts into high gear. Collett, Ron, Senior Technical Editor; ESD, 12187, pg 63, 4.5 pgs.
These chips are breaking the linear bottleneck. Curran, Lawrence, Managing Editor; Electronics, 12/17/87, pg 61, 4 pgs.
To avoid compromise, consider insulation resistance. Kirsop, Doug, Keithley Instruments; Electronic Design, 02/18/88, pg 125, 3.5 pgs.
Video op amp, line-driver IC builds high-frequency circuits. Salerno, Carmine, Wittlinger, Hal, GE/RCA Solid State; Electronic Design, 02/04/88, pg 107, 4 pgs.
Local-area network architecture/design/design standards
An EtherStar is born. Chiang, Al, Fujitsu Microelectronics; ESD, 03/88, pg 52, 4.5 pgs.
Bitbus gains support for building low-cost serial links. Andrews, Warren, Contributing Editor; Computer Design, 02/15/88, pg 23, 2.5 pgs.
Custom logic helps clear LAN traffic bottlenecks. Hammer, Claire, et al, Texas Instruments; Electronic Design, 01/21/88, pg 119, 4 pgs.
Ethernet moves to twisted-pair for easier access. Aseo, Joseph, West Coast Technical Editor; ESD, 03/88, pg 32, 1.5 pgs.
FDDI and integrated packaging cast new light on future of fiberoptics. Barron, Janet J, Associate Editor; Computer Design, 01/15/88, pg

46, 5 pgs.

Fiber optics: a winning technology for LANs. Southard, Robert K, AMP; Electronics, 02/04/88, pg 111, 4 pgs.
Japanese beat the pack with optical MAP. Cohen, Charles L, News Bureau-Tokyo; Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 02/18/88, pg 32, 0.5 pgs.
LAN chip makers grapple in a turbulent market. Cole, Bernard C, Managing Editor; Electronics, 04/14/88, pg 87, 3 pgs.
Networking unties OS development knot. McCreary, Dan, ETA Systems; ESD, 02/88, pg 61, 4.5 pgs.
System-level constraints dictate real network throughput. Viallet, Fabian, Gespac; Computer Design, 01/15/88, pg 79, 4.5 pgs.
The LAN war pits IBM's token ring vs. the world. McLeod, Jonah, Managing Editor; Electronics, 04/14/88, pg 80, 2.5 pgs.
Work-station vendors factor in connectivity. Runyon, Stan, Managing Editor; Electronics, 04/14/88, pg 83, 2 pgs.

Logic analyzers/analysis

Building big systems takes hardware logic analyzers. Boyce, Doug, Tektronix; Electronics, 03/17/88, pg 131, 3.5 pgs.
Consider logic analyzers for more than $\mu \mathrm{P}$ applications. Conner, Doug, Regional Editor; EDN, 12/24/87, pg 55, 9.5 pgs.
Focus on logic analyzers. Milne, Bob, Senior Editor; Electronic Design, 11/27/87, pg 101, 6 pgs.
Proper glitch capture requires knowledge of logic-analyzer limits. Schweitzer, Wolfgang, Kontron Messtechnik; EDN, 01/07/88, pg 157, 5 pg .

Logic arrays/systems

A programmable gate array: Can it be true. Collett, Ronald E, Senior Technical Editor; ESD, 04/88, pg 28, 1 pg.
A walk through a state-machine architecture. Lytle, Craig, Kopec, Stan, Altera; ESD, 04/88, pg 45, 5 pgs.
Architectural and process enhancements deliver faster, more flexible PLDs. Andrews, Warren, Contributing Editor; Computer Design, 01/01/88, pg 31, 7 pgs.
Clocking subsystems pace high-performance logic. Shuhami, Jacob, Draper, Don, Intergraph Advanced Processor; Computer Design, 11/01/87, pg 95, 4.5 pgs.
Everything you always wanted to know about designing a 100,000-gate ASIC. Rau, Jerry, Daspit, Tom, LSI Logic; ESD, 02/88, pg 36, 4 pgs.
Exclusive-OR inputs give you many uses for GaAs flip-flop. Deierling, Carl, GigaBit Logic; Electronic Design, 12/10/87, pg 59, 4.5 pgs.
Integrated PLDs support Multibus II bus arbitration. Khu, Arthur, Advanced Micro Devices; EDN, 01/07/88, pg 165, 7 pgs.
Mastering PLD test aspects eases PLD system testing. Durwood, Brian H, Data I/O; O'Donnell, Gary, National Semiconductor; Electronic Design, 02/18/88, pg 103, 5 pgs.
New gate array gets more density with antifuses. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 75, 1 pg.
PLD architectures vie for larger share of CPU support logic. Wilson, Ron, Senior Editor; Computer Design, 11/01/87, pg 37, 4 pgs.
PLD design system picks chips, partitions logic. Collett, Ronald E, Senior Technical Editor; ESD, 02/88, pg 34, 1 pg.
PLD testing: why, when and how. Durwood, Brian H, Data I/O; Computer Design, 04/01/88, pg 71, 5 pgs.
PLDs: On the road to state-machine design. Collett, Ronald E, Senior Technical Editor; ESD, 04/88, pg 34, 6.5 pgs.
Standard logic families will be cooler, faster, easier to use. Staff; Electronic Design, 01/07/88, pg 120, 1 pg.
Update: High-density PLDs. Lewis, Sasha, Northwestern Editor; Electronic Products, 01/15/88, pg 14, 2 pgs.

M

Mainframe computers

Cray's new Y-MP will face a more powerful rival-from cray. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 02/18/88, pg 31, 1.5 pgs .
Graphics supercomputers tackle real-time visualization. Williams, Tom, Western Managing Editor; Computer Design, 03/15/88, pg 21, 2.5 pgs.
Japan focuses on simple but fast single-processor supercomputers. Cohen, Charles L, News Bureau-Tokyo; Electronics, 03/03/88, pg 57, 2 pgs.
New architectures give supercomputers power to mirror reality. Bond, John, Contributing Editor; Computer Design, 03/15/88, pg 67, 11 pgs.
Supercomputers: The proliferation begins. Manuel, Tom, Managing Editor; Electronics, 03/03/88, pg 51, 6 pgs.
Supercomputing gives workstations a shot. Ohr, Stephan, Executive Editor; Till, Johna, Associate Editor; Electronic Design, 04/14/88, pg 39, 3 pgs.

EDN TECHNICAL-ARTICLE DATABASE

Marketing/markets/pricing

Analog's major move to new markets. Curran, Lawrence, Managing Editor; Electronics, 12/17/87, pg 79, 2 pgs.
Communications. Staff; Electronics, 01/07/88, pg 75, 2.5 pgs.
Components. Staff; Electronics, 01/07/88, pg 98, 3 pgs
Consumer. Staff; Electronics, 01/07/88, pg 84, 2 pgs.
Data processing. Staff; Electronics, 01/07/88, pg 65, 4 pgs.
France. Staff; Electronics, 01/21/88, pg 74, 4 pgs.
Industrial. Staff; Electronics, 01/07/88, pg 86, 2 pgs
Italy. Staff; Electronics, 01/21/88, pg 78, 3 pgs.
Japan. Staff; Electronics, 01/21/88, pg 61, 5 pgs.
Military \& government. Staff; Electronics, 01/07/88, pg 88, 1.5 pgs.
Overseas market report. Staff; Electronics, 01/21/88, pg 59, 2 pgs.
Pushing for continued growth in 1988. Staff; Electronics, 01/07/88, pg 63, 2 pgs.
Semiconductors. Staff; Electronics, 01/07/88, pg 92, 4 pgs
Test \& measurement. Staff; Electronics, 01/07/88, pg 77, 3 pgs.
United Kingdom. Staff; Electronics, 01/21/88, pg 70, 4 pgs.
West Germany. Staff; Electronics, 01/21/88, pg 66, 4 pgs.

Memory controllers

Cache tag RAM chips boost speed and simplify design. Wyland, David C, Integrated Device Technolgy; Computer Design, 11/01/87, pg 85, 6 pgs.

Memory devices

1M-bit video RAMs offer speed for high-resolution graphics displays. Conner, Margery S, Regional Editor; EDN, 03/31/88, pg 79, 4.67 pgs. A new memory technology is about to hit the market. Weber, Samuel, Executive Editor; Electronics, 02/18/88, pg 91, 3.5 pgs.
BiCMOS SRAM tops ECL memories. Hochstedler, Charles, National Semiconductor; Electronic Products, 03/01/88, pg 32, 5.5 pgs.
Cache chips score 32 -bit MMU hits. Cormier, Denny, Senior Technical Editor; ESD, 03/88, pg 21, 2 pgs.
Cache controllers flare memory bottleneck. Bursky, Dave, Executive Editor; Leonard, Milt, Senior Editor; Electronic Design, 03/31/88, pg 25, 5 pgs.
Cache tag RAM chips boost speed and simplify design. Wyland, David C, Integrated Device Technolgy; Computer Design, 11/01/87, pg 85, 6 pgs.
Cache-memory systems benefit from on-chip solutions. Shear, David, Regional Editor; EDN, 12/10187, pg 245, 10 pgs.
Calculate the MTBF of EEPROMs with on-chip error correction. Sweetman, David, Seeq Technology; Electronic Design, 02/04/88, pg 95, 2 pgs.
EEPROMs compete for UV-EPROM sockets. Lewis, Sasha, Northwestern Editor; Electronic Products, 12/01/87, pg 36, 4.5 pgs.
EEPROMs move toward higher densities, speeds. Harbert, Tammi Senior Editor/News; EDN NEWS, 02/88, pg 8, 2 pgs.
Five blazing fast CMOS SRAMS are coming. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 69, 1.5 pgs
Flash EEPROM approaches EPROM density. Rauh, Gary, Villott, Mike, Seeq Technology; EDN NEWS, 04/88, pg 36, 1 pg.
Handle the ninth parity bit efficiently with 8 -bit EEPROMs. Barry Joe, CTS Fabri-Tek; Electronic Design, 02/04/88, pg 89, 3 pgs.
High-density flash EEPROMs are about to burst on the memory market Lineback, J Robert, Managing Editor; Electronics, 03/03/88, pg 47, 1.5 pgs .

Intel close to production with a 4-MBIT EPROM. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 72, 1 pg.
Memories gain in smarts, density, and speed as feature sizes shrink. Staff; Electronic Design, 01/07/88, pg 126, 1 pg.
Memory ICs. Bursky, Dave, Executive Editor; Electronic Design, 02/18/ 88, pg 71, 7.5 pgs.
New challenger: the ferroelectric ram. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 02/04/88, pg 32, 0.5 pgs.
RAM and ROM find a home on semicustom ICs. Steinle, Adrienne L, NCR Microelectronics; Electronic Products, 12/01/87, pg 43, 3 pgs.
Specialty DRAMs accelerate video system performance. Cormier, Denny, Senior Technical Editor; ESD, 04/88, pg 22, 1 pg.
System architecture dominates design of no-wait-state cache. Flynn, James K, Mera, Narciso, AT\&T Microelectronics; EDN, 03/17/88, pg 155, 6 pgs.
The flag's up for the 4-Mbit DRAM derby. Chester, Michael, Southwestern Editor; Electronic Products, 01/01/88, pg 15, 1.5 pgs.
The next wave: 16-MBIT drams from Japan. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 68, 1.5 pgs.
These ECL-compatible SRAMS combine bipolar and CMOS. Cole, Bernard C, Managing Editor; Electronics, 02/18/88, pg 71, 1 pg.
Wide electrical PROMs stride into 1-bit terrain. Leonard, Milt, Senion Editor; Electronic Design, 12/10/87, pg 29, 3 pgs.

Microcomputer buses/interfacing

BiCMOS gate arrays promise new wave of bus-driving solutions. An drews, Warren, Contributing Editor; Computer Design, 03/01/88,
pg 19, 3 pgs.
Bitbus gains support for building low-cost serial links. Andrews, Warren, Contributing Editor; Computer Design, 02/15/88, pg 23, 2.5 pgs
Buscon spotlights ASICs, standards and partnerships. Lieberman, David, Senior Editor; Computer Design, 04/01/88, pg 21, 4 pgs
DSP chip speeds VME transfer. Cooper, John, Ironics; ESD, 03/88, pg 47, 3 pgs.
Expansion buses give systems room to grow. Lieberman, Dave, Senior Editor; Computer Design, 03/15/88, pg 52, 6 pgs.
IPI-3 subsystems meet future data storage needs. Coulter, Bob, Intellistor; Computer Design, 01/15/88, pg 87, 4 pgs.
Metastable-free arbitrator coordinates processors. Siddique, Naseer, Dike, Charles, Signetics; Electronic Design, 04/14/88, pg 107, 5 pgs.
One-chip VMEbus interface builds compact graphics board. Willy, John, Rivoire III, Charles, SBE; Electronic Design, 03/17/88, pg 97, 4 pgs.
Personal computer-based instrument control: a tale of two buses. Nowlin, William C, Canik, Robert, National Instruments; ESD, 01/88, pg 30, 4.5 pgs.
Pooling the resources of different computing systems. Vukovic, Philip M, Larsen, Larry L, Bit 3 Computer; Electronic Products, 12/15/87, pg 37, 4 pgs.
SCSI rivalry heats up as new controller chips vie. McLeod, Jonah, Managing Editor; Electronics, 03/31/88, pg 79, 1 pg.
STE Bus: ready to break into U.S. market. Mayer, John, Senior Associate Editor; Computer Design, 03/15/88, pg 27, 1.5 pgs.
STE Bus vies for share of US STD Bus domain. Harold, Peter, European Editor; EDN NEWS, 04/88, pg 1, 1 pg.
Serial link increases microcomputer analog output. Artusi, Daniel, Mo torola; Electronic Design, 03/03/88, pg 105, 3 pgs
Serial techniques expand your options for $\mu \mathrm{C}$ peripherals. Naufel, Naji, Motorola; EDN, 02/18/88, pg 199, 6 pgs.
Simple circuitry connects plug-in cards to NuBus. Harvey, Audrey, National Instruments; Electronic Design, 02/18/88, pg 97, 4 pgs.
To boost bus bandwidth, match processor and memory timing. Miller, Lloyd, Harris Semiconductor; Electronic Design, 03/31/88, pg 107, 4.5 pgs .

VMEbus and Multibus II mature for multiprocessing applications. Lieberman, David, Senior Editor; Computer Design, 11/01/87, pg 25, 7 pgs
What's holding up the PS/2 clones. Manuel, Tom, Managing Editor; Electronics, 04/14/88, pg 32, 1 pg.

Microcomputers

Computer performance still climbing at unrelenting pace. Lieberman, David, Senior Editor; Computer Design, 12/87, pg 37, 8 pgs.
For cost/performance, partition RISC system on bus parameters. Cates, Ron, VLSI Technology; Electronic Design, 11/12/87, pg 121, 6 pgs.
Languages coupled with fast processors for high throughput. Aseo, Joseph, West Coast Technical Editor; ESD, 02/88, pg 26, 1 pg.
Macintosh II: a new breed of PC for the engineer. Wolfe, Ron, National Instruments; Electronic Products, 02/15/88, pg 22, 5.5 pgs.
Macintosh II: expansion boards begin to emerge. Yates, Warren, Associate Editor; Electronic Products, 02/15/88, pg 30, 4 pgs.
Mainframe performance on a chip will challenge large machines. Staff; Electronic Design, 01/07/88, pg 128, 1 pg.

Microprocessor buses

Designers seek new approaches to open I/O bottlenecks. Wilson, Ron, Senior Editor; Computer Design, 01/15/88, pg 57, 12.5 pgs.
Onboard kernels for VME Bus boards. Travis, Bill, Contributing Writer; EDN NEWS, 12/87, pg 1, 1 pg.
VME source list points the way. Staff; Electronic Products, 03/15/88, pg 38, 5 pgs.

Microprocessor support chips

CPU-equipped peripheral chips force partitioning decisions. Wilson, Ron, Senior Editor; Computer Design, 11/15/87, pg 22, 2.5 pgs.
Chip sets for PC/AT compatibles support faster $\mu \mathrm{Ps}$ and shrink board size. Conner, Margery S, Regional Editor; EDN, 11/12/87, pg 79, 4 pgs.
Database accelerator targets micro channel bus. Kamath, Govind, Advanced Micro Devices; ESD, 02/88, pg 71, 4.5 pgs.
Designers seek new approaches to open I/O bottlenecks. Wilson, Ron, Senior Editor; Computer Design, 01/15/88, pg 57, 12.5 pgs.
More chips join VME barrage. Wilson, Dave, Editor; ESD, 03/88, pg 24, 1 pg .
Newest floating-point processors blur architectural distinctions. Wilson, Ron, Senior Editor; Computer Design, 04/15/88, pg 32, 6 pgs.
PS/2-compatible chips make clone building a snap. Cormier, Denny, Senior Technical Editor; ESD, 02/88, pg 28, 1 pg.
Token-bus-controller interface must resolve family disparities. Polansky, Paul, Motorola; EDN, 03/17/88, pg 167, 9.5 pgs.
What's holding up the PS/2 clones. Manuel, Tom, Managing Editor; Electronics, 04/14/88, pg 32, 1 pg.

Because you're thinking fast... you need responsive supyou need well as tast parts. With
pliers as inear is tune compeed

What could with a

 products. R D-level applications develop engineers to help . Sales your ideas quition that get yolity and distriou need fast. Quat with what you documentat so you guaranteed spee. In your dont wass, time is every thebusiness, count on us for
thing.

thing. Count you ned. speed yo

With clamping performance like
this 80 MHz band widn
$.05 \%$ -this-plus an 80 n settling time to $0.05 \%-$ and 12 ns CLC 501 Clamping Op the mp is the residue amplifier ymp've been searching for applications. subranging A/D app recovery makes Its Ins overloa, vou wanted for it the op amp mall signals ordinarily resolving small large, saturating
lost following signals in radar, optical complenty.
 munplications. means it's the only high-speed op amp that gives you a simple yet flexible solution for protecting downstream circuits.
And its 50 MHz clamp input bandwidth opens up new design possibilities. Such as modulating a square wave to produce pulse amplitude modulation. When there's a new concept in op amps, there's no telling where Call today for details on the
op amp designed to tickle your imagination. CIRCLE NO 95

High performance power, in a low profile package

Ericsson's new triple output, 15 Watt DC/DC converter is only $8 \cdot 5 \mathrm{~mm}$ high with In-Card © mounting!

When you need high performance and a low profile in a DC/DC converter, Ericsson's new 15W PKC series has the answer.

The PKC's advanced mechanical design offers two mounting options, Using conventional "On-Card" pcb mounting results in a height of $0.42^{\prime \prime}(10 \cdot 7 \mathrm{~mm})$.

Where profile is critical our \ln-Card () mounting provides the unique capability of recessing the supply into the pcb providing a height of $0 \cdot 33^{\prime \prime}(8 \cdot 5 \mathrm{~mm})$!

Allowing inputs of $24 \mathrm{~V}(18-36 \mathrm{~V})$ and 48 V ($36-72 \mathrm{~V}$) the PKC series provides 5,12 and 15 V dc outputs in single, dual and triple output configurations. A high reliability magnetic feed back loop ensures that all outputs are regulated to within $2 \cdot 5 \%$. Each model is fully isolated to 500 V dc and all outputs are overvoltage protected.

Advanced technology, including the use of highly automated surface mount manufacturing and 300 kHz switching frequency results in the PKC's exceptional MTBF of over 200 years.

SMD components are assembled onto a thick film ceramic substrate to give excellent thermal characteristics. As a result, efficiency is 85% and the unit operates without derating over the temperature range of $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$!

The PKC takes up no more pcb space than a credit card.
ERICSSON

No extra components, filters or heatsinks are required to meet VDE, FCC or CISPR regulations with respect to RFI specifications or high temperature environments.

Paralleling units for higher output requirements or redundancy configurations is easily accomplished by a simple connection.

Tofind out more about the world's most advanced 15W DC/DC converter, contact Ericsson today.

RIFA Inc.
PO Box 853904 , RICHARDSON, TEXAS 75085-3904 USA
Tel: 214 480-8300 Fax: 214 680-1059
Telex: 735389 ERICS RCHN
\section*{Ericsson Components AB}
Power Products, S-16481 KISTA-STOCKHOLM, SWEDEN
Tel: +4687575000 Fax: +4687574884
Telex: 10948 POWERIS

EDN TECHNICAL-ARTICLE DATABASE

Microprocessors

16-bit microcontrollers tune-up for real-time embedded control tasks. Leonard, Milt, Senior Editor; Electronic Design, 03/88, pg 13, 7 pgs.
32 -bit micros: From RISC to TRON. Myrvaagnes, Rodney, Associate Editor; Electronic Products, 04/01/88, pg 47, 3.5 pgs.
8 -bit microcontrollers specialize for embedded control applications. Bond, John, Contributing Editor; Computer Design, 11/15/87, pg 26, 6 pgs.
Choosing a RISC chip: What drives customers. McLeod, Jonah, Managing Editor; Electronics, 04/28/88, pg 85, 2 pgs.
Choosing a microprocessor: Designers take many paths to the best solution. Wilson, Ron, Senior Editor; Computer Design, 02/15/88, pg 59, 11 pgs.
Designers' buying guide. Staff; Computer Design, 02/15/88, pg 77, 39 pgs.
Designers seek new approaches to open I/O bottlenecks. Wilson, Ron, Senior Editor; Computer Design, 01/15/88, pg 57, 12.5 pgs.
EDN's 14th annual $\mu \mathrm{P} / \mu \mathrm{C}$ chip directory. Cushman, Robert H, Special Features Editor; EDN, 11/26/87, pg 101, 44 pgs.
Enhanced microcontroller chips. Gallant, John, Associate Editor; EDN, 01/21/88, pg 113, 8.5 pgs.
First tron microprocessor gets Japan into the 32-bit fray. Lineback, J R, Managing Editor; Electronics, 01/21/88, pg 31, 1 pg.
Improve converter resolution with $\mu \mathrm{P}$ tracking techniques. Carlson, Brian, Hootman, Joe, University of North Dakota; Electronic Design, 02/04/88, pg 97, 4.5 pgs .
Intergraph will hawk Clipper to all comers. Curran, Lawrence, Managing Editor; Electronics, 11/12/87, pg 88, 2.5 pgs.
MIPS gathers backers for RISC. Lewis, Sasha, Northwestern Editor; Electronic Products, 01/01/88, pg 19, 1.5 pgs.
Microcontrollers learn arithmetic. Myrvaagnes, Rodney, Associate Editor; Electronic Products, 01/01/88, pg 34, 5 pgs.
Motorola confirms RISC effort as pressure on 68000 builds. Lineback, J R, News Bureaw-Dallas; Electronics, 12/17/87, pg 31, 1 pg.
Motorola's bombshell-a RISC chip this spring. Runyon, Stan, Special Projects Editor; Electronics, 02/18/88, pg 83, 2 pgs.
Processor's on-chip EEPROM helps control motors. Hassan, Zaheer, Sierra Semiconductor; Electronic Design, 11/12/87, pg 133, 3 pgs.
RISC processor enters the race of real-time computing. Wilson, Ron, Senior Editor; Computer Design, 12/87, pg 23, 1.5 pgs.
RISC slugfest: Is marketing more important than performance. Cole, Bernard C, Managing Editor; Electronics, 04/28/88, pg 63, 6 pgs.
RISCy business. Harbert, Tammi, Senior Editor/News; EDN NEWS, 12/87, pg 1, 1.5 pgs.
Rebuild a military processor to test itself for faults. Karakotsios, Ken, Silicon Compiler Systems; Marcks, Jeff, General Dynamics; Electronic Design, 01/21/88, pg 87, 4.5 pgs.
Rockwell's design used for 8-bit GaAs processor. Waller, Larry, News Bureau-Los Angeles; Electronics, 02/18/88, pg 74, 1 pg.
Single-chip μ Cs solve problems in pattern generation. Ghormley, Chris, ITT Federal Electric; EDN, 03/03/88, pg 139, 5 pgs.
The embedded processor breaks out of its niche. Cole, Bernard C, Managing Editor; Electronics, 03/17/88, pg 61, 3 pgs.

Military electronics

Battlefield 2000: electromagnetic guns and fiber-optic guided robots. Staff; Electronic Design, 01/07/88, pg 146, 2 pgs.
Distributed control and localized processing power will shape avionics. Staff; Electronic Design, 01/07/88, pg 148, 2 pgs.
Military \& government. Staff; Electronics, 01/07/88, pg 88, 1.5 pgs.
Military ATE: capability up, tester inventory down. Novellino, John, Associate Editor; Electronic Design, 01/21/88, pg 68, 8 pgs.
Military and commercial applications demand tailored high-reliability ICs. Martin, Steven L, Contributing Editor; Computer Design, 01/15/ 88, pg 37, 5 pgs.
Reaching for the stars. Wilson, Dave, Editor; ESD, 01/88, pg 22, 1 pg .
Rebuild a military processor to test itself for faults. Karakotsios, Ken, Silicon Compiler Systems; Marcks, Jeff, General Dynamics; Electronic Design, 01/21/88, pg 87, 4.5 pgs .
Selling to the military: is it about to get easier. Naegele, Tobias, Military/Aerospace Editor; Electronics, 03/31/88, pg 83, 3 pgs.

Minicomputers

Computer performance still climbing at unrelenting pace. Lieberman, David, Senior Editor; Computer Design, 12/87, pg 37, 8 pgs.
For cost/performance, partition RISC system on bus parameters. Cates, Ron, VLSI Technology; Electronic Design, 11112/87, pg 121, 6 pgs.
Minisupercomputers to take over superminicomputer domain. Staff; Electronic Design, 01/07/88, pg 80, 1 pg.

Modems

Dial-up modem chip sets get smaller, faster. Chester, Michael, Southwestern Editor; Electronic Products, 01/15/88, pg 22, 6 pgs.
Single-IC modems. Gallant, John, Associate Editor; EDN, 04/14/88, pg 119, 12 pgs.
Software changes smart modem to smart scope. Alunkal, John, Codex; Holley, Paul, Holley; Electronic Design, 12/10/87, pg 99, 4.5 pgs.

Motor control circuits

Monolithic stepper-motor drivers achieve higher power levels and greater versatility. Harold, Peter, European Editor; EDN, 01/21/88, pg 69, 8 pgs.
Motor modeling simplifies design of control systems. de Sa e Silva, Claudio, Unitrode; EDN, 03/31/88, pg 169, 5 pgs.
Motor-control ICs extend performance levels of stepper and brushless de motors. Pryce, Dave, Associate Editor; EDN, 11/26/87, pg 61, 6 pgs.
Motor-control semiconductors drive motor revolution. Goodenough, Frank, Senior Editor; Electronic Design, 04/14/88, pg 78, 11 pgs.

Motors/motor controllers

Monolithic stepper-motor drivers achieve higher power levels and greater versatility. Harold, Peter, European Editor; EDN, 01/21/88, pg 69, 8 pgs.
Motor modeling simplifies design of control systems. de Sa e Silva, Claudio, Unitrode; EDN, 03/31/88, pg 169, 5 pgs.
Motor-control semiconductors drive motor revolution. Goodenough, Frank, Senior Editor; Electronic Design, 04/14/88, pg 78, 11 pgs.

Multiprocessing

VMEbus and Multibus II mature for multiprocessing applications. Lieberman, David, Senior Editor; Computer Design, 11/01/87, pg 25, 7 pgs.

Multiuser computer systems

Computer performance still climbing at unrelenting pace. Lieberman, David, Senior Editor; Computer Design, 12/87, pg 37, 8 pgs.
System-level strategy attacks key multiuser bottlenecks. Seery, Jim, et al, AT\&T; Computer Design, 01/01/88, pg 77, 6 pgs.

\mathbf{N}

Network analyzers/analysis

Equivalent circuits model subtle traits of advanced CMOS ICs. Dike, Charles, Signetics; EDN, 04/14/88, pg 189, 9 pgs.
Network architecture/design/design standards (nonlocal)
Computers are on the verge of the open-systems era. Manuel, Tom, Managing Editor; Gosch, John, News Bureau-Frankfort; Electronics, 04/14/88, pg 68, 2 pgs.
From systems to standards, the pace quickens in networking. Runyon, Stan, Managing Editor; Electronics, 04/14/88, pg 67, 1.5 pgs.
Networked systems change the way of software creation. Staff; Electronic Design, 01/07/88, pg 92, 2 pgs.
The race to interconnect computer networks is on. Curran, Lawrence, Managing Editor; Electronics, 04/14/88, pg 70, 3 pgs.
Wide-area nets explode as standards emerge. Shandle, Jack, New Products Editor; Electronics, 04/14/88, pg 75, 3 pgs.

Networking ICs

LAN chip makers grapple in a turbulent market. Cole, Bernard C, Managing Editor; Electronics, 04/14/88, pg 87, 3 pgs.
MAPcon takes on factory network configuration. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 04/14/88, pg 95, 2 pgs.
Mainframe network chips ease big interfacing blues. Cormier, Denny, Senior Technical Editor; ESD, 01/88, pg 17, 2 pgs.

0

Office automation

Office automation strives to juggle competing demands. Lieberman, David, Senior Editor; Computer Design, 11/15/87, pg 69, 9 pgs.

Op amps

Micropower op amp offers simplicity and versatility. Rahim, Zahid, Signetics; EDN, 01/07/88, pg 181, 7 pgs.
Monolithic op amp sets sights on video applications. Mathews, Brian D, Bye, Daniel L, Harris; Electronic Products, 04/15/88, pg 34, 4.5 pgs.
Op amps extend their limits. Spadaro, Joseph J, Associate Editor; Electronic Products, 01/01/88, pg 27, 3.5 pgs.
Simple techniques help you conquer op-amp instability. Siegel, Barry L, Elantec; EDN, 03131/88, pg 181, 8 pgs.
Transimpedance amps: fast yet accurate. Palmer, Wyn, Analog Devices; Electronics, 01/07/88, pg 151, 4 pgs.
Use op amps to design optical position-sensing circuitry. Graeme, Jerald, Burr-Brown; EDN, 11/26/87, pg 229, 7.5 pgs.

Optical storage

Erasable optical disks move out of labs. Aseo, Joseph, West Coast Techni-

EDN TECHNICAL-ARTICLE DATABASE

cal Editor; ESD, 04/88, pg 26, 1 pg
It's showdown time in interactive video. Manuel, Tom, Managing Editor; Electronics, 11/26/87, pg 92, 3 pgs.
Peripherals and memory sytems chase computer price/performance. Williams, Tom, Western Managing Editor; Computer Design, 12/87, $p g 57,8.5 \mathrm{pgs}$.

Optoelectronics

Advances in speed and voltage ratings enhance applications for optocouplers. Pryce, Dave, Associate Editor; EDN, 04/28/88, pg 75, 5 pgs.
Fiber optics: a winning technology for LANs. Southard, Robert K, AMP; Electronics, 02/04/88, pg 111, 4 pgs.
Fiber-optic photoelectric sensors gain in performance, popularity. Chin, Spencer, Associate Editor; Electronic Products, 04/01/88, pg 28, 2.5 pgs.
Fiber-optic sensor systems move to new markets. Coco, Donna, Staff Editor; EDN NEWS, 01/88, pg 10, 2 pgs.
Fiber-optic transmitters and receivers enhance data-link performance. Ormond, Tom, Senior Editor; EDN, 03/31/88, pg 57, 5 pgs.
In search of surface-mount optocouplers. Coco, Donna, Staff Editor; EDN NEWS, 04/88, pg 3, 1 pg .

Oscillators

Make programmable sine oscillator from quad DAC chip. Wong, James, Precision Monolithics; Electronic Design, 02/04/88, pg 103, 3.5 pgs.

Oscilloscopes

PC-based scopes encroach on stand-alone devices' turf. Harbert, Tammi, Senior Editor/News; EDN NEWS, 03/88, pg 12, 1 pg.
Productivity enhancements drive $100-\mathrm{MHz}$ analog scope designs. Mayer, John H, Associate Editor; Computer Design, 01/15/88, pg 94, 4 pgs.
Special Report: Digital scopes are set to challenge analog units. Riezenman, Mike, Contributing Editor; Electronics, 03/17/88, pg 107, 6 pgs.

P

Parallel processing

Parallel processors deal with cost, programming trade-offs. Wilson, Ron, Senior Editor; Computer Design, 11/15/87, pg 20, 2 pgs.
Plug-in boards let your personal computer perform parallel-processing tasks. Mosley, J D, Regional Editor; EDN, 02/04/88, pg 89,5 pgs.
Software will level the road for parallel processing. Staff; Electronic Design, 01/07/88, pg 100, 1 pg.

Parametric/functional testing

Dynamic testing describes behavior of high-frequency ADCs. Blom, Eric D, Sipex; EDN, 04/14/88, pg 215, 8 pgs.

Personal computers

Cloning IBM's PS/2 is just the beginning. Runyon, Stan, Special Projects; Electronics, 02/04/88, pg 34, 0.5 pgs.
PC-based scopes encroach on stand-alone devices' turf. Harbert, Tammi, Senior Editor/News; EDN NEWS, 03/88, pg 12, 1 pg.
Plug-in boards let your personal computer perform parallel-processing tasks. Mosley, J D, Regional Editor; EDN, 02/04/88, pg 89, 5 pgs.

Plotters

Multipen plotters keep pace with CAD advancements. Mayer, John H, Senior Associate Editor; Computer Design, 03/15/88, pg 100, 4.5 pgs.

Power converters

DC/DC converters adapt to the needs of low-power circuits. Sherman, Len, Maxim Integrated Products; EDN, 01/07/88, pg 145, 7 pgs.
Growing array of 1 -chip de/dc converters provides power for diverse applications. Pryce, Dave, Associate Editor; EDN, 02/18/88, pg 73, 5 pgs.
Mini de/dc supplies simplify redundancy in parallel systems. Thorsell, Lars, Rifa Power Products; EDN, 04/28/88, pg 225, 6.5 pgs.
New de-dc converters meet system design needs. Mayer, John H, Associate Editor; Computer Design, 11/01/87, pg 104, 5.5 pgs.
System designer's guide to modular de/dc converters. Hartman, William D, Computer Products/Stevens-Arnold; Electronic Products, 03/01/ 88, pg 41, 4.5 pgs.
The shrinking de/dc converter. Yates, Warren, Associate Editor; Electronic Products, 11/15/87, pg 39, 3.5 pgs.

Power semiconductors

Power ICs will adapt operation to changing real-world conditions. Staff; Electronic Design, 01/07/88, pg 112, 1 pg.
Power MOS transistors span wide current and voltage range. Goodenough, Frank, Senior Editor; Electronic Design, 03/88, pg 35, 3 pgs.
Power MOSFET makes low-cost, low-dropout voltage regulator. Hughes, Richard S, U.S. Naval Weapons Center; Electronic Design, 01/21/88, pg 115, 2 pgs.
Smart power: Changing the face of power control. Fury, Art, Power Integrations; Electronics, 04/28/88, pg 135, 4 pgs.

Smart power goes off-the-shelf. Waller, Larry, News Bureau-Los Angeles; Electronics, 12/17/87, pg 33, 0.5 pgs.
Smart-power ICs. Pryce, Dave, Associate Editor; EDN, 03/31/88, pg 113, 12 pgs.

Power supplies

Beware the low power factor of switch-mode power supplies. Hansen, Arthur G, Electronic Products, 03/01/88, pg 47, 3 pgs.
Converter makers meet reliability challenge. Miller, George D, Editor; EDN NEWS, 03/88, pg 22, 1.5 pgs.
External power supplies fit many applications. Newhouse, John, Ault; Electronic Products, 03/01/88, pg 58, 2.5 pgs.
Focus on laboratory power supplies. Maliniak, David, Senior New Products Editor; Electronic Design, 01/21/88, pg 131, 7.5 pgs.
For battery-backed supplies use low-drop regulators. Antoniazzi, Paolo, Wolfsgruber, Arturo, SGS Microelectronics SpA; Electronic Design, 11/27/87, pg 97, 3 pgs.
Galvanically isolated switching supplies provide high power-Part 2. Williams, Jim, Linear Technology; EDN, 11/26/87, pg 191, 8 pgs.
Linear regulated supplies live on. Yates, Warren, Associate Editor; Electronic Products, 03/01/88, pg 51, 3 pgs.
Power MOSFET makes low-cost, low-dropout voltage regulator. Hughes, Richard S, U.S. Naval Weapons Center; Electronic Design, 01/21/88, pg 115, 2 pgs.
Powering VMEbus systems. Yates, Warren, Associate Editor; Electronic Products, 01/15/88, pg 29, 4 pgs.
Regulator IC speeds design of switching power supplies-Part 1. Williams, Jim, Linear Technology; EDN, 11/12/87, pg 193, 7 pgs.
Special Report: Less is more with the latest switching supplies. Heftman, Gene, Contributing Editor; Electronics, 04/28/88, pg 113, 5 pgs.
Switcher power densities change filter-capacitor needs. Maxwell, John, $A V X ; E D N, 11 / 12 / 87, p g 257,3$ pgs.
Switching power supplies move into low-power applications. Mayer, John H, Senior Associate Editor; Computer Design, 04/01/88, pg 78, 4 pgs.
Switching supplies: changing with the times. Bassett, John, Computer Products; Electronics, 01/07/88, pg 145, 4 pgs.

Printed circuits

Improved autorouting makes old algorithm do new tricks. Mazzullo, Tony, ECAD; Electronic Design, 04/28/88, pg 83, 3.5 pgs.
Materials and hardware. Ormond, Tom, Senior Editor; EDN, 02/18/88, pg 149, 11 pgs.
Molded circuits require attention to new design techniques. Williams, John, ICI Electronics; EDN, 01/21/88, pg 161, 5 pgs.
PC boards hot-wired for faster, more flexible service. Biancomano, Vincent, Components/Packaging Editor; Electronic Design, 02/18/88, pg 29, 4.5 pgs .
Routing your way through pe-board design tools. Milne, Bob, Senior Editor; Electronic Design, 04/28/88, pg 58, 10.5 pgs.
Simulation puts zip into circuit board design. Spadaro, Joseph J, Associate Editor; Electronic Products, 04/01/88, pg 34, 8 pgs.
Surface-mounted parts make a pass at both sides. Biancomano, Vincent, Technology Editor; Electronic Design, 01/07/88, pg 33, 3 pgs.

Printed-circuit processing

Materials and hardware. Ormond, Tom, Senior Editor; EDN, 02/18/88, pg 149, 11 pgs.
SMT changes test fixturing. Harbert, Tammi, Senior Editor/News; EDN NEWS, 12/87, pg 24, 1.5 pgs .

Printers

Focus on ink-jet printers: Lower prices and better printheads perk them up. Grossman, Morris, Senior Editor; Electronic Design, 04/14/88, pg 145, 6 pgs.
Hard-copy output moving to 3D, personal, low-cost color images. Staff; Electronic Design, 01/07/88, pg 88, 1 pg.
Microcapsule approach spurs filmless imaging. Wilson, Andrew, Executive Editor; ESD, 02/88, pg 30, 1 pg.
Printers show their colors as performance and reliability improve. Bond, John, Contributing Editor; Computer Design, 01/01/88, pg 43, 6 pgs.
Raster printers profit from available technologies to suit diverse uses. Wright, Maury, Regional Editor; EDN, 01/07/88, pg 87, 5.33 pgs.

Process control

Advanced ICs portend radical changes in system design-Decade 90 Part 1. Leibson, Steven H, Regional Editor; EDN, 03/03/88, pg 115, 5.5 pgs.

Processors, special-purpose (array, front-end, etc)
DSP card fits IBM PC. Bridges, Jim, Communications Automation \& Control; EDN NEWS, 03/88, pg 1, 1 pg.

Production testing techniques

Fault-tolerant design spans terrestrial and space applications-Decade 90 Part 5. Leibson, Steven H, Regional Editor; EDN, 04/28/88, pg 181, 7 pgs.

Discover
 Fuoronics Resources

Fluorinert'Miquids-products that power Fluoronics Resources.

*Fluoronics Resources:

An exclusive 3M combination of innovative products backed by research and development, manufacturing expertise, technical data and service assistance built on more than 35
 years' experience of pioneering in fluorochemistry.

3 M has had a whole generation of experience in the development, manufacture and refinement of perfluorinated liquids. We first introduced these versatile liquids to electronics design, testing and production professionals in the fifties. Since then, Fluorinert Liquids have become the mainstays in electronic cooling, high reliability testing and vapor phase soldering.
Fluorinert Liquids, used as a direct contact heat transfer medium, offer a range of physical properties that make them particularly suitable for electronic uses. They are non-polar and exhibit no solvent action. They are colorless, low in toxicity, non-flammable and offer exceptionally high dielectric strength plus thermal and chemical stability. Most important, they have almost no chemical reactivity and they evaporate without leaving a residue on parts.

Buy the numbers

Our FC ${ }^{\text {tw }}$ numbers - FC-40, FC-70, FC-77, etc. - are used to identify Fluorinert Liquids that offer certain physical characteristics to meet specific application needs. These FC numbers are solely 3 M designations for various fluorochemical products.

Fluorinert Liquids are being used cost-effectively in cooling, high reliability testing and vapor phase soldering operations. When you are interested in applying these versatile liquids in your own production, 3 M can provide an abundance of technical information and support.

Technical assistance: the main benefit of Fluoronics Resources

3M offers prompt assistance to help you solve many production and testing problems. We provide comprehensive technical recommendations for specific fluids. We consult with you on the proper application equipment and help you evaluate production methods and results. Our service bulletins bring you up to date on the most recent advances in vapor phase soldering and high reliability testing. Ask us about 3M's audiovisual materials and on-site application training seminars.

Discover Fluorinert ${ }^{\text {TM }}$ Liquids' heat transfer capability

What are your needs? A precise degree of temperature control? Fast, uniform heat transfer? High dielectric strength? Fluorinert Liquids offer the broad range of physical characteristics required in most applications.
Fluorinert Liquids are an effective direct contact heat transfer medium whether used in a liquid or vapor state. Their unique properties enable you to use them in contact with sensitive components and substrates.
Major differences between the various products in the Fluorinert Liquids family can be seen in their boiling points. These can range from $56^{\circ} \mathrm{C}$ to $253^{\circ} \mathrm{C}$. Should you need products with intermediate boiling temperatures, the 3M staff will work with you to fashion a product especially for your needs. It's an example of how 3M's Fluoronics Resources provide you with "customized" service to solve special problems.

Fluorinert ${ }^{\text {TM }}$ Liquids achieve accurate high reliability testing

It's a small world you work in. Where time ticks in nanoseconds and dimension is measured in Angstrom units. And as circuitry becomes more complex, a greater demand is placed on testing capability - not only in speed, but in higher reliability and accuracy.

Fluorinert Liquids meet those requirements by providing a controlled temperature environment and a high degree of electrical protection. They offer maximum compatibility between

the heat transfer medium and the device under test. Fluorinert Liquids reduce testing costs by reducing testing time substantially. They do this by rapidly reaching test temperature and providing precise and uniform temperature control. You'll minimize the number of faulty units by detecting defects before they become rejects.

These liquids provide cost-effective tests such as gross leak, thermal shock, liquid burn-in, ceramic crack detection, electrical environmental, temperature calibration and failure analysis/short detection.
Fluorinert Liquids are specified in the MIL-STD's for thermal shock and gross leak testing.
THERMAL SHOCK TEST CONDITIONS

Military Standard 883-1011			Military Approved Fluorinert Liquids		
Test Condition	Hot Test Step 1	Cold Test Step 2	Hot Test Step 1	Cold Test Step 2	
A	$100^{\circ} \mathrm{C}$	$-0^{\circ} \mathrm{C}$	Water, FC-40	Water FC-40, FC-77	
B	$125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	FC-40, FC-70, FC-5311	FC-77	
C	$150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$	FC-40. FC-70, FC-5311	FC-77	
D	$200^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$	FC-70, FC-5311	FC-77	
E	$150^{\circ} \mathrm{C}$	$-195^{\circ} \mathrm{C}$	FC-40, FC-70, FC-5311	Liq. N2	
F	$200^{\circ} \mathrm{C}$	$-195^{\circ} \mathrm{C}$	FC-70, FC-5311	Liq. N2	

GROSS LEAK TEST CONDITIONS

Military Standards	Military Approved Fluorinert Liquids		
	Indicator Fluids	Detector Fluids	$\begin{aligned} & \text { Absorption } \\ & \text { Fluids } \end{aligned}$
$\begin{aligned} & \overline{\text { MIL-STD }} \\ & 883-1014 \end{aligned}$	FC-40, FC-43	FC-72, FC-84	Do not apply
$\begin{aligned} & \overline{\text { MIL-STD }} \\ & 750-1071 \end{aligned}$	FC-40, FC-43	FC-72, FC-84	$\begin{gathered} \mathrm{FC}-43, \mathrm{FC}-75, \\ \mathrm{FC}-77 \end{gathered}$
$\begin{aligned} & \text { MIL-STD } \\ & \text { 202-112 } \end{aligned}$	FC-40, FC-43	FC-72, FC-84	Do not apply

Discover higher yields in vapor phase soldering

Fluorinert Liquids have been the industry's fluid of choice since the vapor phase reflow soldering (VPS) process was introduced in 1975. There are a number of good reasons for this universal acceptance. VPS with Fluorinert Liquids produces highly reliable solder joints. The system reduces reject rates, increases production, and lowers production costs. With Fluorinert Liquids, you can be assured that your products will never be exposed to a temperature higher than the selected liquid's boiling point. (See above)

You'll avoid those problems usually associated with other systems shadowing, uneven heating, and overheating. The liquids are non-flammable. Their low surface tension helps them evaporate quickly from the work pieces without leaving a residue.

VPS with Fluorinert Liquids is especially suited for boards with high mass or complex geometries. The liquid vapors completely surround the assembly and penetrate remote recesses to heat all surfaces evenly. The vapors are 15 to 20 times heavier than air so they can be contained easily within the work area. The system offers an oxy-gen-free, non-corrosive environment to minimize rejects from oxidation contamination.

Some typical applications using Fluorinert Liquids in VPS include surface mounted leaded or leadless components, through-hole leads and wire-wrap pins, lead frame attachment, reflow of electroplated solder or tin and miscellaneous metal joining.

VPS SELECTION GUIDE

Fluorinert Liquid	Boiling Point	Typical Solders
FC- 43	$174^{\circ} \mathrm{C} / 345^{\circ} \mathrm{F}$	$70 \mathrm{Sn} / 18 \mathrm{~Pb} / 12 \mathrm{In}$
		100 In
		$58 \mathrm{Sn} / 42 \mathrm{In}$
		$58 \mathrm{Bi} / 42 \mathrm{Sn}$
FC-70, FC-5311	$215^{\circ} \mathrm{C} / 419^{\circ} \mathrm{F}$	$63 \mathrm{Sn} / 37 \mathrm{~Pb}$
FC-5312		$60 \mathrm{Sn} / 40 \mathrm{~Pb}$
		$62 \mathrm{Sn} / 36 \mathrm{~Pb} / 2 \mathrm{Ag}$
FC-71	$253^{\circ} \mathrm{C} / 487^{\circ} \mathrm{F}$	100 Sn
		$95 \mathrm{Sn} / 5 \mathrm{Ag}$
		$60 \mathrm{~Pb} / 40 \mathrm{Sn}$

Discover the unique cooling benefits of Fluorinert ${ }^{\text {m" }}$ Liquids

As the package size decreases, your need for more efficient heat dissipation increases in proportion: 3M Fluorinert Liquids are very efficient as a direct contact heat transfer medium, with the added advantage of having the high dielectric characteristics needed to meet stringent demands of the diversified electronics industry. We offer 11 liquids with boiling points that range from $56^{\circ} \mathrm{C}$ to $253^{\circ} \mathrm{C}$.
These stable liquids allow you to maximize power density and miniaturize your package. Yet they reduce failure rates and increase reliability.
Fluorinert Liquids are used in such demanding applications as:

- Radar transmitters - Power supplies
- High voltage transformers - Lasers
- Radar klystrons • Computer modules
- Computer memories - Fuel cells

Typical properties of Fluorinert Liquids used in cooling are:

Fluorinert Liquid FC-77 (English Units)	Liquid		Vapor
	Room Temp. ($77^{\circ} \mathrm{F}$)	Boiling Point (207 ${ }^{\circ} \mathrm{F}$)	Boiling Point 207° @ $@ /$ ATM
Density lb. $/ \mathrm{t}^{3}$	111	100	0.85
Thermal Conductivity Btu(hr) (t^{2}) ${ }^{\circ} \mathrm{F}$ Fit)	0.037	0.033	0.008
Specific Heat Btw(lb.) ($\left.{ }^{\circ} \mathrm{F}\right)$	0.25	0.28	0.23
Viscosity c.p.	1.42	0.46	0.02
Coefficient of Thermal Expansion $\mathrm{tt}^{3} /\left(\mathrm{ft}^{3}\right)\left({ }^{\circ} \mathrm{F}\right)$	0.0008	0.0009	0.0015

Discover heating/curing with Fluorinert ${ }^{\text {M }}$ Liquids

Because they maintain their vapor temperature with absolute precision, Fluorinert Liquids can be used in many heating and/or curing operations. They serve as heat transfer media in solder mask and polymer thick film applications and for polymer processing. The non-corrosive vapors will not support oxidation. Ideal where solvent flash-off is a problem.

Discover Fluoronics Resources

3 M presents a unique short course in the use of Fluorinert ${ }^{\text {m }}$ Liquids for the electronics industry.
3 M is now offering a series of "Applied Fluoronics" tapes demonstrating how Fluorinert Liquids are used in a number of applications. See first hand how these remarkable products can improve overall electronic production.

Three cassettes are available:

1. "Applied Fluoronics: High Reliability Testing
2. "Applied Fluoronics: Vapor Phase Soldering"
3. "Applied Fluoronics: Direct Contact Cooling"
These informative VHS format tapes are available to qualified personnel in the electronics industry. Specify which cassette(s) you would like to view.

Write on your company letterhead, describing your general interest. Mail to: Fluoronics Resources, Industrial Chemical Products Division/3M, Building 223-6SE-04, 3M Center, St. Paul, MN 55144-1000.

For technical information or assistance on High Reliability Testing and Cooling, call 612/733-6282; for Vapor Condensation Heating assistance, call 612/733-7424.

EDN TECHNICAL-ARTICLE DATABASE

Production/manufacturing/testing, other

Mastering PLD test aspects eases PLD system testing. Durwood, Brian H, Data I/O; O'Donnell, Gary, National Semiconductor; Electronic Design, 02/18/88, pg 103, 5 pgs.
PLD testing: why, when and how. Durwood, Brian H, Data I/O; Computer Design, 04/01/88, pg 71, 5 pgs.

Programming

Modula-2's design simplifies programming and compilation. Anderson, Brian, Vancouver Community College; EDN, 03/03/88, pg 147, 11.5 pgs.
Moving PC-based debugging to real time. McLeod, Jonah, Managing Editor; Electronics, 02/04/88, pg 42, 1 pg.
Software development parallels computer hardware advances. Schindler, Max, Software Editor; Electronic Design, 02/04/88, pg 115, 9 pgs.
Software lets you design first, pick PLD later. Warrington, Gene, Minc; EDN NEWS, 03/88, pg 10, 1 pg.

Prototyping boards/systems

Slash memory-array size with silicon circuit board. Hyden, Lloyd, Data I/O; Sharp, Steve, Mosaic Systems; Electronic Design, 04/28/88, pg 87, 4.5 pgs.

Relays
Packaging enhancements highlight solid-state relays. Chin, Spencer, Associate Editor; Electronic Products, 12/01/87, pg 49, 3 pgs.

Resistors

A different touch: force-sensing resistors. Yaniger, Stuart, Interlink Electronics; EDN NEWS, 03/88, pg 8, 1 pg .
Focus on surface-mounted resistors. Maliniak, David, Senior New Products Editor; Electronic Design, 04/28/88, pg 113, 6.5 pgs.
Special Report: A big cast of SMD passives hits center stage. Shereff, Jesse, Contributing Editor; Electronics, 02/04/88, pg 103, 6 pgs.

Rigid-disk drives

Adding drives to increase reliability. Aseo, Joseph, West Coast Technical Editor; ESD, 12/87, pg 22, 1 pg.
Drive makers meet demand for $3^{1 / 2}$-in. products. Miller, George D, Editor; EDN NEWS, 12/87, pg 10, 1.5 pgs.
IPI-3 subsystems meet future data storage needs. Coulter, Bob, Intellistor; Computer Design, 01/15/88, pg 87, 4 pgs.
In Las Vegas, the action's in three-inch CDs. Iversen, Wesley R, News Bureau-Chicago; Electronics, 01/21/88, pg 33, 1 pg.
Magnetic and optical devices to quench data-storage quest. Staff; Electronic Design, 01/07/88, pg 86, 1 pg.
Multifunction chip steers hard disk drives. Holm, Robert E, Intel; ESD, 04/88, pg 67, 5 pgs.
Peripherals and memory sytems chase computer price/performance. Williams, Tom, Western Managing Editor; Computer Design, 12/87, pg 57, 8.5 pgs .
SCSI drive stores 1.5 G bytes. Kent, Tom, Micropolis; EDN NEWS, 12/87, pg 14, 1 pg.
Winchester drive reliability tracks capacity and performance gains. Williams, Tom, Western Managing Editor; Computer Design, 02/01/88, pg 49, 5 pgs.

S/H circuits

S/H amp-ADC matrimony provides accurate sampling. Little, Al, Burnett, Bob, Harris; EDN, 02/04/88, pg 153, 12 pgs.

Semicustom/custom ICs

A GaAs gate array layout tests ASIC chips up to 800 MHz . Davenport, William, et al, TriQuint Semiconductor; Electronic Design, 01/21/88, pg 93, 3 pgs.
ASIC design environment produces analog/digital ICs. Goering, Richard, Senior Editor; Computer Design, 11/01/87, pg 48, 1.5 pgs.
ASIC simulators. Conner, Margery S, Regional Editor; EDN, 02/04/88, pg 119, 8.5 pgs.
ASIC verification: Chasing a moving target. McLeod, Jonah, Managing Editor; Electronics, 11/26/87, pg 79, 3 pgs.
Analog ASICs undersell discrete designs. Crolla, Paul, Micro Linear; Electronic Products, 11/01/87, pg 50, 4.5 pgs.
Analog arrays will boast dedicated structures such as 12 -bit ADCs. Staff; Electronic Design, 01/07/88, pg 108, 1 pg.
Arrays with 100,000 gates shrink systems to silicon. Collett, Ronald E, Senior Technical Editor; ESD, 01/88, pg 26, 1.5 pgs.

BiCMOS arrays combine density, speed, and power. Phillips, Barry W, Technology Editor; Electronic Design, 03/17/88, pg 25, 6.5 pgs .
BiCMOS gate arrays promise new wave of bus-driving solutions. An drews, Warren, Contributing Editor; Computer Design, 03/01/88, pg 19, 3 pgs.
Build mixed-mode semicustom ICs by specifying standard devices. Goodenough, Frank, Senior Editor; Electronic Design, 02/18/88, pg 41, 4.5 pgs
Build new ASIC arrays while profiting from old ones. Blumberg, Rick, SGS-Thomson Microelectric; Electronic Design, 03/17/88, pg 117, 4 pgs.
Consider the tradeoffs when evaluating linear-semicustom ICs. Moore, Bruce, Raytheon Semiconductor; Ritmanich, Will, Consultant; EDN, 02/04/88, pg 135, 7 pgs.
Create linear ASIC macros without Spice nightmares. Orgain, Cheryl, Analog Design Tools; Electronic Design, 12/10/87, pg 77, 3 pgs.
Designers' buying guide. Staff; Computer Design, 04/15/88, pg 77, 54 pgs.
Designers contend with an explosion in ASICs. Andrews, Warren, Contributing Editor; Computer Design, 04/15/88, pg 57, 12 pgs.
Everything you always wanted to know about designing a 100,000-gate ASIC. Rau, Jerry, Daspit, Tom, LSI Logic; ESD, 02/88, pg 36, 4 pgs.
Gate arrays' big problem: They take too long to build. Cole, Bernard C, Managing Editor; Electronics, 11/12/87, pg 69, 3 pgs.
Graphics pipeline merges off-the-shelf and semicustom ICs. Wilson, Ron, Senior Editor; Computer Design, 12/87, pg 25, 2 pgs.
Improve differential amplifier's linearity and dynamic range. Bray, Derek, Analog Design Tools; Electronic Design, 03/03/88, pg 99, 4.5 pgs.
Jedec simplifies selection of BiMOS, CMOS gate arrays. LaBuda, Virgil P, Motorola; Electronic Design, 03/17/88, pg 107, 8 pgs.
Linear semicustom shifts into high gear. Collett, Ron, Senior Technical Editor; ESD, 12/87, pg 63, 4.5 pgs.
Next-generation digital ASICs to carry out system-level designs. Staff; Electronic Design, 01/07/88, pg 116, 1 pg
RAM and ROM find a home on semicustom ICs. Steinle, Adrienne L, NCR Microelectronics; Electronic Products, 12/01/87, pg 43, 3 pgs.
Silicon compilers still struggling toward widespread acceptance. Andrews, Warren, Contributing Editor; Computer Design, 02/15/88, pg 37, 6 pgs.
Slash memory-array size with silicon circuit board. Hyden, Lloyd, Date I/O; Sharp, Steve, Mosaic Systems; Electronic Design, 04/28/88, pg 87, 4.5 pgs.

Sensors/transducers

A different touch: force-sensing resistors. Yaniger, Stuart, Interlink Electronics; EDN NEWS, 03/88, pg 8, 1 pg.
Fiber-optic photoelectric sensors gain in performance, popularity. Chin, Spencer, Associate Editor; Electronic Products, 04/01/88, pg 28, 2.5 pgs.
Fiber-optic sensor systems move to new markets. Coco, Donna, Staff Editor; EDN NEWS, 01/88, pg 10, 2 pgs
Silicon microstructures let manufacturers implement a variety of sensors on chip. Mosley, J D, Regional Editor; EDN, 11/26/87, pg 75, 5.33 $p g s$.

Signal sources/generation

"Predistortion" improves digital synthesizer accuracy. Lowitz, Greg, Armitano, Robert, Hewlett-Packard; Electronic Design, 03/31/88, pg 85, 4.5 pgs.

Simulators/simulation

A full range of solutions emerge to handle mixed-mode simultion. Goer ing, Richard, Senior Editor; Computer Design, 02/01/88, pg 57, 9 pgs
Circuit simulators conquer new domains. Gabay, Jonathan, Contributing Editor; Computer Design, 11/15/87, pg 39, 5 pgs.
Logic simulation on personal computers: Friend or foe. Milne, Bob, Senior Editor; Electronic Design, 03/03/88, pg 50, 9 pgs.
Modeling strategies simplify board-level simulation. Goering, Richard, Senior Editor; Computer Design, 03/01/88, pg 29, 4.5 pgs.
Modeling the mixed-mode mesh. Collett, Ron, Senior Technical Editor; ESD, 01/88, pg 55, 4.5 pgs.
Simulate analog circuit boards without Spice's shortcomings. Walsh, Kevin, Electrical Engineering Software; Electronic Design, 02/04/88, pg 75, 4 pgs.
Simulate any size circuit with object-oriented modules. Newburger, Bruce, The Whitewater Group; Electronic Design, 03/03/88, pg 75, 3.5 pgs.

Simulate the interface between analog and digital circuits. Sarin, Harish, et al, Daisy Systems; Electronic Design, 03/03/88, pg 63, 5 pgs.
Simulation accelerators address throughput issues. Goering, Richard, Senior Editor; Computer Design, 03/15/88, pg 42, 5 pgs.
Simulation puts zip into circuit board design. Spadaro, Joseph J, Associ ate Editor; Electronic Products, 04/01/88, pg 34, 8 pgs.
Speed DSP simulation, design with CAE-library function blocks. Grossman, Robert M, DSP \& CAE Consultant; Electronic Design, 04/28 88, pg 92, 4 pgs.

EDN TECHNICAL-ARTICLE DATABASE

Software documentation

Debuggers help you perfect high-level and real-time code. Small, Charles H, Associate Editor; EDN, 12/10/87, pg 153, 13 pgs.

Standards

Acronyms from A/D to ZTAT. Staff; Electronic Products, 11/01/87, pg 65, 11 pgs.
After three years, a VHSIC chip standard. Iversen, Wesley R, Industrial \& Consumer Editor; Electronics, 04/14/88, pg 33, 0.5 pgs.
Is the U.S. headed for a fall by rushing toward unix standards. Young, Jeremy, Managing Editor; Electronics, 02/04/88, pg 31, 1 pg.

Substrates

Molded circuits require attention to new design techniques. Williams, John, ICI Electronics; EDN, 01/21/88, pg 161, 5 pgs.
PC boards hot-wired for faster, more flexible service. Biancomano, Vincent, Components/Packaging Editor; Electronic Design, 02/18/88, pg 29, 4.5 pgs.

Surface-mounting devices/techniques

Capacitors chip in for surface-mounting and switching supplies. Biancomano, Vincent, Technology Editor; Electronic Design, 03/88, pg 25, 5 pgs.
Focus on surface-mounted resistors. Maliniak, David, Senior New Products Editor; Electronic Design, 04/28/88, pg 113, 6.5 pgs.
In search of surface-mount optocouplers. Coco, Donna, Staff Editor; EDN NEWS, $04 / 88, p g$ s, 1 pg.
SMT changes test fixturing. Harbert, Tammi, Senior Editor/News; EDN NEWS, 12/87, pg 24, 1.5 pgs.
Special Report: A big cast of SMD passives hits center stage. Shereff, Jesse, Contributing Editor; Electronics, 02/04/88, pg 103, 6 pgs.
Surface mounting keeps calculators competitive. Pettit, Tom, HewlettPackard; Electronic Products, 12/15/87, pg 52, 4 pgs.
Surface-mount passives are coming on strong. Mattera, Lucinda, Special Projects Editor; Electronics, 02/04/88, pg 99, 1 pg.
Surface-mounted parts make a pass at both sides. Biancomano, Vincent, Technology Editor; Electronic Design, 01/07/88, pg 33, 3 pgs.

Switches

To manage fast switching jobs, look to silicone elastomers. Stern, Harry, Conductive Rubber Technology; Electronic Design, 03/17/88, pg 123, 4.5 pgs.

T

Technology/research, other

Acronyms from A/D to ZTAT. Staff; Electronic Products, 11/01/87, pg 65, 11 pgs.
Fiber-optic engineering networks distribute tasks globally. Staff; Electronic Design, 01/07/88, pg 84, 1 pg
Superconductors warm up, meeting no resistance in system design. Staff; Electronic Design, 01/07/88, pg 74, 2 pgs.
Where system speed is paramount, ECL technology will remain king. Staff; Electronic Design, 01/07/88, pg 124, 1 pg.
Will 1988 see a 92 K superconductor IC. Waller, Larry, News BureauLos Angeles; Electronics, 01/07/88, pg 32, 0.5 pgs.

Telecommunications

Communications. Staff; Electronics, 01/07/88, pg 75, 2.5 pgs
Heed local norms when designing telecomm interfaces. Dash, Glen, Dash, Straus \& Goodhue; EDN, 02/04/88, pg 175, 9 pgs.
ISDN data must conform to analog telecom networks. Hardwick, Steve, Siemens Components; Electromic Design, 11/12/87, pg 105, 3.5 pgs.
ISDN wends its way toward reality. Barron, Janet J, Associate Editor; Computer Design, 02/15/88, pg 46,5 pgs.
Interface the ISDN to your PC with a voice/data board. Gulick, Dale, Crowe, Charlie, Advanced Micro Devices; Electronic Design, 12/10) 87, pg 85, 4 pgs.
Manage PABX conference calls with a single chip. Nguyen, Chinh, Pariani, Angelo, SGS-Thomson Microelectronics; Electronic Design, ${ }^{\circ}{ }^{2}$ 14/88, pg 137, 4 pgs.
Programmable communications platforms speed time-to-market. Barron, Janet, Associate Editor; Computer Design, 11/15/87, pg 61, 2 pgs.

Temperature measurement

Keep pe boards reliable with thermal-analysis tools. LaBonte, Mike, et al, Valid Logic Systems; Electronic Design, 04/28/88, pg 79, 4 pgs.

Terminals

Diskless PC terminals for the desktop and factory floor. Myrvaagnes, Rodney, Associate Editor; Electronic Products, 02/15/88, pg 15, 1.5 pgs.

Test fixtures/probes

SMT changes test fixturing. Harbert, Tammi, Senior Editor/News; EDN

NEWS, 12187, pg 24, 1.5 pgs.

Timer ICs/circuits

Expand or shrink clock cycles to the system's needs. Purvis, Rick, Yee, Jenny, Advanced Micro Devices; Electronic Design, 11/27/87, pg 93, 3 pgs.

Touch-screen devices

Acoustic touch technology adds a new input dimension. Platshon, Mark Elographics; Computer Design, 03/15/88, pg 89, 5 pgs.

Transmitters/receivers

Fiber-optic transmitters and receivers enhance data-link performance. Ormond, Tom, Senior Editor; EDN, 03/31/88, pg 57, 5 pgs.

Video
Digital filtering: the right stuff for video. Williams, Bob, Ampex; Prater, Jim, NCR Microelectronics; ESD, 01/88, pg 91, 3.5 pgs.

Vision systems

A slew of standards for camera systems. Amorese, Philip, Bloomfield, John, Datacube; ESD, 03/88, pg 94, 3.5 pgs.
Landscape generation: a changing perspective. Chen, Yin-Pao, Simula tor Systems; ESD, 02/88, pg 44, 4 pgs.
Sophisticated hardware and software beget efficient machine-vision sys tems. Mosley, J D, Regional Editor; EDN, 04/28/88, pg 55, 6.33 pgs
What's new-an electronic imaging '87 review. Wilson, Andrew, Execu tive Editor; ESD, 12/87, pg 17, 2 pgs.

Voltage converters

New de-dc converters meet system design needs. Mayer, John H, Associate Editor; Computer Design, 11/01/87, pg 104, 5.5 pgs.
The shrinking de/dc converter. Yates, Warren, Associate Editor; Elec tronic Products, 11/15/87, pg 39, 3.5 pgs.

Voltage references

Selection criteria assist in choice of optimum reference. Knapp, Ron, Maxim Integrated Products; EDN, 02/18/88, pg 183, 9 pgs.
Stable reference IC simplifies the design of analog systems. Thompson, Bill, Analog Devices; EDN, 01/21/88, pg 147, 7.5 pgs.

W

Waveform analyzers/analysis

Make accurate measurements on video IC systems. Mathews, Brian D, Harris Semiconductor; Electronic Design, 03/03/88, pg 109, 2.5 pgs.

Wire/cable

Specialty cabling creates versatile and streamlined network systems. Graeber, George C, Crouch, Ronald A, Brand-Rex; Electronics, 02 04/88, pg 119, 4 pgs.

The Application Servers

Build your application with Mizar's new generation of 32-bit microcomputers.

Mizar. The shortest distance between concept and reality.

EDN's Technical Article Database Index is Now on Floppy Disk!

Now you can utilize EDN magazine's Technical Article Database Index right on your computer screen. When used with your IBM PC or compatible computer, this new floppy-based index gives you all the benefits of our printed index . . . and more:

- Fast computer searches and sorts
- AND and OR capabilities to precisely specify your search criteria
- Printout of search results

The index lists articles printed in EDN, EDN NEWS, Electronic Design, Electronics, Electronic Products, Computer Design, and ESD. Two installments are available-covering articles published from May to October, 1987, and from November 1987 to April 1988.

EDN'S index is compatible with most popular programs, including 1-2-3 from Lotus, MailMerge from MicroPro International, and dBASE from Ashton-Tate. It also works with Buttonware, Inc.'s PC-File +, a "shareware" database manager that you can order from us.*

Our Technical Article Database Index on your computer will mean added convenience for you. Order your copy today.

[^10] MS-DOS or PC-DOS version 2.0 or later.

ORDER FORM

EDN's Technical Article Database Index on IBM PC DSDD floppy disc
Installment I
(May 1987-October 1987)
Installment 2
(November 1987-April 1988)
PC-File + database software (3 disks)
(Available only in US, Canada, and England)
copies at $\$ 19.95=$ \qquad (\$21.95 for non-US)
copies at $\$ 19.95=$
(\$21.95 for non-US)
copies at $\$ 14.95=$ \qquad
($\$ 16.95$ for non-US)
TOTAL
\qquad
Check or money order made out to EDN Reprints must accompany each check. No COD. Massachusetts residents add 5\% sales tax. Foreign checks must be drawn on a US Bank, issued in US currency.

Send to:
Technical Article Database Index
EDN Magazine
Cahners Building
275 Washington Street
Newton, MA 02158-1630

Please Print clearly.
This is your mailing label.

NAME

\qquad
TITLE

COMPANY

Number 13 in a series from Linear Technology Corporation

Closed Loop Control with the LTC1090 Series of Data Acquisition Systems

Guy Hoover
William Rempfer

Introduction

The use of microprocessors in process control loops is quite common. A processor based control loop requires special design considerations as compared to traditional analog loops. Often a single centrally located processor will be used to control several remotely located processes. The outputs of the remote process sensors can be digitized at the sensor location and then be transmitted to the central processor. Unfortunately, transmitting digital signals typically requires one wire for each bit of resolution and requires expensive cabling. Alternatively, the sensor output can be transmitted as an analog signal to the central processor area for digitization. However, transmitting analog signals over distances can introduce errors because of noise and voltage drops in the wires.

The solution to these control loop problems can be found in the LTC1090 series of data acquisition systems. As can be seen in the schematic of Figure 2, ten bits of data can be digitized remotely and sent to the processor with only three wires plus ground. The single supply capability and the low DC current drain (1mA typ.) also simplify remote location. The LTC1090 series provides the user with blocks of $1,2,6$ or 8 10-bit channels which can be chosen according to how many sensors are located in each remote site.

The LTC1090 series is ideally suited for such process control loop applications as position control, temperature control, container filling and tension control.

Circuit Description

The circuit of Figure 2 is a container filling control loop which has a resolution of .03 pounds with a 30 pound full scale. It
was designed to implement an automatic filling station for the model train shown in Figure 1. When S1 is closed the MC68HC05 processor reads the LTC1092. If the weight is below the preprogrammed limit in the processor then the motor drive line which controls the pump is turned on. The LTC1092 is continually read by the processor as the truck is filled, until the limit is reached. The motor drive line is then shut off. The limit may be derived in a number of ways. A fixed limit will result in filling to an absolute weight, while relative or tare weight filling can be implemented when the measured empty weight is used in the calculation of the limit. Code for this application is available upon request from Linear Technology Corporation.

Figure 1. A Typical Application. Automatic Filling at a Railroad Siding.

Figure 2. This Circuit Determines Small Weight Changes, Permitting Accurate Filling. Using the Appropriate Transducer, Containers may Range from Perfume Bottles to Railroad Cars.

The NCI 3220 strain gauge used in this circuit has a linearity specification of $.04 \%$ which makes it a good match for the .05\% linearity of the LTC1092. However, the offset and full scale of the strain gauge are only guaranteed to 10% so trims are required. The circuit is run ratiometrically so an absolute reference is not required. The strain gauge output is amplified by one-half of an LT1013 with the other half being used to buffer the resistor divider that is used for the LTC1092's V REF pin. Only one op amp is necessary to amplify the strain gauge output because of the differential inputs of the LTC1092. The 2.15M 2 resistor from pin 1 to 3 of the LT1013 is to balance the load on the strain gauge bridge. With the strain gauge zeroed, both inputs on the LTC1092 are at about 2.5V. As weight is added, the output of the LT1013 into the minus input of the LTC1092 swings toward ground. At the 30 pound full scale, the output of the LT1013 is about 100 mV above ground which results in a total swing of about 2.4V. The 2μ F mylar capacitor filters the LT1013 output eliminating the effects of vibration caused by filling the train car. (As the train car nears the full point, vibration induced noise can cause the processor to stop the filling too soon.) It is important that the processor monitors the filling process in a timely fashion to prevent overflow. The setup shown relied on a slow fill rate to solve the last problem but with the processor in the loop it is possible to give the fill algorithm some
intelligence so that it would run at a high speed to begin with and then run at a slower speed at some preset limit until the final limit is reached.

To calibrate the circuit, offset is first adjusted with no weight on the platform. Next, a known weight near full scale is used to adjust the gain. Once calibrated, variations in the supply voltage within the voltage limits of the LTC1092 should not cause additional errors.

Summary

The LTC1090 series is well suited for use in closed loop control systems. Their low supply current and serial interface make them easy to locate remotely. With a total unadjusted error of $.05 \%$ over temperature the LTC1090 series is a good match to a wide variety of sensors. The differential inputs of the LTC1090 series can also simplify circuit design while a choice of $1,2,6$ or 8 inputs gives the user just the level of complexity that is needed.

For LTC1090 Series literature call 800.637.5545. For help with an application call (408) 432-1900, Ext. 361.

Transistor powers low-dropout regulator

James E Dekis
Maxim Integrated Products, Sunnyvale, CA and Terry Blake
Motorola, Schaumberg, IL

The monolithic regulator chip in Fig 1, combined with an external pnp transistor, forms a very-low-dropout regulator. The composite regulator can supply several hundred milliamps at 5 V from an input as low as 5.3 V . Such low-dropout performance suits battery-powered applications, because it extends the useful life of batteries having sloping discharge curves, such as sealed lead-acid and lithium batteries.

The monolithic regulator derives its supply current from the base circuit of the external pnp transistor. The feedback-resistor ratio sets the output voltage:

$$
\mathrm{V}_{\text {OUT }}=1.3 \mathrm{~V} \times\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{1} .
$$

If the output-voltage feedback to the chip's $\mathrm{V}_{\text {SET }}$ input is below the bandgap-reference voltage (1.3 V), the supply current into $\mathrm{V}_{\text {IN }}$ (the pnp transistor's base current) increases. The transistor multiplies this base current by β and delivers it to the load. The circuit's quiescent current is a function of the transistor's β and load current.

When there's no load, the quiescent current is typically $10 \mu \mathrm{~A}$. For larger load currents, the quiescent current is simply the load current divided by the transistor's β. The regulator chip can sink 40 mA max. When you enable the chip's shut-down input, the circuit consumes $6 \mu \mathrm{~A}$ typ. R_{4} supplies current to the chip under no-load conditions.

Fig 1-A monolithic regulator chip driving a dummy load sets the base current of an external, series-pass pnp transistor; the result is a very-low-dropout regulator for batteries whose output voltage droops under load.
R_{3} can limit the transistor's base current. The chip's $V_{\text {out }}$ pin will try to raise its voltage level to that of the V_{IN} pin when the output voltage of the chip is low. Reducing R_{3} has the effect of supplying larger base currents to the external transistor.

You can substitute a 2 N 2945 for the 2N2907 shown in Fig 1. With this substitution, the circuit will supply a $5 \mathrm{~V}, 100-\mathrm{mA}$ max output from a 5.1 V input.

EDN

To Vote For This Design, Circle No 750

8031 routines expand address space

Robert J Ryan
Robert Merrill Inc, Tukwila, WA

This Design Idea corrects a problem with the Design Idea "Add two 16 -bit pointers to the $8031 \mu \mathrm{P}$ " (EDN, April 28, 1988, pg 238), by Noor Singh Khalsa. Khalsa uses the μ P's P2 port indirectly to form the upper byte, or page, of a 16 -bit address; he maintains the page
addresses in $\mu \mathrm{P}$ registers and writes the appropriate page address to P 2 just prior to moving data to or from the page.

Problems arise when you attempt to use this scheme in both your main routine and a subroutine that uses a different page. Obviously, the subroutine must save the page address being used by the main routine and restore that address to P 2 before returning control to

FEATURES

Monolithic Tracking RDD Converters
Retiometric Conversion
High Maximum Tracking Rate (260 rps at 12 Bits)
Natural Binary Digital Word Output
Aceurate Velocity Output (1% Linearity typ)
Low Power Consumption (300 mW typ)
Dynamic Performance Sot by User
2580:
User-Selectable Resolution (10, 12, 14 or 16 Bits)

40-Pin DIP Package

Commercial and Military Versions Avaliable
2581:

Low Cost

12-Bit Resolution
28-Pin DIP Package
Commercial Temperature Range
PRODUCT DESCRIPTION
The 2580 and 2581 are monolithic tracking resolver-to-digital converters manufactured on Analog Devices' proprietary BiMOS II process. BiMOS II combines high-density, low-power CMOS logic and high-accuracy bipolar linear circuitry on the sume chip.
A ratiometric conversion technique is used to output continuous position data with no delay. It also provides immunity to changes in absolute signal levels, tolerance to harmonic distortion on the reference and input signals, and high noise immunity when using long leads between the converter and resolver.
The ourput data word is supplied in 2 bytes in three-state digital logic form on either 16 output data lines (2880) or 8 output data lines (2S81). BYTE SELECT, INHIBIT and ENABLE pins allow easy data transfer. External counters can be connected to the 2580 or 2581 for counting cycle or pitch.
The reference frequency can range from 50 Hz to $20,000 \mathrm{~Hz}$ for the 2580 and from 400 Hz to $20,000 \mathrm{~Hz}$ for the 2581 .

2580.81 Functional Block Diagram

PRODUCT HIGHLIGHTS

1. The monolithic $2 S 80$ and $2 S 81$ are one-chip solutions that offer lower cost, smaller package size, higher reliability, greater flexibility and easier design-in than either hybrid or in-house designs.
2. The resolution of the $\mathbf{2 S 8 0}$ is user-set via two control pins to $10,12,14$ or 16 bits. This allows selection of optimum resolution for each application.
3. Dynamic performance is determined by the user. Bandwidth, maximum tracking rate and velocity scaling are established with low-cost, preferred-value external resistors and capacitors. The values for these external components are easily calculated using information provided in the data sheet.
4. An analog output signal proportional to velocity is provided that can be used in place of a velocity transducer in many applications to provide loop stabilization and velocity feedback data. This signal is typically linear to one percent.

TOCLOSE THE BOOK
 ONAILOTHERR/DDESIGUS, TURN TOTHIS PAGE.

Instead of spending time designing custom R/D converters, or spending money on expensive purchased solutions, spend a few minutes and learn about our new 2S80 and 2S81, the world's first and only monolithic R/D converters. They are the only RDs to offer all the advantages of monolithic devices, including small size, low power and high reliability, along with high performance at a low cost.

The 2 S 80 is available in both commercial and military temperature range versions, and in three accuracy grades ($\pm 8, \pm 4$ and ± 2 arcminutes, each $\pm 1 \mathrm{LSB}$).

The 2S81 operates over the standard commercial temperature range of 0° to $70^{\circ} \mathrm{C}$ and features accuracy of $\pm 30 \operatorname{arc}$ minutes
$\pm 1 \mathrm{LSB}$, making it ideal for a wide variety of commercial and industrial applications.

All these high performance features are available without a high price tag. The 2 S 80 starts at only $\$ 89.10$ in 100 s, while the $2 S 81$, at $\$ 70.00$ in 100 s, is the lowest priced R/D converter you can buy. And both the 2 S 80 and 2 S 81 are in stock now for immediate delivery.

To find out how the 2S80 and 2S81 are rewriting the book on RD converters, call Ian Bruce at (617) 461-3210. Or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106.

ANALOG DEVICES

Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106; Headquarters: (617) 329-4700; California: (714) 641-9391, (619) 268-4621, (408) 559-2037; Colorado: (719) 590-9952; Maryland: (301) 992-1994; Ohio: (614) 764-8795; Pennsylvania: (215) 643-7790; Texas: (214) 231-5094; Washington: (206) 251-9550; Austria: (222) 885504; Belgium: (3) 2371672; Denmark: (2) 845800; France: (1) 4687-34-11; Holland: (1620) 81500; Israel: (052) 911415; Italy: (2) 6883831, (2) 6883832, (2) 6883833; Japan: (3) 263-6826;

DESIGN IDEAS

the main routine. The problem is that the $\mu \mathrm{P}$ stores P2's output in a special-function register (SFR). Executing a simple read or stack push from P2 gives your subroutine the contents of P2 only when your program runs in an in-circuit emulator. In a target system, however, read and stack-push commands input the byte
on P2's pins and don't input the contents of its SFR. Only read-modify-write commands that have the SFR as a destination access P2's SFR directly when your program runs in your target system.

Figs 1a and 1b show two subroutine-entry stubs that use read-modify-write instructions, DJNZ and JBC, to

Fig 1-These three routines allow you to use an 8031's P2 special-function register to indirectly address pages of external memory in both your main routine and subroutines. The first routine (a) uses few instructions, but its execution time depends on P2's contents. The second routine (b) is faster but uses up more memory. The third routine (c) maintains a RAM image of P2's special-function register.

DESIGN IDEAS

determine the contents of P2's SFR. Fig 1a's program uses few instructions, but the execution time depends on the SFR's contents; its loop can execute 255 times if P2's SFR holds FF $_{\text {HEx }}$. Fig 1b's program executes more quickly, but is not very memory efficient.

Fig 1c shows an alternative scheme that employs a RAM image of P2. Every time you write a page address to P2, you also update the byte P2RAM directly. Subroutines can then push the contents of P2RAM onto
the stack upon entry and restore the calling routine's page address to P2RAM and P2 upon exit. Note that you must always update P2RAM before updating P2 to ensure that the scheme in Fig 1c operates properly during interrupts.

EDN

To Vote For This Design, Circle No 746

555 timer turns beep into warble or chirp

R E McCain
Avalon Products, Fremont, CA

The simple circuit in Fig 1 transforms the steady beep of an audible-signal device such as a Mallory Sonalert into a distinctive warble or chirp. The value of C_{2} determines just what tone color you'll get. With the $1-\mu \mathrm{F}$ value shown, the circuit produces a warble similar to the ring tone of an inexpensive, non-Bell phone. A $10-\mu \mathrm{F}$ value produces a chirp similar to a truck's back-up alarm. One elaboration of this circuit would be to use the second section of a 556 timer to drive a piezoelectric transducer instead of a Sonalert; that modification would vary the tone's pitch as well as the chirp rate.

EDN
To Vote For This Design, Circle No 748

Fig 1-Adding a 555 timer to your audible-signal device's circuit will transform its plain-Jane beep into a distinctive warble or chirp.

Single-chip $\mu \mathrm{P}$ controls resolver

Tadeusz Jarosinski
FMiK ERA, Warsaw, Poland

Without the aid of external circuitry, a single-chip $\mu \mathrm{P}$ can't handle all the overhead associated with controlling a resolver. The 8253 programmable-interval-timer
chips- IC_{1} and IC_{2} in Fig 1a-along with a handful of logic devices, provide sufficient speed and resolution for many applications.
The circuit in Fig 1 lowers the single-chip μ P's overhead because the $\mu \mathrm{P}$ only needs to respond to the $\overline{\text { INT signal from the motor controller, load the } 8253}$

DESIGN IDEAS

programmable-interval timers with the appropriate divisors, and enable the timers via the START line. Normally, counter 0 of IC_{1} divides the system clock (CLK) by 8 . But if the single-chip $\mu \mathrm{P}$ reloads this counter for exactly one period with 16 or for two
periods with 4 , the drive circuit will subtract one clock pulse, or add one clock pulse, respectively (Fig 1b). (The single-chip $\mu \mathrm{P}$ must reload the counter with 8 immediately.) Adding or subtracting clock pulses has the effect of shifting the resolver's phase in $\pm 4-\mu \mathrm{sec}$

Fig 1-A single-chip $\boldsymbol{\mu} \boldsymbol{P}$ can control a resolver's phase in $4-\mu$ sec increments with the aid of external programmable counters and logic.

DESIGN IDEAS

increments.
The feedback-control portion of this design begins with the feedback signal, or error, from the resolver's rotor winding. IC_{9} and IC_{10} filter this signal to a pure sinusoid and then turn it into a square wave. The phase
of this square wave, with respect to the stator-drive signal, corresponds to the rotor's position. Counter 2 in IC_{1} divides this square wave by 8 (mode 3). XOR gate $\mathrm{IC}_{4 \mathrm{~A}}$ compares the divided-feedback square wave with the rotor-drive signal from counters 0 and 1 of IC_{1}

Who offers you the broadest Ine of powersemicond dctors... Darington Felmod, Mossir? scratiode modtles rectilers and tiyistors?

Powerex gives you what no one else does. Our one-source convenience and compatibility eliminate multi-source doubt. Our off-the-shelf availability means just-in-time delivery, instead of back-order delays or high inventory costs. We'll provide engineerto-engineer phone conversations for an unbiased view of application needs and alternative component solutions. Best of all, POWEREX gives you leading-edge technology, rather than last-generation obsolescence. Take a look.

Only FOMIE: MX, offers you such a broad line of advanced power semconductor modules, including next generation FETMOD and cascade or cascode MOSBIP, rated at 8-300 A, 50-1,000 V for applications up to 100 kHz .

Only POWIERIEX offers you a complete line of low-power triacs and SCRs as part of the broadest line of power semiconductors available.

Only POWIEREX offers you more advanced Darlington modules, including Application Specific (ASM"') modules: Single device, Phase-Leg, H-Bridge, Three Phase, Chopper and Common Emitter, $5-600 \mathrm{~A}$, with $V_{\text {CEV (sus) from }} 200$ to 1400 V .

Only POWIEREX can provide a modular solution for all the key power components from logic interface devices, input rectifiers and DC regulating components to the output power stage. POWEREX now offers the world's widest array of input power stage thyristor and diode modules. Ratings of 20-800 A, with $V_{\text {DRM }} / V_{\text {RRM }}$ from 400 to 3000 V. Circuit configurations include Single device, Phase-Leg, Three Phase Bridge and Center Tap in common cathode or common anode configuration.
Recent additions to the product line are a family of Center Tap fast recovery diodes rated at 20-100 A up to 1200 V , a new compact $150 \mathrm{~A} / 1600 \mathrm{~V}$ Dual thyristor module, and a new 1200 V/300 A GTO thyristor module.

Only POWEREX offers you all this. For product literature, call POWEREX at 1-800-451-1415, Ext. 300. (In New York, 315-457-9334.) For application assistance, call 412-9257272, or write POWEREX, Inc., Hillis Street, Youngwood. PA 15697.

DESIGN IDEAS

(whose phase the single-chip $\mu \mathrm{P}$ can alter in $\pm 4-\mu$ sec increments). Therefore, when the BLOCK signal is active high, $\mathrm{IC}_{5 \mathrm{~A}}$ impresses the error-signal-modulated drive signal upon the motor-drive IC's Enable pin (IC_{6}). The width of this drive signal, in turn, determines the resolver's' current.
The D flip-flop, $\mathrm{IC}_{3 \mathrm{~A}}$, monitors the error signal's direction (positive or negative) and controls the drive IC's PHASE input. Note that counter 0 of IC_{2} can trigger the single-chip μ P's interrupt line. This counter triggers an interrupt if the error signal exceeds the allowable maximum by monitoring the output of $\mathrm{IC}_{4 \mathrm{~A}}$. A positive transition from $\mathrm{IC}_{4 \mathrm{~A}}$ starts the counter. Therefore, any error signal that lasts for less than half of the counter's period does not result in an interrupt.

The controller circuit's $2.5-\mathrm{kHz}$ stator-drive signals result from IC_{2} 's dividing the system clock by 200 (in mode 3). IC_{7} and IC_{8} develop the sine and cosine drive signals for the resolver's two stators.

The listing in Fig 2 is for a 12-MHz 8031 single-chip $\mu \mathrm{P}$. The major software problem to be solved is that of
synchronizing the reloading of the counter with 4 at the instant that IC_{1} 's counter 0 holds 7 or 6 (reloading with 16 is not as time critical as reloading with 4 is). The program achieves this synchronization by waiting exactly $6 \mu \mathrm{sec}$ (until counter 0 of IC_{1} contains 3 or 2) before beginning to reload the counter with 8 . The $2-\mathrm{MHz}$ resolver system clock is derived from the singlechip μ P's $12-\mathrm{MHz}$ clock; therefore, the loading of the counter and the resolver will remain synchronized (that is, the START signal ensures that the counters and flip-flops will start together), because this program ensures that two $2-\mu$ sec periods will elapse.

To synchronize the stator and rotor signals with an external event such as the closure of a limit switch, the $\mu \mathrm{P}$ must first set the BLOCK line, then incrementally shift the phase of IC_{1} 's counter 1 , and then read back the count of IC_{2} 's counter 0 to measure the phase difference between IC_{1} 's counters 1 and 2 .

EDN

To Vote For This Design, Circle No 749

Fig 2-This program allows a 12-MHz 8031 single-chip μP to control the circuit in Fig 1.

DESIGN IDEAS

Thermistor measures respiration rate

Ricardo Jimenez-G
San Diego State University, Calexico, CA
The circuit in Fig 1 uses a thermistor (R_{TH}) that measures respiration rate when placed near a subject's
nostril. The thermistor responds to the relatively high temperature of exhaled air. The circuit measures respiration rates between 10 and 50 breaths/sec; above and below these limits, it sounds an alarm. To measure these low-frequency phenomena, the circuit uses the

Fig 1-This circuit uses a thermistor placed near a subject's nostril to measure respiration rate. The EPROMs translate the respiration period into rate.

DESIGN IDEAS

respiration signal to gate a higher-frequency multivibrator on and off. A counter totals the multivibrator's output, and a combination of EPROMs and BCD- to 7 -segment decoders drives an LCD. Fig 2 shows the programs for the two EPROMs, IC_{7} and IC_{8}.
Q_{1} and its associated circuitry compose a constantcurrent generator that linearizes the response of thermistor $\mathrm{R}_{T H}$ (Fenwal UUT43J1). R_{4} is the equivalent resistance of the thermistor at $25^{\circ} \mathrm{C}$. The constant current is

"ICOUNT ON EDN MAGAZINE AND EDN NEWS TO CREATE WORLDWIDE BRAND AWARENESS FOR OUR POWER SUPPLIES."

John R. Belden
Marketing Manager
Glassman High Voltage, Inc.

Glassman High Voltage designs and manufactures

high-voltage DC power supplies with a difference. The most striking difference is that they're insulated with air, and contain no oil or potting compound.
Marketing Manager John R. Belden has watched Glassman grow from a small shop with a lot of innovative ideas to an industry leader. And EDN magazine and EDN NEWS have helped along the way. "The two publications get us the brand recognition and prestige we need," he says. "They go right to the engineers and engineering managers who make the buying decisions."
John Belden believes in the power of EDN magazine and EDN NEWS. So much so that he's relying on them to launch a series of new product lines. "EDN and EDN NEWS are sure to get them off the ground," says Belden. "No other pair of publications can provide the influence to deliver our message to as many markets, both geographically and demographically, in a cost-effective and timely fashion."

EDN magazine and EDN NEWS work for Glassman High Voltage. They can work for you.

EDN

DESIGN IDEAS

$$
\begin{gathered}
\mathrm{I}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{b}}-0.7\right) / \mathrm{R}_{2} \\
\mathrm{I}_{\mathrm{C}}=0.62 \mathrm{~mA} .
\end{gathered}
$$

The resistance across the thermistor, therefore, equals this constant current multiplied by the parallel combination of R_{4} and the thermistor. C_{1} blocks dc levels from IC_{1}, which amplifies voltage changes arising from changes in thermistor resistance. Potentiometer R_{7} adjusts IC_{2} 's gain.
IC_{2}, a Schmitt trigger, triggers IC_{3}, which is a one-shot having a period of approximately 0.2 sec ($\mathrm{T}=\mathrm{R}_{8} \times \mathrm{C}_{2}$). The one-shot, in turn, gates on IC_{5}, a
multivibrator operating at 10 Hz , via flip-flop IC_{4}. The multivibrator drives IC_{6}, a 12 -stage counter. IC_{7} through IC_{10} form a latched decoder for the counter's output. The EPROMs, IC_{7} and IC_{8}, convert the respiration period measured by the counter into respiration rate or trigger the out-of-range alarm, whichever is appropriate. IC_{11} 's inverter gates reset the counter and latch the display drivers.

Fig 2-These EPROM programs for $I C_{7}(\boldsymbol{a})$ and $I C_{8}(\boldsymbol{b})$ effect the period-rate translations.

DESIGN IDEAS

Design Entry Blank

$\$ 100$ Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name \qquad
Title \qquad Phone \qquad
Company
Division (if any)
Street \qquad
City \qquad State \qquad Zip

Design Title \qquad
Home Address \qquad

Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date \qquad

ISSUE WINNER

The winning Design Idea for the May 12, 1988, issue is entitled "Counter controls its own clock frequency," submitted by Shantha Fernando of the Arthur C Clarke Centre (Moratuwa, Sri Lanka).

Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

Information:
Kallman Associates, 5 Maple Court, Ridgewood, NJ 07450,
Tel. (201) 652-7070,
Telex 264715 gdwd ur

MESSE MUNCHEN INTERNATIONAL

CIRCLE NO 41

value-packed fitprs sg95

dc to 3 GHz

- less than 1dB insertion loss over entire passband
- greater than 40dB stopband rejection
- 5 section, 30dB per octave roll-off
- VSWR less than 1.7 (typ)
- over 100 models, immediate delivery
- meets MIL-STD-202
- rugged hermetically sealed package ($0.4 \times 0.8 \times 0.4 \mathrm{in}$.)
- BNC, Type N, SMA available

LOW PASS Model \quad *LP-	$\mathbf{1 0 . 7}$	$\mathbf{2 1 . 4}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 5 0}$	$\mathbf{6 0 0}$	$\mathbf{7 5 0}$	$\mathbf{8 5 0}$	$\mathbf{1 0 0 0}$							
Min Pass Band (MHz) DC to	10.7	22	32	48	60	98	140	190	270	400	520	580	700	780	900							
Max, 20dB Stop Frequency (MHz)	19	32	47	70	90	147	210	290	410	580	750	840	1000	1100	1340		Max, 20dB Stop Frequency (MHz)	19	32	47	70	90
:---	:---	:---	:---	:---	:---																	
Prices (ea.): $\mathrm{P} \$ 9.95(6-49), \mathrm{B} \$ 24.95(1-49), \mathrm{N} \$ 27.95(1-49), \mathrm{S} \$ 26.95(1-49)$																						

Prices (ea.): P \$12.95 (6-49), B \$27.95 (1-49), N \$30.95 (1-49), S \$29.95 (1-49)
*Prefix Pfor pins, Bfor BNC, Nfor Type N, Sfor SMA example: PLP-10.7

Scientific Calculations is one of the leading suppliers of printed circuit board design software to Fortune 500 companies: telecommunications, aerospace, automotive and computers.

According to Stephen W. Testa, Scientific Calculations Vice President of Sales, "We do business in an 'on-line' manner - we license the SCICARDS ${ }^{\star}$ System design software and provide automatic, easily implemented upgrades every 9 to 12 months. Only one computer company provides the kind of architecture, know-how and support we need to operate that way: Digital."
"Digital's VAX"M architecture allows us to bring our software to the customer in the most costeffective manner. The marketplace is calling for VAX-based solutions, because design engineers need the mainframe power on their desks that MicroVAX ${ }^{m}$ and VAXstation ${ }^{\text {m }}$ workstations provide. And because of DECnet ${ }^{\text {tm }}$ networking software, our product works in a multivendor environment. This

integration lets customers move data through different parts of their organizations easily."
"Working with Digital also allows us to be backward and forward compatible. So our customers can keep current with technology cost effectively, improving time-to-market, without rewriting their applications."
"We can say to our customers, 'Everything from design to the manufacture of printed circuit boards is available from Scientific Calculations.' And Digital is the common thread."

To learn how Digital can give you a competitive advantage, write: Digital Equipment Corporation, 200 Baker Avenue, W., Concord, MA 01742. Or call your local Digital sales office.

[^11]
NEW PRODUCTS

INTEGRATED CIRCUITS

RAM CONTROLLERS

- Work with 40-nsec dynamic RAMs
- Dual-ported, 1M-bit capability

The 74 F 1764 and 74 F 1765 1M-bit dynamic RAM controllers offer synchronous single- and dual-port operation at 100 MHz . They provide arbitration, signal timing, and refresh address generation for $40-\mathrm{nsec}$ dynamic RAMs. The 74F1764 differs from the 74 F 1765 only in the addition of an on-chip input address latch-a useful feature for systems that employ unlatched or multiplexed address and data buses. Other features include the ability to address as much as 4 M -bits of memory via external address multiplexing and a separate refresh clock that supports adjustable refresh timing. 48-pin DIP, \$11; PLCC, \$11.75 (1000).

Signetics Corp, Box 3409, Sunnyvale, CA 94088. Phone (408) 9912000.

Circle No 351

RESONANT CONTROL IC

- Uses frequency-modulation control scheme
- Operates to 3 MHz

Intended for resonant-mode powersupply control applications, the UC3860 features a frequency-modulated, fixed on-time control scheme. A precision 5 V reference and a highgain error amplifier controls a vari-able-frequency oscillator that operates to 3 MHz . The IC generates
temperature-stable pulses as short as 200 nsec , and contains two totempole outputs for driving the gates of power MOSFETs. Each output, which you can program to run alternately or in parallel, is capable of providing 2A current pulses. The chip also provides programmable control for soft start, undervoltage lockout, and fault management. MIL-STD-883 devices will be available in a 24 -pin DIP or a 28 -pin LCC in December 1988. A sample-pack containing a UC3860N, a multilevel pc board, a UC3611 Schottky-diode array, and descriptive material is available for $\$ 15$.

Unitrode Integrated Circuits, 7 Continental Blvd, Merrimack, NH 03054. Phone (603) 424-2410.

Circle No 352

CUSTOM VLSI CHIP
 Cusiom

- 80386 clock rates to 20 MHz
- 8088 clock rates to 10 MHz

The EL386-88 processor/converter chip is a high-speed CMOS IC that chip is a high-speed CMOS IC that
translates the control signals and 32-bit transfer sequences of an 32 -bit transfer sequences of an
$80386 \mu \mathrm{P}$ into the equivalent signals and 8 -bit transfer sequences of an and 8 -bit transfer sequences of an
8088μ. To the 80386 , the EL38688 appears as a 32 -bit memory or as a peripheral device operating at a $16-$ to $20-\mathrm{MHz} 80386$ clock rate. To the 8 -bit circuitry on the system's the 8-bit circuitry on the system's
mother board, the El386-88 appears as an 8-bit 8088 operating at its own

MODEM IC

- Suitable for use in mobile radio systems
- Interfaces to $a \mu P$

The FX429 single-chip 1200-baud fast frequency-shift keying modem is targeted for use in trunked radio systems. It conforms to the UK's MPT1317/1327 Band-III trunked ra-dio-protocol specification, but you can use it in other radio- or cablebased data-link applications. The device operates in full-duplex mode at 1200 baud. While transmitting data, you can program the device to automatically generate and transmit preamble bit-reversals for link synchronization, and a 2 -byte checksum for the transmitted data. You can disable the checksum function to

clock rate. The two $\mu \mathrm{P}$ clocks can be completely asynchronous, allowing the 80386 to run at a full 20 MHz , yet address peripherals designed for $4.77-\mathrm{MHz} 8088$ IBM PC data rates. The EL386-88, which increases operating speed as much as 10 times that of the 8088 -based PC, automatically converts 32 -bit transfer requests into multiple 8 -bit transfers. The IC performs all the translation without any software changes. $\$ 50$ (1000).
Edsun Laboratories Inc, 9 Spring St, Waltham, MA 02154. Phone (617) 647-9300. TLX 853664.

Circle No 353

Your imagination.

It's limited only by practical considerations. Materials. Technologies. Costs. That's why coming to Fall Design can make a crucial difference.

You'll expand your knowledge - and save time, too. Because Fall Design puts you in touch with more technical experts, and more new products than you could evaluate in months at your office.

You can further increase your expertise with courses at the ASME-sponsored Conference.

Spend a day at Fall Design and you'll come away stimulated. Refreshed. Equipped with the information you need to fuel your imagination. So that you can turn design projects into successful products.

CIRCLE NO 27

DID YOU KNOW?

EDN is distributed at every major

 electronics/computer show in the U.S., France, and Germany. EDN
INTEGRATED CIRCUITS

allow continuous data transmission. In receive mode, the device detects the 16 -bit Sync (control channel frame synchronization) or Synt (traffic channel frame synchronization) word that's in front of the data packet. You can also program it to error-check the data, using the transmitted checksum. The FX429 has an on-chip clock oscillator that accepts a $4.032-\mathrm{MHz}$ crystal or external clock input and an 8 -bit $\mu \mathrm{P}$ compatible control/data interface. Its $1.008-\mathrm{MHz}$ output drives peripheral circuitry. Fabricated in CMOS, the device operates from a 5 V supply and draws a typical supply current of 5 mA when active. It is available in a 24 -pin DIP or a sur-face-mount package. $£ 6.78$ (1000).

Consumer Microcircuits Ltd, 1 Wheaton Rd, Witham, Essex CM8 3TD, UK. Phone (0376) 513833. TLX 99382.

Circle No 354
Mx-Com Inc, 4800 Bethania Station Rd, Winston-Salem, NC 27105. Phone (919) 744-5050.

Circle No 355

NMOS CONTROLLER

- 8-bit circuitry
- Includes on-chip ROM

Fabricated in NMOS, the SAB 80513 8-bit, single-chip microcontroller contains 16 k bytes of maskprogrammable ROM. The 80513 maintains all features of the 8051 family architecture. The controller is a low-cost upgrade for designers using the SAB 8052, particularly CMOS 16k-byte ROM users whose system doesn't need the low power

INTEGRATED CIRCUITS

consumption of CMOS. In addition to the ROM, the SAB 80513 contains 256 bytes of RAM, four 8 -bit ports, an interrupt structure with six vectors and two programmable priority levels, a serial channel, and oscillator and clock circuitry. The SAB 80513 comes in a 40 -pin DIP and a 44-pin PLCC in both 12 - and $16-\mathrm{MHz}$ versions. $\$ 4.10$ to $\$ 4.55$ $(100,000)$.

Siemens Components, 186 Wood Ave S, Iselin, NJ 08830. Phone (201) 321-3400.

Circle No 356

SYMMETRIC ROW DRIVER

- For AC-TFEL displays
- Data-transfer rate to 4 MHz

According to the manufacturer, the Si9560 is the first monolithic symmetric row driver to meet the requirements for ac thin-film electroluminescent (AC-TFEL) displays. Replacing two chips with one, the Si9560's symmetric drive scheme significantly reduces the differential aging effects that cause latent imaging in AC-TFEL displays, and nearly doubles the lifetime of EL displays. A front-end logic interface accepts 10.8 to 15 V serial inputs and transfers data at rates to 4 MHz . Thirty-four 230 V push-pull outputs on each driver provides a sink and source capability of greater than 100 mA . Although specifically designed for AC-TFEL displays, the high-
voltage, high-current outputs of the Si9560 can also drive large-area matrix vacuum-fluorescent and plasma displays. The IC is also useful for driving capacitive elements in inkjet printers. $\$ 25(100), \$ 5$ (OEM qty, available in September).

Siliconix Inc, 2201 Laurelwood Rd, Santa Clara, CA 95054. Phone (408) 988-8000.

Circle No 357

QUAD ANALOG SWITCH

- Contains four spdt switches
- Low On/Off leakage current

Designed for switching functions that require four spdt analog switches, the MAX333 operates from either single or dual supplies. Dual-supply operation ranges from ± 5 to $\pm 18 \mathrm{~V}$. Where ground serves as the negative source, single-supply operation ranges from 10 to 30 V . The device does not require a separate 5 V logic supply and is TTL/CMOS compatible. The monolithic IC can switch signals to the supply rails. At a supply voltage of $\pm 15 \mathrm{~V}$, the MAX333 consumes 130 $\mu \mathrm{A}$ from the positive supply and 10 $\mu \mathrm{A}$ from the negative supply. The on-resistance is 140Ω, and the onleakage is 0.2 nA . The off-leakage is 0.02 nA , and the turn-off time is 50 nsec. The device has break-beforemake switching action. 20-pin plastic DIP $\$ 2.95$; 20-pin military-grade ceramic DIP \$7.90, (100).

Maxim Integrated Products, 120 San Gabriel Dr, Sunnyvale, CA 94086. Phone (408) 737-7600.

Circle No 358

Because you're thinking fast... count on us for the speed you need.

Now, 19ns settling op amps that survive saturations and shorts...

Comlinear's two new high-speed op amps bring you built-in protection against saturation. Plus simple shortcircuit protection. That means easy solutions for fast input and output amplifiers in systems where signal level or load can"t be controlled.

use as little as $\mathbf{5 7 m W}$...

Our new 170 MHz CLC205 offers fast dynamic performance and power consumption down to 57 mW (with $\pm 5 \mathrm{~V}$ supplies). A settling time of 24 ns to 0.05% is complemented by the drive performance of a $\pm 12 \mathrm{~V}$ output swing and $\pm 50 \mathrm{~mA}$ output current.

or drive up to $\pm 100 \mathrm{~mA}$.

For higher drive, call for our 180 MHz CLC206 which will drive up to $\pm 100 \mathrm{~mA}$ and settle in just 19 ns (to 0.1%). It is coupled with a high slew rate of $3400 \mathrm{~V} / \mu \mathrm{s}$ and delivers a largesignal bandwidth of 70 MHz at $20 \mathrm{~V}_{\text {pp }}$.
Both of these new op amps give you saturation and short-circuit protection plus tested and guaranteed performance at half the price of other high-speed amps. Now you can be safe at high speed.

> vComlinear Corporation Solutions with speed 4800 Wheaton Drive Fort Collins, Colorado 80525 (303) 226-0500

INTEGRATED CIRCUITS

GaAs MMIC

- 6- to 18-GHz bandwidth
- 5-dB small-signal gain

Designed for electronic-warfare applications, the HMM-11820 MMIC (monolithic microwave integrated circuit) has a small-signal gain of 5 dB over the bandwidth of 6 to 18 GHz . The chip consumes 35 mA of current and has an output power of 12 dBm at 1 dB of gain compression. The chip's VSWR is more than 2:1 at both the input and output, and the noise figure is 5.5 dB typ. The device includes de blocking at the RF input and output, and an on-chip source bias resistor. Using a distributed topology, the chip contains four $200-\mu \mathrm{m}$ MESFETs and all necessary capacitors, coils, and resistors. Standard wafer qualification exceeds MIL-STD-883C. $\$ 99$ (1000). Production quantities are scheduled for late 1988.

Harris Microwave Semiconductor, 1530 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 433-2222.

Circle No 359

QUAD COMPARATOR

- Input impedance is $10^{12} \Omega$
 - Input bias current of 10 pA

An improved version of the industry standard LM339, the ALD-4302 CMOS quad comparator features an input impedance of $10^{12} \Omega$, an input bias current of 10 pA , and a TTLinput response time of 120 nsec . The comparator can sink an output current of 60 mA , yet requires only a $150-\mu \mathrm{A}$ supply current for each
comparator. The device works from a nominal 5 V supply, but will work with any single supply from 3 to 12 V , or from a dual supply of 1.5 to 6 V . Other features include an input voltage range that includes ground, and outputs that can sink or source current. You can use the outputs in a wired-OR connection without pullup resistors, or in a push-pull configuration with 2 mA of sourcing current. The ALD-4302 is also a standard cell in the company's linear ASIC program. The 14-pin device has the standard LM339 pinout. Plastic DIP, \$2.28; military-grade ceramic DIP, $\$ 4$; small-outline package, $\$ 2.80$; die form, $\$ 2.28$ (100).

Advanced Linear Devices, 1030 W Maude Ave, Sunnyvale, CA 94086. Phone (408) 720-8737. TWX 510-100-6588.

Circle No 360

DISPLAY DRIVER

- 50 V output into 6 -pF load
- Operates at 175 MHz

Based on the company's QuickChip ASIC technology, the TKDD10P CRT (Z-axis) display driver can drive a $6-\mathrm{pF}$ load with 50 V p-p at 175 MHz . According to the company, it is the only monolithic IC capable of this performance. You can add an external impedance-matching network to extend the performance to 200 MHz . Two input connections allow either a single-ended or a differential input drive. The inputs accept RS-343 signals of $\pm 0.714 \mathrm{mV}$ p-p. By means of a $5-\mathrm{k} \Omega$ potentiometer, you can vary the gain linearly

Miniature basic switches provide versatility

The V Series of miniature, basic switches has a variety of low-cost solutions for your applications. The V7 product is a cost effective design that features printed wiring board terminals which reduce installation costs. The V10 product serves as an effective option for on-off/off-on applications and its non-snap design is interchangeable with other industry standard products.

Other features include special contacts for switching low energy circuits, and power handling capabilities of up to 25 amps . Some versions feature an operating force as low as 10 grams. The standard temperature tolerance range is -20° to $+180^{\circ} \mathrm{F}\left(-4^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

For more information, contact MICRO SWITCH, The Sensor Consultants at 815-235-6600.

Subminiature basic switches fit many different needs

The 9SM, a newer addition to the sub-miniature SM Series, was developed for applications requiring less precise switching characteristics. These miniature switches are costeffective, durable, and adaptable to a variety of different auxiliary or integral actuators.
The precision 11SM is a light weight switch and can be made with silver projection contacts for low energy circuit applications, providing a cost effective alternative to gold contacts.

The standard temperature range is -65° to $+180^{\circ} \mathrm{F}\left(-54^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. Certain versions are rated for logic level switching and handle power loads of up to $11 \mathrm{~A}-1 / 4$ HP 125 VAC.

For more information, contact MICRO SWITCH, The Sensor Consultants at 815-235-6600.

C money saving ideas.

Take the long black strip of switches for example. It was the result of working together with a gaming machine manufacturer who needed to lower the cost of their product.

In addition to supplying less expensive basic switches that didn't compromise quality, we modified the switch terminals. Then we mounted the switches on a PC board, attached them to a connector, and assembled it all in a plastic housing. The result? A MICRO SWITCH idea designed to cut the

customer's assembly costs in half.
Each one of the basic switch ideas you see here has a money saving story of its own. To find out what they are, or for other ways we can work with you to reduce your total costs, ask for our new brochure. Call us at 815-235-6600. Or write MICRO SWITCH, Freeport, IL 61032. CIRCLE No 107

Together, we can find the answers.

INTROL

CROSS DEVELOPMENT SYSTEMS

- INIROL-C Cross-Compilers
- INTROL-Modula-2 Cross-Compilers
- INIROL-Macro Cross-Assemblers Provide cost and time efficiency in development and debugging of embedded microprocessor systems

All compiler systems include: Compiler • Cross-assembler • Support utilities • Runtime library, including multi-tasking executive \cdot Linker • One year maintenance • User's manual, etc.
TARGETS SUPPORIED:
6301/03•6801/03•6804 • $6805 \cdot 6809$
-68HC11 • 68000/08/10/12•32000/
32/81/82 • 68020/030/881/851
AVAlLABLE FOR FOLIOWING HOSTS:
VAX \& MicroVAX; Apollo; SUN: HewlettPackard;Gould PowerNode:Macintosh IBM-PC, XT, AT and compatibles
INIROL CROSS-DEVELOPMENT SYSTEMS are proven, accepted, and will save you time, money, effort with your development. All INTROL products are backed by full technical support. CAL or WRIT for facts NOW:

I N T R O L CORPORATION

INTEGRATED CIRCUITS

from 0 to 80 . The TKDD10P operates from a $\pm 10 \mathrm{~V}$ power supply and comes in a 24 -pin power-tab package that features low thermal impedance. $\$ 35$ (1000).
Tektronix Inc, Integrated Circuits Div, Box 14928, Portland, OR 97214. Phone (800) 835-9433, ext 100.

Circle No 361

PHASE SPLITTER

- Operates from 10 MHz to 3 GHz
- 2-dB typical insertion loss

Fabricated in GaAs, the APS30010 is an active 180° phase splitter that operates to 3.5 GHz and features a single-port insertion loss of 2.0 dB typ. The chip has an amplitude balance of 0.3 dB , a phase balance of 1.0°, and a reverse isolation of 30 dB . Other features include an isolation of $20 \mathrm{~dB} \min$ between ports, a noise figure of 12 dB , a $3-\mathrm{dBm}$ compression level, and a third-order intercept point of 8 dBm . The input return loss is 20 dB typ, and the output return loss is 12 dB typ. Die form, $\$ 43.50$; 8-pin flatpack, $\$ 65$ (1000). Delivery, four to eight weeks ARO.

Anadigics Inc, 35 Technology Dr, Warren, NJ 07060. Phone (201) 6685000. TWX 510-600-5741.

Circle No 362

130 SERIES SWITCHING BIPOLAR TRANSISTORS YOUR ONLY ALTERNATIVE TO SWITCHMODE III*

An alternative: Philips new switching bipolar

 transistors are the only alternative to Switchmode III by Motorola. Philips transistors are extremely rugged, have $1000 \mathrm{~V} / 40 \mathrm{~ns}$ capabilities, and meet all Switchmode III requirements. Three series are immediately available. BUT131 (5 amps), BUW132 (8 amps) and BUW133 (15 amps).An improvement: Philips Statistical Process Control and advanced production techniques deliver a consistent, high-quality product, batch after batch. So you can produce a product that performs like the prototype.
Put us to the test. Send for free samples to replace the Motorola Switchmode III you're now using. We'll also include product specifications, a product cross-reference chart, and an application note.

Amperex Electronic Company, a Division of North American Philips Corporation George Washington Highway, Smithfield, RI 02917, (401) 232-0500 In Canada: Philips Electronics Ltd., 601 Milner Ave., Scarborough, Ontario M1B 1M8, (416) 292-5161
*Switchmode III is a registered trademark of Motorola, Inc.
CIRCLE NO 32

Be An Author!

When you write for EDN, you earn professional recognition. And you earn $\$ 75$ per published magazine page.
EDN publishes how-to design application information that is read by more than 137,300 electronics engineers and engineering managers worldwide. That's an audience that could belong to you.
If you have an appropriate article idea, send your proposal and outline to: John Haystead, 275 Washington Street, Newton, MA 02158-1630.
For a FREE EDN Writer's Guide-which includes tips on how to write for EDN and other technical publications-please circle number 800 on the Information Retrieval Service Card.
First in Readership among Design Engineers and Engineering Managers in Electronics.

COMPONENTS \& POWER SUPPLIES

DC/DC CONVERTERS

- Available in single- and multi-ple-output versions
- Powers as many as four disk drives

Operating from 48 V inputs, these de/dc converters can output as much as 350 W . Housed in packages measuring $9 \times 5 \times 2.5 \mathrm{in}$., they feature a high-efficiency flux-gate switching post regulator, monocoque construction to optimize heat transfer, a current-fed inverter topology, and surface-mount technology. The open-frame converters are available in either single- (DC) or multipleoutput (DCX) versions. The singleoutput models output from 5 to 48 V at currents in the 5.5 to 30 A range. The main output of some multi-output models can deliver as much as 50 A of tightly regulated (1% for line and load changes) 5 V power. In addition, multiple output versions fea-

ture two post-regulated mag-amp outputs and one low-power, 3 -terminal regulated output. The 12 V outputs have a peak current rating of 12 A , enabling them to power as many as four disk drives. You can expand units to include isolation diodes and modified current-sharing
for redundancy. Optional remote inhibit and dc power fail are available, as are cover/fan assemblies. $\$ 470$ (100).

Todd Products Corp, 50 Emjay Blvd, Brentwood, NY 11717. Phone (516) 231-3366. TWX 510-227-4905.

Circle No 365

CURRENT LOOP

- 3200-ft transmission distance capability
- Solves isolation problems

This 4 - to $20-\mathrm{mA}$ current-loop transmission system solves problems with erratic signals due to ground loops by using fiber-optic technology to isolate the loop and to ensure that it floats with respect to system ground. The loop has a $3200-\mathrm{ft}$ transmission distance capability. The Model 5911 link transmitter accepts the current input and converts it to light. The transmitter is cur-
rent-loop powered and requires no external power. The Model 5912 receiver accepts the optical signal and outputs a 4 - to $20-\mathrm{mA}$ output. The transmitter and receiver are housed in 2×3-in. aluminum blocks with mounting holes in the four corners. Terminal strips are provided for electrical (signal and power) inputs. Transmitter, $\$ 268$; receiver, $\$ 343$ (25).

Dymec Inc, 8 Lowell Ave, Winchester, MA 01890 . Phone (800) 2251511; in MA, (617) 729-7870.

Circle No 366

REED RELAYS

- Design can withstand surfacemounting processes
- Offer a 10-VA max switching capability
Available with gull-wing or J-hook terminals, JS2 reed relays are designed specifically for surface-

mount applications. The units have a maximum switching capacity of 10 W or 10 VA . Maximum voltage and current-switching ratings for the spst NO reed switch equal 100 V and 0.5 A , respectively. The switch will carry 1A max. Standard contin-uous-duty coil voltages are $5,12,15$, and 24 V dc. Initial dielectric strength is 250 V dc min between open contacts and 500 V dc min between the relays' coil and contacts. $\$ 3.39$ (500). Delivery, stock to 10 weeks ARO.
Potter \& Brumfield Inc, 200 S Richland Creek Dr, Princeton, IN 47671. Phone (812) 386-2257.

Circle No 367

CIRCLE NO 33

JRIE THIRD EDITION NFW Handbook For Data cquisition

Bigger
 and Better!

Our newly expanded Handbook of Personal Computer Instrumentation for Data Acquisition, Test, Measurement, and Control contains more than ever before. It has everything you've ever wanted to know, and much more. Almost 300 pages include:

- A tutorial - A chapter on available software - An applications section - System configuration guides - Example programs - Technical specifications

This $\$ 15$ value is FREE for the asking. Write on your company's letterhead to:

The New PCI Handbook, Burr-Brown Corp. Intelligent Instrumentation 1141 West Grant Rd., \#131, Tucson, Arizona 85705

```
BURR-BROWNG
    #=3
```

SWITCHING POWER SUPPLIES Engineered and Manufactured by Perfectionists!

CIRCLE NO 34

With a Pearson current monitor and an oscilloscope you can make precise amplitude and waveshape measurement of ac and pulse currents from milliamperes to kiloamperes. Currents can be measured in any conductor or beam of charged particles, including those at very high voltage levels.
A typical model gives an amplitude accuracy of $+1 \%,-0 \%$, 20 nanosecond rise time, droop of 0.5% per millisecond, and a 3 db bandwidth of 1 Hz to 35 MHz .
Contact us and we will send you engineering data.

PEARSON ELECTRONICS,INC.

1860 Embarcadero Road
Palo Alto, Calif. 94303, U.S.A.
Telephone (415) 494-6444
Telex 171-412 • FAX (415) 494-6716

TRANSCEIVER

- Provides an Ethernet connection to a coaxial cable
- Conforms to Ethernet IEEE802.3 specifications

The ANC-15 thin-net transceiver provides an Ethernet connection to a coaxial cable. It conforms to Ethernet/IEEE-802.3 transceiver specifications and $10 \mathrm{M}-\mathrm{bps}$ Ethernet CSMA/CD operational requirements. The unit has an integrated BNC-type T-connector that facilitates the network connection. Two integral LEDs serve as SQE
(heartbeat) and power indicators. The ANC-15 is housed in a compact aluminum die-cast package. $\$ 240$.

American Network Connections Inc, 462 Oakmead Pkwy, Sunnyvale, CA 94086. Phone (408) 7371511.

Circle No 368

LINE CHOKES

- Feature UL recognition
- Employ high-saturation core material

The RL1283 and RL1284 Series compact power-line chokes are ULrecognized devices. The axial-lead units employ high-saturation core material, which allows them to accommodate high current levels. The chokes are available with inductance values ranging from 3.9 to $100,000 \mu \mathrm{H}$. Saturation-current values range from 81 mA to 15.5 A . The series includes almost 100 standard

values, and nonstandard values are available. The chokes are available on tape and reel to accommodate auto-insertion equipment, or with their leads preformed to user specifications. The operating range spans -55 to $+125^{\circ} \mathrm{C}$. All units are supplied with insulated sleeves. MIL-STD-27D devices are also available. $\$ 0.50(10,000)$. Delivery, stock to eight weeks ARO.
Renco Electronics Inc, 60 Jefryn Blvd E, Deer Park, NY 11729. Phone (516) 586-5566.

Circle No 369

INDUCTOR

- Accommodates reflow soldering processes
- Available in bulk or tape-andreel packaging
The CM 1812 chip inductor has a ferrite core encased in a molded body made of heat-resistant resin. The core is mounted to solder-
coated metal terminals, which attach to pe boards. The unit can accommodate reflow soldering processes and requires no special handling. It is available in values ranging from 0.18 to $1000 \mu \mathrm{H}$, and minimum Q specs at 50 . From 0.18 to $8.2 \mu \mathrm{H}$, the standard tolerance equals $\pm 20 \%$; above $8.2 \mu \mathrm{H}$, the standard tolerance equals $\pm 10 \%$.

The unit is available in bulk or tape-and-reel type packaging . From $\$ 0.25$.

ICS Manufacturing Inc, 11661 Martens River Circle, Fountain Valley, CA 92708. Phone (800) 642-2645; in CA, (800) 247-7864.

Circle No 370

REED RELAYS

- Feature a 1-billion cycle operating life
- Available in SIP and DIP housings
These miniature mercury-wetted reed relays can switch 50 W for a minimum of 1 billion cycles. Operating from a 5 V supply, they consume only 125 mW . Offered in either SIPs or DIPs, the spst NO relays spec a maximum switching capability of 500 V dc and 1 A . Release time, over a 0 - to $250-\mathrm{kHz}$ frequency range, specs at 1.5 msec . The relays are available with 5,12 , or 24 V dc coilvoltage ratings. Contact resistance specs at $50 \mathrm{~m} \Omega$. Clamp diodes are available as an option. $\$ 4.65$ (500). Delivery, stock to six weeks ARO.

Gordos Corp, 1000 N Second St, Rogers, AR 72756. Phone (800) 6433500 ; in AR, (501) 526-4415.

Circle No 371

TRIMPOTS

- Have 15-turn adjustment screws
- Surface-mount devices

TS6 and TS63 Series $0.25-\mathrm{in}$. square surface-mount multiturn cermet trimmers with nominal values $\geq 100 \Omega$ feature a typical temperature coefficient of $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
($\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum) over their operating temperature range of -55 to $+155^{\circ} \mathrm{C}$. Their typical contact resistance variation is 2% of their nominal value or 2Ω, and their end resistance is typically 1Ω. The TS6 version meets military specifications. The trimmers have a 15 -turn mechanical rotation, and a clutch mechanism that prevents damage if you overrotate them. Four variants, with different adjustment screw and contact positions, are available. The trimmers are available in E3 Series values between 10Ω and $2.2 \mathrm{M} \Omega$. The standard resistance value tolerance is $\pm 10 \%$, and $\pm 5 \%$ tolerance

trimmers are available on request. Their power rating is 0.25 W at 85° C. TS6 Series, $\$ 0.95$; TS63 Series, $\$ 0.73$ (1000).

Sfernice, 199 blvd de la Madeleine, 06021 Nice Cedex, France. Phone 93446262. TLX 470261.

Circle No 372
Ohmtek, 2160 Liberty Dr, Niagara Falls, NY 14304. Phone (716) 283-4025. TWX 710-524-1653.

Circle No 373

POWER SUPPLIES

- Provide as many as four outputs
- UL, CSA, and VDE approved

Low-profile (under 1 in.) ESPO22A 25 W switching power supplies offer as many as four outputs that are 5 and 12 V dc, and ± 5 and $\pm 12 \mathrm{~V}$ dc. Available models offer dual $90-130$ / $180-260 \mathrm{~V}$ ac jumper-selectable in-

puts; a universal 90 to 260 V ac input is available as an option. All models feature 0.1% line regulation. Load regulation specs at 0.5% on the main 5 V output and 0.2% on all auxiliary outputs. Ripple and noise equals 1% typ. The operating range spans 0 to $50^{\circ} \mathrm{C}$, and the MTBF specs at 60,000 hours. All models are UL, CSA, and VDE approved. From $\$ 52$ (100).

Total Power International Inc, 418 Bridge St, Lowell, MA 01850. Phone (617) 453-7272. TLX 948617.

Circle No 374

HICH DENSI-D

15 through 104 poles Sub-D Connectors

76\% CONTACT DENSITY INCREASE: Qualified to MIL-C24308 and U.L. recognized. CONTACTS: Removable, machined copper alloy, gold over nickel, 5 amp. "closed entry" female, MIL-C-39029. TERMINATIONS: Crimp, solder, printed board, straight or 90°. INSULATOR: Polyester glass, U.L. 94 V,$~ 6$ variants of $15,26,44,62,78$ and 104 poles. SHELLS: Steel or brass with tin plate (dimpled); zinc or cadmium plate with dichromate seal, stainless steel, passivated. MOUNTING: Panel and printed board. COUPLING: Jackscrews and slide lock system. HOODS: Metal, plastic. EMI/RFI.

POSITRONIC
INDUSTRIES, INC.
432 N. CAMPBELL AVE. SPRINGFIELD. MO 65806 432 N. CAMPBELL AVE. SPRINGFIELD. MO 65806
TEL. $417-866-2322-800-641-4054-$ TELEX 436445 -FAX $417-866-4115$

MOSFETs

- Feature a fully isolated package
- Mount directly to heat sinks

CPX200 Series H-Bridge HEXFET modules are designed to replace four TO-220-type power MOSFET devices in power supplies, motordrive applications, and servo amplifiers. On-resistances spec at 0.28Ω for the $10 \mathrm{~A}, 250 \mathrm{~V}$ CPX234A module and 0.85Ω for the $5.8 \mathrm{~A}, 500 \mathrm{~V}$ CPX254A device. Both are housed in a 9 -pin SIP and feature an electrically isolated base that allows you to mount the units directly to heat sinks or a chassis with only two screws or a body clip. Available options include zener-protected gates to eliminate overvoltage gate stressing, a Kelvin-connected source, and HEXSense lower switches for onboard current sensing. CPX234A, $\$ 10.82$; CPX254A, $\$ 10.99$ (1000). Delivery, four to six weeks.

International Rectifier, 233 Kansas St, El Segundo, CA 90245. Phone (213) 607-8939.

Circle No 375

SUPPRESSORS

- Pass transient voltages to ground within 5 nsec
- Available in 9-, 15-, 25-, and 37position versions
Data Line Protectors provide compact, reliable defense against dataline transient voltages that can damage computers and peripherals.

These subminiature D-type protectors are a connectorized package of silicon avalanche diodes and pass any transient voltage exceeding 25 V to ground in less than 5 nsec . The maximum surge power equals 2000 W , and the maximum peak current measures 75A. The protectors simply plug in between the port needing protection and the appropriate cable assembly. Standard units are available in $9-, 15-$, $25-$-, and 37 -position versions. You can specify the units to protect either all or selectively loaded pins. $\$ 30$ (1000). Delivery, 10 weeks ARO.

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (717) 564-0100.

Circle No 376

CARD CONNECTORS

- Withstand $200^{\circ} \mathrm{C}$ temperature
- Available in a variety of termination styles
EB7D and EB8 dual-row edgeboard connectors are designed for hightemperature applications, including component burn-in ovens. A special high-temperature thermoset molding compound for the body and be-ryllium-copper material for the contacts helps them withstand $200^{\circ} \mathrm{C}$ operating temperatures. The connectors are available in a variety of terminations, including dip-solder, solder-eyelet, and card-extender styles. EB7D units are available with $6,10,12,15,18,22,36$, and 43 contacts per row; EB8 connectors offer a choice of $6,10,12,15,18,22$, 24 , or 25 contacts per side. EB8 connector with dual rows of $22 / 24$ contact positions and card-extender
terminations, $\$ 4.80$ (1000). Delivery, four to six weeks ARO.
Dale Electronics Inc, Dept 860, Box 609, Columbus NE 68601. Phone (605) 665-9301.

Circle No 377

RELAYS

- Can switch 40A loads
- Spec a 100,000 cycle lifetime

VF4 Series electromechanical relays provide a 40A switching capability in a package measuring approximately $1 \mathrm{in} .^{3}$ The units are available in pc-board or socketmount versions. The relays feature silver contacts and are available in spst NO and spdt contact configurations. Voltage-dependent maximum switching power capability ranges from 50 to 500 W for de loads and 900 VA for ac loads. The expected life, at 40 A resistive, specs at 100,000 operations. Continuous-duty coils are available for 6,12 , and 24 V dc operation. Nominal coil-power dissipation equals 1.6 W , and initial coil-tocontact breakdown voltage equals 500 V dc. Standard VF4 relays are equipped with a black plastic dust cover. Weatherproof enclosures and cases, with integral mounting brackets, are available as options. $\$ 1.33(10,000)$ for an spst version. Delivery, stock to 10 weeks ARO.
Potter \& Brumfield Inc, 200 S Richland Creek Dr, Princeton, IN 47671. Phone (812) 386-2272.

Circle No 378

NEW PRODUCTS

COMPUTERS \& PERIPHERALS

RAM DISKS

- Come in full- and half-height 5114-in. form factors
- SCSI-compatible units have access time of $1 / 2 \mathrm{msec}$
The RAMstor family of RAM disks provides full- and half-height $51 / 4-\mathrm{in}$. form factors. Their SCSI ports can sustain a 5M-byte/sec transfer rate. The disks feature an average access time of less than $1 / 2 \mathrm{msec}$. This figure includes overhead for processing the SCSI commands. The fullheight Model 5150 comes with 8 Mto 80 M -byte storage. The half-
height Model 4150 comes with 8 M to 32 M -byte capacities. You can upgrade each model in 8 M -byte increments. A processor performs disk emulation, diagnostics, and error correction. It can do single-bit and multiple-bit error detection. An optional internal battery backs up 32M bytes of memory for as long as two hours. The unrecoverable data-error rate equals 1 in 10^{5} power-on hours. The 8 M -byte model, $\$ 6895$.

Western Automation, 1700 N 55th St, Boulder, CO 80301. Phone (303) 449-6400. TWX 710-111-1401.

Circle No 380

MEMORY BOARD

- Provides 512k to 16M bytes of RAM
- Operates with version 4.0 of LIM/EMS specification

The JustRAM/AT16 memory expansion board for the IBM PC/AT and compatibles contains 512 k to 16 M bytes of RAM, depending on the configuration. The board operates with version 4.0 of the Lotus/Intel/ MicroSoft Expanded Memory Specification (LIM/EMS). With three boards you can get a 32 M -byte expanded memory and 16M-byte extended memory. The board oper-

ates at 10 MHz with zero wait state and at 12 MHz with one wait state. In addition, it features switch-selectable starting addresses on 128 k byte boundaries from 0 to 16M bytes. An EMS 4.0 driver and diagnostics are standard. When operat-
ing at the 16M-byte capacity, the board requires 15 W . The board comes with a 5 -year warranty. The 2 M -byte version, $\$ 1888$; the 16 M byte version, $\$ 11,097$.

Monolithic Systems Corp, 84 Inverness Circle E, Englewood, CO 80112. Phone (303) 790-7400. TLX 221126.

Circle No 381

IMAGE SCANNER

- Has 100- to 200-dot/in. resolution in ambient light
- Offers optional optical-charac-ter-recognition software

The Deskscan 2000 image scanner performs overhead scanning in ambient light conditions. The user-selectable resolution ranges from 100 to 200 dots/in. The unit weighs less than 6 lbs and consumes 15 W . It provides an RS-232C with 19,200baud communications and a bidirectional parallel interface. A configuration that includes cabling and a utility disk costs $\$ 659$. For a turnkey publishing system, with PC Paintbrush+ software for an IBM PC, PC/XT, or PC/AT with at least 384 k bytes of memory, the price is $\$ 695$. A package with FrontPage Personal Publisher, PC Paintbrush +, TopDOS Version 3.0, and Haba

Finder software costs $\$ 795$. Optional optical-character-recognition software is available for an additional $\$ 895$.

Chinon America Inc, 6374 Arizona Circle, Los Angeles, CA 90045. Phone (213) 216-7611. FAX 213-2167646.

Circle No 382

CPU BOARD

- Features a $68030 \mu P$ that runs up to 30 MHz
- Provides a $4 M$-byte DRAM and a 16k-byte cache memory

The MZ7130 CPU board for the VME Bus features a $68030 \mu \mathrm{P}$ that runs to 30 MHz . It provides a 4 M byte, dual-ported dynamic RAM with up to 2 M bytes of static RAM and up to 1 M byte of EPROM. In addition, the board has a 16k-byte cache memory and a memory expansion interface. At 25 MHz it oper-

ates with zero wait states. The board's I/O lines include two RS232 Cs , a SCSI port, and a parallel I/O expansion port. The board comes with a real-time clock with battery backup, an interrupt handler, an interrupt generator, and a mailbox. The board has a 32 -bit master or slave interface to the bus and a system controller with four levels of arbitration. The board provides sockets for an optional 68881 or 68882 floating-point coprocessor. The software development packages
include Ready System's VRTX32, Wind River System's VxWorks, and Microware's System OS-9. \$5995.

Mizar Inc, 1419 Dunn Dr, Carrollton, TX 75006. Phone (214) 446-2664. TWX 510-600-4272.

Circle No 383

A/D BOARD

- Offers four channels for the IBM PC, PC/XT, and PC/AT
- Features a 12-bit A/D converter sampling at 1 MHz

The DAS-50 A/D board provides four channels for the IBM PC, $\mathrm{PC} / \mathrm{XT}, \mathrm{PC} / \mathrm{AT}$ and compatibles. It features a 12 -bit A/D converter with a rate of 1 M samples/sec max. You can trigger a series of samples with software commands, an external trigger, or a voltage level input. The board comes with a 1M-word onboard buffer memory. It employs 16 consecutive locations in the I/O

When you're looking for input on raster plotters, take a look at some major CalComp output. Twenty-four different versions from the fastest growing raster family in the world. (With more family members arriving soon.)

Every raster plotter incorporates more industry firsts, more choices. From simple, colorful business graphics to the complexity of super-dense integrated circuit design, mapping, etc.

The 5800 and 5700 , our color and black-and-white electrostatic plotters, deliver speed, superior resolution, multiple configurations and A to E size plots.

For CAD graphics, PlotMaster ${ }^{\text {TM }}$ produces quick-check " $\mathrm{A}^{\text {" size presentation-quality color. }}$
Or plug ColorMaster ${ }^{\text {® }}$ into your PC and through CalCompatibility, you can run the most popular business presentation graphics software.
ColorMaster is a registered trademark of CalComp. © 1987 CALCOMP

address space that you can start at any base address. It has five soft-ware-programmable, unipolar or bipolar input ranges: 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, or $\pm 10 \mathrm{~V}$. The linear-error figure specs at 1 LSB max. There are no missing codes over the full input range. A pop-up display controls the board with such features as diagnostics, memory checking, and on-line help screens. The 256 k -word version, $\$ 1999$; the 1M-word version, $\$ 2449$.

MetraByte Corp, 440 Myles Standish Blvd, Taunton, MA 02780. Phone (617) 880-3000. TLX 503989.

Circle No 384

DSP WORKSTATION

- Has a 20-MHz $80386 \mu P$ and an 80387 coprocessor
- Provides a 42M-byte hard disk

The DSP Workstation computing system employs a $20-\mathrm{MHz} 80386 \mu \mathrm{P}$ and a $20-\mathrm{MHz} 80387$ coprocessor. The system uses a DSP and an acquisition board based on AT\&T's WE DSP32 chip and an $8-\mathrm{kHz}$ codec. The system contains a 42 M byte hard-disk drive with an average access time of 28 msec ; a 44 M byte tape backup; a 1.2M-byte 514-in. floppy-disk drive; a choice of an additional 360 k - or a 720 k -byte $5^{1 / 4}$-in. floppy-disk drive; a Keytronics 101 keyboard; an NEC GB-1 EGA card; an NEC Multisync II high-resolution color monitor; a 2Mbyte static RAM; and HypersignalWorkstation DSP software. This software lets you acquire real-time data at 150 kHz to a RAM disk and at 70 kHz continuously using an
optional Data Translation 2821 or 2823 acquisition board. $\$ 9995$.

Hyperception Inc, 9550 Skillman St, LB 125, Dallas, TX 75243. Phone (214) 343-8525.

Circle No 385

V. 32 MODEM

- Provides full-duplex operation at 9600 bps
- Has a port adapter for synchronous communications

The Sync-Up V. 32 IBM PC modem board conforms to the CCITT V. 32 standard. It permits full-duplex operation at 9600 bps through the use !of an echo-cancellation technique

The first family? You bet. First in high-resolution 400 DPI color. First in pin-point accuracy with electronic registration. First in embedded controllers to save space. First with convenient ROM pack firmware. First with flexibility of over 2,000 line and area fill colors. And too many more firsts to talk about here.

There's also a national 800 helpline, 425 trained service persons, 46 service centers nationwide, 32 international field offices, and on-site service. And a single supply source.

Wedrawon your imagination.
Don't be the last to learn about the first family. Call $1-800$-CALCOMP or write CALCOMP, P.O. Box 3250, Anaheim, CA 92803. In Canada, call (416) 635-9010.

This TRONIC LINE sensor family serves 80\% of your pressure applications.
 For details on the complete line of WIKA transmitters and transducers. . . Write or Call TOLL FREE 1-800-645-0606
 WIKA
 TRDTII LIME

COMPUTERS \& PERIPHERALS

and a trellis-code error-correction scheme. The board features a synchronous port adpater that permits synchronous communications without a separate adapter. It runs the AT command set in asynchronous mode. This lets you use communications software such as Crosstalk, Smartcom, and MirrorII. In the synchronous mode, a Sync-Up synchronous autodialing language supports both Bisync and SDLC protocols. The board is compatible with third-party IBM 3270 and 3770 terminal emulation packages. Other features include call-progress monitoring, answer and line disconnect, an onboard speaker with volume control, and built-in diagnostics. From $\$ 1295$.

Universal Data Systems, 5000 Bradford Dr, Huntsville, AL 35805. Phone (205) 721-8000. TLX 752602.

Circle No 386

CPU CARD

- Employs a 68020μ P and 68881 math coprocessor
- Provides FIFO registers for message passing

The vendor of the PG2050 32-bit computer board offers either a stand-alone, single-board computer or a CPU card for VME Bus systems. The board runs a $68020 \mu \mathrm{P}$ and 68881 math coprocessor at 16 MHz . The sockets feature a 1 M -byte max, 150 -nsec, 16-bit, dual-ported static RAM. The 32 -bit local memory provides a 4M-byte EPROM or a 2M-byte, zero-wait-state, static RAM and a 2M-byte EPROM. The board employs a 16 -byte FIFO reg-

COMPUTERS \& PERIPHERALS

ister for message passing. The board offers three serial I/O ports: two are front-panel asynchronous RS-232Cs and the third provides either a synchronous/asynchronous RS-232C or an RS-485 interface to the board's two P2 connectors. In addition, the board features two 8 -bit parallel I/Os, six programmable timers, and a real-time clock calendar. Gld 6000.

Philips, Industrial \& Electroacoustic Systems Div, 5600 MD Eindhoven, The Netherlands. Phone (040) 788620. TLX 35000.

Circle No 387
Philips Electronic Instruments Inc, 85 McKee Dr, Mahwah, NJ 07430. Phone (201) 529-3800.

Circle No 388

VGA BOARD

- Provides a 800×600-pixel mode on IBM PCs
- Displays 132 text columns with a 256k-byte memory

The AST-VGA Plus VGA-adapter board for the IBM PC, PC/XT, PC/AT, and compatibles offers several graphics resolution modes. One mode provides 640×480-pixel resolution and can display 256 colors simultaneously. You can use the 800×600-pixel resolution mode with 16 simultaneously displayed colors for CAD/CAM and desktop publishing applications. In monochrome text mode, the board provides 720×400-pixel resolution with a 9×16 dot-matrix box. It displays 132 columns of text and features a 256k-byte graphics memory, but you can get up to 512 k bytes. The $3 / 4$-size board is compatible with EGA, CGA, MDA, and HGC (Hercules Graphic Card) graphic standards. The board runs with the IBM 8503-, 8512-, 8513-, and 8514-compatible displays and with NEC Multisync monitors. \$599.

AST Reasearch Inc, 2121 Alton Ave, Irvine, CA 92714. Phone (714) 863-9991. FAX 714-863-9478.

Circle No 389

PHIIPS FETS WON'T GIVE YOU FITS.

For the surface-mounted FETS that fit your application, go right to the source: Philips/Amperex. You'll find J FETS, MOS FETS and D MOS FETS in both P and N channel. In SOT-23, SOT-89, and SOT-143 for dual gate devices. All built to the tough quality control standards Philips is famous for. Find out how you can get all the FETS you need with fewer FITS. Call today for a free brochure: (401) 232-0500. Amperex, George Washington Highway, Smithfield RI 02917

In Canada: Philips Electronics Ltd., 601 Milner Ave. Scarborough, Ontario M1B 1M8, (416) 292-5161.
PHILIPS: THE SOURCE FOR ALL YOUR SMD NEEDS.

DID YOU KNOW?

$$
\begin{aligned}
& \text { EDN serves } \\
& \text { electronic engineers and } \\
& \text { engineering managers in more than } \\
& 100 \text { countries worldwide. }
\end{aligned}
$$

"EDN MAGAZINE'S PRODUCT MART SECTION IS HELPING US BECOME A LEADER IN OUR MARKETPLACE."

As Vice President of Marketing, Ray Schnorr

is responsible for marketing ACCEL Technologies' affordable, professional software that meets the design needs of electrical engineers. He operates on a fixed budget and demands resullts. "When it comes to buying media, I'm interested in two things: performance and price. With EDN's Product Mart section, I pull highvolume sales leads and meet my budget," says Schnorr.
In nineteen months, ACCEL has sold 5000 software packages to 3000 sites. "Our $1 / 9$-page Product Mart ads in EDN magazine are allowing us to reach our target audience." And Schnorr sees more for EDN and ACCEL. "We have significant growth plans for ACCEL, and running bigger ads in EDN will be part of the strategy to get there.
"The power and prestige of EDN is helping us grow into a leading design software company."

Great Designs Start With Tango-Schematic." Just \$495.

CIPCLE NO 347

EDN magazine works for ACCEL Technologies. It can work for you.

NEW PRODUCTS

TEST \& MEASUREMENT INSTRUMENTS

CALCULATOR

- Solves equations repeatedly without re-entry
- Uses loops, tests, and flags to make logical decisions

When you need to solve an equation for more than one variable, the HP-32S, RPN (reverse-Polish-notation) scientific calculator for engineering professionals saves you from having to enter an equation repeatedly. Instead of rewriting the equation to isolate the dependent variable, you simply set it equal to zero and supply values for all of the
independent variables. The calculator performs numeric integration and manipulates complex numbers; it allows keystroke programming of equations for which you need repetitive solutions. The unit's 4-level stack and 27 storage registers, as well as its ability to execute program loops, to perform tests, and to use flags allow you to use it for solving problems that require logical decisions. $\$ 69.95$

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone local office.

Circle No 395

LOGIC ANALYZER

- Provides 32 25-MHz clock-rate channels
- Offers disassembler support for 13μ Ps

The K25 logic analyzer provides 32 channels with a 1 k -word-deep capture memory for each channel. It operates with internal or external clocks at rates to 25 MHz and provides four levels of triggering with restart capability as well as event and delay counting. Disassembler

packages support the following 8and 16 -bit μ Ps: Z80, 6800, 8085, 8031, 8051, 8086, 8088, 68000,

64180, 8048, and 8049. In timing mode, you can display any 17 channels; you can expand the display as much as 16 times; and you can search for any word. In list mode, you can group 32 channels and assign them a single label. You can choose among five formats for the list-mode display. The unit includes IEEE-488, RS-232C, and Centronics interfaces; it stores data and setup information in battery-backed RAM. \$2995. Delivery, 60 days ARO.

Gould Inc, 3631 Perkins Ave, Cleveland, OH 44114. Phone (800) 538-9320. TLX 196113.

Circle No 396

MEASURING UNIT

- Adds parameter measurement to ASIC-verification tester
- Verifies continuity and measures impedance

The Parametric Measuring Unit (PMU) provides an option to the vendor's STM 5200 ASIC-verification test system. Basically, the PMU is a bipolar de source-andmeasurement subsystem that can force voltage onto one or more device pins and measure the current that flows through the pin(s); or force current through a pin and measure the voltage that appears at the pin. To prevent damage to the device under test, you can separately program the forcing quantity and
the maximum permissible values of the measured quantity. If application of the programmed forcing voltage or current causes the measured quantity to exceed its programmed limits, the unit will not allow application of the full requested forcing quantity. The voltage range is -3 to 9.995 V with a $4.88-\mathrm{mV}$ resolution. The unit can force and measure cur-
rents from 150 pA to 100 mA in six ranges. Among other things, these capabilities permit you to use the PMU to verify continuity and measure impedance. You can also use the PMU to load a device's output and measure its maximum currentdrive capability. $\$ 12,500$. STM 5200 , including 80386 -based workstation, from $\$ 39,500$.

FAMILY SUPPORT

While many Intel architectures are alternate-sourced by other manufacturers, no one knows them better, or supports them better, than Intel.

Truest real-time emulation. Optimized languages. Common interfaces. Simpler operation. Single-point support for both silicon and tools. And support for new components months abead of secondary tool suppliers.

Intel Development Tools. The Short, Sure Path To Success.
For your free Intel development tools catalog call:

Cadic Inc, 1725 SW 167th Pl, Beaverton, OR 97006: Phone (503) 645-2222. TLX 887936.

Circle No 397

PC-BASED SCOPE

- Can acquire 40 M samples/sec
- Stores 256k samples in onboard RAM

The Compuscope 220 is a single-slot board for the IBM PC bus. It allows the computer to function as a 20 MHz -bandwidth oscilloscope that simultaneously samples two analog waveforms at any of seven full-scale sensitivities from 0.1 to 10 V . The board allows you to independently select the sweep rate for each chan-nel-you can set the rate from 10 nsec to $10 \mathrm{sec} / \mathrm{div}$. The maximum acquisition speed and acquisitionmemory depth on channels A and B, respectively, are 40 M and 20 M samples/sec and 256 k and 128 k bytes. The unit stores acquired data on board-not in the computer's memory. It allows mid-, pre-, and posttriggering initiated by either channel, an external source, or a keyboard command. The software supplied performs addition, subtraction, multiplication, division, integration, and differentiation of waveforms. It also performs FFTs and curve fitting, and allows you to use the board as a digital voltmeter or a frequency counter. $\$ 1995$.

Gage Applied Sciences Inc, 5905 St-François Rd, Montreal, Quebec, Canada H4S 1B6. Phone (514) 3376893. FAX (514) 337-8411.

Circle No 398

PLD PROGRAMMER

- Connects to PC via parallel printer port
- Incorporates 23 universal pin drivers
The PLD-1100 programmer connects to an IBM PC or compatible computer through a parallel printer port. The unit, which utilizes 23 identical universal pin drivers capable of producing 0 to 25 V in $100-\mathrm{mV}$ steps and delivering peak currents as large as 5 A , can handle nearly all programmable logic devices in 20 and 24-pin DIPs without hardware modifications or the use of personality modules. The vendor distributes device-library updates on MS-DOSformat disks. An internal $\mu \mathrm{P}$ automatically calibrates the unit, performs a number of self tests, and executes diagnostic routines. A fullscreen editor allows you to edit device fuse maps, and the vector sets the programmer uses for device testing. $\$ 798$.

BP Microsystems, 10681 Haddington, Suite 190, Houston, TX 77043. Phone (800) 225-2102; in TX (713) 461-9430. TLX 1561477.

Circle No 399

612-DIGIT DMM CARD

- Makes 250 measurements/sec
- Measures 5 quantities

The DMM20 6½-digit multimeter on a card plugs into the vendor's PCbased modular automatic-test systems. Depending on the resolution you program, the meter will make from 0.25 to 250 measurements/sec. Quantities measured include dc and
ac (true rms) voltage and current, resistance (2 - or 4 -wire), and the rms value of a voltage or current consisting of de plus superimposed ac. On its most sensitive ranges, the unit can resolve 100 nV and $100 \mu \Omega$; on its least sensitive ranges, it can measure $300 \mathrm{~V} \mathrm{rms}, 500 \mathrm{~V} \mathrm{dc}$, and 20 $\mathrm{m} \Omega$. For dc measurements on the 2 V range, the error is less than
0.001% of reading plus 20 counts for 24 hours after calibration at $\pm 1^{\circ} \mathrm{C}$ of calibration temperature. The unit specs ac-measurement accuracy from 20 Hz to $100 \mathrm{kHz}: \$ 2500$. Delivery, 90 days ARO.
Summation Inc, 11335 NE 122nd Way, Kirkland, WA 98034. Phone (206) 823-8688. TLX 152219.

Circle No 400
 most powerful emulator technology easy to use.

Now there's ICEVIEW. ${ }^{\text {TM }}$ More than an advanced buman interface with windows and menus, ICEVIEW is the latest example of Intel's commitment to keep application development simple. Available now in I^{2} ICE ${ }^{\text {TM }}$ for the 8086/186/286.
Intel Development Tools. The Short, Sure Path To Success. ICEVIEW and IIICE are trademarks of Intel Corp.

For your free Intel development tools catalog call:
ARROW/KIERULFF at I-800-777-ARROW
New Toll-Free Number

CAE \& SOFTWARE DEVELOPMENT TOOLS

DESIGN VERIFIER

- Simulator lets you perform realtime "what if?" analysis
- Accepts input in VHDL format and shows results of changes
The VantageSpreadsheet lets you use VHDL (VLSI Hardware Description Language) statements to create a schematic, simulate the design's operation, and display the results in real time. You can select multiple windows for displaying your definitions. You can also display all or part of the resulting schematic and see waveforms at critical nodes. The package includes a complete implementation of the VHDL standard defined in the IEEE specification 1076. The package comes with VHDL-compatible library models. You can import schematics created by other CAE tools that use existing standards such as Unix, VHDL, and EDIF (Electronic Design Interchange Format). However, because the simulator uses incremental compiling

techniques, you can make changes on-the-fly and see the results immediately without going through timeconsuming, start-up procedures such as net-list extractions. When you're satisfied with the performance of the design, you can reexport the modified schematic to your standard CAE tools for full
processing. The program runs on Apollo Domain workstations and costs $\$ 30,000$ to $\$ 60,000$, depending on the host's configuration.

Vantage Analysis Systems Inc, 428-40 Christy St, Suite 201, Fremont, CA 94538. Phone (415) 6590901. FAX (415) 659-0129.

Circle No 405

IEEE-488 SOFTWARE

- Uses command set of the HP-41 scientific calculator
- Has 15-digit precision

The Eli-488 program runs on the IBM PC, PC/XT, PC/AT and compatibles. It provides engineers and scientists with calculation and control facilities that are completely compatible with the HP-41 scientific calculator. The program can use an 8087/80287 math coprocessor, if you have one in your system, and provides 15 -digit precision for all calculations. If you have a National Instruments GPIB-PC interface board, you can control as many as 30 IEEE-488-based instruments. The program also includes additional functions to control I/O ports such as digital I/O boards, relay boards,
and ADCs and DACs. All HP-41 user-solution libraries are available on disk; they give you access to a range of fully debugged programs that were originally written for the HP-41. \$295.

Eclipse Logic Inc, Box 2003, Huntington Park, CA 90255. Phone (213) 569-6020.

Circle No 406

DSP DESIGN TOOL

- Lets you generate, analyze, and test a DSP design
- Provides an interface to boardlevel DSP products

The Monarch menu-driven, DSP design tool provides a user interface with pull-down menus and onscreen help. The Design module lets you design and analyze FIR, IIR,
and Pole-zero filters with user-specified architecture and time- or frequency-domain properties. The View module lets you perform an FFT on specified files and display the result as 2 - or 3-dimensional plots. The Siglab module lets you generate and analyze a wide variety of test signals and systems without leaving the main program. An applications window provides access to applications programs such as the TMS320 package. Finally, the OS Shell module lets you perform standard PC-DOS file-management operations without leaving the program. Basic Monarch package, $\$ 399$.

The Athena Group Inc, 3424 NW 31st St, Gainesville, FL 32605. Phone (904) 371-2567.

Circle No 407

REAL-TIME KERNEL

- Functions as an OS for an embedded 8051 controller system
- Performs task-timing and synchronization functions

The AVRX51 real-time executive functions as an operating system in a multitasking system based on the Intel $8051 \mu \mathrm{P}$ family. The executive provides pre-emptive scheduling for as many as eight tasks with four priority levels, three tiers of interrupt support, as many as 32 mailboxes for intertask communications, and two types of system timing services: interval timing and elapsed-time tracking. The executive provides interfaces to high-level languages such as Pascal or C; with a macroassembler you can write routines to link hardware to the executive. It comes in a relocatable object form. You can write your application programs with a crossassembler (such as AVMAC51, which runs on the IBM PC, PC/XT, PC/AT and compatibles) and then link them to the executive for downloading to the target system. $\$ 995$.
Avocet Systems Inc, 120 Union St, Rockport, ME 04856. Phone (207) 236-9055.

Circle No 408

DETAILS MANAGER

- Shows how low-level detail meets high-level requirements
- Helps you meet DoD STD 2167A and other standards

The RTrace CASE tool tracks and reports how low-level details correspond to high-level requirements in any development project. It reports and lists all requirements and their associated allocation components; components that have no requirements allocated; and requirements for which no components have been allocated. The trace reports show the relationships between requirements and the associations between high-level requirements and the low-level system components that satisfy them. You can generate a
report at any stage of the development and get a picture of the architecture or allocation. The program lets you trace requirements compliance under DoD-STD-2167A, but you can adapt it to any life-cycle methodology and use it for any development project that must meet a set of requirements and document compliances. The program runs on a

VAX/VMS system (Version 4.6 or higher) that has a 4M-byte memory and that has at least 60,000 free blocks on the disk storage. Prices start at $\$ 30,000$ for a single MicroVax 2000.

Nastec Corp, 24681 Northwestern Hwy, Southfield, MI 48075. Phone (313) 353-3300.

Circle No 409

[^12]
Module type No. TLX-1181-G3B

When your eyes need high quality displays, you need the Toshiba ST LCD.

Once again Toshiba has made a breakthrough in display quality. Clear and beautiful displays are achieved with the ST LCD. The LCD for the new age. And for your eyes. Now, by employing a new operating mode, this module provides excellent readability from a viewing angle perpendicular to the LCD panel. This was difficult to achieve with conventional LCDs. The aim was to make our LCD easier on the eyes. We succeeded with the ST LCD. Just another improvement in the man-to-machine interface by Toshiba.

ST LCD Module Specifications

Model name	Number of dots	Dot pitch $(\mathbf{m m})$	Outline dimensions $(\mathbf{m m})$	Recommended controller	Built-in EL module
TLX-1181	640×400	0.35×0.35	$276 \times 168 \times 12$	T7779	TLX-1181-EO
TLX-1181-G3B	640×400	0.35×0.35	$276 \times 168 \times 12$	T7779	\star
TLX-561	640×200	0.35×0.49	$275 \times 126 \times 14$	T7779	TLX-562-EO
TLX-1342-G3B	640×200	0.35×0.49	$275 \times 126 \times 14$	T7779	\star
TLX-932	640×200	0.375×0.375	$293 \times 97.6 \times 14$	T7779	-
TLX-1241	480×128	0.48×0.48	$277 \times 86 \times 14$	T7779	-
TLX-1301V	240×128	0.70×0.70	$241 \times 125.3 \times 12$	(T6963C)	-
TLX-1013	160×128	0.60×0.60	$129 \times 104.5 \times 14$	(T6963C)	TLX-1013-EO
TLX-711A	240×64	0.53×0.53	$180 \times 65 \times 12$	(T6963C)	TLX-711A-EO
TLX-1021	120×64	0.48×0.60	$85 \times 70 \times 20$	(T6963C)	TLX-1021-EO
TLX-1391	128×128	0.43×0.43	$85 \times 100 \times 14$	(T6963C)	TLX-1391-EO
TLX-341AK	128×128	0.45×0.45	$93.2 \times 86.6 \times 12$	T6963C	-
TLX-761	640×64	0.38×0.42	$320 \times 47 \times 14$	T6963C	-

In Touch with Tomorrow TOSHIBA

[^13]

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

Analog Circuit Simulation

 NEW

IS_SPICE/386 $\$ 386.00$
Runs on 386 PC's in protected mode with DOS 3.1 \& up. Uses 287, 387 or W1167 coprocessor

- IS_SPICE, \$95.00: Performs AC, DC and Transient analysis; runs on all 80 ? 86 PC's in real mode.
- PRE_SPICE, \$200.00: Adds Monte Carlo Analysis, Sweeps, Optimization, libraries and algebraic parameter evaluation
- Intu_Scope, \$250: A graphics post processor works like a digital oscilloscope. Easy to use with all the waveform operations you will ever need.
- SPICE_NET, \$295: Schematic entry for any SPICE - simulator. Automatically makes a SPICE net list and places Intu_Scope waveforms on your schematic.
- 30Day intusoft P.O. Box 6607 Money Back San Pedro, CA $\begin{array}{lll}\text { Guarantee } & \text { (213) } 833-0710 \quad 90734-6607\end{array}$

CIRCLE NO 331

ANALOG CIRCUIT ANALYSIS ECA-2 Introducing ECA-2 tor the Macintosh. ECA-2 2.31 includes more models, increased graphics capabilities, and expanded documentation.

- AC. DC. Transient - Twice as tast as SPICE
- Founier, Temperature - Over 500 nodes
- Worst-casi, Monte-Cario - Sine Pulse. PWL. SFFM
- Full, nonininear simulator and Exponential generators
- SPICE compatible mod
- Money back guarantes

EC-Ace, a subset of ECA-2, $\mathbf{\$ 1 4 5}$
ECA- 2 IBM PC or Mac $\$ 675$
Call 313-663-8810 For FREE DEMO disk

ルก几
Tatum Labs, Inc
1478 Mark Twain Court, Ann Arbor, MI 48103
CIRCLE NO 334

CIRCLE NO 337

MIL QUALITY /

LOW PRICE CONNECTORS

Our JCM connectors deliver the same MILSPEC quality as SMA-types, without charging you for expensive materials and military paperwork. The JCM line offers commercial versions of SMA/SMB/SMC RF plugs, jacks, adapters, test jacks, cable sets and PC-mount cable terminations in popular sizes and types. Get MIL-C-39012 performance without the MIL price.
Call 800/247-8343 for a free JCM catalog. (In MN: 507/835-6222)

EF JOHNSON COMPONENTS CIRCLE NO 332

Serial data analysis on your PC. Source and monitor modes; datascope and breakout box; ASCII and EBCDIC; trigger processing, live data display, adjustable buffer size. Custom cabling included.

800 562.8378

Advanced Computer Consulting, Inc. 700 Harris Street, Suite 101
Charlottesville, Virginia 22901

CIRCLE NO 335

"D" SIZE PLOTTER

$$
\begin{gathered}
\$ 2295^{00} \\
\text { RETAIL }
\end{gathered}
$$

s 169500 Introductory OFFER

- Model PC 3600
- Repeatability $.001^{\prime \prime}$
- Speed at $7^{\prime \prime}$ Per Second
- Vacuum Paper Hold Down
- High Resolution Circles: Suitable for PCB Artwork
(415) 490-8380 ZERICON STEVENSON BUSINESS PARK
BOX 1669 • FREMONT, CA 94538

Join Forces

Combine your
larger ads with
EDN Product Mart ads
for a total
marketing program.
EDN Product Mart

CIRCLE NO 336

CAE/CAD Integrated Software Package for IBM PC/XT/AT/PS2

Weigh Cost Against Performance

When you balance cost and performance. EE Designer III gives you more features per dollar than any other electronic design software package. You get full-featured PCB layout plus schematic capture, analog/digital circuit simulation, support for EMS memory, 45 degree autorouting, and full postprocessing functions. EE Designer packages start at $\$ 995$.
30 day money back guarantee. Full purchase price refunded if not completely satisfied. Call 1-800-553-1177 today to order your package. Bank cards welcome.
 CIRCLE NO 339

No waiting for complete, low PRICED, CHIP COMPONENT KITS

CC-1 Capacitor Kit contains 365 pieces, 5 ea. of every 10% value from 1 pf to $33 \mu \mathrm{f}$. CR-1 Resistor Kit contains 1540 pieces; 10 ea. of every 5% value from 10Ω to 10 meg . available for Immediate One Day Delivery!

Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD orders, or company P.O.'s with approved credit. Call for free detailed brochure.

READS, PROGRAMS, COPIES OVER 300 EPROMS AND EEPROMS FROM 29 MANUFACTURERS INCLUDING 2716-27513, 2804-28256, 27011 READS \& WRITES INTEL, MOTOROLA, STRAIGHT HEX AND BINARY OPTIONAL HEADS PROGRAM INTEL 874X, 8751, 87C51, 875 - MENU-DRIVEN CHIP SELECTION BY MFG \& P/N; NO MODULES SP IIS FIW, QUICK PULSE PROGRAMMING ALGORITHMS APLIS FILES BY BASE ADDRESS AND ODD/EVEN ($16 \& 32$ BIT) - $5,12.5,21,25$ VOLT PROGRAMMING FOR CMOS AND - A SUFFIX PARTS FREE PC-DOS SOFTWARE -RS232 TO ANY COMPUTER - GOLD TEXTOOL ZIF SOCKET - 8 BAUD RATES TO 38,400 - ONE YEAR WARRANTY - GENERAIES, CHECKS CHECKS - MONEY-BACK GUARANTEE - UV ERASERS FROM $\$ 34.95$ CALL TODAY FOR MORE INFORMATION
 MICROSYSTEMS 800/225-2102 713/461-9430 TELEX 1561477 10681 HADDINGTON \#190 HOUSTON, TX 77043 CIRCLE NO 343

SCHEMA II Schematic Capture

FREE Demo Disk: 1-800-553-9119 SCHEMA's success is the talk of the CAE industry and thousands of satisfied SCHEMA owners know why. Incredible speed, ease of use, and power have made SCHEMA a best-selling schematic capture program for engineering professionals the world over Now, SCHEMA II is available. SCHEMA II sells for $\$ 495$ and supports most common IBM PC/XT/ AT configurations. Please call today for a free SCHEMA II demo disk. OMATMN In Texas Call (214) 231-5167

CIRCLE NO 346 CIRCLE NO 347

CROSS-16 META ASSEMBLER

- Table based 8/16 bit cross-assembler
- Uses manufacturer's assembly mnemonics.
- Tables \& Example Source files are included for ALL of the following processor families:

1802	3870	64180	6502
65816	6801	6805	6809
6811	68000	7000	8048
8051	8085	8086	8096
COP800	SUPER8	Z8	Z80

- Users may modify or create new tables for additional processors
- Produces listing, symbol table, and 8/16 bit binary, Intel and Motorola hexcode
- 5" DSDD for PC/MS-DOS 2.0 or greater $\$ 99.95$ us $\quad \$ 139.95 \mathrm{CDN}$
- Portable C sourcecode is available.

Worldwide shipping (AIRMAIL) \& handling included. Credit Card orders ($\$ 139.95$ CDN) please specify: Card number name on card and expiry date.

Universal Cross-Assemblers
P.O. Box 384, Bedford, N.S.

Canada B4A 2X3

CIRCLE NO 341
RUGGED STAINLESS STEEL
P21 L TYPE PRESSURE TRANSDUCERS

- 0-5 V output
- 5 V input (4-26 V capable)
- 0-3 thru 0-15,000 psi
- three terminal

From
\$251
(aty. of 1)

FREE CATALOG

- Test Adapters (Socketed LCC/PLCC/PGA)
- Test Clips (Surfaced Mounted SOIC/PLCC)
- 150 Types of Prototyping Board Adapters
- 125 Types of Programming Socket Converters
- Many Types of Emulator Pod Converters
- PGA/PLCC Extraction/Insertion Tools
- And Much, Much More.

[區

Emulation Technology, inc.
2368-B Walsh Ave. - Bidg. D • Santa Clara, CA 95051 TEL: (408) 982-0660 • FAX: (408) 982-0664

CIRCLE NO 342

6809

Single Board Computer

CIRCLE NO 345

PADS

 SUPERROUTER ${ }^{\text {m }}$Simply the Best Autorouter Available

Adapted for test measurement or continuous monitoring in tough environments - rugged, solid state pressure sensors simpility your dynamic measurement task and lower your cost per channel. For full information, call or write us today.
*Integrated Circuit Piezoelectric

PCB PIEZOTRONICS, INC. 3425 Walden Avenue
Depew, NY 14043-2495
716-684-0001
PIEzOTRONICS

UNIVERSAL E(E)PROM PROGRAMMER \$495 (Kits from \$165)

- No personality modules; Menu driven device selection. - Built-in Eraser/Timer option ($\$ 50$); Conductive foam pad.
- Direct technical support; Full 1 year warranty.
- Stand alone duplication \& verify (27 XX parts).
- Quick puise algorithm (27256 under 60 sec).
- 27 xx to 1 Mbit; 25xx; 68xx; CMOS; EEPROMS.
- $8741,-2,-4,-8,-8 \mathrm{H},-9,-9 \mathrm{H},-51,-\mathrm{C} 51,-52,-55,9761$ \& more.
- IBM-PC, Apple, CPM or Unix driver; Autobaud RS232.
- Offset/split Hex, Binary, Intel \& Motorola 8,16,32 bit.
- Manual with complete schematics.

VISA MC AMEX Call today for datasheets 1 B\&C MICROSYSTEMS

355 WEST OLIVE AVE. SUNNYVALE, CA 94086 PH: (408) 730-5511 FAX: (408) 730-5521 TELEX: 984185

CIRCLE NO 349

0 TRANSDUCER
 Custom ranges fron 200-5000 lbs.

- Stainless steel
- Strain gage
- NEMA 4 option
- 4-20 mA or 0-5 VDC
output
Call free
800-323-7115
In PA 800-323-7114

Robinson-Heaperin
CIRCLE NO 752

TAIMO $0^{\text {m' }}$ Sets The Pace!
 Tango's ease-of-use, rich functionality

 and crisp output have brought tens of thousands of boards to life, quickly and affordably.

Start-to-finish design tools include

Tango-Schematric With Library Manager,	$\$ 495$
Tango-PCB 1 mil Grid, 9 layer, Gerber Output,	$\$ 495$
TTango-Route Autoroutes 90+\%, Fast!,	$\$ 495$
Tango-Tools 8 Money-Saving Ulilities,	$\$ 295$

Let's discuss your design needs Toll-Free, or order a full function Evaluation Pkg, just \$10. VISAMMC.

Satisfaction guaranteed
ACCEL Technologies, 7358 Trade St., San Diego, CA 92121

IEEE-488 (GP-IB, HP-IB) FOR
THE IBM PERSONAL SYSTEM/2 ${ }^{\text {m" }}$

- Control instruments, plotters, and printers.
- Supports BASIC, C, FORTRAN and Pascal.
- High speed DMA and shared interrupts.
- Software library. Risk free guarantee.

Capital Equipment Corp.
99 South Bedford St.
Burlington, MA. 01803
Call today (617) 273-1818
CIRCLE NO 350

Flow
Charting II +
The New Plus for Fast Flowcharting FLOW CHARTING
is new! lt's now
Flow Charting II + , with more speed + more functions + more printing options; - 10 text fonts; 26 shapes; - Line mode can stop at a shape; - Backspace key can erase a line to its ongin; - Free text entry anywhere, or select autocentering; - Vertical or horizontal printing; one chart or multiple charts.
Used by Fairchild, Bechtel and more than 500 other major corporations. Edit quickly and accurately - even major edits - with Flow Charting II + , the Specialist.
See your retail store or call:
PATION \& PAITON
1-800-525-0082, Outside California 408-629-5376, California/International

LCD WINDOWS CONTROLLER

The CY325 supports LCDs up to 128×240 pixels (16×40 char) with easy-to-use high-level commands and Parallel or Serial interface to host computer. The 256 built-in windows (or make your own) support window-relative text, graphics, plotting, bargraphs, waveforms, scroll/wrap/clip, etc. Read from an A/D and Write into Windowl Separate text and graphic planes can be written or erased in any window. Eight pins support a variety of functions (soft-keys, waveforms) or can be used for GP I/O. Icons or special fonts can be user defined. Giant character mode, etc. Save months of design time with the CY325. $\$ 75$ CMOS $\$ 20 / 1000$ s.

CyberneticMicroSystems Inc.
P.O. Box 3000 - San Gregorio, CA 94074 - USA Phone: (415) 726-3000 - Telex: 910-350-5842 CIRCLE NO 751

A Lot For A Little

Reach 137,000 specifiers of electronics components, equipment
and systems for only $\$ 780$. EDN Product Mart

SYNCHRONOUS/ASYNCHRONOUS RS-422, RS-485, RS-232, CURRENT LOOP

- DMA facility
- Byte sync, SDLC, HDLC
- RS-422, RS-485, RS-232

ASYNCHRONOUS COMMUNICATION - Single/dual port option

- Selectable interrupt
- Address selectable
- Current Loop, RS-422, RS-485, RS-232

TOL FREE: 1-800-553-1170
478 E. Exchange St. Akron, Ohio 44304 (216) 434-3154 TLX:5101012726 FAX:(216)434-1409 CIRCLE NO 757

MOUSE-TRAK

 The Stationary Alternative For Precision and ComfortThis new space saving input device emulates both Microsoft and Mouse Systems RS-232 mice. With MOUSE-TRAK you can watch your screen and not your mouse running off your desk.
With a single connection to your computer, no power supply or mouse pad is
MOUSE-TRAKs ergonomic design with soft wrist pad puts complete control of cursor and input at your fingertips.
Special features include speed control, allowing the user to toggle the resolution with a $4: 1$ ratio. User definable input keys offers added versatility and comfort.

Pricing - $\$ 139.00-\$ 179.00$
For further information:
ITAC SYSTEMS, INC.
3121 Benton Drive, Garland, Texas 75042 U.S.A. 1-800-533-4822 Fax 214-494-4159

CIRCLE NO 758

CIRCLE NO 761

PC488B
\$445
IEEE-488 INTERFACE CARD WITH BUILT - IN BUS ANALYZER

- GPBASIC package complements IBM/Microsoft BASIC interpreter and compiler to create a programming - Additional libraries of over 20 high level 488 dedicated functions for C, Pascal or Fortran available (\$50):
- Powerful menu-driven bus analyzer, which can run in the foreground or in the background while 488 programs or commands are executed, features program stepping, break
points and real time bus data capture (4 k circular buffer) - points and real time bus data capture (4 k circular buffer) - Complete Talker/Listener/Controller capability. - Dipswitch selectable Basc Address, IRO, DMA

VISA MC AMEX Call today for datasheet!! B\&C MICROSYSTEMS
355 West Olive Ave, Sunnyvale, CA 94086 PH: (408) $730-5511$ FAX: $(408) 7330.5521$ TELEX: 984185

8051 Debugger with In-Circuit-Element The CY-8051 in-circuit element replaces the 8051 and communicates with your IBM-PC over COM1. The powerful dynamic user interface provides source code and symbolic debugging with easy access to all 8051 spaces. Live keyboard, Global Symbol Monitor, 'C' support. Histogram generated during reduced speed execution. Lowest cost, most powerful 8051 design support. Mil spec and CMOS versions available.

Cybernetic Micro Systems, Inc.
Box 3000 • San Gregorio, CA 94074 • USA (415) 726-3000 - Telex: 910-350-5842

CIRCLE NO 759

IC SOCKETS-8, 14, 16, 18, 20, 22, $24,28,40,42,48$ contact LCC SOCKET-68 contact PLCC SOCKET-28, 32, 44, 52, 68, 84 contact series

Winpoint Electronic Corp.
P.O Box 89-80. Taipei, Taiwan, R.O.C. Office: No. 47 Ohi-Wei St. San Chung City, Taipel. Taiwan, R.O.C Tel: (02) 986-0208, 984-0209
Telex: 34227 WINPOINT Fax: $886-2 \cdot 9838555$
CIRCLE NO 762

Schematic and PCB Software

Create and revise schematics and PCBs quickly and simply with HiWIRE-Plus ${ }^{\circledR}$ and your IBM PC. Use symbols from HiWIRE-Plus's extensive library, modify them, or create your own quickly and painlessly. Netlist, bill-of-materials, and design-checking utilities are included. HiWIRE-Plus is $\$ 895$ and comes with a thirty-day money-back guarantee.

Wintek Corp.
1801 South St., Lafayette, IN 47904 (800) 742-6809 or (317) 742-8428

CIRCLE NO 765

E \& H Field

 Probes\$495

EDN "Readers Choice" (6/25/87)

Makes finding E \& H Field emissions easy!
Use with any o-scope or spectrum analyzer. Set includes three H and two E field probes, extension handle, case, documentation, two year warranty. Preamp with battery charger, optional. Call, write to order or for brochure.

1-800-253-3761

PO Box 1546 Austin. TX 78767

CIRCLE NO 760

AFD - ADVANCED ACTIVE FILTER DESIGN SOFTWARE
Version 3.1 designs Lowpass, Highpass, Bandpass, Bandstop and Allpass filters with Butterworth, Chebyshev, elliptic and Bessel response - Calculates values and sensitivities for MFB, VCVS, biquad, state variable, National MF-10 and Reticon circuits • Interactive graphics for group or phase delay. gain, phase, impulse and step response of the complete filter or individual section - Combine filters for system design/analysis • Modity circuits to observe effects - For IBM PC, XT, AT, PS/2 (\$725)

* * FREE DEMO DISK AVAIL ABLE * *

FILE CONVERSION FOR SPICE, TOUCHSTONE \& NETOPT AVAILABLE

RLM Research
P. O. Box 3630, Boulder, C0 80307-3630 (303) 499-7566

CIRCLE NO 763

Z80,000 ${ }^{\text {TM }}$ AT-BUS SBC (ATZ80K)

Zilog's new Z320M 32 -bit pipelined CPU/MMU/CACHE unit is the heart of this PC-/AT ${ }^{\text {IM }}$ coprocessor, passive-backplane master, or stand-alone SBC. Get 2 to 5 MIPS performance at 10 MHz with 1 M or 4 M 32 -bit burst-mode no-wait-state RAM, 432 -pin EPROM/EEPROM sockets for up to 512 K 32 -bit burst-mode no-wait-sate non-volatile storage 2 RS-232 ports, 24 I/O lines, 3 16-bit counter/timers, an 8 -bit DIP switch, and an SBX connector. Debugger, assembler, and C available.
Call or write for more information.
Single Board Solutions, Inc.
20045 Stevens Creek Blvd., Cupertino, CA 95014 (408) 253-0250

Z80,000 \& Z320 are trademarks of Zilog
PC-AT is a trademark of IBM

Data book delineates applications development

The Guide, to 64180 Applications Development gives instructions for programming the 64180 microprocessor. Its inclusion of benchmarks comparing the 64180 with other processors helps you select an appropriate CPU. It tells you how to use the μ P's peripherals such as UARTs, timers, and the memory management unit, and it provides schematics and code segments that are useful in most applications. A description of hardware- and soft-ware-development environments, and a listing of support products complete the guide. A supplementary Guide Disk is also available.

Softaid Inc, 8930 Route 108, Columbia, MD 21045.

Circle No 415

Folder features timers and relays

This 8-pg publication details the vendor's line of timing controls consisting of time-delay relays and timers. The booklet provides a selection chart for time-delay relays and a timer selection guide. It also includes specifications, photographs, and diagrams.

Timeco Inc, Box 8036, Huntington, WV 25705.

Circle No 416

Summary of high-resolution graphics cards

This report identifies all manufacturers of high-resolution graphics cards for the IBM PC/AT and PS/2, and details the products they manufacture. It features a market summary, a product-evaluation scheme, and definitions of the terms used to describe the cards. This 1988 report is three times longer than the 1987 edition. $\$ 250$.
Jon Peddie Associates, 6201 Asoct Dr, Oakland, CA 94611.

INQUIRE DIRECT

Booklet presents UPSs

This $28-\mathrm{pg}$ illustrated brochure depicts the vendor's complete line of FerrUPS and microFerrUPS uninterruptible power systems. It provides application examples, technical and engineering specifications, information about performance and pricing, and available services and options.
Best Power Technology Inc, Box 280, Necedah, WI 54646.

Circle No 417

Periodical deals with information management

FYI, a magazine for information management, publishes information about the company in a featurenews format that covers developments, trends, and case studies. It aims at an audience of executives in information technology; individuals who use high-technology systems, equipment, and components; and
company employees. Articles in a recent issue focus on planning strategic information networks; computerized weather forecasting; a new $\mu \mathrm{P}$ for laptop computers; fail-safe radios for emergency communications, and computerized flight simulation.
FYI, Harris Corp MS-24, 1025 W NASA Blvd, Melbourne, FL 32919.

Circle No 418

Catalog focuses on enhanced customer service

The vendor's $152-\mathrm{pg}$ catalog calls attention to its enlarged customerservice sections located at three separate distribution centers in Pittsburgh, PA; Rochester, MN; and Los Angeles, CA. The publication is divided into nine parts covering coaxial and multiconductor cables, cabling systems, patch panels, cabinets, connectors, cables, converters, modems, multiplexers, power equipment, switches, and other related products for installing, expanding, or modifying computer communications systems. Specific sections on local-area networking offer coax, twinax, Ethernet, cabling system, twistedpair, and multimode fiber-optic systems.

South Hills Electronics, 760 Beechnut Dr, Pittsburgh, PA 15205.

Circle No 419

Milt Scovill's long and winding road

Deborah Asbrand, Associate Editor

Although Milt Scovill left Pacific Northwest Bell 13 years ago, the old Bell system's presence is never far away. Vestiges of what was once the world's largest company are scattered through the office that Scovill built adjacent to his Seattle, WA, home. Along a window ledge sits a row of glass insulators. Collectors items now, they
once perched atop the telephone poles that remain the most visible signs of the vast Bell network. A bookshelf holds early versions of the cordless telephone and the first personal paging system, or "beeper." And mounted on the wall by the door is an old bronze plaque, a genuine Bell artifact that bears the phone company's motto: "No job is
so important, no service so urgent, that we can't take time to perform our jobs safely."

In these days of fast-track careers and the pursuit of engineering as a stepping stone to marketing or management, the slow and careful immersion into engineering that the Bell system offered Scovill is long gone. So is the system itself, which

Milt Scovill parlayed an interest in radio communications and a job as a messenger boy into an engineering career. For the next 33 years, he doggedly remained an engineer first, an employee second. Now a successful consultant at age 66 , he devotes all his working hours to the engineering he loves.
was his nurturer, his teacher, and, eventually, his adversary. Throughout his 33-year career at Pacific Northwest Bell, Scovill doggedly refused to acquire the notorious "Bell-shaped head" or to acquiesce to policies that he believed compromised his engineering designs. Retired from the company since 1975, he attributes his ability to command \$140/hour consulting fees to the richness of his engineering experience during his long and stormy Bell career.
Ever since Pacific Telephone and Telegraph opened its Northwest operations in the 1890s, Seattle has been Bell country. Scovill's family lived across the street from Pacific Telephone's north garage, where the company's installers would go each day to sign out a truck and begin their rounds. His first association with the phone company came when he was a boy. Telephone in-
stallers paid him 25 cents to crawl beneath porches and thread the thick phone wires through holes drilled in the wooden slats.

Radio fascinated Scovill when he was a teenager, and his acquisition of amateur and commercial radio operator's licenses led to future associations with Bell that were more interesting and profitable. When he graduated from high school in 1939, Scovill, like most Seattlites, filled out a job application for the phone company. Within a short time, Pacific Telephone hired him as a messenger. For a while, he took engineering classes at the University of Washington by day and worked for the phone company at night.

After a hitch in the Navy during World War II, Scovill returned to Seattle and to his job at the phone company. When Pacific Telephone found out about his radio interest and his radio operator's licenses, it

${ }^{\text {cc }}$ Opportunities kept popping up for me one after the other. The company put me on a rotational training program. It was an excellent program, the best learning vehicle you could find."
relieved Scovill of his message-shuttling duties and transferred him to a job maintaining mobile-telephone equipment. Shortly after that, Scovill moved to the main training center, where he conducted FCClicense training classes.

The start of a career

Scovill and Pacific Telephone quickly developed a mutual liking. The company's efforts to devise new means of communication fired his imagination, and the young man's interest and enthusiasm made him an ideal training candidate. "Opportunities kept popping up for me one after the other," he remembers. "The company put me on a rotational training program. It was an excellent program, the best learning vehicle you could find." College learning paled by comparison, he decided, and he never returned to campus.

In 1950, opportunity knocked again. "I got a call from the engineering department to work on the layout of the first microwave system in this part of the country," Scovill says. The engineers he'd been assigned to work with were "graduate engineers," he recalls, adding "I was more of a maverick than they were." First impressions aside, Scovill and the others quickly jelled into a team. His transfer to engineering, originally scheduled for just six weeks, became permanent.

Throughout the 1950s he continued to work for Pacific Telephone and remained involved in its microwave and mobile communications operations. Now married and supporting his wife and two daughters, Scovill began to think more about his financial security. He began buying into the Bell systems' stock options plan, which allowed employees to purchase shares for 85 cents on the dollar and without the assistance of a broker. "It was generous, and it was an excellent deal," he says. "Dividends were solid as a rock. You couldn't lose."

Over time, though, Scovill began
to realize that the stock options actually carried a much higher price. It was common knowledge that Western Electric-AT\&T's manufacturing arm-supplied all the parts that Pacific Telephone and the other Bell operating companies used. Stamped onto each Bell product were the words "Made by Western Electric." Scovill found some Western Electric products to be of the highest quality and the best purchase for his engineering designs. Western Electric's cable, for example, was among the best. "They could spin cable like you wouldn't believe, and build good, rugged black telephones," Scovill says. Other products, however, were less reliable, and for these items, he turned to other vendors.

The road not taken

Scovill wasn't naive. He knew that the Bell system's profits didn't come from the local-service fees that the company charged consumers. The real moneymakers were longdistance service and Western Electric. What he didn't know was how far Bell employees would go to defend the policy of purchasing only Western Electric equipment once they qualified for the company's stock plan, which gave them a financial stake in the company's prosperity. He also underestimated the amount of antipathy that his actions would arouse.
Word spread about Scovill's purchases, and at times life became difficult for him. A Pacific Telephone manager once buttonholed Scovill at a party and chastised him for appearing not to understand "how this game is played." Then, after several years of satisfaction with Scovill's performance in the mic owave department, Pacific Telephone transferred him to another department. A dyed-in-the-wool company man became Scovill's new supervisor. The company's message was unmistakable: His new manager would show him how to be a true company employee.

Although he was transferred back to the microwave department two years later, Scovill's days at Bell remained "turbulent," he says. He continued to protest the mandatory Western Electric purchases. "I was under a tremendous amount of pressure." He wasn't a lone voice, however: He always had the support of his staff and his supervisor. When he's asked why he remained with the company, answers elude Scovill at first, but then he sums up his decision to stay in one word: "Stubbornness."

> After hearing descriptions of the 1950 's-era, 24-channel vacuum-tube radios used by Washington's state-police patrol, Scovill accepted the patrol's invitation to redesign the system and postponed his other plans. "It made all the old adrenaline run again."

Indeed, Scovill turned down opportunities that others might have seized. The most tempting one came in 1958 from Bill Farinon, an engineering colleague who worked for a microwave component company. Farinon planned to start his own microwave company in the Silicon Valley area, and he was recruiting engineers to join him. He put in a call to Scovill, who turned him down. "I had just dug the hole for the foundation to this house, and Bill said 'Well, fill it in and get down here,'" Scovill recounts with a smile. His Seattle roots, however, run deep. He's a third-generation Seattlite; his grandfather was born there in 1861. Leaving, he decided, was out of the question. Undoubtedly , it was a similar resoluteness that kept him at Bell.

But in 1975, when Scovill was manager of the microwave department at Pacific Northwest Bell (the name that Pacific Telephone took on in 1965), he finally tired of the conflict. For the first time in 33 years, he laid plans that didn't include Pa cific Northwest Bell. At 53, he planned to retire and finance a venture of his own, using his healthy pension to tide him over. "I had every intention of never having anything to do with the telephone business again," he says adamantly. His great love is flying, and the object of that passion for the past 25 years has been the C-2 Colonial Skimmer amphibian aircraft that he houses at Paine Field. As his first post-retirement project, he intended to manufacture and market an electronic aircraft checklist that he'd devised over the years.

A new career

A true engineer, Scovill can't resist the lure of a problem that needs solving. So when Washington's state-police patrol approached him shortly after his retirement about consulting on a microwave project, he politely explained that he was going to market his avionics device -but he kept one ear cocked. The state patrol planned to abandon its antiquated radio system in favor of a microwave system that would more efficiently link its dispatchers with its fleet of patrol cars. The patrol invited Scovill to redesign the system on a consulting basis. After hearing descriptions of the 1950sera, 24 -channel vacuum-tube radios the patrol used, Scovill caved in. "When I saw what they wanted me to do, it made all the old adrenaline run again."

Shortly after Scovill took on the state-patrol project, Oregon Public Broadcasting called to seek his services for a microwave project it had tried and failed twice to implement. Scovill paused. He hadn't planned on making consulting a second career, but he relished working on his own terms. Even more satisfying

HIGH PROGRAMMING YIELDS

LOW PROGRAMMING COSTS

PC-Remote Programmers

- All EPROM's up to 40 pin!
- P27512 7 seconds per device!
- No limit on RAM size!

Our Programmer range includes:
3000 PC based to megabit EPROMs 4000 Gang EPROM/EEPROM Copiers 5000 Editing/Remote Set EPROM
1011 Bipolar PLD (logic)
1012 Bipolar PROM/EPROM
$1013 \mathrm{Set} /$ Gang EPROM (up to 8×32 pin) 1014 EPLD \& CMOS PLD
1015 Set/Gang EPROM (up to 8×40 pin) \& Elan's Universe 1000 (full universal)
(World's 1st Intel flash EPROM approval)
Options cover single chip micros, PLCC, IBM/VAX remote and Elan Logic compilers.

Ask for our Demo disks.

CIRCLE NO 48
was the fact that he could make a lot of money at it. "I started getting serious about it when my daily income from consulting was rapidly approaching my monthly pension check. I began to think maybe this wasn't a bad business to be in."
The final chapter in the relationship between Scovill and the telephone company came in 1980 , when happenstance brought Scovill to the attention of two lawyers working on the Justice department's antitrust case against AT\&T. The department's lawyers needed assistance in wading through the piles of technical documents associated with the case. They hired Scovill as an expert witness to decipher some of the technical material as well as AT\&T's explanation of it. As he reviewed the documents, Scovill became irate. "I began to get madder and madder at the chicanery that was being played by AT\&T," he says. In the spring of 1981, Scovill flew to Washington DC and recounted for the trial record the ramifications of the Bell system's parts procurement from Western Electric. His former supervisor at Pacific Northwest Bell also received a subpoena. In 1982, Judge Harold Greene ended the Bell era by ruling that the monopoly be dismembered.
Scovill's tumultuous days are behind him, and so is the corporate scene. His office now is a secondstory aerie that overlooks Seattle's Lake Washington. From the room's picture window, he points out the big-leaf maples, cedars, and hawthorns. Atop his L-shaped desk are a pair of binoculars for bird watching, and a ham radio. There's also a 1917 edition of Audel's Easy Lessons in Wireless Telegraphy in mint condition.
Scovill, now 66, continues to handle about four consulting projects at a time-few enough to allow him to play hooky occasionally and take his aircraft for a spin. Retirement, though, is not something he considers. "I can see now that even though I'd like to do more flying, I'll never

The final chapter in Scovill's relationship with the telephone company came in 1980, when Justice department lawyers hired him as an expert witness to decipher some of the technical material involved in the department's antitrust case against AT\&T.
totally retire. If I didn't enjoy what I was doing and feel that I was of value to my clients, I wouldn't do it." Not one to spend time looking back, he's unsentimental about the passing of the Bell era and the breakup of AT\&T.
The 5×5-ft topographical map mounted on one of Scovill's office walls bears mute testimony to his past and present relationship with the now-defunct Bell system. Scovill had bought the map from Pacific Northwest Bell when it sold its older office furniture and other equipment after relocating to new headquarters. The map once hung in the engineering department where Scovill worked, and neat black lines on the map's surface trace the labyrinthine pattern of the company's microwave facilities throughout the northwest.

Undaunted by the magnitude of his former employer's presence, Scovill has added to the map since he acquired it. In addition to the original lines, he's plotted a second set of lines that represent his own, post-Bell microwave projects. The added lines are fewer in number than the original, but they're marked just as boldly. EDN

[^14]
BUSINESS/CORPORATE STAFF

EDN's CHARTER

EDN is written for professionals in the electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, and design techniques.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN provides specific "how to" design information that our readers can use immediately. From time to time, EDN's technical editors undertake special "hands-on" projects that demonstrate our commitment to readers' needs for useful information.

EDN is written by engineers for engineers.

275 Washington St
Newton, MA 02158
(617) 964-3030

Peter D Coley
VP/Publisher
Newton, MA 02158
(617) 964-3030; Telex 940573

Ora Dunbar, Assistant/Sales Coordinator
Deborah Virtue
Business Director
Newton, MA 02158
(617) 964-3030

Mark J Holdreith
Advertising Sales Director
Newton, MA 02158
(617) 964-3030

Heather McElkenny, Assistant
NEW ENGLAND
John Bartlett, Regional Manager
Chris Platt, Regional Manager
199 Wells Ave
Newton, MA 02159
(617) 964-3730

STAMFORD 06904
George Isbell, Regional Manager
8 Stamford Forum, Box 10277
(203) 328-2580

NEW YORK, NY 10011
Daniel J Rowland, Regional Manage
249 West 17th St
New York, NY 10011
(212) 463-6419

PHILADELPHIA AREA
Steve Farkas, Regional Manager
487 Devon Park Dr, Suite 206
Wayne, PA 19087
(215) 293-1212

CHICAGO AREA
Clayton Ryder, Regional Manager
Randolph D King, Regional Manager Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60017
(312) 635-8800

DENVER 80206
John Huff, Regional Manager
44 Cook St
(303) 388-4511

DALLAS 75243
Don Ward, Regional Manager
9330 LBJ Freeway, Suite 1060
(214) 644-3683

SAN JOSE 95128
Walt Patstone, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
James W Graham, Regional Manager
3031 Tisch Way, Suite 100
(408) 243-8838

LOS ANGELES 90064
Charles J Stillman, Jr
Regional Manager
12233 W Olympic Blvd
(213) 826-5818

ORANGE COUNTY/SAN DIEGO 92715
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA
(714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
Walt Patstone, Regional Mana
1750 SW Skyline Blvd, Box 6
(503) 297-3382

UNITED KINGDOM/BENELUX
Jan Dawson, Regional Manager
27 Paul St
London EC2A 4JU UK
44 01-628 7030
Telex: 914911; FAX: 01-628 5984

SCANDINAVIA

Stuart Smith
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
FRANCE/ITALY/SPAIN
Alasdair Melville
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984
WEST GERMANY/SWITZERLAND/AUSTRIA
Wolfgang Richter
Wolfgang R
Sudring 53
7240 Horb/Neckar
West Germany
49-7451-7828; Telex: 765450

EASTERN BLOC
Uwe Kretzschmar
27 Paul St
London EC2A 4JU UK
01-628 7030
Telex: 914911; FAX: 01-628 5984

FAR EAST

Ed Schrader, General Manager
18818 Teller Ave, Suite 170
(714) 851-9422; Telex: 183653

HONG KONG

John Byrne \& Associates Ltd.
1613 Hutchison House
10 HGarcourt Road
Central Hong Kong
Tel. 5-265474
Tlx: 61708 WEDIN HX
Fax: 5-8106781

JAPAN

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: (03) 366-8301
Telex: J2322609 DYNACO

KOREA

Kim Kyong-Hae, BK International
Won Chang Bldg, 3rd Floor 26-3
Yoido-dong, Youngdungpo-ku
Seoul 150 , Korea
Tel: 785-6665, FAX: 784-1915
Telex: K32487 BIZKOR
SINGAPORE/MALAYSIA/INDONESIA/THAILAND/
THE PHILIPPINES/AUSTRALIA/NEW ZEALAND
Asia Pacific Media House PTE Ltd
Peter Cheong
\#24-03 Shaw Tower
Singapore 0718
Tel: 2915354; Telex: RS 50026 MESPLY

TAIWAN

Acteam International Marketing Corp
6F, No 43, Lane 13
Kwang Fu South Rd
Mailing Box 18-91
Taipei, Taiwan ROC
760-6209 or 760-6210
Telex: 29809; FAX: (02) 7604784
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415

CAREER OPPORTUNITIES/CAREER NEWS
Roberta Renard, National Sales Manager
(201) 228-8602

Janet O Penn, Eastern Sales Manager
(201) 228-8610

103 Eisenhower Parkway
Roseland, NJ 07068
Ellen Sherwood, Western Sales Manager
12233 West Olympic Blvd
Los Angeles, CA 90064
(213) 826-5818

Maria Cubas, Production Assistant
(201) 228-8608

Susan M Campanella, Advertising/Contracts Coordinator
Nan Coulter, Advertising/Contracts Coordinator
(617) 964-3030

William Platt, Sr, Vice President, Reed Publishing USA

Cahners Magazine Division
Terry McDermott, President, Cahners Publishing Co Frank Sibley, Group Vice President, Electronics/Computers Tom Dellamaria, VP/Production \& Manufacturing

Circulation

Denver, CO: (303) 388-4511
Sherri Gronli, Group Manager
Eric Schmierer, Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Joanne R Westphal, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018. Phone (312) 635-8800.

CAREER OPPORTUNITIES

1988 Editorial Calendar and Planning Guide

Issue Date	Recruitment Deadline	Editorial Emphasis	EDN News
Sept. 1	Aug. 11	Instruments, Op Amps, Computers \& Peripherals	
Sept. 15	Aug. 25	Data Acquisition, Data Communications, Digital ICs	Closing: Sept. 1 Mailing: Sept. 22
Sept. 29	Sept. 8	DSP, Grahics, Optoelectronics	
Oct. 13	Sept. 22	Test \& Measurement Special Issue, Instruments, Computers \& Peripherals	Sept.
Oct. 27	Oct. 6	CAE, Computers \& Peripherals, Integrated Circuits, Wescon ' 88 Show Preview	Mailing: Oct. 20

Nov. 10 Oct. 20 Programmable Logic Devices, Integrated Circuits, Test \& Measurements, Wescon ' 88 Show Issue

Nov. 24 Nov. 3 Microprocessor Technology Directory Graphics, CAE

Call today for information:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Ellen Sherwood (213) 826-5818
National: Roberta Renard (201) 228-8602

[^15]GE Government Services

The Intel
 Influence

Intel New Mexico opens its second fab in 10 months.

We started out with a goal and a commitment: To lead the way in microelectronic technology. The result: An unprecedented market demand for our latest generation microprocessor family and ground floor opportunities in Fab 9, a state-of-the-art facility which will house 4 different fab modules. Last year, Fab 9.1 began producing the revolutionary 80386 microprocessor. This year, we're starting Fab 9.2 with an even more advanced technology.

PRODUCT/YIELD ENGINEERING

Engineers \& Managers

- Process Control - Contamination reduction responsibilities over entire class 10 clean room. Requires complete familiarity with analysis techniques, particle detectors and counters. Will develop and maintain process control monitors; understanding of SPC a plus.
- E-Test and Pre-Sort/Sort - Testing and characterization. Evaluation of new tester and related hardware to bring up test capabilities. High level software Ianguage knowledge required.
- Gas Pad - Responsible for gas delivery system (cylinder to equipment) and resulting yield. Requires high theoretical gas knowledge and safety standards - contamination control and gas monitoring systems.
BS/MS or equivalent and 3+ years experience required for above positions.

Technicians

- E-Test and Pre-Sort/Sort - Assist in testing and characterization, also assist in evaluation of testers and related hardware; high level software knowledge a plus.
- Gas Pad - Responsible for gas delivery system (cylinder to equipment). Safety standards - requires contamination control and monitoring of all gases.
- Low Yield Analysis - Assist Analytical and LYA Engineers in improving yields. Requires knowledge of SEM, spectroscopy and fab processes.

AA or equivalent and 3+ years experience required for above 3 positions.

PHOTO/ETCH

Process/Equipment Engineers \& Managers

- Photo and Etch - Equipment experience at 1.2 to submicron levels.
- Defect Reduction - Lithography and/or etch experience required.

BS/MS or equivalent and 3+ years experience required for above positions.
Process/Equipment Technicians

- Photo and Etch - Requires equipment and/or process experience with an AA or equivalent and $4+$ years.

AUTOMATION

Senior Programmer Analysts

- COMETS Program Management - Will implement and enhance VAX based information system. May supervise other Programmers if candidate possesses demonstrated management skills. BS/ MS or equivalent and $6+$ years experience.

DIFFUSION/THIN FILMS/IMPLANT

Process/Equipment Engineers \& Managers

- Diffusion - Furnace experience required. Thermco knowledge desirable.
- Thin Films - Films and metals experience required.
- Vacuum/Implant - Establish and improve in thin films and implant equipment reliability to meet process goals. Requires knowledge in sputtering and tungsten silicide deposition.
- Particle Contamination - Familiarity with RCA cleans, CVs and contamination in diffusion and oxidation.
- Spin-on-Glass - Responsibility for advanced SOG process.

BS/MS or equivalent and 3+ years experience

 required for above positions.
Process/Equipment Technicians

- All areas of Diffusion/Thin Films/Vacuum and Implant - Responsibilities in diffusion, thin films and vacuum/implant equipment, process development: poly/nit/HTO, metals deposition, tungsten silicide. Requires an AA or equivalent and 4+ years experience in equipment and/or process.

Albuquerque... a city with a colorful past and high tech future. This dynamic metropolitan area offers clean skies, moderate cost of living, an unspoiled environment and an entire spectrum of cultural and educational opportunities. For the outdoor enthusiast, our year-round recreational activities include backpacking in the Rocky Mountains, skiing in alpine areas, water skiing in our clear lakes and fourwheeling in the high desert.

We welcome your interest in Intel...please send your resume to: Intel Staffing. Dept. N257,
4100 Sara Road, Rio Rancho.

NM 87124.

Equal Opportunity Employer M/F/H

What if ... your career path led to clean air, gorgeous scenery, river rafting, sailing, nature walks and a great house you could afford?

You'd be working at
Hewlett-Packard
in the Pacific Northwest.
Living and working in the Pacific Northwest can be summed up in one word: Opportunity. We have first-rate schools and colleges, a reasonable cost of living, plus every recreational, sports and cultural activity imaginable.

Product Marketing Engineer

Our Lake Stevens Instrument Division in Everett, Washington is looking for a Product Marketing Engineer. Our products include HP's very successful line of low frequency swept and FFT signal analyzers, including the HP3561A, HP3562A and the new HP35660A.

You will research and understand customer applications and market trends; develop, recommend and implement marketing programs; and provide a liaison with $R \& D$, manufacturing and the field sales organization.

Your qualifications will include a BS plus 3 years' experience in electronic engineering or a related scientific discipline; a strong business or marketing background; and a solid foundation in signal analysis tools and techniques. Proven, successful communication skills, excellent judgment and creativity are also required.

We offer you the path to unlimited career possibilities. And a truly outstanding way of life.

So take a new perspective on your career, look to Hewlett-Packard. We pay competitively and have excellent benefits. Please send your resume and salary history to: Personnel, Dept. ED, HewlettPackard, Lake Stevens Instrument Division, 8600 Soper Hill Road, Everett, WA 98205-1298.

Hewlett-Packard Company is an Equal Opportunity/Affirmative Action Employer.

ENGINEERING: Systems Engineer: 5-7 years experience in product development. Position requires strong design skills in analog and digital, video experience preferred. Must be familiar with microprocessor based real time control applications. Regulatory affairs experience a plus. CAD/EDA experience required.

ENGINEERING: Software design engineer: minimum 3 years experience in product development of microprocessor controlled real time applications (8 bit environments). Assembly required, C a plus. Send resume to:

HTS
90 Inverness Circle East
Englewood, CO 80112

INCREASE YOUR PROFITS

TAI staff has extensive experience and a successful track record in promoting and selling products and firms to the military, communications, automobile, nuclear and industrial markets.

If you are in business or if you are only in the "idea stage", we can help! We will:

- Develop your Business Plan
- Structure your Quality Assurance Program to meet MIL-I-45208A and MIL-Q-9858A
- Develop your Brochure
- Assist in locating and securing financing
- Promote your Products Nationally and Internationally
- Assist in Developing and Implementing Sound Business/Management Practices thoroughout your firm

Send information about your type of business and the type of help you need, with a self addressed envelope to:

VP, Marketing Dept.
Tech for Adv
P.O. Box 171253

Kansas City, KS 66117

It's the right job with Philips Ultrasound, impacting the technology of medical imaging. We supply the advanced resources and fine minds to draw from. You supply the desire to make a difference, related experience, and required skills.
The right place is Orange County in Southern California, with its wealth of recreational resources, cultural advantages, and centers of learning. Throw in year-round sun, beaches, mountains, desert, and room to create the kind of lifestyle that's right for you.
The time is right now. Consider the following opportunities.
Senior Project Engineers - These positions emphasize the system aspects of product development and require knowledge and experience in all areas of product design, including digital, analog, software, and packaging. Prior experience with relatively large systems in communications, radar, sonar, or similar applications is required. Candidates should have a BSEE and 10 years design experience with some project level responsibility. High speed digital design and systems development experience necessary.
Principal Engineers - Responsibilities include taking design from feasibility to production for either Front End or Back End Systems Development. A BSEE and 5 years experience including high speed digital design, programmable logic and some analog design background required. Systems integration background is highly desirable.
Senior Engineer - Candidate will design, document, test and release to production circuit board assemblies and provide support to manufacturing and field on products designed. A BSEE and 5 years design experience in low noise RF analog signal processing required as well as a background in high speed digital design.
Mechanical Engineering Supervisor - The selected candidate will supervise engineers and designers in mechanical development activity. Individual will also be responsible for technical analysis and design as well as administrative supervisory activities. The ideal Supervisor will have 10 years experience in electromechanical product design (packaging \& mechanisms) and 5 years similar supervisory experience. A BSME is preferred.
Applied Physicist - We are seeking an Engineer who will be responsible for acoustic power and other water tank measurement activities. These measurements are used to insure compliance of our new products with strict FDA requirements as well as confirmation of system performance. A BS or MS in Physics or Electrical Engineering and a good experimental background are required.
Along with stimulating challenges and a way of life that's second to none, we offer an excellent compensation and benefits package. Apply yourelf. Send your resume along with salary history to Human Resources, Philips Ultrasound, 2722 South Fairview Street, Santa Ana, CA 92704 . Principals only, please.

PHILIPS ULTRASOUND

An Equal Opportunity Employer M/F/H/V.

EDN Databank

Professional Profile

Announcing a new placement service for professional engineers!

To help you advance your career. Placement Services, Lid. has formed the EDN Databank. What is the Databank? it is a computerized system of matching qualified candidates with positions that meet the applicant's prolessional neads and desires. What are the advantages of this new service?

- It's absolutaly free. There are no fees or charges.

IDENTITY

- The computer never forgets. When your type of job comes up. It remembers you're qualifiled.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and It's affiliated offices.
- Your Identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and carcoer objestives will pariodically be reviewad with yw by a P8L prodessional placement parsen
We hope you'ro happy in your ceurrent pesstion. At the same time. chancess are thers is an ideal job you'd prefier if you know about it That's why it makes sense for you to register with the EOM Databank. To do so. |ust mall the complated form below, along with i capy of your resume, to: Plecament Servicess. Lutu., Ine

PRESENT OR MOST RECENT EMPLOYER

\qquad

Reason for Change:
PREVIOUS POSITION:

EDN Databank

A DIVISION OF PLACEMENT SERVICES LTD., INC.
265 S. Main Street, Akron, OH 44308 216/762-0279

MOS/VLSI OPPORTUNITIES

To Meet The Sharp Upswing in Demand For Circuits, We Have Excellent Career Opportunities At All Levels At Our Suburban, Long island Headquarters!

Abstract

Standard Microsystems Corporation is a leading developer and manufacturer of advanced MOS/VLSI circuits for computer peripheral, communications, semicustom and full custom applications. High levels of funding in new product and semiconductor development in the past three years as well as an on-going emphasis on world-wide business development have positioned Standard Microsystems at the forefront of our rapidly growing markets. We are seeking highly qualified individuals for the following positions:

MANAGEMENT

- Director of Computer-Aided Engineering - Manager of Product Engineering
- Area Sales Manager (San Jose based-11 state territory)

ENGINEERING

- CAE Engineers
- Test Engineers
- Process Engineers
- Failure Analysis Engineers
- VLSI (ASIC) Design Engineers
- Product Engineeers
- Field Applications Engineers (San Jose, Europe, or Far East)

You must have the appropriate educational background with a stong academic record (a master's degree is preferred) plus significant achievements in the area in which you are interested.

Standard Microsystems, one of the most successful and stable companies in the industry, offers excellent salaries, a full range of insurance coverages, financial benefits programs such as tax deferred stock purchase and profit sharing, bonus, and stock options plans; comprehensive relocation assistance; advancement opportunities; a progressive, employee-oriented work environment; and job security. You and your family will also appreciate our desirable Suffolk County, Long Island location, approximately 50 miles from New York City and all its advantages while close to the finest beaches and boating plus educational institutions in the country. To apply, please send your confidential resume, including your salary history and the area of your interest to: A. P. Solowey, Manager, Recruitment, Dept. D, Standard Microsystems Corporation, 350 Kennedy Drive, Hauppauge, New York 11788. SMC is an equal opportunity employer m/f.

ACCEL Technologies Inc
Advanced Computer
Consulting Inc
Consulting Inc 250
Advanced Micro Devices . 12-13, 50-51
Advanced Motion Controls 249
AMP . 104-105
Amperex Electronic Corp* . . . 229, 241
Analog Devices Inc 30, 136, 206
Apex Microtechnology Corp 43
Applied Microsystems Corp 14-15
Aries Electronics Inc 84
Arrow Electronics 244, 245
Astec . 33
Atronix . 232
B\&C Microsystems 252, 253
BP Microsystems 251
Burr-Brown Corp 232
Bytek Corp 249
CAD Software 251
CADdy Corp 249
Calcomp 238-239
Capital Equipment Corp 252
Cedrus . 249
Cherry Electrical Products Inc 250
Clairex Electronics 44
Coilcraft . 34
Comair Rotron Inc 42
Comlinear Corp 191, 225
Communication Specialists 251
Communications Specialties Inc .. 249
Crystal Semiconductor 156-157
Cybernetic Micro
Systems 250, 252, 253
Cypress Semiconductor 48
Data Inc . 182
Data I/O Corp/Futurenet Div C4
Deltron Inc . 232
Digital Electronics Corp 54
Digital Equipment Corp* 220-221
Du Pont Co Vacrel 94-95
EF Johnson Co 250
EG\&G Reticon 68
Elan Digital Systems 258
Electro-Mechanics 253
Electronic Solutions 82
Electronica . 218
Emulation Technology Inc 251
Ericsson Components 166, 192
E-T-A Circuit Breakers 247
Fujitsu Microelectronics Inc^{*}. . 153-155
F W Bell Inc
31
GE Solid
State 38-39, 122-123, 175-178
Harris Semiconductor Products . . 144
Harting Electronics** 18-19
Hewlett-Packard Co C2, 16-17, 37, 117, 119-121, 137-139
Integrated Device
Technology Inc 158
Intel/Arrow Electronics 244, 245
International Rectifier C3
Introl Corp 228
Intusoft. 250
Itac Systems Inc 253
John Fluke Manufacturing Co Inc . . . 6
Kepco Inc.
Linear Technology Corp 203-204
Logical Devices Inc
195-198
3M Fluoronics
165
Marshall
35-36
Maxim Integrated Products
188
188
Mendelson Electronics
Mendelson Electronics
10-11
10-11
Mentor Graphics Corp
Mentor Graphics Corp
103
103
Mepco/Centralab
Mepco/Centralab 42
MicroCASE* 20
Microswitch 226, 227
Midcon 81
Mini-Circuits
Laboratories 26-27, 219, 268
Mitsubishi 91
Mizar Inc 201
National Semiconductor
Corp 46-47, 62-63
NEC Corp 134-135
NMB Semiconductor Corp 64
Nova Sensor 208
OKI Semiconductor 40-41
Omation Inc 251
Patton \& Patton 252
PCB Piezotronics Co 251
Pearson Electronics 232
Philips Circuit Assemblies 186-187
Philips Components** 20
Philips Elcoma Div** 154-155, 216
Philips T\&M** 45, 153
Phillips Components Inc 228
Positronic Industries Inc 233, 235
Powerex Inc 212
Precision Filters Inc 224
Precision Interconnect 4
Precision Monolithics Inc 66
Qua Tech Inc 252
RLM Research 253
Robinson-Halpern 252
Samsung Semiconductor 69-80
Schaevitz Engineering 118
Seiko Instruments 181
SenSym 115
SGS-Thomson
Microelectronics* 52-53
Siemens AG** 220-221, 242
Siemens AG Karlsruhe** 52-53
Siemens Components Inc* 45
Silicon Systems Inc 92, 93
Single Board Solutions 253
Sipex Corp-Hybrid Systems 89
S-MOS Systems 142-143
Sophia Systems Inc 163
Spectrum Software 56
Sprague Electric Co 59
Tatum Labs 250
TDK Corp of America 25
TEAC Corp** 6
Tektronix Inc 8, 97-100, 101-102
Telebyte Technology Inc 84
Teradyne Inc 28-29
Texas Instruments Inc 151
Texas Microsystems Inc 234
Toko America Inc 185
Toshiba AmericaInc/MOS IC Division140-141

Toshiba America	
Inc/Semiconductor Div	87
Toshiba Corp	248
Transmetrics	
TRW/LSI Products Inc	23
Universal Cross-Assem	251
Video Monitors Inc	32
Visionics Corp	250
VTC Inc	
Wavetek San Diego Inc	
Wika Corp	240
Winpoint Electronic Corp	253
Wintek Corp	, 253
Xeltek	249
Zax Corp	
Zericon	250
Ziatech Corp	
Zilog Inc.	85

Recruitment Advertising 260-265

Computrol
GE Government Services
Hewlett-Packard
HTS
Intel
Phillips Ultrasound
Technology for Advancement
*Advertiser in US edition
**Advertiser in International edition

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

LOOKING AHEAD

EDITED BY CYNTHIA B RETTIG

Surveys quiz CASE users and vendors

What do CASE-tool users want? And what do vendors think they ought to want? Strategic Focus, a consulting firm based in Milpitas, CA, interviewed 400 CASE-tool users and some of the sellers of those tools. It found that users think the tools often lack some very highly desirable features. They said that the majority of individual packages doesn't address the entire range of requirements for developing software from beginning to end. Users also wanted to see more interfaces between tools. And they wanted better integration of various tools needed throughout the development cycle, including a uniform interface to database management systems.

Learning how to use CASE tools takes too long, some users said. Others pointed out that the initial costs are high enough to require some kind of formal justification to superiors prior to purchase and a great deal of pressure to produce afterward. Users would also like better means for measuring productivity when using CASE packages. Because most of the CASE-tool companies are relatively small, support for customers at remote sites is generally very weak.

On the positive side, users identified the five top reasons why they turn to CASE tools in the first place. Of those polled, 37% said they use these tools to track the users' requirements throughout the entire development period. And 35% found that when using CASE tools, they can communicate better with end users. Among the other benefits derived from using CASE tools were improved quality of the final products, reusable software modules, and reduction in the time required

HOW USERS RATE CASE TOOLS

LIFE CYCLE PHASE	SATISFIED (\%)	DISSATISFIED (\%)
STRATEGIC PLANNING	30	70
ANALYSIS	65	35
DESIGN	70	30
PROTOTYPING	66	34
CODE GENERATION	50	50
DEBUGGING	54	46
PERFORMANCE TUNING	37	63
SYSTEM BUILDING	50	50
OPERATION/MAINTENANCE	50	50
DOCUMENTATION	61	39
REVERSE ENGINEERING	0	100
PROJECT MANAGEMENT	50	50
CONFIGURATION MANAGEMENT	46	54
SOURCE CODE CONTROL	50	50

to complete a given project.
When Strategic Focus surveyed the vendors themselves, it found them fairly aware of the relative importance of various features and services that will be keys to their success in the next few years. They said they considered customer education and support very significant. They also believe that it's good to include in the packages ways to measure improved productivity. Building and maintaining a strong
direct sales force and establishing a strong company image are also critical. Strategic Focus sees a major shakedown coming in the CASE-tool marketplace, and it predicts that, of the more than 55 CASE vendors currently vying for market share in the US, it's very possible that only a third of them will still be around in 1991.

PC-board ATE market to reach $\$ 1.1 \mathrm{~B}$ by ' 93

Market Intelligence Research Company (Mountain View, CA) estimates that the world market for automatic test equipment (ATE) available on printed-circuit boards and subassemblies will reach $\$ 1.1$ billion by 1993. MIRC expects that the fastest growing area of the market over the next few years will be the segment that makes and sells defect analyzers for manufactured goods. This segment should grow at a compound annual growth rate of 24%. Although functional-testing
products has recently lost market share, the market researchers predict that there will be renewed interest in those functional-testing products in the near future.

MIRC characterizes the pc-board ATE market as highly competitive. It discerns a trend toward combining and generally upgrading the types of boards currently available. These types include bareboard, incircuit, and performance boards, as well as functional devices and defect analyzers for manufacturers' goods.

transformers

$3 \mathrm{KHz}-800 \mathrm{MHz}$
 over 50 off-the-shelf models from ${ }^{\$} 2^{95}$

Choose impedance ratios from $1: 1$ up to $36: 1$, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55631 requirements*).
Fast risetime and low droop for pulse applications; up to 1000 M ohms (insulation resistance) and up to 1000 V (dielectric withstanding voltage). Available for immediate delivery with one-year guarantee.

Call or write for 64 -page catalog or see our catalog in EBG, EEM, Gold Book or Microwaves Directory. *units are not QPL listed
finding new ways.
setting higher standards

Introducing the IR2110 high-voltage, bridge driver. The high side and the low side. Without the down side. It works off-line, anywhere woridwide. Inputs are LSTTL All at frequencies well above 1 MHz ! and CMOS compatible. With two independently controlled outputs to drive upper/lower HEXFET* and IGBT power supply and motor control circuits.

This is powerful stuff. Each output can drive up to 2 A . With its dy/dt immunity making it almostindestructible. Of course you won't be needing transformers, optical isolation or 60% of your drive components. That's the beauty and simplicity of this 500V bridge driver. Just add a
diode, a resistor, a capacitor and the design's complete.

The IR Revolution has reached the bridge. The bridge between control and power.

Cross over. Call us at (213) 607-8899 and ask about the IR2110 Bridge Driver.

TIOR INTERNATIONAL RECTIFIER
233 Kansas Street, ElSegundo, CA90245

LOGIC SYNTHESIS

[^0]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Manufacturing \square Foodservice \& Lodging
 \square Electronics \& Computers \square Interior Design \square Printing \square Publishing \square Industrial Research \& Technology \square Health Care \square and Entertainment. Specialized Consumer Magazines:
 \square American Baby \square and Modern Bride.

[^1]: TDK CORPORATION OF AMERICA HEAD OFFICE 1600 Feehanville Drive, Mount Prospect, IL 60056 , U.S.A. Phone: (312) $803-6100$ CHICAGO REGIONAL OFFICE Phone: (312) 803-6100 INDIANAPOLIS REGIONAL OFFICE Phone: (317) 872-0370 NEW YORK REGIONAL OFFICE Phone: (516) 625-0100 LOS ANGELES REGIONAL OFFICE Phone: (213) 539-6631 DETROIT DISTRICT OFFICE Phone: (313) 353-9393 NEW JERSEY DISTRICT OFFICE Phone: (201) $736-0023$ HUNTSVILLE DISTRICT OFFICE Phone: (205) 539-4551 GREENSBORO DISTRICT OFFICE Phone: (919) 292-0012 DALLAS DISTRICT OFFICE Phone: (214) 506-9800 SAN FRANCISCO DISTRICT OFFICE Phone: (408) 437-9585 TDK CORPORATION. TOKYO, JAPAN

[^2]: *Study done by Venture Development Corporation.

[^3]: - Total capacity of 10,000 gates
 - Integrated schematic editor
 - Fast assembly language routines
 - Standard parts library of 200 types
 - Event-driven timing simulator

[^4]: O1988 National Semiconductor Corporation
 PLAN is a trademark of National Semiconductor Corp. GAL is a registered trademark of Lattice Semiconductor Corporation. PAL is a registered trademark of Advanced Micro Devices (Monolithic Memories Inc.) ABEL is a registered trademark of Data 1/O Corp And CUPL is a registered trademark of Assisted Technologies Inc

[^5]: TOSHIBA AMERICA, INC., Semiconductor Products Division Headquarters, 9775 Toledo Way, Irvine, CA 92718 • (714) 455-2000. Regional Sales Offices: Western Region, (714) 455-2000; Central Region, (312) 945-1500; Northeastern Region, (617) 272-4352; Southeastern Region, (404) $368-0203$.
 Distributed by: Marshall Industries, Cronin Electronics, General Components, Inc., Goold Electronics, ITT/Multicomponents • RAE Electronics (Canada only), Image Electronics, Ital Electronics, JACO Electronics, Reptron Electronics, Sterling Electronics and Western Microtechnology.

[^6]: Products subject to avalability.

[^7]: NEVADA, Elrepco, Inc., (415) 962-0660; NEBRASKA, D.L.E. Electronics, (316) 744-1229; NEW ENGLAND, Datcom, Inc., (617) 891-4600; NEW HAMPSHIRE, Datcom, Inc., (617) 891-4600; NEW JERSEY, Nexus-Technology, (201) 947 -0151; NEW MEXICO, Summit Sales, (602) $998-4850$; NEW YORK, Nexus Technology, (201) 947-0151; Pi-tronics, (315) 455-7346; NORTH CAROLINA/SOUTH CAROLINA, Montgomery Marketing, Inc., (919) 467-6319; NORTH DAKOTA/SOUTH DAKOTA, Electric Component Sales, (612) 933-2594; OHIO, Steffen \& Associates, (216) 461-8333; (419) 884-2313, (513) 293-3145; OKLAHOMA, MIL-REP AssOciates, (214) 644-6731; OREGON Components West, (503) 684-1671; PENNSYLVANIA, Nexus Technology, (215) 675-9600, Steffen \& Associates, (412) 276-7366; RHODE ISLAND, Datcom, Inc., (617) 891-4600; TENNESSEE, Montgomery Marketing, Inc (205) 830-0498; TEXAS, MIL-REP Associates, (512) 346-6331, (713) 444-2557, (214) 644-6731; UTAH, Straube Associates Mountain States, Inc., (801) 263-2640; VERMONT, Datcom, Inc., (617) 891-4600; WEST VIRGINIA Steffen \& Associates, (419) 884-2313; WASHINGTON, Components West, (206) 885-5880, (509) 922-2412; WISCONSIN, Carlson Electronics, (414) 476-2790, Electric Component Sales, (612) 933-2594; WYOMING, Straube Associates Mountain States, Inc., (303) 426-0890; CANADA, BRITISH COLUMBIA, Components West, (206) 885-5880; ONTARIO, Electro Source, Inc., (416) 675-4490, (613) 592-3214; QUEBEC, Electro Source, Inc., (514) 630-7486.

[^8]: P.0. Box 17847, Austin, TX 78760

[^9]: Rochester (716) 235-7620
 OH Cleveland (216) 248-1788. Dayton (513) 898-4480* Westerville (614) 891-7580 OR Portland (503) 644-5050* PA Pittsburgh (412) 963-0441. TX Austin (512) 837-1991*

[^10]: *EDN provides fully functional copies of PC-File + for a nominal reproduction fee. Receipt of PC-File + does not constitute ownership, which must be purchased from Buttonware for $\$ 69.95$ if you continue to use the program, but merely the right to evaluate the program's capabilities. EDN assumes no responsibility for the programs operation.

 PC-File + runs on IBM PCs and compatible computers and requires 384 k bytes of memory, two double-sided floppy disk drives or one double-sided floppy drive and a hard disk, an 80 -column display, and

[^11]: CDigital Equipment Corporation, 1988
 The Digital logo, VAX, MicroVAX, VAXstation and DECnet are trademarks of Digital Equipment Corporation.
 SCICARDS is a registered trademark of Scientific Calculations, a division of Harris Corporation.

[^12]: 7400 N. CRONAME RD., CHICAGO, IL 60648 Tel. (312) 647-8303 FAX: (312) 647-7494 © 1988 E-T-A Circuit Breakers

[^13]: Toshiba America, Inc., Chicago Office: 1101A Lake Cook Rd., Deerfield, IL 60015 Tel: 312-945-1500 Western Area Office: 2021 The Alameda, Suite 220 , San Jose, CA 95126 Tel: 408-244-4070 Eastern Area Office: 25 Mall Road, 5th Floor, Burlington, MA 01803 Tel: 617-272-4352

[^14]: Article Interest Quotient
 (Circle One)
 High 515 Medium 516 Low 517

[^15]: Engineers
 Systems Service Engineers
 Hightstown, NJ
 GE Government Services has immediate opportunities for experienced professionals (degrees preferred) in the field of Systems Engineering including:

 - Power
 - Guidance navigation and attitude control
 - Data management/digital systems
 - Component specification
 - Test and verification
 - Ground and in orbit operations
 - Communications (eg K-Band, S-Band, TDRSS Links)

 GE Government Services offers an excellent salary and a comprehensive benefits package as well as significant opportunities for continued professional growth. Please forward your resume with salary requirements to: Barry Robinson, GE GOVERNMENT SERVICES, Rt. requirements to: Barry Robinson, GE Gidg. 201-2, Cherry Hill, NJ 08358. Equal Opportunity Employer.

