

Ensure testability in mixed-signal designs pg 65 Frequency and time-interval analyzers pg 79 Learning to use Ada pg 95 Selecting inductors for small dc/dc converters
pg 147
ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

Special Report: PC-based software makes board design easy and affordable
 pg 126

Live Long. t=

 M U L I B US II

It is logical to choose the bus architecture that will deliver the greatest return on your development investment, for the longest possible time.

- Today's Multibus II not only gets you to market quickly, with higher performance and superior reliability. But of all available buses, only Multibus II provides the performance headroom to effectively absorb silicon advances through the 1990s, to protect your investment long into the future. ■ During the past year Multibus II has grown faster than any other open architecture. One third more
vendors have expanded the range of available Multibus II boards, systems, software and packaging products by nearly 40 percent! - You can explore the world of Multibus II with your free copy of the new 1991 Multibus II Product Directory. Just send your business card to the MMG. And, contact the enterprising manufacturers listed below for complete information on Multibus II products that will transport you into the future. \quad Discover Multibus II. Your application will live long. And you will prosper.

CONCURRENT TECHNOLOGIES

Jerry Hoffman 217.356.7004 FAX 217.356.6238
NEW! i 486 CPU Board/Communications Controller
INTEL
Call $800 \cdot 548 \cdot 4725$
NEW! High integration 33 MHzi486 CPU board

MENTEC

Ralph Shaw 800.446.6762 FAX $614 \cdot 548 \cdot 6184$
NEW! 860 -based SBC running UNIX System V Rel. 4

Take a Look at LabWindows².0

LabWindows 2.0 brings a new look to data acquisition and instrument control. The new look is graphical-a graphical user interface for your acquisition and control system.

Create a Graphical User Interface

With LabWindows 2.0 , you can easily create custom graphics panels to interface with your DOS-based system. Using the graphical editor and standard development tools, you can develop a system that combines data acquisition, data analysis, and data presentation.

Program with C or BASIC

When you develop a system with LabWindows 2.0, you have the benefit of using standard programming languages with development tools designed specifically for data acquisition and instrument control.

Use any Acquisition Hardware

 LabWindows 2.0 has libraries of functions to control data acquisition hardware ranging from plug-in boards to industry-standard GPIB, VXI, andRS-232 instruments. You can develop a system with LabWindows to meet all of your measurement and control needs.

Take a look at the new LabWindows 2.0 . You'll like what you see. Austin, TX 78730-5039
(512) 794-0100
(800) 433-3488

Just select and move icons to build a complete ATE test and data management program.

Exciting graphic possibilities include visual operator prompts for repair or calibration.

Create test programs, run them, analyze data, then go to lunch. That's WaveTest on a DEC system.

WaveTest XTM (Extended Test Manager) is the software solution test designers have dreamed about, when they had time to sleep. It combines the fun and efficiency of iconic test generation with the power of VMS and ULTRIX workstation environments. You can collect, analyze and distribute test data with the flick of a mouse.

WaveTest XTM provides graphics, plotting, FFT's, power spectral density analysis, statistical analysis and much more. It also links seamlessly with thousands of third party software application packages.

WaveTest XTM operates in the industry standard X-Windows environment. If you've worked in DOS Windows, you'll be in familiar territory.

To create your specific automated testing and reporting program, just drag
and connect icons from our Libraries. The icons represent subroutines which can control instruments or systems, run tests, or access network resources and data management tools. WaveTest XTM automatically ties it all together, even generates the test documentation.

For more information about WaveTest XTM on Digital workstations, call Wavetek San Diego, Toll Free, today at 1-800-874-4835.

[^0]
Siliconix' DG458 is the best value in CMOS analog multiplexers. Now you can get $\pm 35 \mathrm{~V}$ overvoltage and fault protection for 25% less.

AtSiliconix, we've always been committed to providing you with the best in AnalogSwitches.

But recently we noticed that we had overlooked a small niche in our broad line of industry standardsetting products.

Multiplexers with overvoltage protection.
So now we offer you the DG458/459 eight- and dual four-channel CMOS Analog Multiplexers. Devices with overvoltage protection and fault tolerance too! They're ideally suited to meet your requirements for data acquisition, industrial process control or test system solutions.

> Faultand overvoltage protection

- Fail safe with power loss (nolatchup)
- Break-before-makeswitching
- TTL and CMOS compatability
- All channels off when power off for signals up to $\pm 35 \mathrm{~V}$
- Pin-compatiblewith HI508A and MAX358

We could tout all the feature/benefit advantages of our products such as higher reliability resulting from our silicon-gate processing. Or faster switching speed, lower on-resistance, and minimized power consumption...but we won't. Why?
Because our research has indicated that your primary concern is value. And that we can guarantee. Because our devices outperform industry equivalents and cost far less. About 25% less to be exact.

That's right. Just $\$ 3.75^{*}$ each.
And that means more value for you. So why pay full price for an HI508A or MAX358, when a DG458 costs so much less and performs so much better?

Get MUX more for MUX less! Call our toll-free hot line now. 1-800-554-5565, Ext. 959. Ask for our DG458/459 Qualification Kit including free samples.

Siliconix

2201 Laurelwood Road, Santa Clara, CA 95056

* In 5.000 piece quantities

On the cover: For less than $\$ 5000$, engineers who design their own boards or occasionally design prototype boards can buy pc-board design packages that have a surprising number of capabilities. See our Special Report on pg 126. (Photo courtesy CAD Software)

SPECIAL REPORT

Low-cost pc-board design tools

Low-cost pc-board design software packages that run on personal computers are easy to use and have many of the capabilities of more expensive packages. They are a smart choice for engineers who design their own boards or occasionally design prototype boards.-Doug Conner, Regional Editor

DESIGN FEATURES

RAID 5 architecture provides economical failsafe disk storage

Traditional methods used to back up critical data can be expensive and slow. A parity-based disk-array architecture offers an alternative that attacks these drawbacks.-Michael Anderson, Micropolis Corp

Careful inductor selection optimizes dc/dc converters

Higher output power levels and faster switching speeds have complicated the selection of inductors for small de/dc converters. However, if you check circuit waveforms for anomalies and review key electrical parameters during the design phase, you can simplify the development of an optimized dc/dc converter.-Bruce D Moore, Maxim Integrated Products

An object-oriented show and tell

When it comes time to choose an object-oriented language, you have two options: A pure language that is a complete development system you must learn, or a hybrid language that links with the system you already have.-Chris Terry, Associate Editor

Continued on page 7

[^1]
FLபKE
 PHILIPS

Meet the meter that brings an entire test bench to your job. The versatile Fluke 80 Series do-just-abouteverything "Multi" Meter.
It offers everything you'd expect from an advanced handheld DMM, plus a lot you'd find only in dedicated instruments. Plus Fluke-exclusive features you can't buy anywhere else. All built with the most advanced surface mount design and single-chip ASIC technology for a thinner, tougher, more reliable package.

There's a fully annunciated display for clear operation. Duty cycle function. High-speed analog indicator. A protective holster with innovative Flex-Stand ${ }^{\text {TMM }}$ for easy, adaptable operation. Audible Input Alert ${ }^{\text {tm }}$ to reduce the risk of damage to the meter, the user, and the unit being tested. Plus the strongest warranty in the business.
All good reasons to move up to the trulymulti Fluke 80 Series today. You'll find 80 Series DMMs at your Fluke distributor. For immediate, off-the-shelf delivery. Call

1-800-44-FLUKE, ext. 33 for the name of your nearest distributor.

John Fluke Mig. Co. Inc. PO. Box 9090 M/S 250C,
Everett, WA 98206 U.S: (206) 347-5400 CANADA: 416-890-7600 OTHER COUNTRIES: (206) 356-5500
© Copyright 1989,1990 John Fluke Mig Co., Inc. All rights reserved Prices and specifications subject to change without notice. Ad no. 00010
FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Frequency and time-interval analyzers make and store long series of measurements with little or no dead time between readings. The units help spot problems you can't find with coventional counters by letting you visualize the measurements (pg 79).

EDN magazine now offers

 Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.
ExpressiII! Request

TECHNOLOGY UPDATES

Mixed-signal designs: Concurrency, circuitry 65 foster testability

You can add circuitry to the analog part of your mixed-signal design, but the best way to ensure your design's testability is to coordinate with your test engineers.-Michael C Markowitz, Associate Editor

Frequency and time-interval analyzers:
 Units provide insights classic counters can't

Time-measurement instruments aren't restricted to counters and timers anymore. Analyzers that let you visualize long series of measure-
 ments can help you troubleshoot problems for which you would never dream of using a conventional counter. -Dan Strassberg, Associate Editor

Learning Ada: Class provides fast track to understanding

Given enough time and the right motivation, most engineers can learn to use the Ada programming language on their own. However, a training class will hasten language proficiency. -Steven H Leibson, Senior Regional Editor

PRODUCT UPDATES

Dynamic timing analyzer 113
Modular switching power supply 114
68030-based VXIbus controller 116
SBus-based DSP board
Continued on page 9

[^2]

	DESIGN IDEAS	
	Multiplier lowers impedance	173
	Divider splits the divisor	174
	$8051 \mu \mathrm{C}$ converses with dual-port RAM	176
	Duty-cycle chopper controls lamp	180
	Current source scrounges parts	182
	Phase shifter adapts to frequency changes	184
	EDN's 1990 Design Idea award winner	186
	EDITORIAL	59
	Don't expect much from the Advanced Computing Environment alliance. Such groups do little to further competition or innovation.	
	NEW PRODUCTS	
	CAE \& Software Development Tools 190	
	Computers \& Peripherals 200	
	Components \& Power Supplies 208	
	Integrated Circuits 216	
	Test \& Measurement Instruments 226	
	PROFESSIONAL ISSUES 244	
	Engineering graduate schools facea difficult decade	
	Enrollments are declining, and a serious faculty shortage may lie ahead.-Jay Fraser, Associate Editor	
	DEPARTMENTS	
	News Breaks . 19	
	Signals \& Noise 31	
	Ask EDN . 43	
	Calendar . 48	
	Leadtime Index 124Literature . 236	
	Business/Corporate Staff 242	
	Career Opportunities 260 EDN's International Advertisers Index 269	

Because Speed We'll Stop

PALCEIGVBH-10

Fast Universal
CMOS PLD Family
At 10 ns

Is Everything, At Nothing.

Whatever kind of PLD you need, the fastest comes from AMD.
We'd love it if all our work amounted to "zero." As in zero delay. And we're not far off.

Not surprising-because AMD invented the PAL ${ }^{\text {® }}$ device. That's why we know programmables better. And offer you the most choices of the best devices.

Say you want speed, but can't sacrifice density. Don't. Use our new MACH"m products (Macro Array CMOS High-density) that give you up to 3600 gates and 15 ns performance. They're two to three times faster than the competition and cost 40% less.

For more speed, along with low power consumption, try our new 10 - and 15 -nanosecond CMOS PLDs. Use our 16V8-10s and 20V8-10s anywhere you'd use a GAL ${ }^{\text {® }}$ device. Or choose the everpopular AMD-invented 22 V 10 , at 15 ns .

Faster still are our seventh generation bipolar PAL devices. Complete families of $16 \mathrm{~L} 8-5 \mathrm{~s}, 20 \mathrm{~L} 8-5 \mathrm{~s}$, and the $22 \mathrm{~V} 10-10 \mathrm{~s}$. And for real speed freaks, we're now shipping a 4.5 ns bipolar PAL device-the world's fastest TTL programmable logic.

Along with all this speed, we're providing equally fast delivery. In quantity. In fact, we deliver more programmable logic devices than all our competitors combined.

For details, call AMD now at 1-800-222-9323. And let nothing stand between you and your need for speed.

Advanced Micro Devices

INTHETIMEITTAKES COULD ROUTE THE WO

Believe it or not, it only takes about 150 seconds to place and route a Xilinx FPGA.

Chances are: itll take you longer to read this ad.

THE FIRSTAND STILL

 THE FASTEST.At Xilinx we invented the FPGA. And we've led the industry ever since.

With the fastest, highest performance FPGAs available anywhere.

Today, we offer system clock speeds of 60 MHz .

We're also the first programmable logic company to offer you on-board RAM.

Making our newest FPGAs ideal for everything fromFIFOs to register stacks.

What's more, we're the only programmable logic company that provides you with on-chip wide decode.

And that's just the beginning.
Because as formidable as our hardware may seem, it's only half the story.

As measured by typical design benchmarks, the XC3000 family is the industry's fastest FPGA. Or at least it was until we introduced the 4000 family.

NEW ENHANCED SOFTWARE PROVIDES PUSH BUTTON SOLUTION.

Device speed alone doesn't determine the fastest, highestperformance logic device.

When youre designing, the clock on the wall is every bit as

Our new push-button software makes programming other logic devices seem positively tedious.
important as the clock speed of the chip.

So to make Xilinx FPGAs even faster and easier to program, we've redesigned our software.

This is no mere upgrade. It's a major rewrite.

Our new version of XACT now comes with 200 soft macros. And fifty hard macros.

Providing automatic placing and routing for virtually all designs. With greater than 90% gate utilization.

If you've worked with Xilinx FPGAs before, you'll see improvements even before you start to place and route your design.

If you've never worked with Xilinx FPGAs before, you'll find every other logic device to be positively tedious by comparison.

WHEN IT COMES TO

 SYSTEM TESTING,WE PASS WITH FLYING COLORS.Our newest FPGAs offer you yet another competitive advantage that's exclusive to Xilinx.

TO READTHISAD,YOU RLD'S FASTEST FPGA.

The industry's first on-chip JTAG boundary scan for easy testing of PC boards and device I/Os.

This unique Xilinx offering improves overall system testability and dramatically reduces board test costs. It's a major boost for those designing highdensity, surface mount systems or complex, multilayer PC boards.

We told you we'd save you time and money.

> IF AT FIRST YOU DON'T SUCCEED, IT'S EASY TO TRY AGAIN.

As you well know, when you're designing a system, changes keep coming fast and furious.

Which is why Xilinx FPGAs are
designed to be reprogrammed quickly an unlimited number of times.

And not only do our FPGAs save you an enormous amount of time early on, they also save you time later when you need to make those "last minute" enhancements.

It's one more way we make it easier for you to get your product to market as fast as possible. First time. Every time.

ELAPSED TIME FOR 100% ROUTING

New algorithms have reduced place and route times by a factor of four.

GETTING AN EDGE OVER YOUR COMPETTTORS IS JUST A PHONE CALL AWAY.

If you've read this far, you could have already placed and routed one of our FPGAs.

So don't delay. No other programmable logic company can offer you the many exclusive features of Xilinx FPGAs.

Call 1-800-255-7778. Or in California, 408-559-7778. And we'll send you more information on how our FPGAs can give you the competitive edge.

But you'd better hurry.
Some of your competitors have already finished reading this ad.

8. XIIINX

The Programmable Gate Array Company ${ }^{\mathrm{ma}}$

"Integrating analog But we have a bigger tool anyone else in the world."

HOW NATIONAL SEMICONDUCTOR IS HELPING YOU PUSH THE LIMITS OF ADVANCED SYSTEMS PERFORMANCE.

Tom Redfern, National's Director of New Product Development, Interface/Peripherals Group, talks about the challenges of mixed analog+ digital technology.

Making Futurebus+ a reality.
"Traditional bus protocols are starting to hit the wall. They can't accommodate the wide data paths and high transfer rates demanded of the next generation of 32 - and 64 -bit microprocessors.
"That's why we've been an active participant on the IEEE's Futurebus+ committee since its founding in 1979. And that's why we invented the Backplane Transceiver Logic (BTL) that makes

Futurebus+ a reality today.
"Our first Futurebus+ chipset contains five devices, and they employ some of the most advanced analog+ digital integration ever achieved. Our BTL drivers, for example, let the digital CPU send information to the digital memory over the analog bus at peak rates of 2-3 Gbytes/second!
"This is the future- and we've got it today."

Setting the pace in system-level integration.
"Another great example is CLASIC, our powerful Custom Linear ASIC family.
"To reach system-on-chip performance, you've got to integrate analog and digital functions onto the same substrate.
"Well, CLASIC does that.

Custom Linear ASICs

ISDN UInterface

Op amps, comparators, references, DACs, VCOs, PLLs, plus digital cells - a huge library of building blocks. In bipolar, CMOS, and BiCMOS. With user-friendly design tools that let you do your own design on your PC or workstation.
"It's that simple."
Reaching a new level of ADC accuracy.
"Our new ADC1251 takes a quantum leap in integration. It's powered by a sophisticated digital controller and is totally self-calibrating, so it will maintain linearity over time, temperature, and supply voltage.
"You get 12 -bit-plus-sign resolution with a $8.0 \mu \mathrm{~s}$ conversion

Hard Disk
Synchronizer/ENDEC

and VLSI digital isn't easy: box for doing that job than

time and $\mathrm{a} \pm 1 / 2$ LSB non-linearity accuracy while dissipating 113 mW max at $\pm 5 \mathrm{~V}$.
"Try to find that in any other ADC. You can't."

Pushing the limits of analog + digital integration.
"To achieve these levels of integration, you need powerful tools in the hands of experienced designers.
"We've got them. A full range of process technologies, including fourth-generation bipolar ECL and

BiCMOS, which give us 0.8μ lithographies with bipolar $\mathrm{F}_{\text {Ts }}$ of 15 GHz and 50 ps gate delays.
'We also have some of the most advanced design tools in the industry, developed through our strategic alliance with Cadence.
"And we have seasoned analog and digital designers who know the art of putting those tools to work in advanced analog+ digital designs.
"This is the leading edge- and we're leading it."

Putting it all to work for you.
"The only way to make the systems-performance break throughs and the systems-cost breakthroughs demanded by nextgeneration products is to integrate analog+digital. We're doing it all, right now. So if I were a designer, I'd call us. Soon.'

1-800-NAT-SEMI, Ext. 117

C) 1991 National Semiconductor Corporation

CLASIC is a trademark of National Semiconductor Corporation.

INTRODUCING THE BEST DISK DRIVES

The newest generation of disk drives from Conner. Lighter. Cooler. Smarter. Faster. With more capacity than ever before. Precisely what highperformance dreams are made of. And, for the fourth consecutive year, Conner is delivering a generation ahead of the competition. Helping major OEMs get new systems to market faster than they ever dreamed possible.

Summit 510MB

Hopi 80MB

Sell. Design. Build.

Before we design or build a product, our engineers work closely with the most respected experts in the industry - our customers. By asking the right questions, we identify specific needs. Sooner. And fill those needs with the right products. Faster.

So it's no surprise that more of the world's leading OEMs work with Conner.

[^3] © 1991 Conner Peripherals, Inc.

OUR CUSTOMERS COULD DREAM UP.

Because we consistently design the exact disk drives our customers need. Then build those drives in volume.

Keeping You A Generation Ahead.

The results of this unique sell-design-build strategy have been remarkable. Using proven technologies, our high-performance 3.5 -inch and 2.5 -inch disk drives continuously set the standards. For all major segments of the market.

The fact is, Conner delivers disk drives for today's powerful systems. From high-end workstations
and file servers to desktop, laptop and notebook PCs.
And Conner has sales offices and manufacturing facilities in Europe, Asia and America. Keeping us close to our customers around the globe.

So call Conner today. And we'll work together to turn your dreams into realities.

DELIVERING A GENERATION AHEAD.

SIEMENS

Globally Connected.

Siemens provides computer and peripheral manufacturers with a worldwide connection for state-of-the-art integrated circuits.

Siemens is building on a tradition of innovation with state-of-the-art technology in the workplace. And we back it with worldwide service and support, providing a global partner for all your system designs.

For applications such as laptop PCs, printers and disk drives, which require lower power consumption, we offer

Innovative 8-bit microcontroller designs. CMOS 8-bit microcontrollers based on the 8051 architecture. Like the SAB80C537, with advanced features
such as 16-bit hardware multiply/divide, and 8 data pointers.

We're also the only European DRAM manufacturer, providing highquality $1-\mathrm{Mb}$ and $4-\mathrm{Mb}$ DRAMs. In fact, we're one of the world's leading suppliers, with DRAMs available worldwide, in volumes which have doubled since 1989. And we're continuing to advance this technology with our $16-\mathrm{Mb}$ and $64-\mathrm{Mb}$ DRAM programs.

Siemens has a wide range of ICs for PCs. Our powerful 80286 microprocessors include a super-fast 16 MHz design And we provide the 82C206 and the NEAT" chipset for optimized, low-cost solutions.

80286 and integrated peripherals.

Plus, Siemens offers an extensive line of CMOS ASIC devices.

For innovative solutions for computer and peripheral manufacturers, Siemens is the best connection you can make.

For details, call (800) 456-9229, or write:
Siemens Components, Inc.
2191 Laurelwood Road
Santa Clara, CA 95054-1514
Ask for literature package M14A013.

Siemens
 World Wise, Market Smart.

NEWS BREAKS

16-BIT S/H AMPLIFIER ACQUIRES IN 500 nSEC

The SHM-945 from Datel Inc features a 500-nsec-max acquisition time to $\pm 0.00076 \%$ ($\pm 1 / 2$ LSB at 16 bits) for a 10 V full-scale step, and it features a maximum acquisition time of 350 nsec to $\pm 0.003 \%$ ($\pm 1 / 2 \mathrm{LSB}$ at 14 bits) for a 10 V step. A differential input section allows rejection of common-mode noise that arises from grounding and layout issues, which often prevent the final design from attaining l6-bit performance. The manufacturer laser trims the offset, pedestal, and gain errors, and no external adjustments are required. A range pin allows you to select gains of $-0.5,-1$, and -2 . Other specifications include feedthrough rejection of typically 100 dB , typical hold-mode noise of $60 \mu \mathrm{~V} \mathrm{rms}$, typical aperture uncertainty of 10 psec , and a typical small-signal bandwidth of 16 MHz . The device requires ± 15 and 5 V supplies, and dissipates 385 mW max. 24 -pin DIP, 0 to $70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$ devices are available for $\$ 79$ and $\$ 87$ (OEM qty), respectively. Datel Inc, Mansfield, MA, (508) 339-3000, FAX (508) 339-6356.-Anne Watson Swager

GIVE YOUR MAC A MATH COPROGESSOR

For $\$ 249$ you can plug the Apex $16-\mathrm{MHz}$ math coprocessor board from Second Wave Inc into your Apple Macintosh LC computer's processor-direct slot. The coprocessor accelerates math-intensive tasks such as CAD, graphics, and spreadsheets by five to ten times. Second Wave Inc, Austin, TX, (512) 343-9661, FAX (51ఙ) 343-9663. -JD Mosley

CALLING FOR DSP-CONFERENCE PAPERS

DSP Associates has issued a call for papers for its International Digital Signal Processing Applications and Technology Conference and Exhibition. The Conference, which will take place October 28 to 31 in Berlin, Germany, is focused entirely on the development needs and application challenges facing international DSP-product designers. Authors should concentrate on recent DSP-based developments and new products in telecommunications, speech processing, image processing/recognition, control systems, automotive engineering, VLSI and DSP architectures, geophysics, underwater and radar detection, consumer electronics, and other applications. Send (via mail or fax) 100-word abstracts to the company by June 30. Contact the company for more information about display booth space reservations, costs, and other details. DSP Associates, Newton Centre, MA, (617) 964-3817, FAX (617) 969-6689, contact Jim Buhrendorf; Antwerp, Belgium, 32 (3) 237-1677, FAX 32 (3) 248-1694, contact Lina Van Meerbeeck.-Susan Rose

PUBLICATION OPENS PC'S KEYBOARD PORT FOR EXPLOITATION

The keyboard port on IBM PC and compatible computers can provide a handy interface port if you know how to use it. "PC Keyboard Design," a $\$ 249$ book-and-disk publication, provides detailed information on both the IBM PC/XT and PC/AT keyboard ports with suggestions for possible peripheral devices you might design to use these ports. The accompanying disk includes source code for managing the PC's keyboard controller. Annabooks, San Diego, CA, (619) 271-9526, FAX (619) 592-0061.-Steven H Leibson

MATH COPROCESSORS HIT HIGF AND LOW LIMITS

The \$1075 Fasmath 83D87-40 math coprocessor from Cyrix Corp has an operational clock rate of 40 MHz and 5.5 M -flops peak performance. For 80286 -based computers, you can buy a $\$ 23825-\mathrm{MHz}$ coprocessor, the $82587-25$, that has power-management functions for battery-powered applications. When idle, the $25-\mathrm{MHz}$ coprocessor consumes less than $100 \mu \mathrm{~W}$ of power. By stopping the clock and control input signals you can reduce the power consumption to less than $100 \mu \mathrm{~W}$. Cyrix Corp, Richardson, TX, (214) 234-8387, FAX (214) 234-8397.—JD Mosley

MACINTOSH OS TIGHTENS APPLICATIONS TIES

Apple Computer Inc is now shipping its System 7 operating system (OS) for the Macintosh personal computer family. The OS supports multitasking as standard procedure, allows the use of virtual memory, and supports 32 -bit addressing. The OS also features several tools that simplify interaction between applications packages, including the ability to "publish" data created with one program and "subscribe" to that data with other programs. Published data maintains a link to its source, ensuring that subscribers automatically receive updates when the data changes.

By the end of summer, all new Macintosh computers will come with the new OS factory-installed on the hard disk. Current Macintosh owners on maintenance programs will receive free upgrades. Other users can purchase a personal upgrade kit for $\$ 99$ or a network upgrade kit, allowing you to update all network nodes simultaneously, for $\$ 349$. The upgrade kits include the OS, tutorials, manuals, technical support, and a preinstallation tool that checks your programs and data for compatibility with the OS. If the tool finds problems, it provides a telephone number you can call for technical help. Apple Computer Inc, Cupertino, CA, (408) 996-1010. -Richard A Quinnell

ANIMATE CAD DRAWINGS FOR LIVELY DEMONSTRATIONS

Autodesk's $\$ 795$ Animator Pro offers a simple way to animate designs. The software can produce and display animations at resolutions as great as 1024×768 pixels. It can also read AutoCAD .DXF files and process a 2 -D image using any of five different animation techniques. Your audience doesn't need a copy of the software to play the resulting animation; all they need is an 80386 -based computer that runs DOS. Autodesk Inc, Sausalito, CA, (415) 332-2344, FAX (415) 331-8093.-J D Mosley

OPTIMIZE FPGA DESIGNS IN NATIVE ARCHITECTURE

Exemplar's Release 1.0 software tools combine synthesis, speed and area optimization, and mapping of field-programmable gate arrays (FPGAs) in one package. Most software packages that synthesize and optimize FPGAs don't work at the architectural level, which slows the design process. The software reads inputs from ABEL, CUPL, Palasm 2 equations, PLA truth tables, and EDIF 2.0.0 netlists. You can also use VHDL (VHSIC hardware description language) RTL (register transfer level) synthesis to create designs. The software outputs a design mapped in the FPGA building blocks, requiring you to use the chip vendor's tools for place and route. Libraries are available for Xilinx and Actel FPGA families, LSI Logic LCA10000, NEC CMOS5,

PSpice

The Standard for Circuit Simulation Switch-Mode Power Supply Design

Current mode power supply schematic.

Simulation using the Vorperian switch model to examine the stability of a power supply.

Power supply simulated using mixed analog/digital simulation. Plot shows subharmonic oscillation being suppressed by external ramp.

Hysteresis curve of transformer.

A cycle by cycle simulation of switch-mode power supplies is recognized as a difficult simulation task for SPICE-based simulators, which must cope with timings that can span 4 orders of magnitude. This problem invariably results in very long simulation times, but is improved considerably by MicroSim's approach of building the controller macromodel chips so that a significant section is simulated in the digital domain. PSpice's behavioral modeling and mixed analog/digital simulation capability makes this possible.
PSpice is available on the IBM-PC (running DOS or OS/2); Macintosh II; Sun 3, Sun 4, and SPARCstation; DECstation 2100, 3100, and 5000; and the VAX/VMS families. In addition to the PWM macromodels, the PSpice library contains over 3,500 analog and 1,500 digital parts which can be used in a variety of applications. Our technical staff has over 150 years of combined experience in CAD/CAE, and our software is supported by the engineers who wrote it.
For further information about the PSpice family of products, call us at (714) 770-3022, or toll free at (800) 245-3022. Find out for yourself why PSpice has become the standard for circuit simulation.

$$
20 \text { Fairbanks • Irvine, CA } 92718 \text { USA • FAX (714) 455-0554 }
$$

Toshiba 120 g , and VLSI VGT200 gate arrays. The price for the architectural analyzer, one vendor-specific library, and an X-Window graphical user interface is $\$ 10,000$ per seat for Unix and $\$ 6000$ for DOS. Options include a $\$ 9000$ VHDL RTL synthesizer, an $\$ 8000$ schematic generator for EDIF netlists, and an $\$ 8000$ library generator. Additional libraries are $\$ 5000$. Exemplar Logic, Berkeley, CA, (415) 849-0937, FAX (415) 849-9935.-Doug Conner

LOW-COST MASK PROGRAMMING REPLACES FPGAs

Both Xilinx Inc and Altera Corp now have mask-programmable versions of their field-programmable gate arrays (FPGAs). The mask-programmable versions bridge the price gap between programmable gate arrays and ASICs, letting you quickly create a lower-cost pin-compatible replacement for your programmable logic. The field-programmable and mask-programmed versions are interchangeable. However, the mask-programmed versions operate at higher speeds internally because they use metal to replace the programmable interconnect circuitry. You need to verify that the higher speed doesn't violate setup and hold constraints elsewhere in your design.

The Xilinx devices replace members of the XC3000 FPGA family. The \$9 XC3330, $\$ 13$ XC3342, and $\$ 25(10,000)$ XC3390 cost 50 to 70% less than the programmable versions. The $100-\mathrm{MHz}$ devices are pin and function compatible with the programmable devices, including emulation of the configuration logic associated with device programming. You can disable the emulation and skip the delay associated with initializing the programmable devices. The NRE charges range from $\$ 5000$ to $\$ 9000$, including test program generation, with prototypes available in three weeks.

The Altera devices replace the Max 5000 and EP1810 families. The NRE charge is $\$ 15,000$, and prototypes can be ready in five weeks. Unit costs vary with package and design sizes. The typical price for an EPM5128 in a 68-lead plastic leaded chip carrier is $\$ 10$ (5000). Xilinx Inc, San Jose, CA, (408) 559-7778, FAX (408) 559-7114. Altera Corp, San Jose, CA, (408) 984-2800.-Richard A Quinnell

FLASH MEMORY $\mathbb{M M B E D S ~ P R O G R A M ~ A N D ~ F R A S E ~ C O M M A N D S ~}$

The Am28FO20 2M-bit flash memory from Advanced Micro Devices contains embedded code that automatically erases and programs the memory device. The embedded algorithms save you from writing and debugging the programming routines themselves. When you send the erase command to the chip, the device automatically preprograms, erases, and verifies the entire memory for an all-zero data pattern. The embedded erase algorithm terminates when the chip reaches an adequate erase margin, thereby preventing overerasure. The device doesn't require any controls or timing during these operations. The device indicates to the system when it's ready for reprogramming, during which the chip indicates its readiness for new data on a byte-by-byte basis. The devices comes in four speed grades, with access times of $90,120,150$, and 200 nsec . Organized as $256 \mathrm{k} \times 8$ bits, the IC is available in a 32 -pin PLCC (plastic leaded chip carrier) and a 32-pin plastic or ceramic DIP. The $200-\mathrm{nsec}$ version in the PLCC package costs $\$ 44$ (100). Advanced Micro Devices, Sunnyvale, CA, (800) 2ん2-9323, (408) 740-5703, FAX (408) 749-3240.-Anne Watson Swager

2 grams of ceramic and 18 inches of wire can't make you more competitive.

There's only one real reason to specify Dale ${ }^{\text {® }}$ wirewound resistors: We'll work harder turning something common into something uncommonly valuable. Up front, that means saving you selection time by producing every standard shape and size in the book. Plus we give you immediate access to design assistance and a wide range of proven special products

It means factory and distributor stocking programs that can be quickly fine-tuned to your Just-InTime delivery programs.

And, it means making reliability

Dale Can.

the least of your worries with wellestablished Statistical Process Control and Quality Assurance systems to give you ship-to-stock capability.

Dale wirewound resistors.

They're not commodities - they're the power you need to help make your products more competitive. Contact your Dale Representative or Distributor, or phone: 402-563-6506 Dale Electronics, Inc., 1122 23rd Street, Columbus, NE 68601-3647.

NEWS BREAKS

GRIDLESS ROUTER REALLY RLIMINATES GRID

Harris Scientific Calculations' Freestyle pc-board router is a true gridless router (as opposed to pc-board routers that reduce the size of the grid to seem gridless). Instead of a grid, the device is a shape-based router that starts with routing obstacles placed on a circuit board. These obstacles include the board edges and component pads. Using clearance-driven push-and-shove and ripup-and-retry algorithms, the company claims this gridless router has yet to meet a board it couldn't route to completion. Among its via editing features, the router allows stacked, staggered, and spiral buried and blind vias, coincident via rules and via tap-in under surfacemount pads. The router performs on-line design-rule checks based on rules that you can set by many characteristics including layer, class, net, and boundaries. Running on both Sun and DEC workstations, the software costs $\$ 29,950$. Harris Scientific Calculations, Fishers, NY, (716) 924-9303.-Michael C Markowitz

DATA-ANALYSIS SOFTWARE WORKS WITH IEEE-488 DIGITIZER

IOtech's \$1695 Turbolab graphical data display and analysis program calculates a 4096 -point FFT in 1.5 sec . The program lets you collect data from as many as 16 analog channels and send it directly to your PC's memory or disk. The software performs IIR-filter and FFT calculations for as many as 16,384 points and transparently uses your PC's hard disk as a virtual memory when an operation requires additional RAM. In this way you can acquire, display, and manipulate waveforms of virtually any length. For seamless data acquisition, you can interface the software directly to the manufacturer's $\$ 1795$ ADC $488100-\mathrm{kHz}, 16$-bit IEEE- 488 digitizer. The program comes with a module that automatically determines the memory and channel configuration of the ADC488 during startup. IOtech Inc, Cleveland, OH, (216) 439-4091, FAX (216) 439-4093.—J D Mosley

HANDHELD DMMS MEASURE CAPACITANCE AND FREQUENCY

John Fluke Mfg Co's 70 Series II handheld digital multimeters (DMMs) consists of eight models at list prices ranging from $\$ 69$ to $\$ 185$. The flagship models 79 and 29 make all of the basic measurements with 4000 -count resolution and 0.3% accuracy for de volts. They also measure frequency to 20 kHz and capacitance to $9999 \mu \mathrm{~F}$. John Fluke Mfg Co Inc, Everett, WA, (206) 347-6100.-Dan Strassberg

IC VERIFICATION SOFTWARE DISTRIBUTES TASK

Silvar-Lisco's suite of IC-design tools, called SL-Verify, operate faster by distributing electrical- and design-rule checks and mask-data preparation across your entire network of available workstations. The software performs layout vs layout, schematic vs schematic, and layout vs schematic consistency checks. To facilitate making runset changes, the software lets you specify rules with variable limits. (The runset is the command file that defines what checks are to be performed and what rules each check shall use.) The $\$ 100,000$ suite includes four tools: a block-based designrule checker, an electrical-rule checker that performs parameter extraction, a maskdata preparation tool that includes E-beam and pattern-generation fracturing algorithms, and a manufacturing yield-analysis tool. A rule-set translator lets you use existing Dracula runsets. Silvar-Lisco, Sunnyvale, CA, (408) 991-6000, FAX (408) 737-9979.-Michael C Markowitz

$30 \mathrm{MS} / \mathrm{s}$ DSO PLUS A TEST BENCH OF FUNCTIONS TIED UP IN ONE PORTABLE PACKAGE.

Leader's new battery-powered forwarding it to a lab for analysis. DSO/DMM weighs only 2.6 lbs., yet performs the functions of four different pieces of test equipment. Two functions the Model 300 offers are those of a DSO and DMM, with simultaneous display of each-including channels 1 and 2 peak-to-peak voltage and frequency. Two additional functions are an 8-bit logic analyzer, which lets you compare 8 signals at once, and a data logger for recording long-term phenomena.

The 300 has a remarkable sampling rate of
$30 \mathrm{MS} / \mathrm{s}$, giving you
the ability to observe
$10-\mathrm{MHz}$ signals.
A powerful 1.8 k a large viewing angle.

You'll find that the 300 makes the perfect traveling companion, letting you travel light without leaving a single vital function back in the shop. For our full-line catalog, in NY call 516 231-6900. Or call toll free: 1800 645-5104.

A 20-waveform capacity is standard, but an optional IC card lets you store an incredible 80 waveforms. The IC card is especially handy for saving information and

1800 645-5104
 LEADER
 FOR PROFESSIONALS WHO KNOW THE DIFFERENCE

dc to 3 CHz _ Sl^{145}

lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40 dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models - immediate delivery
low pass dc to $\mathbf{1 2 0 0 M H z}$

	MODEL NO.	PASSBAND, MHz (loss <1dB) Min.	fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) (loss $>40 \mathrm{~dB}$)			VSWR pass- stopband band typ. typ.		$\begin{gathered} \text { PRICE } \\ \text { \$ } \\ \text { Oty } \\ (1-9) \end{gathered}$
				Max.	Max.	Min.			
	PLP-10.7	DC-11	14	19	24	200	1.7	18	11.45
	PLP-21.4	DC-22	24.5	32	41	200	1.7	18	11.45
	PLP-30	DC-32	35	47	61	200	1.7	18	11.45
	PLP-50	DC-48	55	70	90	200	1.7	18	11.45
	PLP-70	DC-60	67	90	117	300	1.7	18	11.45
LOW PASS	PLP-100	DC-98	108	146	189	400	1.7	18	11.45
	PLP-150	DC-140	155	210	300	600	1.7	18	11.45
	PLP-200	DC-190	210	290	390	800	1.7	18	11.45
∞	PLP-250	DC-225	250	320	400	1200	1.7	18	11.45
	PLP-300	DC-270	297	410	550	1200	1.7	18	11.45
인	PLP-450	DC-400	440	580	750	1800	1.7	18	11.45
-	PLP-550	DC-520	570	750	920	2000	1.7	18	11.45
$\stackrel{\rightharpoonup}{\mathrm{D}}$	PLP-600	DC-580	640	840	1120	2000	1.7	18	11.45
\pm	PLP-750	DC-700	770	1000	1300	2000	1.7	18	11.45
	PLP-800	DC-720	800	1080	1400	2000	1.7	18	11.45
	PLP-850	DC-780	850	1100	1400	2000	1.7	18	11.45
oc frequency	PLP-1000	DC-900	990	1340	1750	2000	1.7	18	11.45
- frequency	PLP-1200	DC-1000	1200	1620	2100	2500	1.7	18	11.45

high pass dc to $\mathbf{2 5 0 0} \mathbf{M H z}$

MODEL NO.	$\begin{aligned} & \text { PASSBAND, MHz } \\ & \text { (loss <1dB) } \end{aligned}$		fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) \quad (loss $>40 \mathrm{~dB}$)		VSWR		$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Qty. } \\ (1-9) \\ \hline \end{gathered}$
	Min.	Min.		Min.	Min.	typ.	typ.	
PHP-50	41	200	37	26	20	1.5	17	14.95
PHP-100	90	400	82	55	40	1.5	17	14.95
PHP-150	133	600	120	95	70	1.8	17	14.95
PHP-175	160	800	140	105	70	1.5	17	14.95
PHP-200	185	800	164	116	90	1.6	17	14.95
PHP-250	225	1200	205	150	100	1.3	17	14.95
PHP-300	290	1200	245	190	145	1.7	17	14.95
PHP-400	395	1600	360	290	210	1.7	17	14.95
PHP-500	500	1600	454	365	280	1.9	17	14.95
PHP-600	600	1600	545	440	350	2.0	17	14.95
PHP-700	700	1800	640	520	400	1.6	17	14.95
PHP-800	780	2000	710	570	445	2.1	17	14.95
PHP-900	910	2100	820	660	520	1.8	17	14.95
PHP-1000	1000	2200	900	720	550	1.9	17	14.95

bandpass 20 to $\mathbf{7 0 M H z}$

BANDPASS	MODEL NO.	CENTER FREQ. MHz F0	$\begin{aligned} & \text { PASS BAND, MHz } \\ & \text { (loss }<1 \mathrm{~dB} \text {) } \end{aligned}$		STOP BAND, MHz 10 dB) (loss > 20 dB)				VSWR 1.3:1 typ. total band MHz	$\underset{\$}{\text { PRICE }}$
			Max. F1	Min. F2	Min. F3	Max. F4	$\underset{\text { M5 }}{\text { Min }}$	Max. F6		Qty. $(1-9)$
	PIF-21.4	21.4	18	25	4.9	85	1.3	150	DC-220	14.95
\%	PIF-30	30	25	35	7	120	1.9	210	DC-330	14.95
\pm	PIF-40	42	35	49	10	168	2.6	300	DC-400	14.95
	PIF-50	50	41	58	11.5	200	3.1	350	DC-440	14.95
	PIF-60	60	50	70	14	240	3.8	400	DC-500	14.95
frequency	PIF-70	70	58	82	16	280	4.4	490	DC-550	14.95

narrowband IF

CIRCLE NO. 195

People say boundary nlow cost,highquality Now you can testthat

Increasing device complexity. Rising pattern development costs. High density packaging. Disappearing nodal access. These are the board test problems boundary scan was created to solve. Which is fine in theory. Only problem is there hasn't been any way to put boundary scan to the test. Until now.

VICTORY- the first software to automate boundary-scan testing.
Introducing VICTORY ${ }^{\text {tM }}$ from Teradyne: the only software toolset ready to help you turn boundary-scan theory into a practical advantage. From the moment your first boundary-scan device is designed in, VICTORY starts
to simplify the testing of complex digital boards. And the more bound-ary-scan parts you have, the more time and money you save.

Delivers high faultcoverage.
Whether you're testing one boundary-scan part or boundary-scan networks, VICTORY software automatically gives you 100% pin-level fault coverage. Using the IEEE 1149.1 and BSDL standards, it takes VICTORY only a minute or two to generate test patterns. It would take a program-
 mer days, even weeks to deliver the same fault coverage for conventional designs.

Now you can find stuck-at faults, broken wire bonds, wrong or missing compo-nents-even open input pins-all without manual diagnostic probing. VICTORY's fault diagnostics clearly spell out both fault type and fault location. And that's just the manufacturing process

scanisabreakthrough board testing.

 theory.feedback you need to eliminate defects where it's most cost-effective-at the source.

Helps solve the test access problem.
With boundary-scan design and VICTORY software, you won't need bed-of-nails access

mized board layout without lowering fault coverage.

Good for the bottom line.

Boundary-Scan Intelligent Diagnostics identify faults by type and location without physical probing - even on high-density SMT assemblies
Shorter test programming time. Higher fault coverage. Lower PC board and test fixture costs. The bottom line on VICTORY is how positively it will affect your bottom line. And because VICTORY works with all Teradyne board testers, you're free to tailor a test process that's cost-effective for both your boundaryscan and non-scan boards. No matter what your test objectives. For example, with our new Z1800VPseries testers, a complete solution for in-circuit and boundary-scan testing starts at well under $\$ 100,000$.

Make the next logical move. Call today.

Boundary scan is the design-for-test breakthrough that promises lower cost,

Get high fault coverage at low cost when you test boundary-scan boards with our new Z1800VP system and VICTORY software. higher quality board testing. But don't take our word for it. Call Daryl Layzer at (800) 225-2699, ext. 3808. We'll show you how, with VICTORY software and Teradyne board testers, you can test this theory for yourself.

TERADNは

There's a new standard for functionality, ease-of-use and price. The TI-68.

We set some tough goals for ourselves in designing the TI-68. It had to have the powerful functions that technical professionals need. It had to be easy to use. And it had to provide all of this at a substantially lower price than the competition.

We met all of our goals and then some. The TI-68 has 254 useful functions. It solves up to five simultaneous equations with real or complex coefficients. A prompting system guides you through all entries and results. You can handle the complex numbers exactly the way you want, without entering a special mode. The T1-68 evaluates 40 complex number functions and lets you choose polar or © 198971
rectangular forms for entries and results. It also lets you easily check your equations with a 12 -character alphanumeric display that can scroll through up to 80 characters for long equations. And, the last equation replay feature lets you edit or check the last computation without having to go back and reenter it.

In addition, when you need to solve quadratic, cubic or quartic equations, the Tl-68's polynomial root finder will calculate the real and complex roots - automatically.

Working with number bases and conversions are also no problem. Perform arithmetic functions in decimal, hexadecimal, octal or
binary. And it does Boolean logic operations, too.
The TI-68 provides up to 440 program steps for as many as 12 user-generated formulas. It even stores up to 36 values in memories with user-defined alphanumeric names.

The T1-68 has what you've been looking for - the right functionality at the right price. See and try it at a nearby retailer, or call 1-806-747-1882 for additional information and to request free product literature.

Texas 性 Instruments

Precision op amp guarantees spec

In the Technology Update, "Precision parts demand kid-glove treatment" (EDN, February 18, 1991, pg 99), Bob Dobkin of Linear Technology Corp doubts that anyone can ship a bipolar amplifier with an offset drift of less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Because this comment appears immediately following Analog Devices' (PMI Div) OP-177E TC specification of $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, it seems to imply that our product does not meet its published specification.
Bob says ". . . you can measure performance at this level five times and get five different answers." True, there is some variation in measured values for all automatic testing; the goal is to refine the testing to a point where all five answers are very close together and then guardband for these test variations. The TC of the OP-177E is tested to a $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ limit and is typically much better than that.
Derek Bowers
$V P$ Engineering
Steve Sockolov
Linear Marketing Manager
Analog Devices
Santa Clara, CA

This recession's job market is "less friendly"

Julie Anne Schofield's article, "The Job Hunting Blues" (EDN, January $21,1990, \mathrm{pg} 230$) is right on the mark.
As a 1971 graduate of Cal Tech who has had experience in many areas of electronics and applied physics, I've found the present job market much less friendly and much more competitive than when I was last job hunting in 1979. While cleaning out old magazines, I noticed that there were four or five times more job opportunities listed in EDN two or three years ago than in the current issues.
Julie writes, "Don't even mention
the purported engineer shortage to an engineer. . ." That's for sure. I'm seriously considering leaving engineering to teach physics and astronomy. (I'm much less seriously considering going into music, but because only 20% of Juilliard graduates have music as their prime source of income, this seems less realistic.)
Craig McCluskey
Colorado Springs, CO

He eschews computer worship, be it Mac or PC

I'll take the liberty of paraphrasing J Thomas Baylor's letter about the Mac versus the PC in EDN, March 14, 1991, pg 26. He wrote ". . . people want to be able to use a computer, not hack with it." My version: "People want to be able to use a computer, not worship it."

I've been using MS-DOS-based PCs since about 1983, and I've never once lamented the lack of wastebaskets, file cabinets, and such on my screen. Worse yet in the eyes of "power users," I never once felt the compulsion to switch instantly from one program to the other, and I never felt unbearably lonely as the result of being a nonmultiuser.

I agree with the Editor's comment about Apple's arrogance vis-avis an open bus and applications encouragement. I'll add to this the company's monopolistic, sole-source pricing philosophy, which has finally come around to bite Apple in the derriere, as witness the recent move to more reasonable prices.
Bill Travis
International Sales \& Marketing Manager
Micro Networks
Worcester, MA

Frequency-synthesis technique questioned

The article, "Nonlinear division synthesizes multiple clock frequencies" (EDN, February 18, 1991, pg 169) by Sid Ghosh, is interesting in regard to the resulting phase jitter produced by dithering the divider between d and $(\mathrm{d}+1)$. The tabulated clock frequencies in Table 2 are all related multiples of 8 kHz including the T1 rate of 1544 kHz .

A PLL loop can synthesize all these frequencies mentioned in the first paragraph. The conventional analog VCO can be eliminated and a complete digital PLL can be implemented with the Signetics $74 \mathrm{HC} /$ HCT297 and a couple of programmable divide-by-N counters such as the $74 \mathrm{HC} / \mathrm{HCT} 40103$.

```
Richard L Panosh, President
Vista Medical and Electronic
Engineering
Lisle, IL
```


A promise of more reliability and less noise

Ricardo Rabinovich's article "Statemachine design curbs illegal states and transitions" (EDN, February 4, 1991, pg 95) promises novel ideas that might improve the reliability of the synchronous state machines I design. However, the proposed method of adding next-state-validation logic is likely to decrease,
rather than increase, the reliability of such state machines.

Ricardo discusses several approaches to improved reliability. However, it might be prudent to add another flip-flop at the input stage of the synchronizer so that the exclusive-OR gate input is not taken from the potentially metastable output of the first flip-flop.

The article discusses the implementation of a state machine that includes next-state-validation circuitry. I believe this implementation is less reliable than the equivalent conventional implementation with input synchronization of such state machines shown in the figure below:
ister (PSR) is loaded with an inappropriate or illegal value.

If noise is the problem, the conventional state machine will present incorrect values to the PSR only if the noise occurs during setup and hold around the Sysclk edge.

In contrast, noise can affect the article's circuit in other ways:

1. NSD outputs are wrong around the edge of Sysclk. In this case the NSR is loaded with an incorrect value and, if the next-statevalidation circuit does its job, the noise-induced error is ignored. This intended benefit eliminates the effect of noise, but only if the noise occurs at the time Sysclk is falling.

The remainder of either state machine operates entirely on synchronous signals. In such a machine, errors are due to design error, circuit element failure, or unexpected 1shot events, such as noise. However, if the next-state-validation logic is derived from the same equations as the next-state-generation logic, then errors in the statemachine specification will be present in both parts of the state machine, and it will do exactly what the designer (wrongly) tells it to do.
Because the proposed circuit has more components than a more conventional implementation, it will experience circuit-element failures more often and be less reliable.

Finally, Ricardo's circuit is supposed to be resistant to illegal transitions caused by noise. I will assume that an error occurs when, due to noise, the present-state reg-

Noise occurring at this time cannot affect the conventional implementation because it samples the NSD output only at the rising edge of Sysclk.
2. NSD outputs are wrong around the edge of Sysclk. In this case Ricardo's implementation will not notice the error until after it has been loaded into the PSR and causes an illegal transition. The conventional implementation requires that the NSD include logic to deal with illegal states, but avoids the NSVAL (next-statevalidation) burden.
3. NSVAL output is wrong around the edge of Sysclk. The next-state-validation circuit is also subject to noise. Noise causes a valid state transition to be ignored, an invalid state transition to be taken, or worst of all, the multiplexer to take some bits from the
present state and some from the next state.
4. Multiplexer output is wrong around the edge of Sysclk. The multiplexer inputs, outputs, and circuits themselves are subject to noise, which may produce an illegal state transition.
Mechanism 2 (above) is the same mechanism that causes illegal transitions in a conventional state machine and would be expected to occur with a similar frequency in both implementations. Mechanisms 3 and 4 are unique to the proposed implementation and would make it less reliable than a conventional implementation.
Ricardo makes many good points about synchronization, decoupling, and timing analysis to ensure the most reliable state machine possible. But by adding more logic to try to detect illegal transition, he has made the circuit more vulnerable to noise.

Allen E Tracht
Principal Engineer
IOtech Inc
Cleveland, OH

(The author's reply: Some of the points that Allen Tracht has raised make sense, but others are debatable.
The synchronizer circuit does not require an additional flip-flop because the output of the exclusive- $O R$ gate is connected via the multiplexer to a flip-flop input. All three flip-flops of the input are synchronized by the same clock; therefore, a potential metastable condition in the first flip-flop will not propagate to the last flip-flop unless the metastable condition lasts longer than the clock cycle. An additional flip-flop at the input would be vulnerable to the same problem.
A circuit like the one in my article could require additional parts in a discrete implementation. This addition might be detrimental to system reliability due to the parts count. However, the additional

If your computer application has an insatiable appetite for disc storage,
Seagate's got you covered.
Seagate produces more than twenty models of our Wren, Elite and Sabre disc drives with capacities greater than a gigabyte. Ranging in size from 1.1 to 3.2 GB , Seagate offers the industry's broadest range of high-capacity solutions for anything from a desktop PC to a world class supercomputer.

These 5.25" Wren and Elite drives and $8{ }^{\prime \prime}$ Sabre drives feature data rates as high as 27 MB /second, average seek times as low as 11.5 msec and latency as low as 5.56 msec . With a choice of high performance interfaces including SCSI, SCSI-2, IPI and SMD, you can easily configure the ideal storage solution for your requirement.

Because these drives utilize Seagate's own thin-film heads, thin-film discs, voice-coil motors and printed circuit boards, you can be assured you're getting the highest quality disc drive available. In fact, our MTBF specification is as high as 250,000 hours in a Class A computer room environment.

Seagate's array of gigabyte-plus solutions can turn your computer application into a work of art. For complete Wren, Elite and Sabre specifications, contact your authorized Seagate distributor. Or call Seagate directly at $800-468$-DISC, or 408-438-6550.

Painted Bamboo and Wire by Nance O'Banion
Oakland, California

[^4]
LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock@ $\$ 75 /$ singles, $\$ 20 / 1000$ s (Surface mount also avail in qty.)

CyberneticMicroSystems

Box 3000 - San Gregorio CA 94074
Tel: 415-726-3000 - Fax: 415-726-3003
supervisory function could improve the overall reliability of the system. The kinds of techniques presented in my article are oriented toward ASIC implementations where the number of additional gates required for self-checking might not significantly jeopardize the overall reliability of the circuit.

I have not claimed 100% noise immunity for the self-checking circuit; rather, this circuit increases overall circuit-noise immunity.

Illegal states or transitions would be almost unavoidable if this circuit were to operate in a noisy environment. My article focuses on recovering from random noise. Redundant circuitry provides a recovery mechanism when an isolated fault occurs in either circuit, but not in both.

In a conventional state-machine architecture, a noise glitch will almost certainly put the state machine in an undesired state. The self-checking circuit (NSR/NSVAL/ MUX) does not let the machine transit to a wrong state. Adding components for the additional circuit increases the possibility of catching more noise. However, noise in the self-checking circuit would not create erroneous state transition, but at worst, a 1-clock delay to a valid one.

A conventional state machine with an input deglitcher is also vulnerable to noise of duration wider than the deglitcher can filter out. The state machine with a selfchecking circuit can detect and solve for illegal input combinations, thereby preventing illegal transitions.

This technique will build "forgiveness" in the circuit, but it will not replace good design practices.)

The measure of a solar cell's thickness

Jay Fraser's article, "Who cares about power?" (Professional Issues, EDN, November 8, 1990, pg 381),
is well written, but I question the statement on page 382 that reads: "...solar cells... have to be relatively thick, 25 to 50 mm ." Unless I'm missing something, any solar cell, no matter how transparent, won't let light penetrate more than a quarter of an inch or so. The intended measurement was probably 25 to 50 mils, which is thick for silicon wafers, but not as thick as the numbers given.
James L Rieger, PE/PTBW
Ridgecrest, CA
(The author's reply: James Rieger is indeed correct. The measurement of solar cells should be 25 to 50 mils thick.)

Correction

The News Break "A/D converters come in a new package" (EDN, March 14, 1991, pg 18) contains an error. The edited statement, "Missing codes are not guaranteed," changes the meaning; the statement should read "No missing codes are guaranteed."

Mea culpa

In the Technology Update on the STD Bus CPU board (EDN, March 28,1991 , pg 51), the Computer Dynamics Sales Inc listing in Table 1 got botched. The entry listed for "Sales Inc" is actually part of the Computer Dynamics Sales Inc data. EDN apologizes for the error.

HAVE YOUR SAY

Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCI mail at EDNBOS or via EDN's bulletin-board system at (617) 558-4241 and leave a letter in the EDITORS Special Interest Group. You'll need a $2400-\mathrm{bps}$ or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or $1200 / 2400,8 \mathrm{~N} 1$ in shorthand.

How P-CAD made the Poqet more productive

The Poqet $\mathrm{PC}^{\text {114 }}$ is the complete MS ${ }^{@}$-DOS PC that's small enough to slip into your pocket. Yet it is powerful enough to run virtually any MS-DOS personal productivity software.

The Poqet PC's small but complex board design made choosing the right PCB design software a very big decision.

P-CAD for DOS-based PC's
P-CAD makes a big thing out of productivity, service and support.

P-CAD gave the Poget PCB design team the robust functionality and reliability they needed to complete their designs and get their product to market
faster. And Poget chose P-CAD for another very big reason - unparalleled customer service and support.

You see, P-CAD backs customers with technical representatives in 100 nationwide locations. Service from 19 regional training centers. A technical support center and hot-line, user groups, and a 24 -hour bulletin board.

Minimum design time for maximum profitability.

Support like this explains why Poqet Computer joined more than 18,000 installations already using P-CAD to minimize design time and maximize profitability.

Whether you're using a UNIX ${ }^{\circledR}$ workstation or a 386^{\circledR} or 486^{\circledR}-based PC, there's a P-CAD system designed for your platform. Either way, you're backed by our international network of P-CAD value added resellers - your assurance of the maintenance, upgrades, and support you need for maximum design productivity.

P-CAD for UNIX workstations

Pocket your free P-CAD demo.

Just send us one of the attached postage-free reply cards, and we'll send you a P-CAD demo absolutely free.

Better yet, call us toll-free. When it comes to productivity, service and support, P-CAD has lots of big ideas to share with you.

1-800-255-5710
World Class PCB CAD Productivity

PRODUCTS FROM CADAM, AN IBM COMPANY

[^5]
THE WORLD'S LARGEST SELECTION OF POWER SPLITTERS/ COMBINERS

$2 \mathbf{K H z}$ to $\mathbf{8} \mathbf{G H z}$ tom $\$ 10^{45}$

With over 300 models, from 2-way to 48 -way, $0,90^{\circ}$ and 180, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-theshelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee.
For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or Mini-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RFIIF Signal Processing Guide.
finding new ways
setting higher standards

CIRCLE NO. 161

F134-1 REV.A

IMAGINE WHATA AMO COULD DO TO YO

Now you can really stick it to'em. And you can be sure they'll get the point. Because our two new MAX parts will make your next design

AVITBRA EPM5130 OC unbeatable. And get it to market faster.

Introducing Altera's 100-pin EPM5130 and 7500-gate EPM5192. Both packed with I/O and logic unheard of in a CMOS EPLD.

In fact, they're your best programmable alternative to gate arrays yet. Because MAX delivers high logic density and superior 50 MHz in-system speed. All thanks to our innovative MAX architecture.

Even design is faster. That's because our new MAX+PLUS ${ }^{\circ}$ II software takes full advantage of the enhanced memory management and multitasking capabilities of Windows ${ }^{\text {m" }}$ 3.0.

MAX+PLUS II can also automatically partition large logic designs into a set of EPLDs. In minutes. So you can deliver your finished design while

You'll like the feeling of our new digital troubleshooting scope.

Now there's a 100 MHz digital scope that handles just like analog.

Digital oscilloscopes have certain advantages that are hard to overlook. But for troubleshooting, many engineers still prefer analog scopes. Simply because they like the way they handle.
The HP 54600 changes that. It looks like a 100 MHz analog scope. All primary functions are controlled directly with dedicated knobs. And it feels like one.

[^6]The display responds instantly to the slightest control change.
But when it comes to troubleshooting, the HP 54600's digital performance leaves analog and hybrid scopes in the dust. At millisecond sweep speeds, the display doesn't even flicker. Low-rep-rate signals are easy to see without a hood. It has all the advantages that only a true digital scope can provide. Like storage, high-accuracy, pretrigger viewing, hard copy output, and programming. And since its one of HP's basic instruments, the HP 54600 gives you
all this performance at a very affordable price. Only $\$ 2,395^{*}$ for a 2-channel scope; $\$ 2,895^{*}$ for the 4 -channel version.

So, if you need the power of a digital scope, but like the feel of analog, call 1-800-752-0900. Ask for Ext. 2286, \uparrow and find out how well the HP 54600 handles your troubleshooting needs.
There is a better way.

Single-board computer needs VGA driver board

Does anyone out there know of a simple and cheap driver board to give VGA output from a singleboard computer? We sell a 4×3-in. CMOS single-board Forth computer card, and a customer wants to drive a Hitachi 6-in. VGA color LCD. Any ideas?
The Saelig Co
Victor, NY
We know of three companies that make driver boards that meet your requirements:

Ampro Computers Inc
990 Almanor Ave
Sunnyvale, CA 94086
(408) 522-2100

FAX (408) 720-1305
Cybernetics Microsystems
Box 3000
San Gregorio, CA 94074
(415) 726-3000

FAX (415) 726-3003
Micromint Inc
4 Park St
Vernon, CT 06066
(203) 871-6170

FAX (203) 872-2204

Second sources sought

We would like to find sources for the following parts: the Western Digital WD92C32 phase-locked-loop disk data separator and the NEC μ PB9201C floppy-disk interface.
The manufacturers no longer make these parts and our buyer has bought all he could find. If you don't know of a source, perhaps you could appeal to the EDN readers.
Margaret Motamed
Principal Member
Engineering Staff
Xerox Corp
El Segundo, CA

We checked with the Cahners CAPS system, and apparently Western Digital is the only company to have manufactured the 92 C 32 . We were unable to locate a second source for the NEC floppy-disk interface. If any EDN reader knows of a source for either of these parts, please contact ASK EDN.

Big problem solved

I have a big problem: Who is the manufacturer of the TP3054 chip? Please tell me the company from which I can order this chip.

Joe Müller

Manager of Product Planning
John Lay Electronics
Littau, Switzerland
The CAPS system, which is available from Cahners Technical Information Services, lists two TP3054 manufacturers:

National Semiconductor Corp
Box 58090
Santa Clara, CA 95052
(408) 721-5000

FAX (408) 730-0764
Texas Instruments Inc
Microprocessor \& Microcontroller Products Div
Box 809066
Dallas, TX 75380
(800) 232-3200.

Reader wants to reduce noise of heartbeat signal

I am interested in learning techniques to decouple the noisy IBM power supply from my circuit cards that plug into the bus. Such a technique would let me work with very small signals such as EKG heartbeats and recording-studio-quality
signals. Using op amps and trying to process signals in the millivolt and microvolt ranges, I get a lot of common-mode noise and such being fed in by the very noisy IBM power supply. Also, as programs are executed, the noise increases, so I need a way to make the $5,12,-5$, and -12 V power supplies clean while the data fly all over the place.

As you've probably guessed, I've tried a wide range of capacitors, resistors, and inductors without success. I suspect that besides the noise I can see on a $20-\mathrm{MHz}$ scope, there is even more outside this band. If someone could provide techniques to work with signals like this, it would open the door for betterquality products. I look forward to any light you can shed on this subject.
John Bercik
Covox Inc
Eugene, OR

No short reply in Ask EDN will solve your problem. Over the years, however, EDN has run a good number of contributed articles on noise reduction.

Also, Analog Devices is conducting a series of DSP seminars at locations around the country. The last hour or so of the seminar covers noise reduction. Associate Editor Dan Strassberg says that the material is very practical but is presented at such a break-neck pace that anyone who wants to carry away much useful information would be well advised to bring a tape recorder.

[^7]

Now there's a way to get FDDI systems to do what they're supposed to do. Run wide open, lightning fast and bottleneck free.

Introducing the Motorola FDDI chip set. The complete system solution in a 4 -chip, fully ANSI-compliant design.

Led by the FDDI System Interface chip, it speeds data through the system at up to $200 \mathrm{Mbytes} /$ second via two 32 -bit ports. While 8 Kbytes of on-chip RAM provide more than 80 microseconds of bus latency. Freeing up your host for other system tasks.

Its partners are the FDDI Clock Generator, the Elasticity Buffer and Link Manager, and the

Media Access Controller. Together, they handle all FDDI functions quickly and efficiently, without the hassle or expense of external memory or high-speed logic.

Not only is the Motorola FDDI chip set ideal for FDDI-networked systems, it's perfect in routers, bridges and concentrators. And our partnership with Digital Equipment Corporation helps us ensure its compatibility with the FDDI protocol.

So you can stop waiting for the signal that FDDI has truly arrived. Because the Motorola FDDI chip set is here today. For more information and a free poster, call 1-800-845-MOTO.

We call it a FET Array.

She'd call it a Miracle.

Hammer. Anvil. Stirrup. Drum.
Simple names for the complex natural "hardware" that allows us to hear. If it's injured-or congenitally defective-the deafness that occurs can't always be helped by conventional hearing aid.
A cochlear implant bypasses the damage, delivering filtered and processed analog signals directly to electrodes implanted deep in the inner ear. These signals stimulate the audio nerves in a natural way, allowing-in most cases-the deaf to hear.

The variety of applications for our new RFA120 never ceases to amaze us. But then, a linear array that combines both bipolar and JFET gain blocks can provide some pretty versatile characteristics:

RFA120 FET Array
Operating Range: $\pm 5 \mathrm{VV}$ to $\pm \mathbf{1 5 V}$
Input Offset Voltage: $\quad 5 \mathrm{mV}$ typ.
Input Bias Current: $\quad 30$ pA typ.
Gain Bandwidth Product: $\quad 3.0 \mathrm{MHz}$ typ.
Slew Rate (Gain $=+1$): $\mathbf{8 ~ V} \mu \mathrm{s}$

The RFA120 is a low power device that's ideal for signal conditioning applications. One of our favorites also takes advantage of its small size.

It's a cochlear implant system that bypasses injured or congenitally defective "hardware" in the ear canal. The system converts audio signals to analog signals, routing them deep into the inner ear to stimulate the natural audio nerves that are "hardwired" to the brain.
We're committed to analog technology.
And we're committed to helping you develop creative, cost effective solutions.

Our Win-Win program is a good example.
It lets you get to market quickly with a semicustom array, then shift to full custom as sales increase. It's fast, flexible and makes good business sense because it eliminates the risk of going full custom before you're really ready.

If you'd like more information on our analog arrays, give us a call at 1-800-722-7074. We'll send you our new brochure. Raytheon Company. Semiconductor Division. 350 Ellis St. Mountain View, CA 94039.

CALENDAR

Embedded Processor Design Seminar, Various Cities. Intel Corp, 5000 W Chandler Blvd, Chandler, AZ 85226. (800) 548-4725; in AZ , (602) 941-3000. May 21 to June 27.

Electronic Warfare Systems: Technical \& Operational Aspects, Washington, DC. Continuing Education Program, School of Engineering and Applied Science, George Washington University, Washington, DC 20052. (800) 4249773 (US); (800) 535-4567 (Canada); (202) 994-6106. FAX (202) 872-0645. June 10 to 14.

Usenix Technical Conference and Exhibition, Nashville, TN. Usenix Conference Office, 22672 Lambert St, Suite 613, El Toro, CA 92630. (714) 588-8649. FAX (714) 588-9706. June 10 to 14.

IEEE MTT-S International Microwave Symposium, Boston, MA. LRW Associates, 1218 Balfour Dr, Arnold, MD 21012. (301) 647-1591. FAX (301) 647-5136. June 11 to 14.

EMC-91 Product Compliance First Principles Colloquium, Santa Clara, CA. Ghery Pettit, Apple Computer Co. (408) 285-2528. June 12 to 13 .

University, Government, and Industry Microelectronics (UGIM) Symposium, Melbourne, FL. Thomas Sanders, Dept of Engineering, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901. (407) 768-8000, ext 8769. June 12 to 14.

Reliability: The Next Generation (short course), Washington, DC. George Washington University, School of Engineering \& Applied Science, Washington, DC 20052. (800) 424-9773; in DC, (202) 9946106; in Canada, (800) 535-4567. June 17 to 21.

The Most Diverse Family In Memory.

A Complete Line Of 1-Meg SRAMs.

Call Sony first. The largest selection of 1-Meg SRAM assures you can find the high performance, highly reliable memory you're looking for with just one call, so why go on a safari?

Fast or slow. Hot or cold. Even your massive memory requirements are right here.

And we can ship the package styles most in demand for your new designs today - and tomorrow. Our new production facility in San Antonio, TX will build on the reputation for timely delivery that has made us a breed apart.

The Best Selection Of

 New SRAMs.-40° to $+85^{\circ} \mathrm{c}, 3$ volts and X 9.20 nsec

If your current designs incorporate the latest
technology, call us. Virtually every new idea in SRAM will be here at Sony first. And our U.S. design team (with their 0.8 \& 0.5-micron CMOS technology) stands ready to get you the right product for your design; whether it's for a laptop or workstation.

Call Sony First.

We've got the product, backed by the Sony commitment to quality and service. And at competitive prices that make us the King of the SRAM Jungle.

Call today 714.229 .4190 or 416.499 .1414 in Canada. Or fax us your current requirements for a quick response from our technical staff 714.229 .4285 (fax) or 416.497.1774
(fax/Canada).

Sony Corporation of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630 Sony Canada, 411 Gordon Baker Rd., Willowdale, Ontario M2H 256

- 100% IBM-AT Compatible STD Bus Industrial Computer
- Fast 10, 12, 16 or 20 MHz 80286 CPU
- Phoenix Bios
- 20, 40, 100 Mbyte 27 ms Hard Disk
- VGA, EGA, CGA, MDA Color Graphics
- Industry Standard IEEE 961 STD Bus
- Compact, Rugged, Industrial Packaging

The STD-AT ${ }^{\text {Tw }}$ is the first 80286 IBM-AT compatible STD Bus computer offering over 18 times the performance over a standard XT. The compact $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ STD Bus card size makes it ideal for mounting in disguised and embedded controllers in a wide variety of industrial and commercial applications. The STD-AT is the blending of proven hardware and software standards to provide the most rugged compatible, cost effective industrial solutions.

WRITE OR CALL FOR A FREE STD-AT BROCHURE
P.O. Box 121361, Arlington, TX 76012 Phone (817) 274-7553 Fax (817) 548-1358

CALENDAR

Design Automation Conference, San Francisco, CA. Alfred Dunlop, Program Chair, 28th DAC, MP Associates Inc, 7490 Clubhouse Rd, Suite 102, Boulder, CO 80301. (303) 530-4333. June 17 to 21.

Seminar on Ada Tasking for RealTime Embedded Applications, Phoenix, AZ. 9630 N 25th Ave, Suite 118, Phoenix, AZ 85021. (602) 944-1883. FAX (602) 944-3253. June 18 to 19.

International SAMPE Electronic Materials and Processes Conference, Los Angeles, CA. SAMPE, Box 2459, Covina, CA 91722. (818) 331-0616. FAX (818) 332-8929. June 18 to 20.

ISS Europe 91, Budapest, Hungary. SEMI, 805 E Middlefield Rd, Mountain View, CA 94043. (415) 964-5111; (415) 940-6901. June 19 to 21 .

Supercomputing USA/Pacific 91, Santa Clara, CA. Meridian Pacific Group Inc, 116 E Blithedale Ave, Suite 2, Mill Valley, CA 94941. (415) 381-2255. FAX (415) 381-1451. June 19 to 21.

SEMICON/Kansai-Kyoto 91, Kyoto, Japan. SEMI, 805 E Middlefield Rd, Mountain View, CA 94043. (415) 940-6901; (415) 9645111. June 19 to 22.

CFC Alternatives Conference, Burlingame, CA. Angela Hoyte, Miller Freeman Expositions, 600 Harrison St, San Francisco, CA 94107. (415) 905-2354. FAX (415) 905-2239. June 24 to 26.

Test Engineering Conference, Atlanta, GA. Miller Freeman Expositions, Test Engineering Conference, 1050 Commonwealth Ave, Boston, MA 02215. (800) 223-7126; in MA, (617) 232-3976. June 24 to 27 .

We've never met a computer we didn't like.

Computers are sometimes difficult to get along with. Each one is, well, unique. And with different operating systems and software, they can be downright peculiar.

So the last thing you need is a fickle plotter.

With this in mind, we've designed a whole host of connectivity solutions. To suit just about any computer. In any configuration or environment.

Which means we can give you the same outstanding performance whether you use mainframes, minis, workstations or PCs.

What's more, we can support everything from RS-232 and Centronics to our own high performance parallel interface.

And Versatec plotting systems support more data formats than anyone else.Like HP-GL/2,906/907, VRF and VCGL. So you can easily run the most popular CAD software packages.

We even have software that manages network plotter workflow. Just the thing to make your network more productive.

And every solution comes with the industry's only three-year
guarantee. If you're not satisfied for any reason, we'll replace it free. No questions asked. It's just what you'd expect from Xerox Engineering Systems. The leading supplier of engineering copiers, printers, Versatec plotters and other products for document management.

So give us a call at 800-538-6477. In California, call 800-341-6060. Or write for a free copy of our connectivity guide.

You'll find us very accommodating.

XEROX

The engineering document company.
Xerox Engineering Systems
2710 Walsh Ave., Santa Clara, CA 95051 Xerox is a trademark of Xerox Corporation. All other brands or products are trademarks of their respective holders. $\odot 1991$ Versate, Inc.

IN THE ERA OF MegaChip ${ }^{\text {wi }}$ TECHNOLOGIES

Sometimes you need easy.

These are the gate arrays you design at your desk. And redesign until they're exactly right. Then it's on to silicon fast. Our free interactive diskette will show you just how easy easy can be.

Even when you hit last-minute changes, have a sudden inspiration or are simply intent on getting the job done, field programmable gate arrays (FPGAs) from Texas Instruments can speed your design from start to finish.
Our FPGAs are channeled devices, which gives them their true gate array characteristics. They combine the time-to-market advantages of programmable logic devices (PLDs) with the densities of gate arrays. You have a choice of 1,200 or 2,000 equivalent gate complexities, with 4 K and 8 K densities coming. And military versions are available too.
Throughout the design cycle, you are in complete control, minimizing risk and avoiding nonrecurring engineering costs.

Accelerated development

 Our advanced development environment, the TI Action Logic ${ }^{\text {T1 }}$ System (Tl-ALS), lets you design and redesign at your desk. You use TI-ALS to validate, automatically place and route, analyze, program, test and debug all within hours.You can always see what's going on within your design. Only the unique antifuse architecture allows 100% observability of internal nodes. And you can achieve gate utilizations of up to 90%.
TI-ALS operates on '386 personal computers or popular workstations

[^8]
running familiar CAE tools. You can program in minutes using our Activator ${ }^{\text {r"1 }}$ hardware.

Unmatched service and support From hands-on workshops at our Regional Technology Centers to a global network of sales offices and distributors, only TI can meet your FPGA needs across the country and around the world.
What's more, you can pick up the phone and talk with our FPGA applications specialists during regular working hours (CST). Just dial our FPGA Help Line - 1-214-997-5492.

To see how easy easy can be, call 1-800-336-5236, ext. 3712, for our free interactive diskette It will show you why our FPGAs are easy-ASIC and will introduce you to system design advantages that you can
achieve quickly and efficiently.
The diskette runs on any
MS-DOS ${ }^{\circledR}$ PC with an EGA or VGA graphics card, and we'll include the diskette with our FPGA DataFile. Just call the number above or complete the return card.

Wheheryou faxit,fireit,sendit, measure it,wireit,compute it, TheAnalog familyof

SETHUNG TIME-nS
Output Swing and Error vs. Settling Time

Precision
With the AD840, AD841 and AD842, there's no need to trade speed for accuracy. All three settle to 0.01% within $100 \mathrm{~ns}(840 / 842)$ and 110 ns (841) - critical in data acquisition and instrumentation applications - and offer low offset voltages and drifts, and fast slew rates.

PHOTODIODE DEIECIOR

FET Input
For op amps requiring low input current, the OP-42, OP-44,AD845 and AD843 are all remarkably fast - slew rates are $58,120,100$ and $250 \mathrm{~V} / \mu \mathrm{s}$, respectively. In addition, they offer offset voltages of less than $1 \mathbf{m V}$ and extremely low current noise.

Transimpedance Amplifiers
The OP-160,0P-260, AD844, AD846, AD9617 and AD9618 all utilize a current feedback architecture to achieve slew rates from 450 to $2000 \mathrm{~V} / \mu \mathrm{s}$ without compromising stability - even in hostile environments. Other benefits include low power dissipation and high unity-gain bandwidth.

If whatever it is you're trying to do involves high-speed op amps, Analog Devices is the company to call. With our current products and new introductions, we have the broadest line of high-speed op amps available. A line that gives you the right combination of speed, precision, noise and price. So chances are, we've got exactly what you need for

[^9]
shootit,launchit,landit,testit, displayitorairit,we've gotit. high-speedopamps.

Buffers
If you're looking for extremely low distortion buffers, look at the specs of the AD9620 and AD9630 distortion at $\mathbf{2 0} \mathrm{MHz}$: -73 dBc and -66 dBc , respectively; fast settling time: less than 8 ns to 0.02%; and extremely low

General Purpose
With the right combination of speed, precision, power dissipation and high output drive capability, the AD827, AD829,AD847, AD848, AD849 and OP-64 are ideal general purpose solutions. And they're ideally priced solutions - most singles are under \$3, and duals are under $\$ 5$.

whatever application you're working in. Call us at 1-800-262-5643, or write to Analog Devices, P.O. Box 9106, Norwood, MA 02062-9106, for a complete high-speed op amp selection guide and a free copy of our SPICE model library.

[^10]
At $\pm 15 \mathrm{~V}$, our high-speed VIP ${ }^{\text {mw }}$ op amps are the ultimate driving devices.

Driving a 1,000pF C_{L} and slewing at $250 \mathrm{~V} / \mu \mathrm{s}$, the LM6313 delivers 250 mA into the load and still remains stable.

Turbocharging your loaddriving capabilities.

Our new VIP op amps are built to drive ... and at very high speeds. Which makes a great deal of highperformance sense when you consider they're designed with an innovative bipolar technology called "Vertically Integrated PNP" or VIP.

With $\mathrm{a} \pm 15 \mathrm{~V}$ power supply, our VIP op amps offer a higher signal-to-noise ratio, a higher dynamic range, and higher drive capability (none of which you can get from other high-speed $\pm 5 \mathrm{~V}$ amps). In fact, they'll drive capacitive loads without oscillating. Which means they're easy-to-use and very stable. Even at the highest speeds.

Packing precision and speed in the same op amp.

The LM6218, a dual op amp, is not only extremely precise, it's extremely fast. Which is why it provides a low offset voltage of 3 mV (1 mV max for the LM6218A), a bandwidth of 17 MHz , and a slew rate of $140 \mathrm{~V} / \mathrm{ms}$.

It also provides a settling time of 400 ns to 0.01% for a 10 V step and 7 mA of power dissipation. All in a dual op amp. So now you get a high performance solution that's ideal for high-speed industrial and military applications requiring 12 -bit accuracy, such as image processing and high-speed data acquisition and instrumentation (883/SMD devices are available).

Delivering the world's first high-speed, high-power monolithic op amp.

Until recently, you needed multi-chip solutions to match the world-class
performance now achieved by our one-chip solution, the LM6313.

This monolithic device delivers 35 MHz performance and a $250 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Plus, it'll drive a 75Ω cable to a $\pm 11 V$ output swing -with a peak output current of 300 mA and 220 mA continuous -making it ideal for ATE and pin-driver applications.

What's more, the LM6313 provides on-chip protection. Like overcurrent and thermal shutdown protection with earlywarning error flags.

Driving with a winner.

For your design package, call or write us today. And let our highspeed VIP op amps put your designs into overdrive.
1-800-NAT-SEMI, Ext. 123
National Semiconductor Corp.
P.O. Box 7643

Mt. Prospect, IL 60056-7643

[^11]
Good luck, ACE

Jesse H. Neal
Editorial Achievement Awards 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

American Society of Business Press Editors Award 1988, 1983, 1981

Several weeks ago, Compaq Computer Corp announced the Advanced Computing Environment (ACE) consortium, a group established to bring standardized RISC technology to personal computers. If the ACE plan bears fruit, personal computers in the mid-90s will have the power of industry-standard RISC systems, and users will be able to take advantage of standard PC software. To meet these goals, consortium members must develop standard hardware and software based on Mips Computing Systems' RISC microprocessors.

Although the consortium's plans call for each company to build on its own strengths, we're not holding our breath while we wait for advanced-RISC-computing (ARC) hardware and software products to reach users. In fact, the group's ARC specifications won't be available to non-ACE companies until the first ARC systems are sold. So much for an open and competitive market. If you think you've heard a similar story, you may be thinking of the consortium that Compaq led to adopt the Extended Industry Standard Architecture (EISA) several years ago. The member companies laid down grand plans for EISA to challenge IBM's Micro Channel Architecture. Today, you'll have difficulty finding an EISA PC or EISA add-in cards. The invisible hand of the market left EISA behind.

A similar scenario may loom ahead for the ACE companies: Because they're "cooperating," they're not competing. As is typical of such uncompetitive consortia, nothing in the ACE announcement suggests anything innovative in the group's approach to developing hardware or software. If anything, the consortium stifles innovation by adopting a broad plan for a so-called standard computer architecture and for operating systems arrived at by committee decision. I doubt that the ACE companies asked their customers what sort of mediocre committee "standard" they wanted vendors to foist on them.

Whenever a large number of companies forms a consortium to tackle a fast-moving market they let slip by them, mediocrity results. If the ACE members are serious about catching IBM and Sun Microsystems in the workstation and high-performance-PC market, they and we would be better off having the members act as competitors. By forcing each other to do better, they might come up with new products that would leave their rivals behind. After all, it has happened before. Just ask Sun and IBM.

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400, 8, N, 1.
\square
Finally. A CASE environment everyone can disagree on.

Software engineers can't always agree on which tools, networks, or platforms are best. So it's good news that the open environment of Teamwork ${ }^{\circledR}$ can agree with all of them.

Cadre's Teamwork takes maximum advantage of any situation. It's modular, easy to use, easy to extend, and lets you deal with changing requirements throughout the life cycle. It lets you automate standard techniques to simplify the analysis, design, coding, testing, and maintenance of complex software systems.

In short, Teamwork is the serious aid to software engineering - forward and reverse. And thanks to Cadre's strong alliances with third-party software and hardware partners, it will continue to make the difference for developers on into the next century.

Teamwork gives you customizable menus, a programmable interface, and supports heterogeneous

KEPCO ANALOG PROGRAMMABLE POWER...

HIGH SPEED

 UNIPOLARBIPOLAR

The lobster's claw can move quickly and is a real threat in its natural habitat (as shown, it was a threat mostly to our photographer, who reported: Delicious!). Our habitat is an analog "real" world. To model and simulate it, Kepco's ATE, BOP, BHK and OPS are the fastest analog power tools around. They offer the kind of voltage agility that allows a current stabilizer to recover quickly from the transient of a dynamic load. They provide you with the speed to program test voltages in rapid fire sequence. Tools include power to 1000 Watts, voltage to 5000 Volts and lobster to $5^{1 / 2} \mathrm{lbs}$. The bipolar models (BOP) operate in 4 quadrants. Conventionally filtered power tools are at home in your laboratory habitat.

d-c unipolar power 50-1000 Watts

\square Conventional filtering \& high speed, user selectable.
\square High speed: slew up to 1 Volt per microsecond.
\square Conventional speed:
energy storage typically $>100 \mu \mathrm{~F}$ per Ampere.
\square Precision stabilization:
0.001\% source, 0.0002\% load.
\square Analog programmable.
Kepco Group ATE Power Supplies

d-c bipolar power 100-400 Watts

\square High speed: slew up to 11 Volts per microsecond
\square Source and sink. Four quadrant operation.
\square Precision stabilization:
0.001% source, 0.002% load.
\square Analog programmable.
Kepco Group BOP Power Supplies

d-c bipolar power, high voltage

$\pm 500 \mathrm{~V}$ \& $\pm 1000 \mathrm{~V}, 80$ Watts
\square High speed: slew up to 3 Volts per microsecond.
\square Source and sink. Four quadrant operation.
\square Precision stabilization:
0.0005\% source, 0.0005\% load.
\square Analog programmable.
Kepco Group BOP-HV Power Supplies
d-c unipolar power, high voltage
$0-500 \mathrm{~V}, 1000 \mathrm{~V}$ and $2000 \mathrm{~V}, 20$ Watts
\square Conventional speed:
energy storage typically $>100 \mu \mathrm{~F}$ per Ampere.
\square Large meters and 10-turn controls
for ease of adjustment.
\square Precision stabilization:
0.001\% source, 0.005% load.
\square Analog programmable.
Kepco Group APH Power Supplies

d-c unipolar power, high voltage $0-500 \mathrm{~V}, 1000 \mathrm{~V}, 2000 \mathrm{~V}, 3500 \mathrm{~V}, 5000 \mathrm{~V}$ 20-35 Watts

\square High voltage power operational amplifiers for simulation \& modeling.
\square High speed: slew rate better than 1 Volt per microsecond.
Kepco Group OPS Power Supplies

d-c unipolar power, high voltage

 $0-500 \mathrm{~V}, 1000 \mathrm{~V} \& 2000 \mathrm{~V}, 200$ Watts\square Conventional filtering \& high speed, user selectable.
\square Precision stabilization:
0.005\% source, 0.01% load.
\square Analog programmable.
Kepco Group BHK Power Supplies

146-1716
Call/fax/write to Dept. MET-12 for any of our three catalogs.

Kepco, Inc., 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102 • Easylink (TWX): 710-582-2631
Eastern Region: 5 Kane Industrial Drive, Hudson, MA 01749 USA • Tel: (508) 562-6515 • Fax: (508) 562-6548
Western Region: 4713 First Street, Suite 295, Pleasanton, CA 94566 USA • Tel: (415) 484-2922 • Fax: (415) 484-3723
Kepco Europe, Ltd., London, England: Salamander Quay West, Park Lane, Harefield, Middlesex UB9 6NZ • Tel: $+44895825046 \bullet$ Fax: +44895825045

The right tools make all the difference...

 Introducing jOMEGA!Tired of Using RF Design Tools That Don't Measure Up to the Task?
EEsof introduces jOMEGA, the first design automation software developed expressly for RF engineers. jOMEGA has the features you need for fast, manufac-turing-oriented design at frequencies below $3,000 \mathrm{MHz}$: easy-to-use schematic entry, fast linear and nonlinear circuit simulation, an RForiented model set including largesignal BJT transistor library, and builtin documentation capability.
jOMEGA Has the Edge You Need to Create Better RF Designs in Less Time:
jOMEGA's harmonic-balance simulator gives you fast optimization of linear and nonlinear circuits with simultaneous access to circuit response in both time- and fre-quency-domains. And jOMEGA has advanced features, like manufacturing yield optimization and optional board layout, that let you make manufacturing tradeoffs during engineering design.

Breaking the Barriers...

Call Us Today, Let Us Show You How jOMEGA Can Make the Difference on Your Next RF Design!
We'd like to send you an informative product brochure which describes
 the many features of jOMEGA. Call us at (800) 624-8999, ext. 155. Or if you prefer, contact us by FAX at (818) 889-4159. In Europe, call (49) 8105-24005 or FAX (49) 8105-24000.

CIRCLE NO. 147

TECHNOLOGY UPDATE

MIXED-SIGNAL DESIGNS

Concurrency, circuitry foster testability

You can add circuitry to the analog part of your mixed-signal design, but the best way to ensure your design's testability is to coordinate with your test engineers.

Michael C Markowitz, Associate Editor

Digital circuit designers have a wealth of well-documented design techniques to guide them toward high circuit testability. Unfortunately, as they incorporate more analog circuitry in their ICs, designers sail further into uncharted waters. And these uncharted waters are rough on your budget; mixed-signal vendors estimate testing eats up 25 to 50% of NRE (nonrecurring-engineering-cost) dollars. Worse, test-program development can take from one to three months for a mixed-signal design versus a day or two for a digital design.

Mixed-signal circuits don't have a checklist of "rules" of testability. "Checklists create too many questions" for you to use them on mixedsignal designs, according to Brice Baker, CAE Manager at Gould AMI. You can't blindly start adding scan, partitioning,
observation. The two design types differ, though, in the performance cost of such access. Whereas the parasitic effects of extra signal lines on a digital node may degrade performance by hundreds of picoseconds, the effect of extra signal lines on analog circuit components can be devastating.

The difficulty stems from the difference in what you're trying to measure.
multiplexing, and built-in self-test functions. Blind adherence to added test-logic functions will likely cause your circuit to fall out of specifica-tion-though the added circuitry will enable you to measure how far. When you're designing a mixed-signal circuit, you must carefully take account of the impact of each added function.

In some regards, mixed-signal circuits are like strictly digital designs. The secret to high testability is providing access to internal nodes for control and

Partitioning the analog and digital subcircuits makes each more testable. Paying careful attention to the layout and placement of the power and clock lines makes the circuit more resistant to noise. (Photo courtesy Silvar Lisco)

You evaluate digital logic by simply measuring voltage (high/low) and sometimes current. Analog measurements, on the other hand, include circuit response in the time and frequency domain, temperature variations, offset voltages, leakage currents, and stability conditions. And measuring these levels requires such additional tools as Bode plots, according to Randeep Soin, technology specialist at Genrad Ltd.

Solving the mixed-signal test problem

WHEN PRESSURE SENSOR PERFORMANCE IS CRITICAL, WEDELIVER.

Helping your products to operate at their peak requires the best micromachined sensors available. But even the best sensors are useless unless they arrive on time. IC Sensors has been on the cutting edge of micromachining technology for over nine years. This allows us to provide OEM's with high quality sensors and service, on time. IC Sensors also has the most extensive product line, including HIT, TO-8, Surface Mount and ISO-Diaphragm sensors, used in such diverse industries as process control, medical and aerospace. So, when pressure sensor performance is critical, call the industry leader, IC Sensors. We deliver. 1701 McCarthy Blvd., Milpitas, CA 95035, (800) 767-1888. FAX (408) 434-7322. \qquad

Mixed-signal designs

isn't easy. CAE tools for analog and mixed-signal design lag behind those for digital design, and even if the tools were comparable, metrics for measuring the test coverage of analog circuits are imprecise. High fault coverage, the digital benchmark, has little meaning in the analog domain.

The most promising approach to making testable mixed-signal circuits involves concurrent engineering. Standard sequential design styles have you design the part and pass it to the test engineer. The test engineer then writes the test program and hands it to the manufacturing engineer. Manufacturing builds the tooling and uses the test program to test the part. Often in mixed-signal design, this sequential flow is further complicated because different designers create the ana\log and digital logic.

The flaw in this development flow is that design decisions that cause test escapes and manufacturing difficulties aren't usually identified until after you've finished creating the circuit. As a result, the cost of a redesign is weighed against test and manufacturing kluges. Too often the kluges win.

Using sequential development, even if the analog and digital designers communicate well, there is little feedback from test or manu-

Among the best places for an analog test point in a discrete amplifier circuit is at the top of the emitter resistor $\left(R_{\hbar}\right)$. Because this point is generally a low-impedance point, connecting high-impedance test equipment won't seriously impair performance. (Redrawn from "Testability Practices in the 1990s")
facturing to design. Concurrent engineering attempts to guarantee feedback between departments and to guarantee that such feedback will come when it will do the most good-before the design is finished. According to Mani Soma, Associate Professor in Electrical Engineering at the University of Washington, test structures can't be added as an afterthought. Test planning must be an integral part of the design phase of the mixed-signal circuit.

Everyone works together

Concurrent engineering merges all of the distinct development efforts into a joint effort. Not that you, as designers, develop test programs and marketing plans; rather,

You can often combine test points by judiciously choosing a resistor network. (Redrawn from "Testability Practices in the 1990s")
that you better understand the problems and issues of the other disciplines and weigh their impact on your design. As a result, the test engineer can recommend locations for you to insert test points while you are creating your design rather than asking you to kluge them in after you've simulated and debugged your circuit.

The need for concurrent engineering is acute because designers often have limited knowledge of test limitations and capabilities, according to Tom Quan, director of analog IC tools at Cadence Design Systems. Generally, you don't know enough about such issues as DUT (device under test) boards, tester cabling, load boards, power supplies, and the parasitic capacitance and resistance of the test equipment. This lack of knowledge can translate into testing complications when you begin to use sequential engineering.

Though mixed-signal test development will still take longer than digital, that time will shrink due to the productive interaction of design engineers, test engineers, and manufacturing engineers. Better, development efforts will overlap rather than occur in a progression. So conception to production will

Mixed-signal designs

take less time in exchange for test and design taking place at once. Not a bad exchange, considering the sacrifice is more of a streamlining than a loss.

While concurrent design is the most promising approach, it may cause cultural upheaval in your company. Changing who works and reports to whom and how product development time is budgeted presents political, social, and economic problems that are beyond the scope of this article. Regardless of these cultural difficulties, talking to your test engineers while you design will help you identify and avoid potential test pitfalls. There are also some tricks that, used judiciously and coupled with careful analysis, can improve the testability of your mixed-signal design.

Partition the design

First, since the digital and analog sub-blocks are often designed separately, partitioning the design and ensuring testability on either side of the interface is important. On the digital side, you can use structured approaches such as scan chains and built-in self-test. On the analog side, ad hoc approaches such as partitioning, providing internal access to individual blocks, and converting analog signals to digital can improve your designs.

The critical part of a mixed-signal design is the interface between the digital and analog circuits, according to Mark Ashton, product marketing manager for scan-based products at Schlumberger Technologies. If you can provide scanchain access to the interface, you've got control and observation points into and out of both the analog and digital circuits.

Certainly, having easy access to your analog circuitry at the analogdigital boundary is likely to improve testability, but you shouldn't stop
there. Internal access to your analog blocks is also important. Frank Binnendyk, product marketing manager at Mentor Graphics' Simulation and Test Division, suggests that partitioning and providing access to individual analog blocks is also useful as a means of evaluating the entire design.
You can provide this internal access in a number of ways. Analog
chip reference. He also notes an extension to this technique that buffers analog circuitry with DACs on the inputs and ADCs on the outputs. Die-size and pin-count considerations might preclude this technique's practicability. Similarly, you can use voltage-to-frequency and frequency-to-voltage converters to measure digital values from inherently analog circuits.

Buffering a circuit with a voltage-follower operational amplifier or with an emitter-follower discrete transistor allows you to measure internal signals with minimal impact. (Redrawn from "Testability Practices in the 1990s")
multiplexers and switches are relatively low-cost-both in performance and silicon-means of measuring and forcing internal voltages and currents.
In a course he teaches on design for testability, Jon Turino, president of Logical Solutions Technology, highlights a number of techniques for improving your ability to observe and control internal nodes. Among these techniques are a few for converting analog signals into digital ones.

Convert your analog signals

The simplest A / D conversion technique-Turino calls it the "Poor man's A/D converter"-uses a comparator to compare a voltage from the analog circuit to an on- or off-

To maximize silicon utilization, you can share these comparators and converters internally using ana\log multiplexers and FET switches. These multiplexers and switches can select between numerous inputs. While likely creating the greatest parasitic effects, multiplexing techniques make efficient use of silicon resources.

But these converters, multiplexers, and switches must provide access to the right nodes. Picking analog test points is much like picking test points for digital testingnodes between blocks, at interface points, and at critical points in the design provide the highest efficacy. Unfortunately, since analog circuits are more sensitive than digital circuits, you must consider potential

How Design Work Becomes Teamwork.

The DAZIX Simultaneous Engineering Environment (SEE) turns design work into teamwork.
SEE allows your departments to coordinate efforts during every phase of the design process. This helps to improve product quality, lower production costs, and get products to market faster.

SEE delivers the integration

 you asked for. Common database management. Common user interface across applications. And a completetoolset, including solutions for front-to-back electronics design, mechanical design, manufacturing, and document management.

What's more, with SEE, your entire team can benefit from an open-system framework. A framework that integrates DAZIX, Intergraph, and Sun products -
as well as leading third-party tools - in a single environment.

There's more you should know. Call us today at 800-239-4111 for a free copy of Simultaneous Engineering.

In Europe, call 33-1-4537-7100. In the Asia-Pacific area, call 852-8661966.

An Intergraph Company

TECHNOLOGY UPDATE

Mixed-signal designs

loading problems in your choice of test points. If connecting test equipment to particular nodes might disturb your circuit, add buffers between the node and the test point to isolate the node. Consider using impedance-matching networks when testing high-frequency circuits. Finally, as with your digital circuits, feedback loops greatly complicate testing; use analog switches to break automatic gain and frequency control loops wherever possible.
Jon Turino identifies two other important, common-sense considerations for analog testability. First, make sure the voltage or current levels you're trying to measure are well above the noise of your test equipment. You'll surely get more accurate and reproducible results measuring the $100-\mathrm{mV}$ output of an operational amplifier rather than the $1-\mathrm{mV}$ input.

Make test circuits testable

The second consideration is to remember that if you add circuitry to make your designs testable, these new circuits must also be testable. Test-logic evidence that your internal circuits are bad is only conclusive if you know the test logic is good.

Although the analog side constitutes the major sticking point in testing mixed-signal circuits, enhancements on the digital side, such as scan chains, can help. Scan chains are shift registers whose storage elements are shared with your sequential logic. Under normal circuit operation, you disable the shifting mechanism and the storage elements function as your design requires. In test mode, the storage elements serially shift data through the design. By alternating test and operating modes, you can preset and capture circuit values at embedded points in your design.

Many different versions of scan testability exist. These versions vary clocking schemes and the types of storage elements they allow. (For a more detailed discussion of how to use scan, see Ref's 1,2 , and 3.)

Kent Koenig, test manager at NCR, recommends that if your digital circuitry includes a microprocessor bus, you can add an extra register for testing. Using this extra register, you can switch between internal and external references and con-
trol the multiplexers and switches.
Concurring with Koenig, Teradyne's Manager of Test Applications, Randy Kramer, also suggests using a microprocessor bus when available. Because digital sections often have higher pin counts than the analog sections, Kramer also finds multiplexing an analog signal onto a digital pin in test mode a convenient and low-impact means of increasing your analog circuit observability.
On the other hand, many CAE

Using a decoder and analog switches in a multiplexing scheme, you might be able to drive an internal analog level as well as test internal analog signals if you've got an appropriately placed I/O pad. (Suggestion courtesy NCR Corp)

Smash the Cache Barrier

IDT's 64K BiCEMOS ${ }^{\text {™ }}$ TTL I/O Static RAMs are the ideal solution for high-density cache systems, and are the perfect match for optimizing the high-performance needs of RISC and CISC processors. These 8ns and 10ns SRAMs provide the highest system speed without sacrificing system chip count or increasing power consumption.

Smash the barrier to efficient cache operation at the highest clock speeds. Call today and ask for Kit Code 8041 for free samples of our new $16 \mathrm{~K} \times 4$ and $8 \mathrm{~K} \times 8$ TTL SRAMs.

35mips RISC COMPONENTS AND MODULES
R3000A, the most MIPS at any MHz. The R3051 integrates CPU, cache, and buffers on one chip. RISC modules, eval. boards, and software complement our family of mips ${ }^{\text {m"- }}$ based RISC products. Your RISC solution is a phone call away!

Fast FIFOs, dense dual-ports, BiCEMOS ECL, and modules for every system. Over 120 of the fastest FIFOs and multi-port memories. 5ns ECL SRAMs, as well as standard and custom memory modules. Get the specs in the Specialized Memories Data Book.

Call today for your new IDT data books with complete technical specifications and application information.

When cost-effective performance counts.

4ns LOGIC: WORLD-CLASS SPEED

The industry leader. FCT-AT and FCT-CT CEMOS families achieve the fastest speeds with 40% less noise.
Everything you need for high-performance designs can be found in the Logic Data Book.

12ns 256K SRAMS

Fastest cache solutions for RISC and CISC
processors. More than 36 ultra-high-speed sub-micron SRAMs for 33 MHz processing and beyond. Read all about them in the SRAM Data Book.

Integrated Device Technology, Inc.

TECHNOLOGY UPDATE

Mixed-signal designs

methods for making digital circuits testable require minimal design interference. Such techniques as Crosscheck's embedding test logic; logic-synthesis tools from Dassault Electronique, Racal-Redac, Synopsys, Teradyne EDA, and VLSI Technology/Compass Design Auto-
mation inserting scan chains automatically; and Expertest's capacity for creating test patterns for all digital logic almost make digital test a noninvasive operation.

When you've discussed testability considerations and you're ready to lay out your mixed-signal design,

Silvar Lisco Product Marketing Manager, Paul DeBelder reminds you to consider where you place digital clock and power lines. These are very noisy and could seriously affect your analog circuitry. You'll also have to provide proper shielding between the analog and digital

For more information . . .

For more information on the mixed-signal techniques and products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Analog Devices Inc
481 Ballardvale St
Wilmington, MA 01887
(617) 935-5565

FAX (617) 937-1015
Roy Harvey
Circle No. 707

Cadence Design Systems Inc 555 River Oaks Pkwy
San Jose, CA 95054
(408) 987-5476

FAX (408) 496-0260
Tom Quan
Circle No. 708

Compass Design Automation
1865 Lundy Ave
San Jose, CA 95131
(408) 434-7648

FAX (408) 434-7820
Taylor Scanlon
Circle No. 709

Crosscheck Technology Inc 2833 Junction Ave Suite 100
San Jose, CA 95134
(408) 432-9200

FAX (408) 432-0907
Circle No. 710

Dassault Electronique

55, quai Marcel Dassault
92214 Saint Cloud, France
(331) 4911-8131

FAX (331) 4602-5758
Circle No. 711

Digital Equipment Corp
4 Results Way
Marlboro, MA 01752
(508) 467-4591

FAX (508) 467-3108
Shanker Vidya Shanker
Circle No. 712

Expertest

810 Middlefield Rd
Mountain View, CA 94043
(415) 965-2000

FAX (415) 969-3932
Ghulam Nurie
Circle No. 713

Genrad Corp
300 Baker Ave
Concord, MA 01742
(508) 369-4400

FAX (508) 371-7589
Tom Coughlin
Circle No. 714

Gould AMI
2300 Buckskin Rd
Pocatello, ID 83201
(208) 233-4690

FAX (208) 234-6795
Traci Mousetis
Circle No. 715

Harris Corporation

Semiconductor Sector
Box 883
Melbourne, FL 32901
(919) 361-1603

FAX (919) 361-1651
Dean Henderson
Circle No. 716

Logical Solutions Technology Inc
96 Shereen Pl
Campbell, CA 95088
(800) 248-5784;
in CA, (408) 374-3650
FAX (408) 374-3657
Jon Turino
Circle No. 717

Mentor Graphics Corp
Gateway Marketing Center
8005 SW Boeckman Rd
Wilsonville, OR 97070
(800) 547-3000 Dept 399;
in OR, (503) 685-8000 Dept 199
Circle No. 718

NCR Corporation
Microelectronic Products Div
2001 Danfield Ct
Fort Collins, CO 80525
(800) 334-5454;
in CA, (303) 226-9500
FAX (303) 226-9556
Circle No. 719

Orbit Semiconductor
1230 Bordeaux Dr
Sunnyvale, CA 94089
(408) 744-1800

FAX (408) 747-1263
George Lewicki
Circle No. 720

Racal-Redac
ASIC Tools Group
238 Littleton Rd
Westford, MA 01886
(508) 692-4900

FAX (508) 692-4725
Circle No. 721

Schlumberger Technologies

ATE Division
1601 Technology Dr
San Jose, CA 95110
(408) 453-0123

FAX (408) 437-0137
Eric Wee
Circle No. 722

Sierra Semiconductor
2075 N Capital Ave
San Jose, CA 95132
(408) 263-9300

FAX (408) 263-3337
John Brown
Circle No. 723

Silvar Lisco

703 E Evelyn Ave
Sunnyvale, CA 94086
(408) 991-6000

FAX (408) 737-9979
Paul DeBelder
Circle No. 724

Synopsys Inc
1098 Alta Ave
Mountain View, CA 94043
(415) 962-5000
FAX (415) 965-8637
Circle No. 725
Teradyne EDA
5155 Old Ironsides Dr
Santa Clara, CA 95054
(408) $980-5200$
FAX (408) 748-7761
Circle No. 726
Teradyne Inc
321 Harrison Ave
Boston, MA 02118
(617) 422-2567
FAX (617) 422-2837
Linda Lowe
Circle No. 727
Valid
2820 Orchard Pkwy
San Jose, CA 95134
(408) 432-9400
FAX (408) 432-9430
Circle No. 728
Wavetek San Diego Inc
9045 Balboa Ave
San Diego, CA 92123
(800) 874-4835
FAX (619) 565-9558
Bill Kolegraff
Circle No. 729

VOTE. .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 488
Medium Interest 489
Low Interest 490

Once agoin, Latice leads the maket with the world's fostest CMOS 22V10. The 1Ons, GAL22V10B-10. Thanks to our ECMOS® technology, this $6 A$ \& device runs at a cool 90 mA typical lic. And it's 100% tested. When it comes to high performance and high quality, no one can math the Loticie family of leadingeedge, E2CMOS GAL devices.

To have a free sample ond a GAL Data Book shipped to you, ius call 1-800-FASTGAL. Ask for Deportment 204.

Leader in E^{2} CMOS PLDs."

TTMING

 DIAGRAMS\square Hard to Draw $\boxed{6}$ Tough to Modify
\square Painful to Analyze
$\boxed{6}$ Required for Reliable Designs

Relax, now there's

The Timing Diagram Drawing and Analysis Software that

- Lets you create and modify timing diagrams in minutes instead of hours.
- Automatically performs worst case timing analysis.
- Instantly highlights timing violations.
- Generates standardized timing documentation.

TimingDesigner will belp you develop better designs more quickly!

Pick up the phone now and call for more information.

206•869-4227

量
 CHRONOLOGY

2849 152nd Ave. NE / Redmond, WA 98052 FAX: (206) 869-4229

CIRCLE NO. 46

TECHNOLOGY UPDATE

Mixed-signal designs
sections. Just as important, make sure you recheck your circuit's behavior with RC data extracted from the circuit layout.

Of course, one complaint of adding testability to designs is its impact on circuit performance. An effort is underway to help you quantify this impact. A number of vendors, including Genrad, Harris, Sierra, and Valid, are building macromodels of specific pieces of test equipment. Last year, Wavetek introduced its XTM integrated into the Digital Equipment Corp RealTime Test Integrator-a comprehensive set of models that allows you to emulate a complete test setup. These models allow you to build and simulate a model of your circuit, connect it to the appropriate simulated test equipment, and measure its performance.

If you're looking for testability help from your silicon vendor, be aware that the vendor's expertise and interaction with your design efforts vary widely. At one extreme, Analog Devices takes your specification and returns a piece of silicon; they do the design and ensure its testability using many of the techniques discussed herein.
At the other extreme, Orbit Semiconductor doesn't provide design help. You are responsible for creating the design. Its testability is completely dependent on your skill, creativity, and expertise. Orbit provides you with process parameters that you incorporate into your models. The company offers fast (4- to 5 -week turnaround), inexpensive (as low as $\$ 1500$) foundry service, and they suggest that you prototype functional blocks within the design. During fabrication, the company monitors their process, so if a design fails, they can determine whether their fabrication was within specifications.

Many other companies, among them Gould AMI, NCR, and Sierra, assign and provide you with access to their applications and test engineers. These engineers generally have a good understanding of how their organizations test mixedsignal designs. Therefore, they can tell you what they need to test your circuits. They can often help you weigh the impact of testability on your design.

References

1. Turino, Jon, "Design to Test," 2nd ed, Van Nostrand Reinhold, New York, 1990.
2. Markowitz, Michael C, "Software adds logic to make designs testable," EDN, October 11, 1990, pg 59.
3. Quinnell, Richard A, "Adding testability also aids debugging," $E D N$, August 2, 1990, pg 67.
4. Turino, Jon, "Testability Practices in the 1990s," Course Material, 1990.

Article Interest Quotient

(Circle One)
High 488 Medium 489 Low 490

HAVE YOUR SAY

EDN's Signals \& Noise column is a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. Mail your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, you can reach us via EDN's bulletin-board system at (617) 558-4241 and leave a letter in the EDITORS Special Interest Group. You'll need a $2400-$ bps or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or $1200 / 2400,8 \mathrm{~N} 1$ in shorthand.

HS
 TRANSMISSIONLINES

As technology advances, ICs are running faster and printed circuit boards are becoming more densely populated and complex. Signal integrity is at question. Packaging must be considered to get an accurate assessment of the design feasibility. The combination of Meta-Software's HSPICE optimizing circuit simulator and its advanced modeling capabilities provide consistent, accurate and reliable results.

Meta-Software's transmission line model is fully functional for transient, DC, AC, optimization and Monte Carlo analysis. HSPICE transmission lines exhibit resistive loss, time delays and reflections. A compact model allows thousands of transmission lines in a single circuit simulation.

The HSPICE transmission line model includes:
1, 2 and 3 conductor coupled micro-strip/stripline for PCB use
coaxial cable
twin-lead
Models are calculated using advanced look-up table techniques for board/hybrid and LSI applications. Accuracy is maintained over frequency or time by dynamically synthesizing equivalent circuits as a function of transient timestep or maximum frequency.
Key applications include high frequency backplane design, silicon and GaAs substrate transmission line effects, IC packaging and printed circuit board signal analysis.
Contact Meta-Software today for more information on HSPICE-The Circuit Design Advantage!

Transmission line analysis with HSPICE: Measure physical sizes of conductors (top). Simulate using output buffer and transmission line models (middle). View results (bottom).

META-SOFTWARE

THE CIRCUIT DESIGN ADVANTAGE!

1300 White Oaks Rd. - Campbell, CA -95008
Tel. (408) 371-5100 : Toll Free (800) 346-5953
FAX (408) 371-5638-Telex 910-350-4928

OUR REMTIOISHP
 Panasonic :u:n: rust Palmcorder

 See us af DAC in San Francisco,
 June 17-20, Booth 2232.

GOT VERY FUZZY. VERY FAST.

TOGETHER, MATSUSHITA AND LSI LOGIC GAVE THE NEW PANASONIC PALMCORDER A CLEAR ADVANTAGE: FUZZY LOGIC.

The market: volatile and changing fast. The products: getting smaller. And doing more. The competition: tough. The potential: significant worldwide sales gains from volume production of a superior camcorder.

No wonder Matsushita designers chose to work with LSI Logic to help create the cell-based ASIC chips for the new Panasonic Palmcorder.

Our unique expertise in ASIC design tools and technology not only helped Matsushita make the new Palmcorders dramatically smaller, but helped add remarkable new capabilities as well.

Including a new image stabilization system based on fuzzy logic.

And everything was done in record time From start of design to volume worldwide pro-
duction, Matsushita and LSI Logic created each of the two key ASIC Palmcorder chips in less than 5 months.

We can do the same for you. LSI Logic offers the design tools, engineering expertise, and worldwide manufacturing capability to help bring your new and improved electronic products to market on time.

And in volume.
Call us at 1-800-451-2742 or write to LSI Logic, 1551 McCarthy Blvd., MS D102, Milpitas, CA 95035.

LSI LOGIC ACROSS THE BOARD

CIRCLE NO. 116

No Matter What the Application, SBE Fits.
 ETHEPNET

Matching your high-speed data communications requirements with a quality supplier has never been easier. Whether you're a manufacturer of mini/superminicomputers, workstations or high-performance data communications products, only SBE provides a perfect fit.

Only SBE offers a complete line of intelligent high-performance communications controllers for all major interface technologies: FDDI, Token Ring, Ethernet and High Speed Serial. Only SBE adds premium features, without a premium cost, for the best price/performance in the industry.

Add integrated hardware/software solutions; availability in VMEbus, Multibus and SBus; plus legendary development assistance and continuing product support.

Discover how SBE's intelligent high-performance controllers can meet your LAN and WAN interface requirements. Turn to SBE today.

Units provide insights classic counters can't

Time-measurement instruments aren't restricted to counters and timers anymore. Analyzers that let you
visualize long series of measure-
ments can help you troubleshoot problems for which you would never dream of using a conventional counter.

Dan Strassberg,
Associate Editor

Time-interval analyzers (TIAs) and frequency and time-interval analyzers (or modulationdomain analyzers) make and store large numbers of measurements with little or no dead time between readings. They then present the measurements in numeric or graphics form, either statistically or in the original time-ordered sequence. Such products first appeared more than a decade ago, but only within the last four years have they been widely promoted. Although they may at first seem to be a cure for a nonexistent disease, the analyzers are, in fact, use-ful-so useful that many engineering departments, even some that don't own conventional counters, should consider acquiring them.
A related type of product, the time-tovoltage converter (TVC) continuously converts short time intervals to voltage levels that you can monitor on an oscilloscope. The TVC concept is decades old. But, like time-interval analyzers, in the past TVCs were usually specialized devices. For example, some heart-rate monitors used in hospital intensive-care units are based on TVCs. Recently however, Tektronix introduced a TVC designed from the ground up as a general-purpose instrument. This TVC competes with TIAs and frequency-domain analyzers. At $\$ 2500$, this unit is far and away the low-

What you see on the screen of this modulation-domain analyzer from HP is not a voltage ramp; it is the change in output frequency of a synthesizer simulating a step change in frequency as best it can.
est-priced continuous-measurement device (Table 1). It does need a scope for display and a power supply/enclosure, however.

Another instrument, which at first glance appears to be a conventional counter (in concept, if not in packaging), is actually quite unusual. The IBM PCbased GT-2210S Modulation/Time-Interval Analyzer from Guide Technology can make more than 2000 meaningful measurements per sec. This rate is as much as 200 times the maximum rate of classical counter/timers. So, although the Guide product doesn't make continuous measurements, it makes enough measurements so that you can use it to track rapid changes in frequency or interval duration.

One difficulty that manufacturers of these products have is getting potential users to think about their measurement problems and the instruments' capabili-

TECHNOLOGY UPDATE

Frequency and time-interval analyzers
ties in appropriate terms. To address that issue, Hewlett-Packard devised the concept of the modulation domain, represented pictorially as follows: Envision a space defined by three axes. Along the X axis is time; along Y is voltage; and along Z is frequency. An oscilloscope is a time-domain instrument; it measures voltage vs time. A spectrum
analyzer-a frequency-domain instrument-measures voltage vs frequency. Many TIAs, including HP's frequency and time-interval analyzers, can measure frequency vs time. HP calls the frequencytime ($\mathrm{X}-\mathrm{Z}$) plane the modulation domain.
The idea of displaying frequency vs time bothers some people be-
cause frequency is defined in terms of time, and you can't measure frequency in zero time. Even more vexing is the idea of measuring time intervals vs time. In fact, though, when you compare the values of the dependent variables these instruments record (intervals or waveform periods), with those of the independent variable (time), the de-

Table 1-Representative frequency and time-interval analyzers and time-to-voltage converters ${ }^{1}$

Notes:
N/A = Not applicable

1. All units from HP, International Test Instruments, and Odetics have built-in graphic displays. The others require external displays. The Stanford

Research SR620 can operate as a stand-alone counter, however.
2. Allan variance: $2 * 10^{-10}$ per sec.
3. Allan variance: $5 * 10^{-11}$ per sec; temperature effects: 0.005 ppm from 0 to 50 C .
pendent-variable values are much smaller. Because of these scale differences, the instruments can legitimately plot frequency and time intervals vs time.

Time-interval analyzers had their beginnings in evaluation of spaceborne magnetic-tape data recorders. TIAs are still used extensively for testing of magnetic recording
devices (for example, hard-disk drives). The first TIAs, made in the late 1970s by what was then the Kode Division of Odetics, did not maintain a time-ordered record of measurement results; they kept track only of statistical distributions. By keeping track of just the statistics, a TIA could store the results of many more measurements

4. Timebase stability is specified as 25 ppm as a function of time and temperature but neither the duration nor the temperature range are indicated.
5. Modular unit requires an enclosure/power supply.

Prices range from $\$ 395$ to $\$ 795$. 1.3 GHz prescaler, $\$ 995$.
in much less memory at much lower cost than could an instrument that stored time-ordered measurement sequences. Moreover, the statistics provided all of the information the application demanded.

The nearly unrelenting downward spiral of memory prices has played a major role in the growing popularity of TIAs that retain timeordered measurements. As you might expect, though, such instruments are not gaining acceptance simply because they have become practical. TIAs that store and display time-ordered measurements have many more potential applications than those that only present statistics.

But a time-ordered display is not essential for testing of magnetic recording devices. When testing a device such as a data tape recorder, you can predict its error rate from the width of the distribution of a large number of measurements of the time from a clock edge to the recovery of a 1 or a 0 . If the recorder must maintain low error rates under demanding environmental conditions, you can predict its performance by monitoring how the time-interval distributions shift or widen as you vary the ambient temperature or as you subject the recorder to shock and vibration.

Another point in favor of statistical data recording is that by using it, a TIA can accumulate data for much longer than it can record in the time-ordered mode. When an instrument stores time-ordered readings, it places each reading in a separate memory location. The number of such locations is finite, so the analyzer must periodically stop recording to transfer its measurements to a host computer or a mass-storage device. The higher the acquisition rate, the sooner recording must stop.

To store data in histogram form, a TIA needs only one location for

TECHNOLOGY UPDATE

Frequency and time-interval analyzers

each "bucket" or "bin." Each time a measurement falls in a particular bin, the TIA increments the count in that bin. If the word length of the bins is great enough, a TIA in statistical mode can go on indefinitely making continuous or nearly continuous measurements.
Tektronix emphasizes that because its TVC doesn't store readings, it can present time-ordered measurement sequences indefinitely. Although that statement is true, the scope on which you view the TVC's output can display only limited numbers of measurements during its sweep interval; it will miss events that occur during its retrace interval. If you slow the sweep to accommodate more measurements, you will eventually miss transient phenomena of short duration.

Newer TIAs generally have extremely high maximum measurement rates: Odetics specifies its 4625 CTime at 30 M measurements/ sec, and Hewlett-Packard specifies its 5372 A and 5373 A at 13.3 M . However, when time intervals occur in rapid succession as they do

A virtue of VXI modules is their compactness. Thanks to Racal-Dana's 2351, high-resolution frequency and time-interval analysis is part of the repertoire of functions available to system designers working with the compact modular format.
in a magnetic recorder, a TIA may not be able to make continuous measurements.

When the analyzer must leave gaps between measurements, a problem akin to aliasing in more conventional sampled-data systems
can arise: the analyzer can lock onto measuring intervals of roughly equal duration and thus give an erroneously optimistic picture of the measurement distribution. To prevent this situation, some analyzers incorporate a randomizer, which de-

For more information . . .

For more information on the mixed-signal techniques and products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Guide Technology Inc,	International Test Instruments	Racal Dana Instruments Inc	Tektronix Inc
920 Saratoga Ave, Suite 215,	15550-B Rockfield Blvd	Box C-19541	Box 1700
San Jose, CA 95129	Suite 100	Irvine, CA 92713	Beaverton, OR 97075
(800) 288-4843	Irvine, CA 92718	(800) 722-3262	(800) 835-9433
(408) 246-9905	(714) 770-5711	(714) 859-8999	Circle No. 706
FAX (408) 246-0924	FAX (714) 770-5716	FAX (714) 859-2505	
Shalom Kattan	Michael I Tanaka	Arlene Meadows	
Circle No. 700	Circle No. 702	Circle No. 704	
			VOTE.
Hewlett-Packard Co	Odetics	Stanford Research Systems Inc	Please also use the Information
19310 Pruneridge Ave	1515 S Manchester Ave	1290D Reamwood Ave	Retrieval Service card to rate
Cupertino, CA 95014	Anaheim, CA 92802	Sunnyvale, CA 94089	this article (circle one):
Circle No. 701	(714) $774-5000$	(408) 744-9040	
	FAX (714) 774-9432	FAX (408) 744-9049	High Interest 500 Medium Interest 501
	Jesse Lerma	David Ames	Medium Interest 501 Low Interest 502
	Circle No. 703	Circle No. 705	Low Interest 502

HTBasic from TransEra will turn your PC into a scientific workstation at a fraction of the cost. A real alternative to a high-priced dedicated workstation, a PC with HTBasic gives you the capabilities you need for complex scientific/engineering applications, while retaining compatibility to run and share data with standard PC software.

The savings don't end with the workstation itself. With an HTBasic system, you can use industry-standard printers, graphic output devices, and networking systems. You get the flexibility you need to lay out the system you want without being tied to limited offerings from one supplier.
HTBasic is a state-of-the-art language which gives you a number of advanced scientific/engineering features not found in other BASIC packages.

Features such as data acquisition and IEEE-488/RS-232 instrument control syntax, COMPLEX arithmetic, matrix mathematics, complete HP-style graphics, a comprehensive on-line help facility, and many more, add up to increased productivity for all levels of users.

The right choice for your next engineering workstation is a PC with HTBasic. Call or write us today for more information.

TECHNOLOGY UPDATE

Frequency and time-interval analyzers
lays the earliest start of successive measurements by a randomly distributed amount.

Word length not the whole story
Most modern TIAs (Odetics' are an exception) show their counter/ timer heritage in their long word length. Like nearly all counter/ timers, these instruments can make measurements with nominally very high resolution. However, word length is not a good measure of a time-measuring instrument's reso-lution-especially not its ability to time single-shot events.

Odetics' longest word-length TIA has a 19 -bit word, whose leastsignificant bit is equivalent to 2 ppm of full scale-two counts in the least-significant digit of a 6 -digit decimal number. To make up for this relatively short word length,

You can use a conventional scope to display how time intervals vary as a function of time. Tektronix's TVC 501 time-to-voltage converter makes such displays possible. The small module is part of the firm's TM 500 family.
the firm's TIAs have more measurement ranges than most others. Odetics' literature sometimes refers to these ranges as timebases; selecting a different timebase accomplishes much the same thing as changing the sweep speed (timebase) of an oscilloscope. Moreover, just like scopes with a delayed sweep, Odetics analyzers let you delay the start of an interval measurement after a trigger event. The delay can be much longer than the interval represented by a full-scale count.

Don't let the number of digits in a TIA's word length mislead you. When determining the instrument's resolution, the same considerations apply as for counter/timers. The uncertainty in an individual measurement is the result of a rather involved calculation based on various noise sources in the instrument. If

TECHNOLOGY UPDATE

you insist on a single number to express the repeatability of a timemeasurement instrument's readings, look at the jitter spec. However, you ought to carefully read all of the footnotes in the data sheet and learn how to calculate the uncertainty of real measurements.

The best jitter spec quoted for any instrument in Table 1 is 25 psec rms, for Stanford Research Systems SR620 counter/timer. (Though the SR620 is not a TIA, it is included because of its built-in ability to produce histograms.)

In fact, jitter in TIA readings can often be more significant than jitter in measurements you make with a counter/timer. The reason is that if a counter/timer's readings aren't repeatable enough, you can usually improve the situation by asking the instrument to average a large num-
ber of readings. With a TIA, the variations among readings often represent exactly what you are trying to measure. You'd really like the TIA's own uncertainty to be insignificant compared with the variations attributable to the system under test.

In the eye of the beholder

A TIA's method of presenting its acquired data is an important aspect of its operation. Analyzers from HP, International Test Instruments (ITI), and Odetics are standalone instruments that don't require additional equipment. These units incorporate displays-CRTs in the HP products, an electroluminescent (EL) panel in the ITI product, and, depending on the model, either a CRT or an EL panel in the Odetics products. The dis-
plays can present data in graphical and numeric form. The stand-alone analyzers can also send data to a host computer via IEEE-488 interfaces, RS-232C ports, or both. The ITI unit offers an additional benefit; you can use the instrument as an 80286-based PC.

The other products require external displays. The Tektronix TVC works with any scope. The Guide Technology unit, which is based on an IBM PC bus I/O board, uses the computer's display. The Racal Dana units are C-size plug-ins for the VXIbus; they use the host computer's display. The Stanford Research unit is a stand-alone counter. It can send its graphics output to a scope, a plotter, or a chart recorder. You need such an external device to take advantage of the instrument's TIA-like qualities,

BREAKTHROUGH!

 Single Board Computer

FUNCTION	$\begin{gathered} \text { DTI } \\ \text { CAT985 } \\ { }^{3} \mathbf{3 8 6} \end{gathered}$
25 Mhz - Shipping Now	\checkmark
80387/WeitekSupport	\checkmark
Up to 32M RAM Onboard	\checkmark
Noise Reduction Circuitry For FCC Class B	\checkmark
PS/2 Mouse Support	\checkmark
PS/2 Keyboard Support	\checkmark
PROM Disk	\checkmark
Manufactured In-House In U.S.A.	\checkmark
Landmark Version 1.14 Speed At 25MHz	34.7

Diversified Technology
 An Ergon Co.

Call us toll free for orders and information.
1-800-443-2667

- Military Components Diodes JAN TX MIL-T-27 (TF5SO3ZZ) ${ }^{3}{ }^{3} 103103$ Transformers MLL-C 5536514 ; MLL-C 39014105 Capacitors MLL-C 20127E; MML-R-22097
Resistors ML-P.-30ilage
Wide Input Voltage
$5-15$ VDC
$8-24$ VDC
${ }_{36}^{18}$ Regulated Standard 36 Regulated
Models Single and Dual Outputs - Low Profile . $3^{\prime \prime}$ Height $1.90^{\prime \prime} \times{ }^{1.00 " ~} \times{ }^{\prime} \times$
up to 2.5 Watts - Ambient Operating Temp (No heat sink or electrical derating required) - Options Available per MIL-STD-883 Stabilization Bake Hi Temperature Burn-In
Hi (160 Hours at Full Power) 100 Megohm
(a) 500 DC Isolation

PICO manufactures over 800 regulated and isolated DC-DC Converters and AC-DC Power Supplies and over 2500 standard ultra-miniature Transtormers and Inductors
Delivery- stock to one week

Frequency and time-interval analyzers
though you need no external equipment to use it as a counter.

TIAs, particularly those with a time-ordered presentation, are wonderful general-purpose instruments. Several vendors have compiled stacks of application notes describing the diverse ways in which you can use these products. For example, HP has a 2 -in.-thick stack of more than two dozen notes covering applications in fields as varied as disk-drive testing; development of secure-communications, cellularradio and radar systems; and design of motion-control systems. Tektronix publishes a book (Ref 1) that describes more than a score of uses for its TVC, including several in embedded-system debugging.

TIAs in embedded-system debug

Space limitations don't permit detailed descriptions of many of these applications. Tektronix's embed-ded-system debugging examples, however, show that the ways in which you can use a TIA are limited mainly by your imagination. As you might expect from the supplier of an instrument that produces a timeordered display, Tektronix has chosen examples that emphasize the value of such a presentation over a statistical one.

A problem frequently encountered in embedded real-time systems is unpredictable interruptresponse time, or interrupt latency. There are many ways to look at interrupt latency, but a TVC or a TIA that produces a time-ordered display allows you to quickly see how interrupt latency varies with time. The instrument measures the time from the falling edge of the processor's interrupt-request (IRQ) line to the appearance on the address bus of the starting address of the inter-rupt-service routine. A word-recognizer probe generates a trigger when it senses the desired address.
(For even greater rigor, you can further qualify the address with the trailing edge of the memory-read strobe.)

If the interrupt latency sometimes exceeds specifications, you can try to correlate the failures with such events as the line-voltage zero crossing. In this example, you can display the line voltage on an unused scope channel.
Time-interval analyzers and modulation-domain analyzers will ultimately change the way engineers view the measurement of frequency and time. In this ever more digital world, frequency and time are growing in importance as measures of system performance. In an increasingly fast-paced environment, these variables are not static. In a sense, conventional counters and timers have failed to keep pace with the dynamic nature of the quantities they measure. Instruments of the types discussed here have corrected that anachronism. In the months and years ahead, you can expect new and intensified competition among vendors of these units. With it, not surprisingly, will come higher performance and lower prices.

EDN

Reference

1. Tektronix Inc, "TVC 501 applications brochure and data sheet," Beaverton, OR, 1990.

Article Interest Quotient
 (Circle One)

High 500 Medium 501 Low 502

CB-C7 High Integration Level Cell-Based ASIC Technology

systems on silicon

Fast Turnaround Options Advanced CAD-Enviroment

NEC CB-C7 Cell-Based ASICs - Single-Chip Solutions to System Problems

Putting intelligent systems on silicon has never been so easy. Using NEC's CB-C7 advanced CMOS ASIC technology you can integrate all your system elements - such as microprocessor or microcontroller cores, RAM, ROM, intelligent peripherals and analog I/O - into a single-chip solution And it won't cost you a fortune in new design tools, because NEC CB-C7 ASICs can be designed using industry standard hardware platforms and EDA software - hardware and software you probably already have.
NEC's CB-C7 cell-based ASIC technology gives you other advantages as well. The sub-micron CMOS process used to implement it not only allows CBC7 to achieve the high level of integration required for systems-on-silicon, it also provides you with 0.44 nsec gate delays and ultra-low power consumption
To make things even better, NEC offers you two routes to finished silicon. If you require a fast turnaround, we can implement user-defined logic in your design as a sea-of-gates gate array. Alternatively, if you are aiming for minimum chip cost, we can produce the entire ASIC as a standard-cell solution.

Mega function block Libraries
 key to system integration

NEC's CB-C7 megafunction blocklibraries cover all your likely integration requirements - from the simple logic elements which glue your system together, right up to the high-level functions which provide your designs with on-chip intelligence.

Industry standard workstations and EDA software

For example, the library of megafunction blocks contains cores of our $\mu \mathrm{COM} 87$, V20H and V30H microprocessors, plus intelligent peripheral functions such as those provided by NEC's 72-series and 82-series standard peripheral devices. And because most of these megafunction blocks are hard macros, derived directly from the chip layouts of our standard parts, they have fully characterized timing parameters and can be tested with the standard part test vectors.
Our hard macros are complemented by an extensive range of soft macros to provide additional peripheral device and system support functions, and by a library of over 300 standard logic functions availaible for both silicon realization approaches, the 'High-density' (CB-C7HD) and the 'Fast TAT'-option (CB-C7FT). And of course, all our RAM and ROM blocks can be compiled to exactly match your system requirements.

Sub-micron CMOS-high speed, low power

CB-C7 ASICs utilize an advanced CMOS process technology which features $0.8 \mu \mathrm{~m}$ gate lengths. This technology achieves internal gate delays of only 0.44 nsec and power gate delays of 0.34 nsec (fan-out $=2$, wire length $=2 \mathrm{~mm}$)
The high silicon utilization of the process allows us to achieve integration levels of over 180,000 usable 2-input NAND-gate equivalents per chip - more than sufficient to put high-performance systems into single-chip solutions. And although CB-C7 ASICs consume very little power - only $6.5 \mu \mathrm{~W} /$ gate $/ \mathrm{MHz}$ their $48-\mathrm{mA}$ drive capability allows them to deliver power when it's needed

Solving Cost/Turnaround Trade-offs

Fast turnaround and low unit price are often conflicting requirements when it comes to implementing your ASIC designs - the first suggesting the use of a gate array solution, and the second dictating a standard cell approach NEC's CB-C7 ASIC technology solves these cost/turnaround trade-offs - with combined gate-array/standard-cell solutions for fast turnaround, and full standard-cell implementations for low unit cost.
Whichever option you choose, the hard-macro, megafunction block and RAM/ROM blocks in your design will be floor-planned onto the chip in much the same way. If you need finished silicon in less than a month, we will then implement your customer specific logic in a 'sea of gates' gate array, laid down around these cells. Alternatively, if you are aiming for minimum piece price, we will implement the entire ASIC as a standard cell design - using sophisticated cell optimization algorithms to ensure we achieve minimum chip area.

High Performance ASICs and Packages

Both the fast turnaround and low unit cost versions of CB-C7 ASICs feature the same high performance - so there are no compromises with either solution.
To match this performance, we have an equally impressive range of packages in which to house them. You can choose between conventional plastic DIPs, quad flat-packs, PLCCs and high pin-count plastic or ceramic pingrid arrays. NEC's state-of-the-art packaging technology provides CB-C7 ASICs with maximum protection from their environment, ensuring their longterm reliability.

OpenCAD flexibility in design

NEC OpenCAD gives you maximum freedom in the CB-C7 design process. Freedom to perform schematic capture using popular EDA software such as DAZIX, Mentor, Valid and VIEWlogic, on industry standard workstations from DEC, HP-Apollo, IBM and SUN.
After schematic capture, your design is completed by compiling RAM/ROM

blocks and optimizing user-defined logic. It is then floor-planned using ChipPlan, simulated with System Hilo or Verilog, and placed and routed using Cell-3 Ensemble. After post-layout simulation and design-rule checks, we pass pattern generation data to one of our wafer fabrication facilities in Japan, the USA or Europe.
To simplify your design task, logic optimization, simulation, and chip layout are normally carried out by a NEC ASIC design center on their SUN or DEC workstations. Providing access to NEC's Unified Design Environment - a suite of ASIC design tools which operate
under DEC PowerFrame system management software - these workstations ensure a simple user interface and smooth data flow from one design process to the next.
However, OpenCAD also gives you the flexibility to install part or all of the NEC Unified Design Environment on your own system, so that you can perform as much, or as little, of the CB-C7 design process as you choose.

NEC Unified Design Environment A Framework for Right-First-Time Designs

To handle the complexity of $\mathrm{CB}-\mathrm{C} 7$ ASICs, and that of our next generation of ASIC technologies, we have taken some of the best ASIC design packages in the industry - such as VIEWlogic schematic capture software, Synopsys HDL compilers and logic synthesizers, Genrad System Hilo, and Cadence simulation,
layout and routing software - and integrated them into the NEC Unified Design Environment.
At the heart of this design system lies the NEC Central Unified ASIC Database - a technology independent database which allows us to automatically generate new simulation models as new
process technologies are introduced.
So with NEC, you not only get ahead, you stay ahead.

OpenCAD

Wherever you are in the world, there is a NEC design center close enough to support you in CB-C7 ASIC design. If you are already using industry standard workstations and EDA software to
design ASICs, you probably have all the hardware and software design tools you will need. Simply install the CB-C7 ASIC libraries, and you can start on a
CB-C7 design tomorrow.

For fast answers, call us at:
USA Tel:1-800-632-3531. Fax:1-800-729-9288. Gernany Tel:0211-650302. Telex:8589960. The Netherlands Tel:040-445-845. Telex:51923.
Sweden Tel:08-753-6020. Telex:13839. France Tel:1-3067-5800. Telex:699499. Spain Tel:1-319-4150. Telex:41316. Italy Tel:02-6709108. Telex:315355. UK Tel:0908-691133. Telex: 826791. Ireland Tel:1-6794200. Telex: 90847 . Hong Kong Tel:755-9008. Telex:54561. Taiwan Tel:02-719-2377. Telex:22372. Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:4819881. Telex:39726. Australia Tel:03-267-6355. Telex:38343.

Two new ways for you to make sensitive LCZ measurements. Even if you're sensitive about price.

Goes great

with chips.

finished module created with less stress than one made with most polyimides.

NO MORE SOGGY CHIPS.

 Water, a byproduct of the polyimide curing process, is the enemy of the multichip module. It complicatesIf you've been following the developments in highdensity multichip modules, you know the great promise that lies there.

If you've been leading the developments, however, you know the great problem that lies there.

Namely, the search for a polymer dielectric that can make multichip modules truly practical.

For which reason we are pleased to introduce you to new bisbenzocyclobutenes (BCBs) from Dow.

BCBs offer big advantages over the polyimides you may have been experimenting with. To start, they simply perform better-by about 50%. And in the process, they simplify manufacturing and lower your overall costs.

The motherboard of a microcomputer, on a multichip module made with BCB from Dow-actual size. CHIPS WITHOUT RIDGES.
Where does BCB's advantage come from?
For one thing, from its extremely low dielectric constant. In general, you can get away with layers 25% thinner than you'd need with polyimides. This means higher density and, therefore, higher performance.

You also get much better leveling than with polyimides. BCB planarizes more than 90%, compared with the 30% or less typical of polyimides. This nearly ridgeless surface reduces crosstalk and improves etching as well.

And BCB can take the heat, literally. It shows great thermal stability at curing temperatures. This, together with its naturally low modulus, gives you a

So there's no need for the metal tie layers other dielectric materials require.

YOUR CHIPS, OUR DIP.

All in all, this means you can manufacture high-density modules faster, with fewer rejects and, therefore, less expensively with BCB. And wind up with modules that perform far better than they would with polyimides.

If BCB sounds good in theory, we invite you to learn from the experience of those who have put it into practice-including one manufacturer who has successfully gone into full commercial production. If you'd like more information, call us today at 1-800-441-4DOW. manufacturing and robs polymers of their dielectric appeal.

BCB , on the other hand, produces no water. So there's no need for additional drying during manufacture. And since it vigilantly resists moisture (absorbing just 0.25% of its weight after 24 hours at $100^{\circ} \mathrm{C}$), the dielectric properties you design in, stay in.

BCB also offers excellent adhesion to aluminum, copper, silicon dioxide-and to itself.

Dow Plastics
See us at Nepcon Booth \#1110

To a PC, workstation or communications card, it seems like just another asynchronous UART. But to the intelligent, synchronous universe of high-speed data communications it looks and functions like the world's first virtual communications packet controller.
"It" is our exclusive new M650 Serial Packet Controller. In a single-chip CMOS package you now can add highspeed ($14,400+$ bits $/ \mathrm{sec}$) modems to your PC peripheral bus or integrate with most high-speed synchronous communications networks.

The M650's dual-port mode
architecture accomplishes in hardware what you can't do as well in software. Even after you've linked up multiple UARTs and messed with glue logic.

So the M650 can take the heat off your CPU and function comfortably as a communications sub-processor. And, in power-down mode, be sensitive to the low power demands of your laptop and notebook PC designs.

Clearly, it's the intelligent asynch/ synchronous communications link your next-generation product designs are waiting for. To find out more, call us for literature package CPD-10. We'll connect

For Career Info Circle 122
you with your nearest Silicon Systems representative and update you on our latest developments. 1-800-624-8999, ext. 151.

Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
European Hdq. U.K. Ph (44) 79-881-2331
Fax (44) 79-881-2117

LEARNING ADA

Class provides fast track to understanding

Given enough time and the right motivation, most engineers can learn
to use the Ada programming language on their own. However, a training class will hasten language proficiency.

Steven H Leibson, Senior Regional Editor

If you work on military projects for the Department of Defense, your time has just run out. The US government's fiscal year 1991 budget states that "After June 1, 1991, where cost effective, all Department of Defense software shall be written in the programming language Ada." Thus, you must now prove that another language would be cheaper to use if you wish to avoid using Ada for a military programming project.

Ada's features suit the language for complex programming projects, but its reputation of being hard to learn discourages many engineers from learning it. To find out just how hard learning Ada really is, I attended a 5-day real-time Ada programming class at Alsys in Burlington, MA. (Alsys is not the only compiler vendor to offer classes in Ada programming. I selected this class because its timing suited my needs.) I discovered that learning Ada as a second language isn't as tough as people say. Although Ada is a complex language, it isn't impossibly difficult to learn. In fact, the language actually eases the job of writing programs for multitasking systems.

Although I'd never programmed in Ada before, I have assimilated many other programming languages including Algol 68 (a structured language and a predecessor of Ada that nearly drove me away from computers forever), Basic, HPL (a proprietary Hewlett-

Eli Gerber

Brosgol taught not only Ada's syntax, but imparted the reasoning behind the language's features. That kind of information helps you make better use of a programming language, especially one as complex as Ada.
The first part of the class focused on the structure of an Ada program. An Ada program consists of many "program units." The main program, one such unit, is a procedure that uses the services of "subprograms," which can be functions or procedures. Subprograms are also program units. Each program

Learning Ada

unit comprises two parts. The first part, the optional "specification," declares the elements of the program unit that are visible to other units. The second part is the body code.

Divide and conquer

Ada's definition requires that an Ada compiler be able to compile a program unit consisting of just a specification. Thus, you can write a specification for a program unit in Ada, compile it so that other subprograms can use it, and postpone implementing that module until a later time. You can then write and compile the code that performs the subprogram's real work separately.

This compartmentalization lets you conceal a subprogram's implementation, its "body," from the other subprograms. This characteristic thus limits the number of details a programmer must remember at any one time by severely restricting access to and from other parts of the program. Restricted access also prevents the conflicting reuse of variables and procedure names-a problem that frequently occurs on projects with a large number of programmers.

In fact, you can separately compile all Ada program units. As a consequence of this feature, Ada compilers include library managers that keep track of the numerous program units, variables (which Ada calls objects), and procedure names that make up a complete program. Fig 1 gives you a glimpse of the complexity you can expect from even small programs. Ada programs don't have to be so complex.
Fig 2 demonstrates that an Ada program can be as short as five lines.

I found the idea of a program comprising tens or hundreds of program units somewhat daunting. All the languages I know well don't allow separate compilation, so this

Fig 1-You can construct an Ada program by using several modules, or program units, which the Ada development environment saves in a library. In this example, the Ada package RANDOM_NUMBERS consists of distinct specification units and body program units. These two types of units are compiled separately in \boldsymbol{a} and \boldsymbol{b}. The compiler uses the RANDOM_NUMBERS spec unit to compile the RANDOM_NUMBERS body in \boldsymbol{b}. The compiler requires only the RANDOM_NUMBERS spec to compile the main program, ENCRYPT, in \boldsymbol{c}. The binder (a linker and librarian rolled into one tool) uses all three compiled program units to create an executable file (d).
concept was somewhat new to me. As I grew more familiar with Ada, I became accustomed to this programming style and now understand why many vendors stress the abilities of their products' librarymanagement tools. Such tools are essential if you want to take full advantage of Ada's features.

From generalities, the class moved on to the specifics of writing an Ada program. As a first step,
you declare all the objects you plan to use. You can declare objects in both the specification and the body of a program. Because Ada has strong typing and constraint checking, you must declare all objects before you use them. Other subprograms can use the objects you declare in the specification unless you declare those objects private. If you declare an object in a subprogram's body, it is private to that unit.

When you declare an object, you must also declare its "type." For example, if you are going to use an object called DAY to hold the day of the month in your program, you might declare DAY to be an integer. However, the day of the month can never be negative, and if DAY somehow became negative during your program's execution, that situation would constitute an error. Instead, declare DAY as a "positive," which is a predefined subset of the integer type that includes the set of integers greater than zero.

Using constraint

To make full use of Ada's errorchecking abilities, you could use Ada's user-defined subtype declaration to further limit DAY's value to the integers 1 through 31 inclusive. If you defined DAY as such a subtype, then every time you assigned a value to DAY, Ada would check to make sure that the assigned value fell within the limits of that object's definition. This continual constraint checking is one of the strongest of Ada's type-checking abilities because it enhances a program's reliability.

Further, you cannot use sleazy programming tricks, such as assigning the value of a floating-point number to an integer type, because Ada doesn't allow such shenanigans. Other languages may allow such "cheating" and their programming styles may sometimes produce more-efficient-looking code, but such languages exact a penalty from anyone trying to maintain your program.

Ada provides explicit ways to convert a floating-point number to an integer. Because the conversion must be explicit, anyone reading your program will be able to see what you are doing. Remember, Ada's designers were building a language for large projects and big programming teams. They always

```
with TEXT_IO; use TEXT_IO;
procedure TESTl is
begin
    PUT_LINE("Hello, world!"); -- this is the traditional first program
end TESTl;
```

Fig 2-A simple Ada program need not look complex, as this 5-line listing demonstrates.
opted for stylistic clarity and shunned obscurity.
For the remainder of the first day's lessons, we looked at simple Ada statements such as assignments, if statements, case statements, and loop structures. We also studied the two types of subprograms: functions and procedures. Functions return an explicit value. Procedures do not return a value to the caller but may indirectly return values by changing the value of global objects.
As part of its emphasis on constrained programming, Ada also places limitations on subprograms' parameters. Parameter modes help you limit vulnerability to inadvertent modification. You can define the mode of a passed parameter as in, out, or in out. A subprogram can read the value of an in parameter but cannot change that parameter's value. A subprogram can change the value of an out parameter but cannot read its value. And a subprogram can both read and change a parameter you define as in out.

Struggling through day one

I was overwhelmed by the time the instructor turned us loose on our PCs for the first day's workshop problems. The concepts I had to simultaneously assimilate included Ada terminology, the quirky syntax, several unfamiliar program and data structures, and the language's stylistic philosophy. I was also learning to use Ada tools, including
an editor, verifier, compiler, binder (a linker and librarian rolled into one tool), and a debugger.

Had I realized the sheer volume of information I would need to assimilate that first day of class, I might have studied Ada before class started. The text for the course (Ref 4) would have been a helpful study aid. Of course, if I had the time to read that book, I might not have felt the need to take the course in the first place.

The second day of class was less of a struggle. I began to recognize proper Ada syntax and found reading program listings easier. We started the day by looking at "generics," Ada's rough equivalent to programming macros. Generics are templates for creating subprograms. One example of a useful Ada generic is the sort routine.
Suppose you develop an efficient algorithm to sort objects. Instead of writing separate subprograms to sort lists of integers, fixed-point numbers, floating-point numbers, and strings, you can write one generic for that algorithm that sorts objects of an unspecified type. Later, you can specify the object type to be sorted when you instantiate the generic. This Ada feature helps you reuse the code you write.

Next, we studied complex objects: arrays and records. Arrays are homogeneous collections of objects; records are collections of heterogeneous objects. Most programming languages have similar kinds of data structures. Ada allows "dis-

Learning Ada

criminated" records that have variable fields. You can use a record's discriminator field to determine the number and types of fields in the rest of the record (Fig 3). This feature is a great way to efficiently organize the memory a program uses for records.

Ada's access types may seem somewhat foreign unless you're familiar with the C programming language's pointers. Access types point to objects and thus contain the address of the object to which they point. However, you generally don't use access types to work directly with machine addresses. Instead, you use an access type to manipulate an object's component parts by tacking the object's component names onto the access-type designator.

An example helps clear up the confusing terminology and illustrate the reasons for using access types. Suppose you declare a designator REF as an access type for record R , which has two components: objects VALUE and NEXT. The VALUE component holds a numeric value; NEXT holds a pointer to the next record. You typically use this kind of data structure to create linked lists. If you want to manipulate a linked list of these records using many different Ada subprograms, you could have problems.

Without access types, Ada's scoping rules (the rules that define which objects a subprogram can use) might cause the Ada runtime system to pass the entire linked list to each relevant subprogram. That operation would create a new copy of the set of records somewhere in memory for every subprogram that uses the records in the list. If the objects you're working with are large, multiple copies could cause your system to run out of memory and abort the program.

An access designator such as REF lets the subprogram manipu-

```
package RESERVATIONS_DATABASE is
    subtype SMALL_NATURAL is NATURAL range 1..3;
    type CLASS_TYPE is (FIRST_CLASS, COACH);
    type SPECIAL_SERVICE_TYPE is (MASSAGE, HOT_TUB);
    type MEAL_TYPE is (SNAKE_SURPRISE, UNKNOWN_DEAD_ANIMAL, FILET_OF_SHOE);
    type PASSENGER_TYPE ( NAME_LENGTH : SMALL_NATURAL := 0;
            CLASS : CLASS_TYPE := COACH ) is
        record
        NAME : STRING(1..NAME_LENGTH);
        case CLASS is
            when FIRST_CLASS =>
                FIRST_CLASS_ROW_NUMBER : INTEGER range 1..3;
                FIRST_CLASS_SEAT_NUMBER : INTEGER range 1..10;
                SPECIAL_SERVICE : SPECIAL_SERVICE_TYPE;
            when COACH =>
                COACH_ROW_NUMBER : INTEGER range 4..30;
                COACH_SEAT_NUMBER : INTEGER range 1..10;
                MEAL : MEAL_TYPE;
    end case;
    end record;
end RESERVATIONS_DATABASE;
```

Fig 3-Discriminated records let you compact the fields in a record. The discriminating field CLASS specifies whether the remaining portion of the record contains row-number, seat-number, and special-service fields or row-number, seat-number, and meal-type fields. Ada's constraint checking will generate an exception if your program tries to assign a first-class row number to a coach-class field.
late the original set of objects or, in this case, records. Using Ada's "dot notation," the subprogram can manipulate a record's value component using the designation REF.VALUE. The subprogram finds the next record on the list by reading REF.NEXT.
Note that this scheme preserves Ada's type-checking feature because REF.VALUE has the same type as VALUE, and REF.NEXT is the same type as NEXT. Access types for complex objects can get pretty involved, and I can't say that I fully understand them yet, but the class certainly gave me a good start on the subject.

I hit a brick wall during the discussion of recursion in Ada not because of Ada but because I'm just not conversant enough with the basic concepts of recursion. As an-
other class member said, "My mind doesn't work that way." I did learn enough to know that if I ever figure out how to effectively use recursion in any programming language, I'll be able to use Ada to write recursive programs.

At the end of the day's lecture, we studied storage management, because access types make allocating memory difficult for the runtime system. Temporary objects exist only as long as the tasks using them exist. If you use access types to reference temporary objects, the runtime system may not be able to determine when you no longer need those objects and therefore might be unable to reclaim the memory the objects use. You can explicitly reclaim that memory by using Ada's "unchecked deallocation" feature. Through unchecked deallocation,

New Generation Instruments on Cards Offer both Angle Indicator and Simulator Functions

IAC-37001 is a VME/VXI register based Synchro/Resolver Angle Indicator and Simulator on a single size "C" Card. The card performs separate S/D and D/S operations simultaneously.
The Angle Indicator section allows selection of 18 or 20 bit mode with accuracy up to 18 arc seconds. The Simulator section produces outputs with 16 bits of resolution and accuracy to 20 arc seconds.

API-36005 is a full size IBM PC ${ }^{\text {® }}$ card containing a single-channel, wideband, instrumentation grade Synchro/Resolver Angle Position Indicator. Offering
programmable resolution of 16 or 20 bits, accuracy of 18 arc seconds and an operating frequency range of 360 to 5000 Hz , it is ideal as a stand alone Indicator in an engineering lab or PC based Automatic Test Equipment (ATE).
SIM-36010 is a full size IBMPC ${ }^{\circledR}$ card containing a single-channel, wideband, high-accuracy Synchro/Resolver Simulator. The instrument accepts an external reference and provides an output signal of $11.8,26$, or 90 V L-L with a drive capability of 1.5 VA . The SIM36010 also includes a programmable dynamic rate feature.
(8) IBM is a registered trademark of International Business Machines.

DDC Handbook Offers Tutorial on Synchro Conversion

DDC's "Synchro Conversion Handbook" is once again being offered, free of charge, to design engineers. The handbook covers not only DDC's approach on the subject but also all the other generally accepted techniques in use throughout the industry. It con-
 tinues to be a popular treatise and reference. From Fundanentals of Angle-Sensing Transducers and Data Conversion Devices, through Theory of Operation, Measuring and Computing Performance Parameters, and concluding with Design Constraints and Selection Criteria for Typical Applications, the Handbook is thorough in presenting a wealth of useful, factual information.

RDC-19220

Programmable 16 Bit Monolithic R/D Converter

The RDC-19220 series are lowcost, versatile, programmable monolithicResolver-(andLVDT)-toDigital Converters. These converters are available in small 28 pin DDIP, 40 pin DDIP, or 44 pin PLCC packages and offer programmable features such as resolution, bandwidth, and velocity output scaling. Resolution programming allows selection of 10 , 12,14 , or 16 bits, with accuracies of 2.3 arc minutes. This feature combines the high tracking rate of a 10 bit converter with the precision of a 16 bit device in a single package. Typical applications include motor control, robotics, machine tool, and process control.

New Generation S/D Converters with Tach-Quality Velocity Output

A new generation of one, two, and three channel Synchro- or Resolver-to-Digital converters lead the way based on a singlechip monolithic. These completely selfcontained synchro converters are housed in hermetically sealed packages with an area requirement as low as 0.5 square inches per channel.
The velocity output (VEL) from the series, which can be used to replace a DC tachometer, is a 4 V signal referenced to ground with a linearity of 1% of output voltage.
Other features include an exceptionally low-power consumption of 100 mW per

channel, a wide carrier frequency range of $360-5000 \mathrm{~Hz}$, and solid-state signal and reference isolation.
Any converter in the series is available with operating temperature ranges of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military processing available.
With its low cost, small size, high accuracy, and versatile performance, the series is ideal for use in modern high-performance military and industrial applications.
Coming Soon: These units are being upgraded to 16 bit resolution. Also on the horizon are single-and dual-channel units which will operate off a single +5 volt supply and output a 16 bit wide digital word.

HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, NY 11716, (516) 567-5600, TLX: 310-685-2203, FAX: (516) 567-7358, (516) 563-5208

WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767 WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
UNITED KINGDOM: 44 (635) 40158, FAX: 44 (635) 32264; FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762 GERMANY: 49 (8191) 3105 , FAX: 49 (8191) 47433; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181 JAPAN: 81 (3) 814-7688, FAX: 81 (3) 814-7689; IRELAND: 353 (21) 341065, FAX: 353 (21) 341568

Learning Ada

you can explicitly force the Ada runtime executive to delete an object from memory.

I found the second day's workshop problems on discriminated records and unchecked deallocation to be fairly easy. I skipped the problems that demonstrated recursion.

Making exceptions

We started the third day of class by looking at exception handling. An Ada runtime system can raise several exceptions while your program is running. For example, if an assignment statement attempts to assign an improper value to an object, that operation will cause the runtime system to raise an exception. If you do not write an excep-tion-handling routine for that exception, your program will halt.

Halting may not cause many problems for a program running on a PC or workstation-you can always restart the program. But realtime, embedded programs generally can't afford to halt because some sort of physical damage may result. If your Ada program is managing control surfaces on an aircraft, you don't want that program to halt on its own.

You can generate user-defined exceptions from within a program by using Ada's raise statement. The raise statement causes program execution to jump to the named ex-ception-handling routine. You should not use the raise statement for normal program branching, however, because the program cannot return to the point at which the exception was raised. Exceptions in Ada are just that: exceptional situations. You should use them only when you need to abort one instruction sequence and immediately start another.

The instructor also discussed "exception etiquette," which included tips that help programs stay operational even when exceptions occur.

For example, if a hardware failure or storage exception occurs, your exception handler should close all open files and reclaim storage for objects no longer needed before relinquishing program control. The

Ada's continual checking of an objects' constraints enchances a program's reliability.

handler is likely to be closer to the scope of the routine that caused the exception than the subprogram that executes when the exception handler finishes its job would be. Thus, the handler should try to clean things up as much as possible. Helpful hints such as this one differentiate the quality of knowledge you can get in a class from what you can read on your own.

After a more involved look at generics, we moved on to the realtime aspects of Ada. We started with tasks. Until this point, the programs we discussed in class and worked on in workshops were sequential programs. The programs were therefore typical of programs written in nearly any high-level programming language.

One feature that differentiates Ada from many other languages is its inherent parallelism. By labeling a procedure as a task, you tell the compiler that the runtime system can run that procedure concurrently with other tasks on one processor or on multiple processors, if they're available. The ability to run subprograms concurrently resides in the Ada runtime executive supplied with the compiler.

If you're already familiar with multitasking environments, you know that one of the biggest problems to solve in multitasking sys-
tems is how to prevent the simultaneous use of shared objects. For example, the CRT screen is an object. If you have two concurrent tasks trying to print characters to the screen at the same time, what actually appears on the screen could be some jumbled mixture of the two character streams.

When using languages not specifically designed to handle concurrent task operation, you will usually create a semaphore to control access to shared objects. Ada has a built-in mechanism called the "rendezvous" to ensure mutually exclusive use of shared objects. The rendezvous uses a simple mechanism to ensure mutual exclusion: It allows only one caller to be served at a time. The server serves all other calling tasks one at a time on a first-come, first-served basis.

A rendezvous is an asymmetric arrangement between the calling and called tasks. The calling (or client) tasks issue a call to the task with which they wish to rendezvous. The called (or server) task has an accept statement that creates an "entry" for the clients. If the client task issues a call before the server task executes its accept statement, the Ada runtime executive suspends the caller until the rendezvous occurs. Similarly, if the server task executes an accept statement first, the runtime executive suspends the server until a client issues a call. Note that accept statements are not caller specific, whereas clients issue server-specific calls.

When at least one client and the server are ready, the rendezvous occurs. A rendezvous situation in which multiple clients call one server causes an implicit semaphore. The semaphore occurs because the server accepts only one call at a time and will not service another client until the server executes another accept statement.

If you write your program so that

TECHNOLOGY UPDATE

Learning Ada

the server task alone can manipulate a protected object, then all other subprograms (and programmers) must observe the implicit semaphore of the rendezvous. Misused semaphores, a problem in many multitasking programs, are thus rare when using Ada.
The rendezvous does have one potential drawback: execution speed. Depending on the compiler, the $\mu \mathrm{P}$, and the clock rate, a rendezvous may take tens or hundreds of microseconds to execute-even when both the client and server tasks are ready. A compiler vendor can tell you how long a rendezvous takes using that company's compiler and a particular hardware configuration. You must then decide if
your application can afford that much time. For many real-time applications, even a $100-\mu \mathrm{sec}$ rendezvous isn't too long. However, some applications can't afford to waste that amount of time.

We investigated Ada tasking during the third day's workshop problems. One problem created two tasks that sent characters to the PC's screen simultaneously. Without using a rendezvous to protect the screen, we did indeed observe jumbled output. By adding a screen-server task to provide mutual exclusion for other tasks, we produced more orderly behavior. Despite Ada's reputation as a verbose language, I found that I could create programs that demonstrated
complex Ada concepts with a page or two of code. For example, the three program units for the screenprinting task appear in Fig 4.
On the fourth day, the instructor discussed more-advanced methods for using tasks. For example, conditional, or "guarded," accept statements let you control which rendezvous calls a server task will accept. For example, a guarded accept statement might be available for rendezvous calls only if parameter x equals zero. Server tasks can have multiple accept statements, and you can guard all or just some of them.
When executing, your program will evaluate the guarded statements first and then ignore all $a c$ cept statements with closed guards.

```
(a)
package LINE_PCKG is 
end LINE PCKG;
(b) with TEXT IO;
T 10;
package body LINE_PCKG is
    task MONITOR is
        entry PUT_UC_LINE(ITEM: in STRING);
        entry PUG--INE(ITM: in STRING);
        entry PUT_LC_LINE(ITEM: in STRING);
        end MONITOR;
    task body MONITOR is
        MAX_LENGTH : constant := 80
        LINE : STRING(1 . .MAX_LENGTH);
        INDEX : NATURAL
        CHAR_CODE, UC_CHAR_CODE, LC_CHAR_CODE : NATURAL;
        procedure MOVE (FROM: in STRING; TO : out STRING; LAST : out NATURAL) is
        LOCAL_LAST : NATURAL;
        begin
            if FROM'LENGTH <= TO'LENGTH then
                TO := (TO'RANGE => ' ');
                LOCAL LAST := TO'FIRST+FROM'LENGTH-1;
                TO(TO'FIRST..LOCAL_LAST) := FROM;
        else
            TO := FROM(FROM'FIRST. . FROM'FIRST+TO'LENGTH-1);
                LOCAL_LAST := TO'LAST;
        end if
        LAST := LOCAL_LAST;
        end MOVE;
    begin
        loop
            accept PUT_UC_LINE(ITEM: in STRING) do
                MOVE(FROM }=>\mathrm{ ITEM, TO = LINE, LAST }=>\mathrm{ INDEX);
            end PUT_UC_LINE;
                    for \overline{I in LINE'FIRST.. INDEX loop}
                    if LINE (I) not in 'a' .. ' }z\mathrm{ ' then
                PUT (LINE (I)); -- no conversion needed
                else
                    CHAR_CODE := CHARACTER'POS (LINE (I));
                    UC_CHAR_CODE := CHAR_CODE - 32;
                PUT (CHARACTER'VAL (UC_CHAR_CODE));
            end il,
            NEW LINE
        or
```

(c)

```
```

 accept PUT_LC_LINE(ITEM: in STRING) do
    ```
    accept PUT_LC_LINE(ITEM: in STRING) do
    MOVE(FROM => ITEM, TO => LINE, LAST =>> INDEX);
    MOVE(FROM => ITEM, TO => LINE, LAST =>> INDEX);
    end PUT_LC_LINE;
    end PUT_LC_LINE;
    for I in LINE'FIRST..INDEX loop
    for I in LINE'FIRST..INDEX loop
        if LINE (I) not in 'A' .. ' }Z\mathrm{ ' then
        if LINE (I) not in 'A' .. ' }Z\mathrm{ ' then
    PUT (LINE (I)); -- no conversion needed
    PUT (LINE (I)); -- no conversion needed
    else
    else
    CHAR_CODE := CHARACTER'POS (LINE (I));
    CHAR_CODE := CHARACTER'POS (LINE (I));
    LC_CHAR_CODE := CHAR_CODE + 32;
    LC_CHAR_CODE := CHAR_CODE + 32;
        PUT (CHARACTER'VAL (LC_CHAR_CODE));
        PUT (CHARACTER'VAL (LC_CHAR_CODE));
            end if;
            end if;
                end loop;
                end loop;
                NEW_LINE;
                NEW_LINE;
                nd select;
                nd select;
end loop;
end loop;
end MONITOR;
end MONITOR;
    procedure PUT UC LINE (ITEM : in STRING) is
    procedure PUT UC LINE (ITEM : in STRING) is
    begin
    begin
    MTOR.PUT UC LINE(ITEM)
    MTOR.PUT UC LINE(ITEM)
    end PUT_UC_LINE;
    end PUT_UC_LINE;
    proce
    proce
        MONITOR.PUT_LC_LINE(ITEM);
        MONITOR.PUT_LC_LINE(ITEM);
    end PUT_LC_LINE;
    end PUT_LC_LINE;
end LINE_PCKG;
end LINE_PCKG;
With LINE_PCKG;
With LINE_PCKG;
With LINE_PCKG;
use LINE_PCKG;
use LINE_PCKG;
use LINE_PCKG;
procedure SYNMON is
procedure SYNMON is
procedure SYNMON is
    task T2;
    task T2;
    task T2;
    task body Tl is
    task body Tl is
    task body Tl is
        begin
        begin
        begin
            for I in 1 .. 200 loop
            for I in 1 .. 200 loop
            for I in 1 .. 200 loop
                PUT_UC_LINE ("abcdefghijk1m01234");
                PUT_UC_LINE ("abcdefghijk1m01234");
                PUT_UC_LINE ("abcdefghijk1m01234");
            nd loop;
            nd loop;
            nd loop;
        end Tl;
        end Tl;
        end Tl;
        task body T2 is
        task body T2 is
        task body T2 is
        begin
        begin
        begin
            for I in 1 .. }200\mathrm{ loop
            for I in 1 .. }200\mathrm{ loop
            for I in 1 .. }200\mathrm{ loop
                PUT_LC_LINE ("NOPQRSTUVWXYZ56789");
                PUT_LC_LINE ("NOPQRSTUVWXYZ56789");
                PUT_LC_LINE ("NOPQRSTUVWXYZ56789");
            end loop;
            end loop;
            end loop;
\mathrm{ end T2}
\mathrm{ end T2}
\mathrm{ end T2}
begin
begin
begin
end SYNMON;
```

end SYNMON;

```
end SYNMON;
```

Fig 4-A server task can provide mutually exclusive access to protected objects. The task MONITOR prevents the lines of characters that tasks T1 and T2 generate from intermixing on a display screen.

PACEMIPS PR3400 New Monolithic CPU/FPA/MMU from the Leading MIPS Microprocessor Producer

PACEWRAP PR3100A Write/Read \& Parity Buffer

This new component provides a full-featured interface between the highspeed processor-cache bus and lower-speed I/0 and main-memory bus resulting in outstanding performance and board density at lowest cost.

- Eight-word-deep write buffer with read-back.
$\square 32$-word programmable read buffer.
\square Parity generation \& detection on reads from main memory.
\square Static column DRAM support.
\square Bus snooper to maintain cache coherency in multiprocessor systems.
\square Available in 160 -pin PQFP @ $25,33 \& 40 \mathrm{MHz}$.

PaceRunner/3400 VME SBC in a 6U Form Factor Features

high performance (28 VUPS at 33 MHz) based on the PR3400 and PR3100A. Includes 64 kbytes cache, 4/16Mbytes DRAM, watchdog timer, 256/512 kbytes EPROM, SCSI/Ethernet/Duart, and master/slave VME interface. Used in workstations, servers, industrial and process control, communications, imaging, simulation, \& software development platforms.

For more information call (408) 734-9000

Learning Ada

The remaining open-guarded and unguarded accept statements are available for rendezvous calls. After one such rendezvous is accepted and completed, the program will reevaluate the guards.

When writing the code for a server task, you need to take care to minimize the amount of suspension time for the calling tasks. You can place a server task's code within the rendezvous, where it is protected, or outside the rendezvous. Placing as much of the server task's code outside the rendezvous as possible minimizes the duration of the rendezvous and thus reduces the amount of time the calling task will be suspended.

Complex structures such as rendezvous calls make Ada seem very much removed from the underlying hardware, but the language also has features that let you directly manipulate the hardware. For example, representation clauses let you specify how the compiler should organize objects at the bit level. If you need to specify the addresses and the exact bit-by-bit definition of a peripheral chip's control and status registers, you use representation clauses.

The fifth and last day of class focused on more hardware-related issues. Ada lets you link hardware interrupts to tasks. The interrupt works like a call to a server task from a client task, but has higher priority than any other Ada task. Because Ada is a high-level language, you may not find Ada-level routines to be the best solution for servicing interrupts, but the facility exists. Ada compilers from different vendors handle interrupts differently, so you need to study the technical specifications to discover how each compiler handles interrupts.

Because Ada handles interrupts as if they were task-entry calls, you can test interrupt-handling tasks without using hardware interrupts.

Another task can just as easily rendezvous with the interrupt-handler's entry. You may find this feature handy for testing your interrupt code before you have target hardware or if you do not have

> Ada has a built-in mechanism called the "rendezvous" to ensure mutually exclusive use of shared objects.

enough hardware test beds for all of your programmers.

You can also use interrupts to simulate interrupt situations that may be too difficult or dangerous to test otherwise. For example, if you want to see how your reactorcontrol software responds to a cool-ant-leak interrupt, you probably won't want to actually create such a leak for your test during the early stages of software development.

We spent most of the last day discussing rate-monotonic scheduling theory. (Ref 5). This theory, most recently developed by Lui Sha at the Software Engineering Institute (Pittsburgh, PA), lets you create a multitasking system that always meets hard periodic deadlines.
Essentially, rate-monotonic scheduling theory states that if your multitasking system has enough CPU cycles to service all periodic requests, you can assure that the system services all the requests in the time required by assigning the highest priority to the task with the shortest period and the lowest priority to the task with the longest period. Tasks with intermediate periods receive intermediate priorities inversely proportional to their periods.
The discussion of rate-monotonic
scheduling concluded the real-time Ada course. Five days of immersion in the language have not made me an expert Ada programmer. However, I did not attend this class to become an expert on Ada's syntax. Instead, I wanted to know why the language incorporated some of its unique features and how to best exploit these features in real-time systems. I now have an excellent foundation to further develop my Ada programming skills.

References

1. Brosgol, Benjamin M, "EDN designers' guide to real-time Ada-Part 1: Ada's fundamental language structures build reliable systems," EDN, September 3, 1990, pg 153.
2. Brosgol, Benjamin M, "EDN designers' guide to real-time Ada-Part 2: Interrupt and low-level features link Ada code to your hardware," EDN, September 17, 1990, pg 151.
3. Brosgol, Benjamin M, "EDN designers' guide to real-time Ada-Part 3: Ada runtime environments demand close scrutiny," EDN, October 1, 1990, pg 101.
4. Barnes, J G P, Programming in Ada, Third Edition, Addison-Wesley, Workingham, UK, 1989.
5. Silverthorn, Lee, "Rate-monotonic scheduling ensures tasks meet deadlines," EDN, October 26, 1989, pg 191.
6. Ada 9X Project Report, Office of the Under Secretary of Defense for Acquisition, Washington, December 1990.
7. Leibson, Steven H, "Real-time Ada," EDN, August 17, 1989, pg 102.
8. Small, Charles H, "Adopting Ada is first step to code reuse," $E D N$, August 20, 1990, pg 71.

Acknowledgment

For more information about this class, contact Alsys Inc at 67 S Bedford St, Burlington, MA 01803, phone (617) 270-0030, FAX (617) 270-6882.

Article Interest Quotient
 (Circle One)

High 515 Medium 516 Low 517

With our new metal latch SIMM* sockets, we've improved one of our greatest inventions.

At least in recent memory.

Invent. Then improve. That's the Molex approach-and the new connectors for SIMM memory package systems are the latest examples.
First, they feature two extra-strength stainless steel mounting latches. These lock modules firmly in place, and tell you, with an audible click, when they are positioned correctly. They allow easy upgrading, and guard the assembly against overstress and abuse.
SIMM sockets also provide two contact points per readout for added reliability. In fact, the contacts are guaranteed with any standard module board (.047" to .054").
Made with high temperature-resistant liquid crystal polymer housings, SIMM sockets come in .050 " and $.100^{\prime \prime}$ pitch, and are available in a broad range of configurations: single and dual row, verticals, low profiles, and right angle. Call today for more information.

Bringing People \& Technology Together, Worldwidees

Bring the Modulation Domain designing on a higher level.

to your lab and start

These days, designers face problems that require a level of understanding beyond the scope of conventional measurement techniques. The Modulation Domain can give you that level of understanding. With a new dimension in signal measurement that makes it possible to analyze frequency, time-interval, and phase over continuous time. And now, HP brings the Modulation Domain to your lab with high-performance analyzers that give you insight into your designs you've never had before.

The HP 53310A streamlines Modulation Domain analysis with a simplified user interface, onebutton signal acquisition and realtime measurements for fine-tuning your designs. It gives you continuous frequency and time-interval measurements for analyzing modulations in RF and microwave signals. Characterizing VCOs, phase-locked loops, and electromechanical devices. Locating sources of jitter. And much more.
The HP 5372A is ideal for gathering in-depth Modulation Domain information in single-shot events. In addition to frequency and timeinterval measurements, it also displays phase over continuous time. And analyzes even the most complex signals with incredible detail.
Find out how to take your design skills to new heights. Call 1-800-752-0900* Ask for Ext. 1852, and we will send you a Visitor's Guide to the Modulation Domain on floppy disk. That way, you'll be up on all the latest developments.

There is a better way.

[价
 HEWLETT PACKARD

[^12]© 1990, Hewlett-Packard Co. TMSCD057/EDN

Motorola's In Real

C 1990 Motorola, Inc. Motorola Computer Group is a member of Motorola's General Systems Sector. VMEexec is a trademark of Motorola, Inc. All other product or brand names mentioned are trademarks or registered trademarks o their respective holders.

-Time,Big-Time. ne glance at the full array

©of options Motorola offers in real-time, and you'll see why it's become the developer's platform of choice. For both target and host environments, no other single vendor has anything like it. One reason is our long-time experience with real-time technology, beginning with our pioneering work back in 1980. Another is the broad spectrum of our product line, which includes ICs, boards, systems, and software. In short, Motorola has
 everything you need to build realtime applications ranging from simulation to industrial automation to imaging and more.

Yet another reason to choose Motorola is our unending commitment to open standards. Our real-time platform gives you standards-based choices at various levels of integration. The centerpiece of this nonproprietary approach is VMEexec,"' our wide-open, totally integrated development environment. VMEexec allows you to use standard UNIX* interfaces to write a single set of application code, and then reuse it for other projects. Better still, you can combine any software product that conforms to these standards.VMEexec includes a high-performance realtime executive, a strong run-time connection to UNIX-based systems, flexible and efficient real-time I/O and file systems, as well as powerful development and debug capabilities. And because VMEexec is integrated with the hardware, you can begin
software development even before the hardware is available. If you're thinking about real-time, you should be thinking about time to market, and that's all the more reason to think Motorola. Especially when you consider that we can help speed product integration
by serving as a single source for boards, software and systems. Add to that the industry's best applications expertise and design support, ranging from small embedded control systems to multi-processor simulation. Then factor in Six Sigma quality control. And remember that Motorola gives you the industry's only true migration path from

Right now, Motorola real-time systems are hard at work in critical applications worldwide.

CISC to RISC in both the development and run-time environments.

Give us a call today at 1-800-624-8999, ext. 230, and put the realtime resources of Motorola on your side. We think you'll find the benefits are very big, and very real.

We Do Real-Time Full-Time.

At Motorola, we've dedicated an entire division solely to realtime development systems. Our real-time system architecture begins at the microprocessor level in either CISC or RISC, and
extends all the way to the end-user. Today, you can use VMEexec to port UNIX applications to an SVID-compliant (and soon,POSIX-compliant) real-time environment, and vice versa. And they can be used for runtime capabilities as well

INTEGRATED REALTTME PLATFORM

as for development. Several human interfaces are available for UNIX, including Motif, X. 11 and DeltaWINDOWS.'" As for networking, Motorola supports all popular protocols, including TCP/IP, NFS, SNA, OSI, and X. 400. We also offer database and CASE tools, and you can work in C, LISP, FORTRAN, ADA, BASIC, COBOL, and PASCAL. Put it all together, and you will discover only one company gives you the full story on real-time, and that's Motorola.

All OEM modems start out even

4-Wire?
Standards comparibibility?

- Enn

A limited amount of board space and a fixed agenda of performance parameters - these are the design starting points for every add-in modem. Since they all start out even, how do smart OEM customers gain an advantage?

They buy experience. UDS has more than 4,000 successful custom modem designs already in the field.

They buy engineering expertise. More than 200 UDS engineers keep our OEM customers at the forefront of new modem developments and design refinements.

They buy manufacturing skill. UDS has more than 300,000 square feet of factory space, a full complement of automated manufacturing tools, and a dedicated workforce that uses these resources for the OEM customers' advantage.
They buy a fanatical concern for quality. As a dedi-
cated participant in Motorola's Six Sigma quality assurance program, UDS uses every technique from incoming component qualification to an exhaustive suite of pre-shipment tests. The result: the kind of consistent quality that helped Motorola win its recent Baldridge award.
The modems you add in can give your product a distinct advantage. Let a UDS sales representative show you how. Contact UDS, at 800/451-2369 (in Alabama, 205/430-8000);
FAX 205/430-8926.

Board-level dynamic timing analyzer correlates devices within packages

The performance of devices on the same integrated circuit generally correlate with temperature, voltage, and process. As a result, it is unlikely that the propagation delays through one gate on an IC will be at its maximum while the delay through another gate on the same IC will be at its minimum. The Rapidtime simulator allows you to "package" devices in your timing simulation so their performance correlates.

Without this correlation, timing results wouldn't be realistic. Designing your circuit to account for one path through a string of gates operating at minimum specification while another path operates at maximum specification would be too conservative.

The dynamic timing ana-

Because the dynamic timing analyzer and schematic-capture tools are tightly integrated, you can use the analysis output to graphically locate timing violations on the schematic.
lyzer uses the same simulation patterns that you use to drive the Rapidsim logic simulator. As a member of the vendor's simulation tool suite, the analyzer shares libraries and a user interface with both the logic simulator and a fault simulator. Integration within the suite also allows you to back-annotate layout-dependent timing information from the vendor's own Allegro pe board and Compose and Construct IC layout tools.

The vendor's claim that each member of the tool suite uses the same "simulator engine" is misleading. Each tool uses its own independent event queue and algorithm to perform logic, timing, and fault analysis. Where the tools do converge is in reading the same netlist,
eliminating the need for translating data between tools.
The results-file output from the timing analyzer, like the other tools, is also linked to the front-end schematic-capture tools. Rather than sorting through a mountain of confusing error or timing-violation logs, the timing analyzer gives you the option of highlighting errors within your schematic, though this option doesn't extend to VHDL source code. This graphical capability aids debugging. You can also sort the violations by time of occurrence, error type (setup, hold time, pulse width), signal name, or path name.

The simulation suite offers 140 ASIC-vendor-supplied design li-
braries whose models include all the information for timing analysis. Within Rapidtime, you can scale the timing data in the models to experiment with different design margins. You can also use the LM1000 hard-ware-modeling system within the simulation runs.
The software runs on Sun, DEC, and IBM workstations as a network sharable resource and costs $\$ 20,000$. The Logic Workbench costs $\$ 7000$.
-Michael C Markowitz
Valid Logic Systems, 2820 Orchard Pkwy, San Jose, CA 95134. Phone (408) 432-9400. FAX (408) 432-9430. TLX 3719004.

Circle No. 732

Modular switching power supply develops an 1100A output

Housed in a package measuring $5 \times 8 \times 16$ in., LFS-52 Series switching power supplies range to 1100 A . The units employ a modular design consisting of three full-bridge circuits that switch at 100 kHz . A 1.22 MHz crystal oscillator provides the logic-level timing signals that switch the three modules 120° out of phase. The series includes three models-the LFS-52-2, which has an output of 1.8 to 3.3 V at 1100 A , the LFS-52-5, which has an output of 4.5 to 6 V at 1000 A , and the LFS-$52-8$, which has 5.5 to 8 V at 800 A output. These output values equate to a power density of $10 \mathrm{~W} / \mathrm{in}^{3}$.
Each of the modules in the LFS52 series supplies is wired in a redundant configuration. If one driver fails, the supply will continue to deliver two-thirds of its rated output power indefinitely. To further ensure full internal redundancy, each module has separate fuses; these fuses guarantee that any defective module will be invisible to the remaining modules. The 2 V models have a guaranteed minimum efficiency of 70%; minimum efficiency figures for the 5 and 8 V models are 75 and 80%, respectively.
Control circuitry in the supplies is referenced to the secondary side of the supply. This design removes the isolation boundary from the feedback loop. The supplies employ an average-current control scheme, allowing for accurate load sharing from supply to supply. A trans-former-coupled gate-drive scheme switches the high-power MOSFETs that are incorporated in the inverter modules. Supply input is 3 phase and does not require bulkstorage capacitors. As a result, the units have a 0.9 minimum power factor.

Featuring a 10 W/in. ${ }^{3}$ power density, the LFS-52 Series of switching power supplies comprises three models, each model measuring $5 \times 8 \times 16 \mathrm{in}$.

The supplies feature a 2 -stage differential filter on the output. Individual module output chokes feed into a common capacitor assembly and through a second-stage filter. To address common-mode considerations, the supplies include freestanding input-rectifier and in-verter-switch heat sinks to minimize capacitance-to-chassis figures. A shield located between the primary and secondary windings of the main transformer has a low-inductive connection to the input film capacitors, which shorts out the pri-mary-to-secondary interwinding capacitance. The first-stage outputfilter chokes are located on the negative leg of the output bus structure. This design holds the output bus assembly at a fixed potential relative to ground, thus keeping secondary-to-chassis currents to a minimum.

Supply-line regulation equals
0.1% for line variations of 170 to 265 V ac. Load regulation measures 0.1% for 0 -to- 100% load variations. Transient response time equals 4 msec, and thermal coefficient is $0.03 \% /{ }^{\circ} \mathrm{C}$. The units feature an airflow sensor that provides thermal protection in the event of inadequate air velocity. Fixed-electroniccurrent limiting clamps output current to 107% of $40^{\circ} \mathrm{C}$ rated current. Overvoltage protection is standard on all units. When the preset voltage level is exceeded, the protection circuitry removes the inverter drive. A dc-power-good indicator LED goes off to indicate that a power failure has occurred. The LFS-52 Series is priced from $\$ 2800$.-Tom Ormond
Lambda Electronics Inc, 515 Broad Hollow Rd, Melville, NY 11747. Phone (516) 694-4200. FAX (516) 293-0519.

Circle No. 730

NEW TRANSFORMERS FOR CLASS 2 APPLICATIONS.

DUAL BOBBIN DESIGNS FEATURE 4000 VRMS PRIMARY AND SECONDARY ISOLATION.

${ }^{*}$ *INHERENTLY LIMITED
NON-INHERENTLY LIMITED
MAXIMUM FUSE VALUE SPECIFIED
ALL PRIMARIES ARE $115 / 230$ VOLT $50 / 60 \mathrm{HZ}$

| PART NO. | SECOMDARY RMS RATIMG | FUSE REQD. | PRICE |
| :---: | :---: | :---: | :---: |
| CL2-25-12 | 12V@2.10A | $2.5 A^{* *}$ | 14.50 |
| CL2-25-24 | 24V@1.05A | N/A* | 14.50 |
| CL2-40-12 | 12V@3.33A | 4.0A** | 18.50 |
| CL2-40-24 | 24V@1.66A | $2.0 \mathrm{~A}^{* *}$ | 18.50 |
| CL2-80-24 | 24V@3.33A | 4.0** | 25.25 |

| DIMENSIOWS | | | | | | | Terminals | $\begin{array}{\|l\|} \hline \text { Mtg. } \\ \hline \text { Style } \end{array}$ | Mtg. | | Mty.
 Screw | Lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VA | 1 | W | H | A | B | C | | | ML | MW | | |
| 25 | 213/15 | 17/6 | 25/15 | 2 | 11/8 | 5/16 | 3/16(187) | C | 23/6 | - | \# 6 | 1.25 |
| 40 | 31/8 | 21/18 | 211/6 | 21/4 | 11/8 | 5/16 | 1/18(187) | C | 213/16 | - | \#6 | 1.6 |
| 80 | 21/2 | 23/6 | 3 | - | 13/6 | 5/6 | 3/16 (187) | B | 2 | 23/15 | \#6 | 2.8 |

| PART MO. | | | | SECONDARY RMS RATIMG | | | | FUSE REQD. | | | | PRICE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CL2-2.5-12 | | | | 12V@.20A | | | | N/A* | | | | 9.00 | |
| CL2-2.5-24 | | | | 24V@.10A | | | | N/A* | | | | | |
| CL2-5.0-12 | | | | 12V@.42A | | | | N/A* | | | | 9.75 | |
| CL2-5.0-24 | | | | 24V@.20A | | | | N/A* | | | 9.75 | | |
| CL2-10-12 | | | | 12V@.83A | | | | N/A* | | | 10.90 | | |
| CL2-10-24 | | | | 24V@.42A | | | | N/A* | | | 10.90 | | |
| CL2-20-12 | | | | 12V@1.66A | | | | N/A* | | | 13.25 | | |
| CL2-20-24 | | | | 24V@.833A | | | | N/A* | | | 13.25 | | |
| CL2-30-12 | | | | 12 V @ 2.50A | | | | 3.0A** | | | 15.25 | | |
| CL2-30-24 | | | | 24V@1.25A | | | | N/A* | | | 15.25 | | |
| CL2-50-12 | | | | 12V@4.20A | | | | 5.0A** | | | 18.65 | | |
| CL2-50-24 | | | | 24V@2.10A | | | | $2.5 \mathrm{~A}^{*}$ | | | 18.65 | | |
| SCHEMATIC | | | | | | | | PRIMARIES ARE DESIGNED TO BE USED SIMULTAMEOUSLY. THAT IS, THEY MUSI BE USEDEITHER SERIES OR PARALLEL EITHEA SERIES OR PARALLELCOHNECTED (AS ONE WINDING). (Ses mechanical drawing forcorrect footprint) | | | | | |
| SQuaRE PCTERMIMALS | | | | | | | | | | | | | |
| DIMENSIOWS | | | | | | | PinDimensions | Mty. | | | Mtg. Screm | | Lhs. |
| VA | 1 | W | H | A | B | c | | M | N | P | Size | Quantity | |
| 2.5 | 15/8 | 19/16 | 11/6 | . 200 | 250 | 1.000 | 0.02550 | 11/16 | - | - | \#4 | 2 | 0.25 |
| 5.0 | 15/2 | 19/15 | 1\%/8 | . 200 | 400 | 1.000 | 0.02550 | 11/6 | - | - | \# 4 | 2 | 0.37 |
| 10.0 | 17/8 | 17/16 | 1\%/s | 200 | 400 | 1.140 | 0.03880 | 11/4 | - | - | \#4 | 2 | 0.53 |
| 20.0 | 21/4 | 17/ | 1\%/6 | 400 | 400 | 1.460 | 0.03850 | 11/2 | - | - | * 4 | 2 | 0.90 |
| 30.0 | 2\%/6 | 23/16 | 17/16 | 550 | 275 | 1.680 | 0.04550 | - | $13 / 4$ | 23/16 | 46 | 4 | 1.15 |
| 50.0 | 3 | 21/2 | 111/16 | 600 | 300 | 1.900 | 0.04550 | - | 2 | $21 / 2$ | \# | 4 | 1.70 |

Signal "The American Original" introduces a new family of transformers for 2.5 to 80 VA applications that require low power and a high degree of isolation. These new "Class 2" transformers feature the same dual high-temperature bobbin construction and insulating shroud originally developed for the company's very successful International Series. Available in both PC and chassis mount versions, they offer a choice of inherently limited or non-inherently limited designs and feature 4000 VRMS primary and secondary isolation.
Signal's insulation system results in very high isolation between the primary and the secondary windings, and between either winding and the core. The dual bobbin design reduces capacitance and eliminates the need for an electrostatic shield. The Class 2 dual bobbin series satisfies UL 1585 requirements and CSA safety and performance standards.
Signal transformers are available through Signal's PRONTO 24-Hour Off-the-Shelf shipment program. For additional technical data, contact Signal Transformer, 500 Bayview Avenue, Inwood, N.Y. 11696.

BUY DIRECT
(516) 239-5777
Fax: (516) 239-7208

PRODUCT UPDATE

68030-based VXIbus controller offers real-time, distributed operation

The VXIcpu-030 C-size 68030-based board comes with VXI and IEEE488 drivers and an integrated Ethernet connector; it's suitable for realtime embedded applications that require VXIbus control. Using this Slot-0 controller board, you can build distributed VXIbus systems that network VXIbus mainframes with workstations, PCs, file servers, and terminals. This single-slot board gives you direct control of VXIbus registers, memory, interrupts, and triggers. You can also configure the board for non-Slot-0 operation.

A SCSI port, an IEEE-488 connector, and two serial ports are standard features on the board. Options include eight additional serial ports, an internal hard-disk drive, and a 68882 floating-point coprocessor. The heart of the controller is a Motorola MVME147 single-board VME computer with a $25-\mathrm{MHz} 68030 \mu \mathrm{P}$. You can populate the MVME147 with as much as 16 M bytes of RAM and 4 M bytes of ROM.

The controller is also a fully functioning VXI message-based commander with complete ResourceManager capability and direct access to all VXI address spaces. You can use it to perform 8-, 16 -, and 32 -bit data transfers. Onboard RAM is dual-ported to the VXIbus for direct shared-memory communication.

Wind River Systems sells a version of its Vxworks real-time operating system that has been optimized for use with the controller. Using its built-in X-Window server facilities, this operating system lets you use a Unix workstation or a PC as a high-level software devel-

Complete with Ethernet, SCSI, VXIbus, and IEEE-488 ports, the VXIcpu-030 controller board from National Instruments lets you develop embedded applications that can network VXIbus mainframes with other computers and terminals.
opment platform; the platform generates real-time code that executes on the controller's target processor.
Development tools that come with Vxworks include libraries for both VXIbus and IEEE-488 instrument control. The VXI driver software includes a resource manager; functions for word serial communications; direct access to the VXI bus; interrupt and signal handling; and trigger handling.
You can edit, compile, link, and debug your real-time application software on your Unix host computer via a local terminal on the controller itself. By downloading portions of your application code to the embedded processor, you can interactively set breakpoints to trace program execution. This software also lets you examine variables, memory, and register locations.

Pricing for the controller board begins at $\$ 5995$ for a base unit with 2 M bytes of RAM. You'll pay an additional $\$ 1595$ for National Instruments' software-development libraries and $\$ 400$ for a runtime license. The Vxworks development system for the controller board sells for $\$ 20,000$; its runtime license costs \$600.-JD Mosley

National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in US and Canada, (800) 433-3488; in TX, (512) 7940100. FAX (512) 794-8411.

Circle No. 733
Wind River Systems Inc, 1010 Atlantic Ave, Alameda, CA 94501. Phone (800) 545-9463; in CA, (415) 748-4100. FAX (415) 814-2011.

Circle No. 734

25MHz MIPS R3000 CPU - 025 MHz R3010 FPC

(4) 25 MHz R 3020 write buffers

- 128 KB (or 32 KB) I cache
- 128 KB (or 32 KB) D cache
- 4, 8, 16, or 32MB DRAM
(1) RS232C serial port
- (4) 28 -pin EPROM sockets

SINGLE BOARD COMPUTER

- 68020 16.66-33MHz CPU
I. 0 (8) 28 -pin SRAM sockets (up to 256 KB)
- (8) 32 -pin ROM sockets (up to 8 MB)
- (2) RS232C serial ports
- (16) lines nof parallel VO
- (1) OMNIMODULE socket
- VIC068 VME Controller

SINGLE BOARD COMPUTER

- $6800012.5-16 \mathrm{MHz} \mathrm{CPU}$
- 512 KB DRAM
(4) 28 -pin ROM sockets
- (3) 16 -bit counter/timers
- (2) OMNIMODULE I/O sockets
- DMA controller (optional)
o Optional interrupt generator
- Optional 4 level bus arbiter

AVAILABLE SOFTWARE

| | 680x0 | R3000 |
| :---: | :---: | :---: |
| Monitor | VERSAbug/020 bug' | SPPe ${ }^{2}$ |
| Debugger | FreeForm ${ }^{3}$ | SPPe |
| Cross Compiler | CrossCodeC ${ }^{3}$ | IDT/C4 |
| Real Time Monitor | C EXECUTIVE ${ }^{5}$ | C EXECUTIVE ${ }^{5}$ |
| Real Time O.S. | Industrial OS-9 ${ }^{6}$ | VxWorks ${ }^{7}$ |
| Full 0.s. | Professional OS-9 ${ }^{\text {a }}$ | RISC/os ${ }^{2}$ |

OMNIBYTE ${ }^{* *}$
OMNIBYTE CORPORATION
245 W. Roosevelt Road
West Chicago, IL 60185-3790

CALL TOLL FREE 1-800-638-5022
In IL 708-231-6880

CIRCLE NO. 119

Trademarks: 1-Motorola Inc., 2-MIPS Computer Systems Inc., 3-Software Development Systems Inc., 4-Integrated Device Technology Inc., 5-JMI Software Consultants Inc., 6-Microware Systems Corp., 7-Wind River Systems

SBus-based DSP board performs 33M flops

 AXIAL INDUCTORS TOROIDAL INSULATED LEADSTaMNSFORM a PPL standards available QPL standia3-1 thr 16, MLL-T-27.172-1. thru 123,

MIL-T-27/7559-1 thru 147

- Audio Transformers ranging in size from $1 / 4^{\prime \prime} \times 1 / 4 \prime$ to $33 / 4^{\prime \prime} \times 13 / 6^{\prime \prime}$. 20 Hz to 250 KHz . Up to 3 watts.
- Pulse Transformers $.05 \mu$ SEC to 100μ SEC miniaturized construction.
- Ultra-miniature DC-DC Converter Transformers. 40 watts.
- Miniaturized Switchmode Inverter Transformers. 60 watts.
- 400 Hz Power Transformers Primary voltages of 115 V or 26 V . Plug-in construction. Ultra-miniature
- Microphone/Transducer Audio Input.
- MIL-STD-1553 Interface Multiplex Data BUS Pulse Transformers.

QPL standards available MIL-T-27/356-1 thru 63

- Inductance values to 20 mH with DC currents to 23 amps

PRODUCT UPDATE

The TMS320C30-based Spirit-30 DSP board adds 33M-flops math performance to SBus-based computers from Sun Microsystems and other manufacturers. You can use the board in applications such as image processing, communications, and vibration analysis. The board can transfer data to or from the host computer as fast as 25 M bytes/sec and can interrupt the host via any one of the seven SBus interrupts.

An SBus-based host computer can reset, interrupt, enable, disable, and read status information from the Spirit-30. The board can accommodate 256 k to 2 M bytes of zero-wait-state static RAM that is mapped into the host computer's address space. An additional 32 k bytes of static RAM connect directly to the expansion bus of the TMS320C30. You can use this private memory to store frequently accessed coefficients.

Dual proprietary parallel ports interface the math board to additional memory and peripheral devices. The first port, dubbed ASMPeripheral Port, supports 32Mbyte/sec transfer rates to dataacquisition devices such as frame grabbers. The second port, the ASM-Main Port, transfers data as fast as 66 M bytes/ sec. You can use the ASM-Main Port to expand memory to 64 M bytes and to link multiple boards in a daisy-chain fashion.

The board also includes two serial ports that can operate as fast as 8 M bits/ sec. You can connect standard RS-232C
devices to the ports. And, the company can supply a number of dataacquisition modules that connect via the serial ports. You can choose from modules with 12 - to 16 -bit resolution and sampling rates ranging from 8 to 400 kHz . The board also offers compatibility with the industrystandard DT-Connect expansion bus.
You can choose from an array of software-development tools for the board, including an optimizing ANSI-C compiler, assembler, and linker. The company also offers a C-language source-level debugger, a simulator, and a DSPL library of DSP algorithms. You can buy the Spox OS real-time operating system for the board.

A Spirit-30 board configured with 256 k bytes of static RAM costs $\$ 3995$. The SBus board is compatible with Spirit-30 products for other types of computers, such as IBM-compatible PCs. You can port software to any of the boards by recompiling and relinking the source code.-Maury Wright
Sonitech International Inc, 14 Mica Ln, Suite 208, Wellesley, MA 02181. Phone (617) 235-6824. FAX (617) 235-2531. Circle No. 731

Image-processing, vibration-analysis, radar, and other DSP application programs execute at $33 M$ flops on Sun SPARCstations and other SBus-based systems equipped with a Spirit-30 board.

compac DC Input Power Systems

for Telecommunications and Industrial Applications

10 Watt/in. ${ }^{3}$

The comPAC ${ }^{\text {TM }}$ family of high-density DC-Input power systems is designed to keep your system running while shrugging off the sags, surges and transients that your input source hands out. So, if meeting Bellcore, British Telecom or IEC standards for input voltage and transient protection is your problem, in applications from 50 to 600 Watts, comPAC is your solution. And comPAC doesn't talk back
it meets Bellcore, British Telecom and FCCNDE specifications for EMI/RFI.

The low profile package . . . only .99" tall is standard, as is extended input overvoltage capability and reverse polarity protection, output overvoltage and overcurrent protection, trim capability on all outputs, and a master disable. And, every comPAC benefits from the high efficiency and inherently high reliability of our VI-200 family of component-level power converters. So, just tell us what you want . . . 24,48 or 300 VDC in . . . 1,2 or 3 outputs, from 2 to 95 Volts . . . output power ratings to 600 Watts . . . we'll do the rest.
comPAC... Vicor's compact solution to your toughest applications.

23 Frontage Road, Andover, MA 01810
Tel.: 800-735-6200, 508-470-2900 • Fax: 508-475-6715
Vicor GmbH, Tel: 49-8031-42083 •Fax: 49-8031-45736
Component Solutions For Your Power System

CaC
0
N (

Sophisticated graphics demand elegant solutions.

1 megabit video RAMs from the expert in graphics memories.

Sophisticated graphics require high-performance video RAMs, and NEC has the most experience tailoring memories for your graphics applications.

We developed the first 256 K dual port video RAM. And we've poured all that expertise into our 1 megabit video RAMs. They're the elegant solution you need for the speed and performance requirements of your sophisticated graphics systems.

Fast screen updates

NEC's 80-ns RAM port access speed and fast page operation enable fast frame buffer updates. Block Write and Flash Write fine tune your design by clearing your windows or your full screen, fast. A Split Data Register function simplifies Real Time Data Transfers with relaxed timing.

All standard JEDEC features on our 256 K video RAMs are present in our 1 megabit generation. This includes the Maskable Write Function that allows updates of specific bits and eliminates the need for Read Modify Write cycles. The Persistent Write Per Bit

feature on the $128 \mathrm{~K} \times 8$ version realizes compatibility with popular graphics processors.

Intelligent choices

Optimize your frame buffer architecture with the right video RAM configuration.
NEC delivers dual port video RAMs at both 256K and 1 megabit densities. Choose from two 1 megabit configurations: $256 \mathrm{~K} \times 4$ and $128 \mathrm{~K} \times 8$. Our worldwide manufacturing expertise assures stable supply with the quality you demand.

Call NEC today for high-performance video RAMs-the elegant solution for your sophisticated graphics design.

| Part Number | $\mu \mathrm{PD} 42273$ | $\mu \mathrm{PD} 42274$ | $\mu \mathrm{PD} 42275$ |
| :---: | :---: | :---: | :---: |
| Organization | | | |
| $256 \mathrm{~K} \times 4$ | \bigcirc | \bigcirc | |
| $128 \mathrm{~K} \times 8$ | | | \bigcirc |
| Special Features | | | |
| Fast Page Mode | \bigcirc | \bigcirc | \bigcirc |
| Flash Write | | \bigcirc | \bigcirc |
| Split Buffer | | | \bigcirc |
| Block Write | | | \bigcirc |
| Persistent Write Per Bit | | | \bigcirc |
| Packages | | | |
| SOJ | \bigcirc | 0 | 0 |
| ZIP | \bigcirc | \bigcirc | |

| Major Characteristics | μ PD4227X-80 | -10 | -12 |
| :--- | :---: | :---: | :---: |
| RAS Access Time (Max) | 80 ns | 100 ns | 120 ns |
| CAS Access Time (Max) | 20 | 25 | 30 |
| Fast Page Mode Cycle Time (Min) | 50 | 60 | 70 |
| Serial Access Time ((Max) | 25 | 30 | 40 |
| Serial Cycle Time (Min) | 25 | 30 | 40 |

AnalogDevices can m needs, no matter whatv

Whether your market is a few thousand or a few million,
there's one customer demand for your product that'll
always remain high-the demand for high performance.
The best way to meet this demand is to follow what
the leaders in the medical, military and instrumentation markets have been doing for 25 years, and what the leaders in consumer electronics have been doing for several years now. Call Analog Devices.

These companies call us because we offer a complete line of high-performance linear, digital signal processing and mixed-signal components. ICs that allow them to achieve higher levels of system integration, greater reliability, and

zetyour mixed-signal olume youre dealing in.

Digital Audio Converters - The SOUNDPORT ${ }^{\text {T" }}$ family of data converters comes complete with output amplifier, reference and digital logic interface. These mixed-signal ICs for high fidelity digital audio and multimedia applications achieve SNRs as high as 108 dB and THDs as low as $\mathbf{0 . 0 0 2 5 \%}$.
better performance in their products.

And as a global operation, we're able to respond
to calls from any corner of the earth. In fact, international
sales account for half of our $\$ 450$ million in revenues. And
three of the top five Japanese electronics companies rely on us for their mixed-signal needs.
So call 1-800-262-5643 and request a free copy of our recent white paper on Mixed-Signal Technology.

Percentage of respondents

Source: Electronics Purchasing Magazine's survey of buyers.

LOWEST COST, FASTEST SERVICE, GUARANTEED QUALITY

 Data Acquisition \&Control

 Data Acquisition \&Control}

TE-158 Telephone Control Card: Take total control over your telephone communication. Direct telephone line interface gives you control over line connect/ disconnect, touch-tone decoding and encoding, and detects call progress. Set your computer to dial out automatically, to keep trying if busy signal, control voice synthesizer, tape recorder with complete in/out capability. FCC approved.
TE-158: $\quad \$ 190.00$

Relay Card: 8 individually controlled industrial relays. 3A at
120VAC, SPST.
RE-140: \$142
8 Bit A to D:
8 Analog inputs. $0-5.1 \mathrm{~V} .20 \mathrm{mV}$ steps. 7500 readings/sec. AD-142: \$142

If you have a technical problem, call us! After 15 years in data acquisition and control, we've come to know a little. We ve answered thousands of questions from customers. We'll be happy to answer yours, too. Call our FREE Technical Advice Department at (203) 656-1806, or fax us your question at (203) 656-0756. Let's hear from you!

Kevin Tschudi Engineer, Alpha Products

24 line TTL I/O: Connect 24 signals, TTL $0 / 5 \mathrm{~V}$ levels or switches. (8255A)

DG-148: \$72

Canada

Alpha Products Systems Group Canada
Japan
Japan Crescent Inc.
Ph: 3-824-7449
Spain
Arteca S.C.P. Ph: (93) 3257015
Germany
SW Datentechnik GmbH Fax: +49 (0) 41064030

Temperature

 Sensor:Range $0-200^{\circ} \mathrm{F}$. $10 \mathrm{mV} /^{\circ} .2^{\circ}$ Resolution with AD-142. TS-111: \$12
Digital Input: 8 opto-isolated inputs. Read voltage presence or switch closures. IN-141: \$65

Latched Digital Input: 8 opto-isolated inputs. Each input individually latched to catch switch closures and alarm loops. LI-157: \$85
Smart Quad Stepper Controller: On board microprocessor controls four motors simultaneously. Uses simple commands like "MOVE ARM 10.2 (INCHES) LEFT". Set position, ramping, speed, units... Many inputs for limit switches etc. Stepper motors available.

NEN

FA-154 High Speed 12 Bit A/D Converter:
Blinding speed at low cost! Convert at 10 μ s. Eight input channels accepting $0-5 \mathrm{~V}$ signals. Special onboard variable gain amplifier lets you read signals less than 1LSB (1.2 mv). For value combined with speed in data acquisition and signal processing,
this converter leads the pack!
FA-154: $\quad \$ 179.00$

D/A converter: 4 Channel 8 Bit D/A converter with output amplifiers.

DA-147: \$149

Ph: 416-272-5084
Fax: 3-818-8914

12 Bit A to D:

 Range: $\pm 4 \mathrm{~V}$. On-board amp. 1 mV resolution. Conversion time 130ms. 1 channel; expand with RE-156 or MX-155 AN-146: \$153
Italy

microsystems srl Ph: (02) 33103420 Fax: (02) 33103419 Norway
A/S Con-Trad
Uruguay
Jorge Gard Asia (Singapore Batam Development Agency Pvt. Ltd.
$\begin{aligned} \mathrm{Ph}: & +49(0) 41063998 \\ & +49(0) 41064061\end{aligned}$

Odin Software: PC compatible. Control relays from analog inputs or time schedules. Logging. Runs in background.

OS-189: \$129
Reed Relay Card: 8 reed relays (20 mA at $60 \mathrm{VDC}, \mathrm{SPST}$). RE-156: \$109

Digital Output Driver: 8 outputs: 250 mA at 12 V . For relays, solenoids, stepper motors, lamps.

ST-143: \$78

We back our low prices with great customer service! We're a totally servicedriven company. To keep our prices low and volume high, we must rely on your repeat business. Never worry about a problem with Alpha Products. We fix everything. We guarantee everything. No fine print. No excuses. We're here to make you successful.

Touch Tone

 Decoder: Converts tones to unique values. PH-145: \$87A-Bus Prototyping card:

PR-152: \$16

Motherboard:

 Holds up to 5 A-Bus cards. MB-120: \$108 Counter Timer: Three 16 bit counters/timers. Count pulses, measure frequency.CT-150: \$132

These products work with IBM PC, Apple II, Commodore and Tandy, etc. Our serial interfaces let you use any computer with an RS-232 port.

A-Bus Adapters:

 IBM PC/XT/AT \& compatibles. AR-133: \$69
MicroChannel

Adapter:

Parallel Adapters also available for Apple II, Commodore 64,128 , TRS-80

Serial Adapter:

 Connect A-Bus systems to any RS-232 port. SA-129: \$149
Serial Processor:

 Built in BASIC for off-line monitoring, logging, decision making.SP-127: \$189
AR-170: \$93

Low-cost pc-board
 design tools

Low-cost pc-board design software packages that run on personal computers are easy to use and have many of the capabilities of more expensive packages. They are a smart choice for engineers who design their own boards or occasionally design prototype boards.

Doug Conner, Regional Editor

Low-cost pc-board design software has a surprising number of the same capabilities you'll find in software packages costing much more. For less than $\$ 5000$ often much less-you can obtain software that supports all the steps-design entry, component placement, routing, and design-rule checking-you need to generate artwork for fabricating a board from a schematic design. The ease of use of these packages makes them suitable for both dedicated pc-board designers and engineers needing quick turnaround and tight control over pc boards for prototype and other development applications. Table 1 lists the capabilities of represen- tative low-cost pc-board design software packages.
The first step in using any pc-board design system is having a schematic of the circuit
 you want to build. Although peboard design systems let you design from scratch using a schematic drawn on the back of an envelope, you'll save time and avoid errors if the schematic is in an electronic format that the software can read. PCboard design systems are usually compatible with a variety of sche-matic-entry programs. The system typically needs two lists of information from the schematic: the netlist and the component list. Once the software has this information, you can start designing the board.

You can draw curved traces using some of the low-cost pc-board design packages, such as Cadstar from Racal-Redac Inc.

In addition to the initial electronic transfer of a design from the schematic to the pc-board design tools, some packages offer forward and back annotation. Both functions help keep the data matched between the pcboard design and the schematic.
Back annotation automatically transfers data back to the schematic after you have designed the pe board. Data typically back annotated are component identifiers and IC pin numbers. After layout, you automatically or interactively assign component identifiers in a logical sequence such as from left to right and top to bottom of the pe board. Back annotation updates the schematic to match the new component identifiers.
During layout, you or your software may have to reassign the logic blocks of ICs such as NAND gates or flip-flops that have multiple logic blocks to improve

the layout and shorten connections. By automatically back annotating these identifier and pin changes to the schematic after you've completed the layout, you'll have a schematic that accurately matches the pc board. Keeping the schematic and pc-board layout consistent is difficult to do if you back annotate interactively or manually.

Forward annotation is most useful when you need to add engineering changes to an existing design. When you need to change a pe board because of errors in the schematic or a change in requirements, you'll often correct the schematic first. Forward annotation makes the component additions or deletions on the layout and adds or removes the corresponding logical connections. You'll still need to place any new components and change the logical connections to physical tracks.

PC-board design software packages sometimes communicate better with the software vendor's own sche-matic-entry software than with schematic-entry soft-

PC-board design software that costs less than $\$ 5000$ lets you perform on a personal computer many tasks that once required the power of a workstation. These tasks include forward and back annotation, autorouting, and design-rule checking. (Photo courtesy Accel Technologies)
ware from another supplier. You should look into this issue if you are trying to match a pc-board design package with another company's schematic-entry software.

To take advantage of the netlist connection information and the parts list from a schematic-entry program, you need to have a component library that has all the components of your design. You have two alternatives: make or buy. Most design packages offer component libraries either as options or standard with the package. Purchasing a large component library can save you considerable work compared with creating your own, but you can't assume that a purchased library will fit your exact requirements.

> Design software that uses the netlist's connection information should prevent you from connecting a trace to the wrong component pin.

If your company has developed its own component footprints to match its particular manufacturing methods, you can't assume the library you buy will match. For example, the lead spacing allowance for a quarter-
watt resistor may vary from one company to the next.
Once you've obtained component models that include the components' physical footprints and have created a board outline drawing that includes connectors, the

Table 1-Representative low-cost pc-board design packages

| Manufacturer | Componentplacement Routing | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Product | Price (Basic package) | | | | | | | | Design-rule checking, on-line | Design-rule checking, batch | | | | | |
| Accel Technologies Inc | Tango | \$595 to \$1695 | \checkmark | | \checkmark | | \checkmark | \checkmark | | | \checkmark | 1 | 10 | 2 | 5000 | 32×32 |
| Advanced Microcomputer Systems Inc | PC-Pro | \$250 | \checkmark | - | \checkmark | ν | | \checkmark | | | \checkmark | 1 | 256 | U | U | 32×32 |
| | EZ-Board | \$695 | r | \checkmark | \checkmark | \checkmark | | \checkmark | | | \checkmark | 1 | 256 | U | U | 32×32 |
| Aptos Systems | Criterion | \$995 | \checkmark | 1 micron | 50 | 50 | 2000 | 64×64 |
| | RGraph | \$3995 | \checkmark | 1 micron | 50 | 50 | 10,000 | 64×64 |
| CAD Software Inc | PADS-PCB | \$975 | \checkmark | v | \checkmark | \checkmark | | \checkmark | \checkmark | | \checkmark | 1 | 30 | U | 4511 | 33×33 |
| Cadisys Corp | Auto PCB | \$995 | \checkmark | U | 50 | 16 | 10,000 | 200×200 |
| Design Computation Inc | DC/CAD | \$495 | \checkmark | | \checkmark | | | \checkmark | \checkmark | \checkmark | \checkmark | 1 | 32 | 8 | 7500 | 32×32 |
| Douglas Electronics Inc | Douglas CAD/CAM | \$1500 | | | \checkmark | | | \checkmark | \checkmark | | | 1 | U | U | >4000 | 32×32 |
| The Great SoftWestern Co Inc | Autoboard | \$295 to \$4000 | \checkmark | L | \checkmark | \checkmark | | \checkmark | \checkmark | | | U | 16 | 16 | U | 25×25 |
| Interactive CAD Systems | Procad | \$695 to \$1595 | \checkmark | \checkmark | \checkmark | \checkmark | | \checkmark | \checkmark | \checkmark | \checkmark | 1 micron | 80 | 6 | 2000 | 64×64 |
| Number One Systems Ltd | Easy-PC | \$195 | | | \sim | | | \checkmark | | | | 2 | 8 | 8 | U | 17×17 |
| Omation Inc | Schema-PCB | \$975 | \checkmark | \checkmark | \checkmark | \checkmark | | $\stackrel{\nu}{ }$ | \checkmark | | \checkmark | 1 | 30 | U | 2000 | 32×32 |
| OrCAD | PCB | \$1495 | \checkmark | | \checkmark | 1 | 16 | 16 | U | 32×32 |
| PMS Instruments Ltd | Eagle | 2351 | \checkmark | \checkmark | \checkmark | | | \checkmark | | | \checkmark | 1 | 2 | 255 | U | 64×64 |
| Racal-Redac Inc | Maxi/PC | \$995 | \checkmark | \checkmark | \checkmark | \checkmark | | \checkmark | | | \checkmark | 1 | 16 | 16 | 3500 | 32×32 |
| | Cadstar | \$4850 | \checkmark | \checkmark | \checkmark | \checkmark | | \checkmark | \checkmark | | \checkmark | 1 | 16 | 16 | 5400 | 32×32 |
| Rubow Systems | Cadon | \$795 | | | - | | | \checkmark | \checkmark | | \sim | 1 | U | U | >5000 | 32×32 |
| Teradyne Inc | Vanguard PCB | \$5000 | \checkmark | \checkmark | \checkmark | | | \checkmark | ν | \checkmark | \checkmark | 1 | 200 | 200 | U | 64×64 |
| TSien Ltd | Boardmaker 2 | \$795 | \checkmark | | \checkmark | | | \checkmark | | \checkmark | \checkmark | 2 | 8 | 8 | 800 | 17×17 |
| Ulitimate Technology Corp | Ulitiboard | \$4475 | \checkmark | 1/1200 in. | 32 | 32 | 1400 | 50×50 |
| Visionics Corp | EE Designer III | \$495 | \checkmark | 1 | 16 | 10 | 64,000 | 64×64 |
| Wintek Corp | Smartwork | \$495 | | | | | | | | | \checkmark | 50 | 3 | 0 | U | 10×16 |
| | Hiwire II | \$995 to \$1695 | | | \checkmark | \checkmark | | \sim | \checkmark | | - | 1 | 255 | 32 | U | 60×60 |

[^13]next step is placing the components on the board. Component placement is one of the most critical steps in board design. Whether you'll be routing the board interactively or using an autorouter, a good component

| limitations | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | Comments |
| | 90 | IBM | 640k/32M | Windows-like user interface. |
| | 90 | IBM | 256k/NS | |
| | 90 | IBM | 640k/2M(R) | Windows 3.0 compatible. |
| | 0.1 | IBM | $640 \mathrm{k} / \mathrm{NS}$ | Both packages include schematic, |
| | 0.1 | IBM | $640 \mathrm{k} / 4 \mathrm{M}$ | |
| | 90 | IBM | 640k/4M | Single parts library. Checks for thermal pads. Forward annotation. |
| | 0.01 | IBM 386/486 | 4M/32M | Signal-specific clearance rules. |
| | 1.0 | IBM | 640k/NS | Includes schematic capture. |
| | 1.0 | Apple Macintosh | 2M/NS | Flexible pad design. |
| | 90 | IBM | 640k/NS | AutoCAD compatible. |
| | 1.0 | IBM | 640k/8M | Integrated schematic capture; 2-D mechanical drafting package. |
| | 90 | IBM | 512k/NS | Very easy to learn. |
| | 90 | IBM | $640 \mathrm{k} / \mathrm{NS}$ | Forward annotation. |
| | 1.0 | IBM | 640k/32M | Integrated with schematic capture. |
| | 90 | IBM | 640k/NS | Libraries included. |
| | 90 | IBM | $640 \mathrm{k} / 1 \mathrm{M}$ | |
| | 90 | IBM | 640k/2.2M | Motif-style user interface. |
| | U | IBM | 640k/16M | Runs under AutoCAD. |
| | 90 | IBM | 2M/16M | Multiwindow graphic framework. Version available for workstations. |
| | 90 | IBM | 640k/NS | Net-based design rules. |
| | 1/1200 | IBM | 2M/NS | Easy to learn. |
| | 90 | IBM | 640k/2M | Integrated schematic capture, forward annotation. |
| | 90 | IBM | 512k/NS | |
| | 90 | IBM | 640k/32M | Multiple windows. |

placement will determine how easy routing will be.
Automatic placement tools do exist, but they can't perform the complete placement task. You should expect an automatic placement tool to give you an intelligent initial placement. At that point, you'll have to move components around to get an optimum placement.

Tools exist that can help you with manual component placement, and many of them are available with lowcost pc-board design software. The rat's nest display is a feature of almost all pc-board design packages and is probably the most useful tool. A rat's nest display shows network connections as straight point-to-point connections between component pins. The connections in a rat's nest display are typically rubber banded: When you move a displayed component, the display maintains the point-to-point connection by lengthening or shortening the connection and changing the angle. Using a rat's nest display, you can see immediately how well a particular placement groups interconnecting components.

Because the rat's nest display is sometimes confusing on dense pc boards with many connections, some software packages also offer alternatives. Some let you look at only a portion of the rat's nest at a time. By showing only the connections for a selected component, you can see how well the component is placed relative to the components connected to it.

Force vectors are another tool that aids in component placement. A force vector is an arrow attached to each component. The vector's direction and length indicate the average direction and length of all the connections to a component. Force vectors simplify the display, but they also eliminate connection information.

Another placement aid displays the density of connections on the pe board. By finding where the number of connections is likely to exceed the space available for tracks, placement-evaluation tools can help you avoid a component placement that would be difficult or impossible to route.

Keep connection lengths short

A good placement not only makes routing easy, but it should also minimize connection lengths. A measure of a layout's efficiency is the average connection length. The design software usually measures connection lengths by assuming that all tracks must run horizontally or vertically to connect two points. This type of connection length is sometimes called the Manhattan connection length. A layout that reduces connection lengths may be an improvement if it does not create areas where connection densities are too high for you to effectively route the board.

The best autorouters for personal computers typically cost $\$ 4000$ and more, which pushes the system cost above the $\$ 5000$ low-cost limit.

One way to minimize connection lengths is to reorder connections on a net after you've placed the components. If a net includes more than two nodes, reordering the connections will sometimes result in shorter connection lengths. Some software can reorder nets automatically.

Part of the placement task is making the pin and gate swaps necessary to minimize connection lengths and ease routing. Some software packages perform the function automatically; others offer interactive pin and gate swapping.

Component placement is a highly interactive process. You need to be able to move components quickly and easily. PC boards for surface-mount designs might require placing components on both sides of the pe board.

Component placement is one of the most critical steps in board design. The photo shows placement in progress using the Tango software package from Accel Technologies Inc.

Not all software packages let you do so. When evaluating a pc-board design system, you'll want to make sure the software and your computer can move and rotate components quickly and pan or zoom quickly.

Count on interactive routing

After developing a good component placement, you'll move on to routing the pc board. Even if you expect to use an autorouter, you should still count on spending considerable time using the interactive routing tools. You may need to do interactive routing for special analog or digital requirements or for cleaning up areas that the autorouter didn't do to your liking or wasn't able to complete. Although most pc-board design tools all perform the same operations in the interactive routing mode, the ease with which they do so varies.

For example, if the design tool takes advantage of
the netlist and component information, you won't need to look for component identifiers and count to the correct pin on an IC. The software will use rubber-banded connections or some other method to show you the track or tracks you need to create for each net. Software that uses the netlist connection information should also prevent you from connecting traces to the wrong component pin.

When routing long traces, you might view a zoomedin display of the area around the source of a signal and find that the destination is not visible on the screen. You'll find that having the display indicate the direction of the signal's destination is a helpful feature. Rubber banding a track as you lay it down from its start to its destination is an easy-to-follow method that works whether the destination is inside or outside the viewing area.

In addition to clearly showing which pads you must connect, the software should make creating the physical connections easy. The pc-board design software should let you quickly add tracks, vias, and change layers. Software that automatically adds a via when you select a different pc-board layer simplifies design. Another timesaver is being able to move a portion of a track from one layer to another.

Interactive routing usually requires some backtracking. You should be able to easily move or delete tracks or track segments. Software that can automatically and simultaneously remove tracks and vias will save you time. Modifying a route rather than removing and rerouting the net is another timesaver.

Satisfy special routing requirements

For complex pc boards, being able to quickly alter a track's width while you're routing is important. Track-width changes are sometimes necessary on analog designs and when routing through narrow spaces on surface-mount pc boards.

If you need to create a large irregular copper area on a board, you can do so on just about any system by adding wide traces until you fill the area with copper. Creating an outline of the area and using an areafill command to create the partial copper plane is an easier method and is available on some systems.

As pc-board density and complexity increase, software support for more-complex manufacturing techniques becomes necessary. For example, you may need to use blind and buried vias, which many low-cost pcboard design packages support. Try an evaluation package before you buy to see whether support means possible but difficult, or easy enough for you to use the tool to quickly perform common functions for your type of design work.

Periodically as you design, you'll need to perform a display redraw to fill in the display in areas where you have deleted objects. A fast display redraw helps keep you from losing your concentration.

To keep screen redraws fast, some software packages display only the centerline of a trace and not its actual width. Some packages leave out other physical details around pads. This display method speeds display redraws, but you also need the option of seeing the true copper shapes of traces and pads.

Many pc boards use power and ground planes, and most design packages let you design these planes. Such software automatically connects power and ground pins to the correct planes. The software also adds clearance areas around vias and pads that do not connect to the plane.

The right autorouter may save time

Interactive routing, even with the most efficient pcboard design tools, can take days or even weeks for large or dense designs. Autorouters are another option. Although you can buy pc-board design software including autorouters for less than $\$ 5000$, you'll spend more for a package that includes a high-performance autorouter.

Selecting an autorouter is not easy for either low-cost
or high-performance design packages. Autorouters use different routing methods and have capabilities that are difficult to quantify. Furthermore, designers use them on a wide variety of pc-board designs.

An autorouter that does an excellent job on TTL designs might not be of any value on ECL designs because it would be unable to put termination resistors near destinations and follow other ECL routing requirements. The presence of analog circuitry in a design provides further challenges to autorouters. You don't want digital tracks crossing sensitive analog areas, and the autorouter would have to follow an endless variety of other special requirements common to analog designs. Surface-mount designs add yet more specialized manufacturing requirements for autorouters, including the directions for traces to enter pads.

A through-hole TTL design that has plenty of space between components and a good component placement may be successfully routed by a variety of autorouters. Poor component placement can stump the best autorouter.

Keeping in mind the difficulty of making generalizations about autorouters, a few comments might keep expectations in order and provide some thoughts for evaluating these tools.

The best autorouters for personal computers typi-

High-priced pc-board design packages

Some of the same companies that offer low-cost pe-board design packages also offer higher-cost tools with higher-performance capabilities. Often these tools can accept larger designs and operate more efficiently by taking advantage of the 32 -bit mode of 386 -and 486 -class computers. Also, if you have more than $\$ 5000$ to spend, you can afford the extra $\$ 4000$ to $\$ 7000$ you'll need to buy one of the best autorouters available for personal computers. You can usually upgrade a low-cost system by buying a high-priced autorouter later with little or no price penalty.

As you move up to worksta-tion-based software packages, you'll find capabilities that extend beyond those of today's personal-computer-based products, at
least in some areas. For example, you probably can't find a per-sonal-computer-based autorouter that intelligently handles ECL, but you can find such a worksta-tion-based product. ECL autorouters are more common as workstation products not because of any inherent limitations of personal computers, but because workstation-based CAE companies have more customers who need ECL tools.

In fact, personal-computer software for pe-board design is making the jump to 32 -bit processing, putting the software limitations of personal computers on a par with the limitations of workstations. Although most of today's pe-board design software is still written in 16-bit code, within the next year you'll prob-
ably see many design packages that are written in 32 -bit code.

Even though 486-based personal computers offer impressive processing power, high-performance workstation-based systems continue to offer superior processing speed for autorouting large designs.

Workstation-based design systems also offer a robustness that comes from their creators' having worked on pc-board design problems longer. Considerations such as support for military-standard documentation and release control, which prevents you from using the wrong design revision, are common on workstation systems. One thing you probably won't get on workstation-based systems, however, is ease of use.
cally cost $\$ 4000$ and more, which pushes the system cost above the arbitrary $\$ 5000$ low-cost limit. Autorouters are often options available with basic pc-board design packages, so you can always add them later.

The best justification for using an autorouter is that the tool will save you money compared with the time you would otherwise spend routing boards. A good autorouter can pay for itself quickly, even if it costs $\$ 10,000$. Unfortunately, an inexpensive autorouter with limited capability won't be cost effective even if you need to design only a few boards.

An autorouter that completes 85% of the routes on a pe board is probably not going to save you any time because it forces you to move many tracks-probably every single one-to route the remaining 15%. A router that completes more than 95% of the routes might be worth looking into, but you really want a tool that routes more than 98%.

User-defined windows for viewing the schematic and pc-board design simultaneously are available with some software packages, such as Hiwire II from Wintek Corp.

Don't be fooled by an autorouter that achieves a high routing completion by using an excessive number of routing layers. The autorouter has to be routing in the same number of layers you'd use for an interactive design, or it's wasting your money on extra pc-board layers. That waste will continue for the life of the design.

Autorouters require you to set several control parameters, depending on the complexity of the router. For example, many autorouters let you trade connection length for vias to help reduce the production cost of boards.

Autorouters have variations in what level of interactive use they support. Some autorouters are reentrant. You can autoroute, stop, make some manual
routes or changes to routes, and then resume autorouting the remaining nets. Others tools don't let you interrupt and restart them. Sometimes routers that aren't re-entrant let you preroute signals. You can route critical signals yourself before you start the autorouter.

A feature typically found on the more expensive pcboard routers is a push-and-shove capability. When a designer working interactively needs to add a track where there is no space, the autorouter will push tracks over, if possible, and make slight changes to avoid clearance violations. Autorouters with the push-andshove capability sometimes support interactive operation in a semiautomatic mode. You designate where you want the new track to go, and the router pushes other tracks out of the path.

Editing a pc-board design after an autorouter has finished with it is not an easy task. A designer has a much easier time editing a board he or she has personally designed than a board someone else has designed. Autorouters definitely count as someone else.

Let the software look for violations

Periodically as you route a pc board, you need to verify that you have not created any design-rule violations. Although autorouters automatically satisfy the design rules, when you work interactively, you might create a design-rule violation. Design-rule checking is a design-software feature that can save considerable time compared with manually checking a layout, and it's more accurate. Design-rule checking can guarantee that the pc-board connections match the schematic and can verify that you've routed the board with proper clearances.

The basic function of design-rule checking is verifying clearances between copper areas. Depending on the software, you may be able to designate different pad-to-pad, pad-to-trace, and trace-to-trace clearances. Some systems allow additional clearance specifications for vias and solid copper areas. Others use the pad clearance for vias.

One concern should be that design-rule checking verifies the spacing between the actual copper areas. For example, if the checker assumes the pads are circular, and they are in fact rectangular, a diagonal trace running close to a rectangular pad might touch it.

Design-rule checking is available on line or in batch mode. You run batch checkers periodically during the design to find and correct errors. Some design tools offer both batch and on-line checkers. On-line checking sounds great in theory because it prevents you from creating a design violation. In practice, it is sometimes a nuisance.

While interactively routing, you'll often want to

move an existing route to open up space for a new route. In the process, you might temporarily leave a track touching a pad belonging to another net. After entering the new track, you'd go back and clean up the temporary violation. With on-line design-rule checking, you are unable to leave any temporary violations. Designers accustomed to leaving temporary violations will find on-line checking unnatural and inefficient.

When you are routing signals in a design that has different design rules for different signals, the on-line
checker is helpful. Rather than keeping track of the design rules for each signal, the on-line checker makes sure you are following the correct design rules for each net. To use design-rule checking in this fashion you need a signal-specific checker, a feature of some pcboard design tools.
Speed is another issue for design-rule checking. Whether the checker is on-line or runs as a batch job, it shouldn't hinder design. Some systems let you restrict the checker to the area on the screen to boost speed.

Manufacturers of low-cost pc-board design tools

For more information on low-cost pc-board design tools such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Accel Technologies Inc
6825 Flanders Dr
San Diego, CA 92121
(800) 488-0680

FAX (619) 554-1019
Earl Therrien
Circle No. 650

Advanced Microcomputer
Systems Ine
1321 NW 65th Pl
Fort Lauderdale, FL 33309
(305) 975-9515

FAX (305) 975-9698
Raj Shah
Circle No. 651

Aptos Systems
1711 Trout Gulch Rd
Aptos, CA 95003
(408) 662-8364

John Roth
Circle No. 652

CAD Software Inc
119 Russell St
Littleton, MA 01460
(508) 486-9521

FAX (508) 486-8217
Thom Marsh
Circle No. 653

Cadisys Corp
2099 Gateway Pl
Suite 400
San Jose, CA 95110
(408) 441-8800

FAX (408) 441-8300
Charles McKnelly
Circle No. 654

Design Computation Inc
1306 State Highway 33
Farmingdale, NJ 07727
(908) 938-6661

FAX (908) 938-6662
Circle No. 655

Douglas Electronics Inc
2777 Alvarado St
San Leandro, CA 94577
(415) 483-8770

FAX (415) 483-6453
Sharon Sanchez
Circle No. 656

The Great SoftWestern Co Inc
919 S Carroll Blvd
Suite 103
Denton, TX 76201
(817) 383-4434

FAX (817) 565-1877
Susan Volgamore
Circle No. 657

Interactive CAD Systems
2352 Rambo Ct
Santa Clara, CA 95054
(408) $970-0852$

FAX (408) 986-0524
Eddy Ozomaro
Circle No. 658

Number One Systems Ltd
Harding Way, Somersham Rd
St Ives Cambs, England
PE17 4WR
48061778
FAX 480494042
Halam Rose
Circle No. 659

Omation Inc
801 Presidential Dr
Richardson, TX 75081
(214) 553-9119

FAX (214) 783-9072
Nancy James
Circle No. 660

VOTE...
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 497 Medium Interest 498 Low Interest 499

No"boomerang effect" at Trend Circuits. Less than 1% of our prototype boards ever comeback.

Fast turnarounds in types don't work. At Trend prototype circuit boards are great but not when the boards circle back again and again because of poor quality.

That "boomerang effect" costs precious time in proving your concepts and can end your chances to meet critical market windows.

We deliver speed and quality.

Speedy turnarounds don't count for much if proto-

Now for speed. On a regular basis, we deliver doublesided boards within 24 bours, and multi-layer boards within five days. In fact, we're completing no less than 82% of all our work within five days.

Check our references.
You can verify our facts easily enough by talking to our customers. Simply phone and we'll put you in touch with people who've decided they won't accept compromise in quickly moving from design to finished prototype. They'll tell you why we're their logical choice for "noboomerang" boards. And why we should be yours.

EFEnD CRCUITS
 P円OTOTYロE BPECIALISTE

44358 Old Warm Springs Blvd. Fremont, CA 94538-6148 415/651-1150
FAX 415/651-5763
888 Washington St.
Dedham, MA 02026
617/326-8700
FAX 617/326-3337

$\underline{\text { Low-cost pc-board design tools }}$

Satisfying the design rules isn't always the end of the design task. You may need to satisfy special requirements, usually for manufacturing, to finish the job.
If you've designed the pe board interactively, you may have incorporated most of the manufacturing requirements as you routed the board. Some changes, however, are easier to make after you've routed the complete pc board. For example, removing vias when a track doesn't need to change layers is usually easiest to do after you've routed all the nets. Autorouters typically make a manufacturing pass after routing to reduce vias, miter corners, and make other improvements.

After you've completed a pc-board design and are ready to have it fabricated, you'll need to make films. Most pc-board design packages provide standard outputs for photoplotters and drill tapes, although-incredibly-these outputs are sometimes options. Before you make expensive photoplots, you may want to examine a printout of the actual copper areas. Software available with many of the design packages lets you make printouts for visual checks.

System limitations to check

Most low-cost pc-board design systems can accommodate many different design types, but there are some absolute limitations that may prevent you from creating a particular design. Table 1 lists some of these limitations. In most cases, the limitations won't be a problem.

For example, most systems have a minimum grid resolution of 1 mil for manual routing. This minimum shouldn't be a limitation for pc-board design, although it might be an issue for hybrid designs. A few systems have resolutions in the micron range.

Another limitation is the number of board layers the software can handle. A pc-board design package might be limited by the number of signal or power and ground layers. Even most low-cost pc-board design systems can handle boards of eight or more layers, but some software packages are limited to fewer layers.

If you anticipate rotating components in increments other than the standard 90 degrees, you'll find a few packages that support 1-degree or smaller rotation increments. When special pc-board design requirements call for components to be organized in a radial manner, being able to rotate components in small increments is mandatory.

If you design large pe boards, you'll want to verify that a software package can support the number of ICs and networks you'll need. Table 1 lists the maximum number of networks the software packages sup-
port. Some packages do not have a strict limit and assign memory as needed, sharing it with other functions. In these cases, the manufacturer may not specify the number of nets the software will let you use.

Another indication of the capacity of a design tool is how much memory it can use. Software packages for IBM and compatible personal-computer systems are sometimes limited to 640 k bytes of memory and designs of a few hundred ICs. Those systems that take advantage of extended or expanded memory can accommodate designs of several thousand ICs.

As the size of your design increases, so does the need for computing power. Although you can easily design a pe board with fewer than 100 ICs on an IBM PC/AT or compatible computer, designs of several hundred ICs call for 386 - or 486 -based systems. The computing power is especially important if you plan to use a high-performance autorouter. Even on a 386 or 486 system, a high-performance autorouter may spend more than 12 hours working on a large board that has many components. Evaluate pc-board design software on a system with the same processing speed and memory you expect to be using.
Given the many low-cost pc-board design packages available, choosing the one that best fits your needs is difficult. Even if only one looks like the right package for you, definitely try the evaluation package that most companies offer.

Evaluation packages are relatively complete and are not canned demonstrations. Usually you can perform all the pc-board design functions the complete system offers, but the evaluation software limits you by not saving or printing your design. Although you might need a few days to exercise an evaluation package completely, when you're done you'll have a good idea of what the system can do, and you'll be more than half trained on the software should you choose to buy it.

EDN

Article Interest Quotient (Circle One) High 497 Medium 498 Low 499

Well give you The WORLD

Electronic

 DesignYou asked for an integrated set of CAE/ CAD design tools which could deliver every aspect of your engineering design needs-at an affordable price. CAD Software offers the highest performing design system for your PC. Schematic capture, logic simulation, printed circuit board design, auto-routing, thermal analysis, and computer aided manufacturing are all within the PADS Design system.

Your design begins with PADS-Logic, the only PC-based schematic capture system which has a true multi-sheet database for quick and accurate design capture and data transfer to your PCB design. PADSLogic has a large circuit capacity of over 1,000 equivalent IC's per design, a Hierarchical design ability with an unlimited number of levels, superb analog design capability, forward and backward annotation, a Part Editor and Graphical Library browsing.

Our extensive line of auto-routers work around the clock so you don't have to. The PADS-SuperRouter rips-up and reroutes the connections to 100% completion. PADS-Push n' Shove interactive auto-router is superb for analog and critical circuitry.

Call CAD Software today for your local Authorized Reseller, or for a no-cost Evaluation Package, and experience the world of electronic engineering design:

PADS-PCB sets the standard for affordable high performance PCB design. A one mil database, 30 layers. automatic design rules checking, SMD ability, excellent interactive routing, and a set of ECO routines which ensure fast accurate changes, are just some of the features which have made PADS-PCB the \#1 selling PC based PCB design system.

Visit us at DAC Booth \#439 and see our new UNIX product
(800) 255-7814, Inside MA, (508) 486-8929

119 Russell Street, Littleton, MA. 01460

.050 centerline stackers. Close, closer, closest.

Surface-mount stack heights: $250 \% / .320 \% / .390 "$

AMPMODU 50/50 Grid Connectors
give you a choice of parallel pcb stack heights: $.390^{\prime \prime}, .320^{\prime \prime}$, and a very close .250 " (the tightest in the industry). So you can squeeze everything possible out of (or into) your design.

This surface-mount system utilizes a .050 " contact grid in double row, polarized shrouded headers and receptacles, and offers our exclusive plated copper alloy holddowns. On standard . 062 " thick boards, the
barbed holddowns do their job without protruding through, allowing surface mounting on both sides. And holddowns are soldered during reflow, providing long-term strain relief.

Dual-beam receptacle contacts and duplex gold plating provide high reliability, in selected sizes from 10 to 100 positions. Dimensional tolerances, reference datums, holddown characteristics, and packaging support robotic application; materials are fully
compatible with IR and vapor phase reflow processing.

Ask us for more information on the AMPMODU 50/50 Grid SurfaceMount Connector System. Call the AMP Product Information Center at $1-800-522-6752$ (fax 717-561-6110). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

Nobody supports the Motorola line of microprocessors better than the Hewlett-Packard 64700 Series of emulators.
You see, HP has agreements with key chip manufacturers. Like Motorola. So while they're working on the next hottest chip design, we're simultaneously developing an emulator.
Our relationship with Motorola has allowed us to provide emulators this quickly for the new 68302,68331 and 68332 processors.

As well as for the upcoming 68040 . And, of course, we've always had broad support for the $68000,68010,68020$ and 68030.
HP emulators also provide a complete solution. Logic and performance analysis tools and code coverage are all in the same box. They come with C cross compilers, simulators/debuggers and branch validators.

Even better, HP emulators work in real time without halting your target system. Which means you'll ensure a thorough analysis
of your design by executing it at full speed. Not by second-guessing. All of this is accompanied by HP's renowned service and support. So call 1-800-752-0900, Ext. 1904 for a free demo disk or videotape. They'll demonstrate all the benefits of using an HP emulator. And by the way, if we answer your call quickly, it's no coincidence.

RAID 5 architecture provides economical failsafe disk storage

> Traditional methods used to back up critical data can be expensive and slow. A paritybased disk-array architecture offers an alternative that attacks these drawbacks.

Michael Anderson, Micropolis Corp
Redundant Arrays of Inexpensive Disks (RAID) (Ref 1) is a hardware and data architecture for mass data storage. Currently there are six variants, or levels, of the RAID architecture, ranging from RAID 0 to RAID 5. Each level describes an arrangement of data on an array of disk drives that increases your storage capacity and provides data redundancy in the event of a drive failure. RAID 5 is the most versatile of the RAID variants. RAID 5 provides fast data access and an inexpensive means to achieve fault tolerance that challenges traditional backup techniques.
Many of today's top-quality disk drives boast MTBFs greater than 150,000 hours. However, this MTBF translates to a 6% yearly failure rate, which can be catastrophic for many critical applications. Therefore, system designers must provide other assurances that critical data won't be lost. Traditionally, system designers have relied on two approaches to achieve faulttolerance. The first approach, tape backup, suffers from mechanical limitations; restoring the data onto a high-capacity disk drive can often take hours because of the tape drive's slow access time.

The second approach is to record critical data simultaneously on two separate disk drives-a technique known as disk mirroring. Should one of the disk drives fail, the data on the alternate disk drive is immediately available. Disk mirroring reduces the probability of total data loss to the unlikely probability that the alternate disk drive will fail before you can replace the failed disk and restore the data onto a new disk.

Although disk mirroring is a fast and reliable method for achieving data redundancy, it's expensive. You must employ twice as many disk drives to back up the data completely. RAID 5 provides a less expensive alternative to disk mirroring while maintaining a similar low probability of total data loss.

RAID 5 is mathematically simple

The mathematics supporting the RAID 5 architecture employ the basic algebra postulate that states "If $\mathrm{A}+\mathrm{B}=\mathrm{C}$, then $\mathrm{C}-\mathrm{B}=\mathrm{A}$ and $\mathrm{C}-\mathrm{A}=\mathrm{B} . "$ RAID 5 uses this same postulate but employs modulo-2 addition. In modulo-2 addition, an exclusive-OR (XOR) operation generates the arithmetic sum of the A and B terms, which is also known as odd parity. The postulate lets you reconstruct data on a single drive in the array using data stored on the remaining drives.

A simple example demonstrates how the RAID 5 technique works. Consider an array of three disk drives that store data in single bytes (8 bits). Two of the drives contain actual data, whereas the third drive contains the modulo-2 arithmetic sum of the data on the other two disk drives-odd parity. If one data drive

RAID 5 can employ the host CPU to generate parity or reconstruct data for a failed drive without incurring additional hardware cost.
contains the binary value 00110000 , and the other data drive contains 00000011 , the parity drive contains 00110011. Table 1 shows how you can reconstruct the data on any of the disk drives by generating the XOR function for the data on the remaining drives.
The money you save when you use RAID 5 rather than disk mirroring to achieve fault tolerance increases as the required capacity increases. If an array requires n disk drives to attain the required capacity, disk mirroring requires $2 \times n \times$ cost/drive. In contrast, RAID 5 requires ($n+1$) \times cost/drive to achieve the same degree of reliability. For an array containing two data drives, disk mirroring costs $4 \times$ cost/drive where RAID 5 costs $3 \times \operatorname{cost} /$ drive. The extra cost to achieve fault tolerance using RAID 5 asymptotically approaches the cost of an array without backup as the number of drives in the array increases. The additional cost for RAID 5 is ($n+1$)/n times the cost of an array without backup. If an array has 5 data drives, RAID 5 costs you ($5+1$)/ $5=1.2$ times cost/drive to add fault tolerance.

Disk-drive costs don't quite complete the expenditure necessary to implement RAID 5. However, the additional hardware costs are minimal. Two additional cost factors complete the picture: the cost of the additional hardware required to control redundant data storage and the hardware cost to generate parity.

Disk drives containing a SCSI disk controller are the most efficient building blocks for the RAID 5 architecture. To employ SCSI, the host computer needs a SCSI-to-host adapter board. The board lets the host control as many as seven SCSI disk drives simultaneously. SCSI-to-host adapter boards currently cost from $\$ 50$ to $\$ 200$.

For most applications, the additional cost to generate parity can be zero. Practically all of today's file servers contain fast RISC (reduced-instruction-set computer) or CISC (complex-instruction-set computer) CPUs that have 32 -bit data paths. These CPUs can execute an XOR instruction, which generates parity, in a shorter

time than the time to transfer data to a disc drive. For example, a $33-\mathrm{MHz}$ Intel $80386 \mu \mathrm{P}$ can generate parity at a rate exceeding 8 M bytes/sec, which is four to eight times faster than the typical SCSI transaction rate. Therefore, a basic implementation of RAID 5 can employ the host CPU to generate parity or reconstruct data for a failed drive without additional hardware cost.

Three strategies manage the data

RAID 5 not only offers fault-tolerance at a lower cost than traditional disk mirroring, but the architecture also efficiently distributes and manages the data on the disk drives. RAID 5 offers three data-management strategies. To write new data to a disk drive using strategy 1, called read-before-write, the host first reads the old data and the old parity bytes from their respective disk drives. The host then removes the effect of the old data on the old parity byte before generating a new parity byte using the new data (Table 2). The host can then write the new data and the new parity to their respective disk drives.

Strategy 2, read-what-you-don't-have, writes data to a disk drive in a different manner. First, the host reads data from a disk drive whose data isn't being modified. The host generates a new parity byte by taking the XOR of this data with the new data to be written (Table 3). The host then writes the new data and the new parity byte to their respective disk drives.

RAID 5 employs strategy 3, read-nothing, when modifying all of the data drives simultaneously. For example, in a 3 -drive array, when the host must simultaneously modify both data drives, there isn't a need to read old data or the old parity byte. The host simply generates a new parity byte from the two new data bytes and stores both the data bytes and the new parity byte on their respective disk drives.

RAID 5's three data-management strategies offer different advantages depending on the number of blocks that you need to modify. If you need to modify

Table 3-Calculating new parity using strategy 2

XOR
00000011 Drive 2 (Not being modified) 11000000 Drive 1 (New data to be written)

11000011 New parity
only one block of data, strategy 1 is the most effective. If you need to modify data on more than one half of the disk drives, you should employ strategy 2 because there is less data for the host to read before modifying the blocks. If you must modify the data on all of the drives, strategy 3 is the most efficient since it doesn't require the host to read data from any drive.

RAID 5 distributes data and parity

You've probably noticed that all three strategies for modifying a data drive also require the host to modify the stored parity byte. If you store parity information on a single disk drive, as some variants of the RAID architecture suggest, each time the host modifies data in the array, it must also access the parity disk drive. Therefore, an array architecture having a single parity disk drive creates a bottleneck because the host can only modify data sequentially.

RAID 5 overcomes this potential bottleneck by distributing the parity information over all of the drives in the array. Because each drive in the RAID 5 architecture contains a mixture of data and parity, the host can issue read and write commands in parallel. Table 4 shows a typical RAID 5 implementation for an array containing 4 disk drives. In this implementation, block 1 data resides on drive 1 and block 6 data resides on drive 2. The parity information for these two blocks is on drives 4 and 3 , respectively. Therefore, the host must access drives 1 and 4 to modify block 1 data using strategy 1. Similarly, the host must access drives 2 and 3 to modify block 6 using strategy 1 . Because the drives are independent, the host can modify both blocks of data in parallel.

Satisfying multiple disk transfer requests in parallel increases the system's transaction rate. A high transaction rate is important for image processors and virtualmemory systems that swap large amounts of data in solid-state memory to and from disk. The data distribution shown in Table 4 locates sequential blocks of data on successive disk drives in the array. This arrangement lets the host queue four read requests, for example, from blocks $5,10,3$, and 12 . The queued requests

Table 4-Raid 5 data and parity
distribution

permit the four independent disk drives to access the correct track and sector for the blocks in parallel and thereby proportionally reduce the disk access time.
Many operating systems, including PC-DOS, generate disk requests of varying length. For example, when the operating system loads a program into memory it can generate a large disk request ranging from 64 to 128 blocks of data. On the other hand, when the host accesses a file directory or updates a database, the operating system generates a small disk request ranging from 1 to 4 blocks. The RAID 5 architecture can efficiently handle both types of request and provide inexpensive failsafe storage as well.

EDN

Reference

1. Patterson, David A, Garth Gibson, and Randy Katz, "A Case for Redundant Arrays of Inexpensive Disks (RAID)," Report UCB/CSD87/391, Computer Science Div, (EECS), The University of California, Berkeley, CA, 1987.

Author's biography

 personal interests.Michael Anderson is the director of software engineering for Micropolis Corp. For the past 2 years he has managed an engineering and support staff, participated in market planning, and defined future products. He has also contributed to the development of 360 M -, 760 M -, and 1.2G-byte disk storage products. Michael majored in computer science at the University of Nebraska and is married with 3 children. He lists parallel arrays, processors, and storage as

Article Interest Quotient (Circle One) High 482 Medium 483 Low 484

Here's one reason thatover half of all SCSI devices sold are NCR.

We created the market... and we still lead the way. Meet NCR's SCSI development team. In 1983, they gave the computer industry its first SCSI device. By providing easy connectability and significantly reducing time to market, a new product era was born.

Since then needs have changed. By combining our system skills, highperformance standard cell methodology, and in-house manufacturing,

NCR has maintained its leadership role with innovative new ideas
like the 53C700 product family. And the joint development of LADDR - a new architecture aimed at cutting the development time of OS/2 device drivers by 90%.

Today SCSI is becoming the leading I/O standard — adopted by industry giants like Apple, IBM, HP, and DEC. And no one is selling more SCSI chip level products than NCR. In fact, no one even comes close.

Here's another.

The NCR 53C700 SCSI I/O Processor... So good, Electronic Design named it the product of the year.

"You can't tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53 C700 is the best there is.

The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about 15% of the cost.

As the first SCSI I/O processor on a chip, the 53C700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter.DMA controllers can burst data at speeds of up to $50 \mathrm{Mbytes} / \mathrm{s}$. This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the Digital IC's" award went to NCR's $53 C 700$ last year.

And now the NCR 53C710!

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

CIRCLE NO. 199

Careful inductor selection optimizes dc/dc converters

Abstract

Higher output power levels and faster switching speeds have complicated the selection of inductors for small dc/dc converters. However, if you check circuit waveforms for anomalies and review key electrical parameters during the design phase, you can simplify the development of an optimized $d c / d c$ converter.

Bruce D Moore, Maxim Integrated Products

Battery-operated systems and distributed-powersystem concepts have greatly increased the use of lowpower de/de converters and their associated magnetic components. Designers typically use transformers in de/dc converter designs. However, unless transformer isolation is required, an inductor makes sense for a low-power switching-converter applications. This is especially true if the circuit must be more efficient than a capacitor-based charge-pump circuit. Compared with transformers, inductors are easier to specify, procure, and mount. Single-transistor-driver schemes are more effective with inductors than with transformers. Best of all, there's a variety of inductor types available, each in a range of inductance values.

Because standard inductors suit most applications, you can usually avoid expensive custom-magnetics de-
velopment. Selecting the optimum inductor requires some knowledge of the available inductor geometries and core materials, however. (Note that for some unknown reason, inductor data sheets are often cagey about the product's core-material type.)

In the context of designing dc/dc converters that have an output power capability of 10 watts or less, a boost regulator serves as a general example. The boost regulator used as an example, also called a flyback regulator, features pulse-frequency modulation (PFM) to first establish its L value and then calculate its maximum ratings. By examining the inductor further, you can find certain specifications and characteristics that are a function of its shape and materials.

Fig 1 illustrates the three basic topologies for singleinductor switching regulators-the buck (or stepdown), the boost (or step-up), and buck-boost (or inverting) topologies. Low-power regulator applications generally combine one of these topologies with a PFM or PWM (pulse-width-modulation) controller circuit. The different combinations of topology and controller place similar demands on the inductor. However, you must take extra care in calculating the inductance value in pulse skipping controllers.

When selecting an inductor for a simple buckregulator circuit, you must take several factors into account-inductance value, saturation current, dielectric strength, dc resistance, EMI, and stray capacitance.

The converter's switching frequency and the voltage drop across the inductor determine the correct induc-

Because standard inductors suit most applications, you can usually avoid expensive custom-magnetics development.
tance value. Both factors affect the inductor current's rate of change in any given application. Erroneous inductor values can generate excessive current in the switching transistor or lower the inductor's energy storage performance. Insufficient energy storage, in turn, slows both converter start-up- and transientresponse times. In clocked-PFM regulators, insufficient energy storage will also degrade load regulation.
Economic considerations also provide a strong incentive to reduce inductor values: lower values require less wire and smaller cores. As a rule, you should select an inductor whose value is as low as possible, and yet does not introduce excessive-current, inefficiency, component stress, and high-ripple problems.

Pulse-skipping PFM regulators, such as the boost circuit in Fig 2, are a good choice for battery-powered applications because the design draws minimal quiescent current and requires few external components. Here, however, you must be especially careful when selecting the inductor, to avoid load-regulation problems. Studying the regulator's switching waveforms (Fig 3) provides some clues about the factors that influence a PFM regulator's output.

Supply voltage and inductance value determine the slope of an inductors' current waveform. Because the regulators in question operate in a discontinuouscurrent mode (the current returns to zero on every cycle), the regulator's average load current is directly proportional to the peak inductor current. Peak current depends on slope, and the slope depends on the inductor's value. An inductor with an excessive L value, therefore, cannot transfer adequate energy on each oscillator cycle.

Peak inductor current can be expressed in terms of the voltage boost ratio and the load current as

$$
\mathrm{I}_{\mathrm{PK}}=\left(4 \mathrm{I}_{\mathrm{LOAD}}\right)\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\text {IN }}\right) /\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{SW}}\right),
$$

where the factor of 4 is a constant resulting from the 50% duty cycle. Values for I_{PK} and the switch transistors' on time ($\mathrm{t}_{\text {on }}$) let you calculate the optimum inductor value as

$$
\mathrm{L}=\left(\mathrm{t}_{\mathrm{ON}}\right)\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{SW}}\right) / \mathrm{I}_{\mathrm{PK}},
$$

where $\mathrm{V}_{\text {oUt }}$ equals output voltage, $\mathrm{V}_{\text {IN }}$ equals supply voltage, V_{Sw} equals saturation voltage of the switch transistor, and V_{D} equals the forward voltage of the rectifier diode.

Coil inductance must not be so low that peak cur-

Fig 1-By arranging the same basic components in different topologies, you can obtain a boost (a), a buck (b), or a buck-boost (c) dc/dc regulator.
rents saturate the core or overstress the switching transistor. This rule applies to both PFM and PWM regulators. Excessive inductor current causes many odd symptoms, including low efficiency, rattling heat sinks, whining coils, and increased output ripple. Very low inductance can lead to burned windings and shattered, smoking transistors and ICs. The worst-case I_{PK} in the previous PFM-regulator calculations occurs when load current, supply voltage, and the diode's forward voltage are all maximum values while inductance, switch on-resistance, winding resistance, and switching frequency are all minimum values.

As you strive to extract higher output current from a PFM regulator, the minimum- and maximumallowable inductor values tend to converge. An actual convergence indicates the need for a power transistor capable of higher currents. But excessive peak currents can result from the discontinuous-current mode in which the inductor operates. This I_{PK} limitation makes clocked-PFM regulators impractical for power levels exceeding 10 W .

The following example uses earlier equations for I_{PK} and L to convert an input of 5 V ($\pm 10 \%$) to an output of 15 V using a 1 N 5817 diode and a MAX641 regulator IC. The IC has a $\pm 10 \%$ tolerance on its $50-\mathrm{kHz}$ oscilla-

Fig 2-To regulate the output voltage, the MAX641 boost regulator employs clocked pulse-frequency modulation or pulse-skipping techniques.
tor frequency. The output-current capability must be 15 mA . First, calculate the maximum-allowable inductor value using the equation

$$
\mathrm{I}_{\mathrm{PK}}=4(15 \mathrm{~mA})(15 \mathrm{~V}+0.4 \mathrm{~V}-4.5 \mathrm{~V}) /(4.5-0.75)=174 \mathrm{~mA}
$$

$$
\mathrm{L}=(9 \mu \mathrm{sec})(4.5 \mathrm{~V}-0.75 \mathrm{~V}) / 174 \mathrm{~mA}=194 \mu \mathrm{H} .
$$

Next, you must calculate the minimum-allowable inductor value. Here, let I_{PK} equal 450 mA -the maximum current rating for the switch transistor in the IC. With those criterion,

$$
\mathrm{L}=(11 \mu \mathrm{sec})(5.5 \mathrm{~V}-0.25 \mathrm{~V}) / 450 \mathrm{~mA}=128 \mu \mathrm{H} .
$$

From off-the-shelf inductors, you can choose a standard value like $150 \mu \mathrm{H}$-a value which lies between the calculated minimum and maximum values.

Selecting the inductor for PWM regulators

Unlike pulse-skipping PFM regulators, most PWM regulators exhibit worst-case peak currents at minimum supply voltages. Because PWM regulators generally operate in a continuous-current mode at high duty cycles, their inductance values are limited only by winding constraints and the need for reasonable startup and transient-response times.

In continuous-current mode, the inductor current fluctuates, but never returns to zero. Because the current may increase in staircase fashion over a period of several cycles, its rate of increase (determined by the inductance value) does not constrain the maximum level attained by the inductor current or the average load current. Thus, PWM regulator designs do not impose a hard limit on the maximum inductance value. The minimum value depends on the inductor's $\mathrm{I}^{2} \mathrm{R}$ loss and the switching transistors' current capability.

The exact inductance value is seldom critical for regulation in a PWM circuit, but some control schemes require a particular value for other reasons. The

Fig 3-To ensure ac stability, the inductor current in Fig 1's pulse-frequency-modulation regulator must return to zero during each switching cycle.

MAX743 dual-output regulator IC, for example, which features current-mode feedback control, achieves ac stability by compensating the inductor current's rate of change, or slope. To ensure ac-stable operation, which is free from subharmonic noise, you must tailor the slope compensation to a given supply voltage and inductance value.

Don't overlook saturation effects

In some specialized circuits the design deliberately saturates the magnetic core (for example, Royer-type self-oscillating transformer-drive schemes and saturable magnetic reactors that provide regulation in multi-ple-output, transformer-based power supplies). In most applications, however, you select the inductance and the core material (using air gaps in the core if necessary) to avoid saturation. For PWM regulators in particular, you must take care to avoid magnetic saturation.

> Most pulse-width-modulation regulators exhibit worst-case peak currents at minimum supply-voltage levels.

Saturation-current ratings measure an inductor's ability to handle high concentrations of magnetic flux. Strong magnetizing forces put an inductors' core at risk of saturation when the peak current rises to a high level. When a core saturates, the apparent inductance value falls off and current begins to rise exponentially. $\mathrm{I}^{2} \mathrm{R}$ losses cause a drop in circuit efficiency, and the inductor cannot store additional energy.

High-current spikes resulting from saturation can endanger power transistors and cause noise and efficiency problems. To avoid saturation, the inductors' worst-case peak current must not exceed its peak current or incremental-current rating. Note that inductors lacking a dc-current rating are usually prone to saturation, as are those with an ac amps rating.

Energy stored in an inductor determines the output power available at a given operating frequency. You can calculate energy storage as $\mathrm{E}=\mathrm{LI}^{2} / 2$, where E equals energy in joules, L equals nominal inductance in henrys, and I equals peak or incremental current rating in amps. The energy storage requirement for the previous clocked-PFM design example is therefore

$$
\mathrm{E}=(194 \mu \mathrm{H})(174 \mathrm{~mA}) / 2=2.9 \mu \mathrm{~J} .
$$

Air gaps greatly amplify an inductors' ability to store energy by extending the effective length of the cores' magnetic path. Air can store a tremendous amount of energy. A small air gap, whether built into the material or created by grinding or machining operations, can more than double the power output from a given core by preventing saturation at high current levels.

Ferrite and other highly permeable core materials are very susceptible to saturation, and you must treat them accordingly. The closed magnetic path of a ferrite toroid, for instance, is extremely good for containing EMI. However, the short path combined with the ferrite's high permeability make toroids prone to saturation. Ferrite toroids make good transformer cores, but they are less suited to simple boost regulators featuring large dc-offset currents.

For applications of 5 W or lower, powder-type cores with distributed air gaps are often a better choice than ferrite toroids or pot cores. After cutting an air-gap slot in the core of a ferrite toroid, the machining costs and EMI level will be so high that you may have been better off choosing a ferrite bobbin, with its large inherent air gap, in the first place. Pot cores, though self-shielding, are more expensive because they require more manufacturing steps than the other types.

Iron-powder and molypermalloy-powder toroid cores offer the best combination of cost, size, and EMI performance for many low-power applications. These materials have built-in air gaps that allow the core to saturate gradually as the magnetizing force increases. The large number of tiny air gaps are created by the binder material. Each air gap saturates at a slightly different level of magnetizing force.

The cylindrical or bobbin-core geometry, although noisy, is best for low-power ferrite applications because such shapes are easy to wind, and are therefore inexpensive to manufacture. Ferrite pot cores are preferable for applications higher than 5 W . The pot core's low EMI emissions are a benefit in applications that involve high levels of current and magnetic field strength.

A look at core-material tradeoffs

There are no clear cut best-choice winners when you look at today's available core materials; each has a distinct advantage in certain areas (Table 1). Ferrites are attractive because they combine low cost with high volumetric resistivity, which minimizes eddy-current losses. Ferrites are the only choice for switching frequencies of 500 kHz and higher. On the other hand, ferrites' high permeability usually calls for an air gap and the associated complications: high EMI for bobbins and extra assembly steps for pot cores.

Molypermalloy powder (MPP), the Porsche of powder core materials, combines good saturation characteristics with low hysteresis losses. MPP is expensive, however; it contains scarce ingredients (nickel) and requires many processing steps. Iron powder and sili-con-steel tape, despite their tendencies to sustain eddycurrent and hysteresis losses, are inexpensive materials also suited to general-purpose applications.

For small size combined with good EMI performance, it's hard to beat high-flux MPP toroid cores. Standard MPP cores, formulated for RF applications, contain 80% nickel, plus iron and molybdenum. The high-flux variety contains 50% nickel and doesn't work as well for RF applications. However, high-flux MPP cores provide tremendous flux-handling that is useful in switching-regulator circuits.
For comparison, ferrite and standard MPP materials handle flux densities of 4500 and 7500 gauss, and the high-flux MPP material is good for 15,000 gauss. Highflux cores can handle switching frequencies ranging to 300 or 400 kHz before eddy-current losses become excessive. Like all MPP cores, the high-flux types are

Table 1-Common inductors that suit dc/dc converters

| Type | EMI | Comments |
| :--- | :--- | :--- |
| Ferrite bobbin | high | Makes compact, low cost, axial-lead
 (cylindrical) inductors. Low core losses
 support high efficiency. |
| Ferrite bobbin
 with ferrite shield | Iow | Efficient but prone to saturation. |
| Ferrite pot core | low | Efficient. Easily gapped to the correct
 value. Best for high-current or high-
 frequency applications. |
| Molded (low
 cost) | high | OK for light loads. Prone to saturation and
 often inefficient. Observe current ratings
 carefully. |
| Silicon-steel
 toroid | low | Tape wound; similar to iron powder. Use
 thinner tape for higher frequencies. |
| Ferrite toroid | low | Prone to saturation. |
| Molypermalloy-
 powder toroid | low | Best available for frequencies less than
 400 kHz. Low EMI, low losses, compact,
 and expensive. Use high-flux type. |
| Iron-powder
 toroid | low | Specify core material carefully to achieve
 low losses. |

expensive. For low-power miniaturized applications, however, the high-flux MPP cores are often more costeffective than ferrite types because they eliminate the need for precision gapping.

Size reduction is possible with high-flux core materials, as can be seen by comparing two prototype boards for the MAX743 switching regulator. Both boards generate 3 W at $\pm 15 \mathrm{~V}$ from a 5 V source. However, the surface-mount version uses a high-flux core material to achieve a much higher power density- $18 \mathrm{~W} / \mathrm{in} .{ }^{3}$ vs $2 \mathrm{~W} / \mathrm{in}^{3}$.

The core material affects the power level for a given inductor size, but de resistance in the windings will waste some of that power. In the step-up circuit of Fig 2 , the approximate average inductor current is given as

$$
\mathrm{I}_{\text {AVE }}=\mathrm{I}_{\mathrm{LOAD}}\left(\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{IN}}\right) /\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{SW}}\right)+1\right) .
$$

High winding resistance produces an L / R effect in the inductor-current waveform. The resulting I $I^{2} R$ losses degrade circuit efficiency and cause the core temperature to rise.

For pulse-skipping PFM-type regulators, the dcwinding resistance can have the same effect as an overly high inductance value. By limiting I_{PK}, de resistance limits the available output current. Note that the calculation for maximum inductance value does not account for dc resistance. This de resistance is signifi-
cant for battery-powered and low-voltage applications of 3 V or less. In these cases, the inductance values must be low enough to achieve an acceptable slope for the inductor-charging current. Ideally, this slope is determined by the input voltage and the inductance value or $\mathrm{I}(\mathrm{t})=\mathrm{V}_{\text {IN }}(\mathrm{t}) / \mathrm{L}$. The peak current is therefore a function of t_{ON}, or $\mathrm{I}_{\mathrm{PK}}=\mathrm{V}_{\mathrm{IN}} \mathrm{t}_{\mathrm{ON}} / \mathrm{L}$. Finally, de-winding resistance (R_{DC}) limits inductor current as the inductance value approaches zero, as given by the expression

$$
\mathrm{I}_{\mathrm{PK}}=\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{R}_{\mathrm{DC}}\right)\left(1-\mathrm{e}^{\left(-\mathrm{R}_{\mathrm{DC}} \mathrm{toN}^{N}\right)}\right) / \mathrm{L}
$$

Another current-related topic to consider is temperature rise. Inductor specifications generally include two current ratings-continuous (or rms) and de saturation, which is sometimes referred to as peak or incremental current. A continuous rating accounts for the temperature rise caused by winding resistance, the inductor's operating temperature range, and its insulation or pot-ting-material properties. The continuous rating is usually higher than the de-saturation rating. Often, however, just the opposite is true for higher-valued inductors. As a rule of thumb, make sure that the inductors' average current is less than its continuous current rating. In high-frequency applications, be sure to include a safety margin for additional temperature rise due to core losses.

High-frequency losses consist of three major compo-nents-losses due to hysteresis, losses due to eddy currents in the core, and losses due to eddy currents in the wire. Legg's equation defines losses within the core as

$$
\mathrm{R}_{\mathrm{AC}} / \mathrm{L} \mu=\mathrm{Xf}+\mathrm{YB}_{\mathrm{m}} \mathrm{f}+\mathrm{Zf}{ }^{2},
$$

where $R_{A C}$ equals the equivalent loss resistance in ohms, L equals inductance in henries, μ equals magnetic permeability, X equals residual-loss coefficient, f equals frequency, Y equals hysteresis-loss coefficient, B_{m} equals maximum flux level in gauss, and Z equals eddy-current-loss coefficient.

Magnetic hysteresis, which occurs as flux density nears its saturation point, becomes a problem in ironpowder cores at switching frequencies of 100 kHz or lower. A simple cure for this problem is to enlarge the core volume, which will reduce the peak flux density at high currents. Larger cores, however, exacerbate the eddy-current problem by providing more lowresistance paths for current. Eddy current in the core is a function of f^{2}, and rapidly becomes a problem as

Gap spacings in powdered-material cores are so small that EMI is seldom a problem as long as the core is a toroid.
the frequency approaches 300 to 400 kHz . To combat the eddy-current problem, consider switching to another core material rather than changing the core size.
Eddy current in the windings (circulating currents within the wire) can also be a problem at frequencies of 500 kHz and higher. The solution here is to select a wire thickness equal to the skin depth of copper-a value determined by the switching frequency. Litz wire (ultra-thin, multistranded wire) or windings made from pc-board traces can help reduce eddy current. Positioning these windings within the core as far as possible from the air gap also helps.

Eddy currents appear in cores that have low volumetric resistivity. Low-resistance paths in the core cause the core to behave like a length of metal in a changing magnetic field. Circulating currents in the low-resistance path dissipate power. High switching frequencies (above 100 kHz) can develop significant eddy currents in iron-powder and steel-tape cores and these currents generate a core-temperature rise (Table 2). Because the regulator may appear to be operating correctly, the problem can be difficult to detect.
You should settle EMI issues early in the design process, before they can affect the pe layout and component placement. Shielded inductors, for example, tend to be larger, more expensive, and more difficult to mount than unshielded types.

Electronic circuitry can often tolerate moderate levels of EMI. This is particularly true for digital circuits. Even analog circuits, if they involve general-purpose ICs such as the LM324 op amp, can often weather the noise associated with unshielded inductors. In these cases, it's worth the effort to try an unshielded bobbintype inductor in place of a pot-core or toroid inductor. The bobbin-type unit will cost half as much and be twice as small as an electrically equivalent pot-core or toroid inductor. Bobbin inductors generate their highest magnetic fields near the ends along the axis, so point them away from sensitive nodes and mount them at 90° angles to other magnetic components.
Another point to consider when selecting inductors is the problem of EMI. The air-gap spacings in pow-dered-material cores are so small that EMI is seldom a problem as long as the core is a toroid or has a geometry that features a closed magnetic path. Fringe fields are much greater for core geometries that include a cut, or have a large inherent gap such as that between the ends of a bobbin inductor wound on a cylindrical core. Pot cores and other clever mechanical designs make it possible to have air gaps in the ferrite material

Table 2-Frequency limits for standard core materials

| Frequency | Core Material |
| :--- | :--- |
| To 100 kHz | Standard iron powders and steel tape |
| To 200 kHz | Low-permeability, high-frequency iron powders |
| To 400 kHz | High-flux molypermalloy powders |
| To 500 kHz | Standard molypermalloy powders |
| To 1 MHz | Manganese-zinc ferrite |
| To 10 MHz | Nickel-zinc ferrite |

while keeping the EMI problem minimized.
The final problem area present is the stray interwinding capacitance in inductors with values of several millihenries and larger. This capacitance combines with the coils' inductance to form a tank circuit, which rings at the inductors' self-resonant frequency (SRF). In lowSRF coils, a sudden jump of coil current, which occurs when the power switching transistor turns on, precedes the normal linear ramp of current. Large values of stray capacitance, therefore, cause switching losses that lower the regulator circuits' efficiency.

To avoid this problem, set the SRF at least five to ten times the oscillator frequency, thereby minimizing the interwinding capacitance. You can minimize this capacitance during the toroidal-winding phase by overlapping the ends of the winding somewhat, or by leaving a gap between the winding ends rather than ending the winding with one full layer.

EDN

Author's biography

Bruce D Moore is a senior member of the technical staff at Maxim Integrated Products in Sunnyvale, CA and has been with the company for the past year. Bruce defines new product needs, writes application notes, resolves customer problems, and is involved with company seminars. He holds an EET
 degree from Heald Engineering College (San Francisco, CA). In his spare time, Bruce enjoys chess, skiing, motorcycle road racing, and military history.

Article Interest Quotient (Circle One) High 485 Medium 486 Low 487

Introducing the New Generation 574 A/D

New Classic

We designed our new 12-bit CMOS A/D converter with you in mind...by adding several innovative features to the standard ADC574 pinout. ADS574 and ADS774 drop into most applications without any system modifications, use minimal power, and operate from a single +5 V supply. Complete with on-chip sample/ hold, clock, reference, $\mu \mathrm{P}$ interface, three-state outputs, and internal scaling resistors, ADS574 and ADS774 set a new standard for your design.

A New Standard in Savings

Replace your old standard with our new

ADC574 input ranges, ADS574 and ADS774 use only one-fourth the power of that old standard. On-chip sampling combined with our new skinny-DIP package (0.3" wide) or SOIC gives you a lot more board space. And, our pricing sets a new standard-starting at $\$ 14.15^{*}$ classic and save...design time, power, board space and money. Designed to operate from a single power supply while still supporting all of the

ADS574

Innovative

 Features- Throughput time (acquire \& convert) 25us max.........ADS574 8.5 5 s max........ADS774
- Power consumption 100mW max....ADS574 120 mW max...ADS774
- Single +5 V supply
- Guaranteed AC, DC performance
- Industry standard input ranges
- Industry standard digital interface
- Compact 0.3" or 0.6" wide 28 -pin plastic or ceramic DIP, 28-pin solc, die
- From \$14.15*

Try it

We're so convinced that our new parts are the next industry standardwe'll give you the first one free! Just call 1-800-548-6132 for samples and detailed data sheets or contact your local Burr-Brown sales office for assistance

Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734

- U.S. OEM prices, in 100 s.

BURR-BROWN®
\square —n

Be Brilliant At In Productio

7:05 am:Breakfast
Suddenly, between bites, the answer to that new system design jumps right into your brain. But how to make it work in silicon? Use an Actel field programmable gate array!

8:50 am:Design
You warm up the design program on your 386 and put in the final touches. Then a quick rule check and 25 MHz system simulation with the Action Logic System software.

11:00 am :Place \& Route You watch the system place and route all 1700 gates (out of 2000 available) in under 40 minutes. 100% automatically! A final timing check. Then think of something to do until lunch.

12:00 pm:Lunch
Remember lunch? Normal people actually stop working and have a nice meal - right in the middle of the day! With Actel's logic solution, this could become a habit.

Actel Field Programmable Gate Array Systems.

They're a feast for your imagination.

Actel's $\mathrm{ACT}^{\mathrm{m}} 11$ arrays bring you a completely new approach to logic integration. Not just another brand of EPLD, PAL ${ }^{*}$ or LCA ${ }^{m}$ chips. But true, high density, desktop configurable, channeled gate arrays.

They're the core of the Action Logic System, Actel's comprehensive design and production solution for creating
your own ASICs. Right at your desk. On a 386 PC or workstation. With familiar design tools like Viewlogic,' ${ }^{m}$ OrCAD,', and Mentor.'"

And do it in hours instead of weeks. Even between meals.

How? With features like 85% gate utilization. Guaranteed. Plus 100% automatic placement and routing. Guaranteed. So you finish fast, and never get stuck doing the most

Breakfast And

1:15pm: Program
You load the Activator ${ }^{\mathrm{mm}}$ programming module with a 2000-gate ACT 1020 chip and hit "configure." Take a very quick coffee break while your design becomes a reality.

1:25pm:Test You do a complete, real-time performance check, with built-in test circuits that provide 100% observability of all on-chip functions. Without generating any test vectors.

4:00 pm: Production Your pride and joy is designed, created, tested, and off to the boys in Production. And you're finished way ahead of schedule! Better think of something to do until 5:00.

6:00 pm:Dinner
Remember dinner? Normal people actually go home and eat with their families. On your way, start thinking about how Actel's logic solution can help you be brilliant tomorrow.
tedious part of the job by hand. Design verification is quick and easy with our Actionprobe ${ }^{m}$ diagnostic tools, for 100% observability of internal logic signals. Guaranteed. So you don't have to give up testability for convenience. In fact, the only thing you'll give up is the NRE you pay with full masked arrays. You can get started with an entry level Action Logic System for under $\$ 5000$. Guaranteed. And Actel FPGAs are even 883 mil-spec compliant.

You can be brilliant right now
with 1200 - and 2000 -gate devices, and a whole new family of 8000-, 4000- and 2500-gate parts are on the way. Call 1-800-227-1817, ext 60 today for a free demo disk and full details about the Action Logic System.

It could make your whole day.

[^14]
UXART The Wait Is Over Now there's a serial I/O chip designed for UNIX.

For years, dumb UARTs have been the standard datacom solution. Now there's something better for today's multi-user, multi-protocol datacom environment. Our single-chip solution gives you multiple channels - each capable of full-duplex operation at 115.2 kbps - and replaces up to 10 chips.

Cirrus Logic introduces the UXART the first and only UART with specific features to simplify and speed up serial I/0 efficiency by a factor of ten or more. So your UNIX ${ }^{*}$ system can support more users, with better response time - and less waiting.

The CL-CD1400 UXART ${ }^{\text {T }}$ gives you 4 fully independent datacom channels, each capable of full-duplex operation at 115.2 kbps . Each channel has two 12 byte FIFOs, one for transmit and one for receive. Separate vectored interrupts allow quick entry to the correct service routine.

A number of features reduce the load on the host system. Automatic expansion of Newline to CRNL, plus other CR and NL options. User-definable flow control characters for automatic flow control.

And more
For high-line-count, cost-effective applications, there's the CL-CD180. It offers performance gains similar to the CL-CD1400, plus the advantage of 8 channels in a single 84-pin package.

The CL-CD2400 adds synchronous capabilities. It offers 4 independent, multi-protocol channels, plus an on-chip DMA controller for fast, efficient I/O.

For all your multi-protocol, multi-user datacom needs, the Cirrus Logic family of intelligent, highperformance data communications controllers gives you superior throughput in less space - with less waiting.
Don't wait. Call today for free product information and benchmark report on the CL-CD1400. Call 1-800-952-6300. Ask for dept. LD25

An on-chip
10 MIPS RISC-based processor handles transmit and receive functions, buffer management, flow control, and all special character processing. On-chip FIFOs reduce host interrupts to give you more efficient interrupt handling. The result: faster system throughput, lower host overhead and less waiting.

Design Feature

An object-oriented show and tell

Chris Terry, Associate Editor

"Object oriented" was the marketing buzzword a year ago and The Wall Street Journal dubbed it "the computer industry's equivalent of oat bran." The term has moved beyond that to become the description of an approach to software design that is serious, important, and, above all, practical.
Many principles of object-oriented programming (OOP) have been around for a long time. Encapsulation, for example, has for many years meant you can hide the details of how a routine works from other routines that don't need to know (and should not be able to change) those details. Michel Floyd, manager of CAE product development at Integrated Systems Inc, comments that languages such as Modula2 permit the encapsulation of procedures but rarely encapsulate data with those procedures, because the data has to be available to many different procedures.

OOP demands a radically different way of thinking, however. Object A can request object B to perform some action (such as drawing itself on the screen) without object A's knowing anything about how the action will be performed. Further, you can group objects that share all or most of their attributes into a class. Floyd comments that in the fields of simulation and modeling, object-oriented principles make it relatively easy to mimic objects and phenomena of the real world, and that these principles enforce clarity of thought. Floyd cautions, however, that it takes most people six to eight months to learn to think in object-oriented terms.

When it comes time to choose an object-oriented language, you have two options: A pure language that is a complete development system you must learn, or a hybrid language that links with the system you already have.

It's possible to write object-oriented programs in some of the standard programming languages such as C, which is not particularly easy, or Turbo Pascal 5.5 , which has object-oriented extensions for that purpose. However, you won't be able to make full use of object-oriented features unless the language itself supports them. Purists will recommend that you use a "pure" object-oriented language, such as Smalltalk/V or Eiffel. These complete development systems include an editor, a syntax checker, a browser, and a class library. The class library contains most of the objects and classes that you're likely to need for general application programs. The editor and syntax checker and, indeed, the nature of the languages themselves, combine to guide you into good OOP practices and signal any gross violations of OOP principles. Thus, they are very helpful to the novice.

These integrated systems have several disadvantages, however. One of them is the need to learn a new programming language; another is the general opinion that Smalltalk is better suited to small projects than to large ones. Further, Smalltalk does not make it particularly easy for you to interface to programs that were written in another language. Eiffel does have some facilities for interfacing to other languages, but they are not as comprehensive as the facilities of $\mathrm{C}++$.

OOP purists tend to sneer at hybrid languages, such as $\mathrm{C}++$ and Turbo Pascal with Objects. Nevertheless, hybrids have the advantage of a relatively simple tran-

Object-oriented programming has become an approach to software design that is serious, important, and above all, practical.

You can interactively develop screens for presenting Ontos database information with Ontos Studio from Ontologic. Screens are objects, and therefore, you can reuse a screen in many applications.
sition from the standard languages (C or Pascal) to the object-oriented extensions-at least as far as syntax is concerned. Further, the hybrids have the advantage of easy and standard links to programs in other languages, and they are less restrictive than pure 00P languages.

Jeff Kantor, manager of advanced applications development at Iconix Inc, points out that every application needs interfaces to other languages or to programs running on other machines. In cross-development systems, you need to be able to optimize some code for the development system and other code for the target system; often this requires access to the low-level routines that drive the hardware. C and $\mathrm{C}++$ give you these interfaces and links very easily. Smalltalk, on the other hand, deals in higher-level abstractions and therefore encourages isolation from the hardware.

Some vendors of software-development tools for ob-ject-oriented software take no stance on the choice of language, but provide tools for both Smalltalk and C ++ . Parcplace Systems, for example, offers both Objectworks/Smalltalk and Objectworks/C ++ . Objectworks can help you create color-graphics applications for heterogeneous networks running under standard windowing systems. This integrated development system adheres to the standard conventions of Smalltalk, but has features that make it easier to create larger systems than you could do with the Smalltalk/V
development tools. Also, for each version of Objectworks, Parcplace provides a set of class libraries that is available as a separate item.

But the winner is . . .

Just as C is currently the language of choice for programmers who use standard structured-analysis and structured-design methods to design all kinds of systems and application programs, so $\mathrm{C}++$ is well on the way to becoming the language of choice for people who design object-oriented systems and applications.
A few months ago, you might have thought that far more development systems and tools were available for Smalltalk than for $\mathrm{C}++$; this is no longer the case. Table 1 lists almost twice as many compilers, libraries, and add-on tools for $\mathrm{C}++$ as for other object-oriented languages. Although a few items on both sides may have been inadvertently omitted, the $2: 1$ ratio is likely to change even more heavily toward $\mathrm{C}++$ during the next few months.
The significant change is in the increase of class libraries for $\mathrm{C}++$. Because Smalltalk has been around for nearly 15 years, the class library that comes with Smalltalk/V is huge. However, for $\mathrm{C}++$ there were, until a few months ago, only the somewhat limited AT\&T Standard class library and the C ++ class library produced by the National Institute of Health.

Manufacturers of object-oriented software-development tools

For more information on object-oriented software-development tools such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Abraxas Software Inc 7033 SW Macadam Ave Portland, OR 97219
(503) 244-5253

FAX (503) 244-8375
Circle No. 800

Artifact Inc
15 Crossroads, Suite 258
Sarasota, FL 34239
(813) 349-1093

Circle No. 801

Borland International
Box 660001
Scotts Valley, CA 95066
(408) 438-8400

Circle No. 802

Cadre Technologies Inc 222 Richmond St, Suite 301
Providence, RI 02903
(401) 351-5950

FAX (401) 351-7380
Circle No. 803

Code Farms Inc

7214 Jock Trail
Richmond, Ontario
K0A $2 Z 0$ Canada
(613) 838-4829

FAX (613) 838-3316
Circle No. 804

Comeau Computing
91-34 120th St
Richmond Hill, NY 11418
(718) 945-0009

Circle No. 805

Computer Innovations Inc
980 Shrewsbury Ave
Tinton Falls, NJ 07724
(201) 542-5920

Circle No. 806

Digitalk Ine
9841 Airport Blvd
Los Angeles, CA 90045
(213) 645-1082

FAX (213) 645-1306
Circle No. 807

Dyad Software Inc
16950 151st Ave SE
Renton, WA 98058
(206) 228-3170

FAX (206) 228-3178
Circle No. 808

Glockenspiel
39 Lower Dominick St
Dublin 1
Ireland
Circle No. 809

Oregon Software
6915 Macadam Ave
Portland, OR 97219
(503) 245-2202

Circle No. 827

Parcplace Systems
1550 Plymouth St
Mountain View, CA 94043
(415) 691-6700

FAX (415) 691-6715
Circle No. 828

PMI
8311 SE 13th Ave, Suite B
Portland, OR 97202
(800) 547-9755

Circle No. 829

Saber Software Inc
185 Alewife Brook Pkwy
Cambridge, MA 02138
(617) 876-7636

FAX (617) 547-9011
Circle No. 830

Servio Corp
1420 Harbor Bay Pkwy
Alameda, CA 94501
(415) 748-6200

Circle No. 831
1 New England Executive Park
Burlington, MA 01803
(617) 270-9797

FAX (617) 270-3509
Circle No. 823

Objectivity Inc
800 El Camino Real, 4th floor
Menlo Park, CA 94025
(415) 688-8000

Circle No. 824

Objectvision
2124 Kittredge St, Suite 118
Berkeley, CA 94704
(415) 540-4889

Circle No. 825

Ontologic Inc

3 Burlington Woods
Burlington, MA 01803
(617) 272-7110

FAX (617) 272-8101
Circle No. 826

VOTE . .
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 470 Medium Interest 471 Low Interest 472

Table 1-Representative development tools for object-oriented languages

| Manufacturer | Product | Host | Price | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Abraxas | Code Check 2.0 | $\begin{aligned} & \text { MS-DOS } \\ & \text { OS/2 } \\ & \text { Mac-OS } \\ & \text { Unix } \end{aligned}$ | $\begin{aligned} & \$ 495 \\ & \$ 695 \\ & \$ 495 \\ & \$ 995 \end{aligned}$ | Analyzes C and C^{++}source code according to a set of user-defined rules. |
| Artifact | Class library for Smalltalk/V Mac and Presentation Manager | DOS-286, OS/2 Presentation Manager, Mac-OS | $\$ 99.95$ each volume | Each volume contains 40 to 50 classes with applications and examples. Current volumes are Magnitudes and Math; Data Structures; Graphics and Drawing; Artificial Intelligence. |
| Borland International | Turbo C ${ }^{++}$ Professional | MS-DOS | \$299.95 | Complete development system with compiler, debugger, profiler, assembler, multifile editor, and object-oriented memory manager for expanded or extended memory. |
| Code Farms | Persistent Data | $\begin{aligned} & \text { MS-DOS } \\ & \text { Unix } \end{aligned}$ | $\begin{array}{\|l\|} \$ 295 \\ \$ 1195 \end{array}$ | Tool for creating object-oriented databases. Comes with interactive data browser, and royalty-free class library that includes dynamic arrays, ER models, and hash tables. Most classes supplied in source code. |
| Comeau Computing | Comeau C++ | $\begin{aligned} & \text { MS-DOS } \\ & \text { Unix } \end{aligned}$ | $\begin{aligned} & \$ 250 \\ & \$ 250 \end{aligned}$ | Compiler conforms to AT\&T spec version 2.1. Comes with stream and iostream class libraries. |
| Computer Innovations | C^{++} | 80386/486 Unix systems | \$495 | Conforms to AT\&T spec 2.1. Comes with integrated C compiler, linker, debugger driver, SID ${ }^{++}$, source-level debugger, standard AT\&T C^{++}class library. |
| Digitalk | Smalltalk/V | MS-DOS
 Presentation Manager Windows Mac-OS | $\begin{array}{\|l\|} \hline \$ 499.95 \\ \$ 499.95 \\ \$ 499.95 \end{array}$ | Integrated development system that includes an editor, browsers, inspectors, and a large class library. |
| Digitalk | Add-on tools: communications extension kit; EGA/VGA color extension kit; Goodies \#1 through \#3 (tools and applications) | MS-DOS and 80286 | \$49.95 each kit | Class libraries, inference engine, spelling checker, character-recognition neural network, and other aids. |
| Dyad | M ++ | MS-DOS OS/2
 Windows Unix | $\begin{array}{\|l} \$ 725 ; \\ \text { with source code, } \\ \$ 1075 \end{array}$ | Class library for mathematical operations of all kinds, including multidimensional-array, vector, and tensor operations. Indexing facility operates on rows, planes, and large groupings. |
| Glockenspiel | Glockenspiel C++ | $\begin{aligned} & \text { MS-DOS } \\ & \text { Unix } \end{aligned}$ | \$495 | Conforms to AT\&T spec 2.0. In US, write to Imagesoft for DOS version and to Oasys for Unix version. |
| Hewlett-Packard Corp | C^{++}Softbench | HP/UX | From $\$ 9950$ per seat | Development system for object-oriented design and program development. |
| Iconix | Power Tools | Mac-OS | \$4995 | CASE tool for Macintosh computers; handles object-oriented analysis in addition to most other CASE methodologies. |
| Intek | Intek C + | MS-DOS Unix/386 | \$495 | Conforms to AT\&T spec 2.0; DOS version runs in protected mode. Compatible with a large variety of C compilers. |
| Intellicorp | Kappa PC | Windows | \$3500 | Development system for object-oriented application programs. You can write your programs in ANSI C or in Kappa Application Language. |
| IDE | Software through pictures | Many systems | \$995 | CASE tool that provides an Object-Oriented Structured Design notation. Supports all of the features of C^{++}. Also provides interface to programs developed using ISE's Eiffel objectoriented development system. |
| ISE | Eiffel | Unix/386 | From \$495 | Development system for object-oriented software using the Eiffel object-oriented language. Includes class and system compilers, class libraries, browsers, debugger, and crossdevelopment and -testing facilities. |
| Microtec | CCC68K cross-compiler | 680×0
 Unix systems | From \$6600 | Cross-development system for object-oriented embedded applications written in C^{++}. The compiler conforms to AT\&T spec 2.1 and comes with XRAY68K C ${ }^{++}$source-level debugger; ASM68K assembler, linker, and librarian; symbol-name inspection tool; and C^{++}class libraries for iostreams, complex arithmetic, and real-time operating systems. |

| Manufacturer | Product | Host | Price | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Microway | NDP C ++ 386 | MS-DOS | \$995 | Native compiler; conforms to AT\&T spec 2.0. Supports intel, Weitek, and Cyrix math coprocessors. Provides links to NDP C, Fortran, and Pascal. |
| Mind's Eye | Mind's Eye | MS-DOS | From \$695 | Object-based software package that can link text, graphics, and data to evaluate the relationships between various aspects of any project, process, or problem. Can also be used as software-design tool. |
| Object Design | Objectstore | Unix | From \$2000 | Object-oreinted Database Management System for applications written in C or C^{++}. Lets you create applications to share objects among muitiple users on a heterogeneous network. |
| Objectivity | Objectivity/DB | Sun-OS Unix | \$30,000 | Development system for object-oriented database management systems on networked workstations from multiple vendors. |
| Object Technology International | Envy/Developer | MS-DOS Netware | $\$ 12,000$ for 3-user system | Development system for embedded systems written in Smalitalk/V. Allows a project team to work concurrently on different parts of the same projects. Library systems track both source and object code and protect completed classes and applications from accidental changes. |
| Objectvision | Objectvision | MS-DOS | \$399 | CASE tool for the design of object-oriented programs. Generates C ${ }^{++}$or Turbo Pascal 5.5 code. |
| Ontologic | Ontos 2.0 | $\begin{array}{\|l\|} \text { Sun-OS } \\ \text { OS/2 } \end{array}$ | $\$ 9950$ for 1-user system | Development system for distributed database applications. A graphical design tool automatically generates C^{++}header files and database schemata. |
| Oregon Software | Oregon C^{++} | $\begin{aligned} & 80386 \\ & \text { Unix and Sun-3 } \end{aligned}$ | $\begin{aligned} & \$ 895 \\ & \$ 1700 \end{aligned}$ | Native compiler that compiles directly from C^{++}source without translation to ANSIC. Comes with source-level debugger compatible with C^{++}, ANSI C, and K\&R C. |
| Parcplace Systems | Objectworks $\backslash \mathrm{C}^{++}$and Objectworks \Smalltalk | Sun-OS, Windows | $\begin{aligned} & \$ 3500 \\ & \$ 3500 \end{aligned}$ | Integrated development system to help C^{++} designers. Conforms to AT\&T spec 2.1. Comes with a graphical source browser and visual debugger; allows you to use traditional Unix tools as well as the optional Objectkit\C++ class libraries. |
| PMI | Data ++ Windows | MS-DOS | \$189 | Library containing more than 160 classes for development of user interfaces. Works with a variety of C^{++}compilers. |
| Saber Software | Saber C + + | Unix | $\$ 3995$ for single user | Compiler conforms to AT\&T spec 2.1. Comes with source-level debugger and class, crossreference, data, and program browsers, Can be used with IDE's Software through Pictures. |
| Servio Corp | Facets | Sun-OS | \$1000 | Collection of object-oriented tools to help programmers in the development of Objectworks/Smalitalk applications. Includes complete source code and an on-line, context-sensitive help system. Includes schema designer, forms designer, report writer, and menu builder. |
| Zinc Software | Zinc Interface Library | $\begin{aligned} & \text { MS-DOS } \\ & \text { OS/2 } \\ & \text { Windows } \end{aligned}$ | \$200 | Class library for C^{++}applications. Provides event-manager and window-manager classes, together with complete help and error systems. |
| Zortech | Zortech C++ | $\begin{aligned} & \text { MS-DOS } \\ & \text { Unix } \end{aligned}$ | \$450 | Native compiler for 80386-based computers running MS-DOS or Unix. Conforms to AT\&T spec 2.1. Developer's edition includes C and C^{++} compilers, C^{++}debugger, C^{++}Tools, and source code for the class library. |

Object-oriented programming demands a radically different way of thinking-it takes most people six to eight months to learn to think in object-oriented terms.

This process inspector provides five views (in separate windows) of your $C++$ code and classes. With Objectworks/C ++ , you can resize any or all of the windows.

The picture is quite different today because there now are not only C + + class libraries organized along the lines of the Smalltalk library but also some useful specialist class libraries (Ref 1).

The predominance of $\mathrm{C}++$ is further confirmed by the fact that several major CASE tool vendors have announced plans to integrate existing or upcoming C ++ development systems into their CASE tool frameworks. For example, Interactive Development Environments is forming an alliance with Saber Software so that Software through Pictures will support not only Saber C but also Saber C ++ . Cadre, too, is allying itself with Saber so that the Teamwork tools will facilitate the design of object-oriented systems that will be implemented with the aid of the Saber C + + development tools.

Not to be outdone, Hewlett-Packard is offering a C ++ version of its Softbench framework that will support object-oriented design and program development on all HP computers that run under HP/UX (HP's version of Unix). The C ++ Softbench package consists of Framework LSI (a tool that allows diverse third-party tools to work together on a heterogeneous network), Encapsulator (for adapting individual tools to the Softbench framework), a class and object builder, a browser for finding and examining classes, a static analysis tool, and a graphics editor.

Another indication of the trend toward $\mathrm{C}++$ is that several object-oriented database managers not only provide an interface to related application programs written in $\mathrm{C}++$, but are themselves written in that language. Objectdesign's Objectstore is a typical example of such ODBMS (object-oriented database management system) packages. It can handle persistent data as fast as transient data, and it provides a DML (data manipulation language) preprocessor that is based on the AT\&T cfront $\mathrm{C}++$ preprocessor. Objectdesign has signed a strategic alliance with Saber Software to integrate Objectstore with both Saber C and Saber C ++ .

Objectdesign's DML preprocessor supports parameterized types-that is, a system of templates designed by AT\&T's Bjarne Stroustrup for defining container classes. These templates make it easier to design libraries of safe and reusable code-an important step toward wider use of standard software libraries. The ANSI X3J16 subcommittee has decreed that parameterized types will be part of the initial C+ + standard. Also, AT\&T has announced that it has licensed Objectdesign's implementation of parameterized types for inclusion in $\mathrm{C}++$ Release 3.0. This inclusion of a ready-made mechanism in the compiler will help to accelerate wide distribution of the technology throughout the $\mathrm{C}++$ community.
Another vote for $\mathrm{C}++$ was cast at the OOPSLA

Introducing NICE.' The new MB86960 Network Interface Controller with Encoder/Decoder from the Advanced Products Division of Fujitsu Microelectronics.

With the unveiling of NICE, Ethernet LAN technology reaches a new level of integration.

Now LAN system designers can have an Ethernet controller, buffer management unit and 10 Mbit per second Manchester encoder/decoder on a single chip. So you can now develop high-performance LAN boards more cost effectively than ever before.

For instance, design adapter cards for highperformance buses using just two Ethernet chips instead of the usual three. Simply combine NICE with our new MB86962 10BASE-T transceiver, the most advanced solution for twisted-pair needs. Or choose our MBL8392A if you need a coax interface.

And used with our MB86953 PC Bus Interface Unit, NICE can further reduce costs and complexity when developing

PC XT/AT ${ }^{\text {® }}$ adapter cards. Replacing the need for up to ten separate parts.

All in all, NICE has some impressive features to enhance your LAN's entire performance. Such as a data bus transfer rate of 20 Mbytes per second. A lowpower standby mode. And bus compatibility for most standard microprocessors.

But what's really nice is our understanding of the marketplace. As Fujitsu's American arm, we know what it takes to get you there a lot faster. With greater cost effectiveness.

So now that the secret is out, call us at 1-800-866-8608. And discover NICE. The world's most advanced, highly-integrated
Ethernet solution.

Delivering the Creative Advantage.

> There seems to be no lack of proposed notations for object-oriented design. The trouble is that few of them agree with each other.

1990 conference, when Objectivity Inc announced that its Objectivity/DB engineering-database management system would support Hewlett-Packard's C + +/ Softbench for the development of applications to run on HP 9000 workstations.

And finally, Ontologic's Ontos 2.0 ODBMS, which runs on Sun, Apollo, DEC, and high-end 80386-based computers, is written in $\mathrm{C}++$, supports multiple inheritance, and supports data distribution across networks. The package includes a development tool that automatically generates both $\mathrm{C}++$ header files and database schemata, and a graphical browser that allows you to perform interactive inspection and maintenance of the database.

Just in CASE . . .

Although most modern CASE tools let you use a variety of methodologies, each with its own conventions for graphical notation, no standard notation has yet emerged for object-oriented design. You can use one of the standard notations, such as Yourdon/ DeMarco, Hatley/Pirbhai structured design for realtime systems, or Chen Entity Relationship diagrams for databases. But these do not always entirely meet your object-oriented needs.

There seems to be no lack of proposed notations for object-oriented design. The trouble is that few of them agree with each other. Fewer still have powerful enough backing to ensure widespread adoption. Meilir Page-Jones began a recent article (Ref 2): "Last week we went to an object-oriented symposium . . . where we met a most unusual software engineer. He didn't have his own object-oriented design notation!"

However, there are two proposals from sources prestigious enough to ensure serious attention: one comes from Meilir Page-Jones, Larry Constantine, and Steven Weiss (Ref 2); the other from Anthony J Wasserman and his colleagues at IDE (Ref 3). It's very doubtful if either of these notations (or any other, for that matter) will become the sole standard. Most likely, several notations will eventually obtain sufficient acceptance to be regarded as de facto standards for particular types of applications. This will duplicate the situation in the structured-analysis/design field, in which engineers and organizations adopt the methodology and notation that best suits their ways of thinking and the kind of work they are doing.

Meanwhile, more and more engineers keep coming up with ideas (some half-baked, others very mature and practical). A good sign for the maturation of object-
oriented technology was the formation of the Object Management Group (OMG), quartered in Framingham, MA. This organization now has more than 80 members drawn from systems vendors, software developers, and software users. November 1990 saw the publication of OMG's Object Management Architecture Guide, which provides a complete architectural overview of an object-oriented environment and the major interfaces necessary to facilitate interoperability and extensibility. The guide includes a glossary of the terms used. Because this guide was the collaborative effort of many OMG members, there is hope that OMG will have a screening and stabilizing influence that may lead to the development of common ways of looking at objects and common ways of implementing methods. Until there is wide acceptance of relatively standard approaches, there is little hope of achieving any large body of genuinely machine-independent and reusable code.

EDN

References

1. Terry, Chris. "Reusable software requires building blocks," EDN, January 3, 1991, pg 59.
2. Page-Jones, M, Larry L Constantine, and Steven Weiss. "Modeling Object-Oriented Systems: The Uniform Object Notation," Computer Language, October 1990, pg 69.
3. Wasserman, Anthony I, Peter A Pircher, and Robert J Muller. "The Object-Oriented Structured Design Notation for Software Design Representation," IEEE Computer, March 1990, pg 50.

Article Interest Quotient (Circle One) High 470 Medium 471 Low 472

WHAT'S COMING IN EDN

EDN Magazine's June 20, 1991 issue will include a staff-written report on special-feature static RAMs. Find out in this report how innovative architectures are enabling today's static RAMs to keep pace with the speed of the latest CPUs.

Also, look forward to July, when EDN presents its International Product Showcase issues with expanded product coverage as well as regular departments.

OrCAD presents

The limits are gone

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.

More designs from more designers For more information, call (503) 690-9881

| Huntsville | Oct. 1 |
| :---: | :---: |
| Phoenix | June 25 |
| Irvine | May 2 |
| Los Angeles | Sept. 25 |
| Sacramento | Sept. 11 |
| Santa Clara | Sept. 12 |
| Woodland Hills | Sept. 10 |
| Denver | June 26 |
| Stamford | June 18 |
| Ft. Lauderdale | April 9 |
| Orlando | April 10 |
| Atlanta | April 11 |
| Indianapolis | June 5 |
| Chicago | Sept. 20 |
| Baltimore | April 2 |
| Boston | April 3 |
| Boston | Sept. 19 |
| Detroit | March 28 |
| Kansas City | March 26 |
| St. Louis | June 6 |
| Manchester | May 7 |
| Fairfield | June 12 |
| Albany | June 19 |
| Long Island | April 4 |
| Rochester | June 11 |
| Tarrytown | May 9 |
| Raleigh | Oct. 2 |
| Cleveland | March 27 |
| Dayton | June 4 |
| Portland | April 16 |
| Philadelphia | May 8 |
| Pittsburgh | June 20 |
| Austin | Sept. 24 |
| Dallas/Ft.Worth | May 1 |
| Houston | April 30 |
| Tysons Corner | June 13 |
| Seattle | April 17 |
| Salt Lake City | June 27 |
| Montreal | April 24 |
| Ottawa | April 23 |
| Toronto | April 25 |
| Vancouver | April 18 |
| Düsseldorf | May 17 |
| London | May 20 |
| Milan | May 28 |
| Munich | May 16 |
| Paris | May 30 |
| Stockholm | May 14 |
| Zurich | May 23 |
| Osaka | (TBA) |
| Tokyo | (TBA) |

1-800-258-4LON
For Reservations and Information

We developed LoNWORKS technology. What you do with it is your business.

Spend a day in a free LonWorks" seminar and we'll change the way you develop products forever.
You'll learn about the technology that uses the latest computer, semiconductor and networking advances to add control and communication capabilities to your products. Quickly and inexpensively.
You'll see the heart of LONWORKs, the Neuron. ${ }^{\circ}$ Chip. Small enough to fit into any product, smart enough to control and respond to other devices, flexible enough to communicate over standard media, and inexpensive enough that everyone can afford it.

You'll discover how easy it is to program and link Neuron Chips into virtually invisible networks of intelligent devices.
How our LONTALK" protocol communicates over powerlines, twisted pair, radio waves, and other common media.
How our LonBuilder" Developer's Workbench helps you design LonWorks networks into your products. How to connect products into smart systems. And how to connect systems into interoperating LonWorks environments as large as a building, a home or a factory. All in less time and for less money than it takes to develop your own protocols and tools.

So call I-800-258-4LON for reservations. And learn about the new technology that will help you improve your products. And your business.

ulation power without compromise

EZ-Pro ${ }^{\text {TM }} 1.5$ price performance leader for 8-bit in-circuit emulation.

EZ-Pro 2.1 industry workhorse for 16-bit and 8-bit designs.

Power in selection-System support for more processors than any other manufacturer in the world. Power in product range to match your needs-from economical basic configurations to fully featured systems.

Power in performance-Completely integrated capabilities include options such as versatile trace, performance analysis, EPROM programming, C source level debugging, over 100 personality modules with a common universal platform for different processors, C cross compilers, cross assemblers and more.

Power without compromise-All invented here. Supported here. And available to rent or purchase now.

Free Demo Disk!

See how easily you can use these sophisticated development tools. Our marketing department will ship your demo disk today. Please Call:

(714) 731-1661

(1) Headquarters: 2651 Dow Avenue, Tustin, California 92680-7207

Telephone (714) 731-1661. European Headquarters: UK Oxford 993 778991. Distributors: Australia 3-5601011, Belgium 2-4681400, France 1-69308050, India 418387, Indonesia 22-71880, Italy 2-50722282, Korea 2-7849942, Spain 1-7291155, Switzerland 1-4354111, Taiwan 2.7368150, West Germany 89-6127087.

Multiplier lowers impedance

Ian Hickman
Ian Hickman Partners, Waterlooville, UK

The Cockcroft-Waton voltage multiplier (Fig 1a) can produce a large negative voltage-hundreds of kilovolts-where the peak voltage across each diode and capacitor equals the p-p input voltage. However, for lower voltage applications-as low as a hundred volts-some disadvantages predominate. Fig 1a's circuit exhibits a high-output impedance due to the small effective capacitance of the series-connected capacitors, and it exhibits considerable voltage loss due to all of the diode drops. Further, this circuit requires $2 n$ diodes and $2 n$ capacitors to produce a dc output voltage approximately n times the rail voltage.

Fig 1b's circuit multiplies more effectively using fewer diodes and capacitors. The parallel arrangement of the capacitors lets you use smaller capacitors than those required in Fig 1a. Alternatively, when using the same capacitor values of Fig 1a, the output impedance will be lower. Second, whereas the clock source directly drives only one of the two strings of capacitors in Fig 1a, Fig 1b's clock drives both strings with opposite phases. This drive scheme doubles the voltage per
stage of two diodes. A final diode is necessary to pick off the dc output voltage because both strings of capacitors now carry the p-p ac input-voltage waveform. The ICL7667 dual-FET driver accepts a TTL drive swing and provides a low-impedance push-pull drive to the diode string. This low impedance is particularly helpful when using a long string to raise output voltage to more than 100 V starting from a low rail voltage.

Fig 1b requires $n+1$ diodes and $n+1$ capacitors to output a nominal voltage equal to n times the rail voltage. Using a rail voltage of 5 V , Fig 1b requires less than half the number of Fig 1a's diodes and capacitors because of the improved circuit's increased output per stage resulting from fewer numbers of diode for-ward-voltage drops in the circuit. To use Fig 1b to produce a positive output, reverse the polarities of the capacitors and diodes and tie the anode of D_{1} to the positive rail. Such a positive-output circuit can produce 45 V from a 15 V input using three capacitors and three diodes $-\mathrm{n}=2$. (EDN BBS /DI_SIG \#966)

EDN

To Vote For This Design, Circle No. 746

Fig 1-The multiplier in bimproves upon the conventional circuit in a by exhibiting lower impedance and by requiring fewer capacitors-or alternatively, smaller valued capacitors-and fewer diodes.

DESIGN IDEAS

Divider splits the divisor

Yongping Zia
Department of Electrical Engineering, West Virginia University, Morgantown, WV

Fig 1 is yet another variant of a standard digital divider. This circuit, instead of dividing by an integer, divides the input signal by $n+1 / 2$. With the feedback connections exactly as Fig 1 shows, the circuit divides by 3.5. Point C in Fig 1 ultimately controls when the input clocks the 74 HC 1614 -bit counter. When $\mathrm{C}=0$, the positive edge of the input triggers the counter. If $C=1$, the negative edge of the input triggers the

Fig 1-Feeding back counter outputs and XORing them with the input produces a counter that divides by $n+1 / 2$.

Table 1-XOR feedback signals for
$\mathbf{N}+1 / 2$ divider

| Divide number | Feedback signal(s) | | |
| :--- | :--- | :--- | :--- |
| $N=1.5$ | Q_{1} | | |
| $N=2.5$ | Q_{0} | Q_{2} | |
| $N=3.5$ | Q_{2} | | |
| $N=4.5$ | Q_{0} | Q_{3} | |
| $N=5.5$ | Q_{0} | Q_{1} | Q_{3} |
| $N=6.5$ | Q_{1} | Q_{3} | |
| $N=7.5$ | Q_{3} | | |
| $N=8.5$ | Q_{0} | Q_{4} | |
| $N=9.5$ | Q_{0} | Q_{2} | Q_{4} |
| $N=10.5$ | Q_{0} | Q_{1} | Q_{2} |
| $N=11.5$ | Q_{0} | Q_{1} | Q_{4} |
| $N=12.5$ | Q_{1} | Q_{4} | |
| $N=13.5$ | Q_{1} | Q_{2} | Q_{4} |
| $N=14.5$ | Q_{2} | Q_{4} | |
| $N=15.5$ | Q_{4} | | |
| $N=16.5$ | Q_{0} | Q_{5} | |
| $N=17.5$ | Q_{0} | Q_{3} | Q_{5} |
| $N=18.5$ | Q_{0} | Q_{2} | Q_{3} |
| $N=19.5$ | Q_{0} | Q_{2} | Q_{5} |
| $N=20.5$ | Q_{0} | Q_{1} | Q_{2} |

counter. Each time that point C changes level, the circuit shortens the output pulse width of the counter by half of an input cycle. Thus, the counter's divisor depends on how many changes occur at point C during one output period.

Although Fig 1 divides by 3.5, feeding back different counter outputs produces different divisors. Generally, an m-bit binary counter with pure exclusive-OR (XOR) feedback can form a $n+1 / 2$ counter where n ranges from $2^{m-2}+1 / 2$ to $2^{m-1}-1 / 2$. The divided output is available at the $m-1$ bit of the counter. Table 1 lists the XOR feedback terms necessary to produce various $1 / 2$ dividers. For example, to divide by 18.5 , you need to XOR the following counter outputs together: $\mathrm{Q}_{0}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$, and Q_{5}. Such a divider requires using a 6 -bit binary counter, and the divided output appears at Q_{4}.
(EDN BBS /DI_SIG \#968)
EDN

To Vote For This Design, Circle No. 747

Let Mini-Circuits' new TUF-mixers stew in a sizzling $250^{\circ} \mathrm{C}$ environment for five minutes and then compare specs against room temperature performance...no trace of degradation. That's a tough mixer!

TUF-mixer components can take the extreme shock and vibration stresses of MIL-STD-28837 as well as more than 200 cycles of thermal shock ranging from -55° to $+100^{\circ} \mathrm{C}$; the Ultra-Rel diodes used can withstand as much as 168 hours of testing at $300^{\circ} \mathrm{C}$

All-welded internal and external construction is used to assemble and package the TUF-unit in a tiny 0.5 by 0.2 by 0.25 inch metal case. The nonhermetic, miniature mixers are available for surface mounting (-SM) or plug-in applications. Only four leads extend from the mixer, simplifying lead placement.

Also guaranteed on these Ultra-Rel ${ }^{\text {TM }}$ mixers is unprecedented 4.5 sigma unit-to-unit repeatability, meaning units ordered today or next year will provide performance identical to those delivered last year.

Tough, tiny, and with tight repeatability . . Mini-Circuits' Ultra-Rel ${ }^{\text {TM }}$ TUF-mixers, with a 5-year guarantee, are priced from only $\$ 3.95$ (10 qty). For tough applications, specify TUF-mixers available only from Mini-Circuits.

SPECIFICATIONS
FREQ. RANGE (MHz)
LO, RF
CONVERSION LOSS
(db) typ.
ISOLATION (db) typ.
PRICE \$ea. (10 qty.)

TUF-1
TUF-2 TUF-1SM TUF-2SM

2-600
$6.0 \quad 6.6$
42
3.95

47
4.95

finding new ways.
setting higher standards

$8051 \mu \mathrm{C}$ converses with dual-port RAM

Brady Barnes
Inter-Tel Inc, Chandler, AZ

Interfacing an 8051 microcontroller to a dual-port RAM poses some problems that a small amount of glue logic can solve (Fig 1). The main problem has to do with the busy signal, $\overline{\mathrm{DPR} _B Z}$, that the dual-port RAM generates. When the 8051 attempts to access a location in the RAM that is currently being accessed by another processor, the RAM asserts the DPR_BZ signal to alert the 8051 that it must wait until the other processor's access is complete. Unfortunately, the 8051 can't wait because it doesn't provide for asynchronous bus control. External gating (Fig 1) and some extra software are necessary for proper communication between the two devices. The 8051's RAM-access code is simple (Listing 1). The 8051 software checks the status of the

busy signal, and if the RAM is busy, the software tries again to access the location.

The new circuitry and software must meet two objectives. When the RAM asserts the busy signal, the 8051 must first recognize the busy signal, and then not write to the RAM accidentally. The busy signal generated by the RAM is not a latched signal. Thus, depending on the timing of the two processors that access the RAM, the busy signal can last from ten or

Fig 1-Gilue logic and software enable an 8051 microcontroller to interface with a dual-port RAM properly.

DESIGN NOTE

Gain Trimming In Instrumentation Amplifier Based Systems - Design Note 51

Jim Williams

Gain trimming is almost always required in instrumentation amplifier based systems. Gain uncertainties, most notable in transducers, necessitate such a trim.

Figure 1, a conceptual system, shows several points as candidates for the trim. In practice, only one of these must actually be used. The appropriate trim location varies with the individual application.

Figure 2 approaches gain trimming by altering transducer excitation. The gain trim adjustment results in changes in the LT1010's output. The LT1027 reference
and LT1097 ensure output stability. Transducer output varies with excitation, making this a viable approach. It is important to consider that gain "lost" by reducing transducer drive translates into reduced signal-to-noise ratio. As such, gain reduction by this method is usually limited to small trims, e.g. 5-10\%. Similarly, too much gain introduced by this method can cause excessive transducer drive, degrading accuracy. The transducer manufacturer's data sheet should list the maximum permissible drive for rated accuracy.

Figure 1. Conceptual Transducer Signal Conditioning Path Showing Gain Trimming Possibilities. In Practice, Only One Adjustment Is Required.

Figure 2. Gain Trimming by Adjustment of Transducer Excitation. This Method is Useable for Small (5-10\%) Trims. Large Trims Will Cause Excessive Transducer Power Dissipation or "Starved" Outputs.

Figure 3 adjusts gain in the instrumentation amplifier stage. The fixed gain LT1101 instrumentation amplifier feeds a second amplifier where the trim occurs. As both cases show, the gain trim may be up or down. A secondary benefit of this trim scheme is that it permits optional offset summing and filtering. Note that either the inverter or follower may be set up for gain addition or reduction. The sole limitation is the signal polarity reversal imposed by the inverter case. This may be corrected by reversing the instrumentation amplifiers' inputs.

Figure 3. Gain Trimming at the Instrumentation Amplifier. A Second Stage Permits Trimming Gain Up or Down, and Allows Filtering and Offsets to Be Summed In.

A final hardware based gain trim is shown in Figure 4. Here, the $A \rightarrow$ D reference input is scaled to the appropriate voltage by the op amp and associated components. The op amp input is usually the transducer excitation voltage or, in cases where this is not possible, a reference.

One final way to trim gain is in software. If a processor is involved in the system this is a viable alternative. The software trim does a simple code conversion on the $\mathrm{A} \rightarrow \mathrm{D}$ output. When using this approach utilize as much of the analog components' dynamic range as possible to avoid signal-to-noise degradation.

Figure 4. Gain Trimming By Adjustment of the $A \rightarrow D$ Reference Input Voltage

Figure 5. Software Based Trimming

For literature on our Instrumentation Amplifiers, call (800) 637-5545. For applications help, call (408) 432-1900, Ext. 456.

DESIGN IDEAS

twenty to as long as hundreds of nanoseconds. The busy signal's active time will never be the same for each access contention.

The interface circuit must latch this busy signal. The flip flop, $\mathrm{IC}_{1 \mathrm{~B}}$, serves this purpose. To simplify the software and make accesses to the RAM as fast as possible for the 8051 , the $\mu \mathrm{C}$ must clear IC_{18} just prior to accessing the RAM. To accomplish this task, the 8051 must fetch an opcode from external memory, which causes the 8051's PSEN to strobe low. (PSEN is equivalent to $\overline{\mathrm{XPRG}}$-RD in the glue-logic circuit. The mnemonic, XPRG_RD, stands for external program memory read.) Strobing PSEN low clears the flip flop, which is now armed and waiting for the busy signal to assert itself.

Once $\mathrm{IC}_{1 \mathrm{~B}}$ clears, the 8051 can access the RAM, which to the controller looks like external data memory. This access causes the address decoder to assert the chip-enable signal, $\overline{\mathrm{DPR}}$ _CS. After $\overline{\mathrm{DPR}}$ _CS goes low, the RAM will assert DPR_BZ within 50 nsec if there is contention for the memory location.

If contention occurs, the busy signal immediately sets $\mathrm{IC}_{1 \mathrm{~B}}$. Because $\overline{\text { DPR_CS }}$ depends solely on address decoding, the time between recognition of a valid address and the busy-signal assertion is $103+50=153$ nsec. Allowing for another 54 nsec for the signal to propagate through the flip flop, the output of that $\mathrm{IC}_{1 \mathrm{~B}}$ will then respond within 207 nsec after the RAM's address becomes valid.

The address is valid 43 nsec before the negative edge of ALE. Thus, the output of IC_{18} when clocked by DPR_BZ will be valid within 164 nsec (207-43 nsec) after the negative edge of ALE. The XDAT_WR and XDAT_RD signals from the 8051 aren't asserted for at least 200 nsec after the negative edge of ALE. Thus, the output of $\mathrm{IC}_{1 \mathrm{~B}}$ will be valid at least 36 nsec before $\overline{\text { XDT_RD }}$ or $\overline{\text { XDAT_WR }}$ are asserted by the
8051. It is important that IC_{18} 's output be valid before these two XDAT signals become active for two reasons: Together, they form the clock signal that transfers $\mathrm{IC}_{1 B}$'s state to $\mathrm{IC}_{1 \mathrm{~A}}$ and they work to inhibit a write command to the RAM if the busy signal is active.
The circuit transfers the state of $\mathrm{IC}_{1 B}$ to $\mathrm{IC}_{1 \mathrm{~A}}$ on the negative edge of either XDAT signal. This transfer of the busy status is necessary because XPRG_RD clears $\mathrm{IC}_{1 \mathrm{~B}}$ shortly after $\overline{\mathrm{DPR} _C S}$ goes high. The busy status can now be read by the 8051 through one of its ports.
To prevent an accidental write to the RAM, the 8051 must first access the write location without asserting the $\overline{\mathrm{DPR}} \mathrm{CWR}$ signal by asserting only the $\overline{\mathrm{DPR}}$ _CS signal. If the RAM asserts the busy signal at this point, the output of $\mathrm{IC}_{1 B}$ will block the $\overline{\text { DPR_WR signal via NAND gate }} \mathrm{IC}_{2 \mathrm{C}}$, and thereby prevent a write to the RAM.
If the RAM isn't busy, the $\overline{\mathrm{DPR}-W R}$ signal must not experience a delay of more than 33 nsec in order to meet the data hold time of the RAM. The hold time of the 8051 is 33 nsec , and the required hold time of the RAM is 0 nsec . Thus, the circuit can have up to a 33-nsec delay of XDAT_WR and $\overline{\text { DPR_WR }}$ and still meet the hold time of the RAM. The $\overline{W R_{-}}$signal passes through two levels of NAND gates. The circuit uses ALS logic to meet the write timing requirement. Using HC or HCT logic will not meet the 33 -nsec delay requirement. However, either FAST, ACT, or ALS logic is fast enough.
Note that because this interface circuit uses the ex-ternal-program-read signal from the 8051 , the 8051 code that accesses the dual-port RAM must reside in external memory. (EDN BBS /DI_SIG \#969) EDN

To Vote For This Design, Circle No. 748

Duty-cycle chopper controls lamp

Ronald Doctors
GMI Inc, Santa Barbara, CA

Fig 1's high-intensity-lamp dimmer emulates a rheostat; the circuit has only two leads. To maximize the battery-powered circuit's operation time between charges, the circuit employs a PWM system. A system with duty cycles between 20 and 95% provides the necessary brightness range. Fig 1's component values set the maximum duty cycle close to 100% and the
minimum around 20%. The circuit is useful for applications in which the minimum duty cycle allows for energy storage, and in which efficiency is important (so-lar-powered lamps and motors, for example). To maximize efficiency, C_{1} charges during the off time and stores enough energy to drive Q_{1} and keep IC_{1} operating. Because the dimmer-control circuit is in series with the lamp, all the current passes through the lamp, which improves efficiency.

A dual, CMOS 555 chip (the TLC556) together with

Introducing Zilogs Smart Access Controller... Z180 intelligence and SCC communications together in one package.

Don't throw away your old software.
The 780 family continues to be the most popular group of intelligent The Z80 family continues market. With good reason. It's a tribute to peripberal contegration ${ }^{\text {TM }}$ technology and the perjormily, like the $S A C^{\text {TM }}$, is based our Superines And since each new product in the fa mo your existing soffuare themselves. And $/ 180$ code you'll be able to .ig important that is. on the same $280 / 18$. We don't have to tell you bow ind effectively. easily and efl
Here's a list of the fast-growing family of $Z 80$-based

The $\mathrm{Z80181}^{\mathrm{TM}} \mathrm{SAC}^{\mathrm{TM}}$ Controller is the Smart Access Controller ${ }^{\text {rm }}$ that combines two powerful standards. You get Zilog's industry standard SCC ${ }^{\text {m }}$ controller for datacom connectivity together with the popular Z180 CMOS controller. And all that utility comes with the user-friendly $Z 80^{*}$ code CPU compatible software.
High integration. High performance. Smart communicator. The Superintegration ${ }^{\mathrm{TM}}$ SAC Controller packs the popular high performance Z180 architecture into a new cell suitable for many datacom and peripheral control applications. You get the SCC single-channel communication cell with two additional UARTS, a 4×8-bit counter timer (CTC) and onboard 16 -bit I/ 0 . The SAC Controller runs at 10 MHz and drives fast serial communications at $2.5 \mathrm{Mbits} / \mathrm{sec}$. With the reduced 3 cycles per instruction, the SAC Controller gives you Z80 code performance 25\% faster. That makes the SAC Controller the highest performance, low power embedded controller around.
The best cost/performance of any embedded controller out there. Whatever your application - data communications, modems, FAXs, printers, terminals, industrial controls - the SAC Controller combination gives you the best cost/performance ratio. Everything you need for your system is on the chip. The SAC Controller brings you all the advantages of Zilog's Superintegration technology. Off-theshelf and backed by our solid reputation for quality and reliability.

To find out more about the SAC Controller, or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

DESIGN IDEAS

some passive components implement the PWM circuit. One half of the TLC556, $\mathrm{R}_{1}, \mathrm{R}_{2}$, and C_{2} form a freerunning, $1-\mathrm{kHz}$ oscillator that has a very low duty cycle. This signal triggers a one-shot comprising the other half of the TLC556, $\mathrm{R}_{3}, \mathrm{R}_{4}$, the 100 k potentiometer, and $C_{3} . Q_{1}$ and Q_{2} provide the saturated output drive. These transistors can carry 1 A with a V_{CE} (SAT)
of 0.25 V . Thus, no heat sinking is required. D_{1} prevents Q_{2} from dumping charge onto C_{1} when Q_{2} is on.
(EDN BBS /DI_SIG \#967)
EDN

To Vote For This Design, Circle No. 749

Fig 1-IC, a CMOS 555 timer, and associated components form a PWM circuit that adjusts the duty cycle of this lamp dimmer between 20 and 100%.

Current source scrounges parts

Philip Leong

Department of Electrical Engineering, University of Sydney, Sydney, Australia

Fig 1 uses readily available parts to implement a 0 -to $200-\mathrm{nA}$ current source. The circuit borrows a PMOS transistor from the input stage of a CD4007A, a device easier to obtain than a discrete PMOS transistor. The CA3130 op amp operates as a follower so that its positive input sets the current that flows through R_{2}. The MOSFET input stage of this op amp exhibits low-input current. The op amp must be able to produce an output voltage high enough to turn the CD4007A's internal FET off. Thus, the op amp requires a positive supply voltage of 5 V . The circuit presents an output voltage from 0 to 3 V , and R_{1} controls the amount of output current. (EDN BBS /DI_SIG \#970)

Fig 1-This low-drift current source makes use of an input PMOS transistor inside a readily available CD4007A.

Low crosstalk Shielded Performance Interconnects

- EMI/RFI shielded
- Impedance controlled

Meritec's economical Shielded Performance Interconnects (SPI ${ }^{T M}$) are ideal for fast logic, dense package applications which require low-noise crosstalk and high impedance control. The assemblies are EMI/RFI shielded and impedance controlled to the PC board. Available in straight or right angle configurations, the assemblies mate with $.025^{\prime \prime}$ square or round pins and are side-to-side and end-to-end stackable

on a $.100^{\prime \prime} \times .100^{\prime \prime}$ grid. The connectors are terminated to high speed subminiature braided shielded coax cable.

CIRCLE NO. 173

High-Performance Interconnects That Terminate High Cost.

Meritec has terminated the high cost of high performance interconnects for fast logic applications. We produce a full line of cable assemblies for applications in the $3 n$ to sub nanosecond range-engineered to match your requirements for controlled impedance and propagation rate while minimizing crosstalk. We deliver assemblies of unpáralleled quality On time. At a very reasonable price.

Our complete line includes single Signal Interconnects (SSITM). Shielded Performance Interconnects (SPITM) and Multi Signal Interconnects (MSI ${ }^{\text {IM }}$). terminated to a diversity of controlled impedance cables, including coax. twin coax. FEP. PTFE and our Filatex ${ }^{\text {TM }}$ textile cable.

Call Meritec today at 216-354-3148 for more information and a free copy of

Where quality assures performance
1359 West Jackson Street P.O. Box 8003

Painesville, Ohio 44077
216-354-3148
FAX: 216-354-0509

Low Profile PCB Solderable Interconnects

- Solders to the PC Board
- Impedance matched

Meritec's low profile, impedance matched PCB Solderable Interconnects solder directly to the PC Board for a permanent connection. Pin lengths of $110^{\prime \prime}$ and $.160^{\prime \prime}$ are available for different board thicknesses. The connectors feature precision, high strength molded terminations for reliability in critical applications. Available in 1×2 and 1×3 configurations, the connectors are side-toside stackable and feature heights as low as $.150^{\prime \prime}$ from the PC Board, making them ideal for dense package applications. Meritec PCB Solderable Interconnects can be terminated to a variety of different cable types.

CIRCLE NO. 173

Multi Signal Interconnects

- High strength molded terminations
- Controlled impedance

Meritec's Multi-Signal Interconnects ($\left.\mathrm{MS}\right|^{T M}$) can be terminated to FEP, PTFE or Filatex ${ }^{\text {TM }}$ textile cable. Precision, high strength molded terminations assure high reliability in critical applications. The assemblies offer controlled impedance and low crosstalk. Standard impedances are available from 50 to 95Ω. EMI/RFI shielding is optional. The connectors are compatible with latch and eject headers and are available in high or low profile configurations. The high profile configuration is available with pull tabs.

CIRCLE NO. 173

Phase shifter adapts to frequency changes

Ion Constantinescu

B\&C Microsystems Inc, Sunnyvale, CA
Fig 1's circuit adds 120 degrees of phase shift to a 50 - or $60-\mathrm{Hz}$ input regardless of the frequency and amplitude fluctuations of that input. The circuit configures a 2N4093 JFET as a voltage-controlled resistor whose value is proportional to the phase difference between the input and the output. The values of $\mathrm{C}_{1}, \mathrm{R}_{1}$ and r_{DS} determine the amount of phase shift, 120° in Fig 1's case.

A 555 timer implements a phase detector whose two inputs are related to the input and output. The input and output, respectively, drive $\mathrm{IC}_{1 \mathrm{~B}}$ and $\mathrm{IC}_{1 \mathrm{C}}$, which operate as zero-crossing detectors. D_{1} and D_{2} limit the positive-going pulses at the 555 inputs. Thus, the falling edges of $\mathrm{IC}_{1 \mathrm{~B}}$ and $\mathrm{IC}_{1 \mathrm{C}}$'s outputs control the 555 timer. The timer's output signal stays low for a time proportional to the phase shift between the circuit's input and output.

The average value of the timer's output and an off-
setting voltage drive $\mathrm{IC}_{1 \mathrm{D}}$. R_{2} and C_{2} filter $\mathrm{IC}_{1 \mathrm{D}}$'s output. The resultant signal controls the JFET. The potentiometer sets the control at a value for which the phase shift between input and output is equal to 120 degrees when the input signal frequency is 50 or 60 Hz . Any differences between the input and output changes the 555 output's average value, thus ultimately modifying the control voltage and the JFET's resistance.

To calibrate the circuit, apply a $50-\mathrm{Hz}$ sine wave with an amplitude less than $1 V_{p-p}$ to the input and adjust the potentiometer until the phase shift reads 120° on a digital phase meter. For input frequency variations between 40 and 60 Hz , the phase shift changed by a maximum of $\pm 0.17 \%$, which is equivalent to an offset of only $0.02 \% \mathrm{~Hz}$. The average value at $\mathrm{IC}_{1 \mathrm{D}}$'s noninverting input is 3.864 V .
(EDN BBS /DI_SIG \#959)
EDN

To Vote For This Design, Circle No. 745

Fig 1-The input and output of this phase shifter drive a 555 timer to maintain a constant 120° of phase shift regardless of input frequency and amplitude.

Who's Behind The Simulation Acceleration Movement?

And Who's Leading It?

Design Entry Blank

\$100 Cash Award for all entries selected by editors. An additional \$100 Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co 275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone

Company \qquad
Division (if any)
Street
City \quad State
Country
Zip \qquad
Design Title \qquad
Home Address \qquad

Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a $5^{1 / 4}-\mathrm{in}$. IBM PC disk.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
Date

ISSUE WINNER

The winning Design Idea for the March 1, 1991 issue is entitled "Amplifier scheme lowers drift and noise," submitted by Jim Williams of Linear Technology Corp (Milpitas, CA).

Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional \$100 and become eligible for the annual \$1500 Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

Three ICs produce a grand prize

For Bruce Saldinger of Los Angeles, "Three ICs produce pure sine waves" produced the 1990 Design Idea of the Year. Saldinger's October 25 Design Idea was his first submission. "I'm still in shock" he said, one week after being notified of the $\$ 1500$ prize.

In Saldinger's circuit, a TTL counter, an 8-channel analog multiplexer, and a fourthorder lowpass filter generate 1 - to $25-\mathrm{kHz}$ sine waves with a THD better than -80 dB . The circuit cascades two second-order, continuous-time Sallen-Key filters to implement the fourth-order lowpass filter. Two resistive dividers provide bipolar dc inputs to the multiplexer. The multiplexer produces an eight-times oversampled staircase approximation of a sine wave. Eighttimes oversampling greatly simplifies the smoothing requirements of the lowpass filter by pushing the first significant harmonic out to seven times the fundamental.
The three-IC sine wave idea first came to him when he was a co-op student working at IBM in Manassas, VA. It can also be traced back to all the engineering communications-related classes he took. He says the circuit is an example of a practical solution to a principle learned in school. Saldinger says the three-IC idea also fit in well with his work at Maxim Integrated Products.
Saldinger is currently earning his MBA from UCLA. An MBA will, he says, allow him to "explore other avenues." Saldinger has a BSEE from UC Berkeley, where he was a member of Eta Kappa Nu, a National honor society for electrical engineers. After graduating, he worked for Monolithic Memories, now Advanced Micro Devices. He wanted to work with a smaller company, so he joined Maxim to design analog ICs. Now he's back in school full time. Saldinger says he didn't reach a career plateau, but that he "saw it coming." This summer he's off to Tokyo for an internship with Sony. For prospective EE students, he recommends getting a broad background, cautioning that specialization could hold them back.
Saldinger's main "hobby" is studying for final exams. When not studying for finals or whipping up winning circuit designs, he indulges in wind surfing and squash.-Brian Tobey

EDN

What do Mentor, Valid, and Cadence have in common?

They all use CAPS ${ }^{\circledR}$ as an information source to create component libraries.

Shouldn't you?

See CAPS in Booth \#1935 at
Design Automation Conference
San Francisco, June 17-20, 1991 or call 800-245-6696

CAPS is a CD-ROM-based productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors.

ForMostPeople,ItWas Just AnotherWarm SeptemberDay.

For design engineers, it was the day mixed analog/digital design came of age.
The event was the mixed-signal design demonstration at the IEEE Bipolar Circuits and Technology Meeting (BCTM). The goal was to give credence to mixed-signal simulation and to benchmark companies in the marketplace. The results were conclusive.

Viewlogic came up with the right answer first.

But more to the point, what we did at BCTM in September, we can do for you now. We're the only company with a proven technology and a three year track record of success. The only one that integrates design capture, simulation and analysis.
But that's just the beginning.

Performance and Flexibility available nowhere else.
With VIEWsim/SD, you'll get the choices you need. You'll be able to mix behavioral models with gates and SPICE primitives. Choose from leading analog simulators like PSPICE and HSPICE. Include physical hardware models for devices when software models are not available. Use the most popu-

lar platforms from SUN, DEC and IBM.
Our white paper
"Mixed-Signal Simulation Benchmark Report" proves the point. Call us at 1-800-422-4660, Ext. 102. You'll like the climate we're creating for mixedsignal design.

VIEWlogic

The CAE Company
Viewlogic Systems, Inc. 293 Boston Post Road West Marlboro, MA 01752
508-480-0881
508-480-0882 FAX
PSPICE and HSPICE are trademarks of their respective companies.

"We saved hundreds of engineering hours in just a few months."

It's easy to find out more about CAPS! For your free information kit, call Jill Adams at 800-245-6696. Do it today!

[^15]> CAPS is a productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors faster and easier than ever before.

"Here at Rockwell's Collins Air Transport Division, quickly identifying alternative sources for ICs and semiconductors is important. Using our CAPS network, we find them in minutes and save hundreds of engineering hours. That's fast payback!
"Thanks to CAPS, our component engineers identify and qualify new ICs for our preferred parts list faster and easier than ever. It's also easy and convenient for our designers to see which components are approved for immediate use. This shortens the engineering process!
"Our CAPS network plays an important role in achieving division objectives in quality, cycle-time reduction, and cost control. The bottom line is productivity . . . that's what CAPS delivers."

- George Mirabella

Manager, Production Engineering Rockwell International Collins Air Transport Division Mor

Updated every month, CD-ROM-driven CAPS PC networks give you fast access to specifications and applications data for more than 575,000 ICs and semiconductors made by nearly 500 companies worldwide. Best of all, CAPS provides instant access to hundreds of thousands of pages of complete, unabridged manufacturers' datasheets, so you have everything you need right at your fingertips. CAPS runs on PCs, workstations, and popular PC networks.

CAE \& SOFTWARE DEVELOPMENT TOOLS

PLD Compiler

- Now available for DECstations
- Supports most PLD device types CUPL is a PLD Compiler and simulator that lets you enter designs without first specifying a device or pin number. The program supports devices from Altera, AMD/MMI, Intel, Lattice, National Semiconductor, Signetics, Texas Instruments, and Toshiba, as well as Xilinx gate arrays. In addition, the program provides on-line help for all valid extensions at the end of variable names; these extensions indicate specific functions assigned to major nodes that you can program within the PLD. You can include arithmetic expressions within loops; the preprocessor loop index has a maximum value of 1024 . The program can also handle PLCC (plas-tic-leaded-chip-carrier) versions of PLDs; the chip-diagram section of the .DOC output file shows the correct PLCC package with the signal names already placed on the pins. The program accepts Boolean-equation, state-machine, schematic, and truth-table inputs, and optimizes and simulates the design to verify

proper operation before programming. Integrated with DEC's Power Frame framework, CUPL supports the DECwindows interface, which incorporates the XWindow system; it runs under Ultrix, VMS, Apollo NCS, SunOS, and Sunview operating systems.

For DECstation, Apollo 3000/4000, Sun-3, Sun-4, and SPARCstation workstations, from $\$ 2295$.

Logical Devices Inc, 1201 NW 65 th Pl, Fort Lauderdale, FL 33309. Phone (305) 974-0967.

Circle No. 351

C Communications Library

- Provides uniform applications interface
- Includes routines that work like $C++$ virtual functions
Commlib Level 2 version 3.1 provides a set of routines that works like $\mathrm{C}++$ virtual functions and supports six device drivers. These routines provide a uniform API (ap-plications-program interface) for programming asynchronous data communications. The library includes Xmodem, Ymodem, Zmodem, Kermit, and ASCII file-transfer protocols with Xon/Xoff, RTS/CTS, or DTR/DSR flow-control handshaking. Other routines can control 16550 FIFO-mode UARTS or mo-
dems that use the Hayes AT command set, with flexible interruptdriven support for an unlimited number of serial ports. You can use standard PC COM1 . . COM8 ports with a choice of three lowlevel drivers; intelligent Digiboards; six makes of nonintelligent multiport boards; Fossil drivers to support Fido/Opus/Seadog BBS systems; or Fresh Technology's Modem Assist to provide modem access across a network. Other new functions include a diagnostic function call that displays the status of all significant ports on the screen, and a fast driver that can solve the problem of lost interrupts in some high data-rate situations. You can
use the library with C compilers from Microsoft, Borland, Watcom and Topspeed, or C ++ compilers from Zortech and Borland. \$359.

Greenleaf Software Inc, Bent Tree Tower Two, Suite 570, 16479 Dallas Pkwy, Dallas, TX 75248. Phone (800) 523-9830; in TX, (214) 248-2561. FAX (214) 248-7830.

Circle No. 352

Enhanced PC-Board Design Software

- Provides new parts library
- Checking feature reduces errors Version 4.0 of Pads-PCB is a major upgrade of this widely used pcboard design software. The vendor

IMABTIV BINUKING A MIIIION TIMES A DAV FOR TWENTY YEARS, ADD YOU'IL BEGIN TO UNEBATAND THE DUABILITY OF OUR OPIIEAL SWIIRIFS.

 tough applications such as duplicating, fax machines and computer peripherals. In fact, our optical switches operate thousands of times faster than electromechanical switches. And, they perform reliably for up to twenty years or more, exceeding the lifetime of the product itselfOmron's optical switches dramatically improve the reliability of your end product by virtually eliminating switch failure. Take switches. There are over 50 Or ask us about the more than components we produce. You a closer look at Omron optical standard types to choose from. 100,000 different types of control WE HAVE THE FUTURE IM CONTROL. can reach us at l-800-62-OMRON.

Go ahead. Scream.

BURST CYCLE

It's time to take the brakes off your 486 machine and let it fly to its full potential.

How? With a BurstRAM ${ }^{\text {TM }}$ from Motorola.
These new Fast Static devices run at cycle times faster than most microprocessors. Stretching the limits of system performance to the peak for which enhanced 50 MHz processors are designed.

The key to the BurstRAM is our burst cycle protocol and the timely way it transfers several consecutive words in quick succession. The on-chip burst counter and specific logic let the BurstRAM interface directly
with the microprocessor and the cache controller without extra logic.

Once again, Motorola delivers just what it takes to enhance system performance. Like precocious design solutions. Preeminent technology. Relentless product support. And a very broad portfolio of Fast Statics. Not to mention a complete line of FSRAM and DRAM modules.

Want to read all about it? Send in the coupon on the opposite page and we'll show you just how far Motorola can take you. In no time at all.

If you like what's new, wait 'til you see what's next.

CAE \& SOFTWARE DEVELOPMENT TOOLS

has integrated its CAE and PCB libraries into a single common library that serves both the sche-matic-capture and pc-board design tools. A library manager gives you rapid access to, and graphical browsing through parts contained in the library. The human interface now provides a "fill-in-the-form" screen format for entering alphanumeric data such as padstacks, tracks, clearance, and other data-base-setup information. This format simplifies data entry and reduces the number of input errors. Other enhancements include checking for the presence of thermal pads on power and ground planes, graphicscard drivers for most 1024×728 high-resolution cards, and facilities for output to a laser printer. Pads users with annual support receive the new version at no charge; users without annual support, $\$ 350$; new users, $\$ 975$.
CAD Software Inc, 119 Russell St, Suite 6, Littleton, MA 01460. Phone (800) 255-7814; in MA, (508) 486-9521. FAX (508) 486-8217.

Circle No. 353

CAE Optimization Tool For Diverse Technologies

- Can optimize a design within its existing technology
- Can remap the design to a different technology and optimize it
Retargeter is a CAE tool that can optimize single- or multiple-gate net lists and PLD JEDEC files for the original technology (such as TTL standard parts or FPGAs), or can remap the design to a different technology (such as CMOS or gate arrays) and then optimize the design for the new technology. The optimization algorithms break a large design into small groups and synthesize each group individually. The tool reads an existing wire file and produces a new wire file containing optimized logic; another tool, Viewgen, lets you use the new file to generate a schematic for a
gate-level simulation. Retargeting does not necessarily produce a one-to-one exchange of cells from one technology to another; the optimization may add or delete cells from the original design in order to optimize performance in the new technology. Version for a Unix host computer, $\$ 30,000$.

Viewlogic Systems, 293 Boston Post Rd W, Marlboro, MA 01752. Phone (508) 480-0881.

Circle No. 354

Object-Oriented DatabaseManagement System

- Provides interactive query facility
- Portability library isolates machine-specific code
Objectstore release 1.1 includes feature and performance enhancements and is available for IBM's RS/6000 under AIX 3.1, for DECstations running Ultrix 4.1, and for other workstations running Unix System V release 4, as well as Sun-3 and SPARCstation computers. New features include an interactive query facility that gives you realtime access to information, and a new portability library that isolates machine-specific code and facilitates the porting of Objectstore to Unixbased and non-Unix-based systems. Performance improvements include local-mode processing in which the client and server run on the same machine; faster short transactions; and a faster collections class library. The new API (application programming interface) is based on C and C++ libraries so that you can use the object-oriented, database management system with a variety of third-party compilers. Depending on the number of seats and sites for which licenses are provided, $\$ 2000$ to $\$ 6000 /$ seat.

Object Design Inc, 1 New England Executive Park, Burlington, MA 01803. Phone (617) 270-9797. FAX (617) 270-3509.

Circle No. 355

Read between the lines.

\squareWhat's new in Motorola's Fast Static lineup? This chart gives you but a glimpse. Mail in the coupon below for our complete quarterly update of new Memory products. We think you'll like our line of thinking.

| MOTOROLA FAST STATIC RAMs | | |
| :---: | :---: | :---: |
| $256 \mathrm{~K} \times 4$ | мсм6229 | 25ns |
| $128 \mathrm{~K} \times 8$ | MCM6226 | 25ns |
| $256 \mathrm{~K} \times 1$ | MCM6207 | 15/20/25ns |
| $64 \mathrm{~K} \times 4$ | MCM6708** | 10/12ns |
| | MCM6709•* (0E) | 10/12ns |
| | MCM6208 | 15/20/25ns |
| | MCM6209 (OE) | 15/20/25ns |
| $32 \mathrm{~K} \times 8$ | MCM6706** | 10/12ns |
| | MCM6206 | 15/17/20/25ns* |
| $32 \mathrm{~K} \times 9$ | MCM6205 | 15/17/20/25ns* |
| $16 \mathrm{~K} \times 4$ | MCM6288 | 10/12/15/20/25ns* |
| $64 \mathrm{~K} \times$ | MCM6290 (OE) | 100/12/15/20/25n5 ${ }^{\circ}$ |
| $64 \mathrm{~K} \times 1$ | MCM6287 | 12/15/20/25n |
| $8 \mathrm{~K} \times 8$ | MCM6264 | 124/15/20/25ns* |
| $8 \mathrm{~K} \times 9$ | MCM6265 | 124/15/20/25ns |
| $4 \mathrm{~K} \times 4$ | MCM6268 | 20/25/35ns* |
| | MCM6269 (CS) | 20/25/35ns |
| | MCM6270 (OE) | 20/25/35ns |
| Synchronous Fast Static RAMs | | |
| $64 \mathrm{~K} \times 4$ | MCM62982* | 12/15ns |
| $4 \times 64 \mathrm{~K} \times 1$ | МСМ62983* | 12/15ns |
| $64 \mathrm{~K} \times 4$ | MCM62980 | 15/20ns |
| $4 \times 64 \mathrm{~K} \times 1$ | MCM62981 | 15/20ns |
| $32 \mathrm{~K} \times 9$ | MCM62950 | 20/25ns |
| | МСМ62960 | 17/20ns |
| | MCM62110 | 15/20ns |
| $16 \mathrm{~K} \times 16$ | MCM62990 | 124/15 $\mathbf{\Delta} / 20 \mathrm{~ns}$ |
| $16 \mathrm{~K} \times 4$ | MCM6294 | 20/25ns |
| | MCM6295 | 25/30ns |
| $4 \mathrm{~K} \times 10$ | MCM62963 | 18/25ns |
| $4 \mathrm{~K} \times 12$ | MCM62973/4 | 18/25ns |
| | MCM62975 | 25/30ns |
| BurstiAMs ${ }^{\text {mm }}$ | | |
| $32 \mathrm{~K} \times 9$ | мсм62940 | 19/24ns |
| $32 \mathrm{~K} \times 9$ | MCM62486 | 14/19ns |
| DSPRAM ${ }^{\text {m }}$ | | |
| $8 \mathrm{~K} \times 24$ | MCM56824 | 20*/25/35ns |
| Latched Fast Static RAMs | | |
| $16 \mathrm{~K} \times 16$ | MCM62995 | 12*/17/20ns |
| $8 \mathrm{~K} \times 20$ | MCM62820 | 17*/23ns |
| Cache Tag RAM Comparators | | |
| $4 \mathrm{~K} \times 4$ | MCM4180 | 18/20ns |
| $4 \mathrm{~K} \times 4$ | MCM62351 | 20/25ns |
| Fast Static RAM Modules | | |
| $256 \mathrm{~K} \times 32$ | мсм322572 | 20/25ns |
| $256 \mathrm{~K} \times 8$ | MCM82562 | 15/20ns |
| $64 \mathrm{~K} \times 32$ | мсм3264z | 15/20ns |
| $2 \times 32 \mathrm{~K} \times 36$ | MCM36322 | 15/20ns |
| | | |
| | | |
| Return this coupon to Motorola, Inc. P.O. Box 1466, Austin, Texas 78767 | | |
| Application R | | |
| Name. | | |
| Tille | | |
| | | |
| | | |
| Addres | | |
| Ciry- State-_ zip | | |
| | | |
| $\llcorner\stackrel{\text { Plone }}{-}-\ldots-\ldots-\ldots-\ldots-\ldots 」$ | | |

3M Improves Moisture Sealing and Insulating Systems

Family of tapes, pads, and tubings, keyed to electrical wiring harness integrity

AUSTIN, Tex. - A variety of 3M moisture sealing techniques have proved to be effective through stringent accelerated life tests and actual automotive application experience.

Moisture seeping into virtually any part of a wire harness can migrate through wire strands in less than an hour. This occurs through capillary action, and atmospheric and temperature changes. Corrosion and galvanic action can severely damage termination points, splices, and connectors.

The 3M family of protective technologies includes:

- EMS - Electrical Moisture Sealant Pads insulate and protect splices from moisture and corrosion. They can be applied after splicing and require no heat.

New Ideas Brochure describes dozens of technologies for solving present and future onvehicle problems.

- EMB - Electrical Moisture Block Pads seal the grommet area wire harnesses against the penetration of moisture with self-adhesive rubber based mastic.
- HST - Heat-Shrinkable Tubing insulates, seals, and provides strain relief for wire splices, in-line components, fusible links and terminals.
The New Ideas Brochure describes and illustrates recent automotive technologies covering moisture sealing, insulating, interconnects with precision overmolding, flexible magnet material and powder and liquid resins. To obtain a copy, contact a 3M Automotive Trades sales representative, or call 1-800-233-3636.

[^16]Austin, TX 78769-2963

Translator For Simulating Data Files

- Converts flat-vector stimulus files to other formats
- Handles high-level constructs found in Mentor Force files Vtran is a program that loads the state/time information of simulation stimulus files and reformats the data for use by any of more than 20 widely used simulators. Version 1.5 adds new simulator interfaces for Cadat, Lasar, VLSI Technology, Toshiba, and Lsim, and new "Format String" features enhance the program's ability to read differently formatted files. You can customize the format descriptors to describe both the input-data format and the output-data format. After loading the data, the program can perform some optional processing on the data before generating the output file. It can change the pin list, pin order, pin timing, and other
parameters; the modifications may affect as many as 1024 pins. Vtran is available for Sun, Apollo, Intergraph, and IBM PC/AT computers. Single-node license, $\$ 3495$.

Source III Inc, 4960 Almaden Expressway, Suite 147, San Jose, CA 95118. Phone (408) 997-2575.

Circle No. 356

Autorouter For High-Speed Printed-Circuit Boards

- Provides table-driven crosstalk controls
- Automatically balances pair routing
Specetra SP50 is an autorouter for the layout of high-speed pc boards. The program lets you construct a table of parallel rules that emulate a curve of gap versus parallel length allowed between two segments; you can use different tables for segments on the same layer and seg-

12 BIT Programmable Pulse Generator

Features:

- 5 ns to 10 ns incremental steps
- Inverted \& non-inverted outputs
- Precise pulse width
- Rising-edge triggered
- 40 pins DIP package
- Low profile

Clifton, New Jersey • (201) 773-2299 • FAX (201) 773-9672

Their way.

Our way.

Here's how to turn a relay
 with $\mathbf{2}$ changeover contacts into one with 4.

The MT4, our new relay with 4 changeover contacts, hardly occupies more board space than the MT2, our relay with 2 changeover contacts.

So if you need 6 twin changeover contacts on your board, simply install an MT2 and an MT4. Two relays of virtually identical size.

And the expensive space you formerly needed for a third MT2 is now free for other important functions.

Plus: less testing, less component cost, less assembly effort, greater reliability.

What more can you want?
(The new MT4: Power consumption at $20^{\circ} \mathrm{C} 300 \mathrm{~mW}$. Temperature range $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Space occupied per contact $12 \mathrm{M}^{2}$.)

I'm interested in the new MT4 relay. Please send me your literature.

Company \qquad

Name \qquad

Address \qquad

Telephone
EDN 6/6/91
Alcatel STR AG
CH-8055 Zurich/Switzerland, Friesenbergstrasse 75
ments on adjacent layers. This feature helps to achieve high routing completion with little or no crosstalk. For very fast dual-polarity ECL circuits, you normally have to route both polarities as a balanced pair and then fix them in place; this autorouter makes such nets subject to ripup and retry during autorouting, while maintaining conformance to all design rules. Delay considerations may require minimum lengths for some nets and maximum lengths for other. You can specify minimum or maximum lengths for individual connection, nets, or net classes, and the autorouter will observe these constraints. The features reduce the amount of manual editing required during layout and correspondingly reduce the total design time. The program runs on the Sun SPARC family of workstations, the IBM RISC 6000 , and the Hewlett-

Packard 9000 series 300 and 400 computers. Depending on host configuration, from $\$ 45,000$.

Cooper \& Chyan Technology Inc, 1601 Saratoga-Sunnyvale Rd, Suite 255, Cupertino, CA 94014. Phone (408) 366-6966. FAX (408) 252-9565.

Circle No. 357

Layout Editor For Standard-Cell Autorouting

- Provides padframe generation and routing
- Performs all angle editing

L-Edit version 3 is an IC-design tool that runs on IBM PCs and compatibles. New features include built-in standard-cell placement and routing; automatic padframe generation; and padframe routing. The editor now allows you to automatically route a standard-cell ASIC, complete with padframe generation and routing, on your PC. Users of

OrCAD, Viewlogic, and Tango systems can use the editor to generate ASICs from their schematic; however, you'll need the Gatesim netlist tool kit and SCMOSscmap to translate and simulate your design in schematic form. When translation and simulation are complete, L-edit uses the standard-cell library SCMOSlib to route the design into a layout-level description. In six to seven weeks, Mosis (Marina del Rey, CA) can fabricate prototypes of chips routed by L-edit for $\$ 500$; several silicon foundries (including Hewlett-Packard, Orbit, and VLSI Technology) can fabricate intermediate and high-volume quantities. L-edit version 3, $\$ 995$; SCMOSscmap and SCMOSlib, \$295 each; Gatesim, $\$ 1295$.

Tanner Research Inc, 444 N Altadena Dr, Pasadena, CA 91107. Phone (818) 795-1696. FAX (818) 795-7937.

Looking to Add TCP/IP Network Access to Your System Designs? Introducing . . .

Now you can incorporate the industry standard TCP/IP protocol suite in your system designs with FUSION Developer's Kit.

Designed for the OEM and systems integrator, FUSION Developer's Kit provides the full TCP/IP protocol suite including TELNET virtual terminal, file transfer protocol (FTP), and R-Commands to name a few.

FUSION Developer's Kit also has a flexible C -source code architecture, making it processor- and operating systemindependent.

Currently used in hundreds of process control, embedded systems, and end user designs, FUSION Developer's Kit from Network Research comes with full support and porting services.

To receive a FUSION Developer's Kit information package, including data sheet, technical specifications and licensing plans call (800) 541-9508 or write to Network Research, 2380 N. Rose Ave., Oxnard, California 93030, FAX (805) 485-8204.

MEASUPEE LEADTIWLSS wh hours, not dars!

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and
free catalog, call toll free: 1-800-344-4539

701 Brooks Avenue South
Thief River Falls, MN 56701
Toll-Free: 800-344-4539, FAX: 218-631-3330

Design Kit For Text-Screen Creation

- TSR program reports row/column coordinates
- Screen-design form lets you draw preliminary sketch
Screen Design Kit is a combination of software and accessories that helps you design and maintain text screens for application programs. You can pop up a TSR (terminate-and-stay-resident) program from within any application in order to see the column/row coordinates and attribute byte of any position on the screen; the report shows foreground and background colors in decimal, binary, programming codes, dBase color codes, and English. A color palette displays all of the available color combinations. These reports help you define the characteristics of your screen design very precisely. The accessories include a pad of 50 screen-design
forms; these forms let you sketch out your design using exact row/ column coordinates; a row/column ruler; a laminated conversion chart showing the ASCII, decimal, hex, octal, and binary codes of every available character or symbol (including box-drawing combinations). $\$ 99.95$.
Butler Computer Systems, Box 5306, Walnut Creek, CA 94596. Phone (415) 256-8401.

Circle No. 358

Interactive Digital Simulator

- Performs functional simulation and timing analysis
- Runs in protected mode on $80386 /$ 486-based systems
Ultisim is an interactive digital simulator that runs in 32 -bit protected mode on $80386 / 486$-based systems with a performance comparable to that of simulators running
on Unix-based workstations. The 28 -state simulator provides save and restore capability, a logic ana-lyzer-like display, and a digital waveform processor. The program comes with model libraries for TTL 54 and 74 series, ECL, CD4000, and PLD devices. The Viewtrace option, developed with Viewlogic Systems (Marlboro, MA), can perform graphical manipulation, Fourier transforms, and analog waveform processing. Three versions are available. Entry System, with a design capacity of 5014 -pin ICs, $\$ 1295$; Advanced System, with a design capacity of 20014 -pin ICs, $\$ 3275$; Professional System, with unlimited design capacity, $\$ 7375$; Viewtrace option, $\$ 1995$.
Ultimate Technology, 1725 Montgomery St, San Francisco, CA 94111. Phone (415) 391-2433. FAX (415) 391-0669. Circle No. 359

We've expanded our line of rugged microcomputers into a full team of products, all built rugged from the ground up. These are full rugged systems, versatile enough for military applications, and tough enough for the harshest environments.

- The KMS-4000 - powerhouse '386 or '486 microcomputer. Direct access to four removable media. Larger $10.4^{\prime \prime}$ EL display. Low MTTR, dependable KMS rugged technology.
- The CP-1932(3)/UYK-rugged PC/AT-compatible micro, praised for performance and reliability during Desert Storm. ' 386 or ' 486 computing power. Internal EL display. Fixed and removable drives. Portable or rack-mount.
- The RCM-1900 - tough 19" color monitor, fits standard rack for rugged graphics anywhere. Brilliant image, resolution to $1,280 \times 1,024$ pixels.

RISC Workstations

- Three models use the PA-RISC processor
- Two models deliver 76 MIPS and 72.2 Specmarks

The 9000 Series 700 consists of three models of workstations that use the company's PA-RISC (Preci-sion-Architecture Reduced-Instruc-tion-Set-Computer) processor. The entry-level desktop Model 720 runs at 50 MHz and delivers 57 MIPS, 55.5 Specmarks, and 17 M flops. The desktop Model 730 and the deskside Model 750 run at 66 MHz and deliver 76 MIPS, 72.2 SPECmarks, and 22 M flops. Both desktop models have 128 k -byte instruction and 256 k -byte data caches and as much as 64 M bytes of RAM with errorcorrection code (ECC). In addition, the desktop models have as much as 840 M bytes of internal disk storage and accommodate 10 G bytes of disk capacity. The desk-side Model 750 has 512 k bytes of cache and as

much as 192 M bytes of ECC RAM. The Model 750 has as much as 2.6 G bytes of internal disk drive and accommodates 40 G bytes of disk capacity. The Model 720 and 730 each have one EISA slot, and the Model 750 has four EISA slots. Model 720 with a 400 M -byte disk, from
$\$ 15,990$; Model 730 with two 400 M byte disks, from \$23,990; Model 750 with 660M-byte disk, from $\$ 39,690$.

Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 360

Image Processor

- Three parallel $25-\mathrm{MHz}$ processors achieve $75-\mathrm{MHz}$ rate
- Averages as many as 256 frames in real time
The DT2867 frame grabber and frame processor on a single 16 -bit ISA bus board contains three parallel $25-\mathrm{MHz}$ processors, each containing its own ALU and multiplier. The combination achieves a $75-\mathrm{MHz}$ pixel-processing speed. Because the board can process three pixels simultaneously, it performs a 3×3 convolution on a 640×480-pixel image in less than $1 / 15 \mathrm{sec}$. The ALUs have 16 -bit accuracy and a 1 M -byte processing buffer, which allows the board to average as many as 256 frames in $1 / 30$ sec. In addition, the processor executes histograms in $1 / 30$ sec and can store as many as four separate histograms. The board digitizes images from video
cameras and VCRs and stores the images in one of two 512 k -byte frame buffers. $\$ 6995$. A Windows 3.0 software package, called Global Lab Image, will be available in September for $\$ 2495$.
Data Translation, 100 Locke Dr, Marlboro, MA 01752. Phone (508) 481-3700.

Circle No. 361

VGA To Video Board

- Converts VGA output to NTSC or PAL video signals
- Runs independent of the host The Tapecaster 8-bit ISA bus board
converts a VGA output signal to either NTSC or PAL video-formatted signals. A hardware design that doesn't require software lets you simultaneously view the data on a VGA-compatible monitor while recording data on a videotape. The board uses crystal-controlled frequency sources, which provide a precise NTSC or PAL output frequency. The board also has a Super VHS output. By converting all VGA modes having a maximum resolution of 640×480 pixels, the board allows VGA video windows and color to be faithfully reproduced. The video quality is limited only by the NTSC and PAL standards. $\$ 750$.

Redlake Corp, 15005 Concord Circle, Morgan Hill, CA 95037. Phone (800) 543-6563; in CA, (408) 779-6464. FAX (408) 778-6256.

Circle No. 362

SUPERCROITEOARSS пом⿻ wic: orcoust

INSULATED WIRES

Insulated 0,1 mm (4 mil) diameter copper wires are routinely used for high wiring densities.

OVERLAY

A cover layer of epoxy glass cloth is used to encapsulate the board and to securely affix the wires in place.
ADHESIVE + UNDERLAY The wires are securely bonded to an adhesive material, and additionally insulated from the format board with underlay pre-preg material.
THROUGH HOLE PLATING Copper plated through holes interconnect each wire both mechanically as well as electrically to inner layer power and ground planes.
INNER LAYER FORMAT
BOARD
Multilayer format board can be used for power and ground sources.

PADS
Electroplated pad configurations are used for surface mount technology.
WIRE CROSSOVER
Polyimide insulated wires
having a dielectric break down voltage greater than 500 VDC permit crossover wiring.
BASIC GRID 2.54 mm (0.1 inch) Basic grid is standard at
2.54 mm (0.100 inch), however, 1.91 mm (0.075 inch) and 1.27 mm (0.050 inch) are also possible.
3 WIRES BETWEEN IC PINS
\& DIAGONAL WIRING Concurrent wire routing can easily accommodate 3 wires between IC pins plus diagonal wiring to minimize crosstalk.
GLASS EPOXY BASE MATERIAL
Base material is an epoxy glass cloth FR-4 material. Plating catalysts are impregnated within the material to insure good platability

Smaller Denser Faster. This is Super Circuit sophistication at its finest, and is a prime reason you should consider SMT combined with Multiwire ${ }^{\circledR}$ Interconnection Technology. In this day of higher density silicon chip integration and higher speeds, circuit boards need to become an active extension of the component. Multiwire Boards $\left(\mathrm{MWB}^{\top}\right)$ are the next logical step. Using uniform 0.1 mm diameter insulated copper wire for signal interconnection, MWB can routinely accommodate super high wiring densities and high signal speeds. This allows transmission line performance characteristics while offering critical wire length and precisely controlled impedance levels. Concurrent Routing, a uniquely developed wiring technique, permits a high degree of design flexibility while achieving enhanced electrical performance, especially where high signal speeds and crosstalk management are critical.

At Hitachi Chemical we offer total, one vendor responsibility to the circuit board industry, and we manufacture 100% of all materials used in our highly complex products. We are the only circuit board manufacturer providing 21 st century products as well as producing the specialized materials to achieve these designs. Our space age interconnection technology provides clear epoxy films for improved insulation resistance, polyimide laminate

Hitachi Chemical Co.,Ltd. boards for high heat characteristics, low dielectric laminate materials to facilitate high speed signal transfer, flexible and rigid-flex MWB, printed circuit boards, ceramic boards and multilayer boards. So if you need super technology for your applications, turn to Hitachi Chemical, the pioneer of Super Circuit Boards and all of the materials that make them so super!

Hitachi Chemical Electro-Products, Inc.

1800 West Park Drive Suite 305 Westborough, MA 0158 (508) $366-4092$

4141 Blue Lake Cir Suite 217 Dallas, TX 75234 (214) $960-9675$

34500 Grand River Ave Farmington Hills, MI 48024 (313) 477-2290

2102 Business Center Dr. Suite 130 Irvine, CA 92715 (714) 253-5790

80486 EISA Computers

- Contain $4 M$ bytes of RAM expandable to $32 M$ bytes
- Have one 8-bit ISA and seven EISA slots in AMI's BIOS
The ME 486-EISA/25 and ME 486EISA/33 are EISA bus computers containing $25-$ and $33-\mathrm{MHz} 80486$ $\mu \mathrm{Ps}$, respectively. Standard configurations include 4 M bytes of

RAM; 128k bytes of external cache RAM; an extended VGA card and a color monitor capable of $1024 \times$ 768 -pixel resolution with 256 colors; a 150M-byte ESDI hard-disk drive; an EISA disk controller with cache; 1.44 M -byte, $3^{1 / 2}-\mathrm{in}$. and 1.2 M -byte, $5^{1 / 4}$-in. floppy-disk drives; one parallel and two serial ports; either DOS 3.3 or DOS 4.01; and a choice of three keyboards. You can expand the memory on the mother board, in 4M-byte increments, to a maximum of 32 M bytes. The RAM chips have $70-\mathrm{nsec}$ access times and are arranged in a page mode for zero-wait-state operation. The computers use an AMI BIOS and have one 8-bit and seven EISA expansion slots. ME 486-EISA/25, \$4999; ME 486-EISA/33, \$5499.

Micro Express, 1801 Carnegie Ave, Santa Ana, CA 92705. Phone (714) 852-1400. FAX (714) 852-1225.

Circle No. 363

80386SX Single-Board Computer

- Executes IBM PC-compatible software on the VMEbus
- Runs at 20 MHz and has $1 M$, $4 M$, or $8 M$ bytes of RAM
The XVME-686 PC/AT singleboard computer (SBC) for the VMEbus uses a $20-\mathrm{MHz}$ 80386SX $\mu \mathrm{P}$ and $1 \mathrm{M}, 4 \mathrm{M}$, or 8 M bytes of RAM. It executes IBM PC-compatible software. Its operating temperature ranges from 0 to $65^{\circ} \mathrm{C}$. The board contains both a VMEbus and an ISA bus hardware interface; an IDE hard-disk controller; a controller for two floppy disks; a 16 -bit VGA graphics controller; a socket for an 80387SX coprocessor; two serial ports; a Centronics parallel port; and a watchdog timer. Other features include VMEbus Slot 1 functions and a VME interrupter and interrupt handler. The board can access the short I/O, standard,

$$
\begin{aligned}
& \text { When customers } \\
& \text { ask how I gotso many } \\
& \text { connectors } \\
& \text { delivered so fast, } \\
& \text { I tell themI have } \\
& \text { connections. }
\end{aligned}
$$

COMPUTERS \& PERIPHERALS

or extended address space. The hardware byte-swapping feature handles byte-ordering differences between conventional VMEbus 680xx CPUs and the 80386SX μ P. From $\$ 3500$.
Xycom Inc, 750 N Maple Rd, Saline, MI 48176. Phone (800) 3677300; in MI, (313) 429-4971. FAX (313) 429-1010. Circle No. 364

Graphics Controller Board

- Uses TMS34020 chip and displays 1024×1024 pixels
- Provides from 15.7 to 63 kHz

The VCF-V graphics controller board for the VMEbus uses TI's TMS34020 graphics chip to display 1024×1024 pixels; the display has a depth of 8 bits. The 6 U board also provides an overlay of 1024×1024 pixels having a depth of 4 bits. The number of addressable pixels is expandable to 2048×2048 pixels,

which can produce multiple-page displays. A write-mask register write protects individual bit planes. You can expand the standard display memory from 1 M to 8 M bytes, and you can opt for a TMS34082 floating-point unit. Both the graphics chip and the host processor have access to the dual-port video RAM, which the board uses for display memory. The board also handles interrupts from the host, an onboard

SCSI controller, and a serial I/O port. $\$ 1900$.

Peritek Corp, 5550 Redwood Rd, Oakland, CA 94619. Phone (415) 531-6500. FAX (415) 530-8563.

Circle No. 365

DSP Evaluation Module

- Operates as fast as 40 MHz for TI's TMS320C51 chip
- Lets you develop, debug, and benchmark algorithms
The EVM320C5X DSP evaluation module for TI's TMS320C51 chip operates at 40 MHz and executes 20 MIPS. It has 16 k bytes of zero-wait-state RAM for data and for programs, respectively. Both RAMs are expandable to 64 k bytes. A 96-pin DIN expansion connector provides access to all of the DSP signals. The connector is an interface to a series of companion modules that aids hardware and soft-

ware development. One companion module contains TI's TLC3204X analog interface circuit. In addition, a prototype module lets you develop custom circuitry. The stand-alone evaluation module communicates with an IBM PC-compatible symbolic debugger via an RS-232C port. The PC must have either a

286 or a $386 \mu \mathrm{P}, 512 \mathrm{k}$ bytes of available RAM, a hard-disk drive, a $5^{1 / 4}$ in. floppy-disk drive, a color-monitor adapter, and either PC- or MSDOS 3.0 or higher. \$1495.
Spectrum Digital Inc, Box 1559, Sugar Land, TX 77487. Phone (713) 561-6952. FAX (713) 561-6037.

Circle No. 366

Graphics Controller Board

- Uses a TI TMS34020 chip to draw $4 M$ pixels/sec
- Meets Mil-Specs for military applications
The PMV 68 GDP-1 VMEbus graphics controller board meets Mil-Specs for shipboard, ground mobile, and airborne applications. It uses TI's TMS34020 chip to draw 4M pixels/sec, and it generates fill patterns and vectors. The board comes with as much as 3 M bytes of dual-port video RAM for display memory. An additional 1M byte of dual-ported RAM provides the interface between the VMEbus and the TMS34020 chip. The board can display either 768×574 or $1280 \times$ 1024 pixels. An 8-bit-deep display buffer provides 256 simultaneous colors from a palette of 16.7 M colors. The board also accepts com-posite-video signals from an external source, such as an FLIR sensor, to overlay the signals on its local graphics and display the superimposed image. $\$ 6920$. Delivery, eight weeks ARO.

Radstone Technology Corp, 20 Craig Rd, Montvale, NJ 07645. Phone (800) 368-2738; in NJ, (201) 391-2700.

Circle No. 367

DSP Boards

- Use TI TMS320C50 or TMS320C51 DSP chip
- Have $16 k \times 16$-bit $R A M$

The TMS320C50 system and processor boards are DSP boards for the 16 -bit ISA bus; they use either a 40 MHz TMS320C50 or TMS320C51 DSP chip. The boards contain a $16 \mathrm{k} \times 16$-bit program and a $16 \mathrm{k} \times 16$ -

GREATER WORLD CLASS POWER FROM OUR NEW GLOBAL CONNECTIONS

The recent alliance of Elco and AVX with Kyocera forms a solid business relationship that gives us even stronger connections to today's exciting world of technology.
These connections strengthen our own high quality standards and link us to new sources of innovation throughout the world.

Together we combine our talents, energies, and experience to provide you with an ever-expanding line of advanced connector products of unsurpassed value. These new connections also contribute to a fresh spirit of efficient service and delivery and assure you of timely response to your everevolving needs.

From a new source of energy emerges a powerful new Elco.

Elco Elco Corporation

A Kyocera Group Company

World Class Connections

U.S.A. 814 643-0700 (FAX 814 643-0426) Germany 49-2741-2990 (FAX 49-2741-299299) U.K. 44-638-664514 (FAX 44-638-661233)

Japan 81-45-543-7185 (FAX 81-45-545-1499)
Korea 82-2-868-0147 (FAX 82-2-868-6600)
Singapore 65-353-8312 (FAX 65-353-8315)

Copyright 1990, Elco Corporation.
All rights reserved
bit data RAM. Both RAMs are expandable to $64 \mathrm{k} \times 16$ bits. The system board comes with dual onboard 16-bit sigma-delta A / D and D / A converters for analog I/O. Both boards have a prototyping area that lets you build custom interfaces or peripheral circuits. The company's DSP-Link expansion interface is a

Power Supplies for Europe. Must Meet IEC 555-2.

Pioneer Magnetics has been shipping them to OEMs worldwide for more than two years! For applications that include computer mainframes, desktops, peripherals, process control, telecom and ATE.
They feature built-in active >. 99 Power Factor Correction and a harmonic current content less than 5%. They meet the proposed IEC 555-2, all applicable international safety and EMC standards, and they are available from 250 to 2000 watts, in single or multiple out-
puts. What's more, before any Pioneer supply is shipped, it's 100% tested with a 48 -hour burn-in - your assurance of high reliability and trouble free service.

So why take a chance on having your products shut out of Europe after 1992, and possibly domestically, too? And why run the risk of stretchedout deliveries?

Reward yourself with power supplies that carry worldwide approval........... Call Pioneer Magnetics at 800-233-1745.
Magnetics at 800-233-1745.

50 -pin connector that permits highspeed 16 -bit parallel data transfers. Both boards contain TI's test bus controller chip, which enables JTAG (Joint Test Action Group) boundary scanning. System board, $\$ 3495$; processor board, $\$ 2495$.

Spectrum Signal Processing Inc, Suite 301, 3700 Gilmore Way, Burnaby, BC Canada V5G 4M1. Phone (604) 438-7266. FAX (604) 438-3046.

Motor Controllers

- Let a host control as many as 31 motors on a network
- Host communicates with multiple drives over an RS-485 link
The TR Node peripheral board controls a servo or variable speed motor. As many as 31 boards operate as nodes on a TR Network that uses a host computer for intelligence. The host computer runs a motioncontrol program to communicate with the nodes over an RS-485 serial link at a user-selectable rate of 115.2 or 38.4 k baud. Each node on the TR network responds to a move-on-demand command set. Each node can interpolate points on a motion profile and synchronize the motor's speed and position to other motors on the network. The 3.94×3-in. control boards accept TTL inputs from an incremental encoder either as a stream of pulses or as quadrature signals. Board and L-bracket mount, \$371 (100).

Teknic Inc, 214 Andrews St, Rochester, NY 14604. Phone (716) 546-3212.

Circle No. 369

A question for designers who aren't yet using high-performance μ PLDs.

Ever feel like your system designs aren't quite up to speed, so to speak? It's probably not your fault. Because PLDs have typically forced designers to sacrifice performance to achieve higher integration.

| PLD Performance | |
| :--- | :--- |
| PLD | tpD* |
| Intel 85C060 | 10 ns |
| PALCEE10 | 15ns |
| 20RA10 | 15ns |
| EP610 | 16 ns |
| Intel 85C090 | 15 ns |
| EP910 | 33ns |
| "Propagation Delay | |

But not any more.
Now, with Intel's μ PLD family of programmable logic devices, you can finally achieve the higher integration you need-with the low total propagation delay you want.

In fact, with $t_{\text {pD }}$ figures as low as 10ns, Intel's 16-macrocell 85C060
and 24-macrocell 85C090 are, without question, the fastest integrated PLDs in the industry.

So what are you waiting for? Call (800) 548-4725 and ask for Literature Packet \#IA81.

We'll send you everything you need to know about how to improve system performance. Without delay.

NEW PRODUCTS

COMPONENTS \& POWER SUPPLIES

Slide Switches

- Rated for 4 A
- Available in single- and double-pole versions
L Series miniature slide switches feature an all-enclosed plastic construction. Power-rated models are UL recognized and CSA certified, and have ratings ranging to 4 A at 125 V ac. The line also includes versions that are designed for low-level switching applications. Single- and double-pole versions are available in 2 -, 3 -, and 4 -switch configurations. Housing material is $6 / 6$ nylon, which has a $94 \mathrm{~V}-2$ UL rating. The switches feature a built-in positivedetent mechanism. They're available with gold-plated contacts for low-level switching applications and with silver-plated contacts for power service. Electrical life measures 10,000 make-break cycles at full load. Insulation and dielectric

strength equal $10^{9} \Omega \mathrm{~min}$ and 1000 V rms, respectively. Single-pole models, $\$ 0.52$; double-pole versions, $\$ 0.74$ (1000).

C\&K Components Inc, 15 Riverdale Ave, Newton, MA 02158. Phone (617) 964-6400.

Circle No. 370

VMEbus Backplane

- Accommodates $100-\mathrm{MHz}$ system speeds
- Utilizes 11-layer construction This J1 backplane is designed to support 16 -bit implementations in VMEbus applications. The device can accommodate $100-\mathrm{MHz}$ system operating speeds. Although the unit

has only a 3 U height, it features all the capabilities normally found on a 6 U monolithic backplane. It utilizes 11-layer stripline construction and is designed to be fully back-ward-compatible with existing VME backplane designs. The device is also fully compliant VMEbus specification IEEE P1014, draft 3.0, revision D. $\$ 590$.

Bicc-Vero Electronics Inc, 1000 Sherman Ave, Hamden, CT 06514. Phone (203) 288-8001. FAX (203) 287-0062.

Circle No. 371

Servoamplifier

- Develops a ± 12 A at $\pm 75 \mathrm{~V}$ peak output
- Has 95\% efficiency

The Model 303 PWM servoamplifier is designed for fractional horsepower motion-control applications. It operates from a single-polarity supply (16 to 80 V) and develops a 4 -quadrant continuous output of
$\pm 6 \mathrm{~A}$ at 75 V ; for applications involving fast motor acceleration, the unit can develop a peak output of $\pm 12 \mathrm{~A}$. The amplifier's $22-\mathrm{kHz}$ switching frequency puts motorhum noise beyond the human hearing range. The $3-\mathrm{kHz}$ bandwidth maximizes servo accuracy, and the 95\% efficiency simplifies cooling requirements and expands mounting options. The amplifier features a user-configurable gain-bandwidth response; users can tailor the response with a single resistor. The unit can function as a current or voltage source. Measuring $6.7 \times$ $4 \times 1.1 \mathrm{in}$., the amplifier can be mounted on pe boards, on equipment bulkheads, or edgewise in bookshelf fashion. The device is also compatible with Eurocard assembly requirements. $\$ 275$.

Copley Controls Corp, 410 University Ave, Westwood, MA 02090. Phone (617) 329-8200. FAX (617) 329-4055.

Circle No. 372

Universal 85-270v Input AC/DC Power Supplies

4.5 wait

SRW-45

| | Model No. | Output 1 | Output 2 | Output 3 | Output 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \hline \end{aligned}$ | SRW-45-4001 | +5V@5A | -5V@2A | +12V@0.7A | -12V@0.7A |
| | SRW-45-4002 | +5V@5A | -5V@2A | +15V@0.7A | -15V@0.7A |
| | SRW-45-4003 | +5V@5A | +24V@1A | +12V@0.7A | -12V@0.7A |
| | SRW-45-4004 | +5V@5A | +24V@1A | +15V@0.7A | -15V@0.7A |
| | SRW-45-4005 | +5V@5A | +24V@1A | -12V@0.7A | -5V@0.7A |
| | SRW-45-3001 | +5V@5A | +12V@3A | | -12V@0.7A |
| | SRW-45-3002 | +5V65 | +15V@2A | | -15V@0.7A |
| | SRW-45-3003 | +5V@5A | +24V@1.5A | | -12V@0.7A |
| $\stackrel{0}{3}$ | SRW-45-2001 | +5V@5A | +12V@3A | | |
| | SRW-45-2002 | +5V@5A | -5V@A | | |
| | SRW-45-2003 | +5V@5A | +24V@1.5A | | |
| | SRW-45-2004 | +12V@3A | -12V@2A | | |
| | SRW-45-2005 | +15V@2.5A | -15V@2A | | |
| $\begin{aligned} & \text { M } \\ & \text { U } \\ & \text { 䛒 } \end{aligned}$ | SRW-45-1001 | +5V@9A | | | |
| | SRW-45-1002 | +12V@3.75A | | | |
| | SRW-45-1003 | +15V@3A | | | |
| | SRW-45-1004 | +24V@1.9A | | | |

| | Model No. | Output 1 | Output 2 | Output 3 | Output 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { no } \\ & \text { à } \end{aligned}$ | SRW-65-4001 SRW-65-4002 SRW-65-4003 SRW-65-4004 SRW-65-4005 SRW-65-4006 SRW-65-4006 | +5V@5A
 +5 V @ 5 A
 $+5 \mathrm{~V} @ 5 \mathrm{~A}$
 $+5 \mathrm{~V} @ 5 \mathrm{~A}$
 +5V@5A | | +12V@2A
 $+12 \mathrm{~V} @ 2 \mathrm{~A}$
 $+12 \mathrm{~V} @ 2 \mathrm{~A}$
 +15 V @ 2 A
 +12V@2A
 +15V@2A | |
| $\begin{aligned} & \stackrel{\sim}{4} \\ & \frac{\underline{1}}{\bar{x}} \end{aligned}$ | SRW-65-3001 SRWW-650002 SRW-65-3003 SRW-65-3004 SRW-65-3005 | $+5 \mathrm{~V} @ 5 \mathrm{~A}$
 +5 V @ 7 A
 +5V@7A
 +5 V @ A
 +5V@5A | $\begin{array}{r} .5 \mathrm{~V} \text { (4A } \\ .5 \mathrm{C} 4 \mathrm{~A} \\ \hline \end{array}$ | $\begin{aligned} & \hline+12 V @ 3 A \\ & +12 V @ 2 A \\ & +15 V @ 2 A \\ & +12 V @ 2 A \\ & +24 V @ 1 \\ & \hline \end{aligned}$ | -12V@1A
 12V@2A
 15V@2A |
| $\begin{aligned} & \stackrel{a}{\overrightarrow{3}} \\ & \text { an } \end{aligned}$ | SRW-65-2001
 SRW-65-2002
 SRW-65-2003
 SRW-65-2004
 SRW-65-2005 | $\begin{aligned} & +5 V @ 7 A \\ & +5 V @ A A \\ & +12 V @ 3 A \\ & +15 V @ A .5 A \\ & +\quad+5 V @ A A \\ & + \end{aligned}$ | | +12 V @ 3 A +24 V @ 1.5 A | $\begin{gathered} -5 \mathrm{~V} @ 5 \mathrm{~A} \\ -12 \mathrm{~V} @ 2.5 \mathrm{~A} \\ -15 \mathrm{~V} \text { QAA } \end{gathered}$ |
| | $\begin{aligned} & \text { SRW-65-1001 } \\ & \text { SRWW.65-1002 } \\ & \text { SRWW65-1003 } \\ & \text { SRW-65-1004 } \end{aligned}$ | $+5 V @ 13 A$ $+12 V @ 5.4 \mathrm{~A}$ $+15 V @ 4.3 A$ $+24 V @ 27 A$ +24 V @.7 | | | |

115 wath

SRW-115

| | Model No. | Output 1 | Output 2 | Output 3 | Output 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | SRW-115-4001 | +5V@12A | -5V@4A | +12V@4A (6Apk) +12 @4A (6 Apk) ${ }_{(4 \mathrm{Aok})}^{+15 \mathrm{C}}$ $+15 \mathrm{~V} @ 3 \mathrm{~A}$ (4Apk)$+24 \mathrm{~V} @ 3 \mathrm{~A}$$\qquad$ | -12V@2A |
| | SRW-115-4002 | +5V@12A | +24V@1A | | -12V@2A |
| | SRW-115-4003 | +5V@12A | -5V@4 | | -15V@2A |
| | SRW-115-4004 | +5V@12A | +24V@1A | | -15V@2A |
| | SRW-115-4005 | +5V@12A | +12V@1A | | -12V@1A |
| | SRW-115-3001 | +5V@12A | | +12 | -12V@2A |
| | SRW-115-3002 | +5V@12A | | +15V@4A (6Apk) | -15V@2A |
| $\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & 0 . \end{aligned}$ | SRW-115-2001 SRW-115-2002 SRW-115-2003 | $\begin{array}{r} +5 \mathrm{~F} @ 12 \mathrm{~A} \\ +12 \mathrm{~V} @ 5 \mathrm{~A} \end{array}$ $+15 \mathrm{~V} @ 5 A$ | | +24V@3A | $\begin{aligned} & \text {-12V@5A } \\ & \text {-15V@5A } \end{aligned}$ |

Reserve your evaluation units or get additional information on our ready-to-ship universal input switchers.

Fax: (609) 895-1738

Fiber-Optic Jumpers

- Available in 3-km lengths
- Have a 0.2-dB insertion loss

These fiber-optic duplex jumpers are designed to fit the company's Escon-compatible transmitter-receiver shell assembly. The units are available in lengths ranging from 3 to 3000 m . The terminating connectors have a retractable shroud that provides additional ferrule protection and eases access for cleaning. A typical duplex jumper has a mean insertion loss of 0.2 dB with a standard deviation of 0.09 dB . The
jumpers use a cable that features fibers with $62.5-\mu \mathrm{m}$ cores. The units are designed to withstand pull forces of approximately 67 lbs . 3 m jumpers, $\$ 250$ (1000).

Siemens Fiber Optic Components, 3846-A First Ave, Evansville, IN 47710. Phone (800) 8273334; in IN, (812) 422-2322. FAX (812) 422-2339. Circle No. 373

Bandpass Filter

- Has 4-MHz bandwidth
- Operates over 6 octaves

The Model APS-204 bandpass filter has a constant $4-\mathrm{MHz}$ bandwidth and features continuous electronic tuning over the six octaves from 20 to 1000 MHz . The unit is an active filter and has no insertion loss. The device uses a 4-pole resonant cavity filter, which has a Q of 325 , to maintain the passband width at 4 MHz , regardless of center frequency. The

filter operates on 12 V dc for mobile convenience and consumes just 6 W . It is housed in an aluminum case, which includes an on-off switch and a 10-turn potentiometer for selecting the center frequency. Noise figure equals 10 dB max, and the third-order intercept is specified at 15 dB typ. $\$ 995$.

Optoelectronics Inc, 5821 NE 14th Ave, Fort Lauderdale, FL 33334. Phone (800) 327-5912; in FL, (305) 771-2050. FAX (305) 771-2052.

Circle No. 374

Wéve Made A Big Change In

Introducing The MD-11.

You'll now notice a difference in American's service from San Jose to Tokyo. It's called the MD-11. A roomy new aircraft specifically designed for long-range flights. American will still offer the only nonstop service to Tokyo from the San Jose/Silicon Valley area. We'll continue to offer nonstops to Tokyo from Dallas/Fort Worth as well. And, along the way, you'll still enjoy our

[^17]
Optical Encoders

- Designed for price-sensitive applications
- Feature a GaAlAs light source Containing only a light source and integral sensor, MOD900 and MOD910 Series optical encoders are designed for highly price-sensitive applications. The units utilize a collimated GaAlAs LED light source and a sensing element that consists of an integrated photodiode-a phased-array optical IC. The encoder requires no interrupter masks normally associated with optical en-coders-disk resolution is duplicated in diode-array format on the optical IC. Features include resolutions of $200,500,512,1000$, and 1024 pulses/revolution and a 100 kHz frequency response. Operating range spans -40 to $+80^{\circ} \mathrm{C}$, and MBTF exceeds 100,000 hours. Encoder outputs are TTL and CMOS compatible. An index output is
available as an option. $\$ 15$ (OEM qty).

BEI Motion Systems Co, 1755-B La Costa Meadows Dr, San Marcos, CA 92069. Phone (619) 471-2600. FAX (619) 471-2675.

Circle No. 375

Snap-Acting Switches

- Operate with 15 g force
- Rated for 5A

TF-CC and CD Series precision snap-acting switches operate with forces as low as 15 g . Designed to meet UL, CSA, and VDE requirements, the units are available in spst and spdt models that are rated to switch 1 , 3 , or 5 A. Units are available with a variety of actuators including standard-pin plungers, wide-pin plungers, levers, lever rollers, and simulated rollers. Termination options include a choice of solder terminals, standard quick-

connect, offset quick-connect, screw terminals, and pc-board terminals. From $\$ 1$ (OEM qty). Delivery, eight weeks ARO.

Unimax, Box 152, Wallingford, CT 06492. Phone (203) 269-8701.

Circle No. 376

DC/DC Converters

- Have $200 W$ output
- Meet military temperature-operating-range requirements MFL Series de/dc converters provide a 200 W output-power capabil-

Our San Jose -Tokyo Service.

award-winning International Flagship Service ${ }^{\oplus}$. In fact, the only change you'll see is in the plane we're flying. * We invite you to experience the MD-11 for yourself. For information or reservations, call your Travel Agent or American Airlines at 1-800-624-6262.

Simplicity of design makes Maxtor's Cheyenne Series inch-high 80 MB 7080 disk drive the most reliable in its class. Compare Maxtor's four-head, two-platter design to Seagate's six-head, three-platter design. Fewer moving parts make Maxtor's drives inherently more dependable.
Power consumption is a very low 2.8 watts, making it one of the lowest in the 80 MB class. The 7080 is also Novell Labs certified, and is available with either SCSI or AT interface, giving you flexibility for a winning system.
Exceptionally fast 17 ms seek time and 32 K cache buffer in the new generation inch-high form factor give Maxtor faster data throughput than the competition.
Call and ask about our entire Cheyenne family of disk drives with capacities from 40 MB to 130 MB . Don't fall for the off-the-wall claims. Give us a shot and we'll prove Maxtor specs can't be matched. Call your nearest Authorized Maxtor Distributor.

| 3.5-inch Disk
 Drive Spec. | Maxtor
 $\mathbf{7 0 8 0}$ | Seagate
 1102 A |
| :--- | :---: | :---: |
| Seek Time | $\mathbf{1 7} \mathbf{~ M s e c .}$ | 19 Msec. |
| Standard Buffer Size | $\mathbf{3 2 K}$ | 8 K |
| Form Factor | $\mathbf{3 . 5} \mathbf{5} \times \mathbf{1}^{\prime \prime}$ | $3.5^{\prime \prime} \times 1.6^{\prime \prime}$ |
| Heads-Disks | $\mathbf{4 / 2}$ | $6 / 3$ |
| Avg. Power Consumption | $\mathbf{2 . 8}$ watts | 9 watts |

We Drive Harder.
 Maptor

Call

 Your Authorized Maxtor Distributors
A.D.P.I.

1-800-275-2374
301-258-2744
Anthem Electronics
408-452-2287
Arrow Commercial Systems Group
1-800-323-4373
Arrow/Klerulff
1-800-777-2776
Avnet Computer
1-800-422-7070
B.S.M/Business Solutions in Micro

1-800-888-3475
214-699-8300
Cal Abco
818-704-9100
800-669-2226
Compac Micro Electronics
1-800-426-6722
415-656-2244
Computer Brokers of Canada
416-660-1616
1-800-663-0042
1-800-361-6415
CPC
714-757-0505
800-582-0505
Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747
Firstop Computer
1-800-832-4322
Future Electronics
514-694-7710

Intelect

011-525-255-5325
Marshall Industries
1-800-522-0084
Microware Distributors
1-800-777-2589
503-646-4492
Mini-Micro Supply Co.
408-456-9500
1-800-628-3656
Pioneer Standard Electronics
1-800-874-6633
Pioneer Technologies
1-800-227-1693
S.E.D.

1-800-444-8962
404-491-8962
Tech Data
1-800-237-8931
813-539-7429
Technology Factory
1-800-848-2073
1-800-227-4712
U.S. Computer

305-477-2288
Wyle Laboratories
1-800-289-9953
ity in a true military/aerospace grade device. The parts meet the -55 to $+125^{\circ} \mathrm{C}$ military operatingrange requirement and are designed to pass constant acceleration, random vibration, thermal shock, and extended high-temperature life tests. The converters operate with either 28 or 270 V inputs and provide outputs of $5,12,15$, $28, \pm 12$, or $\pm 15 \mathrm{~V}$ at power levels ranging to $65 \mathrm{~W} / \mathrm{unit}$. As many as three converters can operate in a current-sharing mode. Other converter parameters include an 85% typical efficiency, $50-\mathrm{dB}-\mathrm{max}$ audio rejection, and $15-\mathrm{mV}$ line and load regulation figures. Operating with no external components, the converters meet MIL-STD-461C CS01 and CS02 susceptibility requirements. Operating with companion EMI filters, the converters meet MIL-STD-461C CE03 emission limits. $\$ 690$ (100).

Interpoint Corp, Box 97005, Redmond, WA 98073. Phone (206) 882-3100. FAX (206) 882-1990.

Circle No. 377

Surface-Mount Sockets

- Available with tin- or gold-plated contacts

- Feature gull-wing terminals

Diplomate surface-mount DIP sockets are available in dual- and singleleaf versions. They feature gullwing solder tails and high-tempera-ture-tolerant insulators that can withstand vapor-phase-reflow and infrared-soldering temperatures. Dual-leaf versions feature facewiping contacts with either tin or
gold plating over phosphor bronze. The insulators have a closed-bottom design to prevent solder wicking. Single-leaf sockets come with tinplated phosphor bronze or beryllium copper contacts. These devices also resist wicking and bridging and have a closed-top design to prevent contact damage. The dual-leaf sockets are available in 16- or 32 -position versions; single-leaf units have 28 positions. $\$ 1.45$ (1000) for the 28 position unit.

AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752.

Circle No. 378

Latching Solenoid

- Requires no power to remain pulled in
- Operates from a single supply The M82 solenoid can pull in and latch when power is applied to the coil. A magnet then holds the plunger in the closed position after the power is removed. The unit can operate with only a 50 - to $100-\mathrm{msec}$ pulse of power. Once closed, the unit can withstand a force of 76 to 160 oz . A short-duration 1 W pulse, applied in reverse polarity, will cancel the permanent magnetic field and release the plunger. The solenoid operates with a supply of 12 , 24 , or 110 V dc. The continuous standard power rating is 7 W , and the intermittent-duty power rating is $20 \mathrm{~W} . \$ 13$. Delivery, six to eight weeks ARO.

Liberty Controls Inc, 500 Brookforest Ave, Shorewood, IL 60435. Phone (815) 725-2241. FAX (815) 725-6571. Circle No. 379

Connector Kits

- Evaluate epoxyless optical connectors
- Available for single- and multimode fibers
EK100X kits allow users to evaluate XTC Series epoxyless fiberoptic connectors. Each kit contains 25 connectors, a specially designed
crimp tool, a sapphire scribe, and easy-to-follow instructions in a handy carrying case. The kits are available for single- and multimode ($50 / 125$ and $62.5 / 125 \mu \mathrm{~m}$) fibers. The $2.5-\mathrm{mm}$ connectors in the kit are functionally form- and fit-compatible with the popular ST connector. When terminating a single-mode fiber, the connector demonstrates a $0.16-\mathrm{dB}$ insertion loss over an operating range of -40 to $+65^{\circ} \mathrm{C}$. EK1001 multimode kit, \$444; EK1000 single-mode version, $\$ 520$.

Ofti, 2 Lyberty Way, Westford, MA 01886. Phone (508) 692-6606.

Circle No. 380

Prototyping Converter

Power488
-16-bit 1 MHz IEEE 488.2 board
-40 digital I/O lines

- 5 counter/timers
- Driver488 3.0 software

Personal488
$\bullet 8$-bit IEEE 488.2 board
-PC/AT \& PS/2 Micro Channel versions - Driver488 3.0 software

Driver488 3.0

-Easy-to-use HP-style IEEE commands
-High-speed DMA and interrupt I/O -SRQ event handling
-Comprehensive COM port support
-Compatible with over 20 languages \bullet UNIX \& OEM drivers available

ADC488

- 16 channel, 16 -bit 100 kHz A/D input - IEEE 488 programmable

DAC488

- 4 channel, 12 -bit D/A output - IEEE 488 programmable

Digital488

- 80 channel digital I/O
- IEEE 488 programmable

Call or send for your free 1991
technical guide to these and other IEEE 488 products.

IOtech, Inc. • 25971 Cannon Road Cleveland, Ohio 44146 TEL: (216) 439-4091 • FAX: (216) 439-4093
and 144-pin hinged-lid, ZIF plastic quad flatpack (PQFP) sockets and converts the footprints to a standard 100 -mil matrix. You can then mount the converter assembly on standard prototyping boards. The female pins on the top of the converter accept the socket, allowing for easy insertion and removal with no need for soldering. The converter can remain in place on the prototyping board; when any changes are necessary, you simply unplug the socket and replace it with whatever is required for the task at hand. Two converter sizes are available. The minimum-footprint version is only slightly larger than the size of the PQFP socket. The test-pin unit has two rows of test posts/side to facilitate signal monitoring. \$166.

EDI Corp, Box 366, Patterson, CA 95363. Phone (209) 892-3270.

Circle No. 381

THE PICTURE IS PERFECTLY CLEAR!

PILLAR/Cycle-Dyne can reduce your CRT production costs.

Four Induction Heating processes that can improve productivity and product quality in the manufacturing of Cathode Ray Tubes:

- Getter Flashing
- Outgassing
- Shrink Band Heating
- Stud Welding

Contact the people where American Technology is at its best.
N92 W15800 Megal Drive
Menomonee Falls, WI 53051
414-255-6470 FAX: 414-255-0359
Tr PILLAR /crceZTme

HAWKER

FOR:
 MEDICAL INDUSTRIAL HVAC

Sensym's 142/163 Series

Features Include:

- Guaranteed precision over temperature: $\pm 1 \%$ Max $\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+63^{\circ} \mathrm{C}\right)$!
- High level calibrated output: $1.0 \mathrm{~V} \pm 50 \mathrm{mV}$ offset $5.0 \mathrm{~V} \pm 50 \mathrm{mV}$ span
Linearity: <0.75\% FSO Max
These precision transducers are priced starting at $\$ 40$ eal 100's. Stock delivery.

Available parts:

163SC01D48 ... - 20 to
$+120 \mathrm{cmH}_{2} \mathrm{O}$
142SC series .. 0 to 1 psi up to 0 to 150 psi

Free Handbook

Sensym's new 1990 Sensor Handbook gives complete product specifications plus over 200 pages of application notes and ideas.

Call or fax us today for your free Sensor Handbook.

INTEGRATED CIRCUITS

14-Bit Hybrid ADC

- Contains T/H circuit
- Conversion speed is 5 MHz

Packaged in a hermetic 40-pin TDIP, the ADC-00145 contains a 14 -bit A/D converter, a 200 -nsec track/hold circuit, 3 -state output buffers, and timing circuits. Capable of converting at a $5-\mathrm{MHz}$ rate, the device uses a 2 -step conversion algorithm. A pulse input to the en-code-command pin initiates the conversion cycle. After the T/H circuit samples and stores the analog input, a flash ADC generates a coarse encode of the sampled voltage and stores its 8 bits in the MSB register. At the same time, a high-speed DAC converts the 8 bits to an analog voltage, which is subtracted from the original input. The flash ADC then generates a fine encode of the subtracted voltage and stores

these 8 bits in the LSB register. Digital error correction combines the coarse and fine data to yield a 14 -bit output. The ADC-00145 operates over -55 to $125^{\circ} \mathrm{C}$. From
$\$ 1200$. Delivery, 8 to 12 weeks ARO.
ILC Data Device Corp, 105 Wilbur Pl, Bohemia, NY 11716. Phone (516) 567-5600, ext 419. FAX (516) 567-7358. Circle No. 382

High-Speed S/H Amplifier

- Delivers 16-bit accuracy
- Acquisition time is 500 nsec

The SHM-945 is a high-speed S/H amplifier characterized for both 16bit and 14 -bit applications. At 16 -bit resolution, the hybrid circuit features a maximum acquisition time of 500 nsec to $\pm 0.00076 \% ~(\pm 1 / 2$ LSB) for a 10 V full-scale step. At 14-bits, the device has a maximum acquisition time of 350 nsec to $\pm 0.003 \%$ ($\pm 1 / 2$ LSB). The amplifier features a differential input, which provides rejection of common-mode noise. Other specifications include
feedthrough rejection of 100 dB , hold-mode rms noise of only $60 \mu \mathrm{~V}$, aperture uncertainty of 10 psec , and a bandwidth of 16 MHz . The device operates from 5 and $\pm 15 \mathrm{~V}$ supplies. Packaged in a 24 -pin DDIP, the SHM-945, in commercial and military temperature ranges, $\$ 79$ and $\$ 87$, respectively (OEM qty).

Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 3393000. FAX (508) 339-6356. TLX 174388.

Circle No. 383

Sampling A/D Converter

- 12-bit resolution
- 333-kHz throughput

The SP7800 sampling A/D converter features a $333-\mathrm{kHz}$ throughput at 12 -bit accuracy and resolution. In addition to a 12 -bit ADC , the monolithic device contains an internal S / H circuit, a reference, a clock, a microprocessor interface, and 3 -state outputs. Dynamic performance includes a S / N ratio of 72

dB , a spurious-free dynamic range of 80 dB , and THD of -80 dB . The device supports standard input ranges of ± 5 and $\pm 10 \mathrm{~V}$. The SP7800 is available in a 28 -pin plastic DIP, 28-pin side-brazed ceramic DIP, and 24 -pin SOIC packages. Commercial grade parts, from $\$ 23$ (100).
Sipex Corp, 6 Fortune Dr, Billerica, MA 01821. Phone (508) 663-9691.

Circle No. 384

BiCMOS Decoder PLDs

- Have 6- or 7-nsec propagation delay
- Support system clock rates to 50 MHz
Optimized for address-decoder ap-

Presenting a New Breed of Samsung LCDs

In the technological jungle, the new Samsung graphic LCD is an entirely different animal.
Larger screens, High Contrast in paper white, green, blue and gray, and multi-angle viewing, make Samsung LCDs among the best on the market. Add our reputation for on-time delivery, and you're ensured a highquality, stable supply.
And if that doesn't convince you, we'll put it in black and white: Your customers will go wild for them.

plications, the 12 -input, 8 -output fuse-programmable BiCMOS PLDs feature propagation delays of 6 or 7 nsec . The 336 and 337 models of this series have registered inputs; the 338 and 339 have output latches. The 336 and 338 have two product terms per output; the 337 and 339 have four product terms per output. The chips with registered inputs accommodate most RISC (reduced-instruction-set computer) processors, including SPARC and Mips, which assert addresses for only a short period around the clock edges. The chips with output latches accommodate processors that do not issue an address with every clock cycle and that remove addresses and data before the end of the clock cycle, a behavior that is typical of CISC (complex-instruc-tion-set-computer) processors such as the 80486 and 680×0. The decoder PLDs come in a variety of
packages including DIP, SOJ, LCC, and PLCC (plastic leaded chip carrier) types. $\$ 14.30$ to $\$ 16.35$ (100).
Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2600.

Circle No. 385

Color-Palette D/A Converters

- Compatible with RS-170
- Data rates from 35 to 110 MHz The TMC0171 and TMC0176 colorpalette D/A converters contain three 6 -bit DACs, a 256 -word $\times 18$ bit RAM look-up table, and a standard MPU interface for writing and reading the RAM. An 8-bit data input addresses the RAM, selecting one of the 25618 -bit words that determine the specific 6 -bit levels of red, green, and blue colors. The devices, which cover data (pixel) rates from 35 to 110 MHz , are compatible
with the RS-170A standard and directly drive the red, green, and blue analog inputs to CRT monitors. The TMC0171 is available in speed grades of 35 and 40 MHz . The TMC0176, which includes a powerdown control for use in batteryoperated systems, is available in speed grades of $40,50,66,80$ and 110 MHz . Package options include 28 -pin DIPs and 44-lead PLCC's (plastic leaded chip carrier). Depending on type and speed grade, $\$ 3.38$ to $\$ 6.82$ (100).

TRW LSI Products Inc, Box 2472, La Jolla, CA 92038. Phone (619) 457-1000. FAX (619) 455-6314.

Circle No. 386

Resolver-To-Digital Converter

- Replaces optical encoder
- Has 1.3 arc-minute accuracy Designed to replace optical encod-

Announcing the New Ultimate in Driving

The premiere vehicle in power conversion. These DCIDC Converters allow you to maintain a unique balance between price and performance.

The hottest economy model on the road is the HPR1XX. It is compact and affordably priced to drive your system. The Single-In-Line body styling conserves board level parking, taking up less than 0.2 inch 2 board space. A low profile is achieved through Surface Mount Manufacturing.

Precision performance comes with the HPR1XX's 750 mW of output power. This Power Convertible has exceptional roadhandling with a high efficiency rating of 80%. You can "rev" up your designs with our isolation voltage of 750 VDC .

Now drive your designs to the limit. Give it a test run; at less than $\$ 5.00$ in OEM quantities you'll be glad you're driving with a Power Convertible.

For the dealer near you:
Call 1-800-548-6132 Fax 1-602-741-3895
Write P.O. Box 11400 - Tucson, AZ 85734
ers in high-resolution military applications, the 16 -bit HRD1416 re-solver-to-digital converter comes in a 1-in.-square, hermetically sealed, 32 -pin package. The Type-II tracking converter operates from a single 5 V supply and consumes only 75 mW of power. Compatible with both 8 - and 16 -bit microprocessors, the converter features an accuracy of 1.3 arc-minutes. An internal 0.5 or 1.0 V -rms reference signal generates as much as 10 mA of drive, allowing direct connection to most resolvers. An anti- 180° false-lock-up circuit prevents the converter from locking into an angle 180° from the true angle. A transparent latch with 3 -state outputs, configured as two independently enabled 8-bit bytes, eases the transfer of data from the converter. A built-in test feature provides a logic " 1 " when the tracking error exceeds $\pm 1^{\circ}$. The HRD1416 is built using MIL-

STD-883B processing. From $\$ 525$. Delivery, 16 weeks ARO.

Natel Engineering Co Inc, 4550 Runway St, Simi Valley, CA 93063. Phone (805) 581-3950. FAX (805) 584-4357. TWX 910-494-1959.

Circle No. 387

Analog Multiplier/Divider

- Bandwidth is 10 MHz
- Slew rate is $450 \mathrm{~V} / \mu \mathrm{sec}$

Operating with a full-power bandwidth of 10 MHz , the AD734 multiplier/divider offers a slew rate of
$450 \mathrm{~V} / \mu \mathrm{sec}$, a S / N ratio of 94 dB , and a guaranteed conversion accuracy of 0.25%. The device performs the mathematical function $\mathrm{W}=\mathrm{XY}$ / U, where X, Y and U are fully differential analog-input signals. Connected as a four-quadrant multiplier, the device can function as an oscillator, filter, or voltage-controlled amplifier. Connected as a 2 quadrant divider, the device can function as an automatic-gain-control (AGC) amplifier or an rms-to-dc converter. A direct-divide mode allows users to optimize the dynamic range for varying input-signal spans. Because of its $40-\mathrm{MHz}$ input bandwidth, you can also use the device as a demodulator or mixer in heterodyne receivers. The thirdorder intercept point is 43 dBm , and the $1-\mathrm{dB}$ compression point is 18.6 dBm for an 8.46 V signal across 1 $\mathrm{k} \Omega$. Third-order intermodulation distortion (IMD) is -75 dB . The

INNOVATIVE SOLUTIONS from RAD
 SYNCHRONOUS CDP MODEM
 ASYNCHRONOUS/

RJ-002

Operates at data rates up to 256 kbps

Performing all the functions of a sync short range modem, the RJ-002 operates at data rates up to 256 kbps . Utilizing conditional diphase modulations, it requires only interfaces to the phone line and user circuits for complete modem. Transmit clock is derived from either the attached crystal or externally. The carrier can be controlled
by the RTS signal or setup for continuous operation. An external circuit programs the delay between RTS and CTS. The receive circuit recovers the clock from the line signal and decodes the data into NRZ format. A carrier detect circuit indicates the presence of the carrier on the line. The part suits the design of built-in short range modems into data PBXs, high-speed multiplexers, voice PBXs, terminals, telemetry control and diagnostic systems, computers, workstations, etc. Based on $3 \mu \mathrm{~m}$ CMOS technology, the device comes in a 22 pin plastic package.

SYNCHRONOUS CONVERTER

RJ-009, asynchronous to synchronous converter provides the interface between an asynchronous DTE and a synchronous DCE, allowing the DTE to operate within the timing control of the DCE.
While converting from asynchronous to synchronous, the chip inserts or removes STOP bits from the Data to compen-
sate for frequency differences between the DTE and DCE. In the event of stop bits being removed, the remote $\mathrm{RJ}-009$ detects the missing stop bits and generates shorter stop bits according to CCITT V. 22 bis. The RJ-009 contains an AUTOBAUD detector which makes manual programming of the bit rate unnecessary, by automatically measuring the modem's clock frequency. Other features include: data rates up to 38.4 kbps async, character length of $8,9,10$ or 11 bits, low power consumption and single $3-5.5 \mathrm{~V}$ power supply. Based on 1.5 micron CMOS technology, the 24 pin $\mathrm{RJ}-009,0.3$ inch wide is offered in a plastic package.

Go ahead

Picoseconds are no problem for the DG535 Precision Pulse \& Delay Generator.

The DG535 provides 4 edge (delay) and 2 pulse (delay and width) outputs, all with 5 ps resolution, 1000 sec range, 50 ps rms jitter, and adjustable output levels. The outputs drive 50 Ohms or high impedances to 4 Volts with a slew rate of $1 \mathrm{~V} / \mathrm{ns}$ - just right for driving TTL or ECL or even high speed analog circuits. Throw in the 35 Volt output option and you can trigger almost anything. For even greater accuracy and stability, add the 1 ppm optional timebase .

DG535
\$3500

- 4 delay, 2 pulse channels
- 5 ps delay resolution
- 50 ps rms jitter from trigger
- Adjustable output levels to 4 Volts
- 0 to 1000 sec delay range
- Internal/external trigger to 1 MHz
- Internal/external timebase
- 9 location set-up memory
- GPIB interface standard
- ± 35 Volt output option
- 1 ppm timebase option
- 100 ps rise/fall time option

SRS STANFORD RESEARCH SYSTEMS

AD734 is available in a 14 -pin ceramic package, two temperature grades, and three accuracy grades. AD734AQ, with 0.1% accuracy, $\$ 10.55$ (100).

Analog Devices Inc, 181 Ballardvale St, Wilmington, MA 01887. Phone (617) 937-1428.

Circle No. 388

Bus Driver/Receiver IC

- For analog multiplex-bus networks
- Designed for automotive applications
The CS-8425 bus-driver/receiver IC interfaces with the system's $\mu \mathrm{P}$ and the sensors and control elements needed to provide the system with

specific information or functions. Designed for class-A multiplexed bus networks such as those used in automotive applications, the IC provides protection against short circuits, thermal overload, voltage transients, and reverse-battery voltages. The IC also contains a watchdog feature that you can use to disable the power-output stage. Two operating modes are available. The polling mode provides synchronous access to each of 30 possible sensors on the bus. The command mode allows random access to any of 32 control elements on the bus. Each mode relies on the IC to interpret digital input information and then communicate with the system by placing analog signals on the bus. CS-8425, in 16-pin DIP and 20 pin SOIC packages, $\$ 1.60$ and $\$ 1.70$ (1000), respectively.

Cherry Semiconductor Corp, 2000 South County Trail, East Greenwich, RI 02818. Phone (401) 885-3600.

Circle No. 389

64k-Bit Nonvolatile Smart RAM

- Includes real-time clock
- Organized $8 k \times 8$ bits

The MK48T08 and MK48T18 Smart RAMs each contain a low-power $8 \mathrm{k} \times 8$-bit CMOS static RAM (SRAM), a CMOS clock and powerfail detection circuits, a crystal, and a lithium battery. The devices, which provide time and data retention without need of external power, have access times of 100 and 150 nsec . The devices operate with a standard SRAM memory access, without need for any special writetiming requirements and without limitations on the number of write cycles. Integral power-fail circuitry automatically provides chip deselect and write protection whenever V_{cc} falls below 4.75 V (MK48T08) or 4.5 V (MK48T18). Both devices also provide two chip-enable inputs and a power-fail output signal. Using a 24 -hour BCD format, the clock func-

MATLAB

High-Performance Numeric Computation and Data Analysis

MATLAB has rapidly become an industry standard for engineering and scientific research. Its unique interactive interface, algorithmic foundation, easy extensibility, and speed make MATLAB the software system of choice for high productivity and high creativity research.

Problems and solutions are expressed just as they are written mathematically - without the needfor traditional programming. As a result, you can solve numerical problems in a fraction of the time required to write a program in Fortran, Basic, or C. Then plot the results as 2-D and 3-D graphics, with publication-quality output to plotters, dot-matrix printers, and laser printers.

"I can create algorithms so easily that it almost seems like cheating."

Personal Engineering \& Instrumentation News

Add to MATLAB your choice of tools for digital signal processing, system identification, control system design, and more. MATLAB's opensystem design lets you see the algorithms and the implementations, even change them to suit your specific requirements.

MATLAB is developed by The MathWorks, a leader in software for data analysis and mathematics. Our users - in thousands of companies and universities - know that MATLAB enables them to work more creatively and productively. Take a look at how MATLAB can do the same for you.

MATLAB is a trademark of The MathWorks, Inc. Other product and brand names are trademarks or registered trademarks of their respective holders.

Over 300 Built-In Functions

- eigenvalues
- 1-D and 2-D FFTs • nonlinear optimization - matrix arithmetic - filtering - linear equation solving - matrix decompositions - curve fitting - differential equations - convolution - cubic splines - polynomial arithmetic - spectrum estimation - Bessel functions - descriptive statistics
- complex arithmetic - elliptic functions - 2-D and 3-D graphics

Plus Toolboxes for:

- digital signal processing \quad - control system design
"MATLAB is the undisputed choice for computationintensive engineering work."

Macworld
"MATLAB's power and ease of use go a long way toward taking the drudgery out of repetitive analysis projects."

IEEE Spectrum

Computers

 supportedPCs and ATs
386 -based PCs
Macintosh Sun Apollo
HP 9000/300
DECstation
VAX/VMS
VAX/Ultrix Stardent
Convex
Encore
Alliant
Cray and more

To find out more about MATLAB, call us at (508) 653-1415. Or simply return the completed coupon to the address below.

[^18]tions include year, month, date, day, hour, minute, and second. A control register lets you set, stop, restart, or calibrate the clock. They come in 28 -pin plastic DIPs. From $\$ 22.50$ (1000).

SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6290. Circle No. 390

Dual-Port Memory Module

- Features $512 k$-bit density
- Has $16 k \times 32$-bit organization Designed for high-performance applications employing 32-bit CISC (complex-instruction-set computer) or RISC (reduced-instructionset computer) processors, the IDT7M1002 memory module fea-
tures 512 k -bit density and a $16 \mathrm{k} \times 32$-bit organization. The module, which mounts four IDT7006 $16 \mathrm{k} \times 8$-bit dual-port devices on a 121-pin PGA package, is $1.8 \mathrm{in}^{2}$. To meet varying customer requirements, the dual-port module is available in access-time ratings of $40,45,50,55,65,80$, and 100 nsec. The vendor tests each module at the pin level as if it were a single monolithic component, using guardbanded ac and de parametric tests over the operating temperature range. IDT7M1002, from $\$ 447.50$ (100).

Integrated Device Technology, Box 58015, Santa Clara, CA 95052. Phone (408) 727-6116. FAX (408) 492-8674.

Circle No. 391

Instrumentation Amplifier

- Noise is $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- THD $+N$ is 0.0009% at 1 kHz Designed primarily for use with low-source-impedance transducers, the INA103 instrumentation amplifier features a noise specification of only $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. The monolithic device incorporates a distortion-canceling input stage, which reduces THD +N to 0.0009% at 1 kHz . The device also includes gain-setting resistors for gains of 1 and 1000 ; external resistors can set the gain anywhere in the 1 to 1000 range. At a gain of 1000 , offset voltage is $52 \mu \mathrm{~V}$ max, and drift is $1.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max. The INA103 comes in a 16 -pin DIP and is available in commercial and military temperature grades. From $\$ 4.85$ (1000).

Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (800) 5486132; in AZ, (602) 746-1111. FAX (602) 889-1510. Circle No. 392

HARTING is a hallmark of innovation and reliability worldwide - throughout the electronics industry and in the switchgear sector.

With the Gds A standard DIN 41612 printed circuit connectors, HARTING not only meets top requirements in terms of precision and quality but also makes a contribution to progress in the field of automation. The Gds A connector is mounted and fixed to the PC board in a single procedure. Components, solder pins and the fastening clips of the connector can thus be soldered in a single process.

With a comprehensive range of connectors, HARTING offers perfect solutions for all applications.

Connectors from HARTING - the quality connection

TEST \& MEASUREMENT INSTRUMENTS

LAN Support For $\boldsymbol{\mu}$ P
 Development System

- Consists of card cage, interface, and EPROM card
- Supports 8, 16, and 32-bit μ Ps The 67400 A card cage, 67401 A LAN interface card, and a companion EPROM card let you interface the vendor's $\mu \mathrm{P}$ development systems to local-area networks. Hence, you can upload and download code and control the operation of hardware development tools, such as incircuit emulators, from networked workstations. Tools for 8,16 , and 32 -bit $\mu \mathrm{Ps}$ are supported, so that on a single network, you can debug systems based on several types of target processors. The hardware connects with different types of LANs either directly or via an attachment interface unit. Some of these LANs are thick- and thin-

wire Ethernet, and StarLAN. Card cage, $\$ 6000$; LAN card, $\$ 2500$; flash EPROM card, $\$ 500$.

Hewlett-Packard Co, 19310

Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900.

Circle No. 393
the libraries' interactive demonstration program is included. $\$ 400$.

Scientific Software Tools Inc, 30 E Swedesford Rd, Malvern, PA 19355. Phone (215) 889-1354. FAX (215) 889-1334. Circle No. 394

Differential Probe Set

- Have $250-\mathrm{MHz}$ bandwidth
- Permit adjustment of resistance and ac response
The MD12F differential probe set lets you precisely match oscilloscope channels for accurate differential measurements. The probes work with signals from de to 250

MHz . One of the probes in the pair lets you precisely adjust its attenuation at dc. Coarse and fine controls let you adjust the frequency response. The probe set has an attenuation of $10: 1$ and a rise time of 1.4 nsec . The probe set works with scopes whose input capacitance is from 10 to $60 \mathrm{pF} . \$ 340$.
Test Probes Inc, 9178 Brown Deer Rd, San Diego, CA 92121. Phone (800) 368-5719.

Circle No. 395

80386SX Preprocessor For HP Logic Analyzers

- Includes clip for contacting PQFP IC
- Also includes disassembly and configuration software
The 386SX preprocessor works with HP $1650 \mathrm{~A} / \mathrm{B}, \mathrm{HP} 1652 \mathrm{~A} / \mathrm{B}, \mathrm{HP}$ 1654A/B, and HP 16510A/B logic ana lyzers. It has a software disassembler, configuration software, and a passive clip that facilitates connect-

NJTDETR UNIVERSAL PROGRAMMER

Devices Programmed

■E(E)PROMS, FLASH EPROMS - PALS, FPLS, PEELS, GALS

- EPLDS, EEPLDS
- MICRO CONTROLLERS - BIPOLAR PROMS

ICs Tested

-TTL/CMOS, LOGIC ICS -DYNAMIC/STATIC MEMORY DEVICES

Circle \# 220

SUPERPRO is a software controlled 40 - pin universal device programming workstation designed to meet all of your programming needs for different types of programmable devices.
A unique library - operating software structure provides the great flexibility to program most recent devices as well as many future devices. Integrated with IBM PC or compatibles via high speed parallel interface, SUPERPRO becomes the most high performance and cost effective programming solution in the market.
S
SUPERPRO's universal pin driven technology provides you with the utlimate device upgrade flexibility. Its $40-$ pin GOLD ZIF socket and built - in protection for short circuit and over current make the SUPERPRO virtually indestructible.

GENERAL FEATURE

- Interfaces with IBM PC / XT / AT / 386 or compatibles
- Reliable and fast programming w/Normal, Intelligent, Interactive and Quick Pulse algorithms
- Accepts standard file formats : JEDEC, INTEL Extended HEX, Motorola S, Tektronix HEX, and Binary formats
Manages 16, and 32 - bit Word split
- Supports most compilers in JEDEC format such as ABEL, CUPL, PALASM, Tango PLD, OrCAD PLD, MINC PLD, and ISDATA
- Includes Test Vector capability and Multi - array Fuse Map Editor
- Tests TTL/CMOS Logic ICs \& Dynamic/Static RAMs with user definable patterns

Optional Device Libray Generator

Optional Library Generator allows the user to update the software library by typing in the necessary data specifications and algorithms. This makes the LOPS software unlimited in terms of programming Library Generator for SUPERPRO(SUPER - LG) contains a C - like programming language with a compiler.

UNIPRO

UNIVERSAL PROGRAMMER

UNIPRO is a low - cost 40 pin universal programmer. It contains most of general features from SUPOERPRO.

DEVICE SUPPORT

- PROM : All E(E)PROMs and Flash EPROMs of $24 / 28 / 32$ pins up to 4 MBits
- Bipolar PROM : Signetics (82S…), (87S \cdots), AMD/MMI(27S $\cdots, 63 S \cdots$)
- PLD : PALs, EPLDs, GALs, and more
- Micro Controller : INTEL $87 \cdots$ to Signetics $87 \mathrm{C} \cdots$ (Wide range of adaptors are available)
- IC TESTER: TTL(74 series), CMOS(40/45 series) logic. DRAM $(4164,41464 \cdots)$, SRAM(2114 6116...)
- 32bit WORDSPLIT with 4 GANG adaptor
- PLASM2 / CUPL/ ABEL/TANGO/OrCAD

Circle \# 221

JEDEC files

- PLA verification using test vector
- GAL electronic signature recognition

OIPTIONS

- ADAPTORs for PLCC, LCC, SOIC, FLATPAK - type ICs
- 4 Socket Adaptor for E(E)PROM
- Socket Adaptors for Micro Controllers.
- Package includes software, programming module, high speed interface card, \& cable.

MFI-421

MULTIFUNCTION IN ONE INSTRUMENT

One Instrument With Four Test and Measuring System.

- Power Supply,
- Function Generator
- Digital Multimeter
- Frequency Counter
- Full Overioad Protection
- Range $: 1 \mathrm{~Hz} \sim 100 \mathrm{MHz}$
- Sensitivity: $1 \mathrm{~Hz} \sim 60 \mathrm{MHz}: 15 \mathrm{mV}$ $60 \mathrm{MHz} \sim 100 \mathrm{MHz}: 25 \mathrm{mV}$
- Accuracy
$\pm(1 \mathrm{~Hz}+1 \mathrm{dgt}+$ Time Base Error $)$
- Output Waveform:

Sine, Square, Triangle, Scewed Sine,
Ramp, Pulse, TTL Level Square

- Frequency : $0.02 \mathrm{~Hz} \sim 2 \mathrm{MHz}$
- Output : $0.1 \mathrm{Vpp} \sim 20 \mathrm{Vpp}$
- Auto Ranging

DCV, ACV, $\Omega, D C A, A C A$

- Basic Accuracy : $\pm(0.5 \%+2$ dgts $)$

DDM - 901

DIGITAL MULTIMETER TESTER

Autorange DMM With bar graph

- A/D convertor: 3 \& $3 / 4$ DIGIT CMOS LSI with auto range \& auto polarity
- Display: LCD(Liquid Crystal Display). Max. indication 3999 or - 3999
- Measuring Ranges: AC/DC Voltage \& current, Resistance, Capacitor, Hee, Frequency and Diode
- Range

CDV: $400 \mathrm{mV}, 4 \mathrm{~V}, 40 \mathrm{~V}, 400 \mathrm{~V}, 1000 \mathrm{~V}$ -ACV : $40 \mathrm{~V}, 400 \mathrm{~V}, 750 \mathrm{~V}$
$-\mathrm{OHM}: 4 \mathrm{~K} \Omega, 40 \mathrm{~K} \Omega, 400 \mathrm{~K} \Omega, 4 \mathrm{M} \Omega$
-DCA : $4 \mathrm{~mA}, 40 \mathrm{~mA}, 400 \mathrm{~mA}, 2 \mathrm{~A}, 10 \mathrm{~A}$
ACA : $400 \mathrm{~mA}, 2 \mathrm{~A}, 10 \mathrm{~A}$
-CAPACITANCE: $10 \mathrm{nF}, 100 \mathrm{nF}, 1 \mu \mathrm{~F}$, $5 \mu \mathrm{~F}$,
FREQUENCY: DC to $400 \mathrm{KHz}>$ 400 KHz (unspecified)

- Bar graph ZOOM and NULL function

Circle \# 222

- 3 1/2 Digit LCD Display of Voltage and Current
- Triple Output
- Output \# 1:0~50V, 0.5A max
- Output \# 2: 15V, 1A(Fixed)
- Output \# $3: 5 \mathrm{~V}, 2 \mathrm{~A}$ (Fixed)
- Ripple

Output \# 1:1mV max
Output \# 2, \# $3: 2 \mathrm{mV}$ max

- Load Regulation
- Output \# 1:0.01\% +5 mV
- Output \# 2, \# 3 : Less than 35 mV

Circle \# 223

- Autopower cutofl
- Relative data Value display data hold by DMM
- Designed according to protection class II IEC 348
- Operating

Temperature: OC to 40 C (32F to 104F) Humidity: 0% to 90% (0 C to 35 C), 0% to 70% (35C to 55 C)

MCP - 550

ADVANCED DATA ACQUISITION CARD

The MCP-550 is the ideal single - board solution for many data acquisition and control applications.

It is a high performance data acquisition card for IBM PC/XT/AT, integrated with $A / D, D / A, D / I, D / C$, and Timer/Counter functions. A built in Direct Memory Access circuit makes it possible to transfer data in high speed.

The MCP-550 is supported by a variety of vendor softwares which makes it ideal for wide range of industrial and laboratory applications, such as Process Control, Automatic testing, Factory Automation, and Data Aquisition. Furthermore, it can be integrated with a PC and softwares to emulate many electronic devices. For example, Digital Oscilloscope, X-Y Recorder, Data

MCP - 520

LOW - COST DATA

 ACQUISITION CARDThe MCP - 520 is a cost effective single - board solution for many data acquisition and control applications.

It is a multi-function card for IBM $\mathrm{PC} / \mathrm{XT} / \mathrm{AT}$ or compatible computers, integrated with A/D, D/I, D/O functions on a single board

In order for users to minimize their efforts for developing application softwares, a utility software diskette is provided, which includes drivers and sample programs.

- Multifuncations in one card : A/D, D/I, D/O
- Eight single - ended analog input channels
- Industry standard 12 bit resolution with

MCP - 488

IEEE-488 INTERFACE CARD

The MCP - 488 interface card complies with IEEE-488 standards, which is the most popular international standard for transfering information between electronic devices.

Comunication between PC and IEEE bus devices is possible because the MCP-488 interface card provides hardware and software. The firmware manifests its competance and handiness with programming languages or operating systems.

Interfaces ought to deal with hardwere book - keeping and timing while maintaining compatibility between a computer and peripherals. The MCP - 488 handles IEEE 488 interface standards smoothly.

Circle \# 224

Logger, and Programmable Controller are just a few on the list.

- Multi functions in one card : A/D, D/A, D/I, D/O
- 16 single - ended or 8 differential analog input channel.
- A/D Sample Rate: 60 KHz normal or 100 KHz max.
- 24 TL compatible D/I \& D/O channels
- Two 12 - bit monolithic multiplying D/A channel

Circle \# 225

sunccessive approximation

- 24 TTL compatible Digital input/Digita output channels
- High speed analog to digital conversion
with 60,000 samples $/ \sec (15 \mathrm{sec})$
- DMA and interrupt handling
- Signal Analysis
- Data logging and process control
- Monitoring and Controlling process
- Programmable signal generator
- Industrial ON/ OFF control
- Contact closure monitoring

Circle \# 226

- Complete compliance with IEEE - 488 standards
- The software provides flexible and handy IEEE - 488 language extentions for high level languages and operating systems.
- The printer port of IBM PC/XT / AT can be programed to a port for IEEE - 488 devices
- Dierect memory access for high speed data transmission

ing to the $386 \mathrm{SX} \mu \mathrm{P}$ in its surfacemounted, plastic quad flatpack. (HP refers to the disassembler as an inverse assembler.) Preprocessor, and four termination adapters, $\$ 1565$.
Emulation Technology Inc, 2344 Walsh Ave, Santa Clara, CA 95051. Phone (408) 982-0660. FAX (408) 982-0664. Circle No. 396

IMAGINE THE POWER...

TO PRODUCE CORRECT PCB ARTWORK

PCB ARTWORK VERIFICATION AND PREPARATION SOFTWARE THAT RUNS ON PC'S AND WORKSTATION'S

KTMP/Apollo 9000
IEM PC 286, 386, 486

POWERFUL FEATURES

- Fast artwork DRC with pinpoint accuracy
- Gerber, DXF, and HPGL viewing and editing
- View composites with imbedded traces
- Combine multiple layers on a single film
- Mount different designs on a single panel
- Output sketch, solid and outline modes
- Output to Gerber, DXF, HPGL, Postscript,

DMPL, Excellon and Exher Grad

- Direct printing to laser printers
- Fast graphics
- Submil apertures
- Create drill drawings
- Extract netlists
- Extended and expanded memory
- Independent axis scaling
- File to file format translators

OTHER SOFTWARE

- CAD to CAD database xlators
- Rout and Drill editors

CALL 800-825-705I FOR MORE POWER!

ALS DESIGN

| USA Headquarters | Europe Headquarters |
| :--- | :--- |
| One Kendall Square, Suite 2200 | 38 Rue Fessart, 92100 Boulogne, FR |
| Cambridge, MA 02139 | Phone $(33) 1-460430.47$ |

All trademarks are the property of their respective manufacturers

Handheld DMMs

- Include eight models
- Some measure capacitance to $9999 \mu F$
The 70 Series II consists of eight handheld digital multimeters; three of them are in bright yellow safety cases. The flagship models 79 and 29 make basic measurements with a resolution of 4000 counts and an accuracy of 0.3% for de volts. They also measure frequency to 20 kHz and capacitance to $9999 \mu \mathrm{~F}$. Convenience features, such as Touch Hold, simplify use. With this feature actuated, when you touch a probe to a voltage, the meter will hold its reading until you tell it to make another measurement. Therefore, you can watch where you're probing instead of watching the meter. $\$ 69$ to $\$ 185$.
John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (206) 347-6100. FAX (206) 345-5116. TLX 185102.

Circle No. 397

High-Speed Pattern Generator

- Provides eight channels at 680 $M H z$; four at 1.36 GHz
- Stores 16 k or 32 k states/channel The PG-1400 high-speed pattern generator can produce an 8-channel output at 680 MHz or a 4 -channel output at 1.36 GHz . In the 8 -channel mode, it stores patterns 16 k states deep; in the 4 -channel mode, it stores 32 k -state patterns. You can connect as many as eight units together to produce 64 -channel patterns at 680 MHz or 32 -channel patterns at 1.36 GHz . As its host, the

Finally, engineering software that clears the way to problem solving without programming.

With HP VEE,

 you simply link the icons.Computers are great for problem solving, if only programming didn't get in the way and slow you down. And now, it doesn't
have to. Because the HP visual engineering environment (HP VEE) lets you solve problems without programming.
With HP VEE, you explore solutions visually by arranging and linking icons on the CRT. Each icon represents and executes a specific function for data collection, analysis -from simple mathematics to complex algorithms - and presentation. You don't have to write a single line of code.
There are two HP VEE software packages for prototyping, experimentation, and problem modeling. HP VEE-Engine, at $\$ 995^{*}$, is a
general-purpose tool for analysis and presentation of existing data. HP VEE-Test includes HP VEEEngine and adds extensive I/O capability, including soft panels and device I/O objects for $\$ 5,000^{*}$.
So, if programming is keeping you from finding solutions, call 1-800-752-0900. Ask for Ext. 2380, and find out how HP VEE clears the way.

* U.S. list prices.

There is a better way.
generator requires an IBM PC/AT or equivalent computer with a highresolution color display and 10 M bytes of free space on its hard disk. $\$ 38,500$. Delivery, six weeks ARO.

Outlook Technology Inc, 200 E Hacienda Ave, Campbell, CA 95008. Phone (408) 374-2990. TLX 350479.

Circle No. 398

PC-Based DSO
 With Deep Memory

- Acquires $40 M$ samples/sec
- Stores 1 M sample

The Compuscope $220-1 \mathrm{M}$ is a digital storage oscilloscope on a pair of IBM PC bus I/O cards. It samples two channels with 8-bit resolutionone at a maximum rate of 40 M samples/sec and the other at 20 M samples/sec. The minimum rate is 1 sample/sec. The scope can store 1M sample. You can devote all the memory to either channel, or you

can divide the memory equally between the channels. The inputs have a resistance of $1 \mathrm{M} \Omega$ shunted by 20 pF and have seven gains that you can program from 0.1 to 10 in 1-2-5 steps. The external-trigger input has ac and de coupling and gains of 0.1 and 1 . The scope triggers on either positive or negative slopes. The software included with the boards lets you store, analyze, print, and communicate data. $\$ 3900$.

Gage Applied Sciences Inc, 5465 Vanden Abeele, Montreal, PQ Canada H4S 1S1. Phone (514) 337-6893. FAX (514) 337-8411.

Circle No. 399

Code-Generation Software For Data Acquisition

- Queries you about your application
- Creates analog, digital, and counter/timer I/O routines
Smartcoder software works with the firm's PCI-20026S-1 data-acquisition software drivers. This operation allows Quickbasic to create code that controls analog, digital, and counter/timer I/O functions on the firm's IBM PC-based instrumentation boards. The code-generation software frees you from having to know operational details of the boards and drivers. By responding to application-related queries displayed in menu form, you supply information needed by the drivers to initialize and configure the boards correctly. Depending on the speed of your computer, the software produced by the code generator can perform as many as

KIK at 7:00 a.m.

First the clock radio!
Then the electric razor, coffee maker, microwave and toaster.
Plug 'em in to get you started in the morning. And there's a good chance KIK got them started with hi-pot and insulation testing during manufacturing.
KIK is one of the world leaders with Hi-pots, Insulation Resistance and Ground Continuity Testers for meeting UL, CSA, CEE, BS and VDE requirements.
The TOS 9000 system automates your production line providing:

- Easiest GPIB and front panel programming
- 5 Kv AC to 40 ma , 9999 Mohm @ 50 v to 1 Kv DC
- 0 volt start and ramp-up for soft start
- Up to 16 test points
- Manual models álso available

Find out how KIK can keep your production going from A.M. to P.M. with 10 models to fill your precise manufacturing needs.

Kikusui International Corporation
19601 Mariner Ave., Torrance, CA 90503 FAX (213) 542-4943
(800) KIK-8784

See us in EEM
The TOS 9000 features fully automatic
control of all front panel functions via GPIB or resident programmable memory.

READY To Help You Grow

We're the Vishay Electronic Components Group (VEC). Six well-known companies now linked with a common purpose: Making you more competitive. One call to the factory or your VEC Representative gives you access to the widest range of passive components available from any single organization.

Commercial to ultra-precise. Standard to special. One call lets you focus on the combined strengths of our multiple technologies and multiple production sources. VEC: Organized to save you time...make planning more precise...development time shorter and delivery more reliable. That's easy to say. Now make us prove it.

Precision Bulk Metal Foil:

- Resistors - Surface Mount
- Trimmers Components
- Networks - Specials
- Chips
(215) 644-1300

A COMPANY OF
V I S H A Y
BULK METAL® RESISTORS

- Metal Film Resistors, Hermetically Sealed
- Power Rheostats
(301) 739-8722

- Military Trimmers
- Custom Networks
(818) 781-1642

- Wirewound Resistors, • Shunts

Precision and Power • Surface Mount

- Foil Resistors Components
(303) 242-0810

ULTRONIX

- Wirewound Resistors • Transformers
- Metal Film Resistors
- Resistor Networks
- Trimmers
- Thermistors
- Inductors Oscillators - Connectors - Displays - Surface Mount Components

- Thin Film Resistors
- Thick Film Chip Resistors
- Surface Mount Components:

Thick Film, Thin Film and Foil (716) 283-4025

(402) 563-6417

A COMPANY OF

ECL Oscillators In Standard D.I.P. Are The Industry Standard From 10 to 325 MHz ECL oscillators from MF are available in three of the most popular con- nections in 10 K and 10 KH logic, single ended and complementary, with and without enable/disable

Enable/Disable Application;

 How to get one of two frequencies

Phone or FAX for our catalog or 350 K catalog-on disk on all our oscillators including VCXO's, Phase-Lock Loop Oscillators, ECL up to 325 MHz , Tristate HCMOS/TTL and Wide Temp Range oscillators in DIL package.

M F Electronic has received the coveted Outstanding Supplier Award for 1991 from SiliconGraphics. CIRCLE NO. 101

10 Commerce Drive New Rochelle, NY 10801
(914) 576-6570 Fax: (914) 576-6204
$5000 \mathrm{read} /$ write operations $/ \mathrm{sec}$. $\$ 95$.
Intelligent Instrumentation/ Burr-Brown, 1141 W Grant Rd, MS 131, Tucson, AZ 85705. Phone (602) 623-9801. FAX (602) 623-8965.

Circle No. 400

Handheld 2- to $8-\mathrm{GHz}$ Signal Generator

- Provides at least 10 dBm
- Accepts TTL remote programming
The Model 8001 signal generator produces an output of at least 10 dBm over the range of 2 to 8 GHz . The $2.52 \times 5.57 \times 7.45-\mathrm{in}$. handheld unit uses less than 10 W of ac power and is programmable via a TTL interface. Frequency resolution is 1 MHz ; accuracy is $\pm 15 \mathrm{MHz}$. In normal mode, the generator can switch frequencies across the full band in less than 350 msec ; in fast mode, switching takes less than 20 msec .

At 20 kHz from the carrier, singlesideband phase noise is 80 dB below carrier level (-80 dBc). Secondharmonic output is at least -8 dBc , third-harmonic output is typically -14 dBc , and spurious outputs are -50 dBc . You can frequency-modulate the unit $(40-\mathrm{MHz}$ carrier deviation) with dc- to $200-\mathrm{kHz}$ signals. $\$ 3750$. Delivery, three to five weeks ARO.
April Instrument, Box 62046, Sunnyvale, CA 94088. Phone (415) 964-8379. FAX (415) 965-3711.

Circle No. 401

Binary Coded Miniature Rotary Switches

Let You Interface

with Microprocessor-

Controlled Equipment.

Establish Data Rate
 Select Address
 Replace Thumbwheels

- Only half-an-inch in diameter!
- Choice of 16 or 8 positions maximum
- Adjustable stops permit limited rotation
- Shaft and panel seal
- Shorting contacts
- Very affordably priced
- Off-the-shelf availability through your local Grayhill distributor

Ask for Bulletin Number 438 with code and truth table and detailed specs.

561 Hillgrove Avenue, P.O. Box 10373
LaGrange, Illinois 60525-0373 USA
Phone: (708) 354-1040 FAX: (708) 354-2820
TLX or TWX: 190254 GRAYHILL LAGE

Our Programming line includes:

- CP-1128 Combination EPROM / PROM / PLD Programmer: Supports devices up to 28 -pins $\$ 1295$
- PLD-1128 Logic Programmer: Supports PLDs up to 28pins $\$ 995$
- PLD-1100 Logic Programmer: Supports PLDs up to 24pins $\$ 798$
- EP-1140 E/EPROM Programmer: Supports E/EPROMs up to 40-pins and Intel Microcontrollers \$895
- EP-1132 E/EPROM Programmer: Supports E/EPROMs up to 32 -pins \$695
- EP-1 EPROM Programmer: Supports E/EPROMs up to 28-pins \$349

All of our programmers include: software, editor, interface cable, user's manual, one-year warranty (parts and labor) unlimited toll-free technical support, unconditonal thirty-day moneyback guarantee, and lifetime free software updates.

ВРМICROSYSTEMS

TEST \& MEASUREMENT INSTRUMENTS

DSP Software

- Usable for filter design and system analysis
- Handles both fixed- and floatingpoint implementations
Version 2.0 of Monarch DSP software runs on IBM PCs and PS/2 series machines. The software helps you design FIR and IIR digital filters and perform signal and system analysis. It can calculate FFTs and inverse FFTs to 4 k points. It supports fixed-point and floating-point realizations. It displays 2-D and 3-D graphics, and prints them out on more than 300 types of hard-copy devices. Version 2.0 software, $\$ 595$; adaptive-filter module, $\$ 399$; code generators for TI, AT\&T, and Motorola DSP $\mu \mathrm{Ps}$, $\$ 99$ each.
The Athena Group Inc, 3424 NW 31st St, Gainesville, FL 32605. Phone (904) 371-2567. FAX (904) 373-5182. Circle No. 402

MS Windows-Based DSP Software

- Performs on-line and post processing
- Supports plug-in acquisition cards
Hypersignal-Windows DSP software runs under MS Windows version 3.0. Some versions perform post processing of previously acquired data. Other versions support plug-in data-acquisition cards. These versions operate on data in real time as you acquire them. Among the functions you can perform are gap-free logging of data to a hard disk. You can obtain
source code for the acquisition-card interfaces. Having access to this code simplifies the task of writing applications that use the hardware. The software provides "hooks" for coupling such user-written applications. $\$ 795$ to $\$ 1995$.

Hyperception, 9550 Skillman, LB 125, Dallas, TX 75243. Phone (214) 343-8525. FAX (214) 343-3457.

Circle No. 403

Low-Power STD Bus Analog I/O Board

- Provides 32 single-ended inputs and 2 outputs
- Auto-zeroing holds offset to $100 \mu \mathrm{~V}$
The LPM-AIO STD bus board has 32 single-ended analog-input channels and two analog outputs. It uses low-power CMOS devices; it consumes less than 820 mW . The board operates from -25 to $+85^{\circ} \mathrm{C}$ and works with all CMOS STD bus processors whose clock speeds do not exceed 8 MHz . Overvoltage protection guards the inputs against damage from signals whose levels exceed the supply voltage by $\pm 10 \mathrm{~V}$. An amplifier with software-programmable gains of 1,10 , and 100 conditions the input signals. An auto-zero cycle precedes each A/D conversion and typically holds offsets to $100 \mu \mathrm{~V}$. The ADC converts with 12 -bit resolution in $125 \mu \mathrm{sec}$. $\$ 525$.

Winsystems Inc, Box 121361, Arlington, TX 76012. Phone (817) 274-7553. FAX (817) 548-1358.

Circle No. 404

THIS DECADE, MAKE A COMMITMENT TO USE ONLY THE BEST.

FOR TEN YEARS INTROL HAS BEEN CREATING THE WORLD'S BEST HIGH-POWERED TOOLS FOR EMBEDDED SYSTEMS PROGRAMMERS. de OUR C COMPILERS, MODULA-2 COMPILers, Source level Debuggers, and Macro Assemblers are in use by major CORPORATIONS AND SAVVY INDEPENDENT CONSULTANTS FROM SAN FRANCISCO TO SINGAPORE. de WE HAVE DEVELOPED SUPPORT FOR A WIDE RANGE OF PROCESSORS', ON AN EVEN WIDER RANGE OF HOST SYSTEMS. THIS VERSATILITY ALLOWS YOU TO MOVE FROM PROJECT TO PROJECT

Near Plethora Of

Products For 1991

The 1991 product handbook provides a comprehensive listing of data-acquisition, industrial-control and monitoring, signal-conditioning, personal instrumentation and communications products for IBM PCs, PS/2s, and Apple Macintosh microcomputers and compatibles. The 272-pg book also describes the Workhorse and Metrabus families of high-speed industrial control and
monitoring products. Selection guides can help you find products you need to locate.
Keithley Metrabyte, 440 Myles Standish Blvd, Taunton, MA 02780. Circle No. 405

Brochure Surveys Applications For DSP

The subject of this 8 -pg brochure is DSP-based solutions for high-end signal-analysis applications in military/SIGINT (signal intelligence), research physics, and satellite communications. Application notes explain pulsed radar, FSK, and other measurements. A description of the VMEbus-based analysis system includes comparing amplitude and frequency; spectrogram; and phase and view limits of color displays.
Tektronix Federal Systems Inc, Box 4545, MS 38-386, Beaverton, OR 97076.

Circle No. 406

App Notes Discuss Embedded Systems

The Basics of High Speed Design explains how to design a reliable and functional high-speed digital system, delving into ground bounce, crosstalk, transmission lines, ground planes, and pc-board stack-up. Networked Embedded Design Development Systems discusses how to develop well-designed networks. Transparent Connections for Embedded Microprocessor Systems Design Tools deals with five types of transparency. It explains how you can build the five types of transparency (communications, execution, logical, electrical and mechanical) into an emulation system. Event Monitor System for ES 1800 Emulators covers the benefits and features of such a system. Programming the 8018X/ 80C18X Peripheral Control Block gives examples of how to set the Singapore, with application engine fore marylene facts. furnaround. Call for more parylating without compromise. Parylene...conformal coating without compromis. NONA TRAN $\begin{aligned} & 100 \text { DEPOSSITION DRIVE } \\ & \text { CLEAR LAKE, WISCONSIN } 54005 \\ & 715 / 263-2333 / F A X 715 / 263-3189\end{aligned}$

New SLICs cut the cost of on-premises/PBX subscriber lines

Lower cost chips that need fewer external components are the latest Subscriber Line Interface Circuit offerings from Ericsson.

Designed for cost sensitive applications such as general purpose PBX/ Key systems, they give you three other major advantages over alternative solutions: wide supply voltage operation from -24 V to -58 V dc, on-hook transmission and a very low on-hook power dissipation of just 35 mW with -48 V dc supply or 20 mW when running from a -24 V dc supply.

So you can reduce the cost of your power supply circuit too!
Each SLIC includes loop current and ring trip detection, together with a ring relay driver. And they work with either a conventional or programmable CODEC/filter, all of which simplifies design.

Equally important, the new circuits are available in two versions: the PBL 3766 with a programmable constant loop current, and the PBL 3767 with programmable resistive battery feed and loop current limitation for short lines.

Both come in a choice of 22-pin plastic DIP or 28-pin PLCC packages with compliant ' j ' leads.

Simply call us for full technical data or clip the coupon.

Please send me your latest PBL 3766 and PBL 3767 datasheets Name

[^19]Job Title
Address

Telephone
Fax

Ericsson Components Inc.

403 International Parkway, Richardson TX 75081
Tel: 214-669-9900 Fax: 214-680-1059
"block" relocation and chip-select registers.
Applied Microsystems Corp, Box 97002 , Redmond, WA 98073.

Circle No. 407

Noting Remote-Terminal Memory Management

Application Note AN/B-18, A MIL-STD-1553B Notice 2 Solution For Bulk-Data Transfers, explains the need for improved remote-terminal memory management in bulk data transfers. It discusses the use of the MIL-STD-1553 bus for transferring large blocks of data or program code between intelligent subsystems. Listing useful attributes for improved memory management, the note mentions the processing of multiple messages to the same transmit/receive subaddress without host-processor intervention; capacity for at least 64 k words; re-
ceiving and transmitting bulk data blocks; storage for mailbox data blocks; and the option of complying with MIL-STD-1553B notice 2. The publication introduces Bus-61559 Aim Hy'er hybrids for implementing multimessage transfers.

ILC Data Device Corp, Literature Dept, 105 Wilbur Pl, Bohemia, NY 11716.

Circle No. 408

Journal Reports On Circuits And Systems

The quarterly journal, Analog Dialogue, focuses on circuits, systems, and software for real-world signal processing. The $28-\mathrm{pg}$ Volume 24 , No. 3 features three RAM D/A converters that enhance VGA graphics. It also covers a monolithic current transmitter, enhancements for DSP (IC processors and development tools), and two precision dual op-amp families. The regular fea-

ture, Ask the Applications Engineer, continues a discussion on op amps; the Worth Reading column provides a listing of app notes.
Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021.

Circle No. 409

Memory protection: Two fierce competitors!

For memory protection, NiCd rechargeables and lithium primary cells go head-to-head. Which should you choose? Varta's unique mass-plate NiCd cell construction provides the longest time between charges, can be trickle charged continuously and lasts 500-1,000 full-charge cycles over 4 or more years. Varta CR lithium cells offer the highest capacity available and, of course, 10-year life. So whichever your application requires, Varta has the best solution and can help you make the choice. Contact Varta Batteries, 1-800-431-2504, Ext 270. FAX: 914-592-2667.

When it comes to memory, single-chip microcontroller designs have always been compromises. Use RAM, and you'd lose data on power down. Use ROM, and you couldn't alter your program. Now Xicor is introducing an uncompromising E2PROM microperipheral, the X88C64.

This powerful new CMOS device gives you 8 K bytes of program and/or data memory for today's popular 8-bit microcontrollers-such as the $68 \mathrm{HC11}$, 80 C 31 and Z8. It interfaces directly to the microcontroller through a multiplexed address and data bus. So you don't have to add latches or other decoding logic.

The X88C64 solves an application problem you've been puzzling over for years. Now you can write to E^{2} memory while simultaneously reading from it, thanks to a new dual-plane architecture. The X88C64 allows you to individually write-protect eight 1 K blocks, providing added security. That makes it easy to

protect some programs and data, while others are constantly changing in real time.

For reprogrammable microcontroller designs-such as automotive engine controllers, digital televisions and cellular telephones-the X88C64 offers an exceptionally cost-effective solution. And it's available in popular through-thehole and surface-mount packages. Call or write today for details. Xicor Inc., 851 Buckeye Court, Milpitas, CA 95035. Phone (408) 432-8888.

E^{2} Microcontroller Solutions

X88C64:The Complete E^{2} MicrocontrollerSolution.

CIRCLE NO. 218

Source Book Illuminates, Computer Systems

The Computer Systems Edition of the 1991 Industrial Computer Source Book reports on more than 500 related products. It sums up in-dustrial-computer-system, dataacquisition, industrial-control, and communications products for IBM

PCs, PC/XTs, PC/ATs, and compatibles. The expanded presentation includes 20 -, 15 -, and 10 -slot rack and bench-top chassis, 8 - and 15 -slot chassis, and the Labtech Notebook with Iconview.

Industrial Computer Source, 4837 Mercury St, San Diego, CA 92111.

Circle No. 410

Super Cache
 Bring your entire application aboard Mizar's MZ 7132.

If your application requires not only superior 68030 performance, but plenty of on-board memory, Mizar's MZ 7132 is the answer. An economical, yet powerful, VMEbus single board computer, the MZ 7132 provides 16 Mbytes of dualported memory as well as a 16 Kbyte cache. Now, you can implement your memory-intensive applications more efficiently by avoiding the performance degradation of off-board memory. And, if you need more than 16 Mbytes, treat the on-board memory as a large cache and use the MZ 7132's optional VSB interface to access an additional memory pool.

The fully-featured MZ7132 includes a 68EC030 or 68030 CPU with on-board SCSI, serial I/O, and optional Ethernet. OS- $9^{T M}$ and $\mathrm{VxWorks}{ }^{T M}$ support is also available. For more information on the MZ 7132 and other Mizar products, call today: 1-800-635-0200.

Guide To Inductive And Capacitive Switches

This selection guide offers a line of inductive and capacitive proximity switches. An overview allows you to scan products by mechanical configuration, sensing range, or any of 15 other product parameters. The publication provides prices, dimension drawings, wiring diagrams, and electrical and mechanical specifications. Also included is information about mounting hardware and other accessories to simplify installation for position-sensing and leveldetection applications.
Efector Inc, 805 Springdale Dr, Exton, PA 19341. Circle No. 411

Catalog Focuses On Measurement System

The catalog lists the company's modular measurement systems (MMSs) as well as systems from other vendors. It specifies more than 40 MMS components including modules, instruments, mainframes, and displays. The $160-\mathrm{pg}$ publication describes resources and tools that simplify configuring the system, building custom modules, and ordering custom systems.
Hewlett-Packard Co, 19310 Pruneridge Ave, MS 49AM, Cupertino, CA 95014. Circle No. 412

Measure...

Displacement Proximity Level

With ALPHASENSORS' Microwave Sensor Technology

Microwave Sensors Offer:

- Non Contact Measurements
- Superior Performance in Harsh Environments
- Velocity, Presence and Motion Sensing Capability
- Low Cost/High Performance

Put our ALPHASENSORS' microwave technology to the testorder our MSM 10200 Motion Sensor Evaluation Kit-\$195, delivered from stock. For more information, call or write:

am sensors, inc.

26 Keewaydin Drive, Salem, NH 03079 Tel: 1-800-289-2611 • Fax: (603) 898-1638

CIRCLE NO. 108

Introducing...CD quality, stereo high fidelity, digital audio you record and playback on your PC-AT/286/ $386 /$ Model 30 or compatible.
Featuring...real time direct to disk data transfer... 16 -bit resolution... 20 Hz to 20 kHz audio response... 0.005% THD ... 6.25 to 50 kHz programmable sample rate...92dB dynamic range...90db s / n...digital input .. 4 to 1 ADPCM compression.
Use for digital audio recording, editing, mastering and transmission in broadcasting, entertainment systems, film production, audio/visual presentations and interactive CDI/DVI systems.
If you're an audiophile with microcomputer resources call 1-800-338-4231 (ex. CA.) for details on our Audio Pro... the Series 2/Model SX-10.

From schematics to printed circuit boards,

HIGH TECH DESIGN SERVICES

will deliver high-quality, cost effective, turn-key assembled printed circuit boards from:

- HAND DRAWN SCHEMATICS
- CAD GENERATED SCHEMATICS
- NETLISTS (most formats supported)
- HAND TAPED ARTWORK
- GERBER FILES
- or POSTSCRIPT FILES
with a fast enough turn around to give you an edge over your competition...

We also provide full engineering support and online modem service.
HIGH TECH DESIGN SERVICES 12807H W. HILLSBOROUGH AV. TAMPA, FL 33635 TEL:(813)855-5254 FAX:(813)855-5057

CIRCLE NO. 109

EDN's

CHARTER

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

EDN covers new products

- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN's Magazine Edition also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on" engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.

EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

Peter D Coley, VP/Publisher
Newton, MA 02158; (617) 558-4673
Ora Dunbar, Assistant/Sales Coordinator
Mark J Holdreith, Associate Publisher
Newton, MA 02158; (617) 558-4454
Deborah Virtue, Business Director
Newton, MA 02158; (617) 558-4779
BOSTON
Chris Platt, Regional Manager
Clint Baker, Regional Manager
199 Wells Ave
Newton, MA 02159; (617) 964-3730
NEW YORK/NEW JERSEY
Daniel J Rowland, Regional Manager 249 West 17th St; (212) 463-6419

PHILADELPHIA

Steve Farkas, Regional Manager
487 Devon Park Dr, Suite 206
Wayne, PA 19087; (215) 293-1212
CHICAGO
Greg Anastos, Regional Manager
Jack Johnson, Regional Manager
Des Plaines, IL 60018; (708) 635-8800

ARIZONA

John Huff, Regional Manager
44 Cook St, Denver, CO 80206
(303) 388-4511

COLORADO

Bill Klanke, Regional Manager
44 Cook St. Denver 80206
(303) 388-4511

DALLAS 75251

Al Schmidt, Regional Manager
12201 Merit Dr, Suite 730
(214) 419-1825

SAN JOSE 95128

Frank Granzeier, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager
3031 Tisch Way, Suite 100; (408) 243-8838

LOS ANGELES

Charles J Stillman, Jr
Regional Manager
12233 W Olympic Blvd Los Angeles, CA 90064 (213) 826-5818

ORANGE/SAN DIEGO/RIVERSIDE COUNTIES
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715; (714) 851-9422
PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
1750 Skyline Blvd, Box 6
(503) 297-4305

EUROPEAN OPERATIONS
Tully Giacomazzi, Managing Director
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030
UK \& BENELUX

Colin Smith
Oliver Smith \& Partners
18 Abbeville Mews 88 Clapham Park Roa London SW4 7BX

Tracey Lehane
Martin Sutcliffe
27 Paul St
London EC2A 4JU UK Tel: 44-71-628-7030

SCANDINAVIA

Stuart Smith
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030; Fax: 44-71-628-5984
FRANCE/ITALY
Laura Whiteman
14 Rue des Parisiens 92600 Asnieres sur Seine
Tel: 331-47900507
G Reina srl Via Filippo Carcano, 6 20149 Milan Italy Tel: 39248193542 Fax: 3924981283
Fax: $331-47900643$ Fax: 3924981283

GERMANY/AUSTRIA/BAVARIA
Karin Steinbacher New Media Munchen Ismaniger Str 108

Wolifgang Richter 8000 Munct 80 Sudring 53

Germany D-7240 Horb $1 \mathrm{~A} / \mathrm{N}$

Tel: 49-89-98-51-35 West Germany Fax: 49-89-981-0117

Fax: 49-1-451-1794

GERMANY

Helmut Steinkraus Imedia Medien-Vertretungs GmbH, Bolkerstrasse 57 4000 Dusseldorf 1 Germany
Tel: 4921180037
Fax: 49211132410 Media Kontakt Bahnhotstrasse 15 D-6101 Messel D-6101 Me Tel and fax: 4961595055

SWITZERLAND

Peter Combag, Roswitha N Kunzle
Exportwerbung AG
Kirchgasse 50, 8024 Zurich 1
Tel: 411261 4690; Fax: 4112514542

ISRAEL

Asa Talbar, Talbar Media
Box 22917
, 72 .

HONGKONG

Adonis Mak
Cahners Asia Limited
22 nd fl, Lo Yong Court Commercial Bldg
212-220 Lockhart Road
Wanchai, Hong Kong
Tel: 852-572-2037; Fax: 852-838-5912

JAPAN

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: 81-3-3366-8301; Fax: 81-3-3366-8302

KOREA

Jeong-guon Seo
DooBee International Inc
Centre Bldg, 1-11 Jeong-dong
Choong-ku, Seoul, Korea
Tel: 82-2-776-2096; Fax: 82-2-755-9860

SINGAPORE/MALAYSIA

Hoo Siew Sai
Ad Media Private Lto
95, South Bridge Rd
\#09-13 Pidemco Centre
Singapore 0105

AUSTRALIA

Alexandra Harris-Peárson
World Media Network Pty Ltd
Level 2, 285 Clarence Street
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788; Fax: 61-2-283-2035

TAIWAN

Parson Lee
Acteam International Marketing Corp
Box 82153, Taipei, Taiwan ROC
Tel: 886-2-7114833; Fax: 886-2-7415110
PRODUCT MART
Joanne Dorian, Manager
New Yerk NY 10011
(212) 463-6415; Fax: (212) 242-6987

NFO CARDS

Heather McEIkenny
Newton, MA 02158; (617) 558-4282
CAREER OPPORTUNITIES/CAREER NEWS
Roberta Renard, National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
Roseland
(201) 228-8602, 228-8610, 228-8608

Fax: (201) 228 -4622
Nancy Olbers, Western Sales Manager
238 Highland St
Portsmouth, NH 03801
(603) 436-7565; Fax: (603) 436-8647

Wendy A Casella, James P Joyce
Advertising/Contracts Coordinators; (617) 964-3030
William Platt, Senior Vice President, Reed Publishing USA
Cahners Magazine Div
Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Executive Vice President/General Manager,
Boston Div
Tom Dellamaria, VP/Production \& Manufacturing
Circulation: Denver, CO: (303) 388-4511
Eric Schmierer, Group Manager
Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60017. Phone (708) 390-2240.

End the connector compromise...

1. LIF RACK \& PANEL CONNECTORS

2. MULTIPIN WITH 8-200 AMP CONTACTS
3. MIL-C-28748A RELIABILITY

in electronic power supplies

Only Hypertronics ends the compromise in power supply connectors for backplane subassembliesin military, computer and other electronic systemsby combining Low Insertion Force (LIF) power, signal and MIL spec reliability in a single rack \& panel connector.

Our modular design gangs power contacts, rated from 15 to 200 amps , with low-insertion-force signal contacts. Combine these design alternatives with high current/small size performance of the Hypertac ${ }^{\circledR}$ contact-for unique cost and space efficiency.

And now our L Series connectors have been proven to MIL-C-28748A performance standards.

Now you can have it all...in rack \& panel
connectors for power and signal applications ranging from power supply to portable disc drives. End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC ${ }^{\circledR}$:
Inserting pin into hyperboloid sleeve.

HYPERTRONICS CORPORATION

"New Horizons in Connectors" 16 Brent Drive, Hudson, MA 01749 (508) 568-0451 FAX (508) 568-0680

PROFESSIONAL ISSUES

Engineering graduate schools

Jay Fraser, Associate Editor

Enrollments are declining, and a serious faculty shortage may lie abead.

Americans make up approximately 95% of all students who receive bachelor's degrees in engineering from US schools, but less than 50% of those who go on to earn a PhD. Today more than half of the teaching assistants, research assistants, and faculty under 35 years old in our engineering schools are foreign nationals. Behind those statistics from the National Science Foundation lies a complex of interlocking factors-financial, psychological, academic, even ethnic-that may mean serious problems in the future for graduate-level engineering education and the engineering profession in this country.

The most overpowering reason why the majority of American students don't go on to graduate school is financial. More than half of all undergraduates now need some sort of financial assistance to pay for their educations. Because of current federal policy, they usually receive this assistance in the form of student loans. So going to graduate school would only sink them further into debt. In addition, some students, as soon as they graduate, are expected to help support their families or to help put a younger brother or sister through college. The pressure is very strong on many people to leave school after earning their

face a difficult decade

BS degree and start earning money as soon as possible.

This situation isn't helped by the low stipends that many schools pay their teaching and research assistants. A full professor with tenure may earn as much as an engineer of equal age and experience working in industry. Teaching and research assistants, on the other hand, usually receive only one-third to one-fourth the salary of someone with a BS and an entry-level job at a high-tech company.

Another reason for the low number of Americans who go on for a master's degree or a PhD is that many students simply become tired of going to school. After grinding away for four or five years, a large number of students want to get out of academia and do something practical. They think of advanced de-
grees as being important for a career in teaching, but not really necessary for a career in industry, where they will gain knowledge through hands-on experience.

J Ray Bowen, Dean of Engineering at the University of Washington (Seattle, WA), points out that in graduate schools the courses too often aren't aimed at students who are seeking practical knowledge. "Some of those educational experiences that are designed to prepare students for advanced degrees are not necessarily applicable [to industry]," he says. "We have to enhance the design training in the advanced degree programs. We also need to introduce some courses related to engineering management and the management of technologies. We need to get more into the design of complex systems."

Educators believe that one way to raise the number of Americans
enrolled in graduate engineering programs is to put more effort into recruiting people from those groups that have been traditionally underrepresented in the professionwomen and minorities. In recent years engineering schools have worked to attract and retain women and minority students through increasing the number of scholarships available, setting up support groups, and providing academic counseling.

These efforts have shown positive but small results so far. According to the National Action Council for Minorities in Engineering, the number of African-American, American-Indian, and Hispanic freshmen has risen in the last five years. Members of these groups now make up 6.5% of all engineering graduates. However, only about 1% of the faculty of engineering schools are members of minorities.

PROFESSIONAL ISSUES

Although the number of women enrolled in engineering programs has leveled off in recent years at approximately 15%, it too rose during the last decade. Women currently make up about 3% of engineering faculty members.
Women and minority students are, of course, subject to the same financial pressures and the same desire to leave school for industry as other students, but educators point to an additional reason why many women and minorities have not become faculty members until now. The fact that there have been so few women and minority instructors and professors in engineering schools means that students have lacked role models and mentors.
Another reason for low student interest in an academic career may underlie all the others. As Bowen puts it, "There's been a sort of malaise in many institutions about the attractiveness of a faculty career,

and that has been reflected perhaps in a poor marketing job on the part of university faculty for their profession."

At many colleges and universities, the road to tenure is through research and writing, not teaching. This emphasis discourages students who are interested in teaching, and hinders teachers from working
more closely with students. Some professors only teach the bare minimum - one course per semester-so they can devote themselves to their research. Students perceive that a desire to teach could actually be dangerous to a faculty career. On many campuses you can still hear the old joke: "He was the best teacher I ever had. Don't tell the tenure committee."

All these reasons conspire to prevent American students from pursuing advanced degrees. According to the American Society for Engineering Education (ASEE), the number of Americans who received PhDs in engineering last year was about half of what it was in 1970. A much higher percentage of for-eign-born students go on to graduate schools, not because they have a more pronounced taste for the academic life, but because many of the pressures American students live under don't affect them.

Some foreign graduate students don't feel the same financial pinch that Americans do because they're supported by their governments while they go to school. Many European countries pay their students a wage equivalent to what an engineer starting out in industry would receive.

In much of the world only students who pass grueling tests are allowed to go to college. Honor and pride, in addition to financial considerations, compel them to go as far as they can in the higher education system. Plus, an advanced degree from an American university will help them command more prestige and a larger salary if they decide to return home.

But many students will want to stay in the US. The new US immigration law that took effect last year gives foreign students an additional incentive to earn an advanced degree. The law gives preference
to skilled and educated individuals. A PhD greatly increases a student's chances of becoming a permanent resident or a US citizen.
The result of this combination of factors is that foreign nationals now

make up more than half of all recipients of PhDs and more than half of all the faculty members under 35 years old in American engineering schools.
Some people see this as a cause for alarm, and some don't. Richard Ellis, Director of Manpower Studies for the American Association of Engineering Societies, says, "Essentially, we should be proud that we offer an educational system that appeals to people from all over the world. Our schools are clearly leaders internationally. It's one of the few places where Americans are still in a position of technological mastery and leadership."

Problems in the classroom

There's no doubt that many foreign nationals are excellent engineers and talented teachers. They're a valuable asset to the schools they teach at and the companies they work for. They add a diversity of cultures and viewpoints to our college campuses. But they also create problems.
The most obvious problem con-

Split-Second Timing.

TDK Sensors Offer High Sensitivity And Precision.

A chameleon detects and devours its prey with startling speed and accuracy. It also can modify its coloring to match its surroundings.
The highly developed sensory apparatus that makes these feats possible serves as inspiration for TDK's complete line of precision sensors.

Our unique development technologies in magnetics, semiconductor ceramics, piezoelectric and magnetoresistive materials and strict quality control combine to produce sensors for applications from automation to security. Call or write today for more information on versatile TDK Sensors.

| | PTC Thermistor
 Allows the operating point to be set within a wide range of $-4^{\circ} \mathrm{F}$ to $+626^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $+330^{\circ} \mathrm{C}$). | Temperature Responsive Reed Switch
 Provides accurate ($\pm 1^{\circ} \mathrm{C}$), consistent contact switching. | Humidity Sensor
 Calibrated humidity output in full 1 V scale can be obtained simply by connecting the power supply. | Pyroelectric Infrared Sensor
 Detects even the weakest infrared radiation-can even sense the human body! | Current Sensor
 Detects AC current and sends an output signal to protection or control circuitry. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Surface Potential Sensor
 Furnishes highly accurate, non-contact detection of even the smallest electrical surface charge. | Magnetoresistance Sensor
 Detects weak magnetic fields below 100 Oersted | Tilt Switch
 Provides highly sensitive detection of tilt and inclination. | Engine Knock Sensor
 Detects engine knocking with high precision. | | Toner Sensor
 Produces a digital signal indicating the absence or presence of toner. |

TDK CORPORATION OF AMERICA 1600 Feehanville Drive, Mount Prospect, IL 60056, USA Phone: 708-803-6100 INDIANAPOLIS Phone: 317-872-0370 NEW YORK Phone: 516-625-0151 LOS ANGELES Phone: 213-539-6631 DETROIT Phone: 313-462-1210 NEW JERSEY Phone: 201-736-0023 BOSTON Phone: 508-624-4262 HUNTSVILLE Phone: 205-464-0222 GREENSBORO Phone: 919-292-0012 DALLAS Phone: 214-506-9800 SAN FRANCISCO Phone: 408-437-9585 GERMANY •FRANCE • ITALY • U.K. - KOREA - TAIWAN • HONGKONG • SINGAPORE • THAILAND • P.R. OF CHINA • BRAZIL TDK CORPORATION Tokyo, Japan

今TDK

PROFESSIONAL ISSUES

cerns language. Many foreign nationals speak less than perfect English, and this can make communication difficult. "There's some truth to that," says Ellis. "But at the same time, we caution people to be very careful about stereotypes. There are many foreign nationals in the schools whose English is better than yours or mine."

Another problem is cultural differences. Some foreign-born teachers come from countries where women are not treated as first-class citizens. In a survey of female graduate students conducted at MIT in 1987, the respondents indicated that they faced difficulties ranging from being left out of classroom discussions to being assigned less challenging assistantships. However, the women also said that it was not always foreign-born instructors who caused these problems.

Looming on the horizon may be another problem that has far-reaching implications for US graduate schools and high-tech firms: The number of foreign-born engineering students and faculty members could decrease sharply at any time.

Recent events in the People's Republic of China are a good example of what might happen elsewhere. After the massacre in Tiananmen Square in June of 1989, the Chinese government cut back severely on the number of students allowed to study abroad and made it much more difficult for those who were permitted to leave. Now, before Chinese students travel overseas they must, in effect, post bond for themselves.

The number of foreign graduate students and faculty members may also decrease if the American economy continues to weaken. If foreign nationals feel there are better opportunities for them in their native countries, then more and more of
them will return home. That will leave gaps in the student and faculty populations of US engineering schools as well as in high-tech companies.

A potential faculty shortage

Another problem is fast approaching that will exacerbate all the others. A 1989 report by the ASEE Task Force on the Engineering Pipeline estimates that by 1995 ,

25% of the engineering faculty in this country will reach retirement age. A large number of students enrolled in engineering programs in the late 1950s during the defense buildup of those years and the beginning of the space race, and consequently joined engineering faculties. As these people retire over the next decade, engineering schools will have to increase their efforts to fill faculty positions just to maintain their current levels of staffing.
Maintaining the quality of graduate schools of engineering in this country is extremely important, and the US can't depend on a constant number of foreign nationals to fill its teaching positions. It must assure itself of a reliable supply of first-rate American students who want to pursue advanced degrees in engineering and go on to faculty careers. Educators and professional organizations have analyzed the problems besetting US engineering schools and have come up with a number of recommendations.

The first place many people look for help is the federal government.

It could aid graduate schools by creating more fellowships and increasing the amount of money it distributes as research grants. In addition, when government agencies are evaluating research proposals they should take into account not just the technical goals of the projects, but also the number of students who would be involved in them. However, with the trend these days toward cutting government spending, more federal funding may be hard to come by.

Industry can help in some of the same ways government can-providing more fellowships and sponsoring more research on campus. Many companies already have tuition reimbursement plans, and many engineers are willing to go back to school for an advanced degree if their companies will pay for it. However, they're put off by how long it will take if they have to go part time. Companies should try to make it possible for their employees to attend graduate school full time.

But engineering schools can't count on outside institutions to

solve their problems for them. First of all, they should take steps to ease the financial burden on students by increasing stipends for teaching and research assistants so that they equal the average starting salary in industry for someone with a BS.

PLD OPEN SYSTEMS THE BEST WAZ

This is a testimonial for open design systems for programmable logic. Atmel thinks it's the best way for you to go.

You have enough problems, and your hands should not be tied with proprietary design systems. You should be able to pick the latest and greatest third-party tools for programmable logic. Standard tools will cut system entry costs (the boss will love that), and you won't have to upgrade the kit for each new device architecture. And, you'll be able to use anyone's PLDs (especially ours).

Atmel features an architecture that gives high-gate utilization and predictable highspeed performance. And, here's a bonus: your application will not affect the performance of our EPLDs.

Our EPLDs:

| | Gate
 Count | System
 Frequency | Pins | |
| :--- | :--- | :--- | :--- | :--- | Availability.

So, if you want programmable logic that meets the spec no matter what your application, call Atmel, the people who think that open design systems are the only way to go.

DECLARE YOUR INDEPENDENCE!

High performance blowers provide variable air flow from 120 VAC input

These new Windjammer* blowers combine electronics, motor, and fan system in a compact, cost-effective package. An exclusive Lamb Electric design, they were developed for demanding, limited space applications such as business machines, medical equipment and materials handling applications.

Just 5.7" in diameter, the blowers have $1-2$-, or 3 -stage fans for performance from $75^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ vacuum at 0 CFM to 125 CFM at $0^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. With one version, a 0 to 10 VDC signal from a sensor or other device will control motor speed and adjust air perform-
ance from 0 to 100%. Or, a second model provides manual speed control by means of a potentiometer located in the blower housing. These blowers also feature low noise performance and are UL/CSA component recognized. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany.
Tel: 611-370031.
Fax: 611-370033.

PROFESSIONAL ISSUES

Educators should do more to encourage students to consider an academic career. Faculty members enjoy benefits, such as flexible schedules, the freedom to choose their own research projects, and tenure, that simply don't exist in industry. Teachers also get the personal satisfaction that comes from working with students. More students might choose a faculty career if they understood its rewards better.

For those students not interested in academic careers, but who want more thorough preparation to work in industry, graduate schools should include more courses that offer practical information and deal with real-world problems. Students won't go to graduate school if they believe it's only for those who want to pursue abstract research.

Engineering schools must do a better job of recruiting women and minority students and convincing them to continue on for advanced degrees. This is necessary not just to keep educating a sufficient number of engineers, but also to provide role models for younger students. With more role models visible, more women and minority students may enroll in engineering programs, and this problem might eventually solve itself.

In brief, if engineering graduate schools want to head off the problems they'll face in the decade ahead, they must make it much more attractive for students to go after advanced degrees. They're going to have to recruit students for faculty careers as aggressively as high tech firms recruit them for industry.

EDN

Article Interest Quotient
(Circle One)
High 512 Medium 513 Low 514

books that work the way you work

Design tips from the masters!

Analog Circuit Design: Art, Science, Personalities Jim Williams, Linear Technology Corp., Editor

24 masters of analog circuit design share their experience, knowledge, insights, and wit in this comprehensive and useful guide to analog theory and applications. Topics include:

* visualizing the operation of analog circuits
* how to rapidly determine workable approximations of analog circuit parameters
* the pros and cons of analog circuit design using SPICE and other software
* mastering the use of feedback

May 1991 352pp. cloth 222 illus.
0750691662 \$44.95

The best of EDN

Electronic Circuits, Systems \& Standards Edited by lan Hickman

Many EDN readers file back issues of the magazine and save special articles. Ian Hickman has gone a step further: he's collected and filed articles from the last 15 years, selected his favorites, and cross-referenced and indexed them. The selection reflects his interests as an analog circuit design engineer, but digital topics are far from ignored. Many of the circuits are from the popular "design ideas" section, and many longer articles are also included.
May 1991 256pp. cloth 200 illus. $0750600683 \$ 32.95$

Yes! I'd like to order the following books:
Analog Circuit Design/Williams 0750691662 \$44.95
Electronic Circuit Design/Hickman $0750600685 \$ 32.95$

- Troubleshooting Analog Circuits/Pease $0750691840 \$ 32.95$
| Name
| Company
| Street (No P.O.Boxes)
| City, State, Zip
| Signature
[] Check Enclosed in amount of \$
Charge my: []Visa []Mastercard []Amex
\mid Card No. \qquad Exp. Date

30-Day money back guarantee. Prepaid orders save postage. Add local sales tax and $\$ 3.00$ per order for handling. U.S. funds only. Prices subject to change

Harris puts all the most popular modulation techniques into one DSP chip.

The new Harris HSP45116 NCOM (Numerically Controlled OscillatorModulator) puts all the most popular digital modulation techniques on a single DSP chip. Including QAM,FM, AM, FSK, PSK, and complex down-conversion.

> Sample rate: Up to 33 MHz Frequency control: 32 bits Phase control: 16 bits Data input: 16 -bit complex

So if you're still doing modulation the old analog way, it's time to change. Because with the NCOM in your design, there's no analog drift, just pure digital accuracy.

Plus, with the NCOM's microprocessor compatible interface, and its complex MAC, digital modulation is as easy as designing with one chip.

Want to know more? That's easy, too. Just call 1-800-4-HARRIS, Ext. 1213. Today.

Spurious freq. components: <-90 dB Tuning resolution: 0.008 Hz

And find out more about our complete line of industry-leading ICs for digital signal processing applications.

EDN

 Prodict mart
This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

Protel Autotrax ${ }^{\prime \prime} \sqrt{| || || | \mid}$
 Best PCB design solution for mixed Digital, Analog, and SMT boards Our NEW and POWERFUL Protel Autotrax ${ }^{\text {T3 }}$ is a fully integrated PCB layout system with automatic component placement and autorouting in a single working environment. Its latest features will definitely push the price/performance of mixed technology PCB designs to the highest level, boost your design productivity and deliver your products ther, - Integrated automatic component placement and autorouting - On-the-fly library components creation - $45^{\circ}, 90^{\circ}$ and curve tracks routing - Powerful user-definable Macros
 - Auto-panning - PostScript ${ }^{\text {"x }}$ printing - Switchable Metric/Imperial grid - Intelligent Pad to Pad autorouting - Automatic power/ground relief for SMD pads - Automatic Copper Pour leaves clearance for tracks \& pads From schematic design, manual and automatic PCB design, Rip-up and Retry autorouting, to Gerber viewng and editing, we offer free tech and EMS support, 24 -hour BBS and 30 -day money back guarantee and our prices start at $\$ 395$
 Free Evaluation Package Toll Free: 800-544-4186 Protel Technology, Inc 50 Airport Parkway, San Jose, CA 95110 Tel: 408-437-7771 Fax: 408-437-4913

CIRCLE NO. 325
Molseken
Noise simulators help find perils in power-line defects IMPULSE NOISE SIMULATOR

MODEL INS-410
U.S.A WATAHAN NOHARA INTERNATIONAL. INC TEL(800)366-3515

CIRCLE NO. 326

Precious Metal Ball Contacts

Abbott balls are precision-ground to virtually eliminate elliptical, out-of-round and dimpled shapes. Use them in, electrical contacts, relays or reed switches.

- Easily adaptable to automated assembly
and feed mechanisms
- No orientation of parts required
- Uniformity reduces line shut-down

Let our engineers work with your samples or require ments to develop the right balls for your contacts.

ABBOTTBALL

Railroad Place, P.O. Box 330100. West Hartford, CT 06133-0100 U.S.A. Phone: 203/236-5901

Program Your Chips
 In Sets of $\mathbf{4}$ for $\$ 495.00$

Special offer Now Includes: Free UV eraser, CUPL starter Kit and a $\$ 300.00$ Rebate with the PDT-1 Universal Programmer SystemVKit.
LOEGICES, we.
1-800-331-7766

CIRCLE NO. 327

High Fidelity Stereo Sound On The PC Bus

Recording rates of $>44.1 \mathrm{khz}$ Frequency response from 20 hz - 20 khz AUDIO SC-208
Professional quality stereo digital recording and playback for the AT bus, 87 db dynamic range optional MIDI interface. \$795.00 W/MIDI \$847.00 AUDIO MC-108
Mono digital recording and playback for XT bus, optional MIDI interface. $\$ 225.00$ W/MIDI $\$ 277.00$ AUDIO F/X
Mono digital recording and playback with onboard Z80 controlled stereo synthesizer, plays up to 6 simultaneous voices. $\$ 350.00$ Optional UNIX drivers available

FORTE

72 Karenlee Dr. Rochester, NY 14618
Phone (716) 427-8595
FAX (716) 292-6353
CIRCLE NO. 330

DEVELOPER'S TOOLS

NICE-51 satisfies you, who expects excellent functions, attractive price and easy to use. What a surprise, now you have it!
8051 IN-CIRCUIT EMULATOR NICE-51
PC BASED FROM $\$ 950$
Up to 12 MHz Real-Time without intruding Interrupt Serial Channel, I/O or Code Space
Built-in programmer for EPROM \& 8751

- Handles Binary. Hex. \& Symbol file and down-loads data to external RAM
- With full screen editor, SPF, Code, External data, Internal data and Bit address can be directly viewed and edited
- Complete menu-driven software without any tedious commands
- 16 K trace buffer, 48 Bit wide with ADDR, DATA, P1, P3 and status signals
$64 \mathrm{KH} W$ breakpoint
- Extra 10 function keys operate routine tasks

Call us today for complete product line
Immediate technical support upon your phone call
1 -year warranty and 30 days money-back guarantee
fel: (415) 623-8859 Fax: (415)
44388 S. Grimmer Blva. Fremont CA 94538
CIRCLE NO. 331

Put a low cost temperature monitor CelsiClock ${ }^{\circledR}$ on any surface.
The indicating triangle of the CelsiClock ${ }^{\text {® }}$ labels turns permanently black when the surface reaches the specific $»$ switch « temperature level of that triangle. Highly reliable labels are available as single temperature spots or in multiple sequenced temperature increments. Labels are self-adhesive and quickly placed on any dry surface. Temperature ranges from $105^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ to $550^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$. FREE SAMPLE on all inquiries. CELSI's, the reliable „Temperature Watchdog" for years.

Solder Absorbing Technology Inc.
144 Oakland Street, Springfield MA 01108 Fax (413)788-0490
CIRCLE NO. 334

- 2716 to 4 Meg

- Programs 2764A in 10 seconds

16/32 bit split programming

- Menu driven software
- No personality modules required
- Adapter for 8748, 49, 51, 52, 55, TMS 7742, 27210,

57C1024, and memory cafds

- 1 year warranty -10 day money back guarantee - Made in the U.S.A.

For more information, call (916) 924-8037 EMPDEMO.EXE available BBS (916) 972-8042

NEEDHAM'S ELECTRONICS
4539 Orange Grove Ave. • Sacramento, CA 95841
(Monday - Friday 8:00 a.m. - 5:00 p.m. PST)
CIRCLE NO. 337

DEVELOPERS' TOOLS

 CIRCLE NO. 332

ROM-IT
EPROM EMULATION SYSTEM

- Emulates up to 8 4-Megabit EPROMS with one control card.
- Downloads 2-Megabit programs in less than 23 seconds.
- Allows you to examine and modify individual bytes or blocks. ORDER TODAY--IT'S EASY CALL OR FAX FOR MORE INFORMATION
Incredible Technologies, Inc.
(708) 437-2433
(708) 437-2473 Fax

VISA now accepted.
CIRCLE NO. 335

HPIC is a specialist manufacturer of aluminum products since 1972. Our experience and integrated production including extrusion, cutting, punching drilling, lathing, CNC milling and anodizing etc. guarantee you the best price, quality products and prompt delivery. Many famous makers of household electronic/electric appliances, computers etc. purchase their heat sinks, front panels and metal parts from HPIC. Your inquiry are most welcome.

HWANG PIIN IND. CO., LTD.

NO. 254 , CHUNG CHENG RD., LOU-IOU HSIANG TAIPEI HSIEN TAIWAN, RO.C EL: (02)2816636~8 Telex: 33485 HPIC FaX: (02)2828180

PC/ATTM COMPATIBILITY ON MULTIBUS In 1989 our MAT286TM SBC brought PC-DOS to Multibus I. Since then no competitior has come close in terms of teatures, megabytes of oal support:We ve aded cabities, such as 8 Disk software EMS 40 and low power CMOS components. Now we are announcing our new MATXSYSIO2 daughter-card with 16 bit VGA and LCD flat-panel interfaces $1-1$ interleave MFM/RLL ST506 hard-diskfloppy disk controller, and a PC/AT Bus short-card adaptor. And, yes, we are working on MAT386. the 386 -based Multibus AT that will be compatible with the 286 based standard, MAT286.

Phone (408) 253-0250 for more information Single Board Solutions, Inc.
20045 Stevens Creek Blvd, Cupertino, CA 95014 PC/AT ${ }^{\text {M }}$ IBM

CIRCLE NO. 333

- SCHEMATIC CAPTURE
- GRAPHICS
- PCB LAYOUT
- SIMULATION
- ROUTERS
- CAD/CAE \& MORE!

For Your Free Catalog Call
1-800-743-7074

CIRCLE NO. 336

There is a Difference!

Lifetime Free Updates

A programmer is not just another programmer. That is why BP Microsystems is committed to bringing our customers the highest quality programmers at an afforable price.This commitment is evident in our CP-1128 Combination PROM/EPROM/PLD Programmer supporting over 1800 devices up to 28 -pins. Call today!

BP Microssuitms

1-800-225-2 102
713/461-9430

| Facts about at Your Fingertips
 Cahners CAPS is the newest component search and selection tool for electronic design engineers:
 - PC-driven, CD-ROM-based
 - Includes unabridged manufacturers' datasheets
 - Represents more than 450 manufacturers worldwide
 Call toll-free: 1-800-245-6696
 Product Selection
 Facsimile: 617-630-2168
 Telex: 940573
 CIRCLE NO. 340 | FREE 26 Page CATALOG with all styles and designs of matching instrument knobs illustrated.
 Fax us your specs-we will Fax you a quote...immedlately!
 555 Marion Road Columbus, OH 43207
 Fax: 614/445-8224 Phone: 614/445-8433
 CIRCLE NO. 341 | YOUR ALL-IN-ONE UNIVERSAL PROGRAMMER \& TESTER MODEL: LEAP-U1
 Just one disk to Program and Test: EPROMs, HIGH SPEED EPROMs EEPROMs, PEROMs, Serial EEPROM. Bipolar PROMs. Programmable Logic Devices (PAL. CMOS PLD, EPLD, EEPLD, GAL. PEEL. PPL, CPL) Microcomputer (MCS-48. MCS-51, Z-8 families). IC Test TTL 174-54 series). CMOS (40/45 serie
 - Key-in own choice of Parameters Vpp or D/A ranging from 0.IV to 25.5 V
 - Offers up to 25 different file formats. |
| :---: | :---: | :---: |
| iceMASTER
 COP8
 FULL-FEATURED EMULATION
 SYSTEM FOR COP8
 - PC-hosted COP8
 emulator system.
 - Easy to learn and use.
 - iceMASTER is fast. 8 K file loods in less than a second with 115.2 K boud link
 using standard COMM port.
 - iceMASTER COP8 connects easily to any $P C$, requires NO disassembly or
 expansion slots. Works on PC (DOS or OS/2), Micro Chonnel, or EISA. Even lootoos!
 Even Laptops!
 - iceMASTER is flexible. Windowed interfoce - user configurable with
 pulldown menus, combined with hotkeys, context sensitive hyperlinked help,
 on-screen editing.
 - iceMASTER is powerful. 4 K frame trace buffer with odvanced searching and
 - iceMASTER is versatile. One iceMASTER COP8 allows emulation of more than 10 different COPP family derivatives vio interchangeable probe cords.
 10 different COP8 family derivatives vio interchangeable probe cords.
 - Call us today for a FREE demo disk.

 Matalink Corpoction PO. Box 1329 Chandlat, Az 852441329 Phone: (602) 9260797 FAK (602) $926-1198$ TEEX: 4998050 MINL
 CIRCLE NO. 343 | POWER SUPPLIES, AMPLIFIERS AND METERS
 Broad range of easy-to-use instrumentation including adjustable DC Power Supplies, Amplifiers in small in-line modules andminiaturechip packages, $3^{1 / 2}$ and $4 \frac{1}{2}$ Digit Panel and Handheld Meters, as well as complete rack mountedSignal Conditioners. Many available from "OFF-THE-SHELF" stock.
 ENTRAN DEVICES, INC.
 10 Washington Avenue, Fairfield, NJ 07004 CALL TOLL FREE (800) 635-0650 FAX 201/227-6865. |
 CIRCLE NO. 345 |
| DR-11W USERS:
 New Fiber Optic Link
 Our new Fiber Optic Link removes the DR-11W's 50 foot cable limit. We use advanced fiber optic technology so you can separate DR11-W compatible devices up to 2 kilometers - with no loss in system throughput. Our Links connect to your existing DR11-W interfaces with standard 40-conductor flat cables. Join the
 (10)macrollinkº inc.
 1500 North Kellogg Drive - Anaheim, California 92807 Phone (714) 777-8800 ■ FAX (714) 777-8807
 CIRCLE NO. 346 | MaxCAD
 MT2000
 Single-Chip Card Controller
 \& Card System
 Products • Signle Chip IC Memory Card Controller
 IC Memory Card Interface Module
 IC Memory Card Notebook PC
 IC Memory Card
 Edge type • JEIDA standard
 Two plece type • Custom card
 MaxCAD technology co., ltd.
 276, Chung-Hwa 1st Road, Kaohsiung, Taiwan, R.O.C.
 TEL: (886)7-5815310 FAX: (886)7-5815159
 CIRCLE NO. 347 | NEW:
 PC/LA
 100 MHz PC
 Logic Analyzer
 by ν^{3} Corp
 :.:.: 100 MHz timing \& $50 \mathbf{M H z}$ state:
 - 48 channels, up to $8 \mathrm{~K} /$ channel
 - 16 trigger levels, 64 unique states
 - Powerful NEW trigger engine
 - 8 \& 16 bit disassemblers available?
 - for DOSNIN3 PC/XT/AT/386/486举
 - Free Updates, 1 Year Warranty 30 Day Money-Back Guarantee Standalone Performance!
 For details, call (416) 238-3543
 ZTEST Electronics Inc.
 290 Larkin St, Buffalo, NY, 14220° Dealer enquiries welcome! |

CIRCLE NO. 346

Instant Microcontroller

Instant C Programming
Don't use a microprocessor, usea SmartBlock ${ }^{\text {TM }}$ microcontroller module to build your custom controller. Our low cost Dynamic $\mathrm{C}^{\text {rM }}$ makes programming a snap. 3.5×2.5 inch module includes microprocessor, memory, time/date clock, eeprom, watchdog, serial ports and more As low as $\$ 59$ in quantity. The efficiency of a custom design without the headaches.

Z-World Engineering

1340 Covell Blvd., Davis, CA 95616 USA Tel: (916) 753-3722 Regular Fax: (916) 753-5141 Automatic Fax: (916)-753-0618 (Call from your fax, hear computer voice, use touchtone dial to request desired data sheets.)

CIRCLE NO. 349

High Performance Lexan ${ }^{\otimes}$ FR700 Film For Barrier Insulation

- Ul94 V-0 rated at $.010^{\prime \prime}$ - High heat resistance of $275^{\circ} \mathrm{F}$ - Excellent dielectric strength - Easy fabrication-sharp folds, intricate die-cut shapes - Competitively priced - Call for free information: (800) 451-3147

GE Plastics Structured Products \otimes Regisered Trademark of GE. CIRCLE NO. 752

- Table based absolute macro cross-assembler using manufacturer's assembly mnemonics.
- Includes manual and MS-DOS assembler disk with tables for ALL of the following processors:

| $16 C 5 X$ | 64180 | 6801 | 8048 | H8 8300 | Z8 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 37700 | 6502 | 6805 | 8051 | H88500 | Z80 |
| S0740 | 65816 | 6809 | 8085 | TMS320 | Z180 |
| $78 C 10$ | COP400 | 6811 | 8086 | TMS340 | Z280 |
| SUPER8 | COP800 | $\mathbf{6 8 0 0 0}$ | 8096 | TMS370 | MORE... |

- Users can create tables for other processors or ask us, we have many morel
- Generates listing, symbol table and binary, Intel, and Motorola hexcode
- Free worldwide airmail shipping \& handling.
- Canadian residents please add 7\% GST

US \$199.00 CN \$239.00
UNIVERSAL CROSS-ASSEMBLERS P.O. Box 6158, Saint John, N.B., E2L 4R6 Canada Voice/Fax: (506) 847 -0681

4MEG VIDEO Model 10

Flexible Image Processor and
Application Accelerator For The PC/AT

- 8 to 8000 Pixels per Line
- 2 to 19 MHz sampling/display rate
- 10 MIPs Programmable Accelerato
- 4 Megabytes of Reconfigurable Image Memory
- RS-170, RS-330, and CCIR input/output
- Variable timing for nonstandard formats
- Genlock to external timing sources
- Analog or digital inputs
- Software programmable timing/resolution

3005 MacArther Blvd., Northbrook, IL 60062 708-498-4002

FAX: 708-498-4321

CIRCLE NO. 350

200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz), Timing and State - 200/100 MHz Max Sampling Rate (6 channel)
- Timing and State Simultanious on Same Probe
- 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL, or ECL Logic Threshold Levels
- 3 External Clocks and 11 Qualify Lines
- FREE Software Updates on 24 Hour BBS
\$799-LA12100 (100 MHz)
\$1299 - LA27100 (100 MHz) Price includes Card, \$1899 - LA27200 (200 MHz)
UNIVERSAL PROGRAMMER
PAL
GAL
EPROM
EEPROM
PROM
87xxx...
22V10

16Bit EPROMs FLASH EPROMs 5ns PALs 4 Meg EPROMs FREE software updates on BBS GANG PROGRAMMER

- 4 32pin Sockets (8 Socket option) \$215 - 2716-27010 EPROMs

Call - (201) 994-6669 Link Computer Graphics, Inc. 4 Sparrow Dr., Livingston, NJ 07039 FAX:994-0730

DC/CAD

CAD Showdown Results! HIGH DENSITYEXPERTS!

Schematic Capture \leqslant PCB Layouts * Autorouting Top-rated DC/CAD out-routed the competition in the 1990 CAD Showdown. Routing the challenging benchmark on a doublesided board while competing routers used four to six layers, DC/CAD displayed the power and flexibility needed in a top-notch design package to tackle high density board jobs. This non-copy protected package with surface mount support includes:

- High capacity schematic capture
- Multi-strategy 1 -mil parts autoplacer
- " 1 -mil" autorouting w/ripup \& retry

- Thorough annotating design rule checker
- Full 2-way GERBER and DXF support
- Optional autoground plane support with cross-hatching
- Optional protected - mode version for 386 Users and much more!

CALL TODAY. Priced at $\$ 495$
 CIRCLE NO. 751

SIMPLIFY BOARD LAYOUT

MICRO/Q 1000 ceramic decoupling capacitors share board mounting holes with IC pins to simplify board design. Now add more active devices with increased density in the same space. or design the same package on a smaller board. Rogers Corp. 2400 S. Roosevelt St., Tempe, AZ 85282. 602/967-0624

- PC Based DSP System
- Two Motorola DSP56001 Processors
- 6 KByte Dual Port RAM for Interprocessor Commmunication and Parallel Processing
- 1 MByte Static RAM
- PC or external supply
- C Utility Library with all drivers necessary to interface BNK 5620 and PC.
- BNK 5620-DB Two Channel Debugger PRICE: \$1995.00
BNK ELECTRONICS, INC.
460 Sylvan Avenue, Englewood Cliffs, NJ 07632 Tel: (201) 894-5905 Fax: (201) 894-5736 CIRCLE NO. 757

CIRCLE NO. 758
3) 500,000

ICs and Semiconductors at Your Fingertips
Cahners CAPS is the newest component search and selection tool for electronic design engineers:

- PC-driven, CD-ROM-based
- Includes unabridged manufacturers' datasheets
- Represents more than 450 manufacturers worldwide

Call toll-free: 1-800-245-6696
 275 Washington Street Newton, MA 02158-1630 Telephone: 617-558-4960 Facsimile: 617-630-2168 Telex: 940573

CIRCLE NO. 761

New Schematic and PCB Software
With support for extended and expanded memory , HiWIRE II can handle your most demanding schematic and PCB designs quickly and easily. The unique HiWIRE editor allows you to display and edit schematics and PCBs simultaneoously, using the same commands for each. HiWIRE II is $\$ 995$, and is guaranteed.

Wintek Corporation

1801 South St., Lafayette, IN 47904 (800) 742-6809 or (317) 448-1903

BY THE HUNDREDS

Our line of prototyping adaptors for VLSI devices including PGA, PLCC, LCC, ZIP, DIP and Quad Flat PAk is the most extensive available in the industry. These devices allow easy prototyping of these difficult to handle devices. Pins and sockets used are gold plated and of the highest quality. Parts are available in soldertail or with 3 level wirewrap pins. All types of wirewrap panels are covered. Ask about our custom design services for unique solutions in packaging.

IRONWOOD ELECTRONICS
P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616
 CIRCLE NO. 759

Your reliable \& economic source for printed circuit boards.
We offer a wide range of double-sided \& multilaver PCBs with high reliability fast service, top quality and competitive price. We can help you become more effective \& profitable through the next decade. Don't hesitate! Contact us now!

Mana mioco im 12 TH FL. NO 689 , CHUNG SHAN N. RD. SEC. 5, TAIPE, TAIWAN, R.O.C.
TEL: $886-2-8356244$ FAX: $886-2-8356254$ CIRCLE NO. 762

Schematic Capture for the Macintosh

DESIGNWORKS
Schematic features Menu-driven, mouse-controlled operations \bullet cut/copy/paste between circuits • right-angle rubberbanding. Digital simulation 13 -state, event-driven simulation - logic analyzer-style timing window \bullet PLD support. Libraries Fully-simulated $7400,4000,10 \mathrm{~K}$ series, PLDs, PROMs and RAMs, non-simulated analog and discrete components - User-definable, simulated custom symbols. Interfaces Formats for Douglas CAD/CAM, Cadnetix, Calay, Orcad Tango, Racal Redac, Spice. - user-definable printers, dot matrix printers, HP, Houston, Roland pen plotters. Requirements Macintosh Plus, SE, II, Ilx, Ilcx, or Ilci.

CALL (604) 669-6343 FOR YOUR
FREE DEMO DISK TODAY.
CAPILANO COMPUTING SYSTEMS LTD. CIRCLE NO. 765

QUAD FLATPAK

PROTOTYPING

IRONWOOD offers a complete line of prototyping adaptors for QUAD FLATPAK devices for all sizes of EIAJ and JEDEC QFP's. The line includes surface mount adaptors for highest reliability or socketed adaptors for convenience. Parts sizes go from 60 to 208 pins and include all EIAJ pin spacings. Parts are constructed with gold plated soldertail or wirewrap pins and high quality sockets for highest reliability. Most wirewrap and PGA patterns available.

IRONWOOD ELECTRONICS

P.O. BOX 21151, ST. PAUL, MN 55121
(612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 760

INDUSTRIAL THERMOSTATS

Snap-action provide
quick make or break of current in

temperature-critical devices. Compact, surface mounted, reliable. Some models open on temperature rise, others close, at fixed set points between $35^{\circ} \mathrm{F}$ and $500^{\circ} \mathrm{F}$. Attractive quantity discounts. Literature, free sample, and quotations. Available from stock.

Selco Products Co.
7580 Stage Rd., Buena Park, CA 90621 213/921-0681, 714/521-8673 800/229-2332

CIRCLE NO. 763

M-986 transmits and receives CCITT R1 or R2 forward and backward multifrequency signals. For trunk adapters, test
 equipment, etc.

- Single or dual channel versions available
- For N. Am. (R1) or Int'l. (R2) toll signals
- Binary or 2 of 6 input/output format
- Complete microprocessor interface
- 40-pin IC, 5 -volt power, crystal time base

1-800-426-3926
Or: 206-487-1515 Fax: 206-487-2288

LELITNE

INNOVATING SOLUTIONS
In Telecom Interfrace Components
Teltone Corporation, 22121-20th Avenue SE, Bothell, WA 98021 CIRCLE NO. 766

| Imagine if YOUR product could talk!
 - Converts plain ASCII text
 - Built in $\mu \mathrm{P}$, serial and into high quality speech printer interfaces
 - Requires only a single 5V
 - Less than $\$ 100$ in OEM supply and speaker quantities
 - Use in computers, voice-
 mail, warning systems, etc. available
 121 W Whesesp Rd -Bothel, Wa 98012 Europe - 0815390285 Fax: 0815588110 CIRCLE NO. 767 | 40-PIN E/EPROM PROGRAMMER
 Lifetime S/W via BBS
 PILOT-144: Powerful PC-driven 40-pin programmer supports E/EPROMs up to 40 -pins. Standard parallel port interface means fast thru-put and no need to install high voltage cards inside your PC. Built-in power supply. Ugradable to support $875 x$ and $874 x$ micros. \$795. SATISFACTION GUARANTEED. 408-243-7000, 800-627-2456, Fax 408-736-2503 ADVIN SYSTEMS INC.
 1050-L E. Duane Ave., Sunnyvale, CA 94086 | \#1 LOW COST CIRCUIT BREAKER
 100\% tested and calibrated
 - 76 series: Auto reset, printed circuit board mounted, 0.6A to 5A. Ideal for medical equipment, audio system, and food processor.
 - 74 series: Pushto reset, panelmounted, 3A to 30A.. Ideal for control panel, motor protection, and power supplies. UL/CSA.
 JOEMEX ELECTRICS AMERICA, INC.
 19 Hammond, Suite 508, Irvine, CA 92718 Tel: (714) 855-4472 Fax: (714) 855-4574 |
| :---: | :---: | :---: |
| Analog Circuit Simulation
 SPICE FOR THE PC (xT, AT, 386, 486)
 - Schematic Entry - SPICE Simulation
 - Model Libraries - Waveform Graphics Intusoft has it all at an Affordable Price! Integrated, Easy to use Simulaton Envionment, Featurimg: A powerful SPICE (ISSPICE) simulator performing AC, DC, Transient, Noise, Fourier, Distortion, Sensitivity, Monte Carlo, and Temperature analyses. Extensive model libraries, Schematic entry, and Waveform processing. Starting at $\$ 95$ for ISSPICE, complete systems are available for $\$ 815$. | The Digital Designer's Spreadsheet!
 - Create timing diagrams in minutes
 - Get effective tradeoffs on memory, wait states and logic speeds
 - Analyze worst-case uncertainty
 - Display available time between edges
 - Create timing documentation quickly and easily CALL Doctor Design for your FREE DEMO! 619-457-4545
 5415 Oberlin Drive, San Diego, CA 92121 See us at DAC in booths 654, 1045 \& 1750 CIRCLE NO. 771 | Consistency is
 key
 to the power of EDN Product Mart |
| CIRCLE NO. 773 | RELIABILITY PREDICTION SOFTWARE
 ARE YOUR PRODUCTS RELIABLE?
 The RelCalc 2 Software Package predicts the reliability of your system using the part stress procedure of MIL-HDBK-217E, and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc 2 is very easy to use, and features menu windows, library functions, global editing for what-if? trials, and clear report formats. Try our Demo Package for \$25.
 T-CUBED SYSTEMS, 31220 La Baya Drive \#110, Westlake Village, CA 91362. (818) 991-0057 • FAX: (818) 991-1281
 CIRCLE NO. 774 | |

Quality Debugging Accessories

- Protect your ICs from damage. Insert and extract LCC, PLCC, PGA, and PQFP packages with the right tool. - Use receptacle boards to build test fixtures, and mount your test equipment, in half the time.
- Get the right production sockets, burn-in sockets, test leads, and test clips for SMT, SOIC, or PLCC circuits.
- Quick turnaround on custom engineering services, if needed. For a free catalog, contact:

Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051
Phone:408-982-0660 FAX:408-982-0664
${ }^{\text {E }}$
CIRCLE NO. 776
ICCON

BOARD LEVEL, HIGH-

 CURRENT CONNECTORS- High current, low - Blind mate voltage drop capability
- Power distribution - Standard DIP applications footprint
- Board-to-board
- Parallel or perpenconfigurations dicular modules
P.O. Box 1885 . Fremont. CA 94538 PH. (415) 490-4200 • FAX (415) 490-3740 CIRCLE NO. 779

4 Color Product Mart Ads Are Now Available In EDN's Magazine and News Editions!

Call Joanne Dorian for more information

(212) 463-6415

Surface Mount Chip Component Prototyping Kits-

CC-1 Capacitor Kit contains 365 pieces, 5 ea. of every 10% value from 1 pf to $.33 \mu \mathrm{f}$. CR-1 Resistor Kit contains Sizes are 0805 and 1206. Each kit is ONLY $\$ 49.95$ and available for Immediate One Day Delivery!

Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD, or Pre-paid orders. Company P.O.'s accepted with approved credit. Call for free detailed brochure.

COMMUNICATIONS SPECIALISTS, INC
426 West Taft Ave. - Orange, CA 92665-4296
Local (714) $998-3021 \cdot$ FAX (714) $974-3420$ CIRCLE NO. 777

CIRCLE NO. 780
LOW COST Data Aquisition Cards for PC/XT/AT

12 Bit A/D \& D/A [PCL711S]
 $\$ 295$

- AD converter 8 single-ended channels, Uses ADS74 device: Conversion
 - Uility Routines and Demo/Sample Programs for BASLC and Quick-BASIC. 12 Bit A/D \& D/A [PCL812] \$395 AD converter 16 single ended inputss Uses AD574; Conversion tin
than 25 sece; Buit-in programmable pacer, Input Ranges:
$=10 V$,

 Fast 12 Bit A/D/A [PCL718] \$795 - AD converter: 16 single ended or 8 differential channels; 12 bits resolution;
Programmable scan rate; Buit--in Interrupt and DMA control circuitry.

 - Software Utility software for BASIC \& OuickBASIC included. Sample prgm 6 Channel 12 bit D/A [PCL726] \$495
 MC/VISA/AMEX CIRCLE NO. 783

LEMO'S NEW CIRCULAR CONNECTOR CATALOG

LEMO's new circular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or
 mixed designs including signal, coaxial, triaxial, high voltage, fiber optic and fluidic/pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum or stainless steel.

P.O. Box 11488, Santa Rosa, CA 95406 Phone (800) 444-LEMO, Fax 707/578-0869 CIRCLE NO. 778

A 3"x 5" Single Board Computer with FREE C Source Utilities!

30-Day Money-Back Guarantee!

8051 type architecture
Siemens 80C535
40 digital I/O lines
2 RS232 ports and
8-Bit A/D converter with
8 multiplexed inputs

- Power supervisory circuits
- 8 KB or 32 KB RAM /
- 5×4 keypad encoder

On board +5 V regulation

Optional real time clock Over 40 FREE C source utilities

TRI-L DATA SYSTEMS 94-871 Farrington Hwy, 2nd FI.
Waipahu, HI, USA $96797-3146$ Ph, USA 96797-3146 FAX: (808) 671-8543 CIRCLE NO. 781

A 4K frame frace buffer with odvanced searching capobilities.

- Hyperlinked 0 -line help guides you through the emulation process.
- iceMASTER connects easily to your PC, requires no disassembly, or expansion slots. Works on any PC (DOS or OS/2), MicroChannel or EISA. Even laptops!
- Supports more than 50 different 8051 family derivatives. M68HC11 support will be ovoilable early in 1991
- Try iceMASTER risk free! Satisfoction Guaranteed or return for o full refund!*
- RENTALS AVAILABLE! Ideol for consultonts and researchers!
- Call today for free demo disk and ask about a free

8051 Macro Assembler! (800) 638-2423

M1MMeraLink

明落

CIRCLE NO. 784

CAREER OPPORTUNITIES

1991 Recruitment Editorial Calendar

| | Issue | Ad
 Date |
| :--- | :--- | :--- |
| Issue | June 27 | June 7 |
| News
 Edition | July 4 | June 13 |

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Engineers

DELL IS TO COMPUTER DESIGN AS AUSTIN IS TO LIVING

At Dell, we believe in letting the imagination of our engineers shape the design of our award-winning products.
From the desktop-class power of our sleek 80386SX-based 316LT laptop, to the integrated math coprocessor and built-in UNIX compatibility of our new 80486-based 425E.
Dell engineers enjoy a technical environment virtually free from the bureaucratic hassles of most large corporations.
So you get to focus on the things that really matter - designing better computers.
And beyond our unique engineering environment we also offer a truly unique living environment in Austin. With scenic foothills, a relaxed culture, lower cost of living and a variety of beautiful neighborhoods, the lifestyle in Austin beautifully complements the engineering lifestyle at Dell.

ENGINEERING

- Personal Computer Motherboard Design
- Laptop Display Systems
- UNIX Development
- Personal Computer Network Development
- Design for Manufacturability
- EISA BUS Logic Design
- Mechanical Engineers
- Failure Analysis Engineers

If you're an engineer with a minimum of 2 years of computer industry experience and a related degree, learn more about the advantages of Dell in Austin.
Please fax or mail your resume with a cover letter to: 512/343-3330, Dell Computer Corporation, Jerry Holt, Human Resources, Professional Employment, Department EDN6691-SG, 9505 Arboretum Boulevard, Austin, Texas 78759.

Take the Mystery out of Digital Signal Processing and put your knowledge to work immediately!

> By taking this 3-day workshop you will really learn DSP ${ }^{\text {¹ }}$ Guaranteed!

I.C. DESIGNER: Develop high level functional models from architectural specifications including logic and digital circuit design of high performance CMOS RISC microprocessor circuits; design an "instruction sequencer" which schedules multiple instructions for execution each cycle. University training, research or experience with RISC processor architectures; logic and circuit design of multi-launch instruction schedulers using mixed standardcell/custom design methodology, UNIX/C and design tools. MS/ equivalent/Electrical Engineering. \$3167/month. Apply at the Texas Employment Commission, Austin, Texas, or send resume to the Texas Employment Commission, TEC Building, Austin, Texas 78778, J.0. \#6342754. Ad paid by an Equal Opportunity Employer.

Get

 a Job!

The Boeing Company is working on some of the most exciting programs in aviation.
Right now, we need the best and the brightest people to fill positions in these categories:

- Ada Software Development and Real Time Embedded Software Engineers
- Computing Professionals
- Flight Control Engineers

Engineering positions require a B.S. degree and a minimum of three years of applicable industry experience. All positions are located in the beautiful Pacific Northwest near Seattle, Washington - one of the nation's most livable cities and the top-ranked city for recreation.
If you have what it takes to join our team, send your resume, with current and expected salary requirements, to Boeing Employment Office, P.O. Box 3707-LDR, Seattle, WA 98124-Attn: Erna Gray.
Or fax your resume, in strictest confidence, to our 24-hour fax line: 1-800-525-1036. (Please note "LDR" on your resume.)
Principals only, please. An equal opportunity employer.

Computer Engineering Opportunities in San Luis Obispo, CA

San Luis Obispo is consistently rated in national surveys as one of the best small towns in America. Located on the Central Coast of California, San Luis Obispo is a safe, family-oriented community, with clean air and water. California - the way it used to be.

Ziatech Corporation, an innovative manufacturer of industrial computer systems, is seeking applicants for the following positions:

SOFTWARE DEVELOPMENT ENGINEERS - Design, develop, and document DOS/Windows device drivers, BIOS routines and user interfaces. Requires experience of 80×86 assembly language and MS-DOS. Experience with Windows and C_{++}preferred.

DIGITAL DESIGN ENGINEERS - Design and develop board level microcomputer products for industrial applications. Must have Intel 80X86 processor experience. PC/ AT/EISA design experience is particularly desirable. A strong understanding of bus architectures, video technologies, ASICs, and networks is preferred.

MECHANICAL ENGINEERS - Conceptual and detailed design of computer products incorporating all major elements of thermal, EMI, ergonomics, structural integrity, and manufacturability. Work experience necessary.

PRODUCT MANAGER - Duties include planning and promotion of microcomputer products for industrial control applications. Hardware and software experience, E.E. or C.S. degree, two or more years work experience. MBA preferred.

APPLICATIONS ENGINEER - Provide applications assistance and training to customers and sales personnel. Good people skills and application software experience desirable. E.E. or C.S. degree preferred.

PCB CAD ENGINEERING/OPERATOR - Schematic capture, locate, and route high integration surface-mount and through-hole computer boards. Must have at least three years experience with P-CAD and administration of network design databases.

Please send resumé to Ziatech, c/o Personnel. No phone calls please.

3433 Roberto Court
San Luis Obispo, CA 93401
FAX (805) 541-5088

Professional Profile
 Announcing a new placement service for professional engineers!

To help you advance your career.
Placement Services, Ltd. has
formed the EDN Career News
Databank. What is the Databank? It is a computerized system of matching qualified candidates with positions that meet the applicant's prolessional needs and desires. What are the advantages of this new service?

- It's absolutely free. There are no lees or charges.
- The computer never forgets. When your type of job comes up, it remembers you're qualified.
- Service is nationwide. You'll be considered for openings across the U.S. by PSL and its affiliated offices.

IDENTITY

- Your identity is protected. Your resume is carefully screened to be sure it will not be sent to your company or parent organization.
- Your background and career objectives will periodically be reviewed with you by a PSL prolessional placement person. We hope you're happy in your current position. At the same time. chances are there is an ideal job you'd prefer if you knew about it. That's why it makes sense for you to register with the EDN Career News Databank. To do so. Just mail the completed form below. along with a copy of your resume. to: Placement Services. Ltd.. Inc.

Name
Home Address
City \qquad State \qquad Zip
Home Phone (include area code)

PRESENT OR MOST RECENT EMPLOYER

Parent Company
Your division or subsidiary
Location (City, State)
Business Phone if O.K. to use
EDUCATION

POSITION DESIRED EXPERIENCE

Present or Most
Recent Position From To Title

Duties and Accomplishments Industry of Current Employer

Reason for Change

PREVIOUS POSITION

COMPENSATION/PERSONAL

 INFORMATION * (optional)| Years Experience | $\begin{aligned} & \text { Base } \\ & \text { Salary } \\ & \hline \end{aligned}$ | Commission |
| :---: | :---: | :---: |
| Bonus $\begin{array}{l}\text { Total } \\ \text { Compensa }\end{array}$ | $\left\lvert\, \begin{aligned} & \text { Total } \\ & \text { Compensation } \end{aligned}\right.$ | Asking Compensation |
| Min
 Compensation Date Available | | |
| \square I own my home. How long? | | I rent my home/apt. \square |
| \square Employed \square Self-Employed \square Unemployed | | |
| \square Married \square Single | | Height Weight |
| Level of Security Clearance | | I Will Travel |
| \square U.S. Citizen \square Non-U.S. Citizen | | \square Light \square Moderate \square Heavy |
| \square WILL RELOCATE \square WILL NOT RELOCATE \square OTHER | | |
| \square Any employerAll but present employer | | |

A DIVISION OF PLACEMENT SERVICES LTD., INC.

LEADING THE WAY

On March 5, 1991, VLSI Technology launched an exciting new companyCOMPASS Design Automation-fueling it with 10 years of the industry's most respected ASIC software technology and staffing it with over 150 of VLSI's talented professionals.

COMPASS is leading the way and setting standards in ASIC design automation. Our success is centered on our ability to satisfy clients' extremely complex, high performance requirements, while offering a choice of silicon vendors and workstation platforms, and co-existence with popular CAE frameworks. Our open, integrated ASIC design products offer a combination of capabilities not found elsewhere: Automatic logic synthesis, Built-In Self-Test (BIST) compilers, advanced test automation tools, floorplanning, standard interfaces such as EDIF and VHDL, silicon compilers, place and route software, and more.
With COMPASS' technology, the most sophisticated customers have greater control and flexibility over the design of highly complex ASICs. We're the first to offer it, and you can be among the first to support and expand upon it. If you know what our industry is all about, then join us and enjoy a unique path toward success.

We have opportunities available for the following:

Software Project Manager
Software Development Engineers Software Technical Support Engineers
Application Support Managers
Field Application Engineers
Software Sales Engineers Marketing Director
Product Marketing Engineers \& Managers
Memory Circuit Designers
Integrated Circuit Designers Logic Designers

We support innovation and reward success. For consideration, send your resume, indicating position desired, to COMPASS Design Automation, Professional Staffing, Dept. CS/EDN691, MS/01, 1109 McKay Drive, San Jose, CA 95131. We are an equal opportunity employer.

$$
\text { COMPAS } 5^{\text {Design Automation }}
$$

Designing with Motorola's

Microprocessors?

Then you need HMI's development systems, we support the entire 68000 family. As Motorola enhances and increases integration of its microprocessors, you can count on HMI to be there with
high-quality development products to support your projects. HMI believes in supporting the entire family of products for the Motorola family. Ease of use and familiarity are common in all the emulators.

Features of HMI's development systems includes:

- Run at real-time with no wait states.
- Window driven source level debugging-SourceGate ${ }^{\circledR}$
- C, Pascal and ADA compiler source level support for all major compiler companies.
- Real-time hardware performance analyzer.
- Works with IBM PC family and UNIX based machines including Sun and Apollo.
- RS232 Interface up to 115.2 K .
- Parallel Interface for high-speed code downloading.
- Complex events and sequences for break and trigger conditions.
- Two independent 4 K deep trace buffers.
- $1 \mu \mathrm{sec}$ resolution interval timer.
- 100 nsec resolution Time-stamp in trace buffer.
- Logic state analyzer capabilities built into the emulator.
- 16 External Trace bits.
- Overlay memory up to 4 Mbytes.

If you are looking for one emulator company that provides support for the entire Motorola family, then look to HMI for total support.

IBM is Reg. T.M. International Business Machines, Inc. Unix is Reg. T.M., Bell Laboratories, Inc.

Huntsville Microsystems, Inc.
3322 South Memorial Parkway
Huntsville, AL 35801
Tel.: (205) 881-6005
FAX: (205) 882-6701

World Class Ferrite Core Manufacturers. At Your Fingertips.

To get the best in ferrite quality and service, you have to know the right buttons to push. 1-800-345-4082. That's your direct line to DEXTER, your One Stop Shopping Center for your every ferrite need. From world class manufacturers such as SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From standard stock items, ready for 24 -hour delivery, to the most intricate custom designs utilizing DEXTER's extensive value-added services, like precision fabrication, E-core and pot-core gapping and testing, and more.
Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location.

ATLANTA - BOSTON - CHICAGO © DALLAS - LOS ANGELES • MINNEAPOLIS/ST. PAUL • NEW YORK © SAN FRANCISCO © TOLEDO/DETROIT ENGLAND © WEST GERMANY

MACNEIC
MAIERIAS
DIVISION
THE DEXTER CORPORATION

CIRCLE NO. 41

AUTOCAD
 for

Electronic Engineers

AutoSchema

- Only \$195
- New Symbol icon browsing
- Unlimited levels of hierarchy
- Spice \& Susie interfaces

AutoPCB ${ }^{\circ}$

- Best performance on a P.C.
- Double sided SMT
- Real time design rule check
- Interactive push \& shove routing

AutoHybrid

- Worlds only P.C. Hybrid system
- Automatic component synthesis
- Custom die geometry
- 0.5 micron resolution

CADISYS

2099 Gateway Place
Suite 400,
San Jose, CA 95110 USA
FAX (408) 441-8300

CIRCLE NO. 113

PCB MANUFACTURING DESIGN AND ARTWORK!

ALL YOUR CIRCUIT BOARD NEEDS UNDER ONE ROOF

CALL FOR CATALOG 408-441-8800 EXT 200

PCB DESIGN

- Backplanes
- Impedance control
- Analog and ECL
- Surface mount

CALL FOR A QUOTE!

A MANUFACTURING, PCB DESIGN AND SUPPORT CENTER

4761 E. HUNTER AVE. ANAHEIM, CA. 92807
TEL: (714) 970-2430 FAX: (714) 970-2406

FUTABA

Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules

CUSTOM DESIGN

Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color graphic panels.

TECHNICAL SUPPORT

Futaba engineers have a broad range of application experience including automotive, point of sale, appliance, medical, and instrumentation products. They are ready to assist you in optimizing your display system design.

U.S. MANUFACTURING

Electronic Instrument Panel to J.I. CASE Tractors.

NCR "S1" Supplier.

Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the North American market.

QUALITY

Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.

Appliance Control Display.

711 E. State Parkway Schaumburg, IL 60173

EDN's INTERNATIONAL ADVERTISERS INDEX

| Bull 253 | Hi Tech Design Services |
| :---: | :---: |
| ACCEL Technologies Inc 146 | Hitachi Chemical* 201 |
| Actel 154-155 | Huntsville Microsystems Inc 266 |
| Advanced Circuit Technology 218 | Hwang Piin 254 |
| Advanced Micro Devices 10-11 | HyperLynx 255 |
| Advin Systems 258 | Hypertronics Corp 243 |
| Alcatel 125 | IC Sensors 66 |
| Alpha Products 195 | IDT . 71 |
| ALS Design Corp 228 | ILC Data Device Corp 99 |
| Altera Corp 40-41 | Incredible Tech |
| American Airlines 210-211 | Instant Board Circuits Corp 204 |
| American Automation 172 | Intergraph 69 |
| American Switch 101 | Integrated Power Design 209 |
| Ametek 250 | Intel 207 |
| AMP 138-139 | International Rectifier C3 |
| Amphenol 202-203 | Introl Corp 235 |
| AM Sensors 241 | Intusoft 258 |
| Analog Devices Inc 56-57, 122-123 | IOtech Inc 214 |
| Antex Electronics 241 | Ironwood 257 |
| Argosy Technology Co Ltd 258 | John Fluke Manufacturing Co Inc* |
| ARI/American Reliance Inc 258 | Jomex 258 |
| Atmel Inc 249 | Keithley 91 |
| BASF** 262-263 | Kepco Inc 62-63 |
| B\&C Microsystems 257, 259 | Kikusui 230 |
| BNK 256 | KMS Advanced Products 185 |
| BP Microsystems 234, 254 | Lattice Semiconductor Corp 187 |
| Buckeye Stamping Co 255 | Laube Technology 269 |
| Burr-Brown Corp 153 | Leader Instruments Corp 25 |
| Cadre Technologies 60-61 | Leap Electronic Co Ltd 255 |
| CAD Software Inc 137 | Leasametric Inc 241 |
| Cad TEAM 133 | Lemo USA Inc 259 |
| Cadisys 269 | Linear Technology Corp 177-178 |
| Cahners CAPS 187, 189, 255, 257 | Link Computer Graphics Inc 256 |
| Capital Equipment Corp 50 | Logical Devices Inc 253 |
| Capilano Computer Systems Inc . . . 257 | LSI Logic Corp 76-77 |
| Chronology 74 | 3M Co 194 |
| Cirris Logic 156 | Macrolink Inc 255 |
| Communication Specialists 259 | Mathworks 223 |
| Connor Peripherals 16-17 | MCG Electronics Inc 238 |
| Control Sciences Inc** 18 | Maxtor 212-213 |
| Cybernetic Micro Systems 34 | Meritec 183 |
| Cypress Semiconductor 8 | MetaLink Corp 255, 259 |
| Dale Electronics Inc 23, 229 | Meta Software Inc 189 |
| Data Delay Devices 34 | MF Electronics 232 |
| Data I/O Corp C4, 124A-D | MicroSim Corp 21 |
| DDI 258 | Microscan 198 |
| Delker 48 | Microtech 25 |
| Deltron Inc 157-160 | Mini-Circuits |
| Design Computation Inc 256 | Laboratories . . 26-27, 38-39, 175, 270 |
| Dexter Magnetics 194 | Mizar Inc 240 |
| Digikey 197 | Molex 105 |
| Diversified Technology 84-85 | Motorola 44-45, 110-111, 192-193 |
| Dow Plastics 92-93 | Multibus Manufacturers Group C2 |
| Echelon 170-171 | Murrietta Circuits 269 |
| EEsof 64 | National Instruments |
| Elcon 259 | National Semiconductor |
| Elco Corp 205 | Corp* 14-15, 58 |
| Emulation Technology Inc 259 | NCR Corp 87-90, 144-145 |
| Entran Devices 255 | NEC 121 |
| EPIX Inc 256 | Needham Electronics 254 |
| Ericsson Components 103 | Network Research 196 |
| Forte 253 | Nohau Corp 253 |
| Fujitsu APD 167 | Noise Laboratory Co 253 |
| Futaba 268 | Nova Tran Corp 236 |
| General Electric Plastics 256 | Omnibyte Corp 117 |
| Global PMX Co Ltd 257 | Omron Electronics Inc 191 |
| Grayhill Inc 232 | OrCAD Systems Corp 169 |
| Harris Semiconductor 252 | Orion Instruments 233 |
| Harting Electronics 179 | P-Cad 35-37 |
| ewlett-Packard Co 42, 106-1 | Performance Semiconductor |
| 140, 231 | 237 |

incrediel

SPDT switch dc to 5 GHz with built-in driver

Truly incredible ... a superfast 3nsec GaAs SPDT reflective switch with a built-in driver for only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' YSW-2-50DR?

Check the outstanding performance specs of the rugged device, housed in a tiny plastic case, over a -55° to $+85^{\circ} \mathrm{C}$ span. Unit-to-unit repeatability for insertion loss is 3-sigma guaranteed, which means less than 15 of a 10,000-unit production run will come close to the spec limit. Available for immediate delivery in tape-and-reel format for automatic placement equipment.

New...ZYSW-2-50DR Connector Version (SMA) available, \$59.95 (1-9)

SPECIFICATIONS YSW-2-50DR
ZYSW-2-50DR
Insertion loss, typ (dB) Isolation, typ $(\mathrm{dB})^{\star}$
1 dB compression, typ (dBm@in port) RF input, max dBm (no damage) VSWR (on), typ Video breakthrough
to RF, typ (mV p-p) Rise/Fall time, max (nsec)

| dc- | $500-$ | $2000-$ |
| :--- | :--- | :--- |
| 500 MHz | 2000 MHz | 5000 MHz |
| 0.9 | 1.3 | 1.4 |
| 50 | 40 | 28 |
| 20 | 20 | 24 |
| 22 | 22 | 26 |
| | 1.4 | |
| | 30 | |
| | 3.0 | |

IRannounces Ultra FastIGBTs: our 600V power transistors that switch faster and run cooler than any you've ever used.

Forgetaboutbipolar. Put these
breakthrough devices in your highvoltage, high-current, medium-frequency applications and get performance unparalleled for the price.

Which should come as no surprise. IR IGBTs build on the same proprietarytechnologythatmade IR's HEXFETs ${ }^{\text {® }}$ world leaders.

Call I (2|3) 640-6534 and ask about Standard, Fast or UltraFast IGBTs, optimized for your operatingfrequency. And available from IOA to 70A, in commercial or hi-rel packages.

We'll be happy to arrange a screening.

nammannmin minimivil
 Pack more logic into every FPGA.

NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/ O^{\circledR} 's new ABEL-FPGA ${ }^{\text {m }}$ Design Software has the power to pack in maximum logic. It combines the indus-try-standard ABEL Hardware Description Language (ABEL-HDL ${ }^{\text {M }}$) with our new intelligent FPGA Device Fitter ${ }^{T m}$
technology. So, you can create more complex designs with less effort -ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, ICT, National, Plus Logic, and Xilinx. And with builtin knowledge of its target architecture, each fitter masters the
tically, intelligently.
Practical, detailed documentation, complete with FPGA design examples, also helps to ensure that you get the most from each architecture. And for added design power and flexibility, ABEL-FPGA lets you specify place-and-route constraints directly in your circuit description, so you can easily migrate the same design between multiple FPGA vendors.

FPGA design, with the single solution to all your FPGA behavioral entry needs: ABEL-FPGA. Call today to find out more about NEW ABEL-FPGA.
1-800-247-5700

The Personal Silicon Experts

DATA I/O
 Corporation

[^0]: Wave Test and XTM are trademarks of Wavetek Corporation. DEC, VMS and ULTRIX are trademarks of Digital Equipment Corporation. X-Windows is a trademark of Massachusetts Institute of Technology. Windows is a trademark of Microsoft Corp. (c) 1990 Wavetek Corporation

[^1]: EDN ${ }^{\text {® }}$ (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630 Terrence M McDermott, President; Frank Sibley, Executive Vice President, Jerry D Neth, Senior Vice Presi dent/Publishing Operations, J J Walsh, Senior Vice Presiden//Finance, Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 80206-5800 and additional mailing offices. POSTMASTER. Send address corrections to EDN© PO Box 17337 Denver, CO $80217-3377$ EDN ${ }^{\text {® }}$ copyright 1991 by Reed Publishing USA. Ronald G Segel Chairman and Chief Denver, CO 80217-3377. EDN copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Annual subscription rates for nakof, President and Chif Operating. Mex, Wiso $\$ 1695 / \mathrm{year}$. Annual subscription rates for nonqualified people: USA, \$119.95/year, Mexico, \$169.95/year; Canada, \$181.85/year Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800

[^2]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business
 Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Home Furnishings \square and Interior Design. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^3]:

[^4]: Wren, Elite, Sabre, Seagate and the Seagate logo are registered trademarks of Seagate Technology, Inc.
 © 1991 Seagate Technology, Inc.

[^5]: IBM is a registered trademark and RISC System/6000 is a trademark of International Business Machines Corp. P-CAD is a registered trademark of CADAM INC. MS is a registered trademark of MicroSoft Corp. Sun is a registered trademark and SPARCstation is a trademark of Sun Microsystems, Inc. UNIX is a registered trademark of AT\&T. 386 and 486 are registered trademarks of Intel Corp. P-CAD/CADAM, 1935 N. Buena Vista St., Burbank, CA91504.

[^6]: * U.S. Prices only.
 † In Canada, call 1-800-387-3867, Dept. 428.

[^7]: Ask EDN solves nagging design problems and answers difficult questions. Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or send us a letter on EDN's bulletin-board system at (617) 558-4241; leave a letter in the ask_edn Special Interest Group.

[^8]: ${ }^{\text {TM }}$ MegaChip is a trademark of Texas Instruments Incorporated. Action Logic and Activator are trademarks of Actel Corporation
 (®) MS-DOS is a registered trademark of Microsoft Corporation.
 (®) 1991 Tl is a registered trademark of Microsoft Corporation.

[^9]: Authorized North American Distributors: Alliance Electronics 505-292-3360•Allied Electronics 817-595-3500•Anthem Electronics 408-453-1200•Bell Industries 213-826-6778

[^10]: Analog Devices, One Technology Way, Norwood, MA 02062-9106. Distribution, offices and applications support available worldwide.

[^11]: VIP is a trademark of National Semiconductor Corporation. (c) 1991 National Semiconductor Corporation

[^12]: *In Canada call 1-800-387-3867, Dept. 420.

[^13]: Note: $N S=$ Not specified, $U=$ Unlimited, $R=$ Recommended, $L=$ Limited capability.

[^14]: © 1990 Actel Corporation, 955 E. Arques Ave., Sunnyvale, CA 94086. ACT, Action Logic, Activator, and Actionprobe ore trademarks of Actel Corporation. All other ma

[^15]: Cahners Technical Information Service • 275 Washington Street • Newton, MA 02158-1630 Telephone: 617-558-4960 • Facsimile: 617-630-2168 • Telex: 940573 • Toll-free: 800-245-6696 CAPS is a registered trademark of Reed Publishing (USA) Inc

[^16]: 3M Electrical Specialties Division Automotive OEM, A130-3N-48
 PO Box 2963

[^17]: Schedules subject to change.

[^18]: Name \qquad
 Company \qquad
 Department \qquad
 Address
 City, State \qquad
 Zip \quad Country
 \qquad
 Telephone \qquad
 Computer(s) \qquad
 The MATH

 Cochituate Place, 24 Prime Park Way Natick, MA 01760
 Phone: (508) 653-1415
 Fax: (508) 653-2997

[^19]: Company

