| L |
| :--- | :--- | :--- | :--- |

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS

The fastest way through customs.

The FPGA design language of choice. CUPL/IST ${ }^{\text {TM }}$ (Integrated Synthesis Tools) is your fastest way through customs. It's your best alternative to get designs as large as 50,000 gates into FPGA devices. CUPL's Multiple State Machine syntax allows you to specify a large design in high level expressions quickly and concisely without gate level concerns. Inquire about how CUPL/IST lets you develop Xilinx, PlusLogic, AMDMACH, Altera MAX, Actel, TI, and AT\&T FPGA devices.

Our Open-PLA ${ }^{\text {TM }}$ environment is a natural development facility for integrating device specific back-end routers and optimizers to CUPL's design entry synthesistools. We supportevery technology, every architecture from every device
manufacturer. Our involvement and close relationship with all manufacturers of programmable devices ensures you that technology trends and support are available when you need them.

Low-Med-High Density PLDs. CUPL 4.0 is your best choice for PLDs. It can create JEDEC files for just about any PLD device on the market today, and handles designs as large as 2500 gates. It takes you quickly from schematic, truth table, state machine, and Boolean equations to JEDEC in just a few seconds on any platform.

Workstations. CUPL is once again your best choice for workstations. It's available for MS-DOS, VAX-VMS, Unix C, Sun Sparc, HP/Apollo, and the Macintosh.

Expertise, and not expensive, is what CUPL offers in this sophisticated vertical industry. CUPL also integrates well with Mentor, Valid, Racal, Viewlogic, and other CAE platforms.

The Universal Approach. CUPL, the most universal of all logic design tools, has been adopted by many educational institutions, corporations and research labs as the "de facto" standard language for programmable logic development.

For more information call:
1-800-331-7766

READY To Help You Grow

We're the Vishay Electronic Components Group (VEC). Six well-known companies now linked with a common purpose: Making you more competitive. One call to the factory or your VEC Representative gives you access to the widest range of passive components available from any single organization.

Commercial to ultra-precise. Standard to special. One call lets you focus on the combined strengths of our multiple technologies and multiple production sources. VEC: Organized to save you time...make planning more precise...development time shorter and delivery more reliable. That's easy to say.
Now make us prove it.

- Thin Film Resistors
- Thick Film Chip Resistors
- Surface Mount Components: Thick Film, Thin Film and Foil
(716) 283-4025

(303) 242-0810

(402) 563-6417

Circle No. 1

Now, find errors fast, with a portable 1GSa/s scope that gets right to the point.

At $\mathbf{\$ 1 0 , 9 5 0 *}$, you won't find a better value in a digitizing scope.

When you need to troubleshoot and debug digital designs fast, you can't afford to miss a thing. And now, you don't have to. The HP 54510A looks at a billion samples a second with a timequalified pattern triggering and an infinite persistence display to pinpoint rare events and elusive glitches the instant they happen.

You don't have to stick around to watch, either. The HP 54510A has 8 k of memory per channel to capture and store single events. So, you can go back and get all the details you need-with razor-sharp, 8-bit resolutionand track the problem to its source. And to point you to the right solution, the HP 54510A gives you 17 pulse-parameter measurements, with better horizontal and vertical accuracy than the Tek DSA 602, at onethird of the cost.

So, if you're looking for a solution to high-speed troubleshooting, call 1-800-752-0900**. Ask for Ext. 1902, and we'll send you an application note on the HP 54510A that shows you how to find faults fast.
*U.S. price only.
**In Canada call 1-800-387-3867, Dept. 423.
There is a better way.

HEWLETT PACKARD

incredible:

25 KHz to 2000 MHz from \$450

ULTRA-REL MIXERS
5-YR. GUARANTEE *

Our tough SBL-mixers just got tougher, by including Mini-Circuits' exclusive Ultra-Rel diodes that can endure 160 hours of test at a scorching $300^{\circ} \mathrm{C}$. Rugged, more reliable mixers in your systems lower production and test costs and increase systems reliability.

Over the past fifteen years, millions of SBL-units were installed in formidable industrial and commercial applications. Under severe operating conditions, they have earned the reputation as the world's most widely accepted mixers, based on quality, consistent performance in the field, and lowest cost.

In addition to the Ultra-Rel diodes, each SBL contains components that can withstand the strenuous shock and vibration requirements of MIL-STD-28837 along with more than 200 cycles of thermal shock extending from -55 to $+100^{\circ} \mathrm{C}$. Every Ultra-Rel™ SBL-mixer carries a five-year guarantee.

Unprecedented 4.5 sigma unit-to-unit repeatability is also guaranteed, meaning units ordered today and next year will provide performance identical to those delivered last year.

Tougher SBL-mixers, spanning 25 KHz to 2000 MHz , with $+7 \mathrm{dBm},+10 \mathrm{dBm}$, and +13 dBm LO models, priced from $\$ 4.50$ (10 qty) are available only from Mini-Circuits. Don't settle for a substitute or equivalent... insist on Ultra-Rel ${ }^{\text {TM }}$ SBLs.

SBL SPECIFICATIONS (typ).

Model	Frequency (MHz)	Conv. Loss (dB)	Isolation L-R	(dB) L-1	LO Level (dBm)	Price, \$ ea. (10 qty)
SBL-1	$1-500$	5.5	45	40	+7	4.50
- SBL-1X	$10-1000$	6.0	40	40	+7	60
SBL-1Z	$10-1000$	6.5	35	25	+7	7.25
SBL-1-1	$0.1-400$	5.5	35	40	+7	7.25
SBL-3	$0.025-200$	5.5	45	40	+7	7.25
- SBL-11	$5-2000$	7.0	3.5	30	+7	18.75
SBL-1LH	$2-500$	5.8	68	45	+10	5.50
SBL-1-1LH	$0.2-400$	5.2	64	52	+10	8.25
- SBL-1XLH	$10-1000$	6.0	40	55	+10	7.25
SBL-2LH	$5-1000$	5.9	61	54	+10	8.25
SBL-3LH	$0.07-250$	4.9	60	53	+10	8.25
- SBL-1LH	$5-2000$	7.0	45	30	+10	19.75
SBL-1MH	$1-500$	5.5	45	40	+13	9.80
SBL-1ZMH	$2-1100$	6.5	40	25	+13	11.70
- IF not DC coupled						

* ULTRA•RELTM MIXERS 5 yr. Guarantee
with extra long life due to unique HP monolithic diode construction $300^{\circ} \mathrm{C}$ high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements

On the cover: Incorporating glue-logic and system functions on-chip, innovative SRAM architectures hold the key to CPUs' potential speed. See our Special Report on pg 104. (Photo courtesy Motorola)

SPECIAL REPORT

Special-feature SRAMs 104
Each successive SRAM generation must be faster, denser, and wider to keep pace with the latest CPU speeds and architectures. Innovative SRAM architectures are often the means by which memory subsystems stay in the running with today's μ Ps.—John Gallant, Associate Editor

DESIGN FEATURES

Build a single-shot recorder to catch fast transients

By using an A/D converter with a high input bandwidth and oversampling at a 10:1 ratio, you can digitize and analyze fast transients without using an expensive storage scope.-Ken Deevy, Dan Sheehan, and Mike Byrne, Analog Devices Inc

Feedback models reduce op-amp circuits to voltage dividers

By extending an op amp's limited feedback model you can create a generalized model that reduces op-amp circuit analysis to determining voltage-divider ratios.-Jerald Graeme, Burr-Brown Corp

TECHNOLOGY UPDATES

Low-bias-current op amps: Femtoamperes fuel
 55 multifarious functions

Op amps with miniscule input bias currents reside in a diversity of measuring instruments. In application, the main problem is channeling all, and only, sensor current to the op amp's input. -Brian Kerridge, European Editor

Credit-card-sized memories: Small memories take on broader applications

Robust, credit-card-sized memory cards let you carry aroundand control access to-a pocketful of nonvolatile data or programs. Backed by new introductions and new standards, these memories may become more popular.-Charles H Small, Senior Editor

[^0]

Once agoin, Latice leads the makket with the world's fastest CMOS 22V10. The 1Ons, GAL22V10B-10. Thanks to our E^{2} CMOS® technology, this $6 A$ ® device rus oto cool 90 mA typical Icc. And ii's 100% tested. When it comes to high pefformance and high quality, no one con match the Laticic family of leadingedge, E'CMOS GAL devices.
To have a free sample ond a GAL Dota Book shipped to you, iust call 1-800-FASTGAL. Ask for Deparment 204.

Lattice
 Semiconductor
 Corporation
 5555 Northeosi Moore Court - Hillsboro, Oregon 97124

Leader in $\mathrm{E}^{2} \mathrm{CMOS}$ PLDs.

EDITORS' CHOICE
Compact, fast-sampling, $500-\mathrm{MHz}$ scopes77
PRODUCT UPDATES
60M-flops, floating-point DSP chip 80
MS Windows math software 84
Data-acquisition software 88
EDITORIAL49CAE-software buyers beware. What you see may not be whatyou get.
NEW PRODUCTS
Integrated Circuits 183
Computers \& Peripherals 199
Components \& Power Supplies 207
Test \& Measurement Instruments 221
CAE \& Software Development Tools 238
DEPARTMENTS
News Breaks 17
Signals \& Noise 31
Ask EDN 39
Calendar 40
Leadtime Index 98
Design Ideas 161
Literature 245
Career Opportunities 260
Business/Corporate Staff 266
EDN's International Advertisers Index 269
Ken Aacicot, Senior Art Director Co Chung, Associate Art DirectorCathy Madigan, Staff Artist
Production/Manufacturing StaffAndrew A Jantz, Production Supervisor
Sheilagh Hamill, Production Manager
Melissa Carman, Production Assistant
Diane Malone, Composition
Director of Art Department
Robert L Fernandez
Norman Graf, Associate
VP/Production/Manufacturing
Wayne Hulitzky
Director of Production/Manufacturing
John R Sanders
Business Director
Deborah Virtue
Marketing Communications
Anne Foley, Promotion Manager
Anne Foley, Promotion Manager
Pam Winch, Promotion Assistant
VP/Editor/Editorial DiJonathan Titus
Executive EditorSteven H LeibsonManaging EditorJoan Morrow Lynch
Assistant Managing Edito
Christine McElvenny
Special ProjectsGary Legg
Home Office Editorial Staff275 Washington St, Newton, MA 02158(617) $964-3030$Tom Ormond, Senior EditorCharles Small, Senior EditorCharier Small, Senior Editior
Jay Fraser, Associate EAitorJohn A Gallant, Associate ElitorMichael C Markowitz, Associate EditorDave Pryce, Associate EditiorCarl Quesnel, Associate EditorSusan Rose, Associate Editor
cie Anne Schotiela. Associate EaditorDan Strassberg, Associate EditorChris Terry, Associate Editor
Helen McElwee, Senior Copy Editor
James P Leonard, Copy Editor
Brian J Tobey, Production Editior
Editorial Field Offices
Doug Conner, Regional Editor
Atascadero, CA: (805) 461-9669
J D Mosley, Regional Editor
Arlington, TX: (817) 465-4961
Richard A Quinnell, Regional Editor
Aptos, CA: (408) 685-8028
Anne Watson Swager, Regional Editor
Wynnewood, PA: (215) 645-0544
Maury Wright, Regional Editor
San Diego, CA: (619) 748-6785
Brian Kerridge, European Editor
(508) 28435
22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
Contributing Editors
Robert Pease, Don Powers,
David Shear, Bill Travis
Editorial Coordinator
Kathy Leonard
Editorial Services
Helen Benedict
Art Staff

OrCAD presents

The limits are gone

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:

- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge
- Expanded memory capabilities

Best of all, OrCAD introduces ESP

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

For more information . . .

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.
or write to OrCAD Sales Department, 3175 N.W. Aloclek Drive, Hillsboro, Oregon, 97124

The Rumors

are

 Flying!OrCAD has released the ESP framework for the DOS environment. EDA departments all over the world are using OrCAD's Release IV software to design faster, better, for less money.

But. . .

The industry is buzzing about something else. It seems that this design tool manufacturer is once again breaking ground.
OrCAD is working with the leader of the workstation industry:

Sun Microsystems.

That's right, OrCAD EDA tools on the SPARC^{\odot} platform.
If you want to get information (and who wouldn't?), call
(503) 690-9881.

OrCAD

Today, you're producing more manuals, proposals and documents than ever before, relying on resources and workgroups in a growing number of places. Your challenge: managing it all.

With Digital's new Open
Publishing, you can now have full control over documents. It's our comprehensive approach to creating, storing, accessing, routing, revising and distributing documents companywide.

Example-your latest business proposal. You need to combine engineering and manufacturing specs, financial data and marketing and legal support text from different cities and different systems. Open Publishing now makes it easy. Easy to share and integrate information among members of workgroups, no matter where they

[^1]

are. Easy to route the document information to the team. Easy for them to access and

DOCUMENT MANAGEMENT MADE FASY WHH NAS.

 retrieve it quickly. It's easier because Open Publishing is based on Digital's Network Application Support (NAS), a set of open standards for sharing information and applications across multi-vendor systems.Best of all, your proposal is a complete, accurate, better looking document that's on schedule.

If you get the idea Open Publishing is a comprehensive solution, you're right. It's today's fullest set of document management products for helping you control the whole process.

To learn more, ask your local
Digital salesperson how Open Publishing can help you. For a FREE video, call 1-800-343-4040, ext. 402. digital

THEOPEN ADVANTAGE.

While many companies have deserted the military ASIC business, our commitment hasn't changed.

So if you're looking for a long term strategic partner, stand at ease.

LSI Logic has earned its stripes by successfully completing more military gate array designs than all other ASIC manufacturers combined. Led by a dedicated Military Aerospace group, we're ready when you are to make those designs a production reality.

At your command are submicron HCMOS ASICs, RISC microprocessors and DSP products which allow systemscale integration second to none.

Our commitment continues as we ready the Silicon 1076, a VHDL system development environment capable of
taking you from the highest levels of abstraction right through to actual silicon. Our military arsenal already consists of design software which ensures a first-time hit rate, dedicated manufacturing, radiation hardened processes and package development. Whether your program need is for one design or 30, we've got the capability to hit your milestone targets.

Next time you're looking for a technology upgrade, or need fast time-to-market, enlist the world's leader in military ASICs and RISC microprocessors. LSI Logic.

Call us at 1-800-451-2742, or write LSI Logic, 1551 McCarthy Blvd., MS D102, Milpitas, CA 95035.

We'll be there. Because we're always on active duty.

The AMP Z-Pack Interconnection System is a scalable, high-density board-to-board/ cable-to-board system for nanosecond and subnanosecond applications, in 2 mm and .100 " grid sizes to accommodate global packaging requirements.

The fastest members use stripline technology, introduc-

High-temp materials for SMT compatibility.
Twin-beam receptacles, 2 mm wipe.
Sequenced mating up to four levels.
2 mm versions accommodate two traces between lands.

Stripline versions

 isolate pin columns for 50 ohm interface.Reliable compliantpin versions available.

ing reference planes between pin columns to retain maximum pin counts in a controlled impedance interface.
The design advantages are immediate: Z-Pack . 100 " stripline connectors accommodate 250 ps edge rates with no sacrifice in signal density: four rows $=40$ lines per inch.

What a GaAs.

GaAs beam lead Schottky diodes optimized for $26-60 \mathrm{GHz}$.

GaAs MMIC traveling wave amplifiers.*

GaAs MMIC DC-50GHz voltage variable attenuator.*

GaAs MMIC SPDT
switches.

Want some great news about GaAs? Check into HP. As a leader at the forefront of GaAs technology, we've got a full line of high performance products to choose from. Consider our GaAs MMIC attenuator, the only device in the world operating from DC-50GHz. Its wide attenuation range, exceptional bandwidth, and fast switching speed make it ideal for automatic gain control, amplitude, and pulse switching.
Our line of GaAs Schottky diodes is optimized for $26-60 \mathrm{GHz}$. But its low series resistance and low
capacitance ensures a high cutoff frequency, giving you solid performance from 5 GHz to 100 GHz .
If you're looking for the right general purpose switch, switch to HP. Our new broadband GaAs MMIC SPDT devices offer low insertion loss and high isolation for improved system performance from DC-6GHz.
HP's great GaAs news also includes a family of high-gain, high-power MMIC traveling wave amplifiers. Each is designed to operate from $2-26.5 \mathrm{GHz}$,
and $100 \% \mathrm{RF}$ tested to provide guaranteed spec performance.
No wonder HP sets the standard for quality, reliability, and innovation. If you'd like more information about HP's broad line of highperformance GaAs products and a listing of your nearest HP Components distributors, call 1-800-752-0900, ext. 2396. And see us at MTT-S, Booth \#730.

There is a better way.

WINDOWS OPENS ON CIRCUIT SIMULATOR, FRAMEWORK CLOSES

Although Microsim's Schematics uses Windows 3.0 on 80×86-based personal computers, the schematic-capture software isn't using Windows as a framework that would let you interface to third-party Spice simulators. Instead, Windows compatibility gives you multitasking capability and a familiar look and feel. The schematiccapture tool is coupled only to the vendor's PSpice simulator and Probe output analyzer/viewer (although both run in Windows, neither PSpice or Probe is a Windows 3.0 application, yet). This coupling lets you run simulations from within the schematic application-the software automatically calls a netlister to generate your Spice input file before the simulation starts. The schematic-capture program includes libraries containing more than 5000 analog and digital parts models. Features such as auto-incrementing of names and labels, auto-step and repeat, an electrical-rule checker, and a symbol editor are also part of the schematics package. The software also runs on Sun workstations as an Openwindows application. Through September, the software costs $\$ 1250$ for an IBM-PC and $\$ 4150$ for a SPARCstation. Microsim Corp, Irvine, CA, (800) 245-3022, FAX (714) 455-0554.-Michael C Markowitz

3V CMOS STANDARD-CELL LIBRARY CONSERVES BATYTERY POWER

The 3V operation of AT\&eT Microelectronic's $0.9-\mu \mathrm{m}$ CMOS library reduces power, heat, and packaging costs. The library includes basic cells, memory elements, and high-level macrocells. The memory-cell list includes synchronous and asynchronous static RAM, a register file, a dynamic shift register, and ROM and FIFO memory. The following high-level macros are also available: DMA controller, UART, 8-bit microcontroller, programmable timer, interrupt controller, memory mapper, and real-time clock. A major tradeoff in moving to a lower-voltage library is lower transistor gain, which slows switching speeds. The library includes higher-power cells to use in speed-critical paths. You can develop ASICs with this library using the company's own Unix-based design tools. By the third quarter of 1991, you'll also be able to use tools from other major CAD vendors, including Cadence Design Systems (San Jose, CA), Synopsys (Mountain View, CA), Mentor Graphics (Beaverton, OR), and Viewlogic (Marlboro, MA). AT\&T Microelectronics, Allentown, PA, (800) 372-2447 ext 804; in Canada, (800) 553-2448 ext 804, FAX (215) 778-4106.-Anne Watson Swager

SEMICUSTOM, SINGLE-BOARD COMPUTERS OFFER FLEXIBILITY

Ziatech's Application-Specific Automation Processor is an option if you can't find the right off-the-shelf single-board computer (SBC) for your embedded control application. You can select among a list of core modules, peripheral I/O modules, and custom I/O modules for the board, instead of investing the time and money to develop a custom SBC. Because 90% of the board comprises modules from previously tested and proven designs, the risk associated with a new design is minimized. The board is designed around the STD Bus form factor and uses a $16-\mathrm{MHz}$ NEC V53 $\mu \mathrm{P}$ for 80286 performance and code compatibility. You select the RAM, PROM, Flash EPROM, counters, timers, DMA channels, peripheral I/O modules, and other features you'll need. The initial contract for development and delivery of 25 boards is $\$ 45,000$. Delivery is 12 weeks, but prototyping cards let you begin software development before you have the first boards. The semicustom product is aimed at users requiring a minimum of 500 SBCs per year. Typical costs are $\$ 500$ to $\$ 800$ per board. Ziatech Corp, San Luis Obispo, CA, (805) 541-0488, FAX (805) 541-5088.-Doug Conner

FLAT-TENSION MASK TECHNOLOGY ADVANCES TO 17-IN. CRTS

Zenith Electronics Corp demonstrated 17 -in. and 20-in. prototype versions of its flat-tension mask (FTM) CRT at the Society for Information Display Symposium held last month in Anaheim, CA. The 17-in. display was not just larger than the company's existing $15-\mathrm{in}$. FT'M CRT display; the new display adds multifrequency operation and better maximum resolution- 1024×768 pixels. The $17-\mathrm{in}$. tube retains the flat screen inherent with FTM technology. Other FTM CRT advantages include the lack of purity loss caused by electron-beam heating of the shadow mask; added ruggedness because the shadow-mask supports are bonded directly to the CRT's faceplate; better luminous efficiency because the shadow mask and screen are more precisely aligned; and greatly diminished glare because of the antireflection coating on the front of the CRT's flat face and the antiglare treatment applied to the screen's inner surface.

The company plans to ship production versions of the 17 -in. display to OEM customers in November. Evaluation units will be available by early autumn. The company expects the retail price for multifrequency, $17-\mathrm{in}$. FTM CRTs to start below $\$ 2000$. In addition, you can order custom single-frequency versions with resolutions to 1280×1024 pixels for workstation applications. The company does not sell the displays directly to end users. Zenith Electronics Corp, Glenview, IL, (708) 391-8181, FAX (708) 391-7253. -Steven H Leibson

COMPUTING HARDWARE SHUNS VON NEUMANN

The CHS 2×4 from Algotronix is an application-specific computer that operates by configuring hardware to a computational task. An IBM PC or compatible plug-in card houses the computer, and data flows via the IBM PC/AT bus or a rear panel I/O connector. You can program the computer to make dedicated datapaths, or map algorithms directly into the hardware. The technique relies upon the company's CALl024 32×32-cell, CMOS field-programmable gate array (FPGA). Using on-chip static RAM (SRAM), you can program each cell of the FPGA to behave as any function of two boolean variables, or as a D-type latch with a $100-\mathrm{MHz}$ toggle rate. You can program a 32×32 array in $70 \mu \mathrm{sec}$. Each computer employs nine FPGAs; eight form an array of 64×128 cells, and one performs house-keeping tasks. The computer also contains 2M bytes of SRAM for local data storage in pipelined computations. You can connect two of the computers to expand their array 128×128 cells, with 4 M bytes of SRAM. Software support includes a symbolic editor for design work, an assembler and loader for array programming, and a C library for support functions including dynamic reconfiguration. The $£ 4900$ evaluation kit available now includes the IBM PC plug-in card and software. Algotronix Ltd, Edinburgh, UK, (31) 668-1550, FAX (31) 662-4678.-Brian Kerridge

NONVOLATILE STATIC RAM OFFERS 35-NSEC ACCESS

Benchmarq Microelectronics's $32 \mathrm{k} \times 8$-bit battery-backed nonvolatile static RAM (SRAM) has a $35-\mathrm{nsec}$ access time. Two versions are available: The bq4011H has a 5% power-supply tolerance and the bq4011HY has a 10% tolerence. Both devices come in $600-\mathrm{mil}$ DIP modules that are socket-compatible with standard SRAM, EPROM, and EEPROM memories. The modules include the SRAM, power monitoring and control circuitry, and a lithium battery. The modules are UL recognized. The devices cost $\$ 60.30$ (100) for the $35-n s e c ~ v e r s i o n ; ~ \$ 53.10$ for a $45-n s e c$ version. Benchmarq Microelectronics Inc, Carrollton, TX, (214) 407-0011, FAX (214) 407-9845, contact John Landau.-Richard A Quinnell

Next generation compatibility.
Because they're SPARC chips, they're completely compatible with over 2100 SPARCwaree ${ }^{\text {TM }}$ products. They offer true scalability into a wide spectrum of applications. And a growth path for future high-performance products.

Get this level of performance, potential, and compatibility for your next-generation products.

The Cypress SPARC.

For the whole story on RISC, call the Cypress Hotline at 1-800-952-6300.* Ask for dept. C4M.

The complete SPARC chipset, designed by our ROSS Technology subsidiary, is now available for high-volume applications.

NEWS BREAKS

VHDL AND HARDWARE-ACGELERATOR MARRIAGES EASE USE

Coming on the heels of Cadence Design System's entry in the hardware accelerator business with its XLP simulation accelerator (EDN, May 23, 1991), rival accelerator producers Ikos Systems and Zycad have teamed up with Racal-Redac and Synopsys, respectively, to make their hardware tools easier to use.

Ikos Systems will deliver a VHDL hardware accelerator before the end of the year. Since hardware accelerators can only accelerate structural (gate-level) simulations, the hardware will rely on Racal-Redac's Silcsyn logic-synthesis software to generate a structural representation from your behavioral description. Nonsynthesizable parts of your description must run in a software simulator that the company is developing, but hasn't yet announced. The claimed capacity of the \$59,500 hardware accelerator exceeds 100,000 lines of synthesizable VHDL source.

Synopsys and Zycad have teamed up to integrate the former's \$24,000 VHDL simulation tools-acquired from Zycad last year-with the latter's XP fault and logic accelerators (from $\$ 55,000$). The tools don't perform any logic synthesis, but partition your behavioral models into the software simulator and structural models into the hardware simulator. Cadence Design Systems, Lowell, MA, (508) 458-1900, FAX (508) 441-1109. Ikos Systems, Sunnyvale, CA, (408) 245-1900, FAX (408) 245-6219. Racal-Redac, Littleton, MA, (508) 692-4900, FAX (508) 692-4725. Synopsys, Mountain View, CA, (415) 962-5000, FAX (415) 965-8637. Zycad, Menlo Park, CA, (415) 688-7451, FAX (415) 688-7550.-Michael C Markowitz

USE YOUR MAC AS A LOW-COST SPECTRUM ANALYZER

The $\$ 495$ Audio-Frequency Fourier Analyzer from National Instruments can turn your Apple Macintosh II computer into a 2 -channel, dual-display signal analyzer. You can use the software for measuring the response of low-frequency filters and networks, or to measure the magnitude and phase of low-frequency transmission signals. The software gives you real-time display of the time, power spectrum, magnitude/phase spectrum, correlation function, impulse response, transfer function, and coherence function of incoming signals. At sample rates reaching 48 k samples $/ \mathrm{sec}$, the program's accuracy specs indicate 426 lines of resolution with a broadband dynamic range of 93 dB and bandwidth from dc to 20 kHz . Frequency accuracy is 0.01% and frequency resolution approaches 0.013 Hz per line. If your Mac lacks the hardware to perform stand-alone signal analysis, you can buy the software bundled with a runtime version of LabView-2, an NB-DSP2300 board, an NB-A2100 board, and a 3-board RTSI cable for \$7495. National Instruments, Austin, TX, (512) 794-0100, FAX (51®) 794-8411, contact David Koenig.-J D Mosley

LOW-POWER, 10-BIT ADC SAMPLES AT 40M SAMPLES/SEC

The SPTr814 from Signal Processing Technologies combines a 10-bit ADC with an on-chip track-and-hold circuit, samples at 40M samples/sec, and requires no additional components to operate. At 40 MHz , the device draws 1.3 W from its 5 V and -5.2 V power supplies (a relatively small amount of power for a converter this fast). The device's analog input has an input capacitance of 5 pF , which reduces the drive requirements on front-end circuits. The $\$ 109$ (100) converter has ECL outputs. A companion device, the $\$ 79$ (100) SPT7810, has similar features but samples at 20M samples/sec max. Signal Processing Technologies, Colorado Springs, CO, (719) 5403900, FAX (719) 540-3970.-Steven H Leibson

D-Sub Connector Mounting

for Assembly

PEM Connect 'R Ware Standoffs dramatically speed assembly and secure the connector with six fewer parts. Connect' R Ware Standoff way

For a true DFA product that is less expensive to install, offers increased reliability and improved quality performance, specify PEM Connect 'R Ware ${ }^{\text {TM }}$ standoffs.

For a Connect 'R Ware product bulletin, circle the number below or call:

TOOL AUTOMATES GRAPHICAL-USER-INTERFACE DEVELOPMENT

Telesoft's Teleuse 2.0 development tool lets developers create OSF/Motif-based application programs without writing the user-interface code. Users paint the screens needed for the application, and the software tool generates the C-language code that performs the user-interface function. The tool can also output code that is compatible with the Open Software Foundation's user-interface language. Other features include support for OSF/Motif version 1.1, support for the X-Window standard version XllR4, and a porting kit that lets you execute software developed with the tool on any OSF/Motif-based system. The software tool will be available in July for $\$ 7500$ on SPARC, IBM RISC System/6000, and DECstation systems. Telesoft, San Diego, CA, (619) 457-2700, FAX (619) 452-1334.-Maury Wright

GATE ARRAYS OFFER EMBEDDED CELLS

Fujitsu Microelectronics IC Division's family of digital gate arrays offers embedded functions. The functions include single-, dual-, and triple-port RAM, ROM, a multiplier, customized I/O buffers, mask-programmed PLAs, and microprocessor peripheral functions. Initially, these arrays, like standard cells, require all-layer processing. To reduce subsequent turnaround times, you can specify-and pay-to have wafers held at metal mask. These wafers give you the flexibility to make logic changes after evaluating your design. Fujitsu Microelectronics, San Jose, CA, (408) 922-9000, FAX (408) 432-9044. -Michael C Markowitz

RAMDAC SUPPORTS TRUE-COLOR GRAPHICS

The Bt484 RAMDAC (random-access-memory DAC) from Brooktree Corp offers a variety of high-performance graphics features to designers creating PC graphics cards. The device supports resolutions as great as 1024×768 pixels in a variety of color modes with gamma correction for true-color modes. It supports XGA 5:6:5-bit (RGB) color mode, Image Capture 5:5:5-bit color mode, 24 -bit true color, and is backward compatible with VGA. The RAMDAC can switch between true-color and VGA modes on a pixel-per-pixel basis, preventing the color limitations of VGA from distorting image colors when displaying multiple image windows.

The device also offers a hardware cursor to speed your graphics board's operation under Windows 3.0. The $32 \times 32 \times 2$-bit cursor eliminates the need for the CPU to write a cursor into video memory; the RAMDAC superimposes its cursor wherever you specify, without disturbing the underlying image. Other device features include separate pixel ports for VGA (8-bit) and true-color (32-bit) data and a built-in shift clock to simplify your Video RAM interface. The device comes in $75-$ and $85-\mathrm{MHz}$ speed grades and is sampling now. Volume production will begin in October; priced from \$29. Brooktree Corp, San Diego, CA, (619) 452-7580, FAX (619) 452-1249. -Richard A Quinnell

1-GATE ICS PUT THE LOGIC YOU WANT WHERE YOU WANT IT

Each member of the TC7SXX family of logic devices from Toshiba places one logic gate in a 5 -pin SOT-23MOD package measuring $2.9 \times 2.8 \times 1.1 \mathrm{~mm}$. The 16 -member family includes all of the basic logic functions and their logical complements, an analog switch, and a Schmitt-trigger gate. Example pricing includes the $\$ 0.16$ TC4S71F OR gate and the $\$ 0.20(25,000)$ TCYSOOF NAND gate. Toshiba America Electronic Components, Irvine, CA, (714) 455-2000, FAX (714) 859-3963.
-Steven H Leibson

To put VGA graphics on your motherboard, you need a cost-efficient, highly integrated, powerful solution that uses minimal board space. You need the new CL-GD5320 Enhanced VGA-Compatible Graphics Chip from Cirrus Logic.

Use it to incorporate full 16 -bit or 8 -bit VGA into low-cost personal computers. You only need two industry standard $256 \mathrm{~K} \times 4$ DRAMs and as few as five other ICs. Whatever memory speed you select $80 \mathrm{~ns}, 100 \mathrm{~ns}$, or 120 ns - you'll get a complete VGA display system with greater performance than systems using a more expensive solution with $64 \mathrm{~K} \times 4$ DRAMs.

You don't sacrifice features. You get 16 -bit and 8-bit support for the VGA graphics standard, and full, register-level backwards compatibility. For maximum performance, it has an 8/16-bit CPU interface, independent video and DRAM clocks,
internal FIFOs, and page mode DRAM access. And it will interface to both analog
 (PS/2 and multisync) and TTL monitors.

You can also pick a ready-to-use solution that's right for you. Anything from a chip with full BIOS, drivers, utilities, user's manual, and documentation - to a complete manufacturing kit including everything you need to quickly move into high-volume production.

Make your PC more competitive and save time, space, and money. Call Cirrus Logic today.
「Get on board. Call today for more information on our motherboard VGA solutions.
Call 1-800-952-6300. Ask for dept. LM22.

This full 16-bit
CL-GD5320 lets you implement 16-bit or 8-bit VGA capabilities on your motherboard with as few as 5 other chips and two 256K x 4 DRAMs. Get a complete solution that saves time, space, power, and expense. You still get all the speed, features and flexibility you're looking for.

POWER SPLTERS/ COM:HERS

the world's largest selection 2 KHz to 8 GHz from $\$ 495$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or MIni-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide.
finding new ways
setting higher standards

맴Nini-Circuits
 P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500

OTHER 32-BT EMBE OFFER SOMETHI

When you're picking an embedded processor, it pays to watch your step. Or you may wind up with a design that doesn't meet your performance expectations, and a schedule that keeps slipping.

Not so with the new Motorola 68EC0x0 line.

From the 68EC000 that's just two dollars and change, to the 68EC040 that delivers a full 22 MIPS, they're all based on the world's most popular architecture. The 68000.

Which means you get a seamless migration path and reams of reusable code. Because each 'EC0x0 embedded microprocessor is binary compatible with all 68000-based microprocessors, and with every other'EC0x0 family member.

What's more, they're all engineered to give

DDEDPROCESSORS ng OURSDONT.

your products virtual immunity from memory wait states.

They also deliver superior levels of sustained performance, not "peak" MIPS like with other processors. So you can use DRAM instead of SRAM, and minimize your overall system cost.

As you'd expect from Motorola, high performance, low cost and exceptional technical support are

Motorola's 68000 families let you choose the performance and integration that's right for your application.
all part of the package. And ${ }^{\prime} E C 0 x 0$ embedded microprocessors are available at the price/performance points you need.

So before you pick your next embedded microprocessor, call 1-800-845-MOTO, and get a free sample from the $68 \mathrm{EC} 0 \times 0$ family. ${ }^{*}$ It's one step you'll never regret.
(4) MOTOROLA

Memories, ASICs, and Logic ICs Deliver High-End Performance.

For high-end workstation and PC applications, Oki offers a range of ICs with the powerful performance features your high-level board designs demand.

1-Meg Based Vrams. Oki's highbandwidth video RAMs enable the up-front performance required for high-resolution graphic applications. Features include dual port memory and fast access times.
$\mathbf{0 . 8} \boldsymbol{\mu \mathrm { m }}$ Gate Arrays. Manufactured on our volume $4-\mathrm{Mb}$ line, Oki's SOGs offer exceptional benefits: high-speed logic and I/O performance, high-density macrofunctions, high pin count packages, and more.

Field Memory. There's no better solution for a frame grabber design than Oki's high-performing 1-Mb serial memory. Features include an internal self-refresh control circuit, making this device appear fully static to the user.

Speech Synthesis. For high-quality performance you can hear, no one matches Oki's RealVoice ${ }^{\mathrm{TM}}$ speech synthesizers. With on-chip filter and D / A, these chips reduce design time and IC count while increasing system reliability.

16-Bit MCU. Oki's nX family of fast MCUs combines a threeprogram instruction pre-fetch queue to lower overall CPU cycle time down to 200 ns. Features include a variety of I/O options plus 16 K of 16 -bit word ROM and 512 bytes of RAM.

Start packing more performance into your system with Oki ICs. Call 1-800-OKI-6388 for the details.

Oki High-Performance ICs Part Number	
Description	

PERFORMANCE UP FRONT STARTS WITH OKI ON BOARD

OKI
Semiconductor
785 North Mary Avenue
Sunnyvale, CA 94086-2909
1-800-OK1-6388

Introducing Zilog's Smart Access Controller... Z180 intelligence and SCC communications together in one package.

Don't throw away your old software.
The $Z 80$ family continues to be the most popular group of intelligent peripheral controllers on the market. With good reason. It's a tribute to peur Superintegration $n^{m \times}$ technology roduct in the family, like the $S A G^{m 4}$ is based themselves. And since each new product to migrate your existing software on the same Z80/180 code you'll be able to mou how important that is. easily and effectively. We don't bave to ty F 对- based intelligent peripheral Here's a list of the fast-growing family of top expanding any time soon.

Controller" ${ }^{\text {m' }}$ that combines two powerful standards. You get Zilog's industry standard $\mathrm{SCC}^{\mathrm{TM}}$ controller for datacom connectivity together with the popular Z180 CMOS controller. And all that utility comes with the user-friendly $Z 80^{\circledR}$ code CPU compatible software.
High integration. High performance. Smart communicator.
The Superintegration ${ }^{m} S A C$ Controller packs the popular high performance Z180 architecture into a new cell suitable for many datacom and peripheral control applications. You get the SCC single-channel communication cell with two additional UARTS, a 4×8-bit counter timer (CTC) and onboard 16 -bit $\mathrm{I} / 0$. The SAC Controller runs at 10 MHz and drives fast serial communications at $2.5 \mathrm{Mbits} / \mathrm{sec}$. With the reduced 3 cycles per instruction, the SAC Controller gives you Z80 ${ }^{*}$ code performance 25% faster. That makes the SAC Controller the highest performance, low power embedded controller around.
The best cost/performance of any embedded controller out there.
Whatever your application - data communications, modems,
FAXs, printers, terminals, industrial controls - the SAC Controller combination gives you the best cost/performance ratio. Everything you need for your system is on the chip. The SAC Controller brings you all the advantages of Zilog's Superintegration technology. Off-theshelf and backed by our solid reputation for quality and reliability. To find out more about the SAC Controller, or any of Zilog's rapidly growing family of Superintegration products, contact your local Zilog sales office or your authorized distributor today. Zilog, Inc., 210 Hacienda Ave., Campbell, CA 95008, (408) 370-8000.

Right product. Right price. Right away.

SIGNALS \& NOISE

Reader responds to Editor's Note about Apple

In his Editor's Note to the letter from J Thomas Baylor (EDN, March 14, 1991, pg 26), Jon Titus said that he would have been more impressed if Apple had made a commitment to an open bus. Apple has had the Nubus in their bigger machines since 1987, even before IBM switched to Micro Channel (a proprietary bus).
Apple has always encouraged companies to develop or port engineering and scientific applications to the Mac. I wonder why only a few companies do so. In our company, we use Macs only. We refuse to use MS-DOS-based software. If a semiconductor supplier cannot offer us a way to do development for their chips (PALs, $\mu \mathrm{Ps}$, and such stuff) on a Mac, we refuse to use their chips.
Guido Körber
Applied Technologies
Berlin, Germany
(Ed Note: Which side of the Wall were you on?)

Group offers outlet for budding experimenters

In Jon Titus's editorial, "Where are the experimenters?" (EDN, February $4,1991, \mathrm{pg} 29$), he laments the small number of engineers who help youngsters discover "a lóve for the technology and a deep enthusiasm for new possibilities." Now that President Bush plans to recruit 100,000 volunteer engineers to assist teachers through the new Engineers in Education program, perhaps more engineers will work with youth. The American Radio Relay League, a nonprofit national organization for amateur radio operators assists professionals who want to take amateur radio to school-in particular, through the Shuttle Amateur Radio Experiment where students talk to orbiting astronauts via ham radio.

We also work with the IEEE, which sponsors a program for engineers called Amateur Radio in the Classroom. The professionals we've assisted report that students who get their hands on the radios and talk, rather than just listen, do get excited, even with cellular phones around. According to some teachers, the Federal Communications Commission's new entry-level amateur radio license, which doesn't require a Morse code test, has sparked the interest of students whose enthusiasm for ham radio was dampened by having to tackle Morse code. Anyone interested in taking amateur radio to school or in getting a license can contact ARRL, Dept EADN, 225 Main St, Newington, CT 06111, phone (203) 666-1541, or FAX (203) 665-7541.
Rosalie White
Call Sign WA1STO
Educational Activities Manager American Radio Relay League Inc Newington, CT

Simulation limitations

 hamper testing of AegisIn response to Jon Titus's editorial "Smart weapons, smart lessons"

IOtech, Inc. • 25971 Cannon Road Cleveland, Ohio 44146

SIGNALS \& NOISE

(EDN, March 14, 1991, pg 35), I'm an engineer/manager who has been closely associated with the Aegis and 3-T programs for more than 25 years (15 years as a Navy engineer-ing-duty officer and 10 years as the Aegis prime contractor, RCA/GE). I believe a fair appraisal will show that Aegis testing has exceeded the testing of any prior Navy AAW (antiaircraft warfare) missile system. Testing has been constrained primarily by the Navy's inability to fully simulate realistic battle conditions.

Recognizing the constraint very early, the original prime contractor, Wayne Meyer, fought hard for the necessary annual appropriations to improve the Navy's ability to test Aegis directly at high-threat levels. The Aegis program [director] funded the development and fielding of improvements in electronic
countermeasure jamming, chaff, targets, and range-control upgrades.

Meyer also established and funded a full-time "Old Crow" team of critics and adversaries for the early identification of soft spots in the design, as well as optimum tactics and techniques to use against Aegis. The present situation is that the Navy doesn't yet have the testing ability to fully stress the Aegis ships.

Safety considerations also impose constraints on staging a wartime environment against Aegis ships. Nearby populated areas, civilian aircraft, line-of-sight communications, and telemetry prevent a full spectrum of attack scenarios.

Has Aegis been tested under realistic conditions? Yes, to the best of the Navy's ability. Has it been fully stressed? No, it has not, but
not because of any contrived plan or bogus conditions.
Robert C Beers, Manager
AAW Development Programs
GE Aerospace
Moorestown, NJ

First, "number facts," then calculators

In answer to Jon Titus's editorial about teaching math (EDN, April 11, 1991, pg 41), I agree in part, wholeheartedly, but I was also married to an elementary-school teacher for many years. I learned from her a little about teaching math in the lower grades. At that level, a calculator would be an unmitigated disaster. The "number facts" must be learned so that they are second nature.

My wife had a cartoon showing a little boy at the blackboard, pout-

> When customers ask how I gotso many connectors delivered so fast, I tell themI have connections.

SIGNALS \& NOISE

ing, with his arms folded. On the board was a problem like 657×149. The teachers says, "Because calculator batteries go dead, that's why." I was once that little boy.

When I was nine years old or so, a neighbor who was an engineer died. I inherited his slide rule. No one in my house knew how to run it. I used to stare at it by the hour as I slid it back and forth. Once, by accident, I aligned the 1 with a 2 , and noticed that at the other 2 was 4 , and at the 3 was 6 . I was hooked. I had a machine to do arithmetic. I refused to learn to multiply. Only after threats and promises would I learn my tables.

Log-log slide rule or scientific calculator, the device is essential to free the mind to explore math. Once children have learned the basics of arithmetic, their minds should be allowed to soar by using calcula-
tors to take the drudgery out of it. Will Cochran
Chemagnetics Inc
Otsuka Electronics
Fort Collins, CO

Milli-not mega

In the Test \& Measurement Instruments section of New Products (EDN, April 11, 1991, pg 176), EDN ran an item about the SR760 FFT spectrum analyzer from Stanford Research Systems. We erroneously described the $\$ 4350$ instrument as covering a much wider frequency range than FFT analyzers cover. The product works with signals from 191 milliHertz (not MHz) to 100 kHz . Stanford Research Systems Inc is located at 1290D Reamwood Ave, Sunnyvale, CA 94089. Phone (408) 744-9040. FAX (408) 744-9049. TLX 706891.

IT'S EASY TO HAVE YOUR SAY

EDN's Signals \& Noise column provides a forum for readers to express their opinions on issues raised in the magazine's articles or on any topic that affects the engineering industry. You can use one of several easy ways to reach us. First, there's always the mail. Send your letters to Signals \& Noise Editor, EDN Magazine, 275 Washington St, Newton, MA 02158. Or, send us a message via MCI mail at EDNBOS. Finally, EDN's bulletin-board system is ready for use-and it's free (except for the phone call). You can reach us at (617) $558-4241$ and leave a letter in the EDITORS Special Interest Group. You'll need a $2400-\mathrm{bps}$ or less modem and a communications program that is set for eight data bits, no parity, and one stop bit, or 1200/2400, 8 N 1 in shorthand.

Our multi-national customers see Ken Talentino as their link to a wide spectrum of connector products. But

delivery and zero defects. There's

watching over filter

and
second to none when it comes to customer service.

Before the A500 started testing Motorola's mixed-

"Motorola has adopted a Six Sigma initiative which focuses attention on approaching zerodefect performance in everything we do, including our test systems. Our purchase of
the Teradyne 4500 test system supports our Six Sigma initiative and our competitive leadership challenge."

Director of Marketing
Motorola knows you can't have a Six Sigma process unless you can test to Six Sigma standards. That's why Motorola's MOS Digital-Analog Integrated Circuits Division chose the Teradyne A500 Analog VLSI Test System. Because, in addition to proving the A500 could handle the
complex technical requirements of Motorola's advanced ISDN interfaces, we also demonstrated that we could perform to Motorola's stringent quality levels.
"Can it do scan testing? Digitize highfrequency waveforms? Do true mixed-mode testing? Does it have a flexible architecture? Can you give us the support for a Six Sigma process? Applications expertise? Complete documentation? The right tools? In each case, Teradyne answered yes."
Manager, Advanced Test Technology

[^2]

signal technology, Teradyne had to pass a few tests.

With the A500, Motorola had the ability to digitize waveforms at 20 MHz , plus the high pin count necessary to guarantee that their ISDN U-Interface worked the way it was supposed to.
Best of all, the A500's full tester simulation and powerful IMAGE ${ }^{\text {TM }}$ software provided the design flexibility and rapid debugging Motorola needed to deliver defect-free parts on time.
"The A500 gave us the resources we needed, in one place, to be able to have a functioning test program very quickly - at least two to three times faster than any other test system. This type of support is just what we need to get our complex circuits, such as the U-Interface transceiver, to the marketplace ahead of the competition."

Operations Manager
To Motorola, delivering Six Sigma quality is not just a promise. It's a way of doing business. And it's a test that must be passed by suppliers as well.

To see how our A500 family of test systems can help you deliver quality, call Beth Sulak at (617) 482-2700, ext. 2746.
Or call your nearest Teradyne sales office, or write: Teradyne, Inc., 321 Harrison Ave., Boston, MA 02118.
JERADNは

lowpass, highpass, bandpass, narrowband IF

- less than 1dB insertion loss - greater than 40 dB stopband rejection
- 5-section, 30dB/octave rolloff • VSWR less than 1.7 (typ) • meets MIL-STD-202 tests
- rugged hermetically-sealed pin models - BNC, Type N; SMA available
- surface-mount - over 100 off-the-shelf models • immediate delivery
low pass de to 1200 MHz

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	PASSBAND, MHz (loss <1dB) Min.	fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) \quad (loss $>40 \mathrm{~dB}$)			VSWR pass- stop- band band typ. typ.		PRICE \$ Qty. (1-9)
			Max.	Max.	Min.			
PLP-10.7	DC-11	14	19	24	200	1.7	18	11.45
PLP-21.4	DC-22	24.5	32	41	200	1.7	18	11.45
PLP-30	DC-32	35	47	61	200	1.7	18	11.45
PLP-50	DC-48	55	70	90	200	1.7	18	11.45
PLP-70	DC-60	67	90	117	300	1.7	18	11.45
PLP-100	DC-98	108	146	189	400	1.7	18	11.45
PLP-150	DC-140	155	210	300	600	1.7	18	11.45
PLP-200	DC-190	210	290	390	800	1.7	18	11.45
PLP-250	DC-225	250	320	400	1200	1.7	18	11.45
PLP-300	DC-270	297	410	550	1200	1.7	18	11.45
PLP-450	DC-400	440	580	750	1800	1.7	18	11.45
PLP-550	DC-520	570	750	920	2000	1.7	18	11.45
PLP-600	DC-580	640	840	1120	2000	1.7	18	11.45
PLP-750	DC-700	770	1000	1300	2000	1.7	18	11.45
PLP-800	DC-720	800	1080	1400	2000	1.7	18	11.45
PLP-850	DC-780	850	1100	1400	2000	1.7	18	11.45
PLP-1000	DC-900	990	1340	1750	2000	1.7	18	11.45
PLP-1200	DC-1000	1200	1620	2100	2500	1.7	18	11.45

high pass dc to 2500 MHz

MODEL	PASSBAND, MHz(loss <1dB)		fco, MHz (loss 3db) Nom.	STOP BAND, MHz (loss $>20 \mathrm{~dB}$) \quad (loss $>40 \mathrm{~dB}$)		VSWR		$\begin{aligned} & \text { PRICE } \\ & \$ \$ \\ & \text { Oty. } \\ & \text { (1-9) } \end{aligned}$
	Min.	Min.		Min.	Min.	ctit band	band typ.	
PHP-50	41	200	37	26	20	1.5	17	14.95
PHP-100	90	400	82	55	40	1.5	17	14.95
PHP-150	133	600	120	95	70	1.8	17	14.95
PHP-175	160	800	140	105	70	1.5	17	14.95
PHP-200	185	800	164	116	90	1.6	17	14.95
PHP-250	225	1200	205	150	100	1.3	17	14.95
PHP-300	290	1200	245	190	145	1.7	17	14.95
PHP-400	395	1600	360	290	210	1.7	17	14.95
PHP-500	500	1600	454	365	280	1.9	17	14.95
PHP-600	600	1600	545	440	350	2.0	17	14.95
PHP-700	700	1800	640	520	400	1.6	17	14.95
PHP-800	780	2000	710	570	445	2.1	17	14.95
PHP-900	910	2100	820	660	520	1.8	17	14.95
PHP-1000	1000	2200	900	720	550	1.9	17	14.95

bandpass 20 to 70 MHz

| CENTER \mid PASS B

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	FREQ. MHz FO	Max F1	dB) Min. F2	(loss Min. F3	dB) Max. F4	(loss > Min. F5	dB) Max. F6	1.3:1 typ. total band MHz	$\begin{aligned} & \text { Qty. } \\ & (1-9) \end{aligned}$
PIF-21.4	21.4	18	25	4.9	85	1.3	150	DC-220	14.95
PIF-30	30	25	35	7	120	1.9	210	DC-330	14.95
PIF-40	42	35	49	10	168	2.6	300	DC-400	14.95
PIF-50	50	41	58	11.5	200	3.1	350	DC-440	14.95
PIF-60	60	50	70	14	240	3.8	400	DC-500	14.95
PIF-70	70	58	82	16	280	4.4	490	DC-550	14.95

narrowband IF

MODEL NO.	CENTER FREQ. MHz FO	PASS BAND, MHz I.L. 1.5 dB max. F1-F2	STOP BAND, MHz I.L. $>20 \mathrm{~dB}$		STOP BAND, MHz I.L. $>35 \mathrm{~dB}$		PASSBAND VSWR Max.	$\begin{gathered} \text { PRICE } \\ \$ \\ \text { Qty. } \\ (1-9) \end{gathered}$
			F5	F6	F7	F8-F9		
PBP-10.7	10.7	9.5-11.5	7.5	15	0.6	50-1000	1.7	18.95
PBP-21.4	21.4	19.2-23.6	15.5	29	3.0	80-1000	1.7	18.95
PBP-30	30.0	27.0-33.0	22	40	3.2	99-1000	1.7	18.95
PBP-60	60.0	55.0-67.0	44	79	4.6	190-1000	1.7	18.95
PBP-70	70.0	63.0-77.0	51	94	6	193-1000	1.7	18.95

CIRCLE NO. 26

Sinceother 12hitADCs need four times the space togobhalf a s fast at twice the price,we use the term 'competition'lightly.

Maybe we are being a little boastful when we say that compared to the AD671, every other 12-bit monolithic A/D converter is a lightweight. But see if you don't agree.

The AD671 comes in a 24-pin skinny DIP package. (Other ADD converters are in double- and triple-wide DIPs, taking up to four times as much space on your board.)

The AD671 has a true conversion time of 500ns. (Making it twice as fast as the nearest 'competitor'.)

The AD671 costs only $\$ 65$. (You can expect to pay at least double that amount for any other 'comparable' ADC.)

And the AD671 doesn't have calibration cycles, complicated interfaces, or specs that can't hold up over temperature and power supply variations. (But if you like these things, you can get them with other ADCs.)

To find out more about the $A D$ converter that has more weight behind it,get a data sheet on the AD671 by contacting Analog Devices at 1-800-262-5643. Or write to Analog Devices, P.0. Box 9106, Norwood, MA 02062-9106.

AD671 500 ns AD CONVERTER.
The AD671 is the fastest 12 -bit monolithic A/D converter, converting in under $\mathbf{5 0 0} \mathrm{ns}$ while consuming less than $\mathbf{5 0 0} \mathbf{~ m W}$. It accepts standard input signals of 0 to $+10 \mathrm{~V}, 0$ to +5 V or $\pm 5 \mathrm{~V}$, and it outputs data in offset/ straight binary or two's complement format. The AD671 offers the right combination of speed and resolution for imaging applications using charge coupled devices, infrared detectors or photomultiplier tubes, while its accuracy is ideal for multichannel data acquisition systems and communications systems.

ASK EDN

EDITED BY JULIE ANNE SCHOFIELD

Source of alternate sources

More than half the letters Ask EDN receives are from engineers looking for alternate sources or sources of obsolete parts. The 1991 DATA Digest Alternate Sources and Replacements Library contains alternatesource information for more than 688,000 devices, including ICs and discrete semiconductor devices. The library also includes more than 173,000 discrete-semiconductor suggested replacements. Parts from more than 500 manufacturers are represented. The 3 -volume set costs $\$ 295$.
DATA Business Publishing
Box 6510
Englewood, CA 80155.
Also, the following company has picked up some obsolete RCA consumer parts:
Thomson Consumer Electronics 200 Clements Bridge Rd
Deptford, NJ 08096.

Few high-temperaturecomponent sources found

We are looking for components to operate at 200 and $250^{\circ} \mathrm{C}$: op amps, voltage regulators, transistors (similar to 2N2907 and 2N2222), diodes, resistors, capacitors, transient suppressors, miniature EMI filters, and analog ASICs or hybrid microcircuits.

Donald Weinstein

Kulite Semiconductor Products Inc Leonia, NJ

We first turned to National Semiconductor's Bob Pease with this question. He says that he is not aware of any parts specified at these temperatures, but says the LM12 150W op amp will work at temperatures as high as $250^{\circ} \mathrm{C}$.

Contacts at Harris Semiconductor (Melbourne, FL) say the company used to have a line of components specified for high-temperature opera-
tions but discontinued the line when the oil industry in the United States fell apart. Harris still has some products, including op amps, that operate at 200 and $250^{\circ} \mathrm{C}$, but there are no guarantees.

Several companies, including Silicon General (Garden Grove, CA), are working on a radiation-hardened process that produces parts that can operate at $300^{\circ} \mathrm{C}$. The technology is called silicon on insulator, or SOI. In six months to a year, Silicon General plans to introduce a 5 V power regulator and a PWM control chip made using SOI processes. If any readers can shed more light on the SOI process, Ask EDN would like to hear from you.

We were much more successful finding sources of high-temperature resistors and capacitors. Caddock Electronics makes high-precision, high-voltage, and metal-film resistors that operate at temperatures as high as $275^{\circ} \mathrm{C}$. Dale Electronics makes high-voltage, metal-film, metal-oxide, and wire-wound resistors that operate at both 200 and $250^{\circ} \mathrm{C}$. Component Research Co Inc makes teflon-film capacitors that operate at $200^{\circ} \mathrm{C}$.

Caddock Electronics
1717 Chicago Ave
Riverside, CA 92507
(714) 788-1700

FAX (714) 369-1151
Dale Electronics
Box 74
Norfolk, NE 68702
(402) 371-0080

FAX (402) 644-4206
Component Research Co Inc 1655 26th St
Santa Monica, CA 90404
(213) 829-3615

FAX (213) 829-9584

Reader seeks gold replacement

I have an application that uses an elastomeric (zebra) strip connector from an LCD to a pe board, which
we gold-plate to ensure a quality connection from the connector to the board.

I am currently investigating alternatives to gold plating for this application. I am looking into the use of lubricants, fluids, or other chemicals in conjunction with an elastomeric connector to provide the same quality connection between the elastomeric strip and the pe board that gold provides.

Any information, pro or con, about the method we currently use, methods involving lubricants, or any other successful zebra-to-pcboard mating methods would be useful to my investigation.

Marty Gappa

Watlow Controls
Winona, MN
Executive Editor Steve Leibson, whose Technology Update on contactenhancing chemicals appeared in the March 14, 1991, issue of EDN, recommends that you contact D W Electrochemicals. The company's Stabilant 22 product is a concentrated liquid polymer that fills gaps between mated contacts and conducts current under an applied electric field. The product will probably do just the job you need, but you should ask the company about your specific application. Stabilant 22 could possibly work even better than gold plating because it fills in the gaps between the connector contacts and isolates the joint from the atmosphere.

D W Electrochemicals Ltd
9005 Leslie St, Unit 106
Richmond Hill,
ON, L4B 1G7 Canada
(416) 889-1522

[^3]
High performance blowers provide variable air flow from 120 VAC input

These new Windjammer* blowers combine electronics, motor, and fan system in a compact, cost-effective package. An exclusive Lamb Electric design, they were developed for demanding, limited space applications such as business machines, medical equipment and materials handling applications. Just $5.7^{\prime \prime}$ in diameter, the blowers have 1 -, 2 -, or 3 -stage fans for performance from $75^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ vacuum at 0 CFM to 125 CFM at $0^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. With one version, a 0 to 10 VDC signal from a sensor or other device will control motor speed and adjust air perform-
ance from 0 to 100%. Or, a second model provides manual speed control by means of a potentiometer located in the blower housing.

These blowers also feature low

Compact units feature brushless dc motors with integral controller and
variable speed capability integral controller and
variable speed capability

Multiple-stage centrifugal fan system

Power input/speed control (remote model)
noise performance and are UL/CSA component recognized. AMETEK, Lamb Electric Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3451. Fax: 216-673-8994. In Europe, Friedrichstrasse 24, 6200 Wiesbaden, Germany. Tel: 611-370031.
Fax: 611-370033. LAMB ELECTRIC DIVISION

CALENDAR

CFC Alternatives Conference, Burlingame, CA. Angela Hoyte, Miller Freeman Expositions, 600 Harrison St, San Francisco, CA 94107. (415) 905-2354. FAX (415) 905-2239. June 24 to 26.

Test Engineering Conference, Atlanta, GA. Miller Freeman Expositions, Test Engineering Conference, 1050 Commonwealth Ave, Boston, MA 02215. (800) 223-7126; in MA, (617) 232-3976. June 24 to 27.

VXIbus User Group Meeting, Atlanta, GA. Matt Jacobs, National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. (512) 3389119. FAX (512) 794-5569. June 27.

International Conference and Exhibits on Failure Analysis, Montreal, Quebec, Canada. ASM International, Materials Park, OH 44073. (216) 338-1733. FAX (216) 338-4634. July 8 to 11 .

Ionospheric Radio Propagation for System Planners (short course), Washington, DC. George Washington University Continuing Education, School of Engineering \& Applied Science, Washington, DC 20052. (800) 424-9773; in DC, (202) 994-6106. FAX (202) 872-0645. July 8 to 11 .

International Conference on Industrial and Applied Mathematics, Washington, DC. ICIAM Conference Manager, SIAM, 3600 University City Science Center, Philadelphia, PA 19104. (800) 447-7426; outside US, (215) 382-9800. FAX (215) 386-7999. July 8 to 12.

Engineering Workstations Conference, Boston, MA. EWC, Box 3275, Santa Monica, CA 90403. (213) 450-0500. FAX (213) 450-0132. July 9 to 11 .

Programming with the AWK Language (short course), Seattle, WA. Specialized Systems Consultants

We DO 68,000 IMPERSONATIONS. AND THEN SOME.

ZAXPAK in-circuit emulators can impersonate most microprocessors, including the Motorola 68000. So now you can debug and integrate your design faster and more efficiently. We're the leader in 16 -bit emulation, including 68000, 80C186 and V50. We also support 8 and 32 -bit chips and specials like Mitsubishi's MELPS 7700.

ZAX has been delivering design tools for over a decade. Now we've put that experience into our new ZAXPAK family of hardware/software solutions featuring
source-level debug and one million breakpoints. All under control of your terminal, PC, work-station or Ethernet. Or use our optional built-in host platform.

So call us today at 1-800-421-0982. (In CA call 1-800-233-9817). And see how doing a few quick impersonations can help you bring your design to market faster.

ZNX

Zax Corporation
2572 White Road, Irvine, CA 92714. Put your design to the test.

World Class Ferrite Core Manufacturers. At Your Fingertips.

To get the best in ferrite quality and service, you have to know the right buttons to push. 1-800-345-4082. That's your direct line to DEXTER, your One Stop Shopping Center for your every ferrite need. From world class manufacturers such as SIEMENS, MAGNETICS, FAIR-RITE, HITACHI, MMG/KRYSTINEL. From standard stock items, ready for 24 -hour delivery, to the most intricate custom designs utilizing DEXTER's extensive value-added services, like precision fabrication, E-core and pot-core gapping and testing, and more.
Call Toll Free 1-800-345-4082 for Free Catalog and Nearest DEXTER Location.

ATLANTA BOSTON - CHICAGO - DALLAS LOS ANGELES - MINNEAPOLIS/ST. PAUL • NEW YORK SAN FRANCISCO - TOLEDO/DETROIT ENGLAND © WEST GERMANY

CALENDAR

Inc, Box 55549, Seattle, WA 98155. (206) 527-3385. FAX (206) 527-2806. July 11 to 12.

International Conference of Women Engineers and Scientists, Warwick, UK. Conference Services, ICWES9, 55 New Cavendish St, London W1M 7RE, UK. (071) 486-0531. FAX (071) 935-7559. July 14 to 20.

Ion Beam Processing: Techniques and Applications (short course), Cambridge, MA. MIT Summer Session Office, Massachusetts Institute of Technology, Room E19-356, Cambridge, MA 02139. (617) 2532101. FAX (617) 258-6177. July 15 to 19 .

Plastics Failure Analysis: Prevention and Testing Seminar, Denver, CO. Director of Educational Services, L J Broutman \& Associates, 3424 S State St, Chicago, IL 60616. (312) 842-4100. FAX (312) 842-3583. July 18 to 19.

CMOS/BiCMOS: Process Integration and Engineering (short course), Troy, NY. Office of Continuing Education, Rensselaer Polytechnic Institute, Troy, NY 12180. (518) 276-8351. FAX (518) 276-8026. July 22 to 26.

Real-Time Structured Analysis \& Design (short course), Los Angeles, CA. Learning Tree International, Box 45028, Los Angeles, CA 90045. (213) 417-9700. FAX (213) 337-7568. July 23 to 26 .

Siggraph Conference, Las Vegas, NV. Smith Buckland, Siggraph 91, 401 N Michigan Ave, Chicago, IL 60611. (312) 644-6610. FAX (312) 321-6876. July 28 to August 2.

Basic IC Technology Seminar, Sunnyvale, CA. ICE Corp, 15022 N 75th St, Scottsdale, AZ 85260. (602) 998-9780. FAX (602) 948-1925. August 6.

VME performance at a price you can sink your teeth into! Heurikon's HK68/V3D offérs VME standardization and design flexibility with a 33 MHz Motorola 68EC030 and 2 Mbytes of memory for only $\$ 1795$ (less in quantity). That makes the V3D a cost efficient entry point into VME single-board computers. As a complement to our main course, you can add more memory, SCSI or Ethernet. VxWorks and OS-9 are also available.

While our price indicates good value, it's our service which makes that value great, Our VME boards, real-time operating systems and software development environments are backed by superior technical support before and after the sale. The Heurikon V3D is the first in a series of new 680 X 0 value priced entrees. If you're hungry for more information, give us a call. 1-800-356-9602. Bon Appétit.

Partners in Real-Time
 HEURIKON

Whenyoure looking fora sure theyprovide these

Your supplier should offer applications support around the world. Analog Devices has offices in 34 countries, as well as worldwide manufacturing and stocking facilities.

Does your supplier have $\mathbf{2 5}$ years of signal processing expertise? Analog Devices does, and you can tap into it by simply picking up the phone. And with our recent acquisition of PMI-a leader in precision op amps and Class S mil/aerospace applications - you have even more experience to call upon.

Few suppliers can match our record. We're the leading worldwide supplier of data converters, and the top analog supplier to the military/aerospace and instrumentation markets. Plus we're a growing force in the high-volume arena, providing three of the top five Japanese consumer electronics firms, and seven of the top $\mathbf{1 0}$ hard disk drive man ufacturers with high-performance components.

With Analog Devices, you get direct access to the most knowledgeable applications engineers in real-world signal processing.

You get the design tools - macromodels, evaluation boards, on-line support, technical seminars and application notes, among other things - necessary to get your products up and running quickly.

And you get 25 years of design expertise - expertise evidenced by the most complete line of high-performance linear, DSP and mixed-signal components. ICs made possible by one of the broadest manufacturing process portfolios,

mixed-signal supplier,make high-performance parts.

A good supplier works to save you time and money. One way we do it is by providing state-of-the-art macromodel design tools that let you quickly and easily simulate the performance of many of our op amps. We also offer you evaluation boards for our data converters, and complete design kits for our DSP processors.

A good supplier also helps you do your job better. That's why we publish more newsletters, technical books, application notes and seminar handbooks filled with the latest information on linear, DSP and mixed-signal technology.

Do you get the service of a small company backed by the resources of a large one? If your supplier is Analog Devices, you do. Analog and digital experts work together to solve your problems. And top management takes a hands-on approach to customer support.
which includes leading edge BiCMOS, Flash, Complementary Bipolar and many others.
As a $\$ 540$ million operation, we have the resources that help you achieve top performance from our ICs.
Performance that translates into higher levels of system integration, greater reliability and a better end product.
Whatever high-performance part you're looking for, we are the one company that can deliver it.
Call us at 1-800-262-5643 for a free copy of our recent booklet on
Mixed-Signal Technology.

CIRCLE NO. 33

Motorola's In Real

 their respective holders.

-Time,Big-Time.

©ne glance at the full array of options Motorola offers in real-time, and you'll see why it's become the developer's platform of choice. For both target and host environments, no other single vendor has anything like it.

One reason is our long-time experience with real-time technology, beginning with our pioneering work back in 1980. Another is the broad spectrum of our product line, which includes ICs, boards, systems, and software. In short, Motorola has everything you need to build realtime applications ranging from simulation to industrial automation to imaging and more.

Yet another reason to choose Motorola is our unending commitment to open standards. Our real-time platform gives you standards-based choices at various levels of integration. The centerpiece of this nonproprietary approach is VMEexec,"' our wide-open, totally integrated development environment.VMEexec allows you to use standard UNIX* interfaces to write a single set of application code, and then reuse it for other projects. Better still, you can combine any software product that conforms to these standards.VMEexec includes a high-performance realtime executive, a strong run-time connection to UNIX-based systems, flexible and efficient real-time I/O and file systems, as well as powerful development and debug capabilities. And because VMEexec is integrated with the hardware, you can begin

software development even before the hardware is available. If you're thinking about real-time, you should be thinking about time to market, and that's all the more reason to think Motorola. Especially when you consider that we can help speed product integration by serving as a single source for boards, software and systems. Add to that the industry's best applications expertise and design support, ranging from small embedded control systems to multi-processor simulation. Then factor in Six Sigma quality control. And remember that Motorola gives you the industry's only true migration path from

Right now, Motorola real-time systems are hard at work in critical applications worldwide.

CISC to RISC in both the development and run-time environments. Give us a call today at 1-800-624-8999,ext. 230, and put the realtime resources of Motorola on your side. We think you'll find the benefits are very big, and very real.

We Do Real-Time Full-Time.

At Motorola, we've dedicated an entire division solely to realtime development systems. Our real-time system architecture begins at the microprocessor level in either CISC or RISC, and
extends all the way to the end-user. Today, you can use VMEexec to port UNIX applications to an SVID-compliant (and soon,POSIX-compliant) real-time environment, and vice versa. And they can be used for runtime capabilities as well

INTEGRATED REAL-TIME PLATFORM

as for development. Several human interfaces are available for UNIX, including Motif, X. 11 and DeltaWINDOWS"." As for networking, Motorola supports all popular protocols, including TCP/IP, NFS, SNA, OSI, and X. 400 . We also offer database and CASE tools, and you can work in C, LISP, FORTRAN, ADA, BASIC, COBOL, and PASCAL. Put it all together, and you will discover only one company gives you the full story on real-time, and that's Motorola.

We were made for each other.

Fast, versatile microcontroller.

Running at speeds up to 30 MHz , National Semiconductor's family of HPC microcontrollers really fly. But without a top-notch emulator to keep up with them, they were essentially flying solo.
Enter HP. We got together with National and developed an emulator that perfectly complements these exceptional microcontrollers. Microcontrollers that offer the most numerous, optimized applications for industrial control, communication, computer peripherals and automotive systems.
Our HP 64775 emulators have a proven architecture that's cost-effective and easy-to-use. They provide fullspeed emulation, as well as real-time, symbolic analysis support.
You may not need a further incentive to buy, but we'll give

Real-time,
transparent emulator.
you one anyway. For a limited time, you can get $\$ 3,000$ off the $\$ 18,000$ price. Call the HP Microprocessor Development Hotline at 1-800-447-3282,
Ext. 101
for a free demo disk, as well as product information and a list of distributors near you.
You'll see why we found the National microcontrollers very well worth emulating.

The devil, you say?

This is the time of year when companies rush to put the finishing touches on CAE software and systems so that they can announce and show the products at the annual Design Automation Conference. Before you get swept away by all the new-product announcements, consider the fate of Fred.

Fred was a CAE software vendor for six years before the stress of staying ahead of his competitors took its toll. Fred had a stroke and passed away. Since Fred was mostly fair, honest, and responsible during his stay among the mortals, he went to Heaven. Saint Peter met him at the Pearly Gates and welcomed him with open arms. The angel gave Fred a tour and introduced him around. Being a smart businessman who makes decisions only after carefully evaluating all his options, Fred wasn't so sure that Heaven was all it was promoted to be.
"I'm sure Heaven is terrific," Fred said. "But before I agree to stay I have to check out the alternatives."
"You're wise to consider your options," Saint Peter replied. "I warn you, though, once you tell me your choice, you cannot change your mind."

Fred agreed, and the angel put him on the elevator to Hell. After a few minutes, the elevator slowed and then stopped. The door opened. There, waiting to greet Fred, was Satan dressed in a natty tuxedo and fluorescent green sunglasses. All around people were frolicking and making merry. The sounds of happiness and merriment were consuming. Fred was awe struck. "This is the place for me," he exclaimed. "I've got to go back and tell Saint Peter I'm staying here. I'll be right back."

Fred pushed the elevator's Heaven button. When he got there and told Saint Peter his choice, the angel was disappointed and reminded Fred of the finality of his decision. But Fred was confident he'd made the right choice. He said goodbye, got in the elevator, and pushed the button for Hell. As the elevator descended, Fred felt warmer and warmer. Soon Fred was so warm that he had to remove his shirt and tie. As the sweat dripped from his body, the elevator door opened. Satan, now dressed in flaming red, stood before him, pointed his trident, and ordered Fred from the car. Spine-chilling screams filled the air. Fred was frightened, but found the courage to ask what happened to all the happy people he'd seen just a few minutes ago.
"Ah," replied Satan, "That was just the demo."

Michael C Markowitz Associate Editor

Send us your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.

OURCLASSIC EPLDs CUT

They also cut your product costs, with prices low enough to impact your bottom line.

As for logic delays, we've cut them down to a remarkably low 12 ns .
So now you can cut something from your design: PAL's and GAL's. Because our Classic parts give you a combination of speed, density and flexibility you won't find in other PLDs.

All of which helps you cut the time it takes to produce a superior design.

For example, our 20-pin, 8-macrocell EP330 is the perfect replacement for over 20 types of PALs and GALs. It stretches
counter frequencies to 125 MHz while sipping one-fourth the power of a standard PAL. And its quiet output switching circuitry allows the EP330 to run faster in-system than a 10 ns 16 V 8 .

Our 24-pin, 16-macrocell EP610 delivers 60\% more logic density than a 22 V 10 . And unlike a 22 V 10 , the 15 ns EP610 consumes a mere $20 \mu \mathrm{~A}$ in standby. And its registers

MORE THAN LOGIC DELAYS.

can be programmed for D-, T-, JK- or SR-operation or for asynchronous clocks.

To replace multiple PALs and GALs with a single chip, try our 44-pin EP910 or 68-pin EP1810. Both offer superior logic density and greater I/O at a lower cost than any other mid-range CMOS PLD.

Our Classic EPLD family also helps you get to market faster. Thanks to a host of powerful logic development tools from Altera and third parties.

What's more, we offer the industry's broadest, most flexible line of CMOS PLDs. With devices ranging from 20 to 100 pins, and logic densities from 8 to 192 macrocells, there's an EPLD for every logic design task.

for more information. And discover programmable logic that's a cut above the rest.

2610 Orchard Pkwy., San Jose, CA 95134-2020 (408) 984-2800/Fax: (408) 248-6924
\qquad

The IBM RISC System/ The power you've been seeking

It's a never-ending quest for power seekers. You're always looking for ways to run your favorite applications faster. Well, search no more. The RISC System $/ 6000^{\prime \prime}$ family of POWERstations and POWERservers gives you power that soars as high as 23 MFLOPS.

	MFLOPS	MIPS	SPECmark ${ }^{m}$
POWERstation 320	8.5	29.5	24.6
DECstation $5000-200$	3.7	24.2	18.5

When it comes to porting, your ship has come in. Of course, all the speed in the world wouldn't mean much without the applications you need. So the RISC System/6000 family
already has more than 2,500 of the most popular technical and commercial applications up, running and running fast. And if you think you know a good thing when you see it, so do software vendors. That's why you'll also be seeing more and more applications coming on board the RISC System/6000 platform all the time. And if you like to build your own solutions, there's a full arsenal of enablers and relational data bases from leading vendors, as well as CASE tools and a host of popular programming languages.

A smorgasbord of solutions. Applications already announced include the IBM engineering design packages CADAM," CAEDS", CBDS','

[^4]
6000 family. for all your applications.

CATIA" and AES. Also available are a broad spectrum of solutions from vendors like Valid Logic, MacNeal Schwendler, Swanson Analysis, SAS Institute, SPSS, Wavefront, Alias, Polygen, Cadence, Fluid Dynamics International, Western Atlas, ECL Petro and creare.X. Scientific and technical applications are available in areas like physics, structural analysis, chemistry, securities trading, mathematics, earth resources, operations research, visualization, graphics, technical publishing and more. There's also accounting software like FourGen and support for leading UNIX-based office automation packages. And there are key industry applications for businesses in medical groups, retail stores, newspapers, pharmacies and many more.

Command enormous processing clout.
The RISC System/ 6000 family is built to boost the performance of the software power seekers use most. It's got the best floating point processor in the business for numerically intensive applications, plus a new superscalar processor and incredible 3D graphics capabilities. To find out more, call your IBM marketing representative or IBM Business Partner. For literature, call 1800 IBM-6676, ext. 990.

How Many Times Do You Build Your Product?

Now EEsof Has the Answer

 to Faster Time-to-Market for Microwave and RF Product Design...
THE SOLUTION?

 EEsof SOFTWARWith today's emphasis on commercial applications, faster time-to-market is critical to insure profit. But the cut 'n try design of microwave and RF circuits can wipe out those profits before manufacturing
begins. And component tolerance and aging, process variation, and temperature effects can kill a product after it's gone to manufacturing. Not much to keep the boss happy.. EEsof's Design-forManufacturing software brings advanced CAE/CAD technology to high-frequency analog engineers and lets you optimize designs under realistic manufacturing conditions. Even difficult nonlinear designsamplifiers, mixers, and oscillators become straightforward. EEsof's system and circuit simulation programs, including Touchstone ${ }^{\circledR}$

Breaking the Barriers... EEлоf

OmniSys, ${ }^{\circledR}$ jOMEGA, ${ }^{\text {TM }}$ and Libra, ${ }^{\circledR}$ let you simulate and optimize manufacturing yield while accounting for component statistical variations.
Send today for your free copy of EEsof's "Solutions in Design for Manufacturing," and let us show you how to eliminate prototype rework and get your product through manufacturing
 faster. Call us at
(800) 624-8999, ext. 155.

Or if you prefer, contact us by FAX at (818) 889-4159.
In Europe, call
(49) 8105-24005 or

FAX (49) 8105-24000.

LOW-BIAS-CURRENT OP AMPS

Femtoamperes fuel multifarious functions

Op amps with minuscule input bias currents reside in a diversity of measuring instruments. In application, the main problem is channeling all, and only, sensor current to the op amp's input.

Brian Kerridge, European Editor

It doesn't take much to believe that amperes are flowing when you feel a component's warmth, or witness an occasional spark. But transport your mind to the femtoampere $\left(10^{-15} \mathrm{~A}\right)$ level, and it takes a lot more effort to imagine anything useful trickling along the wires.

Nonetheless, current at this level is lifeblood to the input of electrometergrade op amps. Elec-trometer-grade loosely describes that narrow class of op amps with input bias-currents (I_{B}) in the subpicoampere region. A narrow class it may be, but without these op amps, amplifiers capable of sensing teraohm source-resistance transducers, integrators with a 24 -hour time-constant, sample-and-hold amplifiers with $100 \mu \mathrm{~V} /$ sec drop, and log amplifiers with $180-\mathrm{dB}$ dynamic range, would be harder, if not impossible, to produce.

Translate these circuits into products such as gas detectors, hydrophones, glucometers (blood sugar measurement), and CAT scanners. Add to the list electrometer DMMs, pH meters, photodiode amplifiers, nuclear particle detectors, even airport luggage scanners, and you appreciate our dependence upon this special class of op amp.

As is often the case, the design of an op amp's input stage determines its key characteristics. In general, for optimum low-level performance, a bipolar-transis-

This CAT (computerized axial tomography) brain scanner uses Analog Devices' AD645 1.5-pA I_{B} op amp.

tor input stage is the best compromise. But where importance of I_{B} is paramount, junction FETs (JFETs) or MOSFETs are the op amp designer's automatic choice for input component. Compared with a bipolar transistor, an FET's higher-input offset voltage (V_{10}), $V_{10} T C$, and doubling of I_{B} for every $10^{\circ} \mathrm{C}$ temperature rise is part of the penalty of focusing solely on I_{B}.

Even so, FET gate input-current depends upon the geometry and the fabrication process, and designers must still make adjustments to reach subpicoampere levels. Many common CMOS inputstage op amps have picoampere I_{B} at room temperature and below. But over an operating temperature range as high as $70^{\circ} \mathrm{C}$ ambient, I_{B} enters the low nanoampere region, rendering the op amp useless for sensing even 1-G Ω source resistance sensors. Table 1 shows the few op amps with I_{B} no higher than 100 pA at $85^{\circ} \mathrm{C}$. Compare prices

TECHNOLOGY UPDATE

Low-bias-current op amps

carefully, because figures assume lower-cost plastic packages where available. Some vendors insist upon metal packages, claiming that they offer screening advantages and more consistent performance in the long run.

While I_{B} is the principal concern for the range of applications mentioned, as always, other parameters play a secondary role. Table 1 also shows input offset voltage $\mathrm{V}_{\mathrm{I} 0}, \mathrm{~V}_{\mathrm{I} 0}$ TC, and open-loop gain.

Choose FETs, FETs, or FETs

Both MOSFET and JFET input stages achieve low-level input current, but there are trade-offs with parameters other than I_{B}. MOSFETs can have the lowest input current, but generally show worse input voltage characteristics. MOSFETs are also more susceptible to transient damage without good protection, but protection
components induce more input leakage. Better process control with JFETs gives a significant edge to $\mathrm{V}_{\mathrm{I} 0}$, and its associated TC and noise figure. But this outcome doesn't mean all vendors automatically offer JFET inputs. A glance at Table 1 shows that approximately half of the vendors stick with MOSFETs. If you look further, you'll see as much as 10:1 difference in V_{IO} between JFET and MOSFET types. But note this ratio also tracks into the price column.

Whatever the choice of input FET type, op amp designers follow certain basic design principles. First, the smaller the dimensions of the FET, the lower the gate current. However, by indiscriminately reducing FET geometry, you eventually lose control of the voltagematch characteristics of the input pair, giving rise to high V_{10}, and poor voltage noise performance.

Clearly, a balance between voltage and current objectives achieves optimal results.

In this fine balancing, no amount of fiddling with geometry and process alters the significant TC of an FET's gate current. Gate current approximately doubles for every $10^{\circ} \mathrm{C}$ rise in ambient. The only way to ensure an acceptable input current at $85^{\circ} \mathrm{C}$ is to design for a low femtoampere figure at room temperature.
Second, to maintain low-gate current across the operating range of variable input and power supply voltages, a cascode (or bootstrapped), input-stage circuit is mandatory. Effectively, this means internal power rails to the input stage float and track with the op amp's input signal. The result is a minute change in input characteristics with varying input signal or external power supply, yielding common-

Table 1-Representative low-input bias-current op amps

Vendor	Model	Input type	Input bias-current (fA)	Input bias-current at $85^{\circ} \mathrm{C}$ (pA)	Input offset-voltage (mV)	Input offset-voltage vs temperature $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	Open-loop gain with 2-k Ω load (dB min)	Small-signal gain-bandwidth product (MHz typ)
Analog Devices	AD515AL	JFET ${ }^{1}$	75.0	4.8	1.0	25.0	148	1.0
	AD546K	JFET	500.0	74.0	1.0	20.0 typ	100	1.0
	AD549L	JFET	60.0	9.0	0.5	10.0	100	0.7
	AD645K	JFET	1.5 pA	96.0	0.25	5.0	120	2.0
Burr-Brown	OPA111B	JFET	1.0 pA	130.0	0.25	1.0	120	2.0
	OPA128L	JFET	75.0	3.3	0.5	5.0	110	1.0
	OPA602C	JFET	1.0 pA	100.0	0.25	2.0	92	6.5
Harris	CA5420A	MOSFET	1.0 pA	15.0	5.0	Not specified	80	0.5
National Semiconductor	LMC662AI	MOSFET	40.0	4.0	3.0	1.3 typ	105	1.4
	LMC6041AI	MOSFET	2.0 typ	4.0	3.0	1.3 typ	100	75 kHz
Precision Monolithics	OP-80E	MOSFET	250.0	15.0	1.5	Not specified	100	300 kHz
Teledyne Components	1346	JFET	1.0 pA	30.0	3.0	5.0 typ	106	2.0
	1702	Varactor	5.0	2.0 fA/ ${ }^{\circ} \mathrm{D}$	5.0	30.0	100	350 Hz

Notes: 1. JFET = junction FET
2. Maximum specifications at $25^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ supply shown unless otherwise stated.
3. Prices shown in order of availability, plastic, or metal.

TECHNOLOGY UPDATE

mode input-impedance figures of approximately 1000 teraohms $\left(10^{12} \Omega\right)$, in parallel with less than 1 pF .

Common IC fabrication processes, called junction isolated, result by default in a reverse-bias diode that appears between individual components and the IC substrate. For normal ICs, this large parasitic diode junction causes no ill effect. For low I_{B} op amps however, the reverse leakage through the diode is significant.
Burr-Brown uses a dielectric isolation step in the fabrication process of its JFET input op amps, which eliminates the diode. According to Bruce Trump, Burr-Brown's opamp product specialist, all of the company's low I_{B} op amps have dielectric isolation. Eliminating the diode-leakage element from the op amp's input current lets larger FET geometry yield voltage-characteristic improvements.

This PIN photodiode amplifier is one application for BurrBrown's 75-fA I_{B} and $500-\mu V V_{I O}$ OPA128. Using an HP 50824204 photodiode sensor and a feedback resistor of $10 \mathrm{G} \Omega$, the circuit's $V_{\text {OUT }}$ is $5 \mathrm{~V} / n W$.

Analog Devices uses a conventional junction-isolation process, but deals with leakage in the parasitic diode by using a pair of JFETs, each with two electrically isolated gates: The top gate handles the input from the outside world, while the back gate receives its drive from an internal bias network. The input current to the back gate contains the leakage-current element

of the parasitic diode, leaving the top gate with only its own input current. According to Jay Cormier, Product Marketing Manager with Analog Devices, the potential of the input FET's top and back gate track to within 30 mV over the operating supply voltage and temperature range. A second geometrically matched pair of dual-gate FETs model the operating point of the input FETs and develop a drive to bias the input-stage back gates. A further drop in I_{B} results from a top-gate junction area reduction to around $2000 \mu \mathrm{~m}^{2}$, in comparison with the back-gate area of more than $30,000 \mu \mathrm{~m}^{2}$.

Varactors win the day

While admiring process antics that achieve these unbelievably low currents, don't overlook what a bit of slightly older technology can do.
Teledyne's 1702 module op amp includes an example of a varactor-bridge-input stage for the ultimate in low $\mathrm{I}_{\mathrm{B}}-5 \mathrm{fA}$ at $25^{\circ} \mathrm{C}$, with a TC of $2 \mathrm{fA} /{ }^{\circ} \mathrm{C}$. This I_{B} effectively results from the leakage current of two reverse-bias diodes-the input varactor pair. The varactors form two arms of an ac capacitance bridge running at approximately 100 kHz . The input signal to the op amp causes a change in capacitance of one varactor diode, which unbalances the bridge. The conse-

Low-bias-current op amps

quent change in ac level from the bridge drives an ac amplifier, followed by a demodulator and de amplifier to produce the op amp's output signal. Compared with monolithic op amps, the module's design is complex and the gain-bandwidth product is only 350 Hz . But with a key specification an order of magnitude up on its nearest rival, there is plenty of life in this product, even at $\$ 309$.

According to Jim Fleming, Teledyne's Applications Manager, the product appeals mainly to medical researchers, hospitals, and medical instrumentation manufacturers. There is also a growing military interest with infra-red search-andtrack system integrators for use in test and calibration of circuits using monolithic, low- I_{B} op amps. Fleming points out that varactor inputs are particularly resistant to input overload abuse. The 1702 withstands inputs of $\pm 200 \mathrm{~V}$ commonmode max, and 100 V differentialmode typ.
By far the greatest problem designing with low- I_{B} op amps is ensuring that the op amp's input femtoamperes flow from the signal sensor and not from undefined sources elsewhere in the circuit. Without some very basic precautions, materials that you accept as insulators in normal circuits appear "leaky" to sensor- and op-amp-input impedances in the teraohm range. For example, a 15 V power rail leaking through a $100-\mathrm{G} \Omega$ insulator results in 150 fA ; you can see how easily stray leakage can swamp input bias current. By the same token, bear in mind settling time requirements, when just 1 pF with the same $100 \mathrm{G} \Omega$ results in a 0.1 -sec time constant.
Keithley Instruments Inc publishes a booklet (Ref 1) that, although out of date in a few areas, still contains a wealth of useful in-
formation on principles and techniques in making low level measurements. Bob Erdman, Director of New Business Development at Keithley and a veteran designer of femtoampere-level circuitry, offers advice to novice engineers: In the low current world, you must adopt a mode of thinking whereby you look at everything as a current source and forget that there is any such thing as an insulator. You must model every material item in your design as a resistor, capacitor, and current source in parallel. This includes your pc-board, sockets, and standoffs. Using an electrometer, you can characterize all these components.

You must conduct measurements with your circuit under a good grounded shield at all times. A good shield means a light-tight box (many components, such as diodes, are photo-sensitive). If you have a $1 / 16-\mathrm{in}$. hole in the shield to bring out wires, then waving your arms around will cause the circuit to re-
spond. You must clamp and shield the lead out.
Regarding pc-board material, Erdman considers normal glass epoxy adequate for currents in the 1to $10-\mathrm{pA}$ range. Below that figure, Teflon clover-leaf standoffs are good down to 10 fA . If you need to deal with even lower currents, say 10 attoamperes $\left(10^{-17} \mathrm{~A}\right)$, then you must consider sapphire standoffs.

Of all the problems, Erdman emphasizes effects that result from stress to materials. Teflon, in particular, generates current when stressed. For example, if you build a taught connection to a Teflon standoff into your circuit, don't be surprised if it generates 100 fA .

Low impedance diverts strays

The technique of guarding overcomes the main problem of channeling current from sensor to op amp, while deflecting all other sources of current. The method requires a low-impedance voltage source that faithfully tracks the magnitude of

For more information . . .

For more information on the op amps discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Analog Devices Inc

1 Technology Way
Norwood, MA 02062
(617) 329-4700

FAX (617) 326-8703
Circle No. 700

Burr-Brown Corp
Box 11400
Tuscon, AZ 85734
(602) 741-3980

FAX (602) 741-3895
Circle No. 701

Harris Semiconductor
Box 883
Melbourne, FL 32901
(407) 724-3919

FAX (407) 724-3111
Circle No. 702

Keithley Instruments Inc Precision Monolithics Inc 28775 Aurora Rd Box 58020 Cleveland, OH $44139 \quad$ Santa Clara, CA 95054 (216) 248-0400 FAX (216) 248-6168 FAX (408) 727-1550
Circle No. 703
FAX (408) 727-150
Circle No. 705

Teledyne Components
1300 Terra Bella Ave
Mountain View, CA 94043
(415) 968-9252

FAX (415) 967-1590
Circle No. 706
VOTE...
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 518 Medium Interest 519 Low Interest 520

Smash the Cache Barrier

IDT's 64 K BiCEMOS ${ }^{\text {mi }}$ TTL I/O Static RAMs are the ideal solution for high-density cache systems, and are the perfect match for optimizing the high-performance needs of RISC and CISC processors. These 8ns and 10ns SRAMs provide the highest system speed without sacrificing system chip count or increasing power consumption.

Smash the barrier to efficient cache operation at the highest clock speeds. Call today and ask for Kit Code 8041 for free samples of our new 16 K x 4 and $8 \mathrm{~K} \times 8$ TTL SRAMs.

35mips RISC COMPONENTS AND MODULES
R3000A, the most MIPS at any MHz. The R3051 integrates CPU, cache, and buffers on one chip. RISC modules, eval. boards, and software complement our family of mips"based RISC products. Your RISC solution is a phone call away!

4ns LOGIC: WORLD-CLASS SPEED
The industry leader. FCT-AT and FCT-CT CEMOS families achieve the fastest speeds with 40% less noise.
Everything you need for high-performance designs can be found in the Logic Data Book.

12ns 256K SRAMS

Fastest cache solutions for RISC and CISC
processors. More than 36 ultra-high-speed sub-micron SRAMs for 33 MHz processing and beyond. Read all about them in the SRAM Data Book.

Call today for your new IDT data books with complete technical specifications and application information.

When cost-effective performance counts.

Low-bias-current op amps

the input-signal voltage. This voltage source drives a conducting barrier that physically surrounds the input signal at all points along its path. The barrier may consist of tracks on a pc-board around the op amp's input pins, one of the screens of a coaxial or triaxial cable, or a metal enclosure. On the basis that with zero voltage between signal and guard, zero current flows into or out of the signal path. The guard barrier, being low impedance, also readily absorbs extraneous currents.

As well as reducing currentleakage effects, the guard minimizes the influence of stray capacitance on the signal path. Effectively, the low-impedance guard source, instead of the signal source, charges and discharges stray capacitances. A dramatic improvement in settling time arises, roughly in proportion to the ratio of signal source, to guard source impedance.

Other hazards exist that also confuse the femtoamperes in the op amp's input, which even perfect guarding cannot eliminate. These effects derive mainly from mechanical and electrochemical phenomena. Fig 1 shows a comparison of some of these phenomena and their magnitudes.

Movement of the sensor, measuring circuit, or the operator all cause minute changes in capacitance, which result in transient currents. Consequently, you must rigidly fix all parts of the measuring circuit.

Rigid cable for connecting sensors to circuits is not an appealing option. And, if you had thought about drawing a length of regular wire from that dusty reel in the corner of the lab, forget that too. Wire, insulated by low-cost plastic or polyvinyl chloride, is far too leaky for this application. PTFE (polytetrafluoroethylene)-insulated

Fig 1-Various phenomena generate low-current levels. (Fig courtesy Keithley Instruments)
coaxial cable is preferable, but it should be an internally graphitelubricated variety. The graphite lubrication in the outer braid reduces generation of charge as the cable flexes-a triboelectric effect.
Now having firmly bolted everything down, the next obstacle arises from microphones hidden in the measuring circuit. Vibration and shock to the insulation materials you have carefully chosen to protect the op amp's input current now produce error currents-a piezoelectric effect. Even favored Teflon insulators, ideal for lifting signals off the pc-board surface, become microphones at the femtoampere level. The only answer is to eliminate the origin of vibration.
You need to exercise equal care in the selection and handling of pcboards used for the measurement circuitry. Even if you decide upon PTFE material as an improvement over conventional glass-epoxy, cleanliness of the board is a critical factor. Remnants of manufacturing chemicals not only open a leakage path, but also develop tiny voltaic cells sufficient to drive up to 100 fA .

Where guard tracks run on the pc-board, and where a conformal coating of solder resist covers the board's surface, it is a good idea to expose the guard to air. This arrangement ensures that the guard barrier remains effective even in the presence of surface contaminants and humidity.

Reference

1. Keithley Instruments Inc, "Low level measurements," 1984.

Article Interest Quotient
(Circle One)
High 518 Medium 519 Low 520

Miraculous recovery.

Data Recovery Solutions

Do you believe in miracles? How about an ambitious family of data recovery devices that pushes performance skyward while keeping power demands in check? With locked-in accuracy.

Believe it. It's the pacesetting data recovery solution you expect from the experienced Silicon Systems design team.

Just name your application and we can match it. With multiple encoding/decoding schemes and $5-48 \mathrm{Mb} /$ s programmable data rates in a wide range of packaging options.

All meeting your need for design flexibility. And all featuring the enhanced windowcentering accuracy and sharp error control we achieve through our unique, patented phase-lock loop design.

Miraculous, but true.
To find out more on how our MSICs (Mixed Signal Integrated Circuits) data recovery story fits into your disk drive design plans, call us to receive our comprehensive Storage Products Data Book and literature package SPD-10.

We'll connect you with your nearest Silicon Systems representative and update you on our latest developments.
1-800-624-8999, ext. 151.
Circle No. 5 For Product Info.
Circle No. 6 For Career Info.
Silicon Systems, Inc.
14351 Myford Road, Tustin, CA 92680
Ph (714) 731-7110 Fax (714) 731-6925
European Hdq. U.K. Ph (44) 79-881-2331 Fax (44) 79-881-2117

SIEMENS

A concept of conversion: Modular ISDN bit rate adaption.

The best address for Siemens Semiconductors:

(A) Wien, Tel. (0222) 71711-5661 (AUs) Melbourne, Vic. 3121, Tel. (03) 4207111 (B) Bruxelles, Tel. (02) 536-2111 (BR) São Paulo-SP, Tel. (011) $833-2211$
(C0N) Mississauga L5T 1P2, Tel. (416) 564-1995 (CH) Zürich, Tel. (01) 495-3111 (D) Berlin 10, Tel. (030) 3993-0; Düsseldorf 1, Tel. (O211) $399-0$; Frankfurt 1,

If you switch to ISDN, bit rate adaption is one of the main issues. To move freely for economic made-to-measure solutions, we offer you the PSB 2110 ISDN Terminal Adapter Circuit (ITAC ${ }^{\ominus}$) - and a fascinating concept of modular bit rate adaption.
For one, the ITAC complies with established standards (X.30, V.110, ECMA102) when transmitting data from existing terminals (V.24, RS232, X.21bis) onto one of the

ISDN 64 kbit/s B-channels. Since it performs the framing in hardware, it is a very efficient adapter not in demand of any microprocessor support, while converting the data. Furthermore, the ITAC includes an UART controller and a HDLC controller, both required for V. 120 and DMI mode2 transmission standards. Based on these and other key components, we offer you optimised solutions for ISDN terminals: a terminal adapter for X. 21 and
V.-series interfaces, a PC-add-on card and a multifunctional terminal covering all ISDN applications. Can there be better reasons to convert to the modular bit rate adaption concept?

For details, call (800) 456-9229, or write Siemens Components, Inc., 2191 Laurelwood Road,
Santa Clara, CA 95054-1514.
Ask for literature package M12A011.
ITAC is a registered trademark of Siemens AG

Poof, they're gone. Bulky battery packs, slow hard disks and more. You see, where memory cards make sense, the new Intel 4MB Flash Memory Card provides a high-density, read/write, truly nonvolatile portable storage solution.

The real trick, of course, is that it allows you to store large amounts of code or accumulate data in a small, rugged card that uses less power than traditional memory technologies. So now you can design products that are faster, lighter, tougher and more energy efficient.

Not tomorrow, but today. Thanks to our System Developer's Kit. A DOS-compatible package that includes a 1MB Flash Memory Card, an add-in board as well as design information. In addition, it includes an evaluation copy of Microsoft's Flash File System software. All the stuff to get you started-now!

Plus, Intel's Flash Memory Card is the first to comply with the 68-pin PCMCIA/JEIDA standard. This allows the card and its data to be interchangeable between a host of

Actual Size.

With this simple card trick.

systems - from PCs to fax machines to bar-code readers.

The secret of the card's magic is Intel's ETOX ${ }^{\text {m II }}$ Flash technology - combining RAM, ROM and mass storage capabilities onto a solid-state, energyefficient medium. A technology so successful that volume continues to rise and prices continue to drop.

Want to know more about the secrets of this amazing technology? Then call (800) 548-4725 today and ask for Literature Packet \#C8A01. And start performing your own disappearing tricks.

No Matter What the Application, SBE Fits.

Matching your high-speed data communications requirements with a quality supplier has never been easier. Whether you're a manufacturer of mini/superminicomputers, workstations or high-performance data communications products, only SBE provides a perfect fit.

Only SBE offers a complete line of intelligent high-performance communications controllers for all major interface technologies: FDDI, Token Ring, Ethernet and High Speed Serial. Only SBE adds premium features, without a premium cost, for the best price/performance in the industry.

Add integrated hardware/software solutions; availability in VMEbus, Multibus and SBus; plus legendary development assistance and continuing product support.

Discover how SBE's intelligent high-performance controllers can meet your LAN and WAN interface requirements. Turn to SBE today.

For fast action, call: 1-800-347-COMM Germany: 0130-810588 United Kingdom: 0800-378-234

TECHNOLOGY UPDATE

CREDIT-CARD-SIZED MEMORIES

Small memories take on wider applications

Robust, credit-card-sized memory cards let you carry around a pocketful of nonvolatile data or programs. Backed by a new introduction and new standards, these memories may become more popular.

Charles H Small, Senior Editor

The idea of credit-card-sized memory cards isn't really new. But two trends are spreading the idea out from niche applications toward widespread use. First, the ICs such memories use-both volatile and non-volatile-continue to increase capacity, consume less power, and drop in price. For example, Sharp has a 32 M -bit masked ROM chip under development that will go into credit-card-sized memories nicely. Second, laptop computers promise to be a significant, high-volume application for these memories as a replacement for floppy disks.

Recently, a group of laptop-computer makers, memory-device vendors, and IC houses formed an association called the PC Memory Card International Association (PCMCIA). This group has endorsed a Japanese industry standard for use in laptop computers. Therefore, certain credit-card-sized memories and their supporting hardware and software will become an inexpensive design element that engineers can incorporate into a host of future products.

Not the only game in town
Note that other manufacturers already have non-PCMCIA credit-cardsized memories available for niche applications. For example, Dallas Semiconductor designed such a memory for security applications. The company rates its memories for 50,000 insertions and withdrawals-far more than the PCMCIA-spec cards can withstand. These memories have only five contact pins. The company forms the contact pins from an extra-thick layer of a proprietary alloy.

Mitsui offers credit-card-sized memories that have no contacts whatsoever. They feature serial access at 500 k bps and come in $8 \mathrm{k}, 32 \mathrm{k}$, or 128 k bytes of battery-backed or CMOS RAM. Prices start at $\$ 50$.
Schlumberger has shipped more than $50,000,000$ of its Smart Cards primarily in Europe. This series includes both $\mu \mathrm{P}$ equipped cards and memory-only cards. Most of the company's credit-card-sized memory cards hold only a few hundred bytes-a small multiple of the data that a magnetic-stripe card holds. Similarly, Datakey has security-oriented credit-card-sized memories that extend its line of electronic keys.
If present trends continue, expect

With capacities ranging from $8 k$ to $192 k$ bytes, Mitsubishi's EEPROM credit-card-sized memories withstand 10,000 erase/write cycles and meet the PCMCIA standard.

The Most Diverse Family In Memory.

A Complete Line Of 1-Meg SRAMs.

Call Sony first. The largest selection of 1-Meg SRAM assures you can find the high performance, highly reliable memory you're looking for with just one call, so why go on a safari?

Fast or slow. Hot or cold. Even your massive memory requirements are right here.

And we can ship the package styles most in demand for your new designs today - and tomorrow. Our new production facility in San Antonio, TX will build on the reputation for timely delivery that has made us a breed apart.
The Best Selection Of New SRAMs.
-40° to $+85^{\circ} \mathrm{c}, 3$ volts and X9.20 nsec

If your current designs incorporate the latest
technology, call us. Virtually every new idea in SRAM will be here at Sony first. And our U.S. design team (with their 0.8 \& 0.5 -micron CMOS technology) stands ready to get you the right product for your design; whether it's for a laptop or workstation.

Call Sony First.

We've got the product, backed by the Sony commitment to quality and service. And at competitive prices that make us the King of the SRAM Jungle.

Call today 714.229.4190 or 416.499.1414 in Canada. Or fax us your current requirements for a quick response from our technical staff 714.229 .4285 (fax) or 416.497.1774 (fax/Canada).

Sony Corporation of America, Component Products Company, 10833 Valley View St., Cypress, CA 90630 Sony Canada, 411 Gordon Baker Rd., Willowdale, Ontario M2H 256

[^5]
TECHNOLOGY UPDATE

Credit-card-sized memories

several industry-standard credit-card-sized memories to serve most applications. And, expect a gaggle of specialized devices for niche applications, such as security and ID cards.

Sticker shock

Right now, as is common for recently introduced electronics, the higher-capacity cards have prices that are orders of magnitude higher than the cost of their constituent parts. For example, Sharp's RAM ICs used in these memories sell for \$1/Mbit. Expect credit-card-sized memory prices to drop rapidly.

Mitsubishi has PCMCIA static RAM (SRAM) versions of these memories ranging from 128 k bytes to 2 M bytes. They also have dynamic RAMs (DRAMs) ranging from 512 k bytes to 3 M bytes, EEPROMs ranging from 8 k bytes to 192 k bytes, one-time programmable ROMs ranging from 128 k bytes to 2 M bytes, and masked ROMs ranging from 512k bytes to 8M bytes. Prices start at $\$ 80$ for

Although all other credit-card-sized memories have some number of contact pins, the Mitsui (Nippon) LSI card has no contacts.

128k bytes, $\$ 121$ for 256 k bytes, $\$ 208$ for 512 k bytes, $\$ 613$ for 1 M byte, and $\$ 1163$ for 2M bytes.

Shigma (Fujisoku of Japan) has a 1M-byte PCMCIA SRAM credit-card-sized memory that costs $\$ 100$
(1000). Intel, on the other hand, advocates credit-card-sized memories bearing flash memories. Intel cards have a 250 -nsec access time and block-erase times of one or two seconds. The 1M-byte cards cost $\$ 298$

For more information . . .

For more information on credit-card memories, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Dallas Semiconductor

 4401 S Beltwood PkwyDallas, TX 75244
(214) 450-0448

FAX (214) 450-0470
Circle No. 708

Databook

Tower Bldg
Terrace Hill
Ithaca, NY 14850
(607) 277-4817

Circle No. 709

Datakey

407 W Travelers Trail
Brunsville, MN 55337
(612) 890-6850

TELEX 290770
FAX (612) 890-2726
Circle No. 710

Intel Corp

Literature Packet \#A6P29
Box 58130
Santa Clara, CA 95052
Contact local office or
(800) 548-7275

Circle No. 711

Mitsubishi Electronics
America Inc
1050 E Arques Ave
Sunnyvale, CA 94086
(408) 730-5900

FAX (408)730-4972
Circle No. 712

Mitsui Comtek Corp
12980 Saratoga Ave
Saratoge, CA 95070
(408) 725-8525

FAX (408)725-8527
Circle No. 713

PCMCIA, John Reimer, Chairman c/o Fujitsu Microelectronics Inc 3545 N First St
San Jose, CA 95134
(408) 922-9390

FAX (408) 432-9030
Circle No. 714

Schlumberger Technologies
Smart Cards And Systems
825 B Greenbriar Circle
Chesapeake, VA 23320
(804) 523-2160

FAX (804) 523-2173
Circle No. 715

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one)
High Interest 470 Medium Interest 471 Low Interest 472

Credit-card-sized memories

(1000), and the 4 M -byte cards cost $\$ 1198$ (1000). Intel also has a flashmemory developer's kit for $\$ 500$. Databook can supply PCMCIA "disk drives" ranging from $\$ 89$ to $\$ 399$.

Credit-card-sized memories will supplant rotating memories in some applications. But don't count rotating memories out just yet. Like the glass CRT, reports of the imminent death of rotating memories have proven to be wrong. Every time solid-state memories have made a jump in capacity or executed a drop in price, rotating memories have responded with a doubling in capacity and a halving in size. Credit-cardsized memories will have their biggest impact in applications that rotating memories cannot serve, rather than driving rotating memories from their own turf.

Application areas

Credit-card-sized memories are also more expensive than rotating memories, and therefore not appropriate for all removable-memory applications. Right now, these memories have two possible applications: industrial and commercial.

Credit-card-sized memories are good in industrial applications because they are solid state, and therefore much more rugged and reliable than rotating memories. You could, for example, design credit-card-sized memories into vehicular, factory-floor, and highreliability medical applications.

For commercial applications the small size and low power consumption of credit-card-sized memories predominate. Consider laptop computers, for example. Low-power components need only a small battery. A smaller battery, in turn, permits a smaller, lighter computer. In addition to laptops, these memories should also prove useful for inventory loggers, calculators, and other small, computerized

Able to withstand 50,000 insertions and withdrawals, Dallas Semiconductor's proprietary 500 k -byte, nonvolatile-RAM Cybercard has five pins, compared to more than 60 for most other credit-card-sized memories.
implements. Indeed, the highestvolume existent application for PCMCIA cards is for Sharp's Wizard series of pocket-sized business computers.

Other than roughly similar outlines, the available and proposed credit-card-sized memories have little in common. They differ in the IC technology they employ, in their pinouts and other physical characteristics, and in their software structures.

Even within a given standard, variations exist. The PCMCIA standard is an umbrella that allows two card thicknesses: regular and pregnant. Pregnant cards contain UV-erasable PROMs and have a removable window cover so that you can erase the EPROMs. The standard also allows all common nonvolatile memory technologies: bat-tery-backed RAM, ROM, EPROM, EEPROM, and flash EEPROM. Each of these technologies mandate significantly different access times and methods for writing and erasing memory contents.

The PCMCIA standard further allows a variety of data formats. All these allowable, noncompatible variations arise from the fact that the PCMCIA members have differing requirements and also because some have existing formats and technologies that they do not care to change.

Applications can use the credit-card-sized memory in three ways.

One approach replaces a floppy disk with a credit-card-sized memory. This approach entails all the software overhead of a file-management system, such as device drivers.

Another approach is to simply use the credit-card-sized memory as a repository, or \log, of raw data. This approach requires only simple read/write routines. Third, you can run programs directly out of credit-card-sized memory space. This approach offers flexibility to simple factory-floor computers, such as industrial versions of the IBM PC, which now tend to have "hardwired" software dedicated to a single program.

Beyond the straightforward, com-mon-sense application for these memories, the cards' designers may have done, as engineers often do, something very important while trying to do something else. Running programs directly out of credit-card-sized memory space offers a solution to the problem of software piracy by thwarting the threat that centralized data bases pose to our civil liberties. Buttressed by appropriate new privacy laws, credit-card-sized memories could easily allow individual citizens to centralize and control others' access to private data.

Article Interest Quotient
 (Circle One)

High 470 Medium 471 Low 472

MONOLITHIC R/D CONVERTER LOWERS MOTION CONTROL COSTS

 that applies to your motion control design and DDC's breakthrough monolithic tracking Resolver (and LVDT) to Digital Converters - the RDC-19220 Series. Application specific features such as +5 V only operation, differential resolver and LVDT input modes, Built-In-Test, programmable resolution, tachometer quality velocity output, and high tracking rate crush competitive silicon to sand. DDC has tailored its features and pricing to your competitive needs.

The RDC-19220 Series offers single IC converters in small 40 pin DDIP, 28 pin DDIP, or 44 pin PLCC

The velocity output from the RDC19220 Series, which can be used to replace a tachometer, is a 4 V signal referenced to ground with a linearity of 0.75% of output voltage. With a single resistor, the user can set the full scale value of VEL.

The RDC-19220 Series offers an extremely versatile and rugged input signal front-end for electrically harsh environments. Differential signal inputs enable improved noise rejection and will accept either sinusoidal (resolver) or triangular (LVDT) waveforms in a carrier frequency range from dc to 40 kHz . The device is input transient proof to 100 V and is power-supply and signal turn-on sequence insensitive.

RDC-19220 Series converters are available with operating temperature ranges of 0° to $+70^{\circ} \mathrm{C},-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, and -55^{8} to $+125^{\circ} \mathrm{C}$, and military processing is available (consult factory).

Individual models are as follows: The RDC-19220 is in a 40 pin DIP package with differential inputs and $\pm 5 \mathrm{~V}$ power supplies; The RDC19221 is in a 28 pin DIP package with single-ended inputs and $\pm 5 \mathrm{~V}$ power supplies; The RDC-19222 is in a 44 pin PLCC package with differential inputs and +5 V or $\pm 5 \mathrm{~V}$ power supplies; The RDC-19223 is in a 40 pin DIP package with single-ended inputs and +5 V or $\pm 5 \mathrm{~V}$ power supplies.

Typical applications include motor control, radar antenna positioning, machine tool control, robotics, and process control.

Doesn't your new design deserve the RDC-19220?

For additional information, contact Mike Johnson at 1 -800-DDC1772, ext. 384.

[^6]
Surprisingly, it doesn't cost much to move into our 32-bit architecture.

You don't need a French
Provincial budget to move into the $1960^{\text {™ }} \mathrm{SA} / \mathrm{SB}$ processors. Not even close.
In fact, at under $\$ 20$, the i 960 SA/SB processors are comparable in cost to a 16 -bit system. And yet, with a full 32-bit internal architecture and a 16-bit data bus, they give you five to six times the performance of any other 16 -bit embedded processors.

Or in other words, for almost nothing down you can own an impressive new home. With an architecture that's perfect for today's more demanding applications, such as entrylevel page printers, I/O controllers, and communication products.

Naturally, when you move up to a 32-bit architecture, you want to be sure it's a place where you can stay and grow. Which is why you'll be happy to know that the i960 SA/SB processors

are part of a close-knit neighborhood of Intel SuperScalar i960 microprocessors. So you get software compatibility across the board as well as an easy performance path up to 100 MIPS.

And while great price/performance and compatibility are important, they're not the only reasons some very important companies have already moved into the i960 line. They were also impressed with the comprehensive array of development tools and the outstanding
technical support that made them feel right at home with the technology.

So when you are ready to move into the i960 SA/SB line, call 800-548-4725 and ask for the 960 Welcome Guide. We'll not only make the move less expensive, we'll even help you set up.

The next generation of IDC Interconnection: Same performance, one-half the size.

System 311 is the next generation of reliable high performance IDC mass termination systems from Thomas \& Betts, a pioneer in the development of IDC. A natural evolution, the new System 311 combines the finest capabilities of our proven Ansley ${ }^{\otimes}$ IDC System, downsized and precision engineered to terminate .025 pitch cable.
Performance-oriented features make System 311 the new standard in IDC fine pitch systems - a beryllium copper contact with a dual mating beam that provides greater than 100 grams normal force (150 KPSI Hertz Stress), a unique "coined-slot" IDC contact joint, one piece housing design,

7101

Contact-to-Conductor Relationship Thomas \& Betts' "coined-slot" contacts are designed to position the terminated conductors within a specified region for maximum conductivity and reliability.
and high performance materials are combined to ensure excellent system integrity and maximum reliability.
System 311 incorporates these customer-requested features into a compact interconnect system with board space savings of up to 50%.
From cable to connectors to application tooling, System 311 is designed to meet or exceed the most stringent customer requirements for fine pitch IDC mass termination.
For complete information or help with a specific application, call or fax: Thomas \& Betts Corporation, Electronics
Division, 200 Executive Center Drive, Greenville, S.C.,
Phone: 803-676-2900, Fax: 803-676-2991.
For the new System 311 Catalog call 800-344-4744.

> Thomas\&Betts

Power Revelation

Our Westcor division's family of configurable AC or DC input fan cooled StakPAC switchers reveals a new world of power density and output flexibility to the system designer...whatever your power needs. Each StakPAC is built with field proven robotically manufactured Vicor VI-200 Series power components providing you the flexibility of a customized supply combined with the off-the-shelf availability of standard catalog products..."first article" StakPACS are typically delivered in 2 weeks.
Compact, up to $6 \mathrm{~W} / \mathrm{in}^{3}$, low profile StakPACs set the standard for "box" or open frame switchers. Besides meeting conducted EMI standards, custom configured StakPACs are pre-approved to UL, CSA, TÜV and VDE safety standards (DC Mini- in process).

MODEL POWER OUTPUTS INPUT

StakPAC	$1,200 \mathrm{~W}$	up to 8	$110 / 220$ VAC	$3.2 \times 5.5 \times 11.5$
MINI	600 W	up to 5	110/220 VAC	$1.9 \times 5.5 \times 12.2$
DC MINI	800 W	up to 5	5 Ranges 18-76 VDC	$2.5 \times 4.3 \times 12.2$

Whether your application is OFF-LINE or DC INPUT, chances are we have a solution for you...we are designed into computer, telecom, and test measurement systems worldwide. Please call us to discuss your needs, then relax...bulky standards and risky long lead-time custom supplies belong to the past. Discover the new world of configurable supplies: StakPAC, MiniStakPAC and DC Mini.

Call VICOR EXPRESS for information and be sure to ask for a StakPAC or DC Mini Handbook: (800) 735-6200 or (508) 470-2900 at ext. 265. Or call Westcor (west coast) at (408) 395-7050.

Component Solutions For Your Power System

Compact, fast-sampling, $500-\mathrm{MHz}$ scopes talk to users in words and pictures

You might say that Tektronix intends its TDS series of compact, high-speed-sampling, 500MHz -bandwidth digital storage scopes to do for the instrument manufacturer what the K car (or maybe the minivan) did for Chrysler Corp. If you look at the scopes' combination of features and specs, you can legitimately call these products revolutionary - even though, with one possible exception, no single feature is a first. Considering their high performance and middle-of-the-road pricing, the scopes offer a good value. (A 2channel unit costs $\$ 9490$; a 4-channel unit costs $\$ 13,900$. Delivery takes six weeks ARO.)

The one feature that probably is unique in the $500-\mathrm{MHz}$ DSOs is the $10-\mu \mathrm{V}$ resolution. This spec requires a little explanation. These scopes have 8-bit ADCs. (Data on effective bits vs frequency is not yet available.) You can obtain the extreme resolution only if the scopes are placing no more than 1 M sample/sec in their waveform memories. In this case, real-time DSP (using the proprietary Tri-Star $\mu \mathrm{P}$ also used in the vendor's much higher priced DSA 601/602) increases the scopes' resolution to 12 bits and allows vertical-scale expansion.

The scopes achieve the resolution enhancement by sampling at high rates and creating a short-term average in real time. Only the average goes into waveform memory, so av-

An unusual, yet intuitive user interface based on both text and graphics distinguishes Tektronix's TDS series of digital scopes.
cies that change automatically as you change the sampling rate. The result is a minimum of aliasing problems. Unlike some competitive fastsampling DSOs, these scopes do not include output reconstruction filters. At the expense of bandwidth, such filters improve repeatability in displays of single-shot pulse edges.

The standard memory depth is 15 k samples/
eraging exacts no penalty in memory depth; at maximum sensitivity, it lets you clearly see $10-\mu \mathrm{V}$ signals.

Such high sensitivity is of interest mainly to people doing low-level analog design. Other features will interest a wider audience. The triggering is much like that on logic analyzers, allowing very complex sets of conditions to trigger a sweep. You can trigger on logical combinations of inputs, logical combinations qualified by a clock, undersized (runt) pulses, pulses whose width exceeds a minimum you set, and much more. The scopes perform waveform math and make 22 preprogrammed measurements. As you would expect, the scopes produce hard copy on graphics-capable printers, and they connect to computers and measurement systems via an IEEE-488.2 interface.

The fast DSP chip provides the quick response (also called "analog feel") of the company's DSA units. Lowpass input filters (which the company says lack sufficient attenuation to qualify them as true antialiasing filters) have corner frequen-
channel. An option ($\$ 1500$ on the 2-channel unit; $\$ 1950$ on the 4 channel unit) increases the memory depth to 50 k samples/channel. These products indicate an industry trend toward deep memory in wideband scopes. A competitor has been offering 50 k -sample waveform memory in such scopes for several years.

You probably noted that the description of the units as high-speed sampling scopes failed to mention a maximum sampling rate. The reason for the omission is the complexity of the spec. These scopes can increase their single-shot sampling rate on one channel by interleaving samples from an ADC they borrow from an unused channel. Some of the vendor's other high-performance scopes also operate this way. Each ADC converts at a maximum speed of 250 M samples/sec. Hence with one channel active, the 2 channel unit can take 500 M samples/sec, and the 4-channel unit can take 1 G sample/sec. When you view repetitive waveforms, the effective sampling rates are much higher.

Intuitive Tools For Mathematics

Theorist's equation outlining and manipulation process, and one of many customizable graphs.
Prescience (pronounced PRE-shence) brings you the complete mathematical solution for the Macintosh: Theorist and Expressionist. Theorist is the symbolic algebra and graphing program that is easy to use and powerful, but only requires one (1) megabyte of memory. You don't need to learn how to program, memorize syntax rules, or read a large manual since Theorist actually displays and interactively solves real equations on screen-step by step-the way you do on paper. 2-D and 3-D graphs, contour and density plots, solids, as well as animation files, are easily created and saved in PICT, EPS, or PICS formats for high quality output. Your equations can be exported to Expressionist, the leading equation editor, for typeset-quality results in your word processing and page layout documents. Both programs are simple enough for the student, yet powerful enough for the Our programs enable and presenting your information or to below. professional educator, scientist, and engineer. you to concentrate your time investigating work, not learning how to! For more place an order, call or write to the address
"[Expressionist] Equation manipulation has never been easier."

- Five mice review, MacUser magazine
"Theorist... surpasses the highly rated Mathematica... in interface and execution."
- MacUser magazine, Editors' Choice Award, Best Math/Statistics Program of 1989

Prescience Corporation
939 Howard Street \#111, San Francisco, CA 94103
(415) 543-2252 Fax (415) 882-0530

Another unusual feature is the user interface; its operation appears to be highly intuitive. A complete set of rotary controls is available, but you use only one set for all the vertical channels-even on the 4channel unit. (The 2 -channel unit will display two live waveforms and two computed waveforms.) Pushbuttons let you select which channel you are controlling. The monochrome CRT uses high-resolution raster technology and displays white on black.
There are rows of buttons along the right-hand and lower edges of the CRT. Often, making a menu choice involves pushing a button from each group, but there is no further nesting of menus. A combination of words and pictures describes many of the menu selections. Whenever icons appear, words always accompany them.
At the right side of the front panel, a calculator-sized numeric keypad permits quick entry of numeric values-for example, large offsets on the X and Y axes. If you don't know what numbers to enter, as is often the case, you can adjust the large rotary control just above the keypad until you reach the value you need.
Internally, most of the scope is on one densely packed pc board, on which are surface-mounted proprietary chips, multichip modules that contain other proprietary chips, and discrete components. Batterybacked CMOS RAM stores all trim values. A high-resolution DAC converts the stored values and sends the analog levels to S/H circuits. No mechanical adjustments at all are necessary for potentiometers or trimmer caps. The company claims that although trimming with multiple DACs of equivalent resolution would have done away with the S / H circuits, such a design approach would have been much more expen-sive.-Dan Strassberg
Tektronix Inc, Box 19638, Portland, OR 97219. Phone (800) 4262200.

Circle No. 730

CIRCLE NO. 49

Actual output

20 WATTS

Now

MIL-STD-2000
MIL-STD-810C MIL-S-901C MIL-STD-461C MIL-STD-704D NAVMAT GUIDELINES

Actual size

 \title{Actually meets
}
 \title{
Actually meets
}

PRODUCT UPDATE

Floating-point DSP chip runs at 60M flops and addresses 4 G words of data memory

There's little left to debate on the merits of floating- and fixed-point math DSP operations. Today there are many floating-point DSP chips that compete with fixed-point devices on price and performance. Now you can add Analog Devices to the list of companies that supply floating-point DSP chips. In midMay, the company introduced its ADSP-21020 at the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) in Toronto.
The DSP chip is available in two speed grades that operate at 15 MHz (\$195) or 20 MHz (\$265). Prices are for single chips. The 15 MHz chip's floating-point processor operates at a peak rate of 45 M flops, and the $20-\mathrm{MHz}$ part operates at 60 M flops. The company expects to supply a $25-\mathrm{MHz}$ version of the chip late in 1991. The floating-point processor operates with both 32 and 40 -bit floating-point values in the standard IEEE numeric format. The chip also operates on 32bit fixed-point values, and it can accumulate a result with as many as 80 bits. Because the DSP chip furnishes an ALU and a multiplier that are independent of one another, the chip can simultaneously execute an addition and a multiplication opera-tion-both of which are key to DSP operations. In comparison with other DSP chips, the $20-\mathrm{MHz}$ version of the chip performs a 1024point complex fast-Fourier transform (FFT) in 0.96 msec .
The company also uses a formula to compute the performance of the ADSP-21020 relative to a Texas Instruments TMS320C30-40 DSP chip. The relative "C30-equivalent" spec is given as " 80 C30 MFLOPS" for a 1024 -point complex FFT run

A processor and memory architecture crafted for use with high-level languages let C and Numerical-C compilers produce clean and efficient code for DSP operations in the ADSP21020 chip.
on each DSP chip. We urge caution in applying such benchmarks. After all, the performance of a variety of chips running FFT benchmark programs may not be applicable to all possible DSP tasks. In the end, how a given DSP chip operates depends to a great extent on your application, on the limits of your hardware and software, and on your development tools.

The ADSP-21020 employs a modified Harvard architecture in which the data memory stores data, and the program memory stores both instructions and data. Thus the chip can fetch information from its data memory, information from its program memory, and an instruction from its internal cache, all within a single cycle. Because circular buffers are frequently used in

CIRCLE NO. 52

12 BIT Programmable Pulse Generator

Features:

- 5 ns to 10 ns incremental steps
- Inverted \& non-inverted outputs
- Precise pulse width
- Rising-edge triggered
- 40 pins DIP package
- Low profile

Clifton, New Jersey • (201) 773-2299 • FAX (201) 773-9672

UPDATE

DSP operations such as filtering and running FFTs, the chip lets you implement circular buffers in its external memory. The device handles buffer-address wraparound-the point when the buffer pointer reaches its maximum value and must be reset to the buffer's starting address. Circular buffers aren't constrained to specific places in memory, but can start at any address and can be any length.

The chip's program memory can contain as many as 16 M words (16 bits per word), and its data memory can contain as many as 4 G words. For execution at a $20-\mathrm{MHz}$ clock frequency, you'll need DRAMs (dynamic RAMs) with $35-$ nsec access times for zero-wait-state operation of the processor. Wait states are programmable, and the chip supports page-mode DRAM addressing.

Besides the chip, the company supplies a variety of development hardware and software-as do third-party suppliers. The assembler, linker, and assembler package are available for $\$ 995$. The programs run on an IBM-compatible PC. For $\$ 500$ you can buy a development board that communicates with a host computer over serial I/O lines. The company is also supporting a superset of ANSI C, called Numerical C, which will offer additional vector and matrix operations as part of its language.

-Jon Titus

Analog Devices Inc, Literature Center, 70 Shawmut Rd, Canton, MA 02021. Phone (617) 329-4600. FAX (617) 329-1241.

Circle No. 733

Motorola Introduces a Real Turn-Off!

New integrated Power MOSFET turn-off devices. Each packs the switching power of four components into one tiny package.

It's here from Motorola-the MDC1000 Series, a new family of SMALLBLOCK ${ }^{m}$ MOSFET Turn-Off devices that simplify circuitry and component count and reduce circuit board real estate.

The MDC1000 Series provides an economical and space-saving method of turning off a Power MOSFET in tens of nanoseconds, while achieving a high level of circuit improvement by reduceing the component count of an active gate turn-off network for MOSFETs.
One tiny MDC1000 chip replaces a zener diode, a signal diode, a resistor, and a PNP transistor. The MOSFET Turn-Off quickly discharges the gate-source and gatedrain capacitances when the input signal is removed, and provides protection of the gate-source in the event of an overvoltage condition on the control line.
Motorolas MDC1000 devices can be used in most applications in which it is necessary to increase the turn-off speed of the

MOSFET gate, including PWM circuits in switchmode power supplies, DC-DC converters, brushless and brush motor controls, and horizontal output gain circuits.

The MDC1000 Series is packaged in the TO-92 (MDC1000A) for through-hole applications, and the SOT-23 (MDC1000B) for surface mount applications. The SOT-23 is rated at power dissipation of 200 mW , while the TO-92 is rated 550 mW .

Math software runs under MS Windows, handles symbolic math, and accesses handbooks

In many ways the mathematical software package, Mathcad V3.0, is a totally new product. It runs under MS Windows V3.0 and incorporates several features intended to further increase the software's usefulness.
The product's most noticeable feature is its "live-document" interface. Underlying that interface is the premise that engineers and scientists don't want to spend lots of time becoming experts on using the tools they employ to solve problems; they just want to get on with the problem solving.
Much of the other mathematical software targeted at the engineering and scientific communities requires you to study and practice extensively before you become competent enough to apply it successfully. On the other hand, spreadsheets, which are quite popular among engineers, let you get into problem solving quickly enough, but in significant ways are poorly suited to technical work. For example, once you've entered an equation into a spreadsheet, you are hard pressed to recognize it as the equation you know and love (or, perhaps, hate). Using Mathcad, the equations on the screen look the way you're used to seeing them.
You enter your problems in a free-form document in which you can place text and equations. If the solution of a problem is best described in the form of a 2-D or 3-D graph, the software can plot the graph and insert it in the document. If you define a variable at one point
and use it in equations elsewhere, as soon as you change the variable definition you can see the effect of the change throughout the document.

The new MS Windows-based version adds further embelishments. Although different users may argue about which of these added features is the most important, many users are likely to agree that the new version's ability to handle symbolic math is at the top of the list.

When categorizing mathematical software, the customary approach

Software's (Waterloo, ON Canada) Maple. Mathsoft has signed an agreement with Waterloo Maple to permit the use of Maple routines in Mathcad V3.0.

You don't get all of Maple in Mathcad, but what you do get should satisfy a large group of users' symbolic-solution needs. Although the symbolic solver springs to life at the touch of a mouse button, the integration of the numeric and symbolic capabilities is not totally seamless; you have to shift gears mentally when you change modes. Mathcad's design-
is to divide the packages into numeric and symbolic solvers. Numeric solvers can determine the roots of equations if you supply them with values for all the independent variables. They can even calculate families of solutions over a range of independent-variable values. What they can't do is express answers as equations that contain the independent variables in literal form. To perform the last function, you need a symbolic solver. One of the best known and most respected symbolic solvers is Waterloo Maple

Electronic handbooks in Mathcad V3.0 give you on-line access to a reference library of technical information.
ers claim that in their testing with users, attempts to force a seamless transition proved more confusing than helpful.

Another major feature of V3.0 is the on-line handbooks. The first of these contains such items as conversion factors and physical constants-for example, the densities of common solids and liquids. Future handbooks will contain much more data and will take advan-
 tage of Windows' hypertext capabilities to permit access to photographic images as well as the numbers, text, line drawings, and graphs of the initial handbook.
The third significant addition is the package's desktop-publishing capability. (Earlier versions produced documents that looked like the output of a scientific word processor.) The company is quick to point out that the new version is not a desktop publishing program. Anyone who buys it as such will quickly become frustrated by the

CIRCLE NO. 55

> WHEN IT COMES TO HIGH ACCURACY CRYSTAL UNITS, ONIV RALITRON HAS IT ALL.

RALTRON manufactures one of the industry's most complete lines of high quality crystal units. Call us for all your crystal needs from microprocessor to AT strip to tuning fork to high accuracy. Or call us for our 28 page catalogue.

HIEH ACCURACY CRYSTAL UNITS

- Frequency Range: $1.0 \mathrm{MHz}-360 \mathrm{MHz}$
- Mode of Oscillation: Fundamental to 9th O.T.
- Frequency Tolerance: @ $25^{\circ} \mathrm{C}: \pm 2.5 \mathrm{ppm}$ to $\pm 100 \mathrm{ppm}$
- Frequency Stability: $\pm 3 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ to
$\pm 50 \mathrm{ppm}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$

SURFACE MOUNT CRYSTAL UNITS HC-45/U SMD, TT SMD, HC-49S SMD

- Frequency Range: $3.5 \mathrm{MHz}-360 \mathrm{MHz}$
- Mode of Oscillation: Fundamental to 9th O.T.
- Frequency Tolerance: @ $25^{\circ} \mathrm{C}: \pm 2.5 \mathrm{ppm}$ to $\pm 100 \mathrm{ppm}$
- Frequency Stability: $\pm 3 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ to $\pm 100 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

The Products. The Prices. The People. Only RALTRON has it all.
RALITRON EIECTRONICS CORP.
2315 NW 107th Avenue, Miami, Florida 33172 FAX (305) 594-3973 TELEX 441588 RALSENUI (305) 593-6033

UPDATE

absence of such features as indexing and footnoting. However, there are enough desktop-publishing features to permit engineers to turn out very attractive reports.
Enough questions have been asked about the operating speed of MS Windows-based products to warrant inquiries about speed each time a Windows-based productivity tool makes it debut. If you run V3.0 and its predecessor on equivalent hardware, and you time the operations, some will be faster and others will be slower. Overall, though, your impression of the new version is likely to be that it is faster, because the operations you focus on, such as graph plotting, are faster.

V3.0's added capabilities exact a price in system requirements. Although the new version does not require all of the following hardware, the company does recommend it, and you'll need most of it to run Windows 3.0 acceptably. The items consist of an 80386SX-based PC with 4M bytes of RAM; a display that conforms to the IBM enhanced-graphics-adapter or video-graphicsarray standards (monochrome will do); a numeric coprocessor; a mouse; and a hard disk with 6M to 7M bytes of free space.
The new version can read files created with earlier versions, but these versions cannot load documents produced by V3.0. For users whose hardware does not support V3.0, the company will continue to supply the prior version, V2.5 as well as a version for the Apple Macintosh. Both IBM versions list for $\$ 495$; an upgrade from V2.5 to V3.0 costs \$149 (\$99 until June 30, 1991).—Dan Strassberg

Mathsoft Inc, 201 Broadway, Cambridge, MA 02139. Phone (617) 577-1017. FAX (617) 577-8829.

Circle No. 732

Faster.

In the disk drive market, you've got to be fast -in both performance and time-to-market. That's why seven of the top 10 disk manufacturers rely on Analog Devices for mixedsignal components.

Tap into 25 years of experience at our high-speed and mixedsignal design seminars. You'll learn new techniques that'll get your applications to work more quickly, and you'll get design manuals that put all this information right at your fingertips.

delivery-it's our goal and at 97\% we're getting close, thanks to our continuous improvement process based on Total Quality Management. Over 150 TQM teams make the customer and quality improvement the focus of our entire organization. A focus that gets translated into not just catchy slogans, but real action.

Our Spectrum CAD Tool is $\mathbf{1 0 0}$ times faster than traditional SPICE programs, so it makes quick work of mixed-signal ASIC design cycle time.

Today, Analog Devices offers more high-performance mixed-signal components than anyone else. And we get them to you fast. So if you want mixed-signal ICs that'll help you design faster performing products, from a company that'll help you get your product to market faster, call us at 1-800-262-5643.

AD9060 \& AD671 - The fastest 10-bit and 12 -bit monolithic A/D converters, respectively. The AD9060 guarantees encode rates up to 75 MSPS for unparalleled dynamic performance. The AD671 is twice as fast as any other 12-bit monolithic, converting in under $0.5 \mu \mathrm{~s}$, thanks to our high-speed mixed-signal ABCMOS process.

AD9712 - The only $\mathbf{1 2 - b i t}, 100 \mathbf{M H z}$ D/A converter on the market. Ideal for high-speed video and direct digital synthesis, its low glitch and low harmonics combine to deliver a spectrally pure output waveform.

ADSP-2101 - Talk about fast-this DSP microcomputer executes a 1024point FFT in only $\mathbf{2 . 2 6}$ ms. That's faster than other DSPs that operate at almost twice the clock rate. And since our entire ADSP-2100 family is code compatible, your code will run fast on all of our DSPs.

Data-acquisition software uses icons and menus to get your job up and running fast

The folks at Keithley/Asyst Software aver that with Easyest LX, acquiring, manipulating, and displaying data with the aid of an IBM PC or compatible will never be the same. A demonstration of the software suggests that they aren't exaggerating.

If you're skeptical about icons and scoff at packages that base their human interfaces on scores of the tiny pictures, you may be inclined to poke fun at this software. But before you laugh too loudly, take a closer look. The designers of this software have blended images with words in a way that leads you to your objective with a minimum of pain. Each time you position the mouse on an icon, the name of the function it represents appears at the lower-right corner of the screen. If you click a mouse button, a longer description of the function appears in the center of the screen.

You select all of the program's functions by clicking on icons. The icons appear in several columns along the sides of the screen and in a row across the bottom. Except in the runtime mode described below, all of the icons are visible all of the time. The center of the screen is available for displaying data and messages and for displaying and editing procedures you create. The package has extensive graphing capabilities. It can create 2D- and 3-D graphs of several types from acquired data. Its data-manipulation functions include FFTs.

Although the software runs in an interactive mode, you can also use it to generate programs that mechanize complex or repetitive procedures. Several packages that do away with conventional text-based

This waterfall plot allows users of Keithley/Asyst's Easyest LX software to compare data captured by using several channels of an IBM PC-based data-acquisition board.
programming replace it with a process of connecting icons to form block diagrams on the screen. This package frees you from the need to create such diagrams. It automates program generation by recording keystrokes and mouse clicks. However, unlike most programs that record keystrokes, the package doesn't reproduce procedures by simply playing back what you typed in. Instead, the software generates an ASCII file from the keystrokes and then compiles the file.

A benefit of this approach is that, unlike strings of keystrokes, the ASCII files are easily readable; they contain mnemonic versions of the commands. The program lets you read the files in three ways. The View function displays a short version; the only editing available in View is deletion of commands. The Edit function displays a version
of the file in which all commands are fully expanded to show arguments. In Edit, you can make any changes you like. You can also view the file as a flowchart. Even if you don't think in flowchart terms, seeing your procedure displayed in this graphical form can simplify debugging. Moreover, the flowcharts provide reassuring evidence to nonprogrammers that, even without training, they can write programs.

In addition to its interactive and normal-execution modes, the package has a runtime procedure-execution mode. In this mode, a user need not even be aware of the package's presence. (You can set up the runtime mode to make all of the package's usual menus and prompts disappear.) Currently, however, there is no separate runtime-only version of the package. To invoke the runtime mode, the entire pack-

Picture this - a PC monitor that offers the same color and clarity as a high-end engineering workstation costing as much as $\mathbf{2 0}$ times more. Our pin-compatible RAM-DAC is literally redefining the low end of the PC monitor market.

Marball. Original image courtesy of University of California, Davis.

After analyzing semiconductor suppliers, many of the leading oscilloscope and spectrum analyzer manufacturers chose Analog Devices for their mixed-signal components. One reason is our ability to deliver high performance at high levels of integration - for example, our AD640, which replaces a chain of discrete log-amps for higher accuracy.

With our motion control ICs, several major aircraft companies are staying right on course. High reliability and accuracy are hallmarks of our 2S80, AD598 and the rest of our nearly $\mathbf{4 0 0}$ defense-qualified products.

Today, Analog Devices offers a better line of high-performance mixedsignal components than anyone else. And no one has a better record for reliability, or more experience in analog, DSP and mixed-signal ICs. If you want mixed-signal components thatll help you design better products, the best thing to do is to call us at $1-800-262-5643$.

ADSP-2111 - Better integration on the best architecture in the industry. Adds an 8/16-bit host port to the two serial ports, timer, hardware companding and memory already on the ADSP-2101. And like all our DSPs, it's got fast, flexible arithmetic, wide dynamic range and a single cycle fetch of two operands (on- or offchip). Plus it's code-compatible with the rest of our DSP family, so what's written today will be useful tomorrow.

ADV7141-Our new Continuous Edge Graphics ${ }^{\text {™ }}$ RAM-DAC gives users of standard low-end color monitors better graphics on their PCs. Graphics that are virtually the same as those produced on expensive engineering and scientific workstations. It does this by eliminating jagged edges, providing photo-realistic colors and shading, and displaying text comparable to a 300-dpi laser printer.

AD75028-This custom ASIC passes the test for a top automatic test equipment manufacturer. Serving the function of 21 separate $\mathbf{1 2}$ - and 8 -bit D/A converters and providing on-chip static RAM, it also has seven channels of level setting (other monolithics only have four), and can automatically remove gain and offset errors.

- 100\% IBM-AT Compatible STD BuS Industrial Computer
- Fast $10,12,16$ or 20 MHz 80286 CPU
- Phoenix Bios
- 20, 40, 100 Mbyte 27 ms Hard Disk
- VGA, EGA, CGA, MDA Color Graphics
- Industry Standard IEEE 961 STD Bus
- Compact, Rugged, Industrial Packaging

The STD-AT ${ }^{\text {TM }}$ is the first 80286 IBM-AT compatible STD Bus computer offering over 18 times the performance over a standard XT. The compact $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ STD Bus card size makes it ideal for mounting in disguised and embedded controllers in a wide variety of industrial and commercial applications. The STD-AT is the blending of proven hardware and software standards to provide the most rugged, compatible, cost effective industrial solutions.

WRITE OR CALL FOR A FREE STD-AT BROCHURE
P.0. Box 121361, Arlington, TX 76012 Phone (817) 274-7553 Fax (817) 548-1358

Wimsystems "THE STD BUS AUTHORITY"M

CIRCLE NO. 59

(305) 587-0450 1601 NW 38 th Ave, Ft. Lauderdale, FL 33311 CIRCLE NO. 60
age must be installed on a user's PC.
Asyst Software has long been an advocate of standardizing the command structure of IBM PC-based data-acquisition boards. So far, the results of the standardization effort have been mixed. But a notable result is a manual that describes how to write drivers for the boards to make them compatible with the firm's data-acquisition software.

Because the package complies with all of the company's rules of its older software, it can use the large library of drivers already written for the firm's older software. Thus, the LX version is compatible with scores of boards. Moreover, the package can import ASCII data files, so you can use it to process and display data acquired elsewhere. It can also import graphic files in .PCX format. This capability can let you display a picture of a pe board on which a technician is to make measurements. On the picture, you can indicate where the technician is supposed to place the test probes, and you can superimpose the measurement results at those points.
Easyest LX even runs on IBM PC-compatible computers whose CPU chip is an 8088. Main memory of 640 k bytes and expanded memory (or extended memory configured as expanded memory) of 1 M bytes is required, as is a mouse, a numeric coprocessor, and a display that supports the IBM EGA or VGA standards. Monochrome displays must allow the use of a gray scale to represent colors. The package is available now. In single quantities, it costs $\$ 1295$. Owners of the original version of Easyest can upgrade for $\$ 530$.-Dan Strassberg

Keithley/Asyst Software, 100 Corporate Woods, Rochester, NY 14623. Phone (800) 348-0033; in NY, (716) 272-0070. FAX (716) 2720073.

Circle No. 731

Cheaper:

less money, and make
it work better-that's the only way to survive in consumer electronics, the most competitive market there is. That's why three of the top five Japanese electronics firms rely on us to meet their mixedsignal needs in applications ranging from CD players to video cameras.

We're far from your local component boutique. Over half of our $\mathbf{\$ 5 4 0}$ million in revenues comes from international sales. And with manufacturing and stocking facilities on just about every continent, getting products to you quickly is a snap. Plus multiple manufacturing facilities allow us to take advantage of the right talent and processes for the job at hand.

With billions of dollars in annual sales at stake, the video game market is anything but child's play. One leader in this market found that with our DSP they could create more realistic and interactive games. As a result, they're driving away with a bigger share of the market.

Today, Analog Devices offers more cost-effective solutions to your highperformance mixed-signal needs than anyone else. Solutions that are surprisingly affordable, whether they're available off the shelf or developed for a specific application. To find out more about how we can help you develop products more efficiently, or for a free copy of our recent Mixed-Signal Technology white paper, call us at 1-800-262-5643.

ANALOG DEVICES

We developed LoNWORKS technology. What you do with it is your business.

Spend a day in a free LONWORKs" seminar and we'll change the way you develop products forever.
You'll learn about the technology that uses the latest computer, semiconductor and networking advances to add control and communication capabilities to your products. Quickly and inexpensively.

You'll see the heart of LonWorks, the Neuron* ${ }^{\text {CHIP. Small enough to fit into any product, smart enough to control and respond }}$ to other devices, flexible enough to communicate over standard media, and inexpensive enough that everyone can afford it.

You'll discover how easy it is to program and link Neuron Chips into virtually invisible networks of intelligent devices.
How our LonTALK'm protocol communicates over powerlines, twisted pair, radio waves, and other common media.
How our LonBuilderw' Developer's Workbench helps you design LonWorks networks into your products. How to connect products into smart systems. And how to connect systems into interoperating LonWorks environments as large as a building, a home or a factory. All in less time and for less money than it takes to develop your own protocols and tools.

So call I-800-258-4LON for reservations. And learn about the new technology that will help you improve your products. And your business.

Modular Computers ${ }^{\circledR}$

LE

POWERFUL FAMILY OF 16/32-BIT CMOS CPUs

Prodict	CPLIFPCP	$\left\|\begin{array}{c} \text { Mils } \\ (\mathrm{Maxi} \end{array}\right\|$	$\begin{aligned} & \text { SPEFD } \\ & (\mathrm{MHL}) \end{aligned}$	$\begin{aligned} & \text { chos: } \\ & \text { Riv } \\ & \text { (Mibye) } \end{aligned}$	$\begin{aligned} & \text { RiM } \\ & \text { Bach-up } \\ & \text { Sourte } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ROM } \\ & \text { (MB) } \end{aligned}$	$\begin{gathered} \text { RICY } \\ \text { Whatch- } \\ \text { dog } \\ \hline \end{gathered}$	$\begin{gathered} \text { Serial } \\ 1 / 0 \end{gathered}$	Mise. Peatures	$\begin{aligned} & \text { Power } \\ & \text { Cons } \\ & \text { (Watts) } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Mix } \\ \text { Temp. } \\ \text { (C) } \\ \hline \end{array}$
V M40	68040	20	50	$\begin{gathered} 4 / 8 / 16 / 32 \mid \\ \text { DRAM } \end{gathered}$	Ext.	1	3	2	$\begin{aligned} & \text { EEPROM } \\ & \text { LXB } \end{aligned}$	5-8	$\left\lvert\, \begin{gathered} -40 \text { to } \\ +85 \end{gathered}\right.$
VM120	68020/68882	4	16/25	$\begin{aligned} & \text { 1/2/4/8 } \\ & \text { DRAM } \end{aligned}$	Ext.	2	-	2		4-6	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$
$\begin{aligned} & \text { VYPY } \\ & \text { 68KD } \end{aligned}$	68030/68882	6	16/25	$\begin{aligned} & 0.5-3 \\ & \text { SRAM } \end{aligned}$	Ext. or Battery	0.5)	2		10-12	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$
$\begin{aligned} & \text { VMPM } \\ & \text { 68KC-2 } \end{aligned}$	68020/68882	4	12/16/25	$\begin{aligned} & 0.5-3 \\ & \text { SRAM } \end{aligned}$	Ext. or Battery	0,5	0	2		9-11	$\begin{array}{\|l} -55 \\ \text { to } \\ +125 \end{array}$
VSBC-1	68HC000	1	12/16	$\begin{aligned} & 0.1-1 \\ & \text { SRAM } \end{aligned}$	Ext. or Battery	0,5	3	2	SCSI	4	$\begin{gathered} -40 \text { to } \\ +85 \end{gathered}$
VSBC-2	68HC000	1	16	$\begin{gathered} 0.1-1 \\ \text { SRAM } \end{gathered}$	Ext. or Batter:	1	0	6		2	$\left\lvert\, \begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}\right.$
VSBC-3	68HC000	1	16	$\begin{aligned} & 0.1-1 \\ & \text { SRAM } \end{aligned}$	Ext. or Battery	1	\bigcirc	4	$20 \times$ TTL	3	$\left\lvert\, \begin{array}{ll} -55 \text { to } \\ +125 \end{array}\right.$

High Performance Controllers

ћ ETHERNET/CHEAPERNET IEEE 802.3.w TCP/IP \star TELNET/FTP
\star X.25, X. $21 \star$ Mil 1553B \star BITBUS \star SCSI \star GRAPHICS
$\star 2$ Axis MOTION CONTROLLER \star STEPPER MOTOR INTERFACE

Industrial I/OS

\star ISOLATEDDIGITALI/OS \star RELAYS \star SERIALI/O * 12/14/16-BIT A/D,D/A \star SIGNALCONDITIONING \star PT100/J/K TEMP. SENSORS
\star ENCODER/COUNTER \star PLUGGABLE-SCREW TERMINALS

in
 VMI

PlC LaNGUAGES

* IEC 848 GRAFCET \star Ladder Diagram \star Function Plan
\star Graphics Editor \star Window Debugging
\star Project Management \star On-line Documentation

PEP Modular Computers Inc.
600 North Bell Avenue
Pittsburgh, PA 15106
Tel: ++1 (412) 2796661
Fax: ++1 (412) 2796860
Call tollfree:
(outside PA) 1-800-228-17 37
(inside PA) 1-800-255-17 37
\star Germany \star Kaufbeuren Call ++49 (83 41) 43020
\star France \star Sèvres Call ++33 (1) 45346060

* Sweden \star Täby Call ++46 (8) 7567260
\star Benelux \star Brussels Call ++32 (2) 4783416
* UK \star Brighton Call ++44 (273) 423915
DER
SHE Single Height Systems
Simporta SERVICES

Tocity

421030015

Futurebus + . Now you can start your design without waiting for the future.

Putting the standard to work today.
National has long been the industry leader in BTL and mixed analog + digital technology. Now we've drawn on that heritage to make the most highly integrated Futurebus + ICs available today. We've also put together a full range of development tools to help you put that chipset to work. And the entire package is available now.

Making high-speed buses
reliable and affordable.
With our new chipset, Futurebus + gives you more bandwidth for your money, making it-for the first timefully cost-competitive withVME and Multibus. In addition to an Arbitration Controller, our chipset contains four advanced BTL devices: two 9-bit Data Transceivers (latched and unlatched), a Handshake Transceiver, and an Arbitration Transceiver.

Between them, they offer you a variety of features designed to break the throughput bottleneck in high-performance computer systems:

Multibus is a registered trademark of Intel Corporation. Verilog is a registered trademark of Cadence Design Systems, Inc. © 1991 National Semiconductor Corporation

- Glitch filters (to eliminate wire OR-ing effects)
- Filtered and non-filtered receiver outputs
- Efficiently partitioned arbitration logic (the fastest available)
- Fault-tolerant circuitry
- Live-insertion support

Providing a broad range of development tools.

Start with our Designer's
Handbook, with a slave-memoryboard application note, product data sheets, and application notes on BTL design technology. Other tools include wire-wrap
boards from Mupac and Hybricon, Spice models, and Verilog ${ }^{\text {® }}$ behavioral models.

Bringing Futurebus + into the present.

Call us at 1-800-NAT-SEMI, Ext. 127. We'll send you a Designer's Handbook, and you can start your Futurebus + design today.

Because there's nothing left to wait for.

Source: Electronics Purchasing Magazine's survey of buyers.

Two new ways for you to make sensitive LCZ measurements. Even if you're sensitive about price.

Keithley has found a way to fit accuracy and value into the same LCZ meter. In fact, we've found a couple of ways.

Introducing the affordable Keithley LCZ meters: a benchtop Model 3321 and a multifeatured Model 3322. Both deliver 0.1\% basic accuracy, 4-1/2-digit resolution, automatic setting of function and equivalent circuits, multiple test frequencies, and more.

The 3322 adds binning and deviation capabilities, plus other value features.
Now, make reliable measurements with ease. Obtain more accurate test results. And, have some money left in the budget - maybe for some Keithley test fixtures?
Looking for a meter to make sensitive AC measurements? Talk to a manufacturer that's also sensitive about price. Call
Keithley Instruments at 1-800-552-1115.

Remember when. . .

There were no lights in Wrigley Field?

Eight megabytes of RAM was only $\$ 320,000$?

Take a stroll with NEC

down Memory Lane.

Abstract

1893 Grover Cleveland sworn in as president. William Wrigley, Jr. introduces Juicy Fruit and Spearmint gum at $5 \$$ a pack, its price for the next 78 years.

1916 Wrigley buys Chicago Cubs.
1971 Wrigley's son Philip grudgingly increases price of gum to 74 a pack.

1975 Chewing gum is 15 ¢ a pack. Eight megabytes of RAM is $\$ 320,000$. 1 K DRAMs are $\$ 5$.

1985 NEC introduces made-in-America 256K DRAMs.

1988 Lights go on in Wrigley Field (8/8/88). NEC 1-megabyte SIMMs retail for $\$ 400$. Chewing gum is a quarter.

1989 NEC ships 4-megabit DRAMs in high volume.

1990 NEC 1-megabyte memory modules (SIMMs) begin the year at less than $\$ 100$. George Bush throws out first ball. NEC samples 60 -nanosecond 4-megabit DRAMs in 300-mil SOJ packages.

1993 U.S. president sworn in. NEC ships 16-megabit DRAMs from its Roseville, California, submicron line. Cubs win World Series.

If the price of chewing gum had dropped as fast as memory prices, you could buy 667 packs for a quarter.

For the latest information on NEC SIMMs and 4-megabit DRAMs in 300-mil SOJ packages, remember to call NEC.

EDN SPECIAL REPORT

Special-feature SRAMs

John Gallant, Associate Editor

Maintaining zero-wait-state memory performance for $33-$ and $40-\mathrm{MHz} \mu \mathrm{Ps}$ can exceed a system designer's pain threshold. At such high speeds, designs employing standard static RAMs (SRAMs) and external glue logic suffer from interface problems. Time delays caused by latch propagation, package-lead inductance, pin capacitance, and pc-board trace lengths can force designers to use very expensive, fast-access SRAM to make up for lost time. The added burden of timing skews and uncertainties associated with the logic transition of control signals may bring a designer to conclude that, based on worst-case timing analysis, problems associated with zero-waitstate performance are insurmountable.

Fortunately, SRAM vendors are aware of the system designer's plight. Although vendors are constantly pushing the leading edge of IC lithography to produce faster, bigger, and wider SRAM cells, they are also implementing key architectural innovations to ease SRAM chip interface problems. SRAM vendors are incorporating glue-logic and system functions into SRAM architectures to take some of the heat off systems designers.

One notable architectural innovation combatting time delays is the absorption of address and data latches onto the SRAM chip. For example, modern CISC and RISC CPUs require an address latch between the CPU and the system's cache data RAM.

> Each successive SRAM generation must be faster, denser, and wider to keep pace with the latest CPU speeds and architectures. But when SRAMs seem to be losing ground, innovative SRAM architectures are often the means by which memory subsystems stay in the running with today's μ Ps.

Most $16-\mathrm{MHz}$ and $20-\mathrm{MHz}$ designs employ a fast external 373-type transparent latch, which has an enable-tolatch delay of 5 to 10 nsec . However, a $33-\mathrm{MHz} 80386$ $\mu \mathrm{P}$, which performs a nonpipelined read in 60 nsec , requires a fast-access SRAM for a cache data RAM. The search time for a tag-RAM match, before the cache controller enables the latch, is typically 20 nsec for Intel's 82385 cache controller, and the read setup time for the 80386 is 5 nsec. Therefore, the latch's enable time plus the RAM's access time must be less than 35 nsec. Additional circuit time delays and timing skews force the designer to use an SRAM that has a 20 -nsec access time when employing an external latch.

The AT\&T and Cypress 7C183 and 7C184 SRAMs absorb the transparent address latch onto the chip. Consequently, the latchenable times are reduced to 1 to 2 nsec. Because the SRAMs match the timing requirements of Intel's 82385 controller, they have read and write cycle times as low as 25 nsec. The 25 -nsec latch-enable/RAMaccess time yields an adequate margin for a $33-\mathrm{MHz}$ design. Micron Technologies' MT56C0816 and Quality Semiconductor's QS88xx SRAMs contain on-chip transparent address latches optimized for use with the 82385 cache controller and the $80386 \mu \mathrm{P}$. Both CMOS families of SRAMs have members that can work with $25-, 33$-, and $40-\mathrm{MHz}$ designs.

You can organize the memory cells for these CMOS

Standard 16- and $20-\mathrm{MHz}-$ style designs that employ traditional SRAMs and external glue logic cause interface problems at higher frequencies.

SRAMs as two, 2-way set-associative blocks of $4 \mathrm{k} \times 16$ bit or one direct-mapped $8 \mathrm{k} \times 16$-bit block. The memory arrays in two versions of the QS88xx family can accommodate a CPU parity bit. The MT56C0816 has two independent output-enable pins that tie to the $\overline{\mathrm{COEA}}$ and $\overline{\text { COEB }}$ pins on the 82385 . The output-enable time is 8 nsec-sufficient time to select the data from the correct associative block in a $33-\mathrm{MHz}$ design.

Intel's 82395 DX smart cache controller not only integrates address latches along with the data SRAM, the
single chip includes the tag RAM and the cachemanagement logic. The complete first-level cache subsystem ties directly to the local address, data, and control buses on the $80386 \mu \mathrm{P}$. The chip has either 16 , 32 , or 64 k bytes of data SRAM organized into 4 -way set-associative blocks. The chip is available for 20 -, $25-$, and $33-\mathrm{MHz}$ designs. Intel also offers the 82395SX smart cache controller with 8 k bytes of data SRAM that ties directly to the 80386SX $\mu \mathrm{P}$.

Some μ Ps, such as Motorola's 68030 and 68040, can

Table 1-Special-feature SRAMs							
Company	Part	Organization	Access time (nsec)	Package	Power	Price	Comments
AT\&T	C183	$\begin{gathered} \text { dual } \\ 4 \mathrm{k} \times 16 \text {-bit } \\ \text { or } 8 \mathrm{k} \times 16 \text {-bit } \end{gathered}$	25, 35, 45	48-pin DIP; 52-pin LCC	700 mW at 45 nsec	$\begin{gathered} \$ 22 \\ (\mathrm{PDIP}) \\ (25 \mathrm{nsec}) \end{gathered}$	Transparent address latches; 80386 and 82385 compatible.
	C157	$16 \mathrm{k} \times 16$-bit	20,24,33	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	$\begin{gathered} 1.25 \mathrm{~W} \\ \text { at } 33 \mathrm{nsec} \end{gathered}$	$\begin{gathered} \$ 77 \\ (\mathrm{PLCC}) \\ (20 \mathrm{nsec}) \\ \hline \end{gathered}$	Clocked registers for address and data; dual-registered write enables; self-timed write; SPARC CY7C600 compatible.
Cypress Semiconductor	100E492	$2 \mathrm{k} \times 9$ bit	6	64-pin ceramic flat pack	2.0W	$\begin{gathered} >\$ 100 \\ (100) \end{gathered}$	Available 4th quarter 1991; BiCMOS with 100 K and 101 K ECL I/O; clocked registers for address and data; data and address parity flags; self-timed write.
	7B160	$16 \mathrm{k} \times 4$ bit	8	$\begin{aligned} & \text { 28-pin } \\ & \text { PDIP } \\ & \text { PLCC } \end{aligned}$	700 mW	$\begin{gathered} \$ 50.45 \\ (100) \end{gathered}$	BiCMOS with TTL I/O; 4 chip enables eliminate bank decode logic; self-timed write.
IDT Inc	71321	$2 \mathrm{k} \times 8$ bit	$\begin{aligned} & 20,25,30, \\ & 35,45,55 \end{aligned}$	$\begin{aligned} & 52 \text {-pin } \\ & \text { PLCC } \end{aligned}$	325 mW	$\begin{gathered} \$ 16.25 \\ (100) \\ (55 \mathrm{nsec}) \\ \hline \end{gathered}$	Dual ports; interrupt logic; master busy logic.
	7052	$2 \mathrm{k} \times 8$ bit	$\begin{gathered} 25,30,35 \\ 45 \end{gathered}$	$\begin{aligned} & \text { 108-pin } \\ & \text { PGA } \\ & \text { 132-pin } \\ & \text { PQFP } \end{aligned}$	750 mW	$\begin{gathered} \$ 55.80 \\ (100) \\ (44 \mathrm{nsec}) \end{gathered}$	Four ports.
	71322	$2 \mathrm{k} \times 8$ bit	$35,45,55$	$\begin{aligned} & \text { 48-pin } \\ & \text { DIP } \\ & 52 \text {-pin } \\ & \text { PLCC } \end{aligned}$	500 mW	$\$ 19.80$ (100) $(55 \mathrm{nsec})$	Dual ports; semaphore logic.
Micron Technology Inc	58C1616	$16 \mathrm{k} \times 16$ bit	$\begin{gathered} 15,17,20 \\ 25 \end{gathered}$	$\begin{aligned} & 52 \text {-pin } \\ & \text { PLCC \& } \\ & \text { PQFP } \end{aligned}$	1.1W	$\$ 35$ (100) $(15 \mathrm{nsec})$	Clocked address registers; transparent data-in latches; dual write-enable lines; 6-nsec output-enable line; dual chipselect lines; optional 3.3 V output buffers; upper and lower byte-select lines.
	56C2818	$\begin{gathered} \text { dual } \\ 4 \mathrm{k} \times 18 \text { bit or } \\ 8 \mathrm{k} \times 18 \text { bits } \end{gathered}$	24, 28	52-pin PLCC \& PQFP	1.1W	$\begin{gathered} \$ 17 \\ (100) \\ (24 \mathrm{nsec}) \end{gathered}$	Transparent address and data-in latches; 80486 and 82485 compatible; 8-nsec output enable; dual chip-select lines; upper and lower byte-select lines; automatic write-cycle completion.
	56C0816	dual $4 \mathrm{k} \times 16$ bit or $8 \mathrm{k} \times 16$ bits	20, 25, 35	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC \& } \\ & \text { PQFP } \end{aligned}$	1.1W	$\$ 15$ (100) $(20 \mathrm{nsec})$	Transparent address latch; 80386 and 82385 compatible; dual chip-select lines; upper and lower byte-select lines; 8-nsec output-enable time.
Mosel	76500	64×16 bit	20	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	400 mW	$\begin{gathered} \$ 32 \\ (1000) \end{gathered}$	Dual-port bidirectional FIFO; ;80355 BMIC compatible; parity generator and checker; full, empty, and half-full flags; 8 -bit or 16 -bit asynchronous inputs and outputs.
	443	$16 \mathrm{k} \times 9$ bit dual port	8	64-pin plastic flat pack	250 mW	$\begin{gathered} \hline \$ 16 \\ (1000) \end{gathered}$	128-bit data path; part of the simulcache chipset for $33-\mathrm{MHz} 80386$ and 80486 designs; supports 486 burst reads and writes; dual ports.

communicate with external memory synchronously. Synchronous communication requires the $\mu \mathrm{P}$ to maintain valid bits on the address, data, and control buses during the rising edge of the system clock. System designs for $16-$ to $20-\mathrm{MHz}$ operation employ 374 -type D flip-flops to store bits on the local buses using the system clock. For synchronous $33-\mathrm{MHz}$ and faster frequency designs, SRAM vendors have moved 374 -type D flip-flop registers onto the RAM chip. These synchronous SRAMs use the system clock to store the address
and control inputs in the on-chip registers. Synchronous storage permits the $\mu \mathrm{P}$ to communicate with the SRAM in a pipelined mode. For example, during a burst fill, the SRAM stores the $\mathrm{N}+1$ th address, chip select, and write-enable lines on a system-clock edge while returning the Nth data word to the $\mu \mathrm{P}$ on the same clock edge.
By synchronously storing the address, chip select, and write-enable lines on-chip, the synchronous SRAM also can generate the write pulse to the RAM array

Company	Part	Organization	Access time (nsec)	Package	Power	Price	Comments
Motorola Inc	62990	$16 \mathrm{k} \times 16$ bit	17, 20, 25	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	2.0W	$\begin{gathered} \$ 33.75 \\ (1000) \\ (20 \mathrm{nsec}) \end{gathered}$	Clocked address registers; transparent data latches; dual chip-select lines; upper and lower byte-select lines; optional 3.3V output buffers; self-timed write.
	62940	$32 \mathrm{k} \times 9$ bit	14, 19, 24	$\begin{aligned} & \text { 44-pin } \\ & \text { PLCC } \end{aligned}$	1.2W	$\begin{gathered} \$ 40 \\ (1000) \\ (19 \mathrm{nsec}) \end{gathered}$	68040 compatible; 2 -bit binary burstmode counter; clocked address registers; transparent data latch; selftimed write; optional 3.3 V output buffers.
	62486	$32 \mathrm{k} \times 9$ bit	14, 19, 24	$\begin{aligned} & \text { 44-pin } \\ & \text { PLCC } \end{aligned}$	1.2 W	$\begin{gathered} \$ 40 \\ (1000) \\ (19 \mathrm{nsec}) \end{gathered}$	80486 compatible; 2 -bit binary burstmode counter; clocked address registers; transparent data latch; selftimed write; optional 3.3 V output buffers.
	62980	$64 \mathrm{k} \times 4$ bit	15,20	$\begin{aligned} & \text { 28-pin } \\ & \text { PSOJ } \end{aligned}$	1.0W	$\begin{gathered} \$ 31.85 \\ (1000) \\ (20 \mathrm{nsec}) \end{gathered}$	Clocked address registers; asynchronous late-write abort, which can prematurely halt a burst write; optional 3.3V output buffers; self-timed write.
	62995	$16 \mathrm{k} \times 16 \mathrm{bit}$	17, 20,25	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	2.0W	$\begin{gathered} \$ 31.25 \\ (1000) \\ (20 \mathrm{nsec}) \end{gathered}$	MIPS R3000 compatible; asynchronous late-write abort; optional 3.3 V output buffers; clocked address registers; upper and lower byte-select lines.
Quality Semiconductor Inc	8819	$\begin{gathered} \text { dual } \\ 4 \mathrm{k} \times 18 \text { bits } \end{gathered}$	20,25,35	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	1.0W	$\$ 22$ (100) $(20 \mathrm{nsec})$	Production quantities available 4th quarter 1991; 80386 and 82385 compatible; dual 8-nsec output-enable lines; dual chipselect lines; transparent address latches; upper and lower byte-select lines.
	8818	$\begin{gathered} \text { dual } \\ 4 \mathrm{k} \times 18 \text { bits } \end{gathered}$	20, 25, 35	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	1.0W	$\$ 22$ (100) $(20 \mathrm{nsec})$	Production quantities available 4th quarter 1991; identical to the 8819 except address A12 isn't latched. An unlatched A12 provides fastoddoreven word access.
	8811	$8 \mathrm{k} \times 18$ bits	20,25,35	$\begin{aligned} & \text { 52-pin } \\ & \text { PLCC } \end{aligned}$	1.0W	$\$ 25$ (100) $(25 \mathrm{nsec})$	Production quantities available 4th quarter 1991; 80486 compatible; asynchronous address latch; 8 -nsec output enable; upper and lower byte-select lines; 2-bit binary burst-mode counter.
Silicon Connections Corp	4109	$8 \mathrm{k} \times 9$ bits	5	64-pin ceramic QFP	3.0 W	$\begin{aligned} & \$ 2.57 \\ & (1000) \end{aligned}$	Samples available 4th quarter 1991; clocked address and data registers; tag RAM produces a match in 1.5 nsec ; flash clear of the valid bit; BiCMOS with ECL I/O; self-timed write; address and dataparity flags.
	5204	$256 \mathrm{k} \times 4$ bits	10,12	32-pin ceramic flat pack	1.5W	$\begin{aligned} & \$ 3.30 \\ & (1000) \end{aligned}$	Samples available 4th quarter 1991; BiCMOS with 100 KECL I/O; balanced read and write cycle times.

For synchronous $33-\mathrm{MHz}$ and faster frequency designs, SRAM vendors move 374-type D flip-flop registers onto the RAM chip.

onboard the chip-a technique known as "self-timed write." An on-chip register has more controlled writepulse setup time (measured from the rising clock edge to the falling write-pulse edge) and write-pulse hold time (measured from the rising edge of the write pulse to the next rising clock edge) than an off-chip register (Fig 1). Therefore, SRAM designers can generate a wider on-chip write pulse and thereby employ a slower, less expensive RAM array to achieve the system writecycle time.
Micron Technologies' MT58C1616 and Motorola's MCM62990 SRAMs have typical synchronous SRAM architectures. Besides their synchronous registers and self-timing features, these devices have asynchronous input-data latches that simplify timing during write cycles. They also have dual write-enable lines that permit individual byte writes. Dual chip-select lines, which eliminate the need for chip-select decoders when using the SRAMs in a dual-bank arrangement, are another feature of both chips.

Both CMOS chips have an option for either 5 V or 3.3 V power supplies for the output buffers; therefore, they are compatible with future high-speed μ Ps that may use 3.3 V power supplies. Micron also offers their cache data SRAMs in a 53 -pin plastic quad flat pack (PQFP) that is 40% smaller than industry-standard 52 pin plastic leadless chip carriers. The PQFP has an

Small footprints reduce board space and consequently time delays and crosstalk because trace lengths are shorter. Micron Technologys' plastic quad flat pack has an outside dimension of 14.3 mm .
outside dimension of 14.3 mm . The smaller footprint not only occupies a smaller board space, it also reduces board trace lengths, cutting time delays and crosstalk.

On-chip cache avoids bottlenecks

When a $\mu \mathrm{P}$ sequentially reads and writes data to an external memory device, the $\mu \mathrm{P}$ runs into a fundamental limitation known as the "Von Neumann bottleneck." No matter how fast the $\mu \mathrm{P}$ can clock data internally, the rate at which information can be piped in and out of external memory limits the chip's processing speed. Therefore, recent μ Ps place a complete firstlevel cache subsystem on the processor chip to profit from on-chip parallel processing. Motorola's 68040 integrates independent 4 k -byte instruction and cache data SRAMs, independent memory management units (MMU) and cache controllers, a bus controller, and an execution unit on a single chip. Intel's i486 integrates an 8 k -byte cache SRAM for storing code and instructions, a cache controller, an MMU, a bus controller, and an execution unit.

Although the densities of the cache RAMs in both the 68040 and i486 are sufficient to achieve better than 90% hit rates, occasionally a miss occurs and the cache controller must fetch the data from an external secondary cache. Both of these μ Ps have burst modes for accessing a line from external memory. During a burst line refill or push, the first access requires two clock cycles. Succeeding accesses require one clock cycle. Burst SRAMs assist the system designer in designing a secondary cache subsystem to handle the one-clockcycle access timing constraints in a high-speed design.

Motorola's MCM62940 32k \times 9-bit synchronous burst SRAM is designed as a secondary cache to handle the 68040 's burst mode. The 68040 can initiate a 16 -byte line refill or push to the secondary cache using a single instruction-MOVE16. The burst SRAM integrates synchronous registers, which store address and control signals using the system clock, and an on-chip, 2-bit binary counter, which operates similar to the address counter in nibble-mode dynamic RAMs (DRAMs). The burst counter imitates the burst address sequence from the $\mu \mathrm{P}$, but only stores every fourth address in the sequence. The binary counter generates the intervening addresses. Because the chip internally generates successive addresses to the array, the architecture eases external timing constraints. The 62940's 9 -bit organization accommodates the 68040 's parity bits.

Intel's i486 also initiates a burst mode to refill or push a 16 -byte line to an external secondary cache whenever there is a miss in its on-chip internal cache.

Fig 1-Synchronous SRAMs (a) generate an on-chip write pulse that occupies a smaller percentage of the system writecycle period. The on-chip, self-timed write pulse eliminates timing skews associated with an off-chip write pulse (b), which either slow the system write cycle or force the use of a fast-access SRAM array.

Motorola's MCM62486 32k \times 9-bit and Quality Semiconductor's QS881 $8 \mathrm{k} \times 18$-bit burst RAMs contain 2-bit counters that imitate four successive addresses in the burst sequence of the $i 486$ to alleviate off-chip timing burdens. Both devices operate in 33 - and $40-\mathrm{MHz}$ designs, and their 9 -bit organization accommodates the parity bits of the i486.

Mosel's Simulcache is a chip set for use as a secondary cache in a $33-\mathrm{MHz}$ i 486 design. The set consists of the MS441 cache controller and the MS443 intelligent dual-port SRAMs. By providing dual-port access, the MS443 isolates the $\mu \mathrm{P}$ from the system data bus. The dual-port SRAM provides 8 -nsec, simultaneous access to the CPU and the main memory during burst reads and writes. In addition, the $16 \mathrm{k} \times 9$-bit SRAM has an internal 128 -bit data path that permits the chip to move large chunks of data into, out of, and around the memory quickly. Therefore, the chip can absorb transactions from the main memory and reorder the data to meet the needs of the CPU.

Multiports assist multiprocessors

Architectural developments in high-speed, dual-port SRAMs allow two CPUs to communicate with each other by passing data through a common memory. The basic dual-port architecture is a variation on the traditional single-port SRAM, which has one read and write control circuit for a single address and data bus. The dual-port memory has two sets of address, data, and
read/write control signals, each of which access a single on-chip memory array. Each set of controls can independently and simultaneously access any word in the array, even when both ports are accessing the same location at the same time.

Multitasking processors must signal each other when requesting a task or indicating a task's completion. Interrupts are a common signaling mechanism. IDT's 25 -nsec IDT71321 is a dual-port SRAM containing logic that allows one CPU to interrupt the other. A CPU simply writes to a specific address port to activate the interrupt to the other CPU. The IDT71322 dual-port SRAM contains semaphore logic that provides a set

SRAM architectures are married to the design of a specific processor. Motorola's MCM56824 is an $8 \mathrm{k} \times 24$-bit SRAM that has dual chip enables and output enables that conform to the time requirements of the DSP56001 DSP chip.

Special-feature SRAMs

of flags that software can use to allocate blocks of memory for one of the CPUs to use.

You use each flag to indicate which CPU has permission to use a specified block. You can set each semaphore flag to either CPU, but not to both. IDT also offers 4-port SRAMs, which let four CPUs share a common memory for multiprocessing or parallel processing. The IDT7052 4 -port SRAM has independent address, data, and read/write control ports, all of which have independent access to the chip's internal memory array. The 4 -port structure facilitates hypercube and cluster configurations.

Architectural enhancements to SRAMs in the CMOS families are paving the path for memory systems operating as fast as 50 MHz . But CPUs aren't obeying any $50-\mathrm{MHz}$ speed limit. Vendors are obtaining licenses for implementing some popular CPU architectures, such as the MIPs 3000 , using GaAs to send CPUs rocketing ahead. These CPUs have ECL-compatible I/Os and will operate in the $60-$ to $100-\mathrm{MHz}$ range. Some SRAM vendors are on top of the situation and plan to offer BiCMOS SRAMs that will have ECL I/Os and be able to interface with these CPUs.

Cypress has acquired the rights to manufacture National Semiconductor's $2 \mathrm{k} \times 9$-bit and $8 \mathrm{k} \times 9$-bit ECL SRAMs using a $0.8-\mu \mathrm{m}$ BiCMOS process. The 6 -nsec CY100E492 is a synchronous, self-timed SRAM that

Fast access dual-port SRAMs permit two CPUs to communicate through a shared memory in multiprocessor applications. The IDT7130 dual-port SRAM contains interrupt logic that permits one CPU to inform another CPU of task assignments.
employs on-chip registers on its input and output lines. A single clock stores the data in the input registers, and the output registers are self timed. The chip produces a flag for checking the parity of both the address and the data. A hidden write-cycle mode simplifies

Modifications to the traditional SRAM architecture (a) simplify interfaces. Quality Semiconductor's QS8816 cache data SRAM (b) for 80386 systems has transparent address latches, dual chip selects to eliminate bank decoders, separate write enables for each memory bank, and dual 8 -nsec output enables for gating data onto the bus.

$+8{ }^{2}$ VI-200-CX VI-214-CV VI-2NI-CW VI -2W1-CY VI-252-CU VI-234-CU
 Over 2500 Standard Models Add Up to Your Power System Solution

Over 2500 standard models add up to a lot of flexibility.
Whatever your requirements...input voltage, output voltages, power levels or temperature...odds are that Vico has your solution.

Our component-level power solutions feature high efficiency and low-noise FM control, in small standard packages, at prices that won't break your budget. Give us a call... let us show you how quickly and easily power components add up to your total power system solution.

Component Solutions For Your Power System
23 FRONTAGE ROAD, ANDOVER, MA 01810 TEL: (508) 470-2900 • FAX: (508) 475-6715

Special-feature SRAMs

interleaving write and read cycles by maintaining active output data for a previous read cycle during a subsequent write cycle. Samples of this device are available with 100 K and 101 K family ECL-compatible I/Os.
Silicon Connections Corp also will offer an $8 \mathrm{k} \times 9$-bit synchronous, self-timed SRAM having ECL I/O. The 5 -nsec SC4109 is specifically designed as a cache tag RAM. The BiCMOS RAM contains a comparator with a $1.5-$ nsec propagation delay to perform the tagaddress "match" function. The chip produces three flags for checking parity errors on input address data and output data. The chip also has a flash-clear pin that lets the system clear the "valid bits" in 50 nsec. The company will also offer the $256 \mathrm{k} \times 4$-bit SC5204 and the $1 \mathrm{M} \times 1$-bit SC5200 asynchronous SRAMs, which have 10 -nsec access times. These BiCMOS devices have 100 K family ECL-compatible I/Os.

SRAM features are not just bells and whistles

The complete list of features that vendors are incorporating into the basic SRAM architecture to improve system performance is too long for a single article. The list should include IDT's SyncFIFO and Cypress'

CYC451, both of which use a clock to load data into and out of FIFO memory (similar to synchronous SRAMs), and AMD's Am99C10A content-addressable memory, which can match a source and destination address in a LAN bridge within 70 nsec. Although the feature list is long, these enhancements are not just bells and whistles added to fast-access memories. In many cases these architectural innovations are the only way to make a high-speed memory system work.

EDN

Article Interest Quotient (Circle One)

 High 497 Medium 498 Low 499
Manufacturers of special-feature SRAMs

For more information on the special-feature SRAMs such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

AMD Inc	Integrated Device Technology Inc	Mosel	Quality Semiconductor Inc
901 Thompson Place	3236 Scott Blvd	914 W Maude Ave	851 Martin Ave
Box 3453	Santa Clara, CA 95054	Sunnyvale, CA 94086	Santa Clara, CA 95050
Sunnyvale, CA 94088	(408) 727-6116	(408) 733-4556	(408) 450-8060
(408) 732-2400	FAX (408) 492-8674	FAX (408) 733-2271	FAX (408) 496-0591
TWX 910-339-9280	Circle No. 653	Circle No. 656	Circle No. 658
TLX 34-6306			
Circle No. 650	Intel Corp	Motorola Inc	Silicon Connections Corp
	3065 Bowers Ave	Technical Info Center	16868 Via Del Campo Ct
AT\&T Microelectronics	Santa Clara, CA 95051	Box 52073	San Diego, CA 92127
2 Oak Way	(408) 987-8080	Phoenix, AZ 85072	(619) 674-1050
Berkeley Heights, NJ 07922 (908) 771-2788	Circle No. 654	(512) 928-7726 Circle No. 657	FAX (619) 674-1218 Circle No. 659
FAX (908) 771-4554			
Circle No. 651	Micron Technology Inc 2805 E Columbia Rd		
	Boise, ID 83706		
Cypress Semiconductor 3901 N First St	$\begin{aligned} & \text { (208) } 368-3900 \\ & \text { FAX (208) } 368-4617 \end{aligned}$		
San Jose, CA 95134	Circle No. 655		
(408) 943-2600			
FAX (408) 943-2741			
TWX 910-997-0753			
TLX 821032			
Circle No. 652			

Techliolog Thar dires You TO BREAK THE POWER \& SPEED BARRERSOF CHPD DESGV...

If someone said you could fab a chip in your facility with one million transistors, a clock rate of 100 MHz , very low power consumption, on silicon, dissipating less than three watts of heat, you'd probably say, "No way."

You'd be wrong.
Everything we said in the first paragraph is true. Thunderbird Technologies has developed and patented a system of design tools and philosophy we call TDP ${ }^{\text {TM }}$ which optimizes the speed and power available from your process. Plus, we have Fermi-EET ${ }^{\text {® }}$ a revolutionary device architecture that dramatically reduces the capacitances of your design logic. The combination is a quantum breakthrough in high speed/low power semiconductor design and device technology.

We can have your designs manufactured or, we can convert your fab to the enhanced benefits of next generation chip technology - in less than six months. Our customers will realize a substantial competitive edge over system designs using more expensive and exotic materials, like gallium arsenide and BiCMOS.

Think about it... Silicon chips, breakneck speeds, very low power consumption, no meltdown, in your fab.

Then give us a call. 919-481-3239
1000 Perimeter Park Drive • Research Triangle Park, NC 27709-3739

OURNEW FDDI CHIPSET WORKS PRETTY MUCH
 SAME WAY.

Now there's a way to get FDDI systems to do what they're supposed to do. Run wide open, lightning fast and bottleneck free.

Introducing the Motorola FDDI chip set. The complete system solution in a 4 -chip, fully ANSI-compliant design.

Led by the FDDI System Interface chip, it speeds data through the system at up to $200 \mathrm{Mbytes} /$ second via two 32 -bit ports. While 8 Kbytes of on-chip RAM provide more than 80 microseconds of bus latency. Freeing up your host for other system tasks.

Its partners are the FDDI Clock Generator, the Elasticity Buffer and Link Manager, and the

Media Access Controller. Together, they handle all FDDI functions quickly and efficiently, without the hassle or expense of external memory or high-speed logic.

Not only is the Motorola FDDI chip set ideal for FDDI-networked systems, it's perfect in routers, bridges and concentrators. And our partnership with Digital Equipment Corporation helps us ensure its compatibility with the FDDI protocol.

So you can stop waiting for the signal that FDDI has truly arrived. Because the Motorola FDDI chip set is here today. For more information and a free poster, call 1-800-845-MOTO.

rademark of Advanced Micro Devices, inc

A PERSPECTIVE ON DESIGN ISSUES:

Breaking the analog barriers to optimum system design

Advanced Linear extends the boundaries of system performance.

Innovative analog circuits from Texas Instruments add a new edge to Digital Equipment's proven market winners. They can do the same for you.

> "Utilizing TI's LinASIC mixed-signal design methodology allows us to design cost-effective solutions with aggressive time-to-market goals."

— Nick Ilyadis, Product Engineer Telecommunications and Networks Group Digital Equipment Corporation

An octal created to solve systemlevel cross-talk noise problems in RS-232, -485 and -423 applications. This full-custom device, fabricated in TI's Advanced LinCMOS ${ }^{\text {TM }}$ process, is designed to meet EIA and CCITT specs.

- A device that will be a complete AUI multiport concentrator on a chip. Fabricated in our LinBiCMOS ${ }^{\text {TM }}$ process, it will replace a 6 -inch by 12 -inch circuit board that incorporates nine discrete ports, logic devices and analog circuitry. The new device will tie any combination of as many as eight units into Ethernet.
- A single-channel 10BASE-T twisted pair interface chip that includes internal precompensation and full duplex operation. Also fabricated in our LinBiCMOS process, this IC cuts component count and improves data transmission.
The Ethercell devices developed by Digital and TI will be incorporated into our existing LinASIC cell library.

Extensive mixed-signal capabilities

As Digital recognizes, few in the industry can match our experience in analog design and digital design. This expertise enables us to effectively combine high-performance
analog functions with leadership digital functions. The resulting mixed-signal devices typify our capabilities to design and develop the Advanced Linear circuits our customers need.

Let us help you meet your challenge

We are ready to provide information and assistance, as well as access to the hardware and software development tools you need, to help extend the boundaries of your system performance.

Our service circles the globe, and our worldwide manufacturing capability can support your production schedules wherever you are.

TI's analog viewpoint: From process technologies come Advanced Linear ICs.

TI's LinASIC mixed-signal methodology -

A cell-based design methodology allowing the combination of high-performance analog and digital functions on the same chip. This mixed-signal capability is used for many of our catalog products and for custom/semicustom solutions. It is supported by large cell libraries, design-automation tools and these TI Advanced Linear wafer process technologies:

LinBiCMOS - Combines Advanced LinCMOS, digital ASIC CMOS and up to $30-\mathrm{V}$ bipolar technologies to allow the integration of digital and analog standard cells and handcrafted analog components on a monolithic chip.

LinEPIC ${ }^{\text {m }}$ - One-micron CMOS double-level metal, double-level polysilicon technology that adds highly integrated, high-speed analog to the highperformance digital EPIC $^{\text {IM }}$ process.

Advanced LinCMOS - An N-well, silicon-gate, double-level polysilicon process featuring improved resistor and capacitor structures and having threemicron minimum feature sizes.

Power BIDFET ${ }^{\text {TM }}$ - Merges standard linear bipolar, CMOS and DMOS processes and allows integration of digital control circuitry and high-power outputs on one chip. Primarily used for circuits handling more than 100 V at currents up to 10 A .

Multi-EPI Bipolar - A very costeffective technology that utilizes multiple epitaxial layers instead of multiple diffusion steps to reduce mask steps by more than 30%. Used to produce intelligent power devices that can handle loads as high as 20 A and voltages in excess of 100 V .

Excalibur - A true, single-level poly, single-level metal, junction-isolated, complementary bipolar process developed for high-speed, high-precision analog circuits providing stable op amp performance.

For more information on our

 Advanced Linear process technologies and the products they are producing, call 1-800-336-5236, ext. 3425.
Abstract

TI's LinASIC methodology and Advanced Linear process technologies are enhancing these product families

Data Transmission - This family meets the needs of most industrystandard interfaces (EIA, IEEE, ANSI) and ranges from drivers/ receivers/transceivers to fully integrated controller/transceivers.

Data Acquisition - The family ranges from stand-alone $A / D s$ and D/As to complete data conversion subsystems on a chip; from generalpurpose functions to highly integrated digital signal processor and graphics signal processor analog interface circuits. Other specialized family members include telecom and speech synthesis functions.

Intelligent Power - These devices combine high-voltage and/or high-current switches with the analog and digital circuitry required to perform interface, control, protection and diagnostic functions in microcontroller-based systems.

Operational Amplifiers - A family of op amps and comparators ranging from standard bipolar to leadership high-performance CMOS and Excalibur complementarybipolar devices, meeting needs ranging from low power and/or low noise to high speed and/or high precision.

Custom/semicustom Functions In modifying existing products to fit your needs or in defining your own unique functions, our LinASIC methodology allows access to existing analog cells used in the development of our catalog products and compatibility with our digital cell libraries.

Design Feature

Build a single-shot recorder to catch fast transients

Capturing fast transients places special requirements on filters, track/hold amplifiers, and A / D converters. By using an A / D converter with a bigh input bandwidth and oversampling at a 10:1 ratio, you can digitize and then analyze transients without using an expensive analog or digital storage scope.

Ken Deevy, Dan Sheehan, and Mike Byrne, Analog Devices Inc

Don't tie up expensive equipment trying to capture transients that occur infrequently. If you build a lowcost transient recorder or event sampler, you can dedicate it to capturing single-shot events. Typical applications for transient recorders include monitoring powermains trans ents, evaluating power supplies, and capturing pressure and vacuum-line transients in medical equipment.

To build a transient recorder or burst-mode event sampler, you need a high-speed A/D converter, a wideband track/hold amplifier, and an antialiasing filter. The A/D converter must have a sampling rate of at least twice the bandwidth to satisfy the Nyquist criterion. In practice, you should oversample the input signal. At $2 \times$ oversampling (a sampling frequency of
twice the input bandwidth), you'll need to use a filter with an infinite roll-off rate to avoid aliasing effects. At $3 \times$ oversampling, the roll-off requirement drops to $50 \mathrm{~dB} /$ octave in an 8 -bit system. With an oversampling ratio of $10: 1$, the filter roll-off need be only about $16 \mathrm{~dB} /$ octave. (See box, "Oversampling reduces antialiasing requirements.")

High-speed sampling A/D converter chips routinely include track/hold amplifiers on the same chip. The AD 7821 is an example of this trend. It combines a $100-\mathrm{kHz}$ track/hold amplifier with a 1 M -sample/sec 8 bit A / D converter. Because the A / D conversion rate is 10 times the input bandwidth, you don't have to design a complex antialiasing filter. In fact, if the input signal exhibits only a low-power spectral content at and above 500 kHz , you can eliminate the filter altogether.

The AD7821 uses a half-flash conversion technique to perform an 8 -bit conversion in 660 nsec . A requirement of a 350 -nsec signal-acquisition period between conversions results in a maximum acquisition rate of 1 M samples/sec. You can operate the A / D converter with a single or dual supply for either unipolar or bipolar inputs.

Capture single-shot waveforms

One of the difficulties in capturing single-shot events is the speed at which the transient recorder circuit responds once the input signal has crossed a predetermined trigger point. If the recorder circuit responds too slowly, it can miss fast transients altogether.

> To build a transient recorder or burst-mode event sampler you need a bigh-speed A / D converter, a wideband track/hold amplifier, and an antialiasing filter.

Therefore, to accurately capture fast events, you need a high-speed A/D converter and a wide-bandwidth track/hold amplifier. For example, an 8-bit A/D converter that has a $1-\mu$ sec conversion time can capture $1-\mu$ sec transients only if it's not preceded by a track/ hold amplifier. If you match this A/D converter with a track/hold amplifier that has a $100-\mathrm{kHz}$ bandwidth, the ADC can recover $6-\mu$ sec-wide 5 V transients.

To simplify fault detection or take corrective measures, you need a transient recorder that can grab pretransient information. You can use this pretransient data to learn timing relationships between the tran-
sient and another waveform. Additionally, your recorder should be able to react to both positive and negative transients.

Another important criterion for transient recorders is cost. Although you could use a digital storage oscilloscope (DSO) to capture frequently occurring or very fast transients, dedicating a DSO to capturing random events would be an expensive proposition.

Transient recorder

A block diagram of a transient recorder (Fig 1) shows the minimum hardware you'll need to build a high-speed transient recorder with playback. For sim-

Oversampling reduces antialiasing requirements

In the spectrum of a periodically sampled waveform, the spectrum of the (unsampled) input-signal repeats around harmonics of the sampling frequency. Any frequency contained in the input signal is repeated above and below each harmonic of the sampling frequency. Therefore, in the spectrum of the sampled signal, the band between 0 and f_{IN} (the input spectrum), appearsamong other places-between $f_{S}-f_{\text {IN }}$ and f_{S}, where f_{S} is the sampling frequency. Though you may be under the impression that the input-signal bandwidth is 100 kHz , if the sampling frequency is 1 M sample/sec, a signal at 991 kHz in the input spectrum would appear as a $9-\mathrm{kHz}$ "alias" component in the sampled signal's spectrum.
The purpose of an antialiasing filter is to remove or at least attenuate any noise or spurious signals that could be aliased back into the bandwidth of interest. Fig \mathbf{A} shows the frequency response of an antialiasing filter for a generalized A/D converter. You determine the filter roll-off by
drawing a straight line between the highest signal frequency of interest, f_{IN}, and the stopband attenuation frequency, $f_{s}-f_{I N}$. As the ratio of f_{S} to f_{IN} increases (that is, as the oversampling ratio increases) the slope of the line decreases.

In an 8-bit system, an ideal

ADC's signal-to-noise ratio (S / N) is slightly greater than 256:1 or 48 dB . To avoid having noise limit the system performance, the ratio of the input signal to noise should exceed the approximately $48-\mathrm{dB}$ limit imposed by the ADC. Here, the signal is the peak-topeak value of the signal within

Fig A-The antialiasing filter that precedes the transient recorder's ADC can be simple or complex depending on the degree of oversampling. When the sampling frequency is $10 \times$ the highest frequency of interest, the filter has 3 octaves to roll in its attenuation. A simple 3-pole filter has 18 dB /octave roll-off. An 8 -bit $A D C$ needs slightly more than 48 dB of attenuation. Hence, a 3-pole filter is usually sufficient for 8 -bit resolution.
plicity, the design uses a clock with an even mark/space ratio. The clock's 50% duty cycle limits the acquisition rate to 660 k samples $/ \mathrm{sec}$ rather than the A / D converter's $1-\mathrm{M}$ sample/sec maximum rate. (This simplification reduces the oversampling ratio to 6.6:1.) A memory chip stores the digitized data for later playback on an X-Y plotter or oscilloscope via a dual 12-bit D/A converter and a quad op-amp. One half of the samples are pretransient information; the other half are transient data.
A more detailed schematic (Fig 2) shows that two counters, IC_{1} and IC_{2}, control where the circuit stores pretransient and transient data. The counters also

Fig 1-If you think of a transient recorder as merely an ADC, look again. This recorder contains several purely digital blocks as well as the DAC that drives the display.
the band of interest, and the noise is the square root of the sum of the squares of the amplitudes of all of the frequency components outside that band. The attenuation required on signals outside the band of interest depends on the application and the expected magnitude of the out-ofband signals. In most cases, the magnitude of these signals is much lower than that of the desired signal.
Usually, 8 -bit systems require 50 dB of attenuation for signals that can be aliased into the band of interest. Even if 50 dB is not the desired number, the following calculations show the kind of reduction in antialiasing filter requirements brought about by oversampling. With $2 \times$ oversampling, (that is with $f_{S}=2 \cdot f_{I N}$), f_{S} and f_{IN} are at the same point and the filter has to have infinite rolloff to attenuate signals at $f_{S}-f_{\text {IN }}$. With $\mathrm{f}_{\mathrm{S}}=3 \cdot \mathrm{f}_{\text {IN }}(3 \times$ oversampling), the filter's attenuation must drop from 0 dB at f_{IN} to 50 dB at $2 \cdot \mathrm{f}_{\mathrm{IN}}$. In other words, the slope of the attenuation vs frequency curve must be 50 dB /
octave; the filter (if it has a Butterworth characteristic) must have more than eight poles.
With $10 \times$ oversampling, there are three octaves for the attenuation to drop from 0 to 50 dB . The required slope is a little more than 16 dB /octave; a 3-pole Butterworth filter will do the job.
The above analysis of the antialiasing filter holds true regardless of the type of ADC that follows the filter. No matter what the conversion technique, oversampling reduces the antialiasing filter requirements. Oversampling also reduces the ADC noise within the signal bandwidth because it spreads the quantization noise over a wider bandwidth. Oversampling has recently gained considerable popularity in connection with sigma-delta ADCs . In the case of these converters, the advantages of oversampling are much greater than with successive-approximation or flash ADCs because noise shaping produces dramatic improvements in noise performance as the oversampling ratio increases.

The relationship between an-
tialiasing-filter performance and oversampling is, however, exactly the same for an oversampled sigma-delta modulator as for a half-flash or a successive-approximation ADC. A sigma-delta ADC and a half-flash ADC with the same oversampling ratio place the same requirements on the antialiasing filter.

The disadvantage of the sigmadelta process for transient recording is the pipelining or averaging technique inherent in sigma-delta converters. Because of the pipelining, a step change requires a significant time (the settling time of the ADC's digital filter) to ripple through to the output. Therefore, there is a delay before a sigma-delta converter produces an output that represents an input change. Between the time the input changes and the sigma-delta converter's output reflects the change, the ADC's output does not accurately represent the converter's input. Such performance is not appropriate for transient recorders of the type discussed here.

To avoid aliasing effects, at $2 \times$ oversampling (a sampling frequency of twice the input bandwidth) you need a filter with an infinite roll-off rate.
clock out data to either the oscilloscope or the X-Y plotter. You can use the fast clock input, CLK IN_{1}, for the clock source when you're using the circuit in the record mode or displaying stored data on an oscilloscope. The design also provides a slower clock input, CLK IN_{2}, to print data on an X-Y plotter.

The transient recorder operates in two basic modes: record and playback. You select the record mode by
placing switch S_{1} in the record position. ($\mathrm{IC}_{18 \Omega}$ and $\mathrm{IC}_{18 \mathrm{~B}}$ provide debouncing for this switch.) Having the MODE output of $\mathrm{IC}_{13 \mathrm{D}}$ low makes one input of both $\mathrm{IC}_{15 \mathrm{D}}$ and $\mathrm{IC}_{14 \mathrm{D}}$ low. Hence the clock inputs of $\mathrm{IC}_{9 \mathrm{~A}}$ and $\mathrm{IC}_{9 B}$ (pins 10 and 2, respectively) are disabled, ensuring that the $1 \overline{\mathrm{Q}}$ and $2 \overline{\mathrm{Q}}$ outputs of $\mathrm{IC}_{9 \mathrm{~A}}$ and $\mathrm{IC}_{9 \mathrm{~B}}$ are high. Besides disabling the chip-select inputs of the D / A converter, $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$, the circuit disables the output-

Fig 2-At the component level, the basic transient recorder is a circuit of moderate complexity, requiring 23 ICs.
enable signals of $\mathrm{IC}_{3}, \mathrm{IC}_{4}$, and IC_{5} (the HM6264 memory chip), ensuring that the playback portion of the transient recorder is turned off.

CLK IN_{1} serves as the clock source for the counters via $\mathrm{IC}_{14 \mathrm{C}}, \mathrm{IC}_{-13 \mathrm{~B}}, \mathrm{IC}_{15 \mathrm{~B}}$, and $\mathrm{IC}_{15 \mathrm{C}}$. While the MODE signal is low, CLK is the clock input for both counters and provides the $\overline{\mathrm{RD}}$ (convert) signal for the A/D converter, IC_{6}. At the same time, IC_{6} 's $\overline{\mathrm{CS}}$ input is active,
ensuring that the device is selected. After a reset from S_{3} initializes the circuit, counter 2 begins counting. IC_{17} and $\mathrm{IC}_{23 \mathrm{~B}}$ hold the reset (CLR) input of counter 1 high from power-up and keep counter 1 in a reset condition until the circuit detects a transient.

You configure the A/D converter by tying its MODE input (pin 7) to GND. (Note that the MODE pin of the AD7821 shown bears no relation to the signal labeled

With an oversampling ratio of $10: 1$, the filter roll-off need be only about $16 \mathrm{~dB} /$ octave.

MODE in the circuit diagram.) When the CLK signal toggles its $\overline{\mathrm{RD}}$ input, the A/D converter executes continuous conversions of the input signal, V_{IN}. Counter 2 provides the memory addresses for the A/D conversion results. Data transfers from the digital outputs of IC_{6} to IC_{5} employ the $\overline{\mathrm{INT}}$ output of IC_{6} to drive the $\overline{\mathrm{WE}}$ input of IC_{5}.

The circuit automatically loads the first conversion result after reset into location 0 of memory and the second result into location 1. After transferring the result of the 4096th conversion to memory location 4095, the counter resets and stores the next conversion result in location 0 . The memory will therefore always contain the most recent 4096 samples of the input waveform.

Detect fast transients

You apply the input signal to $\mathrm{V}_{\text {IN }}$. This terminal connects directly to two TL311 comparators and the analog input of the A / D converter. Comparator IC_{19} detects positive transients, and IC_{20} detects negative ones. To set the threshold level for a positive-going signal, adjust resistor R_{5}; adjust R_{6} for negative-going transients. Wire the outputs of both comparators together to ensure that they produce a rising edge to the clock input of IC_{8} when either a negative or a positive transient occurs.

Once the circuit detects a rising edge at pin 11 of IC_{8}, it illuminates an LED, D_{1}. At the same time, it releases counter 1 from its reset condition by taking RS_{1} low. Now the circuit clocks both counter 1 and counter 2 as A/D conversions continue. Counter 2 counts up from the value it held before the transient was detected. The memory locations determined by the output of counter 2 store the transient data while overwriting the oldest 2048 samples of pretransient data already stored in memory. Counter 1 counts off the 2048 clock states that correspond with the samples.

Because the output of $\mathrm{IC}_{16 \mathrm{~B}}$ is always high in the record mode, when counter 1 reaches 2047 , all inputs to IC_{10} and IC_{11} are high and both IC's outputs go low. As a result, the output of $\mathrm{IC}_{12 \mathrm{~A}}$ goes high, causing the output of $\mathrm{IC}_{14 \mathrm{~A}}$ to go low via $\mathrm{IC}_{13 \mathrm{~A}}$ and IC_{128}. This DIS REC CLK signal gates off CLK IN_{1} from the rest of the circuit at $\mathrm{IC}_{14 \mathrm{~B}}$. The output of $\mathrm{IC}_{18 \mathrm{C}}$ ensures that the CLK signal is held low, stopping both counters and the A / D converter.

At the end of the transient-record cycle, the memory will contain 4096 samples of the input waveform. One half of these samples are transient data, the other half
represent pretransient information. Whatever value is in counter 2 will be the last memory location for the transient data. The next memory location will hold the first of the 2048 words of pretransient data. Now when you start the playback mode, the first output from the counter will correspond to the memory location of the first pretransient sample. (To alter the ratio of transient to pretransient samples, simply alter the connections from counter 1 to IC_{10} and IC_{11}.)

To accurately convert the input waveform to stored data, you must pay close attention to the circuit. Use a precision reference, IC_{21}, to generate 5 V and -5 V references for the $V_{\text {REF }}$ and $V_{\text {REF }}$ - inputs of the A / D converter. Make sure that you properly decouple these reference voltages along with the V_{DD} and V_{SS} lines of the A / D converter. Connect IC_{6} 's GND pin to the star ground of the system (the point in the circuit at which you connect the analog and digital grounds). Make sure that the conductor between the A / D converter and the star ground is as wide as circuit-board layout constraints allow. Further, ensure that the $\overline{\mathrm{WR}} /$ RDY line is pulled high via R_{19} to avoid noise pickup on this pin.

Play back captured signals

Once you've captured that bothersome transient, you can play it back at any convenient time; the recorder will retain the information as long the power remains on, or until you depress the reset button. Select the playback mode with S_{1}. Playback takes the MODE signal low, activates the $\overline{\mathrm{WR}}$ input to IC_{7}, and deselects IC_{6} by taking its $\overline{\mathrm{CS}}$ high. You can display the transient on either an analog oscilloscope or an X-Y plotter, depending on the position of S_{2}. Make sure to select the oscilloscope or the plotter before starting playback.

If you decide to display the transient on an oscilloscope, the clock source for the circuit is the same as in the record mode. If you use a plotter for playback, the clock frequency is much lower and is applied via the CLK IN_{2} input. CLK (from either CLK IN_{1} or CLK IN_{2}) passes through gates $\mathrm{IC}_{15 \mathrm{D}}$ and $\mathrm{IC}_{14 \mathrm{D}}$ because the MODE signal is high. $\mathrm{IC}_{9 \mathrm{~A}}$ and $\mathrm{IC}_{9 B}$ generate the $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ pulses for IC_{7} from this CLK signal.
$\mathrm{IC}_{9 A}$ drives the $\overline{\mathrm{CSA}}$ input of IC_{7} as well as the enable signals for IC_{3} and IC_{4}. When you choose the playback mode, counter 1 resets and starts counting from 0 to 4095. The counter's output is the digital input code to DAC A of IC_{7}. This DAC drives the X axis of either the oscilloscope or the plotter. DAC A produces

Fig 3-The recorder can display captured data on a scope, a, or on an X-Y pen plotter, b. The first half of each display shows data acquired before the triggering event.
a unipolar output range from 0 to 5 V , with a resolution of 4096 steps.

The output of $\mathrm{IC}_{9 \mathrm{~g}}$ drives the $\overline{\mathrm{CSB}}$ input of IC_{7} and also sets the logic level on IC_{5} 's output-enable line, $\overline{\mathrm{OE}}$. This action latches the data from memory into DAC B, which drives the Y axis of the oscilloscope or plotter. By using dual supplies, you can set DAC B for a bipolar output range to reconstruct both positive and negative transients.

Counter 2 starts its count from the point at which it stopped at the end of the record mode; the first memory output word to IC_{7} is the oldest sample in memory. The scan will then proceed through the 2048 samples of pretransient information and the 2048 samples of transient information. The output of each sample from memory to the Y axis, via DAC B, corresponds to the output of a count value from counter 1 to the X axis via DAC A . In this way, the circuit reconstructs the pretransient and transient waveforms.

For oscilloscope display of waveforms, place S_{2} in the scope position. Doing so locks out CLK IN_{2} from the rest of the circuit but allows CLK IN_{1} to operate as clock signal for the circuit. Unlike the plotter display option, where counter 1 runs through once and then stops, CLK runs continuously. CNT FIN does go high when counter 1 reaches a count of 4095 , but because the output of $\mathrm{IC}_{14 \mathrm{C}}$ is high, the DIS PLOT CLK signal does not go low. You can see the typical oscilloscope waveform display in Fig 3(a).

You display the stored waveform on an X-Y plotter by placing S_{2} in the plotter position. Doing so locks
out the CLK IN_{1} input from the rest of the circuit and permits CLK IN_{2} to generate the clock signal for the circuit. $\mathrm{IC}_{16 \mathrm{~B}}, \mathrm{IC}_{10}, \mathrm{IC}_{11}$, and $\mathrm{IC}_{12 \mathrm{~A}}$ function in a manner similar to the record mode to generate a high CNT FIN signal. But this time, IC_{10} and IC_{11} go low when counter 1 reaches a count of $4095 . \mathrm{IC}_{13 \mathrm{~A}}$ goes low, and, because the output of $\mathrm{IC}_{14 \mathrm{C}}$ is already low, the DIS PLOT CLK signal goes low, turning off CLK IN_{2} at $\mathrm{IC}_{18 \mathrm{C}}$ and holding the CLK signal high. Fig 3(b) shows a captured transient displayed using a plotter as the display method.

Record-mode timing and clock waveforms

The timing diagrams in Fig 4 show the logic relationships for the record mode. The MODE signal (not shown) is low and the DIS REC CLK signal is high. The RS_{2} signal goes high when the recorder receives a reset command via S_{3} resetting counter 2. The next falling edge of the CLK signal clocks out an address for IC_{5} from counter 2. A conversion is also initiated on this falling CLK edge, and, within 700 nsec , the $\overline{\mathrm{INT}}$ signal of IC_{6} goes low, activating the $\overline{\mathrm{WE}}$ input of IC_{5}. The rising edge of CLK resets the $\overline{\mathrm{INT}}$ line 50 nsec later.

When the circuit detects a transient, the TRANS REC signal goes high, causing the RS_{1} line to go low and releasing counter 1 from its reset state. The next falling edge of CLK clocks out the outputs from counter 1. When the count output from counter 1 reaches 2047, the CNT FIN signal goes high and causes the DIS REC CLK signal to go low, shutting off the CLK signal.

To accurately capture fast events, you need a bigh-speed A / D converter and a widebandwidth track/hold amplifier.

Fig 4-The timing relation-
ships in the record mode show that recording starts on the first falling clock edge after the reset line goes high.

In the record mode in the waveforms shown, the $50 / 50 \mathrm{mark} / \mathrm{space}$ ratio of the CLK signal limits the clock frequency to 660 kHz . You need a CLK-low time of 750 nsec for the A / D converter to perform its conversion correctly and latch the data into IC_{5}. However, the CLK-high time can be as short as 350 nsec, the time required between conversions by the AD7821. Therefore, if the input to CLK IN_{1} has a low time of 750 nsec and a high time of 350 nsec , the circuit can make one conversion every 1100 nsec -equivalent to approximately 900 k samples $/ \mathrm{sec}$.

Playback to a scope

During playback to an oscilloscope, (Fig 5(a)), the MODE signal, the $\overline{\mathrm{WE}}$ input of IC_{5}, and the DIS REC CLK signal are high. When you place S_{1} in the playback mode, RS_{1} goes high, resetting counter 1. The CLK signal generates a $\overline{\mathrm{CSA}}$ signal for IC_{7} on its rising edge and a $\overline{\mathrm{CSB}}$ signal on its falling edge. The falling edge of the CLK signal clocks data from counter 1, and the rising edge of CSA updates the X axis. The falling edge of $\overline{\mathrm{OE}}$ outputs stored data from memory, and the rising edge of $\overline{\mathrm{CSB}}$ updates the Y axis. The CLK signal runs continuously when the circuit is in the scope-playback mode.

The timing diagram of Fig 5(b) shows operation of
the circuit for playback on a plotter. Once again, MODE, the $\overline{\mathrm{WE}}$ input of IC_{5}, and the DIS REC CLK signals are high. The circuit generates $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ to update the X and Y axes. Compared with scope playback, the difference in the circuit's operation is that when the output count from counter 1 reaches 4095 and the CNT FIN signal goes high, the DIS PLOT CLK signal goes low, forcing the CLK signal into a high state.

Burst-mode event sampling places requirements on an A/D converter similar to those for transient recording. In burst-mode sampling, the recorder looks at the input waveform infrequently, but when it does, it must acquire a large number of samples in a short time. With slower microprocessors or microcontrollers, you'll find that because of instruction- and bus-timing constraints, you can't achieve anything like the A/D converter's maximum throughput.

You can overcome timing limitations in a burst-mode sampler by using a DMA controller to initiate A/D conversions and transfer conversion data to memory. Doing so lets you run the A/D converter at or near its maximum sample rate, permitting high oversampling ratios and the acquisition of short transients.

Building a burst-mode sampler is a simple matter with the popular 8052 microcontroller (Fig 6). Al-

Fig 5-The timing for waveform playback is almost the same in the scope mode (a) as in the plotter mode (b). The difference is that the scope playback runs continuously, whereas the circuit produces a plotter output only once.
though the 8052 does not support hardware DMA, it does support what is termed "fake DMA." However, expect the response time to DMA requests to be much slower than what is possible with microcontrollers that support genuine DMA.
The HM6264P memory chip, IC_{3}, stores the control program for IC_{1}. The first part of the control program is the initialization routine. This routine (Listing 1) sets up the sense of the DACK0 line of the $8237, \mathrm{IC}_{2}$, to be active high. It also loads the starting data address into IC_{2} for the first conversion results. IC_{1} initializes the counting register to control the number of conversions before IC_{2} returns control to IC_{1}. The program must also set up IC_{1} for "fake DMA."
Once you've run the initialization program, IC_{2} is ready to take control when requested to do so. Although IC_{2} has four interrupt-request lines, this circuit uses only one, DREQ0. An external command signal drives this interrupt line high, telling IC_{2} to take control of the circuit and start the A/D converter sampling the input waveform.

After IC_{2} receives the DREQ0 request (Fig 7), its HRQ line goes high and feeds $\mathrm{IC}_{14 \mathrm{C}}$, which takes the $\overline{\mathrm{INT0}} \mathbf{l i n e}$ of IC_{1} low. IC_{1} responds to this "fake DMA" request by bringing its P1.6 line low and the output of $\mathrm{IC}_{14 \mathrm{~A}}$ high, selecting inputs of $\mathrm{IC}_{7}, \mathrm{IC}_{8}, \mathrm{IC}_{9}$, and IC_{10}. When the output of $\mathrm{IC}_{14 \mathrm{~A}}$ goes high, it shuts off IC_{1} 's address and data lines from the rest of the circuit and deselects the output's address decoder, IC_{13}. The inverted P1.6 line also feeds the HLDA input of IC_{2}, acknowledging IC_{2} 's request for control. IC_{2} then takes
control of the address and data bus and the sampling of the input waveform.
To reduce pin count, IC_{2} multiplexes the eight higher-order address bits on the data lines. You need an external device to latch these address bits. The address strobe signal, ADSTB, takes AEN high and switches the $\overline{\mathrm{OC}}$ line of IC_{6} low. ADSTB drives the C input of IC_{6} to latch the higher address lines to the outputs of IC_{6}. The inverted AEN line also drives one input of $\mathrm{IC}_{16 \mathrm{D}}$. The decoded output, Y_{0}, of IC_{13} controls the other input of this gate. Therefore, either a high on AEN or a low on the decoder output selects IC_{3}. You need this control logic because both IC_{2} and IC_{1} must be able to access IC_{3}.
The DACK0 line goes high at about the same time that ADSTB latches the address and drives one input of $\mathrm{IC}_{15 \mathrm{~A}}$. $\mathrm{IC}_{15 \mathrm{~A}}$ and $\mathrm{IC}_{15 \mathrm{~B}}$ ensure that the $\overline{\mathrm{CS}}$ line of IC_{4} goes low only when an input/output read operation of IC_{2} occurs. $\mathrm{IC}_{15 \mathrm{C}}$ provides the correct polarity for the $\overline{\mathrm{RD}}$ input and equalizes the delay paths for the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ lines, ensuring that the circuit obeys the $\overline{\mathrm{CS}}-\mathrm{to}-\overline{\mathrm{RD}}$ setup time.

Once IC_{4} receives a $\overline{\mathrm{CS}}$ signal, it acknowledges receipt of the signal by bringing its RDY line low, placing the controller, IC_{2}, into a wait state for as long as its READY input is low. When the device completes a conversion, the RDY line goes high, releasing IC_{2} from its wait state. Because IC_{4} 's RDY output is an opendrain output, you need to install an external pullup resistor, R_{2}.

When the circuit releases IC_{2} from its wait state,

Fig 6-A burst-mode sampler using an 8052 microcontroller is roughly equal in complexity to the transient recorder shown earlier.
data from IC_{4} is valid. The address lines of IC_{2} determine where data loads into memory. IC_{2} performs all of these operations automatically because a memory write accompanies each input/output read. Depending on the value loaded into the counting register, IC_{2}
will continue to issue read commands to IC_{4} until the circuit completes the required number of conversions. IC_{2} automatically increments the memory address after every write operation.
The multiplexer, IC_{12}, accommodates eight input

channels. The three upper and three lowest address lines of IC_{2}, gated through $\mathrm{IC}_{16 \mathrm{~A}}, \mathrm{IC}_{16 \mathrm{~B}}$, and $\mathrm{IC}_{16 \mathrm{C}}$, select the input channel. If the three upper address lines are set to all $1 \mathrm{~s}, \mathrm{IC}_{4}$ will convert each channel in sequence, and the conversion results will be stored in
consecutive memory locations. For example, if the first conversion takes place on the channel-1 input voltage, $\mathrm{V}_{\text {IN1 }}$, and the result is stored in location M of IC_{3}, the next conversion will take place on $\mathrm{V}_{\text {IN2 }}$, and the result will be stored in location $\mathrm{M}+1$. If the three uppermost address bits are set to 011, the circuit will sequence through channels 1 to 4 only.

Ready or not

The RDY line of IC_{4} drives the $\overline{\mathrm{WR}}$ input of IC_{12}, loading the address for the next channel to be converted into the multiplexer. When you have only one input channel to convert, you can use an alternate design: Remove $\mathrm{IC}_{16 \mathrm{~A}}, \mathrm{IC}_{16 \mathrm{~B}}$, and $\mathrm{IC}_{16 \mathrm{C}}$, and drive the $\mathrm{A} 0, \mathrm{~A} 1$, and A 2 inputs of IC_{12} directly from the three uppermost address lines. Using this scheme, the program chooses the input channel.
IC_{1} selects the device it talks to using a 1 -of- 8 address decoder, IC_{13}. The outputs of IC_{13} provide signals for IC_{12} 's $\overline{\mathrm{WR}}$ line, IC_{3} 's $\overline{\mathrm{CS}}$ input, and IC_{2} 's $\overline{\mathrm{CS}}$ input. One of the outputs also gates the P3.7 ($\overline{\mathrm{RD}})$ and the P3.6 ($\overline{\mathrm{WR}}$) outputs from IC_{1} to drive the $\overline{\mathrm{IOW}}$ and $\overline{\mathrm{IOR}}$ inputs of IC_{2}. The upper three address lines of IC_{1} select the required device. The lower address lines are multiplexed with the data lines in a manner similar to the way IC_{2} 's address and data lines are multiplexed. IC_{11} demultiplexes the lower eight address lines. IC_{1} 's ALE signal latches these address lines. The 3 -state buffers, $\mathrm{IC}_{7}, \mathrm{IC}_{8}$, and IC_{10}, isolate IC_{1} outputs from the address bus when IC_{2} takes control. You must use these buffers because IC_{1} can't place its address and data buses into a high-impedance state when IC_{2} takes control of the circuit. IC_{9} also acts as a buffer but is bidirectional because IC_{1} must read data from and write data to memory.
IC_{1} uses a $10-\mathrm{MHz}$ input-clock frequency. A 74HCT74 counter (IC_{19}) divides down this clock to form the clock input to IC_{2}. The standard 8237 operates from a $3-\mathrm{MHz}$ maximum clock frequency, so you can divide the $10-\mathrm{MHz}$ clock by 4 to provide IC_{2} 's clock. You'll have a resultant acquisition rate of 608 k samples/sec. A faster version of the 8237 , the $8237-5$, operates from a $5-\mathrm{MHz}$ input clock, allowing you to divide the clock frequency by 2 and enabling the circuit to take 812 k samples $/ \mathrm{sec}$. If you were to use IC_{1} on its own to control the sampling of the input waveform, the best acquisition rate you could obtain would be approximately 100 k samples/sec.
The entire circuit operates from 15 V and 5 V sup-

Listing 1-Initialization Routine

 XBY(8008H) = 80H
 20 XBY (800FH) = OEH
XBY}(800BH)=94
XBY(800CH)=00H

```
: SETS DACK SENSE ACTIVE HIGH
: CLEARS DREQO MASK REGISTER
- SETS MODE REGISTER
CLEARS FIRST/LAST FLIP-FLOP
    (ONLY REQUIRED IF 8237 IS
    NOT RESET BETWEEN DMA REQUESTS)
: LOADS LOWER BYTE OF STARTING DATA
    ADDRESS TO BASE AND CURRENT ADDRESS
: LOADS HIGHER BYTE OF STARTING DATA
    ADDRESS TO BASE AND CURRENT ADDRESS
: LOADS LOWER BYTE OF COUNTING NUMBER
    TO COUNT REGISTER
LOADS HIGHER BYTE OF COUNTING NUMBER
    TO COUNT REGISTER


Fig 7-Although the 8052 does not support true DMA, you can create a "fake DMA" mode, which, though not as fast as real DMA, lets you transfer blocks of data directly to memory.
plies. If there isn't a 5 V supply in your system, you can add a regulator to generate 5 V . In addition, plan to use a precision 5 V reference \(\left(\mathrm{IC}_{5}\right)\) for the \(\mathrm{A} / \mathrm{D}\) converter, allowing an input range of 0 to 5 V . To obtain accurate conversion results, you must obey the same guidelines regarding decoupling and grounding as apply to the transient-recorder circuit.
You can use the same design (Fig 6) with slow- and medium-speed microprocessors that support DMA requests. With these microprocessors, you'll find the DMA response time will be much faster than the re-
sponse of the 8052 's "fake DMA." Because microprocessors that support genuine DMA will 3 -state their address and data lines during a DMA transfer, you can eliminate the 3 -state driver chips.

EDN

\section*{Authors' biographies}

Ken Deevy is a senior design engineer responsible for developing CMOS and BiCMOS data-acquisition ICs at Analog Devices in Limerick, Ireland. He has been with Analog for more than seven years. He holds Bachelors' and Masters' degrees in engineering from the University of Limerick and is a member of the IEEE. His leisure activi-
 ties include 5-on-a-side soccer, badminton, running, and reading.

Dan Sheehan is a test engineer responsible for all aspects of burn in, life test, and production at Analog Devices in Limerick, Ireland. He has been with Analog for more than 11 years. He holds a diploma from the University of Limerick. He lists his leisure activities as running, rowing, and reading.


Mike Byrne is a senior project engineer specializing in applications and customer support at Analog Devices in Limerick, Ireland. He has been with Analog for more than 10 years. He holds a BS in electronics from the University of Limerick. His leisure activities include outdoor sports and music.


Article Interest Quotient (Circle One) High 491 Medium 492 Low 493

For complete specs and FREE evaluation

\section*{The Complete Electronic Design Solution.}

Tango is the pacesetter in affordable, PC-based electronic design with the quality and productivity
 that engineering professionals demand, and the easiest-to-use interface available on any platform, at any price.

Tango's powerful line-upp. Build your personal CAE/CAD workstation with Tango's start-to-finish design tools. Tango-Schematic, includes over 10,000 different parts. Experience Tango-PLD's powerful approach to top-down logic design with its C-like design language and schematic entry options. Add interactive logic simulation with Susie. \({ }^{\text {TM }}\)

Affordably-priced, our popular PCB layout tools have designed tens of thousands of boards. There's Tango-PCB PLUS, for complex designs and Tango-PCB, a comprehensive, yet economical program for less demanding requirements. Tango designers have three fast and efficient autorouting options: the high-performance Tango-Route; multi-grid, multi-layer Tango-Route PLUS; and Tango-Route PRO, the fastest PC-based, high-completion autorouter with its automated operation and advanced SMT support.

\section*{Tango's unrivaled after-sale support.}

Your investment in Tango software includes clear, concise documentation; responsive, knowledgeable technical support; affordable feature-based updates; our 24-hour Tango BBS; directories of service bureaus and design consultants; a quarterly newsletter; and our 30-day money-back guarantee.

Give us a call to discuss your own design requirements. You'll find our customer service is as friendly as our software. Call for complete specs and free evaluation packages.

\section*{Goes great}


\section*{with chips.}

If you've been following the developments in highdensity multichip modules, you know the great promise that lies there.

If you've been leading the developments, however, you know the great problem that lies there.

Namely, the search for a polymer dielectric that can make multichip modules truly practical.

For which reason we are pleased to introduce you to new bisbenzocyclobutenes (BCBs) from Dow.

BCBs offer big advantages over the polyimides you may have been experimenting with. To start, they simply perform better-by about \(50 \%\). And in the process, they simplify manufacturing and lower your overall costs.


The motherboard of a microcomputer, on a multichip module made with \(B C B\) from Dow-actual size.
finished module created with less stress than one made with most polyimides.

\section*{NO MORE SOGGY CHIPS.}

Water, a byproduct of the polyimide curing process, is the enemy of the multichip module. It complicates manufacturing and robs polymers of their dielectric appeal.

BCB , on the other hand, produces no water. So there's no need for additional drying during manufacture. And since it vigilantly resists moisture (absorbing just \(0.25 \%\) of its weight after 24 hours at \(100^{\circ} \mathrm{C}\) ), the dielectric properties you design in, stay in.

BCB also offers excellent adhesion to aluminum, copper, silicon dioxide-and to itself.

\section*{CHIPS WITHOUT RIDGES.}

Where does BCB's advantage come from?
For one thing, from its extremely low dielectric constant. In general, you can get away with layers \(25 \%\) thinner than you'd need with polyimides. This means higher density and, therefore, higher performance.

You also get much better leveling than with polyimides. BCB planarizes more than \(90 \%\), compared with the \(30 \%\) or less typical of polyimides. This nearly ridgeless surface reduces crosstalk and improves etching as well.

And BCB can take the heat, literally. It shows great thermal stability at curing temperatures. This, together with its naturally low modulus, gives you a

So there's no need for the metal tie layers other dielectric materials require.

\section*{YOUR CHIPS, OUR DIP.}

All in all, this means you can manufacture high-density modules faster, with fewer rejects and, therefore, less expensively with BCB. And wind up with modules that perform far better than they would with polyimides.

If BCB sounds good in theory, we invite you to learn from the experience of those who have put it into practice-including one manufacturer who has successfully gone into full commercial production.

If you'd like more information, call us today at 1-800-441-4DOW.

\title{
With our new FASTr and BCT logic, high speed and low power go hand in hand.
}

Get the best of both worlds.
When specifying logic, you're often faced with a high-performance compromise. On the one hand you want high speed, while on the other hand you want low power. In a best-case scenario, you'd have both.

Specify our new FASTr \({ }^{\text {rw }}\) and BCT logic and that's what you'll get. Without the compromise. Now you can realize the full potential of a bipolar/BiCMOS combination that delivers high speed and low power to an almost endless array of bus interface applications.

\section*{FASTr is the world's fastest TTL logic.}

If raw speed is your primary concern, take advantage of FASTr, which checks in at 3.9ns max. Also take advantage of its 64 mA drive and low-noise, bipolar circuitry.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{EXTENDED AC ELECTRICAL CHARACTERISTICS} \\
\hline \multirow{4}{*}{Device} & \multirow{4}{*}{Symbol} & \multicolumn{6}{|c|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\) Comm} \\
\hline & & \multicolumn{4}{|c|}{\(\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(C_{L}=250 \mathrm{pF}\)}} \\
\hline & & \multicolumn{2}{|l|}{1 output switching} & \multicolumn{2}{|l|}{8 outputs switching} & & \\
\hline & & Min & Max & Min & Max & Min & Max \\
\hline \multirow{2}{*}{74FR244} & tPLH & 1.0 & 3.9 & 1.0 & 4.8 & 2.3 & 7.0 \\
\hline & \(\mathrm{t}_{\text {PHL }}\) & 1.0 & 3.9 & 1.0 & 4.8 & 2.3 & 7.0 \\
\hline \multirow{2}{*}{74BCT240} & tPLH & 0.5 & 5.6 & 3.0 & 7.0 & 3.0 & 7.7 \\
\hline & tPHL & 0.4 & 4.0 & 1.5 & 6.5 & 1.5 & 5.0 \\
\hline
\end{tabular}


\section*{BCT balances speed and power.}

Combining bipolar and CMOS, BCT provides the ideal process mix that's a perfect match for low-power applications requiring high speed. Which means \(10 \mathrm{~mA} \mathrm{I}_{\mathrm{Ccz}}\) and 5.5 ns .

\footnotetext{
FASTr \({ }^{\text {™ }}\) is a trademark of National Semiconductor Corporation
}
© 1991 National Semiconductor Corporation

\section*{System specs.}

Guaranteed AC specs and enhanced reliability enable you to maximize your system's potential. And further illustrate why FASTr and BCT are the logic of choice-hands down.

GUARANTEED AC SPECS
( \(\left.\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Comm}\right)\)
- 250pF prop delays
- Multiple output switching
- Pin-to-pin delay skew

ENHANCED RELIABILITY
- Non-destructive hot insertion
- 4,000V ESD protection
- Latch-up protection
- \(<1 \mathrm{~V}\) bounce

\section*{Get your hands on some samples.}

Write or call us today. 1-800-NAT-SEMI, Ext. 129.

And start drawing your own conclusions.

\footnotetext{
NORTH AMERICA: P.O. Box 7643, Mt. Prospect, IL 60056-7643 (Tel: 1800628 7364, ext. 129; Fax: 1800888 5113); EUROPE: Raiffeisenstraße 10, D-8016 Feldkirchen, Germany (Tel: 498141103 0; Fax: 498141103 515); HONG KONG: 15th Floor, Straight Block, Ocean Center, 5 Canton Rd.,Tsimshatsui, Hong Kong (Tel: 852737 1600: Fax: 8527369921 ); JAPAN: 4-15, Nishi-shinjuku, Shinjuku-ku,Tokyo, Japan 160 (Tel: 81332997030 ; Fax: 8133374 4303).
}

\title{
Feedback models reduce op-amp circuits to voltage dividers
}

> An op amp's feedback factor defines a range of performance characteristics. Unfortunately, this factor is unknown for most op-amp applications because of a limited feedback model. By extending this model you can create a generalized feedback model that reduces op-amp circuit analysis to determining voltage-divider ratios.

\author{
Jerald Graeme, Burr-Brown Corp
}

The feedback factor of an op-amp circuit defines that circuit's performance more than any other parameter. The feedback factor sets the gain of the op amp's inputreferred errors. These errors include offset voltage, noise, and the error signals generated by limited openloop gain, common-mode rejection, and power-supply rejection. In addition, a circuit's feedback factor determines bandwidth and frequency stability. Yet this powerful performance indicator remains unknown for most op-amp applications. Except for the basic noninverting op-amp connection, the classic feedback model does not predict the feedback factors of op-amp circuits.

In the noninverting case, the closed-loop gain relates directly to the feedback factor; the application gain
itself determines the output errors and bandwidth. However, the relationship between the gain and feedback factor does not extend to other op-amp configurations. In other configurations, several conditions make the gain-feedback relationship unclear. The input and output signals of inverting op-amp connections, for example, combine on the feedback network to conceal the feedback factor. Other applications have both positive and negative feedback, which results in more than one feedback factor. In still other applications, bootstrap feedback adds another variable that the classic feedback model does not take into account. Without knowing the feedback factor, you must perform laborious calculations to determine these circuits' performance.

You can, however, extend the convenience of a feedback factor to these other circuits by modifying the classic op-amp feedback model. Specific connection examples can demonstrate the possible variations to this model. These variations are limited in number by the two inputs of an op amp; you can connect the input and feedback signals of an op amp in only a few ways. The examples in Figs 1 through 11 demonstrate modeling principles that will let you create a feedback model for any op-amp configuration. The final example is a universal op-amp feedback model that has standardized performance equations.

For the noninverting op-amp configuration, a direct relationship between the closed-loop gain and the feedback factor simplifies analyzing circuit performance.

\section*{The feedback factor of an op amp defines the circuit performance more than any other parameter.}

Fig 1 shows this configuration as a voltage amplifier. This noninverting circuit provides the familiar, ideal closed-loop gain ( \(A_{\text {CLI }}\) ): \(A_{\text {CLI }}=\left(R_{1}+R_{2}\right) / R_{1}\). This gain amplifies both the input signal \(\left(\mathrm{e}_{\mathrm{I}}\right)\) and the differential input errors ( \(\mathrm{e}_{\mathrm{ID}}\) ) of the op amp. Multiplying the inputreferred amplifier errors by \(\mathrm{A}_{\text {CLI }}\) yields the resulting output errors.

As you can see in the Fig 1 model, the mechanism relating both the input and output errors is the feedback factor. This model represents the noninverting op-amp connection by an amplifier with differential-input-error signal \(\mathrm{e}_{\mathrm{ID}}\) and feedback factor \(\beta\). This feedback factor defines the portion of the output signal ( \(\mathrm{e}_{0}\) ) that feeds back to the amplifier input. Writing a loop equation for this model shows that \(e_{0}=(1 /\) \(\beta)\left(e_{1}-e_{\text {ID }}\right)\). Thus, the feedback model shows that \(1 / \beta\) rather than \(\mathrm{A}_{\text {CLI- }}\)-amplifies \(\mathrm{e}_{\mathrm{I}}\) and \(\mathrm{e}_{\mathrm{ID}}\).

To resolve this amplification difference, define the noninverting amplifier's feedback factor. The feedback factor is the fraction of the amplifier's output that feeds back to its input. In Fig 1, the voltage-divider action of the feedback resistors sets the fraction of \(e_{0}\) fed back to the op-amp input: \(\beta \mathrm{e}_{0}=\mathrm{e}_{0} \mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\).

This relationship defines \(\beta\) as the voltage-divider ratio of the feedback network. Comparing this result with the \(\mathrm{A}_{\text {CLI }}\) expression shows that \(\mathrm{A}_{\text {CLI }}=1 / \beta\) for the noninverting op-amp configuration. Thus, the circuit and model are in agreement for the input-to-output transmission of amplifier errors.

The types of amplifier errors this model takes into
account are numerous because \(\mathrm{e}_{\mathrm{ID}}\) includes errors related to several amplifier characteristics. Each of these characteristics produces an input-referred error source for the op amp. The following formula represents error sources related to op-amp input-offset voltage ( \(\mathrm{V}_{\mathrm{os}}\) ), input-noise voltage ( \(\mathrm{e}_{\mathrm{N}}\) ), open-loop gain (A), commonmode rejection ratio (CMRR), and power-supply rejection ratio (PSSR). The last three error terms include circuit signals: the output voltage ( \(\mathrm{e}_{0}\) ), the commonmode voltage ( \(\mathrm{e}_{\mathrm{ICM}}\) ), and the change in power-supply voltage ( \(\delta \mathrm{V}_{\mathrm{S}}\) ):
\[
\mathrm{e}_{\mathrm{ID}}=\mathrm{V}_{\mathrm{OS}}+\mathrm{e}_{\mathrm{N}}+\left(\mathrm{e}_{\mathrm{O}} / \mathrm{A}\right)+\left(\mathrm{e}_{\mathrm{ICM}} / \mathrm{CMRR}\right)+\left(\delta \mathrm{V}_{\mathrm{S}} / \text { PSRR }\right)
\]

To find the amplifier output errors each of these terms creates, multiply each term by the \(1 / \beta\) factor of the application circuit. Some familiar error terms result from this multiplication. The output error due to the finite open-loop gain becomes \(e_{0} / A \beta\), which shows that the output signal is diminished by a fraction equal to the reciprocal of loop gain \(A \beta\). The decline of open-loopgain A with frequency makes this output error rise, thus shaping the closed-loop frequency response of the circuit. The output-noise error term is \(\mathrm{e}_{\mathrm{N}} / \beta\), leading to the term "noise gain" for \(1 / \beta\). This description of \(1 / \beta\) is accurate only under certain bandwidth limits. For both the loop-gain and noise errors, greater insight into circuit performance results from frequencyresponse analysis.

For the noninverting circuit in Fig 1, the multiplier


Fig 1-Op-amp input errors of the circuit schematic (a) are amplified by the reciprocal of the feedback factor, \(1 / \beta\), in the model (b).
that relates the input and output errors conveniently equals \(\mathrm{A}_{\text {CLI }}\). Other op-amp configurations do not share this convenience. For these configurations, you must determine the \(1 / \beta\) factor independently of the ideal closed-loop gain. Once you determine this factor, the error-analysis process is the same as that of the Fig 1 circuit.

For these more-complex op-amp configurations, you need to use feedback modeling to determine the feedback factor. This modeling also yields frequencyresponse and frequency-stability information. To demonstrate modeling, consider the familiar noninverting circuit in Fig 2. This noninverting configuration highlights the voltage-divider action of the feedback network. For more general use, the network has impedances \(\mathrm{Z}_{1}\) and \(\mathrm{Z}_{2}\) rather than the resistors in Fig 1. As before, the network's divider action controls the fraction of the amplifier output fed back to the amplifier input. The Fig 2 circuit reduces input-error-signal \(\mathrm{e}_{\mathrm{ID}}\) to the value of the open-loop gain error, \(\mathrm{e}_{0} / \mathrm{A}\). This reduction is due to the fact that the feedback modeling focuses only on gain and related frequency characteristics. Nevertheless, the one input-referred error is sufficient to define the feedback factor for use with the previous multi-error analysis.

Fig 2 also shows the feedback model for the noninverting op-amp connection. This classic feedback model, initially developed by Black (Ref 1), is generally proposed for op-amp circuits. However, this model ap-
plies only to the noninverting case and needs modification for other configurations. The model represents amplifier gain by gain-block A. A summation block, \(\Sigma\), drives the inputs of the gain block. The summation block's inputs are input-signal \(e_{1}\) and feedback-signal \(\beta \mathrm{e}_{0}\). The feedback signal flows through feedbackattenuator block \(\beta\). The summation block applies different polarities to the two signals, as the + and - signs indicate. These polarities correspond to the amplifierinput polarities of the actual circuit.

You can demonstrate the validity of the model by comparing the closed-loop-gain \(\left(\mathrm{A}_{\mathrm{CL}}\right)\) responses for the model and the circuit. For the model, the output signal is \(e_{0}=A\left(e_{1}-\beta e_{0}\right)\). Solving this equation for \(e_{0} / e_{I}\) defines the modeled transfer response of the noninverting circuit as
\[
\mathrm{A}_{\mathrm{CL}}=\mathrm{e}_{0} / \mathrm{e}_{\mathrm{I}}=\mathrm{A} /(1+\mathrm{A} \beta) .
\]

For the actual circuit of Fig 2, the transfer response of a noninverting amplifier is
\[
\mathrm{A}_{\mathrm{CL}}=\frac{\mathrm{e}_{0}}{\mathrm{e}_{\mathrm{I}}}=\frac{\mathrm{A}}{1+\frac{A Z_{1}}{Z_{1}+Z_{2}}} .
\]

Comparing the terms in the last two equations shows that the feedback factor is \(\beta=\mathrm{Z}_{1} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\).

The preceding analysis confirms the accuracy of the


Fig 2-A comparison of circuit (a) and model (b) responses shows that the classic feedback model predicts op-amp performance in noninverting connections.

Except for the basic noninverting case, the classic feedback model does not predict the feedback factor of op-amp circuits.

Fig 2 model and provides the basis for determining the frequency response and stability of the circuit. This added performance information is based on the feedback factor and is not specific to the noninverting case. Using feedback modeling, you can derive the frequency characteristics of an op-amp circuit by analyzing the model's closed-loop-response equation (Ref 2). For the noninverting case, you can rewrite this equation as
\[
\begin{equation*}
\mathrm{A}_{\mathrm{CL}}=\frac{1 / \beta}{1+1 / \mathrm{A} \beta} \tag{1}
\end{equation*}
\]

Other op-amp configurations have different closed-loop-response equations, but these equations always have the same \(1+1 / \mathrm{A} \beta\) denominator. This common denominator is central to the bandwidth and stability characteristics that hold for all op-amp configurations.
The frequency response of the Fig 2 circuit begins with the value of the ideal closed-loop gain ( \(\mathrm{A}_{\mathrm{CLI}}\) ) at dc. Because the op-amp open-loop gain (A) is very high at dc, the previous closed-loop-response equation simplifies to the ideal gain of the noninverting circuit: \(\mathrm{A}_{\text {CLI }}=1 / \beta\). At higher frequencies, the op-amp open-loop gain declines, causing the closed-loop gain to drop from the ideal value. This drop produces the circuit's bandwidth limit, as shown in Fig 3, which is a plot of the


Fig 3-The feedback factor indicates op-amp bandwidth and stability through the relationship between the \(1 / \beta\) curve and the open-loopgain curve, \(A\).
op amp's closed-loop response, its open-loop gain, and the reciprocal of the feedback factor. All three variables of the original closed-loop-response equation are plotted on the same graph. The manner in which these variables interact in Fig 3 provides visual insight into bandwidth and frequency-stability limits.
The circuit-loop gain, \(\mathrm{A} \beta\), represents the amplifier gain resource available to maintain the ideal closed-loop response. In Fig 3, the separation between the A and \(1 / \beta\) curves represents the loop gain. Because of the logarithmic scale of response plots, this separation equals \(\log (A)-\log (1 / \beta)\), which equals \(\log (A \beta)\). Thus, at any given frequency, loop-gain \(A \beta\) is the vertical distance between the A and \(1 / \beta\) curves. Where the loop gain can no longer match the feedback demand, the closed-loop curve drops from the ideal \(\mathrm{A}_{\text {CLI. }}\). The A and \(1 / \beta\) curves graphically define this point. The \(1 / \beta\) curve represents the feedback demand, and ideal closed-loop requirements are met as long as \(1 / \beta\) is below the open-loop-gain curve. Where this condition is no longer true, the actual response drops and follows the amplifier open-loop response downward. The rate of descent for the roll-off is \(-20 \mathrm{~dB} /\) decade for most op amps, a slope that is characteristic of a single-pole response. The heavier curve in Fig 3 represents the resulting closed-loop gain, \(\mathrm{A}_{\mathrm{CL}}\).

The location of pole \(f_{P}\) in the \(A_{C L}\) response roll-off determines the closed-loop bandwidth of the circuit. At the pole frequency, \(\mathrm{A}_{\mathrm{CL}}\) drops from its dc level of \(1 / \beta\) to \(0.707(1 / \beta)\). This drop assumes that resistor feedback produces a frequency-independent \(\beta\). Under this condition, the gain drop occurs at the intercept frequency of the \(A\) and \(1 / \beta\) curves. These curves are actually magnitude response curves, and, at their intercept, \(|A|=|1 / \beta|\) or \(|A \beta|=1\). The single-pole roll-off of gain A develops a phase of \(-90^{\circ}\). Thus, \(A \beta=-j 1\) at the intercept, and the denominator of \(\mathbf{E q} \mathbf{1}\) is \(1+(1 /\) \(\mathrm{A} \beta)=1+\mathrm{j} 1\).

At the intercept, the magnitude of the denominator increases from its dc level of 1 to \(\sqrt{2}\), and \(A_{C L}\) drops to \(0.707(1 / \beta)\). Thus, for frequency-independent feedback factors, the \(3-\mathrm{dB}\) bandwidth occurs at the intercept frequency of the A and \(1 / \beta\) curves. Where the feedback factor is frequency dependent, the closed-loop response still rolls off following the intercept, but this point may not be the \(3-\mathrm{dB}\) bandwidth limit. Peaking in the closed-loop response curve may move the actual \(3-\mathrm{dB}\) point away from the intercept frequency.

For more-common op-amp applications, the feedback
factor is constant, and a simple equation defines the \(3-\mathrm{dB}\) bandwidth. The open-loop response of most op amps has a single-pole roll-off. Virtually all intercepts of the \(A\) and \(1 / \beta\) curves occur in this single-pole range. In this range, the gain magnitude is \(A=f_{C} / f\), where \(f_{C}\) is the unity-gain crossover frequency of the amplifier. At the intercept, \(f=f_{P}\), and \(A=1 / \beta=f_{C} / f_{p}\). Solving for \(\mathrm{f}_{\mathrm{P}}\), the \(3-\mathrm{dB}\) bandwidth (BW) for most op-amp applications is \(B W=f_{P}=\beta f_{C}\).

This result holds for all op-amp applications having frequency-independent \(\beta s\) and a single-pole op-amp roll-off. In other cases, you find the \(3-\mathrm{dB}\) response limit by considering the added phase shift caused by the increased amplifier roll-off or by a frequencydependent feedback factor.

Knowing the \(\mathrm{A}_{\text {CL }}\) frequency response, you can refine the simple analysis of Fig 1 so you can apply it to broader frequency ranges. The previous analysis showed that input-referred errors of op amps transfer to the amplifier output through a gain of \(\mathrm{A}_{\mathrm{CLI}}=1 / \beta\). However, both \(\mathrm{A}_{\text {CLI }}\) and \(1 / \beta\) are independent of the amplifier's high-frequency limitation. The Fig 1 analysis is valid only when the op amp has sufficient gain to support the feedback demand. The \(3-\mathrm{dB}\) bandwidth marks a response roll-off that reduces amplification of both the signal and the error. Thus, op-amp error signals receive a gain of \(\mathrm{A}_{\mathrm{CLI}}=1 / \beta\) only to the frequency where \(\mathrm{BW}=\beta \mathrm{f}_{\mathrm{C}}\). Beyond this limit, the gain available to error signals rolls off and follows the op-amp openloop response in Fig 3.

This roll-off produces the difference between \(1 / \beta\) and the noise gain. The noise gain follows the roll-off Fig 3 describes even though the \(1 / \beta\) curve continues uninterrupted. The denominator of the \(\mathrm{A}_{\mathrm{CL}}\) equation ( \(\mathbf{E q}\) 1) expresses this roll-off. The closed-loop error gain, \(\mathrm{A}_{\text {CLE }}\), is
\[
\begin{equation*}
\mathrm{A}_{\mathrm{CLE}}=\frac{1 / \beta}{1+1 / \mathrm{A} \beta} . \tag{2}
\end{equation*}
\]

This error gain is frequency dependent. Higherfrequency noise and CMRR and PSRR errors receive diminishing gain. Note that \(\mathrm{A}_{\text {CLE }}\) depends on only the variables \(\beta\) and \(A\). Any feedback model with \(\beta\) and \(A\) blocks configured as in Fig 2 yields the same expression for \(\mathrm{A}_{\text {CLE }}\). This model configuration and the \(\mathrm{A}_{\text {CLE }}\) result apply to all op-amp configurations.

Using response plots like Fig 3, you can evaluate
the frequency stability of an op-amp circuit from the curve slopes. The slopes of the A and \(1 / \beta\) curves at their intercept indicate phase shift for a critical feedback condition. At this intercept, \(|A \beta|=1\); a loop phase shift of \(180^{\circ}\) makes \(\mathrm{A} \beta=-1\). Then, the \(1+(1 / \mathrm{A} \beta)\) denominator of \(\mathbf{E q} 1\) is zero, and \(A_{\text {CL }}\) is infinite. With infinite gain, a circuit can support an output signal in the absence of an input signal, meaning the circuit can oscillate. To prevent oscillation, you must keep the phase of \(\mathrm{A} \beta\) below \(180^{\circ}\). To prevent response ringing, you must further limit this phase to \(135^{\circ}\) or less.

You determine the loop phase shift by relating phase shifts to the slopes of the gain magnitude and \(1 / \beta\) curves. The relationship between the response slope and the phase shift is based on the effects of response poles and zeros. A pole creates a \(-20-\mathrm{dB} /\) decade response roll-off and \(-90^{\circ}\) of phase shift; a zero produces the same effects but with opposite polarities. Additional poles and zeros add response slopes and phase shifts in increments of the same magnitudes. The slope and phase correlation is an accurate approximation when the critical intercept is well separated from re-sponse-break frequencies. When the intercept is less than one decade from a response break, you have to use a more detailed phase analysis (Ref 2). Even in these cases, the response slopes provide insight into probable stability behavior.

Relying on the slope and phase correlation, you determine the feedback phase shift from the gain magnitude and \(1 / \beta\) curves. The intercept point in Fig 3 occurs after the amplifier's first pole develops the \(90^{\circ}\) phase shift but well before the second pole has any effect. At the intercept, the gain-magnitude curve has a slope of \(-20 \mathrm{~dB} /\) decade, and the \(1 / \beta\) curve has zero slope for a net \(90^{\circ}\) feedback phase shift. The result leaves a phase margin of \(90^{\circ}\) from the \(180^{\circ}\) needed to cause oscillation. The zero slope of the \(1 / \beta\) curve in Fig 3 is characteristic of voltage-amplifier op-amp applications. In these applications, resistors form the feedback network. In other applications, capacitors are often part of this network and effect a nonzero \(1 / \beta\) slope.

\section*{Inverting configuration extends model}

You can define the feedback factor and closed-loop gain for less obvious op-amp configurations by extending feedback modeling. The following examples demonstrate modifications of the Fig 2 basic feedback model that you need for alternate signal and feedback connections. In each case, the \(\mathrm{A}_{\mathrm{CL}}\) transfer-function

\title{
The input and output signals of inverting op-amp connections combine on the feedback network to obscure the feedback factor.
}
has a denominator of \(1+(1 / \mathrm{A} \beta)\), and \(\mathbf{E q} 2\) describes the error-signal gain.

The first example is the simple inverting op amp (Fig 4). This circuit interchanges the ground and \(e_{I}\) connections of Fig 2. This modification complicates determining the feedback factor for both the circuit and the model because the fraction of the amplifier output fed back to the input is not immediately obvious. The inverting input of the op amp is held near zero voltage by the inherent operation of an inverting circuit. This action results because the voltage at the inverting input receives counteracting signals from \(e_{0}\) and \(e_{I}\).

The signals the op amp receives result from the volt-age-divider action of the feedback network; \(\mathrm{e}_{0}\) and \(\mathrm{e}_{\mathrm{I}}\)


Fig 4-Inverting op-amp circuits (a) require model modifications (b) for an input signal that is attenuated and delivered to the opposite amplifier input.
drive the divider at opposite ends. Superposition of these divider actions shows that the signal at the amplifier's inverting input or summing junction ( \(\mathrm{e}_{\mathrm{SJ}}\) ) is
\[
\mathrm{e}_{\mathrm{SJ},}=\frac{\mathrm{e}_{0} \mathrm{Z}_{1}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}+\frac{\mathrm{e}_{1} Z_{2}}{\mathrm{Z}_{1}+Z_{2}}
\]

The first term of this equation shows that \(\mathrm{Z}_{1}\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\) remains the fraction of the output fed back to this input. Thus, for op-amp feedback networks, the feedback factor is the voltage-divider ratio of the network, regardless of the signals present in the actual circuit.
Analyzing Fig 4 with the feedback model requires you to adjust for the input-signal connection. The classic feedback model of Fig 2 shows \(e_{1}\) driving a noninverting or positive input at the summation point. This arrangement corresponds to the signal connection at the amplifier's noninverting input. However, in Fig 4, \(e_{1}\) is coupled to the amplifier's inverting input rather than its noninverting input. Fig 4 accommodates this difference by changing the sign of the corresponding summation input. In op-amp feedback modeling, assign all summation inputs the same polarities as the corresponding amplifier inputs.
Also, the Fig 2 model shows \(e_{1}\) connected directly to the summation point in accordance with the direct connection of the circuit. Fig 4, however, shows \(e_{1}\) connected to the feedback network rather than directly to the amplifier input. This network attenuates the amplifier input as the equation for \(\mathrm{e}_{\mathrm{S}}\) reflects. To include this attenuation in the feedback model, Fig 4 adds feed-forward factor \(\alpha\). This feed-forward factor is the fraction of the input signal fed forward to the amplifier input. As with the feedback factor, a voltagedivider ratio of the feedback network defines the feedforward factor. For \(\alpha\), the divider ratio is taken from the opposite end of the feedback network. For Fig 4, \(\alpha=Z_{2} /\left(Z_{1}+Z_{2}\right)\). In practice, every input signal connection to a feedback model has a corresponding \(\alpha\). For direct signal connections to amplifier inputs, \(\alpha\) is unity.

\section*{Extended model simplifies inverter analysis}

Using these model adjustments, you can extend feedback analysis to predicting the performance of inverting circuits. The feedback model of Fig 4 sums the input and feedback signals for \(\mathrm{e}_{0}=A\left(-\alpha \mathrm{e}_{1}-\beta \mathrm{e}_{0}\right)\). Solving this equation for \(\mathrm{e}_{0} / \mathrm{e}_{\mathrm{I}}\) yields the model response. Fig 4 compares the model with the corresponding circuit. Comparing terms confirms the defined values of
\(\alpha\) and \(\beta\). Rewriting the model result shows that the closed-loop gain of the generalized inverting circuit is
\[
\begin{equation*}
\mathrm{A}_{\mathrm{CL}}=\frac{-\alpha / \beta}{1+1 / \mathrm{A} \beta} . \tag{3}
\end{equation*}
\]

When the loop-gain \(\mathrm{A} \beta\) is large, the equation reduces to the ideal closed-loop gain of \(\mathrm{A}_{\mathrm{CLI}}=-\alpha / \beta=-\mathrm{Z}_{2} / \mathrm{Z}_{1}\).
The magnitude of this closed-loop gain is lower than the \(\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right) / \mathrm{Z}_{1}\) of the noninverting case, but the bandwidth is not correspondingly higher. This relationship results from the fact that the feedback factor-not the closed-loop gain-controls the bandwidth. The two circuits have the same feedback factor even though their gain magnitudes are different. As a result, the gainbandwidth product drops when the circuit changes from the noninverting to the inverting configuration.
To quantify bandwidth for the inverting case, the previous noninverting analysis transfers directly. This transfer results from the standard form of the response equations. The noninverting bandwidth was derived from the denominator of the \(\mathrm{A}_{\mathrm{CL}}\) response (Eq 1). That same \(1+(1 / \mathrm{A} \beta)\) denominator applies to the inverting case as Eq 3 shows. In both cases, the \(\mathrm{A}_{\text {CLI }}\) numerator reflects the ideal closed-loop gain. As in Fig 2, the bandwidth for the inverting op-amp connection is \(\beta f_{C}\), even though the closed-loop gain has decreased.
This \(\beta \mathrm{f}_{\mathrm{C}}\) relationship extends to all other op-amp configurations as well. You can write the transfer response of any negative-feedback system in a form that includes the \(1+(1 / A \beta)\) denominator. In this form, the numerator of the response equation reflects the ideal closed-loop gain. This gain describes the transfer response when \(A \beta \gg 1\), thus making the denominator essentially unity. The standard equation for the generalized transfer response for any op-amp configuration is
\[
\mathrm{A}_{\mathrm{CL}}=\frac{\mathrm{A}_{\mathrm{CLI}}}{1+1 / \mathrm{A} \beta} .
\]

Feedback modeling can reduce the transfer response of any op-amp connection to this generalized form. The conclusions you draw from this standard equation translate to all op-amp connections. Rederiving the characteristics of each individual configuration is unnecessary. The only variable factor is ideal-gain \(\mathrm{A}_{\text {CLI }}\), which you express in terms of \(\alpha\) and \(\beta\) combinations that are unique to a given configuration. For a given configuration, you can find \(\mathrm{A}_{\text {cLI }}\) by writing the re-
sponse of the feedback model in the standard form.
You can also express the op-amp input-error gain, \(\mathrm{A}_{\text {CLE }}\), in a generalized form. In this case, there are no differences between the equations for different amplifier configurations. For Fig 4, this gain is the gain of error-signal \(\mathrm{e}_{0} / \mathrm{A}\). This gain also affects the other inputreferred error signals of \(\mathrm{e}_{\text {ID }}\). For the Fig 4 circuit, you can find \(\mathrm{A}_{\text {CLE }}\) by using superposition and a test signal. Setting \(e_{1}\) to zero, you add a second error signal, such as noise \(\left(e_{N}\right)\), to the \(e_{0} / \mathrm{A}\) error signal. This procedure has the same effect as adding an \(\mathrm{e}_{\mathrm{N}}\) generator in series with the amplifier's noninverting input. The gain of this configuration amplifies such a signal, and
\[
\begin{equation*}
\mathrm{A}_{\mathrm{CLE}}=\frac{1 / \beta}{1+1 / \mathrm{A} \beta} \tag{4}
\end{equation*}
\]

Thus, \(A_{\text {CLE }}\) for the inverting configuration is the same as that of the noninverting case. Further examples show this equation to be true for all configurations. Op-amp input-referred error signals are amplified by \(1 / \beta\) up to the response roll-off the \(1+1 /(A \beta)\) denominator creates. From the Fig 3 discussion, this roll-off starts with the closed-loop bandwidth of the amplifier. Beyond this bandwidth limit, \(\mathrm{A}_{\text {CLE }}\) follows the op amp's open-loop response.

\section*{Multiple paths extend possibilities}

Other variations of op-amp configurations result from dual feedback paths or dual input-signal connections. Fig 5 shows a configuration with feedback to both amplifier's inputs. A voltage-follower connection provides unity feedback to the inverting input, and a feedback network supplies positive feedback to the noninverting input. Normally, positive feedback degrades circuit stability, but, in the Fig 5 example, the opposite is true. Positive feedback is useful when a greater negative feedback makes the overall circuit feedback negative. The combined feedback effects determine circuit operation, as feedback modeling illustrates.

The purpose of the dual feedback is to achieve volt-age-follower operation with an op amp that is not phase compensated for unity-gain stability. Normally, a voltage follower must have unity-gain stability because of the follower's unity feedback. However, some op amps lack this stability because of reduced internal phase compensation. Numerous op amps offer different degrees of phase compensation. Often, one product ver-

You can extend the feedback-factor convenience to all op-amp circuit configurations tbrough feedback modeling.
sion will have unity-gain stability but will also have a far slower slew rate than a lesser compensated version. The slew rate of the OPA37 in Fig 5 is 12V/ \(\mu \mathrm{sec}\), and the device's phase compensation is set for gains of five or greater. A companion product, the OPA27, has unity-gain phase compensation, but its greater compensation reduces the slew rate to \(2 \mathrm{~V} / \mu \mathrm{sec}\). Typically, the devices' slew rates differ by a factor approximately equal to the minimum gain of the lesser compensated version.

Modifying the circuit's feedback factor makes the higher slew rate available to the voltage follower. The modification reduces the feedback factor without altering the closed-loop gain, which removes the requirement for unity-gain phase compensation. The frequency stability of an op-amp configuration depends on the phase shift at the intercept of the A and \(1 / \beta\) curves. Fig 5 shows these curves for the reduced phase compensation and added positive feedback of the example. Because of the reduced compensation, the open-loop-gain curve A exhibits two response poles above the unity-gain axis. As a result, the slope of this curve is \(-40 \mathrm{~dB} /\) decade when the curve reaches unity gain.

This slope corresponds to \(180^{\circ}\) of phase shift and indicates oscillation for a \(1 / \beta\) intercept at unity gain. Normally, this intercept would result with a voltage follower where \(1 / \beta=1\). However, the positive feedback of the Fig 5 circuit reduces the net feedback factor to raise the \(1 / \beta\) curve. The raised curve places the inter-
cept in a region of reduced open-loop-gain slope and ensures frequency stability.
Raising the \(1 / \beta\) curve also moves the intercept back in frequency, which reduces the closed-loop bandwidth. In practice, this bandwidth reduction is the same as that produced by using the unity-gain compensated version of the amplifier as a conventional voltage follower. In that case, the added internal phase compensation reduces the bandwidth. To get the greatest bandwidth from the circuit in Fig 5, set the intercept at the level of the amplifier's minimum rated gain. This intercept condition results in \(1 / \beta=A_{\text {MIN }}\), where \(\mathrm{A}_{\text {MIN }}\) is the minimum stable gain the manufacturer specifies for the amplifier.

To permit this feedback setting, you must determine the value of \(\beta\) for \(\mathbf{F i g} 5\). Once again, the feedback-factor definition and the basic feedback model fail in this task. Determining the fraction of the output fed back to the input is complicated by the dual feedback paths. The classic feedback model of Fig 2 offers no help because it represents only one feedback path. Fig 6 extends the Fig 2 model to the dual-feedback circuit of Fig 5 by incorporating two adjustments. First, the model adds feed-forward factor \(\alpha\) in series with the signal input, following the process described for Fig 4. However, the model couples \(e_{1}\) to the positive inputs on the amplifier and summation elements.

The second model change is the addition of the \(\beta_{+}\) feedback path, which connects to a positive input on


Fig 5-Feedback to both op-amp inputs separates the \(1 / \beta\) and closed-loop-gain curves (a) for this high-slew-rate voltage follower (b).
the summation element. The summation polarity then matches that of the amplifier input the \(\beta_{+}\)feedbackpath affects. Feedback through \(\beta_{\text {_ remains connected }}\) to a negative summation input, and the two feedback polarities reflect the differential nature of the amplifier. The differential inputs of an op amp cause the amplifier to respond to the difference between the signals at the two amplifier inputs. Thus, the amplifier subtracts the two feedback signals when the signals


Fig 6-The dual feedback of the circuit in a results in a model with - feedback factor, \(\beta\), which is equal to the difference between the negative and positive feedback factors (b).
are connected to opposite amplifier inputs. The model repeats this subtraction by using opposite signs for feedback inputs to the summation element.

\section*{Dual feedback subtracts feedback factors}

The differential inputs' subtraction results in a net feedback factor that is the difference between the positive and negative feedback factors. Analyzing the circuit and model results in the response equations in Fig 6. The response denominator is of the standard form \(1+(1 / \mathrm{A} \beta)\) when the net circuit feedback factor is \(\beta=\beta_{-}-\beta_{+}\). Then, the equations confirm the Fig 6 model to the amplifier configuration, and
\[
\begin{gathered}
\mathrm{A}_{\mathrm{CL}}=\frac{\alpha / \beta}{1+1 / \mathrm{A} \beta}=\frac{\mathrm{A}_{\mathrm{CLI}}}{1+1 / \mathrm{A} \beta} \\
\beta=\beta_{-}-\beta_{+} .
\end{gathered}
\]

Note that, because the net feedback is negative, the net feedback factor is \(\beta_{-}-\beta_{+}\)rather than \(\beta_{+}-\beta_{-}\).
To determine the ideal gain, \(\mathrm{A}_{\mathrm{CLI}}=\alpha / \beta\), express the \(\alpha\) and \(\beta\) factors in terms of circuit elements. Although the equations for Fig 6 define these factors, depending on detailed equations is no longer necessary. Once the equations confirm the model, you do not need them to repeatedly analyze a given configuration. The \(\mathrm{A}_{\mathrm{CL}}\) expression of the model defines \(\mathrm{A}_{\text {CLI }}\) in terms of factors you can determine by inspection. You determine the feedback and feed-forward factors from the associated voltage-divider ratios. The ratio is unity for the direct output-to-input connection of the Fig \(6 \beta_{-}\)feedback. However, the Fig 6 model also holds for other cases in which a feedback network sets \(\beta_{-}\).

For the specific circuit of Fig 6, the result is the desired voltage-follower response; however, the circuit amplifies any errors. Reading the individual factors from the Fig 6 circuit and subtracting the two \(\beta\) factors gives
\[
\alpha=\beta=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}} .
\]

Thus, \(\mathrm{A}_{\mathrm{CLI}}=\alpha / \beta=1\) for the desired voltage-follower response. However, with \(\beta<1\), the input errors of the amplifier are amplified by \(1 / \beta>1\). Given the \(\beta\) selection for Fig \(5,1 / \beta=\mathrm{A}_{\text {MIN }}\). Then, the input errors are amplified by approximately the same factor that slew rate is improved. For the specific components of Fig 5, the input errors are amplified by a factor of five, and the slew rate improves by a factor of six. The error-signal

With feedback modeling, you can simplify op-amp circuit analysis to the determination of voltage-divider ratios.
gain rolls off in accordance with the amplifier open-loop response, as the equation for \(\mathrm{A}_{\text {CLE }}\) ( \(\left.\mathbf{E q} 4\right)\) shows. You can remove the increased error gain for the input offset voltage by using a capacitor in series with \(\mathrm{R}_{2}\) in Fig 5.

The reduced input impedance of the Fig 5 circuit also increases the error. However, this effect is less than you would first expect. At first, the input impedance of the circuit appears greatly reduced because the input signal drives a feedback network. Normally a voltage follower presents the very high impedance of an op-amp input to the signal source. When driving the feedback network in an inverting circuit, the input signal sees the impedance of the input resistor. This great difference in input impedance would also result for Fig 5 except for the bootstrap action of the positive feedback. The follower action of the circuit keeps both ends of the feedback network at almost the same signal level. The only signal appearing on \(\mathrm{Z}_{2}\) in Fig 6 is the small \(e_{0} / A\). Thus, the feedback network draws very little current from the signal source. The resulting input impedance is \(R_{1}=A Z_{2}\).

\section*{Dual inputs expand options}

Still other op-amp configurations couple input signals to both inputs of the amplifier. For these configurations, modify the feedback model on the input rather than the feedback side. The input signals coupled to the op amp may be from the same signal source or from separate sources. In the simplest case, the same signal source supplies both op-amp inputs, serving to illustrate input modifications for the model.

Fig 7 shows the dual-coupling of a signal source to the two op-amp inputs. This circuit selectively amplifies the op amp's input-error signal for greatly improved resolution of error measurement. Distortion measurement is a prime beneficiary of this selective gain. Input-error-signal \(\mathrm{e}_{\text {ID }}\) appears across \(\mathrm{R}_{1}\) and develops a feedback current of \(\mathrm{e}_{\mathrm{ID}} / \mathrm{R}_{1}\). This current also flows through \(R_{2}\) and develops an amplified replica of \(e_{\text {ID }}\) at the op-amp output. The resulting error-signal gain is \(\left(R_{1}+R_{2}\right) / R_{1}\). This gain equals \(1 / \beta\) as you can see by reading \(\beta\) from the voltage-divider ratio of the feedback network.

The amplification excludes test-signal \(e_{1}\) because this signal does not appear across \(\mathrm{R}_{1}\). The circuit bootstraps \(R_{1}\) on top of \(e_{1}\); the resistor supports only the amplifier-input-error signal. Signal \(e_{1}\) shifts the op-amp input voltages without developing a voltage across \(\mathrm{R}_{2}\). With no related signal on \(R_{2}\), the op-amp output follows \(e_{1}\). Thus, signal \(e_{1}\) receives only unity gain from the circuit,
and the amplifier error signal receives a gain of \(1 / \beta\). Because of this selective amplification, the amplified error signal is far more prominent at the amplifier output. The selective gain reduces the dynamic-range requirements for the error measurement. In addition, the unity gain presented to \(\mathrm{e}_{\mathrm{I}}\) lets this signal span the full voltage range of the op-amp input without causing output saturation.

However, this selective gain also reduces the feedback factor, resulting in bandwidth reduction. Distortion measurements must accurately predict the resulting bandwidth to determine the number of higherfrequency harmonics the circuit amplifies. From a circuit perspective, the Fig 7 configuration illustrates the effect of \(\beta\) on bandwidth. For this circuit, the output voltage is \(e_{0}=e_{I}-\left(e_{I D} / \beta\right)\). Thus, \(e_{0}\) diminishes from the level of \(e_{I}\) in the presence of \(e_{\text {ID }}\). Part of signal \(e_{\text {ID }}\) is the gain error, \(\mathrm{e}_{0} / \mathrm{A}\), which causes higher-frequency roll-off in the closed-loop response. For bandwidth considerations, \(e_{0} / \mathrm{A}\) replaces \(\mathrm{e}_{\mathrm{ID}}\), and the resulting output voltage is \(e_{0}=e_{1}-\left(e_{0} / A \beta\right)\). As open-loop-gain \(A\) declines with frequency, the output signal increasingly diminishes. At some point, the drop in output reaches the \(-3-\mathrm{dB}\) point of the bandwidth limit. The circuit reaches this limit sooner because of the presence of \(\beta\) in the \(e_{0}\) equation. The roll-off effect of \(A\) is amplified by \(1 / \beta\), which reduces the bandwidth by the same factor. As before, \(\mathrm{BW}=\beta \mathrm{f}_{\mathrm{C}}\).

The performance of Fig 7 is very similar to that of Fig 5. Both circuits maintain unity gain to the signal source but the amplifier operates with \(\beta<1\). For Fig 5 , the reduced feedback factor permits less amplifier phase compensation but results in greater gain to the error signals. Fig 7 intentionally adds gain to the error


Fig 7-This circuit results in input signal coupling to both of the op-amp inputs when \(R_{1}\) is boot-strapped to selectively amplify the error signal, \(e_{I D}\).

\title{
10MHz MICROPOWER OP AMPS \(40 \mathrm{~V} / \mu \mathrm{s}\) FROM \(375 \mu \mathrm{~A}\)
}

No other op amps match the new MAX402 and MAX403's combination of high speed and micropower operation. At only \(375 \mu \mathrm{~A}\) supply current, the 10 MHz MAX403 slews at \(40 \mathrm{~V} / \mu \mathrm{s}-14\) times faster than the industry standard OP27 at less than1/10th the supply current. For applications requiring even lower power, the MAX402 has a 2 MHz bandwidth and \(7 \mathrm{~V} / \mu\) s slew rate while drawing less than \(75 \mu \mathrm{~A}\) supply current. The MAX402 and MAX403 are both unity gain stable. They operate from \(\pm 3 \mathrm{~V}\) to \(\pm 5 \mathrm{~V}\) supplies, or a single supply from 6 V to 10 V , making them ideal for low power signal processing and remote sensors.


Best speed and power combination: 2 MHz at \(75 \mu \mathrm{~A}\) (MAX402) or 10 MHz at \(375 \mu \mathrm{~A}\) (MAX403)

\title{
Choose the Best Speed/Power Combination
}

\begin{tabular}{|l|c|c|}
\hline & MAX402 & MAX403 \\
\hline Unity-Gain Bandwidth & 2 MHz & 10 MHz \\
\hline Slew Rate & \(7 \mathrm{~V} / \mu \mathrm{s}\) & \(40 \mathrm{~V} / \mu \mathrm{s}\) \\
\hline Supply Current (max) & \(75 \mu \mathrm{~A}\) & \(375 \mu \mathrm{~A}\) \\
\hline Vos (max) & 2 mV & 2 mV \\
\hline IB (max) & 5 nA & 25 nA \\
\hline CMRR (min) & 75 dB & 60 dB \\
\hline AvoL & 75 dB & 80 dB \\
\hline
\end{tabular}

\section*{FREE Op Amp Design Guide}

Includes: Application Notes Data Sheets Cards For Free Samples
Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado, (303) 799-3435; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 238-7500; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 583-1500; Minnesota, (612) 944-8545; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (201) 428-0600, (609) 778-5353; New Mexico, (602) 730-8093; New York, (201) 428-0600, (607) 754-2171: N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 238-7500; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 238-7500, (512) 835-5822, (713) 789-2426; Utah, (801) 561-5099; Virginia, (301)644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Canada, (416) 238-0366, (613) 225-5161, (604) 276-8735, (514) 337-7540.

Using information based on the feedback factor, you can determine the frequency response and stability of an amplifier as well as its gain.
signal for measurement applications. The only difference between the two circuits lies in their applications. In practice, the circuits realize the same results through different configurations. From an applications standpoint, the two circuits are interchangeable.

The primary difference between the two circuits is in the feedback modeling. Fig 5 demonstrates dual feedback, and Fig 7 shows dual input connections. Fig 8 shows the Fig 7 modeling results by redrawing the circuit to show the two input connections. The Fig 8 circuit couples input-signal \(\mathrm{e}_{\mathrm{I}}\) directly to the amplifier's noninverting input. For the model, the direct connection represents an \(\alpha\) of unity and connects \(\mathrm{e}_{\mathrm{I}}\) directly to a positive input of the summation element.

The circuit also couples signal \(e_{\mathrm{I}}\), which a feedback network attenuates, to the inverting input of the amplifier. This attenuation defines a feed-forward factor equal to the voltage-divider ratio \(\mathrm{Z}_{2} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\). In the model, the \(\alpha\) block represents this second input connection, which goes to a negative summation input. Finally, a feedback path couples the circuit output to an amplifier input. In this path, the attenuation of the feedback network is \(\mathrm{Z}_{1} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\), which is the feedback factor. This feedback path connects to another negative summation input in the model, which corresponds to the inverting amplifier input connection of the circuit.

Analyzing the completed model produces a transfer response of the expected form:
\[
\mathrm{A}_{\mathrm{CL}}=\frac{(1-\alpha) / \beta}{1+1 / \mathrm{A} \beta}=\frac{\mathrm{A}_{\mathrm{CLL}}}{1+1 / \mathrm{A} \beta} .
\]

The denominator of this equation is the \(1+(1 / \mathrm{A} \beta)\) result common to all of the previous results. Thus, bandwidth and stability conclusions previously drawn from this denominator also apply to the equations for Figs 7 and 8. The closed-loop bandwidth is \(\beta \mathrm{f}_{\mathrm{C}}\), and frequency stability conditions relate to the intercept of the A and \(1 / \beta\) curves of Fig 3. The expression for the ideal closed-loop gain for the Fig 7 and Fig 8 circuits is the numerator of the equation, \((1-\alpha) / \beta\). Substituting the expressions for \(\alpha\) and \(\beta\) in this expression shows that \(\mathrm{A}_{\mathrm{CLI}}=1\).

\section*{Modeling extends simplicity}

You can readily extend the modeling principles of the preceding examples to any op-amp application. Using this approach, the final circuit analysis reduces to a single loop equation. Moreover, feedback modeling simultaneously defines many circuit-performance characteristics while avoiding the more complex response analysis of the circuit. You analyze the actual circuit only when questions arise about the validity of the feedback model. The three steps of feedback analysis are drawing the model, determining the \(\alpha\) and \(\beta\) factors, and finding the transfer response.

Drawing the model centers on the op amp's differential inputs. Feedback or input-signal connections to the op amp's inverting input are drawn as connections to negative inputs on the model summation element. Connections to the op amp's noninverting input are drawn as connections to positive summation inputs. An \(\alpha\) or \(\beta\) attenuator accompanies each of these input and feed-


Fig 8-The direct and attenuated input connections of the circuit in a couple to opposite-polarity inputs of the feedback model (b).

\title{
VIDEO BUFFER GUABANTEES 0．99VVGGAIN OVER TEMP FOR S4．25
}

\section*{Sharpest Video Images：0．01 \(/ \mathbf{O} .03 \%\) Diff Phase／Gain}

Maxim＇s new 180MHz MAX405 high－speed，precision buffer amplifier combines superior differential gain and phase with \(650 \mathrm{~V} / \mu\) s slew rate while operating from \(\pm 5 \mathrm{~V}\) supplies．Gain is guaranteed to be greater than \(0.99 \mathrm{~V} N\) over \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) ，with loads as low as \(50 \Omega\) ．The MAX405 comes in compact 8－pin DIP or SOIC packages and，unlike existing buffers，access to the inverting input allows accurate gain adjustment from 0.99 to \(1.1 \mathrm{~V} / \mathrm{V}\) ．

\section*{Precision}
\(0.01^{\circ}\) Differential Phase
－0．03\％Differential Gain
－0．1\％Nonlinearity Over Temp
0．99V／V Min Gain Over Temp
－ \(0.01 \Omega\) Rout
－Adjustable Gain

\section*{Speed}
－180MHz Bandwidth
－650V／4s Slew Rate
－35ns Settling to 0．1\％


Drives Four 150 Loads
The MAX405，with a guaranteed 60 mA continuous output current，directly drives a \(50 \Omega\) load to \(\pm 3 \mathrm{~V}\) ，or as many as four \(150 \Omega\) loads（four \(75 \Omega\) ．back－terminated loads）to \(\pm 2.25 \mathrm{~V}\) ． The MAX405 is ideal as a \(50 \Omega\) and \(75 \Omega\) coaxial cable driver for NTSC，PAL or SECAM color video signals．


\section*{FREE Video Design Guide}

Includes：Application Notes－Data Sheets Cards For Free Samples Simply circle the reader response number，contact your Maxim representative or Maxim Integrated Products， 120 San Gabriel Drive，Sunnyvale，CA 94086，（408）737－7600， FAX（408）737－7194

> The generalized feedback model covers each of the four possible input and feedback connections to the two op-amp inputs.
back connections. With just these polarity and attenuator guidelines, you draw the model itself. From the feedback networks, you find the individual \(\alpha\) and \(\beta\) terms as voltage-divider ratios. Feedback and feedforward signals drive a given network from opposite ends, resulting in different divider ratios. You find the two corresponding ratios by using superpositioning to separate the effects of the feedback and feed-forward signals. Once you determine these ratios, the feedback model is complete.
Next, you analyze the model to determine the net feedback-factor of the circuit and to find the ideal closed-loop gain. For most op-amp configurations, you can read the net \(\beta\) directly from the circuit. You read the individual \(\beta_{-}\)and \(\beta_{+}\)factors from the voltagedivider ratios of the feedback networks. You can find the net feedback factor of the circuit from \(\beta=\beta_{-}-\beta_{+}\). This step alone defines numerous performance errors as described for Fig 1. You can also find the bandwidth at this point through \(\mathrm{BW}=\beta \mathrm{f}_{\mathrm{C}}\). Where \(\beta\) varies with frequency, the value of beta used to find the bandwidth is the value at the intercept of the A and \(1 / \beta\) curves.
To complete the process and find \(\mathrm{A}_{\mathrm{CLI}}\), analyze the model for its transfer response. This step requires one loop equation, which describes the model summation times the open-loop-gain A. Solving this equation for \(\mathrm{A}_{\mathrm{CL}}=\mathrm{e}_{0} / \mathrm{e}_{1}\) defines the transfer response of the circuit in terms of A and the \(\alpha\) and \(\beta\) factors. You then manipulate this result to arrange it in a standard form. The denominator of the \(\mathrm{A}_{\mathrm{CL}}\) result always reduces to the form \(1+(1 / A \beta)\), and the resulting numerator is the ideal closed-loop gain, \(\mathrm{A}_{\text {CLI }}\). This standard-form requirement helps you detect analysis and modeling errors.

\section*{Complex circuit yields to modeling}

To illustrate feedback analysis, consider the voltagecontrolled current source of Fig 9 (Ref 3). Because of positive feedback, this op-amp connection produces an output current that is independent of the load voltage. The voltage load \(R_{L}\) develops acts as an input signal to the op amp's noninverting input. The amplification of this signal adjusts the op amp's output voltage by an amount that accommodates the load voltage. The added output voltage supplies a correction current through the positive feedback network \(\mathrm{R}_{2} / \mathrm{n}\) and \(\mathrm{R}_{2}\) form. This current accurately compensates the effect of the load voltage as long as you establish the illustrated \(1: 1 / \mathrm{n}\) resistor ratios.
The Fig 9 circuit is well known, but its performance
characteristics are not obvious. The circuit structure offers little insight into its bandwidth and the effects of input error signals. The voltage swing at the amplifier's output due to input and load voltages is not apparent. Furthermore, the circuit's positive feedback raises the question of frequency stability. Straightforward analysis of all these performance characteristics is a formidable task.

Feedback modeling reduces the task to one loop equation through the information you derive from the feedback factor and closed-loop response. Fig 10 shows the feedback-analysis circuit of Fig 9. This format displays positive and negative feedback factors through voltage dividers. To model the Fig 10 circuit, you include positive and negative feedback paths around the gain block. These paths meet summation-element inputs bearing the same signs as the corresponding amplifier inputs in the circuit. The model couples inputsignal \(e_{1}\) to the summation element through an \(\alpha\) block, which represents the attenuation of the feedback network \(e_{1}\) drives.

To define the \(\alpha\) and \(\beta\) terms, take the corresponding voltage-divider ratios from the circuit diagram. For the circuit of Fig 10,
\[
\alpha=\frac{1}{1+\mathrm{n}}, \beta_{-}=\frac{\mathrm{n}}{1+\mathrm{n}}, \beta_{+}=\frac{\mathrm{nR}_{1}}{\mathrm{R}_{2}+(1+\mathrm{n}) \mathrm{R}_{\mathrm{L}}} .
\]


Fig 9-A complex feedback structure confuses calculation of circuit performance for this well-known current source.

\title{
FREE S25 TRACK/HOLD \& REF WITH EVERY 12-BIT A/D
}

\section*{For \$17* Get a 12-Bit A/D plus a Track/Hold \& a Voltage Reference in a Small Footprint DIP or SO Package}

Design in the Maxim MAX163 Family of complete single-chip A/D converters, and eliminate multicomponent design problems, such as slew-rate limitations, settling time delays, signal droop, hold-step errors, and noise/distortion. Also, save board space, design time, and cost.

\section*{- \(8.33 \mathrm{\mu}\) S Conversion Time}
- 12-Bit No Missing Codes
- 100kHz Sampling Rate
- DC and Dynamic Specs 100\% Tested
- \(1 \mu\) S Acquisition Time Track/Hold
- 25ppm/ \({ }^{\circ} \mathrm{C}\) Voltage Reference
- High Input Resistance (500M \(\Omega\) )
- Analog Input Range: MAX163-OV to +5 V , MAX164 \(\pm 5 \mathrm{~V}\), MAX167 \(\pm \mathbf{2 . 5 V}\)
- Pin Compatible with AD7572


MAX167 replaces a sample/hold and an AD7572KN05 with better performance at a lower price (see table below)

\section*{MAX167 Replaces AD7572 and Sample/Hold}

Pin compatible with the AD7572, Maxim's MAX163 Family can plug into existing sockets and eliminate an external sample/hold and a high performance amplifier. Unlike other A/Ds with lowresistance inputs, the high input resistance ( \(500 \mathrm{M} \Omega\) ) of Maxim's converters allow the use of a lower cost amplifier to drive the A/D input. Compare the MAX167 specs to an AD7572KN05 used with an external sample/hold and see how well Maxim's performance looks - at a lower cost.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Specifications (S/H used with ADC \(\dagger\) ) & MAX167 & LF398A \(\dagger\) & AD585 \(\dagger\) & HA-5320 \(\dagger\) & SHC803 \(\dagger\) \\
\hline Hold Step + Offset (LSB max) & 6 & 16 & 10 & 8 & 19 \\
\hline Full Power Bandwidth (MHz typ) & 6 & 0.3 & 0.6 & 2 & 0.6 \\
\hline Acquisition Time ( \(\mu \mathrm{s}\) max) & 1 & 6 & 3 & 1.5 & 0.35 \\
\hline Aperture Delay/Jitter (ns/ps typ) & 25/50 & 150/? & 35/500 & 25/300 & 15/50 \\
\hline Power Dissipation (mW typ) & 104 & 270 & 375 & 465 & 835 \\
\hline Price Range** & \$20 & \$27 & \$35 & \$35 & \$140 \\
\hline
\end{tabular}
† S/Hs assumed to be used with AD7572KN05.
* Price 1,000-up, FOB USA.
** Based on \(100-\mathrm{up}\), FOB USA prices.

\section*{Sample, And Hold}

Call your Maxim rep or distributor today for FREE samples. Hold them, study them, design them in. And feel free to call or write us directly for any applications assistance you may need along the way. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

\footnotetext{
Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado, (303) 799-3435; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 238-7500; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 944-8545; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (201) 428-0600, (609) 778-5353; New Mexico, (602) 730-8093; New York, (201) 428-0600, (607) 754-2171; N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 238-7500; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 238-7500, (512) 835-5822, (713) 789-2426; Utah, (801) 561-5099; Virginia, (301)644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Canada, (416) 238-0366, (613) 225-5161, (604) 276-8735, (514) 337-7540.
-1000-up FOB USA, suggested resale
Maxim is a registered trademark of Maxim Integrated Products. © 1991 Maxim Integrated Products.
}

\title{
Using feedback modeling, you can derive the frequency characteristics of an op-amp circuit by analyzing the model's closed-loop response equation.
}

You find the net circuit feedback factor from
\[
\beta=\frac{\mathrm{R}_{2}}{\mathrm{R}_{2}+(1+\mathrm{n}) \mathrm{R}_{\mathrm{L}}} \beta_{-} .
\]

\section*{Generalized results define performance}

With this simple analysis, you know the bandwidth, stability, and effects of amplifier errors for the Fig 9 circuit. The resistance values yield a \(\beta\) of 0.076 . As a result, the circuit bandwidth at \(\beta \mathrm{f}_{\mathrm{C}}\) is a small part of the available amplifier bandwidth. For the OPA111, \(\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}\), and the circuit's bandwidth is 152 kHz . Even less bandwidth results with higher values of load resistance. As the \(\beta\) equation shows, the net feedback factor decreases to zero as \(\mathrm{R}_{\mathrm{L}}\) becomes very large. For Fig 9, an increase in load resistance from 1 to 10 \(\mathrm{k} \Omega\) reduces the circuit bandwidth from 152 to 16 kHz . Normally, the values of \(R_{1}\) and \(R_{1} / n\) would suggest a low-gain circuit for which the bandwidth would approach that of \(f_{C}\). However, an almost equal \(\beta_{+}\)counteracts the near-unity \(\beta_{-}\), and the resulting feedback demand for amplifier gain is high.
The frequency-stability information revealed by the \(\beta\) equation is twofold. First, the equation shows that \(\beta\) is always a positive value, indicating that negative feedback prevails regardless of the load resistance. Otherwise, the positive feedback could have dominated the circuit to cause latching or oscillation. The \(\beta\) equa-
tion provides further stability information through graphical analysis. Oscillation can still result if \(R_{L}\) is an inductive load, such as that of a motor. In this case, the load impedance rises with increasing frequency, causing a corresponding decrease in \(\beta\). This decreasing \(\beta\) would cause the \(1 / \beta\) curve of \(\operatorname{Fig} 3\) to rise with frequency. The increased \(1 / \beta\) slope signifies greater phase shift in the loop at the intercept of the \(1 / \beta\) and A curves. This increased feedback phase shift signifies potential response ringing or even circuit oscillation. To retain stability in these cases, bypass the load with a capacitor.
The \(\beta\) equations also show the effects of amplifier input errors on the Fig 9 circuit output current. As with all op-amp configurations, the input-referred errors \(\mathrm{e}_{\mathrm{ID}}\) includes are first amplified by \(1 / \beta\). This amplification determines the error effects at the op amp's output. From this output, the positive feedback network feeds back the errors through an attenuation factor of \(\beta_{+}\). This attenuated signal is across load \(R_{L}\) and develops an output error current of \(\left(\beta_{+} / \beta\right)\left(e_{\text {ID }} / R_{L}\right)\). Typically, \(\beta_{+} / \beta\) is large, and the effects of \(\mathrm{e}_{\mathrm{ID}}\) are amplified in the load current. For the components of Fig \(9, \beta_{+} / \beta=11\), which is the gain the circuit applies to the errors of \(\mathrm{e}_{\mathrm{ID}}\) before those errors appear across \(\mathrm{R}_{\mathrm{L}}\).

Continuing the model analysis yields the Fig 9 transfer response. You derive the current-output response from the input-to-output voltage response, \(\mathrm{e}_{0} / \mathrm{e}_{\mathrm{I}}\). Using


Fig 10-Translating the Fig 9 circuit into a feedback-analysis circuit (a) and then a feedback model (b) simplifies analysis and extends performance insight through standardized feedback results.

\title{
WORLD'S LOWEST COST 12-BIT \(3 / 4 \mathrm{~S}\) A/D \\ \\ The Next Industry Standard for Only \$15.00*
} \\ \\ The Next Industry Standard for Only \$15.00*
}

For applications demanding blazing speed and low cost, Maxim offers the new MAX183, the lowest-cost \(3 \mu \mathrm{~s} 12\)-bit A/D ever! Built with a proprietary BiCMOS process, the new A/D provides high speed and low code-edge noise, while consuming only 90 mW of power. For applications that don't require \(3 \mu \mathrm{~s}\) conversion times, Maxim offers the \(5 \mu \mathrm{~s}\) MAX184 and \(10 \mu \mathrm{~s}\) MAX185, two new lower-priced ADCs that are otherwise identical to the MAX183.
- \(\pm \mathbf{1 / 2 L S B}\) Max Integral Nonlinearity
- "No Missing Codes" Performance Over Full Operating Temperature Range
- 100ns Max Data Access Time and Three-State Data Outputs for Parallel Microprocessor Interfaces


\section*{Simplify Your Design}

The MAX183 reduces design complexity and time with flexible \(+5 \mathrm{~V},+10 \mathrm{~V}\), or \(\pm 5 \mathrm{~V}\) input ranges and an internal reference buffer that allows one system reference to drive multiple ADCs. The AID works with an external voltage reference, so you can choose the optimum one for each application.

- Flexible +5V, +10V, \(\pm 5 \mathrm{~V}\) Input Ranges
- Operates with +5 V , and -12 V or -15 V Supplies
- Drive A/D from a Crystal or an External Clock Source

\section*{- Small-Footprint 24-Pin DIPs and SOICs}


\section*{FREE A/D Converter Design Guide}

Includes: - Application Notes * Data Sheets - Cards For Free Samples Simply circle the reader response number, contact your Maxim representative or Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194

\section*{NAXIN}

\title{
Frequency plots let you evaluate the frequency stability of an op-amp circuit from the \(A\) and \(1 / \beta\) curve slopes.
}
the Fig 10 model, you find \(\mathrm{e}_{0} / \mathrm{e}_{\mathrm{I}}\) from a single loop equation that you then reduce to standard form. From the model, \(e_{0}=A\left(-\alpha e_{1}-\beta_{-} e_{0}+\beta_{+} e_{0}\right)\). Solve this expression for \(A_{C L}=e_{0} / e_{I}\) and manipulate the result to develop the standard denominator of \(1+(1 / A \beta)\). For Fig 10,
\[
\mathrm{A}_{\mathrm{CL}}=\frac{\mathrm{e}_{0}}{\mathrm{e}_{\mathrm{I}}}=\frac{-\alpha / \beta}{1+1 / \mathrm{A} \beta} .
\]

You then translate this result to a current output by first noting that the load voltage equals the positive feedback signal, or \(e_{L}=\beta_{+} e_{0}=i_{L} R_{L}\). Solving this equation for \(\mathrm{e}_{0}\) and substituting the result in the \(\mathrm{A}_{\mathrm{CL}}\) equation yields a Fig 9 response of
\[
\frac{\mathrm{i}_{\mathrm{L}}}{\mathrm{e}_{1}}=\frac{-1 / \mathrm{R}_{2}}{1+1 / \mathrm{A} \beta} .
\]

\section*{Generalized model covers all}

Drawing and analyzing feedback models adds insight to op-amp circuit operation and works with any op-amp application. However, op-amp circuit analysis is even simpler with a generalized feedback model and standard response equations. These standardized results avoid even the single loop equation of the model analysis and hold for all practical applications. Op-amp circuit analysis then reduces to finding voltage-divider ratios, which you can generally determine by inspection.

The feedback model of Fig 11 represents all possible op-amp circuit configurations. This model includes input and feedback connections to both the positive and negative summation inputs. The separation between the possible and the practical excludes op-amp configurations that have no end value.

The Fig 11 model represents each of the four possible input and feedback connections to the two op-amp inputs. Most op-amp configurations do not use all of these connections. In these cases, you set the associated \(\alpha\) or \(\beta\) terms to zero. Similarly, many op-amp applications have direct input or feedback connections to the opamp inputs. In these cases, a network does not attenuate the related signals, and you set the associated \(\alpha\) and \(\beta\) terms to unity. For example, the Fig 10 circuit has no input-signal coupling to the op amp's noninverting input. This lack of input-signal coupling sets \(\alpha_{+}\)to zero, and the Fig 11 model reduces to the model in Fig 10. Similarly, the Fig 8 circuit has no feedback


Fig 11-A generalized feedback model and standardized response equations reduce op-amp circuit analysis to finding \(\alpha\) and \(\beta\) voltagedivider ratios.
coupling to the op amp's noninverting input, and the input signal connects directly to this input. In this case, \(\beta_{+}=0, \alpha_{+}=1\), and the generalized model reduces to the model in Fig 8.

Analyzing the generalized model yields standardized equations that also lend themselves to specific op-amp applications. For the model of Fig 11,
\[
\begin{equation*}
\mathrm{A}_{\mathrm{CL}}=\frac{\mathrm{e}_{0}}{\mathrm{e}_{\mathrm{I}}}=\frac{\alpha / \beta}{1+1 / \mathrm{A} \beta}=\frac{\mathrm{A}_{\mathrm{CLI}}}{1+1 / \mathrm{A} \beta} \tag{5}
\end{equation*}
\]
\[
\beta=\beta_{-}-\beta_{+} .
\]

This analysis immediately communicates three results common to all op-amp configurations. First, the net feedback factor of the circuit is \(\beta=\beta_{-}-\beta_{+}\). In all cases, the differential inputs of the op amp subtract one feedback signal from the other. Next, the denominator of the \(A_{\text {CL }}\) equation is the familiar \(1+(1 / A \beta)\). Thus, the bandwidth and frequency-stability conclusions drawn using this denominator still apply. As in Fig 3, the intercept of the \(1 / \beta\) and A curves sets the Fig 11 bandwidth \(\mathrm{BW}=\beta \mathrm{f}_{\mathrm{C}}\). Frequency stability relates to the curve slopes at this intercept, as also described for Fig 3. Finally, the numerators of Eq 5 show that the ideal closed-loop gain is \(\mathrm{A}_{\mathrm{CLI}}=\alpha / \beta\) regardless of the op-amp configuration. Because of the denominator form of \(\mathbf{E q}\)

\section*{Murata Erie Components. A Perfect Fit For PowerSupplies.}


Around the world and in thousands of high voltage and miniaturized power supply designs, Murata Erie electronic components are proving to be the perfect match in meeting todays most critical production and performance requirements.

From ceramic disc and high voltage capacitors to trimming potentiometers and high voltage resistors. From EMI/ RFI filters and NTC thermistors to focus controls and a myriad of SMD devices including chip monolithic capacitors. Murata Erie has your power supply solution available today, off-the-shelf. And, approvals include UL, CSA, VDE, SEV, SEMKO, BS and more.


Our position as the world's leading manufacturer of electronic components is your assurance of on-time delivery, competitive pricing, product availability and ship-to-stock quality. You can also count on the support of Murata Eries uniquely qualified applica. tions engineering staff.

It's this type of commitment that has forged a solid reputation with those who design and build power supplies. And it's why you'll find Murata Erie's components the preferred choice for even the most sensitive medical, industrial, commercial and military electronics systems.

For technical information write to Murata Erie North America, 2200 Lake Park Drive, Smyrna, Georgia 30080 or call 404-436-1300. To order literature call 1-800-831-9172.

Tou can write the transfer response of any negative-feedback op-amp system in a form that includes the \(1+1 /(A \beta)\) denominator.
\(5, \mathrm{~A}_{\text {CL }}\) reduces to the numerator term when loop-gain \(A \beta\) is large. A large \(A \beta\) again denotes the ideal region of operation.

Two variables in the generalized \(\mathrm{A}_{\mathrm{CL}}\) equation are defined differently for different op-amp configurations. This flexibility permits one standard response equation for all configurations. In the \(\mathrm{A}_{\mathrm{CL}}\) equation, both \(\alpha\) and \(e_{I}\) depend on the input connections of the specific circuit. The varied participation of the modeled \(\alpha_{-}\)and \(\alpha_{+}\)determine feed-forward factor \(\alpha\). One or the other of these \(\alpha\) terms applies to most op-amp connections; other connections involve both terms. Input signal connections dictate the relevant \(\alpha\) terms. \(\alpha_{-}\)attenuates signals connected to the \(e_{1}\) terminal of the model; the signals then go to a negative summation input. For signals at the \(e_{2}\) input, \(\alpha_{+}\)is the attenuator, and the summation input has a positive polarity.

The input signal, \(\mathrm{e}_{\mathrm{I}}\), in the standard equation accommodates this \(\alpha\) variability; the modeled input signals are \(e_{1}\) and \(e_{2}\). This generalized \(e_{1}\) signal permits various combinations of signals \(e_{1}\) and \(e_{2}\). You can model the input signal connections using one equation for inverting, noninverting, differential, and common-mode cases. For each of these cases, a corresponding \(\alpha\) term results as summarized in the following table:
\begin{tabular}{l|c|c} 
Cases & el & \(\alpha\) \\
\hline Inverting & \(e_{1}\) & \(-\alpha-\) \\
\hline Noninverting & \(e_{2}\) & \(\alpha+\) \\
\hline Differential & \(e_{2}-e_{1}\) & \(\alpha+=\alpha-\) \\
\hline Common mode & \(e_{1}=e_{2}\) & \(\alpha+-\dot{\alpha}-\)
\end{tabular}

Examining this table shows agreement with previous modeling results. From the table, an inverting input connection of \(e_{1}\) couples through \(\alpha_{-}\)to a negative input. Hence, the table's \(\alpha\) term and polarity. This is the input case for Fig 10, which has a \(-\alpha=-\alpha_{-}\)term in the response equation's numerator. For Fig 6, the input signal couples to a noninverting amplifier input for a \(\alpha=\alpha_{+}\)term in the numerator of Eq 5. Similarly, Fig 8 shows a common-mode input case, and the resulting response numerator has a factor of \(1-\alpha\), which is \(\alpha_{+}-\alpha_{-}\). For the differential-input case, the table shows that Eq 5 accepts \(e_{1}=e_{2}-e_{1}\) for \(\alpha=\alpha_{+}=\alpha_{-}\).

One additional standard equation applies when using the generalized model. The equation for error-signal gain is
\[
\mathrm{A}_{\mathrm{CLE}}=\frac{1 / \beta}{1+1 / \mathrm{A} \beta}
\]

For the model, consider an input error source, \(-\mathrm{e}_{\mathrm{ID}}\), directly coupled to a positive summation input. This addition indicates that the amplifier input errors are in series with the input circuit. With the \(\mathrm{e}_{\mathrm{ID}}\) source connected to the model, analysis shows that Fig 11 amplifies input-referred errors by the same gain described earlier.

EDN

\section*{References}
1. Black, H, "Stabilized Feedback Amplifiers," Bell System Technical Journal, Vol 13, No. 1, 1934.
2. Graeme, J G, "Feedback Plots Offer Insight Into Operational Amplifiers," EDN, January 19, 1989.
3. Tobey, G, J G Graeme, L Huelsman, Operational Amplifiers; Design and Applications, McGraw-Hill, New York, 1971.

\section*{Author's biography}

Jerald Graeme has been with BurrBrown for 25 years and is the manager of instrumentation components design. Jerry has developed numerous linear ICs including op amps, instrumentation amplifiers, analog multipliers, V/F converters, and D/A converters. He has a BSEE from the University of Arizona, and a MSEE from Stanford Uni-
 versity. In his leisure time, he enjoys scuba diving, photography, and woodworking.

\section*{Article Interest Quotient (Circle One)}

High 482 Medium 483 Low 484

\section*{ASK EDN}

Have you been stumped by a design problem? Are you having trouble locating parts? Finding companies? Can't interpret a spec sheet? Ask EDN.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

\section*{IUABINE BIINXING A MIILION TIMES A DAV FOB TWENTY YEARS, ADD YOULL BEAIN TO UNDEBTAND THE DUBABILITY OF OUR DPTIGAL SWIICIES.}
tough applications such as duplicating, fax machines and computer peripherals. In fact, our optical switches operate thousands of times faster than electromechanical switches. And, they perform reliably for up to twenty years or more, exceeding the lifetime of the product itself.

Omron's optical switches dramatically improve the reliability of your end product by virtually eliminating switch failure. Take switches. There are over 50 Or ask us about the more than components we produce. You a closer look at Omron optical standard types to choose from.
100,000 different types of control WE HAVE THE FUTURE IN GONTROL. can reach us at l-800-62-OMRON.

\section*{12 BIT A/D +}

\section*{8 chMUX + S/H + 4wire I/0 + 13 \(\mu \mathrm{s}+10 \mu \mathrm{~A}\) Shutdown}

\section*{\(=\$ 15.95\)}

New LTC 1290 A to D System on a Chip.

Linear Technology presents the LTC1290, the new standard in serial 12 -bit data acquisition solutions. With exceptionally stable accuracy over temperature, the LTC1290 includes an 8-channel MUX, S/H, and ADC all in one low power CMOS design. Normal power consumption is a mere 25 mW , and its design includes a software selectable shut down that reduces consumption to microwatt levels.

And the LTC1290 is pin and function compatible with the LTC1090. That means that you can upgrade from 10 -bit to 12 -bit resolution and accuracy with a simple part change and little or no software modifications.

The LTC1290's efficient serial I/O allows easy interface to virtually any microprocessor and is ideal for remote or electrically isolated

applications. The 50 kHz throughput rate and \(\mathrm{S} / \mathrm{H}\) acquisition time of less than 1 microsecond make digitizing higher frequency waveforms easy. Software configurability of the MUX and analog to digital converter provide unmatched functional flexibility. The LTC1290 operates from either a single +5 V supply for 0 to 5 V inputs or \(\pm 5 \mathrm{~V}\) supplies for -5 V to +5 V inputs and is available in 20 pin skinny DIP or SO packages.

Pricing for the LTC1290 commercial grade plastic device starts at \(\$ 15.95\) in 100 's. Take a hard look at the new LTC1290. We think you'll agree, it's the high performance 12-bit ADC solution to your data acquisition needs.

For additional information, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. Or call 800-637-5545.

\section*{DESIGN IDEAS}

\section*{Diode sensor compensates laser}

\section*{Gheorghe Stoenescu and Neculai Grosu \\ Institute of Atomic Physics, Bucharest, Romania}

Laser-receiver circuits must bias their avalanche photodiodes (APD) to achieve optimal gain. Unfortunately, an APD's gain is dependent on the operating temperature. The circuit in Fig 1 controls the operating voltage of an APD over a large temperatures range to maintain the gain at the optimal value. The circuit uses \(\mathrm{D}_{1}\) as a temperature sensor thermally matched with the APD.

A voltage regulator, \(\mathrm{IC}_{1}\), supplies the necessary reference voltage to the circuit. \(\mathrm{IC}_{2 \mathrm{~A}}\) and \(\mathrm{Q}_{1}\) bias \(\mathrm{D}_{1}\) at a constant current. \(\mathrm{IC}_{2 \mathrm{~B}}, \mathrm{IC}_{2 \mathrm{C}}, \mathrm{IC}_{3 \mathrm{~A}}, \mathrm{IC}_{3 \mathrm{~B}}\), and \(\mathrm{IC}_{3 \mathrm{C}}\) amplify \(D_{1}\) 's varying voltage and set \(\mathrm{Q}_{2}\) to the optimal gain corresponding value. Potentiometer \(\mathrm{R}_{1}\) controls
the amplification over a range of 5 to \(15 . \mathrm{R}_{2}\) controls the voltage level, which corresponds to the optimal gain of the APD at \(22^{\circ} \mathrm{C}\) (the temperature is specific to the type of APD).

Fig 1 was tested with an RCA C 30954E APD. The tests covered the -40 to \(+70^{\circ} \mathrm{C}\) temperature range and used a semiconductor laser. The laser radiation was transmuted on the APD's active surface in the climatic room via an optical-fiber cable. The gain varied by at most \(\pm 0.2 \mathrm{~dB}\) over the entire temperature range.
EDN BBS /DI_SIG \#974
EDN

To Vote For This Design, Circle No. 746


Fig 1-This circuit controls the operating voltage of an avalanche photodiode over a wide range of temperatures by using \(D_{i}\) as a temperature sensor.

\section*{Auxiliary supply tracks power factor}

\section*{Bill Andreycak \\ Unitrode Integrated Circuits Corp, Merrimack, NH}

Most power-factor-correction circuits use a boost converter to generate a regulated dc output voltage from the ac line input while forcing the load to draw sinusoidal current, thereby maximizing the power factor. Typically, these circuits use an additional winding on the boost inductor (Fig 1a) to supply power to the control circuit. Unfortunately, the voltage across the inductor varies with the line voltage during both the charging and discharging period. A crude arrangement that uses a limiting resistor to feed a storage capacitor in parallel with a zener diode works well enough at very low power levels, but is inefficient and bulky at higher levels.

Fig 1b's circuit full-wave rectifies the auxiliary winding's output to completely cancel out line variations and provide a regulated output voltage. The circuit essentially sums the two phases of the boost inductor's voltage to eliminate the \(120-\mathrm{Hz}\) components. The regulated output tracks the power-factor-controlled preregulator output voltage and can be used in the corrected output voltage's feedback loop.

An isolated auxiliary winding consists of the desired number of turns wound on the boost inductor. You can vary the exact value of the auxiliary supply's output voltage by adjusting or scaling the auxiliary winding's number of turns. Fig 1b's rectifier develops two separate but individually unregulated voltages across capacitors \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\). Each of these voltages varies in amplitude at twice the ac line frequency. When switch \(\mathrm{Q}_{1}\) is on, the boost inductor connects directly across


Fig 1-Working off an auxiliary winding of a power-factor-corrected circuit's boost inductor (a), the full-wave rectifier in \(\boldsymbol{b}\) sums two phases of the inductor waveform to cancel out line variations. The result is a regulated auxiliary output.
the input supply, and a voltage proportional to the instantaneous input voltage develops across capacitor \(\mathrm{C}_{1}\). Once the switch turns off, the inductor voltage reverses and clamps to a voltage equal to \(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{IN}}\). During this interval, a voltage proportional to \(\mathrm{V}_{\text {out }}\) - \(\mathrm{V}_{\text {IN }}\) develops across \(\mathrm{C}_{2}\). The sum of these two capacitor voltages produces a regulated auxiliary voltage proportional to \(\mathrm{V}_{\text {OUT }}\). The voltage across the output capacitor equals \(\mathrm{V}_{\text {IN }}+\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)\), thereby canceling the in-put-line variations. EDN BBS /DI_SIG \#971 EDN

To Vote For This Design, Circle No. 747

\title{
Model helps determine motor parameters
}

\author{
Patrick H Conway \\ Conway Consultants, Rancho Palos Verdes, CA
}

By modeling a dc motor as a voltage-controlled oscillator, you can determine a servo motor's parameters for your particular load conditions. Fig 1a is a diagram of
a motor and load with a tachometer. \(\mathrm{E}_{\mathrm{A}}\) is the applied armature voltage, and \(\omega_{M}\) is the motor speed in rad/sec. The output frequency, \(\omega_{\text {out }}\), equals \(\omega_{\mathrm{M}} \times \mathrm{N}\), where N is the number of slots on the tachometer wheel. The standard motor terms are the torque constant, \(\mathrm{K}_{\mathrm{T}}\); the moment of inertia, J ; and the viscous-friction coeffi-


\title{
 \\ TTL \\ TTL \({ }^{1014} \$ 5995\)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{TOAT-R512 Accuracy} & \multicolumn{2}{|l|}{TOAT-124
Accuracy} & \multicolumn{2}{|l|}{TOAT-3610 Accuracy} & \multicolumn{2}{|l|}{TOAT-51020} \\
\hline (dB) & \((+/-d B)\) & (dB) & \((+/-d B)\) & (dB) & \((+/-d B)\) & (dB) & \((+/-d B)\) \\
\hline 0.5 & 0.12 & 1.0 & 0.2 & 3.0 & 0.3 & 5.0 & 0.3 \\
\hline 1.0 & 0.2 & 2.0 & 0.2 & 6.0 & 0.3 & 10.0 & 0.3 \\
\hline 1.5 & 0.32 & 3.0 & 0.4 & 9.0 & 0.6 & 15.0 & 0.6 \\
\hline 2.0 & 0.2 & 4.0 & 0.3 & 10.0 & 0.3 & 20.0 & 0.4 \\
\hline 2.5 & 0.32 & 5.0 & 0.5 & 13.0 & 0.6 & 25.0 & 0.7 \\
\hline 3.0 & 0.4 & 6.0 & 0.5 & 16.0 & 0.6 & 30.0 & 0.7 \\
\hline 3.5 & 0.52 & 7.0 & 0.7 & 19.0 & 0.9 & 35.0 & 1.0 \\
\hline
\end{tabular}
bold faced values are individual elements in the units

Now...precision TTL-controlled attenuators accurate over 10 to 1000 MHz and -55 to \(+100^{\circ} \mathrm{C}\). Four models are available in the new TOAT-series, each with 3 discrete attenuators switchable to provide 7 discrete and accurate attenuation levels (see chart). Cascade all four models for up to 64.5 dB control in 0.5 dB steps. Custom values available on request. The 50 -ohm TOAT-series performs with \(6 \mu \mathrm{sec}\) switching speed
 and can handle power levels up to 0 dBm . Units are housed in a rugged hermetically-sealed TO-8 package to withstand the shock,
vibration, and temperature stresses of MIL-STD-883. Connector versions are available. Take advantage of the \(\$ 59.95\) ( \(1-9\) qty) price breakthrough to stimulate new applications as you implement present designs and plan future systems.

\section*{DESIGN IDEAS}
cient, f. Neglecting the armature resistance, \(\mathrm{R}_{\mathrm{A}}\), and inductance, \(\mathrm{L}_{\mathrm{A}}\), the motor's transfer function is
\[
\frac{\omega_{0 U T}(\mathrm{~s})}{\mathrm{E}_{\mathrm{A}}(\mathrm{~s})}=\frac{\mathrm{NK}_{\mathrm{T}} \mathrm{f}}{\frac{\mathrm{~J}}{\mathrm{f}} \mathrm{~s}+1}
\]

Because the steady-state speed is proportional to the applied voltage, and the step response is exponen-tial-one pole in the transfer function-you can use a VCO with a lowpass filter at its input to represent the motor and load (Fig 1b.) Time constant \(\tau_{\mathrm{M}}\) equals \(\mathrm{R} \times \mathrm{C}\) in seconds, and gain constant \(\mathrm{K}_{\mathrm{M}}\) equals the steadystate speed divided by \(\mathrm{E}_{\mathrm{A}}\) in units of \(\mathrm{rad} / \mathrm{sec} / \mathrm{V} . \mathrm{N}\) is identical to that of Fig 1a. Thus, you can characterize the motor and load using \(\tau_{\mathrm{M}}\) and \(\mathrm{K}_{\mathrm{M}}\). Fig 1b's transfer function is
\[
\frac{\omega_{\mathrm{OUT}}(\mathrm{~s})}{\mathrm{E}_{\mathrm{A}}(\mathrm{~s})}=\frac{\mathrm{NK}_{\mathrm{M}}}{\tau_{\mathrm{M}} \mathrm{~S}+1}
\]

The time to reach \(50 \%\) of the motor's steady-state speed after applying a step input voltage is \(0.69 \tau_{\mathrm{m}}\). You can track this time with the second hand of a watch while monitoring the output with a frequency counter. For a motor speed of 3600 rpm and a tachometer with 400 slots, \(\omega\) equals \(150.8 \mathrm{k} \mathrm{rad} / \mathrm{sec}(24 \mathrm{kHz})\). The coefficients of corresponding terms in the two transfer functions are related as follows: \(\mathrm{K}_{\mathrm{T}} / \mathrm{f}=\mathrm{K}_{\mathrm{M}}\) in \(\mathrm{rad} / \mathrm{sec} / \mathrm{V}\), and \(\mathrm{J} / \mathrm{f}=\tau_{\mathrm{M}}\) in seconds.


Fig 1-By modeling a servo motor and load (a) as a VCO and RC filter (b), you can solve for coefficients that let you derive a coefficient of friction, \(f\), and moment of inertia, \(J\), that correspond to your motor's load conditions.

The combined mechanical parameters of the motor and load are \(\mathrm{K}_{\mathrm{T}}\) (unchanged because the load does not influence it), \(f=K_{T} / K_{M}\), and \(J=f \times \tau_{M}\).
EDN BBS /DI_SIG \#973
EDN

To Vote For This Design, Circle No. 748

\section*{Spice model aids loop-gain analysis}

\section*{Henry Yiu}

Perkin Elmer Corp, Pomona, CA
To plot the gain-phase relationships of a closed- loop feedback network using Spice, you must break the loop and inject an input signal. When you open the loop, proper dc bias is difficult to maintain because the open-loop dc gain is usually very high. Accounting for the opened loop's input and output impedances is also difficult. For instance, the input capacitance of an op amp could be in a separate library file that is inaccessible to the user. Models that approximate forward- and reverse-loop gain let you maintain the proper de bias when the loop is open.

Fig 1 shows the general ac model for any 2-port open-loop network. The parameters E, F, R, and Y can be any functions of the complex frequency, S . The correct way to calculate the loop gain is to close the


Fig 1-This general ac model for a 2-port open-loop network contains parameters \(E, F, R\), and \(Y\), which can be any function of the complex frequency, \(S\).
loop by making \(\mathrm{V} 1=\mathrm{V} 2\) and \(\mathrm{I} 1=\mathrm{I} 2\) and then open the loop at the dependent sources.

The forward-loop gain, FLG, is the voltage gain from the dependent voltage source around the loop and back:
\(\mathrm{FLG}=\mathrm{E} \cdot \frac{1-\mathrm{F}}{1+\mathrm{RY}-\mathrm{F}}\).

\section*{It's That Small!}

Alongside microcomputers and the cashless society, the demand for magnetic card technology is rapidly increas ing in a vast range of industries. One factor behind this greater use of magnetic cards is the miniaturization of equipment, including telephones, door security systems (hotels, etc.) and POS terminals. But not all systems are the same. That's why you need to check out the standard before choosing a card reader system. And that means TOKIN.



Fast, efficient information handling means a greater demand for compact, lowpower magnetic card readers capable of reading information from various magnetic strips. TOKIN meets this demand by using the latest breakthrough IC in its new ultra-compact MCS Series

Manual Magnetic Card Reader. The unit's remarkably small size offers maximum leeway in equipment design.

Apart from the MCS-180 Series, TOKIN offers a complete lineup of reliable, economical Magnetic Card Readers.

MANUAL MAGNETIC CARD READERS MCS-180 SERIES
Applicable Magnetic Cards
\begin{tabular}{ll}
\hline MCS-181 & ISO Track 2 \\
\hline MCS-182 & ISO Track 1 \\
\hline Basic Functions & \\
\hline Card Driving System & Manual, one way \\
\hline Performance & Read only \\
\hline Number of Channels & 1 \\
\hline
\end{tabular}

\section*{Features}
- New IC makes for super-small size, superior reading ability and reduced electric consumption
- Patented tension bar provides improved head stability and outstanding reading accuracy
- Magnetic head can be selected from TOKIN's extensive lineup of magnetic materials

\section*{Applications}
- Handy order terminals (for restaurants)
- Communications equipment terminals
- POS terminals
- Door security (for hotels, etc.)
- Various other systems

\section*{Shapes and Dimensions}


Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan Phone: 03-3402-6166 Fax: 03-3497-9756

\section*{Tokin America Inc.}

155 Nicholson Lane, San Jose, California 95134, U.S.A. Phone: 408-432-8020 Fax: 408-434-0375 Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090 , U.S.A
Phone: 708-215-8802 Fax: 708-215-8804

\section*{Tokin Electronics (HK) Ltd.}

Room 806 Austin Tower, 22-26A Austin Avenue
Tsimshatsui, Kowloon, Hong Kong
Phone: 367-9157 Fax: 739-5950
Taiwan Liaison Office
3F-4, No. 57 Fu Shing N.Road, Taipei, Taiwan
Phone: (02) 7728852 Fax: (02) 7114260
Singapore Branch
140 Cecil Street, No. 13-01 PIL Bldg., Singapore
Phone: 2237076 Fax: 2236093, 2278772
Tokin Europe GmbH
Knorrstr. 142, 8000 München 45, Germany


Fig 2-These PSpice models approximate the forward-loop gain, FLG (a), and the reverse-loop gain, RLG (b).

Likewise, the reverse-loop gain, RLG, is the current gain from the dependent current source around the loop and back:
\[
\mathrm{RLG}=\mathrm{F} \cdot \frac{1-\mathrm{E}}{1+\mathrm{RY}-\mathrm{E}}
\]

Depending on where you break the loop, E, F, R, and Y vary, but FLG and RLG stay constant.

Fig 2 shows Spice models that approximate FLG and RLG. The models maintain proper de bias by simulating a closed-loop dc operating condition and using dependent sources that are active only at dc. PSpice's (MicroSim Corp) behavioral modeling features let you simulate this operating condition. When the program initiates an ac simulation, all circuit elements linearize around the bias point so that the output will never saturate, even with a large loop gain. The ac open-loop network is therefore equivalent to the general model of Fig 1.

The voltage outputs of the FLG and RLG models are as follows:
\[
\begin{gathered}
\mathrm{FLG}^{\prime}=\mathrm{E} \cdot \frac{1}{1+\mathrm{RY}} \\
\mathrm{RLG}^{\prime}=\mathrm{F} .
\end{gathered}
\]

Listing 1 (which you can also obtain from the EDN BBS's DI Special Interest Group (617-558-4241,300/ 1200/2400,8, \(\mathrm{N}, 1\)-from main menu, enter (s)ig,

\section*{Listing 1-PSpice models for loop-gain analysis}

<s/di_sig>, rk972)) contains the PSpice code for these models. To use the models, make the open-loop network under test into a subcircuit named OLN, which you then run as a PSpice model. If \(\left|\mathrm{RLG}^{\prime}\right|=|\mathrm{F}| \ll 1\), then \(\mathrm{FLG}^{\prime}\) closely approximates the loop-gain term, FLG. Otherwise, break the loop at a different point and run the analysis again.

Note that these models are based on the assumption that \(|1+R Y|\) does not approach zero. Because \(1+\mathrm{RY}=\mathrm{V} 3 / \mathrm{V} 2^{2}\) in Fig 2a, you can use PSpice's probe feature to verify that \(11+\) RY| never approaches zero over all frequencies of interest. This check is not necessary unless, for example, you break the loop in the middle of a tuned LC network or a resonant transmission line. EDN BBS /DI_SIG \#972

\section*{Reference}
1. Caldwell, David J, "Minimize loading errors in loop-gain measurements," EDN, May 24, 1990, pg 165.

\section*{No"boomerang effect" at Trend Circuits. Less than \(1 \%\) of our prototype boards ever come back.}

Fast turnarounds in prototype circuit boards are great but not when the boards circle back again and again because of poor quality.


That "boomerang effect" costs precious time in proving your concepts and can end your chances to meet critical market windows.
We deliver speed and quality.
Speedy turnarounds don't count for much if proto-
types don't work. At Trend Circuits, we're specialists in rapid production of prototype boards that work first time out. That's because we're people who understand your language, your objectives and your pressures.

Further, fully one-third of our people are involved in inspection. We begin with incoming artwork, where we can quickly identify common design errors. And we continue with doubleand triple-checking right through to completion. As a result, less than a scant \(1 \%\) ever come back. And that's good for both of us.


Now for speed. On a regular basis, we deliver doublesided boards within 24 bours, and multi-layer boards within five days. In fact, we're completing no less than \(82 \%\) of all our work within five days.

Check our references.
You can verify our facts easily enough by talking to our customers. Simply phone and we'll put you in touch with people who've decided they won't accept compromise in quickly moving from design to finished prototype. They'll tell you why we're their logical choice for "noboomerang" boards. And why we should be yours.

\section*{TzEnD CRClits \\ PROTOTYPE SPECIALIBTB}

44358 Old Warm Springs Blvd.
Fremont, CA 94538-6148
415/651-1150
FAX 415/651-5763
888 Washington St.
Dedham, MA 02026
617/326-8700
FAX 617/326-3337
CIRCLE NO. 182

\section*{DESIGN IDEAS}

\section*{Low-battery detector polls threshold}

\author{
Yongping Xia \\ Department of Electrical and Computer Engineering, West Virginia University, Morgantown, WV
}

The battery low-voltage detector in Fig 1 uses a CD4093 Schmitt trigger, a capacitor that acts as a 1-bit dynamic RAM. The circuit conserves power by using a periodic test method. \(\mathrm{IC}_{1 \mathrm{~A}}, \mathrm{C}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}\), and \(\mathrm{D}_{1}\) generate a narrow, positive pulse at point A . The duty cycle of this pulsed signal depends on the ratio between \(R_{1}\) and \(R_{2}\). When the signal at \(A\) is high, the voltage at this point almost equals that of the power supply because \(\mathrm{IC}_{1 \mathrm{~A}}\) is a CMOS device.
\(D_{2}, R_{4}\), and \(R_{5}\) regulate and divide the signal at \(A\). Thus, the input of \(\mathrm{IC}_{1 \mathrm{~B}}\) is independent of the power supply. Because the threshold voltage of the Schmitt
trigger depends on the power supply, the threshold voltage will drop if the power-supply voltage drops. When the threshold voltage is lower than the input voltage, \(\mathrm{IC}_{1 \mathrm{~B}}\) will go low, and \(\mathrm{IC}_{1 \mathrm{C}}\) 's output will go high. Otherwise, \(\mathrm{IC}_{1 \mathrm{C}}\) will always be low.
Capacitor \(\mathrm{C}_{2}\) stores the results of the periodic test. The time constant \(C_{2}\) and \(R_{6}\) set is 1 sec , and the test period is approximately 0.1 sec , so point \(B\) holds the test result between successive tests. When point B is high, which implies that the battery is low, \(\mathrm{IC}_{1 \mathrm{D}}, \mathrm{C}_{3}\), and \(R_{7}\) generate a square waveform, which lights \(D_{3}\). You can adjust the detected voltage level by adjusting \(R_{4}\). You can test different battery voltages by changing the voltage level of \(\mathrm{D}_{2}\).EDN BBS /DI_SIG \#975EDN

To Vote For This Design, Circle No. 750


Fig 1-Capacitor \(C_{2}\) acts like a 1-bit dynamic RAM by storing the result of this periodic battery tester.

\section*{Design Entry Blank}
\$100 Cash Award for all entries selected by editors. An additional \$100 Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine
Cahners Publishing Co
275 Washington St., Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
\begin{tabular}{lr} 
Title __ Phone \\
Company __ \\
Division (if any) \(\quad\) \\
Street _ State \\
City \(\quad\) Zip \\
Country &
\end{tabular}

Design Title
Home Address \(\qquad\)

\begin{abstract}
Social Security Number
(Must accompany all Design Ideas submitted by US authors)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Please submit software listings and all other computer-readable documentation on a \(51 / 4-\mathrm{in}\). IBM PC disk.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
\end{abstract}

Date \(\qquad\)

\section*{ISSUE WINNER}

The winning Design Idea for the March 14, 1991 issue is entitled "One coax cable carries video and power," submitted by Jeff Kirsten and Charlie Allen of Maxim Integrated Products (Sunnyvale, CA).

The winning Design Idea for the March 28, 1991 issue is entitled "Pulse generator wrings out scopes," submitted by Jim Williams of Linear Technology Corp (Milpitas, CA).

\section*{FEEDBACK AND AMPLIFICATION}

\section*{Suggestion invokes tradeoffs}

Thanks to Larry K Baxter for his comments on the Design Idea "S/H circuit multiplexes op amp" in EDN's Feedback and Amplification column of February 18, 1991. He suggests moving \(\mathrm{R}_{1}\) outside the feedback loop to ensure stability in the op amp (although EDN published his wording as ". . . should be inside the feedback loop . . .") However, stability wasn't an issue for the op amp tested, an old 8007 from Intersil. Placing the resistor as Mr Baxter recommends eliminates a potentially destabilizing phase shift but lengthens the acquisition time by increasing the capacitor-charging resistance. Readers who use other op amps may want to consider this tradeoff of stability vs acquisition time.

As to the left-hand analog switch, we haven't converged on a clarification because that switch is drawn differently in all four schematics: the original author's (a Maxim employee) version, my edited version, EDN's published version (which doesn't work), and Mr Baxter's version. The pole of that switch must connect to the op amp. It connects to \(\mathrm{V}_{\text {IN }}\) in EDN's October 1, 1990, original version, which disconnects the op amp in hold mode. Mr Baxter's switch doesn't identify the pole, though he may not have drawn it that way. In any case, we all agree that analog switches exhibit less leakage and capacitance on switched nodes than on the common node.

Engineers and magazine art departments could reduce such confusion by adhering to standard IEEE or EIA-approved symbols for electronic components.
Tarlton Fleming, Technical Editor
Maxim Integrated Products
120 San Gabriel Dr
Sunnyvale, CA 94086
(408) 737-7600

\section*{Schematic Corrections}

Please note two schematic errors that crept into the March 14, 1991, Design Idea "One coax cable carries video and power" by Jeff Kirsten and Charlie Allen. In Fig 2, Q \({ }_{2}\) should be a 2 N 3904 , not a 2 N 3906 . In Fig 3, the ground symbol at \(\mathrm{IC}_{2}\) should be a triangle to indicate a power-supply ground.
Tarlton Fleming, Technical Editor
Maxim Integrated Products
120 San Gabriel Dr
Sunnyvale, CA 94086
(408) 737-7600

\title{
What do Mentor, Valid, and Cadence \\ have in common?
}

\author{
They all use CAPS \({ }^{\oplus}\) as an information source to create component libraries.
}

\section*{Shouldn't you?}

\author{
See CAPS in Booth \#1935 at \\ Design Automation Conference San Francisco, June 17-20, 1991 or call 800-245-6696
}

CAPS is a CD-ROM-based productivity-boosting engineering tool that helps you find, select, and specify ICs and semiconductors.


HTBasic from TransEra will turn your PC into a scientific workstation at a fraction of the cost. A real alternative to a high-priced dedicated workstation, a PC with HTBasic gives you the capabilities you need for complex scientific/engineering applications, while retaining compatibility to run and share data with standard PC software.

The savings don't end with the workstation itself. With an HTBasic system, you can use industry-standard printers, graphic output devices, and networking systems. You get the flexibility you need to lay out the system you want without being tied to limited offerings from one supplier.

HTBasic is a state-of-the-art language which gives you a number of advanced scientific/engineering features not found in other BASIC packages.

Features such as data acquisition and IEEE-488/RS-2 instrument control syntax, COMPLEX arithmetic matrix mathematics, complete HP-style graphic a comprehensive on-line help facility, and ma more, add up to increased productivity for levels of users.

The right choice for your next engineering workstation is a PC with HTBasic. Call or write us today for more information.

\section*{TransEra \\ Engineering Excellence for 15 Years \(^{\text {TM }}\)}

3707 N. Canyon Road Provo, UT 84t (801) 224-6550 Fax (801) 224-0355

\section*{HAWKER}


\section*{FOR: \\ MEDICAL INDUSTRIAL HVAC}

\section*{Sensym's 142/163 Series}

\section*{Features Include:}
- Guaranteed precision over temperature: \(\pm 1 \%\) Max \(\left(-18^{\circ} \mathrm{C}\right.\) to \(\left.+63^{\circ} \mathrm{C}\right)\) !
- High level calibrated output: \(1.0 \mathrm{~V} \pm 50 \mathrm{mV}\) offset \(5.0 \mathrm{~V} \pm 50 \mathrm{mV}\) span
- Linearity: <0.75\% FSO Max

These precision transducers are priced starting at \(\$ 40\) eal 100's. Stock delivery.

Available parts:
163SC01D48 ... - 20 to \(+120 \mathrm{cmH}_{2} \mathrm{O}\)
142SC series .. 0 to 1 psi up to 0 to 150 psi


\section*{Free Handbook}

Sensym's new 1990 Sensor Handbook gives complete product specifications plus over 200 pages of application notes and ideas.

Call or fax us today for your free Sensor Handbook.

\section*{Sampling A/Ds}

\section*{There's only one complete source.}

No matter what your requirement, you will find the answer in DATEL's broad line of Sampling Analog-to-Digital Converters.

\section*{Fast becoming the industry standard}

Characterized through Nyquist operation, these converters offer superior Signal-to-Noise ratios and harmonic distortion specifications.
Bottom line, compare these converters with any competitive units, and you'll see there is no reason to look anywhere else.

\begin{tabular}{lccccc}
\hline Model & Bits & \begin{tabular}{c} 
Throughput \\
\((\mathbf{M H z})\)
\end{tabular} & \begin{tabular}{c} 
Linearity \\
\((\) LSB \()\)
\end{tabular} & \begin{tabular}{c} 
Power \\
(Watts)
\end{tabular} & Case \\
ADS-111 & 12 & 0.500 & \(\pm 1 / 2\) & 1.3 & 24-PIN \\
ADS-193 & 12 & 1.0 & \(\pm 1 / 2\) & 1.3 & \(40-\) PIN \\
ADS-112 & 12 & 1.0 & \(\pm 1 / 2\) & 1.3 & \(24-\) PIN \\
ADS-117 & 12 & 2.0 & \(\pm 3 / 4\) & 1.4 & \(24-\) PIN \\
ADS-132 & 12 & 2.0 & \(\pm 1 / 2\) & 2.9 & \(32-\) PIN \\
ADS-118 & 12 & 5.0 & \(\pm 3 / 4\) & 2.3 & \(24-\) PIN \\
ADS-131 & 12 & 5.0 & \(\pm 3 / 4\) & 3.8 & \(40-\) PIN \\
ADS-130 & 12 & 10.0 & \(\pm 3 / 4\) & 4.0 & \(40-\) PIN \\
ADS-924 & 14 & 0.300 & \(\pm 1\) & 1.3 & \(24-\) PIN \\
ADS-928 & 14 & 0.500 & \(\pm 1 / 2\) & 2.9 & \(32-\) PIN \\
ADS-941 & 14 & 1.0 & \(\pm 3 / 4\) & 3.1 & \(32-\) PIN \\
ADS-942 & 14 & 2.0 & \(\pm 3 / 4\) & 3.2 & \(32-\) PIN \\
ADS-976 & 16 & 0.200 & \(\pm 2\) & 0.9 & \(32-\) PIN \\
ADS-930 & 16 & 0.500 & \(\pm 11 / 2\) & 1.8 & \(40-\) PIN \\
& & & & & \\
\hline
\end{tabular}

For details on how DATEL's Sampling A/Ds can improve your circuit's performance call or write DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048.

\section*{Let DATEL convert you.} Call now 800-233-2765


INNOVATION AND EXCELLENCE IN PRECISION DATA ACQUISITION DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048 (508) 339-3000

\section*{NEW PRODUCTS}

\section*{Micropower Low-Dropout Voltage Regulators}
- Quiescent current is \(130 \mu \mathrm{~A}\)
- Dropout voltage is 60 to 470 mV Designed for use in battery-powered systems, the LP2952, LP2953, and LP2954 voltage regulators feature a quiescent current of only 130 \(\mu \mathrm{A}\) at a \(1-\mathrm{mA}\) load. The devices have a dropout voltage that ranges from 60 mV at light loads to 470 mV at full loads of 250 mA . The LP2952 and LP2953 feature an adjustable output voltage of 1.23 to 29 V ; the LP2954 has a fixed 5 V output. The LP2952 and LP2953 have error flags that indicate when the output voltage drops out of regulation; both devices also have a shutdown pin that you can wire to produce a quick turn-on and turn-off of the output voltage. The LP2953 also contains an auxiliary comparator that can be used for fault detection or low input-voltage warning. All of the regulators include re-

verse-battery protection, a feature that prevents the regulator from acting as a short circuit when the battery terminals are reversed. The LP2952 is available in 14-pin DIPs and 16 -pin SO packages. The LP2963 is available in 16 -pin DIP
and SO packages. The LP2954 is offered in a 3-lead TO-220 package. \(\$ 2\) to \(\$ 2.35\) (100).
National Semiconductor, Box 58090, Santa Clara, CA 95052. Phone (408) 721-7509. TWX 910-339-9240.


\section*{Video Conversion Chip}
- Meets CCIR 601 standard
- Converts signals from YUV to RGB
Designed for use in the videorestitution stage of a digital imageprocessing system, the STV3300
chip converts YUV (luminance/ chrominance) signals to RGB (red, green, blue) signals in accordance with CCIR 601 recommendations. A filter block provides \(2 \times\) oversampling, which helps to eliminate noisy signals in digital receiver applications. Four selectable filters are available for chrominance signals, and one fixed filter is available for the luminance signal. Input data is in the 4:2:2 format defined by CCIR 601 and is fed through two 8 -bit buses at 13.5 MHz max for the luminance and 6.75 MHz for the chrominance samples. RGB output data is on three 8 -bit buses at 27 MHz max. The STV3300 comes in a 52 -pin plastic leaded chip carrier. \(\$ 18.20\) (1000).

SGS-Thomson, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6290.

Circle No. 352


\section*{Image Digitizers}
- Accelerate video-capture rate
- Provide high-resolution output Featuring video-capture rates to 30M samples/sec, a trio of image digitizers can digitize NTSC video signals at 8 times the subcarrier frequency. This capability simplifies the design requirements of antialiasing filters. The three parts are the Bt218 8-bit flash converter, the

Bt252 single-channel image digitizer, and the Bt254 3-channel image digitizer with color output format. The Bt218 contains 256 high-speed parallel comparators to digitize analog-input signals. An input range of 0.714 to 1.2 V allows direct digitization of NTSC and CCIR video signals. The Bt252 for
monochrome video signals contains an 8 -bit flash \(\mathrm{A} / \mathrm{D}\) converter that supports four analog video outputs. A \(256 \times 8\)-bit RAM look-up table enables real-time image manipulation prior to data storage. The Bt254 contains three 8-bit video A/D converters, supports two separate 3 channel video-output ports, and


For Screaming 'C30 Speed from your AT, Buy Banshee and hang on!


The Banshee System from ASPI can turn your AT or compatible into a full-blown C processing engine.

The Banshee Board, based on TT's TMS320C30 processor, delivers 33 MFLOPS speed that qualifies your AT for high-speed calculations and 'C30 DSP development.

The basic system includes the SPOX real-time operating system; a C Compiler; a C Source Debugger; and ASHELL, ASPI's DOS shell that links the whole system together.

Options include a memory expansion board that can add up to 64 Mbytes of DRAM to the system and a 16-bit, dualchannel 200 kHz A-D/D-A data acquisition system.

For detailed specifications and prices, contact Atlanta Signal
Processors, Inc., 770 Spring St., Atlanta, GA 30308.
Telephone 404/892-7265.
Fax 404/892-2512.
generates 8,15 , or 24 bits of color information for each pixel. The Bt218 is available in a 24 -pin DIP or a 28 -pin plastic leaded chip carrier (PLCC); the Bt252 and Bt254 come in 44-pin PLCCs. Bt218, \$10; Bt252, \$33; Bt254, \$40 (100).
Brooktree Corp, 9950 Barnes Canyon Rd, San Diego, CA 92121. Phone (619) 452-7580. FAX (619) 452-1249. TLX 383596.

Circle No. 353


\section*{Virtual-Ground Generator}
- Interfaces analog ICs to a single 5 V supply
- Provides a 2.5 V midpoint

Described as "virtual ground generator," the TLE2425 simplifies the use of analog ICs in digital systems. By providing a midpoint reference of 2.5 V , the 3 -terminal device replaces the multiple components previously required when interfacing dual-supply analog ICs with digital systems operating from a single 5 V supply. The micropower device, which needs only \(170 \mu \mathrm{~A}\) of quiescent current, can source or sink 20 mA . The device features an output regulation of \(45 \mu \mathrm{~V}\) typ at an output current between 0 and \(\pm 10 \mathrm{~mA}\), and a typical output impedance of \(0.0075 \Omega\). The TLE2425 comes in a 3-lead TO226AA package. \(\$ 0.69\) (1000).
Texas Instruments Inc, Semiconductor Group (SC-91028), Box 809066, Dallas, TX 75380. Phone, in US and Canada, (800) 336-5236, ext 700; outside US, (214) 995-6611, ext 700 .

Circle No. 354

\title{
Generate precise sinewaves with just one chip.
}

Now just one chip does the work of many. Micro Linear's ML2035 and ML2036 are the industry's first integrated programmable sinewave generators. They're easily programmable from DC to 25 kHz (ML2035) or 50 kHz (ML2036). Each delivers better than \(\pm .75 \mathrm{~Hz}\) frequency resolution, and -45 dB harmonic distortion.

Absolute error gain over the frequency range is better than \(\pm .1 \mathrm{~dB}\). And the frequency reference of the sinewave output is derived from either an external crystal or clock input.

The ML2035 is housed in an 8-pin DIP while
the full featured ML2036 is available in a 14 pin DIP or 16 -pin SOIC.

At prices starting at \(\$ 5.95\), the low-cost ML2035 and ML2036 are the perfect single chip solutions to efficient, precise sinewave generation.

So whether your application is in telecommunications, modems, motor control, uninterruptible power supplies, or any other, call Al Tremain at (408) 433-5200. Or write to Micro Linear, Dept. SWG, 2092 Concourse Drive, San Jose, CA 95131.

And ask for your copy of our 1991 Data Book, too.


60 Hz Sinewave Output Using NTSC Color Burst Crystal


Generating Fixed 50 Hz and 60 Hz Sinewaves


Generating Precise Phase Controlled Sinewaves


ML2035 Block Diagram

\section*{Here's one reason thatover half of all SCSI devices sold are NCR.}

We created the market... and we still lead the way.
 Meet NCR's SCSI development team. In 1983, they gave the computer industry its first SCSI device. By providing easy connectability and significantly reducing time to market, a new product era was born.

Since then needs have changed. By combining our system skills, highperformance standard cell methodology, and in-house manufacturing,

NCR has maintained its leadership role with innovative new ideas
like the 53C700 product family. And the joint development of LADDR - a new architecture aimed at cutting the development time of OS/2 device drivers by \(90 \%\).

Today SCSI is becoming the leading I/O standard — adopted by industry giants like Apple, IBM, HP, and DEC. And no one is selling more SCSI chip level products than NCR. In fact, no one even comes close.


North American Sales Headquarters Jerry Armstrong, Sr.Software Engineer; Harry Mason, Strategic Marketing Manager; John Lohmeyer, NCR Sr. Consulting Engineer and Chairman of the ANSI X3T9.2 Committee and Dave Skinner, SCSI ProductManager.

\section*{Here's another.}

\section*{The NCR 53C700 SCSI I/O Processor... So good, Electronic Design named it the product of the year.}
"You can't tell a good SCSI chip just by looking at it..." and according to Electronic Design, NCR's 53 C 700 is the best there is.


The only third generation SCSI device on the market today, it concentrates all the functions of an intelligent SCSI adapter board on a single, smart and extremely fast, chip... for about \(15 \%\) of the cost.

As the first SCSI I/O processor on a chip, the 53 C 700 allows your CPU to work at maximum speed while initiating I/O operations up to thousands of times faster than any non-intelligent host adapter. DMA controllers can burst data at speeds of up to \(50 \mathrm{Mbytes} / \mathrm{s}\). This new chip cuts down system time hookup to a fraction of what it has been.

Those are just a few of the reasons Electronic Design's "Best of the Digital IC's" award went to NCR's 53 C 700 last year.

\section*{And now the NCR 53C710!}

For the complete story on the NCR SCSI product line featuring the new 53C710, as well as the upcoming SCSI seminars with the NCR SCSI Development Team, please call:

\section*{Low-Power}

\section*{Read Channel IC}
- Supports constant-density recording
- Handles data rates to 30 M bps Featuring a low-power CMOS design, the ATT91C010 read channel IC is targeted for small hard-disk drives. The device consumes a
maximum of 225 mW in read mode and 255 mW in write mode. In the standby mode, power consumption is only 25 mW . The device handles data rates to 30 M bps and supports multizone constant density recording, which increases disk-data caparity. Included in the device are an AGC circuit, a peak detector, an


\section*{PAST...}

Even though they're Power Factor Corrected, the power supplies you're now using could ban your products from Europe after 1992. They might keep you from doing business domestically, too. Your PFC supplies might not meet IEC 555-2 because they have too much current circulating in third and fifth order line current harmonics.

Pioneer supplies have less than 5\% total harmonic current content. They feature builtin \(>.99\) active Power Factor Correction, meet proposed IEC 555-2,
all applicable international safety and EMC standards, and are available from 250 to 2000 watts, in single or multiple outputs. Delivery for most models in OEM quantities is \(60-90\) days.
P.S. - We apologize for not having brought you this information earlier. But the word is out. We've been shipping our PFC supplies worldwide for more than two years. So call us now at 800-2331745, or 800-848-1745 in California.


\title{
Take This Opportunity To Meet Our Distinguished Panel
}


\section*{The PEP \({ }^{\text {TM }} 4286\) Interactive Flat Panel Display}

\section*{Ideal for Menu-Driven Applications}

The \(\mathrm{PEP}^{\mathrm{TM}} 4286\) interactive flat panel display provides you with a complete touchscreen man-machine interface that is ideal for menu driven applications. PEP 4286 combines a full-dot DC gas plasma display with a highly reliable infrared touchscreen switch matrix.
Exceptional LAB- \(^{\text {TM }}\) Brightness... Even in Sunlight!
The display's LAB- \(6^{\text {TM }}\) cathode coating provides a brightness level of 200 fL before filtering, and unsurpassed contrast. PEP 4286 can be used in high ambient light applications. This coating also allows the display to be used over a wide -20 to \(+75^{\circ} \mathrm{C}\) temperature range.

\section*{A Complete Touchscreen Sub-system}

As a complete touchscreen subsystem, the module includes a drip proof, polycarbonate bezel which seals to your front panel, a circular polarized filter which has two side areas for fixed function switch legends, and a rear chassis cover. 14 K bytes of battery backed CMOS RAM is built-in for canned messages.

\section*{Ergonomically Distinguished}
- User friendly touchscreen input
- Minimize training time and errors with menu driven input choices
- Bell output for touch confirmation
- 200fL brightness is software-dimmable in 6 steps for comfortable long term viewing
- IR switch matrix means a clear, sharp display without distorting overlays
- Dedicated fixed function switch areas for most commonly used functions

\section*{Economically Distinguished}
- Complete subsystem simplifies your design process and minimizes your time-to-market
- Replace banks of switches and dials with soft keys
- Display and touchscreen self-test speeds up QA and in-field diagnostics
- Compact flat panel is only \(3^{\prime \prime}\) deep-fits where CRTs can't
- Battery backed canned message RAM reduces host memory overhead

\section*{Display Features}
- \(240 \times 120\) accessible dots form a 12 line by 40 character display, using a nominal \(5 \times 7\) dot matrix character
- 96-character U.S. ASCII character set in regular heightwidth, double height, double width, double height-width; all in regular and reverse video
- 96-character ISA Graphics character set
- \(14.10 \times 7.85 \times 3.00^{\prime \prime}(W \times H \times D)\)

\section*{Operation}
- Requires only +5.0 VDC TTL supply and an unregulated 11-29VDC panel supply
- Serial I/O RS-232-C (with CTS and DTR) and RS-422 interfaces at 1200 or 9600 baud
- ANSI-standard VT100 compatible control codes

Industrial Electronic Engineers, Inc.
Industrial Products Division
7740 Lemona Avenue
Van Nuys, CA 91409-9234
Tel.: (818) 787-0311, ext. 418


\section*{10 Base-T Transceiver}
- Implements IEEE-802.3 standard
- Includes polarity detection

The NE86C92 transceiver implements the IEEE-802.3 10 Base-T standard, which specifies a 10 M -bit/ sec Ethernet LAN using unshielded twisted-pair wiring. Among the transceiver's functions are polarity detection/correction, a smart squelch circuit, a crystal-controlled oscillator, and on-chip LED drivers for status indication (transmit, receive, polarity reversal, collision, and jabbing). The transceiver allows automatic selection between the 10 Base-T transceiver and the AUI (attachment unit interface). The AUI lets you change jumpers when switching between twistedpair wiring and a remote mediumaccess unit, without removing the interface card. The transceiver has a typical current drain of 20 mA
without traffic and 65 mA with heavy traffic. \(\$ 12\) (100).

Signetics, Box 3409, Sunnyvale, CA 94088. Phone (408) 991-2000.

Circle No. 357


\section*{Three-Phase Motor \\ Drivers}
- For 12V disk-drive spindle motors
- Provide 3 and 4 A outputs

The A8922 and A8925 motor drivers provide control and drive for 3 phase brushless dc motors in car-tridge-tape and hard-disk drives,
respectively. The 8925 , which drives 12 V spindle motors, has an output-current rating of 4 A to accommodate faster up-to-speed times. A DMOS sense-FET output structure with an on-resistance of just \(0.25 \Omega\) extends the head room at high output currents. To control spindle speed, the 8925 employs an on-chip transconductance amplifier that linearly regulates output current in proportion to an external control voltage. On-chip current sensing eliminates the need for external components, and internal control circuitry provides brake, disable, and tachometer functions, and the sequencing of the output drivers. Similar to the 8925, the 8922 has an output-current rating of 3 A . Both devices accept Halleffect inputs for motor commutation. The 8925 and the 8922 come in 44 -lead and 28 -pin plastic leaded chip carriers, respectively. 8925

\title{
Wéve Made A Big Change In
}


You'll now notice a difference in American's service from San Jose to Tokyo. It's called the MD-11. A roomy new aircraft specifically designed for long-range flights. American will still offer the only nonstop service to Tokyo from the San Jose/Silicon Valley area. We'll continue to offer nonstops to Tokyo from Dallas/Fort Worth as well. And, along the way, you'll still enjoy our Schedules subject to change.
unit, \(\$ 8 ; 8922\) unit, \(\$ 7.50\) (1000).
Allegro Microsystems, Box 15036, Worcester, MA 01615. Phone (508) 853-5000. FAX (508) 853-5049. Circle No. 358

\section*{Variable Gain Block}
- Gain-control range is 50 dB
- Small-signal bandwidth is 200 MHz
Used as an analog building block, the EL2082 2-quadrant multiplier provides 50 dB of variable gain control. The device operates in current mode rather than voltage mode, thus reducing input impedance and increasing output impedance. Targeted at high-frequency applications, the device features a smallsignal bandwidth of 200 MHz and a large-signal bandwidth of 150 MHz . The device operates from \(\pm 5\) to \(\pm 15 \mathrm{~V}\) supplies. When used with an external op amp, the multiplier's
differential gain is \(0.05 \%\), and differential phase is \(0.025^{\circ}\). In the disable mode, the device has 80 dB of isolation at 10 MHz . The EL2082 is available in 8-pin DIPs and SOIC packages. \(\$ 5.95\) (100).

Elantec Inc, 1996 Tarob Ct, Milpitas, CA 95036. Phone (408) 9451323.

Circle No. 359


Fast-Settling Op Amp
- Settles to 1 mV in 340 nsec
- Slew rate is \(80 \mathrm{~V} / \mu \mathrm{sec}\)

The LT1122 op amp features a typi-
cal settling time of 340 nsec and a guaranteed maximum settling time of \(540 \mathrm{nsec}, 100 \%\) tested to 1 mV at the sum node with a 10 V input step. The op amp also features a typical slew rate of \(80 \mathrm{~V} / \mu \mathrm{sec}(60 \mathrm{~V} /\) \(\mu s e c\) min). Internally compensated for unity-gain stability, the op amp has a small-signal bandwidth of 14 MHz and a large-signal ( 20 V p-p) bandwidth of 1.2 MHz . Total harmonic distortion is only \(0.001 \%\). The JFET input op amp also features high precision. Input offset voltage is \(600 \mu \mathrm{~V}\), input-bias current is 75 pA , and input-offset current is 40 pA, all \(100 \%\)-tested maximum values. The op amp is available in 8-pin SO packages, and in plastic and hermetic DIPs. \(\$ 2.50\) (100).
Linear Technology, 1630 McCarthy Blvd, Milpitas, CA 95035 . Phone (800) 637-5545; in CA, (408) 432-1900. FAX (408) 434-0507.

Circle No. 360

\title{
Our San Jose-Tokyo Service.
}

award-winning International Flagship Service \({ }^{\oplus}\). In fact, the only change you'll see is in the plane we're flying. *We invite you to experience the MD-11 for yourself. For information or reservations, call your Travel Agent or American Airlines at 1-800-624-6262.

\section*{ADVERTISEMENT}


Low Profile PCB Solderable Interconnects
- Solders to the PC Board
- Impedance matched

Meritec's low profile, impedance matched PCB Solderable Interconnects
solder directly to the PC Board for a permanent connection. Pin lengths of \(.110^{\prime \prime}\) and \(.160^{\prime \prime}\) are available for different board thicknesses. The connectors feature precision, high strength molded terminations for reliability in critical applications. Available in \(1 \times 2\) and \(1 \times 3\) configurations, the connectors are side-to-side stackable and feature heights as low as \(150^{\prime \prime}\) from the PC Board, making them ideal for dense package applications. Meritec PCB Solderable Interconnects can be terminated to a variety of different cable types.

Circle No. 168

\section*{High-Performance Interconnects That Terminate High Cost.}

Meritec has terminated the high cost of high performance interconnects for fast logic applications. We produce a full line of cable assemblies for applications in the 3ns to sub nanosecond range-engineered to match your requirements for controlled impedance and propagation rate while minimizing crosstalk. We deliver assemblies of unparalleled quality. On time. At a very reasonable price.

Our complete line includes Single Signal Interconnects (SS/ \(T^{\mathrm{M}}\) ). Shielded Performance Interconnects (SPITM) and Multi Signal Interconnects ( \(\mathrm{MS} / \mathrm{I}^{\mathrm{mm} \text { ) }}\) terminated to a diversity of controlled impedance cables, including coax. twin coax, FEP, PTFE and our Filatex \({ }^{\text {TM }}\) textile cable.

Call Meritec today at 216-354-3148 for more information and a free copy of our capabilities brochure.


1359 West Jackson Street P.O. Box 8003

Painesville, Ohio 44077
216-354-3148
FAX: 216-354-0509


\section*{.O50" Pitch Hemaphroditic Connectors eliminate the need for separate male and female parts}
- Feature .O50" centers
- \(50 \Omega\) impedance matched

Meritec introduces a new concept in board-to-board interconnects - CP5O \({ }^{\text {TM }}\) Hermaphrodiitic Connectors. Each mating half is identical in configuration, eliminating the need for separate male and female parts. Close pitch .050" centers minimize board space requirements. The \(50 \Omega\), impedance matched connectors feature precision, high strength molded terminations for reliability in critical applications and are designed to meet IR or vapor phase reflow requirements. Contact tails come in SMT and through hole configurations, straight and right angle.

Circle No. 168


\section*{Single Signal Interconnects offer high performance in a subminiature package}
- Controlled impedance
- Low crosstalk

Meritec's economical \(1 \times 2\) and \(1 \times 3\) Single Signal interconnects (SSI \({ }^{\text {IM }}\) ) are engineered to match application requirements for controlled impedance and propagation rate while minimizing crosstalk. A spring latch connects the termination to the housing or to Meritec's Single Signal Carrier Systems (SSC \({ }^{\text {TM }}\) ), which allow group interfacing with single, dual or triple row headers. Precision, high strength molded terminations provide reliability in critical applications. Boxed contacts with thermo resistance welding provides the ultimate in electrical continuity.

Circle No. 168

\section*{OrCAD presents}
 Release



\section*{The limits are gone}

OrCAD has introduced the greatest product upgrade in its history. Memory limits, design restrictions, even boundaries between products are all disappearing.

For years, OrCAD's competitors have been playing a game of catch-up. With the introduction of Release IV, the race is over. No one will match our price/performance ratio on these features:
- Schematic Parts Library has been increased to over 20,000 unique library parts
- Digital Simulation process has been speeded up by an order of magnitude
- Printed Circuit Board Layout package offers autoplacement and autorouting at no extra charge

\section*{Best of all, OrCAD introduces ESP}

ESP is a graphical environment designed specifically for the electronic designer. Software tools appropriate for different stages in the design process are now linked together to form a seamless flow of information. This easy-to-use framework relieves the designer of time consuming tasks and the inconvenience of moving from one tool set to another. You can now spend more time productively designing.

\section*{For more information . . .}

You need to know more about Release IV and all of the benefits OrCAD has to offer. Call the telephone number below and we'll send you a free demonstration disk.

OrCAD
More designs from more designers

\section*{For more information, call (503) 690-9881}
or write to OrCAD Sales Department, 3175 N.W. Aloclek Drive, Hillsboro, Oregon, 97124

\section*{LOWEST COST, FASTEST SERVICE, GUARANTEED QUALITY}

\section*{Data Acquisition \& Control}

TE-158 Telephone Control Card:
Take total control over your telephone communication. Direct telephone line interface gives you control over line connect/ disconnect, touch-tone decoding and encoding, and detects call progress. Set your computer to dial out automatically, to keep trying if busy signal, control voice synthesizer, tape recorder with complete in/out capability. FCC approved.
TE-158: \(\$ 190.00\)

Relay Card: 8 individually controlled industrial relays. 3A at 120 VAC , SPST.

RE-140: \$142
8 Bit A to D:
8 Analog inputs. \(0-5.1 \mathrm{~V} .20 \mathrm{mV}\) steps. 7500 readings/sec. AD-142: \$142

\section*{Temperature}

Sensor:
Range \(0-200^{\circ} \mathrm{F}\). \(10 \mathrm{mV} /{ }^{\circ} \cdot 2^{\circ}\) Resolution with AD-142. TS-111: \$12
Digital Input: 8 opto-isolated inputs. Read voltage presence or switch closures. IN-141: \$65


If you have a technical problem, call us! After 15 years in data acquisition and control, we ve come to know a little. We've answered thousands of questions from customers. We'll
be happy to answer yours, too. Call our FREE Technical Advice Department at (203) 656-1806, or fax us your question at (203) 656-0756. Let's hear from you!

Kevin Tschudi Engineer, Alpha Products

24 line TTL I/O: Connect 24 signals, TTL \(0 / 5 \mathrm{~V}\) levels or switches. (8255A)

DG-148: \$72

D/A converter: 4 Channel 8 Bit D/A converter with output amplifiers.

DA-147: \$149

\section*{Canada}

Apha Products Systems Group Canada
\(\mathrm{Ph}: 416-272-5084\)
Japan
Japan Crescent Inc. Ph: 3-824-7449 Fax: 3-818-8914
Spain
Arteca S.C.P.
Ph: (93) 3257015
Germany
SW Datentechnik GmbH Fax: +49 (0) 41064030

Latched Digital Input:
8 opto-isolated inputs. Each input individually latched to catch switch closures and alarm loops. LII-157: \$85
Smart Quad
Stepper Controller: On board microprocessor controls four motors simultaneously. Uses simple commands like "MOVE ARM 10.2 (INCHES) LEFT". Set position, ramping, speed, units... Many inputs for limit switches etc. Stepper motors available.

SC-149: \$299

\section*{NEW}

FA-154 High Speed 12 Bit A/D Converter:
Blinding speed at low cost! Convert at 10 \(\mu\) s. Eight input channels accepting \(0-5 \mathrm{~V}\) signals. Special onboard variable gain amplifier lets you read
 ignals less than 1LSB ( 1.2 mv ). For value combined with speed in data acquisition and signal processing, this converter leads the pack! FA-154: \(\quad \$ 179.00\)

12 Bit A to D Range: \(\pm 4 \mathrm{~V}\). On-board amp. 1 mV resolution. Conversion time 130 ms .1 channel; expand with RE-156 or MX-155 AN-146: \$153

\section*{Italy}
microsystems stl Ph: (02) 33103420 Fax (02) 33103419 Norway
A/S Con-Trade Ph: (04) \(418351 \quad\) Fax: (04) 419472 Uruguay
Jorge Gard Ph: 5982483065
Asia (Singapore)
Batam Development Agency Pvt. Ltd

32 Channel Multiplexer: Switches up to 32 channels to a single common. MX-155: \$83
Clock with Alarm: Powerful clock/ calendar. Battery backup. CL-144: \$98 backup. CL Fax: 5982943306 Ph: 4734918 Fax: 4796496

Odin Software: PC compatible. Control relays from analog inputs or time schedules. Logging. Runs in background.

OS-189: \$129
Reed Relay Card: 8 reed relays ( 20 mA at 60VDC, SPST).

RE-156: \$109
Digital Output Driver:
8 outputs: 250 mA at 12 V . For relays, solenoids, stepper motors, lamps.

ST-143: \$78 to make you successful.

\section*{}

A-Bus Prototyping card:

PR-152: \$16

\section*{Touch Tone} Decoder: Converts tones to unique values.

PH-145: \$87

We back our low prices with great customer service! We're a totally servicedriven company. To keep our prices low and volume high, we must rely on your repeat business. Never worry about a problem with Alpha Products. We fix everything. We guarantee everything. No fine print. No excuses. We're here

Motherboard:
Holds up to 5 A-Bus cards. MB-120: \$108
Counter Timer:
Three 16 bit counters/timers. Count pulses, measure frequency.

CT-150: \$132

These products work with IBM PC, Apple II, Commodore and Tandy, etc. Our serial interfaces let you use any computer with an RS- 232 port.

A-Bus Adapters:
IBM PC/XT/AT \& compatibles.

AR-133: \$69
MicroChannel Adapter: Parallel Adapters also available for Apple II, Commo-
dore 64, 128, TRS-80.

\section*{Serial Adapter:} Connect A-Bus systems to any RS-232 port. SA-129: \$149

Serial Processor: Built in BASIC for off-line monitoring, logging, decision making


\section*{COMPUTERS \& PERIPHERALS}

\section*{Noninterlaced Monitor}
- Has a \(248 \times 186\)-mm viewing area
- Has a flicker-free refresh rate The ViewSonic 6 is a true \(1024 \times 768\) noninterlaced \(14-\mathrm{in}\). ultra-VGA color monitor with a \(248 \times 186-\mathrm{mm}\) display area. A multisynchronous unit, it automatically adjusts to horizontal scanning frequencies of 30 to 50 kHz and vertical frequencies ranging from 50 to 90 Hz . In the \(800 \times 600\) pixel mode, the monitor has a \(72-\mathrm{Hz}\) (VESA (Video Electronics STandards Association) standard) flicker-free refresh rate and a \(0.28-\mathrm{mm}\) dot pitch. All access controls, including the presetting and auto-sizing functions, are located directly under the screen, making it convenient to switch between different screen modes. Controls include vertical and horizontal sizing, brightness, contrast, and centering. The monitor also has a tilt-and-swivel base. Operating in any IBM or compatible; MAC II; or Sony C1304 environment, the

unit supports graphics standards including ultra-VGA, 8514/A, superVGA, and VGA. \(\$ 699\).

Viewsonic, 12130 Mora Dr, Santa Fe Springs, CA 90670. Phone (213) 946-0711. Circle No. 361

\section*{Data-Storage Units}
- Designed for the DSSI bus
- Interface with SCSI peripherals

This family of products is designed for the DSSI bus and offers MicroVAX 3XXX and VAX 4000 users the performance and capacity advantages of SCSI peripheral devices. The family includes three products-the DM/3000 and DM/4000 drive module kits, and the DH01 host adapter. The DM/ 3000 is designed to be mounted internally in the MicroVAX 3300 and 3400 . It consists of a \(5^{1 / 4}-\mathrm{in}\). drive integrated with the company's MD30 bridge controller, mounting hardware, and cables. The \(\mathrm{DM} / 4000\) is available for the VAX 4000 and includes all the components of the DM/3000 plus an operator's panel. Both kits are available in \(700 \mathrm{M}-, 1200 \mathrm{M}-\), and 1600 M -
bit capacities. The DH01 is a Q-bus-to-DSSI host adapter for the MicroVAX, which has no DSSI port. It will function with either of the DM drive kits or with a DEC ISE. DM/3000, \$6795 to \$8895; DM/4000, \(\$ 7095\) to \(\$ 9195\); DH01, \(\$ 2295\) to \(\$ 2495\).

Emulex Corp, Box 6725, Costa Mesa, CA 92626. Phone (714) 6625600.

Circle No. 362

\section*{Laptop Modem}
- Designed for the laptop market
- Requires no electrical outlet Pocket Edition 2400 is a \(3-\mathrm{oz}\), 3 -in.-long modem designed specifically for the business traveler and the laptop market. It requires no electrical outlet, battery pack, or serial-port adapter to connect to a laptop or portable computer
-it runs off the power supplied through the telephone line. The unit comes packaged with cables, Smartcom EZ communications software, and a carrying case. The modem is compatible with 2400 -, 1200 -, and \(300-\mathrm{bps}\) communications. The unit will also send faxes when used in conjunction with an information service like those offered by AT\&T, MCI, US Sprint, Compuserve, or Genie. Smartcom EZ provides easy-to-follow menus and phone-book entries to store frequently called numbers. Keyboard macros, extensive on-line help screens, and Autotype, which enables users to transfer text files, are other features of Smartcom EZ. \$179.

Hayes Microcomputer Products Inc, Box 105203, Norcross, GA 30348. Phone (404) 441-1617.

Circle No. 363

\section*{Keypad Encoder}
- Is user configurable
- Designed for IBM compatibles

The USE144 user-programmable keypad encoder is designed for use with IBM PC/XTs or PC/ATs, compatible computers, or RS-232C devices. The unit is software configurable; both the keypad layout and
keycode values can be changed by the user at any time. Interface type, baud rate, typematic period, and typematic delay are also software configurable. Using a utility program (Usecon), you can program all parameters. Usecon is menu driven and provides utility functions. The 144 works with matrix
keypads and accommodates practically any pinout of rows and columns total 144 keys max. The encoder comes with two standard con-nectors-a right-angle header for the keypad and a straight header for all interface signals. The encoder operates from a 5 V supply to provide true RS-232C compatibility. \(\$ 145\).

VG Controls Inc, 34 Jenkins Rd, Hewitt, NJ 07421. Phone (201) 8534600 .

Circle No. 364

\section*{20-in. Monitor}
- Fully IBM compatible
- Designed for high resolution applications
The Spectrum Autosync multifrequency monitor was designed to meet the most demanding highresolution graphics and text requirements. It features a \(20-\mathrm{in}\). dark tube to optimize picture quality in a wide range of applications including CAD/CAM/CAE, 3-D imaging, window applications medical, and desktop publishing. The unit is housed in a \(56-\mathrm{lb}\) plastic cabinet, which locates all controls at the user's fingertips. The unit is fully compatible with all IBM PC/XT, PC/AT, and PS/2 graphics including PGA, VGA, extended VGA, \(1024 \times 768\), and \(1280 \times 1024\) formats. The unit automatically adjusts picture size from horizontal frequencies of 29 to 66 kHz and vertical frequencies of 40 to 120 Hz . The unit comes with a universal-input power supply. \(\$ 3195\).

Aydin Controls, 414 Commerce Dr, Fort Washington, PA 19034. Phone (215) 542-7800. FAX (215) 542-8447.

Circle No. 365

\section*{Controller Board}
- Enhances VGA monitor resolution
- Includes an antialiasing feature The MicroVGA 452 video controller board provides a resolution of \(1536 \times 1280\) with a palette of 742,813


\section*{Now, up to twice the power of a standard battery.}

Gates introduces two new rechargeables that are commanding everyone's attention: Nickel-Metal Hydride and ULTRAMAX \({ }^{m}\) Nickel-Cadmium batteries.
\(\mathrm{Ni}-\mathrm{MH}\) offers up to \(100 \%\) more capacity than a standard \(\mathrm{Ni}-\mathrm{Cd}\) battery, while



our ULTRAMAX line offers up to \(70 \%\) more capacity.
And, with this power increase comes unequaled design flexibility, such as longer run time, additional features, or downsizing without having to sacrifice performance. Contact your nearest sales engineer by calling 1-800-67-POWER.

And see why no battery ranks higher.

The power of great iJeas.
colors on a standard \(640 \times 480\) VGA monitor. An antialiasing feature reduces stair-stepping and provides users with straight lines, smooth circles and ares, and near photorealistic images. The board is IBM PC/AT-compatible; with its' PC/XT form-factor, it can be used in any size PC enclosure in 16-bit expansion bus slots for applications operating at speeds ranging to 12.5 MHz . The unit has a \(60-\mathrm{Hz}\) refresh rate and includes 512 k bytes of video RAM on board. The board comes with an Ultra VGA driver for Autodesk applications that use the ADI 4.0 display list driver, such as AutoCAD, Autoshade, and Autosketch. There's also an Ultra VGA driver for Microsoft Windows 3.0. \$395.

Monolithic Systems Corp, 7050 S Tucson Way, Englewood, CA 80112. Phone (303) 790-7400. FAX (4303) 790-7118. Circle No. 366


\section*{Tape Drive}
- Provides \(2 G\)-byte storage
- Supports all SCSI commands The Model 7200 digital audio-tape drive is a \(3^{1 / 2-i n}\). form factor unit which provides 2 G bytes of data storage on a single cassette without using data compression. Using a 2:1 data-compression ratio, the unit has a 4 G byte storage capacity. Fully DDS compatible, the unit supports all standard SCSI commands and features a fast search mode that locates files
within 20 sec . The drive includes a head cleaner that automatically activates a loaded cassette. The drive design allows users to employ the company's EEPROM technology to custom-configure the device even after it has been installed in a system. Updates can be sent to the drive from the system via a SCSI bus, or they can be loaded directly into the drive from a digital audio-tape cassette. \(\$ 1200\) (OEM qty).

Wangtek Inc, 41 Moreland Rd, Simi Valley, CA 93065. Phone (805) 583-5255. FAX (805) 583-8249.

Circle No. 367

\section*{PC/AT Extender Card}
- Provides protective buffering
- Controlled by users' test program The IBM PC/AT-EXT AT-compatible extender card provides a buffer for the computer circuits and other


cards. It allows the card under test to be removed or inserted without powering down the PC or affecting the PC's operation. Card control takes place either manually with oncard switches or by instructions from the users' test program. You insert the card to be tested in the connector on top of the extender and run your test program or turn the extender card's power. In either case, the card will sequence power and ground signals on and off in a nondisruptive manner. A 2-color LED indicates when power is applied to the card under test. Any current overload or voltage short circuit shuts off power to the
card. The card works in all IBM PC/ ATs and compatible computers. \(\$ 495\).

ICS Electronics Corp, 744 S Hillview Dr, Milpitas, CA 95035. Phone (408) 263-5500. FAX (408) 263-5896.

Circle No. 368

\section*{Interface Board}
- Provides intelligent SCSI and Ethernet interfaces
- Works in \(3 U\) and \(6 U\) VMEbus systems
The MZ 8554 multifunction peripheral board that provides intelligent Ethernet and SCSI interfaces. A single-height (3U) design, the board is designed to work in both 3 U and 6U VMEbus systems. The unit is supported by Unix and other leading operating systems. The unit provides a SCSI interface based on the NCR 53C700 SCSI I/O processor and an Ethernet interface based on the Intel 82596 Ethernet copro-

cessor. Both of the interfaces provide direct memory access to 128 k bytes of onboard buffer memory. Both interfaces can execute command sequences independent of the host processor. Software included with the boards provides support for Unix system V release 4 and real-time operating systems such as Microware's OS-9. \(\$ 995\).

Mizar Inc, 1419 Dunn Dr, Carrollton, TX 75006. Phone (214) 4462664.

Circle No. 369

\title{
REAL Facts! single Board Computer
}
\begin{tabular}{|c|c|c|c|}
\hline COMPARE FUNCTION & \[
\begin{array}{|c|}
\hline \text { DTI CAT1010 } \\
486
\end{array}
\] & \[
\begin{gathered}
\hline \text { Competitor } 1 \\
486 \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Competitor 2 } \\
486
\end{array}
\] \\
\hline 25, 33MHz CPU-Shipping Now! & \(\checkmark\) & & \({ }^{25 \mathrm{MHz} \text { Only }}\) \(7-8\) Wks Del. \\
\hline Up to 32M RAM Onboard & \(\checkmark\) & & \\
\hline Noise Reduction Circuitry For FCC Class B & \[
\nu
\] & & \\
\hline PS/2 Mouse Support & \(\checkmark\) & & \\
\hline PS/2 Keyboard Support & \(\checkmark\) & & \\
\hline On-Board Battery Real Time Clock & \(\checkmark\) & & \(\checkmark\) \\
\hline Bi-directional PS/2 Printer Port & \(\checkmark\) & & \\
\hline 2 Serial Ports - Up to 115K Baud & \(\checkmark\) & - & \\
\hline Future Domain SCSI & \(\checkmark\) & & \\
\hline IDE Interface & \(\checkmark\) & 3 & \\
\hline Floppy Interface & \(\checkmark\) & er & \\
\hline Up to 512Kb User PROM Disk & \(\checkmark\) & \(\underline{\square}\) & \\
\hline Double Sided Surface Mount Technology & \(\checkmark\) & - & \\
\hline Manufactured In-House(U.S.A.) & \(\checkmark\) & & \\
\hline Landmark V1. 14 Speed at 25 MHz & 114.1 & & 84 \\
\hline Landmark V1. 14 Speed at 33 MHz & 150.9 & & \\
\hline
\end{tabular}

Call us toll free for orders and information.

\section*{oMNIBYTE'S} Hardware/Software

R3000 SINGLE BOARD COMPUTER
- 25 MHz MIPS R3000 CPU 25 MHz R3010 FPC - (4) 25 MHz R3020 write buffers
- 128 KB (or 32 KB ) I cache
- 128 KB (or 32 KB ) D cache
o 4, 8, 16, or 32MB DRAM
- (1) RS232C serial port
- (4) 28 -pin EPROM sockets

\section*{SINGLE BOARD COMPUTER}
- 68020 16.66-33MHz CPU
 (up to 250kB
- (8) 32-pin ROM sockets (up to 8MB)
o (2) RS232C serial ports
- (16) lines nof parallel I/O
- (1) OMNIMODULE socket
- VICO68 VME Controller

\section*{SINGLE BOARD COMPUTER}
- \(6800012.5-16 \mathrm{MHz}\) CPU

- 512KB DRAM

0 (4) 28 -pin ROM sockets
- (3) 16 -bit counter/timers
- (2) OMNIMODULE I/O sockets
- DMA controller (optional)
- Optional interrupt generator
- Optional 4 level bus arbiter


OMNIBYTE
OMNIBYTE CORPORATION
245 W. Roosevelt Road
West Chicago, IL 60185-3790

CALL TOLL FREE 1-800-638-5022
In IL 708-231-6880

\title{
FPSON IC MEMORY GARDS
}



\section*{NEW PRODUCTS}

\section*{COMPONENTS \& POWER SUPPLIES}

\section*{Test Adapter}
- Tests plastic-leaded-chip-carrier components
- Provides numbered test points The ANC-4068 provides designers with a method to test and monitor socketed plastic-leaded-chip-carrier (PLCC) components. Numbered test points are provided for scope and meter lead attachment. Modular in construction, the test adapter is easily reconfigured to accommodate PGA (pin-grid-array) or LCC devices by plugging in optional component socket cards. You can also stack the component cards to debug and test multiple levels of PLDs. The base-unit ANC-4068 provides two PLCC stacking levels, and it can be installed in either PGA or PLCC sockets with the mating plugs included. The adapter is also available in 52 - and 84 -pin versions. \(\$ 154\); optional adapters, \(\$ 49\).
Antona Corp, \(1643^{1 / 2}\) Westwood Blvd, West Los Angeles, CA 90024. Phone (213) 473-8995. FAX (213) 473-7112.

Circle No. 370


Based on Transzorb technology, each unit consists of four independent diodes. Each device protects against power peaks ranging to 300 W , has a 5 A forward-surge rating, and operates over a range of -55 to \(+150^{\circ} \mathrm{C}\). You can use the board-mountable units to protect all I/O ports and power bus lines. The devices are available for data lines and bus lines rated at \(5,12,15\), and 24 V . Housed in molded-unit packages, the diode arrays feature a gull-wing-lead configuration. The low-profile packages are designed to minimize inductance. Unidirectional models, \(\$ 2.95\); bidirectional models, \(\$ 3.05\) ( 1000 ).

General Semiconductor Industries Inc, 2001 W 10th Pl, Tempe, AZ 85281. Phone (602) 968-3101.

Circle No. 371


\section*{Miniature Pressure Sensors}
- Provide wet-wet sensing for added versatility
- Have 1- to 30-psi range

Series 24PC pressure sensors provide wet-wet sensing capability.

The line includes units that offer from 0 to 1 psi to 0 to 30 psi . A sensing element features a silicon diaphragm that is integral to an IC chip; four ion-implanted piezoresistors positioned symmetrically over the diaphragm serve as a balanced bridge. The devices' conductiveseal interconnect system cuts as-
sembly time and saves overall production costs by eliminating wireand tab-bonding connections. The conductive seal also improves reliability. Operating range spans -40 to \(+85^{\circ} \mathrm{C} . \$ 15\).

Micro Switch, 11 W Spring St, Freeport, IL 61032. Phone (815) 235-6600.

Circle No. 372

\title{
Compact SCSI / Enet
}

\section*{Mizar's new MZ 8554 packs maximum I/O into minimum VME space.}

The newest addition to Mizar's expanding line of 3 U VMEbus boards is the perfect solution for your system I/O needs. The MZ 8554 provides intelligent, high speed SCSI and Ethernet interfaces based upon the latest IC technology. Designed for superior system performance, both interfaces provide direct memory access to on-board memory. In addition, both interfaces can execute command sequences independently of host processor intervention, freeing your main CPU from time consuming low-level protocol handling.
The economical alternative to expensive two board solutions, the MZ 8554 meets high-performance \(/ / O\) requirements for both single-height and double-height VME systems. And, the MZ 8554's price can't be beaten! Support for the MZ 8554 includes drivers for both Microware's OS-9 \(9^{\text {TM }}\) and Wind River Systems' \(V \times\) Works \(^{\text {TM }}\) Real-Time Operating System.
The MZ 8554 is the perfect complement to Mizar's extensive line of \(3 \cup\) CPU's and other peripheral boards. To find out why more and more engineers are turning to VME boards from Mizar, call today.
Mizar. The shortest distance between concept and reality.

1419 Dunn Drive, Carrollton, TX 75006
(214) 446-2664


\section*{Fiber-Optic Connector}
- Has crimp termination
- Has 1-dB insertion loss

The Lightcrimp ST-Style fiberoptic connector can be terminated to optical fibers using a straightforward crimping technology-no epoxy, oven, or ultraviolet curing is required. A key feature of the unit is an innovative fiber-retention system. This system, combined with simple hand tools, allows a fiber to be terminated within 2 min utes. The \(2.5-\mathrm{mm}\) bayonet connector has a \(1-\mathrm{dB}\) max insertion loss and a lifetime specification of 500 cycles. Operating range spans -20 to \(+60^{\circ} \mathrm{C}\). \(\$ 6\) to \(\$ 7\).
AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752; in PA, (717) 564-0100.

Circle No. 373


\section*{Snap-Lock ZIF Cable Connectors}
- Provide ZIF connection
- Are surface mountable

Type FPZ miniature flex/flat cable connectors feature a hinged snaplock cover that provides a zero-

\section*{"WEVE HAD GREAT SUCCESS WITH CARROLL TOUCH. WHY CHANGE IF IT'S WORKING?"}



John Santacroce
Mechanical Engineering E Project Manager
Hewlett-Packard Company
"As a diverse international corporation, Hewlett-Packard manufactures everything from computers, measurement and computation equipment, medical equipment, analytical equipment and more. We're known for our high level of test and measurement systems capabilities.
"We recently developed a touch-based automotive test system for a customer and there was no debate over using Carroll Touch in designing this. Our past experience with them has been very successful.
"From my point of view, Carroll Touch has provided good, reliable touch frame assemblies. They also bring a high level of engineering expertise to our team, especially in the materials selection area.

\section*{"Carroll Touch people really approach our projects as a team project."}
"Working with Carroll Touch people is great because everybody is part of the team - which helps us create a very successful product. Their willingness to go that extra step makes our job much easier.
"In developing a recent functional spec for a touch frame, Carroll Touch engineers worked closely with us in making sure that the assemblies would survive electrostatic discharge.
"We held design reviews of the various approaches and all of our recommendations were considered very sincerely by Carroll Touch. Comments were intelligently relayed back to us and everything we asked for was delivered in the specified time."

For more information on how Carroll Touch can help you create success with your touch technology applications, call \(512 / 244-3500\), or simply mail your business card with this coupon to Carroll Touch, P.O. Box 1309, Round Rock, Texas 78680.

Name
Title

Company Name

insertion-force connection. The sur-face-mountable units have a \(1-\mathrm{mm}\) pitch and a closed height of 2.9 mm . The right-angle connectors accommodate from 7 to 25 circuits and are available on embossed tape for compatibility with auto-insertion equipment. Connector contacts are phosphor bronze with a tin plating.

The contacts are rated for 0.5 A at 50 V ac or dc. The glass-filled PBT housings have a UL 94V-0 rating. \(\$ 0.40\) to \(\$ 0.60\) (OEM qty).

JST Corp, 1200 Business Center Dr, Suite 400, Mount Prospect, IL 60056. Phone (800) 292-4243; in IL, (708) 803-3300. FAX (708) 803-4918.

Circle No. 374


\section*{WHEN WE DESIGNED OUR NEW NFC SERIES DC/DC CONVERTERS, WE INCLUDED EVERYTHING. EXCEPT COMPROMISE.}

Designed to fulfill the needs of the nineties, our new NFC family of power converters are more compact, consistent and cost effective than competitive products.

For example, the NFC40 packs over 16 watts per cubic inch -5 times more than similar converters. Plus up to three outputs with various user interface functions. The cooling baseplate makes heatsinking easy. And its small footprint and low profile are ideal for space critical applications in telecom and data communications.

But more power and features per inch weren't the only goals we set for ourselves. We built in more reliability too. Most models

are built on a rugged thick film hybrid substrate in an automated assembly process so highly con-
 even from a battery as it discharges.
Best of all, the NFC series is a winner in value too. Because in addition to more power density and reliability, we also included many useful features. Like a choice of single or multiple user-adjustable outputs. Or converter inhibiting with a simple TTL signal.

For real value, don't settle for anything less than the best. Ask for Computer Products NFC Series. Because we didn't trolled and repeatable, you get consistent quality and reliability whether you order ten or ten thousand. And lower costs too!

The NFC family's high efficiency allows them to withstand hot ambient temperatures. Their wide input voltage range lets you operate from a poorly regulated compromise - and neither should you. For the name of your local distributor, call 1-800-624-8999, extension 123. 24 V or 48 V power source, or

\section*{THE NFC FAMILY OF DC/DC CONVERTERS}

NFC40 40W single and triple output. Density: \(16 \mathrm{~W} /\) cubic inch.
Wide range input.
Hybrid technology, baseplate cooling. Output voltage adjust, TTL inhibit.

NFC25 25W triple output
Density: 6W/cubic inch.
Wide range input. Output voltage adjust, TTL inhibit.

NFC20 20W single and double output. Density: \(14 \mathrm{~W} /\) cubic inch.
Wide range input.
Hybrid technology.
Output voltage adjust, TTL inhibit.

NFC15 15 W single and double output. Density: \(10 \mathrm{~W} /\) cubic inch.
Wide range input.
Hybrid technology.
Output voltage adjust, TTL inhibit.
range from \(0.5 \mathrm{~dB} \min\) to 32 dB max. The unit uses advanced CMOS-TTL-compatible drivers that provide switching speeds of 100 nsec max. The miniature allceramic (including lid cover) sur-face-mount package is microstrip compatible and features solderable or wire-bondable transmission line
and logic input connections. Additional attenuator models provide a 6 -bit switching capability but have a reduced operating frequency range. 4-bit model, \(\$ 400\).

KDI/Triangle Electronics, 60 S Jefferson Rd, Whippany, NJ 07981. Phone (201) 887-8100.

Circle No. 376


Think SCSI analyzer. Technology moves fast; that includes the speed of peripheral devices using SCSI bus architecture. Not to worry. Pacific Electro Data has the tools to detect the errors and bugs that WILL pop up on the SCSI bus.

Speaking of fast, our analyzer systems can continuously capture data at rates of more than \(10 \mathrm{MB} / \mathrm{sec}\) with a timing resolution of 40 Nsec.

News flash...Pacific Electro Data just added a powerful SCSI emulation system to their rapidly growing analyzer product line. Working in conjunction with their existing systems, it's easy to emulate target and initiator devices. That includes the CPU, drives and other


14 Hughes, Ste. B205, Irvine, CA 92718
Tel: (714) 770-3244 ■ 1-800-676-2468 ■ Fax: (714) 770-7281

\section*{Bilevel LED Arrays}
- Available with red, yellow, and green LEDs
- Available in a number of versions
Available with red, yellow, or green LEDs, Series 552 and 553 bilevel arrays are designed for high-density pc-board applications. The 552 models feature T- \(13 / 4\)-sized LEDs, and the 553 models offer T-1-sized LEDs. The 552 Series units are available in standard-efficiency, high-efficiency, super-bright, and super-efficiency versions. A bicolor (red/green) LED and units with integral resistors are also available in the series. The 553 Series includes three versions-standard efficiency without resistor, a super-efficient unit for \(2-\mathrm{mA}\) operation, and a 5 V unit, which includes a built-in resistor. Operating range spans -20 to \(+100^{\circ} \mathrm{C}\) and -55 to \(+100^{\circ} \mathrm{C}\) for 552 and 553 Series devices, respectively. Series 552, from \$1.11; Series 553, from \(\$ 1.16\) (1000). De livery, stock to eight weeks ARO.
Dialight Corp, 1913 Atlantic Ave, Manasquan, NJ 08736. Phone (908) 528-8932. FAX (908) 223-8788.

Circle No. 377

\section*{Surface-Mount JFET}
- Provides RFI immunity
- Operates in the \(900-\mathrm{MHz}\) range

Housed in a surface-mountable SOT-143 package, the BFR200 Channel JFET is designed to suppress RFI in sensitive detection equipment. By integrating two resistors and two MOS capacitors onto a single silicon chip, the unit adds a lowpass filter to the input stages of this sensitive equipment and suppresses RFI signals in the \(450-\) to \(900-\mathrm{MHz}\) cellular radio range. The JFET eliminates the need for additional passive components. The device is designed primarily to prevent the generation of false events in IR detectors, burglar alarms, electret microphones,

\title{
MIFASUPE LEADTMWES W HOURS, NOT DAYS!
}

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and free catalog, call toll free: 1-800-344-4539


701 Brooks Avenue South
Thief River Falls, MN 56701
Toll-Free: 800-344-4539, FAX: 218-681-3380


\title{
THE NEW MICRO-CAP III. SO YOU CAN TEST-FIY EVEN MORE MODELS.
}

It wasn't easy. But we did it. Made the long-time best-selling IBM \({ }^{\text {® }}\) PC-based interactive CAE tool even better.

Take modeling power. We've significantly expanded math expression capabilities to permit comprehensive analog behavioral modeling. And, beyond Gummel Poon BJT and Level 3 MOS, you're now ready for nonlinear magnetics modeling. Even MESFET modeling.

Analysis and simulation is faster, too. Because the program's now in " C " and assembly language. That also means more capacity - for simulating even larger circuits.

As always, count on fast circuit creation, thanks to window-based operation and a schematic editor. Rapid, right-fromschematics analysis - \(\mathrm{AC}, \mathrm{DC}\), fourier and transient - via SPICE-like routines. The ability to combine digital/analog circuit simulations using integrated switch


Transient analysis


Schematic editor


Monte Carlo analysis
models and parameterized macros. And stepped component values that streamline multiple-plot generation.

And don't forget MICRO-CAP III's extended routine list-from impedance, Nyquist diagrams and BH plots to Monte Carlo for statistical analysis of production yield. The algebraic formula parsers for plotting virtually any function. The support for Hercules, CGA, MCGA, EGA and VGA displays. Output for plotters and laser printers.

Cost? Still only \(\$ 1495\). Evaluation versions still only \(\$ 150\). Brochure and demo disk still free for the asking. Call or write for yours today. And see how easily you can get ideas up and flying.

\section*{르ㄹㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ를}

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387
smoke detectors, and radiation detectors. It has a low leakage current of 2 pA typ. Two antiparallel diodes connected to its gate make the JFET very compatible for use in source-follower circuits. \(\$ 0.40\) \((10,000)\). Delivery, stock to eight weeks ARO.

Philips Components, 2001 W Blue Heron Blvd, Riviera Beach, FL 33404. Phone (800) 447-3762.

Circle No. 378

\section*{Bypass Boards}
- Provide simple jumpering
- Maintain system airflow

These bypass boards provide a simple solution to the problem of filling empty or spare slots in a VXIbus system. The units electrically pass through the Busgrant and IACK daisy-chained signals to other boards in the system. Air baffles provided on the board surface maintain the integrity of the air-flow system. On each model, a front panel, complete with ejectors, is attached to an aluminum substrate that doubles as an RFI barrier. A specially configured male DIN connector provides the bypass path for the signals. The boards are available in \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and D sizes as specified in the VXIbus standard. C-size board, \(\$ 44.63\) (100).

Dawn VME Products, 47073 Warm Springs Blvd, Fremont, CA 94539. Phone (415) 657-4444. FAX (415) 657-3274. Circle No. 379

\section*{1500W Power Supply}
- Has 0.99 power factor
- Meets IEC-555-2 specification

The SPF4 supply provides as much as 1500 W of power and features a 0.99 power factor. It meets all international safety and EMI requirements including the IEC-\(555-2\) specification for input-current harmonic content. The supply also features a universal 85 to 264 V ac input, and it can be configured to provide as many as 12 outputs.

A selection of 38 fully regulated single- and multiple-output modules is available in voltages of 2 to 48 V and power ratings of 240 to 1250 W . Parallel operation with true current sharing is standard on all single-output modules. A steel \(5 \times 8 \times 11\)-in. package, which is by a ball-bearing fan, fully encloses
the power supply. \(\$ 1091\) (OEM qty).

Power-One Inc, 740 Calle Plano, Camarillo, CA 93010. Phone (800) 678-9445; in CA, (805) 987-8741. TWX 910-336-1297.

Circle No. 380


VMETRO's Modular VMEbus Analyzer System gives you unrivalled measurement capability in a single VMEbus slot. Pick the right piggyback module to the VBT-321 VMEbus Analyzer and obtain:
* VMEbus Anomaly Trigger
* VSB State Analysis
* VME Cycle Generator

VMEbus Anomaly Trigger reveals

* 100 MHz VME Timing Analysis
* P2 General Purpose Analysis
* 256 K Trace w/SCSI dump

Combined VMEbus State trace


Real-time VMEbus histograms


UMETBO
The Bus Analyzer Specialist

\title{
The Magic Module"-DC/DC Converter... the ultimate in proven performance, power capability, size and features...
}

When designing a DC/DC converter into your system, you want the assurance that a surprise is not going to pop up. With Electronic Measurements' EMQ Series of Magic Modules, you have the assurance of dependable performance, since the design incorporates proven fixed frequency, forward converter technology with current mode control and a nominal frequency of 250 kHz . Another good reason to choose the Magic Module is size. The EMQ Series also offers the highest power rating for any self-contained 5-V output, high density, board mounted unit available.

For example, the EMQ48-05-40, rated at 200 W , occupies a footprint of only \(2.4^{\prime \prime} \times 4.6^{\prime \prime}\) with a \(0.625^{\prime \prime}\) profile, and a nominal input of 48 VDC .

For a pleasant surprise, check these MAGIC MODULES features:
- More watts per cubic inch than any other 40 Amp. converter
- Forward converter topology for proven reliability

\section*{53 ns fra: FROM NABT - THE HIGH SPEED DRAM SPECIALIST}


FAX TO: NMBT
FROM: DESIGN ENGINEER

Now you don't have to compromise the performance of your 16 MHz and 20 MHz systems. Now you can create true zero waitstate 16 MHz and 20 MHz systems. Not close to zero; but true zero wait-state designs. Eliminate "patchwork" solutions requiring complex, expensive interleaving, page mode designs, or costly cache schemes.

Upgrade your systems to direct memory access - and get the benefits of higher performance and lower cost. The perfect midlife "kicker" for your current designs; stake out a strong competitive position for new designs. See for yourself . . . We'll send you Free samples (up to 1 MB ) to evaluate in your designs. Just fax us your rough block diagrams for review - we'll be in touch ASAP! Only one qualification: It must be a company funded/scheduled project.

Don't put it off. Your free samples are available now from NMB - the high-speed DRAM specialists. Fax us your design sketches today. Or give us a call at (800) 662-8321 for further information.

\section*{NOW!}

\section*{' \(7 \backslash / 1\rceil\) : \(\mid\) NMB TECHNOLOGIES INCORPORATED}

NMB TECHNOLOGIES INCORPORATED
9730 Independence Avenue, Chatsworth, CA 91311
Phone: (818) 341-3355 Fax: (818) 341-8207


\section*{PLD OPEN SYSTEMS THE BEST WAZ}

This is a testimonial for open design systems for programmable logic. Atmel thinks it's the


You have enough problems, and your hands should not be tied with proprietary design systems. You should be able to pick the latest and greatest third-party tools for programmable logic. Standard tools will cut system entry costs (the boss will love that), and you won't have to upgrade the kit for each new device architecture. And, you'll be able to use anyone's PLDs (especially ours).

Atmel features an architecture that gives high-gate utilization and predictable highspeed performance. And, here's a bonus: your application will not affect the performance of our EPLDs.

Our EPLDs:
\begin{tabular}{lllll}
\hline & \begin{tabular}{l} 
Gate \\
Count
\end{tabular} & \begin{tabular}{l} 
System \\
Frequency
\end{tabular} & \multicolumn{2}{c}{ Pins }
\end{tabular} Availability

So, if you want programmable logic that meets the spec no matter what your application, call Atmel, the people who think that open design systems are the only way to go.

\section*{DECLARE YOUR INDEPENDENCE!}



Metal film resistance. Lots of people supply it, but at Dale \({ }^{\circledR}\) we have more ways to make it work to your advantage.

From the start, we'll give you more alternatives for fine-tuning resistance to your application - right out of the catalog. Low cost commercial to ultra precision.

High power. Ultra high or low value. Tight tolerance. Matched sets. Thick film chips, plus thin film chips for surface mounting Qualifications include: MIL-R-10509, MIL-R-22684, MIL-R-39017, MIL-R-55182 and MIL-R-55342

\section*{Dale Can.}


All guided by Statistical Process Control and Just-In-Time Delivery systems.

For high performance, high volume or both, Dale has products to meet your exact needs, plus
multiple sourcing to protect your production schedule.

Save time by contacting your Dale Representative or contact: Dale Electronics, Inc., Norfolk Division, 2300 Riverside Blvd Norfolk, NE 68701-2242. Phone (402) 371-0080.


\section*{NEW PRODUCTS}

\section*{TEST \& MEASUREMENT INSTRUMENTS}

\section*{Magnetics Tester}
- Measures turns and turns ratio
- Checks for open and shorted coils and improper air gaps
The 2000 Coil Test and Magnetics Design system is a benchtop instrument that, among other things, measures transformer turns ratios and numbers of turns in coil and transformer windings. It also checks for open coils, shorted turns, and improper air gaps. Measured values appear on a large LCD. The unit measures turns ratios with \(\pm 0.1 \%\) accuracy. The system's gen-eral-purpose application block is suited to testing a variety of mag-

netic devices. Custom application blocks offer further flexibility. \(\$ 3350\).

Influx Corp, 106 Billings St, Sharon, MA 02067. Phone (617) 7845606.

Circle No. 381


\section*{SCSI Bus Emulator}
- Runs on IBM PC/ATs and compatible computers
- Emulates host CPU or peripheral devices
Emulating either a host CPU or a peripheral device, the PED-4500 SCSI bus emulator lets you debug SCSI systems operating asynchronously to 5 M bytes/sec or synchronously to 6.25 M bytes \(/ \mathrm{sec}\). The emulator supports the SCSI II standard in the host and target modes. A target-description library contains information on target devices.

You can create custom libraries that include unique commands, messages, and data structures. Debugging occurs either interactively or under program control. \$1295 to \$1995.

Pacific Electro Data, 14 Hughes, Suite B205, Irvine, CA 92718. Phone (800) 676-2468; in CA, (714) 770-3244. FAX (714) 770-7281.

Circle No. 382

\section*{SCSI Disk-Drive Tester}
- Evaluates single-ended drives per ANSI SCSI-1 and -2
- Sends results either to printer or \(3^{1 / 2}\)-in. disk
The portable PR4050 SCSI diskdrive tester evaluates single-ended hard disks that conform to the ANSI SCSI-1 and -2 definitions. The tester sends results to a printer via a parallel port or can store them on an IBM PC-compatible \(31 / 2\)-in. floppy disk. The unit incorporates an editor with which you can create command-descriptor blocks and custom test routines. The command blocks and routines reside in 64 k bytes of nonvolatile RAM; you can also transfer them to a floppy disk.


The unit, which includes an RS232 C interface, can supply power to the drive under test. \(\$ 12,850\).

Pioneer Research, 1745 Berkeley St, Santa Monica, CA 90404. Phone (800) 223-1745; in CA, (800) 848-1745. FAX (213) 453-3929.

Circle No. 383

\section*{SCSI Bus \\ Analyzer/Emulator}
- Supports SCSI-1 and -2
- Traces bus activity to 10 MHz

The 202/F SCSI bus analyzer/emulator supports the SCSI-1 and -2 standards. It can trace bus activity at speeds to 10 MHz . The unit, which works with an external terminal or PC, provides a 128 k -frame trace memory with 40 -nsec time-

stamp resolution and recording of four request-acknowledge edges per bus transaction. It can test both initiators and targets. \$6950 to \(\$ 11,800\).

Ancot Corp, 115 Constitution Dr, Menlo Park, CA 94025. Phone (415) 322-5322. FAX (415) 322-0455.

Circle No. 384

\section*{New Pulse Magnetics For Waridwide Telecom Amplications}
- Superior pulse transformer technology applied to advanced telecom magnetics.
- Full compliance with national and international standards for worldwide use.
- Excellent performance proven by leading IC transceiver manufacturers.

ISDN S-Interface transformers comply with CCITT I.430. UL recognized. BABT approved. Single or dual packages.
T1/CEPT PCM-30 transformers. Over 30 models, including dual packages. Comply with CCITT G.703.
Common Mode Filter Chokes, to reduce high frequency noise for compliance with FCC, CISPR, VDE limits on radiated EMI.

\section*{\(\square\) Pulse.}

\section*{Pulse Engineering Inc.}

SAN DIEGO
7250 Convoy Court, San Diego, CA 92111 (619) 268-2400 FAX: 619-268-2515

IRELAND
Dunmore Road, Tuam, County Galway Tel: 3539324107 FAX: 3539324883

\footnotetext{
USA: San Jose (408) 279-3336 / Chicago (708) 297-0111 / Boston (508) 670-5738 / Atlanta (404) 448-0526
- England:44 \(816697720 \cdot\) Germany:49-89-96-3046 • France:33-1-60-19-1111 • Hong Kong:852-42-51651
}


\section*{Handheld LCR Meter}
- Resolves 2000 counts
- Measures \(20,000 \mu F, 200 \mathrm{H}\), and \(20 \mathrm{M} \Omega\)
The 470D handheld, battery-powered, \(3^{1 / 2}\)-digit meter measures inductance, capacitance, and resistance. It provides seven L ranges from \(200 \mu \mathrm{H}\) to 200 H ; nine C ranges from 200 pF to \(20,000 \mu \mathrm{~F}\), and eight R ranges from \(2 \Omega\) to \(20 \mathrm{M} \Omega\). The unit also measures the dissipation factor (D) of capacitors. It tests at 120 Hz and 1 kHz . The vendor supplies probes for surface-mountable components. \(\$ 249\).
American Reliance Inc, 9952 E Baldwin Pl, El Monte, CA 91731. Phone (818) 575-5110. FAX (818) 575-0801. Circle No. 385

\section*{Emulator For \(\mathbf{1 9 6 0} \mu \mathrm{Ps}\)}
- Supports the i960SA and SB
- Emulates at speeds to 16 MHz

The ICE-960SB in-circuit emulator supports the vendor's i960 SA and i960 SB processors at speeds to 16 MHz . The IBM PC-hosted unit has a color interface. It lets you set breakpoints on execution addresses, instruction types, bus read or write accesses, and data values. The emulator also lets you monitor and rapidly update program variables. The trace buffer holds 1024 frames. Communication between

PROTÉUS
...CAUSING A SEA CHANGE IN AFFORDABLE INSTRUMENTATION
As the Greek God Protéus could assume many forms, so can our Protéus. With various software modules and corresponding adapters, Protéus can transform itself into a Universal Device Programmer, Data Logger, Universal Controller, Programmable Power Supply, Universal Device Tester and PCB Tester.

The New Wave in Instrumentation Begins with Bold Features:
- Standard IBM-PC parallel printer port; Optional detachable IBM-PC compatible computer for standalone operation; Built-in Power Supply.
- Flexible yet powerful Algorithm Development System supporting Symbolic Pinout Mapping allows customization of all applications according to specific needs. Add new programming algorithms, implement On-Board Programming, create custom test programs.
- Up to 296 overcurrent protected mixed analog \& digital pins/channels; Voltage Source \& Sink,
- Universal Programmer supports virtually all devices on the market and features: True Self Calibration/ Diagnostics, Programmable Current Generator, Part Insertion Sensing, Continuity Test, True State Machine Testing, Handler Interface; Adapters for Gang, PLCC, etc...


\section*{from \(\$ 995\)}
[Basic Unit with Programming Adapter supporting up to 40 pin devices; Detachable computer shown in photo not included.]


POWER SUPPLY



\section*{ALGORITHM DEVELOPMENT}


DATA LOGGER


\section*{CONTROLLER}

TESTER

the emulator and host can be via Ethernet, RS-232C or RS-432. The software lets you customize the command set. With a change in the pod and software, the unit supports the i960 KB. \(\$ 16,495\).

Intel Corp, Box 58065, Santa Clara, CA 95052. Phone (800) 8746825; in CA, (602) 554-2388. FAX (503) 696-4633. Circle No. 386

\section*{800M-Sample/Sec}

\section*{Logic Oscilloscope}
- Resolves repetitive events to 50 psec
- Uses same probes for logic analysis and waveform viewing The 16482 high-speed probe works with the vendor's Model 1600 logic oscilloscope. The instrument, a logic timing analyzer expandable to 160 channels, displays analog waveforms instead of the usual binary data. The probe, a small box with
two probe tips, connects to one of the scope's 8 -channel input groups. The probe samples single-shot data on two channels at 800 M samples/ sec or on four channels at 400 M samples/sec. You can use more probes to capture additional highspeed signals. With repetitive signals, the scope's effective timing resolution becomes 50 psec and its vertical resolution also improves. Bandwidth for all signals is 350 \(\mathrm{MHz} . \$ 750\). Delivery, 45 days ARO.

Outlook Technology Inc, 200 E Hacienda Ave, Campbell, CA 95008. Phone (408) 374-2990. TLX 350479.

Circle No. 387

\section*{Analog Signal \\ Conditioners}
- Offer 1500 V continuous commonmode isolation
- Inputs withstand 240 V ac

The PCI-5B line of analog signal-

conditioning modules conforms to a de facto industry standard. The family consists of 29 products. The conditioners, which are encapsulated in hard epoxy, are physically interchangeable with one another and plug into panels that accommodate multiple units. The modules accept inputs from such sources as 4 - to \(20-\mathrm{mA}\) current loops, resis-tance-temperature detectors, and thermocouples. The thermocouple conditioners provide linearization and cold-junction compensation. In-


\title{
Make your big ideas smaller, lighter and brighter.
}

\section*{DURACELL \({ }^{\circ}\) XL \({ }^{\text {w }}\) DL123A Lithium Batteries give you the power to think small, improve performance and portability.}

\section*{Today's emphasis on smaller, lighter, more powerful portable devices requires a bright idea in battery technology. It's here.}

Size for size, the DL123A delivers more combined power and energy than other consumer replaceable batteries. In fact, for high current applications, this compact 3-volt lithium battery delivers up to four times more energy than a 1.5 -volt AA size battery - even more at low temperatures.
put-to-output ohmic isolation withstands 1500 V continuously. Inputs withstand 240 V ac. From \(\$ 150\).

Intelligent Instrumentation/ Burr-Brown, 1141 W Grant Rd, MS 131, Tucson, AZ 85705. Phone (602) 623-9801. FAX (602) 623-8965.

Circle No. 388

\section*{Capacitance Meter}
- Measures at 1 MHz
- Provides \(\pm 100 \mathrm{~V}\) programmable bias
The Model 7200 capacitance meter measures capacitance at 1 MHz in the presence of parallel loss. The instrument computes and displays parallel resistance, dissipation, quality factor (Q), equivalent series resistance, and equivalent series capacitance, as well as the difference (in percentage or pF ) of a measured capacitance from a preselected value. The unit measures capaci-
tance from 0 to 2000 pF and conductance from 0 to \(2000 \mu \mathrm{~S}\). You can program the test levels from 15 to 100 mV . An optional internal supply produces bias voltages in the \(\pm 100 \mathrm{~V}\) range. The unit, which you can control via the IEEE-488 bus, will display these voltages or external bias levels in the \(\pm 200 \mathrm{~V}\) range. \(\$ 4795\). Delivery, four to six weeks ARO.
Boonton Electronics Corp, 791 Route 10, Randolph, NJ 07896. Phone (201) 584-1077.

Circle No. 389

\section*{Remote Diagnostic Software}
- Uses digital scopes and phone lines
- Runs on an IBM PC at central repair depot
PM 9372 Telegnostics software permits remote troubleshooting and
fault diagnosis on complex electronic equipment. The software uses a digital storage oscilloscope (DSO) at a remote site linked by telephone lines to an IBM PC at a central repair depot. The software sends setups and reference waveforms to the remote scope and downloads captured waveforms for display on a second DSO-this one at the repair depot. Messages can be transmitted to a technician at the remote site and displayed on the screen of his DSO. The software supports the vendors' DSOs that have RS-232C ports. \(\$ 200\).

John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (800) 443-5853; in WA, (206) 356\(5671 . \quad\) Circle No. 390

Philips Test and Measurement, Bldg TQIII-4, 5600 MD , Eindhoven, The Netherlands. Phone local office.

Circle No. 391


DURACELL XL Lithium Batteries are engineered for single or multicell applications. They're made in the USA and distributed worldwide under the brand name consumers prefer most, DURACELL.
Find out what Duracell's latest high power technology can do for your bright ideas. Write or call for our updated DL123A Performance Portfolio. Or if you have an immediate need, contact our OEM battery engineers today.


DURACELL INC.

\section*{DURACELL INC.}

New Products and Technology Division OEM Sales and Marketing Berkshire Industrial Park Bethel, CT 06801 Toll-free: 1-800-422-9001 ext. 426 Facsimile: 203-791-3273

\section*{FUTABA}

\section*{Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules}


\section*{CUSTOM DESIGN}

Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color


Electronic Instrument Panel to J.I. CASE Tractors.


NCR "S1" Supplier.

\section*{U.S. MANUFACTURING}

Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the

North American market.

\section*{QUALITY}

Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.


Appliance Control Display.


711 E. State Parkway Schaumburg, IL 60173

708-884-1444
FAX 708-884-1635

Right


Angle Pressfit Costefficient ERNIPTess pressfit connectors for the Eurocard sub-assembly:
- Type B \& C male versions and Type Q \& R female versions
- Universal press-in technique for thru hole or SMT board designs
- Gas tight connection withstands corrosion and vibration


Extended DIN High I/O Connectors Extended DIN connectors including 120, 128, and 150 positions:
- Cost-efficient inverse (reverse) style two-piece DIN connectors
- 3 row ( \(120 \& 150\) ) or 4 row (128) versions
- Solder, wirewrap, \& pressfit options


\section*{PCB \\ }

Edgecard

\section*{Connectors}

ERNI Edgecard connectors featuring the latest configurations and options:
- Connectors for every bus type like STD, Multi(+ S-100), Q, Apple II, XT \& AT, Microchannel, and more
- Complete range of high-density .050" types
- Extensive options in contact style, type of termination, mounting, and plating
\(\qquad\)
-

Introducing ERNI's .050" SMC twopiece high-density connector system:
- Perpendicular (daughter to mother board), stacking (parallel or mezzanine), and side-to-side (edge-toedge) mating configurations
- Anti-twist contact design assures longer life and reliability
- Built-in keying plug cavity for easy plug installation \(=\mathrm{RN}\)

\section*{8}


LDG
Miniature Housing Enclosures
Multi-use, nonmetallic, miniature, housing enclosures:
- Internal PCB mount terminal blocks
- Multiple connecting options (from

12 up to 70)
- DIN-rail mountable RNI

Application
Specific DIN Connectors
PCB process compatibility and application specific options from ERNI:
- SMT DIN Connectors
- PCB hold-down clips
- Variable pin lengths for early-make-late-break connections for "Zapproofing"

ERN

\title{
First, All Of Your DC Power Source Needs In One Small Package...
}


\title{
...And Now All Of Your DC Loads, Too!
}

\section*{Introducing \\ Programmable DC Loads}

The new AT8000A Programmable Loads are based on the new "instrument on a card" technology that became so popular with our AT8000 Power Sources. The AT8000A can house up to six 300 W loads in one \(5^{1 / 4}\) inch drawer. By paralleling modules, you can increase the load of any single channel up to 1800 W . And by adding expansion chassis, you can increase the system up to 16 channels!

\section*{Now You Can Meet Virtually Any ATE DC Source or Load Requirement}

You'll appreciate the fact that the Elgar DC Loads and Power Sources can be used in any combination in the same AT8000A chassis. Plus, the option of Built-In Test (BIT) allows you to perform self testing and measurement of system parameters through the bus. The AT8000A can also include an embedded TMA and accept CIIL commands per MATE Interface Standard 28067633.


\section*{Elgar Power Is \\ Preferred the World Over.}

For over 25 years, Elgar has been the standard in AC Power Sources with over 50,000 programmable power sources and frequency converters in the world being used in science, industry and defense. With the introduction of the AT8000 DC Power Sources, Elgar applied that standard to DC Power Sources. Now, Elgar continues to advance the standard of excellence that has been applied to DC Power with the introduction of Loads for the AT8000A.

For more information about how the AT8000A Power Sources and Loads can help you solve your ATE testing needs, call:
1 (800) 73-ELGAR
ELGAR


WITH SYNCHRONOUS OPTICAL DETECTION.
Hamamatsu's new S3599 Modulated Photo IC rejects background light up to 10,000 lux ( 5,000 minimum) without even squinting. That makes it ideal for component environments found in office equipment, industrial control equipment or anywhere photo switches are used.

You'll see the light with Hamamatsu's famous quality. For quantity pricing, call 908-231-0960 or FAX 908-231-1539 today.



\section*{We Support Your HV Power Supply... All The Way!}


From your buy decision with a wide choice of 13 different series and over 200 standard models, from 1 kV to 500 kV DC, 15 W to 15 kW , and anything in between. All with advanced pulse-width modulation...for high efficiency, fast response, and reliability... and air insulation for light weight and serviceability. Competitive pricing always. And the best on-time delivery in the industry.


To installation with complete documentation, test procedures, and responsive that is only a phone call away. Through trouble-free operation that results from a low parts count and carefully derated high voltage components...all backed by a no-nonsense 3 -year warranty and factory service available on three continents!


We have a new 16-page short-form catalog crammed with useful information. Ask for a copy today and select Glassman for your next high voltage application. Mr. HV won't let you down!


GLASSMAN U.S.A.
Glassman High Voltage, Inc. P.O. Box 551 Route 22 East
Salem Industrial Park
Whitehouse Station. NJ 08889 U.S.A.

Telephone: (908) 534-9007
TWX: 710 480-2839
FAX: (908) 534-5672

GLASSMAN EUROPE
Glassman Europe Limited Studio 4
Intec 2
Wade Road
Basingstoke
Hampshire RG240NE
England
Telephone: (0256) 810808
FAX: (0256) 810815

\section*{GLASSMAN JAPAN}

Glassman Japan High Voltage Limited Taira Building
1-17. Taira 1-chome
Miyamae-ku, Kawasaki 216
Japan
Telephone: (044) 877-4546
FAX: (044) 877-3395

\title{
How Design Work Becomes Teamwork.
}


The DAZIX Simultaneous Engineering Environment (SEE) turns design work into teamwork.

SEE allows your departments to coordinate efforts during every phase of the design process. This helps to improve product quality, lower production costs, and get products to market faster.

SEE delivers the integration you asked for. Common database management. Common user interface across applications. And a complete
toolset, including solutions for front-to-back electronics design, mechanical design, manufacturing, and document management.

What's more, with SEE, your entire team can benefit from an open-system framework. A framework that integrates DAZIX, Intergraph, and Sun products - Call us today at 800-239-4111 for a free copy of Simultaneous Engineering.

In Europe, call 33-1-4537-7100. In the Asia-Pacific area, call 852-8661966.

DAZIX
An Intergraph Company

\section*{NEW PRODUCTS}

\section*{CAE \& SOFTWARE DEVELOPMENT TOOLS}

\section*{Self- and Mutual-Inductance Simulator}
- Calculates inductance in nonmagnetic media
- Handles IC package leads, bondwires, and all coil types
Henry is a 3-D inductance simulator that calculates self and mutual inductance of complex structures in nonmagnetic media. The program uses the complete mathematical definitions of inductance and mutual inductance, which are based on the energy stored or shared between magnetic circuits. Use of these definitions removes any limitations imposed by nonmagnetic media. Typical applications are for the calculation of inductances in IC package leads, ground planes, vias, traces, and any kind of coils. The simulator does not require a ground-plane structure in order to calculate the solution. The program runs on Sun-


3, Sun-4, and Sun SPARCstation computers under SunOS, or on Mips workstations under Unix. From \(\$ 40,000\).

OEA International Inc, 3235 Kifer Rd, Suite 300, Santa Clara, CA 95051. Phone (408) 738-5972.

Circle No. 392

\section*{C Functions For Geometric Computations And Display}
- Geometric computations include NURBs
- Compatible with AutoCAD Development System Release 10 CAD/CAM Developer's Kit/2D is a library of C functions for geometric computations, display, and DXF data exchange. Geometric computation functions include construction, rotation, scaling, mirroring, intersection and trimming of lines, and NURBs (Non-Uniform Rational BSplines). The display functions allow you to set up one or more viewports and to pan or zoom; these functions are adaptable to popular graphics libraries. The DXF dataexchange functions allow you to read and write ASCII and binary files, and are compatible with all AutoCAD release 10 entity-types. The CAD/CAM Developer's Kit/2D is a subset of the vendor's full 3-D Developer's Kit, and you can up-
grade to the 3-D version at any time. The personal edition, for inhouse use only, \(\$ 399\); upgrade to 3 -D edition, \(\$ 600\), professional edition upgrade, which provides roy-alty-free distribution rights, \(\$ 500\).
Building Block Software Inc, Box 1373, Somerville, MA 02144. Phone (617) 628-5217.

Circle No. 393

\section*{Simulation Model Bank}
- Includes both architectural and structural models
- Compatible with Zycad's hardware simulation accelerator
The Model Bank service is founded on joint agreements with leading manufacturers to market both architectural and structural simulation models of microprocessors and logic modules. The structural models are based on existing hardware and allow users to construct simulation models of complete systems
and subsystems for use in prefabrication verification. The architectural models, such as those of the Mips R3000, R3010, and R4000 devices, allow you to design systems with processors that are not yet available in silicon. All of the models are compatible with Zycad's hardware simulation accelerator, and yield better accuracy than suboptimum techniques such as behavioral model or in-circuit emulation. Subscription to Model Bank, from \(\$ 5000\).

Protocol, 500 International Dr, Mount Olive, NJ 07828. Phone (201) 347-7900. FAX (201) 347-8525.

Circle No. 394

\section*{Design Aid For Filters}
- Includes three new filter types
- Allows you to specify ideal, standard, or stock component values Active version 2.07 is a software package for the analysis and design


\section*{THIS DECADE, MAKE A COMMITMENT TO USE Only The Best.}

FOR TEN YEARS INTROL HAS BEEN CREATING THE WORLD'S BEST HIGH-POWERED TOOLS FOR EMBEDDED SYSTEMS PROGRAMMERS. O OUR C COMPILERS, MODULA-2 COMPILERS, SOURCE LEVEL DEBUGGERS, AND MACRO ASSEMBLERS ARE IN USE BY MAJOR CORPORATIONS AND SAVVY INDEPENDENT CONSULTANTS FROM SAN FRANCISCO TO

SINGAPORE. WE HAVE DEVELOPED SUPPORT FOR A WIDE RANGE OF PROCESSORS, ON AN EVEN WIDER RANGE OF HOST SYSTEMŚ. THIS VERSATILITY ALLOWS YOU TO MOVE FROM PROJECT TO PROJECT
 WITHOUT LOSING VALUABLE TIME LEARNING NEW TOOLS AND TECHNIQUES. ¿\& ALL OUR PRODUCTS ARE COVERED BY COURTEOUS AND HIGHLY EFFICIENT TECHNICAL SUPPORT TO ASSIST YOU WITH ANY PROBLEMS YOU MAY ENCOUNTER. SO, THIS DECADE, MAKE A COMMITMENT - TO INTROL.

Timing

\title{
Diagrams
}
7. Hard to Draw

『f Tough to Modify
7 Painful to Analyze
7 Required for Reliable Designs

\section*{Relax, now there's Timing}


\section*{The Timing Diagram} Drawing and Analysis Software that ...
- Lets you create and modify timing diagrams in minutes instead of hours.
- Automatically performs worst case timing analysis.
- Instantly highlights timing violations.
- Generates standardized timing documentation.

\section*{TimingDesigner \({ }^{\text {w }}\)} will belp you develop better designs more quickly!

Pick up the phone now and call for more information.

\author{
206•869-4227
}

\section*{CHRONOLOGY}

2849 152nd Ave. NE / Redmond, WA 98052 FAX: (206) 869-4229

\section*{CAE \& SOFTWARE}
of active filters that runs on IBM PCs and compatibles. You can design Butterworth, Chebyshev, Bessel, Real-Pole, Gaussian, Lin-ear-Phase, or Elliptic filters. You can define a filter by its polynomial transfer function, by its poles and zeros, or by its gain. Conversely, for a filter that you've already designed, based on a specific topology and populated with specified component values, the software will display the ideal characteristics, along with Monte Carlo sweeps of the filter's performance. You can now output hard copy of Hercules, CGA, and EGA graphics directly to dotmatrix and laser printers. When you're building a filter with stan-dard-value components that significantly shift the passband/stopband borders away from the design center, a "best combination" feature allows you to change some of these values in such a way as to approach the design center more closely. \(\$ 745\).

Tatum Labs Inc, 3917 Research Park Dr, Suite B-1, Ann Arbor, MI 48108. Phone (313) 663-8810. FAX (313) 663-3640. Circle No. 395


\section*{Simulation Tool For Crosstalk Effects}
- Reports time delays and functional violations
- Analyzes crosstalk between nets Boardscan version 2.0 is a pc-board screener that calculates both trans-mission-line signal integrity and crosstalk effects. Input to the screener takes place through an interface file, which is integrated with EDA (electronic design auto-

\section*{ECL Oscillators In Standard D.I.P. Are The Industry Standard From 10 to 325 MHz \\ ECL \\ oscillators from MF are available in \\  \\ three of the most popular connections in 10K and 10KH logic, single ended and complementary, with and without enable/disable}

Enable/Disable Application; How to get one of two frequencies


Phone or FAX for our catalog or 350 K catalog-on disk on all our oscillators including VCXO's, Phase-Lock Loop Oscillators, ECL up to 325 MHz , Tristate HCMOS/TTL and Wide Temp Range oscillators in DIL package.


M F Electronic has received the coveted Outstanding Supplier Award for 1991 from SiliconGraphics. CIRCLE NO. 164

\section*{S Specs for Hard Drivers.}


\section*{Maxtor 7080}

Simplicity of design makes Maxtor's Cheyenne Series inch-high 80MB 7080 disk drive the most reliable in its class. Compare Maxtor's four-head, two-platter design to Seagate's six-head, three-platter design. Fewer moving parts make Maxtor's drives inherently more dependable.
Power consumption is a very low 2.8 watts, making it one of the lowest in the 80 MB class. The 7080 is also Novell Labs certified, and is available with either SCSI or AT interface, giving you flexibility for a winning system.
Exceptionally fast 17 ms seek time and 32 K cache buffer in the new generation inch-high form factor give Maxtor faster data throughput than the competition.
Call and ask about our entire Cheyenne family of disk drives with capacities from 40 MB to 130 MB . Don't fall for the off-the-wall claims. Give us a shot and we'll prove Maxtor specs can't be matched. Call your nearest Authorized Maxtor Distributor.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
3.5-inch Disk \\
Drive Spec.
\end{tabular}} & \begin{tabular}{c} 
Maxtor \\
\(\mathbf{7 0 8 0 A}\)
\end{tabular} & \begin{tabular}{c} 
Seagate \\
1102 A
\end{tabular} \\
\hline Seek Time & \(\mathbf{1 7} \mathbf{~ M s e c .}\) & 19 Msec. \\
\hline Standard Buffer Size & \(\mathbf{3 2 K}\) & 8 K \\
\hline Form Factor & \(\mathbf{3 . 5} \mathbf{~ x ~ 1 " ~}\) & \(3.5^{\prime \prime} \times 1.6^{\prime \prime}\) \\
\hline Heads-Disks & \(\mathbf{4 / 2}\) & \(6 / 3\) \\
\hline Avg. Power Consumption & \(\mathbf{2 . 8}\) watts & 9 watts \\
\hline
\end{tabular}

\section*{We Drive Harder. \\ Mastor}

\section*{Call} Your Authorized Maxtor Distributors

\section*{A.D.P.I.}

1-800-275-2374
301-258-2744
Anthem Electronics
408-452-2287
Arrow Commercial Systems Group
1-800-323-4373
Arrow/Klerulff
1-800-777-2776
Avnet Computer
1-800-422-7070
B.S.M/Business Solutions in Micro

1-800-888-3475
214-699-8300
Cal Abco
818-704-9100
800-669-2226
Compac Micro Electronics
1-800-426-6722
415-656-2244
Computer Brokers of Canada
416-660-1616
1-800-663-0042
1-800-361-6415
CPC
714-757-0505
800-582-0505
Data Storage Marketing (D.S.M.)
1-800-543-6098
303-442-4747
Firstop Computer
1-800-832-4322
Future Electronics
514-694-7710
Intelect
011-525-255-5325
Marshall Industries
1-800-522-0084
Microware Distributors
1-800-777-2589
503-646-4492
Mini-Micro Supply Co.
408-456-9500
1-800-628-3656
Pioneer Standard Electronics
1-800-874-6633
Pioneer Technologies
1-800-227-1693
S.E.D.

1-800-444-8962
404-491-8962
Tech Data
1-800-237-8931
813-539-7429
Technology Factory
1-800-848-2073
1-800-227-4712
U.S. Computer

305-477-2288
Wyle Laboratories
1-800-289-9953

CAE \& SOFTWARE DEVELOPMENT TOOLS
mation) software tools from Intergraph, Mentor Graphics, RacalRedac, and Valid Logic. The program reports time delays, overshoots and undershoots, settling time, noise margins, and functional violations. The program also analyzes and reports crosstalk between nets. A new feature is the interactive database facility that lets you add, delete, substitute, and browse through the component library; the library has been expanded to include more than 4000 components in various technologies, such as FAST, HCT, and F100K. From \$17,000.

Quantic Laboratories, 46750 Fremont Blvd, Suite 206, Fremont, CA 94538. Phone (415) 770-8383. FAX (415) 770-8395.

Circle No. 396

\section*{Test-Vector Generator For Timing Simulator}
- Converts waveforms to various PLD Test Vector formats
- Lets you customize test-vector formats
Test Vector Generator is a tool for use with the vendor's \(d V / d t\) Timing Diagram Accelerator; it lets you convert waveforms generated with \(\mathrm{dV} / \mathrm{dt}\) to various PLD test-vector formats or test vectors into \(\mathrm{dV} / \mathrm{dt}\) waveforms. The program currently supports the following PLD formats: Abel (Data I/O Corp), MacAbel (Capilano), TangoPLD (Accel), OrCAD/PLD (OrCAD Corp), Palasm (Advanced Micro Devices), and Schema PLD (Omation). The test-vector-generator manual provides the necessary file specifications for customizing test-vector format outputs. Test Vector Generator, \(\$ 495\); dV/dt, from \(\$ 695\); combined \(\mathrm{dV} / \mathrm{dt}\) with Test Vector Generator, \(\$ 995\); upgrade for registered users of \(\mathrm{dV} / \mathrm{dt}\), \$195.

Doctor Design, 5415 Oberlin Dr, San Diego, CA 92121. Phone (619) 457-4545.

Circle No. 397


\section*{Enhanced Autorouter}
- New Reconstruct algorithm replaces ripup-and-retry - Multiple passes handle SMDs and wide traces
Tango-Route Pro is a high-performance autorouter for IBM PCs and compatibles. The vendor has replaced older ripup-and-retry algorithms with a much faster "reconstruct" algorithm. The program performs multiple passes in three phases. The constructive phase includes special passes for SMDs (storage-module drives), wide traces, and memory routing. The remove-and-replace phase may include as many as 10 iterative passes, yielding fewer layers, fewer vias, and shorter traces. The manu-facturing-improvement phase may have as many as 10 manufacturing passes and one final manufacturing pass. The program runs under the vendor's Accel Productivity Interface, a Windows-like, menudriven interface that helps both the novice and the professional designer. All routing options are selected from menus and dialog boxes; prompts and on-line help provide cues to proper operation at each phase. The program supports both uniform and nonuniform routing grids, allowing virtually any board density and any combination of design rules and pad sizes. TangRoute Pro interfaces to Tang-PCB and Tango-PCB Plus layout tools. \(\$ 5500\).

Accel Technologies Inc, 6825 Flanders Dr, San Diego, CA 92121. Phone (619) 554-1000. FAX (619) 554-1019.

Circle No. 398

\section*{LCD Proto Kit}

Everything you need to start your LCD application .... create complex screens in just a few hours!


Kit also includes:
Power supply provides +5 v and Gnd for

(\$595 pre-assembled \& tested)
*The CY325 40-pin CMOS LCD Controller IC is available from stock @ \(\$ 75 /\) singles, \(\$ 20 / 1000\) s (Surface mount also avail in qty.)

\section*{CyberneticMicroSystems}

Box 3000 - San Gregorio CA 94074 Tel: 415-726-3000 - Fax: 415-726-3003

\section*{CAE \& SOFTWARE}

\section*{Schematic-Capture Tool}
- Compiler increases design size
- Manager controls data flow Schema III version 3.3 is a sche-matic-capture tool that runs on IBM PCs and compatibles. New features include an incremental compiling postprocessor, which reduces compilation time and makes disk space the only limitation on design size; full network compatibility; and the Schema Integrated System Manager (SISM), which controls the flow of data through schematic capture, simulation, PLD design, and pe-board layout. It also has new parts-creation routines, parts labelswapping routines, and drawing editor commands. A switch lets you toggle in and out of high-resolution VGA mode. \$495.

Omation Inc, 801 Presidential Dr, Richardson, TX 75081. Phone (800) 553-9119; in TX, (214) 2315167.

Circle No. 399

\section*{Virtual-Memory Spice}
- Runs 10,000-transistor circuits
- Processor reads Spice output files RSpice is a virtual-memory version of Spice release 2 g 6 for use on 80386- and 80486 -based PCs. The program determines the amount of extended memory available; as the program runs, if the simulation requires more memory than is available, the program begins swapping to disk and completes the simulation. With as little as 1 M byte of extended memory, the program handles circuits with as many as 10,000 transistors. The RGraph graphical postprocessor can read a standard Spice output file from RSpice or any Spice-like simulator, as well as ASCII data files. This program directs hard copy of an RSpice screen plot to HP laser printers. RSpice and RGraph together, \(\$ 295\); free demo disk available.

RCG Research Inc, Box 509009, Indianapolis, IN 46250. Phone (800) 442-8272; in IN, (317) 877-2244.

Circle No. 400

\section*{UNIUERSAL VOLTAGE POWER SUPPLIES}

\section*{FEATURES:}

UNIVERSAL INPUT HIGH EFFICIENCY BUILT-IN- EMI FILTER LOW OUTPUT RIPPLE OVER VOLTAGE AND SHORT CIRCUIT PROTECTION SMALL FOOT PRINT

PSA-093


FOR NOTEBOOK PC
WATTS MODEL O/P1 O/P2 O/P3 O/P4 DIMENSION \(\begin{array}{llllll}30 \mathrm{~W} & \text { PSA. } 093 & 9.5 \mathrm{~V} / 3 \mathrm{~A} & 149 \times 75 \times 45 \mathrm{H}\end{array}\) PSA 161 16.5V/.8A
PSA. 181
\(18 \mathrm{~V} / 1.65 \mathrm{~A}\) (7 MODELS 18/165 40 W PSA. 4641 18V/14A. CHARGER 1 A

\(\begin{array}{lll}50 \mathrm{~W} & \text { PSA. } 124 & 12 \mathrm{~V} / 4.2 \\ & \text { PSA. } 242 & 24 \mathrm{~V} / 22 \mathrm{~A}\end{array}\)
PSA-242 24V/22A
FOR PC,HARD DISK \& FLOPPY DISK DRIVES,INDUSTRIAL, TELECOMMUNICATION....
WATTS MODEL O/P1 O/P2 O/P3 O/P4 DIMENSION \begin{tabular}{lllllll}
\hline 40 W & PSA. 4031 & \(5 \mathrm{~V} / 3 \mathrm{~V}\) & \(12 \mathrm{~V} / 2 \mathrm{~A}\) & \(-12 \mathrm{~V} / 0.5 \mathrm{~A}\) & \(127 \times 76 \times 30\)
\end{tabular} (8 MODELS) 50 W PSA. \(5031 \quad 5 \mathrm{~V} / 5 \mathrm{~A}\). \(12 \mathrm{~V} / 2.5 \mathrm{~A}-12 \mathrm{~V} / 0.5 \mathrm{~A} \quad 160 \times 100 \times 45\)

 \(\begin{array}{llllll}50 \mathrm{~W} & \text { PSA } 5231 & 5 \mathrm{~V} / 4 \mathrm{~A} . & 12 \mathrm{~V} / 2 \mathrm{~A} & -12 \mathrm{~V} / 0.5 \mathrm{~A} & 144 \times 80 \times 48\end{array}\) WATTS MODEL O/P1 O/P2 O/P3 O/P4 DIMENSION 150W PSA 1500 U SV/15A \(-5 \mathrm{~V} / 1 \mathrm{~A} \quad 12 \mathrm{~V} / 1 \mathrm{~A} \quad 12 \mathrm{~V} / 5 \mathrm{~A} 198 \times 97 \times 38\) PSA. 1503 SV 5V 30 A PSA \(15090 \quad 5 \mathrm{~V} / 15 \mathrm{~A}-5 \mathrm{~V} / 1 \mathrm{~A}\). \(-12 \mathrm{~V} / 1 \mathrm{~A} \quad 12 \mathrm{~V} / 5 \mathrm{~A}\) (10 MODELS
PSA-2041U

SAFETY:
- ALL APPROVED BY UL/CSA/TUV (PSA-2041 IS IN PROCESS)
- PSA-40XX AND PSA-50XX APPROVED BY UL/CSA/TUV/VDE

\footnotetext{
PHIHONG ENTERPRISE CO., LTD.
TAIWAN:
16. LANE 530, CHUNG CHENG NORTH ROAD SAN CHUNG CITY TAIPEI, TAIWAN, R.O.C FAX: 886-2-9817086 \& 886-2-9833222 TEL: 886-2-9882126 \& 886-2-9805255 EUROPE:
HN ELEKTRONIK
POSTFACH 1113 D-6456
LANGENSELBOLD W. GERMANY
TEL: 06184-2872 FAX: 06184-62316
}

\title{
Aluminum Electrolytics
}

\section*{NON-POLARIZED}

\section*{Surface \\ Mount}

\section*{\begin{tabular}{l} 
CAUTION \\
LOW CEILING \\
\hline
\end{tabular} MAX. HEIGHT 5.5 mm \\ EXPANDED \\ \(-55^{\circ} \mathrm{C}\) \(+105^{\circ} \mathrm{C}\) TEMPERATURE} \begin{tabular}{l} 
HOUR \\
\cline { 2 - 3 } \\
LIFE POLARIZED \\
\hline
\end{tabular} TEST RELIABILITY II


\section*{Lead-time, Cost, Production Savings}

\section*{All signs point to Nichicon surface mount electrolytics.}

When you need surface mount aluminum electrolytic capacitors, remember that all signs point to Nichicon.
Because now there are seven surface mount electrolytic series ready to help your products meet their marketing window-on time and on budget.
Save time. Save space. Save money.
Who isn't under pressure these days to reduce costs?
Well now you can, without sacrificing performance, when you design your new products or replace comparable tantalum capacitors with Nichicon surface mount electrolytics.

\section*{More Nichicon advantages.}

Your real bottom line though is still capacitor performance. And with seven series with 1,000 to 5,000 load life ratings to choose from, your chances of finding your capacitor choice are better than ever.


Each series is carrier-taped and reeled and features Nichicon's anti-solvent design.

\section*{ The capacitor choice.}
\begin{tabular}{|c|c|}
\hline SERIES & FEATURE \\
\hline WT & \[
\begin{aligned}
& 1,000 \mathrm{hr} \text {. life/ } / 5.5 \mathrm{~mm} \text { max. ht. } \\
& -55 \sim+105^{\circ} \mathrm{C} / 0.1 \sim 100 \mu \mu \mathrm{~F} \\
& 4 \sim 50 \mathrm{~V}
\end{aligned}
\] \\
\hline UX & \[
\begin{aligned}
& 2,000 \mathrm{hr} \text { life/ }-55 \sim+105^{\circ} \mathrm{C} \\
& 22 \sim 470 \mu \mathrm{~F} / 6.3 \sim 50 \mathrm{~V}
\end{aligned}
\] \\
\hline UZ & \[
\begin{aligned}
& 5,000 \mathrm{hr} \text {. life/6mm ht. } / 4 \sim 50 \mathrm{~V} \\
& -55 \sim+105^{\circ} \mathrm{C} / 0.1 \sim 200 \mu \mathrm{~F}
\end{aligned}
\] \\
\hline wx & \[
\begin{aligned}
& \text { 2,000 hr. life/ } 5.5 \mathrm{~mm} \text { max. ht. } \\
& -40 \sim 85^{\circ} / 0.1 \sim 220, \mu \mathrm{~F} / 4 \sim 50 \mathrm{~V}
\end{aligned}
\] \\
\hline UT & \[
\begin{array}{|l|}
\hline 2,000 \mathrm{hr} \text {. life/ } 6 \mathrm{~mm} \mathrm{ht} . \\
-55 \sim 105^{\circ} / 0.1 \sim 100, \mu \mathrm{~F} / 4 \sim 50 \mathrm{~V} \\
\hline
\end{array}
\] \\
\hline UP & \begin{tabular}{l}
\(1,000 \mathrm{hr} . / 6 \mathrm{~mm}\) ht./Non-polarized \(-40 \sim+105^{\circ} \mathrm{C} / 0.1 \sim 47 \mu \mathrm{~F}\) \\
6.3~50V
\end{tabular} \\
\hline UK Muse & \[
\begin{aligned}
& \text { 2,000 hr./6mm ht./For audio } \\
& -40 \sim 5^{\circ}+85^{\circ} \mathrm{C} / 0.1 \sim 220 \mu \mathrm{~F} \\
& 4 \sim 50 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

For your free Nichicon Capacitor catalog or more information, call your local Nichicon representative or distributor, or call us at (708) 843-7500. Fax (708) 843-2798.

\section*{Get on board NEC's 3-MIPS V53}

\section*{On-board peripherals, that is}

Our V53 microprocessor has some very important passengers, right on the chip. Like a 71071- and 8237-compatible 4 -channel DMA controller that delivers eight megabytes per second data throughput. And three 8254-compatible timer/ counters, a 16 -bit refresh counter, an 8259-compatible interrupt controller, and 8251compatible serial I/O port. All on-board, and all software compatible with industry standard devices.

\section*{Wicked fast}

But if you think the weight of all this on-board cargo slows anything down, think again. Our 16 MHz microprocessor screams along at a minimum instruction execution speed of 125 nanoseconds and can

\author{
Free Data Book \\ Call 1-800-632-3531 \\ FAX 1-800-729-9288
}
address up to 16 megabytes of memory. And on-board hardware allows memory implementation of a LIM 4.0 specification. Of course, the V53 is instruction-set-compatible with the entire V-series family of microprocessors and can serve as your embedded DOS engine. Don't settle for less than both thrilling speed and on-chip peripherals.

\section*{Smooth ride}

And since you want a ride that's smooth as well as a fast, we offer you the development tools you need. And whether you choose the 132 -pin PGA or 120-pin QFP, you'll save time, money and board space when
you specify NEC's V53 16-bit microprocessor, with on-board peripherals.

\section*{Free Data Book}

For your free copy of NEC's 16-bit V-Series Microprocessor Data Book, call 1-800-632-3531. Ask for Info Pack \#100.

NEC Electronics Inc.
401 Ellis St.
P.O. Box 7241

Mountain View, CA 94039-7241
1-800-632-3531/1-415-965-6158




\section*{VARITRONIX LIMITED VL ELECTRONICS, INC.}

\section*{VE}

SOPHISTICATED ONE-STOP CUSTOM SERVICES
LCD DISPLAYS AND CUSTOM MODULES
TOTAL TURNKEY ASSEMBLY PROJECTS
TOUCH SENSITIVE COMPUTER HANDHELD TERMINALS

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
VARITRONIX LID. \\
4/F. LIVEN HOUSE, \\
61-63 KING YIP STREET. \\
KWUN TONG,
HONG KONG \\
TEL: ( 8521 239-4317
\end{tabular}} & vl electronics, inc. & Varitronix (UK) itd. & \\
\hline & 3250 WILSHRE BIVD., SUTE 1301, & P.O. Box 200. & NENUE CHARLLES DE \\
\hline & Los Angeles, & MADSTONE, & 91420 MORANGIS, \\
\hline & & ENTMEET5 OST & \\
\hline & TEL: (1) (2) & TEL: 0 & \\
\hline & FAX: (1) (213) \(738-5340\) & FAX: 0627-2317 & FAX: 1331169090535 \\
\hline
\end{tabular}
* NOW aVAILABLE FROM VARITRONIX, EXTENDED TEMPERATURE STN DISPLAYS AND MODULES*


\title{
Mil-Spec NDI Computer Sub-Systems to Meet the Standards of the
} U.S. Army, Navy, Air Force, Marines ...and the U.S. Taxpayer.
The urgent need for reliability in Mil-Spec equipment and systems requires no further justification. If you're designing or integrating computer systems for any of the Armed Forces, reliability is paramount. And it must be achieved at reasonable cost levels.
At Radstone Technology, we have a proven strategy that enables you to control costs without compromising reliability, quality or performance. Our MilSpec computer boards and sub-systems meet the most stringent U.S. and international military requirements and the increasing mandate for NDI (Non-Developmental Item) products. Radstone NDI Mil-Spec VME provides proven economies in terms of hardware, software development and compatibility, plus reduced time to market and performanceproven reliability. That's why, now more than ever, the DoD, military and prime contractors are counting on Radstone for Mil-Spec NDI VME. Radstone Mil-Spec VME. It's the right way to cut costs without cutting corners. Let us show you how your programs can take advantage of our technology, using an accepted standard and a winning strategy. We'll help you meet the requirements of the military and the taxpayer.

Radstone Technology Corporation
20 Craig Rd.,Montvale, NJ 07645-1737
Call Toll-Free: (800) 368-2738
Eastern Region: (201) 391-2700 Central Region: (708) 304-0202
Western Region: (408) 727-4795


B Rabsone TECHNOLOGY


We've expanded our line of rugged microcomputers into a full team of products, all built rugged from the ground up. These are full rugged systems, versatile enough for military applications, and tough enough for the harshest environments.
- The KMS-4000-powerhouse '386 or '486 microcomputer. Direct access to four removable media. Larger 10.4"EL display. Low MTTR, dependable KMS rugged technology.
- The CP-1932(3)/UYK-rugged PC/AT-compatible micro, praised for performance and reliability during Desert Storm. '386 or '486 computing power. Internal EL display. Fixed and removable drives. Portable or rack-mount.
- The RCM-1900 -tough 19" color monitor, fits standard rack for rugged graphics anywhere. Brilliant image, resolution to \(1,280 \times 1,024\) pixels.
- The PRP-900-lightweight, compact dot-matrix printer. Rugged enough to print in moving vehicles. Easy to load and operate. NLQ performance. Take it anywhere.

For more information on the complete KMS team of rugged hardware, call:
1-800-521-1524
or 1-313-769-1780.
(FAX 1-313-769-8660)
GSA Schedule GS00K89AGS6289

\section*{LITERATURE}


\section*{Labview 2 Demo, Video, And Directory}

Three literature choices are available for Labview 2. The 30-minute demonstration disk shows how to develop virtual instruments for data acquisition and provides instrument control applications. The demo requires a Macintosh with 2M bytes of RAM, 2 M bytes of available hard-disk space, and a 13 -in. monitor. In the 6 -minute video tape, Applications, users of industrial, laboratory, and educational applications describe how they use the Labview 2 graphical programming software. The video comes in VHS or PAL formats. Solutions, a directory of consultant services and products, provides a desktop reference guide to programming or application consultant services in a particular field.
National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX \(78730 . \quad\) Circle No. 401

\section*{Three SoftwareSpecific Journals}

Inside Turbo \(C++\), a \(16-\mathrm{pg}\) monthly journal, offers programmers information about polymorphism, inheritance, debugging object hierarchies, and third-party object class libraries. This periodical demonstrates proven techniques with actual examples and code samples that you can download from the vendor's on-line information system. The DOS Authority provides tips and techniques for consultants, programmers, and MIS managers. Topics include configuring tips and techniques; in-depth explanations of
documented-and undocumentedDOS commands; a behind-thescenes look at DOS internal devices; and debug scripts or GWBasic routines that create tools and utilities for enhancing DOS. The third journal, Inside QuickBasic provides information about using DOS and BIOS calls, optimizing QuickBasic programs for size and speed, creating intuitive user interfaces, and communicating with serial and parallel devices. 1 -year subscriptions: Inside Turbo + +, \$79; The DOS Authority, \$99; Inside QuickBasic, \(\$ 59\).

The Cobb Group, 9420 Bunsen Pkwy, Suite 300, Louisville, KY 40220.

Circle No. 402

\section*{Paper Compares Throughput Of Counters}

The \(4-\mathrm{pg}\) paper, Optimizing Throughput with HP VXI, compares the throughput of the HP E1420A VXI universal counter with that of a message-based VXI counter and an HP-IB equivalent of the HP E1420A. A second comparison shows the time savings achieved by using register-based devices. The paper discusses SCPI (Standard Commands for Programmable Instruments), register-based devices, continuous acquisition, and programming of register-based devices and controllers.

Hewlett-Packard, 19310 Pruneridge Ave, Cupertino, CA 95014.

Circle No. 403

\section*{Analog And Digital Storage Scopes Cataloged}

The 1991 Distributor Products Catalog from Tektronix provides specifications and descriptions of 13 analog and digital-storage oscilloscopes. It also features low-cost bench instruments, including frequency counters, DMMs, and function generators. The \(24-\mathrm{pg}\) catalog has selection tables for choosing replacement and accessory probes for

oscilloscopes.
RAG Electronics Inc, 21418 Parthenia St, Canoga Park, CA 91304.

Circle No. 404


\section*{Manual Helps You With Layouts}

You can use this technical manual to lay out ASICs. It contains data about each semicustom ASIC, packaging selections, tips on good layout practice, and step-by-step instructions for doing both manual and computer-aided layouts.

Cherry Semiconductor Corp, 2000 South County Trail, East Greenwich, RI 02818.

Circle No. 405

\title{
DC-DC Converter Transformers and Power Inductors
}

These units have gull wing construction which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.
- Operation over ambient temperature range from \(-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\)
- All units are magnetically shielded
- All units exceed the requirements of MIL-T-27 ( \(+130^{\circ} \mathrm{C}\) )
- Transformers have input voltages of \(5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}\) and 48 V . Output voltages to 300 V .
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to 20 mH with DC currents to 23 amps
- Inductors have split windings


\footnotetext{
Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 in new york call 914-699-5514
}

\section*{LITERATURE}


\section*{Brochure Features Modular Computers}

Modular Industrial Computers presents the features and specifications of the vendor's integrated, industrial computers. The \(14-\mathrm{pg}\) brochure describes computers for compact, embedded applications, computers for rack-mount applications, and computers for factory applications that require a user interface and NEMA \(4 / 12\) specifications.
Ziatech Corp, 3433 Roberto Ct, San Luis Obispo, CA 93401.

Circle No. 406

\section*{Questions And Answers} For IEEE-488 systems
Application Note \#6, Troubleshooting IEEE 488 Systems and Software, is a compilation of frequently asked IEEE system-integration questions in a question-and-answer format. As indicated in the title, the note covers both hardware and software topics. A short IEEE-488 tutorial presents terminology and general operation.

IOtech Inc, 25971 Cannon Rd, Cleveland, OH 44146.

Circle No. 407

\section*{Pamphlet Describes Voltage Suppressors}

The 12-pg brochure, Transient Voltage Suppressors: an Overview of Silicon TVS Devices, features de-

\section*{3M Improves Moisture Sealing and Insulating Systems}

Family of tapes, pads, and tubings, keyed to electrical wiring harness integrity

AUSTIN, Tex. - A variety of 3M moisture sealing techniques have proved to be effective through stringent accelerated life tests and actual automotive application experience.

Moisture seeping into virtually any part of a wire harness can migrate through wire strands in less than an hour. This occurs through capillary action, and atmospheric and temperature changes. Corrosion and galvanic action can severely damage termination points, splices, and connectors.

The 3M family of protective technologies includes:
- EMS - Electrical Moisture Sealant Pads insulate and protect splices from moisture and corrosion. They can be applied after splicing and require no


New Ideas Brochure describes dozens of technologies for solving present and future onvehicle problems. heat.
- EMB - Electrical Moisture Block Pads seal the grommet area wire harnesses against the penetration of moisture with self-adhesive rubber based mastic.
- HST - Heat-Shrinkable Tubing insulates, seals, and provides strain relief for wire splices, in-line components, fusible links and terminals.
The New Ideas Brochure describes and illustrates recent automotive technologies covering moisture sealing, insulating, interconnects with precision overmolding, flexible magnet material and powder and liquid resins. To obtain a copy, contact a 3M Automotive Trades sales representative, or call 1-800-233-3636.

3M Electrical Specialties Division
Automotive OEM, A130-3N-48
PO Box 2963
Austin, TX \(78769-2963\) Austin, TX 78769-2963

CIRCLE NO. 179

\section*{Our newest line of defense against heat.}


\section*{Insist on Interpoint.}

\section*{A full line of high-temperature DC-DC converters from the industry leader.}

Get the hottest technology in board-mounted power supplies. Full military temperature range. Unsurpassed reliability. The lowest profiles. You can get it all with Interpoint's new line of DC-DC converters.

From arctic blasts to desert storms, Interpoint's new generation DC -DC converters stand up to the toughest military environments. They deliver full power over the entire \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\). temperature range. And over an unprecedented power range, too. Interpoint can now offer you an off-the-shelf hybrid power supply for any power level from 2 to 200 watts.

For more than a decade, Interpoint DC-DC converters have proven their reliability in many of the world's most
advanced weapons systems - including mission-critical electronics on the Patriot and Tomahawk missiles, the Bradley Fighting Vehicle and F/A-18 aircraft. Our new generation converters are the most reliable yet. Each of them was designed with the specific intent of being qualified to the full performance and reliability standards of MIL-STD-883C.

And Interpoint continues to lead the way in power supply miniaturization. With power densities as high as 40 watts per cubic inch and package heights as low as .270 inch, this new generation of converters is built for the tightly packed boards in today's military and commercial avionics, ground

It's the hottest new technology in DC-DC converters. And it's available only from Interpoint. For more information, call 1-800-822-8782. In Europe, 44-276-26832.


\section*{Who's Behind The Simulation Acceleration Movement?}


And Who's Leading It?

\section*{When you} need a hybrid fast, call Pacific.

sign notes, applications, and selection guidelines for circuit protection. A reference guide highlights TAZ (transient absorption zener) products for military and industrial applications. The booklet complements the company's TAZ kits.
Microsemi Corp, Box 1390, Scottsdale, AZ 85252.

Circle No. 408

\section*{SAW Coupled-ResonatorFilter Applications}

The application note AN23, Capabilities and Applications of SAW Coupled-Resonator (CR) Filters, covers the theory of CR filter operations and its practical and theoretical performance limits. The note also provides specifications of a SAW CR filter, a comparison of SAW CR filters with other RF filters, and a review of the filter's applications.

RF Monolithics Inc, 4441 Sigma Rd, Dallas, TX 75244.

Circle No. 409

\section*{Publication Of DSP Series}

This catalog of the 1991 Prentice Hall Signal Processing Series lists texts and reference books on developments in digital signal processing. Three 1991 editions have been published: Underwater Acoustic System Analysis 2/E; Advances in Spectrum Analysis and Array; and Digital Signal Analysis \(2 / E\). Other areas covered include digital image restoration, FFT, digital image processing, adaptive filters, multirate DSP, acoustic waves, and advanced topics in signal processing. The catalog contains blurbs about each book and provides two indi-ces-one under author/title and the other under title/author.
Prentice Hall, College Publicity, Englewood Cliffs, NJ 07632.

Circle No. 410

\title{
\(30 \mathrm{MS} / \mathrm{s}\) DSO PLUS A TEST BENCH OF FUNCTIONS TIED UP IN ONE PORTABLE PACKAGE.
}

Leader's new battery-powered DSO/DMM weighs only 2.6 lbs . yet performs the functions of four different pieces of test equipment. Two functions the Model 300 offers are those of a DSO and DMM, with simultaneous display of each-including channels 1 and 2 peak-to-peak voltage and frequency. Two additional functions are an 8-bit logic analyzer, which lets you compare 8 signals at once, and a data logger for recording long-term phenomena.
 A 20-waveform capacity is standard, but an a large viewing angle. You'll find that the 300 makes the perfect traveling companion, letting you travel light
forwarding it to a lab for analysis. Although our new portable DSO is compact, it's also fea-ture-packed. Included are: HF rejection, add and subtract, and full auto setup for vertical sensitivity, sweep speed, vertical position, and trigger level. For documentation purposes the 300 can interface with an optional dedicated printer (Leader Model 710). A supertwist LCD display (a full \(21 / 2^{\prime \prime} \times\) \(41 / 2^{\prime \prime}\) ) provides high contrast and optional IC card lets you store an incredible 80 waveforms. The IC card is especially handy for


\title{
1800 645-5104 \\ LEADER \\ FOR PROFESSIONALS WHO KNOW THE DIFFERENCE
}

Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, New York 11788
Regional Offices: Chicago, Dallas, Los Angeles, Boston, Atlanta. In Canada call Omnitronix Ltd., 416 828-6221.


\section*{DOUBLE YOUR SELLING OPPORTUNITIES}

The U.S. INDUSTRIAL DIRECTORY and The U.S. INDUSTRIAL BUYERS GUIDE now reach 115,000 key buyers in U.S. manufacturing. Nearly \(50 \%\) of this reach is to individuals with buying influence in the all important Fortune 500 companies.

Your advertisement will reach all these people in an extremely cost effective way and will be seen 365 days of the year.

Call or write for more information on your many advertising options in the next edition of the U.S. INDUSTRIAL DIRECTORY and BUYERS GUIDE.
U.S. INDUSTRIAL DIRECTORY \& BUYERS GUIDE

Reed International - Cahners Publications
8 Stamford Forum, P.O. Box 10277, Stamford, CT 06904 (203) 328-2500 Fax (203) 357-7864


\section*{Form. Fit. Function. It's all here in one special EMC design.}

Available in new low force UltraSoftm

\section*{Versatility was a prime consideration as we developed our Symmetrical Slotted Shielding Series.}

For low force, secure mounting, and optimum attenuation, the gasket design is symmetrical.

Each gasket has a wide radius profile to create the greatest surface contact for maximum conductivity and increased cycle life. It also helps reduce compression requirements down to 10 to \(35 \mathrm{lbs} /\) linear foot, and provides a compression range up to \(50 \%\) of free height.

In addition, the gaskets are bi-directional, allowing transverse movement in each direction over the width of the strip.

By design, you're assured of shielding effecitveness at a minimum of 100 dB at 100 MHz . And you have a choice of mounting methods: Sticky Fingers \({ }^{\oplus}\) self-adhesive backing for non-wiping applications, or rivet mounting where bi-directional stability is a requirement.

Next time you need the perfect blend of form, fit, and function in your EMC designs, draw one of our Symmetrical Slotted Shielding gaskets onto your blueprint. For more information, call us.

\section*{Instrument Specialties}

Headquarters
Delaware Water Gap. PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213
Western Division-Placentia, CA
TEL: 714-579-7100 FAX: 714-579-7105
European Division-Liege, Belgium
TEL: 011-32-41-63-3021 FAX: 011-32-41-46-4862
Where shielding is a science.

Sticky Fingers is a registered trademark of Instrument Specialties Co., Inc. ©1990 Instrument Specialties Co., Inc. All rights reserved.

CIRCLE NO. 188

\section*{KIK at 7:00 a.m.}

First the clock radio!
Then the electric razor, coffee maker, microwave and toaster.

Plug 'em in to get you started in the morning. And there's a good chance KIK got them started with hi-pot and insulation testing during manufacturing.

KIK is one of the world leaders with Hi-pots, Insulation Resistance and Ground Continuity Testers for meeting UL, CSA, CEE, BS and VDE requirements.

The TOS 9000 system automates your production line providing:
- Easiest GPIB and front panel programming
- 5 Kv AC to 40 ma , \(9999 \mathrm{Mohm} @ 50 \mathrm{v}\) to 1 Kv DC
- 0 volt start and ramp-up for soft start
- Up to 16 test points
- Manual models also available

Find out how KIK can keep your production going from A.M. to P.M. with 10 models to fill your precise manufacturing needs.


Kikusui International Corporation
19601 Mariner Ave., Torrance, CA 90503 FAX (213) 542-4943


The TOS 9000 features fully automatic control of all front panel functions via GPIB or resident programmable memory.

\title{
EDN PRODUCT MART
}

This advertising is for new and current products.

\section*{Please circle Reader Service number for additional information from manufacturers.}

\section*{Eti= \\ YOUR ALL-IN-ONE UNIVERSAL PROGRAMMER \& TESTER MODEL: LEAP-U1}
ant one disk to Program and rest EPROMs, HIGH SPEED EPROMs EEPROMs. PEROMs. Serial EEPROM. Bipolar PROMs. Programmable Logic Devices (PAL CMOS PLD. EPLD. EEPLD, GAL, PEEL. PPL, CPL). series). CMOS ( \(40 / 45\) series) DRAMs, SRAMs. Photo coupler. Driver 75 and! Search unknown IC
- Key-in own choice of Parameters Vpp or

OEM \& AGENTS WELCOME!
LEAP ELECTRONIC CO., LTD.
NO. 3. ALLEY 2, LANE 410, WEH HUA RD., SEC. 2
PANCHIAO, TAIWAN R.O.C. P.O. BOX: \(91-249\) TAIPEI,
PANCHIAO, TAIWAN R.O.C. P.O. BOX: \(91-249\) TAIPEI, TAIWAN
TEL: \(886-2-253-3193-5\) FAX TEL: 886-2-253-3193-5 FAX: 886-2-253-3125

CIRCLE NO. 325

\section*{Control Cross-C}

ANSI C Compiler for the HD64180/Z80
- DOS based cross-compiler for ANSI and K\&R C code including prototypes and argument type checking
- Complete with high-speed assembler, linker, and librarian. Includes macros to interface C and assembly.
One-pass design produces FAST compile times.
- Full MMU support for up to 1 megabyte programs.
- ANSI preprocessor provided at compile time
- Optimized code generation for char and int data types and operators. Also supports long types.
Allows in-line assembly with access to C variables.
- All code is reentrant and ROMable.

Fast ANSI/IEEE 754/INTEL floating point support
Z280 and 8085 compilers coming soon.
AVAILABLE FOR ONLY \(\$ 699\)


SOFTOOLS, INC.
8770 Manahan Drive Ellicott City, MD 21043 (301) 750-3733

FAX/BBS (301)750-2008

TINY 2400/9600 hps MODEM


CH1785, A Complete Modem
- Send Fax, AT Commands
- V. 22 bis, V.22, 212A, 103
- FCC Part 68 Approved, DOC
- 5V, Low Power
- \(1.25^{\prime \prime} \times 1.00^{\prime \prime} \times 0.50^{\prime \prime}\)

Your Source for Modem Components

\section*{Cemmetek \\ Tel: 408-752-5000 \\ Fax: 408-752-5004}

Cermetek Microelectronics, Inc. 1308 Borregas Ave. - Sunnyvale, CA 94089

CIRCLE NO. 326
Pick Of The Week

nect 2
up to 200 nitors
away at once Sup.
ports all VGA/SVGA cards and monitors 4 and 8 output models available Only \$295, 1 year warranty
\(\qquad\) Communications \(\nabla\) 8Specialties, Inc

TEL: 516-273-0404 FAX: 516-273-1638

\section*{DAC-Per-Pin \({ }^{\text {mi }}\)}


\section*{Device Programmers}

Program virtually every programmable device on the market with a certified programmer from the leading supplier of programmable device tools, Logical Devices. The Allpro-4i starts at \(\$ 1295\).

We Have the Best Products on The Market.
For more information, LOCRCAL call 1-800-331-7766.

CIRCLE NO. 327

\section*{CMOS 186}

Single Board Computer
Runs C or QuickBASIC Programs
Powerful 16 -bit computer directly executes EPROM's containing any Cor BASIC. EXE file. NO LOCATORS! Sottware includes multi-tasking. multi-drop comm, PID control, OPTOMUX.'"
- 10, 12, 16 MHz 80 C 186
- CMOS design
- \(512 K\) RAM
- 384K EPROM
- STD BUS Expansion
- COMI RS232/485
- COM2. LPTI
- RTC Avail
- 80C187 Avail
- OEM discounts


1011 Grand Central Ave., Glendale, CA 91201 (818) 244-4600 FAX (818) 244-4246

BNK 5620
DSP56001 DUAL PROCESSOR BOARD

- PC Based DSP System
- Two Motorola DSP56001 Processors
- 6 KByte Dual Port RAM for Interprocessor Commmunication and Parallel Processing
- 1 MByte Static RAM
- PC or external supply
- C Utility Library with all drivers necessary to interface BNK 5620 and PC.
- BNK 5620-DB Two Channel Debugger PRICE: \$1995.00 BNK ELECTRONICS, INC.
460 Sylvan Avenue, Englewood Cliffs, NJ 07632 Tel: (201) 894-5905 Fax: (201) 894-5736

\section*{DR-11W USERS:} New Fiber Optic Link

Our new Fiber Optic Link removes the DR-11W's 50 foot cable limit. We use advanced fiber optic technology so you can separate DR11-W compatible devices up to 2 kilometers - with no loss in system throughput. Our Links connect to your existing DR11-W interfaces with standard 40 -conductor flat cables. Join the potic modules with duplex fiber optic cable, and your system is ready without software changes.


\section*{00 macrolinink inc.}

1500 North Kellogg Drive - Anaheim, California 92807 Phone (714) 777-8800 ■FAX (714) 777-8807

- 76 series: Auto reset, printed circuit board mounted, 0.6A to 5A. Ideal for medicalequipment, audiosystem, and food processor.
- 74 series: Pushto reset, panelmounted, 3A to 30A. Ideal for control panel, motor protection, and power supplies. UL/CSA.

JOEMEX ELECTRICS AMERICA, INC.
19 Hammond, Suite 508, Irvine, CA 92718
Tel: (714) 855-4472 Fax: (714) 855-4574

WRITE OR CALL FOR SAMPLE Low Cost Tempilabel \({ }^{\circ}\) Temperature Monitor.


\section*{How to put a low cost temperature gauge on everything.}

Label's center spot turns black when surface to which it is affixed reaches specified temperature. Single- or multi-spot labels with pre-determined increment of ratings: \(100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)\) to \(600^{\circ} \mathrm{F}\left(316^{\circ} \mathrm{C}\right) .1 \%\) accuracy guaranteed. 1 thru 8 ratings on each monitor with various increments. Self-adhesive, removable.
TEMPIL, Big Three Industries, Inc.
2901 Hamilton Blvd., South Plainfield, NJ 07080 Phone: (201) 757-8300 Telex: 138662

CIRCLE NO. 332

\section*{DC/CAD}

\section*{HIGH DENSITY EXPERTS!}

Schematic Capture \(\leqslant\) PCB Layouts \(\bullet\) Autorouting Top-rated DC/CAD out-routed the competition in the 1990 CAD Showdown. Routing the challenging benchmark on a double-sided board while competing routers used four to six layers, DC/CAD displayed the power and flexibility needed in a top-notch design package to tackle high density board jobs. This non-copy protected package with surface mount support includes:
- High capacity schematic capture
- Multi-strategy 1 -mil parts autoplacer
- "1-mil" autorouting w/ripup \& retry

- Thorough annotating design rule checker
- Full 2-way GERBER and DXF support
- Optional autoground plane support with cross-hatching
- Optional protected - mode version for 386 Users and much more! CALL TODAY. Priced at \(\$ 495\)
DDESIGN



Smart Software for Jough Board Design.

\section*{CIRCLE NO. 335}

\section*{Create a DISKLESS PC}

IT'S EASY...IT'S SIMPLE.. THERE'S NOTHING TO IT!! PROMDISK \({ }^{\text {mi }}\) III IBM PC DISK EMULATOR CARD

- IBM PC/XT/AT Compatible
- Mix EPROMs, EEROMs, SRAMs
- Emulates up to 1.024 Mbyte Drive
- Occupies 32K PC address space
- Supports popular Byte-Wide chips
 CIRCLE NO. 338

\section*{Combine Your} Product Mart Ads

In EDN's Magazine and
News Editions for higher impact and a lower rate.

CIRCLE NO. 333


CIRCLE NO. 336


CIRCLE NO. 339

To advertise in Product Mart, call Joanne Dorian, 212/463-6415




SAVE SPACE WITH Q/PAC \({ }^{\circledR}\) COMPONENTS
- Provide built-in capacitance
- Eliminate decoupling capacitance
- Gain 4-layer board quietness with 2-layer economy
- Vertical or horizontal mounting

Send for Rogers Q/PAC \({ }^{\text {® }}\) Application Bulletin.
Rogers Corp., 2400 S. Roosevelt St. Tempe, AZ 85282 602/967-0624

CIRCLE NO. 761

\section*{X. 25 \\ SDLC \\ QLLC HDLC \\ ADCCP PAD}
-C source code
- ROM-able
- Full porting provided
- No OS required


GCOM, Inc.
1776 E. Washington
Urbana, IL 61801
(217) 337-4471

Specialists in Computer Communications FAX 217-337-4470

CIRCLE NO. 764


CIRCLE NO. 759

iceMASTER is fast. 8 K file loods in less than a second with 115.2 K boud link using standard COMM port.
- iceMASTER COP8 connects easily to amy PC, requires NO disossembly or expansion slots. Works on PC (DOS or OS \(/ 2\) ), Micro Channel, or EISA. Even loptops!
- iceMASTER is flexible. Windowed interfoce - user configurable with pulldown menus, combined with hotkeys, context sensitive hyperlinked help, onscreen editing.
- iceMASTER is powerful. 4K frome troce buffer with advanced searching ond filtering capobilities.
- iceMASTER is versatile. One iceMASTER COP8 allows emulation of more thon 10 different COP8 fomily derivatives vio interchangeoble probe cards. - Call us today for a FREE demo disk.

Y/ Meralink \(\quad\) (800) METAICE

(800) 638-2423

\section*{Tiny Industrial PC}


5010 Micro \(\mathrm{PC}^{\text {TM }}\) runs MS-DOS software the same as an IBM PC. - DOS in ROM gives instant bootup. On-card solid state disk increases reliability \& saves space-ng need for external drives. - Expansion cards add data acquisition, digital I/O, motion control, and opto relay interfaces. - Accessories available for fast system setup.

\section*{}

0
OCTAGON SYSTEMS CORPORATIONTM 6510 W. 91st Ave., Westminster, CO 80030 D CIRCLE NO. 760


Attn: HP Logic Analyzer Users - PQFP, PLCC, PGA, and DIP pre-processor interfaces for 1650 and 16500 Series HP logic analyzers.
- Available for Intel, Motorola, Mips, Zilog, and IDT microprocessors.
- Plugs between the analyzer and the target CPU socket or surface mount pads.
- Inverse assembler and configuration files included. Call for a free catalog.
Emulation Technology, Inc.
2344 Walsh Ave. Santa Clara, CA 95051 Phone:408-982-0660 FAX:408-982-0664

\section*{Little Giant \({ }^{\mathrm{TM}}\)}

New! Tiny Giant \({ }^{\text {TM }}\)
C Programmable Controllers
We have miniature controllers with parallel I/O, solenoid drivers, A/D and \(D / A\) converters, clock, watch-
 \$159 dog, LCD inter-
face, RS485 serial, (Tiny Giant
Digital, qty. built-in power supply and much more! Use them to control anything. Our \$195 interactive Dynamic C \({ }^{\text {TM }}\) development system makes software development easy. These units have high performance and serious software support. We also have design-your-ownboard core modules as low as \(\$ 59\).

Z-World Engineering
1340 Covell Blvd., Davis, CA 95616 USA (916) 753-3722

Regular Fax: (916) 753-5141
Automatic Fax: (916) 753-0618
(Call from your fax, hear computer voice, use touchtone dial to request desired data sheets.)

\section*{CIRCLE NO. 763}

Telecom Solutions fi
Telecom Solutions from Teltone

\section*{R1 MF} Generator

M-993 lets you incorporate an R1 MF generator with a minimum of space, power, and additional
components.
- Combinations of \(700,900,1100,1300\)

1500 , and 1700 Hz tones
- 14-pin CMOS DIP
- Meets CCITT, AT\&T \& Bellcore MF standards
- 3.58 MHz time base
- Single 5-volt CMOS low-power supply

\section*{1-800-426-3926}

Or: 206-487-1515 Fax: 206-487-2288

\section*{をELTロNE}

INNOVATING SOLUTIONS
In Telecom Interface Components
Teltone Corporation, 22121-20th Avenue SE, Bothell, WA 98021

\section*{There is a Difference. Ljeftime Friee Updates \\ EP-1140 \\ }

A programmer is not just another programmer. That is why BP Microsystems is commited to bringing our customers the highest quality programmers at an affordable price. This commitment is evident in our EP-1140 E/EPROM programmer supporting thousands of \(24,28,32\) and 40 pin devices. A 32 -pin model, EP-1132, is available also for \(\$ 695\). And, all of our programmers include future chip support at no charge and an unconditional money back guarantee.

CIRCLE NO. 767


CC-1 Capacitor Kit contains 365 pieces, 5 ea. of every \(10 \%\) value from 1 pf to \(.33 \mu \mathrm{f}\). CR-1 Resistor Kit contains 1540 pieces; 10 ea of every \(5 \%\) value from \(10 \Omega\) to 10 meg . Sizes are 0805 and 1206. Each kit is ONLY \(\$ 49.95\) and available for Immediate One Day Delivery!
Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD, or Pre-paid orders. Company P.O.'s accepted with approved credit. Call for free detailed brochure.

COMMUNICATIONS SPECIALISTS, INC. 426 West Taft Ave. - Orange, CA \(92665-4296\) Local (714) 998-3021 • FAX (714) 974-3420
Entire USA 1-800-854-0547
CIRCLE NO. 770


PC/AT \({ }^{\text {TM }}\) COMPATIBILITY ON MULTIBUS In 1989 our MAT286Tm SBC brought PC-DOS to Multibus I. Since then no competitor has come close in terms of teatures price, or tecinical support. Weve added caaabinities, such as 8 Disk sottware EMS 40 and low power CMOS components. Now Disk sottware, EMS 4.0, and low power CMOS components. Now bit VGA and LCD flat-panel interfaces, 1-1 interleave MFM/RLL ST506 hard-diskfloppy disk controller, and a PC/AT Bus short-card adaptor. And yes, we are working on MAT386. the 386 -based Multibus AT that will be compatibie with the 286 based standard, MAT286.

Phone (408) 253-0250 for more information
Single Board Solutions, Inc.
20045 Stevens Creek Blvd, Cupertino, CA 95014 PC/ATM \({ }^{\text {IBM }}\)

CIRCLE NO. 773

\section*{SMD PICOFUSE \({ }^{\text {TM }}\) AVAILABLE} FROM LITTELFUSE

New PICO SMD \({ }^{\text {TM }}\) very fast-acting and SloBlo@surfacemount fuses are available from Littelfuse, Inc.

The PICO-SMD fuses

are available from \(1 / 16\) ampere to 5 ampere in the fast-acting type and \(3 / 8\) ampere to 5 ampere in the Slo-Blo type. The interrupting rating for the very fast-acting fuse is 50 ampere at 125 VAC and 300 ampere at 125 VDC , the Slo-Blo fuse is 50 ampere at 125 VAC and DC.

Recognized under the components program of Underwriters Laboratories and Certified by CSA, the fuses are supplied on 12 mm tape, 500 fuses per reel for use with automatic placement equipment perEIA Standard 481-1

\section*{Littelfuse Inc.}

Call or write Littelfuse, Inc., \(\mathbf{8 0 0}\) E. Northwest Highway, Des Plaines, IL 60018, (708) 824-1188.

CIRCLE NO. 768


EPROM EMULATION SYSTEM


NEW 4-MEGABIT VERSION

Emulates up to 8 4-Megabit EPROMS with one control card
- Downloads 2-Megabit programs in less than 23 seconds.
- Allows you to examine and modify individual bytes or blocks.
- Accepts Intel Hex Motorola S-Record and Binary files. - Software available for IBM PC and compatibles and Macintosh systems. - Base 27256 EPROM System \(\$ 395.00\) Other configurations available.
ORDER TODAY--IT'S EASY
CALL OR FAX FOR MORE INFORMATION


Incredible Technologies, Inc.
(708) 437-2433
(708) 437-2473 Fax

VISA now accepted
CIRCLE NO. 771
Low Cost CAD Software
for the IBM PC and Compatibles Starting at only \$99

\(\star\) Easy to use schematic entry program for circuit diagrams SuperCAD)-Only \(\$ 99\). Includes large library, netister and dot matrix printer output
* Powertul, event-driven digital simulator (SuperSIM) starting at \(\$ 99.00\). Operates directly from SuperCAD menu and displays waveforms in built-in "logic-analyzer" display
* Circuit board arwork editor and auto router programs, starting at \(\$ 99\) each.

Write or call for free demo disks
MENTAL AUTOMATION. IN WN: 5415-136th Place S.E Bellevue, WA 98006
(206) 641-2141

200 MHz Logic Analyzer

- 24 Channels (up to 50 MHz ), Timing and State - 200/100 MHz Max Sampling Rate ( 6 channel)
- Timing and State Simultanious on Same Probe
- 16K Samples/Channel (6 channel mode)
- 16 Levels of Sequential Triggering
- Optional Expansion to 72 Channels
- Variable, TTL, or ECL Logic Threshold Levels
- 3 External Clocks and 11 Qualify Lines
- FREE Software Updates on 24 Hour BBS
\$799 - LA12100 ( 100 MHz )
\$1299 - LA27100 \((100 \mathrm{MHz}) \begin{aligned} & \text { Price includes Card, } \\ & \text { Pods, and Software }\end{aligned}\)
\$1899 - LA27200 (200 MHz)
UNIVERSAL PROGRAMMER
PAL
GAL
EPROM
EEPROM
PROM
87xxx...
22V10
\$475
16Bit EPROMs FLASH EPROMs 5ns PALs 4 Meg EPROMs
FREE software updates on BBS
GANG PROGRAMMER
- 4 32pin Sockets (8 Socket option) \$215

Call - (201) 994-6669
Link Computer Graphics, Inc.
4 Sparrow Dr., Livingston, NJ 07039 FAX:994-0730
CIRCLE NO. 772

\section*{Consistency}
is key
to the power of EDN Product Mart

\title{
Searching for super-reliable capacitors?
}

Peak performance under extreme conditions.
NEC's SVH-Series chip tantalum capacitors scale new heights of performance and reliability for automotive and other tough applications.

Our SVH capacitors offer a failure rate of just \(0.5 \%\) per 1,000 hours. If obstacles like excessive heat and humidity seem insurmountable, don't worry. SVH caps withstand 1,000 temperature cycles from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Their humidity resistance is \(85^{\circ} \mathrm{C}, 85 \%\) RH for 1,000 hours.

We offer 29 types with ratings from
0.1 to \(33 \mu \mathrm{~F}\), and from 10 to 35 V DC.

\section*{A top-quality team} of chip tantalum caps.
Reliable NEC caps also come in a wide array of device types.
Our diversified lineup includes:
R-Series
\(\square 96\) types.
\(\square 0.01\) to \(68 \mu \mathrm{~F} ; 4\) to 35 V DC.
R-Series Extended-Capacitance
\(\square 58\) types.\(\square\) Up to \(15 \mu \mathrm{~F}\) rating for A case ( 1.6 x
\(3.2 \times 1.6 \mathrm{~mm}\) ).0.1 to \(100 \mu \mathrm{~F} ; 2.5\) to 35 V DC.

\section*{SVE-Series}
\(\square\) Built-in fuse; 21 types.
\(\square 1.0\) to \(33 \mu \mathrm{~F} ; 10\) to 50 V DC.
\(\square\) R-Series compatible.

\section*{Reward yourself with reliability.}

NEC produces 2 billion tantalum caps per year-more than anyone else in the industry. Our path-breaking R\&D effort covers everything from improving materials to enhancing design and production processes.
That's why we lead the industry with high-performance tantalum capacitors such as the ultra-reliable SVH-Series.

\section*{For fast answers, call us at:}

\section*{Powerful People. Powerful Products.}

Many choose to compromise their lifestyle to achieve success. Intel professionals in the greater Sacramento area don't make concessions. We work with the most advanced design tools and techniques to keep our technology at the leading edge, and leave the others trying to catch up.

\section*{POWER POSITION}

Currently, we have positions available within two dynamic and growing groups. Our entry-level products group designs microprocessors for the portable, notebook and palm top computer markets of the future, communication components, and Intel network cards. The microprocessor group is responsible for high-end microprocessors, bus chip sets, and peripheral component products for the PCs and workstations of the future.

\section*{System Architects}

Combine customer needs with emerging technologies to define future system requirements. Interact with Design and Marketing to determine cost/performance trade-offs, and create the optimized component-level partitioning. Define the components and follow-up through implementation. Keep up with market requirements to create derivative products. Specific development areas are high integration desktop, notebook, and palm top computers, and multi-processor servers.

All architecture positions require \(\mathrm{BS} / \mathrm{MS}\) in \(\mathrm{EE} / \mathrm{CS}\), and at least 4 years of system design experience, knowledge of PC hardware, and familiarity with low-level programming in DOS and/or UNIX*.

\section*{Component Design Engineers}

Join a team designing peripheral devices for a wide range of single or multiprocessing applications on the PC, workstation and high-end system areas. Responsibilities include CMOS, VLSI component design on products such as mp chips, EISA bus chips, DMA controllers, or cache controllers. Requires a BSEE/CE, or equivalent, and a working knowledge of computer architecture and system design concepts preferred.

\section*{Product/Test Development Engineers}

Develop and improve test solutions for current and future generation microprocessor/peripheral products. Responsibilities include test development, establishment of DFT/DFM requirements and test vector simulation/validation. Requires a BSEE/CE or equivalent, and a working knowledge of logic simulation environments, vector development, and fault grading/fault coverage improvement techniques.

If you are interested in a power position with Intel, plus live in an area with many outdoor recreational choices, great scenery, and less traffic, please send or FAX your resume to: Intel Staffing, P.O. Box 1141, Dept. F893, Folsom, CA 95630, FAX (916) 351-5522.

Intel Corporation is an equal opportunity employer and fully supports affirmative action practices. Intel also supports a drug-free workplace and requires that all offers of employment be contingent on satisfactory pre-employment drug test results.

UNIX is a Trademark of AT\&T.

\section*{intel. \\ The Computer Inside.'m}

1991 Recruitment Editorial Calendar
\begin{tabular}{|c|c|c|c|}
\hline Issue & \begin{tabular}{l}
Issue \\
Date
\end{tabular} & Ad Deadline & Editorial Emphasis \\
\hline \begin{tabular}{l}
Magazine \\
Edition
\end{tabular} & July 18 & June 26 & Product Showcase-Volume II • Test \& Measurement, Computer Peripherals - Components, CAE/ASICs • \\
\hline News Edition & July 25 & July 5 & ICs \& Semiconductors, Peripherals**, Regional Profile: Massachusetts** \\
\hline Magazine Edition & Aug. 5 & July 11 & CAE • ASICs, Test \& Measurement \(\bullet\) Computers \& Peripherals \(\bullet\) Technical Article Database \\
\hline News Edition & Aug. 8 & July 19 & CAE, Datacom** \\
\hline Magazine Edition & Aug. 19 & July 25 & Military Electronics Special Issue, Image Processing • Ultra High Speed ICs/ASICs • Computer Peripherals, Software \\
\hline News Edition & Aug. 22 & Aug. 2 & Peripherals/Components, Test \& Measurement**, Regional Profile: Idaho, Colorado, Utah** \\
\hline Magazine Edition & Sept. 2 & Aug. 8 & ASICs Special Issue, Semicustom ICs \(\bullet\) CAE, Packaging \(\bullet\) ICs \& Semiconductors Data Converters \\
\hline News Edition & Sept. 5 & Aug. 16 & Military Electronics Special Issue, Computer Architectures, Defense Electronics** \\
\hline Magazine Edition & Sept. 16 & Aug. 21 & DSP/Microprocessors, ICs \& Semiconductors, CAE/ASICs, Environmental Engineering • Software \\
\hline News Edition & Sept. 19 & Aug. 29 & \begin{tabular}{l}
RISC/ICs, Computers** \\
Regional Profile: Florida**
\end{tabular} \\
\hline Magazine Edition & Oct. 1 & Sept. 5 & Computers \& Peripherals/Networks, DSP Chip Directory •ICs \& Semiconductors/Memory Technology, Instrumentation \\
\hline News Edition & Oct. 3 & Sept. 13 & ICs \& Semiconductors, Multimedia** \\
\hline Magazine Edition & Oct. 10 & Sept. 19 & Test \& Measurement Special Issue, Oscilloscopes, VXI Board Directory • CAE/ASICs, Sensors \& Transducers \(\bullet\) \\
\hline News Edition & Oct. 17 & Sept. 27 & ATE/Board \& IC Testing, Artificial Intelligence**, Regional Profile: New Mexico \& Arizona** \\
\hline Magazine Edition & Oct. 24 & Oct. 3 & Telecommunications ICs, Graphics \& Video Circuits, Computers \& Peripherals, Software, Wescon Preview Issue \\
\hline Magazine Edition & Nov. 7 & Oct. 17 & High Performance DSPs • CAE/ ASICs, Computers \& Peripherals/ Communications, Software, Wescon Show Issue \\
\hline News Edition & Nov. 14 & Oct. 25 & Telecommunications**, Wescon Show Issue \\
\hline \begin{tabular}{l}
Magazine \\
Edition
\end{tabular} & Nov. 21 & Oct. 31 & 18th Annual Microprocessor Directory \(\bullet\) Test \& Measurement, CAE/ASICs, ICs \& Semiconductors \\
\hline
\end{tabular}

Call today for information on
Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602


Engineers


\section*{DELL IS TO COMPUTER DESIGN AS AUSTIN IS TO LIVING}

At Dell, we believe in letting the imagination of our engineers shape the design of our award-winning products.
From the desktop-class power of our sleek 80386SX-based 316LT laptop, to the integrated math coprocessor and built-in UNIX compatibility of our new 80486-based 425E.
Dell engineers enjoy a technical environment virtually free from the bureaucratic hassles of most large corporations.
So you get to focus on the things that really matter - designing better computers.
And beyond our unique engineering environment we also offer a truly unique living environment in Austin. With scenic foothills, a relaxed culture, lower cost of living and a variety of beautiful neighborhoods, the lifestyle in Austin beautifully complements the engineering lifestyle at Dell.

\section*{ENGINEERING}
- Personal Computer Motherboard Design
- Laptop Display Systems
- UNIX Development
- Personal Computer Network Development
- Design for Manufacturability
- EISA BUS Logic Design
- Mechanical Engineers
- Failure Analysis Engineers

If you're an engineer with a minimum of 2 years of computer industry experience and a related degree, learn more about the advantages of Dell in Austin.
Please fax or mail your resume with a cover letter to: 512/343-3330, Dell Computer Corporation, Jerry Holt, Human Resources, Professional Employment, Department EDN62091SG, 9505 Arboretum Boulevard, Austin, Texas 78759

\section*{ENGINEERING OPPORTUNTIES}

\section*{SEMICONDUCTOR OPPORTUNITIES}

United Technologies Microelectronics Center (UTMC) is a major source of custom and semicustom VLSI circuits for the high-reliability marketplace. We design, fabricate, assemble, and test high-reliability ICs for military and aerospace markets.

\section*{Product Engineer}

Support new technology development, quals, yield enhancement and perform PE functions for prototype and production parts. BSEE with minimum 2 yrs exp. ATE experience required.

\section*{SPC Statistician}

Responsible for implementation of SPC program to include all coordination and training activities. PHd required. Minimum 5 yrs. exp.
Manager, Quality Assurance
Plan, develop and manage quality assurance efforts to support manufac ture and delivery of UTMC products to military and customer specifications. Technical degree with minimum of 5 yrs. exp.
CAD System Development
And Support Engineers
Participate in the creation, selection, integration, test and support of current and new digital simulation tools, ASIC design tools within the CAD design system, both VAX and workstation-based. BSEE or BSCS with \(2 / 6\) yrs. of CAD or programming exp. MSEE or MSCE. Familiarity with VAX/VMS, UNIX*/ULTRIX, and engineering workstations required; exp. with digital logic, fault simulation, ASIC place and route and timing analysis.

\section*{Sr. Device Engineer}

Perform device characterization and analysis. Design and analyze experimental designs. Develop SPICE models for CMOS technologies. MSEE or PHD. Minimum 5 yrs exp. Familiarity with CMOS characterization techniques, experimental design and SPICE model extraction required.

\section*{Sr. Process Engineer}

Engineering sustaining and process development opportunities in etch and lithography. Working with CMOS \(0.8 / 1.2\) micron technology on bulk and SOI. Minimum of 5 yrs exp. in Photolithography and/or Plas ma Etch. Strong background in SPC/statistically designed experiments required. Solid experience in manufacturing sustaining and process development in an ASIC environment is desired.

\section*{RH SRAM Product Engineer}

Perform variety of duties including product development, evaluation, characterization, introduction, and manufacturing support for the Memory product family. BSEE or MSEE preferred. Minimum 5 yrs. exp. with RAM products and Radiation Hardened products in Design or Product Engineering environment required. Previous experience with Memory test equipment would be a plus.
UTMC offers a highly competitive salary and benefits package and the opportunity to advance in a dynamic environment. Interested individuals should send resume with salary history to UTMC, Department EDN, 1575 Garden of the Gods Road, Colorado Springs, Colorado 80907. (U.S. citizenship required.)

UNITED
MICROELECTRONICS
CENTER
We are an equal opportunity employer \(\mathrm{M} / \mathrm{F} / \mathrm{H} / \mathrm{V}\)
\({ }^{\bullet}\) United Technologies Microelectronics Center.

At COULTER \({ }^{\circledR}\), we set standards - in what we do and how we do it. As the internationally acclaimed world leader in the field of biomedical instrumentation and automated hematology, we attribute much of our success to our commitment to quality, reliability and teamwork.
The following Engineering opportunities are currently available:

\author{
Software Engineers Mechanical Engineers Quality/Reliability Engineers Manufacturing/Producibility Engineers
}

All positions require a minimum of 5 years experience. Only seasoned professionals need apply.
If you are interested in a career with stability and growth potential, consider the Company with a commitment. Consider Coulter.
We offer excellent salaries and benefits including negotiable relocation. Please send your resume to:
Employment Manager, Coulter Corporation, Dept. EDN, 650 West 20th Street, Hialeah, FL 33010. Principals only - no agencies please. An Equal Opportunity Employer.

If You're Looking For a Job, You've Come to The Right Place.

EDN CAREER OPPORTUNITIES

\section*{OUTSTANDING}

\begin{abstract}
In the world of electronic defense systems, being good isn't good enough. It takes a companywide commitment and the very best professionals to put technology on target.
\end{abstract}

At E-Systems Garland Division, we understand that to succeed in the complex world of electronic defense, we've got to be better than good. We've got to go one step beyond-to redefine the meaning of excellence. That's because there are no near-misses in our business. Only bulls-eyes. And bulls-eyes on bulls-eyes.

So it's no accident that we're one of America's fastest growing suppliers of electronic defense systems. Outstanding systems, products and technologies come from superlative professionals.

E-Systems Garland Division is a Dallas-based leader in advanced signal and image processing technologies, sophisticated receiver systems, and systems integration for programs like JSIPS and the Distributed Wargaming System.

\section*{Be outstanding in your field.}

If you're a technical professional, we invite you to stand out with E-Systems Garland Division.

\section*{Management Information Systems}
- Business Systems Programming
- IDMS/Cullinet

\section*{Senior Software Engineers}
- UNIX, "C", Ada, Pascal
- X-Windows
- 68000 Firmware
- Sun, Daisy, Micro VAX Workstations
- Cray and IBM Systems Software
- DEC VAX/VMS Software
- Algorithm Development

\section*{Electronics Technicians}
- Research and Development
- Production Test
- High Speed Digital Circuitry
- Analog (RF/IF) Circuitry
- 68000 Firmware in Assembly Language or "C"
- ASIC Design, CAD/CAE Systems
- Systems Integration
- Firmware Test
- Electro-Mechanical Checkout

\section*{Support Engineers}
- Components
- Quality
- Calibration
- Configuration

\section*{Business Development Specialists}
- Government/Commercial Programs
- Mass Storage Systems
- Communications Systems

\section*{Take aim at the future.}

Our technical careers are on target, as well; we have one of the lowest turnover rates of any company in our industry. As a technical professional with E-Systems Garland Division, you'll enjoy a superb compensation package-featuring a flexible program that lets you tailor your own benefits. And our ESOP program makes every E-Teamer part owner of the company.

\section*{E-SYSTEMS}

\section*{The science of systems.}

Be better than good. Join E-Systems Garland Division today. Send your resume to: Ann Olson, Director of Staffing, E-Systems, Inc., Garland Division, P.0. Box 660023 , Dept. 31TG, Dallas, Texas 75266-0023.

- NEW ASIC Provides Point By Point Input and Output Programmability
- High Current for OPTO 22 or Equivalent Isolation Modules
- Event Sense Interrupts-

8 (ZT 14CT73) 32 (ZT 14CT72)
- Device Drivers
- High Reliability \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) Temp Range
- 2 Year Warranty
- Sizes from 48 to 192 pts.

ZT 14CT73-48 PTS.
(half size card)
\$240 List
\$145 Qty. 100
ZT 14CT72-192 PTS.
(shown)
\$540 List
\$325 Qty. 100
\(\bar{\equiv}|||\mid\) CIRCLE NO. 192
805.541.0488

FAX 805.541-5088
 equivalent of 4 DC/DC Converters in one. This tiny Power Convertible in a SIP package has four isolated output channels. Each channel has a plus and a minus voltage output and produces 750 mW atts of unregulated power. Your total conversion package is 3 Watts of power.

With a sticker price of less than \(\$ 15.00\) ( 5 K pcs. U.S.A.) it is the lowest cost per channel in the industry (less than \(\$ 4.00\) ). Drop-in board level parking is easy, using less than 0.2 inch \(^{2}\) per channel. Shift your design into overdrive with one Power Convertible for reliability in your multi-channel applications.

For the dealer
near you:
Call 1-800-548-6132
Fax 1-602-741-3895
Write P.O. Box 11400
Tucson, Arizona 85734


CIRCLE NO. 219

\section*{AUDIO PRO}


Introducing...CD quality, stereo high fidelity, digital audio you record and playback on your PC-AT/286/ \(386 /\) Model 30 or compatíble.

Featuring....real time direct to disk data transfer. . 16 -bit resolution... 20 Hz to 20 kHz audio response.. \(0.005 \%\) THD... 6.25 to 50 kHz programmable sample rate...92dB dynamic range...90db \(\mathrm{s} / \mathrm{n}\)...digital input ... 4 to 1 ADPCM compression.

Use for digital audio recording, editing, mastering and transmission in broadcasting, entertainment systems, film production, audio/visual presentations and interactive CDI/DVI systems.

If you're an audiophile with microcomputer resources call 1-800-338-4231 (ex. CA.) for details on our Audio Pro...the Series 2/Model SX-10.

CIRCLE NO. 194



They're everywhere.. They're the bugs that sabotage PCB design and cause costly prototyping and time consuming board iterations

Until now, restrictive formulas and topologically-based rule violation tools were the solution. Home and office bug killer!

Quantic Laboratories has now given PCB and digital logic designers the advantage.. BoardScan Version 2.0... the most powerful screening tool today. This second generation breakthrough is an automated printed circuit screener that calculates both transmission line signal and crosstalk effects with the same tool.

With its unique signal integrity calculations BoardScan offers customers a new functionality. This includes the reporting of time delays, over- and under-shoots, settling time, noise margins, and functional violations.

When combined, BoardScan and Greenfield offer full-spectrum transmission-line simulation capability for swatting bugs "across-the-board".

For more information and personalized service please call toll free 1-800-665-0235


\section*{EDN's}

\section*{CHARTER}

EDN is written for professionals in the worldwide electronics industry who design, or manage the design of, products ranging from circuits to systems.

EDN provides accurate, detailed, and useful information about new technologies, products, design techniques, and careers.

EDN covers new and developing technologies to inform its readers of practical design matters that will be of concern to them at once or in the near future.

\section*{EDN covers new products}
- that are immediately or imminently available for purchase
- that have technical data specified in enough detail to permit practical application
- for which accurate price information is available.

EDN's Magazine Edition also provides specific "how to" design information that its readers can use immediately. From time to time, EDN's technical editors undertake special "hands on" engineering projects that demonstrate EDN's commitment to readers' needs for useful design information.

EDN's News Edition also provides comprehensive analysis and news of technology, products, careers, and distribution.

\section*{EDN}

275 Washington St Newton, MA 02158
(617) 964-3030

\section*{BUSINESS/CORPORATE STAFF}

Peter D Coley, VP/Publisher Newton, MA 02158; (617) 558-4673 Ora Dunbar, Assistant/Sales Coordinator
Mark J Holdreith, Associate Publisher
Newton, MA 02158; (617) 558-4454
Deborah Virtue, Business Director Newton, MA 02158; (617) 558-4779

\section*{BOSTON}

Chris Platt, Regional Manager
Clint Baker, Regional Manager
199 Wells Ave
Newton, MA 02159; (617) 964-3730
NEW YORK/NEW JERSEY
Daniel J Rowland, Regional Manage
249 West 17th St; (212) 463-6419

\section*{PHILADELPHIA}

Steve Farkas, Regional Manager
487 Devon Park Dr, Suite 206
Wayne, PA 19087; (215) 293-1212
CHICAGO
Greg Anastos, Regional Manager
Jack Johnson, Regional Manager
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60018; (708) 635-8800

\section*{ARIZONA}

John Huff, Regional Manager
44 Cook St, Denver, CO 80206
(303) 388-4511

COLORADO
Bill Klanke, Regional Manage
44 Cook St, Denver 80206
(303) 388-4511

DALLAS 75251
Al Schmidt, Regional Manage
12201 Merit Dr, Suite 730
(214) 419-1825

SAN JOSE 95128
Frank Granzeier, Regional Manager
Bill Klanke, Regional Manager
Philip J Branon, Regional Manager James W Graham, Regional Manage 3031 Tisch Way, Suite 100; (408) 243-8838
LOS ANGELES
Charles J Stillman, Jr Regional Manager Los Angeles, CA 90064 (213) 826-5818

Susan Green Regional Manager 18818 Teller Ave, Suite 170 Irvine, CA 92715 (714) 851-9422

ORANGE/SAN DIEGO/RIVERSIDE COUNTIES
Jim McErlean, Regional Manager
18818 Teller Ave, Suite 170
Irvine, CA 92715; (714) 851-9422
PORTLAND, OREGON 97221
Pat Dakin, Regional Manager
1750 Skyline BIvd, Box 6
(503) 297-4305

EUROPEAN OPERATIONS
Tully Giacomazzi, Managing Director
27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030
UK \& BENELUX
Colin Smith
Oliver Smith \& Partners 18 Abbeville Mews 88 Clapham Park Road SCANDINAVIA

\section*{Stuart Smith}

27 Paul St, London EC2A 4JU UK
Tel: 44-71-628-7030; Fax: 44-71-628-5984

FRANCE/ITALY
Laura Whiteman
14 Rue des Parisiens
92600 Asnieres sur Seine
France
Fax: 331 -4790007
G Reina srl
Via Filippo Carcano, 6
20149 Milan Italy
Fax:3924981283
Fax: 331-47900643

\section*{GERMANY/AUSTRIA/BAVARIA}

\section*{Karin Steinbacher \\ New Media Munchen} Ismaniger Str 108 8000 Munchen 80 Germany
Tel: 49-89-98-51-35
Wolifgang Richter
Sudring 53
D-7240 Horb 1 A/N
West Germany
Tel: 49-7451-7828
Fax: 49-89-981-0117
Fax: 49-1-451-1794

\section*{GERMANY}

Helmut Steinkraus Imedia Medien-Vertretung GmbH, Bolkerstrasse 57 4000 Dusseldorf 1 German Fax: 49211132410

Manfred Horing
Media Kontakt Bahnhofstrasse 15 D-6101 Messel
Germany
Tel and fax: 4961595055

Tracey Lehane Martin Sutcliffe
27 Paul S
ondon EC2A 4JU UK Tel: 44-71-628-7030

SWITZERLAND
Peter Combag, Roswitha N Kunzle
Exportwerbung AG
Kirchgasse 50, 8024 Zurich 1
Tel: 411261 4690; Fax: 4112514542

\section*{SRAEL}

Asa Talbar, Talbar Media
Box 22917
Tel Aviv 61228, Israel
Tel: 972-3-223-621; Fax: 972-2-247-403

\section*{HONG KONG}

Adonis Mak
Cahners Asia Limited
2nd fl, Lo Yong Court Commercial Bldg
212-220 Lockhart Road
Tel: 852-572-2037; Fax: 852-838-5912

\section*{JAPAN}

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shinjuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: 81-3-3366-8301; Fax: 81-3-3366-8302
KOREA
Jeong-guon Seo
DooBee International Inc
Centre Bldg, \(1-11\) Jeong-dong
hoong-ku, Seoul, Korea
Tel: 82-2-776-2096; Fax: 82-2-755-9860

\section*{INGAPORE/}

Hoo Siew Sai
Ad Media Private Ltd
95, South Bridge Rd
\#09-13 Pidemco Centre
Singapore 0105
Tel: 65-632-4026; Fax: 65-532-4027

\section*{AUSTRALIA}

Alexandra Harris-Pearson
World Media Network Pty Ltd
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788; Fax: 61-2-283-2035

\section*{TAIWAN}

Acteam International Marketing Corp
Box 82153, Taipei, Taiwan ROC
Tel: 886-2-7114833; Fax: 886-2-7415110
PRODUCT MART
Joanne Dorian, Manager
249 West 17th St
New York, NY 10011
(212) 463-6415; Fax: (212) 242-6987

INFO CARDS
Heather McElkenny
Newton, MA 02158; (617) 558-4282
CAREER OPPORTUNITIES/CAREER NEWS
Roberta Renard, National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
201) 228-8602, 228-8610, 228-8608

Fax: (201) 228-4622
Nancy Olbers, Western Sales Manager
238 Highland St
(603) 436-7565; Fax: (603) 436-8647

Wendy A Casella, James P Joyce
Advertising/Contracts Coordinators; (617) 964-3030
William Platt, Senior Vice President, Reed Publishing USA

\section*{Cahners Magazine Div}

Terry McDermott, President, Cahners Publishing Co
Frank Sibley, Executive Vice President/General Manager,
Boston Div
Tom Dellamaria, VP/Production \& Manufacturing
Circulation: Denver, CO: (303) 388-4511
Eric Schmierer, Group Manager

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of \(\mathbf{5 0 0}\) or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60017. Phone (708) 390-2240.

\section*{Surge Protection} for AC Power Lines


A large percentage of equipment malfunctions are due to the failure of sensitive semiconductor devices when exposed to transient overvoltages.
MCG Electronics Inc. has a series of low profile AC power line protectors designed specifically for the needs of the OEM user. They are available in 120VAC in 7.5A, 15A and 25A and 240VAC, 25A. Models 407, 415, 416, 417 offer compact, cost-effective protection designed to be incorporated into original equipment. The units employ a sophisticated blend of high speed clipping and filtering to reduce IEEE 587 Cat. B impulses ( \(6000 \mathrm{~V} / 3000 \mathrm{~A}\) ) to less than 350 V peak between line and neutral.

For assistance call: 1-800-851-1508

\section*{MCG}

12 Burt Drive, Deer Park, New York, 11729
ELECTRONICS, INC. Phone: 516-586-5125 Fax: 516-586-5120
CIRCLE NO. 197

\section*{RELAY/SENSOR I/O}
- 16 CHANNEL OPTO-ISOLATED INPUT
- 16 CHANNEL REED RELAY OUTPUT
- 16 IN/16 OUT COMBO
- 8 IN/8 OUT COMBO
- INTERRUPT CAPABILITY
- SOFTWARE INCLUDED
- MADE IN USA

\section*{PCB MANUFACTURING DESIGN AND ARTWORK!}

ALL YOUR CIRCUIT BOARD NEEDS UNDER ONE ROOF


PCB DESIGN
- Backplanes
- Impedance control
- Analog and ECL
- Surface mount

\section*{CALL FOR A QUOTE!}

A MANUFACTURING, PCB DESIGN AND SUPPORT CENTER

\section*{MURRIETTA
CIRCUITS}

4761 E. HUNTER AVE. ANAHEIM, CA. 92807
TEL: (714) 970-2430 FAX: (714) 970-2406


\section*{Easy, Plug-In Solutions}

The world of DSP is far from simple. You need a secret code book to wade through its bevy of acronyms, a doctorate in mathematics to create its complex algorithms, and years of signal processing expertise to develop the necessary hardware.
Or you need Burr-Brown. We've developed a line of easy, painless, plug-in solutions that lets you concentrate on your application instead of the hairy details.

\section*{From Chips to Systems}
- Need a direct interface ADC or DAC for one of today's DSP processor chips?
- Need a DSP processor for your VME or PC platform?
- Need one with high speed, high accuracy data conversion, single channel or multi-channel, or high dynamic range?
- Need an easy way to create and execute DSP algorithms?
- Need an inexpensive and simple approach to analyzing your analog signals?
- Need a custom solution?

We have your solution waiting, in most cases, from off-the-shelf.

\section*{Over 30 Years of Signal Processing}

Ask around. We've been making and delivering high performance precision microelectronics for over 30 years to a worldwide customer base. We're known for the highest performing data conversion products for signal processing available, and since 1986, engineers have known us for some of the best DSP tools around.

For more information about our product line or for a copy of our free brochure, call 1-800-548-6132, contact your local salesperson, or write:

\section*{Burr-Brown Corporation}
P.0. Box 11400

Tucson, AZ 85734
Fax (602) 741-3895

\title{
EDN's INTERNATIONAL ADVERTISERS INDEX
}
\begin{tabular}{|c|c|c|}
\hline nics & & Instrument Specialties Co Inc . . . . 252 \\
\hline ACCEL Technologies Inc & 133 & Intergraph . . . . . . . . . . . . . . . . 232 \\
\hline Advanced Circuit Technology & 251 & Intel . . . . . . . . . . . . . . 64-65, 72-73 \\
\hline Alpha Products & 194 & Interphase Corp . . . . . . . . . . . . 116 \\
\hline Altera Corp & 50-51 & Interpoint . . . . . . . . . . . . . . . . 247 \\
\hline American Airlines & 190-191 & Introl Corp . . . . . . . . . . . . . . . 234 \\
\hline American Switch & 230 & IOtech Inc . . . . . . . . . . . . . . . . 31 \\
\hline Ametek & & Ironwood Electronics Inc . . . . . . . . 255 \\
\hline AMP & 14-15 & ITT Pomona Electronics . . . . . . . . 206 \\
\hline Amphenol & 32-33 & Joemex Electrics America . . . . . . . 254 \\
\hline Analog Devices Inc . . . 38, 44-4 & 45, 85, 87, & Keithley Instruments . . . . . . . . 99-101 \\
\hline & 89, 91, 259 & Kikusui . . . . . . . . . . . . . . . . . 252 \\
\hline Antex Electronics & 265 & Kinemetrics/Truetime . . . . . . . . . . 256 \\
\hline Atlanta Signal Processors, Inc & 184 & KMS Advanced Products . . . . . . . 244 \\
\hline Atmel Inc & 219 & Lattice Semiconductor Corp . . . . . . 6 \\
\hline Avocet Systems Inc & 210 & Laube Technology . . . . . . . . . . . 267 \\
\hline Bayer AG & 157 & Leader Instruments Corp . . . . . . . 250 \\
\hline B\&C Microsystems & 223 & Leap Electronic Co. . . . . . . . . . . 253 \\
\hline Beta Automation & 255 & Linear Technology Corp . . . . . . . . 160 \\
\hline BNK & 254 & Link Computer Graphics Inc . . . . . . 258 \\
\hline BP Microsystems & 258 & Littelfuse Inc . . . . . . . . . . . . . . 258 \\
\hline Burr-Brown Corp & 268 & Logical Devices Inc . . . . . . . . C2, 253 \\
\hline Cahners CAPS & 179 & LSI Logic Corp . . . . . . . . . . . . 12-13 \\
\hline Capilano Computer Systems Inc & c . . . 256 & 3M Electrical Specialties Div . . . . . . 246 \\
\hline Capital Equipment Corp & & Macrolink Inc . . . . . . . . . . . . . . 254 \\
\hline Carroll Touch Inc & . 209 & Masstek . . . . . . . . . . . . . . . . . 255 \\
\hline Cermetek & 253 & Maxim Integrated Products . . . 149, 151, \\
\hline Chronology & 235 & 153, 155 \\
\hline Cirrus Logic & & MCG Electronics Inc . . . . . . . . . . 267 \\
\hline Communications Specialties Inc & 253 & MCSI . . . . . . . . . . . . . . . . . . 254 \\
\hline Communication Specialists & 258 & Maxtor . . . . . . . . . . . . . . . 236, 237 \\
\hline Computer Products Inc & 211 & Mental Automation . . . . . . . . . . . 258 \\
\hline Cubit/Proteus Industries Inc & & Meritec . . . . . . . . . . . . . . . . . 192 \\
\hline Cybernetic Micro Systems & 238 & MetaLink . . . . . . . . . . . . . 255, 257 \\
\hline Cypress Semiconductor & & MF Electronics . . . . . . . . . . . . . 235 \\
\hline Dale Electronics Inc & 1, 220 & Micro Linear . . . . . . . . . . . . . 185 \\
\hline Data Delay Devices & & Micromint . . . . . . . . . . . . . . . 263 \\
\hline Data I/O Corp & & Micro/Sys . . . . . . . . . . . . 253 \\
\hline Datel & 182 & Mini-Circuits Laboratories . . . 3, 4, 24-25, \\
\hline Deltron Inc & 227-230 & 36-37, 163 \\
\hline Design Computation Inc. & 254 & Mizar Inc . . . . . . . . . . . . . . . . 208 \\
\hline Dexter Magnetics & & Molex Inc . . . . . . . . . . . . . 270 \\
\hline DigiKey & 213 & Motorola . . . . . . . . . . . . . . 146-147 \\
\hline Digital Equipment Corp & 10-11 & Motorola Semiconductor Products \\
\hline Diversified Technology & 202-203 & Inc . . . . . . . . . 26-27, 83, 114-115 \\
\hline Dow Chemical USA & 134-135 & Murata Erie America Inc . . . . . . . . 157 \\
\hline Duracell & 224-225 & Murrietta Circuits . . . . . . . . . . . . 267 \\
\hline Eagle Picher & & National Semiconductor Corp . . . 97, \\
\hline Echelon & 92-93 & 136, 137-138 \\
\hline EEso & 54 & NEC Corp . . . . . . . . . . . . 102-103 \\
\hline Electronic Measurements Inc & 216 & NCI . . . . . . . . . . . . . . . . . . 256 \\
\hline Elgar & & NCR Corp . . . . . . . . . . . . . 186-187 \\
\hline Emulation Technology & 256, 257 & NEC Electronics Inc . . . . . . . . . 240 \\
\hline Epson America Inc & & Nichicon Corp . . . . . . . . . . . . . 239 \\
\hline ERNI Components & 227 & NMB Technologies . . . . . . . . . . 217 \\
\hline Futaba Corp of America & & Octagon Systems . . . . . . . . . 257 \\
\hline Gates Energy Products Inc & & OKI Semiconductor . . . . . . . . 28-29 \\
\hline GCOM Inc & 257 & Omnibyte Corp . . . . . . . . . . . . . 204 \\
\hline Glassman High Voltage Inc & 231 & Omron Electronics Inc . . . . . . . . 159 \\
\hline Grammar Engine Inc & 255 & OrCAD Systems Corp . . . . . . 8-9, 193 \\
\hline Hamamatsu Corp & 229 & Orion Instruments . . . . . . . . . . 169 \\
\hline Heurikon Corp & & Pacific Electro Data Inc . . . . . . . . 212 \\
\hline Hewlett-Packard Co & 2, 16, 48 & Pacific Hybrid Microelectronics . . . . 249 \\
\hline IBM Corp & 52-53 & Penn Eng \& Mfg Corp . . . . . . . . . . 21 \\
\hline ICHIA North America & & Pentica Systems . . . . . . . . . . . 218 \\
\hline IDT & & PEP Modular Computers . . . . . . 94-95 \\
\hline IEE & & Phihong Enterprise Co Ltd . . . . . . . 238 \\
\hline ILC Data Device Corp & & Pico . . . . . . . . . . . . . . . . 246, 249 \\
\hline Incredible Tech & 258 & Pioneer Magnetics . . . . . . . . . . . 188 \\
\hline
\end{tabular}
Planar ..... 255
Power Convertibles ..... 264
Preh Electric ..... 36
Prescience ..... 78
Pulse Engineering ..... 222
Quantic Lab ..... 265
Radstone Technology ..... 243
Raltron ..... 86
Rogers Corp ..... 256, 257
Rolyn Optics Co ..... 254
SBE ..... 66
Sealevel Systems ..... 267
Sextant Avionique ..... 28
Siemens Munich ..... 62-63
Signal Transformer Co Inc ..... C4
Signum Systems ..... 255
Silicon Systems ..... 61
Single Board Solutions ..... 258
Softaid Inc ..... 256
Softools ..... 253
Sony ..... 68
Sophia Systems Inc. ..... 29
Spectrum Software ..... 214
Stag Microsystems Inc ..... 96
Sun Systems ..... 90
Synsem ..... 181
TEAC Corp ..... 261
Teltone ..... 257
Tempil Div, Big Three ..... 254
Tempustech, Inc ..... 255
Teradyne Inc ..... 34-35
Texas Instruments Inc ..... 117-120
Thomas and Betts Corp ..... 74-75
Thunderbird Technologies ..... 113
Tokin America ..... 165
Toshiba America Electronic
Components ..... 171-178
Transera ..... 180
Trend Circuits ..... 167
Tribal Microsystems ..... 257
Universal Data Systems ..... C3
US Industrial Distribution ..... 251
Vesta Technology Inc ..... 255
Vicor Corp* ..... 111
Vishay Electronics Components .....  1
VL Electronics ..... 242
VMETRO Inc ..... 215
Westcor ..... 76
White Technology ..... 200
WinSystems Inc ..... 90
Zax Corp ..... 42
Z-World Engineering ..... 257
Ziatech Corp ..... 241, 264
Zilog Inc ..... 30
Zycad ..... 248
Recruitment Advertising ..... 260-263
Del Computer CorpIntelUnited Technologies Microelectronics*Advertiser in US edition**Advertiser in International edition

\footnotetext{
This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.
}

\section*{With our new metal latch SIMM sockets, we've improved one of our greatest inventions.}

\section*{At least in \\ recent memory.}

Invent. Then improve. That's the Molex approach-and the new connectors for SIMM memory package systems are the latest examples.

First, they feature two extra-strength stainless steel mounting latches. These lock modules firmly in place, and tell you, with an audible click, when they are positioned correctly. They allow easy upgrading, and guard the assembly against overstress and abuse.
SIMM sockets also provide two contact points per readout for added reliability. In fact, the contacts are guaranteed with any standard module board (.047" to .054").

Made with high temperature-resistant liquid crystal polymer housings, SIMM sockets come in .050 " and \(.100^{\prime \prime}\) pitch, and are available in a broad range of configurations: single and dual row, verticals, low profiles, and right angle. Call today for more information.


Bringing People \& Technology Together, Worldwide \({ }^{\text {sn }}\)

\section*{All OEM modems start out even}


Error Correction?
- Diagnostics?
- Power Requirements?
- MTBF?

A limited amount of board space and a fixed agenda of performance parameters - these are the design starting points for every add-in modem. Since they all start out even, how do smart OEM customers gain an advantage?

They buy experience. UDS has more than 4,000 successful custom modem designs already in the field.

They buy engineering expertise. More than 200 UDS engineers keep our OEM customers at the forefront of new modem developments and design refinements.

They buy manufacturing skill. UDS has more than 300,000 square feet of factory space, a full complement of automated manufacturing tools, and a dedicated workforce that uses these resources for the OEM customers' advantage. They buy a fanatical concern for quality. As a dedicated participant in Motorola's Six Sigma quality assurance program, UDS uses every technique from incoming component qualification to an exhaustive suite of pre-shipment tests. The result: the kind of consistent quality that helped Motorola win its recent Baldridge award.
The modems you add in can give your product a distinct advantage. Let a UDS sales representative show you how. Contact UDS, at 800/451-2369 (in Alabama, 205/430-8000); FAX 205/430-8926.

\section*{NEW DUAL BOBBIN DESIGN TRANSFORMERS.}

\section*{ONE-4-ALL \({ }^{\text {TM }}\) TRANSFORMERS FEATURE HIGH ISOLATION FOR TRIPLE OUTPUT REGULATED POWER SUPPLIES IN MICROPROCESSOR APPLICATIONS.}

Once again, Signal "The American Original" comes through with a complete line of \(50 / 60 \mathrm{~Hz}\) transformers for tripleoutput regulated supplies. These new "one-4-all" '" transformers feature the same dual high-temperature bobbin construction and insulating shroud originally developed for the company's very successful International Series. Because they have high isolation and reduced interwinding capacitance characteristics, and require no electrostatic shield, the transformers are an ideal. low noise alternative to multi-
output switchers. They satisfy UL 506 requirements, and CSA safety and performance standards.


Offered in PC and chassis mount versions, the "one-4-all" has dual complementary outputs ( \(\pm 15 \mathrm{VDC}\) and \(\pm 12 \mathrm{VDC}\) ) and additional isolated single output for +5 VDC with incircuit performance specs.

Signal transformers are available through Signal's PRONTO 24-Hour Off-the-Shelf shipment program. For additional technical data, contact Signal Transformer,

500 Bayview Avenue Inwood, N.Y. 11696.


BUY DIRECT
(516) 239-5777

Fax: (516) 239-7208.
\begin{tabular}{|c|c|c|c|c|}
\hline PART NUMBER PRIMARY 50/60 Hz & \multicolumn{2}{|r|}{dC OUTPUT} & \multirow[t]{2}{*}{VA} & \multirow[t]{2}{*}{PRICE} \\
\hline 115/230V & Regulator 1 & Regulator 2 & & \\
\hline A41-25-512 & 5V@1.25A & \(\pm 12 \mathrm{~V} @ 150 \mathrm{MA}\) & 25 & 16.25 \\
\hline A41-25-515 & 5V @ 1.25A & \(\pm 15 \mathrm{~V}\) @ 130MA & 25 & 16.25 \\
\hline A41-43-512 & 5V@2A & \(\pm 12 \mathrm{~V} @ 300 \mathrm{MA}\) & 43 & 20.75 \\
\hline A41-43-515 & 5V@2A & \(\pm 15 \mathrm{~V} @ 250 \mathrm{MA}\) & 43 & 20.25 \\
\hline A41-80-512 & 5V@3.5A & \(\pm 12 \mathrm{~V} @ 600 \mathrm{MA}\) & 80 & 28.50 \\
\hline A41-80-515 & 5V@3.5A & \(\pm 15 \mathrm{~V} @ 500 \mathrm{MA}\) & 80 & 28.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PART NUMBER PRIMARY 50/60 Hz & \multicolumn{2}{|r|}{DC OUTPUT} & \multirow[t]{2}{*}{VA} & \multirow[t]{2}{*}{PRICE} \\
\hline 115/230V & Regulator 1 & Regulator 2 & & \\
\hline 14A-20-512 & 5V@750MA & \(\pm 12 \mathrm{~V} @ 200 \mathrm{MA}\) & 20 & 15.00 \\
\hline 14A-20-515 & 5V @ 750MA & +15V@175MA & 20 & 15.00 \\
\hline 14A-30-512 & 5V@1.25A & \(\pm 12 \mathrm{~V} @ 250 \mathrm{MA}\) & 30 & 17.75 \\
\hline 14A-30-515 & 5V @ 1.25A & \(\pm 15 \mathrm{~V}\) @ 200MA & 30 & 17.25 \\
\hline 14A-56-512 & 5V @ 3A & \(\pm 12 \mathrm{~V} @ 300 \mathrm{MA}\) & 56 & 21.00 \\
\hline 14A-56-515 & 5V@3A & \(\pm 15 \mathrm{~V} @ 250 \mathrm{MA}\) & 56 & 21.00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Dimensions} & \multirow[b]{2}{*}{Terminals} & \multirow[t]{2}{*}{\begin{tabular}{l}
Wtg. \\
Style
\end{tabular}} & \multicolumn{2}{|c|}{Mtg.} & \multirow[t]{2}{*}{Screw} & \multirow[b]{2}{*}{Lhs.} \\
\hline VA & 1 & W & H & A & B & C & & & ML & MW & & \\
\hline 25 & 23/16 & 11/6 & 25/16 & 2 & 11/8 & 5/16 & 3/16(.187) & c & 23/6 & - & \# 6 & 1.25 \\
\hline 43 & 31/8 & 21/16 & 211/16 & \(21 / 4\) & 11\%6 & 5/16 & 3/16(.187) & c & 23/16 & - & \# 6 & 1.6 \\
\hline 80 & 21/2 & 23/8 & 3 & - & 13/6 & 5/16 & 3/15 (.187) & 8 & 2 & 23/16 & \#6 & 2.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Dimensions} & \multirow[t]{2}{*}{Pin Dimensions} & \multicolumn{3}{|c|}{mtg.} & \multicolumn{2}{|l|}{Mng. Screw} & \multirow[b]{2}{*}{Lbs.} \\
\hline VA & 1 & W & H & A & B & c & D & & M & N & P & Size & Quartity & \\
\hline 20.0 & 21/4 & 11/4 & 13/4 & . 400 & . 400 & 1.460 & . 200 & 0.03850 & 11/2 & - & - & \#4 & 2 & 0.90 \\
\hline 30.0 & 24/8 & 23/16 & 19/16 & . 550 & 275 & 1.680 & . 275 & 0.04550 & - & \(13 / 4\) & 23/16 & \# 6 & 4 & 1.15 \\
\hline 56.0 & 3 & \(2^{1 / 2}\) & \(1^{13 / 16}\) & . 600 & . 300 & 1.900 & . 300 & 0.04550 & - & 2 & 21/2 & \#6 & 4 & 1.70 \\
\hline
\end{tabular}```


[^0]:    EDN ${ }^{\text {® }}$ (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (biweekly with 2 additional issues a month, except for February, which has 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN ${ }^{*}$ is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN®, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\circledR}$ copyright 1991 by Reed Publishing USA; Ronald G Segel, Chairman and Chief Executive Officer; Robert L Krakoff, President and Chief Operating Officer; William M Platt, Senior Vice President. Annual subscription rates for nonqualified people: USA, \$119.95/year; Mexico, \$169.95/year; Canada, \$181.85/year; all other nations, $\$ 209.95 / y e a r$ for surface mail and $\$ 329.95 / y e a r$ for air mail. Single copies are available for $\$ 15$. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]:    © Digital Equipment Corporation 1991. The DIGITAL logo, DEC write and ALL-In-1 are trademarks of Digital Equipment Corporation. WordPerfect is a registered trademark of WordPerfect Corporation. Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation. Interleaf and TPS are trademarks of Interleaf, Inc. Mathematica is a trademark of Wolfram Research, Inc.

[^2]:    Motorola and $(\mathcal{M})$ are registered trademarks of Motorola, Inc

[^3]:    Ask EDN solves nagging design problems and answers difficult questions. Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or send us a letter on EDN's bulletin-board system at (617) 558-4241; leave a letter in the ask_edn Special Interest Group.

[^4]:    MFLOPS are the results of the double-precision, all FORTRAN Linpack test $100 \times 100$ array suite. The Dhrystone Version 1.1 test results are used to compute RISC System/6000 Integer MIPS value where 1,757 Dhrystones/second is MFLOPS are the results of the double-precision, all FORTRAN Linpack test $100 \times 100$ array suite. The Dhrystone Version 1.1 test results are used to
    1 MIPS (Vax 11/780). SPECmark is a geometric mean of ten benchmark tests. All performance data are based on published benchmark information

    IBM is a registered trademark, and RISC System/6000 and CAEDS are trademarks of International Business Machines Corporation. SPECmark is a trademark of Standard Performance Evaluation Corporation. UNIX is a registered trademark of UNIX System Laboratories, Inc. CADAM is a trademark of CADAM INC. CATIA is a trademark of Dassault Systemes. CBDS is a trademark of Bell Northern Research Corporation. DECstation is a trademark of Digital
    Equipment Corporation. HAGAR THE HORRIBLE Character(s) (© 1990 King Features Syndicate, Inc. © IBM Corp. 1991, all rights reserved.

[^5]:    Prices and specifications are subject to change without notice. The purchase of products is subject to availability and Sony's standard terms and conditions of sale. Sony is a registered trademark of Sony Corporation.

[^6]:    HEADQUARTERS AND MAIN PLANT: ILC Data Device Corporation, 105 Wilbur Place, Bohemia, NY 11716, (516) 567-5600, TLX: 310-685-2203, FAX: (516) 567-7358, (516) 563-5208

    WEST COAST (CA): GARDEN GROVE, (714) 895-9777, FAX: (714) 895-4988;
    WOODLAND HILLS, (818) 992-1772, FAX: (818) 887-1372; SAN JOSE, (408) 236-3260, FAX: (408) 244-9767 WASHINGTON, D.C. AREA: (703) 450-7900, FAX: (703) 450-6610
    NORTHERN NEW JERSEY: (201) 785-1734, FAX: (201) 785-4132
    UNITED KINGDON: 44 (635) 40158, FAX: 44 (635) 32264; FRANCE: 33 (1) 4333-5888, FAX: 33 (1) 4334-9762 GERMANY: 49 (8191) 3105, FAX: 49 (8191) 47433; SWEDEN: 46 (8) 920635, FAX: 46 (8) 353181 JAPAN: 81 (3) 814-7688, FAX: 81 (3) 814-7689; IRELAND: 353 (21) 341065, FAX: 353 (21) 341568

