

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Special Report:
 FIFO-memory architectures repackage as well as buffer data

BiCMOS is clearly the way of the future. You can either deny it or wait for it. Or get there first, with Fujitsu Microelectronics, Inc.

It's the name of the game. The guy who gets there first with the fastest, smallest system wins. Those who follow, stay in the game. The rest drop out.

Which is why the smart money is betting on BiCMOS. Combining bipolar speeds with the high-densities and low power of CMOS, it's the technological edge your systems need to stay competitive.
Now meet the leader.
As the leader in both CMOS and bipolar technologies, Fujitsu Microelectronics is uniquely qualified to lead the BiCMOS market. We' ve already shipped nearly a million units of BiCMOS products. And we've invested over $\$ 500$ million in our next generation.

To the rest, follow this.

Our current BiCMOS line has already set quite a pace. You can go standard or ASIC, offering both ECL and TTL interfaces.

Our standard SRAMs deliver maximum access time under 15 ns and power dissipation under IW. While our high-speed BiCMOS ASICs give you over 16,000 gates.

And that's just today. Our next wave of BiCMOS SRAMs will use 0.5μ technology to deliver sub-10ns access times. While our new sea-of-gates BiCMOS ASICs will offer 180ps typical gate delays and over 160,000 gates.

Get on the phone.

The sooner you design-in Fujitsu BiCMOS, the stronger your new systems will run. Our intensive support can speed your development time every step of the way. Helping you bring a stronger product to market in a much shorter time. And making your systems a very hard act for the competition to follow. To start today, call 1-800-642-7616.

Lead, follow, or get out of the way.

Presenting the three rules of BiCMOS design.

Now ore family d

High Speed, High Current Low Side MOSFET Drivers

Drives a hex 0-hex 3 size
MOSFET: 400 pF to 3000 pF .

Orives a hex 0 - hex 3 size MOSFET; 400 pF to 3000 pF .

Drives a hex 4 - hex 5 size MOSFET; 6000 pF to 12000 pF .

Orives a hex 6 -hex 7 size
MOSFET : 15000 pFto 16000 pF

Orives a hex 0-hex 3 size
MOSFET 400 pF to 3000 pF
MIC1426/7/8 (Low Cost)

- Low cost predriver
- 38 nS into 1000 pF
- 4.75 V to 16 V supply
- 1.2 A peak output
- 8Ω output impedance
- Available in surface mount
packages
MIC4426/7/8 (Protected)
- Latch-up protected
: 25 nS into 1000 pF
: 4.5 V to 18 V supply
- 1.5 A peak output
- 7Ω output impedance
- Withstands 5 V negative swing
- Available in surface mount and
high temperature packages

MIC4423/4/5 (High Current) 25 nS into 1800 pF - 4.5 V to 18 V supply

- 3 A peak output
- 3.5Ω output impedance - Withstands 5 V negative swing Available in surface mount packages

MIC4420/4429 (Singles) - Latch-up protected

- 25 nS into $10,000 \mathrm{pF}$ 25 nS into $10,000 \mathrm{pF}$
4.5 V to 18 V supply
6 A peak output
$\begin{array}{lrl} & \\ \text { Withstands } 5 \mathrm{~V} \text { negative swing } & \\ \text { Available in surface mount } & & \end{array}$

MIC4465/6/7/8/9 (Quad)

- Latch-up protected - 25 nS into 470 pF - 4.5 V to 18 V supply
-1.2 A peak output
Available in surface mount packages - Five logic choices

Mos

High Side, Protected MOSFET Drivers

MIC5010

- Full Featured predriver Optional speed up caps 7 V to 32 V supply Internal charge pump $60 \mu \mathrm{~S}$ into 1 nF
Over current sensing
Fault flag output
Surface mount packages
Dynamic sensing threshold

MIC5011

Minimum parts count
Optional speed up caps
4.75 V to 32 V supply

Internal charge pump
$60 \mu \mathrm{~S}$ into 1 nF
Surface mount packages

MIC5012

Dual predriver

- Provides high and low side 4.75 V to 32 V supply - Internal charge pump
60μ S into 1 nF
Surface mount packages

MIC5013

- Over current sensing
- 7 V to 32 V supply
- Fault flag output
- Internal charge pump

60 S into 1 nF
$60 \mu \mathrm{~S}$ into 1 nF
Surface mount packages
Dynamic sensing threshold

Choose from the widest selection of MOSFET predrivers in the industry. Whether your specification requires ultrafast low side driving, overcurrent protected high side driving, or overcurrent protected low side driving of 1 Amp to 100 Amp MOSFETs, we can supply the right product from our family of CMOS drivers to reliably meet your needs. For details contact: Micrel Semiconductor, 560 Oakmead Parkway, Sunnyvale, CA 94086. Or call (408) 245-2500.

SEMICONDUCTOR
The Intelligent Power Company ${ }^{\text {tm }}$

And Here Are Two Great Ways to Learn More About Your Choices!

New 1991 Catalog
Use our new 1991 color catalog to learn about the latest instrumentation technology for personal computers and workstations. Our How to Choose section guides you through your product selection. Each section has a tutorial to help you evaluate your product choices to meet your application needs. In addition, cross references throughout the catalog assure that you select a well integrated system. Call for a free catalog.

New Technical Seminar Attend our technical training seminar to learn about using personal computers for data acquisition, analysis, and presentation. This informative seminar teaches you how to identify signals, choose the most efficient way to acquire the signal, perform the correct analysis on them, and effectively present the results. Call for scheduling information.
(800) IEEE-488 U.S. and Canada 6504 Bridge Point Parkway
Austin, TX 78730-5039

Just select and move icons to build a complete ATE test and data management program.

Exciting graphic possibilities include visual operator prompts for repair or calibration.

Create test programs, run them, analvze data, then go to lunch. Thart' Waverest on a DEC System.

WaveTest XTM (Extended Test Manager) is the software solution test dreamed about, when they had time to sleep. It combines the fun and efficiency of iconic test generation with the power of VMS and ULTRIX workstation environments. You can collect, analyze and distribute test data with the flick of a mouse.

WaveTest XTM provides graphics, plotting, FFT's, power spectral density analysis, statistical analysis and much more. It also links seamlessly with thousands of third party software application packages.

WaveTest XTM operates in the industry standard X-Windows environment. If you've worked in DOS Windows, you'll be in familiar territory.

To create your specific automated testing and reporting program, just drag
and connect icons from our Libraries. The icons represent subroutines which can control instruments or systems, run tests, or access network resources and data management tools. WaveTest XTM automatically ties it all together, even generates the test documentation.

For more information about WaveTest XTM on Digital workstations, call Wavetek San Diego, Toll Free, today at 1-800-874-4835.

chn:pirlow

On the cover: Certain features of firstin, first-out (FIFO) memories make them ideal buffers for the data flowing between devices operating at different rates. Read about it in our Special Report on pg 98. (Photo courtesy Integrated Device Technology; photography by Mel Lindstrom; model maker, Evan Ormondroyd)

SPECIAL REPORT

FIFO memories

Evolved from simple buffers, today's FIFO memories provide a link between channels with dissimilar data rates. They smooth over such mismatches as serial vs parallel format, differing bus widths, and speed variations in uni- or bidirectional data flow. -Richard A Quinnell, Regional Editor

DESIGN FEATURES

Real-time programming-Part 8

The discussion of task coordination methods continues in Part 8 of this series with an overview of how message buffers and mailboxes coordinate tasks in real-time applications. Parts 9 and 10 will discuss several other methods of task coordination.
—David L Ripps, Industrial Programming Inc

DSP chips can produce random numbers 141 using proven algorithm

You can use random-number sequences to test electronic components faster than more traditional methods allow. And a well-programmed DSP $\mu \mathrm{P}$ is one of the fastest ways to produce random-number sequences.-Paul Mennen, Tektronix Inc

TECHNOLOGY UPDATES

Servo-motor controller boards:
 Boards refine the art of servo control

Modular control boards and user-friendly software let system designers control sophisticated motions.-John Gallant, Associate Editor

Continued on page 7

[^0]
1 $\mu \mathrm{A}$ OP AMP EXTENDS battery Life 15X

3．6 μ W Power Consumption－Lowest Ever

Maxim＇s new MAX406 op amp is the lowest power op amp on the market today， requiring a maximum supply current of only $1.2 \mu \mathrm{~A}$－leakage current in most battery－ powered applications．And，it consumes less than $3.6 \mu \mathrm{~W}^{\star}$ of power enabling lithium or alkaline batteries to last years longer．A review of the specs below will show you that the new MAX406 is the ideal op amp for solar powered products，hearing aids，barcode readers，and many other micropower applications．

－ 1.2μ A max Supply Current

－$<0.1 p A$ Input Bias Current
－0．5mV max Input Offset Voltage
－Input Voltage Range Includes Neg Supply Rail
－40kHz Gain Bandwidth

MAX406 VS．ALTERNATIVES				
Device $\left(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$	I_{Q} $\mu \mathrm{max}$	V_{OS} mV max	I_{B} pA typ	Rail－to－Rail Output
MAX406	$\mathbf{1 . 2}$	$\mathbf{0 . 5}$	$\mathbf{< 0 . 1}$	YES
ICL7611	20	2	1	YES
TLC271	23	2	0.1	NO
OP90	20	0.15	4000	NO

－Wide Supply Voltage Range：+2.4 V to $+\mathbf{1 0 \mathrm { V }}$ or $\pm \mathbf{1 . 2 \mathrm { V }}$ to $\pm 5 \mathrm{~V}$

－Rail－to－Rail Output Sources 2，000X Supply Current

The MAX406 maintains linearity under heavy load conditions and is capable of soukcing as much as 2 mA from a 9 V battery．The output swings rail－to－rail while the input voltage range extends to the negative supply rail．The new device operates from voltages as low as 2.4 V while maintaining widest input and output voltage ranges．

Lowest Bias Current，Highest Stability

Input bias current of the MAX406 is less than 0．1pA－a 10X improvement over other low－power op amps．Input offset voltage is 0.5 mV maximum，eliminating the need for offset nulling in most applications．As a buffer，the MAX406 is extremely stable without any external compensation，even when driving capacitive loads as high as $1 \mu \mathrm{~F}$ ．

Call your Maxim representative today for applications information，data sheets and samples．Or，write Maxim Integrated Products， 120 San Gabriel Dr．，Sunnyvale，CA 94086， （408）737－7600，FAX（408）737－7194．
＊From 3V supplies

NルノXIノV

[^1]

Today vendors offer an assortment of servo-motor controller boards for the ISA bus (pg 61).

EDN magazine now offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.

ExpressıIII

 Request
Power hybrid ICs:
 77 Multichip circuits satisfy special needs
 Monolithic ICs and discrete power devices can't satisfy every need. For power applications requiring space-saving packaging, a hybrid circuit may be your best choice.-Dave Pryce, Associate Editor

Show Preview: 90
Futurebus + nabs center stage at Buscon

Buscon/West 91 will bring engineers up to date on bus technology
and architectures.-Susan Rose, Associate Editor

EDITORS' CHOICE

Multibus II programmable logic board

DESIGN IDEAS

Digital recorder speeds sampling rate 151
Bootstrapped amp makes current source 152
High-side switches control 5V supply 154
Audio compressor splits the band 160
Calculator and IC simplify linearization 162
VFC rejects common-mode noise 166
SR flip-flop responds to edges 168
Power buffer boosts reference's current 170
Feedback and amplification 172

EDITORIAL 57

Test engineers deserve recognition, too. Here's an opportunity to nominate your favorite test engineer for an important award.

Continued on page 9

[^2]

Around the world, productivity is the driving force in PCB CAD design.

World class UNIX ${ }^{\circledR}$ productivity for technical workstations is exactly what you get with PREMIER PCB ${ }^{\text {TM }}$. Together with the proven quality that has made P-CAD the worldwide leader in PCB design.

PREMIER PCB gives you the power, flexibility and speed you need to get your next product to market faster. And with a high-level user interface and end-to-end integration that lets you complete and verify your designs with more efficiency - in a lot less time.

Worldwide networks mean a mix of platforms, as well as shared databases and libraries. That's why P-CAD supports the transfer of database files and libraries between DOS and UNIX-based systems. And with network licensing, PREMIER PCB is equally productive in workstation or server environments.

P-CAD enhances your productivity with worldwide training and support. You'll get fast answers from our global network of Value-Added Resellers, as well as our Technical Support Center and hotline with a 24-hour electronic bulletin board.

Find out how you can boost your productivity with PREMIER PCB on a Sun ${ }^{\circledR}$ SPARCstation ${ }^{\text {TM }}$ or IBM $^{\circledR}$ RISC System $/ 6000{ }^{\text {Tw }}$. Call P-CAD today for your nearest reseller. We'll send you a FREE copy of our new applications booklet, "PCB CAD Proven Solutions." Call toll-free: 800-523-5207. (In CA: 800-628-8748)

PRODUCTS FROM CADAM, AN IBM COMPANY

[^3] Sun Microsystems, Inc. UNIX is a registered trademark of AT\&T. P-CAD, 1290 Parkmoor Ave., San Jose, CA 95126, (408) 971-1300, FAX (408) 279-3752. ©I991 CADAM INC.

```
VP/Publisher
            Peter D Coley
            Associate Publisher
            Associate Publish
        VP/Editor/Editorial Director
            Jonathan Titus
            Managing Editor
            Joan Morrow Lynch
            Special Projects
                Gary Legg
            Home Office Editorial Staff
        275 Washington St, Newton, MA 02158
            (617) 964-3030
        Tom Ormond, Senior Editor
        Charles Small, Senior Editor
        Jay Fraser, Associate Editor
            John A Gallant, Associate Editor
    Michael C Markowitz, Associate Editor
        Dave Pryce, Associate Editor
        Carl Quesnel, Associate Editor
        Susan Rose, Associate Editor
    Julie Anne Schofield, Associate Editor
        Dan Strassberg, Associate Editor
        Chris Terry, Associate Editor
            Helen McElwee, Senior Copy Editor
        James P Leonard, Copy Editor
Christine McElvenny, Senior Production Editor
    Gabriella A Fodor, Production Editor
        Brian J Tobey, Production Editor
            Editorial Field Offices
        Steven H Leibson, Senior Regional Editor
        Boulder, CO: (303) 494-2233
            Doug Conner, Regional Editor
        Atascadero, CA: (805) 461-9669
            J D Mosley, Regional Editor
            Arlington, TX: (817) 465-4961
    Richard A Quinnell, Regional Editor
            Aptos, CA: (408) 685-8028
    Anne Watson Swager, Regional Editor
        Wynnewood, PA: (215) 645-0544
            Maury Wright, Regional Editor
            San Diego, CA: (619) 748-6785
            Brian Kerridge, European Editor
                    (508)28435
                    22 Mill Rd, Loddon
                    Norwich, NR14 6DR, UK
                    Contributing Editors
            Robert Pease, Don Powers,
                David Shear, Bill Travis
                    Editorial Coordinator
                    Kathy Leonard
                    Editorial Services
                    Helen Benedict
                    Art Staff
        Ken Racicot, Senior Art Director
    Chinsoo Chung, Associate Art Director
            Cathy Madigan, Statf Artist
            Sharon O'Brien, Staff Artist
        Production/Manufacturing Staff
    Andrew A Jantz, Production Supervisor
    Sandy Wucinich, Production Manager
    Kelly Brashears, Production Assistant
    Melissa Carman, Production Assistant
            Diane Malone, Composition
            Director of Art Department
                    Robert L Fernandez
            Norman Graf, Associate
        VP/Production/Manufacturing
                    Wayne Hulitzky
    Director of Production/Manufacturing
                    John R Sanders
                    Business Director
                    Deborah Virtue
    Marketing Communications
    Anne Foley, Promotion Manager
    Pam Winch, Promotion Assistant
```


NEW PRODUCTS

Test \& Measurement Instruments 179
CAE \& Software Development Tools 186
Integrated Circuits 192
Computers \& Peripherals 200
Components \& Power Supplies 208
PROFESSIONAL ISSUES
The job-hunting blues230
Unemployment among electrical engineers has not yet reachedcrisis proportions, but engineers who have been thrown back intothe job market tell a different tale.-Julie Anne Schofield,
DEPARTMENTS
News Breaks 21
Signals \& Noise 31
Ask EDN 45
Calendar 48
Leadtime Index 95
Literature 218
Business/Corporate Staff 240
Career Opportunities 242
EDN's International Advertisers Index 244

Test yourfastestprototypeASICsfor

Finally, a 400 MHz IC Evaluation System.
Before you send those fast ASIC designs off to production, make sure they'll handle the stress of real-world operating conditions.
Now, that's possible-even for GaAs, ECL, and BiCMOS devices-with the new 400 MHz , HP 82000 IC Evaluation System.

It's a testing breakthrough .
a 400 MHz vector rate on all chan nels and up to 512 pin capacity. Finally, you can verify and characterize complex prototype ASICs to their limits. Which means you'll send fast ICs to production with the confidence that they won't return for time-consuming and expensive redesign.

You can even go a step further. Its high-throughput software lets you efficiently test small

batch production runs, too.
And because all the systems in the HP 82000 family are modular, you can expand from 50,100 , or 200 MHz to 400 MHz as your needs change. This protects your original investment.
So call 1-800-752-0900* today. Ask for Ext. 1615 and we'll send the details on giving those fast ASICs a real-world test. Before you pass them on to production.

TWELVE YEARS TO FIVE NANOSECONDS.

Here's a quick message from the people who invented the first PAL ${ }^{\circledR}$ device a dozen years ago:
"Five nanoseconds." The fastest TTL logic in the world.

16R8-5 and 20R8-5 families on the shelf now, in 20 and 24 pin configurations.

At 117 MHz , these puppies run rings around 40 to 60 MHz CISC and RISC processors.

For you critical pathfinders, we have a

16R8-4 family that moves at a crisp 4.5 nanoseconds. And for the fastest version of the standard in field programmable logic, ask for our 10ns 22 V 10.

Big Cache Savings. This kind of super fast logic is the smart, cost-effective solution for increased performance and lower cost cache memory.

Big Comfort Zone. AMD^{\circledR} has the best
programming and design software support in the industry. And a veritable army of careercrazed FAE's. No wonder we sell more PAL devices than all our competitors combined.

Do something nice for your whole system. Write Advanced Micro Devices today.

Advanced Micro Devices $\boldsymbol{2 1}$

901 Thompson Place, P.O. Box 3453. Sunnyvale, CA 94088 For more information call (800) 222-9323

IN THE ERA OF MegaChip"' TECHNOLOGIES

A lot has been said about company is doing a lot about

testability, but only one it. Texas Instruments.

You've seen the headlines and read the stories. Design-for-test (DFT) is a challenge but one that's now easier to live with. The reason: Texas Instruments is the first to develop products for implementing the JTAG/IEEE 1149.1 testability standard quickly and effectively.

To market faster at lower cost

By implementing testability into your system from the outset, you can create one that uses high-performance circuits and is readily manufacturable, one that is lower in total cost and on the market faster. You can expect:

- Test integration - from silicon to system - that reduces debug and test time
- Reduced test soffware development time - generating test vectors is greatly simplified
- Reduced capital investment in test equipment
- Increased system fault coverage and reliability

SCOPE, our

broad-based solution

To simplify and speed your design task, TI has developed its SCOPE" (System Controllability/Observability Partitioning Environment) family. It is a coordinated, broad-choice set of commercial and military products compatible with the IEEE 1149.1 standard.

Included are bus-interface devices, standard cells, gate arrays, and digital signal processors, as well as our ASSET"' (Advanced Support System for Emulation and Test) diagnostics software.

On the way are diary memories, a series of IEEE 1149.1 stand-alone

[^4]controllers, and microprocessors with boundary-scan and built-in self-test features.

We are in for the long haul

As a member of the Joint Test Action Group (JTAG), we contributed to the formulation of the IEEE 1149.1 standard and wholeheartedly support it. We are committed to growing our SCOPE family of products so that designing to the IEEE 1149.1 standard will be like second nature.

Your future competitiveness depends upon an engineering methodology where design teams bear the burden of testability, manufacturability, and reliability. The demands of concurrent engineering will be met in part by the extended capabilities accessed via the IEEE standard - from embedded system information that allows realtime availability of data throughout the design cycle to emulation and realtime system analyses capabilities built right into the silicon.

Get our floppy free, and learn more

Call 1-800-336-5236, ext. 3909, and we'll send you our unique floppy disk presentation. Just pop it into any MS-DOS ${ }^{\text {TM }}$-compatible PC to find out more about DFT and TI's SCOPE testability family. What's more, the disk features a formula that allows you to calculate the cost-effectiveness of implementing testability in your system.

You will continue to read headlines about DFT. We intend to make many of them.

SAMSUN ©
 INIV A MILLION TRANSISTORS ON A UNTIL YOU CONTEMPLATE AN

MICROPROCESSOR IS IMPRESSIVE, SRAM WITH SIX TIMES AS MANY.

The recently introduced Samsung 1-meg SRAMs have a transistor count of 6.6 million.

In a day and age when makers of advanced microprocessors take understandable pride in the 1 million transistors on their chips, we think it's forgivable for us to be proud of the vastly greater number on these SRAMs.

They're among the most difficult of all semiconductors to produce, and only a few manufacturers can make them.

We offer the 1-meg slow SRAM in several speeds, several power ratings, and several package types. We're currently developing the part in the revolutionary TSOP packaging.

All those things-plus forthcoming high-density fast and ultra-fast SRAMs, plus additional slow parts for main store and buffer applications-give you an
idea of Samsung's commitment to this demanding technology.

Besides the 1-meg slow SRAM, in the main-store and buffer areas we'll sample next year a 1 -meg fast static RAM family, and go into production with a 1 -meg pseudo-SRAM.

THE SAMSUNG I-MEG SRAM
Speeds: $70^{\circ}, 85,100,120 \mathrm{~ns}$.
Package typer: TSOP $^{\circ}$, DIP, SOIC.
Power ratings: Low-low ${ }^{\circ}$, low, standard.
Organization: $128 \mathrm{~K} \times 8$.
For information on the 1-meg SRAM or our 1-meg pseudo-static, write today to SRAM Marketing, Samsung Semiconductor, 3725 No. First St., San Jose, CA 95134. Or call 1-800-669-5400, or 408-954-7229.

After all, the best way to contemplate the 6.6 million transistors on the part, is to get your hands on one.

SAMSUNG
Semiconductor

Signetics. Because we offer y

© 1990 NAPC
Philips Components

ut the most 80C51 derivatives.

YOU'LL FIND THE SAME STRATEGYAT THE CORE OF OUR 16-AND 32-BIT MICROCONTROLLERS.

To design the perfect features into your application, choose the industry's most complete and feature-rich family of 8-bit 80 C 51 and 84 CXX microcontrollers.

Available in OTP and EPROM versions, you're assured of faster time to market and cost-efficient low-volume runs. And for designs demanding individual program code, our OTP devices offer you the ultimate flexibility.

At the center of our family is a unique cell methodology. Through it you can select devices with a broad range of features. Like versions with an $I^{2} \mathrm{C}$ or CAN serial bus. Plus models with low voltage/low power, A/D, EEPROM, small packaging, PWM and more. Plus, each device is available as a standard derivative and as a core for customized ASIC designs.

You'll also find that we offer a wide variety of embedded memory, ranging from 2 K to 32 K bytes of program memory (ROM, EPROM or OTP). And up to 512 bytes of embedded data memory (RAM). Whith speeds of up to 30 MHz .
Plus we're applying the same strategy to 16 -bit 68000 -based and 32 -bit SPARC ${ }^{\circledR}$-based microcontrollers. So as needs change, you'll have the building blocks to tailor designs.

You'll always have complete development support, too. Because you can choose from a growing list of emulators, programmers and software tools from Philips and third-party vendors including Ashling, Ceibo, Data I/O, Logical Systems, MetaLink, Needham's, Nohau, Tasking and many more.

Today our microcontrollers are the driving force behind thousands of products. For applications ranging from consumer and automotive to

Product	OTP	$\mathrm{I}^{2} \mathrm{C}$	ROM	RAM	NO SIMILAR PRODUCT OFFERS:
8XC751	\checkmark	\checkmark	2 K	64	24 -pin skinny DIP
8XCL410		\checkmark	4K	128	Operation at down to 1.5 volts
$8 \times C 851$			4K	128	256 bytes EEPROM
8XC552	\checkmark	\checkmark	8K	256	10-bit A/D converter
8XC528	\checkmark	\checkmark	32K	512	512 bytes RAM

SIEMENS

Gain Without Pain.

New linear optocouplerRx for stability.

The phrase "linear optocoupler" has always been a contradiction in terms Until now.

Siemens new IL300 optocoupler uses a unique, optical feedback loop to neutralize gain and offset drift caused by temperature and LED degradation. The results will change the way you

under 15 mw , and 7500 VAC Withstand Test Voltage.
The IL300's stable operational characteristics are achieved by controlling the AIGaAs IRLED output flux with an optical feedback circuit. The servo PIN photodiode captures a percentage of the flux and generates a signal that can be used to control the LED drive current. This compensates for the LED's inherent nonlinear, time, and temperature characteristics.
The IL300's stability and excellent isolation characteristics make it ideal for power supply regulation, medical sensor isolation, audio signal inter-
facing, digital telephone isolation, and many other applications.
It gives engineers a flexible, cost and power efficient component for applications in which optocouplers were never practical before.
For complete information on our new linear optocoupler, including application tips, call 408-725-3543.
Siemens Components, Inc.
Optoelectronics Division 19000 Homestead Road
Cupertino, CA 95014-1799
The IL300 linear optocoupler. Gain without pain.
Distributors: Advent Electronics, Inc. Hall-Mark, Insight Electronics,
Marshall, Summit, Western
Microtechnology.

Siemens
Practical Solutions By Design.

THL 80-MHz CLOCK-DRIVER IC DISTRIBUTES 20 SIGNAL COPIES

Silicon Connection Corp's SC3501 driver IC outputs 20 TTL-compatible clock signals with frequencies as high as 80 MHz . You can use the BiCMOS chip to handle clock distribution throughout an entire high-speed-CPU board design. The clock-driver IC requires, as input, a signal of double the desired primary output frequency. The IC has three groups of outputs. The first group consists of 10 outputs that operate at the primary output frequency. You can set the second group, which has five outputs, to be identical to the primary outputs or to operate at one-half of the primary output frequency. Likewise, you can set the third group, which also has five outputs, to a choice of one-half or one-fourth of the primary output frequency. The \$17 (1000) IC comes in a 52 -pin quad flatpack and is available now. Silicon Connections Corp, San Diego, CA, (619) 535-0442, FAX (619) 535-1635.-Maury Wright

GET FASTER SOFTWARE VIA SPARE HARDWARE

The complexity of design problems multiplies faster than the improvements in CPU horsepower. In contrast, some important tasks, such as schematic capture and hardware-description-language-model creation, are hardly compute intensive and waste precious MIPS when done on a workstation. Fortunately, EDA tool vendors are learning how to distribute a compute-intensive problem on system resources that might have power to spare.

Analogy (analog simulation), ISS and Mentor (IC layout and verification), Quickturn (IC emulation), Valid (analog simulation), and Vantage (VHDL model compilation) have recently introduced EDA software that breaks problems into smaller pieces and spreads them out among available network resources. All of the tools let you control which resources can be used; some offer failure-recovery methods. In addition to seeing more such distributed-processing tools in the near future, look for dynamic distribution capabilities, which can determine individual resource loading and capability and redistribute their tasks based on changing system usage. Analogy, Beaverton, OR, (503) 626-9700, FAX (503) 643-3361; ISS, Research Triangle Park, NC, (919) 361-5814, FAX (919) 361-2019. Mentor Graphics, Beaverton, OR, (503) 626-7000, FAX (503) 646-7881; Quickturn Systems, Mountain View, CA, (415) 9673300, FAX (415) 967-3199; Valid, San Jose, CA, (408) 432-9400, FAX (408) 432-9430; Vantage Analysis Systems, Fremont, CA, (415) 659-0901, FAX (415) 659-0129. -Michael C Markowitz

DATA-ACQUISITION MODULES CONFORM TO IEEE-488.2, SCPI

System 23 from Philips is a range of modules that includes a switching matrix, low-level and coaxial cable scanners, and digital I/O. The $19-\mathrm{in}$. half-rack enclosures let you stack modules and automatically interlink units both mechanically and electrically. The PM 2301 interface module (\$1500) forms the base unit for the stack and houses a power supply sufficient for six switching modules. Also within the module is an IEEE-488.2 interface, which uses Standard Commands for Programmable Instrumentation (SCPI). The module has four external programmable bidirectional trigger lines for synchronizing system events. Triggers conform to VXIbus trigger protocol, enabling you to link the modules directly to a VXIbus system. The PM 2301 daisy chains power, triggers, and internal system communications up the stack to the other modules. It also provides a direct interface to the company's existing

NEWS BREAKS

range of System 21 products. Other modules include the PM 2320 (\$1250) 8×4 or 16×2 switch matrix; the PM 2321 ($\$ 1450$) low-level scanner with a switching speed of 500 channels/sec on 104 -wire channels; and the PM 2330 ($\$ 1650$) 16-bit digital I/O interface with a 32 k word-buffer memory. A front-panel connector on each of the switching modules links to the PM 2390 (\$500) portable display unit for local status verification and control. Philips, Eindhoven, The Netherlands, (40) 788620, FAX (40) 788256. - Brian Kerridge

OVFEN-CONTROLLED CRYSTAL OSCILLATOR IS 1.46 IN. ${ }^{3}$

Raltron achieves the TF-65010-B's 1.46 in. ${ }^{3}$ size by eliminating the oven enclosure and wrapping the resistance wire heater directly around the crystal. The ovencontrolled crystal oscillator stability is $\pm 2 \times 10^{-7}$ for temperatures from -20 to $+70^{\circ} \mathrm{C}$. Steady-state power requirements are 3W, and the device stabilizes in two minutes. The $\$ 65(10,000)$ oscillator is available in frequencies from 1 to 20 MHz . Raltron, Miami, FL, (305) 593-6033, FAX (305) 594-3973.-Doug Conner

MANUFACTURFR BETS \$80.51 THAT ITS ICE IS BFST

Metalink is offering an incentive to try its Ice Master in-circuit emulator (ICE): If you decide that the emulator's windowed user-interface and hardware isn't what you need, the company will refund the purchase price, plus an $\$ 80.51$ "evaluation fee" for your trouble.

The emulator's trace buffer uses a forward- or backward-searching scheme to locate any label, source line number, or address during debugging. During disassembly, a code window displays the contents of memory locations, registers, and any directional changes in the control flow. The emulator's ll5k-bps RS-232C link lets you download most programs in less than 3 sec. Pricing for the emulator starts at $\$ 1495$. Device-specific, interchangeable probe cards sell from $\$ 345$. The company also has free demo disks. Metalink Corp, Chandler, AZ, (800) 638-2423, FAX (602) 926-1198.-J D Mosley

POPULAR PLD PICKS UP SPEED

Cypress Semiconductor's high-speed versions of the 22V10 PLD have propagation delays of 7.5 nsec max and 190-mA supply currents. The company uses ECL circuitry for the speed-critical paths within the chip and CMOS for the control logic. The devices come in either a 24 -pin DIP or a 28 -pin plastic leaded chip carrier (PLCC). The PALん2V10C PLCC costs $\$ 30$ (100), and the PAL2んVP10 DIP costs $\$ 39.45$. Cypress Semiconductor, San Jose, CA, (408) 943-2600, FAX (408) 943-2796.
-Richard A Quinnell

UNIX-BASED CAE TOOLS DON'T HAVE TO BE EXPENSIVE

Phase Three Logic's \$995 Capfast runs on SPARCstations, providing a cost-effective alternative to the thousands of dollars needed for Unix-workstation-based schematiccapture packages. The schematic editor has hierarchical capabilities that let you create and use symbols. It also has an on-line electrical-rules checker, an interactive simulation grapher, and interfaces to Spice, Hilo, Susie, Actel, and Xilinx software packages. The package uses an ASCII file format; the software's database is compatible with the company's IBM PC schematic editor. An optional EDIF 200 translator is available to provide an interface to Mentor, Cadence, and Valid tools. Phase Three Logic, Beaverton, OR, (503) 645-0313, FAX (503) 645-0207.-Michael C Markowitz
 \section*{We
 \section*{We to suit.} to suit.}

How in heaven do you construct a microminiature connector capable of meeting the unearthly demands of a space suit?

IT T Cannon starts with a solid foundation of design expertise and the largest, most experienced design-engineering staff in the industry.

Upon that foundation we build customized microminiature design solutions. Just as we have for the space shuttles, 747 s , supercomputers, pacemakers and scores of other projects.

In the process weve also built a strong reputation for creating microminiature tech-
nology that performs \longrightarrow reliably in the most critical applications, under the most
demanding conditions, at the most competitive prices.

And we're creating the future today. Micro products with contact
spacing as small as .025 centers. Or flexible circuits terminated directly to the contacts. And even zero insertion force, surface mount and zipper connectors.

When you consider our strengths, there's only one choice to suit your connector needs. ITT Cannon. For application assistance or to request our new brochure, call us (714) 5557-4700 today.

Or write IT T Cannon, 666 E. Dyer Rd., P.O. Box 929, Santa Ana, CA 92702-0929
FAX: (714) 754-2142.

THE WORLD'S LARGEST SELECTION OF POWER SPLITTERS/ COMBINERS

$2 \mathbf{K H z}$ to $\mathbf{8} \mathbf{~ G H z}$ fom $\$ 10^{45}$

With over 300 models, from 2-way to 48 -way, $0^{\circ} 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-theshelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee.
For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or Mini-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide.
inding new ways
setting higher standards
맨Nini-Circuits Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156

\qquad

Recently, our customers have a few choice words for us.

[^5]
had

For years Seagate has been best-known as the volume producer of disc storage products. But our reputation as solely a manufacturing

H	N	O	L	O	G	Y

powerhouse is beginning to change.
In the past several months Seagate has received three Disc Drive Supplier of the Year awards from some of our valued OEM customers. In every case, the commendations have been earned not just for supplying quality products, but for providing superior customer service.

ICL, Britain's leading information technology company, honored us with their Vendor Award Citation for being responsive to their flexibility of delivery and cost of ownership requirements. In addition, our Wren drives exceeded their stringent reliability and "plug-and-play" criteria.

Olivetti, the Italian computer company, awarded us their Quality Award for Customer Satisfaction for the same reasons. By meeting Just-in-Time delivery schedules, listening to the customer, exchanging data from the field and providing training and support, we have helped Olivetti provide superior products and service to their customers.

Most recently, AT\&T's Oklahoma City Works presented Seagate with its 1990 "Partner in Excellence" award during their Quality Month observance. Once again, Seagate was selected for its ability to meet AT\&T's high standards of quality, delivery, service, cost and technical support.

So while Seagate is still the first name in disc drives, we're making quite a name for ourselves in quality and customer service, as well. To learn more about the benefits of a partnership with Seagate, call us at 800-468DISC, or 408-438-6550.

And to our customers, we offer a couple of choice words of our own: Thank you.

The first name in disc drives

Because you're

 thinking fast...
With

 Comlinear's new fast op amps...14-bit, 25ns settling keeps up with fast converters.

Here are two new op amps that give you big design margins on fast, highresolution A / D and D / A converters. The new 175 MHz CLC402 and 150 MHz CLC502 have extremely fast settling to 0.0025% accuracy. Plus a low 1.6 mV max. offset. And, the CLC502 gives you output voltage clamping to protect downstream circuits from damaging or saturating signals. That's a lot of good news for your high-speed, high-accuracy converter designs.

CIRCLE NO. 156

350 MHz BW with low distortion drives flash A/Ds.

At last, there's a wide-bandwidth op amp with extremely low distortion for your flash A/D converters. The new 350 MHz CLC409 is spec'd at a low -65/-72dBc, 2nd/3rd harmonic distortion ($20 \mathrm{MHz}, 100 \mathrm{ohms}, 2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$). And it does it without burning much power. Dissipation is a low 142 mW at $\pm 5 \mathrm{~V}$. Add to that its low input noise and you have an ideal driver for today's fast 6 - to 10-bit flash A/D converters.

Solutions with speed

4800 Wheaton Drive

Fort Collins, CO 80525
(303) 226-0500

1-800-776-0500 (USA)

For only $\$ 4.25^{*}$ ea. (1000s) the CLC406 provides 160 MHz smallsignal bandwidth $\left(2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$ at only 50 mW power dissipation ($\pm 5 \mathrm{~V}$). It's your lowcost answer for remote-site applications, video systems, or driving/buffering fast data converters.

What's the quality of our quality

General Electric

Northern Telecom

Motorola Inc

John Fluke Mfg. Co., Inc.

Tektronix

Rockwell International
Talk to any of the major manufacturers who, during the past three years, have recognized Dale's ability to meet their exacting quality standards. Then talk to us. We have a wall full of awards - perhaps as many as anyone in the industry-and we're always pleased to receive more. However, we'd much rather discuss what these awards represent: A soundly structured quality system able to quickly interface with your manufacturing process-and make you more competitive. That's the quality of our quality.

For more information on Dale quality procedures and systems, write Joe Matejka, Vice President of Quality Assurance, Dale Electronics, Inc., 1122 23rd Street, Columbus, Nebraska 68601-3647. Phone (402) 563-6511.

SIGNALS \& NOISE

Don't count TTL out yet

Jon Titus's ringing of the death knell for TTL (EDN, October 25, $1990, \mathrm{pg} 53$) is both premature and unfair. Premature, because there are still people out there who design with TTL and CMOS. (Why wasn't this family included in the eulogy?) Unfair, because not everyone reading EDN can be state of the art.

Many companies are just not financially situated to jump into programmable logic. Or maybe they just don't need the sophisticated functions made possible by PLDs and FPGAs. Jon states that "computer circuit boards today are teeming with PLDs." That is undeniable; however, not everybody is at the leading edge of building computers.

I took some comfort in the header, "Editorial" at the beginning of Jon's comments. This header implies opinion, and opinions vary. For example, I recently read an article that referred to the 8051 as "venerable," implying "past its prime." However, another stated that 8 -bit microcontrollers such as the 8051 are very much in demand and will be in new designs well past the year 2000 . I'm certainly glad to hear that; my company is just announcing the second generation of a product that uses a venerable 8051. What is it? An in-circuit tester for the very TTL (and CMOS) devices that Jon claims is at death's door.
Gerry Volk
Technical Writer
B\&K Precision Test Instruments Chicago, IL

Comparing execution efficiency of Ada vs C

As a proficient Ada programmer, I read Charles Small's excellent article "Adopting Ada is first step to code reuse" (EDN, August 20, 1990, pg 71) with great interest. As a proficient C programmer, however, I found the article to be flawed with respect to its view of
programming C. In the box, "Ada features promote code reuse," Charles states: ". . . A C library, for example, would need separate versions of a ring-buffer library routine to handle characters, fixedpoint numbers, and floating-point numbers. Ada could handle any of these data types with a single ringbuffer generic."
This statement is patently false. In terms of pure execution efficiency, C is actually superior to Ada in that a ring-buffer software li-
brary (to follow the given example) could be (and has been) created in C. C would use the same code to manipulate all three types, as well as any other types the programmer cared to use.

By way of contrast, Ada's generic facility creates a template that will most likely be implemented in such a way that the entire set of routines is copied for the new data type rather than being reused. The C code is thus more reusable than the corresponding Ada code.

Tell us what you think about . . . Professional Issues

EDN would like to know how you feel about our Professional Issues articles. By responding to the following questions, you can help ensure that our articles will better suit your needs. Send this form or a copy, and any other opinions or questions, by fax or mail. Our fax number is (617) 558-4470. Our mailing address is EDN Surveys, 275 Washington Street, Newton, MA 02158.	
I read Professional Issues articles:	I have been with my present
\square Always	employer for:
\square Often	\square less than 1 year
\square Sometimes	-1-5 years
\square Never	$\square 5-10$ years
ould like to see more	\square more than 10 years
about:	Are you a member of the IEEE or
\square Salaries, benefits, and pensions	other professional organization?
- Ethics	\square Yes
\square Legal issues	\square No
\square Education	
- Management	If yes, what were your top three
- Job alternatives	reasons for joining?
\square Launching and sustaining a business	\square Journals
\square Professional organizations	\square Insurance plans
\square Discrimination	\square Technical conferences and meetings
\square Property rights	\square Discounts on books
\square Outstanding engineers	\square Legal support
\square Other	\square Lobbying power
	\square Recommendation
My title is:	Overall support for engineering Other \qquad

My title is:

- President/Owner
\square VP of engineering/Chief engineer
\square Senior engineer
\square Project engineer
\square Design engineer (hardware)
\square Software engineer
\square Systems engineer
\square Test engineer
- Manufacturing/Production engineer
\square Other
employer for:
\square less than 1 year
- 1-5 years

5-10 years

Are you a member of the IEEE or other professional organization? \square Yes
No
reasons for joining?
Journals
\square Technical conferences and meetings
\square Discounts on books
\square Legal support
\square Recommendation of peers
Overall support for engineering
\square Other

If you would welcome a follow-up phone call by an EDN editor, please give your name and phone number. This information will not be shared with anyone else.

Name

Day phone

My job function is predominately:
\square Engineering
\square Engineering management
\square Nonengineering

This is actually an implementation issue rather than a language issue. One can visualize an Ada "macro" compiler that would create code as efficient in terms of both space and time as C's, or possibly a little better. Consider, for example, that subroutines imported in the instantiation
generic
type ITEM_TYPE is private;
with function " $<$ " (LEFT,RIGHT : in ITEM_TYPE) return BOOLEAN; package
could be known to be in-line, via a pragma, at compile time, obviating an external call. This is not unique to Ada, however. C ++ also implements an in-line mechanism known as compile time.
The advantage (if you choose to call it one) that Ada offers is that when instantiated (an ugly, sanctimonious word), the routines are tied to a specific data type in an unambiguous way, preventing unintentional or malicious abuse of the routines within the scope of the fleshed-out generic. (As always, what the programmer does outside the scope of the generic is quite another matter.)
James B Crigler
Orlando, FL
(Ed Note: Certainly you can write an all-purpose routine that will handle any conceivable type of input. Such a routine will, I think, inevitably be larger, slower, and more complex than one written or "instantiated" to handle just one type of input.
I've used a programming construct similar to the generic, and I've found that its use led to cleaner code and clearer concepts than writing individual versions of similar routines.
Using any particular language does not guarantee good programs. Small's "Second Law of Programming" states that you can write a bad program in any language.)

Usable used equipment lets him continue working

I was interested in Jon Titus's editorial, "Praise the PC and pass the Windows" (EDN, October 11, 1990, $\mathrm{pg} 49)$ because it relates to the matter I need help with. Like all Americans, I'm concerned about the economy, maybe even more so, because I'm disabled with multiple sclerosis. I'm an independent volunteer with Civil Defense, American Red Cross, United Way, Bright Hope Foundation, National Multiple Sclerosis Society, and several other organizations.

My area of expertise is communications and computers. Because I'm not paid, I must rely on the generosity of companies that are willing to contribute the used equipment I need to continue doing this volunteer work. I don't need "new" equipment-just equipment that's complete and operational-or that can be easily repaired. The following equipment would help me do a variety of jobs, such as upkeep of databases, word processing, number crunching, and other informational services:

- A 20 M -byte and 100 M -byte or higher or a 120 M -byte disk
- Color VGA or EGA monitor and card
- Full-page or hand scanner
- Laser printer and accessories
- Sola electric copier
- Tape backup system (100 M byte)
- Laptop computer
- Fax machine
- LAN equipment
- Burr-Brown plotter and accessories
- High-speed modem (2400 baud up)
- Macintosh computer and software
- Computers as workstations on a LAN
- Old computer equipment for parts.
Intel, US Robotics, Miniscribe, Western Digital, Hercules, and

Borland are companies that have already helped me. I'll be glad to answer any questions you may have. You can reach me after 12:00 CST at (601) 684-9550, or you can write to me.
John T Statham
1506 Sheila Dr
McComb, MS 39648

Corrections and new address

The caption for the photo at the bottom of page 55 (EDN, December 20,1990) discusses the VHDL textual output of a software tool. In the last sentence, "VHDL" is used without "the," creating the impression that VHDL isn't yet suitable for logic synthesis. VHDL is suitable for logic synthesis, but this particular tool's VHDL output is not. The last sentence should read: "Unfortunately, the VHDL isn't yet suitable for logic synthesis."
The photo at the bottom of page 57 is a screen shot of Mentor Graphic's Design Consultant, not of Synopsys' VHDL Compiler, as the caption suggests.
CAD Language Systems Inc, listed in the Manufacturers List (pg 58), has a new address:

15245 Shady Grove Rd
Suite 310
Rockville, MD 20850
(301) 963-5200

FAX (301) 963-1511

Problems of ordering parts for small companies

As president of a small electronics company, I face many obstacles. The biggest one nowadays seems to be distributors' lack of willingness to sell small quantities of parts to companies like mine. We don't buy vast quantities of parts, but our projects do require us to buy parts and to receive them in a reasonable period of time. We've been finding that most of the distributors have started adding not just minimum

Gold Terminals Extend TO-5 Switch Life. Gold-plated terminals, handling resistive loads of $500 \mathrm{~mA} / 125$ VAC, extend the life of Standard Grigsby's T0-5 rotary switch to an 5000 cycles (typ.). These compact switches mount easily into standard TO-5 transistor sockets or PC boards for wave soldering. Screwdriver or knob actuation available. 45° throw with 8 positions max. Positive detent switching action is standard. Contact pin surface is sealed and an optional boot is available to seal the shaft. Price: $\$ 1.39$ in 10,000-piece lots. Delivery: 4 weeks. Contact Standard Grigsby, Inc., 88 N. Dugan Rd., Sugar Grove, IL 60554-0890. 708/556-4200 FAX 708/556-4216.

CIRCLE NO. 162

Specify THE Standard In Optical Switching... Standard Grigsby!

Quality Is Standard At Standard Grigsby...

- Vibration-resistant interlock design
- Long life
- Reliable LED optical switching source
- Low power consumption

Customer Satisfaction Is Standard, Too!

- Binary, gray, or custom codes
- High res, 128-152 position option
- Ribbon cable or connectors
- 16, 24, 32, 64 positions
- P.C. lugs and right angle mounts available
- Priced at under \$20 in lots of 100

Raise your switching standards! Call us today for our complete Optical Encoder product catalog. 708/556-4200

88 N. Dugan Road/P.O. Box 890, Sugar Grove, IL 60554-0890 708/556-4200

FAX 708/556-4216

Choose Binary Or Gray Coded. Sugar Grove, IL-Binary and Gray coded optical encoders are available from Standard Grigsby, Inc. Ideal for use in robotics, medical instrumentation, communications, computer peripherals and avionics, the 16 -position encoder is available with integral cable or connector. Users may specify custom shaft lengths and diameters.
Priced at $\$ 29.10$ each in 100 -piece lots, the encoders are available in 6 weeks. Standard Grigsby, Inc., 88 N. Dugan Road, Sugar Grove, Illinois 60554-0890. 708/556-4200 FAX 708/556-4216.

CIRCLE NO. 164

Multi-deck, Multi-options. Sugar Grove, IL-Standard Grigsby's multi-deck rotary switches offer reliability and long life, and retrofit other manufacturers. Measuring approximately $1 / 2^{\prime \prime}$ in diameter, the switches are available with PC or solder lug terminations, fixed or adjustable stops; 30° or 36° indexing angles; commercial or military finishes. Priced at $\$ 4.50$ each in lots of 500 , the switches are available in 6 to 8 weeks. For more information, contact Standard Grigsby, Inc., 88 N. Dugan Road, Sugar Grove, IL $60554-$ 0890. 708/556-4200 FAX 708/556-4216.

CIRCLE NO. 165

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock @ $\$ 75 /$ singles, $\$ 20 / 1000$ s (Surface mount also avail in qty.)
CyberneticMicroSystems
Box 3000 - San Gregorio CA 94074
Tel: 415-726-3000 - Fax: 415-726-3003
orders, but excessive minimum orders. We've seen the minimum orders go from $\$ 0$ to $\$ 25$ to $\$ 50$, and now some companies require minimum orders of $\$ 200$.

In addition to this, some distributors have a minimum line order of $\$ 25$ or $\$ 50$, or even as high as $\$ 200$. The purpose of a distributor, at least in the past, was to buy parts from the manufacturers in large quantities and resell them in smaller quantities to the general population. Most of these distributors seem to have forgotten this and only want to deal with large companies like Westinghouse or GE.
Sure, it's a lot easier to take orders for $\$ 100,000$ each time, and it's probably more profitable, too. But is it right to purposely exclude an entire segment of the business community? Add a $\$ 5$ surcharge on orders under a certain amount to help cover costs. But allow us to buy the parts that we need for our designs. Without these parts, our designs cannot go forward, and our companies will be going out of business. That's not good for anyone.
When we place orders with these companies, something invariably gets confused at the distributor's end. We request that an in-stock item be delivered a week from the order date, but the week comes and goes, and the part has not arrived. We check back with the distributor, and 10 and behold, the part has never been shipped. This is not an isolated incident, but occurs close to 80 or 90% of the times we order parts from places like Hamilton/ Avnet, Arrow, and Marshall. For the past year, we have tried and tried to get proper service and respect from the parts distributors; we spend about $\$ 3000$ a year on parts.
The only parts distributor that gives us good service is Digi-Key in Thief River Falls, MN. They have everything we've ever ordered in stock, have shipped when they say it's going to be shipped,
all at an acceptable cost. If there are any other "Digi-Keys" out there, please let me know because we will start buying parts from you, too, and I will spread the word among the small-business community.
Scott B Rosenthal
Microsol Corp
6851 Oak Hall Lane, Suite 201
Columbia, MD 21045

Reader fears for young engineers, et al

The article "Thermal charging circuits safely boost NiCd batteries" (EDN, May 24, 1990, pg 147) includes a box called "Create lowresistance shunts with wire" in which Jim Williams fails to mention that copper has a horrible temperature coefficient. This failure will probably cause a lot of grief for young engineers and technicians.
$L R$ Morse
Martin Marietta
Orlando, FL
(Author's reply: The temperature coefficient of copper is $0.39 \% /{ }^{\circ} \mathrm{C}$. Over an operating range of $30^{\circ} \mathrm{C} \pm 40^{\circ} \mathrm{C}$ (reasonably generous for NiCd), the battery charge current variation will be about 16% due to shunt valve shift. This seems reasonable considering the other variables involved. Additionally,' what variation there is contributes a negative slope to the charging current vs temperature and is perhaps useful. So, while I don't recommend copper shunts for DVM reference circuitry, they seem adequate for NiCd charging purposes. I hope this clears up any confusion.)

It's time for a new declaration of independence

I've observed the events in Iraq and Kuwait with great concern. The leader of the Iraqi government, one of the most vicious modern terrorists, is convinced he can get away with his invasion because of the in-

HMI development systems

 doitall!HMI provides complete development systems-in-circuit emulator, window driven source level debugger and software performance analyzer-that address all aspects of the microprocessor system design cycle, from prototype to production:

HMI Emulators Feature:
Run at real-time with no wait states.

- Complex events and sequences for break and trigger conditions.

Two independent 4 K deep trace buffers.

- $1 \mu \mathrm{sec}$ resolution interval timer.

Logic analyzer capabilities built into the emulator.

- 16 External Trace bits.

RS232 Interface up to 38.4 K

- Parallel Interface for high-speed downloading.

Work with IBM PC family and UNIX based machines including SUN and Apollo.

HMI SourceGate ${ }^{\circledR}$ Features:

- Custom window configuration determined by user.
- Support for major C, PL/M, Pascal and ADA compilers.
- Source code in the trace buffers.

C variable tracking.
our Performance Analysis Card to complete your development package.

Performance Analysis Features:

Real-time hardware implemented software performance analyzer.

- 100 nsec resolution time-stamp in trace buffer.
- Setup trigger conditions to start and stop analysis.
- View covered and not covered pieces of code

If you are looking for one development system that does it all, call (205) 881-6005, or write to Huntsville Microsystems Inc., 4040 South Memorial Parkway, Huntsville, AL 35802.

AVAILABLE EMULATORS			
68000	68302	8051 Family	
68008	68332	DS5000	
68010	68340	$8096 / 80196$ Family	
68020	$6809 / 6809$ E	8085	
68030	$68 \mathrm{HCl1}$ including	$64180 / \mathrm{Z1} 180$	
	Fl and D3	Z80	
	68HC001		

SIGNALS \& NOISE

satiable American craving for oil. And he knows we are loathe to give up this craving, seeing that we have learned nothing from the gas lines of the early '70s.
Even though the US makes up less than 20% of the global population, we consume 40% of the world's gasoline. Figures published by the

Environmental Defense Fund indicate that the Germans and Japanese use half as much energy per capita as Americans do.

Something is also wrong with the way the US wastes talent and energy. Let us encourage the thousands of first-rate, but unemployed, engineers across the country to join

OTTO Precision Switches

ACTUAL SREE!
 A Snap-Action Basic Switch so small yet delivers 1,000,000 cycles!

And, would you expect a big 2 MovementDifferential typically ampere switching capability in less than .002"; Operating Posi-
such a small package? That's twice the others! Our new B1 series basic switch also handles low level logic signals as well. Thanks to our patented switch design, you can expect $1,000,000$ mechanical cycles; 25,000 electrical cycle life! Truly a precision switch, the B1 has a
 added capability, too. We will take your requirements from concept, through prototype, and on to your complete end product's assembly. tion tolerance of $.015^{\prime \prime}$ max. Molded-in and sealed terminals. Industrial and military grades. Ask about our full service value

- maciwatsive

Three times actual size!

Call or Fax for our new 44 page Catalog today.
forces in developing cheaper, efficient, mass-producible solar cars, mass transportation, and heating panels. I think taxpayers would be more inclined to pay for this effort than to bail out corrupt bankers.

If we do not eliminate our crippling dependence on oil, the alternatives are continued air pollution, more price gouging from our own companies, more disastrous oil spills, and even more vulnerability to terrorist dictators in the Middle East who have us right where it hurts.

Is there really any choice? Ask an engineer!
Russ Hodge
Portsmouth, RI

Mea culpa

In the October 11, 1990, issue of EDN, pg 261, we unfortunately called Spectronics Corp's UV eraser, a $\mu \mathrm{V}$ eraser. We regret the error. You can contact Spectronics at (516) 333-4840 for further information about the Model PC-2200A.

IT'S EASY TO HAVE YOUR SAY

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. You can use one of several easy ways to reach us. First, there's always the mail. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCl mail at EDNBOS. Finally, EDN's bulletin-board system is ready for use-and it's free (except for the phone call). You can reach us at (617) 558-4241 and leave a letter in the EDITORS Special Interest Group. You'll need a 2400-bps or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or 2400, 8N1 in shorthand.

© 1990 Cirrus Logic, Inc., 3100 West Warren Avenue, Fremont, CA 94538 (415) 623-8300; Japan: 462-76-0601; Singapore: 65-3532122; Taiwan: 2-718-4533/4534; West Germany: 81-52-2030/6203 Cirrus Logic, and the Cirrus Logic logo are trademarks of Cirrus Logic, Inc. All other trademarks are registered to their respective companies.

Quality Inline With Your

Oki's 12 New 4-Meg SIMMs Meet Users' Criteria for Quality

We insist on the highest level of quality performance from our 4-Meg single inline memory modules. That's why they're manufactured and tested to the most stringent quality standards. More important, however, is that these SIMMs meet our customers' criteria for quality and reliability. And they do.

Many high-volume users depend on Oki SIMMs to meet and exceed the strictest quality standards. One major PC manufacturer consistently rates Oki as its \# 1 Quality SIMM Supplier. Another major computer maker quotes a mere 0.05 percent failure rate as typical for Oki

SIMMs, after performing inline system-level boot and burn-in tests.

For many other PC, workstation, printer, and computerrelated companies, Oki is simply "the preferred SIMM supplier." Our modules are favored for their superior quality levels. For their low power features and variety of configurations and heights. And for their range of packaging options - such as our ultrathin TSOP for memory cards. Plus our new manufacturing facility in Tualatin, Oregon supports fast, full custom SIMM capabilities.

If you'd like to sample quality that's inline with your standards, call the preferred SIMM supplier now at 1-800-OKI-6388.

Standards

Ferrite EMI Suppressors for cables

EMI Suppression Multi-hole Substrates for ICs and Connectors

Ferrite Beads Axial-lead taped type
Ferrite Core for EMI/RFI:
For electronic equipment electromagnetic interference is a major concern. That's why so many turn to TDK for assistance. TDK, the ferrite expert has been researching EMI for years. And now, backed by the full complement of TDK ferrite material technology, our products are ready to protect your products from EMI/RFI.
With its phenomenal EMI absorption properties, ferrite was destined to lead the charge against EMI/RFI. And TDK ferrite cores comprise a rich $\mu_{\text {iac }}$ 45-2700 material composition. They also come in multiple configurations for maximum protection over a wide range of frequencies.
TDK offers you a wide selection of ferrite products from which to choose, ferrite bead cores, chip-type

bead cores, a newly developed multi-hole ferrite substrate MH series, and angular cores for flat cables. All are highly effective in eliminating EMI on circuit boards and between interfaces, as well as preventing un-
 desirable signal feedback and interfering oscillation All of TDK's EMI/RFI products boast high quality materials, and are fabricated according to integrated production processes. Naturally, all of our ferrite products carry the TDK guarantee of reliability, and are suitable for a variety of applications, including advanced computers, automobile electronics, and OA and FA equipment.

If you're ready to fight noise in the electronic environment, it's time you got to know TDK! Call or write TDK today for more information on Ferrite Core for EMI/RFI.

TDK CORPORATION OF AMERICA 1600 Feehanville Drive, Mount Prospect, IL 60056, USA Phone: 708-803-6100 INDIANAPOLIS Phone: 317-872-0370 NEW YORK Phone: 516-625-0151 LOS ANGELES Phone: 213-539-6631 DETROIT Phone: 313-462-1210 NEW JERSEY Phone: 201-736-0023 BOSTON Phone: 508-624-4262 HUNTSVILLE Phone: 205-464-0222 GREENSBORO Phone: 919-292-0012 DALLAS Phone: 214-506-9800 SAN FRANCISCO Phone: 408-437-9585
GERMANY • FRANCE • ITALY • U.K. - KOREA • TAIWAN • HONGKONG • SINGAPORE • THAILAND • P.R. OF CHINA • BRAZIL TDK CORPORATION TOKYO, Japan
CEL, TDK's Component Engineering Laboratory in Torrance, CA, is at your service. Phone (213) 530-9397.

All Power Factor Corrected Supplies Don't Meet IEC 555-2.

Your PFC supplies might not meet IEC 555-2 because they have too much current circulating in third and fifth order line current harmonics.

That means your products might be banned in Europe after 1992, and possibly domestically, too.
"Safety Certified" power supplies from Pioneer Magnetics meet proposed IEC 555-2 and all other applicable international safety and EMC standards. They deliver $>.99$ active Power

Factor Correction, have less than 5\% harmonic current content, and are available from 250 to 2000 watts, in single or multiple outputs.

We've been shipping them worldwide for more than two years. For applications that include computer mainframes, desktops, peripherals, process control, telecom and ATE. Delivery for most models in OEM quantities is $60-90$ days.

So spread the word. And call Pioneer Magnetics today at 800-233-1745.

s JUST MADE
 ERSUN

Since introducing SPARCstation 1 in April '89, Sun has utilized LSI Logic's RISC and ASIC technology and design methodology to pack more processing power into smaller footprints.

This strategic partnership has enabled Sun to compress time to market to an unbelievable four months between new product announcements and has reduced their time to volume. Forever altering the rules on time to market. And capturing the dominant position in the workstation market in the process.

Sun's latest creation, SPARCstation 2, is a shining example. This powerful new workstation was brought to market just four months after the introduction of the

SPARCstation IPC. By leveraging the power of LSI Logic's RISC and ASIC technology, Sun has quickly introduced a whole new level of price/performance in UNIX workstations.

If you have some brilliant new product concepts on your horizon, with windows of opportunity opening as often as every four months, call us at 1-800-451-2742, or write to LSI Logic, 1551 McCarthy Blvd, MS D102, Milpitas, CA 95035.

We'd like to show you how quickly your new product can see the light of day.

When Time Is Money ... Tektronix QuickGustomi ASICs

Tektronix' QuickCustom ASICs make it easy for you to create your own analog designs fast. And error free.

Our high speed QuickCustom family of bipolar products, together with Tek's QuickCustom design system, help ensure that your design works right the first time, reducing development time and cutting costs.

- Tektronix QuickChips ${ }^{\text {TM }}$ help you move from concept to finished product with minimum design and fabrication time. * For even higher performance and greater flexibility, the Tektronix QuickTile ${ }^{\text {TM }}$ design method offers standard building blocks for fast implementation of analog and mixed signal functions. - And finally for optimum performance and functionality, Tektronix' Full Custom design method is also available.

All three QuickCustom products
provide convenient access to our high performance bipolar process ($\mathrm{f}_{\mathrm{T}}=8.5$ GHz and $\mathrm{LV}_{\mathrm{CEO}} \geq 8 \mathrm{~V}$ with Schottky diodes, JFEIS, NiCr resistors, and PNPs. Typical applications include high speed data converters, L-Band amplifiers and mixers, and low noise transducer amplifiers. Our advanced QuickCustom design system, which includes complete CAD tools, thorough characterization of all devices, and support, allows even the first time user to successfully complete the design. When time and performance are critical, choose QuickCustom from Tektronix.

Your quickest solution.
For more information, please circle our reader number, or call 1-800-835-9433, extension ICO.

Tektronix
COMMIT TED TO EXCELLENCE

ASK EDN

EDITED BY JULIE ANNE SCHOFIELD

Have you been stumped by a design problem for so long that you don't know who to turn to? Are you having trouble locating parts? Finding companies? Can't interpret a spec sheet? Ask EDN.

This department will serve as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help. We can't answer every question, but we'll try to publish the ones that will help you most in your job.

Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; NiCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

More missing parts

I would like to ask a question to which I have still not found an answer. My company is searching for a special National Semiconductor microprocessor called the TMP with part ID NS405-A12. Unfortunately, the part is no longer in production, but we need a batch of 30 to 50 working units to solve a tricky service situation. We would appreciate your help in this matter.
Christer Berg
Technical Director
BEON Data AB
Sollentuna, Sweden

If any reader knows of a source of these parts, please contact Ask EDN.

Reader offers advice

In the October 1, 1990, issue of EDN, David Fors of the Naval Weapons Center in China Lake, CA, requested a vendor for an IRIG/B converter. I would suggest he try sending out an urgent data request through the Government Industries Data Exchange Program (GIDEP). Most large companies, including military IC manufacturers, have a GIDEP representative.
Mark Monroe
Grumman Corp
Bethpage, NY

Desperate for debounce circuit

I am desperate for a debounce circuit that will work from an existing pushbutton switch circuit and will be electrically resettable after time-out, preferably without a clock.
Gary Lawrenson
President

Lawrence Electronics Co

 Seattle, WAEDN Editor Jon Titus and Senior Editor Charles H Small reply: "The problem logic designers have with mechanical switches is that the switches emit a series of pulses every time you change their state. This phenomenon, called switch bounce, is inherent in the springy mechanical parts of the switch.
To debounce a switch, you can take one of two tacks: filtering out the switch bounce as though it were high-frequency noise or inserting a latch in your switch-sensing path that will recognize only the
first pulse from a bouncing switch.
Consult these standard reference works for debounce circuits: The 555 Timer Applications Sourcebook, by Howard M Berlin; and The 555 Timer Cookbook and The IC Timer Cookbook, both by Walter G Jung. All three books are published by Howard W Sams \& Co, Indianapolis, IN 40206. National Semiconductor has excellent application notes that can also help.

Database is defunct

I can't locate Videolog Communications (Norwalk, CT)-they aren't at their published phone number. The company offered Videolog, a database of information on more than 500,000 semiconductors. Can you find out what happened to them?

Dave Kukuk

Telecommunications Technology
Milpitas, CA
Videolog Communications was acquired by Schweber in 1986 or 1987, says Special Projects Editor Gary Legg. Schweber renamed the Videolog information service, but it never really took off. Cahners CAPS, a CD-ROM-based database, provides the same information retrieval capabilities that Videolog did, plus many more. In fact, Schweber is now a CAPS customer. CAPS resides on your workstation or PC, whereas Videolog was accessed via modem. For more information on CAPS, contact

Cahners Technical Information Service
275 Washington St
Newton, MA 02158
(800) 245-6696
in MA, (617) 558-4960
FAX (617) 630-2168.
EDN

For Automotive Chips that Talk, Talk to Oki.

RealVoice ${ }^{\text {tw }}$ Synthesizers offer Quality and Affordability

If you think speech synthesizers sound toy-like and are too complex and costly, try Oki's RealVoice family of easy-to-use, affordable synthesizers - and listen to the difference.

Once you've heard the realistic sound, you'll see why they're ideal for car security systems, cellular phones, safety monitors, and more.

Our on-chip filter and D/A reduce design time and IC count, while increasing system reliability. Plus we offer a range of devices, demo boards, and a low-cost development system with PCbased boards and software.

For samples of quality that speaks for itself, call OKI today 1-800-OKI-6388.

Oki's RealVoice ${ }^{\text {TM }}$ Speech Synthesis Family	
Part \#	Description
MSM6295	4-channel speech synthesizer
MSM6322	Pitch control IC
MSM6372	Speech synthesizer with 128K ROM, 5 secs
MSM6373	Speech synthesizer with 256K ROM, 10 secs
MSM6374	Speech synthesizer with 512K ROM, 20 secs
MSM6375	Speech synthesizer with 1M ROM, 40 secs
MSM6376	Evaluation chip for MSM6372/73/74/75
MSM6378	Speech synthesizer with 256K 0TP ROM
MSM6388	Solid-state recorder/1M serial register I/F

OKI

Semiconductor

Transforming technology into customer solutions

[^6]

With the Series WX we've tamed 1000 watts of high voltage DC power into 5.25 inches and less than 30 pounds. Output voltages, depending on the model, range from 0 to 1 kV through 0 to 75 kV . They'll do what you tell them to do, too, with either local or remote commands. And with hardly a snarl, thanks to our high frequency pulse-width modulation that lowers stored energy...protecting you, your load, and your instrumentation.

To curb any aggressiveness, we've included safety interlock terminals, a remote TTL-level enable/ disable input, and automatic crossover between voltage and current regulation as the load demands. Surge limiting and fast-acting control circuits protect against arcs, shorts, and overloads.

Call for more information...and discover for yourself that the Series WX is a real pussycat!

Purrformance is excellent. Voltage regulation is 0.005% for line variations, and current regulation is better than 0.05% from short circuit to rated voltage. Ripple is less than 0.05% at full load. And, like any cat, they're quick ... output rise and decay time constant is less than 50 milliseconds with a 50% resistive load.

Series WX are also available with digital voltage and current meters or with a blank panel for OEM/systems applications, making them compatible with most environments.

Innovations in high voltage power supply technology.

GLASSMAN HIGH VOLTAGE INC.

GLASSMAN U.S.A.

Glassman High Voltage, Inc P.O. Box 551

Route 22 East
Salem Industrial Park Whitehouse Station, NJ 08889 U.S.A.

Telephone: (908) 534-9007
TWX: 710 480-2839
FAX: (908) 534-5672

GLASSMAN EUROPE

Glassman Europe Limited
Studio 4
Intec 2
Wade Road
Basingstoke
Hampshire RG240NE
England
Telephone: (0256) 810808
FAX: (0256) 810815

GLASSMAN JAPAN

Glassman Japan High Voltage Limited
Taira Building
1-17. Taira 1-chome
Miyamae-ku, Kawasaki 216
Japan
Telephone: (044) 877-4546
FAX: (044) 877-3395

Twice as Precise as Electrochemical Etching BALCO Microformed ${ }^{\text {"/ }}$ Parts

For encoder discs, masks, optical slits, aperture plates, ink-jet nozzles, reticles, laser electrn教 and more, BALCO Microformed parts offer over two times the precision of electrochemical etching.
The Microformed process uses electrochemical plating on a mathematically calculated, photographically generated pattern. Holes and slots are routinely as small as 2 microns ± 1 micron. Complex designs with sharp, burr-free edge definition are typical. Parts can be absolutely flat or three-dimensional. And low-cost, Microformed tooling is ideal for small or large production runs.

Let us design a Microformed part with you.

Call 203/481-4277

\qquad
-1
1" P.O. Box 427 • Branford, CT 06405 • 203/481-4277 • FAX: 203/488-6902

CIRCLE NO. 42

SHORT ON TIME?
 ASK US FOR A SHORT RUN AND A CUSTOM MODIFICATION.... AND A COMPETITIVE PRICE!

At Bergquist we add value to our Powercord line by providing extra services that engineers need. In addition to fast turnaround and custom modifications we provide:

- Most International Approvals.
- Quick turnaround on quotes and orders.
- Choose from a variety of lengths, gauges and jacket types.

Fax Your Specifications for a Comparison Quote Today! FAX: (612) 835-4156 or Call Toll Free: 1-800-347-4572 BERADUIST
5300 Edina Industrial Blvd., Minneapolis, MN 55435 • Tel. (612) 835-2322 FAX: (612) 835-4156

1991 Mathematica Conference, San Francisco, CA. Maury Kendall, Wolfram Research Inc, 100 Trade Center Dr, Champaign, IL 61820. (217) 398-0700. FAX (217) 398-0747. January 12 to 15 .

Managing Concurrent Engineering, Los Angeles, CA. Joan Hill, USC School of Business Administration, Los Angeles, CA 90089. (213) 740-6411; (213) 740-5219. January 13 to 15 .

Applications of Unix Utilities (short course), Seattle, WA. Specialized Systems Consultants Inc, Box 55549, Seattle, WA 98155. (206) 527-3385. FAX (206) 527-2806. January 15.

VXIbus User Group Meeting, Anaheim, CA. Sandy Garza, National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. (800) 433-3488. (512) 794-5435. FAX (512) 794-5569. January 17.

Information Services Seminar (ISS), Newport Beach, CA. Terry Burke, SEMI Membership Services, 805 E Middlefield Rd, Mountain View, CA 94043. (415) 9406901. January 21 to 23.

Winter 1991 UNIX Technical Conference, Dallas, TX. Usenix Association, 22672 Lambert St, Suite 613, El Toro, CA 92630. (714) 5888649. FAX (714) 588-9706. January 21 to 25 .

1991 Reliability and Maintainability Symposium and Exhibits, Orlando, FL. F Peter, Dayton T Brown Inc, Church St, Bohemia, NY 11716. (516) 589-6204. January 29 to 31.

Learn Test In The 1990s (short course series), Silicon Valley, CA. ATE Solutions Inc, 2820 Townsgate Rd, Suite 202, Westlake Village, CA 91361. (805) 373-1477. FAX (805) 373-1979. February 4 to 9.

MEGA MEMORY.

SONY HIGH-DENSITY SRAMS				
MODEL	CONFIG.	SPEED (ns)	PACKAGING	$\begin{gathered} \text { DATA } \\ \text { RETENTION } \end{gathered}$
CXK581000P*	$128 \mathrm{~K} \times 8$	100/120	DIP 600 mil	L, LL
CXK581000M*	$128 \mathrm{~K} \times 8$	100/120	SOP 525 mil	L, LL
CXK581100TM*	128K x 8	100/120	TSOP	L, LL
CXK581100YM*	$128 \mathrm{~K} \times 8$	100/120	TSOP (reverse)	L, LL
CXK581001P	$128 \mathrm{~K} \times 8$	70/85	DIP 600 mil	L
CXK581001M	$128 \mathrm{~K} \times 8$	70/85	SOP 525 mil	L
CXK581020SP	$128 \mathrm{~K} \times 8$	35/45/55	SDIP 400 mil	
CXk581020J	$128 \mathrm{~K} \times 8$	35/45/55	SOJ 400 mil	
*Extended temperature range available.			$\begin{aligned} & \mathrm{L}=\text { = Low power. } \\ & \mathrm{LL}=\text { Low, low power } \end{aligned}$	

MEGA COMMITMENT.

As you can see, Sony's more
committed than ever to meeting your high-density SRAM needs.
Just consider the enhancements we've made in a few short months: TSOP and TSOP-reverse packaging.Low dataretention current. And extended temperature range.

All based on our unique 0.8 -micron CMOS technology, and available in 32-pin DIP and surface-mount plastic packages.
Then consider our ever-increasing production capabilities. We've just added yet another SRAM facility in Japan. And acquired a large AMD facility in San Antonio, Texas.

So you can really count on us in a crunch.
Need more proof we're serious about your each and every SRAM need?

Call us. We've got more breakthroughs on the way. Well over 100 SRAM products spanning the performance spectrum. And the desire to meet-or exceed - your toughest performance spec.

Sony high-density SRAMS are shipping now, complete with competitive pricing. So call (714) 229-4190 today. Or write Sony Corporation Of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630, Attention: Semiconductor sales. FAX (714) 229-4285.

Nobody does ferrites like DEXTER. We offer the industry's broadest selection of quality ferrites and associated hardware from world-class manufacturers. SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From prototype quantities to production runs. From off-the-shelf to a wide range of value-added services - precision fabrication, E-core and pot-core gapping and testing, sorting and selecting by electrical specs.
Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location
FERRITE CORES:
THE DEXTER DIFFERENCE -One-Stop-Shopping for all your ferrite needs.

THE DEXTER CORPORATION
ATLANTA • BOSTON • CHICAGO • DALLAS • LOS ANGELES • MINNEAPOLIS/ST. PAUL • NEW YORK • SAN FRANCISCO • TOLEDO/DETROIT • ENGLAND• WEST GERMANY

CALENDAR

The OEM Computer Technology Conference and Expo for Systems Design and Integration, Anaheim, CA. American Electronics Association, 5201 Great America Pkwy, Santa Clara, CA 95054. (503) 3595873. FAX (503) 357-3839. February 11 to 13 .

7th Annual IEEE Semiconductor Temperature and Thermal Management Symposium, Phoenix, AZ. Paul Wesling, IEEE, 12250 Saraglen Dr, Saratoga, CA 95070. February 12 to 14.

International Conference on Artificial Intelligence, Miami Beach, FL. CAIA '91, IEEE Computer Society, 1730 Massachusetts Ave NW, Washington, DC 20036. (202) 3711013. February 24 to 28.

NEPCON West '91, National Electronic Packaging and Production Conference, Anaheim, CA. Cahners Exposition Group, 1350 E Touhy Ave, Des Plaines, IL 60018. (708) 299-9311. FAX (708) 635-1571. February 24 to 28.

European Design Automation Conference Amsterdam, The Netherlands. Professor Jochen Jess, Eindhoven University Technology, Box 513, 5600 MB Eindhoven, The Netherlands. (Phone) 31-40-473353. February 25 to 28.

SQL (Structured Query Language): A Hands-On Workshop, Seattle, WA. Learning Tree International, Box 45028, Los Angeles, CA 90045. (800) 421-8166; in Canada, (800) 267-1824; in CA, (213) 417-9700. March 12 to 15.

Advanced Research in VLSI Conference, University of California, Santa Cruz, CA. Kevin Karplus or Jean McKnight, Computer Engineering, UCSC, Santa Cruz, CA 95064. (408) 459-2303. March 25 to 27 .

Announce new System HILO 4 to design engineers and managers.
Be sure they know...
\checkmark it enhances design productivity through Language Driven Design.
\checkmark its FASTCELL ${ }^{\text {™ }}$ ASIC libraries simulate sub-micron technology accurately. And up to eight times faster than traditional gate-level modeling while using less memory.
\checkmark it outperformed golden simulators in accuracy in several benchmarks at ASIC foundries.
\checkmark it's the ideal core simulation toolkit to support a concurrent engineering environment, with simulation for logic verification, worst case timing, fault grading, and non-intrusive ATPG.
And there's much more to tell so readers should contact their local GenRad office for more about System HILO 4.

Call 1-800-4-GENRAD in the U.S., or the GenRad office nearest you in Austria, Canada, England, France, Germany, Italy, Japan, Singapore, Switzerland.

dc to 3GHz $\$ 11^{45}$ lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40 dB stopband rejection
- 5-section, $30 \mathrm{~dB} /$ octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models • immediate delivery
low pass dc to 1200 MHz

MODEL	PASSBAND, MHz (loss $<1 \mathrm{~dB}$) Min.	fco, MHz (loss 3db)	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) (loss $>40 \mathrm{~dB}$)			$$		$\begin{gathered} \text { PRICE } \\ \text { S } \\ \text { Oty } \\ (1-9) \end{gathered}$
			Max.	Max.	Min.			
PLP-10.7	DC-11	14	19	24	200	1.7	18	11.45
PLP-21.4	DC-22	24.5	32	41	200	1.7	18	11.45
PLP-30	DC-32	35	47	61	200	1.7	18	11.45
PLP-50	DC-48	55	70	90	200	1.7	18	11.45
PLP-70	DC-60	67	90	117	300	1.7	18	11.45
PLP-100	DC-98	108	146	189	400	1.7	18	11.45
PLP-150	DC-140	155	210	300	600	1.7	18	11.45
PLP-200	DC-190	210	290	390	800	1.7	18	11.45
PLP-250	DC-225	250	320	400	1200	1.7	18	11.45
PLP-300	DC-270	297	410	550	1200	1.7	18	11.45
PLP-450	DC-400	440	580	750	1800	1.7	18	11.45
PLP-550	DC-520	570	750	920	2000	1.7	18	11.45
PLP-600	DC-580	640	840	1120	2000	1.7	18	11.45
PLP-750	DC-700	770	1000	1300	2000	1.7	18	11.45
PLP-800	DC-720	800	1080	1400	2000	1.7	18	11.45
PLP-850	DC-780	850	1100	1400	2000	1.7	18	11.45
PLP-1000	DC-900	990	1340	1750	2000	1.7	18	11.45
PLP-1200	DC-1000	1200	1620	2100	2500	1.7	18	11.45

high pass dc to 2500 MHz

MODEL NO.	PASSBAND, MHz(loss <1dB)		fco, MHz (loss 3db) Nom.	$\begin{gathered} \text { STOP BAND, MHz } \\ (\text { loss }>20 \mathrm{~dB}) \end{gathered}$		VSWR		$\begin{gathered} \text { PRICE } \\ \text { Qty. } \\ (1-9) \end{gathered}$
	Min.	Min.		Min.	Min.	band typ.	typ.	
PHP-50	41	200	37	26	20	1.5	17	14.95
PHP-100	90	400	82	55	40	1.5	17	14.95
PHP-150	133	600	120	95	70	1.8	17	14.95
PHP-175	160	800	140	105	70	1.5	17	14.95
PHP-200	185	800	164	116	90	1.6	17	14.95
PHP-250	225	1200	205	150	100	1.3	17	14.95
PHP-300	290	1200	245	190	145	1.7	17	14.95
PHP-400	395	1600	360	290	210	1.7	17	14.95
PHP-500	500	1600	454	365	280	1.9	17	14.95
PHP-600	600	1600	545	440	350	2.0	17	14.95
PHP-700	700	1800	640	520	400	1.6	17	14.95
PHP-800	780	2000	710	570	445	2.1	17	14.95
PHP-900	910	2100	820	660	520	1.8	17	14.95
PHP-1000	1000	2200	900	720	550	1.9	17	14.95

bandpass 20 to 70 MHz

MODEL	$\begin{gathered} \text { CENTER } \\ \text { FREQ. } \\ \text { MHZ } \\ \text { FO } \end{gathered}$	PASS BAND, MHz (loss <1dB)		$\begin{gathered} \quad \text { STOP BAND, MHz } \\ \text { (loss }>10 \mathrm{~dB}) \quad(\text { loss }>20 \mathrm{~dB}) \end{gathered}$				VSWR1.3:1 typ. total band MHz	$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Oty } \\ \text { (1-9) } \end{gathered}$
		$\underset{F 1}{\operatorname{Max}}$	$\begin{gathered} \text { Min. } \\ \text { F2. } \end{gathered}$	$\begin{aligned} & \text { Min. } \\ & \text { F3. } \end{aligned}$	$\operatorname{Max}_{\mathrm{F4}}$	$\underset{\text { F5 }}{\substack{\text { Min. }}}$	$\underset{\text { F6 }}{\text { Max }}$		
PIF-21.4	21.4	18	25	4.9	85	1.3	150	DC-220	14.95
PIF-30	30	25	35	7	120	1.9	210	DC-330	14.95
PIF-40	42	35	49	10	168	2.6	300	DC-400	14.95
PIF-50	50	41	58	11.5	200	3.1	350	DC-440	14.95
PIF-60	60	50	70	14	240	3.8	400	DC-500	14.95
PIF-70	70	58	82	16	280	4.4	490	DC-550	14.95

narrowband IF

Give your PC designs all the bells and whistles.

It's easy with Motorola peripheral chips.

The simplest and most costeffective way to give your new PC design all the latest bells and whistles is with Motorola PC Chip Set products. Our new peripheral chips make light work of state-of-the-art PC development.

The single-chip Floppy Disk Controller.

There's only one true single-chip Floppy Disk Controller (FDC) available today and it's from Motorola. The MCS3201 is an IBMPC/XT/ AT^{8} floppy disk formatter and controller that offers on-chip address decoding. The design requires only one external 24 MHz crystal. This FDC offers four different densities, $360 \mathrm{~K}, 720 \mathrm{~K}, 1.2 \mathrm{M}$ and 1.44 M , and data transfer rates of 250,300 and $500 \mathrm{~kb} / \mathrm{s}$.

Industry standard Multi-Function I/O Controllers.

Three new multi-function I/O controllers offer highly integrated solutions for all IBM PC/XT/AT systems. The MCCS16C462 is the industry's only " 452 " standard with an on-board crystal driven clock reference. This dual serial and single parallel port controller combines a 452 pinout with all the space and money savings of its own crystal oscillator. Motorola also makes two other controllers for use with a TTL clock reference-the single serial, single parallel MCCS16C451 and the dual serial, single parallel MCCS16C452.

New additions to the first family of EIA-232.

Two new families expand Motorola's industry-standard EIA-232 product lines-the MC145406/07 for notebook applications and the MC145403/4/5/8 for desktop applications.

A Real-Time Clock with real-time improvements.

The MCCS146818B Parallel RealTime Clock (RTC) is a generous improvement of the world standard 18A. Wéve doubled to user-available RAM to 114 bytes and dramatically reduced the standby current draw. Then, to make your design chores a snap, we've created a module that includes a battery and crystal to keep time, save money and save space to boot.

The MCCS1850 Serial Real-Time Clock is the first Motorola RTC designed for workstations, UNIX/ DOS based machines with power
supply auto-restart and 64 bytes of CMOS static RAM. To the workstation designer, the 1850 means flexibility and reliability.

Take it from here.

Motorola PC chips combine technology and innovation to make your PC designs the very best they can be. We've put together an information pack that's yours for the asking; it includes complete technical information on all of Motorola's peripheral devices for IBMPC/XT/ AT machines. If you'd like one, simply complete and return the coupon below, write to us on your company letterhead at P.O. Box 20912, Phoenix, AZ 85036, or contact your local Motorola Sales office.

PC/XT and PC/AT are registered trademarks of IBM Corp.
MCCS is a trademark of Motorola Inc.
The PC Chips logo is a trademark of Motorola Inc.

Our quad high-side driver is the perfect switch for your intelligent environment.

Offering four independent 1 A switches.
The LMD18400, the industry's first and only quad high-side switch, truly has a mind of its own.

Our intelligent solution has four independent power switches, each with a separate ON/OFF control. They're capable of driving 1 A continuous and 3 A peak loads. Together, they have a rating of 6A peak.

Our quad design achieves a higher level of integration and saves you a valuable chunk of real estate.

What's more, it drives every possible load: resistive, capacitive, and inductive. Making it the ideal design for automotive and farreaching industrial applications.

Communicating with 11 diagnostic checks.

With a built-in serial interface, the LMD18400 provides extensive diagnostic data to a $\mu \mathrm{C}$ or $\mu \mathrm{P}$, including switch status readback, output-load fault conditions, and thermal and overvoltage shut down status.

Which results in bidirectional, real-time communications that can prevent blowouts, minimize downtime, and maximize your system performance.

Providing unparalleled protection.
By integrating CMOS, DMOS, and bipolar on the same chip, we're able to deliver an optimized, mixed analog+ digital technology for power, control, and protection.

Parallel operation of LMD18400s
Fail-safe protection. Which means a two stage thermal warning system that sends a distress flag to the host system at 145°, giving you ample time to take corrective
action. And should the temperature reach 170°, the device automatically shuts down. A critical feature that can make your design less susceptible to damage.

It also means voltage and current sensors, which prevent burnout with an instantaneous power limit of 15 W . And due to its high-side configuration, an accidental short wouldn't ground the battery.

Make the intelligent switch.

For your LMD18400 design kit, call or write us today.

And get an inside look at the brains behind the brawn.

1-800-NAT-SEMI, Ext. 107
National Semiconductor Corp.
P.O. Box 7643

Mt. Prospect, IL 60056-7643

Support your local test engineer

As a design engineer, you should know that testing the products you design is your responsibility . . . not somebody else's. In most companies, though, when it comes to product testing, design engineers aren't alone. Test engineering is becoming more important and increasingly complements design engineering.

In the field of test development, the US electronics industry is gradually emerging from the dark ages. Design engineers used to satisfy themselves that a design worked, then they would lob it over the proverbial wall separating design from test. There, it would land like a bombshell, ready to "explode" among the test engineers.

Many companies now use a design-and-test partnership. Sometimes this partnership is an uneasy one. Design engineers, accustomed to ruling the technical roost, grudgingly accept test engineers as members of the product design team-albeit inferior ones. They then often rail at the constraints the test engineers try to place on designs to ensure testability.

When developing a product's test strategy, it isn't important which type of engineer is chosen as the senior partner-test engineers and design engineers can be equally effective. A good design engineer knows the product better than the test engineer does, whereas a good test engineer knows the capabilities of test equipment and testdepartment personnel better. Moreover, the test engineer is a pragmatist who understands-in ways few design engineers care to-what approaches the company will accept.
When management hands out kudos for a product design, the design engineers usually receive the accolades (and occasionally the bonuses). The test engineer is lucky to receive recognition from his or her supervisor and peers. Now there is a way to recognize unsung heroes of test engineering: John Fluke Mfg Co is sponsoring a test-engineer award to be presented at the International Test Conference, which will be held in Nashville, TN from Oct 28 to Nov 1, 1991. Three finalists will be selected, and each will receive a plaque. The grand-prize winner will receive a $\$ 1000$ award, or Fluke will donate $\$ 1000$ to an organization of the winner's choice. The person who nominates the winner will receive $\$ 250$.

To obtain nomination forms, write to John Fluke Mfg Co Inc, Test Engineer Awards, Box C9090, MS 250C, Everett, WA 98206. You can also send your request for nomination forms by FAX to (206) 356-5962. You must submit your completed nomination forms by the August 15, 1991 deadline.
We hope you work with a test engineer who you think should win. If you think your company doesn't have such a person, you ought to ask yourself why not. Think about what you and your colleagues can do to change the situation. There's a good chance that the problem has more to do with organizational attitudes than with a lack of talent. Challenge yourselves: If you work at it, in a year or two your problem could be that you have too many candidates. If so, whether or not your nominee receives a plaque or a check, your company will be a winner.

Editorial Achievement Awards
Editorial Achievement A
1987,1981 (2), 1978 (2), 1977, 1976, 1975
American Society of
Business Press Editors Award 1988, 1983, 1981

[^7] Associate Editor

A few words of advice from high-performance μ PLDs.

Chill out, PAL.

Many designers have hot, high-performance designs. Literally.

Fortunately, Intel has a simple way to reduce system heat and still get incredible performance. The μ PLD Family of programmable logic devices.

Take, for example, the 85C220 and 85C224. They operate at 80 MHz (100 MHz internally) with only a 10 ns total propagation delay.

And since μ PLDs are manufactured using Intel's CHMOS* technology, they require just $1 / 4$ the power of their pin-compatible bipolar PAL* alternatives. Which means they can lower
system heat by 35 percent and help reduce board-level failures, too. So they're certain to give your high-performance system a boost. And send chills up the spine of your motherboard.

Learn more about Intel μ PLDs and receive a μ PLD/PAL heat comparison. Call (800) 548-4725 and ask for Literature Packet \#IA28.

Otherwise, you could take some heat over your system design.
intel
 competition, it is our solid-matrix fuses that are growing the fastest because they make your products more competitive. Our advanced PC-Tron radial lead, SMD Tron surface mount and Microtron standard subminiature fuses, all save board space. Both Bussmann high performance PC-Tron and SMD Tron fuses provide currentlimiting capability never before available to designers. The solid matrix surrounding the fuse element rapidly extinguishes the arc, when a fault occurs...predictably. So for the first time, both PC board components and equipment are protected. That's a competitive edge for you. Both Bussmann high performance fuses provide for the economies of automatic insertion and are completely sealed, to withstand rigorous board washing. For designs locked into the conventional subminiature fuse footprint, Bussmann offers Microtron-the reliable standard. Contact your Bussmann distributor or Bussmann directly for samples and literature on solid-matrix fuses; $5 \times 20 \mathrm{~mm}$ or $1 \times 1-1 / 4 \mathrm{in}$. glass tube fuses; fuseholders, blocks and accessories.

BUSSMANN-LEADER IN CIRCUIT PROTECTION-WORLDWIDE

BUSSMANN

P.O. Box 14460

St. Louis, MO 63178
Phone: (314) 394-2877
FAX:(314) 527-1445

BUSSMANN
Cooper (U.K.) Limited
Beswick Works
Frome, Somerset BA111PP
United Kingdom
Phone: 44-0373-64311
FAX:44-0373-73175

BUSSMANN FAR EAST

The Plaza
7500 A Beach Road
No. 14-319/320 Singapore 0719 Republic of Singapore
Phone:65-2988311
FAX: 65-2963807

GOODBYE WORKSTATION

 HELLO

 HELLO PADS.PCB

 PADS.PCB}

It's time to say goodbye

 to expensive engineering workstation based CAD systems. Why should management tie up $\$ 100,000.00$ or more in a workstation when the same (and often better) performance is obtained with PADS-PCB, a PC based CAD system?PADS-PCB is a high performance printed circuit board design software that offers a degree of functionality a designer could expect only from an expensive engineering workstation, including Logic Simulation, Circuit Analysis, and Thermal Analysis.

Powerful auto/interactive features are a part of what makes PADS-PCB the best selling CAD system on the market today!

- 1 mil database-32"x32" board size30 layers
- Large circuit capabilites: In excess of 400 equivalent 14 pin IC's
- Automatic and interactive component placement aids
- Automatic and interactive track routing
- Automatic design rule checking
- Superior Surface Mounted Device capability
- Fine line design
- Superb analog design capability
- Inputs from Futurenet, Orcad, Schema, PADS. LOGIC and others
- 100% routing with PADS-SuperRouter, the accepted standard for rip-up and reroute autorouting
- New! PADS-Push N' Shove AutoInteractive Push N' Shove Router. Great for analog and critical circuitry.
CAD Software asks you to try its Evaluation Package, at no charge, so you can judge for yourself how PADS-PCB can be the solution to your design problems. Ask about our Leasing Program. Call our Sales Hotline today at (800) 255-7814; in Massachusetts, (508) 486-8929.

119 Russell Street Suite \#6 Littleton, MA 01460

TECHNOLOGY UPDATE

SERVO-MOTOR CONTROLLER BOARDS

Boards refine the art of servo control

Modular control boards and userfriendly software let system designers control sophisticated motions.

John Gallant, Associate Editor

Designing a servo-motor control system is easier than it used to be. In the past, designers had to juggle such factors as loop stability, power-amplifier design, mechanical coupling, and a good knowledge of control theory to get such a system to work effectively. The need to control multiple axes in a synchronized movement complicated the task even further.
Today, vendors offer an assortment of servomotor controller boards for computers and standalone applications. (This article concentrates on boards for the ISA bus, but most of the vendors offer boards with the same features and more for other bus architectures.) These boards make servo-control systems more modular. In many instances, you can build a multiaxis servo system by purchasing motors containing incremental encoders, power amplifiers, and one of these boards to complete the necessary hardware. The development software tools supplied with the boards let you optimize loop performance and synchronize motion on multiple axes.

You can expect a motor-control board to have a commercial motor-control IC, an ASIC, a $\mu \mathrm{P}$, or a DSP chip performing the servo-loop control functions. The chips accept quadrature feedback signals from an encoder and have registers
for storing motor commands and motion profiles. To drive the external power amplifier, the boards use either a dc output signal from a D/A converter or a sign-magnitude PWM signal.

In addition, the boards have dedicated digital I/O ports for inputs from limit switches, index pulses, and loop-status outputs. They also have user-definable

Many boards employ commercially available motor-control ICs. The MC series of boards from Motion Engineering employs a Hewlett-
Packard HCTL-1000 that receives instructions directly from the ISA The MC series of boards from Motion Engineering employs a Hewlett-
Packard HCTL-1000 that receives instructions directly from the ISA bus host computer.

digital I/O lines for programmable-logic controller signals that are synchronized to the motor's position. The digital lines are usually optoisolated to reduce noise. Some boards have watchdog timers that monitor the servo loop's operation and generate interrupts under emergency conditions.

Technology 80 Inc offers servo-motor control boards for ISA bus, VMEbus, STD bus, and stand-alone applications. The boards employ a Hewlett-Packard HCTL-1000 or a National Semiconduc-

TECHNOLOGY UPDATE

Servo-motor controller boards

tor LM628 or LM629 motor-control IC for each axis of control. (See box, "Anatomy of two motor-control ICs," for a description of how these devices work). The 5638 and 5639 8-bit ISA bus boards utilize the LM628 and LM629 ICs, respectively. The boards can control one, two, or three axes of movement. The 5638 features a 12 -bit DAC that provides a $\pm 10 \mathrm{~V}$ dc motor command. The 5639 has an optoisolated, 8-bit, sign-magnitude PWM output signal. The boards provide optically isolated inputs for
quadrature signals from an incremental encoder. The maximum encoder rate is 1×10^{6} counts/sec.

Twenty-three software commands let you control many loop functions via the host's keyboard. For example, you can command the boards to change the 16 -bit coefficients of a proportional, integral, and differential (PID) loop filter while the motor is in motion, which compensates for changing load conditions. You can also specify and execute trapezoidal motion profiles and monitor the motor's status during a move.

The boards can update the digital data in the servo loop in a minimum of $256 \mu \mathrm{sec}$; a watchdog timer can disable the motor and issue an interrupt to the host. Eight digital inputs and eight digital outputs can input data from relays or switches and output data to solenoids or displays. An extra onboard quadrature decoder can operate as a master decoder to synchronize the velocity and position of multiple motors.
The boards come with a library of more than 70 assembly-language routines that are compatible with

Anatomy of two motor-control ICs

The heart of all servo-motor controller boards is a motor-control IC. Vendors employ a single $\mu \mathrm{P}$, a custom ASIC in combination with a $\mu \mathrm{P}$, a DSP IC, or a commercially available IC. Hewlett-Packard's

HCTL-1000 and National Semiconductor's LM628 and LM629 are the most popular commercially available motor-control ICs.
The HCTL-1000 (Fig A) is a 40 -pin NMOS device

Fig A-Commercial motor-control ICs can perform all of the functions needed to control a servo motor. Hewlett-Packard's HCTL-100 decodes quadrature encoder signals; provides a loop filter; delivers parallel, PWM, and phase-commutated motor commands; and includes an interface to a μP.

Microsoft's C, Quick C, and Quick Basic. The routines come with the source code, so users can modify them.

IC commutates four phases

The MC-03 from Mektronix Technology Inc is another 3 -axis motorcontroller board for the 8 -bit ISA bus. The board employs three Hewlett-Packard HCTL-1100 mo-tor-control ICs, which are enhanced versions of the HCTL-1000. The board has a proportional derivative (PD) loop filter and provides both
a $\pm 5 \mathrm{~V}$ dc signal and an 8-bit signmagnitude PWM output signal. It also provides phase-sequenced commutator output signals for controlling 3 - and 4 -phase motors.

The board has 12 user-definable digital I/O lines and a port that can connect to an oscilloscope for monitoring the loop step response. The IC's command registers communicate directly with the host CPU and occupy eight bytes of a computer's I/O address space. The board comes with a library of Microsoft C, Turbo Pascal, and Quick Basic software
routines. An Exerciser program lets you execute motor commands from the keyboard or a text file.
An optional numerical-control development package lets you rotate the motor at a constant velocity (also called jogging) as well as detect a specific motor position (homing) under keyboard control. The package conforms to the EIA RS2740 standard for machine tool operation. A menu system lets the operator edit, simulate, and run programs, as well as linearly interpolate the position of a 3 -axis move
for controlling dc, brushless dc, and stepper motors. (The HCTL-1100 is a lower-power CMOS version.) The IC has a bidirectional 8 -bit multiplexed address and data bus that interfaces to a host $\mu \mathrm{P}$. The HCTL-1000 accepts two quadrature signals from an incremental shaft encoder at a maximum rate of 300 kHz . The IC internally decodes the four transitions of the encoder clock cycle to provide an encoder resolution of 1.2×10^{6} counts $/ \mathrm{sec}$. The IC then increments or decrements a 24 -bit counter using the encoder counts to decode the motor's position. An internal commutator uses the encoder signals and an index pulse to select the correct phase sequence for commutating $2-, 3-$, or 4 -phase motors.
The HCTL-1000 generates the servo-control loop's position-error signal by comparing the motor's 24 -bit decoded position with a command position located in an internal 24 -bit register. The error signal feeds a programmable digital filter that has the following transfer function:

$$
\mathrm{D}(\mathrm{z})=\mathrm{K} \frac{\mathrm{z}-\mathrm{A}}{\mathrm{z}+\mathrm{B}},
$$

where K, A, and B are programmable constants. This first-order lead filter provides proportional and derivative (PD) compensation for closed-loop stability. You can program the minimum servo update time between 64 and $2048 \mu \mathrm{sec}$. The loop filter has an 8 -bit parallel output, which drives an external D/A converter, and an 8-bit sign-magnitude PWM signal. The IC also has two inputs, which permit emergency interruptions.

National Semiconductor's LM628 and LM629 are 28 -pin NMOS devices that also accept two quadrature signals and an index pulse from an incremental encoder. The chips decode a maximum of 1×10^{6} counts/sec from the quadrature signals and accumulate the counts with a 32 -bit counter. Both chips create a position-loop error signal by comparing the 32 -bit feedback-position register with a 32 -bit command position register. The error signal drives a programmable digital filter that provides proportional, integral, and derivative (PID) compensation. The output of the LM628's filter is an 8 -bit parallel port for driving an external D/A converter. The LM629 provides an 8-bit sign-magnitude PWM signal for driving H switches. Both chips have an 8 -bit data bus that interfaces to a host $\mu \mathrm{P}$.

You can program both the Hewlett-Packard and National Semiconductor motor-control ICs to generate motion profiles. The HCTL-1000 has four mo-tion-control modes. The modes let you position the motor using point-to-point position moves or a trapezoidal position profile in which changes between motor positions occur at a specified linear velocity. The chip also has a trapezoidal velocity-profile mode, which enables the motor to change speeds at a specified linear acceleration. The LM628 and LM629 have trapezoidal velocity- and position-profile modes only. Both chips create velocity feedback by taking the derivative of the data in the feedback-position registers.

Servo-motor controller boards

and circularly interpolate the rotation angle of two motors in a $2-\mathrm{D}$ plane.

Motion Engineering Inc manufactures 1-, 2 -, 3 -, and 4 -axis motorcontrol boards that utilize the HCTL-1000 motor-control IC for both the 8-bit ISA bus and standalone applications. The MCS series of boards uses the host computer's CPU to transfer data to the IC's command registers. The registers map into the host memory address space, so read and write times are less than $3 \mu \mathrm{sec}$. The boards have a PD loop filter, generate analog or PWM motor-command signals, and provide phase commutation for stepper and brushless servo motors. The boards have limit and emergency-stop switch inputs, status output signals, and 12 bits of user-defined digital I/O.

Each board comes with the Quick Script developers kit. The software, which is written in the HPGL graphics language, lets you create a plot file using AutoCAD and convert the file to motion control. You can create different motion profiles by reading a series of n points from a disk file as fast as $1024 / n$ points/ sec and executing point-to-point position moves. A jogging function lets you control motor speed using the + and - keys. Other software functions include changing register settings on the fly, 2 -axis circular interpolation, and 4-axis profile contouring.

A $\boldsymbol{\mu} \mathbf{P}$ for flexibility

Many vendors say commercial ICs limit the flexibility of a servo system. Creonics Inc, for example, employs a custom ASIC, the CX2216, and either an 80 C 186 or an $8031 \mathrm{H} \mu \mathrm{P}$ to control the servo loop. The company offers motioncontroller boards for the ISA bus, Multibus I and II, VMEbus, STD bus, and stand-alone applications.

The CX2216 ASIC can decode

Motor-control boards come with software to optimize servo-performance. The software for Technology 80 Inc's 5638 ISA bus board lets you observe the loop step response while you adjust the coefficients for a PID loop filter.
quadrature 1×10^{6}-count/sec signals from two incremental encoders using a 32 -bit counter. It then delivers two 12 -bit sign-magnitude PWM output motor-command signals. The $\mu \mathrm{P}$ calculates the servo-loop parameters in software and provides the interface to the hostcomputer bus. The $\mu \mathrm{P}$ also calculates the coefficients for a PID filter for loop compensation and provides a velocity feedforward signal, which helps the loop response follow a velocity command.

Creonics's IBM PC Motion Control Card (MCC) for the 8-bit ISA bus controls two axes of motion. The board features an $80 \mathrm{C} 186 \mu \mathrm{P}$, a 256 -byte dual-port RAM interface to the host, a 66×10^{6}-to- 1 velocity range, a 2×10^{9}-to-1 acceleration range, 1 -msec servo-update time, optical isolation for encoder and digital I/O lines, a CPU watchdog, and a $\pm 10 \mathrm{~V}$ de and 12 -bit signmagnitude PWM motor command. The board occupies eight bytes in the host's I/O space and can operate in interrupt or polled mode.

The board has options that let you electronically adjust the gear ratio between two synchronized motors. Another option permits two motors to generate CAM waveforms. The board's software allows direct access to the board using peek and poke instructions. An optional library has 50 motion routines and is written in Microsoft C version 5.0. The routines handle all the commands to the board and come with source code for user modification.

A watchdog lends an eye

Galil's boards also perform motorcontrol functions using a custom ASIC and a dedicated $\mu \mathrm{P}$. The company offers boards for the ISA bus, VMEbus, Multibus I, STD bus, and stand-alone applications based on the $68008 \mu \mathrm{P}$. The DMC-600 controls one, two, or three axes on an 8 -bit ISA bus. The $\mu \mathrm{P}$ provides PID filtering and an acceleration feedforward signal that reduces the loop following error during accelerated moves. You can store com-

TECHNOLOGY UPDATE

Vendor	Board name	Motor controllers	able 1-ISA bus boards for servo-motor control									Comments
			Number of axes	Position count range (bits)	Min servo update time ($\mu \mathrm{sec}$)	Max encoder edge rate (counts/ sec)	Motion profiles*	User digital I/O	Motor command	Loop filter \ddagger	Price	
Creonics	$\begin{array}{\|l\|} \hline \text { IBM } \\ \text { PC } \\ \text { MCC } \end{array}$	$\begin{array}{\|l\|} \hline 8 \mathrm{C} 186 \\ \mathrm{CX} 2216 \end{array}$	2	32	1000	1×10^{6}	1,2, 3	4 inputs, 1 output per axis	$\pm 10 \mathrm{~V}$ dc or PWM ${ }^{12}$ bit)	PID; velocity feed forward	\$2190	I/O mapped (8 bytes); electronic gearing and electronic cam optional
Delta Tau Data Systems	PMAC	DSP56001	$\begin{aligned} & 4 \text { or } \\ & 8 \end{aligned}$	24	$\begin{aligned} & 50 \text { to } \\ & 500 \end{aligned}$	10×10^{6}	$\begin{aligned} & 1,2,3,4, \\ & 5,6,7 \end{aligned}$	20 inputs, 8 outputs	$\pm 10 \mathrm{~V} \mathrm{dc}(16$ bit), 2-phase commutator (16 bit)	PID; velocity and acceleration feed forward	$\begin{array}{\|l\|} \hline \$ 2998 \\ (4 \text { axes }) \end{array}$	Optional pole-placement algorithm; cubic-trajectory algorithm; and handwheel encoder
	SMCC	78312	2	24	480	1×10^{6}	$\begin{aligned} & 1,2,3,4, \\ & 5,6,7 \end{aligned}$	7 inputs, 5 outputs	$\pm 10 \mathrm{~V}$ dc (9 bits); 2-phase commutator; 11-bit PWM	PID; velocity and acceleration feed forward	\$1679	Optional cubic-trajectory algorithm; RS232C port, 8-bit parallel port
Galil	$\begin{aligned} & \text { DMC- } \\ & 600 \end{aligned}$	68008 and an ASIC	$\begin{aligned} & 1,2, \\ & \text { or } 3 \end{aligned}$	24	1000	2×10^{6}	$\begin{aligned} & 1,2,3,4, \\ & 5,6,7 \end{aligned}$	8 outputs, 8 inputs	$\begin{aligned} & \pm 10 \mathrm{~V} \mathrm{dc}(12 \\ & \text { bit), } 12 \text {-bit } \\ & \text { PWM } \end{aligned}$	PID; acceleration feed forward	$\$ 895$ (1 axis) $\$ 1995$ (3 axes)	I/O mapped, 256-character FIFO buffer, 256k-byte RAM; 128k-byte EPROM
Mektronix Technology	MC-01	$\begin{aligned} & \text { HCTL- } \\ & 1000 \end{aligned}$	1	24	128	1.2×10^{6}	1,2,3	8-bit output, 4-bit input	$\pm 5 \mathrm{~V}$ dc; PWM at 20 kHz with sign bit; 3and 4-phase commutator	PD	\$465	Optional hand wheel encoder; I/O mapped; optional machine tooling software
	MC-03	$\begin{aligned} & \text { HCTL- } \\ & 1100 \end{aligned}$	3	24	128	1.2×10^{6}	1,2,3	8-bit output, 4-bit input	$\pm 5 \mathrm{~V}$ dc; PWM at 20 kHz with sign bit; 3and 4-phase commutator	PD	\$1065	Optional handwheel encoder; I/O mapped, optional machine tooling software
Motion Engineering	MCSeries	$\begin{aligned} & \text { HCTL- } \\ & 1000 \end{aligned}$	$\begin{aligned} & 1,2, \\ & 3, \text { or } \\ & 4 \end{aligned}$	24	$\begin{array}{\|l\|l} 64 \text { to } \\ 2048 \end{array}$	1.2×10^{6}	1,2,3	8 inputs, 4 outputs (24 bits optional)	$\pm 10 \mathrm{~V}$ dc (8 bits); 4-phase commutator 8-bit PWM	PD	$\begin{array}{\|l\|} \hline \$ 295 \\ (1 \text { axis }) \\ \text { to } \$ 895 \\ (4 \text { axes }) \end{array}$	Memory mapped
	MCS- Series	$\begin{aligned} & \text { HCTL- } \\ & 1000 \end{aligned}$	$\begin{aligned} & 1,2, \\ & 3, \text { or } \\ & 4 \end{aligned}$	24	$\begin{aligned} & 64 \text { to } \\ & 2048 \end{aligned}$	1.2×10^{6}	$\begin{aligned} & 1,2,3,5 \\ & 6 \end{aligned}$	8 inputs, 4 outputs (24 bits optional)	$\pm 10 \mathrm{~V}$ dc $(8$ bits) 8 -bit PWM; 4 -phase commutator	PD	$\$ 495$ $(1$ axis $)$ to $\$ 1095$ $(4$ axes $)$	AutoCAD to motion via HPGL poles; memory mapped
Technology 80 Inc	5638	LM628	$\begin{array}{\|l\|} \hline 1,2, \\ \text { or } 3 \end{array}$	32	256	1×10^{6}	2, 3	8 inputs, 8 outputs	$\begin{aligned} & \pm 10 \mathrm{~V} \mathrm{dc}(12 \\ & \text { bits) } \end{aligned}$	PID	$\$ 695$ (1 axis) to $\$ 1350$ (3 axes)	Watchdog, programmable timer, additional quadrature decoder
	5639	LM629	$\begin{array}{\|l\|} \hline 1,2, \\ \text { or 3 } \end{array}$	32	256	1×10^{6}	2,3	8 inputs, 8 outputs	8-bit PWM	PID	$\$ 695$ (1 axis) to $\$ 1295$ (3 axes)	Watchdog programmable timer, additional quadrature decoder
Whedco	3697	Z80	2	32	1000	1×10^{6}	1, 2, 3, 5, constant torque mode	2 outputs	$\begin{aligned} & \pm 10 \mathrm{~V} \mathrm{dc} \\ & (12 \mathrm{bit}) \end{aligned}$	PID, velocity feed forward	\$895	I/O mapped (16 bytes); 7k-byte RAM, 8k-byte ROM
	3797	Z80	1	32	1000	1×10^{6}	1, 2, 3, 5, constant torque mode	2 outputs	$\begin{aligned} & \pm 10 \mathrm{~V} \mathrm{dc} \\ & (12 \text { bit }) \end{aligned}$	PID, velocity feed forward	\$655	I/O mapped (16 bytes); 7k-byte RAM 8k-byte ROM
*Motion Profiles: 1. Point-to-point position, 2. Trapezoidal position, 3. Trapezoidal velocity, 4. Parabolic velocity, 5. Linear interpolation, 6. Circular Interpolation, 7. S-curve acceleration. $\ddagger \mathrm{PD}=$ proportional derivative; PID =proportional, integral, and derivative.												

Servo-motor controller boards

mands and motion programs in the board's 256 k -byte RAM. The board has a watchdog timer as well as a $\pm 10 \mathrm{~V}$ dc and a sign-magnitude PWM motor-command signal. The board maps into the computer's I/O address space and has a 256 -byte FIFO buffer to receive data from the host.
The software supplied with the DMC-600 lets you create a variety of independent or coordinated motions using an ASCII instruction set. You can specify a linear segment of motion by specifying the ending X-Y coordinates of a vector. You designate an arc segment using a radius, an initial angle, and a travel angle. A contouring mode lets you generate position trajectories of almost any shape for all axes. The controller performs linear interpolation between specified points for smooth motion. You can also perform mathematical operations on the motion variables and change them while the program is executing.

For fast loop sampling times and complex motion profiles for many axes, consider a board that uses a DSP chip for motion control. The PMAC boards for the ISA bus and VMEbus from Delta Tau Data Systems employ a DSP56001 IC. The boards can be daisy chained to synchronize as many as 128 axes and update the servo loop in as little as $50 \mu \mathrm{sec}$.

Whedco uses a $\mathrm{Z} 80 \mu \mathrm{P}$ to perform motor-control functions and host communications. The company offers ISA bus, STD bus, and VMEbus motor-controller boards. The 3697 and the 37978 -bit ISA bus boards have PID filtering and velocity feedforward to reduce the loop's following error during velocity moves. The boards have 7 k

For more information

For more information on the servo-motor controller boards discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Creonics Inc

Etna Rd
Lebanon, NH 03766
(603) 448-6300

FAX (603) 448-5659
Circle No. 715

Delta Tau Data Systems Inc

21119 Osborne St
Canoga Park, CA 91304
(818) 998-2095

FAX (818) 998-7807
Circle No. 716
Galil Motion Control Inc
575 Maude Ct
Sunnyvale, CA 94086
(408) 746-2300

FAX (408) 746-2315
Circle No. 717

Mektronix Technology Inc
96 Alpine Dr
Goleta, CA 93117
(805) 964-9669

FAX (805) 964-0797
Circle No. 718

Motion Engineering Inc
520 E Montecito St
Santa Barbara, CA 93103
(805) 962-5409

FAX (805) 962-8001
Circle No. 719

VOTE . .

Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest $518 \quad$ Medium Interest 519 Low Interest 520

Technology 80 Inc 658 Mendelssohn Ave Minneapolis, MN 55427 (612) 542-9545

FAX (612) 542-9785
Circle No. 720

Whedco

6107 Jackson Rd
Ann Arbor, MI 48103
(313) 665-5473

FAX (313) 665-6694
Circle No. 721
bytes of memory in which you can store as many as 255 motion profiles. The boards occupy eight consecutive bytes in the host's I/O address space and have an 8 k -byte ROM for the firmware. A 12 -bit DAC produces a $\pm 10 \mathrm{~V}$ de motorcommand signal. The 3797 and 3697 have 14 and 28 user-definable digital I/O lines, respectively.

The boards use a long-term integration compensator when an analog velocity loop exists. The compensator eliminates dc offsets in the velocity loop; traditionally, a potentiometer in the loop amplifier tweaked these offsets. The board's command set lets you program the board for piece-wise-linear, softstart and soft-stop acceleration as well as point-to-point position and trapezoidal velocity profiles. You can also adjust set points while the motor is moving. A torque-mode command executes a torque profile and can maintain a constant motor torque during changing load conditions.

A few vendors use DSP ICs for motor control when high-speed mo-tion-parameter calculations are necessary. Although DSP chips were designed for audio and video applications, they have many features that make them ideal for motor control. Motorola's DSP56001 can prefetch an instruction, multiply two 24 -bit numbers, perform a 56 -bit addition, transfer two data words, and update two address pointers in a single instruction cycle. These features make the chip ideal for calculating a new position vector when multiplying a coordinate-transformation matrix by the current position vector.

Mektronix Inc employs an AT\&T WE-DSP32 IC on its stand-alone AMC-12 motion controller board, which controls 12 axes simultaneously. Delta Tau Data Systems Inc employs a DSP56001 IC on its PMAC boards for the VMEbus and the ISA bus. The boards control as

SSPCS REPLACE CIRCUIT BREAKERS

Solid-State Power Controllers (SSPCs) replace electromechanical circuit breakers in land, sea, air, and space vehicles. They provide status outputs and permit logic input control. DDC's 28 Vdc, SSP-21110 series, can be remotely located near the load because of the digital controls they support. The series offers five models, differing in rated current, so that fault ("instant trip") and true $\mathrm{I}^{2} \mathrm{~T}$ trip characteristics can be selected to protect wiring and loads.

Utilizing power MOSFET switches, these power controllers offer low "ON" resistance, low voltage drop, high "OFF" impedance, and low power dissipation. Built with power MOSFETs and custom monolithics many options such as $\mathrm{I}^{2} \mathrm{~T}$ trip curve tailoring, output rise and

- Built-In-Test (BIT)
fall times, and a variety of custom current ranges are possible. They offer small size, low power, and high reliability, since there are no mechanical parts.

Built-In-Test (BIT) has been provided to monitor, in real time, the status of the internal circuitry as well as circuitry external to the SSPC. This BIT monitors reverse current flow, MOSFET failure or degradation, unit overtemperature, and control circuit
failure. The status outputs also provide BIT and an indication of light and heavy overloads as well as minimum load current. The status lines are TTL/CMOS compatible in order to support microprocessor or logic integration of a consolidated electrical load management center (ELMC) of control.
The SSP-21110 series will operate over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Military screening and optional packaging are available upon request. The SSP-21116, 270 Vdc , series, will be available before the end of the year.

Please contact Steve Friedman at (516) 567-5600 extension 381 for further information concerning the SSPC products.

[^8]
UPDATE

Servo-motor controller boards
many as eight axes simultaneously.
The PMAC-PC board for the ISA bus accepts signals from a quadrature incremental encoder at 10 counts/sec. It produces either a $\pm 10 \mathrm{~V}$ de motor command with 16 bit resolution per axis or two sinusoidal signals for external commutation amplifiers. The board provides a flexible motion-profile command set. In addition to point-to-point and trapezoidal profiles, you can generate parabolic velocity profiles. A third-order trajectory algorithm can generate smooth S-curve acceleration profiles, which eliminate jerk terms in the motion profile.

The DSP56001 provides PID loop compensation and velocity and acceleration feedforward signals. An optional pole-placement algorithm lets you control the placement of poles and zeros within the loop. It also lets you access a 1 - to $500-\mathrm{Hz}$ tunable notch filter. The board provides linear, circular, and elliptical interpolation of the motion on two axes.

In addition to dedicated digital I/O lines for limit switches and homing commands, the board provides 20 digital inputs and 8 digital outputs, all of which are user definable. All digital lines are optoisolated. The programmable minimum servo-update time of $50 \mu \mathrm{sec}$ to 1 msec lets you control the percentage of time the DSP chip uses to calculate loop parameters. You can daisy-chain as many as 16 boards to control 128 synchronized or independent axes.

Motor-control applications continue to grow in such fields as robotics, material handling, laser cutting, and camera controls. Modular mo-tion-control boards along with userfriendly development tools ease the development of such systems.

EDN

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

The programmable display system: Design applications for land, sea or air.

Vivisun Series 2000, now the leading programmable display pushbutton system, interfaces the operator with.the host computer. The user-friendly LED dot-matrix displays can display any graphics or alpha-numerics and are available in green, red or amber. They can efficiently guide the operator through any complex sequence with no errors and no wasted time.
They also simplify operator training as well as control panel design. One Vivisun Series 2000
programmable display system can do the work of 50 or more dedicated switches. In short, Vivisun Series 2000 gives the design engineer more control over the design.

Contact us today.

AEROSPACE OPTICS INC.

3201 Sandy Lane, Fort Worth, Texas 76112
(817) 451-1141 • Telex 75-8461 • Fax (817) 654-3405

Vivisun Series 2000 programmable displays. The intelligent communications system.

FOUEE DR: SYTEH MEFU

"Tecbnology Solutions"

from a Globewide Partner Better design and production solutions with Oki Systems Thinking

Around the world, Oki Systems Thinking takes an overall look at your project's many needs, based on our all-round expertise in design, packaging and manufacturing, and finds integrated solutions, to help you more easily meet every demand of the project. With Oki Systems Thinking, our goal is nothing less than total customer satisfaction.

Regional production centers

Oki sometimes has to give you more than you ask for in meeting your diverse needs, such as regional production centers that assure you of stable supplies of critical components and enhance Oki's flexible customer support capabilities...

Oki is establishing these capabilities within each overseas market, whether its at Portland, Oregon; Nancy,France; Aguadilla, Puerto Rico, or Ayutthaya Province, Thailand. At Oki, manufacturing is closely integrated with our regional design and packaging facilities as part of Oki Systems Thinking-to provide "technology solutions" in memories, ASICs, microprocessors, custom LSIs, telecom LSIs and complex custom board-level products.

Sharing technology and manufacturing expertise Oki works hard to be a part of each
community we operate in, transferring expertise to local sites and forming joint ventures to more quickly integrate advanced technology into markets where it is needed.

And, speaking of technology, at Oki you'll find super-clean environments, ultra-fine rule process technology, advanced factory automation, and, of course, total quality control.

Tualatin, Oregon, USA: Oki's newest US semiconductor plant currently manufactures 1M DRAMS and SIMMs, with plans to diversify its production.

Oki Electric Industry Co., Ltd.
Electronic Devices Group Overseas Marketing Group
7-5-25 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan
Tel:+81-3-5386-8100
Fax: $+81-3-5386-8110$
Telex:J27662 OKIDENED

Oki Electric Europe GmbH

Hellersbergstraße 2, 4040 Neuss Germany
Tel: $+49-2101-15960$
Fax:+49-2101-103539
Telex:8517427 OKI D

Oki Semiconductor Group
785 North Mary Avenue,
Sunnyvale, CA 94086, U.S.A.
Tel: $+1-408-720-1900$
Fax: $+1-408-720-1918$
Telex:910-338-0508 OKI SUVL

Oki Electronics

(Hong Kong) Ltd.
Suite 1801-4, Tower
China, Hong Kong City, 33
Canton Road., T.S.T. KLN,
Hong Kong
Tel: $+852-7362336$
Fax:+852-7362395
Telex:45999 OKIH HX

ONIY RALITRON HAS IT All.

Because our product line is so complete, our inventory so large, and our nation wide distribution system so streamlined, RALTRON can offer pricing that is always competitive, and often far lower than the competition.

THE PEOPLE

We've got some of the best people in the busi-ness-from technical support and sales to customer service and shipping. You can count on RALTRON people to come through for you on time, every time.
Call us today with your requirements or for our 28 page product catalogue.

SURFACE MOUNT CRYSTAL UNITS HC-45/U SMD, IT SMD, HC-49S SMD

- Frequency Range:
$3.5 \mathrm{MHz-360} \mathrm{MHz}$
- Mode of Oscillation Fundamental to 9th O.T.
- Frequency Tolerance: @ $25^{\circ} \mathrm{C}$: $\pm 2.5 \mathrm{ppm}$ to $\pm 100 \mathrm{ppm}$
- Frequency Stability $\pm 3 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ to $\pm 100 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

WORID'S SMALLEST OCKO, ROXO 210A

- Frequency Range: 1.0 MHz to 20.0 MHz
- Temperature Stability: $\pm 2 \times 10^{-7}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$
- Long Term Stability: $\pm 2 \times 10^{-7}$ per year
- Phase Noise:
-145 dbc (10 KHz offset)
- Power consumption
(stabilized): 2.0 W
- Size:
$35.3 \times 27 \times 25.4 \mathrm{~mm}$ ($1.40^{\prime \prime} \times 1.06^{\prime \prime} \times 1.0^{\prime \prime}$)

SMALLEST VCXO WITH HIEH SENSITIVITY VC-7025

- Frequency Range: 2 MHz to 35 MHz
- Frequency Stability: $\pm 25 \mathrm{ppm}\left(0\right.$ to $70^{\circ} \mathrm{C}$)
- Deviation Sensitivity: $\pm 50 \mathrm{ppm} / \mathrm{V}$ typ. (up to $\pm 70 \mathrm{ppm} / \mathrm{V}$)
- Size: 14 pin DIP package

CRISTAL UNITS

Microprocessor crystal units Microprocessor crystal units HC-49 short (AT strip)
Microprocessor crystal units surface mount -
"TT-SMD" family
AT strip crystal units cylindrical package
Tuning fork quartz crystal units 32.768 KHz

High accuracy crystal units

OSClLLATORS

Clock oscillators TL compatible
Clock oscillators HCMOS compatible
Clock oscillators surface mount
Clock oscillators enable/disable
Clock oscillators dual output
Clock oscillators ECL compatible
Temperature compensated crystal oscillators - TCXO
Oven controlled crystal oscillators - OCXO
Voltage controlled crystal oscillators - VCXO

FIITERS

Monolithic crystal filters

CERAMIC RESONATORS

Ceramic resonators 200 to 800 KHz
Ceramic resonators 2.000 to 6.000 MHz

RALITRON
EEECTRONICS CORR.
2315 NW 107th Avenue Miami, Florida 33172
FAX (305) 594-3973
TELEX 441588 RALSENUI
(305) 593-6033

Only RALTRON has it all.

Our new ML2261 8-bit A/D converter takes speed and accuracy to an entirely new level: 670ns.

Latch onto Micro Linear's new ML2261. Without question, the fastest, most accurate micro-processor-compatible 8-bit A/D converter on the market.With performance features that'll leave most microprocessors in a no-wait state.

By utilizing half-flash techniques, the ML2261 achieves A/D conversion times of 670 ns over temperature and Vcc. It quickly converts an analog 0 V to 5 V sine wave at 500 kHz to its digital representation with 48 dB signal-to-noise ratio. Digital error correction is used to achieve a total unadjusted error of better than $\pm 1 / 4$ LSB. (Total unadjusted error includes the sum of linearity, zero scale and full scale errors).

It's also easier to use, because the ML2261's differential architecture provides superior power supply rejection. The analog input is 0 V to 5 V with a 5 V power supply. And because

Buil-in digital error correction delivers true 8-bit accuracy, with typical unadjusted error of less than $\pm 1 / 4 L S B$.
inputs can withstand at least 25 mA , you can achieve better latch-up immunity on analog inputs. The digital interface is also designed to keep up with the fastest microprocessors and appears as a memory location or I/O port to the microprocessor. In addition, no external clock is required and power dissipation is a mere 75 mW . All parameters are guaranteed over the supply tolerance and temperature range.

Combined, the ML2261 gives you the fastest, most accu-

The ML2261 maintains ideal signal-to-noise ratios independent of increasing analog input frequencies to 500 kHz .
rate, easiest to use 8-bit converter for a wide range of applications including disk drives, medical instrumentation and signal processing. With a price/performance ratio that's significantly lower than comparable converters.

Devices are now available in standard 20-pin DIP or surfacemount PCC packages, with 100unit prices beginning under $\$ 9.00$.

For more information.

To find out more about how you can quickly convert your new product design to the ML2261, just call (408) 433-5200. Or write to: Micro Linear, Dept. TFA, 2092 Concourse Drive, San Jose, CA 95131 . We'll send you all the specs. In a flash.

Sliced thin to fit.

Kepco's skinny switchers. One inch, low profile solutions to the problem of inadequate space.

Series FAW

A group of single-output dc power supplies in 15, 25 and 50 Watt sizes. FAW feature a wide range (universal) input that accommodates $85-265 \mathrm{~V}$ a-c. Built to the strict IEC 380/VDE 0806 standard, FAW have TÜV approval, as well as the imprimature of UL and CSA - FAW feature a built in FCC Class B/VDE 0871 level B EMI filter. L-chassis design with optional metal enclosure.
15W: $0.98 \times 3.74 \times 3.94$ in. $25 W: 0.98 \times 3.74 \times 4.92$ in. $\quad 50 \mathrm{~W}: 0.98 \times 3.74 \times 6.50 \mathrm{in}$

Series FAK

A group of miniature single-output dc power supplies in 15, 25 and 50 Watt sizes. FAK operate from North American mains power (85-132V a-c) and are built to the standards of UL 478/CSA 1402. FAK feature a built-in FCC Class B EMI filter. L-chassis design with optional metal enclosure.
15W: $0.79 \times 2.76 \times 3.74$ in. $25 \mathrm{~W}: 0.98 \times 2.76 \times 4.53 \mathrm{in}$. $50 \mathrm{~W}: 0.98 \times 3.74 \times 5.12 \mathrm{in}$

Series FCP

Dual output power supplies ($\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$) in 3 W and 10 W power sizes. FCP operate from North American mains power (85-132V a-c) and are built to the standards of UL 478/CSA 1402. FCP feature a built-in FCC Class B EMI filter. Fully enclosed design in a snap off plastic case. 3W: $0.75 \times 2.17 \times 1.97 \mathrm{in}$. $10 \mathrm{~W}: 0.75 \times 2.17 \times 3.15 \mathrm{in}$.

Series ECM

Triple output power supplies. ECM operate from North American mains power (85-132V a-c) and are built to the standards of UL 478/CSA 1402. ECM feature a built-in FCC Class B EMI filter. Fully enclosed design in a metal enclosure.
$16 W: 1.28 \times 3.60 \times 4.72$ in.

Two New SBE 16 Mbps Controllers Bring High-Speed Token Ring to VMEbus/Multibus Systems.

One advantage of Token Ring is that it provides an efficient, highperformance interconnect with IBM mainframes. In a multinodal LAN environment, Token Ring provides four times the throughput of Ethernet.
SBE delivers high-performance Token Ring with two new intelligent 16 Mbps communications controllers that interface VMEbus/Multibus Systems with Token Ring LANs.

SBE's Token Ring Controllers include these features:

- Software-selectable interface for 4 or 16 Mbps .
- High-speed, on-board 32-bit $68020 / 6803025 \mathrm{MHz}$ processors.
- 1 MB or 4 MB of DRAM.
- Support for IEEE 802.5 standards.

Turn to SBE and discover the difference these new 16 Mbps VMEbus/ Multibus Controllers can make in your LAN application.

For fast action, call: 1-800-347-COMM.
SBE, Inc., 2400 Bisso Lane, Concord, CA 94520

POWER HYBRID ICs

Multichip circuits satisfy special needs

Monolithic ICs

 and discrete power devices can't satisfy every need. For power applications requiring space-saving packaging, a hybrid circuit may be your best choice.Dave Pryce, Associate Editor

0ver the past few years, a number of monolithic-IC suppliers have expanded their catalog of standard parts to include devices that combine power capabilities with signalprocessing or control functions. Such de-vices-often called "smart-power" ICsprovide space- and cost-saving benefits for many applications that previously used combinations of monolithic ICs and discrete power transistors. However, these single-chip devices are often out of their realm when confronted with high-power requirements or the special needs of certain motor-control and power-conversion applications. Where
space is at a premium, a hybrid circuit may be your best choice.

Power hybrid ICs are available in a variety of circuit configurations, power capabilities, and packaging styles. Examples of available circuits include solidstate relays and circuit breakers, halfbridge and full-bridge drivers, 3-phase drivers, and de/dc converters. (See Table 1 for a representative list of power hybrid ICs.) Because of their specialized construction, hybrid ICs are often more expensive than equivalent combinations of monolithic ICs and discrete power devices. This higher cost is particularly true for military-grade hybrid ICs, which make up a large part of the mar-

Fig 1—This H-bridge driver is rated at 100V and 8A. The MPM3002 circuit (a) from Motorola contains two n-channel and two p-channel power MOSFETS. Packaged in the company's 12-pin Icepak (b), the module has a power-handling capability of 62.5 W .

TECHNOLOGY UPDATE

Power hybrid ICs

ket. Despite the cost, hybrid ICs have the redeeming characteristics of small size and the ability to combine specialized circuitry in a single package.

A key factor in obtaining these characteristics is the extensive use of chip-level and surface-mount components, including both active and passive types. Typically mounted on an alumina or beryllia substrate, such components minimize the size of the final package and allow flexibility in the design of the overall circuit.

A power hybrid IC can be as simple as a half-bridge driver or as complex as a de/de converter that contains all of the necessary active and passive devices, including magnetic components and filtering elements. Highly specialized hybrid

Fig 2-This 16-pin hermetically sealed package is used for Omnirel's OM9011SF. The power hybrid IC contains four n-channel MOSFETS, four Schottky diodes, and four high-speed rectifiers.

ICs often contain dozens of components and can be quite elaborate.

The MPM3002 H -bridge from Motorola is a good example of spacesaving hybrid IC construction. Designed for applications such as servo motor drives, stepper-motor controls, and switching power supplies,
the relatively simple IC contains four power MOSFETs with a total power capability of more than 60 W . The upper legs of the circuit (Fig 1a) use p-channel devices, and the lower legs use Motorola's n-channel Sensefet devices, which feature a current-sensing Kelvin connection.

Packaged in Motorola's Icepak power module, the bridge circuit's construction (Fig 1b) consists of two n - and p-channel MOSFET pairs die-bonded to two separate copper leadframes. An insulating material isolates the leadframes from the aluminum case. The case, which has two mounting holes, provides heatsinking capability for which Motorola provides detailed thermal data. Although deceivingly spartan in terms of its circuit complexity, the space savings afforded by the

Constant Density Recording

Strap yourselves in. Get ready for warp speed. Our new approach to constant density recording has just given disk drive design a considerable boost in storage capacity.

Even better, we've enhanced performance while significantly reducing board space requirements.

Key to our unique "building-block" thinking is an integrated time base generator and a breakthrough programmable active filter. The latter-the 32F8011 -is a
revolution in itself, one that lets you program channel bandwidth from 5-13 MHz. Continuously.

A real space saver is the 32 D 4661 Time Base Generator. It has integrated the functions of 4-5 previously needed external components and comes in one neat 24 -pin package.

Add this capability to your read/write channel design and you've got your higher capacity mixed-signal IC solution in place.

Fully designed and compatible. And more appreciative of your bottom line.

To expand the capacity of your next disk drive design, contact your nearest Silicon Systems representative. Or call us for literature package SPD-3.
Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680 Ph 1-800-624-8999, ext. 151 Fax (714) 669-8814 European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117

Power hybrid ICs

module's hybrid construction are obvious. The MPM3002, which costs $\$ 9.57$ (100), typically replaces four TO-220-packaged MOSFETS, four diodes, four mica insulators, and a host of mounting hardware.

Somewhat more complex-and considerably more expensive-than the Motorola device, the OM9011SF from Omnirel comes in a 16 -pin hermetically sealed metal package (Fig $2)$ and costs $\$ 781.40$ (100). Designed for use in demanding military applications, the OM9011SF meets MIL-STD-883C standards. Rated at 100 V and 18 A , the module contains four n-channel power MOSFETs, four Schottky diodes and four highspeed rectifiers. Also included are back-to-back zener clamps that protect the gate of each MOSFET.

Still more complex is the PWR82331 from ILC Data Device Corp. Manufactured in accordance with MIL-M-38510 and MIL-STD-883C, the smart-power motor driver costs $\$ 1150$ (singles). The hybrid, which is basically a 3 -phase bridge circuit rated at 200 V and 30 A , contains six n-channel power MOSFETS and six fast-recovery diodes. Also included is digital control and protection circuitry, which prevents the simultaneous conduction of in-line transistors as well as eliminating multiple upper- and lower-leg conduction. Additionally, an external shutdown input provides fast turn-off of the 3 -phase bridge. Fig 3 illustrates the space-saving advantages of the PWR-82331's chip-level hybrid construction.

Although high-powered bridge circuits for use in motor-control applications are natural candidates for hybrid construction, power hybrid ICs take many other forms. For example, Gentron offers a line of solidstate relays that use a MOSFET or an IGBT (insulated-gate bipolar transistor) as the switching element. ILC Data Devices' makes a

Fig 3-This 3-phase, smartpower motor driver from ILC Data Device Corp meets MIL-STD-883C standards. In addition to digital control and protection circuitry, the hybrid $I C$ contains six n-channel MOSFETs and six fast-recovery diodes.
power controller, which contains a high-side MOSFET switch along with an isolated control circuit. Sipex has a $1-\mathrm{MHz}$ de/dc converter that contains all the necessary active and passive components. SGSThomson offers a complete stepdown switching regulator.

Op amp satisfies special needs

Price and functionality of power hybrid ICs fluctuates dramatically, but there are devices that are both moderate in price and offer a range of functions. One of the most note-
worthy examples is the PA89 (Fig 4), an op amp from Apex Microtechnology. Capable of providing 75 mA of continuous output current while operating over a supply range of ± 75 to $\pm 600 \mathrm{~V}$, the op amp is designed for use in specialized applications such as piezoelectric drives, high-voltage instrumentation, and electrostatic deflection. With its output-bridge configuration, the op amp provides a 1000 V p-p output signal with programmable current limiting.

At $\$ 310.50$ (100), the PA89 cer-

Fig 4-This highly specialized power op amp from Apex Microtechnology is rated at 1200V. Applications include piezoelectric drive and electrostatic deflection.

Actual output

20 WATTS

Actually meets

MIL-STD-2000 MIL-STD-810C MIL-S-901C MIL-STD-461C MIL-STD-704D NAVMAT GUIDELINES

$A C t 0^{D C}$

Mil/Pac ${ }^{\text {™ }}$ high-density military power supplies. Now you can order Abbott's full mil-qualified compact power supplies in both DC and AC input models.
Mil/Pacs come in 20W, 35W and 50 W configurations, with single ($5,12,15,24$, or 28 V) or dual ($\pm 12 \mathrm{~V} ; \pm 15 \mathrm{~V}$) outputs.

DC-to-DC models accept input from 14 V to 32 V . AC-to-DC models accept 103.4 to 126.5 V rms, $47-440 \mathrm{~Hz}$ single phase.

All Mil/Pacs operate at temperature extremes from
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening.
Mil/Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega BI., Los Angeles, CA 90034. Or call (213) 936-8185.
WHEN RELABBLITY IS IMPERATIVE

Power hybrid ICs

tainly doesn't qualify as an inexpensive jelly-bean op amp. Utilizing a beryllia (BeO) substrate, ceramic capacitors, thick-film resistors, and semiconductor chips, the hybrid circuit comes in a hermetically sealed and electrically isolated package. This type of construction is typical of most hybrid circuits and is a prime reason for their high cost, even for off-the-shelf standard devices.

For applications where a standard hybrid circuit can't satisfy your requirements, several companies can supply custom circuits. Philips Circuit Assemblies, for example, has a number of technology choices from which they can fabricate your application-specific cir-
cuit. Omnirel specializes in custom hybrid ICs, particularly for military and industrial applications. They have also developed power packages such as the TO-257 and TO258, which are small, easy-tomount, hermetically sealed packages. Such companies work directly from your schematic and convert it to a hybrid circuit that saves space and usually has superior environmental ruggedness and greater reliability than conventional approaches. EDN

Article Interest Quotient

(Circle One)
High 512 Medium 513 Low 514

For more information . . .

For more information on the power hybrid ICs discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the fol lowing manufacturers directly, please let them know you saw their products in EDN.

Apex Microtechnology	Marconi Circuit	Powerex Inc
5980 N Shannon Rd	Technology Corp	Hitlis St
Tucson, AZ 85741	45 Davids Dr	Youngwood, PA 15697
(800) 421-1865	Hauppauge, NY 11788	(412) 925-7272
Circle No. 700	(516) 293-8686	Circle No. 710
	Circle No. 705	
Composite Modules Inc		Semikron Inc
1 Mill St	Modupower Inc	11 Executive Dr
Attleboro, MA 02703	374 Turquoise St	Hudson, NH 03051
(508) 226-0420	Milpitas, CA 95035	(800) 258-1308
Circle No. 701	(408) 263-6115	Circle No. 711
	Circle No. 706	
Gentron Corp		SGS-Thomson
7345 E Acoma, Suite 101	Motorola Inc	Microelectronics
Scottsdale, AZ 85260	2100 E Elliot Rd, M/S EL256	1000 E Bell Rd
(602) 443-1288	Tempe, AZ 85284	Phoenix, AZ 85022
Circle No. 702	(602) 952-3618	(602) 867-6100
	Circle No. 707	Circle No. 712
ILC Data Device Corp		
105 Wilbur Pl	Omnirel Corp	Sipex Corp
Bohemia, NY 11716	205 Crawford St	Hybrid Systems Div
(516) 567-5600	Leominster, MA 01453	22 Linnell Cir
Circle No. 703	(508) 534-5776	Billerica, MA 01821
	Circle No. 708	(508) 667-8700
		Circle No. 713
2355 Zanker Rd	Philips Circuit Assemblies	
San Jose, CA 95131	2001 W Blue Heron Blvd	Vicor
(408) 435-1900	Riviera Beach, FL 33404	23 Frontage Rd
Circle No. 704	(800) 522-7752	Andover, MA 01810
	Circle No. 709	(800) 735-6200
		Circle No. 714

Apex Microtechnology
5980 N Shannon Rd
(800) 421-1865

Circle No. 700

1 Mill St
Attleboro, MA 02703
(508) 226-0420

Circle No. 701

Gentron Corp
7345 E Acoma, Suite 101
Scottsdale, AZ 85260
602) 443-1288

ILC Data Device Corp
105 Wilbur Pl
Bohemia, NY 11716
(516) 567-5600

Circle No. 703

IXYS Corp
2355 Zanker Rd
San Jose, CA 95131
(408) 435-1900

453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552
Call Toll Free 800-431-1064
in New york call 914-699-5514

Introducing an all-Tek communications test system

featuring bit error rate testing and

 waveshape analysis. FDDI and SONET test capability. Margin and mask testing. Plus direct jitter, noise and eye diagram measurements like you'venever seen before.

Tektronix

Here's one reason thatover half of all SCSI devices sold are NCR.

We created the market... and we still lead the way. Meet NCR's SCSI development team. In 1983, they gave the computer industry its first SCSI device. By providing easy connectability and significantly reducing time to market, a new product era was born.

Since then needs have changed. By combining our system skills, highperformance standard cell methodology, and in-house manufacturing, NCR has maintained its leadership role with innovative new ideas like the 53C700 product family. And the joint development of LADDR — a new architecture aimed at cutting the development time of OS/2 device drivers by 90%.

Today SCSI is becoming the leading I/O standard — adopted by industry giants like Apple, IBM, HP, and DEC. And no one is selling more SCSI chip level products than NCR. In fact, no one even comes close.

Here's another.

The NCR 53C700 SCSI I/O Processor...
So good, Electronic Design named it the product of the year.
"You can't tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53 C 700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about 15% of the cost.

As the first SCSI I/O processor on a chip, the 53 C700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter. DMA controllers can burst data at speeds of up to $50 \mathrm{Mbytes} /$. This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the Digital IC's" award went to NCR's 53 C 700 last year.

And now the NCR 53C710!

For the complete story on the NCR SCSI product line featuring the

NP P

 new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:
KILL THE NOISE WITH

 MICRO/Q CAPACITORS

Reduce voltage noise spikes in ICs by as much as a factor of 10 . Without redesign. Without using additional space.
With Micro/Q ${ }^{\circledR}$ decoupling capacitors from Rogers.
Micro/Q capacitors mount under the IC. Share mounting holes. To improve noise suppression where it's most effective-at the source.

Best of all, Micro/Q capacitors kill the noise without kiliing a lot of valuable time.

Micro $/ Q^{\circledR}$ is a registered trademark of Rogers Corporation. Another MEKTRON ${ }^{\circledR}$ Interconnection Product.

For all the facts, including the Micro/Q capacitor track record for noise-reduction in dynamic RAMs, EPROMs, static RAMs and boards that need EMI/RFI fix, call a Rogers' Product Specialist today at (602) 967-0624 (Fax 602-967-9385). And ask for a free sample.

Technology for tomorrow built on TQC today.

DISTRIBUTION: Europe, Japan, Taiwan, Singapore, Hong Kong, Korea, Brazil, Australia

CIRCLE NO. 184

MICRO/Q 1000 CUSTOM CAPACITORS

Special pinouts are available to address the wide variety of specialty DIPs such as analog devices, op-amps, and the center pinout advanced CMOS devices. Applications include: decoupling, EMI/RFI filtering, and compensation.

MICRO/Q 3000 CAPACITORS

Reduces noise associated with the use of PGA and PLCC devices. Several part sizes are available to address a variety of package sizes, Micro/Q 3000 is designed to be used with all 16/32-bit MPUs, DSPs, GSPs, FPPs, gate arrays, standard cells, and fully custom ASICs.

5-gigabyte capacity.

Right now.

EXABYTE's EXB-8500 8mm Cartridge Tape Subsystem delivers 5 gigabytes of uncompressed data on a single 8 mm tape. Right now.

And, along with its dramatic increase in capacity, the EXB-8500 advances beyond the performance that made the EXB-8200 the de facto storage standard in today's workstation, midrange system, and file server environments.

Employing read and write head pairs, the EXB-8500 achieves an extraordinary data transfer rate of $\mathbf{5 0 0} \mathbf{K b y t e s} /$ second. That means a 760 megabyte disk drive may be backed up in approximately 25 minutes! And high speed search up to $37.5 \mathrm{Mbytes} /$ second allows rapid file retrieval.

Designed to meet the growing demands of supermini and mainframe computer systems, the EXB-8500 extends the limits of unattended backup and data interchangability. The EXB-8500 is capable of reading and writing data in the EXB-8200 format. In addition, we've added features for data acquisition applications.

So if you're searching for a competitively priced solution for backup and restore, archiving, data interchange, imaging, and data acquisition, call us today at (303) 447-7359, Fax (303) 447-7689, or write EXABYTE Corporation at 1685 38th Street, Boulder, CO 80301.

And we'll deliver the capacity you demand.
Right now.

SHOW PREVIEW

Futurebus + nabs center stage at Buscon

Susan Rose, Associate Editor

Like last year, Buscon/West 91 will take place at the Santa Clara Convention Center in Santa Clara, CA. This conference, which brings engineers up to date on bus technology and architecture, will employ the same format used at Buscon/ East in Marlborough, MA, last Octo-ber-that is, the seminars are tightly focused to offer in-depth analysis of each topic. The conference organizers have also extended the hours that the exhibi-
with other seminars, a special 1-day Futurebus + seminar will be held on Monday, January 28 - the day before the official opening of the show. The session will examine the new technology and its incorporation into existing applications. Bridging VME and Multibus II to Futurebus + will also be discussed. (For more information on Futurebus +, see EDN's Special Report in the October 1,1990 , issue.)

The remaining semi-
 nars focus on all aspects of a particular technology to give attendees a complete overview. Seminars on Tuesday and Wednesday will last from 8:30 am to 5 pm ; Thursday's seminars will last from 8:30 am to 2 pm . The full-day seminars are grouped into morning and afternoon sessions with a lunch break around noon. Both preregistration and on-site registration are
tion floor will be open. The show starts on Tuesday, January 29 at 2 pm and runs until Thursday, January 31 at 4 pm . Approximately 70 companies will exhibit their products, including buses, chips, and ports.
The growing importance of Futurebus + has merited it special attention at this year's show. To avoid conflict
available for the seminars.

Tuesday's seminars will cover VMEbus and Multibus II. The VMEbus seminar will review the architecture and theory, then explore the directions the technology will follow. Seminar speakers will also present the comparative advantages of VME as opposed to other buses. The Multibus II seminars will fo-

cus on the capabilities, applications, and performance enhancements of this architecture.

Wednesday's seminars will cover PC bus platforms and embedded systems programming. Bus architectures are the primary topic of the PC bus platforms seminar. In addition to a discussion of ISA, EISA, and MCA, the seminar will look at development environments for the IBM PC and compatible computers. The embedded systems programming seminar will discuss how you can save time and effort in real-time operatingsystem design. The afternoon session deals with system performance and various development tools that you can use.

Thursday's half-day seminars will cover emerging bus architectures and military applications. Workstation development will be the main focus of the architecture seminar, which will highlight Turbochannel, Sbus, and other buses. The military applications seminar will give attendees a look at what type of applications the military currently needs and what its future requirements may be.

In addition to the seminar schedule, companies are exhibiting their products all three days. The show floor is open until 8 pm Tuesday night so that seminar attendees will have enough time to tour the exhibits. On Tuesday from 5 to 7 pm , you can attend a real-time op-erating-systems debate, which will focus on trends in the 386 real-time area.
Buscon participants can attend a party on Wednesday night. The Buscon Bash will be held at the Doubletree Hotel from 6 to 8 pm . At the party, the winner of the Buscon Industry Achievement Award will be announced. Your Buscon/West 91 badge is the admission ticket.

For more information on Buscon/West 91, you can contact Conference Management Corp, 200 Connecticut Ave, Norwalk, CT 06856. Phone (203) 852-0500; FAX (203) 857-4075.

EDN

Article Interest Quotient
 (Circle One)
 High 515 Medium 516 Low 517

The Standard for Circuit Simulation

I-V curves of a triode vacuum tube

Analog Behavioral Modeling

The Analog Behavioral Modeling option for the PSpice Circuit Analysis package allows you to describe analog components, or entire circuit blocks, using a formula or look-up table. Linear blocks may be described using either a Laplace transform or a frequency response table. Once defined, you can use these blocks in all PSpice analyses, including DC, AC, and transient.
Modeling entire blocks of circuitry is a powerful aid in designing a system from the top down. You can describe a functional block by its behavior without worrying about how that function will be implemented. Later on in the design process, you can replace the block with the actual circuitry.
Another application is the modeling of electronic components which are not built into PSpice. The photo shows an example of simulating the DC characteristics of a $3 / 2$-power-law device.
Since its introduction over six years ago, MicroSim's PSpice has sold more copies than all other SPICE-based programs combined. PSpice provides broad capabilities, accurate results, diverse options, and availability across a wide range of computer platforms. PSpice includes an extensive device library of $3,000+$ analog parts and $1,300+$ digital parts, at no extra charge.
Besides Analog Behavioral Modeling, PSpice provides the following options:
Digital Simulation: simulation of mixed analog/digital circuits with feedback between the analog and digital sections.
Monte Carlo Analysis: calculates the variations in a circuit's performance allowing for component tolerances. This option performs statistical analyses: Monte Carlo, Sensitivity, and Worst Case.
Probe: acts as a "software oscilloscope" to provide an interactive viewing and processing environment for simulation results (see photo).
Parts: is a parameter extraction program allowing the extraction of device model parameters from data sheet information.
PSpice is available on the PC (running DOS, Protected Mode DOS, or OS/2), Macintosh II, Sun 3, Sun 4, and SPARCstation, DECstation 2100, 3100, and 5000, and the VAX/VMS families.
In addition to the Circuit Analysis package, the PSpice family of products also contains the Circuit Synthesis package, which consists of our two filter synthesis products: Advanced Filter Designer and Standard Filter Designer. Filter Designer is an interactive design aid for synthesizing and analyzing active filters. Features include:

- Analysis of low pass, high pass, band pass, and band reject filter types.
- Synthesis of all available filter types using Butterworth, Chebyshev, Inverse Chebyshev, and Elliptic (Cauer) functions.
- Capability to synthesize arbitrary transfer functions and delay equalization filters (only available in Advanced Filter Designer). Each copy of our Circuit Analysis and Circuit Synthesis programs comes with MicroSim's extensive product support. Our technical staff has over 150 years of combined experience in CAD/CAE, and our software is supported by the engineers who wrote it.
For further information about the PSpice family of products, call us at (714) 770-3022 or toll free at (800) 245-3022. Find out for yourself why PSpice has become the standard for circuit simulation.
20 Fairbanks • Irvine, CA 92718 USA • FAX (714) 455-0554

Multibus II programmable logic board serves parallel-interface applications

Six Xilinx programmable gate arrays and 56 TTL transceivers make the MB2-PGA56T board compatible with many parallel interfaces. The Multibus IIcompatible card serves applications that require a custom interface or quick turnaround time for the design of an interface card. Optionally, you can specify the board configured as a DEC DRIlW-compatible interface capable of DMA transfers.

You can program the interface board to operate as a computer bus link in either DMA or repeater modes. Two of the boards connected back to back can link Multibus II systems. The board supports additional applications such as digital I/O with handshake sequence, counter input, incremental encoder input, and motor controller.
The MB2-PGA56T includes the Intel 82389 message-passing coprocessor IC, implementing full mes-sage-passing capability over Multibus II. The board supports 32Mbyte/sec data transfers over the bus and includes a facility for interprocessor communications via interrupt message passing. Configuration and diagnostic routines also offer Multibus II interconnect-space compliance.

An $8086 \mu \mathrm{P}$ controls local operation of the interface board, and the board includes as much as 128 k bytes of RAM and 128 k -bytes of EPROM. Onboard firmware supports built-in self-test functions and includes power-up diagnostics. A front-panel LED provides board status information. The board also includes a serial port and two 40 -pin flat-ribbon cable connectors.

The board accommodates as many as six programmable gate arrays and will accept Xilinx 3020, 3030 , or 3042 devices. The maximum configuration yields 864 control logic blocks; each block includes two D flip flops and a 32×2 look-up table. The $\mu \mathrm{P}$ initializes three of the arrays on power-up from onboard firmware. At any time, the controlling $\mu \mathrm{P}$ can program the three arrays that directly connect to the parallel-interface transceivers. The board stores as many as 10 different interface types and can select interface type on the fly under software control.

The board comes with examples of programmed configurations. Sample software and programmable gate-array schematic files are also available. You can buy a source-level debugger to control the board-via the serial port-during testing. A $50-\mathrm{MHz}$ MB2-PGA56T-1 with one 3042 IC, two 3030 ICs, three 3020 ICs, and the optional DR11W software costs $\$ 2495$.

-Maury Wright

General Standards Co, 8302A Whitesburg Dr, Huntsville, AL 35802. Phone (205) 880-8787. FAX (205) 880-8788.

Circle No. 730

Designing custom parallel interfaces based on the MB2-PGA56T board simply requires you to program gate arrays. The Multibus II-compatible board includes a local $8086 \mu P$, 128k bytes of RAM, and 128 k bytes of EPROM.

ATET provides all your end-to-end transmission solutions with our full line of fiber optic, copper cable and connecting components.

 If your regular route just isn't getting you there, make a right turn. AT\&T has the connections you need.Like data cable, composite fiber/copper cable and optical cable and fiber. Connecting components like ST ${ }^{\text {* }}$ connectors and FDDI jumpers. 110 connecting blocks. Splicing and test equipment. Plus, tactical fiber assemblies for harsh environments.
Everything you need in copper and fiber optics for the transmission of voice, data, image and remote sensing. In both network and component solutions. For present and future needs.
But when you buy even just one AT\&T component, you're getting more than just a "part."

The components of success.

You're getting over 100 years of AT\&T cable and apparatus manufacturing and development experience. Plus the design expertise of AT\&T Bell Laboratories.
So take the route you know will make all your connections. AT\&T. Just give us a call at 1800 344-0223, ext. 020.

Percentage of respondents

ITEM								
Dry reed	13	37	37	13	0	0	6.0	6.5
Mercury	14	57	15	14	0	0	5.0	5.4
Solid state	22	23	22	33	0	0	7.5	8.7
DISCRETE SEMICONDUCTORS								
Diode	43	28	29	0	0	0	3.1	3.7
Zener	29	35	29	7	0	0	4.4	4.3
Thyristor	10	80	10	0	0	0	3.1	4.3
Small signal transistor	22	11	67	0	0	0	5.6	4.5
MOSFET	17	49	17	17	0	0	5.4	4.8
Power, bipolar	29	28	14	29	0	0	6.4	6.0
INTEGRATED CIRCUITS, DIGITAL								
Advanced CMOS	25	37	38	0	0	0	4.1	5.8
CMOS	27	45	28	0	0	0	3.5	4.8
TTL	44	33	23	0	0	0	2.8	4.3
LS	40	40	20	0	0	0	2.7	3.7
INTEGRATED CIRCUITS, LINEAR								
Communication/Circuit	25	25	50	0	0	0	4.7	7.5
OP amplifier	27	37	36	0	0	0	3.9	5.0
Voltage regulator	27	37	36	0	0	0	3.9	5.3
MEMORY CIRCUITS								
DRAM 16K	33	34	33	0	0	0	3.6	7.0
DRAM 64K	33	34	33	0	0	0	3.6	6.3
DRAM 256K	0	71	29	0	0	0	4.4	4.3
DRAM 1M-bit	22	56	22	0	0	0	3.4	5.1
SRAM 4K $\times 4$	0	60	40	0	0	0	4.9	8.4
SRAM 8K $\times 8$	14	43	43	0	0	0	4.7	5.5
SRAM $2 \mathrm{~K} \times 8$	25	37	38	0	0	0	4.1	6.6
ROM/PROM	14	43	43	0	0	0	4.7	7.6
EPROM 64K	14	43	43	0	0	0	4.7	5.4
EPROM 256K	29	29	42	0	0	0	4.2	5.6
EPROM 1M-bit	0	60	40	0	0	0	4.9	5.4
EEPROM 16K	0	40	60	0	0	0	5.9	7.5
EEPROM 64 K	0	50	50	0	0	0	5.4	6.8
DISPLAYS								
Panel meters	20	40	40	0	0	0	4.3	4.3
Fluorescent	0	20	60	20	0	0	8.4	10.3
CRT 12-in. monochrome	0	33	50	17	0	0	7.6	8.7
LED	30	20	50	0	0	0	4.5	5.4
Liquid crystal	25	13	49	13	0	0	6.3	11.9
MICROPROCESSOR ICs								
8 -bit	44	23	33	0	0	0	3.3	4.4
16-bit	20	40	40	0	0	0	4.3	5.6
32-bit	0	50	50	0	0	0	5.4	9.3
FUNCTION PACKAGES								
Amplifier	0	49	38	13	0	0	6.5	5.7
Converter, analog to digital	0	49	38	13	0	0	6.5	7.3
Converter, digital to analog	0	50	50	0	0	0	5.4	8.3
LINE FILTERS	0	14	86	0	0	0	7.2	6.2
CAPACITORS								
Ceramic monolithic	45	36	19	0	0	0	2.5	3.6
Ceramic disc	36	36	28	0	0	0	3.3	3.1
Film	40	20	30	10	0	0	4.5	4.4
Aluminum electrolytic	36	43	14	7	0	0	3.4	4.1
Tantalum	29	43	21	7	0	0	4.0	4.2
INDUCTORS	22	33	33	12	0	0	5.4	3.7

Source: Electronics Purchasing Magazine's survey of buyers.

High sec

SIMM sockets provide the highest security your memory or logic module could ask for: Each contact produces 200 grams normal force on each module pad. Minimum.

And the contacts float. They're free to move laterally, so uneven thermal expansion can't separate contacts from pads. Goodbye, fretting corrosion, opens and intermittents.

Hello, reliable performance on 100 mil and 50 mil center modules.

We've also thought about the effects of use on long-run reliability. So our MICRO-EDGE SIMM sockets provide positive wiping action during insertion. And contacts are designed to deflect up to $.017^{\prime \prime}$, with full anti-overstress protection-forgiving enough to handle any standard (.047" to . $054^{\prime \prime}$ thick) module board.

Over the life of your product, the socket housing can take a real beating. We've thought that through, too. Our liquid crystal polymer housings, rated for continual use at $200^{\circ} \mathrm{C}$, give ramps and latches the strength and dimensional stability that promise a long, useful life.

We've also seen to it that contact retention in the housings allows robotic application, as well as inde-

urity area.

pendent repair or replacement. Closed bottom design prevents solder wicking and bridging. And, naturally, latching ears are protected against overstress, and module polarization is designed in.
Now the best part: MICRO-EDGE SIMM sockets are available in the style you need. We have $.100^{\prime \prime}$ or .050 " centerlines in a wide selection of singles and duals, vertical and slanted. Plus options, including a
the 50 mil versions especially attractive Every version comes with the quality and support you expect from AMP.

For literature and product information, contact the AMP Information Center, toll-free, at 1-800-522-6752. AMP Incorporated, Harrisburg, PA 17105-3608.
choice of gold or tin on contact mating surfaces.

Our very-low-insertion-force design and high-reliability contacts make

AM|P Interconnecting ideas

EDN Special Report

MEMORIES

Evolved from simple buffers, today's FIFO memories provide a
link between channels with dissimilar data rates. They smooth
over such mismatches as serial vs parallel format, differing bus
widths, and speed variations in uni- or bidirectional data flow.

onnecting data buses that operate at different rates can exact a penalty in system performance by forcing one bus to wait for the other You can avoid that time loss by using a first-in, first-out (FIFO) memory buffer between the two, even if the bus structures are different.
FIFO memories differ from conventional memories in that they don't use an address. You store and read data sequentially. FIFO memories are also dual-ported, accepting data from one port and presenting it to the other. These two features make FIFO memories an ideal buffer for the data flowing between devices operating at different rates.
The earliest FIFO memories had a register-based architecture.

When you presented data to the FIFO memory, the device would ripple it through the memory's registers until the data reached one that was empty. The resulting "bubble-through" time slowed the memory's operation and added variability to its performance. These early memories also had a limited data capacity, typically 64×4 bits, and operated at speeds of a few megahertz.
Beginning in 1985, FIFO memories switched to a RAM-based architecture. (See box, "Anatomy of a FIFO memory.") These secondgeneration, RAM-based devices use pointers to keep track of data, eliminating bubble-through. Companies such as Plessey Semiconductor still produce register-based de-

Richard A Quinnell, Regional Editor

Second-generation FIFO memories feature status flags that warn your system when memory is getting full.
vices, but most of today's FIFO memories are RAM-based, with devices such as the Cypress CY7C400 and Integrated Device Technology IDT72400 series ($\$ 8$ to $\$ 10$) replacing the low-density register-based parts. As RAM densities and
speeds increased, so have the density and speed of FIFO memories. Devices such as the IDT7205 now hold as many as 8 k words and operate with 30 -nsec cycle times.

FIFO memories have also added a number of features that expand
their utility. One feature that stems directly from the RAM-based architecture is the FIFO memory's ability to retransmit data. Because the data resides in RAM it remains after being read; only the pointer changes to show that the data is

Anatomy of a FIFO memory

The core of a FIFO memory is a RAM array (Fig A). Two counters provide address pointers to keep track of data in the array. The read and write pointers, as their names imply, show the next array location to be read from or written to. The array is dual-ported and the two counters are independently clockable, allowing you to read and write data simultaneously at differing rates.

Both counters initialize to 0 when the device resets, and they increment with each read or write pulse. The counters don't stop at the end of physical memory, however. When they reach their maximum value, they roll back to 0 and continue incrementing.

Each counter stops incrementing when it catches up to the other counter. When the read pointer catches the write pointer, you will have read the last word of new data; the FIFO memory is empty. When the write pointer catches the read pointer, the FIFO memory is full. The absolute value of the counters is irrelevant.

Flag logic monitors the difference between the two pointers and sets flags accordingly. When the pointers match, the logic asserts the empty- or fullflag as appropriate. When the difference between the pointers exceeds half the RAM array's depth, the logic asserts the half-full flag.

The expansion logic provides the means of daisychaining FIFO memories to achieve greater array depth. Depending on the state of the expansion input line (XI), the FIFO memory will act either as a single device or as part of a chain. A second line, first-load (FL), indicates which in the chain should first accept data following device reset.

When a FIFO memory in the chain is full, it pulses its expansion output signal (XO) during the write cycle to tell the next device in the chain to begin storing data. A device also pulses the XO if it is emptied during a read cycle, telling the next device to begin supplying data.

When wired in a circular chain (one device's XO connected to the next device's XI), the FIFO memories act as a single, large memory. A FIFO memory does not begin accepting data until the one before it in the chain is full and does not supply data until the one before it is empty. The region of valid data, then, rolls through the devices in the chain, much as it rolls through the array in a single device.

Fig A-Present-day FIFO memories are RAM-based, using pointers to keep track of data. The RAM-based architecture eliminates the "bubble-through" time required by earlier register-based devices.

MEMORIES

no longer fresh. The retransmit feature allows you to reread that data on command by resetting the read pointer. The write pointer does not change.

If you're building a fault-tolerant system, you may want the ability to reread selected blocks of data. Unless you can empty and reset the FIFO memory between blocks, however, the retransmit feature won't help you. (See box, "Retransmit: the hidden flaw.") The IDT72510/20 series solves that problem by offering a reread feature. You mark the beginning of a data block you might want to reread by pulsing a control line before reading the data the first time. The reread command sets the read pointer back to the marked address, allowing you to reread the entire

If you just can't wait for high-density FIFO memory ICs, Cypress Semiconductor's Multichip Technology division offers these $8 k$ and 16 k -word-deep FIFO memory modules. The modules' pinouts are identical to the monolithic ICs that will eventually replace them.
block regardless of the write pointer's location.

Another feature added by sec-ond-generation FIFO memories is the use of status flags. FIFO memories tell you when they're full or empty. High-speed and pipelined
systems, however, may overflow the FIFO memory because they do not receive the flag in time to stop. The system may underflow for the same reason when emptying memory. Status flags give such systems warning that the FIFO memory is filling up. By monitoring the status flags you can begin corrective action before the FIFO memory reaches its limits.

There are three types of status flags: half-full, almost-full, and al-most-empty. The simplest FIFO memories have a half-full flag, which asserts when the FIFO memory is filled beyond half capacity. If your system requires only a few write cycles to react and begin emptying the FIFO memory you can never use the FIFO memory's other half.

Retransmit: the hidden flaw

There is a catch to avoid when using a FIFO memory's retransmit feature. The RAM in a FIFO memory operates as a circular stack, as shown in FigA. As you read from and write to the device, the pointers roll through the absolute address space. The retransmit command, however, sets the read pointer to the beginning of the address space, and you reread from there.

The problem comes when you read and write a sequence of data blocks. Reading data from the FIFO memory doesn't affect the write pointer. If you have read some of the FIFO memory's data, the write pointer will continue to advance beyond the end of physical memory, wrapping around to the beginning. The FIFO memory is only full when the two pointers meet; their absolute value is irrelevant.

Once the total number of words written to the FIFO memory exceeds its rated capacity, even though subsequent reads have kept the FIFO memory from filling, the retransmit command will return only the portion of the data that wrapped around. You can only prevent the wrap-around by resetting the FIFO memory, which clears both pointers.

Fig A-Operating as a circular stack, the FIFO memory's pointers keep track of current data. Only 2 bytes remain in the FIFO memory, regardless of the write pointer's absolute value.

Circuit noise accounts for more than half the problems designers experience when using
FIFO memories. A 2-nsec glitch can disturb
a FIFO memory's pointers.

The almost-full flag provides a better solution if your system can react to the flag before the memory fills completely. There is no standard definition for the almost-full flag. The flags assert themselves anywhere from $7 / 8$ full to the full 7 bytes, depending on the device. Because the optimal placement of a status flag will vary with the system's data rates and reaction time, a number of devices now include programmable status flags.

You can characterize FIFO memories by their interface structure. There are three groups: asynchronous, clocked (or synchronous), and special-purpose. Tables 1, 2, and 3 list representative parts with prices for the fastest speed grades. Lower speed devices are available at a lower cost for many product families.

The asynchronous FIFO memory is the most commonly available type. The general read/write timing
for an asynchronous FIFO memory is shown in Fig 1. Although devices such as the Samsung KM75C03A offer cycle times as short as 20 nsec , asynchronous types become difficult to use at such high data rates.

For one thing, you must provide pulse shaping logic in order to minimize cycle time while meeting minimum read and write pulse widths. Further, it may be difficult to ensure that your circuit meets the device's data setup and hold

Table 1-Asynchronous FIFO memories

Company	Part Number	Organization	Minimum Access Time (nsec)	Minimum Cycle Time (nsec)	Flags	Special Features	Price (1000)
Advanced Micro Devices	Am4601 Am7202A/03A/04A/05A	512×9 $1 \mathrm{k} / 2 \mathrm{k} / 4 \mathrm{k} / 8 \mathrm{k} \times 9$	25 15	$\begin{aligned} & \hline 35 \\ & 25 \end{aligned}$	Programmable HF	Retransmit	$\begin{aligned} & \$ 14.90 \\ & \$ 27-\$ 79.40 \end{aligned}$
Cypress Semiconductor	CY7C420/24/28/32	$512 / 1 \mathrm{k} / 2 \mathrm{k} / 4 \mathrm{k} \times 9$	20	30	HF	Retransmit, Output enable	$\begin{aligned} & \$ 15.55-\$ 34.80 \\ & (100) \end{aligned}$
Dallas Semiconductor	DS2009 DS2010/11/12/13	512×9 $1 \mathrm{k} / 2 \mathrm{k} / 4 \mathrm{k} / 8 \mathrm{k} \times 9$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	45 65	HF HF	Output enable Output enable	$\$ 5.15$ \$7.50-\$31.50
Integrated Device Technology	IDT7200/01/02/03/04	256/512/1k/2k/4kx9	15	25	HF	Retransmit, Output enable	\$5-\$75
	IDT7205	$8 k \times 9$	20	30	HF	Retransmit, Output enable	\$90
	IDT72021/31/41	$1 \mathrm{k} / 2 \mathrm{k} / 4 \mathrm{k} \times 9$	25/35/35	35/45/45	HF, AEF	Retransmit, Output enable	\$8-\$40
Mosel	MS7200/01A/02A/03/04	256/512/1k/2k/4k×9	25	33	HF	Retransmit	\$10.80-\$23.80
SGS-Thompson	MK45H01/02/03	$512 / 1 \mathrm{k} / 2 \mathrm{k} \times 9$	25	35	HF	Retransmit	\$16.66-\$30.98
Samsung Semiconductor	KM75C01A/02A/03A	$512 / 1 \mathrm{k} / 2 \mathrm{k} \times 9$	15/25/12	25/35/20	HF	Retransmit	\$15-\$34
	KM75C101A/102A/103A	$512 / 1 \mathrm{k} / 2 \mathrm{k} \times 9$	20	30	Programmable	Retransmit	\$15-\$34
Sharp Microelectronics	LH5481/91	$64 \times 8 / 9$	N/A	28	HF	Retransmit, Output enable	\$22.86
	LH5485/95	$256 \times 8 / 9$	N/A	28	HF	Retransmit, Output enable	\$34.29
	LH5496/97	$512 / \mathrm{k} \times 9$	15	25	HF	Retransmit, Output enable	\$20.28
	LH5498/99	$2 \mathrm{k} / 4 \mathrm{k} \times 9$	20	30	HF	Retransmit, Output enable	\$30-\$51
Texas Instruments	SN74ACT7801	1kx18	15	22	Programmable	Output enable	\$68
Vitelic Semiconductor	V61C01	512×9	35	45	HF	Retransmit	\$11
	V61C02	$1 \mathrm{k} \times 9$	40	50	HF	Retransmit	\$14

Flag Definitions:
$H F=$ Half full
AE = Almost empty
AF = Almost full
$A E F=$ Asserted if near empty or near full
conditions. In the case of the KM75C03A, for example, the data setup time is 8 nsec, allowing only 4 nsec for new data to become available and stable between write pulses.
Synchronous design techniques simplify meeting such timing constraints at high speeds. Manufacturers, therefore, are now offering clocked FIFO memories with synchronous read/write interfaces. Such devices are best suited for high-speed systems and offer cycle times as low as 14 nsec. The term "synchronous" applies only to the nature of each port's I/O timing. The two ports of a clocked FIFO memory can still operate independently; each port has its own clock input pin.
Special-purpose FIFO memories are the third group. These devices offer an asynchronous I/O interface and tackle a variety of special applications. The most common member of the group is the bidirectionalFIFO memory.

Most FIFO memories are unidirectional; data flows in one port and

Fig 1-Timing becomes critical at high speeds when writing to asynchronous FIFO memories. The data setup time is nearly as long as the device's cycle time.

FIFO memories come in a variety of package styles, as this photo from Mosel Corp's family album shows. Most FIFO memory manufacturers offer both DIP and surface-mount package options.
out the other. Bidirectional-FIFO memories, on the other hand, allow you to read from or write to either port with equal ease. Most have two internal RAM arrays, one for each direction. An exception is the Cy press CY7C439, which only has one array. You can configure the CY7C439 to buffer data in either direction, but not simultaneously. The device allows you to send data in the opposite direction, either directly from port to port or latched in an on-chip register.
Many bidirectional FIFO memories have some form of bypass, a method for sending data from one port to another without passing through the RAM array. The de-

Daisy-chaining devices allow you to form deep FIFO memory buffers. You may pay a performance penalty, however.
vices from Texas Instruments, for example, have as many as eight possible configurations of data paths. These bypass modes are especially useful for allowing direct transmission of control parameters from CPU to a peripheral without disturbing data waiting in the array.
The other special-purpose FIFO memories perform reformatting tasks along with data buffering. The serial-to-parallel FIFO memories from IDT, for example, convert between a serial bit stream and parallel words of 7 -, 8 -, or 9 -bit widths. The IDT72103 and IDT72104 are the most flexible, allowing you to specify a parallel or serial interface for either port.
The various FIFO memory structures promise to simplify the connection of virtually any two data buses. Following a few design guidelines will ensure that the devices fulfill that promise. The most important of these guidelines is noise control in the circuit.

Fig 2-If you need to add more depth to your FIFO memory buffer you'll have to connect the devices in a daisy chain as shown. Doing so, however, can exact a performance penalty and adds loading to the data buses.

"Almost half of the problems users have with FIFO memories can be traced back to noise in the circuit," says Richard J Burg, marketing manager for Advanced Micro Devices. Glitches on the read and write control lines can falsely trigger the FIFO memory's counters, he notes. At best those glitches cause data to be added or skipped. At worst, a 1- or 2- nsec glitch while the write control line is active can set the counter to a random value, completely scrambling the data.
FIFO memories are not only sensitive to narrow pulses, but they can also produce narrow pulses on their flag lines. If you are simultaneously writing to and reading from an asynchronous FIFO memory, the device will assert a flag based on signals from one port and clear

MEMORIES

the flag based on the other. Depending on the relative timing of the two ports, the flag line may produce an arbitrarily small pulse. Using synchronous logic to sense and register the flag lines will avoid propagating these narrow pulses through your system.

Daisy-chaining deepens FIFO

If your design calls for a FIFO memory deeper than any available, you have several problems to overcome. You expand asynchronous FIFO memories in depth by daisychaining several devices together. Fig 2 shows the wiring for depth
expansion. When one device fills or empties, it produces a pulse on its output signal (XO) line to signal the next FIFO memory in the chain to take over. If you're running the FIFO memories at their full-rated speed, the delays inherent in generating XO may be enough to cause the next device in the chain to miss a read or write pulse during the handoff. Slowing down the data rate is the only solution.

Daisy chaining the FIFO memories carries other penalties. Each device in the chain connects to the input and output buses. The longer the chain, the greater the load pre-
sented by the FIFO memory. That loading could lower your system's speed even further. Finally, daisy chaining eliminates the half-full-flag and retransmit features.

Most currently available clocked FIFO memories are not expandable in depth. Two exceptions are the Cypress CY7C451 and the SGSThompson MK4505. The CY7C451 has expansion logic similar to that of asynchronous FIFO memories. The MK4505 has handshake signals that allow you wire the devices in cascade, then clock data through one FIFO memory into the next.

If you need both additional depth

Table 3-Special-purpose FIFO memories

Company	Part Number	Type	Organization (Note 1)	Minimum Access Time (nsec)	Minimum Cycle Time (nsec)	Flags	Special Features	$\begin{aligned} & \text { Price } \\ & \text { (1000) } \end{aligned}$
Advanced Micro Devices	Am4701	Bidirectional	$2 \times 512 \times 8$	35	45	Programmable	C	\$22.30
Cypress Semiconductor	CY74C439	Bidirectional (half duplex)	$2 \mathrm{k} \times 9$	25	35	HF	C	\$27 (100)
Integrated Device Technology	IDT 72103/04	Configurable P/S	2k/4kx9	35	45	HF, AE, AF	B, D	\$10-\$38
	IDT72105/15/25	Parallel-to-serial	256/512/1kx16	15	25	HF, AE, AF	D, F	\$10-\$38
	IDT72131/41	Parallel-to-serial	$2 \mathrm{k} / 4 \mathrm{k} \times 9$	35	45	HF, AE, AF	D, G	\$10-\$38
	IDT72132/42	Serial-to-parallel	$2 \mathrm{k} / 4 \mathrm{k} \times 9$	35	45	HF, AE, AF	D, G	\$10-\$38
	IDT72510	Bus-matching	512×18 to $1 \mathrm{k} \times 9$	35	45	Programmable	B, C, E, H	\$35-\$80
	IDT72520	Bus-matching	$1 \mathrm{k} \times 18$ to $2 \mathrm{k} \times 9$	35	45	Programmable	B, C, E, H	\$35-\$80
	IDT72511	Bidirectional	$2 \times 512 \times 18$	35	45	Programmable	B, C, H	\$35-\$80
Mosel	MS72105/15	Parallel-to-serial	256/512×16	25	35	HF, AEF	D, F	\$15-\$20
Sharp Microelectronics	LH5420	Bidirectional	$2 \times 256 \times 36$		25	Programmable		\$75
	LH5493	Parallel-to-serial	$4 \mathrm{k} \times 9$		25	HF, AE, AF		\$62.86
	LH5494	Serial-to-parallel	4kx9		25	HF, AE, AF		\$62.86
Texas Instruments	SN74ACT2235	Bidirectional	$2 \times 1 \mathrm{k} \times 9$		25	Programmable	A	\$52
	SN74ACT2236	Bidirectional	2x1k×9		25	Programmable	A	\$52
	SN74ALS2238	Bidirectional	$2 \times 32 \times 9$	12.5	22.5	Programmable	A	\$52
Notes: 1. Unless noted, devices expandable in width on 2. Serial FIFO memories clock at 50 MHz		Flag Definitions: HF = Half full $A E=$ Almost empty AF = Almost full AEF = Asserted if near empty or near full			Special Feature Definitions: A $=3$-state outputs B = Retransmit $C=$ Bypass path available $D=$ Expandable in depth $E=$ Build-in parity generation and checking $F=$ Programmable serial bit order G = Programmable parallel word width $H=$ DMA interface			

- Military Components Diodes JAN TX \quad (TF5SO3ZZ) ${ }^{2} 103103$ ransformers M1L-C 5536514 : MIL-C 39014105 Capacitors M1L-C 200127E; MML-R-22097 Resistors MIL-R-39017; Wide Input Voltage $5-15$ VDC $8-24$ VDC $18-36 \mathrm{VDC}$ 36 Regulated Standard Models Single and Dual Outputs - Low Profile $1.90^{\prime \prime} \times 1.00^{\prime \prime} \times 3^{\prime \prime}$ Height
up to up to 2.5 Watts - Ambient Operating Temp No heat $+85^{\circ} \mathrm{C}$ No heat sink or electrical
derating required) Options Available per MIL-STD-883 Stabilization Bake Temperature Cycle Hi Temperature Burn-In (160 Hours at 100 Megohm PICO manufactures over 800 regulated and isolated DC-DC Converters and AC-DC Power Supplies and over 2500 standard ultra-miniature Transformers and Inductors

Delivery- stock to

 one weekand full speeds, and don't want the design hassles, consider using a multichip module. Multichip Technology, a subsidiary of Cypress Semiconductor, offers FIFO memories as deep as 16 k words in a DIP module. These modules foreshadow monolithic devices in development at Cypress, insuring that you can later replace the modules with ICs.

Of course, you could just wait for
additional choices. Devices as large as 32 k words deep are presently in development and will be available in 1991, as will clocked versions of special-purpose FIFO memories.

EDN

Article Interest Quotient
(Circle One)
High 509 Medium 510 Low 511

Manufacturers of FIFO memories

For more information on the FIFO memories described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Advanced Micro Devices

Box 3453
Sunnyvale, CA 94088
(408) 732-2400

FAX (408) 982-7490
Circle No. 650

Cypress Semiconductor

3901 N First St
San Jose, CA 95134
(408) 943-2600

FAX (408) 943-2741
Circle No. 651

Dallas Semiconductor
4401 South Beltwood Pkwy
Dallas, TX 75244
(214) 450-0448

FAX (214) 450-0470
Circle No. 652

Integrated Device Technology Inc 3236 Scott Blvd
Santa Clara, CA 95052
(408) 727-6116

FAX (408) 988-3029
Circle No. 653

Mosel Corp

914 W Maude Ave
Sunnyvale, CA 94086
(408) 733-4556

FAX (408) 733-2271
Circle No. 654

Multichip Technology
2580 Junction Ave
San Jose, CA 95134
(408) 432-7001

FAX (408) 432-7049
Circle No. 655

Plessey Semiconductor

1500 Green Hills Rd
Scotts Valley, CA 95066
(408) 438-2900

FAX (408) 438-5576
Circle No. 656

Samsung Semiconductor
3725 N First St
San Jose, CA 95134
(408) 954-7000

FAX (408) 954-7873
Circle No. 657

SGS-Thompson Microelectronics Inc
1310 Electronics Dr
Carrollton, TX 75006
(214) 466-6000

TLX 730643
Circle No. 658

Sharp Electronics Corp
Microelectronics Div
Sharp Plaza
Mahwah, NJ 07430
(201) 529-8757

FAX (201) 512-2020
Circle No. 659

Texas Instruments Inc
Semiconductor Group
Box 809066
Dallas, TX 75380
(800) 336-5236, ext 700

Circle No. 660

Vitelic Semiconductor
1615 Bonanza St
Suite 312
Walnut Creek, CA 94596
(408) 433-6000

FAX (408) 433-0952
Circle No. 661

Two state-of-the-art FIFOs from Sharp to solve your toughest data flow challenges.

They're both synchronous, which greatly simplifies your board circuit and design requirements.

Their proprietary look-abead access architecture delivers speedier access and cycle times while reducing power consumption.

Introducing: The LH5492 4K x 9 Clocked FIFO.

Sharp's new LH5492 is a dual-port clocked FIFO, with a $4 \mathrm{~K} \times 9$ configuration. The clocked interface is a significant enhancement in FIFO design over previous asynchronous parts. The clocked enables on the LH5492 eliminate the requirement to shape waveforms, resulting in simpler design tasks, and lower parts count.

Its high-speed clocked interface can be used directly with the typical $40 \% / 60 \%$ duty cycle system clock. And a separate $\overline{\mathrm{OE}}$ control signal provides independent control over output buffers.

The second enable pin on each part can be directly tied to the flags to simplify external logic requirements.

The LH5492 4K x 9 clocked FIFO comes in a 32 -pin PLCC. It is available with access times of $20 \mathrm{~ns}, 25 \mathrm{~ns}$ and 35 ns , and cycle times of $25 \mathrm{~ns}, 35 \mathrm{~ns}$ and 50 ns , respectively.

Introducing: The LH5420 $256 \times 36 \times 2$ Bidirectional FIFO.

Sharp's new LH5420 is actually two 256×36-bit FIFOs in one. Operating in parallel but opposite directions to provide bidirectional data buffering that would normally require multiple independent devices.

Its 36 -bit word width is an industry first. And ideal for interfacing with new generation higher-speed $32 / 36$-bit and 64/72-bit microprocessors and buses. Moreover, a choice of 9,18 , or 36-bit word widths on Port B means efficient word width matching.

Programmable Almost Empty and Almost Full status flags on each port-in addition to Full, Half Full and Empty flags-allow you to either leave the flags set at their initialized setting of 8 , or program them over the entire FIFO depth.

The LH5420 comes in a 132 -pin plastic QFP package. It is available with access times of $15 \mathrm{~ns}, 20 \mathrm{~ns}$ and 25 ns , and cycle times of $25 \mathrm{~ns}, 30 \mathrm{~ns}$ and 35 ns , respectively.

SHARP.

By Design.

Sharp Electronics Corporation

for lower NRE? ake it Tiny.

Here's How To Develop Analog/Digital ASICs In Less Time, For Less Money.

Now, for an absolutely tiny price, you can partition complex mixed mode ASICs and separately design and verify the critical segments through fabrication. Cost of fab will no longer stop you from a divide and conquer methodology. Use Tiny Chips and go a step at a time. Tiny Chips, available on Foresight multiproject wafer runs, reduce NRE costs and help you move confidently from prototypes into production.

Twelve packaged parts are available at a cost of just $\$ 1,500$. And Foresight runs are regularly scheduled, so development can be pipelined; some segments can be in design, some in fab, while others in test and debug... all at the same time.

Foresight runs support larger die sizes for characterization of completed designs prior to production.

As you might expect from the only foundry to guarantee quick turnaround, Tiny Chips are available in a mere 20-25 working days from CMOS runs supporting:
$1.2,1.5$ and 2.0 micron feature sizes
2.0 micron buried channel CCDs
a 40 pin Tiny Chip pad frame supplied by Orbit
the DoD 2/1.2 micron CMOSN standard cell library with RAM and ROM generators
Getting started is easy as getting design rules and process information in our newly published Foresight User Manual.

If you are trying to build complex ASICs, without building up time and cost, Orbit's new Tiny Chip service may be the biggest news yet. To get more information in a hurry, contact Technical Marketing, Orbit Semiconductor, 1230 Bordeaux Drive, Sunnyvale, CA. Or.call (408) 744-1800 or (800) 331-4617. In CA (800) 647-0222. FAX (408) 747-1263.

A subsidiary of Orbit instrument Corporation.

What others promise, we guarantee.

While many companies have deserted the military ASIC business, our commitment hasn't changed.

So if you're looking for a long term strategic partner, stand at ease.

LSI Logic has earned its stripes by successfully completing more military gate array designs than all other ASIC manufacturers combined. Led by a dedicated Military Aerospace group, we're ready when you are to make those designs a production reality.

At your command are submicron HCMOS ASICs, RISC microprocessors and DSP products which allow systemscale integration second to none.

Our commitment continues as we ready the Silicon 1076, a VHDL system development environment capable of
taking you from the highest levels of abstraction right through to actual silicon. Our military arsenal already consists of design software which ensures a first-time hit rate, dedicated manufacturing, radiation hardened processes and package development. Whether your program need is for one design or 30 , we' ve got the capability to hit your milestone targets.

Next time you're looking for a technology upgrade, or need fast time-to-market, enlist the world's leader in military ASICs and RISC microprocessors. LSI Logic.

Call us at 1-800-451-2742, or write LSI Logic, 1551 McCarthy Blvd., MS D102, Milpitas, CA 95035.

We'll be there. Because we're always on active duty.

Remember When Souare Waves Were Souare?

Typical Digital Waveform, circa 1990
Clock rate $>100 \mathrm{MHz}$ Rise/Fall Time < 0.5 nsec. Equivalent microwave signal $>1 \mathrm{GHz}$

That Was Then. This Is Now.

If you're designing today's high speed digital ICs, circuits or systems, you're probably looking at clocks of 100 MHz or faster, with signal components exceeding 1 GHz . At these speeds, digital signals assume the characteristics and problems of microwaves.

Welcome to the future.
At Cascade Microtech we offer high speed T\&M solutions based on measurement technologies bred and proven in microwaves, and now available for today's digital world.

Our high frequency microprobing equipment and computer-aided test software will let you accurately characterize circuits, devices, packages, and even boards. At their full operating speeds. So you can quickly eliminate timing skew, degraded signal edges, ground bounce, and other high speed problems.

Free Booklet

To introduce you to high frequency microprobing, and help you create products that perform better and more reliably, we've prepared a comprehensive booklet, "High Speed Digital Microprobing: Principles and Applications."

For your free copy, use the reader service card, write, or call Jerry Schappacher at (503) 626-8245.

CASCADE MICROTECH ${ }^{\circledR}$

14255 SW Brigadoon Ct. Beaverton, Oregon 97005

Vertical Mount Fixed Resistors

Series RSS Vertical Mount Metal Oxide Fixed Resistors feature self-standing, snap-in. terminals, and they exhibit an excellent high frequency response and low inductance, making them suitable for PC board mounting in power supplies, switching
 regulators, monitors, printers, and color TVs.
Model RSS3FB is rated at 3 W with a resistance range of 1Ω to $100 \mathrm{~K} \Omega$. Model RSS 5 FB is rated at 5 W with a resistance range of 1Ω to $2.4 \mathrm{~K} \Omega$. Both are available in 15 mm and 25 mm heights. Free samples are available, contact Noble at $708 / 364-6038$.

2-, 4-Bit and 5-Bit Rotary Encoders

Noble SDB161 2-, 4 - and 5-bit encoders are compact ($21 \mathrm{~mm} \emptyset$) with a low profile (under 10 mm height). Built with a sturdy diecast and steel construction, these
 encoders offer long life and reliability.
SDB161 encoders are for relative (2-bit) and absolute (4 -bit, 5 -bit) reference applications. 2-bit switches offer 36 detented positions; 4 -bit switches offer 12 or 16 detented positions; 5-bit switches offer 24 or 32 detented positions. All encoders feature continuous rotation. The 2 bit is available in gray code; the 4 -and 5 -bit versions offer either binary or gray code. Custom designs can be accommodated. For free samples, contact Noble at 708/364-6038.

CIRCLE NO. 65

(If you didn't see the 3 mm trimmer potentiometer, look again!)

When it comes to quality execution of electronic componentry, Noble crosses all the Ts and dots every I.

Our surface mount trimmer potentiometer (TMC3K) continues our commitment to space saving design, bringing state-of-the-art performance to a new dimension:
$3.0 \mathrm{~mm} \times 3.65 \mathrm{~mm} \times 1.5 \mathrm{~mm}$
Easily adjusted, TMC3K incorporates a metal glaze element for outstanding stability; it is designed for reflow soldering, can be adhesivemounted to circuit boards, and is available on 8 mm tape for automated
assembly. Operating temperature range is $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

The Noble 3 mm potentiometer is perfect for hand held equipment, disk drives, bar code devices, and other consumer and business electronic products. For a free sample and more information on why it makes sense for you, call or write Noble today.

(1) NOBLE

5450 Meadowbrook Industrial Court Rolling Meadows, IL 60008 Phone: (708) 364-6038 FAX: (708) 364-6045

TMC4K "chip" trimmers feature a ceramic substrate, a metal glaze element, and an insulated knob for easy adjustment. The TMC4K can withstand operating temperatures of $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is rated at 0.2 watts of power at 20 V . Its standard resistance range is 200Ω to $1 \mathrm{M} \Omega$. Outside dimensions are 3.8 mm wide x 4.5 mm long (2.1 mm height).
Available on tape and reel. Can be held to a circuit board by an adhesive for reflow soldering. Call Noble at 708/364-6038 for a free sample.

CIRCLE NO. 66

Slide
 Potentiometers

The VJ Series High and Low Profile Slide Potentiometers are lightweight, durable, and provide smooth operation. They function as volume, balance, brightness/contrast, temperature, lighting and graphic equalizer controls.
The Low Profile Series (with single or dual elements) features a slide travel of $15,20,30,45$, or 60 mm . The High Profile Series is available in $30,45,60,80$ or 100 mm travel.
Custom designs can be accommodated. Contact Noble at $708 / 364-6038$ for a free sample.

CIRCLE NO. 67

The 8 -bit CMOS

Consumer/Control Processor with the most exciting feature set you've ever seen.

The low-cost Z8 CCP family of microcontrollers takes full advantage of Zilog's new Superintegration ${ }^{\text {m" }}$ $Z 8{ }^{\circledR}$ core. The result is unprecedented functionality at a price that makes sense for high volume consumer and automotive products as well as intelligent embedded peripherals.

Features .. .

For starters, there's a voltage detection circuit that automatically triggers an on-board power-on reset

Expanding the Z8 Family
 From the beginning, the 78 MCU bas been an

 dustry standard for simplicity and elegance in 8-bit microcomputers. This sophisticated microcontroller amily bas continued to orow, until today, there is a 78 MCU for every phase of your system development, prototyping to full productionfrom pilog has always been keenly aware of the specific
Zilog has always been keents, as some recent needs of a wide variety illustrate. The requirements addilionsumer and automotive products for inexpensive of consumer and EMI quiet and provide operation MCU's that are both over a wide voltage range to the development of example, ,

Here are a couple of other notable
examples:

- 28 DTC-The bigh performance, single bip television controller for the bigh volume con sumer TV market
-786C08-The first 8-bit, 18-pin
78 microcontroller for consumer and automotive products.
timer for no-fuss power up. And it continues to provide brown-out protection . . . in case Vcc falls below the 2.5-5.5 volt operating range. Not only that, there's an on-board watchdog timer that secures your application even further.
. . . and more features.
You also get a stop mode that typically consumes less than 2 microamps. What's more, stop-mode wake-up and interrupts can be triggered from multiinput port transitions, making the Z8 CCP MCU ideal for key-pad applications. And that's not all. The Z8 CCP series gives you on-board analog comparators, two 8 -bit counter/timers, with 6 -bit pre-scaler, and the right amount of I/O. And you know you're going to get very fast code development, because you've got full compatibility with the widely used 8 -bit Z8 instruction set

And plenty of important choices.
Choose between low EMI wide voltage range or high-speed control devices. The Z8 CCP microcontroller is also available in your choice of RC , ceramic or crystal oscillator circuits. And in 18-, 28-and $40 / 44$-pin versions, in a variety of packages, with 2 K or 4 K ROM Code sizes. All off the shelf and backed by Zilog's proven quality and reliability.

To find out more about the Z8 CCP MCU or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away.

Message buffers and mailboxes

Abstract

The discussion of task coordination methods continues in Part 8 of this series with an overview of how message buffers and mailboxes coordinate tasks in real-time applications. Parts 9 and 10 will discuss several other methods of task coordination.

David L Ripps, Industrial Programming Inc

You have already seen in the discussion of the overall organization of a real-time application that message passing is a fundamental method of coupling tasks (see pg 196 in Part 4 of this series, EDN, October 25, 1990). Normally, the coupling involves the passing of information, such as a packet of parameters for some work to be done, or the state of a job that is being performed in stages by a sequence of tasks. The coupling also involves coordination. For a receiver, this means the ability to wait for a message to arrive; for a sender, this means the ability to wait for a message to be received. Thus, even if the content of the message is empty (0 bytes long), message passing can still be used to coordinate the activity of tasks.

An event flag can also couple tasks, but with the information restricted to a single bit. In the limit, a message without content also carries a single bit of information: It is present at an exchange or not. Even

[^9]so, coordination via event flags and messages is essentially different. When an event flag is set, all tasks that are waiting for that event continue, and the event flag still remains set for any tasks that come later to examine it. With a message, the task that receives it consumes it; if there are two tasks waiting for a message, only one continues while the other remains waiting.

In designing the OS, each message exchange could have been permanently tied to its parent task, as was done with the local event-flag group. Had this been done, sending a message to an exchange would have been tantamount to sending it to a designated receiving task. But such an arrangement is too limiting. Realtime applications often require the sharing of work among multiple, equivalent tasks. This sharing can be especially important if there are multiple processors in the system, so that separate pieces of work can be processed simultaneously. Load sharing can even be beneficial for single-processor systems when each piece of work may be suspended because of I/O or other inherent delays. (Recall Fig 1's Rule B from Part 4 of this series EDN, October 25, 1990, pg 194: Try to keep the processor (or processors) always busy with productive work.)

Within the MTOS operating system, the arrangement for message passing is the analog of the bank queue with one line and (possibly) multiple servers. Each exchange is a separate object, distinct from the tasks that send and receive the messages. In principle, any task can send a message, and any task can receive a message. (Of course, application designers usually

Only one task can receive a particular message. Other tasks waiting for messages must continue waiting.

impose task-level restrictions, but these are outside the operating system.) Thus, if two tasks can perform a given type of processing, each will seek the next available message from a common exchange. The message exchange is thus an implementation of the multiple producer/multiple consumer model of intertask communication (Fig 1).
Message exchange plays a central role in many realtime applications. As a result, MTOS-UX provides two different realizations of an exchange: a message buffer and a mailbox. The message buffer is the quickest and simplest mechanism for passing messages; the mailbox provides additional facilities.
A message buffer (MSB) is a place to which a message may be sent and from which a message may be received. The number of MSBs and the kinds of messages transferred are completely determined by the application; the OS imposes no restrictions of its own.
An MSB message is always the size of a single pointer variable (6 bytes for the 80386; 4 bytes for all of the others). Often the message is the address of a structure containing the parameters of some work to be done. However, the content of the message is not significant to the OS; the value is transferred without regard to its possible meaning.
A message buffer is a storage device; when there is no receiver immediately available, the 4 - or 6 -byte message is copied into the buffer. The maximum number of messages is specified when the buffer is created. A

Fig 1-The message exchange-message buffers or mailboxes-allows multiple "producer" tasks to communicate with multiple "consumer" tasks.
task that attempts to post a message to a full buffer is given a failure return value of QUEFUL. Similarly, when a task receives a message the 4 or 6 bytes are removed from storage.
After a task posts a message, it always continues without coordination. The only option at the send end is whether the message should be placed at the end of the buffer (FIFO) or at the beginning of the buffer (LIFO) in case there is no task already waiting to receive the message. An MSB message does not have a priority.
A task seeking a message at an empty MSB can either wait for the next message to arrive or continue and be notified that no message is currently available. These wait options enable tasks to coordinate their activities.

Typical use of a message buffer

As an illustration of the utility of message buffers, consider an application in which there are three tasks that produce blocks of parameters. Each block must be expanded into a formal report that is to be output to one of two identical printers. It is not important to specify the printer to be used for a given report. It is important, however, that a printer not be idle while a block of parameters is available.

Each producer task allocates a work area from a memory pool, builds a parameter block in the area, and then sends the address of the area as a message to a certain MSB (Fig 2). The producer does not wait for the message to be received and thus is immediately available to prepare the next block (Fig 3).
Two tasks do the report generation and printing. Each task executes the same re-entrant code, but has

Fig 2-A typical producer task requests allocation of memory for a parameter block that will contain information the task needs to convey. The task waits (WAIFIN) for the OS to allocate the memory, then posts the parameter-block address to a message buffer and continues with no coordination (CTUNOC).
its own dedicated printer. A printer task seeks the address of a parameter block as a message from a common MSB. (If there is no message queued, the task waits.) When the printing is completed, the printer task deallocates the work area and then seeks the next message in an endless loop.
Thus, the MSB provides an orderly way to coordinate the producers and printers. Specifically, it allows the producer to send work to the next free printer, without knowing which one that is.
The parameter blocks need not all be of the same size or come from the same pool. Usually, they are not. Part of the parameter block can specify the length of the work area and the identity of the pool.

Creating a message buffer

A message buffer must be created before any task can use it. For a single-processor system, a typical create call is

\#define MSBO 0x4D534230

long int msbid0; $\quad / *$ identifier of message buffer 0 */
$\operatorname{msbid} 0=\operatorname{crmsb}(\operatorname{MSB} 0,50 \mathrm{~L}) ;$
The first parameter is the key associated with the message buffer. It is the external name of the buffer. A 4-byte pattern unique among MSBs is required. The second parameter indicates the maximum number of messages that can be stored. The low-order 13 bits are used so that the highest value is 8191 .
If an MSB with the given key does not already exist, it is created by this request. The only return values are the MSB identifier for success and QUEFUL or BADPRM for failure. The successful return value does not distinguish an MSB that already existed from one that was just created. An MSB is created empty.

Fig 3-A typical consumer task receives the address of information (a parameter block) from a message buffer, then processes the information and returns the parameter-block area to a memory pool.

The buffer is created within a memory pool known as the Transient Program Area (TPA). For a singleprocessor system, there is only one TPA. For a multiprocessor system, there is one global TPA and one local TPA per processor. Thus, with a multiprocessor system the designer can specify the TPA by adding a term to the size parameter. The choices are MSBGBL (for a global buffer), MSBLC0 (for a buffer local to processor 0), ... , MSBLCF (for a buffer local to processor 15).
Some further calls are

```
\#define MSB1 0x4D534231
\#define MSB2 0x4D534232
```

long int msbid1,msbid2; /*identifier of message buffers $1,2^{* /}$
msbid $1=$ crmsb (MSB1,MSBGBL+200);
if $((\operatorname{msbid} 2=\operatorname{crmsb}($ MSB2,MSBLC2 +500$))==$ QUEFUL $) \ldots$
A local message buffer must be created, used, and deleted on the processor specified in the second parameter of crmsb. The advantage of a local buffer is reduced traffic over the backplane. The advantage of a global buffer is universal access by all tasks.
The task that creates a message buffer automatically receives the identifier. Any C task that knows the key can also determine the identifier via

$$
\begin{aligned}
& \text { long int id2; } \\
& \text { id2 = getmsb (MSB2); }
\end{aligned}
$$

Upon return, $i d 2$ either has the identifier of the buffer with key MSB2 or BADPRM if no such buffer exists.

Posting a message to a buffer

Once a task knows the identifier of a buffer, it may post messages to that buffer. If there is already an unfulfilled get-message request queued, the new message fulfills the request and unblocks the receiver. If there is no receiver immediately available, the message is stored (unless the buffer is full). In either case, the task that posted the message continues on.

Since a message buffer will store messages until they are claimed, it is important to control the manner in which storage occurs. Normally, a task posts a message to the end of a buffer. The request
putmse (msbid,msg);
posts a message contained in variable $m s g$ to the end of the buffer whose identifier is given by msbid. If all messages are posted this way, the buffer becomes a pure first-in, first-out storage device.

The task that receives a message "consumes" it. Event flags, on the other hand, are not consumed.

In some parts of an application, last in, first out (LIFO) might be more desirable. For example, the printing of error messages sometimes needs this rule. The request to post a message to the beginning of the buffer is
putmsb (msbid,msg);

You are free to mix both types of requests, even within a given buffer: Send most messages to the end, but occasionally force a highly important message into the front of the queue. Both posting functions return NOERR for success, BADPRM if the target is not a message buffer, or QUEFUL if storage is needed but the buffer is full.
Note that the message-buffer facility has been designed primarily for speed. Thus, there are no provisions for message priority or coordination at the send end. Applications needing these features can find them in the mailbox services.

Getting a message from a buffer

The OS provides a pair of C functions to get a message from a buffer.

$$
\begin{array}{ll}
\begin{array}{l}
\text { long int msbid; } \\
\text { long int *msg; } \\
\text { long int result; }
\end{array} & \begin{array}{l}
\text { /*identifier of MSB*/ } \\
\text { /*message*/ } \\
\text { /*result of request*/ }
\end{array} \\
\text { result }=\text { getmsw (msbid, \&msg); } \\
\text { result }=\text { getmsn (msbid, \&msg); }
\end{array}
$$

Parameter msbid must be the identifier of an MSB, otherwise result is BADPRM. The address of the variable to receive the message is given by the second parameter.
With the first function, the task will be blocked until a message is available. With the second, if no message is already queued, the return value is MBEOF. Thus, getmsw is get-a-message-with-wait and getmsn is get-a-message-with-no-wait. For getmsw, tasks waiting for a message are queued first-come, first-served. This seems to be a fair rule since it is hard to conceive of a case in which the receiving tasks are not all equivalent. There is no limit to the number of tasks that may be queued waiting for a message.

Deleting a message buffer

A message buffer may be deleted by invoking
result = dlmsb (msbid);

If $m s b i d$ is not the identifier of a buffer, the function returns a failure value of BADPRM. The value for success is NOERR.
Usually, the MSB is not being used when it is deleted. However, if there are any queued messages or pending receive requests, then the buffer is marked "deletion pending," but it is not removed until activity ceases. New requests will still be honored while the buffer is awaiting deletion.

Achieving mutual exclusion

Commonly, tasks that share alterable data must be sure that access is limited to one task at a time. As you will see in Part 9 of this series, semaphores are the traditional mechanism to achieve the required exclusive access. Nevertheless, a message buffer can be a viable alternative. A buffer is created and then "primed" by sending it one dummy message. Thereafter, whenever a task needs access to the variables, it

Companion disk offer

All of the C examples in this series, plus applications of your own, can be run on a PC with a set of demonstration disks available from Industrial Programming Inc. The disks contain a full version of MTOS-UX for an IBM PC/AT or compatible. An application program is edited, compiled, linked, and loaded under MSDOS. The MTOS-UX then takes over the hardware to execute the program in real time. At any
time, you can enter a ctl/dlt command from the console to return control to MS-DOS.
The demonstrator requires an AT with a least 512 k bytes of RAM and a hard disk with 2 M bytes available for MTOS libraries and scratch storage. Program preparation requires the Microsoft C compiler/linker, version 5.0 or later. Microsoft tools are not included with the MTOS-UX demonstrator.

The demonstration version has all of the features and facilities of standard MTOS-UX. However, there is a limit of six of each type (six tasks, six mailboxes, six semaphores, and so forth). The disk set costs $\$ 25$; unlimited versions are also available. For more details, call IPI at (800) 3656867 or (516) 938-6600, or write to 100 Jericho Quadrangle, Jericho, NY 11753.

Fig 4-For mailbox communication, a typical producer task opens a mailbox in the "send" mode, then creates a message and sends the address of that message to the mailbox.
would request to receive that message, with wait. Since there is only one message, only one task at a time could proceed; all others queue up at the buffer. Sending the message back to the buffer enables the next task to proceed.
The idea is easily generalized for cases that can permit access by more than one task at a time. Suppose there are four independent and equivalent channels on a certain piece of equipment. Several tasks wish to use a channel, but do not care which one is provided. A buffer is created to handle the assignment of channels. The creating task initially fills the MSB with four messages, each containing a channel number (say, 0 to 3). Now a task waits for a message granting it permission to use one of the channels and eventually returns the message to release the channel to the next user.

Mailboxes vs message buffers

While message buffers are versatile enough to solve many problems that arise in real-time applications, there are often cases in which a stronger facility is required. MTOS-UX mailboxes provide full coordination at both the send and receive ends, arbitrary message length, unlimited queuing, and 256 levels of message priority.

As with a message buffer, a mailbox (MBX) is a place to which a message may be sent and from which a message may be received. The number of mailboxes and the kinds of messages transferred are completely up to the designer.

A mailbox message, however, can be a record containing any number of characters. The content of the record is not significant; the bytes are transferred as an unstructured string. Thus, a record may be a block of text to be processed, a set of data to be reduced, or even the address and length of "the real text or data," as stored in a memory pool.

A task receiving a mailbox message may specify an input buffer shorter than the incoming message. This is considered normal. The message is truncated, with the excess text discarded. In any case, receiving a message always "consumes" it, that is, removes it completely from the MBX.

After a task sends a message, it has the option of continuing or waiting until the message is received. Similarly, a task seeking a message at a mailbox that presently has no messages can either continue or wait for the next message to arrive. These wait options enable tasks to coordinate their activities.

MBX messages have a priority. If there is no receiver waiting, more important (higher-priority) messages are stored in a queue ahead of less important ones. For messages of equal priority, it's first in, first out (FIFO).

There is no corresponding priority for receivers. When a task waits for an MBX message, it's strictly first-come, first-served. It is assumed that all receivers are identical so that there is no need for priority ordering of the wait queue.

Although a mailbox is a storage device, it holds only the parameters of unfulfilled send or receive requests. The content of a message is not copied until a receiver is available, and then the transfer is made directly into the receiver's buffer. The sender may choose to dispatch a message and then continue without waiting for a task to receive it. Nevertheless, because there is no internal storage of text, the sender cannot alter the area containing the message until it is transferred to the receiver. Fig 6 summarizes the differences between a message buffer and a mailbox.

Opening/creating a mailbox

A mailbox must be opened before it can be utilized. The open specifies both the external name (the usual 4-byte key) and the intended manner of access (the

Fig 5-A typical consumer task receives a message from a mailbox and then returns the area where the message was stored to a memory pool.

Message buffers are quick and simple. Mailboxes are more complicated and provide additional facilities.

"mode"). The mode is either MBRCV for receiving or MBSND for sending. A task may make both types of open (without any requirement for an intervening close) if it intends to both send and receive messages with the same target MBX:

```
#define MB03 0x4D423033
long int mb3id; /*identifier of MBX 3*/
mb3id = opnmbx (MB03,MBRCV);
opnmbx (MB03,MBSND);
```

If a mailbox with the given key does not already exist, it is created by this request. The only return values are the MBX identifier for success and QUEFUL for failure. The return value does not distinguish a mailbox that already existed from one that was just created. A mailbox is created empty (no senders or receivers waiting).

Each time a mailbox is opened, a tally within the control data for the MBX is incremented, and each time the MBX is closed the tally is decremented. There are separate tallies for send and receive opens. However, the identity of the task making the request is not saved. As a result, it is not necessary for each task that uses a mailbox to have opened it. All that is required is that the current tally of opens minus closes be greater than zero for the corresponding mode.

Sending a message to a mailbox

A mailbox message can be represented as a C struc-

		MAILBOX
MESSAGE BUFFER	LENGTH OF MESSAGE?	ANY
SIZE OF ADDRESS	STORES MESSAGE?	NO
YES	MAXIMUM NUMBER?	NO
YES	MESSAGE PRIORITY?	YES
NO	COORDINATION FOR SEND?	GENERAL
NONE	COORDINATION FOR RECEIVE?	GENERAL
WAIFIN	SPEED?	SLOWER
FASTER		

Fig 6-Message buffers and mailboxes, although similar in use, have different characteristics. Message buffers are versatile enough for many real-time applications; mailboxes offer additional features.
ture containing a mandatory 4-byte text length followed by any number of bytes of text.

struct msg				
long int char	msgs;	msgt[20];	\quad	/*size of text, in bytes*/
:---				
/*ypical text*/				

Occasionally, dummy messages (that is, ones having 0 length and hence no text) are sufficient when the MBX is employed for pure coordination without any transfer of information. More often, the text is some set of parameters, such as

```
struct msg
    {
        long int msgs; /*size of text, in bytes*/
        short int mtyp; /*type of msg*/
        long int mprm1[20]; /*parameter 1*/
    };
```

The simplest way to send a message to a mailbox is with no priority (0 L) and wait-forever coordination (WAIFIN).

struct msg	msg1;	/*message*/
long int	result;	/*result of reques

In this case, mb3id must point to a mailbox that has been opened for sending and not subsequently closed.
When a message priority is appropriate, it is entered as the third parameter.
sndmbx (mb3id,\&msg1,100L,\&result,WAIFIN);
For proper alignment, the priority must be a long word, even though the range is 0 to 255 .
For coordination mode WAIFIN, sndmbx does not continue until the service is completed. Thus, result contains the same information as is returned by the request function itself. Possible values are NOERR for successful transfer of message, BADPRM for failure due to bad parameter, or QUEFUL for failure due to lack of internal resources. For other coordination modes, such as
long int instat; /*initial status of request*/
instat $=$ sndmbx (mb3id, \&msg1,100L, \&result,CLEF0 $+100+\mathrm{MS}$);
sndmbx returns immediately with the initial status of the request (NOERR, BADPRM, or QUEFUL). When the service is completed, result contains the final status: NOERR, BADPRM, QUEFUL, or TIMOUT
for failure due to not having a receiver within the specified maximum wait time.

You can take advantage of the deferred coordination modes, such as CLEFn, to do work while "waiting" for a message to be received. A typical sequence would be

```
sndmbx (mb3id,&msg1,100L,&result,CLEF0+100+MS);
    ... /*do other work*/
waiefg (0L,EFOR+EF0,NOEND) /*now wait for end of send*/;
if (result!= NOERR)
```

 ... /*process error*/;
 When sending a message to a mailbox, it is not necessary that any task currently have the box opened for receiving.

Receiving a message from a mailbox

The request to receive a message mirrors the one to send, except that there is no priority among the receivers. A typical receive sequence is
struct msg rec1; /*received message*/
rec1.msgs $=$ sizeof(struct msg$)-4 ; \quad / *$ set size*/
rcvmbx (mb3id, \&rec1,\&result,WAIFIN);
As with the send message, the first 4 bytes of a receive message are reserved for the size of the text. Often, the messages are of fixed size, so that the msgs component can be set initially and never change. When the size can vary, it is customary to set msgs to the largest possible value (and be sure the text portion is correspondingly large enough). The OS limits the actual transfer to the smaller of the size of the message text and the size of the receiving text area. The actual number of bytes transferred is stored in the first 4 bytes of the receiving area, overwriting the original maximum size. If the receiving area is longer than the message, the unused portion of the receiving area is not cleared. If the message is longer than the receiving area, the unused portion is discarded. Neither case is considered an error. A text length of 0 is valid and provides coordination without text transfer.

Coordination for rcvmbx is similar to that for $s n d m b x$. One difference is that all receivers are assumed to have equal priority so that the wait queue is strictly FIFO. Another is that while no coordination (CTUNOC) is often appropriate when sending a message, it makes little sense when receiving one.

For example, receive up to 12 bytes into rec1-

$$
\text { rec1. } \mathrm{msgs}=12
$$

with a maximum wait of 4 sec
rcvmbx (mb3id,\&rec1,\&result,WAIFIN + 4 + SEC);
without limit, but continue and set LEF 15 when done rcvmbx (mb3id,\&rec1,\&result,CLEF15);

If there is a message available when the receive is issued, the function returns immediately with status NOERR. Otherwise, the task is expected to wait or not to wait as specified in the coordination qualifier. However, when the MBX is acting as a private conduit ("pipe") between tasks, it is important to be able to distinguish a mailbox that is temporarily empty from one that is permanently in that state. In the first case, it makes sense to wait for a message; in the second it does not. Toward this goal, when a receive request is made to an empty mailbox, the OS checks whether the MBX was once opened for sending and is currently not opened in that mode. In that special case, the receive request returns immediately with "at end of file" (MBEOF) status. In all other cases, an unfulfilled receive request is queued. This applies for all four basic coordination modes (WAIFIN, CTUNOC, CLEFn, and CSIGn).

Closing and deleting a mailbox

Very often a task that communicates via a mailbox is organized as an endless loop, as Figs 4 and 5 show. For such tasks the mailbox exists for the entire life of the application. Nevertheless, there are provisions to close and to delete a mailbox, if need be. The functions

$$
\begin{aligned}
& \text { result }=\text { clsmbx (mb3id,MBSND); } \\
& \text { result }=\text { clsmbx (mb3id,MBRCV); }
\end{aligned}
$$

close the given mailbox in the send and receive mode, respectively.

A valid close decrements the opens-remaining tally for the given mode. If the new tally is still 1 or more, the function returns NOTFRE to indicate that there are other opens still outstanding. If there are no more opens left for the given mode, the function returns NOERR.

The mailbox may be deleted by invoking
result = dlmbx (mb3id);

If the argument is not the identifier of a mailbox, the function returns a failure value of BADPRM. The value for success is NOERR.

Using a mailbox as a pipe

A pipe is a connection between two tasks, arranged so that the output of one task becomes the input to

After a task sends a message, it has the option of continuing or waiting until the message is received.

the other. Under Unix a pipe is implemented via the file system; under a real-time OS a pipe can be achieved using a mailbox. The following suggests one method to create a mailbox pipe. Many variations are possible.
A sender task (S) issues an opnmbx with mode MBSND. When \mathbf{S} wishes to output some text, it issues alloc to obtain a pool area large enough to house the text. (Typically the area is larger than needed because of the granularity of a pool allocation.) The text is stored. \mathbf{S} then posts a message containing the address and length of the allocated area to the pipe MBX. The priority is 0 so that messages proceed first in, first out. No-coordination is selected; \mathbf{S} continues. When there is no more output, S closes the MBX.
A receiver task (\mathbf{R}) issues a corresponding opnmbx with identical key and mode MBRCV. R seeks a message from the pipe MBX with unlimited wait. When \mathbf{R} continues, it has either the address of the pool area or the MBEOF status. In the former case, it processes the text, deallocates the pool area, and then repeats the loop. In the latter case, it also closes the MBX to delete it.

Dangling references

The OS services to send and receive a message from a mailbox can be performed synchronously by choosing coordination mode WAIFIN. In this context, synchronously means that the requesting task does not continue running until the message is transferred. However, the OS also permits asynchronous communication via the deferred coordination modes CSIGn and CLEFn and the uncoordinated mode CTUNOC. With these last three asynchronous modes, the task continues to execute while the message transfer takes place.

In principle, a task that participates in asynchronous communication is free to execute any of its code, and thus may be at any point within its code space when the message is finally transferred. Therein lurks a danger: Unless this freedom is carefully controlled, there is significant potential for trouble.

A simple example can demonstrate the difficulty. A task enters a subprogram. Upon entry, it allocates some space for local variables, including a message buffer. The task builds a message in the buffer, sends the message to a mailbox with deferred coordination,
performs other work, and then exits the subprogram. The exit code automatically reclaims the storage allocated for the local variables.
Usually there is no problem-by the time the other work is finished so is the transfer of the message. However, every so often the transfer is delayed so that the other work finishes first. In this case, while the message is waiting to be received, its memory is reallocated for other purposes. The OS cannot know that it is preserving an address that is no longer valid; when the receiver seeks a message, it gets whatever happens to be stored in the buffer at that moment. In general, preserving a pointer to a variable that no longer exists is known as a dangling reference. Among the candidates for a dangling reference are the receive buffer of rcumbx, the runtime argument of start, the return argument of exit or dltsk, and the results buffer of any asynchronous service.
Several solutions are possible. The simplest is to always specify WAIFIN for a service that involves a local variable. Alternately, choose CLEFn but wait for the event flag to be set before exiting the scope of the local variable. (The scope of a variable is that portion of the code in which the variable exists.) Yet another alternative is to avoid local variables altogether by always utilizing static areas. That alternative, however, is often not convenient for dynamically composed messages. In these cases, you can avoid the troublesome automatic deallocation that occurs with local variables by having the sending task explicitly allocate the message area from a fixed block or common memory pool. A preamble or header within the message supplies the allocated address, plus the pool identification and allocation size, unless these are known by convention (Fig 7). The receiving task then does the deallocation.

In summary, message exchanges are a convenient way to connect tasks that feed information to each other. As with an event-flag group, a message ex-

MESSAGE STRUCTURE

Fig 7-Avoid "dangling references" by having the sending task explicitly allocate a message area from a common memory pool. A message header or preamble supplies the address, plus the pool identification and allocation size.

New Albany, Indiana USA • Sacramento, California USA • Cumbernauld, Scotland UK • Singapore
SAMTEC, INC. • P.O. Box $1147 \cdot$ New Albany, IN 47151-1147 USA • Phone 812-944-6733 • Fax 812-948-5047 • TWX 810-540-4095 • Telex 333-918

Fast turnaround on U.S. made DIPs and coated/ molded SIPs. • Unlimited schematics combining resistors, inductors, capacitors and diodes. \cdot Complete capabilities from design through production. - Lead lengths up to $0.290^{\prime \prime}$. Special performance ranges, plus production and testing to M83401 levels.

Call or Fax your requirements to:
DALE ELECTRONICS, INC.
Techno Division
7803 Lemona Avenue
Van Nuys, CA 91405-1139
Phone (818) 781-1642 • FAX (818) 781-8647
CIRCLE NO. 49

SEEKING A IUALITY BOARD HOUSE ? IITH FILL DESIEN CYCLE SUPPORT?

ONE STOP SHOPPING FOR DESIGN AND MANUFACTURING

A MANUFACTURING, PCB DESIGN AND SUPPORT CENTER MURRIETTA
4761 E. Hunter Are. Anaheim, CA. 92807 Phone (714) 970-2430 FAX (714) 970-2406
change is a freestanding object, separate from the tasks which use it. This permits any number of "producer" tasks to send messages to an exchange and any number of "consumer" tasks to receive them. Furthermore, the transfer of a message can be a point of coordination, with both the sender and the receiver waiting for the transfer.

Nevertheless, coordination based on message transfer is inherently different from coordination based on event flags. A task that receives a message removes it from the exchange. Thus, if two or more tasks are waiting for a message, only one gets it and the others continue to wait. (Recall that all waiting tasks continue when an event flag is set.)

Over the years, two different types of message exchange have evolved to permit the designer to opt for speed when complete generality is not needed. The first type, message buffers, are the faster of the two, but accept only messages that are the size of a pointer (4 or 6 bytes). These messages can have only two levels of urgency (ie, messages can be posted to either the front or the back of the queue.) Furthermore, the sender can only post a message without coordination, while a receiver can only coordinate using the equivalent of WAIFIN or IMONLY.

The second type of exchange is the mailbox. It is fully general. Messages can be of any length and can be assigned any of 256 levels of priority. All coordination modes and options are available to both the sender and receiver.

Part 9 of this series will discuss task coordination with semaphores and controlled shared variables.

Article Interest Quotient (Circle One) High 497 Medium 498 Low 499

WHAT'S COMING IN EDN

In EDN's February 4, 1991, Special Report, Regional Editor Maury Wright will bring you up to date on the latest developments in the $3^{1} / 2$-in.-drive area. The realtime programming series continues with part 9 , which will examine semaphores and controlled shared variables.

Look for EDN's February 18, 1991, issue for coverage of SMT troubleshooting, graphing and curvefitting software, and lots more.

WHY MORE COMPANIES ARE PLUGGING US INTO THEIR DESIGNS.

Today the Rayovac 844 computer clock battery is specified by 23 system architects worldwide. Its proven reliability safeguards the configuration file memory in 286/386/486 personal computer products, especially in power-down situations.

Maintaining voltage is just one way the Rayovac 844 delivers superior reliability. It also offers long life, a 3-5 year span, plus safety no

The 844 ensures IC voltage above the critical 3.OV level maintaining clock stability and configuration file memory
lithium battery can match.
The 844 is compatible with industry standard chip
sets: Chips \& Technology; VLSI Technology; Western Digital; Zymos and Intel. And it's made in the U.S.A., with on-time delivery available around the world.

So plug added reliability and service into your design. Specify a Rayovac 844. Call Rayovac's Technical Sales \& Marketing Department for complete information and battery specifications at 608-275-4694.

SIEMENS

WorldWise.
 U.S. companies with a global presence find Siemens an expert, dependable source for advanced semiconductor products. From Smart Power to RISC. Santa Clara to Singapore.

As the U.S. market becomes increasingly competitive, more and more companies find their domestic survival depends on how well they can capitalize on international opportunities in sales and manufacturing

 technology and products, world wide service, support, and manufacturing capabilities, and unchallenged financial strength.

Siemens is that partner. With 173 manufacturing plants in 35 countries. 42,000 employees dedicated to R\&D alone. And high performance, high quality semiconductor technology, ranging from the simplest components to the most advanced.

1MB and 4MB DRAMs. Smart Power. RISC processors. Microcontrollers. High-density CMOS gate array technology soon to reach sub-micron dimensions. The most comprehensive line of ISDN ICs, from primary to basic rates. Chip-level solutions, for your application.
All that technology comes with the world class manufacturing, service and support that has made Siemens one of the world's largest electronics suppliers.

MIPS RISC Processor

Wherever your company grows, we'll be there. From Detroit to Dublin. Or Santa Clara to Singapore.

For details on our

 advanced products, call (800) 456-9229.

Smart Power Or write: Siemens Components, Inc. 2191 Laurelwood Road, Santa Clara, CA 95054-1514.
Ask for literature package M51A001.

Find out how a world partnership with Siemens can help your company grow world wise.

Siemens...
Practical Solutions By Design.

First, All Of Your DC Power Source Needs In One Small Package...

...And Now All Of Your DC Loads, Too!

Introducing
 Programmable DC Loads

The new AT8000A Programmable Loads are based on the new "instrument on a card" technology that became so popular with our AT8000 Power Sources. The AT8000A can house up to six 300 W loads in one $5^{1 / 4}$ inch drawer. By paralleling modules, you can increase the load of any single channel up to 1800 W . And by adding expansion chassis, you can increase the system up to 16 channels!

Now You Can Meet Virtually Any ATE DC Source or Load Requirement

You'll appreciate the fact that the Elgar DC Loads and Power Sources can be used in any combination in the same AT8000A chassis. Plus, the option of Built-In Test (BIT) allows you to perform self testing and measurement of system parameters through the bus. The AT8000A can also include an embedded TMA and accept CIIL commands per MATE Interface Standard 28067633.

Elgar Power Is
 Preferred the World Over.

For over 25 years, Elgar has been the standard in AC Power Sources with over 50,000 programmable power sources and frequency converters in the world being used in science, industry and defense. With the introduction of the AT8000 DC Power Sources, Elgar applied that standard to DC Power Sources. Now, Elgar continues to advance the standard of excellence that has been applied to DC Power with the introduction of Loads for the AT8000A.

For more information about how the AT8000A Power Sources and Loads can help you solve your ATE testing needs, call:
1 (800) 73-ELGAR
ELGAR

ICS Stands Out in ASICS...

Consider...a whole team of our specialists focusing on your ASIC requirements...both analog and digital.

Then see innovative ASIC solutions come to life in your next design.

The level and scope of ingenuity and resources that ICS applies to each and every customer project is unprecedented in the industry. Over half the staff at ICS is comprised of seasoned design engineers, many of whom pioneered analog and digital technology long before the acronym ASIC was ever coined. Today they help ICS lead the way in providing turnkey design and production of advanced linear, digital and mixed signal chips... with success in over 400 customer specific designs in a wide range of applications.

It is from this accomplished staff that your ICS engineering team is selected. To assure speed, accuracy and qualified control, your ICS team works with you every step of the way from understanding your overall system requirements and specific ASIC goals through design, simulation, layout and verification of each circuit.

At ICS we're not satisfied to merely meet your system requirements. We succeed at developing well-tested system level solutions that consistently enhance performance while reducing manufacturing costs. Our outstanding engineers want your company to stand out with innovative ASIC packages that allow you to design smaller and smarter with greater reliability. So contact ICS today and turn your next ASIC challenge
into an ICS solution.

Call toll free 1-800-220-3366.

Because people are part of the package.

Integrated Circuit Systems, Inc.
Where ASIC experience sets new standards
2626 Van Buren Avenue, P. O. Box 968 • Valley Forge, PA 19482-0968 Tel: (215) 666-1900 • FAX: (215) 666-1099

"For Your OWN Unified DSP Solution, Get a Copy of Spectrum's Latest Catalog."

The smartest solution to digital signal processing (DSP) is to call Spectrum today. With our full line of system boards, processor boards, analog peripherals, even development and application tools, you'll be implementing leading-edge DSP systems in relatively no time.

For your free copy of our Catalog and "Einstein" Poster, write or call Spectrum Signal Processing at: 1500 West Park Drive, Westboro, MA 01581 1-800-323-1842 or (508) 366-7355 (Eastern Office) or 301-3700 Gilmore Way, Burnaby, B.C. V5G 4M1 1-800-663-8986 or (604) 438-7266 (Western Office) It's a smart move.

Making DSP Technology Easy to Use

New VR rechargeables improve performance and lower your costs.

To handle user abuse or unusual conditions, the new VR's can be charged periodically at up to 0.2 CA (7-hour rate), while providing a useful life of up to six years. They can even be overcharged at 0.2 CA (room temp.) for one whole year.
VR cells are dimensionally the same size as the
DK cells they replace. Initial capacities (mAh) being permit improved charging rates: both trickle and overcharge. This provides new benefits: The opportunity to reduce costs by simplifying circuitry, and enhanced overcharge protection.

Cost reduction of circuitry: Until now, typical NiCd button-cell charging circuits have had two steps...charge at 0.1 CA (14-16 hours) and trickle charge at 0.01 CA (100 hours) while delivering a 5 -to6 year life. The new VR's can be used in this two-step circuitry. However, you can simplify your charging circuitry to one step, and reduce costs accordingly, by designing to both charge and trickle charge at .05 CA (only 25 hours from full discharge to full charge). The VR's will still provide 5 -to-6 year life.
phased in are $60,100,170$ and 280 (replacing the 250). Available in a wide variety of Varta battery packs and connections. For this literature on the VRs or information on all Varta batteries, please call 1-800-431-2504, Ext. 261. FAX 914-592-2667. Or write, below.

IVARTA

THE WORLD'S SMARTEST 12-CHANNEL PEN RECORDER

More intelligent functions, and more channelstwo key points that make the new Graphtec MC5500 Digital Multicorder a truly powerful package.
MORE INTELLIGENT FUNCTIONS-A smart machine means better efficiency. The MC5500 has a bright digital display that shows measured values and span, a 32 Kword memory card as standard equipment (256 Kword optional), and 5 different printed logging and report modes. You also get Auto Bias recording, Partial Enlargement/

Reduction, Zone recording, remotely adjustable chart speed and a GPIB interface for control by the host computer.

MORE CHANNELS-If you need to record more than 8 channels of data, the choice is simple. You can either double up on hardware, bulk, and complexity, or simply buy the compact 12-channel version of the MC5500.

For more information on this truly SMART pen recorder, call, write or fax us today.

DSP chips can produce random numbers using proven algorithm

Abstract

You can use random-number sequences to test electronic components faster than more traditional methods allow. And a wellprogrammed DSP μP is one of the fastest ways to produce random-number sequences.

Paul Mennen, Tektronix Inc

If you incorporate mathematically proven methods into your programming, your $\operatorname{DSP} \mu \mathrm{P}$ can generate reliable random-number sequences. Many of the properties of the "linear congruential sequence" method of randomnumber generation have been proven, making it an obvious choice. Without too much work you can translate this method from mathematical theory to general DSP$\mu \mathrm{P}$ pseudocode to executable code for your $\mathrm{DSP} \mu \mathrm{P}$.

A random-number generator must satisfy two conflicting requirements. First, the generator must be able to repeat the same random sequence many times. This ability allows you to repeat a test exactly. It also helps, when averaging the results of several measurements in the time domain, to reduce the effects of external disturbances. The repeatability requirement is the easiest to meet because any computational algorithm will produce the same sequence every time you execute it if it begins with the same initial conditions.
Second, and almost opposite, the sequence must be truly random. A truly random sequence minimizes the
effect of external disturbances by averaging many fre-quency-domain measurements. This requirement is impossible to satisfy with a deterministic computational device such as a digital signal-processing (DSP) chip. The best you can do is to make the sequence long enough so that it seldom repeats during a measurement. Consequently, the term for such sequences is "pseudorandom."

Usually you would want the numbers in the sequence uniformly distributed over the available range. In this case, however, a uniform distribution at the DAC input would produce a Gaussian distribution at the output because of the averaging effects of the DAC's smoothing filter. For frequency-response applications you should seek spectral flatness so that all frequencies can excite the DUT evenly.

Of the hundreds of methods in use for generating random sequences, perhaps the best known method is the "linear congruential sequence" (LCS) method. One advantage of the LCS is that mathematicians have been able to prove many of its properties. Such proofs reduce the amount of testing required and ensure wellcharacterized outputs.

The proven method explained

The defining equation for the LCS is

$$
R^{\prime}=(a R+c) \bmod m
$$

where R is the random number, a and c are constants, and $\bmod m$ signifies taking the remainder after divid-

Random noise speeds testing

Before the days of Fourier analyzers, engineers measured frequency response by exciting the system under test with a series of sine waves and measuring the system's output level at each excitation frequency. Random-noise excitation allows you to make the same measurement much faster. The idea is to excite the system with a signal having all frequencies of interest simultaneously in-
stead of just one frequency at a time. You then compare the Fourier transforms of the input and output to generate a fre-quency-response plot.

Fig A shows a test setup for measuring the frequency response of an electrical network.
Fig B shows the results from a test between 0 and 200 kHz using a Fourier analyzer. The analyzer computed the two spectra on the
upper left and right from the Fourier transforms of Inputs 1 and 2 , respectively. The lower trace is the resulting frequencyresponse curve. This measurement required 1.5 seconds. Repeating the measurement using the swept-sine technique yielded the same result (Fig C), but took 3 minutes.
ing by m (modulus). To use this simple algorithm, first you must pick a starting value for R, called "the seed." Then multiply R by a constant, add a different constant to the product, divide the sum by m, and assign the remainder resulting from this division to be the next value of R. Repeat these steps every time you require a new random number.

The numbers produced lie between 0 and $m-1$, and the sequence can not be longer than m (assuming that a, c, m, and the seed are positive). The number you choose for the seed is unimportant, but you must pick appropriate values for a, c, and m-not a trivial task. Make your choices to satisfy the following six criteria (where $\mathrm{n}=\sqrt{m}$):

1. c and m are relatively prime.
2. $a-1$ is a multiple of every prime factor of m.
3. $a-1$ is a multiple of 4 if m is a multiple of 4 .
4. a and c are both greater than n.
5. $a \div \mathrm{n}$ (truncated) is a power of 2 .
6. $a \bmod n$ is less than $\mathrm{n} \div 2$.

The first three criteria ensure that the algorithm's output will be a maximal-length sequence; that is, the sequence will hit all of the numbers between 0 and $m-1$, in random order, before repeating. (This result is provable, but that is beyond the scope of this article.) Criterion 4 ensures sufficient spectral flatness and distribution uniformity. Criteria 5 and 6 will simplify the computation without compromising the sequence's quality.

Computations for a specific DSP $\boldsymbol{\mu} \mathbf{P}$

You may want to use the AT\&T WE-DSP16 because it is the only DSP $\mu \mathrm{P}$ fast enough to compute random numbers and interpolation filters in real time. These filters vary our Fourier analyzer's random-noise bandwidth because our analyzer's DAC's output rate and smoothing-filter bandwidth are fixed.

Note that choosing m to be a power of 2 simplifies computation because shifts can accomplish the division. The WE-DSP16 includes a 16 -bit multiplier, so $m=2^{16}$
would be a logical choice. Assuming a maximal-length sequence and a $512-\mathrm{kHz}$ output rate (required for a $200-\mathrm{kHz}$ bandwidth), the sequence will repeat every 0.128 seconds $(65536 \div 512000)$. Unfortunately, this sequence is too short for practical purposes. The next logical choice then is $m=2^{32}$, resulting in a sequence length of 2.33 hours (65536×0.128 seconds). This time is long enough to satisfy demanding test situations.

For this choice of m you need to do a 32 -bit multiply. Like other fixed-point DSP chips, the DSP16 has only a 16 -bit multiplier. Therefore the 32 -bit multiply requires multiple-precision arithmetic, which complicates the code considerably. To formulate a multipleprecision algorithm, define $a_{l o}$ and $a_{h i}$ to be the lower and higher 16 bits of the constant a. Similarly, denote the two halves of the random number as $R_{l_{o}}$ and $R_{h i}$. Now the LCS algorithm, using multiple-precision arithmetic, becomes

$$
\begin{equation*}
R=c+a_{l o} * R_{l o}+\left(\left(a_{l o} * R_{h i}+a_{h i} * R_{l o}+\mathrm{zz}\right) \ll 16\right) \tag{1}
\end{equation*}
$$

where

* multiplies two 16 -bit numbers (32-bit result), + sums two 32 -bit numbers,
\ll is a logical left-shift operation, and
$\mathrm{zZ}=a_{l o}$ if $R_{l o}$ is greater than 32768, or
$\mathrm{zz}=0$ otherwise.
To see where this algorithm comes from, first look at the multiple-precision product of the 32-bit constant a and the 32 -bit random number R. Fig 1 shows this operation.

Because the remainder after dividing by $2^{32}(\mathrm{~m})$ is simply the low-order half of the 64-bit product, you don't need to compute the high-order half. Thus you need save only the lower half of the second and third partials, and you don't need to compute the fourth partial at all. Because of criterion 5, a simple left shift computes the third partial, leaving only two required multiplications.

By now you should be able to verify Eq 1, except

Fig A-A Fourier analyzer derives a fre-quency-response plot from the Fourier transforms of the input and output waveforms of the device under test.

Fig B-A Fourier analyzer derived the lower frequency-response plot from the upper two input and output waveforms.

Fig C-A swept-sine analyzer's result is nearly identical to the Fourier analyzer's but takes much longer to derive.

Listing 1

TEMP $=7465 *$ Rhi TEMP $=$ TEMP + Rlo<<4 if Rlo>7FFF TEMP=TEMP+7465
TEMP $=$ TEMP $\ll 10$ TEMP $=$ TEMP $+7465 *$ Rlo $\mathrm{R}=\mathrm{TEMP}+234567$
; second partial product (TEMP is 32 bits)
add third partial product ahi=10 (hex)
if Rlo>32767, correct the first partial
product for using a signed multiply
shift left 16 (discard 16 high-order bits) add first partial product
$32-b i t$ add produces the new random number
for the mysterious "zz" operator. This term arises because partial products require unsigned multiplication for the 64-bit multiple-precision product to be correct. However, most multipliers (including the DSP16's) are 2's-complement, signed multipliers. Using a signed multiply for the second, third, and fourth partial products produces errors only in the unused, high-order half of the product, so only the first partial remains a concern. Although the multiplier will always interpret $a_{l o}$ as a positive number (because of criterion 6), $R_{l o}$ can be any combination of 16 bits. Whenever the most significant bit of $R_{l o}$ is 1 , you need to correct the result of the signed multiply (with the zz operator)
to fool the multiplier into producing an unsigned result.
For this example, the actual values chosen for constants a and c are:

$$
a=107465_{\mathrm{HEX}} \text { and } c=234567_{\mathrm{HEX}}
$$

You can verify that these constants satisfy the six criteria. (Note, however, that many other equally fine choices exist.) Using these values for a and c, you can write Eq 1 in psuedocode as follows. All constants in the psuedocode are in hexidecimal. As before, $R_{l o}$ and $R_{h i}$ are the lower and upper 16 bits, respectively, of the random number R.(See Listing 1.)

Listing 2

They're not getting older, they're just getting better.
Because that's the day FORCE unveils the first 040 single board computer. Available in quantity. For immediate delivery.

So get FORCE for better performance, speed, functionality and compatibility.

See us at BUSCON Booth \#654, or call 1-800-BEST-VME, ext. 40 . And give your competition some gray hairs.

VME at its best.

| \mathbf{B} | U | S | C | O | N | $\#$ | 6 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

When the problem is economics. . .

Sculptured ${ }^{\circledR}$ flexible circuits from ACT require no additional hardware such as staked-in pins or connectors to mate with PWBs. Your specified terminations are an integral part of the circuit conductors, not added on!

Sculptured circuits, useable as received, eliminate:

- Connector purchasing and inventory
- Connector and pin assembly
- Costly subassembly inspection

To find out how you can save time and money with Sculptured circuits, call or write:

CIRCLE NO. 51

Measure...
 Displacement Proximity Leve!
 With ALPHASENSORS' Microwave Sensor Technology

Microwave Sensors Offer:

- Non Contact Measurements
- Superior Performance in Harsh Environments
- Velocity, Presence and Motion Sensing Capability
- Low Cost/High Performance

Put our ALPHASENSORS' microwave technology to the testorder our MSM 10200 Motion Sensor Evaluation Kit-\$195, delivered from stock. For more information, call or write:

Alpha Industries, Inc.

20 Sylvan Rd., Woburn, MA 01801
Tel: (617) 935-5150 • Fax: (617) 935-4939

Fig 1-Computing a 64-bit product of two 32-bit numbers with a 16 -bit, 2's-complement multiplier complicates the algorithm.

Listing 2 contains the AT\&T WE-DSP16 code segment, which computes this LCS sequence. The listing is also available on the EDN BBS under the /freeware SIG (MS \#236, (617) 558-4241,2400,8,N,1). The computations' order maximizes the number of parallel operations. Note that you have computed a 32 -bit random number, but you only need 16 bits to send to the DAC. You should choose the upper 16 bits because they are more random than the lower half.

Generating each random number takes only 15 cy cles. Therefore, if you were to use the fastest version of the DSP16A (25-nsec clock), and the DSP chip was doing nothing else, you could generate a new random number every 375 nsec. In our case however, the DSP chip has additional work. The LCS sequence must go through a series of digital interpolating filters to lower the bandwidth when required. The filters' output then goes to the output DAC at a fixed rate of 500 k samples/ sec, providing random-noise bandwidths to 200 kHz .

EDN

Author's biography

Paul Mennen is a principal engineer for Tektronix, Campbell, CA. He has been doing hardware and software engineering for his firm's Signal Analysis Unit for the past six years. Paul obtained a BSEE from Rensselaer Polytechnic Institute and an MSEE from Stanford University. In his spare time, Paul enjoys aerobatic flying, flight in-
 structing, hang gliding, unicycling, folk dancing, and playing the recorder.

Article Interest Quotient (Circle One) High 494 Medium 495 Low 496

Now, find errors fast, with a portable 1GSa/s scope that gets right to the point.

At $\mathbf{\$ 1 0 , 9 5 0 *}$, you won't find a better value in a digitizing scope.

When you need to troubleshoot and debug digital designs fast, you can't afford to miss a thing. And now, you don't have to. The HP 54510A looks at a billion samples a second with a timequalified pattern triggering and an infinite persistence display to pinpoint rare events and elusive glitches the instant they happen.

You don't have to stick around to watch, either. The HP 54510A has 8 k of memory per channel to capture and store single events. So, you can go back and get all the details you need-with razor-sharp, 8-bit resolutionand track the problem to its source. And to point you to the right solution, the HP 54510A gives you 17 pulse-parameter measurements, with better horizontal and vertical accuracy than the Tek DSA 602, at onethird of the cost.

So, if you're looking for a solution to high-speed troubleshooting, call 1-800-752-0900**. Ask for Ext. 1902, and we'll send you an application note on the HP 54510A that shows you how to find faults fast.
*U.S. price only.
**In Canada call 1-800-387-3867, Dept. 423.
There is a better way.

MATLAB

High-Performance Numeric Computation and Data Analysis

M
ATLAB has rapidly become an industry standard for engineering and scientific research. Its unique interactive interface, algorithmic foundation, easy extensibility, and speed make MATLAB the software system of choice for high productivity and high creativity research.

Problems and solutions are expressed just as they are written mathematically - without the needfor traditional programming. As a result, you can solve numerical problems in a fraction of the time required to write a program in Fortran, Basic, or C. Then plot the results as 2-D and 3-D graphics, with publication-quality output to plotters, dot-matrix printers, and laser printers.
> "I can create algorithms so easily that it almost seems like cheating."

Personal Engineering \& Instrumentation News

Add to MATLAB your choice of tools for digital signal processing, system identification, control system design, and more. MATLAB's opensystem design lets you see the algorithms and the implementations, even change them to suit your specific requirements.

MATLAB is developed by The MathWorks, a leader in software for data analysis and mathematics. Our users - in thousands of companies and universities - know that MATLAB enables them to work more creatively and productively. Take a look at how MATLAB can do the same for you.

MATLAB is a trademark of The MathWorks, Inc. Other product and brand names are trademarks or registered trademarks of their respective holders.

Over 300 Built-In Functions

- eigenvalues
- matrix arithmetic
- matrix decompositions
- convolution
- spectrum estimation
- complex arithmetic

Plus Toolboxes for:

$$
\begin{array}{ll}
\text { - digital signal processing } & \text { - control system design } \\
\text { - parametric modelling } & \text { chemometric analysis, and more }
\end{array}
$$

"MATLAB is the undisputed choice for computationintensive engineering work."

Macworld

"MATLAB's

 power and ease of use go a long way toward taking the drudgery out of repetitive analysis projects."IEEE Spectrum

Computers supported

PCsand ATs
380-based PCs
Macintosh Sun Apollo HIP 9000 300 DECstation VAX/VMS VAX/UItrix Stardent Convex Bncore Alliant Cray and more

To find out more about MATLAB, call us at (508) 653-1415. Or simply return the completed coupon to the address below.

NJE

1 $\$$ \& 3 \boldsymbol{R} REGULATED AC/DC POWER SUPPLIES 15 W to 2 kW

High Frequency -
High Current Switchers
MK \& MKA Series
■ 750 W to 2 kW
-40 Models From 2 VDC@150 A to 48 VDC@40 A
-(4) Recognized \& CSA Certified ■+1 Redundancy of Parallelable Outputs
■ Year Warranty
Linears Enclosed \&
Open Frame

- Single, Dual \& Triple Outputs $\mathbf{\square} 5$ Year Warranty
-405Models From 2 VDC to 500 VDC
■(4) Recognized \& CSA Certified
- Remote Programming Capability
- Rack Mounting Hardware Options

DESIGN IDEAS

Digital recorder speeds sampling rate

Lin Jun
Changchun University of Earth Sciences, Changchun, Jilin, Peoples Republic of China

When you use a $\mu \mathrm{P}$ to capture an analog signal digitized by an ADC, the maximum sampling speed is limited not only by the conversion rate of the ADC, but also by the instruction cycle of the $\mu \mathrm{P}$. If the conversion rate of the ADC is 1 MHz or higher, the system sampling speed can't reach the ADC's potential maximum rate even by using popular DSPs. These systems must have a long sample interval to allow time for the $\mu \mathrm{P}$
to start a conversion, reach the converted result, and adjust the memory address pointer for the next sample: Sample rates above 1 MHz aren't practical. Storing the ADC's results directly in a static RAM (SRAM), followed by a transfer to the IBM PC under the control of external logic, lets your conversion take full advantage of the ADC's speed.
Fig 1 uses the AD7821 ADC with a $1-\mathrm{MHz}$ sampling clock. The $1-\mathrm{MHz}$ clock controls both the start of the conversion and the writing of data into an HM62818, a $128 \mathrm{k} \times 8$-bit SRAM. The 74 HCT 193 synchronous up/ down counter drives the address bus of the SRAM.

Fig 1-Using a fast ADC and an SRAM controlled by external logic, you can input analog data into your IBM PC that takes full advantage of the $A D C$'s sampling rate.

When S_{2} and S_{3} are in position 3, the circuit records a high-frequency signal. When the switches are in position 1, the circuit transfers data from the SRAM to the IBM PC through its parallel-printer port.

When you either switch the power on or press S_{1} to clear the counter, the circuit samples the input signal at 1 MHz . The address of the SRAM increases automatically after each sample pulse until the carry out of the combined 17 -bit counter clears the 74HCT74. Fig 1 's automatic address increasing circuit simplifies the block data transfer from the SRAM to the IBM PC. The five 74 HCT 193 counters generate 20 -bit address lines, which can directly drive a $1-\mathrm{M}$ byte memory space. The carry out indicates that the recording process is complete. The conversion result is stored starting with address 00001 H .

Switching S_{2} and S_{3} to the other side forces the SRAM to act as a ROM. The data output port, address 378 H , status input port, address 379 H , output control port, and address 37 AH control the printer interface
of a standard IBM PC. You set the address counter's start address through ports 378 H and 37 AH , and then read the upper 4 bits and the lower 4 bits of the 1-byte through-port 379 H by controlling the selection pin of the 74 HCT 157 . This selection pin connects to bit 1 of the output control port. The SRAM address bus automatically increases if you program the control port 37 AH properly. Because the circuit uses bits 4 through 7 of port 379 H to read 4 bits each time, 1 byte is the result of combining every two 4 -bits of data as follows:

- Shift 4 bits of the lower 4 bits to the right
- OR the upper 4 bits to get 1 byte
- XOR 88 H to obtain the final result.

The last command is necessary because bit 7 of port 379 H is inverted inside the IBM PC.
(EDN BBS /DI_SIG \#928)
EDN
To Vote For This Design, Circle No. 746

Bootstrapped amp makes current source

Jerald Graeme
Burr-Brown Corp, Tucson, AZ

Adding two resistors to a standard 2 -op amp instrumentation amplifier produces a general-purpose, volt-age-controlled current source. Fig 1's circuit has bipolar inputs and outputs, high-impedance differential inputs, single-resistor gain control, and floating or grounded source and load.

The circuit responds to the difference between inputs V_{1} and V_{2} under R_{G} 's gain control. Positive feedback from $\mathrm{IC}_{1 \mathrm{~B}}$'s output to $\mathrm{IC}_{1 \mathrm{~A}}$'s input creates a bootstrap that removes the effects of load voltage, V_{L}. The resistors, xR_{2} and (1-x) R_{2} produce the bootstrap feedback. These two resistors convert the circuit's output voltage to current. Dividing the resistor input into two parts forms a tee network with the load as the third element of the tee.

Fig 1 operates as a combination of an instrumentation amplifier function and a bootstrapped amplifier. Both functions contribute to $\mathrm{IC}_{1 B}$'s output voltage driving of the tee network. The circuit amplifies three input signals through different combinations of inverting and noninverting amplifiers. To input V_{1}, the circuit ap-

Fig 1-A voltage-controlled current source results when you combine an instrumentation-amplifier structure with bootstrap feedback.

Truly incredible ... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3 -sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

SPECIFICATIONS
YSW-2-50DR
Insertion loss, typ (dB)
Isolation, typ $(d B)^{\star}$ 1 dB compression, typ (dBm@ in port) RF indut, max dBm (no damage) VSWR (on), typ Video breakthrough
to RF, typ (mV p-p) Rise/Fall time, typ (nsec)

dc-	$500-$	$2000-$
500 MHz	2000 MHz	5000 MHz
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
	1.4	
\square	30	

$\star_{\text {typ }}$ isolation at 5 MHz is 80 dB and decreases 5 dB /octave from $5-1000 \mathrm{MHz}$
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 Telexes: 6852844 or 620156

DESIGN IDEAS

pears as a noninverting amplifier, $\mathrm{IC}_{1 \mathrm{~A}}$, followed by an inverting amplifier, $\mathrm{IC}_{1 \mathrm{~B}}$. Thus, the circuit amplifies and inverts V_{1}. Input V_{2} has a net positive gain. Together, the two inputs produce a signal proportional to $\mathrm{V}_{2}-\mathrm{V}_{1}$ at the output of IC_{18}. The circuit boosts this output signal under R_{G} 's control.
The bootstrap feedback adds to V_{2} 's output voltage. The ($1-\mathrm{x}) \mathrm{R}_{2}$ resistor senses V_{L} to develop an added signal at $\mathrm{IC}_{1 \mathrm{~B}}$'s output. To V_{L}, the circuit appears as two inverting amplifiers in series for a net positive gain. This positive gain for V_{L} produces an $\mathrm{IC}_{2 \mathrm{~B}}$ output that is in phase with the load voltage. This signal increases the net $\mathrm{IC}_{2 \mathrm{~B}}$ output to cancel V_{L} dependent terms in the output current. The op amp's input offset voltage and input bias currents add to Fig 1's theoretical output current equation.
Two other important characteristics of Fig 1 are
output impedance and output voltage compliance. Resistor values, resistor tolerances, and amplifier characteristics determine these parameters. At low frequencies, the circuit's output resistance would be extremely high except for the resistor mismatches. To ensure accurate bootstrap action, the two R_{1} resistors must closely match, and the combined resistance of xR_{2} and $(1-x) \mathrm{R}_{2}$ must equal that of R_{2}. Only then will the bootstrap feedback accurately cancel the components of load current that are load-voltage dependent. Amplifier characteristics primarily determine voltage compliance. To maximize it, the circuit must place equal demands on the two amplifier outputs. Thus, R_{1} and R_{2} should be equal. (EDN BBS /DI_SIG \#929) EDN

To Vote For This Design, Circle No. 747

High-side switches control 5V supply

Chuck Thurber and Illy King
Maxim Integrated Products, Sunnyvale, CA

High-side switches are useful for controlling supply voltages. They can lower the operating current in a portable system, for example, by turning off power to selected sections of the system during inactive periods.

Three different circuits exhibit low on-resistance and low quiescent current. In each circuit, the $200-\mathrm{pF}$ capacitor connected to pin 7 of IC_{1} slows its internal oscillator to 100 Hz , reducing quiescent current in the overall circuit to approximately $10 \mu \mathrm{~A}$.

Fig 1's switching device, a p-channel MOSFET power transistor, requires a V_{GS} of approximately 10 V

Fig 1-This circuit provides $5 \boldsymbol{V}$ under external control, exhibiting $100-\mathrm{m} \Omega$ on-resistance when on and $10 \mu A$ of quiescent current when off.

DESIGN IDEAS

to achieve a $100-\mathrm{m} \Omega$ on-resistance. By inverting 5 V to -5 V , the charge-pump voltage converter, IC_{1}, enables analog switch IC_{2} to deliver the required 10 V swing in response to on/off commands. Fig 2's voltage converter generates 9.3 V by driving a diode-capacitor voltage doubler. This higher voltage enables the analog switch to apply a 4.3 V swing to the logic-level NMOS power transistor, $Q_{1} . Q_{1}$'s channel is fully enhanced when V_{GS} equals 5 V ; the corresponding on-resistance is approximately $30 \mathrm{~m} \Omega$.

Fig 3's circuit uses a conventional NMOS switching
transistor. When V_{GS} is equal to $10 \mathrm{~V}, \mathrm{Q}_{1}$ exhibits a $30-\mathrm{m} \Omega$ on-resistance. With additional multiplier stages created by adding diodes and a capacitor to Fig 2, IC_{1} and the multiplier stages generate 13.5 V , enabling the analog switch to provide Q_{1} with a $V_{G S}$ of 8.5 V . With this V_{GS}, the on resistance will be somewhat higher than $30 \mathrm{~m} \Omega$. (EDN BBS /DI_SIG \#927)

To Vote For This Design, Circle No. 748
Design Ideas continued on pg 160

Fig 2-Employing a logic level n-channel MOSFET, this circuit switches the 5 V supply and exhibits a $30-m \Omega$ on-resistance.

Fig 3-Additional stages in the voltage-multiplier section of this high-side switch provide a higher gate voltage, allowing use of a conventional NMOS switching transistor.

LT1056 Improved JFET Op Amp Macromodel Slews Asymmetrically

Walt Jung

SPICE macromodels for op amps have been available for some time, for both bipolar ${ }^{1,2}$ and JFE^{3} input stage device types. Interestingly however, not much attention has been given in the models available to controlled slewing asymmetry. Dependent upon a given amplifier design topology, the large signal characteristics can have various degrees of slew rate (SR) asymmetry. It therefore makes sense to have models which emulate real IC parts in this regard.
A case in point is that of the available P-channel JFET input op amps, many which have a characteristic SR response which is asymmetrical. In fact, popular op amps with topologies like the original $355 / 356$ types are intrinsically faster for negative going output swings than they are for positive. Similar comments apply to such related devices as the OP15, OP16, etc. Since this type of JFET device topology was introduced, the SR specified on the data sheet has typically been the lower of two dissimilar rates, i.e., the slower, positive edge SR. Thus, given an op amp with a typical SR spec of $14 \mathrm{~V} / \mu \mathrm{s}$ for positive going edges, the same amp will have a corresponding negative SR of about $28 \mathrm{~V} / \mu \mathrm{s}$.
Ironically, this quite common JFET amplifier slewing characteristic has not been well modeled thus far. Most macromodels currently available simply do not address the asymmetric SR issue at all. Others have means of modeling it, but it is seldom found used.
A means of SR control was built into the original Boyle ${ }^{1}$ model, and it addresses SR asymmetry for common mode (CM) signals by means of a common emitter (source) capacitor, CE (CS, for JFET amps). However, using this capacitor alone for a general SR symmetry control mechanism leaves something to be desired, as the resulting slopes are not consistent. LTC has implemented a new means of modeling SR asymmetry, shown in Figure 1.

Figure 1. The LTC Asymmetric Slewing JFET Macromodel Has Little Additional Complexity, But Offers Controlled Slewing Response.
The circuit as shown here is a simplified Boyle type model with P-channel JFET input devices, J 1 and J 2 . As this type (or similar input structure) of model is typically used, the SR is simply $\mathrm{I}_{\mathrm{S}} / \mathrm{C} 2$, which is symmetrical when CS is zero. When the common source capacitor CS is added, the SR for CM signals can be adapted (corresponds to CE in the Boyle paper). Unfortunately, this strategy works best for CM amplifier inputs, and not as well for inverting inputs.
The LTC method of modeling asymmetrical SR employs an added VCCS (shown dotted), which dynamically modifies the total tail current available to $\mathrm{J} 1 / \mathrm{J} 2$. This controlled source, "GOSIT," is driven by the differential
output of $\mathrm{J} 1 / \mathrm{J} 2$ and produces a current which adds to or subtracts from the fixed current, Iss. The resulting current available to charge/discharge compensation cap C2 is thus higher for one slewing slope than it is for the opposite. This is true regardless of whether the amplifier is operating in an inverting or non-inverting input mode. As an option, CS can still be used for further control of slewing for CM inputs (shown dotted).
In generating a new macromodel with asymmetrical SR, the lower of the two slew rates is input from the data sheet. Also input is the ratio of the high-to-low SR. AIgorithms in the program used by LTC then calculate an appropriate static value for I ${ }_{\text {SS }}$ and the gain of VCCS GOSIT, so that the proper slewing characteristic will be produced by the model.
A representative example op amp with these characteristics is the LT1056, a high performance op amp topologically much like the LF156-LF356 and OP-16 types (also produced by LTC, with corresponding macromodels available). Some sample lines of code taken directly from the LT1056 model released in version 2.0 of the LTC library are shown below. These are shown for both the asymmetric form as released, and for an (edited) symmetric case.
Actually, only one SPICE model element is added to produce the asymmetric SR as opposed to symmetric, and that is the VCCS GOSIT. The LT1056 example below produces SR of $+14 \mathrm{~V} / \mu \mathrm{s}$ and $-28 \mathrm{~V} / \mu \mathrm{s}$.

C1 8090 1.5000E-11
ISS 712 5.6000E-04
GOSIT 7129080 2.8000E-04

* intermediate

When the controlled source GOSIT is omitted, the model reverts to simple symmetric slewing, where the SR will be $\pm\left(\mathrm{I}_{\mathrm{SS}}\right) / \mathrm{C} 2$. This is shown below, with Iss adjusted for a (symmetric) SR of $14 \mathrm{~V} / \mathrm{\mu s}$. Those lines of code edited are shown in bold.

C1 $80901.5000 \mathrm{E}-11$

* for a (symmetric) SR of $14 \mathrm{~V} / \mu \mathrm{s}$,
* iss $=(1.4 \mathrm{e} 7)^{*}(3 \mathrm{e}-11)=420 \mu \mathrm{~A}$

ISS 712 4.2000E-04

* comment out gosit with first column "*"
* GOSIT 7129080 2.8000E-04
* intermediate

The non-inverting mode waveforms of a typical SPICE run using the LT1056 macromodel and parallel lab
results with an actual LT1056 device are shown in Figures $2 A$ and $2 B$, respectively. As noted, there is quite reasonable correspondence between the two. A complete LT1056 model is contained on the LTC SPICE diskette.

Figure 2A. LT1056 SR (+) Mode, Macromodel

Figure 2B. LT1056 SR (+) Mode, Lab Photo

References

Available from LTC literature service, at (800) 637-5545 are copies of the latest LTC SPICE macromodel library on either a 5.25 " or a $3.5^{\prime \prime}$ high density floppy diskette.

1. Boyle, G.R., Cohn, B.M., Pederson, D.O., Solomon, J.E., "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE Journal of Solid-State Circuits, Vol. SC-9, \#6, December 1974.
2. Solomon, J.E., "The Monolithic Op Amp: A Tutorial Study," IEEE Journal of Solid-State Circuits, Vol. SC-9, \#6, December 1974.
3. Krajewska, G., Holmes, F.E., "Macromodeling of FET/ Bipolar Operational Amplifiers," IEEE Journal of SolidState Circuits, Vol. SC-14, \# 6, December 1979.

For applications help, call (408) 432-1900, Ext. 456.

For literature on our Op Amps, call (800) 637-5545.

Searching for super-reliable capacitors?

Peak performance under extreme conditions.

NEC's SVH-Series chip tantalum capacitors scale new heights of performance and reliability for automotive and other tough applications.

Our SVH capacitors offer a failure rate of just 0.5% per 1,000 hours. If obstacles like excessive heat and humidity seem insurmountable, don't worry. SVH caps withstand 1,000 temperature cycles from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Their humidity resistance is $85^{\circ} \mathrm{C}, 85 \%$ RH for 1,000 hours.

We offer 29 types with ratings from
0.1 to $33 \mu \mathrm{~F}$, and from 10 to 35 V DC.

A top-quality team of chip tantalum caps.

Reliable NEC caps also come in a wide array of device types.
Our diversified lineup includes:
R-Series
$\square 96$ types.
$\square 0.01$ to $68 \mu \mathrm{~F} ; 4$ to 35 V DC.
R-Series Extended-Capacitance
$\square 58$ types.
\square Up to $15 \mu \mathrm{~F}$ rating for A case (1.6 x
$3.2 \times 1.6 \mathrm{~mm})$.
$\square 0.1$ to $100 \mu \mathrm{~F} ; 2.5$ to 35 V DC.

SVE-Series

\square Built-in fuse; 21 types.
$\square 1.0$ to $33 \mu \mathrm{~F} ; 10$ to 50 V DC.
\square R-Series compatible.

Reward yourself with reliability.

NEC produces 2 billion tantalum caps per year-more than anyone else in the industry. Our path-breaking R\&D effort covers everything from improving materials to enhancing design and production processes.
That's why we lead the industry with high-performance tantalum capacitors such as the ultra-reliable SVH-Series.

For fast answers, call us at:

DESIGN IDEAS

Audio compressor splits the band

Richard Majestic
Voice of America, Washington, DC

The 2-band audio compressor amplifier in Fig 1 features independently adjustable audio-signal compression ratios. The compression threshold is also adjustable. The design provides consistent and precise compression, with no threshold-level drift or compressionslope drift over time and temperature.

The input buffer, IC_{1}, limits step-function slewing voltages from passing to the following stage, and isolates the input source from the highpass and lowpass filters. Both filters are single pole and minimum phase, eliminating combing effects in the stop bands; they help compensate for compressor artifacts that occur when the circuit sums the two bands together in the output section. The output of the filters drive the input of an SSM-2120 dual-voltage-controlled amplifier/

Fig 1-Two separate compression controls allow you to adjust the gain of this audio-compressor circuit's highpass and lowpass sections over a range of 2 to 25.

DESIGN IDEAS

rectifier IC. This IC includes two full-wave rectifiers, level detectors, and voltage-controlled amplifiers. The voltage-controlled element and level detector have a dynamic range greater than 100 dB . The amplifier has a flat frequency range of 20 Hz to 20 kHz with typically less than 0.02% THD + noise, and 0.05% intermodulation distortion.
Two continuously variable gain-reduction controls, R_{GR}, within IC_{2} 's control circuit provide independent adjustment of compression gain slopes. The gainreduction rates are adjustable from 2 to 25 for both highpass and lowpass audio bands. The range of adjustment can produce anywhere from mild compression to severe limiter/clipper action. The control R_{B} helps bal-
ance the threshold amplitude between the two bands for tracking compressor dynamics.
The 10 k input current-limiting resistors, R_{1} and R_{2}, and the $2-\mu \mathrm{F}$ integrator capacitors, C_{1} and C_{2}, control the compressor attack time, which is approximately 20 msec . The 1.5 M discharge resistor in the integrator circuit regulates the compression release rate. The recovery time constant is nearly linear because the discharge resistor current is relatively constant.
(EDN BBS /DI_SIG \#926)
EDN

To Vote For This Design, Circle No. 749

Calculator and IC simplify linearization

Robert S Villanucci
Wentworth Institute of Technology, Boston, MA

Using the HP-42S's curve-fitting software and a multifunction IC for analog computation simplifies thermo-couple-linearization-circuitry design. Fig 1 first cancels the cold-junction voltage, V_{R}, generated by the connec-
tion of the chromel-constantan thermocouple to a copper pe board by adding an opposing voltage, $\mathrm{V}_{\mathrm{C}} . \mathrm{IC}_{1}$, a thermocouple cold-junction compensator, tracks ambient temperature and outputs at a temperaturedependent correction voltage, V_{C}, that has the same sensitivity as the cold-junction thermocouple. IC_{2} amplifies the thermocouple's low-level signal by $100 . R_{2}$

Fig 1-A cold-junction compensator, amplifier, and a computational IC linearize a type-E thermocouple with the help of a calculator's curve-fitting algorithm.

Faster.

In the disk drive market, you've got to be fast - in both performance and time-to-market. That's why seven of the top 10 disk manufacturers rely on Analog Devices for mixedsignal components.

Tap into 25 years of experience at our high-speed and mixedsignal design seminars. You'll learn new techniques that'll get your applications to work more quickly, and you'll get design manuals that put all this information right at your fingertips.

Perfect on-time

Our Spectrum CAD Tool is $\mathbf{1 0 0}$ times faster than traditional SPICE programs, so it makes quick work of mixed-signal ASIC design cycle time.

Today, Analog Devices offers more high-performance mixed-signal components than anyone else. And we get them to you fast. So if you want mixed-signal ICs that'll help you design faster performing products, from a company that'll help you get your product to market faster, call us at 1-800-262-5643.

AD9060 \& AD671 - The fastest 10-bit and 12-bit monolithic A/D converters, respectively. The AD9060 guarantees encode rates up to 75 MSPS for unparalleled dynamic performance. The AD671 is twice as fast as any other 12-bit monolithic, converting in under $0.5 \mu \mathrm{~s}$, thanks to our high-speed mixed-signal ABCMOS process.

AD9712 - The only $\mathbf{1 2 - b i t , ~} 100 \mathbf{M H z}$ D/A converter on the market. Ideal for high-speed video and direct digital synthesis, its low glitch and low harmonics combine to deliver a spectrally pure output waveform.

ADSP-2101 - Talk about fast - this DSP microcomputer executes a 1024point FFT in only 2.26 ms. That's faster than other DSPs that operate at almost twice the clock rate. And since our entire ADSP- 2100 family is code compatible, your code will run fast on all of our DSPs.

DESIGN IDEAS

and C_{1} add a pole at about 16 Hz to filter powerfrequency noise.
The HP-42S's curve-fitting software finds a mathematical model to describe the linearization circuitry needed to sense the amplifier's output $\left(\mathrm{V}_{\mathrm{T}}\right)$ and output a voltage ($V_{\text {OUT }}$) with a system sensitivity of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. As Listing 1 indicates, you must set the calculator to its statistical mode and input a minimum of 13 separate $\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\text {out }}$ data pairs. Listing 1's data points, which include a scaling factor of 100 , correspond to a type-E thermocouple. The calculator uses standard regression techniques to select from its linear, exponential, logarithmic, and power models the one that best fits the data. The model that best describes Listing 1's keystroke entries is the following power curve:

$$
\mathrm{V}_{\text {OUT }}=1.513 \mathrm{~V}_{\mathrm{T}}{ }^{0.917} .
$$

IC_{3} can implement this function because its transfer function is

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{Y}}\left(\frac{\mathrm{~V}_{\mathrm{Z}}}{\mathrm{~V}_{\mathrm{X}}}\right)^{\mathrm{m}}
$$

The exponent m can take any value from 0.2 to 5.0 .
Fig 1 applies V_{T} to $\mathrm{IC}_{3}{ }^{\prime}$ s V_{Z} input, and sets V_{X} to 1 V by dividing down IC_{3} 's 2 V reference. To take the root of $V_{Z} / V_{X}, R_{5}$ and R_{4} must have the following relationship.

$$
R_{4}=\left(\frac{1-m}{m}\right) R_{5} .
$$

Thus, with R_{5} set to $180, R_{4}$ must equal 16.2Ω. To scale IC_{3} to comply with the power-model equation, R_{3} requires external adjustment until V_{Y} equals 1.513 V .

By replacing the thermocouple with a low impedance source to simulate its temperature dependent voltage, the output voltage at pin 8 of IC_{3} exhibits a worst-case error at $600^{\circ} \mathrm{C}$ of $8.7^{\circ} \mathrm{C}\left(\mathrm{V}_{\text {out }}=6.087 \mathrm{~V}\right)$, or about 1.34% of full scale. (EDN BBS /DI_SIG \#930)

To Vote For This Design, Circle No. 750

Picture this - a PC monitor that offers the same color and clarity as a high-end engineering workstation costing as much as $\mathbf{2 0}$ times more. Our pin-compatible RAM-DAC is literally redefining the low end of the PC monitor market.

Marball. Original image courtesy of University of California, Davis.

After analyzing semiconductor suppliers, many of the leading oscilloscope and spectrum analyzer manufacturers chose Analog Devices for their mixed-signal components. One reason is our ability to deliver high performance at high levels of integration - for example, our AD640, which replaces a chain of discrete log-amps for higher accuracy.

Try, try again' is a costly way for manufacturers to find the best design solution. So to help our customers find answers to tricky problems the first time around, technical application engineers are just a phone call away. In some instances, they're even located right on the customer's premises.

With our motion control ICs, several major aircraft companies are staying right on course. High reliability and accuracy are hallmarks of our 2S80, AD598 and the rest of our nearly $\mathbf{4 0 0}$ defense-qualified products.

Today, Analog Devices offers a better line of high-performance mixedsignal components than anyone else. And no one has a better record for reliability, or more experience in analog, DSP and mixed-signal ICs. If you want mixed-signal components thatll help you design better products, the best thing to do is to call us at 1-800-262-5643.

ADSP-2111 - Better integration on the best architecture in the industry. Adds an 8/16-bit host port to the two serial ports, timer, hardware companding and memory already on the ADSP-2101. And like all our DSPs, it's got fast, flexible arithmetic, wide dynamic range and a single cycle fetch of two operands (on- or offchip). Plus it's code-compatible with the rest of our DSP family, so what's written today will be useful tomorrow.

ADV7141-Our new Continuous Edge Graphics ${ }^{\text {Tw }}$ RAM-DAC gives users of standard low-end color monitors better graphics on their PCs. Graphics that are virtually the same as those produced on expensive engineering and scientific workstations. It does this by eliminating jagged edges, providing photo-realistic colors and shading, and displaying text comparable to a 300-dpi laser printer.

AD75028-This custom ASIC passes the test for a top automatic test equipment manufacturer. Serving the function of 21 separate $\mathbf{1 2}$ - and 8 -bit D/A converters and providing on-chip static RAM, it also has seven channels of level setting (other monolithics only have four), and can automatically remove gain and offset errors.

DESIGN IDEAS

VFC rejects common-mode noise

Luchezar M Iliev
 RDIA Scientific Instrument, Sofia, Bulgaria

The VFC (voltage-to-frequency converter) in Fig 1 synchronizes its conversion periods to the cycling of the ac power line in a novel fashion. Such synchronizing helps the converter reject common-mode noise because much common-mode noise occurs at odd harmonics of the power-line frequency. Integrating over an even number of power-line cycles averages such noise out. Consequently, the 15 -bit VFC achieves a $75-\mathrm{dB}$ com-mon-mode rejection ratio.

An extra winding on the converter's power-supply transformer applies a lowpass-filtered, power-line signal to $\mathrm{IC}_{3} . \mathrm{IC}_{3}$ and associated components form the
power-line sinusoid into a train of short pulses occurring at each power-line zero crossing (waveform C in Fig 2). The pulses start the conversion cycle.
Synchronizing pulses start one of the two 14 -bit counter/timers, IC_{6} and IC_{7}, and then the other. A $32.768-\mathrm{kHz}$ watch crystal clocks the timers. The timers output a pair of $0.5-\mathrm{sec}$ pulses shifted in phase with respect to each other by one-half the period of the power-line frequency (waveforms A and B in Fig 2).

The 4 -into- 1 multiplexer, IC_{2}, passes one of three signals-either no signal, the V/F converter's output, or the V/F converter's output divided by twodepending on the state of the two counters' outputs (waveform F_{IN} in Fig 2).

To understand the point of this curious series of

Fig 1-This circuit integrates the input signal over a series of periods related to the power-line frequency to eliminate harmonic-related noise.

More gadgets for

 less money, and make it work better-that's the only way to survive in consumer electronics, the most competitive market there is. That's why three of the top five Japanese electronics firms rely on us to meet their mixedsignal needs in applications ranging from CD players to video cameras.We're far from your local component boutique. Over half of our $\mathbf{\$ 5 4 0}$ million in revenues comes from international sales. And with manufacturing and stocking facilities on just about every continent, getting products to you quickly is a snap. Plus multiple manufacturing facilities allow us to take advantage of the right talent and processes for the job at hand.

With billions of dollars in annual sales at stake, the video game market is anything but child's play. One leader in this market found that with our DSP they could create more realistic and interactive games. As a result, they're driving away with a bigger share of the market.

Today, Analog Devices offers more cost-effective solutions to your highperformance mixed-signal needs than anyone else. Solutions that are surprisingly affordable, whether they're available off the shelf or developed for a specific application. To find out more about how we can help you develop products more efficiently, or for a free copy of our recent Mixed-Signal Technology white paper, call us at 1-800-262-5643.

SOUNDPORT DACs - We've made these DACs cost-efficient by making them complete with output amplifier, reference and digital logic interface. Perfect for high-fidelity digital audio and multi-media applications, these mixed-signal ICs achieve SNRs as high as 108 dB and THDs as low as 0.0025\%.

AD712-If you're working in professional audio and compact disc applications, you'll like the sound of this - an IC that combines two highperformance op amps in one compact package. You get low offset voltage and low input bias currents coupled with superb transient response, ambience, clarity and dynamic range.

ADSP-2105 - High performance DSP at an incredibly low price. So low, in fact, you can now consider DSP in a host of new applications. And since it's pin-compatible with the ADSP: 2101, and code-compatible with all of our other DSP processors, upgrading is easy and inexpensive.

DESIGN IDEAS

integrations, first consider these three integrals:

$$
\begin{aligned}
\mathrm{w}= & \int_{0}^{\mathrm{T}_{1}} \frac{1}{2}\left[\mathrm{~V}_{\mathrm{IN}}+\mathrm{V}_{\text {NOISE }}(\mathrm{t})\right] \mathrm{dt}+\int_{\mathrm{T}_{1}}^{\mathrm{T}_{0}}\left[\mathrm{~V}_{\text {IN }}+\mathrm{V}_{\text {NoISE }}(\mathrm{t})\right] \mathrm{dt}+ \\
& \int_{\mathrm{T}_{0}}^{\mathrm{T}_{0}+\mathrm{T}_{1}} \frac{1}{2}\left[\mathrm{~V}_{\text {IN }}+\mathrm{V}_{\text {NOISE }}(\mathrm{t})\right] \mathrm{dt} .
\end{aligned}
$$

where $\mathrm{V}_{\text {IN }}$ is the de input signal to be measured. And

$$
\mathrm{V}_{\text {NOISE }}=\sum_{\mathrm{k}=1}^{\infty}\left(\mathrm{a}_{\mathrm{k}} \cos \mathrm{k} \omega_{1} \mathrm{t}+\mathrm{b}_{\mathrm{k}} \sin \mathrm{k} \omega_{1} \mathrm{t}\right)
$$

is the Fourier transformation of the line noise. The Fourier transformation of the first three integrals is

$$
\begin{aligned}
\mathrm{W}= & \mathrm{V}_{\mathrm{IN}} \mathrm{~T}_{0}-\sum_{\mathrm{k}=1}^{\infty} \frac{\mathrm{c}_{\mathrm{k}} \mathrm{~T}_{1}}{2 \pi \mathrm{k}}\left[\cos \alpha_{\mathrm{k}}-\cos _{\phi_{\mathrm{k}}}+\right. \\
& \left.\cos \left(\mathrm{k} \pi+\alpha_{\mathrm{k}}\right)-\cos \left(\mathrm{k} \pi+\phi_{\mathrm{k}}\right)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{\mathrm{k}}=\pi \mathrm{k} \frac{\mathrm{~T}_{0}}{\mathrm{~T}_{1}}+\phi_{\mathrm{k}}, \\
& \phi_{\mathrm{k}}=\arctan \frac{\mathrm{a}_{\mathrm{k}}}{\mathrm{~b}_{\mathrm{k}}} \text {, and } \\
& c_{\mathrm{k}}=\sqrt{\mathrm{a}_{\mathrm{k}}^{2}+\mathrm{b}_{\mathrm{k}}^{2}} .
\end{aligned}
$$

Fig 2-Depending on the state of the outputs of a pair of counters, the circuit integrates (counts up) either the output of the V/F converter or the output of the V/F converter divided by two.

An analysis of this solution reveals that the circuit's order of integration cancels all the odd harmonics of the power-line frequency, including the fundamental. Also note that you can shift the synchronizing signal, which kicks off the series of integrations in phase without decreasing the rejection effect.
(EDN BBS /DI_SIG \#923)
EDN

To Vote For This Design, Circle No. 848

SR flip-flop responds to edges

Ricardo O Rabinovich

Librascope Co, Glendale, CA
The edge-sensitive, set-reset flip-flop in Fig 1 fills a gap in the discrete logic lineup. The circuit combines characteristics of an asynchronous, set-reset flip-flop and an edge-triggered JK flip-flop. It changes states on the leading edges of its inputs, but ignores the inputs' levels at all other times.

Inputs connect to the D flip-flops' CK (clock) inputs. The D flip-flops' D inputs actually function as negativetrue qualifiers, SETEN and RESETEN, for their respective inputs. The CLEAR clears the flip-flop.

Note that in operation, the outputs of both D flipflops are normally high, going low only for brief periods after seeing an edge at their respective clock inputs. The classical, cross-coupled NAND gates following the D flip-flops actually latch the circuit's state.
(EDN BBS /DI_SIG \#925)
EDN

To Vote For This Design, Circle No. 849

Fig 1-This circuit forms an edge-triggered, set-reset flip-flop.

THE KMS CP-1932/UYK MICROCOMPUTER

Now, a desert-proven rugged microcomputer so versatile, it can handle any C^{4} application. So tough, it can take it all: Shock. Vibration. Cold. Heat. Dust. Rain. And sand.

The CP-1932/UYK can be customized to meet any rugged application. Hundreds of systems are in use today with armed forces throughout the world on land, sea and in the air.

KMS products have incredibly low return-for-repair rates. And if you do have questions, KMS support can handle both your hardware AND software problems immediately.

- 100\% IBM PC/AT Compatible; 80386 and 80486 Microprocessors
- Runs MS-DOS ${ }^{\circledR}$, OST/2®, UNIX ${ }^{\circledR}$, Xenix ${ }^{\circledR}$ and Trusted Xenix
- EGA, CGA, and MDA Compatible Internal EL Displays
- Fixed and Removable Disk Drives; 40 to 400 Mbytes
- Military and Commercial 1/O
- Compliant with MIL-STD-810 Environmental Tests and MIL-STD-461/462 EMI/RFI Requirements
- 115/230 VAC, $47-440 \mathrm{~Hz}, 28 \mathrm{VDC}$ and 12 VDC Power Options
- 10-Slot PC/AT Compatible Passive Backplane
- Best Rugged Keyboard on the Market, With Two Year Warranty
- Isolation Platform
- Modular Design, Upgradable Components
- Portable or Rack-Mount
- TEMPEST Model Available

It's no wonder KMS has been the leader in rugged engineering of computer systems since 1987.

For more information on the complete line of KMS rugged computer products, call 1-800-521-1524. In Europe, call ACAL/Technitron ISD 44 (0252) 851085.

GSA Schedule \#GS00K89AGS6289

Trademarks: MS-DOS and Xenix, Microsoft Corp; OS/2, International Business Machines Corporation: UNIX, AT\&T Labs; and Trusted Xenix, Trusted Information Systems, Inc.

Design Entry Blank

\$100 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co
275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry. Name
Title \qquad Phone \qquad
Company
Division (if any)
Street \qquad
City
State
Country \qquad Zip \qquad
Design Title
Home Address \qquad

Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a $51 / 4-\mathrm{in}$. IBM PC disk.
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
Date

ISSUE WINNER

The winning Design Idea for the October 11, 1990, issue is entitled "Hall sensor detects ground faults," submitted by V Lakshminarayanan of Centre for Development of Telematics (Bangalore, India).

The winning Design Idea for the October 25, 1990, issue is entitled "Three ICs produce pure sine waves," submitted by Bruce Saldinger of Maxim Integrated Products, Sunnyvale, CA.

Power buffer boosts reference's current

Brian Huffman and Walter Jung
Linear Technology Corp, Milpitas, CA

Most voltage references can't supply more than 10 mA of current, but many applications require higher output levels. Some approaches for increasing the current involve placing a pnp-transistor power gain stage inside a feedback loop around the reference IC, thereby preserving the reference's low-drift characteristics. One limitation to this approach is that the pnp transistor doesn't provide short-circuit or thermal-overload protection.
Fig 1 boosts the output current of a voltage reference and also protects against overloads. This circuit uses a power buffer, IC_{1}, to boost the -5 V output of a negative voltage reference, IC_{2}, to 100 mA . The voltage reference forces the voltage between the ground and $\mathrm{V}_{\text {out }}$ pins to equal $5 \mathrm{~V} . \mathrm{Z}_{1}$ provides adequate operating voltage for the reference. The $0.1-\mu \mathrm{F}$ capacitor across Z_{1} filters noise generated by the Zener diode. R_{1} and R_{2} provide sufficient operating current for the reference and diode. The RC damper on the $\mathrm{V}_{\text {IN }}$ pin provides stable loop compensation for typical load conditions. The output may oscillate if you use low ESR capacitors. Therefore, use aluminum electrolytic or tantalum capacitors instead of ceramic or mylar. (EDN BBS DI \#907)

To Vote For This Design, Circle No. 850

Fig 1-A power buffer, $1 C_{1}$ in the feedback loop of a negative voltage reference, $I C_{2}$, boosts the reference's output current to 100 mA .

Now! Achieve global EMC compliance without giving up more than you have to.

Instrument Specialties helps you integrate EMC into your designs. from the beginning.

Reduce interference

 problems and costs at their source: The initial design and material selection stage.If you fail to consider potential EMI and RFI problems at the design stage, meeting FCC or foreign standards and your own performance requirements can become an expensive and timeconsuming task. Often, it involves costly corrective shielding measures, complex design retrofits, and possibly compromised system performance.
By targeting potential EMC (Electromagnetic Compatibility) problems during initial design-well before the required testing stage-designers can costeffectively implement EMC controls, and achieve optimum system efficiency.

Remedial EMC controls:
 A negative trade-off in volume, weight, efficiency, and cost.

When a system exceeds restrictions, designers are often forced to trade efficiency for acceptable EMC performancewith undesirable results. As a finished design is modified to accommodate necessary remedial shielding measures, weight and volume inevitably increase, and overall efficiency drops.

Planned EMC controls and testing during the design phase, on the other hand, not only help you maintain the in-
tegrity of the original design, but allow modifications in favor of greater system efficiency. In computer design, for example, EMC considerations such as selecting lower clock frequency, maintaining the smallest possible circuit layout areas, utilizing multi-layer boards, and minimizing the use of multiple shielding all contribute to optimum design efficiency.

The three EMC design techniques.

Achieving EMC is largely a function of three control techniques: Suppression, Isolation, and Desensitization. Through a combination of these methods, undesirable signals (EMI/RFI) are suppressed at their origin...generating circuits are isolated...and susceptible circuits are desensitized. When applied from the beginning, these techniques help you create fully integrated designs that offer both optimum performance and the best possible production economies.

Instrument Specialties:

 A total resource for state-of-the-art shielding technology, products and design assistance.After implementing proper circuitdesign controls, the most significant EMC design technique to reduce interference and susceptibility is effective shielding

Shielding not only contains radiated electromagnetic fields, but significantly reduces internal and circuit path coupling and overall common-mode coupling. In many cases, shielding eliminates the need for EMI filtering. In instances where filtering is required for conducted emissions, shielding can augment the performance characteristics of the filter. Instrument Specialties has been the leader in the science of shielding since EMI and RFI first became a problem. During this time, we have become the industry's most comprehensive resource for shielding design, manufacturing technology, and custom-design services. facilitating the use of lighter, thinner enclosure materials and enhanced system performance.

From concept to completion, teams of skilled specialists are at your disposal, providing assistance with state-of-the-art testing for FCC and global standards, as well as consulting, custom manufacturing, prototype production, and a vast range of standard off-the-shelf shielding configurations.

Instrument Specialties Euromar Dtvieron lies Belg is a
© 1990 Instrument Specialties Co. Inc. All rights reserved. Printed in USA.

[^10]
Blazing PC/AT Analog I/O!

Introducing high speed, low noise A/D-D/A boards for 16-bit PCs
 - 4-Channel Simultaneous sampling
 - Very Fast: 500 KHz @ 14 bits A/D $1-4 \mathrm{MHz} @ 12$ bits A/D
 - For DSP/FFT \& array processing
 - Quick FIFO memory
 - Window Menu software

INNOVATION AND EXCELLENCE IN PRECISION DATA ACQUISITION 11 Cabot Boulevard, Mansfield, MA 02048 (508)339-3000 FAX (508)339-6356

CIRCLE NO. 53

FASTENERS

At Stimpson, we maintain the industry's largest line of Standard and Specialty Eyelets, Grommets, Washers, C-E ${ }^{\circ}$ Rivets, Hole Plugs, Shells, Ferrules, Snap Fasteners, Terminals and Stampings.
If your application requires a custom design we can produce it for you, quickly and economically.
Send for our latest catalog which illustrates over 1,000 standard fasteners and metal parts, plus a full line of attaching machines.

(1) Stimpson ${ }^{8}$

900 SYLVAN AVE., BAYPORT, NY 11705-1097 (516) 472-2000 • FAX (516) 472-2425 • TX-ITT-497-2370

A 68040 for data, a 68020 for I/O... for real real-time performance on a single VME board.

Radstone's 68-41 Freeflow+ multiple microprocessor board with truly independent microprocessors for data and I/O gives you next generation VME performance...Now!

- 68040 with 16 Mbytes of dual-ported memory for maximum data throughput via concurrent, uninterrupted microprocessor operation up to 40 MHz
- 68020 with 4 Mbytes of dual-ported memory controlling extensive high performance on-board I/O facilities-all operating independently
- Multiple independent external buses-VME, VSB \& APEX
- Multiple independent local buses-processor and I/O
- High performance DMAs
- Intelligent, high performance Ethernet and SCSI/SCSI-2
- ...and much, much more.

Radstone's Freeflow+ architecture takes VME to new performance levels. And now it's available with 040 processing punch. It's the very latest in Radstone's long line of leading edge commercial real-time VME board level products.

Extend your VME lead...and investment
For details on how to supercharge your VME system with Radstone's Freeflow+, and extend your current investment in VME hardware and software, call or write. Do it now, because your system is worth it!

Free Board Support Packages for all our 68040 boards, while they last. Call for details.

B

To help you design high den the precise measurements o

The biggest advancement in designing for portable and space-constrained products happens to be very, very small. Introducing our 1 and 2 Megabit Flash Memory in TSOP.

Now you can pack high density into a space onethird the size of a traditional 32-pin PLCC. And not just any memory, but a nonvolatile, rewritable, 100,000 typical cycle memory in a package that's only $20 \times 8 \times 1.2 \mathrm{~mm}$
in size. Or in non-technical terms, teeny x weeny.
And if that isn't small enough, our new TSOP Flash permits a compact serpentine layout. This side-by-side, end-to-end technique saves board space and layers. Which means you can design products with greater functionality into a smaller space-such as high-density IC cards. In fact, we used this layout to create our own Flash Memory cards.

ty into small spaces, here are our new TSOP Flash Memory:

The benefits of designing with our flash go beyond its size. Since it combines RAM, ROM and mass-storage capabilities onto a solid-state, energy-efficient medium, it lets you eliminate slow hard disks and bulky battery packs from your design. In other words, you'll create products that are faster, lighter, more rugged and require less power. But best of all, since it's manufactured on our proven ETOX '"I process, it's already shipping in high volume.

To find out more about this small wonder, call Intel at (800) 548-4725 and ask for Literature Packet \#A6A31. You see, when it comes to designing innovative products, it's the only memory that really measures up.

inte'

With this Ethernet chip set, your competitors will swear you took a shortcut.

The shortest route to market begins with our three-chip set - the EtherStar ${ }^{\text {ru }}$ controller, encoder/decoder, and transceiver - from Fujitsu's Advanced Products Division.

We've engineered this Ethernet set to offer you unparalleled ease of design. With our expert design support and optional manufacturing kit, you have everything you need to get new products out in record time.

EtherStar's unique buffer manager automatically controls buffer memory access and allocation, making application software easier to develop. And EtherStar handles many functions usually performed by the software driver in hardware-boosting system performance. No wonder official *Novell certification tests performed by independent consultants show that products based on our chip set have higher data-transfer rates.

Novell certification applies to the EtherStar LAN adapter which incorporates the Fujitsu chip set
FUIITSU MICROELECTRONICS, INC., Advanced Products Division, 50 Rio Robles, San Jose, CA 95134-1806. EtherStar is a trademark of Fuijtsu Microelectronics, Inc. © 1990 Fuitsu Microelectronics, Inc.

TEST \& MEASUREMENT INSTRUMENTS

Notebook-Size
 FFT Analyzer

- Covers dc to 40 kHz
- Provides 70-dB dynamic range and $\pm 0.5 \mathrm{~dB}$ accuracy
The HP 3560A FFT-based dy-namic-signal analyzer weighs 7 lb and operates for 6 hours from internal batteries. It also operates from ac power and simultaneously recharges its batteries. An option lets it run and recharge from a 12 V de source. The unit processes signals with a frequency content of dc to 40 kHz . It has a dynamic range of 70 dB and an accuracy of ± 0.5 dB . You can set up the display to resolve from 101 to 1601 lines. An RS-232C port sends plots directly to hardcopy graphics devices such as printers. The interface is compatible with the vendor's Laserjet and Quietjet printers as well as with units that support HPGL (HewlettPackard Graphics Language). $\$ 7500$.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 351

IEEE-488 Bus Isolator

- Provides 1500 V isolation between instrument and bus grounds
- Does not occupy a bus address Isolator488 is a unit that you interpose between the IEEE-488 bus and an instrument connected to the bus. The unit provides 1500 V of ohmic isolation between the ground system of the instrument and that
of the bus. The isolation allows you to make some measurements you could not otherwise make; in other cases, it greatly increases measurement accuracy by reducing the effects of common-mode interference. The isolator is ac powered and does not occupy a bus address; from a data-transfer standpoint, it has no effect on the operation of the bus. You can configure the unit so that either or both of the IEEE-488 connectors on the rear panel (one is for bus input; the other for bus output) are isolated from power ground. $\$ 995$.

IOtech Inc, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 439-4093. TWX 650-282-0864.

Circle No. 352

Test-Development Software For DEC Workstations

- Supports multiple users, multitasking, and networking
- Simultaneously controls IEEE488 and VXIbus instruments Wavetest-XTM is software that helps test engineers develop procedures for instrument control, data acquisition, display, and analysis. The software runs on Digital Equipment Corp workstations under the Ultrix operating system. The host computers for the test setups are also DEC workstations. Supported instruments include units controlled via the IEEE-488 and VXI buses; you can use both types simultaneously. The software supports multitasking, multiple users, and networked CPUs. It provides a graphi-
cal user interface and allows plotting of data in real time. According to the vendor, the package is the only one that completely and automatically generates test programs. Delivery, four to five weeks, ARO. $\$ 7995$.

Wavetek Corp, 9045 Balboa Ave, San Diego, CA 92123. Phone (800) 874-4835.

Circle No. 353

Frequency-Measurement Software

- Works with vendor's 3052 DSP system
- Processes live and previously captured signals
S2MG100 enhanced frequencymeasurement software works with the vendor's 3052 digital signalprocessing system. It improves the hardware's frequency-resolution capabilities by as much as 10 times. The software, which can operate on "live" data as the instrument captures it, or on previously recorded data, uses data from the signal processor's bank of 1024 digital filters. The system, which updates its spectral output every $200 \mu \mathrm{sec}$, has a span of 1 kHz to 10 MHz that you can center anywhere in a $10-\mathrm{MHz}$ band. $\$ 5000$.

Tektronix Inc, Box 4490, MS 38386, Beaverton, OR 97076. Phone (503) 627-2589. Circle No. 354

HDTV Waveform Monitor

- Works with NTSC and PAL composite and HDTV signals
- Vector display of color difference indicates chrominance
The model 5100 television-waveform monitor lets you select NTSC (525 lines, 60 frames/sec), phasealternating line (PAL) (625 lines, 50 frames/sec), or HDTV (1125 lines, 60 frames $/ \mathrm{sec}$) formats. It can overlay four signals: yellow, red-yellow, blue-yellow, and composite. It can also show three signals in "parade" format. A vector display of colordifference or red-green-blue signals lets you check component chrominance, and a "shark-fin" display provides a high-resolution relativetiming reading over a wide bandwidth. The unit operates from 90 to 250 V ac sources or from 12 V dc. $\$ 3800$.

Leader Instruments Corp, 380 Oser Ave, Hauppauge, NY 11788. Phone (800) 645-5104; in NY, (516) 231-6900.

Circle No. 355

SCSI Bus
 Analyzer/Emulator

- Captures 32k 56-bit frames at 20 MHz
- Provides 15-level sequential triggering
The OZ-201 SCSI bus emulator/ analyzer can simultaneously act as a bus initiator and a target device. Thirty-three LEDs continuously display the bus status and datacommunications activity. The instrument's 32 k -frame buffer captures 56 -bit-wide traces of bus activity either synchronously or asyn-
chronously at speeds to 20 MHz . Sequential triggering has 15 levels with data qualification, phase skipping, and parity checking. An IBM PC/AT-compatible personal computer controls the emulator/analyzer. The instrument fits between the computer's monitor and its system unit. The computer displays the captured data in industrystandard mnemonics or in symbols that you define. $\$ 5995$.

Biomation Inc, 19050 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 538-9320; in CA, (408) 988-6800. FAX (408) 988-1647.

Circle No. 356

B-Size VXIbus Systems

- Include 12-slot mainframe and slot-0 controller
- Provide choice of CPU

The VXI-B series systems consist of a portable, 12 -slot, B-size mainframe with power supply, a slot-0 controller, and a choice of two hard-disk-based CPU modules. One module employs a $25-\mathrm{MHz}$ i386DX, and the other module uses a $16-\mathrm{MHz}$ i386SX. Also included are MS-DOS, Windows/386, and the vendor's EPConnect/VXI software. This software includes a VXI resource manager as well as several VXIbus diagnostic software tools. $\$ 9995$ with i386SX; $\$ 12,285$ with i386DX.

Radisys Corp, 19545 NW Von Neumann Dr, Beaverton, OR 97006. Phone (800) 950-0044; (503) 6901229. FAX (503) 690-1228.

Circle No. 357

$100-\mathrm{kHz}$ Multifunction I/O Board For IBM PC Bus

- Includes analog inputs, digital I/O, counters, and timers
- Supports DMA operation

The PCI-20098C-2 is a configurable, multifunction analog/digital I/O board for the IBM PC bus. The board provides 16 single-ended analog input channels (eight differential), 16 digital I/O channels, two

When HERCO Corporation wanted a system that would give their customers the costeffectiveness of liquid solder masks and the design freedom of dry film, they chose the DuPont Valu" System - the only wet/dry solder mask system available today.

The Valu system is helping Herco meet the demand for sophisticated surface mount circuitry designs, because it allows wide latitude encapsulation of fine line circuitry, regardless of orientation and circuit heights. And it creates a thin, uniform coating that is clean and free of skips, voids and pinholes - all in a single pass. This means better PWBs for their customers.

And greater first-pass yields for HeRCO.
The low viscosity liquid flows easily to fill spaces between circuitry, and the thin dry film capping layer gives assured coverage over the copper. Also, because of the dry film component, VALU can tent via holes to achieve 30 to 50% better real estate utilization.

So, if you're looking for a solder mask system that's a step beyond dry film or liquid systems alone, choose the one that's helping HERCO become an industry leader. The DuPont VaLu System.

For a free brochure and to arrange for a free trial coating of VALU on your PWBS, call 1-800-237-4357 today.
counter/timers, and a timebase/ burst-rate generator. It operates in both DMA and interrupt-driven modes. Maximum sampling rate of the analog inputs is 100 k samples/ sec. You can program gains of 1 ,

10,100 , and 200. Each channel can have a different gain. Plug-in modules let you increase the channel capacity to 80 analog inputs, 80 digital I/O lines, or a combination of the two. A diagnostic software disk accompanies the board; the vendor of-
fers software drivers for Basic, C, and Turbo Pascal. $\$ 995$.

Burr Brown/Intelligent Instrumentation, 1141 W Grant Rd, MS131, Tucson, AZ 85705. Phone (602) 623-9801. FAX (602) 623-8965.

Circle No. 358

Floppy-Disk-Drive Test Software

- Cleans drives and diagnoses faults
- For IBM PCs with $3^{1 / 2}$ and $5^{1 / 4}$-in. drives and Macintosh models
Generation 3.0 software tests flop-py-disk drives to determine how accurately each head reads and writes. It then generates reports showing the accuracy. Based on the test results, it recommends either a routine or an extended headcleaning procedure. The procedure incorporates a patented brush-like cleaning disk that scrubs the heads.

REPLACE MESSY GREASE WITH Q-PAD II ${ }^{\text { }}$

The New, Improved Thermally Conductive Alternative to Grease.

- Q-Pad II replaces grease in applications where isolation is not required.
- Q-Pad II provides maximum heat transfer between interfaces.
- Q-Pad II is available in standard configurations and custom shapes.

For free samples of Q-Pad II or any of the Sil-Pad ${ }^{\circledR}$ Thermally Conductive Insulation Products Call Toll Free: 1-800-347-4572 Today!

5300 Edina Industrial Blvd., Minneapolis, MN 55435
TEL: (612) 835-2322 FAX: (612) 835-4156 TWX: 910-576-2423

The solvent for the cleaning process is distributed in a dispenser that resembles a felt-tipped pen. The software also performs a drive-speed test that displays rotational speed with a resolution of 0.01 rps . Versions are available for MS-DOSbased systems using $3^{1 / 2}$-in. and $5^{1 / 4-}$ in. drives and for the Apple Macintosh. $\$ 34.95$ to $\$ 44.95$.

Trackmate America Corp, 14577 S Bascom Ave, Los Gatos, CA 95032. Phone (408) 356-0795.

Circle No. 359

Telecom DSOs

- Measure telecom pulse fidelity
- Store 16 masks in read-only memory
When equipped with Option 001, the vendor's 54502A (2-channel, 400 M sample/sec, real-time sampling) and 54503A (4-channel, 500MHz bandwidth for repetitive signals only) digitizing oscilloscopes can make template measurements in accordance with ANSI, CCITT, and integrated-services digital network standards. The option adds a read-only memory containing 16 standard masks. The scope automatically aligns a waveform with the selected mask and determines the acceptability of the waveform by comparing it point-by-point to the mask. The scope then outputs failing waveforms for printing or plotting. The option adds $\$ 500$ to the cost of the $\$ 645054502 \mathrm{~A}$ or the $\$ 545054503 \mathrm{~A}$; you can add the option to existing instruments.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 360

Build EMC into your design now, and it won't be a problem later.

With all the new regulations surrounding electromagnetic compatibility (EMC), the best way to avoid costly delays is to locate problems as early as possible. Two new HP EMC solutions make that easy.
The HP 84100A Design Development Solution helps you correct problem areas at the design stage. It pinpoints hot spots on breadboards and prototypes
using a spectrum analyzer with software memory cards that simplify troubleshooting.
The HP 84110A Pre-Production Solution gives you added confidence that your designs will pass compliance. It has all the analysis capability, software and accessories you need to uncover conducted and radiated emission problems before final EMI testing. So, find out how to build EMC
into your designs. For information about HP's full line of EMC solutions and design training programs, call 1-800-752-0900.* Ask for Ext. 1350, and we'll send you our EMC Measurement Solutions fact kit.
There is a better way.

[pp
 HEWLETT PACKARD

FOR RUGGED, RELIABLE/POWER...LOOK TO

Basler Electric

JX400 WATTS
($10^{\prime \prime} \times 5^{\prime \prime} \times 2.5^{\prime \prime}$)

- High Package Density
- UL/CSA/IEC/VDE/TUV Approvals
- 115/230 Auto Select Inputs
- Three to Five Outputs
- Adjustable Auxiliary Outputs
- Parallel Operation
- FCC/VDE/EMI Filters
- Fan Options
- Meets Mil-style Shock/Vibration Specs

CALL TOLL FREE
1-800-645-2074
FOR INFORMATION ON
Summit a Power supples from BASLER'S ELECTRONIC PRODUCT GROUP

VALUE ADDED!!
 Enclosures, harnesses, auxiliary assemblies to customer specs.

Basler Electric

NEW PRODUCTS

CAE \& SOFTWARE DEVELOPMENT TOOLS

Stepping-Motor MS-DOS Driver

- Uses a parallel-printer port to control a multiaxis motor
- Provides linear or circular interpolation and velocity control Indexer LPT version 2.0 is a mo-tion-control subsystem that loads as an MS-DOS device driver. You can use it with most programming languages such as Basic, C, Pascal, and MS-DOS batch files. The driver can control as many as three parallelprinter ports, each of which handles two axes of motion. The TTL-level output signals for each axis are Step, Direction, Reduced Current, and All Windings Off. Inputs for each axis allow you to connect two limit switches and one auxiliary sensing device. Any limit-switch closure automatically arrests motion. Other features include linear interpolation in as many as six axes

simultaneously, rapid traversal, velocity control, and circular interpolation. You can use any text editor to construct ASCII command files for use by an application program; each line contains one Indexer LPT command per line. A menu-driven
diagnostic program facilitates installation of Indexer LPT, and its documentation includes many sample programs. $\$ 249$.

Ability Systems Corp, 1422 Arnold Ave, Roslyn, PA 19001. Phone (215) 657-4338. Circle No. 361

PC-Board Design Tool

- Manual, interactive, or automatic component placement
- Able to handle 23 layers, including 10 signal layers
Tango-PCB version 2.0 provides component-placement assistance, allowing placement to be manual, interactive, or fully automatic. The program now can handle four more mid-layers, yielding a total of 23 layers, 10 of which can be signal layers. You can now define your own macros to give you rapid access
to the program's Windows-like interface for frequently used functions. Other new features include polygon fill, which replaces the older area fill; the ability to edit power and ground planes, which makes it easier to lay out analog boards; the ability to create "was/ is" lists for use in back-annotation; and the addition of TIGA, Orchid, and Genoa graphics to the list of printer drivers. Tango-Route version 2.0 can handle all of the enhancements to Tango-PCB; in addition, the program can use expanded memory so that the board size is limited only by the amount of expanded memory in your system. From $\$ 495$ for a single entry-level module; a bundled, professional pc board and autoroute combination, $\$ 1695$.

Accel Technologies Inc, 6825 Flanders Dr, San Diego, CA 92121. Phone (619) 554-1000. FAX (619) 554-1019.

Circle No. 362

File Conversion Tool

- Lets SPARCstation read and write Macintosh and DOS files
- Works with 720k-byte or
1.44 M -byte $3^{1 / 2}$-in. disks

Common-Link is a file-transfer tool that runs on a Sun SPARCstation under SunOS release 4.1 or higher. It lets you transfer data files among SPARCstation, Macintosh, and IBM PC or compatible computers on a $3^{1 / 2}$-in. diskette. The tool can read MS-DOS files in 720 k -byte doubledensity format or 1.44 M -byte highdensity format, and Macintosh files in 1.44 M -byte high-density format, using the SPARCstation's built-in 1.44M-byte floppy-disk drive. You can also write SPARCstation files to a disk previously formatted by the target computer. If the transfer is between two versions of the same application program, the information is usable immediately, without further manipulation. If the creating application and the target appli-

to-5 belar

The Unforgettable Maglatch TO-5

- Non-destructive memory
 - Low power consumption
 - Inherently bi-stable pulse operation
 - CMOS compatible Centigrid ${ }^{`}$ version

The Maglatch TO-5. It's a legend in its own time. The little magnetic latching relay that just won't forget. It can't. Because once you set it with a brief pulse of coil voltage, it simply stays in that state until reset. Even if the system loses power.

In applications where power drain is critical, the Maglatch TO-5 is unbeatable. Since no holding power is needed, it uses less energy than any other type of relay on the market.

The Maglatch's inherently low intercontact capacitance gives it high isolation and low insertion loss up through UHF, making it ideal for RF switching applications. And its tiny footprint makes it ideal for high density printed circuit boards.

The Maglatch TO-5 comes in commercial/industrial versions as well as military versions qualified to " L ", " M " and " P " levels of MIL-R-39016. And now it comes
in a CMOS compatible version as well. This version can be driven directly with CMOS level signals, with no outside amplification. That cuts down on the number of components and connections, for even greater system reliability.

The Maglatch TO-5. It's the world's smallest relay with indestructible memory. Call or write today for complete information.

[^11]cation store data in different ways, you may need to perform further filtering or translation. Characteroriented (TTY) version, $\$ 150$.
Pacific Micro, 201 San Antonio Circle, C250, Mountain View, CA 94040. Phone (800) 628-3475; in CA, (415) 948-6200. FAX (415) 948-6296.

Circle No. 363

Behavioral Entry System For FPGAs

- Lets you design FPGAs using only Boolean descriptions
- Direct access to high-density FPGAs avoids partitioning Plustran Behavioral Entry System (BES) is an FPGA design tool that lets you design directly with

ABEL, CUPL, PALASM, and other Boolean descriptions, enabling you to bypass the schematiccapture phase. If you have existing designs for PAL devices or PLDs, Plustran BES can accept the logic descriptions without modification, producing an efficient FPGA design that will reduce board space. The program runs on IBM PC/ATs and compatibles and Sun-3 or -4 Unix workstations. $\$ 475$.
Plus Logic Inc, 1255 Parkmoor Ave, San Jose, CA 95126. Phone (408) 293-7587. FAX (408) 298-7587.

Circle No. 364

Translator Converts Force Files For 20 Simulators

- Converts flat vector-stimulus files to other formats
- Handles high-level constructs found in Mentor Force files
VTRAN is a program that loads the state/time information of simulation stimulus files and reformats the data for use by more than 20 widely used simulators. You can customize the format descriptors to describe both the input-data format and the output-data format. After loading the data, the program can perform some optional processing on the data before generating the output file. VTRAN works only on flat data files in tabular or script form; the XMENF module, however, works in conjunction with VTRAN. This translates and modifies Mentor Force files that contain high-level constructs such as DO macros, loops, and variables, which VTRAN is unable to handle alone. XMENF recognizes all of the Mentor syntax and commands that relate to the generation of simulation stimulus files. VTRAN, \$2495; VTRAN with XMENF, $\$ 4995$.
Source III Inc, 4960 Almaden Expressway, Suite 147, San Jose, CA 95118. Phone (408) 997-2575.

Circle No. 365

TriplePort DRAMs

50 MHz ARB, Independent Channels, Modulation, Noise, And Much More.

That's Pragmatic!

The Pragmatic 2205A Dual-Precision Arbitrary Waveform Generator.'"

In addition to its 50 MHz sample rate, dual independent channels, multiple modulation modes and built-in noise generator, the 2205A offers you an array of unique features:

- AM, SCM, QAM and synthesized FM
- Vertex Formatting ${ }^{\text {TM }}$ Software for easy waveform creation and editing
- 250 K memory, expandable to a Megaword
- A logical, functional front-panel design
- Standard IEEE 488.2 and RS-232C interfaces

INSTRUMENTS, INC.

To fully appreciate the 2205A's unparalleled performance, you must see a comprehensive demonstration. CONTACT PRAGMATIC INSTRUMENTS TODAY at 7313 Carroll Road, San Diego, CA 92121-2319. Telephone (619) 271-6770 or call TOLL FREE (800) PRAGMATIC - (800) 772-4628. FAX (619) 271-9567.

NEW PRODUCTS

INTEGRATED CIRCUITS

Synchro/Resolver To BCD Converter

- Accepts 3-wire synchro or 4-wire resolver inputs
- Package measures $2.0 \times 2.0 \times 0.4 \mathrm{in}$.
The 268A600 series are small syn-chro/resolver-to-BCD converters. The device consumes $<90 \mathrm{~mW}$, using a $\pm 5 \mathrm{~V}$ supply. In addition to 3 -wire synchro or 4 -wire resolver inputs, the converter accepts 2 to $130 \mathrm{~V}_{\text {rms }}$ line to line and 47 - to 1200 Hz inputs. Outputs are 4-decade BCD angle plus sign, which you can pin-program for ranges of 0 to 359.9° or $\pm 180^{\circ}$. The converter is available in either $\pm 15 \mathrm{~V}$ plus +5 V or 5 V -only versions. $\$ 375$.

Control Sciences Inc, 9509 Vassar Ave, Chatsworth, CA 91311. Phone (818) 709-5510.

Circle No. 382

Precision Op Amps

- Operate from supplies over the range of 3.5 to 22 V
- Have an input offset voltage of $500 \mu \mathrm{~V}$
The TLE206x family of op amps and the TLE2161 decompensated op amp operate from dual supplies ranging from 7 to 44 V . The 2061 single, 2062 dual, 2064 quad, and 2161 decompensated op amps can each drive 25 mA into a 100Ω load with 0.025% THD typ. The devices
have slew rates of $3.4 \mathrm{~V} / \mu$ sec typ and unity-gain bandwidths of 2.1 MHz typ. They are available in plastic and ceramic DIPs, smalloutline ceramic LCCs, and metal cans. The op amps are also characterized for operation over commercial, industrial, and military temperature ranges. $\$ 0.92$ to $\$ 2.05$ (1000).

Texas Instruments Inc, Semiconductor Group, Box 809066, Dallas, TX 75380. Phone (800) 3365236, ext 700; in CA, (214) 996-6611, ext 700 .

Circle No. 383

Variable Gain Amplifier

- Noise limited to $7 d B$ at maximum gain
- Internally compensated to allow for wideband operation
The NE5209 amplifier offers gain out to 1.5 GHz . Using a control pin, you can adjust the gain of the amplifier over a $60-\mathrm{dB}$ range. Noise increases 0.6 dB for each 1-dB gain
drop. The device features a $1-\mathrm{k} \Omega$ high-impedance differential input and a 50Ω differential output and operates from one 5 V de supply. Available in DIPs or small-outline packages, the amplifiers operate

over commercial or industrial temperature ranges. Commercial version, $\$ 14.24$ (100).
Philips Components/Signetics, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2000.

Circle No. 384

Hook up a

 Keithley switch, turn it on, then watch it disappear.What every electronics test engineer needs is a switch so good, you hardly know it's there.

Try a Keithley switch. Switch signals down to a picoamp or nanovolt, and up to $1300 \mathrm{~V}, 5 \mathrm{~A}$, or 500 MHz . All with minimal signal degradation and maximum reliability.
Choose from a full line of switch mainframes and 40 different cards. There's a combination that's right for your application.

Call 1-800-552-1115 to speak directly with a Keithley applications engineer. We'll help you design a test system. Even FAX you a completed configuration diagram.

Keithley switches.
Hook one up. Then watch it disappear.

DC/DC Converters

- Require 0.18 in. ${ }^{2}$ of board space
- Generate programming voltages for flash EEPROMs
The NMF Series of dc/dc converters operate from 5 and 12 V inputs and provide isolated output voltages of $5,9,12,12.75$, and 15 V . The converters deliver 500 mW total power with an input-to-output isolation of 500 V dc. The package is epoxy encapsulated with plastic casing, having a $94 \mathrm{~V}-0$ UL rating. The small
converters operate over a 0 to 70° temperature range and don't require heat sinks. $\$ 12$ (OEM qty).

International Power Sources

 Inc, 200 Butterfield Dr, Dept 8536, Ashland, MA 01721. Phone (508) 881-7434.Circle No. 385

Scaling And Rotation IC

- Scales bilevel images to produce gray-scale result
- Scaling ranges from 6 to 750%

The Bt710 image scaler and rotator IC has two DMA channels. One channel manages read operations from source image buffers, and the other channel manages write operations to destination image buffers. The DMA channels also provide address translation for image rotation and bit-block transfer (bitblt). The IC's output can be either 1 bit (bilevel) or 4 bit (gray). An on-chip look-up table provides image inver-

sion, gamma correction, or mapping from 4 -bit gray to 8 -bit pixels. A software tool kit provides CCITT compression and decompression, image scaling, rotation, mirroring, and Boolean bitblt operations to destination buffers. Bt710 version in 132 -pin pin-grid array, $\$ 132$ (100); Bt710EVK IBM PC version under DOS and Windows 3.0,

Venture into the Modulation Domain and

\$1990; Bt700SMA Macintosh version, $\$ 2490$; Bt700SSA Sun workstation versions under Unix and X.11, \$2990.

Brooktree Corp, 9950 Barnes Canyon Rd, San Diego, CA 92121. Phone (619) 452-7580. FAX (619) 452-1249.

Circle No. 386

16-Bit Microcontroller

- Source-code compatible with 68 HC 11
- Adds instructions to perform control-oriented DSP functions
The 68 HC 16 adds three multiply instructions and two additional divide instructions to those of the $68 \mathrm{HC11}$, its 8 -bit sibling. In addition to these instructions, the HC16 offers new addressing modes and additional registers that allow the CPU to support high-level languages and perform some DSP functions. The microcontroller uses a modular de-
sign that surrounds the 16 -bit CPU core with a queued serial module, a system integration module, a gen-eral-purpose 16 -bit timer/counter, 1 k byte of RAM, and a 10 -bit, 8 channel ADC. The chip will be available in sample quantities in the second quarter of 1991. $\$ 25$ (1000).

Motorola Inc, Microprocessor Products Group, 6501 William Cannon Dr W, Austin, TX 78735. Phone (512) 891-2062. Circle No. 387

Power-Supply IC

- Delivers as much as $10 W$ from a rectified 120 V ac input
- Contains both under- and overvoltage lockout circuits Accepting de input voltages over the range of 36 to 200 V , the SWP110 IC offers output voltage selection and supply isolation via an external output transformer. Without a heat sink, the chip can deliver

5 W from a rectified 120 V ac input; with a heat sink, it delivers 10 W . An on-chip high-voltage PWM controller operates linearly from zero to the maximum pulse width. A preregulator circuit allows the chip to draw start-up power from the ac line. The chip has self-protection circuits for overvoltage, overcurrent, and thermal runaway. In a 16 pin plastic DIP, $\$ 2.36$ (1000).
Power Integrations Inc, 411 Clyde Ave, Mountain View, CA 94043. Phone (415) 960-3572. FAX (415) 967-1608. Circle No. 388

improve your powers of observation.

When characterizing VCO responses and frequency agile signals, most designers depend on their powers of deductive reasoning. The Modulation Domain offers a more direct approach. It brings changes in frequency vs. time clearly into view. So you can see the transient response and post-tuning drift of a single-shot VCO step, or the chirp linearity and staggered PRI of a frequency agile signal. On a single display. In seconds.
Find out how looking at frequency vs. time in the Modulation Domain can make you a better designer, call Hewlett-Packard at 1-800-752-0900** Ask for Ext. 1827, and we'll send you a Visitor's Guide to the Modulation Domain on floppy disk, complete with a list of sights and excursions you won't want to miss.

There is a better way.

${ }^{*}$ In Canada, call 1-800-387-3867, Dept. 419. Any similarity to existing persons or companies is purely coincidental
© 1990, Hewlett-Packard Co. TMSCD054A/EDN

TOKIN EMC SHUTOUT.

When you're head to head against a tough opponent, you need optimum protec tion. And when the opponent is electromagnetic interference, you need the finest EMC lineup availablea defence that handles both power lines and data lines in

a way that keeps you in the lead throughout the season.

Tokin fields only the best EMC components, an all-star
team comprising high-frequency magnetic materials and Tokin's exhaustive background in EMC technology.

Check out Tokin's power and data line devices, then get on the winning team... today.
Power line Filters

SC Coils for

 EMC Chip Filters〈M-700 Series)

N : Normal mode C: Common-mode

TOI<In

Tokin Corporation

Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan Phone: 03-402-6166 Fax:03-497-9756

Tokin America Inc.

155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375
Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090, U.S.A
Phone: 708-215-8802 Fax: 708-215-8804

Tokin Electronics (HK) Ltd.

Room 806 Austin Tower, 22-26A Austin Avenue,
Tsimshatsui, Kowloon, Hong Kong
Taiwan Liaison Office
Taiwan Liaison Offic
, 51 Fhing N.Road, Taipei, Taiwan
Singapore Branch
pore Branch
40 Cecil Street, No.13-01 PIL Bldg., Singapore
Phone: 2237076 Fax: 2236093

Tokin Europe GmbH

Knorrstr. 142, 8000 München 45, Germany Phone: 089-311 1066 Fax: 089-311 3584

MIL-STD-1772 Certified \& Qualified

Other data conversion companies give you

lots of reasons to choose their T / H amplifiers.

All we need is one. Micro Networks offers

more T / Hs than any other supplier. So no
matter how many projects you're working

on, we can satisfy any design criteria from

speed to resolution. In one phone call. If
that sounds like reason enough to choose
Micro Networks' T/H amplifiers are Micro Networks, call us at (508) 852-5400.

Or return the coupon.

 ideal for applications in data acquisition and conversion including medical imaging, video processing, radar, ATE| MN374 | MN376 | MNHT1010 |
| :--- | :--- | :--- |
| Ideal for high- | Among the | Ultra-fast T/H |
| resolution | industry's most | capable of driving |
| applications | popular high-speed | $300 p$ F loads. |
| (up to 16-bits). | T/Hs. | 10nsec acquisition |
| Fast 4 4sec max. | 200nsec max. | time (2V step to |
| conversion time (20V | acquisition time (10V | $\pm 0.1 \%)$. |
| step to $\pm 0.003 \%)$. | step to $\pm 0.01 \%)$. | 1psec aperture jitter. |
| Compatible with | 100nsec max. track-to- | Available with |
| high-speed 14- to | hold settling time. | environmental stress |
| 16-bit A/Ds. | Available with | screening. |
| Available with | environmental stress | |
| environmental stress | screening or fully | |
| compliant to MIL-STD- | | |

MICRO NETWORKS

324 Clark St., Worcester, MA 01606 Phone: (508) 852-5400 Fax: (508) 853-8296

Precisely The Answer.

 and instrumentation.

MNHT1010

COUPONCOUPONCOUPON
\square Please send me more information about Micro Networks broad line of T/H Amplifiers.
\square Please send me more information about
Micro Networks' family of Sampling A/D Converters (T/H and A/D integrated in one package).
\square Please send me the Micro Networks T/H Applications Cross Reference Guide.

> Name
\qquad Title \qquad
Company \qquad M/S \qquad
Address \qquad Phone \qquad
City
State \qquad Zip \qquad

[^12]Is a Standardized Military Drawing product required? Yes \square No \square EDN0121

NEW PRODUCTS

VMEbus Single-Board Computer

- Uses 25-MHz SPARC chip and delivers 18 MIPS
- 200M-byte/sec local bus gives CPU access to onboard RAM The IV-SPRC-25A single-board computer (SBC) for the VMEbus uses the Cypress Semiconductor 25MHz SPARC chip set. Besides delivering 18 MIPS and 3.75 M flops, the SBC can transfer data over the VMEbus at 30 M bytes/sec. Its 200M-byte/sec local bus, the Mbus, gives the CPU access to the onboard RAM via a 64-bit data path. Other features are 64 k bytes of cache RAM and either 4 M or 16 M bytes of dual-port dynamic RAM (DRAM), which has a 64-bit port to the Mbus and a 32-bit port to the VMEbus. A connector provides access to a variety of optional I/O daughter boards, which includes a VSB port, eight channels of serial I/O with DMA, and Ethernet or

SCSI ports. The board runs on VxWorks, and compilers running on a Sun-4 workstation can directly download code to the board. Board with 4 M bytes of DRAM, $\$ 6995$;
board with 16 M bytes of DRAM, $\$ 9995$.

Ironics Inc, 798 Cascadilla St, Ithaca, NY 14850. Phone (607) 2774060. TLX 705742. Circle No. 389

Video-Controller Cards

- Display 256 colors on monitors with 1280×1024 pixels
- Have 2M bytes of video RAM and $2 M$ bytes of dynamic RAM
The Genius 1920C video controller drives multisynchronous monitors that have 1280×1024-pixel resolution and from $31-$ to $65-\mathrm{kHz}$ horizontal scan frequencies. It contains TI's $34010 \mu \mathrm{P}$ and comes standard with

2 M bytes of video RAM and 2 M bytes of dynamic RAM (DRAM); the latter is expandable to 16 M bytes. Other features include a display of 256 colors from a palette of 16.7 million colors and a VGA passthrough mode. The board runs TI graphics-adapter applications and Microsoft's Windows 3.0. Drivers are available for AutoCAD, OrCAD, and Halo applications; the company is also developing drivers for Ventura, Wordperfect, and Pagemaker programs. The 1920G produces 256 shades of gray from a palette of 16.7 million. You can purchase the cards separately or with a choice of two monitors. 1920G, $\$ 2265$; 1920C, $\$ 3195$.

Micro Display Systems Inc, Box 455, Hastings, MN 55033. Phone (800) 437-7325; in MN, (612) 4372233. FAX (612) 437-7325. TLX 4938623.

Synchro/Resolver Board

- Accommodates DDC's converters
- From one to six output channels
The BBG-520 card for the 8-bit ISA bus converts digital signals to synchro/resolver outputs. It accommo-

dates DDC's DSC-11520 or DRC10520 and Natel's HDR2106 or HDR2116 converters. The cards have from one to six output channels that are jumper-programmable for resolver or synchro outputs when using the DSC-11520. Status

Analogic's DAS Family Outclasses the Competition

	Resolution	Throughput	Price ${ }^{*}$
HSDAS-16	16 Bits	200 kHz	$\$ 1695$
LSDAS-16	16 Bits	50 kHz	$\$ 1395$
HSDAS-12	12 Bits	400 kHz	$\$ 2295$
MSDAS-12	12 Bits	200 kHz	$\$ 1495$
LSDAS-12	12 Bits	100 kHz	$\$ 1195$

*Single unit price. Quantity discounts available.
For Applications Assistance, Call: David Wilson, Analogic Corporation, (800) 446-8936. For Sales Assistance, Call: Digital Distributors (800) 227-0349; In South Central USA: Norcom, Inc. (214) 386-4888; In Northeast USA: Trilogic (508) 658-3800

Analogic's DAS family outclasses the competition in resolution, throughput, and price! The DAS family features autocalibration to eliminate DC errors, precision 12-bit and 16-bit analog-to-digital converters, and sampling rates from 50 kHz to 400 kHz .

Only Analogic provides the shielding necessary for less than 1 LSB of noise in the PC. The software-programmable multifunction boards include dual-deglitched DACs, a multichannel counter/timer, a 16-bit digital input/output port and a 16-channel single-ended or 8 -channel differential analog input multiplexer.
The DAS family includes:

- High-speed DMA for fast data acquisition

Simultaneous sampling of up to four analog inputs

- Deglitched DACs for quiet, low-distortion analog output waveforms
- 32K points of DAC RAM for waveform generation

Expansion multiplexers for up to 256 inputs

- Application software from HEM, DADiSP, and LABTECH

Our guaranteed analog performance, digital flexibility, and software support are backed up by over twenty years of recognized leadership in precision data acquisition technology.
registers provide built-in test functions from the converters. The unit's 12 bits of digital I/O allows it to drive external signals via software running on the host. From \$1095.
BBG Inc, Box 954, Virginia Beach, VA 23451. Phone (804) 4256615.

Circle No. 391

3½-In. Hard-Disk Drives

- Available in 40 M -, 80 M -, and 105M-byte capacities
- Have <20-msec access times and are 1-in. high
The SD-340/H, SD-380/H, and SD3105 are $3^{1 / 2}$-in. hard-disk drives having $40 \mathrm{M}-, 80 \mathrm{M}$-, and 105 M -byte capacities, respectively. The drives'

EXPERIENCE A WORLD ACCLAIMED PLD PROGRAMMER for the 90's.

THE ONLY MULTIPROGRAMMER ${ }^{\circledast}$ THAT CAN WEAR EVERY HAT.

BYTEK's Model 135H is a GANG/SET or Universal PLD MULTIPROGRAMMER ${ }^{\circledR}$ All-In-One Site. Performs well in both Production or Development environments. Purchase only the technology support you need today and expand support as required through simple micro disk device library updates.

Programming algorithms are approved by major semiconductor manufacturers. Plus, BYTEK's after-sale support is guaranteed with over 10 years as the world's leader in Low-Cost, High Performance programming equipment.
\checkmark Supports virtually all Memory Devices and PLDs.
\checkmark 25-key Integrated Keyboard \& 40 Character LCD.
\checkmark RS232 \& Parallel I/O Port for High Speed Data Transfer.
\checkmark Extensive SET Programming capabilities in either Standalone or Computer Remote operations including Set of Sets.
\checkmark Automatically Serializes up to 16 devices at one time.
\checkmark FREE Warranty plus FREE Device Library Updates for one year.
Also available: EZ-WRITER ${ }^{\text {TM }}$ low-cost portable Engineering Programmers, MULTITRAK ${ }^{\text {TM }}-4000$ high volume Production Programmers, \& UNITRAK ${ }^{\text {TM }}$ Universal PLD Programmers.

Order Today on a 15 Day Money-Back Guarantee: BYTEK

543 NorthWest 77th Street, Boca Raton, FL 33487 (407)994-3520 * FAX: (407)994-3615 * TELEX: 4998369BYTEK

Corporation - U.S. list price only
average access time is $<20 \mathrm{msec}$, and they can transfer data at 1.5 M bytes/sec. The drives use an index skew technique that offsets side 1 of a platter in respect to side 2 . The index skew eliminates the delay when the drive head changes between platters, thus allowing faster track positioning. In addition, the rotational speed of the drives increases from 2400 rpm to 3600 rpm at 3600 rpm . The drives have either a SCSI-level 2 port or a standard IBM PC/AT interface. Shock-resistant mounting and an automatic head-locking feature protect against data loss when in transport. The MTBF is 30,000 hours. The drives can withstand nonoperational impacts as high as 70 g . SD-340/H, $\$ 220$; SD-380/H, $\$ 340$; SD-3105, $\$ 400$.
TEAC America Inc, 7733 Telegraph Rd, Montebello, CA 90640. Phone (213) 726-0303. FAX (213) 727-7621. TLX 677014.

Circle No. 392

Multiscan Color Monitor

- Features 30- to $50-\mathrm{kHz}$ horizontal scan rate
- Has 0.2-mm dot pitch and 1024×768 pixels
The Model TE1791 17-in. multiscan color monitor features a flat nonglare screen that has sharp corner focusing. The analog monitor can track horizontal scan rates from 30 to 50 kHz and vertical scan rates from 45 to 100 Hz . The design utilizes Motorola's MC1381 multimode

At last, an entivelynew approach to clock speed

Get five times faster throughput from NEC K-Series ${ }^{\text {™ }}$ microcomputers.

As a developer of real-time control systems, you know that designing in a faster CPU is not enough. You also need intelligent I/O management for the best possible system throughput.

NEC's K-Series ${ }^{\text {T" }}$ microcomputers are perfect for real-time control designs requiring multitasking, such as automotive control, ISDN and computer peripheral controllers.

Peripheral Management Unit ${ }^{\text {m }}$

The K-Series' unique architecture includes a revolutionary Peripheral Management Unit ${ }^{\text {w }}$ macro service for nonstop instruction execution while processing up to 16 I/O requests at the same time. By designing in the K-Series microcomputer, you can improve your system throughput by as much as 5 X .

The K-Series 8 -bit and 16 -bit microcomputers give you a realtime output port; an advanced counter/timer system; a highspeed, high-resolution A/D converter; and many other onchip intelligent peripherals.

© 1990 NEC Electronics Inc. K-Series and Peripheral Management Unit are trademarks of NEC Electronics Inc.

Not since the invention of the hourglass has anyone come up with a more ingenious way to speed up silicon.

The K-Series provides you a worry-free upgrade path from the 8-bit K2 microcontroller family to the 16 -bit K3 devices. And your future designs will exploit the power of the light-ning-fast $125-\mathrm{ns} \mathrm{K} 6$, with realtime operating system in

For fast answers, call us at: Australia Tel:03-267-6355. Telex:38343. France Tel:1-3067-5800. Telex:699499. Germany Tel:0211-650302. Telex:8589960. Hong Kong Tel:755-9008. Telex:54561. Ireland Tel:1-6794200. Telex:90847. Italy Tel:02-6709108. Telex:315355. Korea Tel:02-551-0450. Fax:02-551-0451. The Netherlands Tel:040-445-845. Telex:51923. Singapore Tel:4819881. Telex:39726. Spain Tel: 1-419-4150. Telex:41316. Sweden Tel:08-753-6020. Telex:13839. Taiwan Tel:02-719-2377. Telex:22372. UK Tel:0908-691133. Telex:826791. USA Tel:1-800-632-3531. Fax:1-800-729-9288.
microcode, and complete K3 software compatibility.

To learn more about the K-Series microcomputers with up to 1 K bytes of on-board RAM, 32 K bytes of ROM/EPROM, and Peripheral Management Unit coprocessing power, call now.

NEC
monitor processor and a proprietary ASIC that reduces parts count and has a low power dissipation. Other features are a $119-\mathrm{in} .^{2}$ of viewable area and a $0.26-\mathrm{mm}$ dot pitch. The monitor meets the standards for VGA and Super VGA resolution and refreshes the noninterlaced 1024×768-pixel screen at a 60 - to $70-\mathrm{Hz}$ refresh rate. The monitor has a standard tilt/swivel base. $\$ 560$ (OEM qty).

Teco Information Systems, 24 E Harbor Dr, Lake Zurich, IL 60047. Phone (708) 438-3998. FAX (708) 438-8061.

Circle No. 393

Color Printer

- Has 300-dpi resolution and prints Postscript files
- Uses an $80960 \mu P$

The Colorpoint PS desktop printer produces Postscript files. The printer uses an Intel $80960 \mu \mathrm{P}$ for
printing large image sizes. Two printer models make images on standard letter or tabloid-sized pages with a resolution of 300 dpi . They can also print supersize images with trimmed edges where the image runs off all four sides of a page. The letter-size printer produces a supersize image that is 8.53×13.0 in. The tabloid-size printer produces a super-size image that is $11.73 \times 17.12 \mathrm{in}$. The five communication ports consist of Appletalk, Centronics parallel, RS232 C ; and two SCSI ports. You can share the printer with several different computers. The printer's intelligent interface scans each port and begins printing the first available data. Letter-size, \$6999; tab-loid-size, $\$ 9999$.
Seiko Instruments USA Inc, 1130 Ringwood Ct, San Jose, CA 95131. Phone (408) 922-5800. FAX (408) 922-5840. Circle No. 394

80386 Mother Board

- Has a floppy and IDE hard-disk controller
- Has as much as 16 M bytes of RAM
The K386A-25/33, a baby-sized IBM PC/AT mother board, contains either a $25-$ or $33-\mathrm{MHz} 80386 \mu \mathrm{P}$ and a socket for either an 80387 or Weitek coprocessor. Its features include a floppy-disk controller, an IDE hard-disk controller, a parallel port, and two serial ports. You can populate the board's cache memory area with 32 k bytes or a 128 k bytes of static RAM with 25 -nsec access time. The mother board has as much as 16 M bytes of main memory with 80 -nsec access times. It comes with the Phoenix BIOS; the AMI BIOS is optional. One 8 -bit and five 16-bit expansion slots can operate at software-selectable speeds of 8 or 12 MHz . The board contains a real-time clock with battery, and it

can run with OS/2, PC/DOS, MS/ DOS, Unix, Xenix, Windows/386, Concurrent DOS, and Novell operating systems. $\$ 1100$ (2 to 9).
Klever Computers Inc, 1028 W Maude Ave, Sunnyvale, CA 94086. Phone (408) 735-7723. FAX (408) 735-7724.

Circle No. 395

VMEbus Chassis LAN

- Connects as many as 16 chassis within 75 ft
- Data-transfer rate between chassis is 30M bytes/sec
The PT-VME940 interconnects VMEbus chassis that are as far as 75 ft apart. The product can transfer data between chassis at a rate as fast as 30 M bytes $/ \mathrm{sec}$. The interconnection scheme lets you integrate as many as 16 chassis in a parallel network. The configuration has from 2 to 16 VMEbus modules, each residing in a separate chassis.

A module contains a $68020 \mu \mathrm{P}$ to supervise data transfers and to execute network firmware. A highspeed FIFO buffer lets you transfer data over the VMEbus backplane at 60 M bytes/sec, using the company's VME64 specification. The module comes with firmware that permits inter-chassis communications using peer-to-peer or masterslave modes. $\$ 2280 /$ node (100).

Performance Technologies Inc, 435 W Commercial St, East Rochester, NY 14445. Phone (716) 5866727. FAX (716) 586-6707.

Circle No. 396

Laser Printers

- Print at 6 pages/minute and have two card slots for fonts
- Have 1250-sheet paper tray and optional second tray
The EPL-7000 personal laser printer and the EPL-7500 Post-
script laser printer provide an engine speed of 6 pages/minute and two card slots for additional fonts. The EPL-7000 emulates the HP Laserjet IIP; it has 14 resident fonts and two card slots that allow HP-GL plotter emulation. Other features include a serial and parallel port and a 512 k -byte RAM buffer that's expandable to 2 M bytes. The EPL-7500 has 35 resident fonts and a Weitek reduced-instruction-setcomputer $\mu \mathrm{P}$ that interprets Adobe Postscript files. The unit has 2 M bytes of RAM that's expandable to 6 M bytes. It also has parallel, serial, and Appletalk ports. Both printers have a 250 -sheet paper tray. An additional 250 -sheet paper tray is optional. EPL-7000, $\$ 1400$; EPL-7500, $\$ 3500$.
Epson America Inc, 2780 Lomita Blvd, Torrance, CA 90505. Phone (213) 782-5161. FAX (213) 782-5179.

Circle No. 397

Unique edge clip design assures perfect solder joints every time.

NAS solder and flux bearing edge clips have proven to be the most effective way to overcome thermal mismatch between PCBs and high-density hybrids and chip carriers. Now, NAS has developed a unique "claw" grip design that assures 100\% solderability and provides
PCB $=$ \qquad even greater assembly efficiency and economy.
"Claw" grip edge clips in a variety of sizes HysRID and designs, as well as different solder types, are offered for use with ceramics and PCB materials. Clips with 100 centerlines for both through-the-board and surface mounting of hybrids, and low profile clips with . 050 centerlines for surface mounting LCCs are available. Both can be provided with an optional third solder preform for mounting clips to the devices and to the surface of the PCB with one reflow.

Fewer assembly steps. Dramatic reduction in rework. Lower overall costs. Increased product reliability. These are a few of the advantages of the new NAS "claw" grip solder and flux bearing edge clips - the only interconnects that assure 100\% solderability.

For complete details and our new catalog, call or write NAS Electronics, 381 Park Street, Hackensack, NJ 07602. Tel. 201/343-3156. TWX: 710-582-3048. FAX: 201/343-4883.
company

Direct contact between solder preforms and conductor pads produces wiping action as clips are attached.

Interference fit holds clips firmly in position for reflow. Top and bottom preforms are reflowed in one operation.

Precise amount of solder and the shape of the "claw" grip control solder flow without a solder stop. This assures perfect mechanical and electrical bonding without wicking or bridging.

Unretouched Macro Photography.

Tango's powerful lineup. Build your personal CAE/CAD workstation with Tango's start-to-finish design tools. Tango-Schematic, ${ }^{\text {TM }}$ just $\$ 495$, includes over 8,000 SEDCO ${ }^{\text {TM }}$ parts, the largest library on the PC. Experience Tango-PLD's powerful top-down approach to logic design for only $\$ 495$. Add interactive logic simulation for up to 40,000 gates with Susie. ${ }^{\text {TM }}$

Starting at just $\$ 595$, our popular PCB layout tools have designed tens of thousands of boards. There's Tango-PCB PLUS, ${ }^{\text {TM }}$ for complex designs and Tango-PCB, ${ }^{T M}$ a comprehensive, yet economical program for less demanding requirements. Tango designers have three fast and efficient autorouting options: the high-performance Tango-Route; ${ }^{\mathrm{TM}}$ multi-grid, multilayer Tango-Route PLUS; ${ }^{\text {TM }}$ and Superoute, ${ }^{\text {TM }}$ the industry-leading rip-up and re-try, 100% completion autorouter. Finally, there's the SMT Plus Library ${ }^{\text {TM }}$ supplying proven land patterns for sophisticated SMT designs.

Tango extras at no extra charge.

Your investment in Tango software includes clear, concise documentation; responsive technical support, free by phone or fax; first year of updates free, with affordable annual renewals; our 24-hour Tango BBS; directories of service bureaus and design consultants; a quarterly newsletter; and our moneyback guarantee. Give us a call to discuss your design requirements. You'll find our customer service is as friendly as our software.

COMPONENTS \& POWER SUPPLIES

Fiber-Optic Connectors

- Have 0.5-dB insertion loss
- Accommodate single- or multimode fibers
You can terminate these SC fiberoptic connectors either in the factory or in the field. They feature a maximum insertion loss of 0.5 dB . The system includes connectors, coupling bushings, 100% pretested cable assemblies, pigtails, and walloutlet plates. The units feature a pre-radiused ferrule, which allows you to polish the fiber end without using expensive equipment. The connectors accommodate either single mode or multimode fibers and are available in single- or dualposition versions. The units conform to the NTT SC design. Coupling receptacles are available to mate SC to SC, SC to ST, and SC to FC connectors. Single-mode version, $\$ 13.49 /$ kit (500).

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752.

Circle No. 374

Hybrid Voltmeters

- Have $10^{9} \Omega$ input impedance
- Operate from a single supply DMH-30 Series $31 / 2$-digit hybrid voltmeters are available in commercial (PC) grade and extended temperature (MM) versions. Both designs feature full differential inputs with bipolar full-scale ranges of $\pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}$, and $\pm 20 \mathrm{~V}$ dc. The high $10^{9} \Omega$ input impedance minimizes circuit loading. The meters operate from a 5 V supply. Other features include user-selectable decimal-point placement, full autozero, auto-polarity changeover, underrange and overrange indication, a standby mode, test pin (all digits), external reference input for ratiometric measurements, 5 V dc output pin for powering external circuitry, and a 1.23 V reference output pin. Accuracy is 0.05%, and CMRR over
de to 60 Hz measures 86 dB . The operating range is 0 to $60^{\circ} \mathrm{C}$ and -40 to $+75^{\circ} \mathrm{C}$ for PC and MM units, respectively. DMH-PC, \$84; DMH-MM, $\$ 132$.

Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 3393000. FAX (508) 339-6356. TLX 174388.

Circle No. 375

DC/DC Converters

- Deliver 25 W
- Have an 82% efficiency

Housed in a $3 \times 3 \times 0.4$-in. package, NFC25 Series de/dc converters provide 5 and $\pm 12 \mathrm{~V}$ outputs and deliver $25 \mathrm{~W}-7 \mathrm{~W} / \mathrm{in}^{3}$. The units have an 82% efficiency. A simple TTL signal can shut the outputs. An internal pi filter, combined with an external capacitor, attenuates input line noise below VDE0871 Limit B

levels. Internal short-circuit protection guards against damage from load shorts, and overvoltage protection prevents damage from converter failure. The units operate at full power over a -25 to $+70^{\circ} \mathrm{C}$ range. $\$ 77$ (50).
Computer Products Inc, 3785 Spinnaker Ct, Fremont, CA 94538. Phone (415) 657-6700. FAX (415) 683-6452.

Circle No. 376

OrCAD presents

The limits are gone

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.
More designs from more designers

Surface-Mount Trimmer

- Saves pc-board space
- Resistance ranges to $1 M \Omega$

The Model 3363 surface-mount trimmer satisfies both EIA and EIAJ standard board footprint and packaging requirements. Measuring only $3-\mathrm{mm}$ square, the device saves valuable pc-board space and is compatible with pick and place equipment. Standard resistance values range from 100Ω to $1 \mathrm{M} \Omega$, and maximum contact-resistance
variation measures 5%. The trimmer has a special coating over the resistor element to protect it from harsh fluxes, soldering, and cleaning environments. The coating is permanent and requires no expensive secondary removal operations. The trimmer is packaged in an 8mm embossed tape. From $\$ 0.395$.

Bourns Inc, 1200 Columbia Ave, Riverside, CA 92507. Phone (714) 781-5500. TLX 676423.

Circle No. 377

Color-Recognition Sensor

- Can memorize eight colors
- Has 2-in. sensing distance Capable of memorizing as many as eight colors, the CRS 300/301 sensor uses the total 400 - to $800-\mathrm{nm}$ visible light spectrum to characterize colors, not just color marks. You can place the fiber-optic sensing tip 0.1 to 2 in . from the target. In addi-

AUDIO PRO

Introducing...CD quality, stereo high fidelity, digital audio you record and playback on your PC-AT/286/ 386/Model 30 or compatíble.

Featuring...real time direct to disk data transfer... 16 -bit resolution... 20 Hz to 20 kHz audio response... 0.005% THD... 6.25 to 50 kHz programmable sample rate...92dB dynamic range...90db s / n... digital input ... 4 to 1 ADPCM compression.

Use for digital audio recording, editing, mastering and transmission in broadcasting, entertainment systems, film production, audio/visual presentations and interactive CDI/DVI systems.

If you're an audiophile with microcomputer resources call 1-800-338-4231 (ex. CA.) for details on our Audio Pro...the Series 2/Model SX-10.

tion to the eight outputs for color definition, the unit has an output for self-diagnostics. The sensor output is either a sinking or sourcing signal (10.5 to 30 V dc). You can configure the output simply by using onboard switches or menu-driven software. The unit features an RS232 C or RS-422 connection. A 10.5 to $30 \mathrm{~V}, 47 \mathrm{~W}$ power supply provides sensor operating power. Reversepolarity protection is standard. Operating range spans 0 to $40^{\circ} \mathrm{C}$. The rugged aluminum enclosure provides NEMA $1,3,4,12,13$, IP65, and IP67 protection. $\$ 8000$.

Micro Switch, 11 W Spring St, Freeport, IL 61032. Phone (815) 235-6600.

Circle No. 378

Switching Power Supplies

- Feature user-adjustable wide-range outputs
- Deliver 400 W of power

Series 2 400W switch-mode power supplies are available in single- and multiple-output versions. Singleoutput units deliver 5 V at 50 A . Multiple-output models have three or four outputs and provide a $5 \mathrm{~V} /$ 50 A main output and $12 \mathrm{~V} / 15 \mathrm{~A}, 12 \mathrm{~V} /$ $6 \mathrm{~A}, 5 \mathrm{~V} / 6 \mathrm{~A}$ or $24 \mathrm{~V} / 3.5 \mathrm{~A}$ auxiliary outputs. User-adjustable output models are also available. These

Text continued on pg 214

68040 VME 33 MHz 0-Wait-State

Your Vision of High Performance at an Affordable Price is Now Real!

With the
OB68K/VME40 ${ }^{\text {™ }}$ you
no longer have to compromise on performance or price in your VME embedded control application. We start by giving you a very basic board which includes:

- $25-33 \mathrm{MHz} 68040$.
- (8) 28-pin RAM sockets for up to 256 KB of dual access O -wait-state static RAM (32 KB standard).
- (8) 32-pin sockets for up to 8 MB of ROM.
- (2) asynch RS232C serial ports.
- (16) lines of parallel I/O.

You can configure it with just the right amount of RAM and ROM you need. And you do not have to sacrifice features. Our Omnimodule ${ }^{\text {TIM }}$ modular I/O connector allows you to implement a wide variety of serial, parallel, SCSI, GPIB, analog, digital and other I/O options - all fitting into one slot. Other features include:

- VTC's VIC068 VME interface chip with arbiter, inter-
rupter, mailbox and more.
- Terminal monitorl debugger/diagnostic firmware program included.
- 2 year limited warranty.
- Worldwide availability.

All of this gives you a high performance board at a price you can afford with the features you need.

To learn more about our OB68K/VME40 contact our Marketing Manager, Pete Czuchra at $1-800-638$ -
5022 or (708) 231-6880 in Illinois.

Our VME and Multibus Product Lines Stretch for Over 124 Miles

That's 854,738 uniquely configured boards to choose from and all from Omnibyte. You can choose from different processor types, RAM sizes, I/O options and other features to put together a board that gives you the features you need. With Omnibyte's quality, selection and 2 year limited warranty, you can count on finding exactly what your looking for.
Here are just a few of the boards we offer:

OB68K/VME20 ${ }^{\text {™ }}$ VME SINGLE BOARD COMPUTER	OB68K/VSBC20™ VME SINGLE BOARD COMPUTER
- 6802016.66 - 33 MHz CPU - (8) 28 -pin RAM sockets for up to 265 KB of dual-access zero-wait-statestatic RAM - (8) 32 -pin sockets for up to 8 MB of ROM, (4) sockets may be EEPROM - (2) RS232C asynch serial ports - (16) lines of parallel I/O - (1) (OMNIMODULE socket for a wide variety of I/O (i.e. 2 serial ports, 20 parallel lines) - VIC068 VME Interface Controller	- $6802016-33 \mathrm{MHz}$, CPU - 1-4 MB of dual-access, zero-wait-state DRAM with parity -68882 (optional) - (2) 32-pin ROM sockets (2) RS232C serial ports - (2) 8-bit parallel ports - (1) OMNIMODULE socket for a wide variety of I/O (i.e. 2 serial ports, 20 parallel lines) - 4 level bus arbiter (optional)
OB68K/VSBCI ${ }^{\text {w }}$ VME SINGLE BOARD COMPUTER - $6800012.5 \mathrm{MHz} 16 / 32$ bit CPU - 512 KB of dual-access, zero-wait-state DRAM with parity (4) 28-pin ROM sockets - (3) 16 -bit counter/timers - (2) Omnimodule ${ }^{\text {Tw }}$ I/O sockets for a wide variety of I/O (i.e. 4 serial ports, 40 parallel lines) - DMA controller (optional) - VME bus interrupt generator (optional) - Optional 4 level bus arbiter - Two year limited warranty	OB68K/VME1 ${ }^{\text {TM }}$ VME SINGLE BOARD COMPUTER - 12.5 MHz 68000 CPU - (8) pairs of 28 -pin sockets for RAM or ROM - (2) RS-232C serial ports - (2) 8 -bit parallel I/O ports - System Controller
OB68K/VIO ${ }^{\text {™ }}$ VME UNIVERSAL I/O BOARD (4) Omnimodule $1 / \mathrm{O}$ sockets for a wide variety of I/O (i.e. 8 serial ports, 80 parallel lines) - One (1) interrupt per Omnimodule, two (2) optional	OB68K/MSBC30m MULTIBUS I SINGLE BOARD COMPUTER - 25-33 MHz 68030 CPU - 4-32 MB dual access, zero-wait-state DRAM w/parity - 68882 Math Co-Processor (optional) - 2 channel DMA controller (optional) - (2) RS232c synclasync serial ports - (2) 8-bit parallel ports - (1) OMNIMODULE ${ }^{\text {ww }}$ socket - (4) 32-pin ROM sockets

All our different configurations are built to give you the best in quality. And they are backed by our famous 2 year limited warranty. For more information call Pete Czuchra today. He'll help you pick the card you need.

It takes experience to handle both limpness and flexibility.

Small, lightweight, flexible--these are the requirements we meet often. But "limp as a noodle?" An appetizing challenge.

Texas Instruments came to us for a complete interconnect system for a gyroscope controlled guidance system. Application-engineered to extremely demanding weight and space requirements, this dynamic system also must endure constant flexing.

At Precision Interconnect, we're working every day to meet requirements like these. We manufacture microminiature cables with conductors as small as 42 AWG and terminate them to our standard line of Micro-D and linear strip connectors with . $050^{\prime \prime}(1.27 \mathrm{~mm})$ centerline spacing. Custom and nano strip connectors with . 025 "(. 64 mm) spacing can also be assembled.

Our expertise, increasing with each unique problem we solve, ensures that all critical components of your interconnect system are designed in, built in, and tested. We begin by discussing your specific interconnect system problems.

Maybe over lunch?

[^13]IT
PRECISION INTERCONNECT

16640 S.W. 72nd Avenue Portland, OR 97224 (503)620-9400

units have a $5 \mathrm{~V} / 50 \mathrm{~A}$ main output and auxiliary outputs of 12 to 15 V at $15 \mathrm{~A}, 5$ to 15 V at $6 \mathrm{~A}, 2$ to 6 V at 6 A , and 12 to 24 V at 3.5 A . Standard features include an internal dc fan, a $120 / 240 \mathrm{~V}$ ac strappable input, an internal EMI filter, an input powerfail signal, a remote sense on outputs of 10 A or more, overvoltage
protection on all outputs, overtemperature shutdown, and soft start. All units comply with UL, FCC, CSA, and TUV safety and EMI specifications. From $\$ 362$ to $\$ 491$.

Qualidyne Systems Inc, 3055 Del Sol Blvd, San Diego, CA 92154. Phone (619) 575-1100. FAX (619) 429-1011. Circle No. 379

Eliminate Overseas Delays with Conductive Rubber SwitchPads from ITT' Schadow, USA

Assignment:

- Become the leading onshore source for Conductive Rubber SwitchPads.
- Improve quality and turnaround on prototypes and production of SwitchPads.

Call Today For Free Samples

(612) 934-4400

Result:

- Faster tooling/prototypes
- Custom designs and hybrid capabilities
- Multiple actuation forces, keytop sizes and shapes
- Dual durometer rubber keytops

ITT Schadow, Inc. 8081 Wallace Road Eden Prairie, MN 55344 Phone: (612) 934-4400

Board-Mount Transformers

- Have a dual-bobbin construction
- Satisfy UL requirements

Class 2 Series transformers are available in 12 pc-board and 5 chas-sis-mount versions. They feature dual-bobbin construction and a tailored insulating shroud. The transformers satisfy UL 1585 Class 2 requirements and comply with CSA safety and performance standards. The transformers are intended for 2.5 to 80 V applications and feature 4000 V rms primary and secondary isolation. The units are available in inherently limited or noninherently limited designs. The dual-bobbin design reduces capacitance and eliminates the need for an electrostatic shield. $\$ 6.75$ to $\$ 18.94$ (10).

Signal Transformer, 500 Bayview Ave, Inwood, NY 11696. Phone (516) 239-5777. FAX (516) 239-7208.

Circle No. 380

PC-Board Connectors

- Feature standoffs to facilitate cleaning operations
- Have gold plating

Series 2400 pin strips feature a smooth bullet nose to minimize damage to sockets during insertion. Solder standoffs keep the connectors above the board to facilitate cleaning operations. The connectors are available in two lengths in single 40-contact-max or double 80 -contact-max rows in straight or right-angle versions. You can break the units to match specific application needs. The units are side-byside and end-to-end stackable and feature a choice of either 10- or 30 $\mu \mathrm{in}$. gold plating. An optional retention feature holds the connectors in place in demanding applications. The pin strips are also available in plastic-tube packaging to accommodate robotic assembly systems. $\$ 0.03 /$ pin (1000).

3M, Electronic Products Div, Box 2963, Austin, TX 78769. Phone (800) 225-5373; in TX, (512) 9843897.

Circle No. 381

AmericanTakes ANewApproach To Tokyo. .

THE CAD T.E.A.M.
BOSTON • NEW YORK • TORONTO - ORLANDO • VANCOUVER • SAN FRANCISCO - L.A.

For the first time! DC-DC converters that really check out.

Insist on Interpoint.

It's official! The first high-density, low-profile, thick-film hybrid DC-DC converters that let you check off all the MIL-STD-883C, Method 5008, Class B requirements.

Work on your design, not the exceptions list. If you've ever had to justify a non-compliant part for a MIL-STD-883 design, you know about red tape. Now you can forget it. Interpoint's new MHF/883 DC-DC converters are fully compliant to MIL-STD-883C. No exceptions. No waivers. No apologies.

Premium performance. MHF/883 converters offer up to 12-watts output power, 84% efficiency, a 16 to 40 Vdc input range, single and dual outputs, constant frequency switching, and 10 mV typical output regulation. And they're small enough ($1.5 \times 1.1 \times 0.36$ inches) to leave plenty of room for the rest of your design.

More to come. The MHF/883 converters are the first in a series of compliant power products from Interpointthe worldwide leader in high-reliability DC-DC converters and EMI filters.

Order our Prototyping Kit and see for yourself. You'll get a low-cost converter electrically equivalent to the compliant MHF/883-it's perfect for prototypes or design evaluation. Plus: our FREE Guide to Designing Distributed Power Systems, complete performance specifications and an MTBF Analysis Booklet. Call now: 1-800-822-8782, ext. 229. In Europe: 44-276-26832.

LITERATURE

Data Book Deals With GaAs Integrated Circuits

The 1991 GaAs IC Data Book and Designer's Guide describes GaAs ICs, including the Picologic, NanoRAM, and NanoROM families; fi-ber-optic communications products; and SC10000 standard cell arrays. Also included is information about prototyping products, reliability, testing, and packaging. The publication describes seven new IC products. Also mentioned are chip sets for direct digital synthesis, PLL frequency synthesis, an $800-\mathrm{MHz}$ pin driver for ATE (automatic test equipment) pin electronics applications, and a general-purpose line of high-speed digital logic functions. The designer's guide offers 14 application notes, including the use of the vendor's high-speed ICs, and information about thermal management and PN code generation.

Gigabit Logic, 1908 Oak Terrace Lane, Newbury Park, CA 91320.

Circle No. 366

Data Acquisition and Image Processing

Two handbooks provide comprehensive coverage of the vendor's products. The New Product Handbook describes data-acquisition, im-age-processing, and chromatogra-
phy products for IBM PC and compatible computers, IBM PS/2, Macintosh II, and other microcomputers. This $275-\mathrm{pg}$ catalog presents more than 300 products with data sheets, summary tables, tutorials, prices, and ordering information. The publication includes applications for hardware, software, and accessories for specific tasks. Colorcoded tabs provide a quick reference to the products you're looking for. The Source Handbook lists the compatible software packages for each product in the product handbook. It also serves as a directory of worldwide hardware and services that are compatible with the vendor's products.

Data Translation, 100 Locke Dr, Marlboro, MA 01752.

Circle No. 367

How To Expand Generator Capability

The application guide, More Function Generator Capability with Arbitrary Waveforms, explains how to recreate waveforms captured with a digital storage oscilloscope on the PM5138 arbitrary waveform/function generator without any programming. Sample applications also show how to use the PM 3375. Other applications include bar-code reader testing, power-step-supply response, and testing a touch-tone DTMF signal.
John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206.

Circle No. 368

Brochure Features DSP Solutions

This brochure covers the vendor's digital signal-processing products. The publication presents software for the product line, DSP processors for IBM PC and VME computers, and the vendor's analog I/O boards and systems.

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Circle No. 369

Article Discusses Testing Signal Spectrums

The technical note, Automatic Testing of Wideband Signal Spectrums, talks about the use of the vendor's 3052 DSP systems to test and compare with user-supplied limits as high as 5000 signal spectrums/sec. The publication gives an example of a program for setting spectral limits. The $6-\mathrm{pg}$ note also mentions high-speed spectral testing and its value for applications where much testing is done in a short time.
Tektronix Federal Systems Inc, Box 4490, MS 38-386, Beaverton, OR 97076.

Circle No. 370

IEEE-488 Hardware And Software Products

This 100-pg catalog lists IEEE-488 hardware and software products for test and measurement, research and development, quality assurance, and production applications. The publication features at least 70 products for IEEE test applications including several new products, such as the Power488 IEEE-488.2 controller and the Extender488/HS bus extender. The six product sections cover IBM PC/AT/386 and Micro Channel IEEE products; Macintosh IEEE products; Sun, DEC, and Next Workstation IEEE products; Serial/IEEE converters and

The power-user's guide to the new HP48SX.

Serial interface to PCor Mac.
 features. With over 2100 built-in functions, for starters, what could you expect?
To grasp its true power, get your hands on one at your nearest HP retailer.

HP calculators. The best for your success.

When it comes to analog design, Intergraph gives you the missing pieces.

Look closely at most analog design systems and you'll find something missing. Tools that don't exist.

With Intergraph's Analog Engineer Series, there are no missing pieces.

For starters, our library with over 3,000 models gives you parts the competition forgot. A balanced modulator/demodulator. An electronic attenuator. A two-stage wideband video amplifier. And hundreds more. Also, our custom modeling service provides user-specific models.

Of course, this extensive library and modeling service are just some of the many advanced tools of our analog package.

Tools that let you reduce pole/zero analysis to mere minutes. Compare complex waveforms with real-world signals. Track circuits using actual test instruments or computeranimated replicas. Generate Smith and polar charts for twoport analysis. Synthesize filter circuit topologies such as Butterworth, Chebyshev, elliptical, highpass, bandpass, and

bandstop. Verify complex mixed-mode systems. The list goes on. This comprehensive set of features will help you make your market window. Frankly, when it comes to analog design, we help you do it all. From concept to production.

What's more, with the broadest available range of integrated software from a single vendor - plus engineering workstations, network servers, and peripherals Intergraph's total solution gives you everything you need to implement an integrated design system.

For more information, call us today. United States: 800-826-3515; Europe: 31-2503-66333; Asia Pacific area: 852-8661966.

Everywhere you look.
controllers; analog and digital I/O converters to IEEE; and IEEE Bus analyzers, extenders, buffers, converters, and expanders. Block diagrams, specifications, programming examples, and pricing round out the publication. Recent additions to the IEEE-488 Technical Review include tutorials for the IEEE-488.2/SCPI and the SCSI.

IOtech, 25971 Cannon Rd, Cleveland, OH $44146 . \quad$ Circle No. 371

Note Explains
 Waveform Simulation

Simulating Disk Drive Waveforms with LeCroy's Easywave Software and 9100 Series Arbitrary Function Generator (AN-06), explains how the software and generator solve waveform-generation problems. The note discusses creating simulated waveforms using waveform editing techniques and sequence files. Examples of complex operations, such as time-shifting a segment of waveform captured on a vendor DSO, are given in a handson, step-by-step presentation.

LeCroy, 700 Chestnut Ridge Rd, Chestnut Ridge, NY 10977.

Circle No. 372

Publication Presents Memory Products

This $380-\mathrm{pg}$ data book provides complete data on the vendor's standard memory products, including an expanded line of static RAMs, SRAM modules for commercial ap-
plications, and a preview of upcoming products. A summary lists part numbers with specifications such as speeds, current consumption, and package options. It also lists military products from the Defense Electronics Supply Center's Standardized Military Drawing Program and defines the vendor's reli-
ability program. Indices to parts are arranged according to part numbers and function/density. Other features include a section of detailed package drawings and application notes.

Electronic Designs Inc, 42 South St, Hopkinton, MA 01748.

Circle No. 373

Programmable Linear Phose Filters for A/D Prefilitering Applications

848DOW Series Combines Constant Delay of a Bessel Filter With The Sharp Attenuation of a Butterworth Filter.

Features:

- 8 pole, 6 zero linear phase lowpass filters
- Digitally programmable corner frequency
- 8 bit (256:1) tuning ratio
- Internally latched control lines to store frequency selection data
- Linear phase response to minimize phase distortion
- Sharp roll-off for anti-aliasing
- Plug in, ready to use, fully finished, filter module
- Five frequency ranges to 51.2 kHz

Other Filter Products available:

- Elliptic • Programmable • Fixed Frequency
- Instrumentation •Custom Designs

FRETUEกㄴㄴ DEVICES

25 Locust Street Haverhill, MA 01830 (508) 374-0761

New World Record VMEbus Data Dash!

VMIC's new NETWORKZ ${ }^{\text {TM }}$ is a high speed, high performance, 16 chassis multidrop VME- to-VME parallel network that features data transfers@20 Mbytes/s*, reflective memory, 3 interrupts, and a price that won't overload your budget!

If your existing VMEbus network is too slow to keep up with your growing demands NETWORKZ ${ }^{\mathrm{TM}}$ is the fastest and most simple solution! In fact, newNETWORKZ ${ }^{\text {TM }}$ is up to 50 times faster than comparable computer products. You don't have to be able to read minds to know the best choice for your VME-to-VME network needs. VMIC's new NETWORKZ ${ }^{\text {TM }}$ will enable you to cross the finish line in world class, record breaking real time!

- 2 Year Warranty • 24 Hour Customer Service Hot Line • 20 Mbytes/s Data Transfers (*5 foot cable) • Multidrop Capability (up to 16 chassis) • No Processor Overhead or Involvement in Network Operation • Differential Line Drivers \& Receivers provide $\pm 7 \mathrm{~V}$ of Noise Immunity • A24:A32:D32:D16:D8 Memory Access • A16:A24:A32:D8 Status \& Control Access • Single 6 U Board

New NETWORKZ ${ }^{\text {TM }}$ transfers data by writing to on-board global RAM. Data written into the 1 Mbyte of reflective memory is broadcast to all nodes on the network without further involvement of the sending or receiving nodes. Data transfers from memory locations on sending nodes to corresponding memory locations on receiving nodes.

DEC, Delta Series and Night Hawk are registered trademarks of their respective companies. Come See Us At Buscon Booth \#739

CIRCLE NO. 171

Now Available for Immediate Shipment and Backed by a 100% Satisfaction Guarantee. Call Our TOLL-FREE Hotline Today!

In addition to transferring data between nodes, NETWORKZ ${ }^{\text {TM }}$ will allow any processor in any chassis to generate a VMEbus interrupt on any other chassis. Three interrupts are available. The user may define function, priority, and vector for each interrupt. Any processor can generate an interrupt on any other VMEbus on the network. In addition, any processor on the network can generate an interrupt on all VMEbuses on the network simultaneously. It's time you network in world class, record breaking real time - call VMIC toll-free and see how fast we are!

$$
1-800-322-3616
$$

VMIC

VIE MCROOSSTEMS NTEEPATONAL CORPORATON 12090 South Memorial Parkway Huntsville, Alabama 35803-3308 (205)880-0444 FAX(205)882-0859

VMIC products are internationally represented by Distributors throughout the world. Call or FAX VMIC for complete information.

EDN PRODUCT MART

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

VOLTAGE SELECTABLE INTERNATIONAL SYSTEM

Z-UNE TPC 884
The TPC, a voltage-selectable power distribution and control system, can have either 120 or 240 volt input and output. Designed with IEC-, UL-, CSA- and VDE- approved components, operating up to 16 amps in Europe and 20 amps in North America. Size: $19.0^{\prime \prime} \times 1.75^{\prime \prime} \times 7.0^{\prime \prime}$. EMI/RFI filtering, spike/surge suppression and overload curcuit breaker protection are standard. Remote on/off is optional

Pulizzi Engineering, Inc. 3260 S. Susan St.,
Santa Ana, CA 92714
714/540-4229 FAX: 714/641-9062

CIRCLE NO. 325

16 MHz 80C186 / C187 SINGLE BOARD COMPUTER
R.L.C. continues to offer the latest technology on the STD Bus. Our newest 16 -bit Single Board Computer offers a CMOS 80C186 and new CMOS 80 C 187 Numeric Co-Processor. OnBoard functions include MEMORY, SERIAL PORT, REAL TIME CLOCK, TIMERS, DMA, INTERRUPT CONTROLLER, RTC and RAM BATTERY BACKUP, WATCH-DOG TIMER and much more. Available in speeds up to 16 MHz . For more information and technical assistance please call Robert Coomer at
R.L.C. ENTERPRISES

4800 Templeton Road, Atascadero, CA 93422
(805) 466-9717

CIRCLE NO. 326

Protel Easytrax 2

Outstanding value in Printed Circuit Board/CAD for your Macintosh and PC Protel Easyrax 2 is a new, low cost design package for PC and Macintosh users that includes everything required to produce professional quality Printed Circuit Board artwork Our easy-to-learn menu-driven design system breaks the 'expert barrier'you'll be designing in minutes, not hours. Our comprechensive tutorials guide you through the program's extensive features that take the tedium out of board layou - Comprechensive library of Through-hole device 0 . Gerber photoploting and N / C drill tape \ldots … - On-the-fly library components creation - Intelligent Pad to Pad autorouting

Switchable Metric/Imperial gric - Auto-panning - Poutscript "printing Powerful user-definable Macros Independent print/plot program Multi-layer boards of up to 32×32 inches At Protel, we offer free technical support. 24-hour BBS, and 30-day money back guarantec. Prices start at

Free Evaluation Package

$\$ 450$ Toll Free: 800-544-4186

Protel Tecbnology, Inc
50 Airport Parkway, San Jose, CA 95110 Tel: 408-437-7771 Fax: 408-437-4913

MacAC II

Professional Analog Circuit Simulation \$595.00

MacAC II integrates a full featured schematic editor, parts library, powerful data manipulation and plotting, and SPICE circuit simulation.

MacAC II was written on and for the Macintosh computer It takes full advantage of it's powerful graphical user interface.

Call (206) 367-4188 San Juan Software Company For FREE intormation P.O. Box 27620
packet Seattle, WA 98125-2620

CIRCLE NO. 327
Analog Circuit Simulation
SPICE FOR THE PC (XT, AT, 386, 486)

P.O. Box 710 Tele (213) 833-0710 intusoft ${ }_{90733-0710}^{\text {San Pedro, CA }}$ FAX (213) 833-9658

Wave Form 20 MHz -32K \$1290

The WSB-100 Wave Form Synthesizer Board from Quatech has the best set of numbers in the market. With speed to 20 MHz and a 32 K memory at $\$ 1290$, it's making waves in more ways than one. The WSB-100 is also a star performer as a digital pulse/word generator with the optional digital module. Call for our free
PC Interface Handbook 1-800-553-1170

T CUATECH

662 Wolf Ledges Parkway
CIRCLE NO. 331

SERIES IH/IHA HIGH
FREQUENCY CURRENT SENSORS
Low-cost, high-frequency current sensors read from dc to 200 kHz .
The IH/IHA series features high frequency, fast response, versatile mounting...either PC board or bulkhead, low cost, low power dissipation and com pact size.
The series comprises six models covering current ranges of $0-25 \mathrm{~A}, 0-100 \mathrm{~A}$ and $0-150 \mathrm{~A}$. they have millivolt outputs or amplified outputs. Response time of less that $1 \mu \mathrm{~s}$, from 10% to 90% F.S.

F.W. BELL, INC.

6120 Hanging Moss Rd.. Orlando, FL. 32807
Phone: 407-678-6900, Fax: 470-677-5765,
CIRCLE NO. 334
GOMPLETE DATA AGQUISITION CARD FOR. IBM PC/XT/AT

MCP-550 I/O MASTER CARD FEATURES - High performance, low cost data acquisition card with multi-functions: A/D, D/A, D/I, D/O

- Maximum sampling rate of 100,000 samples $/ \mathrm{sec}$ with option or 60,000 samples $/ \mathrm{sec}$ (standard) - Industry standard 12 -bit resolution
- 16 single ended or 8 differential A/D channels - Two 12 -bit monolithic multiplying D/A channels - TTL compatible $24 \mathrm{D} / \mathrm{I}$ \& D/O channels
- Switch selectable analog input range: $0-10 \mathrm{~V}$ or $+10 \mathrm{~V}$
- Can be used with MCE-730: a versatile 16 channel analog input multiplexing and signal conditioning cand
- Complete support of vendor application S/Ws such as Labtech Notebook, ASYST.

764 San Aleso Ave. Sunnyvale, CA 94086 TEL (408) 745-7974 FAX (408) 745-1401

CIRCLE NO. 337

RS-422/RS-485 Boards for AT, Micro Channel

RS-422/RS-485 asynchronous serial communication boards from Quatech available in 1 to 4 ports for PC-AT and compatibles and 1 to 4 ports for PS/2 Micro Channel. Call for our free
PC Interface Handbook: 1-800-553-1170

T CUATECH

662 Wolf Ledges Parkway Akron. OH 44311

PC-AT, Micro Channel, and PS/2 are trademarks or registered trademarks of IBM Corp.

CIRCLE NO. 332

PC/AT ${ }^{\text {M }}$ COMPATIBILITY ON MULTIBUS
In 1989 our MAT286 ${ }^{\text {TM }}$ SBC brought PC-DOS to Multibus Since then no competior has come close in terms of features, price, or technical support. We've added capabilities, such as 8 megabytes of onboard EPROM capacity, MATXSSD Solid-State Disk software, EMS 4.0 , and low power CMOS components. Now we are announcing our new MATXSYSIO2 daughter-card with 16 bit VGA and LCD flat-panel interfaces, $1-1$ interleave MFM/RLL St506 hard-diskflioppy disk contrilier, and a PC/AT Bus shor-card adaptor. And, yes, we are working on MA 386, in 386 -based Mutibus AT that will be compatible with the 286

Phone (408) 253-0250 for more information. Single Board Solutions, Inc.
20045 Stevens Creek Blvd, Cupertino, CA 95014 PC/AT ${ }^{T M}$ IBM

CIRCLE NO. 335
UNIVERSAL PROGRAMMER

- Programs PLD, E(E)PROM (up to 4MB), Bipolar PROM \& Microcontroller
- Tests TTL/CMOS logic \& D/S ram
- Reliable and fast programming with Normal, Intelli gent, Interactive, Quick pulse algorithms
- Accepts JEDEC, INTEL extended HEX, Motorola S

Tektronix HEX, Binary formats

- Manages 8, 16, and 32-bit word split
- Supports most compilers in JEDEC format
- Software controlled 40 -pin universal device programmer
- Interfaces with IBM PC/XT/AT/386 or compatibles - High speed parallel interface card to PC

XELTEK
764 San Aleso Ave. Sunnyvale, CA 94086 TEL (408) 745-7974 FAX (408) 745-1401

CIRCLE NO. 338

SUCCESSFUL SURFACE

 MOUNT POWER DEPENDS

HERE'S WHY:

Etched Coppe
Circuil Layer

THERMAL CLAD is more thermally effective than FR4, PCB material. Devices will dissipate up to fou times more power. (TR $1{ }^{\circ} \mathrm{C} /$ Watt)

THERMAL CLAD metal base plate is tougher than ceramic. No breakage and larger panel sizes

THERMAL CLAD increases your design flexibility Call Bergquist today with your custom application for THERMAL CLAD Toll Free: 800-347-4572

EERTDUIST
5300 Edina Industrial Blvd., Minneapolis, MN 55435 Tel: (612) 835-2322 • Fax: (612) 835-4156

Combine Your Product Mart Ads

In EDN's Magazine and News Editions for higher impact and a lower rate.

CIRCLE NO. 336

> MULTI FUNCTIONS IN ONE INSTRUMENT

DOA-141 FEATURES

- Frequency counter - Range: $1 \mathrm{hz}-100 \mathrm{Mhz} \cdot$ Sensitivity: $1 \mathrm{hz}-60 \mathrm{Mhz}(15 \mathrm{mV}) 60 \mathrm{Mhz}-100 \mathrm{Mhz}$ $(25 \mathrm{mV}) \cdot$ Accuracy: $\pm(1 \mathrm{hz}+1$ dgt + Time base er ror) - Display: 8 digits LED w/ units ammunciator
- Function generator - Frequency: $0.02 \mathrm{hz}-2 \mathrm{Mhz}$ - Output waveform: Sine, Square, Triangle, Skewed sine, Ramp, Pulse, TTL level square - Output: 0.1 $\mathrm{Vpp}-20 \mathrm{~V} p \mathrm{P}$ - Output impedence: $50 \Omega / 600 \Omega$
- Digital multimeter - 3.5 digit LCD display - Auto ranging (DCV, ACV, Ω, DCA, ACA) • Basic accuracy: $\pm(0.5 \%+2$ dgts $)$
- Power supply • Triple output, Ripple, Load regulation - Full over current protection

XELTEK

64 San Aleso Ave. TEL (408) 745-7974 FAX (408) 745-1401

CIRCLE NO. 339

Thermal-Reliability Analysis
for
Power Supplies and
Electronic Boards
BETAsoft
on SUN Workstation and PC prices start from \$1995

* 3-Dimensional Thermal Modeling. * with MIL-HDBK-217E Reliability. * Menu-driven, 2,500 component library. Interfaces to MENTOR, VALID, P-Cad, PADS-PCB, Auto-CAD, Cad-Star, Maxi/PC, Tango, OrCad etc. Also to RPP and RELEX. (Workstation CAD Resalers Welcome)
Dynamic Soft Analysis, Inc.
Tel. 412-781-3016 Fax 412-781-3098

CIRCLE NO. 340

Analog Designers...

COMTRAN ${ }^{\circ}$ is

Now On

 The 386- COMTRAN* is fast. Each plot here was generated on screen in 6 seconds. Optimized in under 3 min . with 25 MHz 386/387 (or HP 310). - Interactive, intuitive AC circuit analysis with component entry, editing, analysis, optimization, and user scaled Linear/Log graphics in one program.
- Can create, capture and analyze time domain data, then use it to stimulate your circuit and plot the result in either time or frequency domain.
- Modular-Ready-to-use packages start at under $\$ 1000$.

COMTRAN ${ }^{\circledR}$ Integrated Software

A Division of Jensen Transformers, Inc. 10735 BURBANK BLVD, N. HOLLYWOOD, CA 91601 FAX (818) 763-4574 PHONE (213) 876-0059 COMTRAN ${ }^{\oplus}$ Jensen Transformers, inc. $\bullet 386$ 'm Intel Corporation CIRCLE NO. 343

ROM Turbo or Microsoft-C

C_thru_ROM is the complete fullfeatured ROM development kit you need to ROM your application. C_thru_ROM contains a CodeView-like remote debugger and the Turbo Debugger interface for debugging on your target system. It also contains a powerful 80×86 locator, startup code, and a ROMable library in source.
Call 1 (800) 221-6630 Today, and get full details on C_thru_ROM or ROM-DOS for embedded system.

Datalight

17455-68th Avenue N. E. Suite \# 304 Bothell, WA 98011 USA
Phone (206) 486-8086 FAX: (206) 486-0253 CIRCLE NO. 346

It uses very thin metallic layers between the LEDs to achieve maximum packing density and complete light insulation. Any number and color sequence of LEDs are available. It is an attractive and inexpensive device suitable for discrete and graphic status indicators.

Cariger

Cariger Inc., 6 Londonderry Commons 44 Nashua Road, Londonderry New Hampshire 03053.
Telephone: 603-645-4531
CIRCLE NO. 341

- A 4 K trame trace buffer with advanced searching capabilities. - Hyperlinked On-line help guides you through the emulaion process. - Best Performance Analyzer in the industry.
- iceMASTER connects easily to your PC, requires no disassembly, or expansion slots. Works on any PC (DOS or OS/2), MicroChannel or EISA. Even laptops!
- Supports more than 50 different 8051 family derivatives. M68HC11 support will be available early in 1991.
- Try iceMASTER risk free! Salisfaction Guaranteed or return for a tull refund!* - RENTALS AVALLABLE! Ideal for consultants and researchers! - Call today for free demo disk and ask about a free 8051 Macro Assembler! (800) 638-2423
IT Meralink*
Mealuinc Corporaimo P.O. Box 132 Charder AZ 8.824 .132

CIRCLE NO. 347

12 Bit A/D \& D/A [PCL812] $\$ 395$
- A/D converter 16 single ended inputs; Uses AD574; Conversion time less
than 25 sece; Built-in programmable pacer, Input Ranges: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 1 \mathrm{~V}$.
- D/A converter: 2 channels; 12 bit resolution Output Range $0-5 \mathrm{~V}$,

Fast 12 Bit A/D/A [PCL718] \$795
- AD converter 16 single ended or 8 differential channels; 12 bits resolution;
Programmable scan ratee: Built-in Interrupt and DMA control circuitry.
Conversion speed 60,000 smpls sec (standard) 100,000 smpls

 6 Channel 12 bit D/A [PCL726] $\$ 495$
 MC/VISA/AMEX Call today for datasheets!

Telecom Design! CALL PROGRESS TONE GENERATOR

M-991 generates precise dial tone, busy tone, reorder tone, ringing, and other call routing tones for use in telephone systems, test equipment, callback security and other telecommunications systems.

- 14-pin CMOS DIP
- Single 5 V power supply
- 3.58 MHz time base
- Combinations of all standard frequencies
For more info call: 1-800-426-3926 (In Washington State: 206-827-9626)

飞ㄴㄷNㅗㅜ

10801-120th Avenue NE, Kirkland, WA 98033 CIRCLE NO. 348

FREE \& EASY

Try SCHEMA III for free, and see how easy schematic capture can be.
SCHEMA III performs more functions at the drawing sheet level and is compatible with workstation formats. Call Omation for your FREE demo disk today!

1-800-553-9119

CIRCLE NO. 349

AT BUS DESIGN

At last, here is the timing book for the XT and AT Bus. Detailed text, tables and diagrams tell you what each signal line is for, what it does and when it does it. All the information is compatible with the IEEE P996 Specification for the ISA (AT) Bus. In addition, the 8 and 16 bit parts of the EISA Bus are included. AT Bus Design, by Ed Solari, has over 200 pages, with more than 100 figures and tables. Handy $7^{\prime \prime} \times 9^{\prime \prime}$ format, soft cover, $\$ 69.95$

FREE We'll include a free copy of the pocket-

 sized XT-A T Handbook by Choisser us where you saw this ad. Of course, this $\$ 9.95$ value is also available by itself. Or buy five or more for only \$5.00 each.
$\overline{800-462-1042}$
619-271-9526
Marecoror
∞

Annabooks
12145 Alta Carmel Ct.. Suite 250
FAX 619-592-0061
San Diego, CA 92128
Money-back guarantee
CIRCLE NO. 752

Schematic Capture for the Macintosh

DESIGNWORKS
Schematic features Menu-driven, mouse-controlled operations \bullet cut/copy/paste between circuits \bullet right-angle rubber banding. Digital simulation 13 -state, event-driven simulation - logic analyzer-style timing window \bullet PLD support. Libraries Fully-simulated $7400,4000,10 \mathrm{~K}$ series, PLDs, PROMs and RAMs, non-simulated analog and discrete components - User-definable, simulated custom symbols. Interfaces Formats for Douglas CAD/CAM, Cadnetix, Calay, Orcad Tango, Racal Redac, Spice. - user-definable printers, dotmatrix printers, HP. Houston, Roland pen plotters. Requirements Macintosh Plus, SE, II, Ilx, Ilcx, or Ilci.

CALL (604) 669-6343 FOR YOUR
FREE DEMO DISK TODAY.
CAPILANO COMPUTING SYSTEMS LTD.
CIRCLE NO. 755

PLASMADOT:

Dot matrix for graphics as well as text!

Cherry announces PLASMADOT, ${ }^{\text {TM }}$ a bright new dot matrix gas plasma display. Designed for highvolume OEM applications ranging from management equipment to information centers. High-brightness pixels and contrast; round, square or rectangular pixel shapes. Full-field dot matrix display ideal for graphics as well as text. Write or call Cherry for details today!

Cherry Electrical Products
3600 Sunset Avenue. Waukegan, IL. 60087
Phone: 708/360-3500 • Facsimile: 708/360-3566

CIRCLE NO. 350

Easy Emulator Pods \& Adapters

- Plug your PLCC and LCC packages into your PC board in minutes, with these easy-to-use adapters.
- Emulator/logic analyzer users: Adapt-a-Pod ${ }^{\text {'w }}$ converts one package type to another (LCC, PLCC, PGA, and DIPS).
- Emulator pods and adapters are available in all standard pin counts, with ribbon or ribbon cable headers.
- Custom engineering services and do-it-yourself emulator pod converters. Free catalog.

Emulation Technology, Inc.
2368-B Walsh Ave. Santa Clara, CA 95051
Phone: 408-982-0660 FAX: 408-982-0664

CIRCLE NO. 753
Create a DISKLESS PC IT's EASY..IT's SIMPLE THERE's Nothing to it!!!!

PROMDISKItm III
 IBM PC DISK EMULATOR CARD

* On-Board BIOS ROM * IBM PC/XT/AT Compatible * Mix EPROMs, EEROMs, SRAMs * Emulates up to 1.024Mbyte Drive * Occupies $32 K$ PC address space * Supports popular Byte-Wide chips
* Includes PROMDISKtm III Software

For Information Call or Write:
MICRO COMPUTER SPECIALISTS, INC. 810-208 Los Vallecitos San Marcos, CA 92069 (619) 744-8087 CIRCLE NO. 756

8051 Emulator - $\$ 1250$
d^{2} ICE is a low cost, Full Speed, real time 8051 Emulator.. Powerful user interface for Hi -level multi-window source code debugging. Uses IBM-PC COM1/2. No Slots! Portable, fits in shirt pocket. Assembler and test bed included.

Cybernetic Micro Systems
PO Box 3000 - San Gregorio CA 94074 Ph: (415) 726-3000 • Fax: (415) 726-3003

CIRCLE NO. 751

Communicate Weekly

to the electronics OEM through EDN's Magazine and News Editions Product Mart

CIRCLE NO. 754

CUT PGA NOISE

Micro/Q (R) 3000 capacitors reduce noise associated with PGA and PLCC devices. Designed to be mounted under the device, take no extra board space. Can be used under MPU's, Gate Arrays, and ASICs. Choose from Z5V, X7R, and P3J dielectrics. Available in both thru-hole and surface mount versions. Several sizes available to fit all devices.

Rogers Corp.
2400 South Roosevelt St., Tempe, AZ 85282
(602) 967-0624

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

RELIABILTY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?

The RelCalc 2 Software Package predicts the reliability of your system using the part stress procedure of MIL-HDBK-217E and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc 2 is very easy to use, and features menu windows, library functions, global editing for what-if? trials, and clear report formats. Try our Demo Package for \$25.

T-CUBED SYSTEMS, 31220 La Baya Drive \#110, Westlake Village, CA 91362. (818) 991-0057 • FAX: (818) 991-1281

CIRCLE NO. 758

Elegant, concise, fast \& standardized FL®ATING POINT libraries for embedded applications

 Based on the IEEE 754 standard, FPAC (32 bit) and DPAC (64 bit) libraries are mature, well documented, and fully tested. The libraries are fully ROMable and include the following:- Basic Operations - ASCII Conversion
- Square Root - Integer Conversion
- Trigonometric
- Logarithmic

U S Software supports most Intel, Motorola, Zilog and Hitachi micros, including 80X86, 80386, 680X0, 80960, 8051, 8096, 68HC11, Z80, 6809 and 6301.
For additional information, please contact

ப S SDFTVAARE
United States Software Corporation 14215 NW Science Park Drive Portland, Oregon 97229
800-356-7097
503-641-8446
503-644-2413 (FAX)
CIRCLE NO. 761

New Schematic and PCB Software
With support for extended and expanded memory, HiWIRE II can handle your most demanding schematic and PCB designs quickly and easily The unique HiWIRE editor allows you to display and edit schematics and PCBs simultaneoously, using the same commands for each. HiWIRE II is $\$ 995$, and is guaranteed.

Wintek Corporation
1801 South St., Lafayette, IN 47904 (800) 742-6809 or (317) 448-1903

JUNCTION TEMPERATURE!

a better way to deal with heat

- Interactive menu-driven.
- Models: enclosures.
plates, circuit boards.
heat sinks.
- Analyze the whole system.
- All heat transfer modes.

Powerful edit features.

- Thermal parameters library.
- English language design summaries.

Call For Free Evaluation Kit

Tatum Labs, Inc.
3917 Research Park Dr. B-1, Ann Arbor, M1 48108 313-663-8810
CIRCLE NO. 759

MAXIMUM VERSATILITY

 Minimum Size This 1 " $\times 3 / 4$ " $\times 1 / 2$ " circuit breaker is the smallest Full Feature Breaker available. Panel, printed circuit board, or snap-in mount. Current ratings from 0.05A to 10.00A. 100\% tested and calibrated.

7400 N. Croname Rd., Chicago, IL 60648 Phone: (708) 647-8303 Fax: (708) 647-7494 CIRCLE NO. 762

Instant

 Microcontroller

Instant C Programming

Don't use a microprocessor, use a SmartBlock ${ }^{\text {™ }}$ microrocontroller module to build your custom controller. Our low cost Dynamic C'M makes programming a snap. 3.5×2.5 inch module includes microprocessor, memory, time/date clock, eeprom, watchdog, serial ports and more. As low as $\$ 59$. The efficiency of a custom design without the headaches.

Z-World Engineering
1340 E. Covell Blvd., Davis, CA 95616 Tel: (916) 753-3722

Fax: (916) 753-5141

488 CONTROL FOR YOUR MACINTOSH II

- Control any instrument in minutes.
- Supports BASIC, Pascal, C and Hypertalk.

HyperCard utilities included.

- Software library. Risk free guarantee.

Capital Equipment Corp. Burlington, MA. 01803
Informative catalog 800-234-4232 Applications help (617) 273-1818

CIRCLE NO. 760

CIRCLE NO. 763

PLCC LoClip - PLCC Probe

NEWPRODUCT
The PLCC-LoClipXX line from Ironwood is a new product line allowing probing of surface mount PLCC's at a fraction of size of other clips. The U and L ver. have right angle leads (cable connect or probing). Device heights of $0.75^{\prime \prime}, 0.57^{\prime \prime}$, and $0.45^{\prime \prime}$ for S, U, and L boards respectively enable probing of boards in backpanels. Interdevice spacing of $\mathbf{0 . 1 0 "}$ allowed. PLCC's from 24 to 84 pins supported. Kits of 10 with different sizes/carrying case available at substantial discount.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 5512
(612) 431-7025

CIRCLE NO. 767
200 MHz Logic Analyzer

- 200 or 100 MHz sampling
- 24 Channels
- Expansion to 72 channels
- 16 Levels of triggering
- 16K samples/channel
- Variable threshold levels
- 3 External Clocks
- 12 Clock Qualify lines
\$ 799-12100 (100 MHz)
\$1299-27100 (100 MHz)
\$1899-27200 (200 MHz)
UNIVERSAL PROGRAMMER
PAL
GAL
EPROM
EEPROM
PROM
87C51..

874x
5ns PALs 4 Meg EPROMs 26V12 \& 22V10 Gals FREE software updates on BBS
GANG PROGRAMMER

- 4 32pin Sockets (8 Socket option) - 2716-27010 EPROMs
\$215
Call - (201) 994-6669
ha
Link Computer Graphics, Inc.
4 Sparrow Dr., Livingston, NJ 07039 FAX:994-0730

PLASTIC QUAD FLATPAK

PROTOTYPING

Plastic Quad Flatpak adaptors have been added to our line of prototyping and test adaptors. The device is constructed with all gold plated pins (soldertail or wirewrap) and the highest quality plastic quad flat pack sockets. Parts included in this line handle 84 to 164 pin devices. Ask about our custom design services for unique solutions in packaging.

IRONWOOD ELECTRONICS

P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431-7025

CIRCLE NO. 768

SUPPRESS NOISE, POWER HIGH DENSITY BOARDS

MAGNA/PAC (TM) components combine power distribution and capacitance for dense boards. Mount MAGNA/PAC(TM) between rows of ICs to save space.

- Effective decoupling ZIP arrays
- Capacitance up to $3.0 \mu \mathrm{~F}$ per linear in.
- Reduce noise over a wide frequency range
- Equalize voltage on dense boards

Rogers Corp., 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624

CIRCLE NO. 771
There is a Difference.
Ljefime Free Updates
EP-1140
\$895

A programmer is not just another programmer. That is why BP Microsystems is commited to bringing our customers the highest quality programmers at an affordable price. This commitment is evident in our EP-1140 E/EPROM programmer supporting thousands of 24,28 , 32 - and 40 pin devices. A32-pin model, EP-1132, is available also for $\$ 695$. And, all of our programmers include future chip support at no charge and an unconditional money back guarantee.

CIRCLE NO. 774

DEVICE INTERCONNECT

SOLUTIONS

IRONWOOD Electronics offers a comprehensive line of devices for your interconnect needs. We have hundreds of prototyping adaptors and sockets for PGA, QFP, PLCC, LCC, PGA, ZIP, and many more packages. Our line of clips for probing all different sizes of the different packages also number in the hundreds. We also do custom designs quickly and inexpensively including SMT components and tight spacing and supply the highest quality solutions. Call us for your interconnect needs.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121

55
CIRCLE NO. 769

40-PIN E/EPROM PROGRAMMER Lifetime S/W via BBS

PILOT-144: Powerful PC-driven 40-pin programmer supports E/EPROMs up to 40 -pins. Standard paralle port interface means fast thru-put and no need to install high voltage cards inside your PC. Built-in power supply. Ugradable to support 875 x and 874 x 4795. SATISFACTION GUARANTEED.

ADVIN SYSTEMS INC.
1050-L E. Duane Ave., Sunnyvale, CA 94086

CIRCLE NO. 772

Small But Mighty

High Level Language and Math Library On a Tiny I/O-Rich Microcontroller

- 44 I/O Lines
- Floating Point Math
- Multitasking 68HC11
. 64 K ROM, 128 K RAM
- Resident Debugger

All the software you need for data acquisition, control, and instrumentation: high level FORTH language, assembler, debugging tools, multitasker, and extensive matrix math library including FFT and equation solution - all on the board.

Low power I/O-rich hardware: 8 AD, 24 digital and 8 timer-controlled I/O lines, 2 serial links, 128 K battery-backed RAM, only $300 \mathrm{~mW}, 3^{\prime \prime} \mathrm{X} 4$ ".
The QED Board: OEM versions from $\$ 495$ (100 s).
Mosaic Industries Inc. 415/790-1255 5437 Central Ave. Suite 1. Newark, CA 94560 CIRCLE NO. 775

Rugged Solutions to Tough Design Problems.

Portable data products from Datakey are meeting the needs of electronic OEM design engineers in a wide range of commercial and military applications. They can help you:
\square Save valuable system space
\square Reduce system power requirements
\square Cut the cost of memory/feature expansion
\square Improve system and facility security
\square Speed data transfer, make data handling more convenient
\square Make ROM upgrades quicker, easier
\square Simplify system design and manufacturability
\square Ruggedize your system or I/O device
\square Reduce repetitive data input
\square Differentiate your product in the marketplace
These versatile devices withstand rough handling and retain your data even when exposed to dust, dirt, moisture, magnetic fields, and other environmental hazards.

Datakey
 Advanced Solutions

in Portable Data
Technology. ${ }^{\text {™ }}$

We've developed a whole array of solutions for tough portable data applications - including the access device for the U.S. government's secure phone system. Hundreds of thousands of these devices are in use today.
Choose from our standard products, including Serial Memory Keys ($1 \mathrm{~K}, 2 \mathrm{~K}$, or 4 Kbit capacity), Parallel Memory Keys (16 K to 512 Kbit capacity, 8 bit word length), Memory Cards (chip-on-card or edge-connect with embedded memory), Low-Cost Personal ID and Memory Tokens, Mechanical/Electronic Keys, and more.
We also design and manufacture custom portable data devices.
So, call today for our free booklet. It just may help you solve some of the toughest design problems around. Yours.

Call 1-800-328-8828
Need it fast? We'll fax it.

Unemployment among electrical engineers has not yet reached crisis proportions, but engineers who
have been thrown back into the job market tell a different tale.

4ou can't seem to get through a week's worth of newspapers these days without reading about another company's laying off tens or hundreds or even thousands of workers-including many engineers. Sometimes these announcements make the front page. At the same time, the help-wanted section of the Sunday paper continues to dwindle. Happy new year.
Companies recently making news with layoffs include Teradyne (Boston, MA), Texas Instruments Defense Systems \& Electronics Group (Dallas, TX), Oracle Systems Corp (Redwood City, CA), National Semiconductor (Santa Clara, CA), VLSI Technology (San Jose, CA), Bull HN Information Systems (Billerica, MA), Mitre Corp (Bedford, MA), Digital

Hunting Blues

Equipment Corp, Data General (Westborough, MA), and General Dynamics (Fort Worth, TX). The list goes on. The companies vary in size. Some do defense work; some don't. Some are well-established firms that are "downsizing;" others are floundering startups.

No one factor is to blame for the increase in unemployment. Iraq's invasion of Kuwait exacerbated an already sluggish economy. Consumers concerned about the economy are wary of making big purchases, which affects commercial firms. Defense-budget cuts have forced many companies to cut their staffs, and, according to the Bureau of Labor Statistics, the paychecks of one in six electrical engineers depend on defense spending. How the situation in the Persian Gulf will affect defense cuts is still unclear.

Many of the layoffs are in regional pockets, according

to Robert A Rivers, editor of The Engineering Manpower Newsletter. Areas hardest hit include New England, Long Island, New Jersey, Texas, and the Silicon Valley. In his newsletter, Rivers says the jobless rate for electrical engineers was 2.2% in the third quarter of 1990 , or approximately 12,000 electrical engineers. The rate usually hovers between 1 and 2%, says Rivers. The Bureau of Labor Statistics reported that the national unemployment rate in October was 5.7%.

Rivers expects electrical-engineering unemployment to increase in the first quarter of this year, "After the first quarter, things will start getting better. This is not a crisis situation, but it is a crisis for those people being eliminated." However, he is quick to point out that even his unemployment statistics are deceptively low. An engineer who takes a job with Sears is considered employed, even though that person has left the field-at least temporarily. His statistics also do not include engineers who took the early-retirement option.

Rivers's 2.2% electrical-engineering unemployment figure may not seem high, but in the worst-hit areas, such as Massachusetts, the rate exceeds 5%. The real problem is not as much the actual numbers as it is the difficulty many unemployed electrical engineers have finding that next job. These difficulties go beyond out-of-date resumes, rusty interviewing skills, and the emotional turmoil common to all terminated workersand the outplacement agencies companies hire do not address them.

Keeping up to date

A major problem for electrical engineers is that their field changes so rapidly. Computers and peripherals, communications equipment, and signal processing are all evolving, and keeping up to date is no easy matter. However, changing technology is not the only problem. "I hate to say it," says Joseph DeSalvo, chairman of the Career Activities Council of the IEEE-USA, "but we can become fat cats in a hurry. A young engineer graduates from a university, goes out and gets a goodpaying job with good fringe benefits. The spouse has a job and is making reasonable money. They're making

Professional Issues

a lot of money and tend to forget about their goals and objectives in life." They don't think about their career future or consider what could happen 5,10 , or 15 years hence.

Engineers should think of themselves as products whose value will exist only as long as they keep their continuing education up to the state of the art, says DeSalvo. Otherwise, they will lose their value to present and prospective employers. He warns, "An engineer can become technically obsolete within a decade if he is not active."

Keeping up with his field didn't help James J Klinikowski. AT\&T Bell Laboratories (Allentown, PA) laid him off from his position as a Member of Technical Staff in December of 1989. He holds 13 US patents and has published more than a dozen technical magazine articles. For the last eight years, he had been working in the NMOS and CMOS design of integrated-

circuit DSP chips. He says he has kept up to date with Unix, C, and CAD.
"No matter what angle you consider this situation from," Klinikowski says, "there is no justification for keeping a man from age 47 to 59 and then depriving him of the reason he worked there all those yearsretirement. I missed it by 14 months."

In the three months he had before being removed from the payroll, Klinikowski was offered only one interview after 60 to 80 internal job inquiries. Because the job involved much travel as well as relocation, he couldn't consider it-his wife is disabled. Losing his job also meant losing paid life and medical insurance for himself and his wife, as well as losing his pension.

Klinikowski faces a number of obstacles in his search for an electrical-engineering job. First, he says that because AT\&T is one of the most respected companies in the industry, prospective employers would be suspi-
cious of a former member of technical staff saying he lost his job after 13 years of service in a corporate downsizing. He believes that companies are reluctant to hire older employees because medical-plan costs would greatly increase. Klinikowski also cites the many engineers who have opted for early retirement with a pension and full benefits as competition for scarce jobs, "These retirees are willing to work for almost nothing. Some just to keep busy. I have to compete against them in the job market."

Because he believes that finding a job that would satisfy his retirement-plan and medical-benefit needs would be impossible, Klinikowski hopes to secure design, consulting, technical-writing, or management work to support his wife and himself.

Softening the blow

Brad Morrow, 34, has more reason to be optimistic. Arix Computer Corp (Scottsdale, AZ) notified him in October 1990 that he would be laid off from his job as an engineering programming manager in 60 days. He got a generous severance package and says that since the notice, it would be four months until the money ran out.

He is looking everywhere for a job and says that he is willing to relocate, "The job market here is real tight. The big word is hiring freeze." He says the reason companies give for the freeze is the Persian Gulf crisis. Arix hired an outplacement firm to give a 2 -day seminar for its 14 laid-off workers. And during the 60 -day notice period, the company let employees go to job interviews and take other job-hunting measures during work hours. Morrow is still looking for work but says he does have some prospects.
Larry Winkler spent a year and a half job hunting before he found his present position as an electrical engineer working for Energy-Onix (Hudson, NY). He previously worked for Gull Electronics on Long Island as a project engineer, but the company laid him off in February 1988. After losing his job, he and his wife decided to go ahead with plans to move from Long Island to Kingston, NY, where the cost of living is lower. He occasionally picked up a consulting job. "It's a frustrating experience because the whole engineering industry is changing. The jobs aren't as plentiful."

He says that previously, engineers would be laid off because their company was experiencing rough times, but there were always other companies in the local area that were hiring. Three months later, you'd have another job and an increase in pay. Because of the regional pockets of electrical-engineering unemployment, this scenario is no longer common. Winkler also says that companies are much more selective about

At Mizar, peripheral boards aren't just a sideline.

Whatever your application need, Mizar has VMEbus peripherals to match.

The right interfaces and controllers are key to the performance of your microcomputer system. Choosing those peripherals involves finding not only a supplier of reliable products, but a company that understands systems.

Mizar and its single- or double-height VMEbus boards are the perfect solution: memory cards; serial, parallel, and analog/digital boards; SCSI, SASI, and GPIB interfaces; and floppy disk, hard disk, tape, and Ethernet controllers.

When you choose Mizar, you're backed by one of the most respected names in VME. A leader in high performance boards and integrated Unix and real-time systems, Mizar is your ideal "onestop shop".
Above all, Mizar provides the systems support you need, including leading software solutions and timely technical service.

To find out more about Mizar's VMEbus boards and systems, or to receive a free catalog, call today. 1-800-635-0200

Professional Issues

hiring now, "They're looking for someone who can fit right into a job, so you have to match it almost 100%." Companies can afford to be selective, he says, because of the glut of engineers. (Don't even mention the purported engineer shortage to an engineer-unemployed or otherwise-unless you're prepared for an earful.)

When asked if his age-50-hindered his job search, Winkler says, "Age and salary level go together. And whether you want to call it age discrimination or salary discrimination, I think that companies are bargain hunters. They'll pass over someone making a higher salary for someone making a lower salary."

Robert Bruce took early retirement at age 63 after his employer, AIL Systems, a division of Eaton Corp (Melville, NY), announced in the newspapers that it would lay off 800 of 3800 people. "I saw the writing on the wall for the whole aerospace sector as well as my company, and I took the early-retirement incentive." He retired September 28, 1990. (Most engineers interviewed for this article gave the exact date when they retired or were laid off.) He blames defense cuts for most of the layoffs, adding that the largest concentration of engineers in any identifiable industry is in defense and that electrical engineers constitute the largest portion of those engineers.

He believes that engineers are hit worse during economic recessions than other professionals because engineers depend on a growing economy for jobs. "When a company is cranking out the same old product line, they need only a couple of engineers. It's when companies undertake new developments that they really need engineers," says Bruce.

He's been looking for work since July but has been unable to find an engineering job. In the interim, he teaches electronics part-time in a trade school-a job he enjoys but which pays approximately half his former salary by the hour. Bruce continues to look for an engineering job but doesn't want to relocate, "I'm pessimistic. I know that I'll find one eventually if age discrimination is not an overwhelming factor. But I may have to ride out the recession on my retirement funds plus the part-time salary."

Many commercial firms are reluctant to hire former defense engineers because of the differing demands of the two types of work. Commercial projects are cost sensitive and don't always use state-of-the-art parts and equipment. Cost is not a primary concern in defense work, as are performance and using state-of-theart technology. Also, many defense engineers become so specialized that employers are wary of hiring them for less-specialized work. Many employers don't look upon engineering skills as transferable.

Unemployment is especially bad among specific

demographic and engineering specialty groups. John Densler, consultant, and cochairman of the Boston IEEE Professional Activities Committee for Engineers, says that electrical engineers that have a particularly difficult time finding new engineering jobs are older engineers, hardware engineers, and former defense engineers. Older engineers face several problems when seeking engineering employment: They may not be as up to date as younger engineers; because of years of experience they command higher salaries; they require more expensive benefits; they may have become too specialized. Also, many who "choose" early retirement really have no choice. Given the choice between early retirement or being laid off with no benefits, many are forced to choose the lesser evil even when they cannot afford or have no desire to stop working. Hence James Klinikowski's worries about competing with retirees who may be willing to work for less.

Creating opportunities

Paths for electrical engineers to take to rejoin the work force certainly aren't clamoring for attention. But some people in the industry are working to offer good advice-and even some real help.

Bill Wilkes, a systems engineer who has worked in military fields since 1963 , also saw the writing on the wall for older engineers and defense engineers. A little more than a year ago, he and psychologist/management consultant Diane Kramer started the nonprofit Center for Practical Solutions (CPS) in Hauppauge, NY, of which they are now the executive directors. The CPS has two goals: economic development and shoehorning older defense engineers into the commercial sector. It accomplishes these goals by linking technology professionals with entrepreneurs, accountants, marketing people, and lawyers to develop new businesses.
"Many older, displaced engineers will never have the opportunity to work in their field again," says

HIGH FIN DENSITY HEAT SINKS REDUCE SIZE and COST

Achieve maximum heat transfer efficiency with EG\&G Wakefield Engineering High Fin Density heat sinks for power-generating components. Our 510, 511, and 512 Series standard heat sinks yield the same thermal performance as other heat sinks needing nearly twice as much space.
Designed for cooling isolated power modules, amplifiers, and other powergenerating components, these heat sinks are manufactured with a unique process which we developed to maximize the surface area available to yield 130 sq in . of cooling surface per linear inch of extrusion!

Available Now

Standard heat sinks in three different profiles and several lengths are available now from stock.

Lower Cost

Because of the substantial material savings with these unique designs, our High Fin Density heat sinks save on weight and cost per unit volume. The weight savings is approximately 60% !

Call our Sales Department today for the name of our stocking distributor nearest you, at (617) 245-5900.

CIRCLE NO. 61

More Pease,

Because so many of you have asked for Pease, we've put all 12 parts of the Troubleshooting Analog Circuits series published in EDN into one handy reference source.
This 101-page collection of articles was developed by Bob Pease, senior scientist in industrial linearIC design at National Semiconductor Corp. and world-renowned analog-circuit designer.
Don't miss this exclusive reprint. Learn about troubleshooting analog circuits as only Bob Pease can tell it. This reprint is yours for only $\$ 26.70$ (U.S.A.) or $\$ 29.95$ (non-U.S.A.).*

Part $1 \cdot$ Troubleshooting is more effective with the right philosophy
Part $2 \cdot$ The right equipment is essential for effective troubleshooting
Part $3 \cdot$ Troubleshooting gets down to the component level
Part 4•A knowledge of capacitor subtleties helps solve capacitor-based troubles
Part $5 \cdot$ Follow simple rules to prevent material and assembly problems
Part $6 \cdot$ Active-component problems yield to painstaking probing
Part $7 \cdot$ Rely on semiconductor basics to identify transistor problems
Part $8 \cdot$ Keep a broad outlook when troubleshooting op-amp circuits
Part $9 \bullet$ Troubleshooting techniques quash spurious oscillations
Part $10 \bullet$ The analog/digital boundary needn't be a never-never land
Part 11 - Preside over power components with design expertise
Part 12 • Troubleshooting wrap-up

PLEASE PRINT CLEARLY
Payment enclosed __ Bill me
Visa
Mastercard
Credit Card Number \qquad Signature \qquad Exp. date
Name \qquad Title \qquad Company

Address \qquad City State

Zip_
Mail coupon to: Cahners Reprint Services, 1350 E. Touhy Ave., Des Plaines, IL 60018 U.S.A. or call 708/390-2240 or FAX your order: 708/390-2779. *U.S.A. Currency only

Professional Issues

Wilkes, "Their best shot is to try to create enterprises of their own." The CPS also helps engineers develop unique working relationships with established companies. Wilkes says that older engineers still have valuable skills, and managers may want to retain them as consultants.
"Engineers have to move away from traditional employment situations because the jobs aren't there," Wilkes continues. Rather than chasing nonexistent jobs until the unemployment insurance runs out and the savings dwindle, he suggests that jobless engineers create opportunities for themselves. He says engineers can't leave finding employment up to politicians because politicians don't understand technology or engineers' needs. Companies are interested in surviving and cutting costs, he says, not placing laid-off engineers. He cofounded the CPS because a single engineer can't change the world alone.

The CPS operates on a shoestring budget in donated office space. Members, many of whom hold patents, meet Tuesday nights. Kramer says five project teams are currently working to become businesses. "Where there's a need, there's a niche. We find the niche and work with the project teams. When the teams are ready, they work with our business-development unit to launch them as businesses."
The technology areas in which the CPS would like to start project teams working include information processing, energy-efficient devices, aids for the elderly and handicapped, and telecommunications. It already has teams working in educational software and customized computer-manufacturing services with robotics and artificial intelligence-all fields that Kramer says can use defense engineers' talents. The first business the CPS developed is Innovations Development Corp, "It is a project-management company to take inventions and walk them through the manufacturing and marketing stages."

Take control

But few other groups exist that directly help electrical engineers get back to work. Thus, always being prepared for the possibility of losing your job is essential. Joseph DeSalvo says electrical engineers should take a more active role in their careers. "They know better than anyone else what their career goals and objectives in life are." He suggests that engineers establish short-, medium-, and long-term goals and take whatever steps are needed to achieve them.
John Densler also calls on engineers to be more savvy about their careers. "Don't go into areas where you don't get rewarded," he says. "Go into marketing or venture capital. But for God's sake, don't go into
manufacturing." Manufacturing is the sector in which most electrical-engineering jobs are being cut.
When you're involuntarily unemployed, you've got three job-hunting choices. You can try to land another engineering job, you can take a job in another field, or you can go into business for yourself. You should first take some time to explore each option. Find out about the economic environment and employment prospects, and use that information to make your career decision. Once the outplacement services your former company provides end, you're on your own.
When returning to the job market, ultimately you have to rely on your own knowledge, your own imagination, and your own goals to find meaningful, paying work. However, don't forget the support of friends and family. You needn't feel cut off from the whole world when only your position has been cut. And if the job search gets to be too much, psychologists and psychiatrists are there to help. Many unemployed people become depressed; they may experience feelings of worthlessness, anxiety, and despair; sleeping or eating problems; or fatigue. If depression lasts more than two weeks, consider seeking professional help. EDN

References

1. Leventman, Paula Goldman, Professionals Out of Work, The Free Press, New York, NY, 1981.
2. "Coping With Job Loss," The American Chemical Society, Washington, DC, 1987.

Article Interest Quotient (Circle One)
High 491 Medium 492 Low 493

CAREER OPPORTUNITIES

1991 Recruitment Editorial Calendar

Issue	Issue Date	Ad Deadline	Editorial Emphasis
Magazine Edition	Feb. 4	Jan. 9, '91	Computer Peripherals, ASICs/ CAE - CAE Software, Software Development
News Edition	Feb. 7	Jan. 18, '91	Imaging Boards \& Coprocessors, Software**
Magazine Edition	Feb. 18	Jan. 24	Surface Mount Technology \bullet CAE Engineering Software, Components, Analog Circuits, Bus Packaging/ Test \& Measurement - Power Sources
News Edition	Feb. 21	Feb. 1	Computer Peripherals, Graphics**, Regional Profile: Oregon \& Washington State**
Magazine Edition	Mar. 1	Feb. 6	Communications Special Issue, ICs \& Semiconductors, CAE • Computer Peripherals \bullet Fiber Optics
News Edition	Mar. 7	Feb. 14	Special Supplement: State of Engineering • Medical Electronics**
Magazine Edition	Mar. 14	Feb. 21	Software Tools, Computer Architectures, Materials Technology, ICs \& Semiconductors/Instrumentation Circuits
Magazine Edition	Mar. 14	Feb. 21	Software Engineering Special Issue, (To be polybagged with the March 14th Magazine Edition issue)
News Edition	Mar. 21	Mar. 1	CAE, Computer Buses**, Regional Profile: Alabama, Georgia, N. Carolina**
Magazine Edition	Mar. 28	Mar. 7	ICs \& Semiconductors/ Microprocessors, Software •CAE \bullet Computer Boards, Electro Preview Issue
News Edition	Apr. 4	Mar. 15	Optical Interconnects, Automotive Electronics**, Electro Show Issue
Magazine Edition	Apr. 11	Mar. 21	Power Sources, CAE/ASICs, Test \& Measurement, Sensors, Electro Show Issue
News Edition	Apr. 18	Mar. 29	Distribution, Optics**, Regional Profile: No. California**
Magazine Edition	Apr. 25	Apr. 4	Computers \& Peripherals Special Issue, Computers \& Peripherals/ Memory Design, Data Storage Technology, ICs \& Semiconductors, ASICs
News Edition	May 2	Apr. 11	Automotive Electronics, ASICs**

Call today for information on Recruitment Advertising:

East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

COMPUTER ENGINEERS

Software:DOS, C;GUI, C++ Hardware:TTL, 80×86, ASIC Contact Bob Brooke F-O-R-T-U-N-E
8026 Vantage Dr., Suite 229-D San Antonio, TX 78230
(512) $340-4600 \bullet$ FAX: (512)344-7250 Specialists in Computer Industry Search

SOMETHING GREAT IS HAPPENING...

We Are At GE Medical Systems there is a unique spirit. It is the feeling that comes when you are a true global leader and innovator in state-of-the-art medical diagnostic systems.
Our people are part of that spirit. Smart. Proud. Thinkers and Doers working with an elite group in the evolution of diagnostic imaging systems.

We Need

SOFTWARE ENGINEERING MANAGER

Lead the development of real-time software for diagnostic imaging systems, using computer aided tools and structured design methodology.
Requires: $\mathrm{BS} / \mathrm{MS}$ EE, CE and experience managing software development for large-scale real-time systems.

SPECIAL PRODUCTS PROJECT LEADER

Provide project leadership and technical direction for special products development and new product introduction.
Requires: BS/MS EE, ME and experience in the design or manufacture of complex electromechanical systems.

PERFORMANCE FEEDBACK

PROJECT LEADER

Design and implement product performance feedback process, including a cause and effect failure analysis mechanism and associated tools.
Requires: BS/MS EE, CS, ME, project leadership background, and quality data analysis, program planning and design or manufacturing experience.

SOFTWARE SYSTEMS ENGINEER

Specify and develop software for applications/ data acquisition/display or diagnostics.
Requires: BS/MS EE, CS and real-time/scientific software design experience, including ' C ' and Unix.

SOFTWARE DEVELOPMENT ENGINEER

Develop X-Ray product applications/diagnostics/ calibration software and participate in crossfunctional designs/reviews.
Requires: BS/MS EE, CS and structured software development, PL/M86 and INTEL microprocessor experience, digital hardware knowledge.

ELECTRICAL DEVELOPMENT

ENGINEER

Design complex circuit boards encompassing low signal analog control, position and velocity feedback servos and phase lock loop circuitry.
Requires: BS/MS EE and experience in analog control systems design and development.

How To Reply

GE's highly competitive salary and benefits befit an industry leader. Please send resume in strict confidence to: JMB, GE Medical Systems, P.O. Box 414, W-407, Milwaukee, WI 53201. Replies will be made, within 20 days, to candidates of interest.

Where can you find specs on ICs from every semiconductor advertiser in this magazine?

Just over a year ago, we introduced CAPS ${ }^{\text {TM }}$ - the PCbased system that revolutionized the integrated circuit search and selection process. Engineers loved it!

Today, CAPS gives you vital information on more than 500,000 parts from over 425 manufacturers worldwide. Plus, you get hundreds of thousands of digitally-stored images of complete manufacturers' datasheets. All delivered on CD-ROM discs and updated every month!

To make it easy, CAPS includes everything you need and runs on standard hardware like IBM ${ }^{\circledR} \mathrm{PC} / \mathrm{AT}^{\mathrm{TM}}$-style PCs, PC networks, and Sun- $3^{\text {TM }}$ workstations.

So, if you're looking for ICs and semiconductors, take a look at CAPS. We've got the best names in the business.

Find out more! For a free brochure, call 800-245-6696 today!

Computer Aided
Product Selection

Cahners Technical Information Service 275 Washington Street
Newton, MA 02158-1630
Telephone: 617-558-4960
Facsimile: 617-630-2168
Telex: 940573
800-245-6696

CAPS is a trademark of Reed Publishing (USA) Inc. IBM is a registered trademark and AT is a trademark of International Business Machines Corporation. Sun-3 is a trademark of Sun Microsystems, Inc.

Honeywell: OPENING THE DOOR TO AVIONICS TECHNOLOGY OF THE 90s.

Honeywell in Phoenix offers a variety of career opportunities in our Commercial Flight Systems Group. Our continuing growth has created the following positions:

Systems Design Engineer - In this area, you will be involved in guidance and control systems analysis and hardware/ software design trade-offs. Specification designs, including guidance, navigation and control algorithm development, as well as systems integration and installation, flight test and customer liaison activity, are a part of these positions.
System Software Development This area involves development of flight software for advanced guidance and control systems for aircraft using modular and structured programming techniques. You will be involved with algorithms and development of real-time programs in both assembly (8086 family Z8002, 68000) and high order languages such as Pascal, "C," Ada and PLM/86, with subsequent hardware integration.

Electronics Engineering - These positions involve the development of new processor/bus architectures and specifications
to support fault tolerant/redundant airborne applications.

Display Systems - These positions offer systems, software and hardware opportunities with CRT/LCD display technology. You should be familiar with digital hardware design and/or real-time programming. Systems functions include overall system definition, design and customer interaction.

To qualify for the positions listed above, you should have a BSEE or a BSCS degree and at least three years of experience.

Quality Engineering - To qualify for this position, you should have a BS degree in an engineering curriculum. A minimum of two to five years of experience in quality engineering/assurance, reliability and/or product engineering is required. You should have computer applications experience. Customer interface experience is preferred.

Additional opportunities are available in:

- CRT/LCD Display Technology
- Avionics Systems Simulation
- CAE Engineering (Apollo Mentor Systems)
- Artificial Intelligence
- VAX Systems Administration
- Fiber Optic Pressure Sensors
- EMI/HERF
- Software Tools Development

Make a career move. Honeywell offers you a competitive salary and benefits package. All new employees are required to successfully complete a drug screening test. Send your resume and salary history, in confidence, to Honeywell, Commercial Flight Systems Group, Professional Employment (EDN-E845), P.O. Box 21111, M/S I-17C, Phoenix, AZ 85036.

Honeywell

HELPINGYOUCONTROL YOUR WORLD

EDN's CHARTER

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN's Magazine Edition also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on" engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.

EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

275 Washington St
Newton, MA 02158
(617) 964-3030

BUSINESS/CORPORATE STAFF

Peter D Coley
VP/Publisher
Newton, MA 02158; (617) 558-4673 Ora Dunbar, Assistant/Sales Coordinator

Mark J Holdreith
Associate Publisher
Newton, MA 02158; (617) 558-4454
Deborah Virtue
Newton, MA 02158; (617) 558-4779

NEW ENGLAND

Chris Platt, Regional Manager
Clint Baker, Regional Manager
199 Wells Ave
Newton, MA 02159; (617) 964-3730

STAMFORD 06904

George Isbell, Regional Manage
8 Stamford Forum, Box 10277
(203) $328-2580$

NEW YORK, NY 10011
Daniel J Rowland, Regional Manager
249 West 17th St; (212) 463-6419

PHILADELPHIA AREA

Steve Farkas, Regional Manage
487 Devon Park Dr, Suite 206
Wayne, PA 19087; (215) 293-1212
CHICAGO AREA
Greg Anastos, Regional Manager Jack Johnson, Regional Manager Holli Gronset, Telemarketing Des Plaines, IL 60018; (708) 635-8800

ARIZONA

John Huff, Regional Manager
44 Cook St, Denver, CO 80206
(303) 388-4511

Colorado
Bill Klanke, Regional Manager
44 Cook St, Denver 80206
(303) 388-4511

DALLAS 75251
Al Schmidt, Regional Manager
12201 Merit Dr, Suite 730
(214) 419-1825

SAN JOSE 95128
Frank Granzeier, Regional Manager
Bill Klanke, Regional Manager
hilip J Branon, Regional Manager
3031 Tisch Way, Suite 100; (408) 243-883

LOS ANGELES

Charles J Stillman, Jr Regional Manager 2233 W Olympic Blvd Los Angeles, CA 90064 (213) 826-5818

Susan Green Regional Manager Suite 170 Irvine, CA 92715 (714) $851-9422$

ORANGE/SAN DIEGO/RIVERSIDE COUNTIES Jim McErlean, Regional Manage 8818 Teller Ave Suite 170 rvine, CA 92715; (714) 851-9422

PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
750 Skyline Blvd, Box 6
(503) 297-4305

EUROPEAN OPERATIONS
Tullly Giacomazzi, Managing Director
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030

UNITED KINGDOM/BENELUX

Colin Smith
Oliver Smith \& Partners 8 Abbeville Mews 8 Clapham Park Road ondon SW4 7BX Martin Sutcliffe 27 Paul St London EC2A 4JU UK Tel: 44-71-628-7030

SCANDINAVIA

Stuart Smith
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030; Fax: 44-71-628-5984
RANCE/ITALY/SPAIN
Laura Whiteman
4 Rue des Parisien 92600 Asnieres sur Seine
rance
G Reina srl

Tel: 331-47900507 Via Filippo Carcano, 6 20149 Milan Italy Fax: 331-47900643 Fax: 3924981283

GERMANY/AUSTRIA/SWITZERLAND/BAVARIA Karin Steinbacher Wolfgang Richter New Media Munchen Ismaniger Str. 108 en 80 Germany Sudring 53 D-7240 Horb 1 A/N Fax: 49-89-98

West Germany
Tel: 49-7451-7828

ISRAEL
Asa Talbar, Talbar Media
Asa Talbar
Box 22917
Tel Aviv 61228, Israe
Tel: 972-3-223-621; Fax: 972-2-247-403

FAREAST

Jack Kompan, Asian Director of Marketing
Cahners Asia Limited
22nd fl, Lo Yong Court Commercial Bidg
212-220 Lockhart Road
Wanchai, Hong Kong
Tel: 852-572-2037; Fax: 852-838-5912
HONG KONG
Jack Kompan, Adonis Mak
Canners Asia Limited
22nd fl, Lo Yong Court Commercial Bldg
Wanchai Hockhart Road
Tel: 852-572-2037; Fax: 852-838-5912

JAPAN

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: 81-3-3366-8301; Fax: 81-3-3366-8302

KOREA

Jeong-guon Seo
DooBee International Inc
Centre Bldg, 1-11 Jeong-dong
Tel: 82-2-776-2096. Fax:
SINGAPORE/MALAYSIA/INDONESIA/THAILAND
THE PHILIPPINES/AUSTRALIA/NEW ZEALAND
Hoo Siew Sai
Ad Media Private Ltd
95 , South Bridge Rd
\#09-13 Pidemco Centre
Singapore 0105
Tel: 65-632-4026; Fax: 65-532-4027
AUSTRALIA
Alexandra Harris
World Media Network Pty Ltd
Level 2, 285 Clarence Street
Tel: 61-2-283-2788; Fax: 61-2-283-2035

TAIWAN

Parson Lee
Acteam International Marketing Corp
Box 82153
Taipei, Taiwan ROC
Tel: 886-2-7114833; Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415; Fax: (212) 242-6987

INFO CARDS
Heather McEIkenny
Newton, MA 02158; (617) 558-4282
CAREER OPPORTUNITIES/CAREER NEWS
Roberta Renard, National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
(201) 228-8602, 228-8610, 228-8608

Fax: (201) 228-4622
Nancy Olbers, Western Sales Manager
238 Highland St
(603) 436-7565; Fax: (603) 436-8647

Wendy A Casella, James P Joyce
Advertising/Contracts Coordinators
(617) 964-3030

William Platt, Senior Vice President,
Reed Publishing USA
Cahners Magazine Div
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Senior Vice President/General Manager,
Boston Div
Tom Dellamaria, VP/Production \& Manufacturing
Circulation: Denver, CO: (303) 388-4511
Eric Schmierer, Group Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60018. Phone (708) 635-8800.

INTERPHASE CORPORATION is seeking individuals to participate in the development of RISC - based FDDI VMEbus products. Position leads to project-level management of boardlevel and standalone FDDI products as well as opportunities in an existing well-established Ethernet product development organization. Familiarity with UNIX as a target environment (system level) with five years design experience required.

FIRMWARE/HARDWARE DESIGN

- Logic design using state-of-the-art CAD/CAE equipment.
- High-speed memory system design using VRAM
- RISC microprocessor design experience desired
- VMEbus architecture desired
- C language programming experience required
- BSEE or equivalent required. Emphasis on high-speed microprocessor development

SOFTWARE DESIGN

- UNIX, Kernal I/O, TCP/IP or other protocol experience on super-microcomputer or minicomputer required.
- Minimum one year writing UNIX device drivers.
- C language programming experience required.
- RISC microprocessor desired; (M68000 required)
- BSCS or equivalent required. Emphasis on design of high-performance software interface Interphase Corporation offers competitive compensation and complete benefits, including a tax-deferred savings plan (401 K), educational assistance, employee paid group insurance and much more.

For immediate consideration, use the coupon below and/or send your resume to:
INTERPHASE CORPORATION
HUMAN RESOURCES DEPT. 13800 Senlac
Dallas, Texas 75234
FAX \# $214 / 919-9200-A T T N:$ HUMAN RESOURCES DEPT.
Interphase Corporation is an equal opportunity employer

Name \qquad
Address \qquad
City \qquad State \qquad Zip \qquad
Telephone (Home) \qquad (Business) \qquad
Position/s of Interest \qquad
Previous Design Experience \qquad

In A World That's Shrinking Fast, Our Ideas Keep Getting Bigger.

Motorola Corporate Software Research and

 Development is performing research in compiler technology, optimization methods and development tools. This research covers the full range of Motorola MPUs, from microcontrollers to high performance RISC processors, parallel architectures and DSP. Within the next few years we will have laid the foundation for the design and development of the most advanced optimizing compilers available. There are excellent opportunities related to compiler research available for outstanding people.We are designing compilers and compiler generation tools, implementing these on state-of-the-art UNIX platforms, and conducting research into improved methods of developing software for embedded systems. We work closely with university and consortia researchers on the latest techniques in optimization and code generation. You will interact with Motorola internal development groups who are developing embedded systems or other projects related to your research. You may also work directly with the designers of new microprocessors to influence future architectures from a systems perspective.

COMPILER RESEARCH \& DEVELOPMENT OPPORTUNITIES

R \& D ENGINEERS

We require an MS or PhD in Computer Science, Electrical Engineering or a related discipline and 5 years experience developing software, with a major portion being in the development of compilers or related tools. We are especially looking for experience with optimization techniques and code generation. Good written and verbal skills required. Must be able to work closely and effectively with other team members.

PRINCIPAL INVESTIGATORS

We require an MS or PhD in Computer Science with 5-15 years experience in the development of compilers. Significant experience with compiler generation tools and optimization techniques for high-performance systems necessary. Principal investigators will lead small dedicated research teams and interact with chip designers, system architects and external research organizations to define and prototype the next generation of compiler architectures. Good written and verbal skills required. Must have experience leading advanced software development groups and demonstrated leadership in compiler technology

We offer a competitive salary, a comprehensive benefits package and excellent opportunities for professional growth. For immediate consideration, please send your resume to: Motorola, Inc., Corporate Staffing, Dept. TG9028, 1303 E. Algonquin Road, Schaumburg, IL 60196.

LASER PRINTER ENGINEERS

Work with the processor that's setting the world on fire, the Am29000, 32-bit RISC microprocessor.

Advanced Micro Devices is currently seeking experienced laser printer HW/SW Engineers to work as Sr. Technical Marketing Engineers at our Austin based Embedded Processor Division. Responsibilities will include design-in efforts of the Am29000 into laser printer products, competitive analysis, marketing plans, field support, customer presentation and strategy development for new products.

You must have four plus years experience and technical bachelors degree; MS or MBA preferred. Qualified applicants are encouraged to send a resume to: Advanced Micro Devices, MS-556, 5204 E. Ben White Blvd., Austin, Texas 78741, Attn: Paul Maack. You may also call (512) 462-4367 or FAX your resume to (512) 462-5108. An Equal Opportunity Employer.

Abstract

Telecommunications Professionals Seiscor Technologies, Inc. is a manufacturer of telephone transmission equipment and a subsidiary of Raytheon, a Fortune 500 company.

Software Engineers

Qualified candidates should possess a B.S. in Computer Science or Electrical Engineering, development and test with emphasis on micro-processor, real time software and telephone transmission products using C language and X .25 protocol.

Sr. Analog Design Engineer

Requires a B.S.E.E. with experience in designing Line Cards for Digital Loop Carrier. Knowledge of Bell LSSGRs, TR-57 and TR303 is a must. SLIC, ASIC, and SMT background is desirable. SONET Engineers
Hardware/Engineer with a B.S. degree experience in design of fiber optic based transmission and subscriber loop products. Requires thorough knowledge of North American and International Standards for T1, DS1, DS3, and SONET.
Systems Engineer with B.S. degree and ten years experience in transmission telephony. Most recent experience should be fiber optic Add/Drop Multiplexors, and Terminating Multiplexors. Familiarity with TA-253 requirements is required.

Call Personnel at 1-800-331-4048 or send Resumé to
Seiscor Technologies, Inc.
PO Box 470580
Tulsa, OK 74147-0580
An Equal Opportunity Employer, Affirmative Action Employer, M/FN/H

```
Seiscor
Technologies
A Raytheon Company
```


INCREASE YGUR SPHERE OF INFLUENCE.

At LSI Logic, your efforts will have impact around the world. Because our products are the driving force behind high-performance technology in the U.S., Europe, Japan-everywhere. For example, our RISC microprocessors are the heart of high-performance workstations from Sun, DEC and IBM, to name a few. We also develop microprocessors for advanced technology like HDTV, as well as ASICs for multimedia applications. Not to mention our growing family of digital signal processing (DSP) chips. And that's just the beginning.

MICROPROCESSOR PRODUCTS

MIPS Applications Manager

Requires degree in EE or CS and 2-5 years in RISC microprocessor applications or an FAE position. Experience managing/ growing a staff of 5-10 is a plus. (Refer to Job \#7682/BK03)

RISC Systems Design Engineer

Requires BSEE and 5 years' experience with CPU/CACHE subsystems development. (Refer to Job \#7711/BK03)

Design Engineer

Requires a BS or Master's in EE and knowledge of designing multimedia standard broducts and VLSI circuit design. (Refer to Job \#7510/BK03)

DSRPRODUCTS

Product Line Manager (\#esktop Video Products)

Requires a BS or Master's in EESand experience in high-tech marketing, graphics or video products. Knowledge of video compression is applus. (Referjto Job \#7530/BK03)

Applications Engineers *

Requires a related BS-and $3-5$ yeats delevant experience of a Master's with 2 years' experience Systerms design experience is

DESIGN TOOLS MARKETING

Design Tools Applications Engineer

Seek a self-starter who can work closely with customers, Marketing, and R\&D. 2-4 years' in CAE, UNIX,' synthesis and HDL experience. (Refer to Job \#8642/CLF03)

Product Applications Engineer

Requires related BS and $2+$ years' SUN/UNIX experience. Knowledge of CAD/CAE tools, software graphics, and VLSI design a plus. (Refer to Job \#8640/CLF03)

Trainer

Requires BSEE and 3-5 years' CAD tool experience in simulation and synthesis and VHDL experience. OS experience is a plus. (Refer to Job \#8630/CLF03)

ASIC

Associate Sales Engineer

BSEE and $1+$ years' ASIC-related tactical or product marketing experience needed. Sun and MDE experience and an MBA desired. (Refer to Job \#8470/CLF03)

Marketing Manager-Cell-Based

Manage/coordinate product, marketing, pricing, and competitive strategies for cell-based ASIC products, including producing product literature/specifying cell-based design tools. BSEE/MBA preferred. $5+$ years' standard cell ASIC experience needed. (Refer to Job \#4047/CLF03)

Sr. CAD Development Software Engineer

Requires PhDEE or MSEE and software engineering experience with knowledge of test methodology. Plan corporate press strategy for CAD development. (Refer to Job \#7140/BK03)

Applications Engineer (Logic Design)

Requirements include 3-5 years' related experience and BSEE; MSEE preferred. (Refer to Job \#8380/CLF03)

MARKETING

Account Manager

Must have BSEE, $2+$ years' marketing or customer-oriented experience, and strong problem-solving, interpersonal, and time management skills. (Refer to Job \#8650/CLF03)

Technical Program Manager

BSEE, $5+$ years' experience, and background in design and/or product engineering needed, plus good customer skills and knowledge of test engineering. (Refer to Job \#8651/CLF03)

Business Program Manager

Calls for related BS, some business background, and 3-5 years in a marketing-type function. Semiconductor knowledge also needed. (Refer to Job $\# 8651 \times$ CLF03)

MANUFACTURING SYSTEMS

Systems Deployment Manager

Callsfog texated degree and $5+$ years' in Manufacturing Systems đeploy ment, preferably in a semiconductor environment. Super visory experience and familiarity with VAX/VMS, UNEX,RDBMS and manufačturing Systems needed. (Refer to Job \#4039/CLF03)

CIM Development Engineers

Must be familiar-with VMS, DCL, UNIX, C and relational database systems. Relafed degree and interest in/semicanductor manufacturing also needed. (Refér to Job \#4039人CEFO3)

CIM Deployment Engineers

Requires BS or equivalent manufacturing on systems experience, along with superb analytical and interpersonat skills. Must haye an understanding of VMS, UNIX, and RDBMS systems. (Refer to Job \#4039/CLEO3)

FAX YOUR RESUME TODAY!

408-433-6825
or E-MAIL YOUR RESUME TO
resume @lsil.com
INDICATING APPROPRIATE JOB NUMBER

If you have aPC and a modem, find out more about LSI Logic and other opportunities we have available. Just dial (508) 263-3857, hit return twice, and enter LSI when prompted for a password.

By identifying the most favorable benefits and investment programs, we're able to provide a well-rounded employment package that includes medical/dental/life insurance, vision care, a $401(k)$ plan, stock purchase plan, and tuition reimbursement. If unable to fax, please mail your resume, indicating appropriate Job Number, to Professional Staffing, LSI Logic Corporation, 1551 McCarthy Blvd., Milpitas, CA 95035. An equal opportunity employer. Principals only, please.
*UNIX is a trademark of UNIX Systems Labs, Inc.
IGNORE THE BOUNDARIES

EDN's INTERNATIONAL ADVERTISERS INDEX

Recruitment Advertising 242-243

Advanced Micro Devices
Fortune Personnel of San Antonio
GE Medical Systems Group
Honeywell Commercial Flight Systems Group
*Advertiser in US edition
**Advertiser in International edition

This index is provided as an additional service. The publisher
does not assume any liability for errors or omissions.

The MostDemanding AOQLs.

The Most Part Numbers.

The Most Parts Shipped.

Ifyoure looking for the most from the power MÔSFETs you design in, get IR HEXFETs. The power MOSFETs with more of everything.

Performance. Nobody has the outgoing quality levels IR has. Nobody has the electrical specs. The avalanche ratings. The reliability. Nobody.

Part Numbers. Nobody has a broader line than IR. And not just in

n-channel 60 to 1000vHEXFETs. We also offer p-channel, currentsense and logic level FETs in a variety of industry-standard and custom packages.

Volume. Year after year, almost twice as many IR HEXFETs are designed in, specified, ordered, and shipped as any other brand. Making them the most wanted power MOSFETs in the world.

res International Rectifier

Out-of-this-world performance at a down-to-earth price.

The new 2900 Programming System brings the cost of high-performance programming down to earth. Buy only the device libraries you need today and expand capability when you need it with simple software updates.

The 2900 supports virtually every programmable logic and memory
device on the marketeven surfacemount packages.
Its innovative technology makes programming faster, easier, and more affordable than ever before. And with Data I/O®'s industry-standard design and testing software, you can create a
complete PLD development solution.
For more than 15 years, Data I/O has set the standard in device programming. Call today to learn how the 2900 is setting a new standard for both price and performance.
Call today for a
FREE tutorial.
navo
$1-800-247-5700$

Data I/O Corporation 10525 Willows Road N.E., P.O. Box 97046, Redmond, WA 98073-9746, U.S.A. (206) 881-6444/1-800-247-5700 Data I/O Canada 6725 Airport Road, Suite 302, Mississauga, Ontario L4V 1V2 (416) 678-0761
Data I/O Europe World Trade Center, Strawinskylaan 633, 1077 XX Amsterdam, The Netherlands $+31(0) 20-6622866$ /Telex 16616 DATIO NL. Data I/O Instrumatic Electronic Systems Vortriebs GmbH Lochhamer Schlag $5 \mathrm{~A}, 8032$ Graefelfing, W. Germany, 089-85-85-80 Data I/O Japan Sumitomoseimei Higashishinbashi Bldg., 8F, 2-1-7. Higashi-Shinbashi, Minato-Ku, Tokyo 105, Japan

Corporation

[^0]: EDN ${ }^{*}$ (ISSN 0012-7515) is published 48 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Senior Vice President/General Manager, Boston Division; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN 。 PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\circ}$ copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$109.95/year; Canada/Mexico, \$135/year; Europe air mail, $\$ 165 /$ year; all other nations, $\$ 165 /$ year for surface mail and $\$ 250 / y$ ear for air mail. Single copies are available for $\$ 10$. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]: Distributed by Arrow，Bell／Graham，Hall－Mark，Nu Horizons，Pioneer，and Wyle．Authorized Maxim Representatives：Alabama，（205）830－0498；Arizona， （602）730－8093；California，（408）248－5300，（619）278－8021；（714）261－2123；（818）704－1655；Colorado，（303）799－3435，Connecticut，（203）384－1112；Delaware，（609）778－5353； Florida，（305）426－4601，（407）682－4800；Georgia；（404）447－6124；Idaho，（208）888－6071；Illinois，（312）577－9222；Indiana，（317）921－3450；Iowa，（319）393－2232；Kansas， （816）436－6445；Louisiana，（214）238－7500；Maryland，（301）644－5700；Massachusetts，（617）329－3454；Michigan，（313）583－1500；Minnesota，（612）944－8545；Missouri， （314）839－0033；Montana，（503）292－8840；Nebraska，（816）436－6445；Nevada，（408）248－5300；New Hampshire，（617）3＇29－3454；New Jersey，（201）428－0600，（609）778－5353； New Mexico，（505）268－4232；New York，（201）428－0600，（607）754－2171；North Carolina，（919）851－0010；Ohio，（216）659－9224，（513）278－0714，（614）895－1447；Oklahoma， （214）238－7500；Oregon，（503）292－8840；E．Pennsylvania，（609）778－5353；W．Pennsylvania，（614）895－1447；Tennessee，（404）447－6124；Texas，（214）238－7500，（512）835－5822， （713）789－2426；Utah，（801）561－5099；Washington，（206）823－9535；W．Virginia，（301）644－5700；Wisconsin，（414）792－0920；Canada，（416）238－0366，（613）225－5161， （604）439－1373，（514）337－7540．
 Maxim is a registered trademark of Maxim Integrated Products．© 1990 Maxim Integrated Products．

[^2]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Home Furnishings \square and Interior Design. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^3]: P-CAD and CADAM are registered trademarks and PREMIER PCB is a trademark of CADAM INC. IBM is a registered trademark and RISC System/6000 is a trademark of International Business Machines Corp. Sun is a registered trademark and SPARCstation is a trademark of

[^4]: IM MegaChip, SCOPE, and ASSET are trademarks of Texas
 Instruments Incorporated.
 MS-DOS is a trademark of Microsoft Corporation.
 (C) 1990 Tl
 $08-0205$

[^5]: Seagate and the Seagate logo are registered trademarks of Seagate Technology, Inc. ICL. Olivetti and AT\&T are registered trademarks of their respective companiss.

[^6]: 785 North Mary Avenue
 Sunnyvale, CA 94086-2909
 RealVoice is a trademark of Oki Semiconductor:

[^7]: Dan Strassberg

[^8]: HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, NY 11716, (516) 567-5600, TLX: 310-685-2203, FAX: (516) 567-7358, (516) 563-5208

 WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
 WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767 WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
 NORTHERN NEW JERSEY: (201) 785-1734, TLX: 130-332, FAX: (201) 785-4132
 UNITED KINGDON: 44 (635) 40158, FAX: 44 (635) 32264; FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762 GERMANY: 49 (8191) 3105, FAX: 49 (8191) 47433; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181 JAPAN: 81 (3) 814-7688, FAX: 81 (3) 814-7689

[^9]: From the book, An Implementation Guide to Real-time Programming, by David L Ripps, O1989. Excerpted by permission of Prentice-Hall Inc, Englewood Cliffs, NJ.

[^10]: Latin America, Middle East, except Israel: Beekman Laboratories, Inc., 914-472-6600; Portugal: Componenta Lda. 351-1-3621283; Sweden: LTG Marketing AB, 46-8-7039380; Finland: Euroshield OY, 358-38-50631; Norway: Feiring, 47-2-649070; France: Phytronic, 33-1-69-03-21-06; UK: Ramp Electronics, 44-703-260161; Canada: A.C.Simmonds \& Sons, Ltd., 416-839-8041; Switzerland, Austria, Liechtensteln: KAB AG, 41-1-7342000; Italy: Sirces SRL, 39-2-57404962; Israel: Grand Central, Tech., 972-52-547520; Cermany: Microscan GMBH, 49-89-964841; Switzeriand, Austria, Liechtenstein: KAB AG, 41-1-7342000; Italy: Sirces SRL, 39-2-57404962; Israel: Grand Central, Tech., 972-52-547520; Germany: Microscan GMBH, 49-89-964841; 27-11-4632240; Spaln: Amitron Pasivos, 34-1-5420906; 34-3-4907494; Turkey, Greece: Oakdale Industrial Electronics Corp. 516-737-8013.

[^11]: たTELEDYNE RELAYS
 Innovations In Switching Technology

[^12]: My application is

[^13]: This ultra flexible harness for Texas Instruments terminates Nano Strip and Micro-D connectors to 43 conductors, 32 to 40 AWG.

