

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE

February 17, 1992

DEsign Features
Designer's guide to measuring op-amp distortion:
Pt 1: pg 133
Pt 2: pg 139

TECHNOLOGY UPDATES

European manufacturing contractors encourage close relationships
pg 58
Parameter analyzers pg 65

High-speed digital circuits pg 81

PRofissional ISsuEs

1992 Olympics: Training with technology
pg 212

DEPARTMENTS

New: Inside EDN pg 9
New: Acronyms
pg 233
New: Hands On! pg 235

HP scopes make digital designs easier to understand.

Now there's a way to get the information you need.

 Experience is the best teacher. And since 1980, HP has developed digitizing scope technology to help you understand how well digital designs are working. Or why they aren't.When high-speed signal integrity issues are problems, the 50 GHz HP 54124 helps you learn why. If you need to make precision singleshot measurements, you can't go wrong with the $1 \mathrm{GSa} / \mathrm{s}, 4$ channel HP 54512. And for general-purpose
use, the HP 54600 offers the look and feel of analog with the power of digital.
And scopes are only part of the picture. HP's unique high-speed digital symposium sheds light on leading-edge digital design issues. In-depth information on techniques and methods is available through seminars, application notes, and HP's worldwide network of field engineers and product specialists.
So, if you want a better under-
standing of digital designs, call 1-800-452-4844. Ask for Ext. 2890,* and we'll send an information packet that explains how HP can help you find the answers.
There is a better way.

[pp
 HEWLETT
 PACKARD

[^0]

Modulation-Domain Simulation Gives You the Big Picture.

Introducing OmniSys
 Version 3.5.

Analyzing communication systems and complex modulated signals with the usual simulators? Time- and frequency-domain simulators like SPICE and harmonic balance are great, but circuit simulators don't give you the big picture. OmniSys®, EEsof's system simulator, gives you the new insight you need!

OmniSys lets you simulate system performance in the modulation-domain so you can see how your system will work with today's chirp, MSK, pi/4 DQPSK, and other complex modulated signals. Look at BER I-Q constellations, spectral regrowth, AM/PM distortion, and more. You'll see the effect of hardware trade-offs on your complete transmitter and receiver and you'll get your system to market faster without costly redesigns.

See the Big Picture with OmniSys.
Contact us for literature at (800)
34-EESOF...or,
if you prefer, by FAX at (818) 879-6462.

In Europe, call (49) 8105-24005 or FAX (49) 8105-24000.

Breaking the Barriers...

EEתоf

Take a Look at LabWindows'2.0

LabWindows 2.0 brings a new look to data acquisition and instrument control. The new look is graphical-a graphical user interface for your acquisition and control system.

Create a Graphical User Interface

 With LabWindows 2.0, you can easily create custom graphics panels to interface with your DOS-based system. Using the graphical editor and standard development tools, you can develop a system that combines data acquisition, data analysis, and data presentation.
Program with C or BASIC

When you develop a system with LabWindows 2.0, you have the benefit of using standard programming languages with development tools designed specifically for data acquisition and instrument control.

Use any Acquisition Hardware

 LabWindows 2.0 has libraries of functions to control data acquisition hardware ranging from plug-in boards to industry-standard GPIB, VXI, andRS-232 instruments. You can develop a system with LabWindows to meet all of your measurement and control needs.

Take a look at the new LabWindows 2.0. You'll like what you see. Austin, TX 78730-5039
(512) 794-0100
(800) 433-3488

Signal creation and analysis enters a new domain: the real world.

WaveForm DSP ${ }^{\text {TM }}$ closes the loop from lab to math model to the outside world. It is a data acquisition, signal analysis, and waveform creation tool, all in an easy-to-use Microsoft Windows ${ }^{\circledR}$ based program.

Waveforms can be acquired or created many different ways. Draw them, build them with the library, input math formulas, share data from programs like Excel ${ }^{\oplus}$, or even get a real signal from a digitizing storage oscilloscope.

WaveForm DSP also has powerful math functions for combining, concatenating and
manipulating signals, with options for signal filtering and much more. Accuracy is assured because calculations are done in double precision (64 bit) math.

The signals you create can be used to drive an arbitrary function generator capable of reproducing any imaginable waveform. Or they can be output to printers, plotters, or saved as files for other applications.

Multiple windows can be open at once, and they can all be interactive. Imagine being able to change a waveform in the frequency domain and see
the results in a time domain plot on the same screen - with just the click of a mouse. Or change a signal going to a test and see a graphic display of the analyzed results.

If you haven't been comfortable with digital signal processing before, you will be now. And if you never thought of using arbitrary generators before, get ready for a whole new spectrum of possibilities.

To try WaveForm DSP, call 1-800-223-9885.

FLபKE

PHILIPS

Fluke puts timer/counters on the fast track.

Discover the new breed of timer/ counter: the PM 6680.

Until now timer/counters have plodded along as workhorses of test and measurement. Now Fluke is the first out of the gate with a whole new breed of timer/ counter: the Philips PM 6680. A powerfully fast, powerfully versatile instrument with capabilities usually associated with analyzers costing up to five times more. Yet the PM 6680 runs under $\$ 2100$ - less than half the cost of comparable timer/ counters. And for that low price you get more than twice the capabilities.

Compare the stats:

	$\begin{gathered} \text { PM } \\ 6680 \end{gathered}$	$\begin{gathered} \mathrm{HP} \\ 5334 \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { HP } \\ 5335 \end{gathered}$
Frequency Range, A	225 MHz	100 MHz	200 MHz
Frequency Range, C (optional)	2.7 GHz	1.3 GHz	1.3 GHz
Single Shot Res.	500 ps	2 ns	2 ns
Max. Reading Rate	2000/s	150/s	125/s
Base Price	\$2,075*	\$2,305	\$5,000

Besides setting a faster pace, the PM 6680 adds new time and frequency analysis tools. Built-in mathematics and statistics functions give you stand-alone processing power that makes it easy to obtain measurements such as drift and rate of drift.

Put those features together with 2000 readings per second and you have a powerful tool for analyzing timing jitter without a controller. The PM 6680 can also characterize VCOs or frequency agile sources quickly and easily.

And a host of new measuring capabilities give you the versatility to address your toughest measurement problems.
 Rise time, duty factor, phase, and volt $\mathrm{min} /$ max measurements are all standard. Our unmatched arming flexibility enables you to measure rise time or pulse width on selected pulses within a stream. And the PM 6680 boasts six totalizing modes-including up/ down counting and counting over a preset time.

Plus the PM 6680 is the first GPIB timer/counter to use the SCPI standard so you're assured of easy upgradability and modification down the line.
Without a doubt the PM 6680's thoroughbred speed and power will put you in the winner's circle for a workhorse price. It's backed by Fluke's strong track record as a leader in electronic instrumentation and test solutions, plus complete technical support and fast service.
To get significantly more performance from a timer/counter for significantly less cost, discover the PM 6680:

the new breed of timer/counter from Fluke. Call 1-800 44-FLUKE ext. 701 for more information and a free demo. Thoroughbred performance at a workhorse price.

MAGAZINE EDITION

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE

SPECIAL REPORT

Design for test (without really trying)

Despite the dangers of ignoring testability, subtle costs can make designing an ASIC for test prohibitively expensive. Testability tools provide construction techniques that lower the cost of designing for test.
-Michael C Markowitz, Technical Editor

DESIGN FEATURES

Designer's guide to measuring op-amp distortion

- Serald Graeme, Bur-Brown Corp

Part 1-0p-amp distortion measurement bypasses test-equipment limits

Part 1 of this 2-part series introduces the theory involved in measuring the low distortion levels of state-of-the-art op amps. It also provides simple methods for characterizing some low-distortion op amps.

Part 2-Advanced techniques tackle advanced op amps' extremely low distortion

The second part of this 2-part series describes how to measure the distortion of more complex amplifier circuits and how to handle the highest-performance op amps.

Continued on page 7

[^1]

Introducing PLDecoders.

Taking systems to 40 MHz and beyond has become a whole lot simpler with these new, function-specific BiCMOS Decoder PLDs. For RISC, including our highest performance SPARC processors, choose the input-registered versions to capture addresses quickly. For CISC, such as 80X86, we offer output-latched versions that optimize system performance. Choose simple addressing versions at 6 ns for fastest performance, or 7 ns bank select or byte-write versions to suit your application precisely.

Fewer parts, faster performance.

One PLDecoder replaces older, multiple-chip solutions, to save money and board space. PLDecoders are optimized for speed, using an ECL speed path. BiCMOS technology helps save on power. They are specialized for decoding, with the required latches or registers on chip for top performance, and non-essential functions stripped away. As a result, you get optimal performance, to go to 40 MHz , and well beyond.

[^2]
Programmable design convenience.

Design is eased by PLDs developed specifically to implement memory decoding. Easier than using standard PLDs. Much easier than gate arrays.

Cheaper SRAM.

Since our decoders save you so much time out of the "memory access cycle" you have options. Go for a faster system. Or, at a given speed, use slower, less expensive SRAM. In 40 MHz systems with large SRAM requirements, the savings can really add up.

Call our information hotline.

Get our application notes on the CY7B336-9 family, product profile, PLD Brochure and a terrific Data Book to boot.

PLD Hotline: 1-800-952-6300.* Ask for Dept. C4U.

When your circuit designs run up against data-book specification limits, turn to a de parameter ana-lyzer-it will accurately measure the performance limits of your components.

PAGE 65

EDN Magazine offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.

Expressil! Request

TECHNOLOGY UPDATES
European manufacturing contractors encourage close relationships
European contract manufacturers want to contribute to the success of your product by becoming part of the
business.-Brian Kerridge, Technical Editor

Parameter analyzers give you a closer look at dc-circuit performance

Parameter analyzers based on source-measure units provide flexible and sensitive instruments for characterizing dc circuits.-Doug Conner, Technical Editor

High-speed digital circuits: Timing techniques help signals stay in sync

You'll need a variety of practical skills and tools to tackle high-speed timing problems.-Anne Watson Swager, Technical Editor

EDITORS' CHOICE

DRAM controller module
93

PROCESSOR UPDATES

$\mu \mathrm{P} /$ peripheral-function building blocks 97
Debugging tool for $68 \mathrm{HC16} \mu \mathrm{C}$ 97
32-bit $\mu \mathrm{C}$ 98
8-bit $\mu \mathrm{C}$ for power and keyboard management 100
8-bit $\mu \mathrm{C}$ 102
$\mu \mathrm{C}$ and software kit for Appletalk 104

[^3]
Searching for embedded solutions? Let us shed a little SPARClite.

We're blazing a trail for designers of embedded control systems. And now the unparalleled performance, innovation, simplicity and cost efficiency of RISC technology are finally in sight.

Introducing SPARClite."' A complete family of RISC processors from the Advanced Products Division of Fujitsu Microelectronics. Designed from the ground up for high-performance embedded applications.

Our first SPARClite family member, the MB86930 processor, provides a new generation of solutions that can easily be designed into your embedded applications - for much greater performance at very competitive prices. Operating at clock speeds up to 40 MHz - and providing

SPARClite
MB86940

FUjITSU

Delivering the Creative Advantage.

40 MIPs peak and 37 MIPs sustained performance.
Software compatible with the industry-standard SPARC ${ }^{*}$ architecture, our MB86930 provides the onchip cache memory needed to meet the demands of performance-critical real-time routines. As well as a unique cache-locking mechanism and many other on-chip peripheral functions.

What's more, Fujitsu's SPARClite program is complemented by a full range of multi-platform support tools from the leading names in development systems. To help you get to market more quickly than ever before. So why keep searching in the dark? Call us at 1-800-523-0034. And turn on SPARClite for the best in embedded solutions.

Home Office

275 Washington St, Newton, MA 02158 EDN Bulletin Board: (617) 558-4241
MCI: EDNBOS
(617) 558-extension

VP/Publishing Director

Peter D Coley -4673
VP/Publisher
Roy Forsberg -4367

VP/Editor/Editorial Director

 Jonathan Titus -4573
Executive Editor

Steven H Leibson -4214

Managing Editor

Joan Morrow Lynch -4215

Assistant Managing Editor

Christine McElvenny -4741
Gary Legg, Senior Technical Editor -4404 Tom Ormond, Senior Technical Editor -4414
Charles Small, Senior Technical Editor -4556 John A Gallant, Technical Editor -4666 Michael C Markowitz, Technical Editor -4743 Dave Pryce, Technical Editor - 4326 Dan Strassberg, Technical Editor -4205 Jay Fraser, Associate Editor -4561 Carl Quesnel, Associate Editor -4484 Susan Rose, Associate Editor -4738 Julie Anne Schofield, Associate Editor -4619 Helen McElwee, Senior Copy Editor -4311 James P Leonard, Copy Editor -4324 Gillian A Caulfield, Production Editor -4263 Brian J Tobey, Production Editor -4309

Editorial Field Offices

Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
MCI: EDNDCONNER
J D Mosley, Technical Editor
Arlington, TX: (817) 465-4961
$\mathrm{MCI}:$ EDNMOSLEY
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI: EDNQUINNELL
Anne Watson Swager, Technical Editor W'ynnewood, PA: (215) 645-0544 MCI: EDNSWAGER
Ray Weiss, Technical Editor
Woodland Hills, CA: (818) 704-9454
MCI: EDNWEISS
Maury Wright, Technical Editor
San Diego, CA: (619) 748-6785
MCI: EDNWRIGHT
Brian Kerridge, Technical Editor
(508) 28435

22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
MCI : EDNKERRIDGE

Contributing Editors

Robert Pease, Don Powers,
David Shear, Bill Travis

Editorial Coordinator

Kathy Leonard -4405
Editorial Services
Helen Benedict -4681

Art Staff

Ken Racicot, Senior Art Director -4708
Chinsoo Chung, Associate Art Director -4446
Cathy Madigan, Associate Art Director -4599

Marketing \& Business Director

Deborah Virtue -4779
Marketing Communications
Kathy Calderini, Manager - 4526
Pam Winch, Promotion Specialist -4660

February 17, 1992
Continued from page 7

DESICN IDEAS
Miniature power supply works off line 155
Split supply operates from a single cell 156
Synchronous switch mutes line noise 158
Large capacitor serves as battery backup 160
Spice model mimics reference 160
Feedback and Amplification 164

NEW PRODUCTS

Test \& Measurement Instruments 168
Computers \& Peripherals 172
Components \& Power Supplies 180
Integrated Circuits . 186
CAE \& Software Development Tools 194

PROFISSIONAL ISSUES

Training with technology

Sports science and high-tech training equipment
have helped our Olympic athletes, but a shortage of funds

DEPARTMENTS

Inside EDN 11
News Breaks 21
Signals \& Noise 36
Ask EDN 47
Editorial 55
Literature 206
Business Staff 230
EDN's International Advertisers Index 232
EDN's Acronyms \& Abbreviations 233
Hands On! 235

Record-breaking speed demands the ultimate in performance.

Roger Bannister made the running of the mile an exact science, analyzing every moment, every aspect. And became the first man to break the 4 -minute barrier in 1954.

Scrutiny of every detail in electronics reveals a simple fact: Your equipment is only as fast as its slowest component.

At Precision Interconnect, wére working every day to support your efforts toward smaller, faster equipment through the performance of high-speed transmission line assemblies.

Our latest generation of Tex-L 88 PTFE insulating tape,
with its low dielectric constant, allows us to build flexible, micro-miniature coaxes with over 90% velocity of propagation.

Cabled and terminated properly, these coaxes are not only easy to install, they provide precise signal rise times, controlled impedance, minimized attenuation and matched time delay.

If youre designing supercomputers or test equipment that requires smaller and faster cable solutions, our engineering and manufacturing capabilities can give youan edge. We know every picosecond counts.

Interconnect assembly for Hewlett-Packard logic analyzer uses 105 ohm high-performance, high speed coax.

PRECISION INTERCONNECT
16640 S.W. 72 nd Avenue Portland, OR 97224 (503) 620-9400
parametric information over device lots.

Fans of Burr-Brown's analog guru Jerald Graeme will find his latest article, on characterizing opamp distortion, in this issue. Graeme points out that distortion performance in op amps has become increasingly important because of the recent upswing in DSP applications.

Time is another tough parameter to characterize. If you can't master your design's timing, you're really in trouble. In her Technical Update on high-speed digital circuits, Technical Editor Anne Watson Swager focuses on timing techniques, such as timing skew and clock generation and distribution, that help you take up the temporal slack.

One reason for characterizing devices is to ensure manufacturability no matter where the product is built. If your company expects to sell products based on your designs in Europe, you might want to study Technical Editor Brian Kerridge's report on contract manufacturing within the European community.

Steven H Leibson,
Executive Editor
you need to develop or refine realistic simulation models, parameter
analyzers let you collect aggregate nical Editor Michael M Markowitz Special Report "Design for test (without really trying)." Although you won't find a prescription for free testability in this article, you will find a realistic look at the true costs of design for test (DFT). You'll also find tools and techniques that make designing for test much easier than you might think. Be sure to check out the top-10 reasons for not using DFT methods in the same article.
Many engineers don't employ DFT techniques because some of these test methods degrade device performance. However, designers who use only the data-sheet specifications rarely know the true performance limits of the devices they incorporate in their designs. You'll find several articles on device characterization in this issue of EDN.
For starters, Technical Editor Doug Conner examines parameter analyzers. You might think parameter analyzers are primarily for incoming inspection, but you can also use these instruments to characterize device aspects not detailed in the manufacturer's spec sheets. If

This issue's Special Report covers CAE tools that construct tests or test logic.

Wide Input Range

- 365 Standard Models
- Single, Dual \& Triple Output
- Remote Disable Pin Standard
- Up to 100V DC Output now Standard
- 500V DC Isolated Input to Output
- All Units Shielded

```
MIL-STD-883 UPGRADES
            AVAILABLE
- Expanded operating temp.
        (-55\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to + }8\mp@subsup{5}{}{\circ}\textrm{C})
- No Heat Sink Required
- Stabilization Bake
        (125}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ambient)
- Temperature Cycle
        (-55'`
- Hi temp., full power burn in
        (100% power, 125C case
        temp.)
```

PICO also manufactures over 850 standard DC-DC converters and over 2500 ultra-miniature transformers, inductors and new AC-DC power supplies.

453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 IN NEW YORK CALL 914-699-5514

High-Speed 7.5ns CMOS PAL Devices.
There's nothing we hate more than delays. That's why we developed high speed CMOS PAL devices that no one can beat-our CMOS 7.5 ns $16 \mathrm{~V} 8 \mathrm{H}-7$ and $10 \mathrm{~ns} 22 \mathrm{~V} 10 \mathrm{H}-10$ PAL devices.

In fact, nobody even comes close to our in-system performance, with the fastest set-up
and clock-to-out times available. Both come in PLCC and DIP varieties. All on state-of-the-art submicron EE CMOS.

High-Volume, High-Speed Delivery.

Again, there's nothing we hate more than delays. You can get huge volumes of our new CMOS PAL devices now.

And they're on the shelf at your local dis-

No Delays.

tributor, too. So you can get the quantity and speed you need, whenever you need them.

What more can you expect from the company that sells more programmable logic than all of its competitors combined?

So pick up the phone and place your order today, or call 1-800-222-9323 for more information.

Because at AMD, we don't believe in long delays either.

7
 Advanced Micro Devices

901 Thompson Place, P.O. Box 3453 . Sunnyvale, CA 94088 © 1991 Advanced Micro Devices, Inc PAL is a registered trademark of Advanced Micro Devices. All brand or product names mentioned are trademarks or registered trademarks of their respective holders.

You Design Actel FP You Do A PLD. But Th

Use PLD Tools.
You design Actel FPGAs using the same tools as you would a PLD:

ABEL, ${ }^{\text {w }}$ CUPL, ${ }^{\text {² }}$ LOG $/ \mathrm{iC}^{\text {m }}$ and
PGADesigner. But that's where the similarity ends.

Fast. Fost. Fast.
Our FPGAs are real speed demons Whatever application you may be working on, our parts will give you the kind of performance you're looking for.

100\% Automatic Place And Route.
Coupled with your PLD tools, Actel's Action Logic" System (ALS) software lets you create your own FPGAs - using a 386 PC or workstation - right at your own desk. With Auto Place and Route that's proven in thousands of applications.

Announcing A Simple Way To Get From PLDs To FPGAs.

If you're a PLD designer with an interest in fast, flexible FPGAs, but you think you don't have time to learn new design techniques, we'd like to change your mind.

First of all, you don't have to give up your existing PLD design tools or Boolean equations. Actel's ALES ${ }^{m} 1$ program translates the output of PLD
tools like CUPL ${ }^{m}$ and $\mathrm{LOG} / \mathrm{iC}^{\mathrm{m}}$ into logic optimized for our ACT" devices. ABEL 4.0 includes optimization for Actel devices. Entire FPGA designs can be developed with PGADesigner. ${ }^{\text {T }}$

Actel devices offer everything you want in an FPGA. Like high I/O and flip-flop counts. And 100% automatic place
and route gets you to market fast.

Once your FPGA is designed, our Action Logic ${ }^{\text {mw }}$ System (ALS) converts the captured design into a completed device in minutes. To give you true, high-density, field-programmable, channeled gate arrays.

Other FPGA manufacturers fall short on design verification. Our exclusive Actionprobe ${ }^{\text {s }}$ diagnostic tools, give you 100%
observability of internal logic signals. So you don't have to give up testability for convenience.
It's never been easier to make your innovative designs a reality. We offer you a complete family of powerful FPGAs, like the A1010 and A1020, available in 44,68 and 84 pin PLCC versions and implementing up to 273 flipflops or up to 546 latches. And the first member of our ACT 2 family, the power-

[^4]
GAs The SameWay e Similarity Ends There.

More Flexibility And Capacity.
Designing with Actel FPGAs gives you more freedom than you ever imagined. More gates. More flip-flops. More I/O. In fact, our new A1280 is the largest FPGA in the world.

Small Footprint.
Actel FPGAs give you far more gates per square inch. As much as ten times as many as the densest PLDs. That can save a lot of real estate.

More Fun.
Designing Actel FPGAs is so simple that you'll have more time to do the things that made you want to become an engineer in the first place. Or just relaxing You've earned it.
ful A1280. With 8,000 gates, up to 998 flip-flops, and 140 I/O pins, it's the highest capacity FPGA today. And our A1240-1 is the fastest. In the A1240-1, 16-bit counters run at $75 \mathrm{MHz}, 16$-bit accumulators at
 33 MHz . Enough capacity and speed to handle almost any application.

The superior speed,
capacity, and auto place and route capabilities of our FPGAs are made possible by Actel's revolutionary PLICE ${ }^{*}$ antifuse programming element. The advanced technology that makes our family of FPGAs an ideal way to unleash your engineering creativity.
Call 1-800-228-3532 for your free FPGA Design Guide.

Broad Family With High Capacity

\rightarrow
© Samsung Semiconductor, Inc., 1992.
16. EDN February 17, 1992

WE GOT THERE FIRST.

Samsung began initial production shipments of 16-meg DRAMS in 1991. Our customers (who include many of the premiere computer and workstation
makers) tell us we are the first in the world to complete this next generation of memory. We see it as a milestone in a global effort. One of many.

HAMSUNG

A Generation Ahead.

Teks new encore TDS 400. Extraordinary 4-channel power. Ordinary 2-channel price.

Tek's new TDS 400 Series oscilloscopes make TDS performance from 150 MHz to 350 MHz more portable and affordable than ever.
Now you can pick up where Tek's breakthrough TDS 500 Series left off - with a compact, versatile new series that puts the TDS platform's 4-channel acquisition, multiprocessing and intuitive operation within easy reach of digital, analog and electro-mechanical design, production test, field service, and many other demanding tasks. For the usual price of two channels, you can now have: - $100 \mathrm{MS} / \mathrm{s}$ sampling on each of four channels.

- On-the-fly signal processing with up to 12 -bit vertical resolution.

■ Record lengths to 30,000 points.

- Video trigger option with back-porch clamp and dial-up line/field selection.
- 22 time-saving automatic measurements.
- The unique graphical user interface that lets most TDS manuals stay shrinkwrapped on the shelf. Call 1-800-426-2200

Ext. TDS4, for more information on either the new
TDS 400 or the recently-announced TDS 500 Series with up to 4 channels, $1 \mathrm{GS} / \mathrm{s}$ sampling and 500 MHz bandwidth - and for the number of your nearest Tek sales office. We'll put you through to all the right channels, fast!

EDITED BY SUSAN ROSE

New CPU boards shown at Buscon

Abstract

A number of companies showed their new CPU boards for open buses at Buscon ' 92 West in Long Beach, CA, a few weeks ago. The emphasis of most of the products, naturally, is on faster CPU performance and highly integrated boards. For example, Omnibyte Corp's VMEbus Taurus board employs a dual-bus architecture that links onboard $25-\mathrm{MHz} 68040$ and 68030μ Ps. The design dedicates the 68030 to I/O tasks, thereby freeing the 68040 to execute application code with little interruption. The board includes a memory architecture that lets the 68040 address as much as 256 Mbytes of memory, and the 68030 has access to as much as 64 Mbytes of memory. You can order configurations of the board with an Ethernet port, a SCSI host adapter, six serial ports, a parallel-printer interface, and 32 programmable digital I/O lines. A configuration featuring 4 Mbytes of dynamic RAM, 128 kbytes of static RAM, six serial ports, and the parallel interface costs \$3495. Motorola, meanwhile, announced its plans for boardlevel support of the new 88110 RISC μ P. The company plans a single-slot VMEbus board that will include SCSI-2, Ethernet, and VSB interfaces as well as the $\mu \mathrm{P}$ and a 64 -bit-wide memory array. Final specs and pricing of the board have been delayed because the company's IC division has yet to ship production versions of the 88110 IC. The new μ P, however, will have a 3-D graphics-execution unit and a floating-point unit on chip. Omnibyte Corp, West Chicago, IL, (708) 231-6880, FAX (708) 231-7042. Motorola Inc, Tempe, AZ, (602) 438-3000.-Maury Wright

Embed a workstation in your next test system

You can use a $33-\mathrm{MHz}$ 80486-based workstation with as many as four Expansion Module bus (EXMbus) expansion slots for your next embedded VXI controller. The EPC-7 from Radisys is a C-size plug-in board that you can use in place of an external workstation connected to your test rack. To provide
flexible I/O expansion, the board's EXMbus architecture accepts modules for IEEE-488, Ethernet, RS232C, RS-422, RS-485, a modem, solid-state disks, an interval timer, and an assortment of video controllers. An adapter module lets you plug in a full-length ISA expansion board for specialized I/O interfaces that aren't available as EXM modules. Standard hardware includes a serial port, a printer port, a reset button, and a keyboard interface. Three connec-
tors let you externally route VXIbus trigger and clock signals. A SCSI connector lets you add external equipment such as tape-backup units or opti-cal-disk drives.

For $\$ 6995$, this 2 -slotwide controller includes a $33-\mathrm{MHz} 80486 \mathrm{CPU}$, 2 Mbytes of dynamic RAM, a 52-Mbyte harddisk drive, a $31 / 2$-in. floppydisk drive, and the EPConnect runtime package for DOS. A VGA graphics controller sells for $\$ 450$. All software and application programs that run on the firm's EPC-2 systems will also run on the board without modification. Radisys Corp, Beaverton, OR, (800) 950-0044; (503) 6901229, FAX (503) 690-1228.-J D Mosley

Gate array has 60-psec gate delay and 350,000 gates

Vitesse Semiconductor Corp continues to push GaAs semiconductors into mainstream semiconductor applications. The new VGFX350K member of the FX family of gate arrays includes 1.2 million active transistorsapproximately the same number as the Intel $80486 \mu \mathrm{P}$. The $0.6-\mu \mathrm{m}$ gate arrays feature a channel-less architecture with gate delays less than 60 psec . The first array Vitesse produced for a customer includes two 44-kbit blocks of static RAM and two 5 -port reg-
ister files. The RAM array features a 3 -nsec access time. Expect a nonrecurring engineering cost of $\$ 70,000$ to $\$ 120,000$ to develop a VGFX350K array. The company also introduced 20,000 - and 40,000 -gate members of the FX family that previously included only $100,000-$ and 200,000 -gate arrays. Vitesse Semiconductor Corp, Camarillo, CA, (805) 388-3700, (805) 987-5896.-Maury Wright

EDN Asia gets Chief Editor

Michael Markowitz is leaving his post as Technical Editor at EDN Magazine to become Chief Editor of EDN Asia. Michael will join Jack Kompan, Publisher of EDN Asia, in Cahners Publishing's Hong Kong office.

Michael has been with EDN since 1988. Before coming to EDN, he was Senior IC Design and Applications Engineer at Marconi Electronic Devices and before that he designed
custom ICs for General Instruments' Microelectronics Division (now Microchip Technology). Michael has a BS in Liberal Arts from Haverford College, a BEEE from SUNY, Stony Brook, and an MBA from Adelphi University.

EDN Asia will begin monthly publication in May and will have a controlled circulation of 28,000 . The magazine will carry the same types of technology features, reviews of technology trends, and surveys of state-of-the-art product areas as EDN does in the United States and Europe. It will also carry original, Asia-specific new-product stories, literature available
in Asia, and career-related articles. The magazine is based in Hong Kong and will circulate to readers in Korea, Taiwan, Hong Kong, and ASEAN (the Association of South East Asian Nations, which comprises Brunei, Indonesia, Malaysia, the Phillippines, Singapore, and Thailand). It will be published in English, Chinese (Mandarin), and Korean.

Send EDN Asia-specific product announcements to Jack Kompan or Michael Markowitz. EDN Asia, 22/F Lo Yong Court, 21 2-220 Lockhart Rd, Wanchai, Hong Kong, (852) 5722037, FAX (852) 838-5912.-Susan Rose

European Group aims to advance MCM fechnology

Eureka project EU462 brings together 13 European companies with the common objective of developing design tools and manufacturing techniques for multichip modules (MCMs). Funding provided by governments supporting the project amounts to 18.3 million ECUs (roughly $\$ 23.4$ million), which will be spent over the next three years. The project members will make a special study of the use of nonsilicon substrate material such as ceramic, laminate, aluminum nitride, and metal-based compounds. Project teams will focus on seven key areas covering substrates, thermal management, die attachment, interconnection, protection, thermal and electrical modeling, and CAD tools. Two specific aims of the project are to achieve high-frequency performance to 40 GHz for telecommunications work, and $40 \mathrm{~W} / \mathrm{cm}^{2}$ for automobile applications.

Project member companies come from four countries: Nokia in Finland; SAT, SOREP, ES2, and RacalRedac TAD in France; Saab-Sania Combitech in Sweden; and BNR, Newmarket Microsystems, RacalRedac Systems, University of Warwick, Johnson Matthey, Gwent Electronic Materials, and TWI in the UK. TWI, an independent R\&D contractor, is providing the project coordination and leadership. TWI, Abington, Cambridge, UK, 0223 891162, FAX 0223892588 , contact Norman Stockham.-Brian Kerridge

12-bit A/D converter won't sweat in $\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$

Guaranteed to perform in temperatures exceeding $200^{\circ} \mathrm{C}$, the 12 -bit I- 6 H 005 is a pin-compatible replacement for BurrBrown's ADC10HT A/D converter. Packaging techniques provide this chip with a 50% reduction in mass over the BurrBrown part, which the company claims makes the chip less susceptible to shock in high g -force situations. Offering both serial and parallel data outputs, this IC also has, a monolithic, internal 10 V reference. Suitable for applications involving engine or power control, this device also has an internal clock and hermetic packaging. The chip costs $\$ 650$ (100); evaluation samples cost $\$ 250$. ITAC Hybrid Technology, Garland, TX, (214) 494-3073, FAX (214) 494-4159, contact Rick Carr.
-J D Mosley

Get fuzzy in Japan

Followers of fuzzy logic should check out the proceedings of the International Fuzzy Engineering Symposium '91 held last November in Yokohama, Japan. The symposium dealt with both the theoretical underpinnings of fuzzy systems and practical applica-
tions such as digital signal processing, robotics, and flight control. For more information about the symposium, which will be held every three years, contact the Laboratory for International Fuzzy Engineering Research, Yokohama, Japan, 81-45-212-8211, FAX 81-45-212-8255.
-Steven H Leibson

Coprocessor accelerates CAD/CAE applications

Users of PCs based on the 80386DX processor can now boost performance of their CAD/CAE applications packages with a coprocessor chip set designed specifically for engineering applications. The Intel RapidCAD engineering coprocessor chip set replaces the 80386DX CPU and 80387DX coprocessor in your system. The chip set will also work with all 386DX clock frequencies over a variety of bus architectures, including ISA, EISA, and MicroChannel. Performance improvements benchmarked by the company using Autodesk's AutoCAD Release 11 range from 8\% for Redraw, 35\% for Regen, and 46% for Hide.
Two chips comprise the set. The first chip fits in the CPU socket and is an 80386 processor with an integral 80387 coprocessor. The second chip fits in the coprocessor socket and provides glue logic for ex-

Text continued on pg 24

Get the Jump on Windowed Environments for Circuit Design!

We did! Now you can too!! All you need is the Design Center ${ }_{\mathrm{w}}$ running under Windows 3.0.

Schematic capture and PSpice simulation of a mixed-mode oscillator

Graphical analysis of the analog and digital signals produced by a DC brushless motor simulation

Native Windows 3.0 Applications-Available Today

The Design Center provides you with the analog and digital circuit design software you need, running as fully integrated MicroSoft Windows 3.0 applications on the PC. Whether you are capturing schematics, simulating circuits with PSpice, or graphically analyzing waveforms, you have all of the convenience of windowed environments at your fingertips: relocatable and scalable windows, pull-down menus, dialog boxes, on-line help, and the ability to freely move between different windowed applications.

At the Forefront of User Interface Technology

We're proud to be the first to offer an integrated environment for circuit design under Windows 3.0. In one window, graphically define your circuit with our schematic editor. Then, after simulating your circuit's behavior with PSpice, automatically view the waveform results in another window by marking pins, wires, and devices on the circuit drawing. If you like, save the schematic or graphical waveform display to the Windows Clipboard for use in a document. All phases of the circuit design process are simple and direct under Windows 3.0.

Stick with the Leader...

Discover for yourself the ease with which your circuits can be generated, simulated, and analyzed with our Design Center system running under Windows 3.0. For more information on the Design Center under Windows 3.0, or to find out about the Design Center on our Sun OpenWindows platform, call MicroSim Corporation toll free at (800) 245-3022 or FAX at (714) 455-0554.
ception handling. The $\$ 499$ chip set is available through retail stores, PC dealers, and distributors. You can obtain technical information via phone (|800) 538-3373, Literature package BO) or FAX ((503) 629-7576). Intel Corp, Santa Clara, CA, (408) 765-8080.
—Richard Quinnell

Channel-less

 gate array awarded patentMehdy Khatakhotan of SMOS Systems has received a patent on a novel interleaved, channel-less gate-array architecture. Typical cell architectures have two complementary transistors per cell aligned along the Y axis. In addition, the two source/drain interface regions and polysilicon gates for each transistor have a Y orientation, with the gates common to both transistors. Khatakhotan's cell structure uses two transistors aligned along Y, but the interface regions have an X orientation. The two common gates have fingers along the interface regions and connect along the Y axis, one on the right-hand cell edge, the other on the left. Each gate has an additional finger between the two transistors, with the three fingers of each gate interleaved. This arrangement lets a router make all connections between transistors in a cell with straight lines in a single metal layer, preserving the other metal layer for cell-to-cell inter-
connect. The result is greater cell utilization.

SMOS Systems is planning an ASIC product, called the SLAIS gatearray family, based on this interleaved-gate architecture. The first devices will contain 7000 to 120,000 usable gates and should be available in the second quarter of 1992. SMOS Systems, San Jose, CA, (408) 954-0120, FAX (408) 922-0578.
—Richard Quinnell

IC ensures clock operation in absence of power

As an inexpensive way to ensure static-RAM (SRAM) data protection and reliable clock operation in the absence of power, the bq4285 realtime clock IC and bq4287 module also let PC designers easily upgrade nonvolatile memory capacity without extensive redesigning. Not only do these clocks eliminate any need for a second battery to protect your static RAM (SRAM) data, they also let you use lower-cost commodity SRAMs and improve reliability by protecting the battery from the environmental contaminants associated with board assembly. The lithium cells embedded in these clocks ensure data retention and clock operation for a minimum of 10 years in the absence of power. Including 114 bytes of user RAM for PC BIOS, prices range

Semicustom array combines analog and digital macrocells

The RLDA80 mixed-signal array from Raytheon Semiconductor combines 32 V analog performance with some basic digital functions. A unique feature of the array is that it combines high-voltage operation with precision thinfilm resistors. The array's major components include 8 analog gain blocks with matched thin-film resistor blocks, 8 large resistors, 4 medium-power npn transistors, 36 small npn transistors, 12 small pnp transistors, 10 digital input and output cells, 16D flip-flops, and 18 logic function blocks.

The company provides kit parts and Spice models for prototyping and simulation. The analog macrocells have a frequency-response range of dc to 1 MHz . The digital macrocells have propagation delays typical of LS TTL logic. Thin-film resistors provide 200 V isolation from the substrate and $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical temperature coefficients. The resistor tolerance is 10% with values as high as $200 \mathrm{k} \Omega$. The array is available in a 44 -pin leadless chip carrier in commercial, industrial, and military temperature ranges. Nonrecurring engineering charges start at $\$ 30,000$ and include layout, ten prototypes, and test development. Minimum order size is $\$ 100,000$. Delivery is 10 weeks after final design review. Raytheon Semiconductor, Mountain View, CA, (415) 968-9211, FAX (415) 966-7620.-Anne Watson Swager
from $\$ 4.38$ to $\$ 8.40$
(1000). Benchmarq Microelectronics Inc, Carrollton, TX, (214) 407-0011, FAX (214) 407-9845, contact David Heacock.
-J D Mosley

Logic-analyzer plug-in handles 102 channels

Hewlett-Packard has tripled the state-analysis speed and quintupled the timinganalysis speed of its 16500A. The 16550A plug-in holds 102 channels. Two plug-ins together make a 204-channel analyzer and you can install five card pairs in one unit. One card pair does $500-\mathrm{MHz}$
timing analysis on 102 channels with 8 kwords of memory or $250-\mathrm{MHz}$ timing analysis on 204 channels with 4 kwords. If you use transitional timing, you cut the maximum timing-analysis speeds in half. Although there are faster timing analyzers, the company claims this unit provides the fastest timing analysis in a unit that also does state analysis. As with earlier units, you can use some channels for timing analysis and others for state analysis and obtain synchronized state and timing displays. The card costs $\$ 8800$; the mainframe, $\$ 7700$. Delivery is 4 to 8 weeks, ARO. HewlettPackard Co, Colorado Springs, CO, (800) 752-0900.-Dan Strassberg

POWER

SPLITIERS COMBNERS

the world's largest selection 2 KHz to 8 GHz from $\$ 495$

With over 300 models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, a variety of pin and connector packages, 50 and 75 ohm, covering 2 KHz to 8000 MHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. So why compromise your systems design when you can select the power splitter/combiner that closely matches your specific package and frequency band requirements at lowest cost and with immediate delivery.

And we will handle your "special" needs, such as wider bandwidth, higher isolation, intermixed connectors, etc. courteously with rapid turnaround time.

Of course, all units come with our one-year guarantee. Unprecedented 4.5 sigma unit-to-unit repeatability also guaranteed, meaning units ordered today or next year will provide performance identical to those delivered last year.

For detailed specs and performance data, refer to the MicroWaves Product Directory, EEM or MIni-Circuits RF/IF Signal Processing Handbook, Vol. II. Or contact us for our free 68-page RF/IF Signal Processing Guide.
finding new ways
setting higher standards

CIRCLE NO. 21

Closer contacts, closer support, closer to home.

THISIS AMPTODAY.

Designers in the small form factor arena have a lot on their minds when it comes to selecting connectors for today's emerging standards: compatibility, reliability, availability. And solid engineering support where they need it-anyplace in the world.
That's why so many are choosing AMP and the AMPLIMITE . 050 Series of high-density interboard and shielded I/0 connectors.
The .050 Series is compatible with SCSI-2, IPI-2, HIPPI, and EIA

High-density shielded I/O and interboard connections.

RS-232 standards-standards that AMP helped define in the first place. Engineering distinctions: smoothed tuning fork contacts, high-temp polymer housings, true footprint position and packaging for robotic application, and a wide range of hardware and mounting options.

And AMP is there to help you, with design-level engineering and support worldwide, manufacturing capacity second to none, and the highspeed application tooling you need to meet any production requirements.

For more information on the AMPLIMITE .050 Series high-
density connectors, call our Product Information Center toll-free at 1-800-522-6752 (fax 717-986-7575). In Canada call 416-475-6222. AMP Incorporated, Harrisburg, PA 17105-3608.

SOLAR ECLIPSE

HALLEY'S COMET

THE NEW KEITHLEY MODEL 2001

Enjoy rare measurement integrity. High speed. And a broad array of functions not found on any other DMM. All at half the price you might expect.

Even the architecture is one-of-a-kind. Five distinct processors enable better measurement performance and higher throughput. Just look:

- True 71⁄2-digit, 28-bit resolution
- Basic DCV accuracy: 18ppm (90 days),

7ppm (24 hours)

- Basic ACV accuracy: 0.03\%
$-1 \mathrm{~Hz}-2 \mathrm{MHz}$ ACV bandwidth
$-1 \mu \Omega-1 \mathrm{G} \Omega$ resistance measurements
- > 2000 readings/second at $41 / 2$ digits
- Multi-line display
- Built-in 10-channel scanner option
- Built-in functions to directly measure: peak spikes - AC crest factor - frequency true rms, peak, average ACV - temperature - DC in-circuit current - more.
Don't wait for the next solar eclipse to see a Keithley 2001. Call 1-800-552-1115 today for prompt information or a personal demonstration. Because a DMM like this doesn't come along very often.

KEITHLEY INSTRUMENTS

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:

(\$595 pre-assembled \& tested)
*The CY325 CMOS 40-pin DIP and 44-pin PLCC LCD Controller IC are available from stock @ \$75/singles, \$20/1000s .

CyberneticMicroSystems

Box 3000 - San Gregorio CA 94074 Tel: 415-726-3000 - Fax: 415-726-3003

Pointing out a few differences

In the article "Vintage filter scheme yields low distortion in new audio designs" (EDN, November 7, 1991, pg 267), I'd like to point out some differences I've found.

In simulating Fig 5 (GIC and $2 \times$ Sallen and Key) circuits, the results indicate the $2 \times$ Sallen and Key filter misses the desired $40-\mathrm{kHz}$ cutoff frequency by 11 kHz and has slight amplitude peaking. Although the GIC (general-immittanceconverter) filter meets the desired $40-\mathrm{kHz}$ cutoff without peaking, it achieves only $50-\mathrm{dB}$ stopband attenuation. However, this discrepancy may be due to the OP-42 model limitations. In the simulation, I substituted OP-42 models for the OPA627 and OPA2604 because Spice models for the OPA types were not readily available.

I've found that by solving the transfer function of the third-order Sallen and Key lowpass filter with equal resistor values (the $2 \times$ Sallen and Key filter in the article has equal capacitor values), the "greater-than-unity gain to realize the component values" requirement can be eliminated. This solution realizes the unity gain $1 \times$ Sallen and Key filter illustrated in the figure below. PSpice simulations of the design indicate a cutoff frequency of 40 kHz and $-80-\mathrm{dB}$ stopband attentuation without any amplitude peaking. The unity gain $1 \times$ Sallen and Key filter also has lower output noise because of the lower gain.
Michael A Wyatt
Senior Engineering Fellow
Honeywell SSO
Clearwater, FL

(Author's reply: The first difference Michael Wyatt points out is in the cutoff frequency that Fig 5 [in the article] had for the Sallen and Key filter. He says that simulations of this circuit show it has a cutoff frequency of about 29 kHz , not 40 kHz as specified. Upon examining my data and doing my own Spice simulations, I find that Wyatt is correct. The reason for this and the associated peaking that the filter exhibits is that the 1.731- and $6.227-k \Omega$ re-
sistors are reversed in position from what they should be.

I also discovered another error: the scaling factor used in the article text is incorrect. Instead of $7.23 \times 10^{\prime}$, which is the scaling factor for a 22kHz cutoff frequency, the correct factor should be 3.98×10^{3}, which scales to a $40-\mathrm{kHz}$ cutoff frequency. This error occurs only in the text; the component values in the circuit diagrams are correctly scaled.

Wyatt also points out that he has If Goldstar insert is missing, Circle \#50

Goldstar Electron. A N

The biggest thing to shake the DRAM market is Goldstar's latest entry of a mature second-generation 4 megabit product that is faster, smaller, and lower-powered than the early market entries. The new Goldstar 4M DRAMs are designed
and built to meet or exceed the finest Japanese standards while offering all the improvements of a second-generation product. These new products are offered with access times of 60/70/80 nanoseconds in industry-standard 300 mil

汭 Force To Reckon With.

26/20-pin SOJ surface-mount packages as well as in 20-pin ZIP, and they are also available with a low standby current rating of $200 \mu \mathrm{~A}$ for batterysupported applications. The devices are provided in two organizations$4 \mathrm{M} \times 1$ and $1 \mathrm{M} \times 4$-and can also be ordered in $4 \mathrm{M} \times 9$ and $1 \mathrm{M} \times 9$
(3-chip) modules.
So, if you are looking for high quality, high performance 4M DRAMs for your desktops, portables, laptops and workstations, look to Goldstar.

THE NEW 4M DRAMs

The GM71C4100A (4Mx 1) and the GM71C4400A (1M x 4)

The devices in Goldstar's new generation of dynamic RAMs are provided in two organizations4,194,304 x 1 and $1,048,576 \times 4$. These high-performance 4M DRAMs offer Fast Page Mode for highspeed access times as low as 60 nanoseconds. The combination of high performance with the higher density in these new devices has been achieved by the use of submicron design rules and an advanced CMOS process technology.

CMOS DYNAMIC RAMs						
ORG	TYPE NO.	$\begin{gathered} \text { MAX } \\ \text { ACCESS } \\ \text { TIME } \\ \text { (ns) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CURRENT } \\ (\mathrm{mA}) \end{gathered}$		feature	$\underset{\text { PACKAGE }}{\text { (MIL) }}$
			ACTIVE	S/B		
$4 \mathrm{M} \times 1$	GM71C4100A-60	60	110	1	FAST	20 SOJ
	70	70	100		PAGE	(300)
		80	90		MODE	$20 \mathrm{ZIP}$
	GM71C4100AL - 60	60	110	0.2	FAST	20 SOJ
		70	100		Page	(300)
	80	80	90		MODE/ L-POWER	$20 \text { ZIP }$
1M $\times 4$	GM71C4400A - 60	60	110	1	FAST	20 SOJ
		70	100		PAGE	(300)
	80	80	90		MODE	$\begin{gathered} 20 \text { ZIP } \\ (400) \end{gathered}$
	GM71C4400AL - 60	60	110	0.2	FAST	20 SOJ
	70	70	100		Page	(300)
	80	80	90		MODE/ L-POWER	$\underset{(400)}{20 \mathrm{ZIP}}$
$1 \mathrm{M} \times 1$						
	GM71C1000-60	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	1	FAST PAGE	$\begin{gathered} 20 \text { SOI, } 18 \text { DIP } \\ (300) \quad(300) \end{gathered}$
	80	80	70		MODE	20 ZIP
						(400)
	GM71C1000L - 60	60	90	0.2	FAST	20 SOJ, 18 DIP
	70 80	70 80	80 70		PaGE	(300) ${ }^{(300)}$
	80	80	70		MODE/ L-POWER	$\begin{gathered} 20 \mathrm{ZIP} \\ (400) \end{gathered}$
$256 \mathrm{~K} \times 4$	GM71C4256A - 60			1		20 SOJ, 20 DIP
		70	80		Page	(300) (300)
	80	80	70		MODE	$20 \text { ZIP }$
	GM71C4256AL - 60			0.2	FAST	20 SOJ, 20 DIP
	70	70	80		Page	(300) (300)
	80	80	70		MODE/	20 ZIP
					L-POWER	(400)

With multiplexed address inputs, these new 4 megabit chips fit into the same small packages as the 1 megabit devices, providing the user with four times the DRAM capacity in the same space on a board. The devices are offered in the new industry standard 300 mil SOJ and 400 mil ZIP packages that are compatible with widely available automated testing and insertion equipment.

CHUNG JU-A NEW WORLD-CLASS FACILITY

Goldstar's highdensity DRAMs are processed in its two new state-of-the-art Chung Ju wafer fabs. For more than a year this facility has been turning out millions of 1 megabit DRAMs on an advanced CMOS triple-poly doublemetal process. Aatd now with its significant capability for processing 6-inch wafers to submicron design rules, Chung Ju has added a mega-volume

production line of 4M DRAMs to meet the growing demands of the company's worldwide customer base. A company's investment in product and facility is significant as a measure of its commitment to its customers. And the resolve shown by the $\$ 30$ billion Lucky-Goldstar group by building and expanding the Chung Ju facility is a measure of our commitment to you in the markets we serve.

[^5]HONG KONG
GOLDSTAR (H.K.) LTD.
Tel: $524-2040$ Tel: 524-2040 Fax: 868-1434, 845-9416

SINGAPORE GSEN SINGAPORE OFFICE Tel: 65-226-1191 Fax: 65-221-8575

TAIWAN GSEN TAIWAN OFFICE Tel: 02-703-2295 Tel: 02-703-2295
Fax: 02-703-7470

[^6]
EDN-SIGNALS \& NOISE

overcome the "greater-than-unity gain to realize the component values" problem. He accomplishes this by solving for equal-valued resistors, rather than equal-valued capacitors. Although this approach is valid, it's much easier to find or fabricate equal-valued capacitors and 1% resistors than the other way around. Given the fact that the Sallen and Key realization suffers from much higher component value sensitivities than the GIC realization, the equal-valued-capacitor approach is the most likely one to be used in a manufacturing environment.

However, there may be realizations of a Sallen and Key filter that don't require an overall filter gain of greater than unity. Although I couldn't cover all the possibilities in my article, I picked an example which illustrated my point best: the gain-of-two Sallen and Key filter. Unity-gain active-filter realiza-
tions, whether Sallen and Key or some other topology, have always proven to have a higher $T H D+N$ than the GIC realization. One hypothesis may be that the noise gain of these circuits is higher than the GIC realization. This result may not be intuitive, because Sallen and Key filters generally have fewer op amps than GIC filters; I leave proving or disproving this hypothesis to someone who has the inclination and time. I used an example with higher gain simply to make this point clear. Wyatt's unity-gain Sallen and Key has "lower output noise because of the lower gain"; this statement is certainly true compared with the $2 \times$ case, but is it lower than the GIC? I no longer have the lab or test equipment to make bench tests.

Spice models for the OPA2604 and OPA627 are available from Burr-Brown, either on disk or by
signing on to their BBS at (602) 741-3978, or from the EDN BBS (617) $558-4241300 / 1200 / 2400 / 8, N, 1$. The $50-\mathrm{dB}$ stopband attentuation that Wyatt mentions on the GIC filter is probably an artifact of his model; using the OPA2604, the same $80-d B$ attentuation is achievable as with the Sallen and Key topology.)

NEXT IN EDN

In EDN News Edition's February 20, 1991, issue, look for articles on the following topics:

- 3.3V ICs
- Hot products from ISSCC
- Job opportunities in Colorado, Utah, and Idaho.
Be on the lookout in April for special dual-EDN coverage of FPGAs. Technical Editor Doug Conner is in the middle of a hands-on FPGA project for the Magazine Edition; the News Edition will provide information on FPGA technologies, products, and career opportunities.

Looking to Add TCP/IP Network Access to Your System Designs? Introducing . . .

Now you can incorporate the industry standard TCP/IP protocol suite in your system designs with FUSION Developer's Kit.

Designed for the OEM and systems integrator, FUSION Developer's Kit provides the full TCP/IP protocol suite including TELNET virtual terminal, file transfer protocol (FTP), and R-Commands to name a few.

FUSION Developer's Kit also has a flexible C-source code architecture, making it processor- and operating systemindependent.

Currently used in hundreds of process control, embedded systems, and end user designs, FUSION Developer's Kit from Network Research comes with full support and porting services.

To receive a FUSION Developer's Kit information package, including data sheet, technical specifications and licensing plans call (800) 541-9508 or write to Network Research, 2380 N. Rose Ave., Oxnard, California 93030, FAX (805) 485-8204.

dc to 3 CHz lowpass, highpass, bandpass

- less than 1dB insertion loss • greater than 40dB stopband rejection • surface-mount •BNC, Type N, SMA available
$\bullet 5-$ section, 30dB/octave rolloff •VSWR less than 1.7 (typ) • rugged hermetically-sealed pin models • constant phase - meets MIL-STD-202 tests • over 100 off-the-shelf models • immediate delivery
low pass, Plug-in, dc to 1200 MHz

Model No.	$\begin{gathered} \text { Passband } \\ M H z \\ \text { loss }<1 \mathrm{~dB} \end{gathered}$	Stopband, MHz loss loss $>20 \mathrm{~dB}$ $>40 \mathrm{~dB}$		Model No.	$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss }<1 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \text { Stopb } \\ & \text { loss } \\ &> 20 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \quad \mathrm{loss} \\ & >40 \mathrm{~dB} \end{aligned}$
PLP-5	DC-5	8-10	10-200	PLP-250	DC-225	320-400	400-1200
PLP-10.7	DC-11	19-24	24-200	PLP-300	C-270	410-550	550-1200
PLP-21.4	DC-22	32-41	41-200	PLP-450	C-400	580-750	750-1800
PLP-30	DC-32	47-61	61-200	PLP-550	DC-520	750-920	920-2000
PLP-50	DC-48	70-90	90-200	PLP-600	DC-680	840-1120	1120-2000
PLP-70	DC-60	90-117	117-300	PLP-750	DC-700	1000-1300	1300-2000
PLP-90	DC-81	121-137	167-400	PLP-800	C-720	1080-1400	1400-2000
PLP-100	DC-98	146-189	189-400	PLP-850	DC-760	1100-1400	1400-2000
PLP-150	DC-140	210-300	300-600	PLP-1000	DC-900	1340-1750	1750-2000
PLP-200	DC-190	290-390	390-800	PLP-1200	DC-1000	1620-2100	2100-2500

Price, (1-9 qty), all models: plug-in $\$ 14.95$, BNC $\$ 32.95$, SMA $\$ 34.95$. Type $\mathrm{N} \$ 35.95$
Surface-mount, dc to 570 MHz

SCLF-21.4	DC-22	$32-41$	$41-200$	SCLF-190	DC-190	$290-390$	$390-800$
SCLF-30	DC-30	$47-61$	$61-200$	SCLF-380	DC-380	$580-750$	$750-1800$
SCLL-45	DC-45	$70-90$	$90-200$	SCLF-420	DC-420	$750-920$	$920-2000$
SCLF-135	DC-135	$210-300$	$300-600$				

Price, (1-9 qty), all models: $\$ 11.45$
Flat Time Delay, dc to 1870 MHz

	Passband MHz	StopbandMHz		Freq.	DC thru	Group Delay Variations, ns Freq. Range, DC thru		
Model No.	$\text { loss }<1.2 \mathrm{~dB}$	$\begin{aligned} & \text { loss } \\ & > \\ & \hline 10 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { loss } \\ >20 \mathrm{~dB} \end{gathered}$	$\frac{0.2 f \mathrm{co}}{\mathrm{X}}$	$\frac{0.6 t c o}{\bar{X}}$	$\begin{gathered} \text { fco } \\ \bar{x} \end{gathered}$	$\frac{2 \text { 2to }}{x}$	$2.6 \frac{7 \mathrm{fco}}{\mathrm{x}}$
PBLP-39	DC-23	78-117	117	1.31	2.31	0.7	4.0	5.0
PBLP-117	DC-65	234-312	312	1.31	2.4.1	0.35	1.4	1.9
PBLP-156	DC-94	312-416	416	0.3:1	1.11	0.3	1.1	1.5
PBLP-200	DC-120	400-534	534	1.6.1	1.9:1	0.4	1.3	1.6
PBLP-300	DC-180	600-801	801	1251	2.2:1	0.2	0.6	0.8
PBLP-467	DC-280	934-1246	1246	1.251	2.1	0.15	0.4	0.55
ABLP-933	DC-560	1866-2490	2490	1.3 .1	2.2 .1	0.09	0.2	0.28
АBLP-1870	DC-850	3740-6000	5000	1.45:1	2.9 .1	0.05	0.1	0.15

Price, (1-9 qty), all models: plug-in $\$ 19.95$, BNC $\$ 36.95$, SMA $\$ 38.95$, Type $\mathrm{N} \$ 39.95$
NOTE: - 933 and -1870 only with connectors, at additional $\$ 2$ above other connector models.
high pass, Plug-in, 27.5 to 2200 MHz

Model No.	Stopband MHz		$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \\ \hline \end{gathered}$	VSWR Pass- band Typ.	Model No.	Stopband		$\begin{gathered} \text { Passband } \\ \mathrm{MHz} \\ \text { loss } \\ <1 \mathrm{~dB} \end{gathered}$	VSWR Passband Typ.
	$\begin{aligned} & \text { loss } \\ & <40 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { loss } \\ & <20 \mathrm{~dB} \end{aligned}$				$\begin{aligned} & \text { loss } \\ & <40 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { loss } \\ & <20 \mathrm{~dB} \end{aligned}$		
PHP-25	DC-13	13-19	27.5-200	1.8:1	PHP-400	DC-210	210-290	395-1600	1.7:1
PHP-50	DC-20	20-26	41-200	1.5:1	PHP-500	DC-280	280-365	500-1600	1.81
PHP-100	DC-40	40-55	90-400	1.8:1	PHP-600	DC-350	350-440	600-1600	2.0:1
PHP-150	DC-70	70-95	133-600	1.8:1	PHP-700	DC-400	400-520	700-1800	1.6:1
PHP-175	DC-70	70-105	160-800	1.5:1	PHP-800	DC-445	445-570	780-2000	$2.1: 1$
PHP-200	DC-90	90-116	185-800	$1.6: 1$	PHP-900	DC-520	520-660	910-2100	1.8:1
PHP-250	DC-100	100-150	225-1200	1.3:1	PHP-1000	DC-550	550-720	1000-2200	1.9:1
PHP-300	DC-145	145-170	290-1200	1.7:1					

bandpass, Elliptic Response, 10.7 to 70 MHz

	Center	Passband	3 dB	Stopbands	
Model No.	Freq. (MHz)	$\begin{aligned} & \text { 1.L } 1.5 \mathrm{~dB} \\ & \mathrm{Max} \\ & (\mathrm{MHz}) \end{aligned}$	Bandwidth Typ. (MHz)	$\begin{array}{r} \text { I.L. } \\ >20 \mathrm{~dB} \end{array}$ at MHz	$\begin{aligned} & 1 . \mathrm{L} \\ &> 35 \mathrm{~dB} \\ & \text { at } \mathrm{MHz} \end{aligned}$
PBP-10.7	10.7	9.6-11.5	8.9-12.7	7.5 \& 15	0.6 \& 50-1000
PBP-21.4	21.4	19.2-23.6	179-25.3	15.5 \& 29	3.0 \& 80-1000
PBP-30	30.0	27.0-33.0	25-35	22 \& 40	3.2 \& 99-1000
PBP-60	60.0	55.0-67.0	49.5-70.5	$44 \% 79$	4.6 \& 190-1000
PBP-70	70.0	63.0-77.0	68.0-82.0	51 \& 94	6.0 \& 193-1000

Price, (1-9 qty), all models: plug-in \$18.95, BNC $\$ 40.95$, SMA $\$ 42.95$, Type $N \$ 43.95$

Constant Impedance, 21.4 to 70 MHz

Model	Center Freq.	Passband MHz loss	Stopband loss $>20 \mathrm{~dB}$	VSWR Notal Band No
MHz	$<1 \mathrm{~dB}$	at MHz		
MHz				

The Race.

How fast can you increase process yields? Fast enough to stay competitive with your circuit board designs in an environment that constantly challenges your assembly operation?

You can if your "finish" line is from TDK.
Every model in our advanced Avimount ${ }^{*}$ line of high performance surface mount production
systems is designed to eliminate downtime so that you can achieve your process goalsand keep pace with changes in technology.

Nobody understands the entire automation process like TDK. We're the only manufacturer to offer complete vertical integration - from materials and components on through to

The Finish Line.

assembly. When your production requirements change, TDK systems keep your line going with innovative solutions that maximize productivity.

The race is on.
And for high yield, high throughput PCB production in the 1990's, there's a clear winner-TDK.

See Us At Nepcon West '92 Booth \#2771

绘TDK
TDK Corporation of America
1600 Feehanville Drive, Mount Prospect, IL 60056 Phone: (708) 803-6100. TDK Corporation, Tokyo, Japan.

We Only Skimped OnThe Price. Introducing TheFluke Series 10—From $\$ 69.5$

Actual size: Easy to carry, easy to use.

New! V Chek'w: For fast accurate checks on power sources and supplies, set your meter on V Chekand let it do the rest. V Chek will determine continuity/ohms; if voltage is present, it will automatically change modes to measure $A C$ or DC volts, whichever is detected. For most initial troubleshooting checks, here's the only setting you need to make.

Autoranging with manual option:
Your choice, depending on your situation.
Sleep Mode: Shuts itself off if you forget, extending long battery life even further.

New! Slide switch and a few pushbuttons control all functions: Designed for true one-hand operation.

Fast, accurate tests and measurements: AC and DC voltage measurements to 600 volts, ohms to 40 M : ; audible continuity test; and diode test

Fluke quality: Made in the USA by Fluke, with the same rugged reliability that's made us the world leader in digital multimeters. Count on hard-working high performanceand a two-year warranty to back it up.

Sparks fly as insulation fails

I have used the ICL7107 $3^{1 / 2}$-digit integrating decimal-output ADC IC for voltage measurement in a circuit that measures insulating materials' dc leakage current, as Fig 1 shows. The circuit works well as long as the insulator under test does not break down. But if a spark is generated across points A and B because the insulation fails when subjected to high voltage, the IC gets damaged, even though the current through the In High and In Low terminals remains well within the maximum permissible limit specified by the manufacturer.

Any capacitor or clamping diode I connect across points C and D does not help. However, if I use the Fig 2 circuit, which has a 10-M resistor $\left(R_{t}\right)$ connected between In Low and the sparking points A and B, the IC is not damaged when the insulation fails. This result indicates that the damage in the earlier case may be due to static discharge, but exactly how it is causing damage is not very clear to me.

Could you comment on why the 7107 fails and suggest some solution to avoid this damage? In some other similar application, I may not be able to use a high-value resistor between one of the IC's input terminals and the sparking points.
Sanjay R Chendvankar
Tata Institute of Fundamental
Research
Bombay, India

Peter Sharrock of Maxim Integrated products replies: Much of the circuitry is not shown in your figures, so there could be several failure modes that I haven't identified. However, the solution outlined below should give protection in all the configurations I can think of.

The circuit of Fig 1 has parasitic capacitance between the 7107 circuitry and ground. When the insulation of the device under test breaks down, the voltage applied to In Low falls very rapidly. The parasitic capacitance prevents all of the ADC circuitry from instantly falling in voltage, so the In Low pin sees a momentary multikilovolt insult. This is the most likely cause of failure.

The circuit of Fig 2 has a $10-\mathrm{M} \Omega$ resistor between the device under test and the 7107 . When the insulation fails, any sudden change in the voltage across the device under test is transmitted to the ADC through the RC network comprising R_{1} and the circuit parasitics. The In Low pin of the 7107 does not get exposed to such high voltages, so the part does not fail.

Another equally valid way of protecting the 7107 is to add an extra protection resistor between node D and the In Low pin. This resistor gives good protection in the circuits of both Fig 1 and Fig 2. You could use a value of $10 \mathrm{M} \Omega$ to match the $10-\mathrm{M} \Omega$ resistor in series with the In High pin. Alternatively, you could try two $4.7-\mathrm{M} \Omega$ resistors.

Finding yourself with satellites

Do you know where I can find information regarding the Global Positioning System (GPS)? I've heard a lot about it, and I would like to know what is needed to build a GPS receiver that would tell me exactly where on Earth I am. Up to now, I haven't had any luck finding information or specs on the system.
Javier Perez
Boston, MA

Try the Electronic Proving Ground GPS Range Instrumentation System (EGRIS) BBS at (602) 538-3818, N, 8,1 for 300 - to $2400-\mathrm{bps}$ modems, or (602) $533-8087$ for $9600-\mathrm{bps}$ modems. Two other GPS bulletin-board systems are the US Coast Guard's GPS Information Center at (703) 866-3890, N, 8,1 for 300 -to $2400-\mathrm{bps}$ modems, (703) 866-3894 for $9600-\mathrm{bps}$ modems; and the US Air Force's Holloman GPS BBS at (505) 349-1525 for all modems. These BBSs provide information about constellation status, almanac data, electronic mail, downloadable files, and user advisories.

Also try GPS World magazine published by Astor Publishing Co, Box 10460, Eugene, OR 97440 USA.

Yet more information about the GPS is available from the Institute of Navigation, 81515 th St, Suite 832 , Washington, DC 20005, USA. Phone (202) 783-4121. You can also purchase a 3-volume set of books, Global Positioning System, Volumes 1, 2, and 3, all for $\$ 50$, from Navtech Books, 2775 S Quincy St, Suite 610, Arlington, VA 22206, USA. Phone (800) 628-0885; (703) 931-0500. FAX (703) 931-0503. The books, which you can also buy separately, provide all of the signal protocols and frequencies that you would need to pick up and decipher GPS information. The books are called "The three little red books" by some GPS users. Navtech Seminars Inc offers courses, seminars, and tutorials about the GPS. Its address and phone are the same as Navtech Books. Have fun.

[^7]
SIEMENS

How Siemens Has Become One Of America's Fastest-Growing IC Suppliers.

> When it comes to superior products and service, Siemens brings you a world of experience, right here at home.

To succeed in the international market, you first need a partner who can provide the products and support necessary for you to succeed here in the United States. Siemens is that partner, with the global expertise and wide range of innovative products you need to build for the world market, right here at home.

Building On A Reputation For Quality

Quality has always been a priority at Siemens, and we've taken great strides towards achieving the highest level of reliability for our customers, year after year.
This commitment to quality has resulted in more than a 300% improvement in defects-per-million for production in the past four years, which is twice as good as the industry quality average. And fewer defects means more reliable systems and
subsystems, which reduces the cost of ownership, repairs and replacements.

Communication Breakthrough

With our advanced Enhanced Serial Communication Controller-the ESCC2

2-Channel Controller (SAB82532)-Siemens continues to demonstrate the innovation in communications technology which has made us the leaders in the field.
Our popular ESCC2 provides transfer rate speeds of up to $10 \mathrm{Mbit} / \mathrm{sec}$ in synchronous mode. And it supports a wide range of protocols-including X. 25 LAPB, ISDN, LAPD, HDLC, SDLC and both ASYNC and BISYNC-plus easy adaptability to either Intel ${ }^{\circ}$ or Motorola* microprocessors. For fast, accurate and reliable multi-protocolling.

Superior Embedded Control Solutions

For high-speed embedded control applications, Siemens also offers the SAB80C166, the fastest real-time controller in the world.

As the industry's only 16 -bit microcontroller with a 4 -stage pipeline, the 80 C 166 reaches
16-Bit speeds of up to 10 native Microcontroller MIPS, and delivers the fastest interrupt performance and bit processing capabilities of any controller on the market.

High-End Computing Solutions

Plus, Siemens offers a complete portfolio of products to match your specific needs for state-of-the-art computer or computer peripheral designs. Including the R4000 -the first microprocessor with a complete 64-bit architecture-plus the advanced DRAMs, tightly-coupled ASICs, and communications ICs you need to build a total systems solution.

64-Bit RISC Microprocessor completely compatible with Toshiba, even at the GDS2 database level, for true alternate sourcing worldwide. And they're fully supported by Siemens ADVANCAD design system, which is based on industry-standard workstations and simulators. As well as the best service in the industry.
Siemens is also the only European DRAM manufacturer, with

Gate Arrays and Standard Cells high-quality $1-\mathrm{Mb}$ and $4-\mathrm{Mb}$ DRAMs in production today, and $16-\mathrm{Mb}$ and $64-\mathrm{Mb}$ DRAM programs for the near future. And a commitment to innovation which has made us one of the leading DRAM suppliers to companies across America. This means you not only get the high performance of the innovative R4000,
but the quality in design and production that has made our full line of ASICs and DRAMs the industry leaders.

Servicing The United States

Because quality doesn't end with the product, Siemens also works very closely with you to provide the type of service and support that fits your individual needs. Services such as Field Application Engineering, Just-In-Time delivery, flexibility in packaging and design, and multiple-sourcing-the type of support which has won us preferred vendor status with Fortune 500 companies, including the Q1 Preferred Supplier Award from Ford. And has made the name Siemens synonymous with quality for over 150 years.
Call us today at 800-456-9229 for more information. We'll show you how you can get a world of products and service, right here at home.
Ask for literature package M11A018.
Mhe World's IFirst

6́4-bit IRISC Microprocessory

$$
1 / 34000
$$

Superpipelined architecture provides 100 MHz internal operation.

The computing platform of the 90 's has arrived. The Vr4000 is a singlechip, superpipelined microprocessor destined to drive desktop computers, workstations, and multiprocessor systems into the 64-bit era.

On a single chip, the VR4000 offers all the functions necessary for 64-bit computing, including 64 -bit integer unit, 64 -bit floating point unit, 8 K -byte instruction cache, 8 K -byte data cache, and 48 -entry (odd/even page pair) memory management unit.

The 64 -bit integer CPU features an 8 -stage superpipelined architecture that operates at twice the external clock frequency of 50 MHz . Offering parallel execution of two instructions in one clock cycle, it achieves an average performance of 60 SPECmark.

Optimized for three application areas

NEC offers three varieties of the VR4000. All three execute VR3000 software without modification. The VR4000PC is designed to power low-cost desktop systems to levels of performance unmatched by today's workstations. Available in a 179-pin PGA, the VR4000PC is also intended for high-end embedded use in applications such as avionics equipment, robotics and printers.

The VR4000SC supports a large secondary cache up to 4M bytes and is intended for high-performance network server applications. The VR4000MC, with its multiprocessor interface function, is specially designed for parallel processing in multiprocessor servers, large database systems, and image processors. Both the SC and the MC come in a 447-pin PGA or LGA.

Samples available today

The shape of things to come will be determined by those who realize the potential of 64 -bit RISC computing. If you'd like to secure your piece of the future, order samples of the VR4000PC or SC today.

100% get a free DMM^{*}.

Our logic analyzers sell themselves. All we have to do is get one in your hands. To make sure you do, we're giving you a Fluke DMM*, whether you buy our analyzer or the competition's. (See attached card for complete details).
Only the Philips PM 3580 family of logic analyzers give you true dual state and timing on up to 96 channels - simultaneously. All accessible with one probe and one keystroke. Which means no more dual probing or reconfiguration between state and timing. Or no probes at all if you use our boundary-scan test option!
*The top-of-the-line Fluke 12 in our newest DMM family. It combines a smart set of troubleshooting features in a new design that's exceptionally fast and simple to operate - with one hand. It's yours after our 30 minute derno, no matter whose logic analyzer you purchase.

All our analyzers feature 50 MHz state and up to 200 MHz timing speeds. As well as integrated state and timing triggering for fast debug of complex hardware and software problems. Plus broad μ p support like Intel ${ }^{\circledR 3}$'s i486; i386; 80286; 80186/88 families. The MCS-96, 8051, and I960 families. And the Motorola 68040 to 6800 , 68HC11, 68332/1, 68302, 68340, 56001, AMD ${ }^{\text {®'s }}$ AM 29030, and TI's 320Cxx family. The PM 3580 family of logic analyzers is priced from $\$ 4495$ to $\$ 11,450$ - about half the cost of comparable analyzers. What's more you can have them up and running in only 30 minutes.
Find out why the PM 3580 family of logic analyzers were the only ones cited for
excellence and innovation by Electronic Design, EDN, Embedded Systems, Electronic Products, and $R \& D$ magazines. Take the Fluke Challenge. The odds are 100% you'll be totally impressed.
For literature, our video or a demonstration,
call 1-800-44-FLUKE.
John Fluke Mifg. Co., Inc., P.O. Box 9090, M/S 250C, Everett, WA 98206-9090. U.S. (206) 356-5400.
Canada (416) 890-7600. Other countries: (206) 356-5500. © 1992. All rights reserved. Registered T.M. of Advanced Micro-Devices and Intel Corp. Ad No. 00178.

FAST ANSWERS

Where have all the investments gone?

Jesse H. Neal
Editorial Achievement Awards 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

Like most engineers, I took a course in economics when I was an undergraduate. And like most engineers, I'm no expert on economics. But like most people who work in the private sector-and in the US, that's most people-economics has a profound influence on my life.
Most of the time, I don't think about economics a whole lot. But at times like this, with the US economy-and probably the world economy-in dire straits, I think about economics more than usual. Sure, a lot of people have their favorite scapegoats for the current economic malaise: Democrats like to blame George Bush and Ronald Reagan. Republicans like to blame the Democratcontrolled Congress. People who don't identify strongly with either party like to blame the bureaucrats in Washington, the directors of failed S\&Ls, the Tax Reform Act of 1986, the budget deficits, the national debt, leveraged buyouts, corporate and private debt, widespread greed, the low savings rate, the reluctance of consumers to spend, bank regulators, bank loan officers, and any number of other vaguely defined entities.
At the moment, I'm not blaming anybody or anything. I do think, though, that it's time we get answers to some vexing questions-not for the purpose of assessing blame, but in the hope of learning from our mistakes so we can avoid repeating them.
I want to know why, with all the profitable opportunities for investment in this country during the decade just ended, so much investment money went into commercial real estate-for exam-
ple, to build office buildings that are now sitting empty. In fact, some of these buildings cost so much to leave unoccupied that their owners are razing them.
America's productive capacity is aging and outmoded. Investment in plants and equipment could have greatly improved our competitive position in the world. Investments in R\&D could have produced new products and fueled demand. Increased demand would have created jobs and generated profits, which would have provided more investment money and tax revenues. The tax revenues, coupled with even a modest "peace dividend" could have made it possible to rebuild our crumbling infrastruc-ture-things like bridges and roads. Improvements here would have helped to slow or halt the erosion of our competitive position.
So what went wrong? Why are we left with millions and millions of square feet of commercial real estate that, with some luck, we might actually occupy by the turn of the century? And why are our plants and production equipment still outmoded, our infrastructure still crumbling, and the money to be spent on developing new products still inadequate? As an engineer, you're probably just as curious as I am. As an American, you should be curious. And as an engineer with only minimal training in economics, you probably don't have all the answers or even most of them. But if you have some ideas, we'd like to hear them. Please write to us. Use the mail or the /soapbox Special Interest Group on the EDN BBS. We'll publish your responses.

American Society of Business Press Editors Award 1988, 1983, 1981

Send me your comments via FAX at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1.

In a world so dependent on communicating, your customers don't take kindly to interruptions.
So in the interest of keeping folks in touch with one another, Tektronix makes communications signal analyzers that let you measure jitter and noise automatically. And bit error rate testers that can lock onto and test specific or pseudo-random patterns-even those millions of bits long. But these devices are justpart of a sophisticated collection that includes optical-to-electrical converters,

The JIITERS.

receivers, optical attenuators, and optical and metallic time-domain reflectometers.
High-performance equipment for everyone from design engineers to field service technicians.

So to make sure your customers are getting all the right messages, talk to Tek today. We promise, we'll do everything we can to help you keep the lines of communication open. TALK TI IEK/1-800-426-2200

Tektronix

Test and Measurement

EDN-TECHNOLOGY UPDATE

European manufacturing contractors encourage close relationships

BRIAN KERRIDGE, Technical Editor

Interests of European contract manufacturers exfend beyond pc-board assembly to include component procurement, test, final assembly, and even customer service. Overall, they want to contribute to the success of your product by becoming part of the business.

Manufacturing products in Europe is one way for companies to avoid import tariffs, and is thus a motivating factor for using a European contract manufacturer. For non-EC (European Community) countries, Europe's harmonization program offers further inducement, as since 1988 , there has been no trade barriers among member states to products manufactured within the community.

More than avoiding tariffs, contract manufacturers say the main demand for their services follows when a company realizes it has to design in surface-mount-technology (SMT) components. The learning curve and capital cost of SMT is enough for many companies to halt in-house manufacture and look for an outside facility.

But using a contract manufacturer does not mean simply unshouldering all responsibility for getting your design produced. You should not expect to avoid being drawn into production issues as your product passes through the contractor's process.

To obtain the best service from a contractor, you need to re-create with that contractor the relationship you presently have with an in-house production facility. It's well understood that production inputs to the early phases of a design ensure a smooth passage for the product in the production phase. Equally beneficial is a designer's involvement with early production runs.

Contractors are keen to work with you in this way and are at pains to express the virtue of this approach. Without this product engineering, you'll be missing out on a wealth of experience that can make your design cheaper,
more producible, and therefore more competitive. Take your contractor's advice on board, and the likelihood is that your customer will end up with an allaround better product.
Contract manufacturers are scattered throughout Europe, but the major concentration is in France and the United Kingdom. In these two countries, professional associations represent the interests of about 50 member companies. Turnovers of the companies range from 1 to over 100 million dollars. Not every company belongs to an association eitherin France alone, estimates suggest approximately 1000 companies exist.
The range of services available from contractors doesn't stop at manufacturing. Procurement of parts and test facilities are also standard offerings. But the key service from a designer's point of view is product engineering-adjusting the design both electrically and mechanically to make it more producible.
An additional and valuable service that contractors offer is "Europeanizing" a product if its design origin is outside the EC. Often, components specified in a parts list are not available locally, and equivalent types need to be found. As a bonus, if a contractor can build-in enough local cost content to your product, it may qualify as originating in the EC. In this case, your product would be exempt from import tariffs if you export it to countries that have a preference agreement with the EC, such as EFTA (European Free Trade Association) countries and Israel. Rules for determining local content vary, but
generally for electronic products there needs to be a local cost content of greater than 60% of the product's ex-works price. The EC member country's customs offices publish details (Refs 1 and 2).
CEL-CEP (Jouy en Josas, France) is typical of many European contractors in its ability to offer a turnkey manufacturing service. This company can design your pc-boards, subassemblies, and product enclosure. It will product-engineer your circuit design, and purchase all components and parts. Following manufacture, the company can perform in-circuit and functional test of the individual boards. It can assemble to final product level, carry out a burn-in operation, and ship direct to your customer or distributor if need be. Even maintenance and customerservice facilities are available.

Dr Daniel Thauvin, CEL-CEP's sales manager and vice president of a French contractors' professional association, says that although contractors are flexible enough to work on one or all phases of a manufacturing process, they have a preferred way of going about things.

In order for a contractor to do an effective job, the designer needs to provide more than just schematics and parts lists. CEL-CEP likes to have a functional description of the product, with quality and price objectives firmly stated at the outset. Naturally, the designer needs to specify clearly restrictions on choice of components, assembly parameters, and test methods. If a prototype sample is available, that's also useful.

One thing Thauvin emphasizes is the importance of setting up efficient communication between
customer and contractor. He suggests both companies nominate one person to transfer information back and forth. Or, on larger projects, for companies to provide a list of specialist staff to answer the range of questions that crop up.

Communication is also an issue to consider when you have no base in the country where you propose to have your product produced. Thauvin explains that when a contractor simply wants large volume production of an existing fully designed product, or there is limited product Europeanizing involved, then a local presence is not essential. But where you intend to use the full range of design and development services, a local customer base is a prerequisite. CEL-CEP does not accept contracts without that arrangement.

Thauvin adds that while open relationships with customers are beneficial, it should be clear what each partner expects of the other.

He cautions that at all times, the technical and functional responsibility for the product remains

EUROPEAN CONTRACT MANUFACTURING

with the designer. In fact, the designer should retain essential product knowledge in order to avoid the possibility of the contractor's suddenly appearing with a competitive product.

Manufacturers need flexibility

It's not only large contractors that stress the importance of working in concert with clients. Gerald Willard, technical director of Xpert Systems (Mitcham, UK), and one of many smaller contractors, emphasizes the same point. Xpert prefers you to provide a circuit diagram and a generic components list as a starting point for its service. The company likes to do the pcboard layout and select individual component types for your design. Willard argues this procedure allows flexibility to optimize a product for manufacture. Willard cites the example where for an optimal

Getting the best from contract manufacturers

```
Establish liaisons with your contract manufacturer as you would with
your own production facility:
- ideally involve contractor with your design from the outset
- involve contractor in all mechanical issues
- encourage contractor's advice on changes to type and value of components
- let your contractor lay out the pc board
- use your contractor to "Europeanize" your design
- use your contractor's test facilities.
```

pc-board layout, a capacitor may need to bridge five pc-board tracks. If you've already precisely specified the component as a chip capacitor, that freedom is lost.

In the same way, Willard says adjusting component type or voltage rating to match what Xpert currently uses takes advantage of better quantity pricing on the part. Also, this adjustment may avoid an
extra reel on the automatic insertion handler, or avoid changing reels more often.

Willard makes the point that except for eurocards, there are few standards for pc-board size. He says if you know in advance the fixing requirements of insertion, soldering, and test jigs that the contractor uses, you can lay out the pc board accordingly and

Finding a European manufacturing contractor

You can easily locate potential contract manufacturers in France and the UK through trade associations. Both associations publish brochures that list and profile members. The UK association brochure generously lists many nonmembers.
In France, contact Jaques Bayle-Ottenheim
Syndicat National des Entreprises de
Sous-Traitance Electronique (SNESE)
11 Rue Hamelin
75783 Paris, Cedex 16, France
(1) 45057053

FAX (1) 45530393
Circle No. 711
In UK, contact Derek Duffert
Association of Contract Electronic Manufacturers (ACEM)
Ramano House
399-401 Strand
London WC2R OLT, UK
(71) 497-2311

FAX (71) 497-2335
Circle No. 712
ACEM plans a major presence at the Nepcon Electronics show set for March 24 to 26 at the National

Exhibition Centre, Birmingham, UK. A contract manufacturing center at the show will provide a dedicated forum for companies to promote their services. For more details, contact Peter Telford in the UK, phone (799) 26699, FAX (799) 26088.

It's quite likely that special components in your design will not be readily available for your contractor to procure locally. In this case, if you are outside the EC, import tariffs apply when you free issue such parts to your contractor. There are as many different tariff valves as there are component types, but generally the figure for electronic parts falls in the range of 5 to 14%. Needless to say, parts such as ASICs are at the high end of that range. On top of this figure, you need to add carriage, insurance, and freight charges, and the cumulative figure for these items is further subject to value added $\operatorname{tax}(17.5 \%$ in the UK). The basis for import-tariff figures is a mystery. For example, on finished products such as spectrum analyzers and oscilloscopes the figure is 11%, but for DMMs it's 10.6%. Whatever figure applies, the information is readily available from customs offices in all European cities and ports. (In the UK, at Her Majesty's Customs and Excise offices).

Introducing the only linears approved to meet IEC 950 and Level B EMI.

CONDOR'S NEW INTERNATIONAL PLUS LINEAR D.C. POWER SUPPLIES MEET TOMORROW'S TOUGH STANDARDS TODAY!

Our International Plus linears offer you performance, price and one more important feature: the agency approvals you need for the 90 's, including IEC 950 and VDE 0871 level B EMI. And Condor has more approved linears in stock than anyone in the industry (including more than 30 models in IEC 601 medical versions).
International Plus linears have what you're looking for:

- 115 models (single and multi-output)
- 7 power levels -3 to 288 W
- Worldwide AC input ranges
- OVP on all 5 V outputs
- Hermetically sealed power transistors
- MTBF $200,000+$ hours per Mil Hndbk 217E
- 2 -hour burn-in with cycling (8 hours on medicals)
- Computerized testing (data sheets furnished)
- 3 -year warranty - longest in the industry
- 30-day FREE evaluation (call us for samples)

If you need world class performance, quick turnaround, competitive pricing and full agency approvals, call Condor - the leader in linear D.C. power supplies.

- $300+$ power supplies
- Standard and medical
- Switchers and linears
- Open frame and enclosed
- Custom capability

=CONDOR

Condor Inc. D.C. Power Supplies 2311 Statham Parkway
Oxnard, CA 93033 • (805) 486-4565 CALL TOLL-FREE:
1-800-235-5929 (outside CA)
FAX: (805) 487-8911
EDN February 17, 1992 : 61

EUROPEAN CONTRACT MANUFACTURING

avoid tooling costs for special jigs.
In addition, where you use SMT components, Willard says it's important to consider component placement in relation to the direction of flow during wave soldering. Running IC pins in line with the wave direction, and avoiding component shadowing (placing lowprofile parts behind high parts), are typical small details that can have a big effect on how easy your assembly is to produce.
At ACW Technology in Petersfield UK, Operations Director Chris Knowles says with disappointment that only one in ten firsttime customers shows an interest in forming a long-term working relationship. He says the situation is improving, but the majority still
turn up with a finished pe-board assembly and simply request the best price and delivery. Although ACW, like most contractors, is flexible enough to work this way, Knowles feels that the product suffers by this nonpreferred approach.

Knowles says engineers, in general, do not appreciate the benefits of designing for manufacture. He says any design can benefit from a manufacturer's inputs, and manufacturers are often in the best position to decide such aspects as component types, pc-board construction (single, double, or multilayer), and layout.

Knowles advises that when you search for a contract manufacturer to work with, look for a contractor with ideally 10 , and no more than

20, main customers. When a contractor tries to support more customers than this level, Knowles believes it's not possible to give adequate attention to the range and extent of design and manufacturing problems that inevitably arise.

References

1. Her Majesty's Customs and Excise Offices. European Community Preferences: Export Procedures, Notice 827. August, 1990, UK.
2. Her Majesty's Customs and Excise Offices. EC Export Preferences: Rules of Origin, Notice 828. March, 1991, UK.

Article Interest Quotient
(Circle One)
High 482 Medium 483 Low 484

For more information

For more information on contract manufacturing in Europe, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their services mentioned in EDN.

AB Electronic Products

Rogerstone
Newport NPI 9VA, UK
(633) 892345

FAX (633) 895755
Circle No. 713
ACW Technology
Hylton Rd
Petersfield GU32 2JY, UK
(730) 66311

FAX (730) 66045
Chris Knowles
Circle No. 714
ARS Industries
Z I Arc-Isère
73220 Aiguebelle, France
(9802) 0304

FAX (7936) 4184
$J P$ Vittot
Circle No. 715

Ascom

Ziegelmattstrasse 1
CH-4503 Solothurn, Switzerland
(65) 242424

FAX (65) 224012
Circle No. 716

CEL-CEP

100 Avenue Albert Calmatte 78350 Jouy en Josas, France (1) $3946-9715$

FAX (1) 3465-9060
Anne le Sayec
Circle No. 717

Datron Electronic

In den Gänsäckern 10
D-6109 Mühltal-Traisa, Germany
(6151) 141970

FAX (6151) 141929
Erwin Sowa
Circle No. 718

E I Ireland Co

Shannon
County Clare, Ireland
(61) 61277

FAX (61) 61053
Circle No. 719
GSPK (Electronics)
Manse Lane
Knarsborough H65 8LF, UK
(423) 869151

FAX (423) 869239
Keith Warner
Circle No. 720
Hughes Microelectronics
Queensway Industrial Estate
Glenrothes KY7 5PY, UK
(592) 754311

FAX (592) 759775
Stephen Wood
Circle No. 721

LPKF

Osteriede 7
D-3008 Garbsen 4, Germany
(5131) 70950

FAX (5131) 709590
Circle No. 722

Morari

45 Rue de 8 Mai 1945, BP51
94702 Maisons-Alfort, France
(1) 4368-5025

FAX (1) 4375-0775
Circle No. 723
MP Diffusion
Avenue de l'Europe, BP38
71202 Le Creusot, France
8556-2005
FAX 8580-8794
Circle No. 724
Philips Circuit Assemblies
Queensferry Rd
Dunfermline KYII 5PX, UK
(383) 726720

FAX (383) 727561
Cliff Hargest
Circle No. 725

Soulat Freres

45 Rue de la Division Leclerc
94250 Gentilly, France
(1) $4740-0020$

FAX (1) 4740-0233
Circle No. 726

SRPI

8 Rue de Briangaud, BP19
35601 Redon, France
9971-1867
FAX 9972-1146
Circle No. 727

System Contact

13 Rue des Frères Lumière, BP24
67038 Strasbourg, France
8878-2089
FAX 8877-0411
Circle No. 728
Xpert Circuit Assemblies
c/o Philips Components Mitcham
New Rd, Mitcham CR4 4XY, UK
(81) 687-1926

FAX (81) 687-1927
Gerald Willard
Circle No. 729

400 MOPS FOR 6U VMEbus SYSTEMS

This 6U VMEbus board performs 400 million operations per second and is optimized for frequency domain processing such as FFTs and finite impulse response (FIR) filters using fast convolution. The FDaP features a private 32 -bit, 20 MHz highspeed data I/O bus and extensive double buffering for continuous processing of real-time data. An additional 32 -bit complex output provides phase/magnitude data. The a66540 is available in 25 MHz and 40 MHz versions. A single 40 MHz version can execute a 1 K point FFT in $132.7 \mu \mathrm{~s}$ and a 64 K point FFT in 13.1 ms . These times are nearly halved for real input. Multiple FDaPs can be cascaded to achieve almost linear improvement in FFT performance. Plug 400 MOPs into your system by calling array Microsystems' Hotline: 719-540-7999

CIRCLE NO. 133

CORNERTURN PROVIDES QUANTUM LEAP IN 2D IMAGE PROCESSING PERFORMANCE

The a66545 Cornerturn ${ }^{\text {TM }}$ board, used in conjunction with the a66540 FDaP board for real-time two-dimensional image processing, is the first capable of processing an entire 256×256 pixel frame of image data in 15.2 milliseconds. This equates to a continuous, real time rate of 65 frames per second. For 512 $\times 512$ images, the board set transforms images in 71 milliseconds, or 14 frames per second. Designed for medical imaging radar, sonar, machine vision, and other real-time 2D image processing applications, the board set features performance of 400 MOPS at a clock rate of up to 40 MHz . The Cornerturn accepts 32 -bit complex $1 / \mathrm{O}$ data through 10 MHz doublebuffered external I/O connectors or through the VMEbus and stores it in one of four on-board frame store memory buffers For technical assistance, call array Microsystems' Hotline 719-540-7999.

CIRCLE NO. 136

SOFTWARE DEVELOPMENT TOOLS LAST LINK IN COMPLETE SYSTEM SOLUTION

arrayso ${ }^{q_{2}}$, a complete DSP software development system

 supporting array Microsystems' a66 Family of Products, provides a menu driven user interface allowing easy access to a suite of powerful development tools at the click of a mouse. This development system features a DaSP/PaC code generator, assembler, disassembler, window generator, full $\mathrm{DaSP} / \mathrm{PaC}$ program control, on-screen display of data, and board-level diagnostics. For technical information or original program assistance, call array Microsystems' Hotline: 719-540-7999.

THE DaSP/PaC CHIPSET:
The heart of the world's fastest DSP product family The Digital array Signal Processor (DaSP) executes 16 high-level instructions, including FFT butterflies, windowing, complex multiplies, and general-purpose functions. The Programmable array Controller (PaC) manages the entire system, including address generation for the DaSP and memory, and I/O up to 80 MHz . Using a single chipset, for example, a 1024 point FFT requires only 12 instructions and can execute in only $131 \mu \mathrm{sec}$; a complex FIR filter, using 28 instructions, processes at a 2.3 MHz rate. For even higher performance, you can cascade the chipset. Both utilize a 144 -pin PGA format and are available in 30 and 40 MHz versions. To receive complete technical information, call array Microsystems' Hotline: 719-540-7999.

CIRCLE NO. 134

PC-FDaP PERFORMS 250 MOPS!

The a66550 Frequency Domain array Processor (FDaP) brings high performance FFT processing to any PC-AT compatible computer. The two board set will fit into two full size PC-AT slots, operate on the 16 bit PC-AT (ISA) bus, and allow real or complex input from either the high speed connectors on the back panel or from the PCAT bus. The FDaP accommodates an optional complex I-and-Q to magnitude-and-phase converter for post-FFT processing. Available in two memory configurations, the a66550 handles complex FFTs up to 32 K points and real FFTs up to 64 K points. The a 66550 can compute a 1024 point complex FFT in just $210 \mu \mathrm{~s}$. For complete technical information, call array Microsystems' Hotline: 719-540-7999.

CIRCLE NO. 135

Performance Benchmarks

Performance Bencharks		
FFT size	a66540A @40MHz	a66540A Cascade Sys.
64 Real	$5.1 \mu \mathrm{~s}$	$2.9 \mu \mathrm{~s}$
64 Complex	$5.0 \mu \mathrm{~s}$	$3.7 \mu \mathrm{~s}$
1024 Real	$79.6 \mu \mathrm{~s}$	$29.6 \mu \mathrm{~s}$
1024 Complex	$132.7 \mu \mathrm{~s}$	$59.1 \mu \mathrm{~s}$
32 K Real	3.69 ms	0.91 ms
32K Complex	6.56 ms	1.82 ms
64K Real	7.37 ms	1.82 ms
64K Complex	13.11 ms	3.64 ms

Call the DSP Hotline: 1-719-540-7999 1420 Quail Lake Loop, Colorado Springs, CO 80906

CIRCLE NO. 138

Are your designs limited by prehistoric technologies?

Today's engineers design for the future. They need technology which allows rapid prototyping and reduces development costs.

At Advanced Microelectronics, we can help you out of the Stone Age and into the future by reducing manufacturing costs, providing unlimited flexibility, and rapid results.

Our FPGA design methodology allows you to migrate your architecture to gate array, standard cell, or full custom implementations. In addition to FPGAs, we also offer custom mixed signal solutions using bipolar, CMOS, and BiCMOS process technologies. From IC design, to modeling, to testing, to finished goods, we have a proven track record.

We give you the future now. Call today for more information:
(601) 932-7620, Fax 932-7621.
email: design@aue.com

EDN-TECHNOLOGY UPDATE

Parameter analyzers give you a closer look at de-circuit performance

Parameter analyzers based on source-measure units provide flexible and sensitive instruments for characterizing de sircuits.

When your circuit designs run up against data-book specification limits, it may be time to take a close look at the actual device performance. For digital devices, you often are interested in AC parameters, so you reach for pulse generators, time-interval analyzers, and oscilloscopes to get your answers. For analog components, and even occasionally for digital, you need dc parameter analyzers that can test the performance limits of the components.

Semiconductor device manufacturers perform extensive dc characterization of their devices, and some of that information ends up in the device data sheets. If you need more information, you can try to get it from the device manufacturer or you can make measurements yourself using a parameter analyzer.

Parameter analyzers are also useful for collecting data on real devices for use in creating accurate component simulations (Ref 1). In addition to generating data for simulation, you can test several devices to get a measure of the performance variation among components of the same type. Using the devicevariation information, you can predict performance variations in your end product.

Any time you measure device characteristics

Source-measure units connected to a computer for control and display let you create a parameter analyzer or test system to suit varied requirements. The model 238 from Keithley Instruments offers current to 1A.
that are unspecified by the device manufacturer, you must be careful how you use the information. Unspecified characteristics can vary significantly among different lots of parts. If you need a continuing supply of devices with certain characteristics not specified on the device data sheet, you need to work out special arrangements with the device manufacturer.
Parameter analyzers used to measure dc characteristics are typically of two types. The first is the curve tracer, which can test specific characteristics of various semiconductor devices. The sec-

Murata Erie. We don't make automotive controls or sound systems. But we make things better for those who do.

Just ask those who're already using our components. They'll tell you that, whether you're talking ceramic capacitors, EMI/RFI filters, piezoelectric devices or any other of the numerous passive devices that go on the road, who they come from makes a big difference. In the short run. And over the long haul.

First off, with the right supplier, there's never a question about performance and reliability. Which is why the automotive industry's leading players purchase Murata Erie passives on a ship-to-stock basis.

No worries about meeting manufacturing schedules, either. Not when you

deal with a company having numerous plants worldwide, that can routinely ship, for example, 3.5 billion monolithic ceramic capacitors per month.

Finally, there are some very measurable economic advantages to acquiring as many components as possible from a single source. To maximize those advantages, it's simply smart business to select a supplier with the necessary product-line breadth. And that should
lead you, once again, directly to Murata Erie.

Obviously, in planning your line, it's wise to consider ours. Why not write or call for details. You'll soon see the Murata Erie difference. And how it makes good things - like your products and your business - even better.

muRnta ERiE ${ }^{\text {a }}$

MURATA ERIE NORTH AMERICA
2200 Lake Park Drive
Smyrna, GA 30080
1-800-831-9172
CIRCLE NO. 36

PARAMETER ANALYZERS

ond is a more general-purpose instrument typically built around a source-measure unit (SMU). Four instruments go into an SMU: a voltage source, a voltmeter, a current source, and a current meter. An SMU either sources voltage and measures current or sources current and measures voltage.

For testing a component as simple as a diode, you need only one SMU. A transistor typically requires three SMUs, and an op amp might use four.

Although you could make the same measurements using separate voltage and current meters with voltage and current sources, using SMUs has some advantages. Because an SMU is capable of performing any source or measure function, you can have a generalpurpose test setup that tests any type of device without your having to reconfigure the setup. Having all the instruments integrated into one means you only have to deal with one set of accuracy specifications. And a single instrument is often easier to program for automated testing.

Keeping safe compliance limits

Whenever you use a current or voltage source, it will have some compliance range over which it can source current or voltage. The compliance limits should be adjustable (they are on SMUs) to pre-

Comprising four SMUs integrated into a benchtop instrument, the HP4145B provides programmable data acquisition and display. You can store test setups and data, using the floppy-disk drive, or control the instrument through an IEEE488 bus interface.
vent damaging the circuit you are testing.
For example, if you are using an SMU (or any current source) to source current to a circuit, the source will increase the voltage until either the programmed current flows into the device terminal or the current source reaches its compliance limit. While performing a test, you can typically set compliance limits to safe values for the device, then vary the force value.
Similarly, an SMU operating as a voltage source will increase current until it reaches its compliance limit or the programmed voltage level.
Only the instrument operator can set limits to protect a device under test from voltages or currents that will damage it. An SMU, though, at least has some built-in protection from self-damaging situations.
For example, if you are measuring the high-voltage breakdown of
a device, you force an increasing voltage until the current flow indicates breakdown. If you've neglected to set a safe compliance level on the current, then when breakdown occurs, the current may destroy the device under test. If you are using a separate voltage source and current meter, it's also possible you'll overload the current meter, damaging it or blowing a fuse. SMUs have a higher degree of built-in self protection because the integrated instrument always knows what levels it is sourcing and measuring and what its compliance limits are.
SMUs are able to make extremely sensitive voltage and current measurements (see Table 1). Voltage resolution to microvolts and current resolution to fA (that's femto-amps, 10^{-15}) requires using Kelvin connections and guard lines (Fig 1).

Kelvin connections, sometimes referred to as 4 -wire measure-

Table 1-Representative parameter analyzers

Manufacturer	Model	Number of SMUs	Voltage range	Resolution ${ }^{2}$	Current range	Resolution ${ }^{2}$	Display	Price	Comments
Hewlett-Packard	4142B	0 to 8 (modular)	$\pm 1000 \mathrm{~V}$	$40 \mu \mathrm{~V}$	$\pm 10 \mathrm{~A}$	20 fA	None	\$12,000 base	$\$ 28,000$ to $\$ 35,000$ for typical configurations.
	4145B	4	$\pm 100 \mathrm{~V}$	$100 \mu \mathrm{~V}$	$\pm 100 \mathrm{~mA}$	50 fA	CRT	\$27,500	
Keithley	236	1	$\pm 110 \mathrm{~V}$	$10 \mu \mathrm{~V}$	$\pm 110 \mathrm{~mA}$	10 fA	Digital readout	\$4990	
	237	1	$\pm 1100 \mathrm{~V}$	$10 \mu \mathrm{~V}$	$\pm 110 \mathrm{~mA}$	10 fA	Digital readout	\$6490	
	238	1	$\pm 110 \mathrm{~V}$	$10 \mu \mathrm{~V}$	$\pm 1 \mathrm{~A}$	10 fA	Digital readout	\$6290	
Tektronix	370A	NS ${ }^{1}$	2000 V	$50 \mu \mathrm{~V}$	20A	1 nA	CRT	\$20,900	
	371A	NS	3000 V	$100 \mathrm{mV} / \mathrm{div}$	400A	$1 \mu \mathrm{~A} / \mathrm{div}$	CRT	\$25,900	
	571	NS	100 V	$50 \mathrm{mV} / \mathrm{div}$	2 A	$5 \mu \mathrm{~A} / \mathrm{div}$	CRT	\$3190	
	577D2-177	NS	1600 V	$5 \mathrm{mV} / \mathrm{div}$	10A	$0.2 \mathrm{nA} / \mathrm{div}$	CRT	\$10,395	

Note: ${ }^{1} \mathrm{NS}=$ Not specified.
${ }^{2}$ Finest resolution is not available over full voltage or current range.

PARAMETER ANAIYZERS

ments, use separate wires for current flow and sensing voltage. The sense wires connect at precisely the point where you want to force or measure a voltage. Some SMUs can have current levels of several amps, which can easily cause drops of tens of millivolts in the current-carrying wires. The Kelvin connection prevents the voltage drop in the cur-rent-carrying wires from affecting the accuracy of the measurement.

Guard lines minimize current leakage from interfering with measurements. The SMU drives the guard line to the same voltage as the sense lines, so little or no current flows between the force, sense, and the guard lines. Because the guard lines surround the force and sense lines, current leakage from the outside is to the guard line and, thus, does not affect the measurements.

Some of the important variations in parameter analyzers are in the voltage and current ranges shown in Table 1. Obviously, you'll need appropriate ranges to cover the circuits you'll be testing. Another significant difference in parameter analyzers is whether you can use the instruments in a stand-alone mode or if you'll need a computer for control and display.

The curve tracers from Tektronix

Testing components at power levels as high as 3000 W is possible using the 317A Programmable Curve Tracer from Tektronix.
are stand-alone instruments. Although curve tracers do not offer the general-purpose capabilities of parameter analyzers made with SMUs, they do perform important functions in semiconductor parameter analysis.

A key feature favoring curve tracers is their ease of use. You can learn to operate a curve tracer quickly. The ease of operation is partly due to curve tracers' limited flexibility. They almost always offer only a voltage-vs-current display.

Compared with parameter analyzers using SMUs, curve tracers have

Fig 1-Kelvin connections avoid measurement inaccuracies caused by voltage drops in the current-carrying force line by sensing and correcting the voltage to the device under test. The guard line shields the force and sense lines from current leakage that would otherwise cause inaccurate current measurements.
limited sensitivity. As Table 1 shows, the curve tracers are all several orders of magnitude less sensitive in current measurements than the SMU-based instruments.

Yet curve tracers, especially Tektronix's 371A, have strong highpower testing capabilities. The combination of high current and high voltage allows testing to $3-\mathrm{kW}$ power levels-far higher than any of the SMU-based instruments. The 3000 V capability is also higher than for SMU-based parameter analyzers.

The curve tracers let you test devices at high power levels using pulsed-power testing. The periods of high-power pulses are separated by periods of zero power, keeping the average power low and avoiding the need for heat sinking. Some SMU-based parameter analyzers use the pulse-power technique even though power levels are considerably lower. The pulsed-power testing technique helps you avoid thermal effects that can cause device performance to change over the course of a test.

In addition to the curve tracers from Tektronix, the only other instrument in Table 1 that operates stand-alone to produce device performance plots is the HP4145B. The instrument is a fixed configuration

Just What Your Customers Need, Another Outlee For Their Creativity.

($\frac{\text { and } 18}{}$What's in? Video Out. Outputting video to a VCR and displaying video on a composite monitor are the newest capabilities every computer will need to compete in the Multimedia Age.

Now you're just a single chip away from adding Video Out to your very next computer design. Introducing Bt858, a monolithic digital device that packs in a board full of analog circuitry and puts out studio quality composite video.

Bt858 is a tweakless all-digital chip that bridges the video gap between RGB computers and composite or S-VHS outputs in the NTSC/PAL formats. It accepts multiformat digital inputs from 24,16 or 15 -bit RGB, 24 and 16 -bit YCrCb and 8 -bit VGA.

And because it has a programmable clock rate it adjusts for the 1:1 square pixels in computers and 4:3 rectangular pixels on TV without distortion.

Bt858 gives your system an image quality advantage, too. Studio quality output is a step
above tape decks and TV monitors so images always look "first generation."
You've read the book. Now see the picture. Call 1-800-VIDEO IC and we'll send you "The Ins and Outs of Video Out," a revealing presentation of Bt858's capabilities.

That's all folks.
Brooktree Corporation, 9950 Barnes Canyon Road, San Diego, CA 92121, (619) 452-7580, FAX (619) 452-7294
Brooktree
EDN February 17, 1992 • 69

PARAMETER ANALYZERS

of four SMUs in a benchtop unit that handles all control and display functions. The instrument can perform mathematical functions on the acquired data rather than just plot voltage and current values on the screen. For example, you can program the instrument to plot gain vs current for a transistor.

The other parameter analyzer from HP, the 4142 B , is a modular unit that requires a separate computer for control and display. Software for the instrument lets you operate it in a benchtop manner similar to the 4145B, although you'll still need a separate computer. With the HP4142B, you can select among four different SMU modules that cover the range of voltages and currents shown in Table 1. The highvoltage module 41422A and the high-current module 41423A are both 2 -quadrant units, meaning they can source current only for positive voltages and sink current only for negative voltages.

Another module for the instrument is the analog feedback unit 41425 A . The module lets you quickly find the input conditions required for a specific output condition. Typically, using a parameter analyzer, you would sweep through a set of input source levels and record the output measured. The ana\log feedback unit produces a plot of the input vs output that lets you zero in quickly on the input required for a specific output.

Although technically you'd have to say Keithley's family of SMUs operates stand alone, in practice you'd want to connect them to a computer, unless all you want to do is make single-point measurements. The 236, 237, and 238 are all single SMUs with different current and voltage limits as shown in Table 1.

The instruments work in an IEEE-488 setup with a minimum of bus traffic. Each SMU can take a 1000 -point sweep of data that in-

For more information . . .

For more information on the parameter-analyzer products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Hewlett-Packard Co	Tektronix	Keithley Instruments
19310 Pruneridge Ave	Box 500	28775 Aurora Rd
Cupertino, CA 95014	Beaverton, OR 97077	Cleveland, OH 44139
(800) 752-0900	(800) 835-9433	(216) 248-0400
Circle No. 708	Circle No. 709	FAX (216) 248-6168
		Circle No. 710

cludes the sourced and measured values, the delay between each measurement, and elapsed time. When using a setup with more than one SMU, you can have each SMU trigger the next in a data sweep. Daisy chaining the triggers lets you limit the required IEEE-488 bus traffic to setting up measurement sweeps and downloading measurements from the SMU at the end of a data sweep. The reduced IEEE488 bus traffic results in faster data acquisition.
The parameter analyzers using SMUs can record data vs elapsed time to examine characteristics that vary over time. For example, if you are characterizing a capacitor for precision sample-and-hold applications, you need a capacitor with low dielectric adsorption. You can test for dielectric adsorption by forcing a voltage, then forcing zero volts, and finally forcing zero current and measuring the voltage across the capacitor vs time. The capacitor's memory effect due to dielectric adsorption will cause the voltage to increase over time to some small fraction of the initially forced value.
A simple measurement such as dielectric adsorption shows the gen-eral-purpose nature of a parameter analyzer. You don't need to create any special instrument setup beyond programming the source and measure values. Creating your own test lets you test a capacitor with the voltage levels and time inter-
vals appropriate to your sample-and-hold application. You probably won't find information that's so tailored to your needs on a capacitor data sheet.
Curve tracers typically do not provide characteristics vs elapsed time. However, Tektronix's 370A offers limited characteristics-vstime measuring capabilities. The 370A uses an envelope mode to show how a semiconductor's parameters change over time. Using the 370A's envelope mode is similar to using an envelope mode on a digital storage oscilloscope.
For some test applications, a parameter analyzer may be overkill. If you only need to perform a few parameter-analyzer functions occasionally, you may be able to connect existing instruments to make the measurements. If you find you need to characterize components often, you may want to use a generalpurpose parameter analyzer. Don't overlook the flexibility of SMUs when setting up in-house ATE systems for de testing. हणD

Reference

1. Oxner, Ed, "Parameter extraction and estimation produce accurate JFET models," EDN, August 19, 1991, pg 137.

Article Interest Quotient
(Circle One)
High 479 Medium 480 Low 481

From KEPCO...

Keyboard•Controlled Power Supplies at old•fashioned knob prices.

FEATURES

- Automatic low-range relay allows higher current at low voltage
- Digital keypad offers easy and precise setup
- Keypad SLEW control for simple incrementing
- Three (volatile) memory locations store configurations
- Programmed active pulldown circuit for fast SLEW from full voltage to zero
- Serial interface RS 232C can drive up to 31 instruments
- Full voltage and current readback through RS 232C

DPS FRONT PANEL

DPS REAR PANEL

From KEPCO...

Keyboard-

 Controlled Power Supplies at old•fashioned knob prices.Kepco's new DPS series provides 75 Watts of wellbehaved d-c power in four ranges from $0-12.5 \mathrm{~V}$ to 0-125.0V. Conventional control knobs are not to be found! DPS is controlled by a convenient front panel keypad that commands a built-in microprocessor to set voltage, current limit, range, OVP, displays and over-current protection. Remote talk-listen control is exercised via a simple RS232C connection that may be addressed in BASIC or most common languages. Keypad SLEW controls permit continuous adjustment of the voltage up and down for fine adjustment while the output is enabled.
Separate large-character LED displays are provided for both voltage and current.

DPS MODEL TABLE

	d-c OUTPUT HIGH RANGE		d-c OUTPUT LOW RANGE		RESOLUTION	
MODEL	VOLTS	AMPERES	VOLTS	AMPERES	VOLTAGE	CURRENT
DPS 12.5-6M	$0-12.5$	$0-6$	$0-6$	$0-8$	0.05 V	0.04 A
DPS 25-3M	$0-25$	$0-3$	$0-9$	$0-5$	0.1 V	0.02 A
DPS 40-2M	$0-40$	$0-2$	$0-15$	$0-3$	0.2 V	0.02 A
DPS 125-0.5M	$0-125$	$0-0.5$	-	-	0.5 V	0.002 A

DPS GENERAL SPECIFICATIONS

SPECIFICATION	CONDITION	RATING DESCRIPTION
INPUT		
a-c Voltage	User selectable	115/230 Va-c $\pm 10 \%$
Current	Max load 115Va-c	1.4 A
Fuse	$115 \mathrm{Va}-\mathrm{c}$	3A
	$230 \mathrm{Va}-\mathrm{c}$	2A
Frequency	Range	$50-60 \mathrm{~Hz}$
OUTPUT		
d-c output	Microprocessor controlled	Linear, series-pass
Type of stabilizer	-	Voltage
Voltage	0 to $40^{\circ} \mathrm{C}$	0-100\% rating in two ranges
Current	CCP	Current limit mode
	OCP	Over current protection disables output
	Short circuit protect	Disables output after 10 seconds
Error sense	Drop	0.25 V per lead
Isolation voltage	Output to ground	$400 \mathrm{Vd}-\mathrm{c}$ or peak
Leakage current	rms at $110 \mathrm{Va}-\mathrm{c}$	50 microamperes
Output to ground	p-p at $110 \mathrm{Va}-\mathrm{c}$	0.5 milliamperes
Series connection	Max voltage off gnd	400 V
Parallel connection	-	NA
OVP	Control limit	Voltage stop
CONTROL		
Type	Local	Keypad
	Remote	RS232C
Dynamics (Resistive load)	Rise time	$<16 \mathrm{msec}$
	Fall time	$<75 \mathrm{msec}$
Isolation	Control-output	Optical
Range	Current capacity	Automatic
Memory	Store settings	3 volatile locations
MECHANICAL		
Input connection	Detachable line cord	IEC type
Output connections	Front	Binding posts
Meters	Two LED	Three digit
Indicators	LED	Remote
		Talk
		Listen
		OPE (output enable)
		OCP CCP
Mounting	19" rack	RA 56
Cooling	-	Convection
Dimensions	Outside HxWxD	4.5 "x13.1"x8.5"
Panel finish	Fed Std 595	Color 26440, Gray
Weight	Packed for shipment	$14.5 \mathrm{lb} / 6.6 \mathrm{Kg}$
	NET	$13 \mathrm{lb} / 5.9 \mathrm{Kg}$

Data subject to change without notice. (c) 1992 KEPCO, Inc. Litho in USA

From KEPCO...
KeyboardControlled Power Supplies at old•fashioned knob prices.

DIMENSIONS
Dimensions in light face type are in inches, dimensions in bold face type are in millimeters.

REAR

RACK ADAPTER MODEL RA 56 For mounting in standard 19" rack

JOIN THE TEAM WITH ALL THE MCU TOOLS.

Oki MCUs-
 For Total Toolset Support.

s incomplete support preventing your MCU design from moving forward? Join the nX crew at Oki, where our nX MCUs provide the performance upgrades and toolset support needed to propel your design swiftly to the finish line.

Choose from a range of nX generation 8 -bit or 16 -bit MCUs, including OTPs, and a variety of onchip features: A/Ds, I/Os, PWMs, and more.

Our in-circuit emulator and evaluation modules expedite programming and emulation. And with nX , you receive complete software support-including assemblers, debuggers, converters, and translators.

Starting a new design? Want to convert your resident 80 C 51 codes? Look to the team that won't leave your design dead in the water. With nX and Oki's total tool support, your design glides smoothly and quickly from concept to code.

Call 1-800-OKI-6388 for our nX Brochure (ask for Package 052).

785 North Mary Avenue Sunnyvale, CA 94086-2909 1-800-OKI-6388
(Ask for Pkg 052)

We Increased The Memory To One Megaword, So You Can Increase The Bandwidth.

LeCroy's one megaword acquisition memory means higher sampling rates over most time base settings. The results: greater useable bandwidth and increased aliasing protection.
These are the kind of facts the competition can no longer ignore...or match.
Whether you choose our new 300 MHz 9300 Series or the $2 \mathrm{GS} / \mathrm{sec} 7200 \mathrm{~A}$ Series, both offer you the world's longest memories and are available in 2 and 4 channel configurations.
LeCroy DSOs offer the best displays in the business: bigger - crisper - more pixels, and now - color! These large, bright, easy-toview displays eliminate text and signal overlap and, at the same time, allow multiple grids for simultaneous viewing of traces and their expansions.
Equally impressive is the fact that LeCroy DSOs give you answers, not just data. And the reasons are simple: LeCroy DSOs incorporate massive multiprocessor power,

The new 7200A Series, our high performance line with high resolution color display, features 500 MHz bandwidth at $2 \mathrm{GS} / \mathrm{s}$ with 200 k memory standard and 1 Meg/channel optional. Modular architecture allows the user to choose 2,4 or even 8 channels, all with super-long memory. Floppy and hard disk drives are standard features. resulting in live-updating waveform parameters, time zooming, frequency analysis (FFT), fast averaging, arithmetic, histogramming, and PASS/FAIL testing. All this....over multiple

Taking DSO Memol

channels simultaneously and... without ever losing precious source data.
PC compatibility is yet another LeCroy advantage. Whether you're using memory cards (9300 Series), or floppies (7200A Series), you can dump your waveforms and other data directly into your PC or word processor, or personalize your instrument for your dedicated measurements.

LeCroy

In many applications, there's no substitute for a really long memory. The screens above show a complete TV field captured at 2 ms per division. The benefits of the long memory are shown when the waveform is expanded to view a single TV line.

The new 9300 Series offers 300 MHz bandwidth and $100 \mathrm{MS} / \mathrm{s}$ per channel, with memories from 10 k to $1 \mathrm{Meg} / \mathrm{channel}$. All versions feature DOS compatible memory cards and automatic PASS/FAIL testing. Prices start below $\$ 5,000$.
For a copy of our new information guide, or a demonstration of LeCroy digital oscilloscopes, call 1-800-5-LeCroy; fax (914) 578-5985.
LeCroy Corporation - Dept. A World Headquarters 700 Chestnut Ridge Rd. Chestnut Ridge, NY 10977-6499

y ToA Higher Plane.

Build on our Digital faster ASICs faster.

TH:

System Arrays for

Optimize for speed, testability, functionality or high pin/gate ratios. You're the architect.

Toshiba's Digital System Arrays (DSAs) provide the superstructure system designers need to optimize ASICs for market and application.

Which Digital System Array is right for you?

Optimize for performance and testability.
Our newTC165G/E, architected by Vertex and rendered in Toshiba's proven 0.8 micron CMOS technology, show the power of DSA.

These new ASICs offer the highest usable gate count in the industry-up to 250 K . Gate delays of <260 picoseconds combined with Vertex's proven performance-enhancing techniques and design methodologies optimize these arrays for high clock rates. And automatic design-for-testability achieves $>99 \%$ fault coverage with no performance penalty.

TC165G gate arrays are complemented by the TC165E embedded array series, offering a wider variety of functionality. With embedded functions, the TC165 series reaches new heights in system integration.

Optimize without compromise. Toshiba's TC160G/E provide the optimum combination of features and cost effectiveness for most applications.

You can't optimize without options. Choose the Toshiba solution that's best for you.

Employing sea-of-gates architecture, the family offers up to 210 K usable gates at 300 picoseconds.

Toshiba megafunctions and super integration libraries make the embedded version a high density, silicon efficient choice.

Optimize for

 efficiency or for I/O. Efficient gate utilization your top priority? Count Ratio $>50,000$ units/month your anticipated volume? Look into our TC25SC standard cells. They put an area-optimized 0.8 cell library at your command.If you've ever had to select a gate array with more gates than you needed just to get enough I/O pads, our TC14L is for you. It provides the highest available pin-to-gate ratio, offering up to 20 K gates with reduced pad spacing.

Optimized Design Environment. Our Digital System Arrays are supported by a designer-friendly design environment.
We support all popular libraries, including Verilog, Synopsys, IKOS, Dazix, Mentor,

CMOST is the cornerstone of Toshiba's Unified Device Architecture. ViewLogic and Valid.

The sky is the limit with Toshiba's DSA family. Please call 1-800-321-1718 for technical literature.

POWERONE D.C.POWERSUPPIES
 WotOnly The Best...The BestSelection, Too

SWITCHERS

POWER-ONE'S International Switcher Series incorporates the latest state-of-the-art switching technology while providing POWER-ONE's traditional high quality at low prices. With certification to the world's toughest safety agency requirements, the series is especially suited for products sold not only domestically, but internationally as well. - 85 models. . . 40 watts to 400 watts - Efficient. . . reliable. . .economical • VDE construction • Up to 5 fully regulated outputs • Full international safety and EMI approvals

LINEARS

POWER-ONE'S International Linear Series is the world's undisputed leader in versatile, cost-effective linear power supply products. A long-time favorite of designers and engineers worldwide, the series is the most widely purchased power supply line through distribution in the industry. The most popular voltage and current combinations are available in a wide variety of off-the-shelf standard models. - Popular industry standard packages • 77 models. . . 6 watts to 280 watts $\bullet \pm 0.05 \%$ regulation • Up to 4 fully regulated outputs • Worldwide safety approvals

HIGH POWER

POWER-ONE'S International High Power Series is a true fully-modular high power product line. Specify a power system that meets your exact requirements from a wide selection of single, dual and triple output plug-in power modules. Virtually any combination of output voltage and current rating can be delivered from stock.

- 500 watts to 2,000 watts - Fully modular construction
- Up to 15 fully regulated outputs • UPS battery backup option - Parallelable outputs with current sharing • Power Factor Correction optional

POWER-ONE offers one of the largest selections of switcher, linear, and high power standard models in the world. Most models available off the shelf from authorized distributors. So, whatever your D.C. power supply requirement, make POWER-ONE your first choice and be sure you're getting the bestquality, selection, value and quick delivery. Call today for our new Reference Guide and the location of our closest authorized distributor.
"Innovators in Power Supply Technology"

POWER-ONE, INC.
740 Calle Plano - Camarillo, CA 93012-8583
Phone: (805) 987-8741 - FAX: (805) $388-0476$

CIRCLE NO. 41

EDN-TECHNOLOGY UPDATE

HIGH-SPEED DIGITAL CIRCUITS

Timing techniques help signals stay in sync
 ANNE WATSON SWAGER, Technical Editor

You'll need a variety of practical skills and tools to tackle high-speed timing problemseven the best timing device presents no magical solution.

Without effective clock management, the benefits of a synchronous digital design break down at high speeds. Driving logic with synchronous clock edges will prevent any number of timing uncertainties, but only if those clocks are truly synchronous. As $\mu \mathrm{P}$ speeds pass 33 MHz and head for 50 MHz and higher, generating and distributing those high-speed clocks becomes a specialty of its own.

This specialty requires diverse skills: knowledge and use of the appropriate
parts for clock generation; knowledge of high-speed layout techniques; and the ability to simulate, analyze, and test clock paths (see box, "Simulation spots timing uncertainties"). Acquiring these skills involves paying more attention to details, such as feedback techniques and transmission-line characteristics, once considered to be exclusively analog-circuit-design's domain.

These details relate respectively to the two problems of high-speed timing: generation and distribution. In the first

Fig 1-Phase-locked loops are popping up in purely digital designs for two reasons: They can produce multiples of an input clock reference, and they enable you to control the phase difference between that reference and the output. Motorola's MC88915 provides one output at $2 \times$, six at $1 \times$, and one at $1 / 2 \times$ the input frequency.

68HC11 C Compilers (68HC16 too!)

$68 \mathrm{HC16}$

Whitesmiths		Introl	Archimedes	Whitesmiths
Dhrystone Dhrystones code size	$\begin{aligned} & \text { 369/sec. } \\ & 1691 \text { bytes } \end{aligned}$	192/sec. 1826 bytes	$\begin{aligned} & \text { 225/sec. } \\ & 1794 \text { bytes } \end{aligned}$	4651/sec. 1482 bytes
Sieve speed code size	$\begin{aligned} & 715 \mathrm{~ms} \\ & 169 \text { bytes } \end{aligned}$	960 ms 153 bytes	954 ms 164 bytes	$\begin{gathered} 67 \mathrm{~ms} \\ 126 \text { bytes } \end{gathered}$
Optimizespeed code size	$264 \mu \mathrm{sec}$. 234 bytes	$415 \mu \mathrm{sec}$. 280 bytes	$450 \mu \mathrm{sec}$. 318 bytes	$15 \mu \mathrm{sec}$. 112 bytes
C Source Debugging: -Simulation -Evaluation Board -In-Circuit Emulator	CXDB C \& ASM EVB/EVM/EVS Pentica, Orion, Nohau	IDB C No Pentica	No No No No	CXDB C \& ASM EVB16 In Development
In-Line Assembler	Yes	Yes	No	Yes
Overlaid Local Data Storage	Yes	No	No	Yes
Compiler Price (PC)	\$1200	\$2000	\$1295	\$1600

Dhrystone v.1.1 CACM vol. 27; Sieve and Optimize Benchmarks from Byte Mag. 8/83; Whitesmiths v. 3.32.8, Introl v. 3.06 and Archimedes v.3.20B. 68HC11@2 MHz E-clock. 68HC16@16.78 MHz clock.
Whitesmiths 68HC11 C Compilers take your code to new heights of performance. And our new 68 HC 16 products provide you with a clean evolution path from the 68 HC 11 so that your code will not become extinct. Call or fax today for more information about our free demo products.

HIGH-SPEED DIGITAL CIRCUITS

case, you want to generate multiple copies of a clock signal having fixed relationships to one another. Without interfering with those relationships, you want to distribute these clock copies to various points within a board or an entire system.

On the generator side, specialized clock drivers can produce copies of clock signals with a maximum skew of 0.5 to 1 nsec for TTL- and CMOScompatible outputs. Also, some state-of-the-art clock drivers contain internal phase-locked loops (PLLs) that, when locked to a clock reference, can provide multiples and fractions of the reference with precise phase-delay characteristics (Fig 1.)
On the distribution side, the judicious use of delay lines can help you adjust a clock signal's characteristics as it travels through the system. However, there's no magic way to get around the fact that high-speed signals require layout techniques that minimize the length of traces and evenly load a clock driver's various outputs. You may also have to incorporate impedance matching and load termination into your layout techniques.

Generating and distributing high-
speed signals is tricky whether you're working at the chip, board, or system level. Clocking within an ASIC has its own unique challenge because of the clock tree, or lack thereof, designed in by the vendor. Though not discussed in detail in this article, many ASIC vendors are addressing the issue of timing by either implementing innovative clock trees or by designing on-chip PLLs.

Acknowledge potential problems

It's easy to discuss the problems you can have generating and distributing high-speed clock signals. But designing to prevent those problems, and detecting them if they do occur, is not so simple.
Accumulated skew-the difference between the expected and actual arrival time of a signal-eats into set-up-time and hold-time safety margins and can force the system to come dangerously and unreliably close to violating them. Imagine that two leaves on remote branches of your system's clock tree are exchanging data. The clock signal comes from two very different paths with relatively large differences in delay. In this case, skew
can amount to an entire clock-tooutput delay. This amount of skew results in zero hold time.

Race conditions caused by inadequate set-up and hold times can also force the outputs of latches and registers into a metastable state. Even though semiconductor manufacturers have attempted to deal with the problem of metastability, no device is completely immune to it. The necessity of avoiding metastability compounds the importance of limiting skew.

Unfortunately, timing problems are some of the most elusive. A hold-time violation caused by communication between remote branches may not cause problems all the time or even some of the time. Your design may be working right at the edge of the safety margin without your knowing it. You, and your test equipment, may miss glitches entirely during prototype testing only to have them surface in volume production.

Not only are the problems hard to detect, but they're also sensitive to a number of system conditions: temperature variations, absolute power-supply level and power-

Simulation spots timing uncertainties

Despite your attention to the design details of clock generation and distribution, timing problems are hard to anticipate. Simulation is one tool that can help you pinpoint where and when those uncertain edges will occur in a final design. Most vendors of low-skew clock drivers and buffers now provide models of the input and output stages of their devices.

Semiconductor manufacturers aren't the only ones participating in the modeling efforts. Connector manufacturer AMP (Harrisburg, PA, (800) 522-6752) now offers connector models. If you have to run clock signals from board to board through a backplane, these models help you realistically include the effects of connectors.

Many CAE vendors offer timing verifiers to help you analyze clock paths. These may or may not be suitable for high-speed analysis. One software package that is tailored to high-speed designs is Motive $\$ \$ 9000$ for

PC version; \$13,000 for single-node Unix version) from Quad Design Technology Inc (Camarillo, CA, (805) 988-8250). This software identifies all set-up and hold violations in an ASIC or board-level design without test vectors by tracing every signal-delay path. The software accounts for worst-case interconnect and component delays. The software's clock-description language can describe multiphase and multifrequency clocks as well as the skew between any pair of clock signals. Before route, the software can calculate board delays by estimating wire length and by accounting for the electrical characteristics of all drivers and receivers. After route, the company's transmission-line-calculator package (\$7700 for PC version; $\$ 12,000$ for Unix) can send more accurate interconnect data back to Motive for further analysis.

HIGH-SPEED DIGITAL CIRCUITS

supply noise, and master clock noise and jitter.

All types of skew can accumulate to the point that your system literally operates on borrowed time. The most often quoted rule of thumb says that skew should be at most 10% of the system clock's period. For a $33-\mathrm{MHz}$ clock, 10% of the period is 3 nsec . For 50 MHz , the number is 2 nsec. Thus, most of the 1 -nsec parts in Table 1 would be sufficient to meet the 10% skew specs for these systems.

However, rules of thumb aren't guarantees. For some systems, the percentage of tolerable skew may be much lower, in which case the available TTL and CMOS clock drivers don't give you much margin. ECL is about your only choice for skew requirements less than 0.5 nsec. If you have any prejudice against ECL, you may want to take a second look at its benefits for clock distribution (Ref 2).
Many forces, including changing system conditions, work against the
timeliness and integrity of highspeed signals. These forces all produce clock skew. Managing the production of that skew is the subject of Clock Management 101.
Various types of skew can affect high-speed timing. Intrinsic skew arises in the generator circuitry; extrinsic skew arises in the distribution circuitry, which includes the receivers and the traces that carry signals to them (Fig 2). Controlling clock skew at the generator is the first step.

Table 1-Representative clock drivers (buffer and PLL types)

Manufacturer	Part	Description	Input/output levels	Maximum skew (nsec)		
				Output-to-output	Part-to-part	Duty-cycle
Integrated Device Technology Inc	49FCT805/6	Dual, 1-to-5 buffers	TTLTTL	0.7	1.5	1.0
Motorola Inc	MC10/100H640	$\div 2$ and $\div 4$ buffers for 68030 and $040 \mu \mathrm{Ps}$	PECL or TTL/TTL	0.5	NS	NS
	MC10/100H641	1-to-9 clock driver	PECL/TTL	0.5	1.0	NS
	MC74F1803	Quad, D-type inverting flip-flops	TTLITL	2.0	NS	NS
	MC10/100E111	1-to-9 differential clock driver	ECLIECL	0.05	NS	NS
	$\begin{gathered} \text { MC88915FN55 } \\ \text { I70 } \end{gathered}$	PLL type with 8 outputs	TTL/CMOS or TTL	0.5 (rising edge) 0.75 (falling edge)	NS	NS
National Semiconductor Corp-	$\begin{aligned} & \hline \text { CGS74B2525l } \\ & \text { 'C2525l } \\ & \text { 'CT2525 } \end{aligned}$	1-to-8 clock buffers	TTLTTL, CMOS/CMOS, TTL/CMOS	1.0	$\begin{aligned} & 1.75 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & \text { NS } \\ & \text { NS } \end{aligned}$
	$\begin{aligned} & \text { CGS74C2526/ } \\ & \text { 'CT2526 } \end{aligned}$	2-to-8 clock buffers	CMOS/CMOS, TTLICMOS	1.0	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { NS } \\ & \text { NS } \end{aligned}$
	F100115	1-to-4 clock buffer	ECLECL	0.075	NS	NS
Silicon Connections Corp	SC3501Q-1	1 -to- $20, \div 2, \div 4$, and $\div 8$ clock buffers with symmetry adjust	TTL or PECLITL	0.5	1.0	± 0.5
	SC3502Q-1	1-to-20 clock dividers	TTL or PECL/TTL	1.0	1.5	± 0.25
	SC3505Q-1	1-to-20 clock buffer	TTL or PECL/TTL	0.5	1.0	NS
	SC3507Q-1	1-to-20 clock divider	TTL or PECL/TTL	0.5	1.0	± 0.25
Texas Instruments Inc	SN74AS303/4/5	1 -to- $8 \div 2$ clock dividers	TTLTTL	1.0	NS	1.0
	SN74ABT328	1-to-6 buffer with selectable polarity	TTLTTL	0.5	NS	0.8
	74AC11204	Hex inverting buffers	CMOSICMOS	1.0	NS	NS
	54/74ACT11208	Dual, 1-to-4 buffers with 3-state outputs	TTL/CMOS	1.0	NS	NS
Triquint Semiconductor Inc	GA1110E-50	PLL-type 1-to-6 buffer	TTL/TTL	0.5	NS	1
	GA1210E-50	PLL-type clock doubler	TTLTTL	0.5	NS	1

Notes: $\mathrm{PECL}=E C L$ referenced to 5 V .
NS $=$ not specified
NA $=$ not applicable

Standard buffers, such as the '244, don't specify skew on their data sheets. You could arrive at a rough skew figure by taking the difference between the low-to-high and high-to-low propagation delay specifications. However, manufacturers claim this calculation produces vague and overly conservative numbers. Also, these calculations don't provide any information on how skew varies with system conditions.

Skew's importance has increased
as speed has increased. So the types of clock buffers in Table 1, which includes both buffer and PLL types, are much more than respecified '244 buffers. The chips listed were designed to minimize internally generated skew. Manufacturers of these clock drivers recognize five different types of intrinsic skew: output-to-output skew; part-to-part or process skew; duty-cycle, pulse, or pin skew; input skew; and limit skew.
Output-to-output skew is the dif-
ference between output edges of clock drivers that generate multiple copies from a single input clock. These devices have anywhere from 6 to 20 outputs (Table 1). Currently, the lowest output-to-output skew-the guaranteed maximumfor TTL or CMOS-compatible devices is 0.5 nsec . For ECL devices, the best is around 50 psec .

For those devices with mixtures of inverters and buffers, such as the Texas Instruments SN74A30X family, the skew is the same, 1 nsec,

| Propagation
 delay | Output frequency
 (MHz) | Number of
 Q outputs | Number of
 Q outputs | Output drive
 (IOH, IOL) | Price
 (100) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.5 | NS | Package(s) | | | |

HIGH-SPEED DIGITAL CIRCUITS

within the groups of Q and \bar{Q} outputs. However, the skew across the Q and $\overline{\mathrm{Q}}$ outputs can be as high as 2 nsec.

Part-to-part or process skew is the difference in output skew across different packages of the same device. Tight part-to-part specs are difficult to achieve, and you can see from Table 1 that they are always worse than the output-to-output specs. Also, many manufacturers don't test for or guarantee any part-to-part numbers. Thus, depending on how many copies of the clock you need, you should either attempt to choose one driver for them all, such as one of Silicon Connections' 20 output devices, or use individual drivers for various branches of a clock tree.

For those applications that require clock duty cycles very close to 50%, duty-cycle skew is an important parameter. Duty-cycle skew is the difference between low-to-high and high-to-low propaga-tion-delay times when a single input causes one or more outputs to switch.

As Table 1 reflects, most manufacturers don't routinely include duty-cycle skew specifications for all their devices. For its 1 -input to 20-output drivers, Silicon Connections specifies that at a threshold voltage of 1.5 V the maximum asymmetry between high-to-low and low-to-high transitions is ± 0.25 nsec. Just as with the output-tooutput specs, these numbers apply only within certain output groupings. Some of the company's devices also feature a symmetry adjustment. Using three inputs, you can move the output edge of the SC3501 in 0.25 -nsec increments from +0.75 to -0.75 nsec .

Two skews go unspecified

The final two types of skew are rarely specified and aren't as relevant as the previous types. Input skew pertains to multiple input de-

Fig 2-Clock management boils down to controlling the production and accumulation of skew, which can arise from many sources intrinsic and extrinsic to the clock drivers.
vices and is the difference between any two propagation-delay times that originate at different inputs and terminate at a single output. Limit skew is the calculated difference between the maximum specified values of either low-to-high or high-to-low propagation delay and the minimum values of the same. This calculated number can tell you how much the propagation delay varies due to change in supply voltage, temperature, output load, and other operating conditions.
Of all of these types of skew, the data sheets at best specify the first three. When specified, the skew numbers for different parts don't cover the same performance range, which varies from manufacturer to manufacturer. So even having the specifications available doesn't guarantee that you can compare parts easily.
Some of the specs cover the entire operating temperature range of the part. Others are only true at $25^{\circ} \mathrm{C}$. Also, manufacturers derive certain specifications from tested results while deriving others from calculated or simulated results. National Semiconductor is one manufacturer that provides extensive test data, such as that in Fig 3, to show the performance of their devices as parameters such as output
frequency and capacitance change.
Just as the data sheets aren't standardized, neither are the parts themselves. These drivers don't come in any standard package or pinout. Some have center power and ground pins. The drivers' numbers of outputs and their configuration, whether buffered, inverted, or both, varies. Some of the devices can accept positive ECL (PECL) signals, (ECL signals referenced to 5 V). Others have TTL-compatible inputs with CMOS-compatible outputs.

PLL types lock on

Most so-called clock drivers can produce copies or divided-down versions of an input clock. But they do not give you control over the delay through the device. On the other hand, those drivers with internal PLLs can produce multiples of the input clock and give you some control of the phase difference between input and output. Motorola and Triquint Semiconductor are currently the only manufacturers of PLL-type clock drivers. However, Texas Instruments is currently designing a PLL device that should be available in the first half of this year.
PLL-type clock drivers are useful for two primary reasons: to multiply the input clock and to phase-

Afford. Ability.

© 1991 Hewlett-Packard Co. TMINII12/EDN

With HP basic instruments, performance costs less than you expect.

Now you don't have to accept trade-offs in a basic test instrument. Because HP offers the performance you want at prices you can afford.
Need a dual-range output power supply? The HP E3610 Series makes choosing a 30 -watt dc power supply easy-especially when you consider the low noise and $\$ 300$ * price.
What about a digital multimeter for bench or system use? The rugged $61 / 2$ digit HP 34401A does both with uncompromised performance for $\$ 995^{*}$.
You won't find a better 100 MHz digitizing scope than the HP 54600 Series. It combines analog look and feel with digital troubleshooting power for only \$2,395 (2-channel) or \$2,895 (4-channel)*.

At \$3,800* , the HP 4263A LCR Meter lowers the cost of high-precision 100 Hz to 100 kHz benchtop and system component measurements.
And the 8-function HP E2377A is just one of the HP E2300 Series $31 / 2$ digit handhelds priced from $\$ 99$ to $\$ 189^{*}$.
Z For more information or sameday shipment from HP DIRECT, call 1-800-452-4844**. Ask for Ext. T517 and we'll send you a data sheet that shows how affordable performance can be.

* U.S. list price
** In Canada call 1-800-387-3867, Dept. 433
There is a better way.

HEWLETT PACKARD

EDN-TECHNOLOGY UPDATE

HIGH-SPEED DIGITAL CIRCUITS

advance or retard the output in relation to the reference input. For example, using select pins and external feedback, you can phaseadjust the outputs of the GA1110E in ± 2-nsec increments. The GA1210E produces multiple copies at $2 \times$ the input frequency. Because of feedback, PLL-based drivers can compensate for process, temperature, and voltage variations by always locking the output of each part to the common input reference clock.

The standard PLL contains a phase detector, voltage-controlled oscillator (VCO), and a loop filter, and can include a frequency detector (Fig 1). The free-running frequency of the VCO is usually much higher than the output frequency, which allows the parts to generate various multiples of the input frequency. The internal VCOs in Triquint Semiconductor's GA1110 and 1210 run at 500 MHz , but the device's outputs are set for output frequencies of $25,33,40$, and 50 MHz .

The loop filters of these PLLbased drivers may require external

Fig 3-Guaranteed skew specs aren't necessarily the results of thorough testing. However, National Semiconductor does provide extensive test data such as this graph, which shows how output capacitance and clock frequency affect the output-to-output skew of the CGS74B2525.
components. The loop filters of the GA1110 and 1210 are on chip, whereas Motorola's MC88915 requires an external RLC network of six passive components. Requiring an external loop filter does have one advantage-it provides the PLL with a wide frequency range. While the free-running outputs of the Tri-
quint parts are set to specific output frequencies, the $70-\mathrm{MHz}$ version of the MC88915 can lock onto an input that ranges anywhere from 10 to 35 MHz .

As versatile and useful as the PLL-based devices are, they have their own unique performance quirks. Any phase-locked system

For more information

For more information on the timing products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Analog Devices Inc

1 Technology Way
Norwood, MA 02062
(617) 329-4700

FAX (617) $821-4273$
Circle No. 700
Brooktree Corp
9950 Barnes Canyon Rd
San Diego, CA 92121
(619) 452-7580

FAX (619) 452.1249
Circle No. 701
Integrated Device
Technology Inc
3236 Scott Blvd
Santa Clara, CA 95052
(408) 727-6116

FAX (408) 492-8674
Circle No. 702

Motorola Inc
2200 W Broadway
Mesa, AZ 85202
(602) 962-2865

FAX (602) 898-5020
Brian Hunter
Circle No. 703

National Semiconductor Corp
Box 58090
Santa Clara, CA 95052
(408) 721-6804

FAX (408) 733-1642
Tony Ochoa
Circle No. 704
VOTE . . .
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 476 Medium Interest 477 Low Interest 478

Simple Filter Design Phase (deg) \square

New
 Universal Active Filter

Our new monolithic UAF42 makes it easy to design a wide variety of filter types. Complete with four op amps, onchip precision capacitors and resistors, UAF42 reduces external components to a minimum. Its classical state-variable topology forms a time-continuous filter, free from the switching noise and aliasing of switchedcapacitor filters. UAF42's flexibility makes it the best choice for a variety of applications.

FREE

Design Kit

The design kit includes a FREE sample, filter design software, data sheet, and an application bulletin... everything you need to make filter designing simply easy. The DOS-compatible program saves you hours of design time by eliminating tedious computations. On-screen prompts guide you through the selection process, showing the advantages and disadvantages of various filter types.

Key
 Specifications

- DC to 100 kHz
- filter Q to 400
- 14-pin plastic or ceramic DIP
- from \$6.95*

Now, you can easily design low-pass, highpass, band-pass, and notch filters. Response types include Butterworth, Bessel, Chebyshev and Inverse Chebyshev.

Call 1-800-548-6132
today for your free design kit.

Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734

- U.S. OEM prices, in 100 s.

A Winning Hand of Power Amplifiers
High speed makes the
PA05 operational amplifier
the choice for deflection appli-
cations. Combining a $100 \mathrm{~V} / \mathrm{ps}$
slew rate with a 100 V supply,
$\pm 30 \mathrm{ou}$ output current, thermal
protection, and a 360kHz
power bandwidth, makes the
PA05 a cost effective solution.
$100+$ pricing is $\$ 189.00$.

Special Pricing on Evaluation Units!

Until March 27, 1992, sample any one of these models at their 100 -piece price*. Plus save 50% on an EK04 evaluation kit with purchase of a PA05 or PA04-just $\$ 49.50$ (kit includes heat sink, PC board, mating socket and hardware kit). See ordering information below.*

* Offer good for a one-time order of up to three sample units and evaluation kits.

APEX MICROTECHNOLOGY CORPORATION 5980 N. Shannon Road, Tueson, AZ 85741 For Product Information or to Place an Order Call 1-800-448-1025 or FAX (602) 888-3329

For Applications or Product Selection Assistance Call 1-800-421-1865

HIGH-SPEED DIGITAL CIRCUITS

requires a finite time to reach the locked condition. The time required for the GA1101 and GA1210 to acquire lock is typically $200 \mu \mathrm{sec}$ and maximally $500 \mu \mathrm{sec}$. The typical wait for resynchronization in a $33-\mathrm{MHz}$ system would then be 6600 cycles. Texas Instruments' SN74ABT338 requires a minimum of $50 \mu \mathrm{sec}$. Motorola's MC88915 takes a minimum of 1 msec and a maximum of 10 msec .

These numbers are fractions of the normal start-up times required by the clock oscillator. Thus, from start up, the time required for lock doesn't require any waiting, since you're already waiting for the oscillator. However, if the path from the system clock and the device is interrupted for any reason-without the clock source itself losing power-once the clock signal returns, you can't expect any precise relationship between input and output until the chip itself reestablishes lock.

Distribute without adding skew

Generating multiple clock-signal copies with low skew solves just half of the timing problem. Extrinsic skew can accumulate during distribution because of trace-length differences, loading differences, or because the clock signal's waveform has been corrupted. Layout techniques that evenly load all of the outputs of one clock driver, by matching trace lengths for example, are another step toward minimizing extrinsic skew.

Some parts, such as delay lines, do exist that help correct for distribution effects by allowing you to deskew multiple channels of a shared clock (Ref 3). Analog Devices and Brooktree both make delay lines primarily for the ATE industry that are applicable to many high-speed systems. For exacting timing requirements, Brooktree's Bt622 dual and BT624 quad delay lines (\$32 and
$\$ 43$, respectively, (100)) allow you to adjust both the delay and the width of high-speed ECL pulses. These devices let you compensate for differences in positive-vs-nega-tive-going signal delays.

Adjustable delay lines are more useful than those with fixed delays at their tap points because you can use one device to cover a variety of delay times. The CMOS Bt630's ($\$ 11.10(100)$) five tap points at 20 , $40,60,80$, and 100% of the full-scale delay are adjustable over a 25 - to 400 -nsec full-scale range. Analog Devices' ECL AD9500 (\$16 (100)) and TTL- and CMOS-compatible 9501 (\$8.60 (100)) are digitally programmable delay generators with resolutions as small as 10 psec and a delay range of 2.5 nsec to $10 \mu \mathrm{sec}$ full-scale range.

All specialized timing devices can help you generate and distribute high-speed clock signals more effectively. However, every high-speed design and every high-speed layout is unique: No one device works in every situation. High-speed timing problems can only be averted by the combination of part selection, layout, simulation, and thorough test.

EDD

References

1. Jolly, Rich, "Clock Design in 50 MHz Intel486 Systems," Application Note AP-453, 1991, Intel Corp, Santa Clara, CA.
2. Pearson, Todd, "ECL: The technology of choice for your clock distribution needs," Motorola, Wescon 1991 Technical Conference, Session 5, submitted by Motorola Semiconductor.
3. Ormond, Tom, "Delay lines take on timing tasks," EDN, December 19, 1991, pg 108.

Article Interest Quotient
(Circle One)
High 476 Medium 477 Low 478

Analog Devices introduces more new ways to get the job done. Faster. Better. Cheaper.

NEW PRODUCTS, T for Our DSP Processor

The ADDS-2111 EZ-Tools (EZ-ICE ${ }^{\text {Tw }}$ and EZ-LAB ${ }^{\text {Tw }}$) are low-cost and easy-to-use support tools for the fixedpoint ADSP-2111 DSP. EZ-ICE is an in-circuit emulator for debugging code and testing systems; the EZ-LAB is a demonstration and evaluation board
They're packed with features to effectively and inexpensively evaluate and demonstrate the ADSP-2111 processor.

CIRCLE NO. 139
The Best of Analog Dialogue, 1967-1991

Reap the benefits of twenty-five years of Analog Dialogue, our "journal for the exchange of circuits, systems and software for real-world signal processing." The Best of Analog Dialogue is a 224 -page compendium of the journal's most useful and requested material as judged by our readers and staff, including application articles, tutorials and problem-solving products. And best of all, it's free!

CIRCLE NO. 142
44-Page Instrumentation Amplifier Application Guide-Free!

This helpful, new 44-page application guide explains what an instrumentation amplifier (in-amp) is, how it operates, and how and where to use it. Written by Lew Counts and Chuck Kitchin, this free guide covers topics including Basic In-Amp Theory, Design Considerations for Instrumentation Amplifiers, and In-Amp Applications. It should be on every designer's desk!

CIRCLE NO. 145
Save Dollars and Space with 12-Bit Octal DAC AD7568

The industry's first octal 12 -bit DAC, AD7568, costs less than $\$ 3$ per channel in 1,000 s! Featuring eight independent 12 -bit current output DACs, serial interface and four-quadrant multiplication, it's available in low-profile 44-pin PQFP. Requiring a single $+5-\mathrm{V}$
supply, it dissipates only 1 mW typical. Applications include ATE, self-calibrating instruments and more! CIRCLE NO. 148
1-800-262-5643

DSP Software Design Tool to Ease Programming, Debugging

Accompanying the ADSP-21020 and its family of floating-point DSPs, the development software tools, ADDS-210XX-DSW, comprise an assembler, linker, assembly library, librarian, simulator and PROM splitter. Algebraix syntax of the assembler (and instruction set) simplifies user programming; the assembler creates object files in industry-standard COFF.

CIRCLE NO. 140
Dual and Quad Low-Power, High-Speed Op Amps

Analog Devices' OP-282 (dual) and OP-482 (quad) op amps provide excellent speed at ultralow supply currents. Slew rate exceeds $7 \mathrm{~V} / \mu \mathrm{s}$ with supply current under $250 \mu \mathrm{~A}$ per amplifier. These op amps are wellsuited for battery-powered systems or power-restricted applications; their input common-mode range includes a positive supply for high-side signal conditioning.

CIRCLE NO. 143
Low-Cost, Ultralow-Noise Preamplifier

Our SSM-2017 replaces discrete solutions made from up to 20 passive components, four transistors and an op amp. This lowcost audio preamplifier features input noise voltage of $950 \mathrm{pV} \sqrt{\mathrm{Hz}}$ (at 1 kHz ,
$\mathrm{G}=1,000$), and THD is typically just 0.01% over the full audio range. And output signals of 10 V rms can be driven into low-load impedances with no degradation of performance.

CIRCLE NO. 146
Save Space and Cost with this Complete Octal SHA!

With acquisition time to $2.5 \mu \mathrm{~s}$, the low-cost octal sample-and-hold amplifier SMP-18 also provides an on-chip 1:8 demultiplexer It's complete with on-chip hold capacitors and is wellsuited for applications where setting voltage levels are required. Applications include ATE, comparator and time delay generator circuits, process control system set points, and more.

CIRCLE NO. 149
Analog Devices, One Technology Way, Norwood, MA 02062-9106. Distribution, offices and applications support available worldwide. Authorized North American Distributors: Alliance Electronics 505-292-3360 - Allied Electronics $817-595-3500$ - Anthem Electronics 408-453-)
$1200 \cdot$ Bell Industries 213-826-678 . Future Electronics (Canada) 514-694-7710, (U.S.A.) $508-779-3013$. Hall-Mark Electroniss $214-343-5000$ - Newark Electronics $312-784-5100$. Pioneer Standard Electronics 216--587-3600 - Pioneer Technologies Group 301-921-0660

CIRCLE NO. 151
"I'm no Houdini, but I still like knowing the number of ways in and out of things. For instance, U.S. Customs declares 240 ports of entry into this country. Highway 101 between Silicon Valley and Los Angeles has 520 exits and entrances. If the smog ever clears you might actually be able to see them all. The legendary Labyrinth of Versailles offered one way in, two ways out. And the number of ways in and out of the USSR? Sorry, the Kremlin isn't answering. Still, nothing comes close to the I/O of Altera's MAX 7000. It has the highest pin-to-logic ratio of any PLD family. 36 to 260 user I/Ooptions; 44 to 288 pins. Boom. In and out. You can even program each macrocell individually for high speed or half power operation. Talk about freedom. Which brings me to San Quentin. Lots of ways in. ATITRA No way out. Unless, of course, you have access to some gardening tools."

EPM7256

DRAM controller simplifies 32-bit-processor access to memory

The CYM7232 dynamic-RAM (DRAM) controller module simplifies and speeds your 32 -bit processor's access to its banks of the main DRAM. It handles all of the DRAM interface as well as error detection and correction for memory banks as large as 1 Gbyte and systems as fast as 50 MHz .

The module speeds your processor's access to its DRAM in a variety of ways. For example, the module uses a first-in, first-out (FIFO) buffer to store as many as 16 words coming in from the processor. The buffer allows the module to accept burst writes at the processor's speed, independent of the DRAM's speed or refresh status. The buffer also allows the module to offer a posted write, temporarily holding the data until the processor has completed a read operation, then writing the data to DRAM. The posted write allows the processor to swap cache lines without waiting for the DRAM write cycles to complete.

The module speeds read access by using as many as four banks of memory and multiplexing the data to the processor. When the processor addresses one DRAM word, the module reads from all the banks simultaneously, pipelining the data so that subsequent sequential read operations are independent of the DRAM's timing.

The module handles all DRAM control while maintaining a straight-forward interface to your processor. This interface is programmable to adapt to a variety of 32 -bit processors, including SPARC, i486, i860, 68040, and 88110. For example, the interface can handle either multiplexed or separate data and address buses. You can also set the module's bus acknowledge sig-

This DRAM controller module handes DRAM access for a variety of 32 -bit microprocessors with system clocks as fast as 50 MHz .
nal timing, choose big- or littleendian byte ordering, set the length and sequencing of burst accesses, and choose bus parity.
The module's system interface also supports multiprocessor configurations. It allows processors with snooping cache controllers to inhibit read or write operations initiated by another processor. The inhibited operation can then be redirected to account for differences between the DRAM's data and data stored in the various processor caches.
For example, the snooping processor would inhibit a read operation
if its cache contained the requested data and the DRAM data was not current. The snooping processor would then supply the requested data in place of the DRAM. A command line on the module also allows the inhibited read to become a reflective read. A reflective read requires the module to capture the processor-to-processor data transfer and update the DRAM when the transfer is complete.
The module's DRAM interface handles all DRAM addressing and refresh operations, supporting DRAM arrays as large as 1 Gbyte with speeds as fast as 80 nsec . The

SPECIAL RF Coils \& Chokes in 2 Weeks

Sample RF coils and RF chokes designed to meet your special requirements are shipped within 10 days to 2 weeks. Production quantity shipments start within 3 to 4 weeks after approval of samples. Intensive specialization in coil design and manufacture assures a high degree of optimum performance.

Most popular standard inductors available from stock for immediate shipment.
Full line catalog on request.

J.W. Miller Division

BELL INDUSTRIES
306 E. Alondra Blvd., Gardena, CA 90248 Phone: 310-515-1720 FAX: 310-515-1962 Since 1924 , leading manufacturer of standard and custom inductors.

Sun Electronic Systems, Inc., 5307 NW 35th Terrace, Fort Lauderdale, FL 33309

DRAM array can have as many as four blocks of memory, each as deep as 16 Mbits. Each block has four banks of memory with 32 data bits and 7 check bits. The module's address timing is programmable, allowing you to use 256 -kbit-, 1-Mbit-, 2-Mbit-, or 4-Mbit-deep devices. The DRAM interface timing is synchronous, deriving from a frequencymultiplied version of the system clock generated by the module's phase-locked loop.

Large banks of memory increase the opportunity for soft errors to creep into your data. To help maintain data integrity, the module offers two error-handling features.

It has built-in error-detection-and-correction (EDC) circuitry that operates on 32 bits at a time. The module has four EDC circuits, one for each bank. The circuits can detect a 2 -bit error and correct a 1 -bit error as the data is transferred from the DRAM to the processor. The module keeps an internal FIFO log of any errors detected and can generate a system interrupt when an error occurs.

Automatic data scrubbing allows the module to check for errors on all four banks simultaneously, as it refreshes each block of memory. If it detects a correctable error, the module changes the DRAM refresh cycle to a read-modify-write cycle, then corrects the corrupted data. The module can scrub a 1-Gbyte array every 15 minutes.

The CYM7232 module comes in a 400-pin pin-grid array that measures 2.8 in . square. Samples will be available in March at a cost of $\$ 327$ (100).-Richard A Quinnell

Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 943-2600. FAX (408)

943-2741.

Circle No. 730

Finally! A true 32V Precision Analog Array -with onboard Digital Logic.

Put all your analog and digital control functions on a single piece of silicon.

96 • EDN February 17, 1992

WHO NEEDS THE SIGNAL PROCESSING WORKSYSTEM?

Anyone involved in DSP and communications design can benefit from the Signal Processing WorkSystem. Because SPW"' is the only complete, integrated CAE software tool for signal processing design, simulation, analysis and implementation.

Satellite communications. Modems. Mobile radios. Cellular phones. Radar. Sonar. Speech encoding. Voice processing. Image processing. Digital audio. Multimedia. Automotive electronics. Robotics. Neural nets and pattern recognition. Data compression. HDTV. Biomedical instrumentation. All these and much more can be designed using SPW on industry-standard platforms from Sun, DEC and HP/Apollo.

That's why over 200 of the world's leading telecommunications, aerospace and electronics companies around the world now use SPW.

With SPW you first create a high-level, hierarchical design using its extensive libraries of DSP and communications function blocks, as well as your own custom blocks. SPW then automatically converts your design into an error-free simulation program that can accept real-world signals and parameters for accurate design analysis.

SPW also provides several optional paths to implementation, including bit-accurate fixed-point simulation,VHDL generation, logic synthesis and other ASIC/PCB support. A code generation system produces generic-C for fast prototyping on any DSP platform, links SPW to DSP chips from AT\&T, Motorola and TI, and supports boards from leading vendors.

To preview the Signal Processing WorkSystem, call (415) 574-5800 for a free video demonstration tape. In fifteen minutes, you'll see how SPW can save hundreds of hours and thousands of dollars in DSP design.

CYTMDI/CO
 919 East Hillsdale Blvd., Foster City, CA 94404 (415) 574-5800

$\mu \mathrm{P} /$ peripheral-function building blocks speed system-design tasks

Having a library of microprocessors and peripheral functions allows you to design complex ASICs quickly, much as you'd build a breadboard. The Coreware library contains three groups of building blocks: 16 - and 32 -bit microprocessors, floating-point processors, and peripheral functions.

Several ASIC-vendor libraries contain 4 -, 8 -, and 16 -bit microprocessor cores. One ASIC vendor, VLSI Technology, offers a core of its Acorn 32 -bit RISC (reduced-instruction-set-computer) processor. LSI Logic's Coreware library offers familiar 32-bit RISC cores that allow you to customize designs by tailoring the cache or peripherals to meet your application's special needs. These building blocks are high-speed, standard components with existing software bases and large installations of native hosts.

At introduction, the library contains embedded SPARC and Mips microprocessor cores and a 1750A 16 -bit processor core. Among the range of pipelined and nonpipelined IEEE-754-compliant floating-point units are 32 - and 64 -bit ALUs and multipliers as well as a pipelined 32 bit divider. Initially, peripheral functions are limited to a SCSI-1 controller, a generic multiprocessor bus interface, an SBus DMA controller, and a Mips read-write buffer. JPEG (Joint Photographic Experts Group) Image Compression, a Reed-Solomon Codec, and the Mips integrated FPU/CPU functions are currently in the works.

Each function block, like ASIC primitives, consists of a schematic representation and a gate-level simulation model in LSI Logic's proprietary format. In addition, the function blocks also offer behav-ioral-level simulation models. These

C-code models are kept in an intermediate format that the vendor can translate to VHDL (VHSIC Hardware Description Language), Verilog, and its own behavioral-simulation language.

In addition, the function blocks feature existing test vectors. These vectors allow the vendor to perform comprehensive in-circuit manufacturing tests on each of the blocks. The test method that each pattern uses varies depending on the particular functional blocks; the embedded SPARC module uses an internal scan chain whereas the embedded Mips module uses parallelinput vectors that require you to provide pin access to the block's borders. These tests reduce your design responsibility to just providing observation and control of nodes within the random logic and nonCoreware library functional blocks.
The roughly 20,000 -gate embedded SPARC core is a bare-bones processor. The core is based on the early SPARC instruction set; it doesn't perform direct multiplication or division. In addition, the core offers no floating-point coprocessor interface and requires two memory cycles for load instructions. The core, which runs at 20 MHz , does provide on-chip cache support or offers an interface to off-chip cache.
The Mips family is represented by two core processors, which can run at 25,33 , and 40 MHz . Both the roughly 35,000 -gate embedded core and the 25,000 -gate CPU are fully static designs that implement most of the Mips I instruction set. Using $1-\mu \mathrm{m}$ fabrication, you can surround the core with approximately 65,000 gates of additional logic. The embedded core provides a 4- or 8 -kbyte instruction cache, an optional data cache, a DRAM (dy-
namic RAM) controller, a bus-interface unit, and three counter/timers.

A direct data-bus interface bypasses the bus-interface unit and provides single-cycle data transfers between the embedded CPU and dedicated on-chip static RAM or ROM. The cores offer provisions for DMA, although they sacrifice coprocessor support, a memory-management unit, and translation lookaside buffers (TLBs). Without the TLB registers, the CPUs don't offer instructions to manipulate them; if your code contains them, these instructions will cause exceptions.

Pricing depends on several factors, including the core, volume, and design requirements. The access fee, which includes functionblock royalties, starts at $\$ 30,000$. This fee supplements the nonrecurring engineering cost, which starts at $\$ 30,000$. If your needs require it, the vendor will actively participate in the design.-Michael C Markowitz
LSI Logic Corp, M/S D102, 1551 McCarthy Blvd, Milpitas, CA 95035. Phone (408) 954-4875.

Circle No. 731

Low-cost package links $68 \mathrm{HC16}$ to PC

Debugging critical code for an embedded $\mu \mathrm{C}$ is a bit easier with Motorola's ICD16 debugging tool for the 16 -bit 68 HC 16 microcontroller ($\mu \mathrm{C}$). This tool links a PC host computer to a $68 \mathrm{HC1} 6$ target system. The ICD16 module plugs into a PC parallel port. Using the module, users can directly control $\mu \mathrm{C}$ target code's execution.

The ICD16 takes advantage of the background mode, which Motorola added for on-target debug-
ging, of the 68 HC 16 . In background mode, normal processor execution is halted and an external host can control the processor via eight control pins. In background mode, a remote user can interrogate or set register or memory values as well as set breakpoints. When execution hits a breakpoint, processor execution halts and control passes to background mode.

Unlike an ICE (in-circuit emulator), the debug tool requires some board space for wiring and a 10 -pin header. In addition, the ICD16 operation is intrusive: Debugging affects code execution. The ICD16 uses processor resources, mainly execution time, to execute breakpoints, retrieve and set memory or register values, and communicate with the host PC. However, once you set a breakpoint, you can monitor execution in real time until the code hits it and breaks.
In contrast, ICEs are mainly nonintrusive. They collect trace data in separate buffers, not affecting performance until the trace buffer is full. A breakpoint will, of course, stop execution. The ICD16 approach is less intrusive than that of using a monitor-a small debug
kernel, which takes up memory and processor resources. In addition, the ICD16 does not need to use the μ C's serial port to link to a host; it uses special pins. You could actually run a monitor-linked via a serial port-and the ICD16 simultaneously, because they don't share link resources.

You can debug 68 HCl 6 target code without an ICE. To monitor and control execution, the ICD 16 links to the target $\mu \mathrm{C}$ via background mode.

The ICD16 package consists of the module, a target cable, and debugging software. The software is a more advanced version of the integrated assembler furnished with Motorola's 68 HC 16 evaluation board. This version provides a win-
dowed development environment, which integrates a macroassembler, an editor, and a source-code debugger with a host-to-target communications link.
The source-code debugger enables you to debug target code at the source level (C or assembly). It adds performance monitoring (address reference counts), macroscripts, a dumb terminal window, file verification, and interrogation of the 68 HCl 16 multiply-and-accumulate unit. P\&E Microsystems Inc (Woburn, MA) developed the core software for Motorola.
The ICD16 supplements Motorola's $68 \mathrm{HC1} 6$ evaluation board; initially, you can work the 68 HC 16 with the evaluation board, and then use the ICD16 to debug target boards. You could also bypass the evaluation board and use the ICD16 with a simple target configuration.
The ICD16 costs $\$ 99$. The 68 HC 16 evaluation board costs $\$ 168$ during the first quarter of 1992; the standard evaluation-board price will be $\$ 320$ thereafter.-Ray Weiss
Motorola Microprocessor Products Group, 6501 William Cannon Dr W, Austin, TX 78735. Phone
(512) 440-2000.

Circle No. 732

32-bit μ C integrates SPARC with embedded peripherals

Fujitsu's 32-bit SPARClite MB86931 integrates the SPARC RISC (reduced-instruc-tion-set-computer) architecture with a set of $\mu \mathrm{C}$ peripherals tailored for embedded processing. The SPARClite "event processor" handles real-time events. The chip integrates the SPARC integer processor with 2 kbytes each of on-chip instruction and data cache, an interrupt controller, counter/timers for monitoring external events, and a dynamicRAM controller.

To increase execution speed,

SPARC RISC fits embedded systems. The SPARClite $\mu \mathrm{C}$ combines a SPARC CPU with on-chip cache, timers, and an interrupt controller.

+3V POWERED RS-232 IS HERE!

Eliminate +5V RS-232, Use $\mathbf{1 / 2}$ the Power and Meet the New EIA/TIA-562 Requirements

\author{

- Guaranteed Operation Down to 3.0V
 - 4 Drivers, 5 Receivers
 - Meets New EIA/TIA-562 Standards
 - 1μ F External Capacitors
 - Guaranteed RS-232 Compatibility*
 - 1μ A Shutdown Mode
}

Maxim's new MAX561 is the first device to implement the new EIA/TIA-562 standard that guarantees operation with output voltages as low as $\pm 3.7 \mathrm{~V}$. The MAX561 consumes $\mathbf{1 / 2}$ the power of +5 V RS-232 and operates from a 3.3 V power supply. And, as stated in its forward, EIA/TIA-562 "allows for electrical interoperation with equipment designed to conform to EIA/TIA-232D interfaces.

Choose a +3.3V Transceiver and Save Power

	$+3 \mathrm{~V} \mathrm{MAX561}$	+5 V RS-232
Quiescent Current	8 mA	15 mA
Data Rate	$20 \mathrm{kbits} / \mathrm{sec}$	$20 \mathrm{kbits} / \mathrm{sec}$
Output Driver Voltage, Min	$\pm 3.7 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
Receiver Input Voltage, Min	$\pm 3 \mathrm{~V}$	$\pm 3 \mathrm{~V}$
Receiver Input Voltage, Max	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Tx Load Impedance	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$
Rx Input Resistance	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$
Instantaneous Slew Rate	$<30 \mathrm{~V} / \mu \mathrm{s}$	$<30 \mathrm{~V} / \mu \mathrm{s}$

FREE Interface Design Guide

Includes: Application Notes Data Sheets Cards For Free Samples To receive your free design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

[^8]| SPARClite MB86931 | |
| :---: | :---: |
| Clock 20, 49 MHz | |
| Instruction cache 2 kbytes | |
| Data cache 2 kbytes | |
| Memory Dynamic-RAM support: Wait-state generator, Refresh controller | |
| Timers 4 counter timers, | |
| Miscellaneous . . . Interrupt controller, 15 interrupts, | |
| Package type . . 256-pin quad flatpack Sample price $\$ 49(10,000)$ | |
| | |

Fujitsu added instructions to the original SPARC instruction set: an integer multiply instruction and a divide step instruction, as well as a bit-scan instruction that looks for the first nonsign bit. This bit-scan instruction helps in processing bit maps.
In addition, the chip is a fully static design. SPARClite cleans up a number of problems of earlier SPARC implementations. For example, loads and store are typically one instruction cycle, compared with two and three cycles for earlier SPARC CPUs. Some of these speed-ups are a result of a Harvard architecture with divided dual instruction and data caches, unlike Sun SPARC's single unified cache.
Also, this family has on-chip hooks for embedded system test and built-in, in-circuit-emulator/ monitor support. The processor has six breakpoint registers. To monitor code execution, users can set two instruction, two datavalue, and two data-address breakpoints.
The chip has small on-chip caches. These 2 -kbyte caches are generally effective if inner loops fit into the caches. Cache entries can be locked in, enabling critical code to be kept in the 2 -way set associative caches for continuous processing. The CPU doesn't wait for the 2 -word cache line to be filled from external mem-
ory: The first word is used without waiting for the second.-Ray Weiss

Fujitsu Microelectronics Inc, Advanced Products Div, 77 Rio Robles, San Jose, CA 95134. Phone (408) 922-9000. FAX (408) 9439293.

Circle No. 733

8-bit μ C handles power and keyboard management

Laptop power-management and control functions are becoming a major application area. Signetics 80 C 550 microcontroller $(\mu \mathrm{C})$ is an 8051 derivative that combines key laptop functions: power management and keyboard control. The 8bit $\mu \mathrm{C}$ crams the 8051 architecture (with $30 \mathrm{I} / 0$ pins and A/D converter) into a 40 -pin DIP or 44 -lead PLCC (plastic leaded chip carrier).

This chip fills a gap in the 8051 world: It supplies enough peripherals to handle power management and provides the I/Os and program-

ROM space to support standard control functions such as keyboard management. In addition, the $\mu \mathrm{C}$'s 40- or 44-pin packaging lets you minimize board space but still get the job done.

The controller's 8 -channel, 8 -bit A/D converter samples and converts in $40.5 \mu \mathrm{sec}$. The converter can sample power levels, signaling brownout, and power failures, in power-critical applications. The $\mu \mathrm{C}$

80/83/87C550

Power-management design kit

Today, laptops are hot and laptops require power management. The Signetic's design kit lets engineers design in $80 C 752 / 550 \mu \mathrm{Cs}$ for laptop power management.

The kit consists of an application note, which defines the design; a schematic of the complete design; and the application source code.
Using this kit, you can modify the design for your own needs or use it to understand a power-management application. This baseline design saves time by providing an easy-to-understand base to start from. The kit defines a Signetics optimizer board that monitors power. It controls the system frequency generator for clocks and the system-memory, dynamic-RAM-refresh cycles. Keyboard and peripheral activity drives the state machine that controls power management.

An on-chip A/D converter monitors the system battery level and V_{CC}. The optimizer drives the clock-frequency generator and controls the sys-tem-refresh generator. Six operational modes include full power; doze, when the clock rate is halved; shutdown, when power to specific peripherals is turned off; shutdown-doze; sleep, when power is removed from display backlight and LCD regulator; suspend, when the $\mu \mathrm{C}$ takes over memory refresh task and removes power from the rest of the system; and off, when all power is turned off.

The design kit is free of charge.

STEP.IP DC-DC REGULATORS Deliver 90\% EFFICIECCY!

Compact Solutions for $\mathbf{+ 5 V}, \mathbf{+ 1 2 V},+15 \mathrm{~V}$ or Adjustable Outputs

Use the new MAX731, MAX732, MAX733, and MAX752 step-up regulators to build complete 85% to 95% efficient power supplies that fit into less than $0.65 \mathrm{in}^{2}$ of board space. Low input voltages (2.5 V) and miniature external components make these compact regulators ideal for portable and board-level DC-DC conversion in $3 \mathrm{~V}, 5 \mathrm{~V}$, or battery-powered systems. High-frequency 170 kHz pulse-width modulation (PWM) current-mode control provides excellent transient response and minimum ripple.

- Evaluation Kits - SOIC and DIP
- Guaranteed Output Current:

200mA @ 5V (MAX731, VIN > 2.7V) 150 mA @ 12 V (MAX732, V IN $>4.5 \mathrm{~V}$ $100 \mathrm{~mA} @ 15 \mathrm{~V}$ (MAX733, $\mathrm{V}_{\mathrm{IN}}>4.5 \mathrm{~V}$)

- Regulates From Low Input Voltage:
2.5V \& Up (MAX731/MAX752) 4.0V \& Up (MAX732/MAX733)
- Logic-Controlled 6 6 A Shutdown
- 8-Pin DIP \& 16-Pin SOIC

Part	Input Voltage Range	Output Voltage	Output Current	Power Eff. Range	Price $(1000$-up)
MAX731	2.5 V to 4.65 V	$\mathbf{+ 5 V}$	200 mA	$85 \%-90 \%$	$\$ 3.20$
MAX732	4V to 9.3 V	$\mathbf{+ 1 2 V}$	200 mA	$85 \%-95 \%$	$\$ 2.60$
MAX733	4V to 11 V	$\mathbf{+ 1 5 V}$	125 mA	$85 \%-95 \%$	$\$ 2.60$
MAX752	2.5 V to 15 V	Adjustable 2.7V to $\mathbf{1 5 . 7 5 V}$	200 mA	$85 \%-95 \%$	$\$ 3.20$

EVALUATION KITS GIVE IMMEDIATE RESULTS

MAX732 Surface-Mounted EV Kit Each complete surface-mount or through-hole kit contains a PC board and all external components, including inductor. $\$ 20.00$ each.
$\begin{array}{ll}\text { MAX731EVKIT - DIP } & \text { MAX733EVKIT - DIP } \\ \text { MAX732EVKIT - DIP } & \text { MAX752EVKIT - DIP }\end{array}$ MAX732EVKIT - SO*

The MAX731 surface-mount circuit fits in $0.65 \mathrm{in}^{2}\left(4.2 \mathrm{~cm}^{2}\right)$ and has 86% efficiency while delivering 200 mA at 5 V from a 3 V source.

FREE Power Supply Design Guide
Includes: Application Notes \quad Data Sheets \quad Cards For Free Samples To receive your design guide, circle the response number, or contact Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194

[^9]*Flash Memory Programming Supply. ${ }^{\text {FOB }}$ USA recommended resale.
has standard 8051 idle and powerdown modes for power saving. In idle mode the CPU shuts down, but selected peripherals continue to operate. In power-down mode, the entire $\mu \mathrm{C}$ shuts down. An interrupt or reset will resume $\mu \mathrm{C}$ operations.
The chip runs at 16 MHz . Its power-supply current is 35 mA for active mode, which drops to 6 mA in idle mode and falls to $50 \mu \mathrm{~A}$ in power-down mode.-Ray Weiss

Signetics Corp, 811 E Arques Ave, Sunnyvale, CA 94088. Phone (408) 991-2000. FAX (408) 9912311.
circle №. 734

$\mu \mathrm{C}$ combines small pinout, power management, application protection

Designing controllers for lowcost appliances and industrial controllers is a tough compromise among low cost, multiple functions, and safety. National Semiconductor's 8-bit COP820CJ microcontroller $(\mu \mathrm{C})$ can take a little of the pain out of appliance design. It combines a $1-\mu \mathrm{sec}$ CPU core with power management, brownout detection, direct display drive, A/D conversion, pulse generation for motor or sound generation, and multiple timers.

The $\mu \mathrm{C}$ is built around the Na tional COP800 CPU core. This core is an accumulator-based implementation (six registers), with 1-kbyte program ROM and 64 bytes of data RAM. This $\mu \mathrm{C}$ is designed for lowend appliance applications such as toasters, coffee makers, vacuum cleaners, and food processors. These applications require failproof safety, moderate program capability, multiple hardware interfaces, and power management.

Safety features are built in to the $\mu \mathrm{C}$. Brownout, power failure, infinite software loops, and other error conditions will automatically force a CPU reset. To save power, a hold mode drops power consumption in the static device from 8 mA
at a $10-\mathrm{MHz}$ clock to $10 \mu \mathrm{~A}$.
A brownout-protection circuit monitors V_{CC} and automatically resets the $\mu \mathrm{C}$ when the power level falls below 3 V . It also detects transients with pulse widths of 70 nsec or greater. On a transient fault, the $\mu \mathrm{C}$ will stop CPU execution, returning to normal-mode operation when the transient ends. Detection circuitry saves designers from building external, discrete protection circuitry.

The $\mu \mathrm{C}$ responds to multiple external events. Eight of the I/O lines can be edge programmed to wake the processor from halt mode. Like other interrupts, the wake-up forces the CPU into a power-up or reset condition to start processing.

This controller has three timers. The 8-bit programmable watchdog timer has a divide-by-256 prescaler and can detect runaway software. The 8-bit PWM timer enables code to generate high-frequency pulses, including variable duty-cycle pulses (PWM) for motors or other electronic control.

The third timer is a 16 -bit general timer/counter with a load/compare

register. This counter counts down, once per instruction cycle. On underflow, it generates a pulse for output or for interrupting the CPU. At the same time, it loads from the load/capture register. The counter can be programmed as an event counter, counting down for external signal pulse ($500 \mathrm{kHz} \max$). It can also serve as an input timer, counting down until an external signal triggers, whereupon the current count is saved to the load/compare register.

Smart appliances can be controlled with a single low-end, 8-bit $\mu \mathrm{C}$, the COP820CJ. In a 20-pin DIP, the chip supports small displays, motor control, power management, and user appliance control.

SMALI＋5V \＆ADJUSTABLE DC－DCs HAVE 94\％EFFICIENCY！

No Design Required for Guaranteed 300 mA （1．5W）or 750mA（3．75W）Outputs

The new MAX730／MAX738 and MAX750／MAX758 step－down switching regulators are compact and simple solutions for battery－powered portable applications．They extend battery life by providing 85% to 95% efficient step－down regulation．Pre－selected components simplify design work and the standard application circuit delivers the guaranteed power over all specified line，load，and temperature conditions．High－frequency 160 kHz pulse－width modulation（PWM）current－mode control provides low－noise operation and reduces output ripple to less than 50 mV p－p
－Evaluation Kits－SOIC and DIP＊
－Guaranteed Output Current：
750 mA for $\mathrm{V}_{\text {IN }}>10.2 \mathrm{~V}$（MAX738／MAX758）
300 mA for ViN＞ 7.0 V （MAX730／MAX750）
－Regulates From Low Input Voltage：
+5.2 V to＋11．0V（MAX730／MAX750）
+6.0 V to +16.0 V （MAX738／MAX758）
－Logic－Controlled 6μ A Shutdown
－Adj．Output： 1.25 V to Vin（MAX750／MAX758） Fixed Output：$+5 \mathrm{~V} \pm 5 \%$（MAX730／MAX738）
－Space－Saving Footprint：
8 －Pin SOIC and 8－Pin DIP（MAX730／MAX750）
16－Pin SOIC and 8－Pin DIP（MAX738／MAX758）

The MAX730／MAX750 and MAX738／MAX758 deliver high efficiency over a wide load range．

Evaluation Kits＊Reduce Design Cycle \＆Provide Immediate Results

Surface－mount and through－hole kits are available for all four products，and contain a PC board and all external components，including inductor．＊

The MAX730 application circuit components fit into $1 / 2$ in 2 $\left(3.2 \mathrm{~cm}^{2}\right)$ of board space．

The MAX730／MAX738 evaluation kit has all the components needed to build a complete +5 V step－down circuit．

FREE Power Supply Products Guide Includes：Application Notes Data Sheets Cards For Free Samples To receive your design guide，circle the response number，or contact Maxim Integrated Products， 120 San Gabriel Dr．，Sunnyvale，CA 94086，（408）737－7600，FAX（408）737－7194．

ノルノスIノV

Distributed by Arrow，Bell／Graham，Elmo，Hall－Mark，Nu Horizons，Pioneer，and Wyle．Authorized Maxim Representatives：Alabama，（205）830－0498；Arizona， （602）730－8093；California，（408）248－5300，（619）278－8021，（714）261－2123；（818）704－1655；Colorado（303）779－8060；Connecticut，（203）384－1112；Delaware （609）778－5353；Florida，（305）426－4601，（407）830－8444；Georgia，（404）447－6124；Idaho，（503）292－8840；Illinois，（708）358－6622；Indiana，（317）844－8462；Iowa， （319）393－2232；Kansas，（816）436－6445；Louisiana，（214）234－8438；Maryland，（301）644－5700；Massachusetts，（617）329－3454；Michigan，（313）352－5454； Minnesota，（612）941－9790；Mississippi，（205）830－0498；Missouri，（314）839－0033，（816）436－6445；Montana，（503）292－8840；Nebraska，（816）436－6445；Nevada， （408）248－5300；New Hampshire，（617）329－3454；New Jersey，（516）351－1000，（609）778－5353；New Mexico，（602）730－8093；New York，（516）351－1000，（607）754－2171： N．Carolina，（919）851－0010；Ohio，（216）659－9224，（513）278－0714，（614）895－1447；Oklahoma，（214）234－8438；Oregon，（503）292－8840；E．Pennsylvania，（609）778－5353； W．Pennsylvania，（614）895－1447；S．Carolina，（919）851－0010；Tennessee，（404）447－6124；Texas，（214）234－8438，（713）782－4144，（512）346－9186；Utah，（801）561－5099； Virginia，（301）644－5700；Washington，（206）823－9535；W．Virginia，（513）278－0714；Wisconsin，（414）476－2790；Canada，（416）238－0366，（613）225－5161，（604）439－1373 （514）337－7540
Four Kits Available－MAX730／MAX738EVKITT－DIP：MAX730／MAX738EVKIT－SO \＄20 each． MAX750／MAX758EVKIT－DIP：MAX750／MAX758EVKIT－SO．

The C0P820CJ doesn't have a full A/D converter. Instead, it has an analog comparator to test external voltages. With the proper program, you can use the comparator to build a single- or dual-slope A/D converter.

In addition, the $\mu \mathrm{C}$ supports as many as $24 \mathrm{I} / \mathrm{Os}$. These I/Os comprise a 4 -bit output port, a 4 -bit input port, and two 8 -bit programmable ports. The programmable-port pins can be set at a high-impedance
input (weak pull-up) or a push-pull output. Four of the programmable pins can directly drive LEDs with as much as 15 mA . The 16 -pin DIPs or SOICs have only $12 \mathrm{I} / \mathrm{Os}$.
-Ray Weiss
National Semiconductor Corp, 2900 Semiconductor Dr, Santa Clara, CA 95051. Phone (408) 7215000. FAX (408) 730-0764.

Circle No. 735

$\mu \mathrm{C}$ and software kit tames Appletalk

PCs and workstations can now take advantage of the Appletalk network for desktops and offices. Zilog is releasing a design kit for the two lower layers of the 6layer Appletalk protocol. With this kit, developers can link peripherals and systems using the Appletalk network. The Appletalk protocol transfers data at $230.4-\mathrm{kbits} / \mathrm{sec}$.

The kit implements the toughest part of the Appletalk protocol, the data-link level-the Local Talk Link Access Protocol (LLAP). The Local Talk protocol is implemented as an assembly-language program running on the Zilog Z80181, an

8 -bit microcontroller ($\mu \mathrm{C}$) for communications processing.

The remaining higher levels of the Appletalk protocol are less timing and processor dependent. They can be implemented on a back-end or host CPU: The Z80181 serves as a front-end communications processor, buffering packets for transmission or for passing back to the host. However, the Z80181 has enough headroom for the complete protocol. It can address as much as 1 Mbyte, and the LLAP implementation takes up only 5 kbytes.
The LLAP supports node-to-

node transmission and receipt of data and control packets. Because of tight signal-timing and synchronization constraints, this transmission is the most difficult part of Appletalk to implement. LLAP is a CSMA/CA (carrier-sense multipleaccess and collision-avoidance) protocol with synchronous pulse generation and frame transmission and reception for each node.
The software kit includes assembly source code for the first two layers of the Appletalk protocol, a hardware evaluation board with a $10-\mathrm{MHz}$ Z80181 $\mu \mathrm{C}$, the LLAP driver in an 8-kbyte EPROM, 8 kbytes of static RAM (SRAM) for additional user programs, RS422 drivers, and a DIN-8 LLAP connection module. For PC-hostbased debugging, the kit provides a debug monitor and a terminal emulator.
The Local Talk implementation of the physical layer uses an SDLC (synchronous data-link control) frame format with FM0 bit encoding (checks for bit transition on line) and RS-422 as a physical medium with a differential driver and 3state signals.
Appletalk also defines data-link and physical levels for Ethernet (Ether Talk) and Token Ring (Token Talk). The data-link levels, including Local Talk, encapsulate or strip packets for a network level, which defines a Datagram Delivery Protocol (DDP). The data-link level supports node-to-node packet transmission and receipt. (It does not guarantee packet delivery but does deliver error-free packets.)
The Appletalk LLAP driver kit costs $\$ 5,000$, including source code. There is no run-time licensing fee.-Ray Weiss

Zilog Inc, 210 E Hacienda Ave, Campbell, CA 95008. Phone (408) 370-8000. FAX (408) 370-8056.

Circle No. 736

Help for the toughest part of the Appletalk communications protocol is available in a kit that includes source code and a $\mathbf{Z 8 0 1 8 1} \mu \mathrm{C}$-based board.

SWITCHOVER TO MAX1259 BATITEY MANAGER AND REDUCE POWER 67\%

Maxim's new MAX1259 battery manager consumes only 100nA supply current in backup mode, 3.3 mA in operating mode, and costs less than the industry standard DS1259. When power fails, the MAX1259 switches CMOS RAM, real time clocks, or other continuously powered circuits to the backup battery.

- Uses $1 / 3$ the Supply Current of DS1259 in Operating Mode Only 3.3mA
 - 250 mA Output Current at 0.2 V Switch Drop

- Under 100nA Supply Current in Backup Mode
- Industrial/Military Temperature Ranges
- Plug-in DS1259 Upgrade

The MAX1259 output makes it possible to backup several CMOS RAM chips.

Ideal for Monitoring $\mathbf{+ 5 V}$ Supplies

The MAX1259 is the perfect low-cost battery management system for portable and nonvolatile electronic equipment. Handheld instruments, controllers, computers and uninterruptable power supplies will benefit from extended battery life and guaranteed performance over temperature.

FREE μ P Supervisory Design Guide
Including: Application Notes \quad Data Sheets \bullet Cards For Free Samples To receive your design guide, simply circle the reader response number, or contact Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX (408) 737-7194.

MAXIM

[^10]
Learn How To Turn Schematics Into Circuits That Work

Get Practical Analog Circuit Design Information From The Expert At This Half-Day Seminar

Linear Technology Corporation and EDN are proud to sponsor a seminar for designers focusing on high speed amplifier techniques. This seminar is primarily devoted to familiarizing designers with the realities and difficulties of high speed circuit design.
However, circuit techniques for converters and off-line switchers will also be covered. While the mechanics and subtleties of achieving precision circuit operation at DC and low frequency have been well documented, relatively little has appeared which discusses, in practical terms, how to get fast circuitry to work ... until now. Jim Williams, the industry expert on both high speed amplifier and switching regulator techniques will discuss the complex world of circuit design. A staff scientist at Linear Technology, Williams has written over 100 application articles for numerous industry trade magazines including EDN. In addition to being one of EDN's

Jim Williams, Staff Scientist at Linear Technology Corporation.

LTC is a recognized leader in bigh performance op amps, linear and switching regulators, interface devices, data converters, references, comparators, and filters.
most popular contributors, Williams is also one of the principle authors of the popular Linear Technology Applications Handbook.
If you are involved in circuit design, take advantage of this opportunity to get the insights of the industry's leading expert. Reserve your space today.

SEMINAR LOCATIONS

Date	Location
March 30	Orlando
March 31	Boston
April 1	Northern New Jersey April 2
April 3	Dallaso
April 7	Santa Clara
April 8	Orange County

Note: Seminar Schedule:
8:30 am-12:00 pm
Lunch 12:00 pm-1:00 pm.

Tickets for this half-day seminar are $\$ 30.00$ (price includes lunch). Reserve your place by calling 1-800-637-5545. Or send your check with this coupon to:

Linear Technology Corporation
Marketing Communications Department
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Please reserve \qquad ticket(s)* for this half-day seminar. My check for \qquad is included. ($\$ 30.00$ each)
VISA/MC \# \qquad Exp. Date \qquad
*If ordering multiple tickets, please list names and titles of other attendees.
106 . EDN February 17, 1992
$C \&$

CB-C7
 High Integration Level Cell-Based ASIC Technology

Systems
Fast Turnaround Options dvanced $C A D$-Enviro

NEC CB-C7 Cell-Based-ASICs - Single-Chip Solutions to System Problems

Putting intelligent systems on silicon has never been so easy. Using NEC's CB-C7 advanced CMOS ASIC technology you can integrate all your system elements - such as microprocessor or microcontroller cores, RAM, ROM, intelligent peripherals and analog I/O - into a single-chip solution. And it won't cost you a fortune in new design tools, because NEC CB-C7 ASICs can be designed using industry standard hardware platforms and EDA software - hardware and software you probably already have.
NEC's CB-C7 cell-based ASIC technology gives you other advantages as well. The sub-micron CMOS process used to implement it not only allows CBC7 to achieve the high level of integration required for systems-on-silicon, it also provides you with 0.44 nsec gate delays and ultra-low power consumption To make things even better, NEC offers you two routes to finished silicon. If you require a fast turnaround, we can implement user-defined logic in your design as a sea-of-gates gate array Alternatively, if you are aiming for minimum chip cost, we can produce the entire ASIC as a standard-cell solution.

Mega function block Libraries key to system integration

NEC's CB-C7 megafunction blocklibraries cover all your likely integration requirements - from the simple logic elements which glue your system together, right up to the high-level functions which provide your designs with on-chip intelligence.

Functional Cells	
CB-C7HD	CB-C7FT
Standar Log	Standard Logi
74LS logic function	74LS logic function

Industry standard workstations and EDA software

For example, the library of megafunction blocks contains cores of our $\mu \mathrm{COM} 87$, V20H and V30H microprocessors, plus intelligent peripheral functions such as those provided by NEC's 72-series and 82-series standard peripheral devices. And because most of these megafunction blocks are hard macros, derived directly from the chip layouts of our standard parts, they have fully characterized timing parameters and can be tested with the standard part test vectors.
Our hard macros are complemented by an extensive range of soft macros to provide additional peripheral device and system support functions, and by a library of over 300 standard logic functions availaible for both silicon realization approaches, the 'High-density' (CB-C1HD) and the 'Fast TAT'-option (CB-C7FT). And of course, all our RAM and ROM blocks can be compiled to exactly match your system requirements.

Sub-micron CMOS high speed, low power

CB-C7 ASICs utilize an advanced CMOS process technology which features $0.8 \mu \mathrm{~m}$ gate lengths. This technology achieves internal gate delays of only 0.44 nsec and power gate delays of 0.34 nsec (fan-out $=2$, wire length $=2 \mathrm{~mm}$)
The high silicon utilization of the process allows us to achieve integration levels of over 180,000 usable 2-input NAND-gate equivalents per chip - more than sufficient to put high-performance systems into single-chip solutions. And although CB-C7 ASICs consume very little power - only $6.5 \mu \mathrm{~W} /$ gate $/ \mathrm{MHz}$ their 48 -mA drive capability allows them to deliver power when it's needed.

Solving Cost/Turnaround Trade-offs

Fast turnaround and low unit price are often conflicting requirements when it comes to implementing your ASIC designs - the first suggesting the use of a gate array solution, and the second dictating a standard cell approach NEC's CB-C7 ASIC technology solves these cost/turnaround trade-offs - with combined gate-array/standard-cell solutions for fast turnaround, and full standard-cell implementations for low unit cost
Whichever option you choose, the hard-macro, megafunction block and RAM/ROM blocks in your design will be floor-planned onto the chip in much the same way. If you need finished silicon in less than a month, we will then implement your customer specific logic in a 'sea of gates' gate array, laid down around these cells. Alternatively, if you are aiming for minimum piece price, we will implement the entire ASIC as a standard cell design - using sophisticated cell optimization algorithms to ensure we achieve minimum chip area

High Performance ASICs and Packages

Both the fast turnaround and low unit cost versions of CB-C7 ASICs feature the same high performance - so there are no compromises with either solution.
To match this performance, we have an equally impressive range of packages in which to house them. You can choose between conventional plastic DIPs, quad flat-packs, PLCCs and high pin-count plastic or ceramic pingrid arrays. NEC's state-of-the-art packaging technology provides CB-C7 ASICs with maximum protection from their environment, ensuring their longterm reliability.

Open CAD Design Systemflexibility in design

NEC OpenCAD gives you maximum freedom in the CB-C7 design process. Freedom to perform schematic capture using popular EDA software such as DAZIX, Mentor, Valid and VIEWlogic, on industry standard workstations from DEC, HP-Apollo, IBM and SUN.
After schematic capture, your design is completed by compiling RAM/ROM

blocks and optimizing user-defined logic. It is then floor-planned using ChipPlan, simulated with System Hilo or Verilog, and placed and routed using Cell-3 Ensemble. After post-layout simulation and design-rule checks, we pass pattern generation data to one of our wafer fabrication facilities in Japan, the USA or Europe.
To simplify your design task, logic optimization, simulation, and chip layout are normally carried out by a NEC ASIC design center on their SUN or DEC workstations. Providing access to NEC's Unified Design Environment - a suite of ASIC design tools which operate
under DEC PowerFrame system management software - these workstations ensure a simple user interface and smooth data flow from one design process to the next.
However, OpenCAD also gives you the flexibility to install part or all of the NEC Unified Design Environment on your own system, so that you can perform as much, or as little, of the CB-C7 design process as you choose.

NEC Unified Design Environment A Framework for Right-First-Time Designs

To handle the complexity of CB-C7 ASICs, and that of our next generation of ASIC technologies, we have taken some of the best ASIC design packages in the industry - such as VIEWlogic schematic capture software, Synopsys HDL compilers and logic synthesizers, Genrad System Hilo, and Cadence simulation,
layout and routing software - and integrated them into the NEC Unified Design Environment.
At the heart of this design system lies the NEC Central Unified ASIC Database - a technology independent database which allows us to automatically generate new simulation models as new
process technologies are introduced.
So with NEC, you not only get ahead, you stay ahead.

Open CAD Design System

Wherever you are in the world, there is a NEC design center close enough to support you in CB-C1 ASIC design. If you are already using industry standard workstations and EDA software to
design ASICs, you probably have all the hardware and software design tools you will need. Simply install the CB-C7
ASIC libraries, and you can start on a
CB-C1 design tomorrow.

For fast answers, call us at:

USA Tel:1-800-632-3531. Fax:1-800-729-9288. Germany Tel:0211-650302. Telex:8589960. The Netherlands Tel:040-445-845. Telex:51923. Sweden Tel:08-753-6020. Telex:13839. France Tel:1-3067-5800. Telex:699499. Spain Tel:1-319-4150. Telex:41316. Italy Tel:02-6709108. Telex:315355. UK Tel:0908-691133. Telex:826791. Ireland Tel:-6794200. Telex:90847. Hong Kong Tel:755-9008. Telex:54561. Taiwan Tel:02-719-2377. Telex:22372. Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:4819881. Telex:39726. Australia Tel:03-267-6355. Telex:38343.

Here's a component information management system that lets everyone on your team do more. The new CAPSTONE-WSTM family of networkable IC and semiconductor component management solutions gives you the features you need to boost your organization's productivity.

Save hours of time and effort with complete, current, and comprehensive information on more than 625,000 components right at your fingertips. That's information from over 500 manufacturers worldwide and more than 700,000 pages of manufacturers' datasheets and application notes on-line, at all times.

Based on the CAPS® (Computer-Aided Product Selection) system running within a TCP/IP (Transmission Control Protocol/ Internet Protocol) network environment, CAPSTONE-WS helps workstation and PC users manage IC and semiconductor information faster and easier than ever before.

CAPSTONE-WS also accommodates preferred parts lists
(PPLs) to encourage consistent component selection practices throughout your organization.

To find out more about how CAPSTONE-WS can help you make the most of your valuable engineering time and to ask for your free demo disk, call jill Adams at 800-245-6696.

Computer Aided
Product Selection

CAPS is a registered trademark and CAPSTONE-WS is a trademark of Reed Publishing (USA) Inc.

Whether its 57 varieties, 31 flavors, 8 (you knowa leader by the

There is only one company that offers you a choice of more monolithic sampling analog-to-digital converters - 35 in all - than anyone else. Analog Devices.

But what makes us the leader isn't just the breadth of our product line. It is also its depth. For no other line of sampling ADCs encompasses a wider range of specs. A range that virtually guarantees we have the exact part for your specific application. Making it far easier for you to complete your design.

Incorporating a sample/hold front end onto an a/d converter is just one more example of our

billion setred,orr35sampling ADCs, breadth of itsproduct line.

expertise at integrating high-performance analog and digital circuitry on the same IC. And it is this same expertise that has made us the acknowledged leader in advanced mixed-signal technology.

So before you even think about beginning your next design, give us a call at 1-800-262-5643. Or write to us at the address below. We'll gladly send you a free copy of our complete monolithic sampling ADC guide.

It isn't very edible, but it does make for very tasteful reading.

EDN-SPECIAL REPORT

Design
 fortest

 (without really trying)

 (without really trying)}

Michael C Markowitz, Technical Editor

You have every reason to ignore test in your projects. Schedules make little or no allowance for the extra time design for test requires; in fact, shrinking productdevelopment cycles give you less time to finish more complex projects. In addition, although design specifications occasionally include test metrics, management judges you by your ability to meet your specifications' demands on function and cost. The bottom line is that schedule, function, and cost are the standards management use to grade your performance. Test? "Oh yeah, make sure the manufacturing guys can test your designs."
Designers often cite performance and area penalties as the most vexing problem of design-for-test strategies. Unfortunately, as with most generalizations, these may be

Despite the dangers of ignoring testability, subtle costs can make designing an ASIC for test prohibitively expensive. Testability tools provide construction techniques that lower the cost of designing for test.
untrue in specific cases. If you underutilize a gate array or design a pin-limited standard-cell circuit, then area shouldn't be an issue. And, although I/O requirements may prevent you from dedicating pins to testing, you may be able to multiplex test pins with functional ones. In fact, although the IEEE1149.1 test port requires four dedicated pins, Toshiba, through its Vertex subsidiary, multiplexes signals to offer a test interface option
where you dedicate only one pin to test. The test pin internally selects between functional I/O and a pseudo-IEEE-1149.1-compatible test port. (IEEE-1149 was formerly known as the JTAG-Joint Test Action Group-specification.) Toshiba can’t call its port IEEE-1149.1-compatible because a true IEEE-1149.1 must have four dedicated test pins.

Performance-impact fears can be an even bigger paper tiger. Many designers claim that their design is too close to the edge of the ASIC vendor's process capabilities. However, these designers forget that not every path is critical. Adding testability to less worrisome paths may not make your design fully testable, but the design will be more testable than it might otherwise be. In addition, several ASIC vendors, Toshiba among them, of-

fer zero-delay scan latches, which don't rob time from your functional circuits.

Aside from designing smart, there are several ways your company can build testable circuits without specifically designing them that way. Over time, these testability enhancers will take as much control for design testability as you are willing to give them.

In addition to letting your company test your designs, many de-sign-for-test (DFT) strategies offer a side benefit. If the test strategy lets you control internal voltage levels, then you can also use the test circuits to set internal states and conditions. By defining a particular initial condition, you can analyze behavior and facilitate prototype or device debug. Strategies that provide internal observation points simplify evaluating the capability.

Perhaps the simplest approach to designing for test is to pass the responsibility off to your ASIC vendor. Many vendors, among them Gould AMI and Fujitsu, provide transparent test as an internal service. You'll pay for the privilege, however; the vendors will add the cost of making your designs testable to your NRE. And the service isn't entirely transparent; you must recheck the vendor's simulation results to ensure the inserted testability doesn't impact your design's timing specifications.

In general, commercial testability tools fall into two broad categories. One group physically changes your design by adding logic, scan chains, or testability enhancers such as built-in logic-block observers (BILBOs) or test matrices. In contrast, the other type of tool accepts your design and creates test patterns to evaluate it.

Of those test schemes that modify your design, the Crosscheck approach is the most innovative and
seems to least affect performance. The approach, available to ASIC designers only through Crosscheck licensees (Fujitsu, Harris, LSI Logic, NEC, Oki Electric, Raytheon, and Sony), provides observability at most every node in your design by adding minimum-sized p-channel transistors.

Using Crosscheck's approach, you design your circuits using library cells that appear and function as conventional cells; the ASIC vendor has already incorporated the additional p-channel transistors into the cells. According to Nitin Deo, applications engineering manager at Fujitsu, and Cliff Vaughan, strategic marketing manager at Oki, the parasitic capacitance of these transistors might add 2 to 3% to propagation times-though long p-channel transistor stacks, such as those in a 4-input NAND gate, may suffer a delay penalty of 6%. In contrast, both John Defalco, manager
of programs, design support, and business development of Raytheon's Microelectronics Center, and Farzad Zarrinfar, product marketing manager at LSI Logic, say that their companies' implementations are nominally faster. Their approaches beef up the p-channel devices to compensate for the additional capacitance, and these larger transistors provide faster switching.

The embedded-matrix approach requires adherence to several minor design rules: the design can't rely on stored charge, and internal freerunning oscillators must allow initialization to a known state.

Where the approach exacts a bigger price is in its 4 -pin test bus. The bus, compatible with IEEE1149.1 , provides a means for serially shifting the node data off the chip for comparison with "good" data. The 4 -pin test bus and the additional observability transistors combine to claim an area penalty

Test functions you insert using Racal-Redac's Vision framework and tools include functionand test-logic synthesis and pattern generation.

Don't test my circuits

Many engineers still misunderstand the purpose of design for test, according to Scott Creekbaum, senior engineer at AT\&T's Santa Clara Design Center. Too often, Creekbaum sees designers who get defensive when they are asked to design for test. These designers know that their circuits are good.

No ad-hoc or structured test approach tests or guarantees your design's function. You or your design team are the only ones who can attest to the goodness of your design. You reach this conclusion via extensive simulation, breadboarding, and functional testing of the design.

In contrast, design for test starts with a fundamental

Abstract

assumption: The design is good. Design for test then seeks to qualify the manufacturing of the design. In fact, a more appropriate name might be designing to test manufacturing.

Since testing a device requires control and observation of internal logic states, design for test aims to provide it. Using this access, the test seeks to answer such questions as: Are any of the nodes stuck high or low? Does the particular device under test have any opens or shorts? Do signals take too much time to make the transition between voltages? Does the design sink and source reasonable amounts of current? Finally, does the device initialize properly and consistently?

of 30% in lost raw gates on small designs and closer to 20% on larger ones.

What does it cost?

This area penalty may not translate into significantly higher dollar costs. Although several of the licensees will charge a premium for designs that use this test approach, this premium may be deceptive. You can offset the higher charges with savings in test-program development and debug time for circuits without DFT or the additional time to manually design in test.

Currently, the Crosscheck approach offers only massive observation of internal nodes. Toward the middle of this year, the company will introduce a capability to provide control of flip-flops as well.

A more common design-modification approach is scan substitution. This approach changes your design by replacing all or most of your nonscan flip-flops with scannable ones. In effect, the scan philosophy converts a sequential logic design into a multitude of combinatorial ones. In these scan designs, each combinatorial circuit contains paths of combinatorial logic terminated by one storage element. Scan then
builds a mechanism to shift data serially to and from each of the storage elements so each storage element acts as a primary input or output to its combinatorial circuit.
Many of the transparent testsynthesis tools offer this scaninsertion capability. Among the tools are Intergraph's Testsyn, Philips' Locam, Racal-Redac's Silcsyn Test Synthesis, Sunrise's Testgen, Synopsys' Test Compiler,
and Teradyne's Frenchip Synthesis. The tools offered from Intergraph, Philips, and Teradyne were developed for internal use (AT\&T developed Scan Test and Dassault Electronique developed Frenchip Synthesis) and are being marketed externally to help defray costs.
Two features help distinguish among these scan-test tools. First, designers looking for push-button test insertion will have to push sev-

Post-design test insertion requires evaluating the impact of the added test on your design. Teradyne recommends specifying the test structures from the start.

DESIGN FOR TEST

eral buttons. For example, you insert scan using Test Compiler after synthesizing your logic, but before you optimize the design. Test Compiler does generate test patterns, though, so you needn't run a separate pattern generator. Testsyn inserts the scan chains and generates patterns after synthesis and optimi-
zation. In contrast, Locam and Silcsyn Test Synthesis insert the test logic into the design during synthesis, but neither generate patterns; optional tools from the vendors perform that function.
A third alternative is Testgen, which like Testsyn, is a test-insertion tool rather than a test-synthe-
sis tool. Testgen accepts a "test budget," consisting of acceptable performance and area penalties. Using these design constraints, the software swaps some flip-flops for scan-flops and generates patterns to test the circuit. The tool performs no logic optimization.
Rigorous application of scan

Table 1-Test-logic insertion tools

Company	Product	Function- and test-logic optimization	IEEE-1149.1-controller/ multiple internal scan chains/multiple clocks	Input/output formats ${ }^{1}$	```Inserts BIST [/ multiplexed isolation```	Cost (availability)	Transparency
Compass Design Automation	Test Assistant	Yes	Yes/yes/yes	Schematics, EDIF, VHDL, Verilog	Yes/yes	$\begin{gathered} \$ 60,000 \\ \text { (now) } \end{gathered}$	Separate operation. Tool generates patterns.
Dazix	Testsyn	No	No/yes/yes	VHDL, Verilog, C, EDIF, Dazix Netlist/VHDL, EDIF	No/no	$\begin{aligned} & \$ 25,000 \\ & (2 Q \quad 92) \end{aligned}$	Separate operation.
	Pyramid	No	No/yes/yes	VHDL, Verilog, EDIF, TDL	Yes/yes/no	$\begin{aligned} & \$ 25,000 \\ & (2 \mathrm{Q}, 92) \end{aligned}$	Separate operation.
GEC-Plessey Semiconductor	Gatemap	Yes	Yes/no/no	EDIF or truth table/EDIF	No/no	$\begin{gathered} \$ 25,000 \\ \text { (now) } \end{gathered}$	Inserts scan chain during synthesis of function logic. Separate tool adds BIST.
LSI Logic	Test Builder	No	Yes/yes/yes	VHDL, EDIF, NDL	Yes/no	$\begin{gathered} \$ 80,000 \\ \text { (now) } \end{gathered}$	Separate operation. Tool tests megafunctions using multiplexed isolation with your guidance.
Philips Electronic Design and Tools	Locam	Yes	Yes/yes/yes	EDIF, VHDL, Ella/EDIF, VHDL, Mentor schematic	No/no	$\begin{gathered} \$ 30,000 \\ \text { (now) } \end{gathered}$	Inserts scan chain during synthesis of function logic.
Racal-Redac	Silcsyn's Test Synthesis	Yes	Yes/yes/yes	VHDL, Silcsyn EDIF, Cadat, Visula/VHDL, Cadat, EDIF, NDL	Yes/no	$\begin{gathered} \$ 54,000 \\ \text { (March '92) } \end{gathered}$	Test logic is synthesized with function logic.
Sunrise Test Systems	Testgen	No	No/yes/yes	TDL or NDL Netlist, Verilog/TDL or NDL Netlist	No/no	$\begin{gathered} \$ 95,000 \\ \text { (now) } \end{gathered}$	Separate operation. Tool accepts user-guided "test budget." Generates vectors.
Synopsys	Test Compiler	Yes	Yes/yes/yes	Verilog, VHDL, Netlist, schematic, Boolean equations	No/no	$\begin{gathered} \$ 40,000 \\ \text { (now) } \end{gathered}$	Separate operation. Generates test vectors.
Teradyne EDA	Frenchip Synthesis	Yes	Yes/yes/yes	VHDL, espresso/ VHDL, and netlists in several formats	Yes/no	$\begin{gathered} \$ 75,000 \\ \text { (now) } \end{gathered}$	Test logic is synthesized with function logic.

Notes: 1. EDIF=Electronic Design Interchange Format, VHDL=VHSIC Hardware Description Language, NDL and TDL=proprietary description languages.
2. BIST=built-in self test.
methods requires integration of all storage elements into the scan chain. The other distinguishing feature of some of the test insertion tools is their ability to build partial scan into designs. Testgen, Silcsyn Test Synthesis, and Frenchip Synthesis all allow partial scan. In fact, each of these tools will choose which storage elements to include in the scan chain based on the software's assessment of efficacy. The patterngenerator partner of these tools will recognize and create high-coverage patterns.

Although Testsyn, Test Compiler, and Locam are full-scan-based tools, they don't force you to trade all storage elements for scannable ones. You can protect portions of your circuit from these tools to ensure timing, area, or logic isn't changed. The downside of protecting sections of your circuit from full-scan-based tools is that the pattern generators can't assure testability.

Beyond full- and partial-scanbased tools, several tools can create modules that self-test function blocks. Function blocks that par-

Beginning with either Verilog HDL or VHDL, Synopsys' test strategy is to first synthesize and optimize your function logic, then insert the test logic and generate patterns.
ticularly lend themselves to built-in self-test (BIST) contain highly regular structures and include memories and data paths. LSI Logic's Test Builder includes a module that generates BILBOs for memories. The BILBOs are the logic that perform and grade BISTs. Modules within Compass's

Design Assistant let you generate BILBOs for memories, data paths, multipliers, and circuits of your own design. Frenchip Synthesis also offers BILBO generation for your circuits.

One other design-modification method for test insertion is multiplexed isolation. As the name im-

You can design for test, if you want

Some designers do design for test. If you want to design for test, beyond the tools discussed in the article, you have several ways to do it. Your choices range from manually inserting control and observation points into the design to using test-analysis tools.

Test-analysis tools can be bundled with the testinsertion or pattern-generation tools or they can be offered independently. Among the bundled tools are an analyzer that comes with Teradyne's Aida pattern generator. This tool examines your design against 24 internal rules to let you know whether pattern generation will be successful. Similarly, the AT\&T scaninsertion tools, which Dazix, an Intergraph Co, incorporates into its own tool set, performs a design audit looking for testability design-rule violation.

Going a step beyond the rule-checking capability, several tools actually analyze your design. Since Racal-

Redac's Silcsyn Test Synthesis, Sunrise's Testgen, and Teradyne's frenchip let you constrain the "scannability" of your design, they include analysis capabilities that try to select the most efficient storage elements to include in the scan chains.

Both Dazix and Teradyne also offer independent tools to assist you in choosing test schemes or in selecting control or observation nodes. Dazix's \$5000 Pioneer tool is a rule checker that assures your design is suitable for the company's pattern-generation tools. Although Teradyne's $\$ 50,000$ Lasar is primarily a boarddesign or system-design tool, you can use it to design your ASICs. The software contains two utilities that rank internal nodes based on their control and observation efficacy. When you select a node to make a primary input or output, the software regenerates the list to account for dependencies.

DESIGN FOR TEST

plies, this technique uses multiplexers to provide access to functional blocks or megacells embedded in your design. Via this access, you can independently test these blocks without the effect and influence of peripheral circuits. Only Test Builder and Test Assistant offer this capability.

If you are reluctant to let anyone or anything modify your design, or
if you want to generate test patterns for a circuit after running any of the test-logic insertion tools, you have several choices. One general note about using commercial pattern generators though: Talk to your ASIC vendor before you make a big financial commitment. Automatically generated test patterns are much like simulation resultsASIC vendors insist on qualifying
the models and tools you use to generate them.

Developing test patterns to test strictly combinatorial circuits is relatively easy. So, by extension, is developing test patterns to test full-scan-based circuits. Developing patterns to test circuits with sequential logic is far more complex because the software must move data through storage elements to

The top-10 reasons you don't design for test

At a panel session on the acceptance barriers confronting design for test and built-in self test (BIST), Richard Sedmak, president of Self-Test Services ((215) 6289700), presented a list of reasons designers don't design for testability. With apologies to David Letterman, we have adapted that list here.
10) There is no push-button answer to designing for testability. And everyone knows how much engineers like to push buttons.
9) Test requirements are usually poorly defined. Failure of the marketing people to put a specification for testability into the statement of work makes it easy for you to meet it.
8) Little or no communication occurs between the design, manufacturing, and service organizations. When you don't know the sort of problems that arise after your designs reach the production floor and ultimately, the customer, you can't improve subsequent iterations.
7) Companies don't do a good job of tracking manufacturing defects and field failures. You aren't the only one who doesn't know what happens once designs leave your hands.
6) Your company has no life-cycle cost-of-test model. Because the company has never tracked the impact of failure to test over the life of a product, the company can't make informed tradeoffs about the up-front cost of designing for test versus the back-end cost of ignoring it.
5) The testing crisis within your organization hasn't reached a critical level. Your company hasn't yet had to recall a high-impact product and placate angry customers because of a design or component problem that test failed to catch.
4) Management has no real commitment to test. Oh sure, everybody says that test is important. But how do they spend their money? Has your company devel-
oped life-cycle cost-of-test models? Does the testability of your projects influence your raises and promotions?
3) Schedules and budgets make no allowance for increased testability. Because there are no real transparent methods, making a design testable takes time and costs money.
2) Adding testability steals precious nanoseconds from performance and demands high real-estate penalties. This is probably the most common excuse to avoid testability and the most specious. Most designers who do design for test say performance and area impacts aren't design killers. All paths are not critical. You can provide control to and observation of nodes near, but not on, the critical path. Real-estate costs are a function of your chosen testability scheme, the complexity of your design, and the technology you choose for building it. If you're using 50\% of a large gate array, for example, adding scan-based testability will lower yield and will appear to cost you pennies. Ultimately, though, you'll save money through reduced failures in test or in the field. In contrast, if you've decided to implement a register-oriented design in a small, highly utilized gate array, adding scan could force you into a larger array and cost substantially more.

1) You are rarely rewarded if you do design for test and seldom penalized if you don't. If adding testability forces you to slip your schedule, are you praised for adding test or punished for slipping the schedule? Do your gate budgets include an allowance for test? If adding test forces your design into a larger gate array, would your company add the test logic, remove some of the design's function, or keep all the function and shoe-horn a little bit of test logic into the smaller array? Are you promoted based on how easy your designs are to test or on how well your devices meet performance specifications?

FINALLY, One Company gives you the Power. And the ease. Workstation tools from PADS...

PADS-View

A A complete design entry \& simulation solution

- Mixed-Mode analog/digital simulator
A Multiple-windows featuring cross-probing of nets to/from PADS-2000 with waveform analysis
A Built-in analysis tools for Engineering Rules Check and Logic Simulation

PADS-2000/UX

- Interactive and automatic PCB design bundle with placement and auto-interactive/batch routing tools
- Comprehensive SMT and analog design support with copper pour and edit
- Bi-directional interface to PADSView supporting back-annotation and ECO's

PADS-ForceRouter

- AutoRouting for High Density Design and Testability
- Gridless routing thru shape-based architecture
- Comprehensive high-speed design features with table-driven cross-talk analysis
- State-of the-Art Design for Manufacturability

P/AS Software, Inc. offers hardware independent EDA Solutions to meet your budget and your toughest engineering needs. For database compatibility and a common design philosophy from PC's to Workstations, call 1-800-255-7814.

VIEWlogic

The Premiere Design Environment for ASIC, IC, and System Design VIEWLogic and the VIEW logic logo are registered trademarks of VIEWlogic, Inc.

PADS

Software, Inc.
119 Russell Street, Littleton, MA 01460 • Tel: (508) 486-9521 Fax: (508) 486-8217
Toll Free: 1-800-255-7814

The \#1 Choice in Workstations: Sun SPARC Family of Products SUN is registered trademark of Sun Microsystems, Inc. SPARC is a registered trademark of SPARC International, Inc. developed by Sun
reach primary inputs and outputs. (Ref 1 is a very good, detailed explanation of the theoretical underpinnings of test-pattern genera-
tion.) The maximum distance, measured in number of storage elements, between any storage element and a primary input or output
is the circuit's sequential depth. Although you may exclude storage elements from a scan chain, full-scan-based pattern generators can

Manufacturers of transparent-test design tools

For more information on transparent-test design tools such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Acugen Software Inc
427-3 Amherst St
Suite 391
Nashua, NH 03063
(603) $881-8821$

FAX (603) 881-8906
J W Brooks
Circle No. 650

Adas Software Inc
3333 Bowers Ave
Suite 295
Santa Clara, CA 95054
(408) 988-3846

FAX (408) 988-2483
Circle No. 651

AT\&T

Department 52AL040420
555 Union Blvd
Allentown, PA 18013
(800) 372-2447;
in Canada (800) 553-2448
FAX (215) 778-4106
Circle No. 652

Compass Design Automation
1865 Lundy Ave
San Jose, CA 95131
(800) 434-1866

FAX (408) 434-7820
Terry Strickland
Circle No. 653

Crosscheck Technology Inc
2833 Junction Ave
Suite 100
San Jose, CA 95134
(408) 432-9200

FAX (408) 432-0907
Circle No. 654

Dazix, an Intergraph Co
1 Madison Industrial Park
Huntsville, AL 35894
(205) 730-8532

FAX (205) 730-8344
Mike Yang
Circle No. 655

Expertest Inc

810 E Middlefield Rd
Mountain View, CA 94043
(415) 965-2000

FAX (415) 969-3932
Charles Miller
Circle No. 656

Fujitsu Microelectronics Inc
3545 N 1st St
San Jose, CA 95134
(408) 922-9000

FAX (408) 432-9030
Nitin Deo
Circle No. 657

GEC Plessey Semiconductors
1500 Green Hills Rd
Scotts Valley, CA 95066
(408) 438-2900

FAX (408) 438-5576
Phil Welsh
Circle No. 658

Gould AMI

2800 Buckskin Rd
Pocatello, ID 83201
(208) 233-4690

FAX (208) 234-6795
Vince Hopkin
Circle No. 659

Harris Semiconductor

Box 883
Melbourne, FL 32902
(407) 724-7000

FAX (407) 729-4960
Ken Mason
Circle No. 660

Intergraph

1 Madison Industrial Park
Huntsville, AL 35894
(205) 730-8532

FAX (205) 730-8344
Circle No. 661

LSI Logic Corp
1551 McCarthy Blvd
Milpitas, CA 95035
(800) 828-4574
(408) 433-8000

FAX (408) 434-6457
Farzad Zarrinfar
Circle No. 662

Mentor Graphics Corp
8005 SW Boeckman Rd
Wilsonville, OR 97070
(503) 685-7000
(800) 547-3000

FAX (503) 685-7989
Circle No. 663

NEL
401 Ellis St
Mountain View, CA 94039
(415) 965-6381

FAX (415) 965-6752
Circle No. 664

Oki Electric

785 N Mary Ave
Sunnyvale, CA 94086
(408) 737-6501

FAX (408) 720-1918
Cliff Vaughan
Circle No. 665

Philips Electronic Design
and Tools
Box 32
1200JD Hilversum
The Netherlands
3135891628
FAX 3135892419
(800) 275-3103

Jaap B Sondervan
Circle No. 666

Racal-Redac
1000 Wyckoff Ave
Mahwah, NJ 07430
(201) $848-8000$

FAX (201) 848-8189
Circle No. 667

Raytheon Co

362 Lowell St
Andover, MA 01810
(508) 470-9000

FAX (508) 470-9646
Scott Stephen
Circle No. 668

Sony Corp
10833 Valley View St
Cypress, CA 90630
(714) 229-4189

FAX (714) 229-4333
Dana May
Circle No. 669

Sunrise Test Systems
1095 E Duane Ave
Suite 207
Sunnyvale, CA 94086
(408) 739-4000

FAX (408) 739-4081
Charlie Cump
Circle No. 670

Synopsys Inc
700 E Middlefield Rd
Mountain View, CA 94043
(415) 962-5000

FAX (415) 965-8637
Circle No. 671

Teradyne Inc EDA Group
5155 Old Ironsides Dr
Santa Clara, CA 95054
(408) 980-5200

FAX (408) 748-7761
Jim Price
Circle No. 672

Vertex Semiconductor Corp
1060 Rincon Circle
San Jose, CA 95131
(408) 456-8900

FAX (408) 4568910
Circle No. 673

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 473 Medium Interest 474 Low Interest 475

HOW DO YOU Make A VARIETY OF COMPUTERS SHARE INFORMATION IN REAL TIME?

Very Fast Real-Time Communications Among The Widest Variety of Computers in the Industry. The Reflective Memory concept provides a very fast and efficient way of sharing data across distributed computer systems.

VMIC's Fiber Optic Reflective Memory Network allows 256 systems to share data at rates up to 170 Mbaud with no processor overhead. A redundant transmission mode is also supported.

VME Microsystems
International Corporation 12090 South Memorial Parkway Huntsville, AL 35803-3308 (205)880-0444 FAX (205)882-0859

[^11]
DESIGN FOR TEST

only generate high-coverage patterns for circuits whose sequential depth is 0 .

Some tools want to be alone

Several pattern-generation tools work with logic-synthesis tools. In fact, test-synthesis tools Testsyn and Test Compiler, both full-scan tools, include pattern generators as integral parts of their capabilities. Several other pattern generators don't assume or require any synthesis.

In addition to Testgen, which can swap storage elements for scannable ones based on a user-defined budget before creating patterns to test the design, Racal-Redac's Intelligen automatic test-pattern generator (ATPG) is coupled with the company's function-and test-logic synthesis tool. As a result, you can feed data between the tools to trade off area, speed, and testability. You
can also use the tools independently of logic synthesis to create patterns.

Other pattern-generation tools, such as Expertest's Test Design Expert, Adas's Test Pattern Generator (TPG), and Teradyne EDA's Aida ATPG Toolkit operate independently of synthesis tools. Like pattern generators that work with synthesis tools, these tools may require you to adhere to a particular design style. For example, the Aida ATPG Toolkit does not generate patterns for sequential designs. In contrast, both Adas's TPG and the Test Design Expert will generate patterns for designs ranging from fully synchronous to asynchronous. (Mentor distributes the Adas TPG software via a nonexclusive marketing agreement.)

While the ASIC vendors must qualify automatic pattern generators for mask-programmed devices,
you have greater flexibility in using pattern generators for user-programmed devices, such as PLDs, PLAs, and FPGAs (field-programmable gate arrays). Generally, as long as you can accurately model and present the actual implementation of your design to the pattern generators, you can use any automatic pattern generator to create test patterns for these devices. You also have a lower-cost alternative. Acugen's test pattern generator, the least expensive software listed in Table 2, is specially written for user-programmable devices.

You can use many of the available tools to build testable circuits without designing for testability. On the other hand, as good engineers, you should know that truly transparent test is really an illusion. No tool operates in a vacuum. You can't trust any of the tools to do your job for

Table 2-Test-pattern generators

Company	Product	Direct or control synthesis	Supported design methods	Generate sequential-scan patterns	Cost (availability)
Acugen Software	Acugen	No	PLAs, PLDs, FPGAs ${ }^{1}$	No	\$2000 (now)
Adas Software	Adas TPG	Via optional scan-flop substitution	All	Yes	$\begin{aligned} & \hline \$ 100,000 \\ & \text { (early '92) } \end{aligned}$
AT\&T	Gentest	No	All	Yes	$\begin{aligned} & \$ 150,000 \\ & \text { (May '92) } \\ & \hline \end{aligned}$
Compass Design Automation	Scan Test ATVG and Star	No	LSSD ${ }^{2}$ and multiplexed flip-flop for scan	No	$\$ 40,000$ (second quarter)
Dazix	Picasso	No	All	Yes	$\$ 120,000$ (second quarter)
Expertest	Test Design Expert	No	All	Yes	\$140,000 (now)
	TDX-130	No	All	Yes	\$100,000 (now)
LSI Logic	SATPG	No	Synchronous design	No	Included with test builder
Philips Electronic Design and Tools	Panther Cub/Sprint	No	Scan and LSSD	No	\$30,000 (now)
Racal-Redac	Intelligen	Yes	All	Yes	\$127,000 (now)
Sunrise Test Systems	Testgen	Yes	Works with most scan techniques	Yes	Included with test-logic insertion tool
Synopsys	Test Compiler	No	Supports several scan methods	No	Included with test-logic insertion tool
Teradyne EDA	Aida ATPG Toolkit	No	Scan	Yes	\$90,000 (now)

Notes: 1. FPGA=field programmable gate array.
2. LSSD=level-sensitive-scan design.

FimallyPGAs deigneff for both hinds of engineers.
 FimallyPGAs deigneff for both hinds of engineers.

Push-The-Button People.

Push-The-Envelope People.

f you're being pushed to the wall on FPGA designs, here's good news.
Concurrent Logic introduces FPGAs that achieve the fastest in-system performance of any SRAM-based FPGA today-with speeds of up to 70 MHz .

For push-the-button people, we offer easy-to-use tools that take you from design entry to configured circuit in record time. For basic circuits, you use just the basic tools-including familiar VIEWlogic modules. Plus our automatic place-and-route tools, which optimize silicon usage. Push-the-envelope people will appreciate the CLi6000 Series' symmetrical, register-rich
 architecture, which makes pipelining and other complex designs easier to create.

You select powerful interactive tools for design editing, verification, timing analysis, and post-layout schematic regeneration. Quickly exploring multiple design options, for maximum speed and density. With no risk. And no NRE.

So why not have it both ways? To order your CLi6000 Series Evaluation Kit, call (408) 522-8703 or fax (408) 732-2765 today.
Or write Concurrent Logic, Inc.,

Low-Cost Data Acq with New IEEE 488 Instrument Family

IOtech's Data Acquisition Instruments family now includes ADCs, DACs, filters, multiplexers, and digital I/O interfaces

IOtech's new computer-driven, IEEE 488 programmable Data Acquisition Instruments (DAIs) offer an array of I/O and signal conditioning functions, from A / D and D / A conversion to filtering and multiplexing, while providing significant performance and cost advantages over other data acquisition alternatives.

DAIs vs. PC Plug-in Boards. Unlike PC plug-in boards, DAIs are compatible with a wide range of computer platforms, from PCs and Macs to Sun, DEC, HP, and NeXT workstations, permitting their use in a diverse range of applications. DAIs also provide electrical isolation and permit greater channel expansion than do PC plug-in boards, at a competitive price. For example, the ADC488/16A offers 16 channels of A / D conversion at 16 -bit resolutionanda 100 kHzsample rate, and features analog inputs that are isolated from ground by up to 500 V , all for under $\$ 1,800$.

DAIs vs. Traditional IEEE 488 Instruments. Because DAIs are exclusively controlled via an IEEE 488 or serial link to a computer, they have no front panels and are thus less expensive than traditional IEEE 488 instruments. DAIs are also smaller and provide faster IEEE 488 bus throughput than can traditional instruments. For instance, the DAC488HR,
a 16-bit D/A converter, offers two or four isolated 100 kHz channels in a slim $1.75^{\prime \prime}$ rack-mountable case.

DAIs vs. VXI. DAI-based systems cost significantly less than most VXI test systems, yet provide the same high channelexpansion capacity in a comparable amount of space. Moreover, unlike VXIbased instruments, DAIs do not require an expensive chassis and are easily used in conjunction with other IEEE 488 test instruments.

SoftwareSupport. General applications requiring turn-key solutions are facilitated by the DAIs compatibility with graphics and analysis software such as DADiSP, Labtech Notebook, LabVIEW, and LabWindows. Custom applications that demand programming in high-level languages are facilitated through the DAIs' support by IOLib488 - a comprehensive library of high-level C, Basic, or Pascal utilities that can significantly reduce program development time.
For more information about IOtech's DAIs, call (216) 439-4091.

IOtech's DAI family:

- ADC488/16A-a 16-ch, 16-bit, 100 kHz ADC
- ADC488/8SA-an 8-ch, sample \& hold, 16 -bit, 100 kHz ADC
- DAC488HR/4-a 4-ch, 16-bit, 100 kHz DAC
- DAC488/4-a 4-ch, 12-bit DAC
- Filter488/8-an 8-ch analog filter
- Mux488/16SC—a 16-ch signalconditioning multiplexer
- Mux488/64-a 64-ch analog multiplexer
- Digital488HS/32-a 32-bit, 1 Mbyte/sec, digital I/O interface
- Digital488/80A-an 80-bit digital I/O interface
- Digital488-a 40-bit digital I/O interface
- Control488/16-a 16-ch digital monitoring \& control interface
- Serial488/4-a 4-ch IEEE 488 to serial converter
you. Even if you use the tools to add test to your design, make sure you check the final design against your specification.

EDN

References

1. Miczo, Alexander, Digital Logic Testing and Simulation, Harper and Row, New York, 1986.
2. Markowitz, Michael, "Software adds logic to make designs testable," $E D N$, October 11, 1990, pg 59.

Mike Markowitz, Technical Editor, can be reached at (617) 558-4743; FAX (617) 558-4470.

Article Interest Quotient (Circle One)
High 473 Medium 474 Low 475

ASK EDN

Have you been stumped by a design problem? Got too many bugs in your software? Can't interpret a spec sheet? Ask EDN.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.

Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI: EDNBOS. Or, send us a letter on EDN's bulletin-board system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

The functions you want up front with the world's power supply leader backing them up.

2 WEEK DELIVERY-4 OUTPUT SYSTEMS FROM \$991.

NEW STANDARD POWER SYSTEM:

HIGH QUALITY, FULLY FUNCTIONAL, LOW COST POWER SYSTEMS DELIVERED IN LESS THAN 2 WEEKS - WITH NO NRE.

In the past, full functionality, high quality, broad selection, low price and fast delivery were all considered trade-offs. However, this is no longer the case because Lambda's Standard Power System provides all these attributes in a standard assembly. Lambda's new Standard Power System is ideal for test and all $19^{\prime \prime}$ RETMA rack power applications
and is the most fully functional standard assembly available today.
Features that were once called "custom" such as $A C$ and DC monitoring, fault notification, front panel adjustability and covers are now provided standard in the Standard Power System. That means there are no NRE charges to get
the ideal power assembly that is designed for your specific application with delivery in less than 2 weeks. Projects can now be taken from initial design through the prototype stage and into production faster and at a lower cost than ever before.

ALL THE FEATURES YOU WANT UP FRONT... WITH THE WORLD'S POWER SUPPLY LEADER BACKING THEM UP!

FULL FUNCTIONALITY

When you take a look at all the standard features and functions Lambda offers, you'll see why the Standard Power System is the most fully functional power assembly available today. The Standard Power System routinely includes all of the following:

- Front panel features:
- 3 digit meter for output voltage and current
- Output voltage adjust pots
- Audible fault alarm \& fault LED's
- Power supply ID by catalog part number, ratings and output number within the assembly.
- DC output monitoring, with user-set limits on the front panel for:
- Maximum voltage
- Minimum voltage
- Maximum current
- Fault warnings for:
- Output voltage outside user set window
- Output current exceeds user set maximum value
- AC fail early warning
- Fault notification by:
- Open collector signal on rear panel D connector (must be reset to clear).
- Audible alarm for fault warning which can be disarmed on the front panel.
- Individual front panel fault LED'S for each supply.
- 85-132VAC or 170-265VAC input available.
- Low MTTR: Power supplies are loaded into the rack from the top without soldering.
- All subassemblies in the system carry UL, CSA \& TUV/IEC approvals.
- Rack adapter covers are a standard option.
- All assemblies are backed by Lambda's guarantee.

HIGH QUALITY

The quality in the Standard Power System begins in the Engineering Department with our strict design and component derating criteria to ensure our power supplies and subassemblies will provide a reliable solution to your requirements. This attention to quality is continued in the manufacturing process where we employ Statistical Process Control (SPC) to track issues related to product quality/ reliability. Now, the Lambda Electronics organization is working towards approval to the ISO-9000 Quality System for all aspects of design and manufacturing. Lambda is totally committed to providing you with the highest level of quality in service and product available.

BROAD SELECTION

The heart of the Standard Power System is Lambda's broad selection of proven power supply modules which have set the standard for quality and reliability in the power supply industry for over 45 years. The selection includes:

- Single and multiple output supplies from 19 Watts to 1500 Watts.
- Switching and linear power supplies.
- Wide range zero up and/or nominal $\pm 5 \%$ output voltage adjustability.
- Thousands of standard assembly output combinations.
- Up to 4 outputs per assembly.
- Up to 5000 watts of total assembly output power.

LOW PRICE

When you combine all the standard features with Lambda's no NRE approach, and modular design for low cost manufacturability, the result is a four output assembly for as low as $\$ 991.00$ in single piece quantity!

FAST DELIVERY

Lambda provides the large selection of outputs, full functionality and low price, and ships within two weeks of placement of a confirmed order (when the power supplies modules are in stock)!

TO ORDER

Simply contact the Lambda Marketing department or your local Lambda Sales Engineer to discuss your specific requirements - we'll do all the rest. You'll first receive a technical proposal and price quotation. Then within two weeks of confirming your order, Lambda will ship your Standard Power System.

Thousands of standard output power combinations available.

UP TO 5,000 WATTS.

To order, call your local LAMBDA Sales Engineer. Open 8am to 6:30pm (East Coast Time)
To contact the direct-factory LAMBDA Sales Engineer responsible for your account and located in your area, or to contact Customer Service for price, delivery or placing purchase orders, call as follows:

In Eastern United States	In Western United States (Shaded area) (White area)
1-800-LAMBDA-4	1-800-LAMBDA-5
(Or call 515-694-4200)	(Or call 516-694-4200)

Address All Customer Correspondence to:
LAMBDA ELECTRONICS INC.
515 Broad Hollow Road, Melville, NY 11747-3700
Fax: 516-293-0519

Canada
 Lambda Electronics
 (Canada) Inc.

4125 Cousens St. St. Laurent,
Tel: 1-800-361-257 Fax: 514-337-1235 In Montreal: 514-337-0311

France, Orsay
Lambda Electronique S.A Tel: 6012-1487

Japan, Tokyo

 Nemic-Lambda K.K.Tel: 033-447-4411

England, Ilfracombe

Coutant-Lambda, Ltd
Tel: 0271-865656

Germany, Achern

 Lambda Electronics GmbH Tel: 07841 / 68060
Israel, Tel Aviv

IsLambda Electronics Ltd. IsLambda Electronics
Tel: (03) $544-7655$ Singapore
Nemic-Lambda(S) Pte.Ltd Tel: 251-7211

Korea, Seoul

Nemic-Lambda
Tel: 02-556-1171

Malaysia

Nemic-Lambda(M) Sdn. Bhd. Tel: 03-756-6119 03-756-0739

The largest electronics engineering expo in the Eastern United States
 Recharged
 The pulse of the hottest innovations in the electronics industry.

Electro returns to Boston with an expanded technology focus, featuring:

- CUTTING EDGE SOFTWARE

for the engineering environment, including
-3-day Windows seminar

- CEO panel discussion of software and PCs
- Keynote address by Jim P. Manzi, CEO and President of Lotus Development Corp.

PLUS

- All-new state-of-the-art Semiconductor exhibit area on the show floor
- Special test and measurement section featuring up-to-the-minute developments in test and measurement equipment

Mail or FAX the coupon below by April 15 and receive:

- FREE admission to exhibits and technical sessions
- Full preview of Electro/92 technical program
- Chance to win FREE entry to a 3-day Windows class taught by industry experts (a $\$ 345$ value)

Important Note: Please mail completed form to: Electro Registration, P.O. Box 92275 WPC Los Angeles, CA 90009-2275 If received before April 15, your badge will be mailed to you. If received after April 15, please pick up your badge at Will Call. Or, bring this form to Electro for free admission

Help your company bring in the business at Electro.
Your company can also benefit from exhibiting its products to Electro's prime audience of highly-qualified decision makers. For more information about attending or exhibiting in Electro/92,

Tanyo. Powertul PEB layout tools.

For FREE evaluation software and product specs, call 800 488-0680

Tango gives you two powerful choices in printed circuit board design. There's Tango-PCB PLUS, our advanced PCB layout tool for the designer with complex design requirements and our entry-level Tango-PCB, a comprehensive, yet low-cost program for less demanding designs

Tango's interface puts you never more than two mouse clicks away from any command. On-line help, pop-up menus, dialog boxes, prompt line and unique "speed palette" and "hot spots" all combine to make Tango quick to learn, intuitive and easy to use.

Tango-PCB and Tango-PCB PLUS both feature: user-defined sizes of tracks, pads, arcs, fills, text and grids; versatile moving, mirroring, rotating and releasing of components; full support for net lists from popular schematic programs; comprehensive block operations; design verification tools; SMT support; unlimited zoom levels and autopanning; NC drill files; and crisp output to a wide array of printers, plotters and photoplotters.

Tango-PCB PLUS increases design productivity by adding: automated component placement; integrated design rule check; photoplot file viewer; output in DXF and PostScript ${ }^{\text {™ }}$; and EMS (expanded memory) support.

Both packages give you Tango's well-known price-performance leadership. And as with all of ACCEL's complete Tango family of electronic design automation tools (schematic entry, board layout and autorouting, PLD design, thermal analysis and logic simulation), our customers receive service, documentation and technical support that is second to none. Call us to learn more about how a modest investment in Tango PCB tools can help you become more productive.

Op-amp distortion measurement bypasses test-equipment limits

Jerald Graeme, Burr-Brown Corp

Part 1 of this 2-part series introduces the theory involved in measuring the low distortion levels of state-of-the-art op amps. It also provides simple methods for characterizing some lowdistortion op amps.

Until recently, distortion performance was not important in most op-amp applications. Now, common use of the fast Fourier transform (FFT) extends the importance of op amps' distortion beyond audio applications into general signal processing. Any distortion introduced by an amplifier produces erroneous Fourier components. To predict these error components, you must first characterize your op amp's distortion. But op amps' distortion performance often surpasses that of available test equipment, defying characterization. Making the amplifier-under-test part of the test system solves this characterization problem. This solution works exclusively with feedback amplifiers, op amps included.
Feedback reduces an amplifier's distortion-at its output-to minuscule levels. Feedback also separates the amplifier's distortion from the test signal. This separated distortion is none other than the error signal fed back to the op amp's inputs. Once separated, the amplifier-distortion signal is insensitive to any distortion in the incoming test signal. Also, the separated signal has a reduced magnitude that reduces the dynamic range your test equipment has to handle.
Three distortion-measurement methods capitalize on the signal-separating action of op-amp feedback. In the
first method, you measure the separated signal directly. This method circumvents test-equipment limitations. In the second method, selectively amplifying the amplifier's distortion raises this error signal above the threshold of the test equipment. Finally, the third method removes the test signal yet avoids measuring any effects of the added amplifier. This method bootstraps the op amp's power supplies on the test signal itself to remove the test signal from the measurement. Part 1 of this series covers direct measurement and selective amplification; Part 2 covers selective amplification and bootstrapping.
Each approach greatly improves distortion resolution but also has specific constraints. Signal separation adds an amplifier to the test system; selective amplification reduces the measurement bandwidth; and bootstrapping requires using a signal to drive the reference point of the op amp's power supplies.

Fig 1-Feedback separates an op amp's distortion products from the test signal by developing a signal $\mathrm{V}_{\text {ERR }}$ equal to the difference between input and output signals.

MEASURING OP-AMP DISTORTION

Noise seldom limits op-amp-distortion measurement. Only in very low-distortion op amps does noise impose a limit on distortion analyzers. Amplifier noise is almost never a problem for spectrum analyzers because they are highly insensitive to noise.

Translate to ground

First consider how feedback separates the amplifierdistortion products from the test signal. This consideration is fundamental to each of the measurement circuits that follow. You can visualize the signal separation most easily with a voltage follower (Fig 1). In Fig 1, input signal $\mathrm{V}_{\text {IN }}$ drives the op amp's input to produce output signal $\mathrm{V}_{\text {out }}$, and a simple loop equation shows that

$$
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{ERR}},
$$

where $V_{\text {ERR }}$ is the differential-input error signal of the op amp.

As trivial as this equation seems, it holds the answer to measuring op-amp distortion with high resolution. The equation states that the output signal, $\mathrm{V}_{\text {OUT }}$, is a replica of the input signal, $\mathrm{V}_{\text {IN }}$, except $\mathrm{V}_{\text {oUt }}$ does not include the input error signal $V_{\text {ERr }}$. Thus, any distortion the amplifier introduces is in $V_{\text {ERr }}$.

Measuring $\mathrm{V}_{\text {ERR }}$ instead of $\mathrm{V}_{\text {OUT }}$ removes any effects of signal-generator distortion and reduces the dynamic range required of your test equipment. The op amp's open-loop gain and common-mode rejection attenuate whatever test signal remains in $\mathrm{V}_{\text {ERr }}$.

Distortion measurement with Fig 1's setup requires additional processing of the signal $V_{\text {ERr }}$. Signal $V_{\text {Err }}$

Fig 2-Directly implementing Fig 1's signal separation requires adding an instrumentation amplifier to provide a ground-referenced signal.
rides on the input signal V_{IN}. Consequently, any ground-referenced measurement of $V_{\text {ERR }}$ still includes the test signal V_{IN}.

The instrumentation amplifier in Fig 2 references $\mathrm{V}_{\text {ERR }}$ to ground and increases the signal level presented to the analyzer. Finding a low-distortion instrumentation amplifier is easier than producing a better signal generator and a better signal analyzer. This instrumentation-amplifier alternative serves the measurement of intermediate levels of distortion in feedback amplifiers.

After measuring distortion using the setup in Fig 2, you must adjust your results. These adjustments transform the distortion percentage measured in $\mathrm{V}_{\text {हRI }}$, $\mathrm{THD}+\mathrm{N}_{\mathrm{M}}$, to the equivalent percentage present in $\mathrm{V}_{\text {OUT }}, \mathrm{THD}+\mathrm{N}_{0}$. (THD $+\mathrm{N}_{\mathrm{M}}$ is the measured valve and THD $+\mathrm{N}_{0}$ is the corresponding output distortion and noise.)

$$
\mathrm{THD}+\mathrm{N}_{0}=\left(\mathrm{V}_{\mathrm{ERII}} / \mathrm{V}_{\mathrm{OUT}}\right) \mathrm{THD}+\mathrm{N}_{\mathrm{N}} .
$$

When using a spectrum analyzer, adjusting the THD result as you calculate it is the easiest way to go. Taking this tack necessitates two changes. THD expresses distortion as the ratio of the rms sum of the distortion products to the signal fundamental:

$$
\mathrm{THD}=\sqrt{\left(\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)} \times(100 \%) / \mathrm{V}_{1} .
$$

Here, V_{1} represents the fundamental component of the signal, and $\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$ and so forth represent the distortion components. For the measurement shown in Fig 2, the magnitude of $\mathrm{V}_{\text {OUT }}$ substitutes for the fundamental V_{1} to correct for the smaller fundamental signal present in $\mathrm{V}_{\text {ERr }}$. Also, the harmonic amplitudes measured require adjusting to account for the gain they receive from the instrumentation amplifier. For this adjustment, divide the overall THD equation by the instrumentation amplifier's differential gain, $\mathrm{A}_{\text {DIIF }}$.

$$
\mathrm{THD}_{\mathrm{OUT}}=\sqrt{\left(\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)} \times 100 \% / \mathrm{A}_{\mathrm{DII}} \mathrm{~V}_{\mathrm{OUTT}} .
$$

For the unity-gain amplifier under test, subtraction obviously separates the op amp's distortion from the test signal. However, this condition is a coincidence unique to the voltage follower. In other op-amp configurations, the signal translation of $\mathrm{V}_{\text {ERr }}$ does not subtract the op amp's output from the input signal.

Fig 3 shows the generalized, noninverting, feedback configuration along with the equations relating $V_{\text {ERR }}$ to $\mathrm{V}_{\text {out }}$. Here, a feedback network attenuates the effect of $\mathrm{V}_{\text {OUT }}$ on $\mathrm{V}_{\text {ERR }}$. Thus, the amplifier-distortion products reflected in $\mathrm{V}_{\text {FRr }}$ are smaller than those in $\mathrm{V}_{\text {out }}$.

EDN-DESICN FEATURE

As before, you must separate the $V_{\text {ERR }}$ signal from the common-mode test signal in Fig 3's circuit. The first method for this separation is translation to a ground-referenced signal (Fig 4). Distortion measurement with this configuration is easiest to see by considering the circuit to be an extension of Fig 2's voltage follower. In Fig 4, the voltage-divider action of the feedback network presents a signal $\mathrm{V}_{\text {OUT }} \mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ to the amplifier's inverting input. For the voltage follower, this signal was the full $\mathrm{V}_{\text {out }}$. Now, the feedback signal is attenuated, and a simple loop equation shows that for Fig 4,

$$
\mathrm{V}_{\mathrm{ERR}}=\mathrm{V}_{\text {IN }}-\left(\mathrm{V}_{\text {OUT }} \mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right) .
$$

Fig 4's circuit amplifies $\mathrm{V}_{\text {IN }}$ and its distortion in producing $\mathrm{V}_{\text {OUT }}$. Thus, subtracting $\mathrm{V}_{\text {OUT }}$ from $\mathrm{V}_{\text {IN }}$, as with Fig 2, would not remove the generator's distortion for Fig 4. However, subtracting an appropriately attenuated $V_{\text {OUT }}$ from $V_{\text {IN }}$ does remove this distortion. Fig 4 has a gain of $\left(R_{1}+R_{2}\right) / R_{1}$. Then, feedback attenuates $V_{\text {OUT }}$ by the inverse of this gain or $\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$.

For a distortion-analyzer measurement like that shown in Fig 4, first compensate the result for the smaller fundamental measured through $\mathrm{V}_{\text {ERR }}$. Multiply the measured THD $+\mathrm{N}_{\mathrm{M}}$ result by $\mathrm{V}_{\text {ERR }} / \mathrm{V}_{\text {OUT }}$ as before. This calculation yields the input THD $+\mathrm{N}_{\text {IN }}$ result, which you then multiply by the $1 / \beta=\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{1}$ of the op amp's configuration.

$$
\begin{aligned}
\mathrm{THD}+\mathrm{N}_{0} & =\frac{\mathrm{V}_{\text {ERR }}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{V}_{\text {OUT }} \mathrm{R}_{1}} \mathrm{THD}+\mathrm{N}_{\mathrm{M}} \\
& =\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{THD}+\mathrm{N}_{\mathrm{l}} \mathrm{~S} .
\end{aligned}
$$

You must also adjust your results for spectrumanalyzer measurements using Fig 4's setup. Once again, you discard the measured fundamental because

Fig 3-In the generalized feedback case, the output signal, along with its distortion, reflects to $\mathrm{V}_{\text {ERR }}$ through an attenuation.
it does not represent the output signal. Then, substitute $\mathrm{V}_{\text {oUT }}$ for fundamental amplitude V_{1} in the THD equation and divide this equation by $\mathrm{A}_{\mathrm{DIF}}$ to remove the effect of the instrumentation amplifier's gain. For Fig 4, also make a gain adjustment for the circuit's gain of $1 / \beta=\left(R_{1}+R_{2}\right) / R_{1}$.

$$
\mathrm{THD}_{0 U T}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \sqrt{\left(\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\ldots\right)}}{\mathrm{R}_{1} \mathrm{~A}_{\mathrm{DIF}} \mathrm{~V}_{\text {OUT }}}(100 \%) .
$$

Signal separation extends to inverting case

For the generalized inverting amplifier, distortion resolution is even greater (Fig 5) than for the noninverting amplifier. The most significant improvement with inverting circuits actually results from removing the instrumentation amplifier of Fig 4. The inverting configuration of Fig 5 removes common-mode voltage from the op amp's input and avoids the added amplifier along with the added amplifier's distortion.
For the inverting circuit in Fig 5, the relationship between input and output distortion is not as obvious as with Fig 4's circuit. Previously, the feedback network relayed a large signal to the amplifier's input. But inverting circuits keep this input near zero voltage, balancing $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ at the amplifier's input. Both signals influence the voltage at the inverting input through the feedback network. To find the result, consider the two signals separately using superposition. This exercises the feedback network as a voltage divider driven from each end. Then, the amplifier input signal is

$$
\mathrm{V}_{\text {ERR }}=\frac{\mathrm{V}_{\text {IN }}}{\mathrm{R}_{1}+\mathrm{R}_{2}}-\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\text {OUT }} \mathrm{R}_{1}} \mathrm{R}_{1}+\mathrm{R}_{2} .
$$

Fig 4-The amplifier's distortion products, included in $\mathrm{V}_{\text {tRR, }}$, remain separated from the test signal in measurements of the generalized noninverting circuit.

Fig 5-Inverting circuits also separate distortion and test signals. And these circuits obviate the previous measurement amplifier along with its distortion.

Although not immediately obvious, the distortion introduced by $\mathrm{V}_{\text {IN }}$ still cancels in this $\mathrm{V}_{\text {ERR }}$ signal. The above equation shows that signal $\mathrm{V}_{\text {IN }}$ influences $\mathrm{V}_{\text {ERR }}$ directly in the first term of the equation and then indirectly through feedback in the second term.

In the direct path, $\mathrm{V}_{\text {IN }}$ contributes to $\mathrm{V}_{\text {ERR }}$ through an attenuation of $-R_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$. Added to this contribution is the $V_{\text {IN }}$ component transmitted through $V_{\text {out }}$. In this path, $\mathrm{V}_{\text {IN }}$ and its distortion products first receive a forward gain of $-\mathrm{R}_{2} / \mathrm{R}_{1}$ to produce $\mathrm{V}_{\text {out. }}$. Feedback then attenuates $V_{\text {OUT }}$ by a factor of $-R_{1} /\left(R_{1}+R_{2}\right)$. The total gain of this path is the product of the forward gain and the feedback attenuation, or $\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$. This product has the same magnitude as the attenuation of the direct path above, but these two gains have opposite polarities. Thus, the direct and feedback distortion effects of $V_{\text {IN }}$ again cancel in the $V_{\text {ERR }}$ signal.

Fig 5's measured results require two adjustments to account for the $\mathrm{THD}_{\text {OUT }}$ of the amplifier's configuration. These adjustments follow directly from the Fig 4 results and use the same equations. One adjustment accounts for the smaller fundamental actually measured and the other corrects for the $1 / \beta$ gain that the harmonics included in the measurement don't receive. For distortion-analyzer measurements using Fig 5's setup,

$$
\begin{aligned}
\mathrm{THD}+\mathrm{N}_{\mathrm{O}} & =\frac{\mathrm{V}_{\text {ERR }}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{V}_{\text {OUT }} \mathrm{R}_{1}} \mathrm{THD}+\mathrm{N}_{\mathrm{M}} \\
& =\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1}} \mathrm{THD}+\mathrm{N}_{\mathrm{IN}} .
\end{aligned}
$$

And for spectrum-analyzer results,

$$
\mathrm{THD}_{0}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \sqrt{\left(\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)}}{\mathrm{R}_{1} \mathrm{~V}_{\text {OUT }}}
$$

With no common-mode voltage, the inverting connection of Fig 5 provides no information about CMRRrelated distortion. This result is desirable for applications having no common-mode signal, and the result proves useful even where such a signal is present. The absence of CMRR distortion in Fig 5 permits separating the gain- and CMRR-distortion effects.

First, a distortion measurement with the inverting circuit of Fig 5 yields the gain-related distortion, $\mathrm{THD}_{\mathrm{A}}$. Then, distortion measurement with the noninverting connection of Fig 4 provides the combined gain and common-mode distortion THD Acm . Subtraction of the two THD results, in rms fashion, reveals the com-mon-mode distortion $\left(\mathrm{THD}_{\mathrm{CM}}\right)$. In equation form, this distortion is

$$
\mathrm{THD}_{\mathrm{CM}}=\sqrt{\left(\mathrm{THD}_{\mathrm{ACM}}\right)^{2}-\left(\mathrm{THD}_{\mathrm{A}}{ }^{2}\right)} .
$$

The signal analyzer's loading at the op amp's summing junction also influences the measurement in Fig 5. Connecting the analyzer's input capacitance to this junction can affect both measurement bandwidth and frequency stability. Capacitance at the input of an op amp produces response peaking.
This capacitance reduces measurement bandwidth to no more than $\left.f_{\mathrm{P}}=\sqrt{\left(\mathrm{f}_{\mathrm{C}} /\left(2 \pi R_{2} \mathrm{C}_{\mathrm{I}}\right)\right.}\right)$. Here, f_{P} is the peak frequency, f_{C} is the unity-gain crossover of the op amp, and C_{I} is the capacitance at the op amp's input. A bypass capacitor around R_{2} counteracts the response peaking. For 45° phase margin, the value of this capacitor is $\left.1 / \sqrt{(} 2 \pi \mathrm{R}_{2} \mathrm{f}_{\mathrm{C}} / \mathrm{C}_{\mathrm{I}}\right)$.

EDD

References

1. Pryce, Dave, "Audio DACs Push CD Players to Higher Performance," EDN, December 7, 1989.
2. The Institute of High Fidelity Inc, "Standard Methods of Measurement for Audio Amplifiers," IHF-A-202, 1978.

Author's biography

Jerald G Graeme is the manager of in-strumentation-components design for Burr-Brown Corp in Tucson, AZ. Jerry directs a linear-IC-development group. He obtained a BSEE from the University of Arizona and an MSEE from Stanford University. His spare time interests include photography, scuba diving, and woodworking.

Terminate Your SCSI Problems

Unitrode's new BUS BOSS ${ }^{\text {Tw }}$ - the UC5601 active terminator - is the one chip solution you've been waiting for. Let the UC5601 handle your toughest SCSI challenges. It's not just a regulator.

Unitrode's UC5601 assures a clean transmission

For more information on the UC5601 and your nearest Unitrode Representative, call, FAX or write us today: Unitrode Integrated Circuits, 7 Continental Blvd., Merrimack, NH 03054, FAX (603) 424-3460.

Connectivity Solution

The UC5601. No other active terminator in the industry offers this level of capability, with these on-board features:

- 18 Thin film termination resistors
- Factory trimmed voltage regulator
- Low level clamping
- Logic command to disconnect all terminating resistors
- Low supply current in disconnect mode
- 28-Pin SOIC / PLCC
- Meets SCSI standards

Call
for more
information
or a free brochure.
TEL : (33) (1) 76-41-66-66
FAX : (33) (1) 76-41-66-67

Advanced techniques tackle advanced op amps' extremely low distortion

Jerald Graeme, Burr-Brown Corp

The second part of this 2-part series describes bow to measure the distortion of more complex amplifier circuits and how to bandle the bighestperformance op amps.

Selective amplification offers an alternative to the added amplifier described in Part 1 of this series. This alternative moderates, rather than negates, the limitations of signal generators and signal analyzers. In addition to separating distortion and test signals, selective amplification makes the amplifier distortion signal dominant in the measurement; however, it also reduces measurement bandwidth.
As with signal separation, the selective-amplification approach is easiest to understand starting with a volt-age-follower connection. Fig 1 shows a bootstrapped feedback network added to a voltage follower. In Fig 1, the common-mode rejection of the amplifier-undertest replaces the instrumentation amplifier used before. However, taking this tack moves the measurement back to the amplifier's output.
Resistors R_{1} and R_{2} form a feedback network that produces gain for $\mathrm{V}_{\text {ERr }}$ but not for V_{IN}. Signal $\mathrm{V}_{\mathrm{ERR}}$, which includes the amplifier's distortion products, appears across resistor R_{1}. There, this signal produces a feedback current that goes to resistor R_{2}. This operation develops an error-signal gain, $\mathrm{A}_{\text {ERR }}=1+\mathrm{R}_{2} / \mathrm{R}_{1}$, for $\mathrm{V}_{\text {ERR }}$ alone.
Input signal $\mathrm{V}_{\text {IN }}$ does not experience this amplification because R_{1} is bootstrapped rather than grounded. The resulting output signal for Fig 1 is

$$
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}-\left(\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{1} \mathrm{~V}_{\mathrm{ERR}}\right) .
$$

To V_{IN}, the circuit remains a voltage follower. The amplifier's output follows $V_{\text {IN }}$ except for the difference produced by the amplified distortion signal. This difference is small as long as high loop gain keeps error signal $\mathrm{V}_{\text {ERR }}$ low.

Distortion above the measurement floor

Similarly, signal $V_{\text {IN }}$ directly varies the voltage at the amplifier's noninverting input in Fig 1. Feedback forces the amplifier's inverting input to also follow this signal.

The selective amplification in Fig 1 raises the relative magnitudes of the $\mathrm{V}_{\text {ERR }}$ distortion products for increased resolution. But the signal generator's distortion now remains in the signal measured. However, this distortion signal is not amplified and its relative

Fig 1 -Selectively amplifying $\mathbf{V}_{\text {ERR }}$ magnifies the amplifier's distortion signal for direct measurement at the output of the amplifier tested.

MEASURING OP-AMP DISTORTION

significance diminishes in proportion to the gain $V_{\text {ERR }}$ receives. Similarly, this gain moderates the dynamic range demands on the signal analyzer. Thus, selective amplification raises the amplifier-distortion signal above the measurement floor of your instruments.

Following the measurement, a THD calculation removes the effect of the selective gain. Divide the measured distortion by the distortion gain of $\left(R_{1}+R_{2}\right) / R_{1}$. For Fig 1 the output-referred distortion for a voltage follower is:

$$
\begin{aligned}
& \mathrm{THD}+\mathrm{N}_{0}=\frac{\mathrm{R}_{1}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)} \mathrm{THD}+\mathrm{N}_{\mathrm{M}}=\mathrm{THD}+\mathrm{N}_{\mathrm{IN}} \\
& \mathrm{OR} \\
& \mathrm{THD}_{\text {OUT }}=\frac{\mathrm{R}_{1} \sqrt{\left(\mathrm{~V}_{2}{ }^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{V}_{1}}
\end{aligned}
$$

At first blush, you'd think that maximizing the selective gain would achieve the greatest measurement accuracy. However, measurement bandwidth declines because of feedback-factor reduction as this gain increases (Ref 1). Because the op amp is now part of the measurement system, the amplifier's bandwidth limits resolution of higher-order distortion harmonics. Thus, you should choose the selective gain for Fig 1's setup to be as large as possible within your bandwidth constraints. Note that the low-value feedback resistors avoid adding noise.

Generalizing selective gain

. The selective-gain approach of Fig 1 extends to generalized noninverting and inverting op-amp configurations. The generalized noninverting version in Fig 2

Fig 2-Adding R_{3} extends selectively amplifying $\mathrm{V}_{\text {ERR }}$ to measuring the distortion of a generalized noninverting amplifier.
has R_{3} 's added gain for selectively amplifying distortion products. Resistors R_{1} and R_{2} set the normal closedloop gain presented to V_{IN}. As usual, this gain is simply $\mathrm{A}_{\mathrm{CL}}=1+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right) . \mathrm{V}_{\text {ERR }}$ experiences greater gain because it develops a feedback current through R_{3}, as well as through R_{1}. The resulting error-signal gain relates the parallel combination of resistors R_{1} and R_{3} and is $A_{E R R}=1+R_{2} /\left(R_{1} \| R_{3}\right)$. The proper choice for R_{3} makes $\mathrm{V}_{\text {ERR }}$'s distortion dominant at the amplifier's output.

The distortion measurement's resolution remains unchanged between Fig 1 and Fig 2. These circuits differ by the closed-loop gain, A_{CL}, supplied to V_{IN} and its distortion, but practical limits equalize the results. As A_{CL} increases, the magnitude of V_{IN} diminishes to maintain a given output-signal level. Thus, the magnitude of the input-signal distortion decreases by the same amount that its gain increases. The resulting output distortion arising from $\mathrm{V}_{\text {IN }}$ is, then, unchanged in magnitude from that of Fig 1. Adding R_{3}, keeps this distortion in the background by ensuring sufficient additional gain for the distortion products of $\mathrm{V}_{\text {ERR }}$.

Dynamic-range constraints of the signal analyzer are also independent of A_{CL}. in Fig 2. The relative levels of the fundamental signal and the distortion signals determine this range. For a given test condition, the output level is fixed and is essentially the level of the fundamental signal. To reduce dynamic-range requirements, raise the level of the distortion signal by amplifying $\mathrm{V}_{\text {ERR }}$. This amplification results from either the intended closed-loop gain of the circuit or from this gain in conjunction with the selective gain R_{3} provides. However the gain occurs, it raises the relative proportion of $\mathrm{V}_{\text {ERR }}$ in the output signal. As long as $\mathrm{V}_{\text {ERR }}$ receives sufficient gain, you can easily dis-

Fig 3-Selective amplification of an inverting amplifier follows directly from the noninverting case of fig 2.
tinguish amplifier-distortion products in the output signal.
However, you must limit the gain you choose for $\mathrm{V}_{\text {ERR }}$, or amplifier-response roll-off will restrict measurement of higher-frequency harmonics. The gain applied to $\mathrm{V}_{\mathrm{ERR}}$, not that applied to $\mathrm{V}_{\text {IN }}$, sets the amplifier's bandwidth. To determine your measurement's bandwidth, calculate the feedback factor, considering R_{3} to be grounded rather than bootstrapped. Then, for the circuit in Fig 2,

$$
\beta=\left(\mathrm{R}_{1} \| \mathrm{R}_{: 3}\right) /\left(\mathrm{R}_{1} \| \mathrm{R}_{3}+\mathrm{R}_{2}\right)
$$

This feedback factor defines a measurement-bandwidth limit of βf_{C}, where f_{C} is the unity-gain crossover frequency of the op amp. Beyond this limit, higher-order harmonics are attenuated in the measurement. Thus, again, you should consider a balance between testequipment error suppression and higher-frequency resolution when choosing R_{33}.

Accounting for gain differences

However, determining the output-referred distortion still requires separating the A_{CL} and $\mathrm{A}_{\text {ERR }}$ effects on the circuit in Fig 2. Selectively amplifying the distortion signal makes its effect dominant in the measurement. You must again adjust the measured distortion to account for the difference in signal and distortion gains. To adjust the measurement result, remove the selective gain that the amplifier distortion receives. In Fig 2, resistors R_{1} and R_{2} supply a gain of $\mathrm{A}_{\mathrm{CL}}=1+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)$ to both $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {ERR }} . \mathrm{R}_{3}$ supplies additional gain to $\mathrm{V}_{\text {ERr. }}$. This added gain $\left(1+\mathrm{R}_{2} / \mathrm{R}_{3}\right)$ amplifies only the distortion signal. To compensate, divide the measured distortion result by this added gain.

$$
\mathrm{THD}+\mathrm{N}_{0}=\frac{\mathrm{R}_{3}}{\left(\mathrm{R}_{3}+\mathrm{R}_{2}\right)} \mathrm{THD}+\mathrm{N}_{\mathrm{M}}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1}} \mathrm{THD}+\mathrm{N}_{\mathrm{IN}}
$$

OR

$$
\mathrm{THD}_{0 U T}=\frac{\mathrm{R}_{3,} \sqrt{\left(\mathrm{~V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)}}{\left(\mathrm{R}_{3}+\mathrm{R}_{2}\right) \mathrm{V}_{1}}(100 \%)
$$

The selective amplification in Fig 2 translates directly for inverting op-amp configurations. To convert Fig 2 to an inverting amplifier, simply switch the circuit connections to the common return and the input signal (Fig 3). This switch returns the op amp's noninverting input and R_{3} to ground and causes $V_{\text {IN }}$ to drive R_{1}. As before, resistors R_{1} and R_{2} set the gain, $A_{C L}$, presented to $V_{\text {IN }}$, and resistor R_{3} boosts this gain to a higher level, $A_{E R R}$, for $V_{E R R}$. This higher gain determines the feedback factor and resulting measurement's bandwidth.

Fig 4-Adding \mathbf{R}_{4} combines selective amplification with signal separation for the inverting amplifier.

The circuit in Fig 3 retains a measurement resolution that is independent of A_{CL}. Only gain $\mathrm{A}_{\text {ERR }}$ affects this resolution. Finally, convert the measured $\mathrm{THD}_{\mathrm{M}}$ of $\mathbf{F i g}$ 3 to THD $_{\text {OUT }}$ or THD $_{\text {IN }}$ using the equations for Fig 2.

The only way Fig 3 differs from Fig 2 is in the common-mode input signal of the amplifier. In the noninverting circuit in Fig 2, input signal $\mathrm{V}_{\text {IN }}$ is a commonmode signal to the amplifier's inputs, and it exercises nonlinearities in the amplifier's CMRR. The inverting circuit in Fig 3 removes this common-mode signal from the amplifier's inputs. Then, only the gain nonlinearity of the amplifier influences the amplifier's distortion. This difference permits you to separate gain and CMRR distortion effects.

Combining the two methods

Selective amplification in the inverting case offers another alternative. Both selective amplification and signal separation work in inverting circuits. However, the combination places greater demands on measurement bandwidth. Selective amplification obviates the instrumentation amplifier used before. To eliminate the instrumentation amplifier, Figs 1 and 2 move the signal measurement to the op amp's output. There, signal separation is compromised because the full test signal remains in the measurement.

This compromise is unnecessary for inverting configurations. As mentioned before, inverting configurations do not require the instrumentation amplifier for the signal-separation measurement. Thus, with inverting configurations you need not move the measurement to the amplifier's output. Instead, signal separation and selective amplification combine at the amplifier's input (Fig 4). There, R_{3} develops a feedback current with $\mathrm{V}_{\text {ERR }}$ just as before.

MEASURING OP-AMP DISTORTION

However, the circuit in Fig 4 does not rely on R_{2} to convert this feedback current to an amplified output error. Instead, a second resistor, R_{4}, added at the amplifier's input, does this job. The feedback current produced in R_{3} conducts through R_{4} to produce the desired amplification right at the amplifier's input. At the top of R_{4}, the signal is $-\left(1+R_{4} / R_{3}\right) V_{\text {ERR }}$. This amplified error signal remains free of the large test signal present in the amplifier's output. As before, this separated error signal permits measurements free from sig-nal-generator distortion and eliminates large dynamicrange requirements.

The distortion measured in Fig 4 requires three adjustments for converting it to output-referred distortion. First, compensate the difference in measured and actual fundamental signals as in previous signalseparation measurements. Then, make two gain adjustments. The measured signal receives a measurement gain of $\left(1+R_{4} / R_{3}\right)$ but does not receive the circuit closed-loop gain of $\mathrm{A}_{\mathrm{CL}}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)$. To compensate, divide the measured distortion by the measurement gain and multiply it by A_{CL}.

$$
\begin{aligned}
\mathrm{THD}+\mathrm{N}_{0} & =\frac{\mathrm{R}_{3}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{V}_{\text {ERR }}}{\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{V}_{\text {OUT }}} \mathrm{THD}+\mathrm{N}_{\mathrm{M}} \\
& =\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1}} \mathrm{THD}+\mathrm{N}_{\mathrm{IN}}
\end{aligned}
$$

OR

$$
\mathrm{THD}_{\text {OUT }}=\frac{\mathrm{R}_{3}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \sqrt{\left(\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3 .}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)}}{\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{V}_{\text {OUT }}}
$$

(100%)

Fig 4 introduces an added attenuation to the circuit's feedback factor, restricting measurement bandwidth. In addition to the normal feedback attenuation of R_{1} and R_{2}, a second feedback attenuation results from R_{3} and $R_{4} . R_{3}$ and R_{4} also produce a loading effect on the attenuation of R_{1} and R_{2}. The net Fig 4 feedback factor is

$$
\beta=\frac{\mathrm{R}_{1} \mathrm{R}_{3}}{\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{1} \mathrm{R}_{3}+\mathrm{R}_{1} \mathrm{R}_{4}+\mathrm{R}_{2} \mathrm{R}_{4}+\mathrm{R}_{2} \mathrm{R}_{3}}
$$

The relationship of bandwidth to gain bandwidth, $\mathrm{BW}=\beta \mathrm{GBW}$, then determines the bandwidth for the circuit in Fig 4. For the specific components of Fig 4, $\beta=0.0043$ and $G B W=10 \mathrm{MHz}$ for $B W=43 \mathrm{kHz}$.

Because of the low feedback factor, this measurement's bandwidth is below the 80 kHz desired for audio applications. Other choices for R_{3} and R_{4} offer higher feedback factors to improve bandwidth, but such choices lower the selective gain. With less gain, the
distortion signal's level is closer to the test equipment's measurement floor. Because of this compromise, you should use the circuit in Fig 4 only where signalgenerator distortion must be separated from the test signal. In other cases, the basic selective-gain configuration offers a better compromise.
The input capacitance of the signal analyzer, C_{l}, alters the feedback factor in Fig 4. This capacitance bypasses R_{1} and can cause gain peaking or even oscillation. Such problems occur only if the break frequency of the bypass, $1 / 2 \pi \mathrm{R}_{1} \mathrm{C}_{\mathrm{I}}$, is within the amplifier's closedloop bandwidth. In this case, add a compensating capacitor in parallel with R_{2} to roll off the gain peaking. Choose this capacitor to break with R_{2} at the same frequency that C_{1} breaks with $R_{1} \|\left(R_{3}+R_{4}\right)$. Then, the feedback-divider action of the R_{2} and R_{1} legs remains approximately constant with frequency.

Gain variation extends resolution

Some op amps' distortion-measurement requirements exceed test equipment's capabilities even when you use the preceding methods. When your op amp

Fig 5-For extremely low-distortion amplifiers, vary the selective gain to retain resolution and bandwidth.
has low distortion over wider bandwidths, or just extremely low distortion, you need variable test configurations to characterize fully its distortion-versusfrequency performance.
First, low distortion levels automatically rule out the basic signal-separation approach of Part 1 because that approach requires an instrumentation amplifier of even lower distortion than the op amp under test. Instead, use selective amplification, which places measurement bandwidth and measurement resolution in competition. You must maintain measurement bandwidth to around 80 kHz to resolve harmonics important to the audio range. This bandwidth limits the selective amplification to a gain of $1 / \beta=G B W / 80 \mathrm{kHz}$.
However, your setup need not maintain full bandwidth at every test frequency. The amplitude of distortion harmonics drops as their frequencies get further away from the fundamental's frequency. Because of this decline, a measurement bandwidth that spans only five or six harmonics is sufficient. A smaller measurement bandwidth permits the use of higher selective gains to better resolve the lower distortion levels encountered at lower frequencies. Higher test frequencies require the full bandwidth, but they also cause correspondingly higher amplifier distortion. Accordingly, higher test frequencies require less selective gain, extending measurement bandwidth. Thus, the gain/bandwidth compromise of selective amplification

Fig 6-Power-supply bootstrapping permits directly measuring V_{ER} and does not change an amplifier's internal voltage swings.
yields to distortion measurement with varied gains.
The OPA627, for example, requires three selectivegain steps, each step providing a different gain/ bandwidth combination. Fig 5 details this gain variation, which revolves around the $\mathrm{THD}_{1 \mathrm{IN}}-\mathrm{vs}$-frequency plot. As this plot shows, op-amp distortion typically rises at higher frequencies, where measurement bandwidth is most needed.

Power-supply bootstrapping for noninverters

Signal separation is a complete solution only for inverting configurations. Using a power-supply bootstrap avoids limitations in noninverting solutions. Given care to avoid ground loops, the bootstrapping approach separates the common-mode signal, extending signal separation to the noninverting case.

To permit an optimal analyzer connection, powersupply bootstrapping moves the circuit's common from the normal circuit ground to the op amp's noninverting input (Fig 6). As odd as it may seem to consider an op amp's noninverting input to be the common, the common of a circuit is a relative point that you can define to be anywhere you choose. This connection retains the common-mode swing for the amplifier but removes that swing relative to common and, thus, removes it from the analyzer's input.

Theoretical niceties aside, redefining the common introduces ground-loop errors. The effects of these errors depend on the sensitivity of the circuit to voltage drops in its connecting lines. In Fig 6, the element most sensitive to such voltages is the signal analyzer because it measures a small signal superimposed on a larger one. For this reason, the figure shows the signal analyzer returned to the circuit's new common. Fig 6 makes the power-supply connections vulnerable to line drops, but the power-supply rejection of the op amp attenuates the resulting voltages.

For Fig 6, the test-equipment demands again decrease by a factor of $1 /(1 / \mathrm{A}+1 / \mathrm{CMRR})$. However, the measurement made in Fig 6 requires adjustment to account for the reduced fundamental measured. For this figure, the relevant signal swing is that across the load resistor, or V_{IN}. Therefore, multiply the measured distortion by $\mathrm{V}_{\text {ERR }} / V_{\mathrm{IN}}$.

The actual adjustment made depends on the type of signal analyzer used. Measurements made with a distortion analyzer directly produce a THD +N percentage. Simply multiply this percentage by $\mathrm{V}_{\mathrm{ERR}} / \mathrm{V}_{\mathrm{IN}}$ and Fig 6's output distortion plus noise is then
$\mathrm{THD}+\mathrm{N}_{\mathrm{O}}=\frac{\mathrm{V}_{\text {EIKK }}}{\mathrm{V}_{\text {IN }}} \mathrm{THD}+\mathrm{N}_{\mathrm{M}}=\mathrm{THD}+\mathrm{N}_{\mathrm{IN}}$.

MEASURING OP-AMP DISTORTION

You must measure the magnitude of $\mathrm{V}_{\text {ERr }}$ separately because distortion-analyzer outputs do not normally indicate this magnitude.

When you measure distortion with a spectrum analyzer, no separate measurement is required. Spectrum analyzers display the magnitudes of the fundamental and harmonic signals individually. You can then calculate distortion from the fundamental THD equation. Multiply this equation by $\mathrm{V}_{\text {ERR }} / \mathrm{V}_{\mathrm{IN}}$, where $\mathrm{V}_{\text {ERR }}$ is equal to and therefore replaces V_{1}, and $V_{\text {IN }}$ remains in the denominator. Then, the spectrum analyzer result for Fig 6 is

$$
\mathrm{THD}_{\mathrm{OUT}}=\frac{\sqrt{\left(\mathrm{V}_{2}{ }^{2}+\mathrm{V}_{3}{ }^{2}+\mathrm{V}_{4}{ }^{2}+\ldots\right)}}{\mathrm{V}_{\mathrm{IN}}}(100 \%)
$$

Bootstrapping resolves noninverting cases

The convenience of Fig 6 extends to the generalized noninverting amplifier. As Fig 7 shows, power-supply bootstrapping again permits directly measuring $\mathrm{V}_{\mathrm{ERR}}$ with a grounded signal analyzer.

Only one difference separates the measurements of the two circuits. The greater gain of Fig 7 results in a larger load signal $\mathrm{V}_{\text {LOAD }}$. This gain also amplifies

Fig 7-The bootstrapping of Fig 6's voltage follower also applies to general noninverting circuits.
$\mathrm{V}_{\text {ERR }}$, making the distortion in $\mathrm{V}_{\text {LOAD }}$ greater than that measured in $\mathrm{V}_{\text {Errr }}$. You can adjust the measured distortion later to compensate for the effect of this gain. Finally, the added gain further reduces the performance requirements of the test equipment. For a given level of $\mathrm{V}_{\text {LOAD }}, \mathrm{V}_{\text {IN }}$ is smaller for Fig 7 than for Fig 6. Thus, with Fig 7, V ${ }_{\text {IN }}$'s reacting with the amplifier's CMRR produces a smaller $\mathrm{V}_{\mathrm{FRR}}$ signal. The noninverting configuration reduces the signal measured by a factor of $V_{L O A D} / V_{\text {ERR }}=1 /(1 / A+\beta / C M R R)$.

Consider Fig 7 with the common return first at the top and then at the bottom of the signal generator. This change makes no difference in the equations relating amplifier voltages to the V^{+}and V^{-}supply terminals. For both configurations, the $\mathrm{V}_{2}-\mathrm{V}^{-}$and $\mathrm{V}_{2}-\mathrm{V}^{+}$ equations are the same as those for Fig 6. Amplifier feedback forces $V_{1} \approx V_{2}$ to again extend these equations to Fig 7's input. Thus, whether bootstrapped or not, the amplifier distorts the input signal.

Fig 7's greater gain produces a different output result than Fig 6. To define $\mathrm{V}_{\text {out }}$ relative to V^{+}and V^{-}, first determine the load voltage, $\mathrm{V}_{\mathrm{l},(\mathrm{AD}}$. You can find this voltage from the loop formed by the load resistor with resistors R_{1} and R_{2}. The input signal, $V_{\text {IN }}$, appears across resistor R_{1}, producing a feedback current of $V_{\text {IN }} / R_{1}$. This current flows in R_{2} to develop a voltage of $V_{1 N} R_{2} / R_{1}$. Adding the voltages on R_{1} and R_{2} shows the voltage on the load to be $\mathrm{V}_{1, O A D}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{V}_{\text {IN }}$. This result portrays the familiar response of a noninverting op-amp configuration and is independent of Fig 7's redefined common. Thus, the bootstrapping does not affect the load voltage and the corresponding amplifier output current.
Similarly, the loops relating $\mathrm{V}_{\text {OUT }}$ to V^{+}and V remain unchanged. With the common on either side of the signal generator, the output voltages with respect to the amplifier supply terminals are

$$
\begin{gathered}
\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}^{-}=\mathrm{V}_{\mathrm{LOAD}}+\mathrm{V}^{-} \\
\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}^{+}=\mathrm{V}_{\mathrm{LOAD}}-\mathrm{V}^{+} .
\end{gathered}
$$

Thus, both input- and output-signal conditions are independent of the Fig 7 common connection, and the bootstrapping does not change the amplifier's distortion products.

You must convert the distortion measured in Fig 7 to output-referred distortion. In Fig 7, the circuit amplifies the distortion products in $V_{\text {ERR }}$ by $1 / \beta$ to produce greater distortion signals in $\mathrm{V}_{\text {OUT }}$. This effect changes the correction factor to $\mathrm{V}_{\text {ERr }} / \beta \mathrm{V}_{\text {IN }}$. However, because the same gain amplifies the input signal, $\mathrm{V}_{\text {IN }}$, the final correction factor becomes $\beta \mathrm{V}_{\mathrm{ERR}} / \beta \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ERRR }} / \mathrm{V}_{\text {IN }}$. Thus Fig 7's correction equations are the same as Fig 6's.
For the voltage-follower case, combining bootstrap-

User Adjustable Wide Range Outputs

- 2V to 56VDC Outputs
- 200 to 3000 Watts

1 to 9 Outputs
\square Auto Current Share $(N+1)$
\square New - Three Year Warranty
Spec Qualidyne -- and expect power supply flexibility. Qualidyne designs and builds custom models tailored to your specific volt/amp output requirements or delivered with a wide range of user adjustable outputs -- for the ultimate in flexibility. Options and features include automatic current sharing, input \& output status signals, integral DC ball-bearing fan, margining, inhibit, 0.99 PFC , and DC input.

High Power

Compact: 5×5 " or
5×8 " Cases
750 to 3000 Watts
AC or DC Inputs
1 or 3-Phase AC
Auto Current
Share $(N+1)$

- Compact: 2" to 3" High
- 250 to 1000 Watts
- Single \& Multi-Outputs
- 2V to 56V Outputs
- Auto AC Line Selection

Meets IEC 555-2

0.99 Power Factor Option
 AC to DC Switchers

DC to DC Converters

Multi-Output Models-3, 4, or 5 outputs (Partial Listing)

Size	tal	Output Voltage Range/Max. Amps				
($\mathrm{H} \times \mathrm{W} \times \mathrm{L}$)	Watts	Output 1	Output 2	Output 3	Output 4	Output 5
$2.5 \times 5 \times 6.5{ }^{\text {" }}$	200W	2-6V/25A	5-15V/3A	5-15V/3A		
2.555x11"	400W	2-6V/60A	5-15V/12A	5-15V/12A	12-28V/7A	
$2.5 \times 5 \times 11^{\prime \prime}$	400w	2-6V/60A	5-15V/12A	5-15V/12A	2-6V/12A	
$2.5 \times 5 \times 11^{\prime \prime}$	400W	$5-15 \mathrm{~V} / 24 \mathrm{~A}$	5-15V/12A	2-6V/12A	2-6V/12A	
$2.5 \times 5 \times 11^{\prime \prime}$	400W	12-28V/15A	5-15V/12A	5-15V/3A	5-15V/3A	2-6V/12A
$3 \times 5 \times 14.25$ "	600W	5V/80A	5-24V/10A	5-24V/10A	5-24V/5A	5-24V/5A
$4 \times 5 \times 14.25{ }^{\prime \prime}$	750W	5V/100A	$5-15 \mathrm{~V} / 20 \mathrm{~A}$	5-15V/20A	5-24V/5A	5-24V/5A
$5 \times 5 \times 11.5{ }^{\prime \prime}$	1000W	5V/120A	5-15V/20A	5-15V/20A	5-24V/5A	5-24V/5A
$5 \times 8 \times 11{ }^{\prime \prime}$	1000W	5V/150A	$5-15 \mathrm{~V} / 20 \mathrm{~A}$	5-15V/10A	$5-15 \mathrm{~V} / 10 \mathrm{~A}$	5-24V/10A
$5 \times 8 \times 13.75{ }^{\prime \prime}$	2500W	5V/400A	5-15V/20A	5-15V/20A	$5-24 \mathrm{~V} / 10 \mathrm{~A}$	$5-24 \mathrm{~V} / 10 \mathrm{~A}$

Single Output Models (Partial Listing)

Size (HxWxL)	Total Watts	Output Voltage Range/Max. Amps (select one)				
		2-4VDC	4-6VDC	7-12VDC	12-28VDC	28-56VDC
$2.5 \times 5 \times 6.5^{\prime \prime}$	200W	2-6V/40A	2-6V/40A		12-28V/7A	
$2.5 \times 5 \times 8.4^{\prime \prime}$	400W	2-6V/80A	2-6V/80A		12-28V/15A	
$3 \times 5 \times 14.25^{\prime \prime}$	600W	2-4V/150A	4-6V/120A	7-12V/50A	12-28V/22A	28-56V/11A
$5 \times 5 \times 11.5^{\prime \prime}$	1000W	2-4V/250A	4-6V/200A	7-12V/84A	12-28V/36A	28-56V/18A
$5 \times 8 \times 11^{\prime \prime}$	1000W	2-4V/250A	4-6V/200A	7-12V/84A	12-28V/36A	28-56V/18A
$5 \times 8 \times 15.5^{\prime \prime}$	3000W	2V/700A	5V/600A	12V/250A	24V/125A	48V/65A

FREE CATALOG

Complete line of quality power supplies from 100 to 3000 Watts.

EDN-DESIGN FEATURE

MEASURING OP-AMP DISTORTION

ping and selective amplification achieves even greater distortion resolution. This way, you can test the very lowest distortion amplifiers with a distortion analyzer. This particular amplifier-and-analyzer combination is the one case where noise becomes a limit to op-amp distortion measurement. And for a spectrum analyzer, the ambient noise of the test environment requires your careful attention to avoid coupling stray noise into your circuit. With either type of analyzer, selective amplification expands distortion resolution for the bootstrapped voltage follower.
The benefits of power-supply bootstrapping and selective amplification combine in Fig 8. In this circuit, the only signal developed at the amplifier's output is the amplified error signal:

$$
V_{\text {OUT }}=-\left(1+R_{2} / R_{1}\right) V_{\text {ERR }} .
$$

A signal analyzer measures this amplified signal referenced to ground with no interference from the test signal. In addition, the amplified distortion signal conveniently overrides the background noise of the signal analyzer and the measurement environment. This convenience does not extend to the general noninverting case because added gain there restores the test signal to the amplifier's output.

$$
V_{\text {OUT }}=-\left(1+\frac{R_{2}}{R_{1}}\right) V_{\text {ERR }}
$$

Fig 8-Combined bootstrapping and selective amplification expand distortion resolution for the voltage follower.

Other characteristics of the measurement shown in Fig 8 follow directly from earlier results. Selective amplification reduces the measurement bandwidth from f_{C} to βf_{C}. Here, f_{C} is the unity-gain bandwidth of the op amp. The feedback factor is $\beta=R_{1} /\left(R_{1}+R_{2}\right)$. Fig 8's test-equipment requirements are the same as for the bootstrapped follower of Fig 6. As with that circuit, the distortion and dynamic-range requirements of the test equipment decrease by a factor of $1 /(1 / A+1 /$ CMRR). Because the selective amplification amplifies both the amplifier's distortion products and the background signal, $\mathrm{V}_{\mathrm{ERR}}$, it does not improve this factor. The attenuated generator distortion present in $\mathrm{V}_{\mathrm{ERR}}$ gets amplified along with the amplifier distortion products. The relative significance of generator distortion is unchanged. Similarly, the selective gain amplifies both the maximum and minimum signals to be resolved by the analyzer. Thus, the dynamic range of the measurement is also unchanged.

For the same reasons, results measured with the circuit in Fig 8 translate output-referred distortion with the same equations as those used in Figs 6 and 7.

References

1. The Institute of High Fidelity Inc, "Standard Methods of Measurement for Audio Amplifiers," IHF-A-202, 1978.
2. Graeme, J, "Feedback Plots Offer Insight into Operational Amplifiers," EDN, January 19, 1989.
3. Pryce, Dave, "Audio DACs Push CD Players to Higher Performance," EDN, December 7, 1989.

Author's biography

For Jerald Graeme's biography, see Part 1 of this series on pg 133.

Article Interest Quotient (Circle One) High 485 Medium 486 Low 487

WHAT'S COMING IN EDN

Instrument designers and test-and-measurement companies are constantly on the prowl for new ways to make measurements simpler and more accurate. EDN Magazine's March 2, 1992, Special Report investigates new measurement techniques and a few of the products that implement them.

In the same issue, check out the staff-written Technology Update on ANSI's progress with establishing standards for the FDDI (Fiber Distributed Data Interface) using twistedpair wiring.

World's Highest Density Triple!

150 Watt Triplecube DC-DC Converter

Nothing Else Compares!

Powercube's 28DC515-150
Triplecube is just one of a family of high density, multiple output, DC-DC switching regulators, featuring advanced integrated magnetic technology. This is a mature product that has been successfully produced since 1988, and it continues to provide the highest performance of any converter of its kind. For your Military, Industrial and commercial needs, Powercube has the solution. Compare our product and see !!!

Features

- Triple Output
- Low Profile
- High Power Density
- Efficiency >80\%
- Remote Sense
- Excellent Regulation
- EMI (Input/Output)
- $-55^{\circ} \mathrm{C}$ To $+100^{\circ} \mathrm{C}$ Operation
- Short Circuit Protection
- Output Overvoltage Protection
- MIL-STD-704D (28VDC Input)
- MIL-STD-810C and MIL-STD-202
- NAVSO P-3641/NAVMAT P-4855-1A
(Component Derating)

150 Watt Triplecube Converter
Specifications

Mechanical

WHERE TODAY'S CHALLENGES MEET TOMORROW'S SOLUTIONS

Bring your PCB design and layout problems to the only conference and exhibition dedicated solely to the design of printed circuit boards.

Increasing density, higher circuit speeds, smaller packages, finer lines and spaces, and new technologies are just a few of the problems slated for solutions at the PCB Design Conference, March 30-April 1, 1991 at the Fairmont Hotel in San Jose.

More than 50 workshops, lectures and tutorials will provide practical solutions and innovative techniques, presented by leading board design practitioners and authorities. And you'll
see the latest EDA tools and technologies, exhibited by major CAE/CAD vendors throughout the three-day conference.

Sponsored by Printed Circuit Design magazine, the PCB Design Conference is the only forum of its kind to focus 100% on your needs. In just three days, you'll improve your PCB design skills, increase your productivity, and get practical solutions to specific design and layout problems that you face every day.

Sponsored by:
Printed Circuit Design Magazine
Produced by:
Miller Freeman Inc.
P.O. Box 7843

San Francisco, CA 94120-7843
Phone (415) 905-2354
FAX (415) 905-2220

March 30-April 1, 1992 Fairmont Hotel San Jose, California

MY SIGHTS ARE SET ON SOLUTIONS.

Please send me free details on the first annual PCB Design Conference, March 30-April 1, 1992, at the Fairmont Hotel in San Jose, California. I am interested in: [] Attending [] Exhibiting

Name \qquad
Title \qquad
Company
Address
City/State/Zip
Phone FAX

MAIL OR FAX TO: PCB DESIGN CONFERENCE, Miller Freeman Inc., P.O. Box 7843, San Francisco, Ca 94120-7843; FAX (415) 905-2220 or call Susie Chapman at (415) 905-2354.

Super Silicon

Roseville, 1992.

Field of champions.

If there were a championship Bowl for semiconductors, they'd have to play it in Roseville, California. Our new six-inch wafer fab line is longer than two football fields end-to-end.

With a total of 676,000 square feet, Roseville is the largest semiconductor manufacturing facility in America. And, this advanced 0.6 micron line is capable of astonishing DRAM production trillions of bytes per month.

We've spent $\$ 600$ million to bring world-class IC manufacturing closer to you. No other Japanese semiconductor maker has invested as heavily in America.

The future is now.

Roseville is capable of your most demanding requirements, including 4- and 16-megabit DRAMs, 64-bit microprocessors, 4-megabit SRAMs, and submicron standard cell and gate array ASIC devices.

So now you get the home field advantage, because traditional Japanese quality manufacturing is now within easy driving distance of Sacramento, San Francisco and San Jose.

A muscular line.

Just like a quarterback protected by a powerful offensive line, you'll face the competition behind the technology of a \$26 billion global corporation that won't fall down on the job. We're proud to be part of the charming community of Roseville, California, where we employ more than 1,000 local residents. To learn more, send for your free 1992 Roseville calendar today.

Free Roseville Photo Calendar Call 1-800-632-3531 Ask for Info Pack 004

Dare to experience the blazing performance

Maybe you'd better start fanning yourself with this ad.
The new RISC System $/ 6000^{m}$ POWERstations and POWERservers $340,350,520 \mathrm{H}$ and 560 all boast significantly more sizzling performance-from 24 to 65 percent. But for all this increased power, they're priced to give

Model	SPECmarks ${ }^{\text {sm }}$	Performance Increase
POWERstation 350	71.4	65%
POWERserver 340	56.6	30%
POWERserver 560	89.3	24%

before. We're also introducing the POWERstation 220 -a workstation with a SPECmark ${ }^{\text {mw }}$ of 25.9 compared to the SUN IPC's ${ }^{\text {Tw }}$ 13.4-that can give you the power of UNIX ${ }^{\circledR}$ computing for less than $\$ 6,400$.

Our open systems open wider. Of course, even the hottest performance can only take you so far if you can't share it. So we've made networking with the RISC System $/ 6000$ family even easier. NetWare ${ }^{\circledR}$ for AIX ${ }^{\circledast} / 6000$ from IBM lets desktop systems like DOS, Windows" ${ }^{\text {m }}$ and $05 / 2^{\text {® }}$

of the new IBM RISC System/ 6000 models.

connect on a LAN with RISC System/6000 servers. So whether you have an Ethernet or a Token-Ring LAN, the power of AIX is now available to everybody. And with more than 5,000 applications to choose from, your range of solutions will never burn out.

Hotter than ever: IBM support. IBM's commitment to its customers is as hot as its technology. You can expect the service and support IBM has always been famous for, 24 hours a day, 365 days a year. An IBM customer engineer can even install your machines, configure your network and integrate all your systems, IBM-made or not. So contact your IBM Business Partner or marketing representative. For literature, call 1800 IBM-6676, ext. 772* If you can take the heat, we want to take your call.

Are you buying a Logic Analyzer for RISC or high-speed CISC* Development? Compare. . .

Features	American Arium	Tektronix	Hewlett Packard
100 channels, 100 MHz sync	YES	YES	YES
No. of cards for 100 channels	1	1	3
Dynamic cache control	YES	NO	NO
Data cycles fully labeled in disassembly	YES	NO	NO
Maximum trace depth	128 K	128 K	8 K
Maximum synchronous rate	200 MHz	100 MHz	100 MHz
Split timebase on a single card	YES	NO	NO
Setup+Hold time	3 nsec	5 nsec	4 nsec
High price	NO	YES	YES

(1) 92 A 96 (2) $16540 / 41$

Introducing Paladin ${ }^{\text {m" }}$ -

American Arium's new single card capture system for the ML4400 Logic Analyzer featuring 100 and 200 MHz synchronous and $/ \mathrm{GHz}$ asynchronous data capture. With 100 channels of 100 MHz synchronous capability per capture card, plus the powerful features of the ML4400, Paladin delivers the maximum capability available today for state and timing measurements on high-performance $\mu \mathrm{P}$-based designs.
Fully Labeled Disassembly
The ML4400 boasts fully automatic synchronizing disassemblers for all major families of $\mu \mathrm{Ps}$, including RISC, CISC, DSP and GSP. These are the only disassemblers available that completely identify and label all data cycles including task switches, exception processing, page translation and other complex CISC instructions.
*Such as 80486 or beyond, or 68040 or beyond.

Dynamic Cache Control The ML4400 provides dynamic control of cache fill on many processors, allowing complete disassembly of some program segments while the majority of the program runs fully cached.

Total Versatility

Paladin cards may be paralleled to form analyzers with up to 200 channels per timebase. You can configure the ML4400 to fit your needs, with the flexibility of 5 different types of capture cards.
Compare First
Paladin delivers the speed and power you'd expect from the leader in Logic Analyzer technology. And you can save thousands of dollars. For a demo, call (714) 731-1661.

EDN-DESIGN IDEAS

Miniature power supply works off line

David A Johnson, David Johnson and Associates, Littleton, CO

The circuit in Fig 1 operates off a 120 V ac line and is cheaper and smaller than more common circuits that consist of a small iron-core transformer, a bridge rectifier, a filter capacitor, and a voltage regulator. The circuit transfers power from the 120 V ac line to a volt-age-regulator circuit by discharging a capacitor through a small high-frequency transformer twice each power-line cycle. A bidirectional discharge circuit comprising two small SCRs, CR_{1} and CR_{2}, and two currentsteering rectifiers, D_{1} and D_{2}, provides the power switching. A low-cost and common speaker impedancematching transformer reduces the voltage and provides isolation. SCRs work better than triacs in this design because triacs require more gate drive and higher holding currents than do SCRs.

The resistor-divider network R_{1} to R_{3} defines a voltage trigger point of approximately 140 V for the two SCRs. Each time C_{1} discharges, the circuit induces voltage spikes in the primary winding of the transformer. The transformer translates the pulses to its secondary winding, where D_{3} and D_{4} rectify and C_{2} filters the pulses. An inexpensive 78L12 3-terminal regulator provides voltage regulation. With the components in Fig 1, the circuit supplies a 12 V output and a maximum current of 15 mA . The circuit will operate with an input as low as 108 V ac.
EDN BBS /DI_SIG \#1083
[०]

To Vote For This Design, Circle No. 746

Fig 1-Smaller and cheaper than many other off-line power supplies, this low-power circuit transfers power from a 120V ac line to a voltage regulator by discharging a capacitor through a small, high-frequency transformer.

EDN-DESIGN IDEAS

Split supply operates from a single cell

Mitchell Lee, Linear Technology Corp, Milpitas, CA

Batteries power many portable instruments, but many cells are usually necessary to directly implement a split supply. The circuit in Fig 1 uses a micropower de/dc converter to provide $\pm 5 \mathrm{~V}$ from just one alkaline or NiCd cell. The circuit outputs 100 mW from a fresh cell and 50 mW when the cell's voltage drops to 1.05 V . The circuit provides the output power in any current combination; for example, 5 mA from each output, 10 mA from one output, or 7 mA from one output and 3 mA from the other. This flexibility is especially useful for op-amp supplies in which the load current returns to ground. In this case, only one side of the split supply delivers high currents at any given time.
The LT1073 micropower de/dc converter contains a switching element and regulating loop to maintain a $\pm 5 \mathrm{~V}$ output over a wide range of load currents and over the full life of the battery. If loading on the positive output exceeds the loading on the negative output, R_{1} and R_{2} feed back to pin 8 and maintain regulation.

If the negative output is more heavily loaded, D_{1} and Q_{1} provide feedback to pin 8. Positive output regulation is less than 0.2% for loads from 2.5 to 7.5 mA . Negative output regulation is 2% for the same loads. Cross regulation is acceptable with a load imbalance as high as 10 to 1 . You can extend cross regulation by adding the optional zener diodes, D_{2} and D_{3}. The positive output cross regulation is 0.8% with a $2.5-\mathrm{mA}$ load. The negative output cross regulation is 4% with a $2.5-\mathrm{mA}$ load.
Efficiency with a $1-\mathrm{mA}$ load on each output is greater than 75% over the 1.05 to 1.5 V input range. Although the circuit suits 1 -cell inputs, operation is also possible with two or three cells. When using more cells, the available output power will be somewhat higher.
EDN BBS /DI_SIG \#1084
[0]
To Vote For This Design, Circle No. 747

NOTE: TRANSFORMER = CTx110339-1 FROM COILTRONICS, (305) 781-8900.

Fig 1-To produce a split supply from a single cell, this circuit uses a micropower $\mathrm{dc} / \mathrm{dc}$ converter to supply $\pm 5 \mathrm{~V}$ and any $10-\mathrm{mA}$ current combination.

Truly incredible ... superfast 3nsec GaAs SPDT reflective or absorptive switches with built-in driver, available in pc plug-in or SMA connector models, from only $\$ 19.95$. So why bother designing and building a driver interface to further complicate your subsystem and take added space when you can specify Mini-Circuits' latest innovative integrated components?

Check the outstanding performance of these units...high isolation excellent return loss (even in the "off" state for absorptive models) and 3-sigma guaranteed unit-to-unit repeatability for insertion loss. These rugged devices operate over a -55° to $+100^{\circ} \mathrm{C}$ span. Plug-in models are housed in a tiny plastic case and are available in tape-and-reel format (1500 units max, 24 mm). All models are available for immediate delivery with a one-year guarantee.

SPECIFICATIONS (typ)
$\left.\begin{array}{lccc|} & \begin{array}{c}\text { Absorptive SPDT } \\ \text { YSWA-2-50DR }\end{array} \\ \text { ZYSWA-2-50DR }\end{array}\right\}$

Reflective SPDT

dc-	$500-$	$2000-$
500	2000	5000
0.9	1.3	1.4
50	40	28
20	20	24
22	22	26
1.4	1.4	1.4
30	30	30

YSW-2-50DR (pin) 19.95 ZYSW-2-50DR (SMA) 59.95

Synchronous switch mutes line noise

M J Salvati, Flushing Communications, Flushing, NY

A variety of line-operated devices, such as neon lamps, SCRs, triacs, and fluorescent lamps, produce powerful RF signals that may interfere with nearby radio receivers. The circuit in Fig 1 improves the intelligibility of the recovered audio by muting the audio path during the noise-pulse interval. This scheme works only when the noise pulse arises from a single dominant nearby noise source. However, the circuit has an advantage over simpler clipping circuits because it doesn't require a steady signal amplitude to operate properly. Also, unlike RF and IF noise blankers, the entire circuit is external to the receiver. Thus, using this circuit doesn't require you to modify existing receivers.
Power-line-related noise generally occurs at a repetition rate of twice the local power-line frequency. Because the same line power drives the noise blanker and the noise source, the output of the bridge rectifier will be frequency and phase coherent with the noise pulses.
The circuit applies a rectified signal to the Schmitt
input, pin 5, of the 74 HC 4538 dual monostable multivibrator. The first monostable delays the blanking pulse that the second monostable produces. This delay, which you can vary using the position potentiometer, lets you position the blanking pulse to coincide with the noise pulse in the audio signal.
The width potentiometer of the second monostable lets you adjust the blanking pulse to the minimum width sufficient for effective blanking while minimizing distortion. The blanking pulse appears at the inverted output of the second monostable. This normally high output level keeps the p-channel FET cut off. When the blanking pulse appears, this output goes low, and the FET conducts, thus shorting the audio-signal path. The RC filter at pin 9 of the second monostable also helps minimize distortion of the recovered audio by slowing the fast rise and fall times of the blanking pulse. EDN BBS /DI_SIG \#1085
[0]
To Vote For This Design, Circle No. 748

Fig 1-The position adjustment of this noise-muting circuit lets you align the blanking pulse to coincide with the audio-signal's noise pulse. The width adjustment helps minimize distortion.

What's the difference between HSPICE" and other simulators?

 The right answer.

 The right answer.}

Accuracy, that's what you need from a circuit simulator. Unfortunately, not all Spice simulation software is up to it. Only HSPICE provides the accuracy you need.

Your design, process and modeling groups can work together as one team by utilizing Meta's complete technical resource of software products and lab services.

So why risk expensive and unnecessary iterations? With Meta, you know the answer's right first time ${ }^{T M}$. For a right first time information package, call toll free (800) 442-3200, Ext. A1.

Right First Time ${ }^{\text {TM }}$
Meta-Software, Inc. 1300 White Oaks Road, Campbell, California 95008.

Large capacitor serves as battery backup

Michael Grimm, Maxim Integrated Products, Sunnyvale, CA

A large capacitor-on the order of 0.1 F -can replace your backup battery in certain applications. Though limited in storage capacity, the capacitor offers sufficient backup for low-dissipation equipment in which typical power outages last from a few seconds to several hours. The simple implementation that Fig 1 shows combines the capacitor with a battery-switchover IC, a device that monitors the supply and switches the load to the battery voltage when the main supply fails or browns out.
The Fig 1a circuit includes various features to ensure proper operation of the switch-over IC. The $100-\mathrm{k} \Omega$ resistor, whose current comes from the main supply, keeps D_{1} forward biased and ensures the typical V_{BE} drop of 0.6 V across D_{1}. The resistor maintains a safety
margin of one V_{BE} against droop in the V_{DD} supply. D_{2} prevents this resistor from discharging the capacitor during backup. You can increase the margin by adding diodes in series with D_{1}.

Fig 1b improves on the original circuit by replacing D_{1} and D_{2} with R_{2} and Q_{1}, respectively. In Fig 1a, the charging path via the diode has a time constant that postpones the availability of backup power following power on. For Fig 1a, the power delay would be 10$\mathrm{k} \Omega \times 0.1 \mathrm{~F}=1000 \mathrm{sec}$, or more than 16 minutes. Fig 1b divides this delay by the transistor's beta, which is typically 100 . EDN BBS /DI_SIG \#1086 इका

To Vote For This Design, Circle No. 749

Fig 1-Teamed with a switch-over IC, large capacitors can serve as battery backup in certain applications. The $100-\mathrm{k} \Omega$ resistor in (a) ensures that D_{1} is forward biased so that normal variations in $V_{D D}$ don't mistakenly trip the IC. The presence of Q_{1} and its associated resistors in (b) shorten the delay between power on and backup capability.

Spice model mimics reference

Joe Buxton, Analog Devices Inc, Santa Clara, CA

BBS
0
0
winwersSeemingly simple dc components can cause simulation inaccuracies if you don't have correct models for them. For example, the common practice of modeling a voltage reference using a Thevenin equivalent circuit doesn't produce accurate simulations under dynamic and transient conditions. When driving a successive-approximation ADC, step
changes in load current cause voltage disturbances at the reference output. The reference's recovery time after this disturbance affects the accuracy of the ADC's result. Other non-ideal reference characteristics include load and line regulation, current limiting, temperature coefficients, turn-on and turn-off conditions, and short-circuit current.

FUTABA

Sets the Standards in Custom Vacuum Fluorescent Displays and Vacuum Fluorescent Modules

CUSTOM DESIGN

Futaba is the leading global supplier of vacuum fluorescent displays and modules. We have the capability, technology, and market knowledge to provide you with the most cost effective display system tailored to your specific application.

Futaba's high brightness fluorescent display products range from simple numeric and dot matrix displays to large multi-color

Electronic Instrument Panel to J.I. CASE Tractors.

NCR "S1" Supplier.

U.S. MANUFACTURING

Futaba's state-of-the-art SMD manufacturing facility in Schaumburg, Illinois provides local service, JIT delivery, and reinforces its commitment to supply the North American market.

QUALITY

Futaba's number one commitment is supplying products having the highest level of quality. Quality begins with the initial design and is controlled throughout the manufacturing process by using SPC and having well trained and motivated employees.

Futaba is dedicated to the principal of continuous improvement and always strives to provide the highest level of customer satisfaction.

Pick up the phone - take advantage of our superior technical background and design expertise. Call or write for more information on Futaba custom vacuum fluorescent display modules.

Appliance Control Display.

711 E. State Parkway
Schaumburg, IL 60173
708-884-1444
FAX 708-884-1635

EDN-DESIGN IDEAS

The macromodel in Fig 1 and Listing 1 (which is also posted on the EDN BBS (617) 558-4241,300/1200/ $2400,8, \mathrm{~N}, 1$-from main menu, enter (s)ig, <s/di_sig>, rk1087) for the REF-01 10V voltage reference includes features to account for some of these real-world characteristics. You can apply many of the concepts and techniques used to create this model to creating more accurate models of other simple dc devices.
An important feature of this model is its temperature sensitivity. By including the temperature coefficient for R1, which creates the model's internal 1.23 V refer-
ence in conjunction with I1, the output voltage varies linearly with temperature. The thermal noise of R1 also models the reference's output noise. The value of R1 that this models uses was calculated from the data sheet's output-noise specification. C1 sets the dominant pole and the slew rate of the reference, and thus controls the turn-on and transient-load settling times. The model's output stage sets the impedance and controls current limiting. EDN BBS /DI_SIG \#1087 E.

To Vote For This Design, Circle No. 750

Fig 1-Simple dc components, such as voltage references, need accurate models. This REF- 01 model includes the temperature coefficient for R1, so that the output voltage varies linearly with temperature. The model does not include second-order, nonlinear drift effects.

The NEW Piher Opens Up Unlimited Specifying And Design Options

The New Piher is now backed by the resources of The Meggitt Group. Powered by a nationwide sales and distribution network. Poised to offer you unmatched resistive component options and value.

Designers can now team with our international pool of engineering talent to create custom specials.

Specifiers and Purchasers can expect prompt technical support and efficient customer service from people who understand your production requirements.

Choose from a complete, quality line of carbon and cermet trimmer potentiometers in a wide range of specifications. All are competitively priced and readily available

PlA [MEGGITT Co.

EDN-DESIGN IDEAS

Feedback \& Amplification

Design Entry Blank

$\$ 100$ Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional $\$ 1500$ Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone \qquad
Company
Division (if any)
Street

City	State
Country	Zip

Design Title
Home Address

Social Security Number
(US authors only)
Entry blank must accompany all entries.
Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Fully annotate all circuit diagrams. Please submit software listings and all other computer-readable documentation on a $5^{1 / 4}$-in. IBM PC disk in plain ASCII.
Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author, or editor gives written permission for publication elsewhere.
In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed
Date

ISSUE WINNER

The winning Design Idea for the October 24, 1991, issue is entitled "Offset varies PPL's phase shift", submitted by Donald G Stetani of LeRoy, NY.

ISSUE WINNER

The winning Design Idea for the November 7, 1991, issue is entitled "Battery charger straddles input voltage," submitted by Isaac Eng of University of Ottawa (Ottawa, Ontario, Canada).

Program mirrors brilliant circuit

Jim Williams's brilliant circuit in DI \#945, "Transistor sensor needs no compensation" (EDN, April 25, 1991, pg 180), uses a transistor as a temperature transducer. It eliminates trimming by measuring the base-emitter voltage of the transistor at two different currents, and then uses the difference in $V_{\text {BE }}$ to calculate temperatures.

For automated measurements, connect the transistor directly to a computer-controlled multimeter such as the HP-3478A and select the resistance function. The meter sources a test current through the transistor, measures the resulting voltage, and returns a reading. The HP-3478A produces a $100-\mu \mathrm{A}$ test current in the $30-\mathrm{k} \Omega$ range and $10 \mu \mathrm{~A}$ in the $300-\mathrm{k} \Omega$ range.
A simple test program that makes measurements in both ranges can then calculate the temperature from

$$
T\left({ }^{\circ} \mathrm{K}\right)=\left(\mathrm{V}_{\mathrm{BE}}(100 \mu \mathrm{~A})-\mathrm{V}_{\mathrm{BE}}(10 \mu \mathrm{~A})\right) / 199 \mu \mathrm{~V} .
$$

The following HP-Basic program (Listing) makes two such measurements and averages them to eliminate drift. The measurement takes about 1.3 sec . An assortment of 2 N 2222 A and 2 N 4401 transistors generated readings that varied over a $1^{\circ} \mathrm{C}$ range-not quite as tight as Mr Williams reports.
Carl Spearow, Senior Engineer
Sundstrand Corp
4747 Harrison Ave
Rockford, IL 61125

```
Listing-Temperature measurement program
    INTEGER I
    Dvm=723 ; HPIB address of multimeter (DUM)
    lol
    OR I=1 TO 10000
        DUTPUT OVm:"R4 T3*: 30k ohm range (10&uA bias): single trigger
        ENTER DVmiVIOQul, Read value from DUM.
        OUTUT DVM;*RS T3*' 300k ohm range (10uA bias); single trigger.
        OUTPUT DVM:"R4 T3*) 30k ohm range (10DuA blas); single trigger.
        ENTER DVMiVIOOu2
        /2)/2 : Average first and second l00uA readings.
        V100u=(Ul00ul+V100u2)/2 Average first and seco
        IF Tk<173 OR TK>500 THEN Tk=0 \Check. for measurement error.
        PRINT USING "K,DDD,D,K,DDDD,D,K";"Temperature = ",TK," K = ",Tk-273," de
    NEXT I
    OUTPUT DVM:"D1" I Normal display
    LOCAL DVm I Return DVM to local mode
    END
```


How to use our bulletin board

This icon identifies those Design Ideas that have computer-readable material posted on EDN's bulletin-board system (BBS). Call our free BBS: (617) $558-4241,300 /$ $1200 / 2400$ 8,N,1. Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. Once you get into the system, you can use that number to find more information on a particular idea. If you'd like to comment on any Design Idea, include the number in the subject field of your message.

| | | LINEAD |
| :--- | :--- | :--- | :--- |
| | | |

DESIGN NOTES

3V Operation of Linear Technology Op Amps - Design Note 56

George Erdi

The latest trend in digital electronics is the introduction of numerous IC's operating on regulated 3 V or 3.3 V power supplies. This is a logical development to increase circuit densities and to reduce power dissipation. In addition, many systems are directly powered by two AA cells or 3V Lithium batteries. Clearly, analog IC's which work on 3 V with good dynamic range to complement these digital circuits are, and will be, in great demand.

Many Linear Technology operational amplifiers work well on a 3 V supply. The purpose of this design note is to list these devices and their performance when powered by 3 V . The op amps can be divided into two groups: single and dual supply devices. The single supply op amps are optimized for, and fully specified at, a 5 V positive supply with the negative supply terminal tied to ground. Input common mode voltage range goes below ground, and the output swings to within a few millivolts of ground while sinking current. Members of the single supply family are the micropower LT1077/LT1078/ LT1079 single, dual and quad op amps with $40 \mu \mathrm{~A}$
supply current per amplifier, the LT1178/LT1179 dual and quad with $13 \mu \mathrm{~A}$ per amplifier. The LT1006/ LT1013/LT1014 single, dual and quad have faster speed and lower voltage noise, at the expense of $300 \mu \mathrm{~A}$ per amplifier.

The performance of these devices at 3 V is quite similar to the 5 V specs. Clearly, input voltage range and output voltage swing have to be reduced by 2 V since the supply is 2 V less. Offset voltage change from 5 V to 3 V is determined by the power supply rejection ratio specs. At 114 dB or $2 \mu \mathrm{~V} / \mathrm{V}$ the degradation in offset voltage is only $4 \mu \mathrm{~V}(=2 \mathrm{~V} \times 2 \mu \mathrm{~V} / \mathrm{V})$. Input bias and offset currents, voltage and current noise, as well as offset voltage drift with temperature, are practically unchanged compared to the 5 V specifications.

Table I summarizes the performance of the low cost grades of these single supply devices at 3 V . One note of caution: the minimum operating voltage for the LT1013/ LT1014 is 2.95 V . All other devices work on lower supplies, ranging from 1.7 V to 2.6 V .

Table I. Single Supply Op Amps: Low Cost Grade Specifications $\mathrm{V}_{\mathrm{S}}=\mathbf{3 V}, \mathbf{O V} . \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

PARAMETER		LT1077CN8 LT1078CN8 LT1079CN		LT1178CN8 LT1179CN		LT1006CN8 LT1013CN8 LT1014CN		UNITS
		TYP	MIN/MAX	TYP	MIN/MAX	TYP	MIN/MAX	
Offset Voltage	Single	15	80	-	-	35	95	$\mu \mathrm{V}$
	Dual/Quad	45	140/170	45	140/170	95	470	$\mu \mathrm{V}$
Input Voltage Range		-0.3	0	-0.3	0	-0.3	0	V
		+1.8	+1.7	+1.9	+1.7	+1.8	+1.7	V
Output Swing	No Load	0.003	0.006	0.006	0.009	0.015	0.025	V
		2.4	2.2	2.4	2.2	2.4	2.2	V
	2 K to Ground	0.0006	0.0010	0.0002	0.0006	0.007	0.015	V
		2.1	1.9	2.0	1.8	2.3	2.0	V
Voltage Gain $\mathrm{R}_{\mathrm{L}}=50 \mathrm{~K}$ 0.1 Hz to 10 Hz Noise		500	110	180	60	1000	500	V / mV
		0.6	-	1.0	-	0.5	-	$\mu \mathrm{Vp}-\mathrm{p}$
Minimum Supply Voltage\quad With $300 \mu \vee V_{0 S}$ DegradationGain Bandwidth Product		-	2.3	-	2.2	-	2.6/2.95	V
		-	1.8	-	1.7	-	-	V
		160	-	50	-	700	-	KHz

The LT1101 micropower $(=75 \mu \mathrm{~A})$ instrumentation amplifier completes the single supply family. Again, this in amp in 8 pin packages is fully specified at 5 V . Minimum supply voltage is 1.8 V ; the performance change in going from 5 V to 3 V supply is minimal.

The second group of devices are dual supply op amps, i.e., the common mode input voltage and the output swing are limited to a diode voltage $(=600 \mathrm{mV})$ above the negative supply terminal for proper operation. In addition, dual supply op amps are traditionally optimized for $\pm 15 \mathrm{~V}$ operation. Thus, reducing the total supply voltage to 3 V represents a significant change. Table II lists the performance of four op amps: the LT1008 and LT1012 are actually fully tested at reduced supplies. The LT1097 and LT1001 performance is inferred from device evaluation data. Dual versions in 14 pin packages are also available: the LT1002 is a dual LT1001; the LT1024 is a dual version of the LT1012.

In most 3 V applications the single supply op amps of Table I are more flexible and desirable, since no special biasing is needed to shift the input and the output into the operating range. However, the offset voltage drift with temperature performance of the dual supply devices is better. And, most importantly, when picoampere input bias currents are needed, the LT1008/ LT1012/LT1097 have no competition. The op amps of

Table I are all at least 6 nA . The traditional ways of achieving pico-ampere bias current are not available either: JFET input or CMOS chopper-stabilized op amps do not function at 3 V supply.
Figure 1 shows an application using the LT1078 to monitor the condition of the 3 V battery. One output warns that the battery voltage is dropping, the other output shuts the system down as the battery voltage falls below the threshold value.

Figure 1. Low Battery Detector with System Shutdown

Table II. Dual Supply Op Amps at $\mathrm{V}_{\mathrm{S}}=\mathbf{3 V}, \mathbf{0 V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low Cost Grade Electrical Characteristics.

PARAMETER	LT1097CN8		LT1008CN8		LT1012CN8		LT1001CN8		UNITS
	TYP	MIN/MAX	TYP	MIN/MAX	TYP	MIN/MAX	TYP	MIN/MAX	
Offset Voltage	20	100	40	180	25	120	40	150	$\mu \mathrm{V}$
Drift with Temperature	0.3	1.3	0.3	1.6	0.3	1.3	0.3	1.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	40	280	40	150	40	200	600	3500	pA
Input Offset Current	40	260	30	150	30	200	350	3200	pA
Input Voltage Range	$\begin{aligned} & 0.65 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.1 \end{aligned}$	V
Output Swing	$\begin{aligned} & 0.62 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2.05 \end{aligned}$	V
Voltage Gain $\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$	600	250	500	200	500	200	300	150	V / mV
0.1 Hz to 10 Hz Noise	0.5	-	0.5	-	0.5	-	0.35	-	$\mu \mathrm{Vp}-\mathrm{p}$
Minimum Supply Voltage	-	2.4	-	2.4	-	2.4	-	1.9	V
Supply Current	350	560	380	600	380	600	390	550	$\mu \mathrm{A}$
Gain Bandwidth Product	500	-	500	-	500	-	600	-	KHz

For literature on our Single Supply, Micropower, and Precision Op Amps, call (800) 637-5545.
For applications help, call (408) 432-1900, Ext. 361

Signum Systems' in-circuit emulators offer more standard features than you'd expect, and some you wouldn't.

Features You'd Expect

- Windowed/mouse interface Flash download 115 k-baud Debug in C and PL/M Non-intrusive to target or PC Full speed emulation

Signum Extras

- C-51 and C-96 HLL debugger with locals support
- Full bank switching support
- Up to 256 K emulation program RAM
- Graphic trigger window $32 \mathrm{~K} \times 80$ real-time trace
- Access on-the-fly to:
- All emulation RAM contents
- 3 complex trace triggers
- 8 level sequencer
- Trace and execution displays
- 256 K address breakpoints
- 2 16-bit event counters
- Performance analysis

Unlimited user support

Performance . . .

Ultimately Depends on You
See what Graphic Triggering can do for you. For the first time you can have intuitive, precise control of the full debugging power of your emulator. You'll avoid errors and get more done.

Debugging in a High Level Language means that eventually you will have to track something right down to a member of a local complex structure. Signum lets you zoom in on any structure- with just the click of a mouse.

Opportunity . . .

The Signum Advantage
The right tools do make a difference, and there's no equality among emulators. You have to actually use them to appreciate what they can do for you. Better features that are easier to use mean you're finished sooner. That's performance, and that is exactly what we are about at Signum Systems.

Prove it to yourself, check out a Signum emulator today! Write or call to evaluate the Signum advantage.

10 DAY FREE TRIAL

SIGNUM SYSTEMS

... for the most discerning

171 East Thousand Oaks Blvd.
Thousand Oaks, CA 91360
Tel: 805-371-4608
Fax: 805-371-4610

TEDN-NEW PRODUCTS

Test \& Measurement Instruments

μ P-Controlled Atomic Clock

- Accurate to $<1 \sec$ in 1.6×10^{6} years
- Meets specs despite variations in temperature and humidity
The 5071 A atomic clock is five times as accurate as its predecessor, which held the record as the world's most accurate clock. Though the vendor does not guarantee the instrument to run that long, if the clock kept going for 1.6 million years, it would lose $<1 \mathrm{sec}$. Averaged for >5 days, its stability is better than two parts in 10^{14}. Like its predecessors, the clock uses ce-sium-beam technology, but it achieves full accuracy within 30 minutes of turn-on. After warmup, the stability specs apply over a range of temperature and humidity;

most extremely accurate instruments meet their specs only under laboratory conditions. $\$ 54,000$; highperformance cesium-beam tube,
$\$ 12,000$. Delivery, 16 weeks ARO. Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 752-0900. Circle №. 405

Logic-Debugging Tool

- Includes 32-bit digital comparator with individual masks
- Provides programmable scope trigger
The LA-32 logic debugger is a bat-tery-powered, handheld tool for testing $\mu \mathrm{P}$-based systems that operate at clock frequencies to 24 MHz . It incorporates a 32 -bit comparator with programmable masks and set points; a generator that produces pulse trains having programmable pulse widths, pulse spacings, and numbers of pulses; and an autoranging frequency counter that can take its input from any of the instrument's inputs or the compara-
tor output. The unit, which includes a 16 -character LCD, can display 32 channels at once and can produce a scope trigger upon satisfaction of conditions that you specify. In the autoselect mode, the unit automatically configures the pins of its chip clip to match the pinouts of popular EPROMs. \$379; cables and adapters, $\$ 50$ to $\$ 75$.

Logix Inc, 1725 Roselawn Ave W, St Paul, MN 55113. Phone (612) 646-2324.

Circle No. 406

Waveform Analyzer With

 Real-Time DSP Capability- Incorporates processor rated at 25 Mflops
- Cross-correlates two 16-ksample records in <1 sec
Using the 683 DSP board, the 6100 waveform analyzer performs signal-analysis $300 \times$ as fast as similar units not so equipped. The instrument executes more than 50 mathematical operations. It can calculate an 8 k -point FFT in msec
and cross-correlate a pair of 16ksample records in $<1 \mathrm{sec}$. The heart of the board is a 32 -bit floating-point DSP $\mu \mathrm{P}$ slaved to

the analyzer's CPU. The two processors exchange data via DMA and simultaneous register transfers. The analyzer, which accepts plug-in front-end modules, handles signals to 1 GHz . You can install the DSP board in the analyzer. $\$ 2995$.

Analogic Corp, 8 Centennial Dr, Peabody, MA 01961. Phone (508) 977-3000. FAX (508) 532-6097. TLX 6817144.

Circle No. 407

MEASUPE LEADTIWES IW houris, not dars!

At Digi-Key, more than 99 percent of all orders are shipped within 24 hours!

For all your electronic component needs and
free catalog, call toll free: 1-800-344-4539

Frequency synthesizer. The DS-102 synthesizer provides two completely independent $5^{1 / 2}$-digit-resolution synthesizers in a 19 -in.-wide enclosure. It operates from 0.1 Hz to 16 MHz . The reference is stable to $\pm 10 \mathrm{ppm}$ from 0 to $50^{\circ} \mathrm{C}$. $\$ 1585$. Delivery, six to eight weeks ARO. Syntest Corp, 40 Locke Dr, Marlborough, MA 01752. Phone (508) 481-7827. FAX (508) 481-5769.

Circle No. 408

Flash-converter-based data-acquisition board. The ANA100 halflength ISA-bus board includes an 8-bit, $2.5-\mu$ sec flash ADC and a DAC with full-scale output ranges of $2.5,5$, and 10V. \$99. BSoft Engineering Inc, 444 Colton Rd, Columbus, OH 43207. Phone (614) 491-0832. FAX (614) 497-9971.

Circle No. 409

Clamp-on, true-rms digital am-

 meters. The 30 series permits investigating problems such as false tripping of breakers protecting nonlinear loads. They measure to 700 A and handle signal components to 10 kHz . The meters also
measure frequency. Model 33 can also calculate and retain the minimum, maximum, and average values of a long sequence of readings. Model 31, $\$ 179$; Model 33, $\$ 249$. John Fluke Mfg Co Inc, Box 9090, Everett, WA 98206. Phone (800) 443-5853; (206) 347-6100. FAX (206) 356-5116. TLX 185102.

Circle No. 410

Data-acquisition system. The LTech data-acquisition module connects to the serial port of a Macintosh or an MS-DOS-based PC. The unit includes two 14 -bit ADCs that make 100,000 con-
versions/sec. The menu-based software supports many processing functions including averaging and FFTs with or without windowing. $\$ 1995$. Onsite Instruments, 855 Maude Ave, Mountain View, CA 94043. Phone (415) 964-9800. FAX (415) 964-9808.

Circle No. 411

Test station for mixed-signal ICs. The mixed-signal ATS performs digital testing to $400 \mathrm{Mbits} / \mathrm{sec}$ with 100 -psec accuracy. For analog testing, the system's noise floor is at least 100 dB below full scale. Analog measurements beyond 1 GHz are possible. $\$ 630,000$ for a 224 pin configuration. Integrated Measurement Systems Inc, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 626-7117. FAX (503) 644-6969

Circle No. 412

Data-acquisition and processing

system. The Presys 1000 system has a self-diagnostic capability that simulates the ADC's output using 16 -bit counters. System with 64 channels, 500 -ksample/ sec ADC, 128-ksample FIFO buffer, and computer interface, $\$ 14,200$. Deliv-

A relay line designed to be

EDN-NEW PRODUCTS

Test \& Measurement Instruments
ery, five weeks ARO. Preston Scientific, 805 E Cerritos Ave, Anaheim, CA 92805. Phone (714) 776-6400. Circle №. 413

Software for disk-drive test and fault diagnosis. The GR2288 focusedapplication package allows suppliers of disk drives and data-storage peripherals to test the devices on the vendor's GR228X test systems. From $\$ 210,000$. Delivery, 12 weeks ARO. GenRad Inc, 300 Baker Ave, Concord, MA 01742. Phone (508) 369-4000, ext 2101.

Circle No. 414

Programmable video generator. The Astro VG-815 generator allows comprehensive evaluation and testing of CRT displays. It works with displays whose horizontal-scan rates range from 10 to 180 kHz and pixel frequencies range from 5 to 135 MHz . From its front panel, you can make the generator store or recall 40 programs or patterns. The unit has RS-232C, TTL, and analog interfaces. $\$ 5350$ to $\$ 18,950$. Team Systems, 2934 Corvin Dr, Santa Clara, CA 95051.

Circle No. 415

MS-Windows driver for IEEE-488
bus. The Driver-488/Win dynamic-link library helps you integrate the control of IEEE-488 instruments into MSWindows applications. The driver, which supports Microsoft and Borland languages, allows multiple tasks to access the same IEEE-488 interface card simultaneously. $\$ 195$; with interface card, $\$ 395$. IOtech Inc, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 439-4093.

Circle No. 416

Handheld ESD tester. The model 6/1 Zapmaker tests devices and systems for susceptibility to electrostatic dis-
charges (ESD). The unit supplies hu-man-body-model waveforms in accordance with draft standard MIL 1686B. Previously, competitive units used resistor and capacitor values taken from the MIL standard but did not comply with the standard's waveform requirements. $\$ 7250$. Delivery, 8 to 12 weeks ARO. Keytek Instrument Corp, 260 Fordham Rd, Wilmington, MA 01887. Phone (508) 658-0880. FAX (508) 6574803.

Circle No. 417

8-to-32-channel chart recorder.

 The MT95K2 recorder incorporates a vacuum-fluorescent monitor and can include 64 event channels, 34 annotation channels, signal conditioning, a floppydisk drive, a 120 -Mbyte hard disk, and 32 Mbytes of RAM. The monitor makes signals immediately visible, before the chart comes into view. The maximum sampling rate is $500 \mathrm{ksamples} / \mathrm{sec}$. The maximum chart speed is $500 \mathrm{~mm} / \mathrm{sec}$. Resolution is 300 dpi. From $\$ 16,000$. As-tro-Med Inc, Astro-Med Industrial Park, West Warwick, RI 02893. Phone (800) 343-4039; (401) 828-4000.Circle No. 418

solid state of the art.
 That's AT\&T "Customerizing."

AT\&T now offers one of the industry's most complete portfolios of high-voltage, $<1 \mathrm{amp}$ solid-state relays (SSRs).

State of the art in variety Our new LH1500 line includes normally open (1 Form A). Normally closed (1 Form B). And combinations (1 Form AB, C; 2 Form A; Dual Form A; Dual Form B). All offer logic-level Input Control, and come in 6 or 8 pin DIPs, through-hole or surface-mountable. That's what we mean by "Customerizing."

State of the art in performance

 Our LH1500 SSRs offer 3750V Input/Output isolation. Built-in current limiting. And onresistances as low as 3 ohms (lower in DCmode operation!). And our low (3 to 7 mW) input drive gives you the flexibility to meet your design needs.

State of the art in reliability Current limiting protects against unwanted transients. Built-in break-before-make reduces component count. Advanced silicon technology adds ruggedness by reducing number of internal wire bonds. All designed by AT\&T Bell Laboratories to meet U.L., C.S.A. and B.A.B.T. standards.

To sample an AT\&T SSR or to place an order, call your AT\&T local distributor. For more information, just call AT\&T at 1800 372-2447, ext. 628. In Canada: 1800 553-2448, ext. 628.

EDN-NEW PRODUCTS

Computers \& Peripherals

Graphics Accelerator

- Attaches to the SBus in SPARCstation desktops
- Stand-alone tower chassis contains $40-\mathrm{MHz}$ i860 CPU
The ViCOM VT is a graphics accelerator for desktop SPARCstation computers. A stand-alone chassis contains the company's ViCOM VX VMEbus graphics board and a VMEbus to SBus adapter. The adapter attaches to the SBus in a SPARCstation computer. The graphics board contains a $40-\mathrm{MHz}$ i 860 CPU and a $2 \mathrm{M} \times 8$-bit frame buffer that is compatible with Sun's GX frame buffer. The accelerator drives Sun's 1152×900 and $1280 \times$ 1024 -pixel 19 -in. monitors. In addition, the chassis has a VMEbus expansion slot that accepts the company's ViCOM MVX board. The ViCOM MVX has four i860 CPUs, which boost the accelerator's performance from 40 to 160 MIPS and from 80 to 320 peak single-precision

Mflops. ViCOM VT, $\$ 32,000$; ViCOM VX, $\$ 24,000$; optional ViCOM MVX, $\$ 30,000$.

ViCOM Visual Computing, 46107 Landing Pkwy, Fremont, CA 94538. Phone (510) 498-3200. Circle No. 419

Stand-Alone Single-Board Computer

- Contains an 8- or $16-\mathrm{MHz}$ 80C186EB μ P
- Has four iSBX expansion ports and 512 kbytes of static RAM
The SBX-C186EB stand-alone single-board computer (SBC) for embedded applications contains an $80 \mathrm{C} 186 \mathrm{~EB} \mu \mathrm{P}$ and an 80 C 187 coprocessor, which run at 8 or 16 MHz . The board has as much as 512 kbytes of static RAM and 512 kbytes of EPROM or flash EPROM. Other features include an 8570 real-time calendar clock, an interrupt controller, five 16 -bit counter/timers, 32 parallel I/O ports, two serial I/O ports, a watchdog timer, and power-fail detection. Its four iSBX expansion ports attach to a variety of off-the-shelf SBX modules. You can develop programs in assem-
bly code or Borland's C + + language. An optional extended temperature range is available for -40 to $+85^{\circ} \mathrm{C}$ operation. $8-\mathrm{MHz}$ version, $\$ 425 ; 16-\mathrm{MHz}$ version, $\$ 465$.

RLC Enterprises, 4800 Templeton Rd, Atascadero, CA 93422. Phone (805) 466-9717. FAX (805) 466-9736.

Circle No. 420

Solid-State Disk Emulator

- Transfers data at 4 Mbytes/sec on the ISA bus
- Nonvolatile-memory capacity ranges from 2 to 56 Mbytes
The Blue Flame III card emulates a solid-state disk drive in 386 and 486 ISA bus computers. Each card contains from 2 to 56 Mbytes of nonvolatile memory. The card is mapped to the host's I/O space and
accepts $141 \mathrm{M} \times 9$-bit or $4 \mathrm{M} \times 9$-bit single in-line memory modules. You can install 16 cards in a system to provide a maximum capacity of 896 Mbytes/drive. The cards have a 16 bit data path and can transfer data on the ISA bus at $4 \mathrm{Mbytes} / \mathrm{sec}$. Onboard rechargeable NiCd batteries provide backup during power interruptions, and an optional external battery provides battery backup that exceeds 100 hours. A wallmounted power supply lets you switch off the host computer without losing data. A device driver, which occupies less than 1 kbyte of RAM, runs with PC-DOS, MSDOS, and Concurrent DOS. $\$ 595$ for a 2 -Mbyte version.
Semidisk Systems Inc, Box GG, Beaverton, OR 97075. Phone (503) 626-3104. FAX (503) 643-0625.

Circle No. 421

NO 80C186eb

DARE TO COMPARE!

Compare our new SBX-C186EB to ANY Single Board Computer on ANY bus. Our new Powerful, Expandable, Inexpensive, Easy to Program Single Board Computer was designed to eliminate expensive and complicated Bus systems. All of the basic functions needed for most embedded applications are on-board. Additional I/O expansion is provided by four on-board iSBX ports which may be used to accommodate any of the iSBX modules currently available.

HARDWARE FEATURES

* 16-Bit 80C186Eb Up To 16 MHz
* On-Board 80C187 Co-Processor
* 8570 Real Time Clock
* Four 8/16-Bit iSBX Expansion Ports
* Watch Dog Timer And Power Fail Detect
* Two Serial Ports (RS-232/422/485)
* 10 Year Lithium Battery For RTC And RAM
* Up To 512K Of EPROM/FLASH EPROM
* Up To 512K Of Battery Backed Static RAM
* 32 Parallel I/O Lines With Open-Collectors
* Five 16-Bit Interrupt Timers
* Program Controlled Dip-Switch And LED's
* Available In -40 to +85 C Temperature Range

SOFTWARE FEATURES

* On-Board FLASH EPROM Programming
* Borland Turbo C++ Fully Supported
* Borland Turbo Debugger Supported
* I/O Driver Library Provided Free
* Demo Programs Provided Free
* No Software Royalities
* No DOS Required

> QTY (1) \$425
> QTY (100) $\$ 319$
> Excluding options

Turbo C++ and Turbo Debugger may be tradematks of Borland, DOS is a trademark of IBM, iSBX is a trademark of Intel

EDN-NEW PRODUCTS

Computers \& Peripherals

Tape backup system. The SSCH40 4 -mm digital-audio-tape backup system supports VAX cluster computers. It backs up 96 Gbytes on a 12 -cartridge magazine and as much as 192 Gbytes, using a dual-drive loader configuration. The tape loader utilizes a robotic arm to insert and remove tapes in HP's 8Gbyte, $4-\mathrm{mm}$ tape drive. The system resides in a $19-\mathrm{in}$. enclosure and transfers data to and from the host at a sustained rate of 732 kbytes $/ \mathrm{sec}$. System
with 8-Gbyte, 4 -mm drive, ST01 channel card, and a 12-cartridge magazine, $\$ 15,340$. Emulex Corp, Box 6725, Costa Mesa, CA 92626. Phone (800) 854-7112; (714) 662-5600.

Circle No. 422

19-in. rack-mount computer. Versions of the rackmountable CRM/816 industrial computer have 10,14 , or 16 ISA bus slots or 10 or 14 EISA bus slots. Modular bays let you install as

many as eight $5^{1 / 4}-\mathrm{in}$. peripheral devices such as hard-disk, floppy-disk, and tape drives. Dual $70-\mathrm{cfm}$ fans cool the chassis, and a 22 -cfm fan cools the power supply. You can lock a front-panel door to prevent unauthorized access. Powersupply options range from 250 to 350 W when using 120 V ac power input. A $14-$ slot ISA bus version having a 250 W power supply, from $\$ 1295$. Diversified Technology Inc, Box 748, Ridgeland, MS 39158. Phone (601) 856-4121. TLX 585326.

Circle No. 423
2.6-Gbyte tape drive. The Ciera 2.6 tape drive offers 2.6 Gbytes of storage on an $8-\mathrm{mm}$ tape cartridge. The subsystem comes with a host adapter, which fits in a workstation's expansion slot; it also provides cable, software, and documentation. The drive transfers data at 800 kbytes/sec and supports Novell and Unix client/servers. \$6995. Cipher Data Products Inc, 10101 Old Grove Rd, San Diego, CA 92131. Phone (619) 693-7713.

Circle No. 424

Motion controller. The DMC-120-10 STD Bus board has a $\mu \mathrm{P}$ that controls two independent axes of motion. The $\mu \mathrm{P}$ decodes position feedback signals, generates velocity profiles, and provides a PID (proportional-integraldifferential) filter for the control-loop error signal. You specify the position, speed, and acceleration for each axis using 2 -letter ASCII commands. The controller produces motor drive signals in the $\pm 10 \mathrm{~V}$ range. $\$ 595$. Galil Motion Control Inc, 575 Maude Ct, Sunnyvale, CA 94086. Phone (408) 746-2300. FAX (408) 746-2315.

Circle No. 425

SCSI host adapters. The DTC 3182 and DTC 3282 host adapters support direct-memory-allocation transfers on the 16 -bit ISA bus. They control seven SCSI devices; the DTC 3282 controls four additional floppy-disk drives. The

Since 1925, Ohmite Manufacturing Co. has been in the forefront of innovative electronic component technology. Progressive and competitive, Ohmite maintains a tradition of quality and service. Ohmite Manufacturing Co., 3601 Howard St., Skokie, IL 60076 Tel 708-675-2600 Fax 708-675-1505

The Board Determines Whether Or Not You Move Up.

Approved: A high-performance laminate priced comparably with FR-4. After the investment you've made in the technology needed to build more sophisticated circuitry like SMT, high layer count and impedance control, the only thing holding you back is the board. A highperformance laminate at a price that'll get approved.

This is where GETEK ${ }^{\circledR}$ Laminate and Prepreg go to work. From a technical standpoint, they offer better thermals-higher maximum operating temperatures, higher Tg and lower Z expansion. Plus better elec-
tricals-lower and more stable dielectric constant and dissipation factor.

From a practical standpoint, they process like conventional FR-4 and are priced comparably.

So with GETEK Laminate you get high performance without the penalties. And that ought to get a raise out of somebody upstairs. Find out more about GETEK Laminate and Prepreg: technical data, samples, or a meeting to talk it over. Contact GE Electromaterials, 1350 South Second St., Coshocton, OH 43812. 800-848-3710.
${ }^{*}$ GETEK is a registered trademark of the General Electric Company.

GE Electromaterials

EDN-NEW PRODUCTS

Computers \& Peripherals

boards feature scatter-gather or busmaster transfers on the host bus and operate with DOS, OS/2, Unix, Xenix, and Netware software. Features include a custom $\mu \mathrm{P}$, a SCSI chip, and a 15 -byte FIFO buffer to provide continuous data transfer to each drive. DTC 3182, $\$ 159$; DTC 3282, $\$ 189$ (OEM qty). Data Technology, 500 Yosemite Dr, Milpitas, CA 95035. Phone (408) 2627700. FAX (408) 942-4052. TWX 910-338-0232.

Circle No. 426

Industrial PC card. The 5016 Micro PC is a half-length ISA bus card containing an IBM PC/AT-compatible computer. It operates over the industrial temperature range of -40 to $+85^{\circ} \mathrm{C}$. One solid-state disk contains DOS 3.31, and two additional solid-state disks are available for adding RAM and EPROM. The card has 4 Mbytes of dynamic RAM, as well as a COM1 serial port, keyboard port, speaker port, watchdog timer, calendar/clock, and coprocessor

Each technological terrain has its most prominent landmark

The DSP landscape is dotted with vendors offering products and promises. But only one vendor has loomed large from the very beginning.
Atlanta Signal Processors' pioneering DSP experience dates back to 1969. In 1982, ASPI began creating leading-edge DSP design tools and established itself as the DSP workstation source.
Today, ASPI continues to cast the longest shadow across the DSP market. ASPI products support the entire range of TI and Motorola DSP processors. Banshee, Vortex, ${ }^{\text {TM }}$ Cheetah ${ }^{\text {TM }}$ and DFDP3/plus are our principal product lines. They represent the industry's most significant advancements in DSP development, from 83 MFLOPS processing to simple, intuitive filter design. A variety of daughter boards adds extended features such as expanded memory, A-D/D-A conversion, and multiprocessor capability.
As a serious DSP craftsman, you can use this arsenal of design tools to lead the pack in today's emerging technologies - robotics, speech coding, image processing, etc. And, with new products continuously in development at ASPI, you can take the high ground in tomorrow's DSP landscape as well. Call now for detailed product specifications and pricing.

WORLD LEADERS IN DSP DESIGN TOOLS
socket. \$595. Octagon Systems Corp, 6510 W 91st Ave, Westminster, CO 80030. Phone (303) 430-1500. FAX (303) 426-8126.

Circle No. 427

Fiber-optic data-link adapter. The AC40 adapter permits devices having an RS-485 port to communicate over a fiber-optic link. It also has a host fiberlink port, and a repeater fiber-link port. Features include 115.4-kbaud communications; 4 -km distance between nodes; ST style fiber-optic connectors; and 2- or 4 -wire hook-up to the RS-485 port. The unit comes in a metal enclosure. $\$ 550$. Opto 22, 43044 Business Park Dr, Temecula, CA 92590. Phone (800) 3216786; (714) 695-9299. FAX (714) 6952712.

Circle No. 428

Industrial printer. The IP-80 printer uses a 9 -pin dot-matrix mechanism to print bidirectionally at 200 cps . It mounts in control panels or on a standard $19-\mathrm{in}$. rack. The unit has a Centronics parallel port, a 4-kbyte buffer and 24 resident fonts; an RS-232C serial port is optional. \$2395. Dianachart Inc, 101 Round Hill Dr, Rockaway, NJ 07866. Phone (201) 625-2299. FAX (201) 625-2449.

Circle No. 429

Communications modules. The EPAK family of modules extends the capabilities of the company's VMEbus single-board computers. The Model D contains a Zilog Z16C35 IC to manage four synchronous serial I/O ports at 1 Mbps. The Model E has a 79C900 32 IC to communicate with an Ethernet 10Base-T network. The Model F contains both Model D and F functions. The Model G has a Cirrus CL-CD180 IC to manage 16 asynchronous serial I/O ports. Model D, $\$ 560$; Model E, \$485; Model F, $\$ 795$; Model G, $\$ 485$ (100). Performance Technologies Inc, Computer Products Div, 315 Science Pkwy, Rochester, NY 14620. Phone (716) 256-0200.

Circle No. 430

Presenting Two Plans For IC Development Guaranteed To Reduce Your...

What others promise, we guarantee.

Time-to-Market.

Our prototype services can take your designs from tape to packaged parts in 20 calendar days or less. Guaranteed.
So you get your products to market faster. Or regain time lost to engineering delays.

- Prototypes in 20 days
- Custom processes
- Non-competitive second source
- Fast pre-production quantities

Cut your development cycle with Orbit Semiconductor's prototyping service. Call (800) 331-4617. In California (800) 647-0222 or (408) 744-1800. FAX (408) 747-1263.

Get twelve packaged parts in five weeks -for as little as $\$ 1500$.
Our Foresight multi-project wafer processing program can dramatically cut the cost of IC prototyping while reducing your time to market.

- Foresight runs start every Wednesday
- Five week turnaround
- Dramatic reductions in prototyping costs
- Debug mixed signal ICs while in design

Don't wait to start cutting your NRE.
In fact, call (800) 331-4617, and you can start right away. In California (800) 647-0222 or (408) 744-1800. FAX (408) 747-1263.

What others promise, we guarantee.

Components \& Power Supplies

DC/DC Converters

- Have 60 W/in. ${ }^{3}$ density
- Develop a single output

PJ Series de/dc converters develop a 210 W output from a package measuring $2 \times 3.5 \times 0.5 \mathrm{in}$. $-60 \mathrm{~W} /$ in. ${ }^{3}$ power density. They use integrated magnetics and feature efficiencies ranging to 87%. The converters operate from an input range of 20 to 36 V as designated in MIL-STD-704D and are available in versions with regulated outputs of 5 , 12,15 , and 28 V . They can operate in parallel and feature remote shutdown, remote sensing, external trimming, current limiting, and overvoltage protection. Module components have been derated to meet or exceed NAVSO P-3641 guidelines from -55 to $+100^{\circ} \mathrm{C}$. Output ripple measures 80 mV p-p max, and temperature coefficient

equals $0.008 \% /{ }^{\circ} \mathrm{C}$. Line and load regulation are 0.2%, and MTBF equals 1.2×10^{6} hours min. From $\$ 500$.

Powercube Corp, 8 Suburban Park Dr, Billerica, MA 01821. Phone (508) 667-9500, ext 324. FAX (508) 667-6280.

Circle No. 392

PC-Board Connector

- Emulates a stripline
- Has a 50Ω impedance

The FCN260 half-pitch ($0.05-\mathrm{in}$.) pcboard connector emulates a stripline circuit. The design minimizes crosstalk to 3.8% max at a $1-$ nsec rise time by confining the signal conductor with a ground plane. Characteristic impedance, achieved by controlling the dimensions, construction, and insulator permittivity), equals $50 \Omega \pm 10 \%$. Connector construction consists of large ground planes on the center line and a metal ground shell around the
plug. This construction maintains signal integrity across the board and eliminates the need for dedicated ground contacts-all contacts function as signal contacts. The connector is available in a 100-pin version. Plug-and-jack pair, $\$ 0.20$ per mated line (2500).

Fujitsu Microelectronics Inc, Electronic Components Div, 3545 N First St, San Jose, CA 95134. Phone (800) 642-7616; (408) 9229000.

Circle No. 393

Surface-Mount Transformers

- Feature a low profile
- Have a 300- to 3500-Hz response TS3000 Series surface-mount transformers meet FCC Part 68 regulation. Their mounted height is 0.32 in. The units are designed for drycircuit, 600Ω line applications. They have a $\pm 0.5-\mathrm{dB}$ frequency response of 300 to 3500 Hz over a -45 to $+7-\mathrm{dBm}$ power-level range. The transformers are available for both

coupling and hybrid applications. They feature 0.5% max distortion, $26-\mathrm{dBm}$ return loss, $60-\mathrm{dB} \mathrm{min}$ longitudinal balance, and 1500 V rms dielectric strength. The transformers are constructed from materials that have a UL $94 \mathrm{~V}-0$ flammability rating. Units with pins for through-hole-mounting applications are also available. The units measure $0.87 \times 0.66 \times 0.32 \mathrm{in}$. and weigh 0.2 oz. Approximately $\$ 3$ (OEM qty).

Microtran Co, Box 236, Valley Stream, NY 11582. Phone (516) 561-6050. FAX (516) 561-1117.

Circle No. 394

THE PROTOTYPE DOESN'T WORK.

Six ASICs, fifteen PLDs and the whole thing's gone south. Maybe I should go south too. Yeah, hop a bus. Head for Mexico.

THE PROTOTYPE DOESN'T WORK.

Software? Could be. Hardware? Might be. So where do I start? At the beginning, of course. And just where is that, smart guy?

The Prototrpe Doennt Work.

And my pefformance review comes up next month. Maybe theyill just forget about all this, right? Yeah. Sure.

The Prototipe Doennt Work.

Wait. What about that glitch in the handshake on the first pass? Couldn't reproduce it. Maybe it ust reproduced isseff.

These are just a few of the reasons Tek makes a complete line of scopes, logic analyzers and signal
sources. Instrumentation that can quickly get to the core of your prototype's problems. Whether theyre digital, analog
or software. Because even when your prototype doesn't work, Tek does. TALK TO TEK/1-800-426-2200

Tektronix

EDN-NEW PRODUCTS

Components \& Power Supplies

Ethernet transceiver. The ENT-4312 transceiver allows you to establish a 10BaseFL data link or fiber-optic interrepeater link (FOIRL) through a userselectable switch. Various interface options are available via an onboard SQE (signal-quality-error) switch. Other features include ST or SMA type connectors and a set of seven diagnostic LEDs, which indicate link status jabber, collision, receive, transmit, SQE, and power. The transceiver measures $1.75 \times$
$0.92 \times 3.8 \mathrm{in}$. and weighs 2.34 oz . $\$ 295$. Lancast, 10 Northern Blvd, Unit 5, Amherst, NH 03031. Phone (800) 7522768; (603) 880-1833. FAX (603) 8819888.

Circle No. 395

DC/DC converters. NMA surfacemount dc/dc converters are housed in a J-leaded package, which measures $11.81 \times 11.81 \times 6.09 \mathrm{~mm}$. The units accept 5 or 12 V inputs and offer outputs

Locate your next product on a VME MXbus ${ }^{\text {TM }}$ SideCard ${ }^{\text {TM }}$ adjacent to a Mizar CPU card and you get your product to market faster because you start with an off-the-shelf CPU that comes up with the debugger the first time you power it on. And if you want to use a commercially available real-time OS, it is probably already ported to the board.

By building your custom design on a proven hardware and software foundation you also minimize your design risk. But you need not sacrifice any design flexibility because Mizar supplies a variety of configurations based on Motorola processors, including the 040. And the VME MXbus ${ }^{\text {TM }}$ accommodates single high 3 U , conventional double height 6 U , as well as unconventional 9 U and custom configurations.

Call us today to take advantage of this opportunity to put your next design in a great location. It's a unique solution from Mizar that you can build on.

1419 Dunn Drive • Carrollton, TX 75006
1-800-635-0200 FAX 214-242-5997
© 1992 Mizar Digital Systems, Inc.
Mizar is a registered trademark of Mizar Digital Systems, Inc. Other names are trademarks of their respective manufacturers
CIRCLE NO. 86

of $\pm 5, \pm 9, \pm 12$, or $\pm 15 \mathrm{~V}$. Each output provides 1 W of output power. The converters feature 1000 V de isolation, 80% efficiency, and operate over a -50 to $+85^{\circ} \mathrm{C}$ range with no derating. $\$ 19.50$. International Power Sources Inc, 200 Butterfield Dr, Ashland, MA 01721. Phone (508) 881-7434. FAX (508) 8798669.

Circle No. 396

Multichip module socket. This mul-tichip-module socket is designed for a 256 -pin, $0.65-\mathrm{mm}, 45 \times 45-\mathrm{mm}$ body. It's suitable for high-density test and burnin applications and features a novel lid, which simultaneously distributes a uniform mating force along all four package sides. Insulators are made of PPS (polyethersulfone), and contacts are beryllium copper with gold over nickel plating. $\$ 162.92$ (100). Nepenthe, 2479 E Bayshore Rd, Suite 800, Palo Alto, CA 94303. Phone (800) 637-3684; (415) 4966666. FAX (415) 856-8650. Circle No. 397

Extraction tool. The CT-2102 tool accommodates 4 -sided plastic-leaded-chipcarrier (PLCC) packages having from 20 - to 124 -pin leads spaced on $0.05-\mathrm{in}$. centers. The tool precisely borders the object chip only-without interference with any components surrounding the PLCC socket. \$16. Methode Electronics Inc, 1700 Hicks Rd, Rolling Meadows, IL 60008. Phone (800) 323-6864; (708) 392-3500.

Circle No. 398

Coaxial attenuator. Model PE7022 is a $50 \Omega, 100 \mathrm{~W}$ coaxial attenuator. Designed for operation over a dc to 1.5 GHz range, the device is available with attenuation values of $6,10,20,30$, and 40 dB . The attenuator features a builtin heat sink. VSWR equals 1.15:1 max, and operating range spans -65 to $+125^{\circ} \mathrm{C}$. $\$ 350$. Pasternack Enterprises, Box 16759, Irvine, CA 92713. Phone (714) 261-1920. Circle No. 399

Iat-panel touch system. Modular/1 nd Modular/2 infrared touch systems re available with software-based, lardware-based, or RS-232C controlers. Each controller is equipped with ligital circuitry and provides plug-andllay capability. Both systems feature ervo-loop circuitry that compensates or environmental factors. Programmale amplification makes both systems mpervious to severe ambient light conlitions. Modular/1, \$285; Modular/2, ;289 (100). Carroll Touch Inc, Box (309, Round Rock, TX 78680. Phone 512) 388-5614. FAX (512) 244-7040.

Circle No. 400
'ulse transformers. Housed in a jackage measuring $0.65 \times 0.85 \times 0.2 \mathrm{in}$., hese pulse transformers suit either hrough-hole or surface-mount applicaions. The units meet applicable provisions of MIL-T-21038 and are characterzed for operation over a -55 to $+125^{\circ} \mathrm{C}$ range. They support $2500 \mathrm{~V} /$ usec and feature rise times of less than 100 nsec. $\$ 25$ (OEM qty). Delivery, stock to eight weeks ARO. Controlex Jorp, 16005 Sherman Way, Van Nuys, SA 91406. Phone (818) 780-8877.

Circle No. 401

Coaxial attenuators. Series 20825 and 10 W coaxial fixed attenuators are lesigned for dc to $18-\mathrm{GHz}$ operation. standard units with SMA connectors are available in $3-, 6-, 10-$, and $20-\mathrm{dB}$ attenuation values. The 5 W unit is also available in $30-\mathrm{dB}$ versions. The manufacturer uses no hazardous beryllium oxide in constructing the device. 5 W version, $\$ 77$; 10 W version, $\$ 162$. MA/ COM, Control Components Div, 21 Continental Blvd, Merrimack, NH 03054. Phone (603) 424-4111. FAX (603) 424-6580.

Circle No. 402

R and C networks. MRGF Series resistor networks come in 16 -pin SOIC packages and feature resistor values from 33Ω to $2.2 \mathrm{M} \Omega$. Five circuit con-
figurations are available: as many as 8 isolated double-ended resistors or 15 single-ended resistors with a common tap; ladder networks; divider networks; and terminator arrays. Temperature coefficient equals $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, and power rating at $70^{\circ} \mathrm{C}$ measures $500 \mathrm{~mW} /$ package. $\$ 0.30(10,000)$. Delivery, eight weeks ARO. Raltron Electronics Corp, 2315 NW 107th Ave, Miami, FL 33182. Phone (305) 593-6033. FAX (305) 594-3973.

Circle No. 403

Miniature shunts. SNM Series microshunts mate with 0.018 -in. square headers with pins located on a $0.05 \times 0.1-\mathrm{in}$. grid. The terminals can pass through the shunt so the shunt can accept any post that has a minimum height of 0.12 in . The shunts are available with gold or tin plating over the phosphor-bronze contacts. From $\$ 0.088$. Samtec Inc, Box 1147, New Albany, IN 47151. Phone (800) 726-8329; (812) 944-6733.

Circle No. 404

Absolute Value.
 High performance LCR meters from SRS. 0.05% accuracy, 100 kHz frequency.

For passive component measurement, the new standards in value are the SR720/715 LCR meters from SRS.

Meters that offer significant advantages in performance and price. Performance like $.05 \%$ basic accuracy, 100 kHz test frequency, and fast measurement rates up to 20 per second. Features like a built in Kelvin fixture, averaging, binning and limits, stored setups, and quick calibration. With the standard RS232 and optional GPIB and Handler interfaces, the SR720/715 solves your incoming inspection and automated test needs. All for a price well below what you'd expect.

Call (408)744-9040 today for more information.

SR720
\$2295

- 0.05% basic accuracy
- 100 Hz to 100 kHz measurement frequency
- Two 5 digit displays for simultaneous readout of major and minor parameters.
- Auto, $R+Q, L+Q, C+D, C+R$, Series and Parallel measurement modes
- 100 mV to 1.0 V test signals
- Internal and External Bias
- Binning and Limits for production testing and component inspection.
- RS232 interface
- GPIB and Handler interface (optional)
SR715 \$1495

Same as SR720 except:

- 0.2% basic accuracy
- 100 Hz to 10 kHz measurement frequency

[^12]
Low-Power, High-Speed
 12-Bit ADC

- Includes on-chip S/H amplifier - Has 750-ksamplelsec speed The 12-bit AD7886 A/D converter combines a fast sampling rate of $750-\mathrm{ksamples} / \mathrm{sec}$ with $350-\mathrm{mW}$ power consumption. The ADC features a triple-pass flash architecture that provides a data-access time of 57 nsec and a total conversion time of $1 \mu \mathrm{sec}$. These characteristics make the device suitable for use in high-frequency instrumentation applications. Other guaranteed ac characteristics include integral nonlinearity of $\pm 2 \mathrm{LSB}$ (max), a S / N ratio of 65 dB , and total harmonic distortion of -75 dB. Second- and third-order intermodulation distortion are typically

-80 dB . The AD7886 operates from $\pm 5 \mathrm{~V}$ supplies and offers pinstrappable input spans of 0 to 5 V , 0 to 10 V , and $\pm 5 \mathrm{~V}$. Package options include 28-pin DIPs and plastic
leaded chip carriers. From $\$ 55$ (100
Analog Devices, 181 Ballardval St, Wilmington, MA 01887. Phont (617) 937-1428. FAX (617) 821. 4273.

Circle No. 35

8-Channel, 12-Bit Data-Acquisition System

- Has a programmable multiplexer
- Sampling rate is 100 kHz

The MAX180, a $100-\mathrm{kHz}$ dataacquisition system, includes a 12-bit ADC, a $6-\mathrm{MHz}$ track-and-hold (T/H) amplifier, $\mathrm{a}-5 \mathrm{~V}\left(25-\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ reference, a parallel $\mu \mathrm{P}$ interface, and an 8 -channel multiplexer. The multiplexer allows independent programming of each channel for either differential or single-ended inputs, and unipolar 5 V or bipolar $\pm 2.5 \mathrm{~V}$ operation. The T/H amplifier's bandwidth allows undersampling of periodic signals having bandwidths exceeding the ADC's sample rate. You can use a reference input supplied by the internal reference or
an external source. The internal reference value and the system offset are adjustable to allow nulling of the overall system offset and gain errors. The MAX180 interfaces to 8 - or 16 -bit buses and operates from 5 and -12 V supplies. The device is available in $40-\mathrm{pin}$ DIPs and 44 pin plastic leaded chip carriers. From $\$ 17$ (1000).

Maxim Integrated Products, 120 San Gabriel Dr, Sunnyvale, CA 94086. Phone (408) 737-7600.

Circle No. 359

Dual 0p Amp With Micropower Sleep-Mode

- Reduces current drain to $45 \mu \mathrm{~A}$
- Has industry-standard pinouts Suiting a range of applications such as cordless telephones, portable computers, and handheld equipment, the MC33102 dual op amp features a "sleep" mode that reduces current drain to approximately $45 \mu \mathrm{~A}$ /amplifier. Triggered by an input signal, each amplifier changes to the "awake" mode in 4
μ sec when output current exceed $160 \mu \mathrm{~A}$. The device returns to tht sleep mode when the output curren drops below its threshold. Each am plifier consumes approximately 75 $\mu \mathrm{A}$ when operating in the awak mode, with a $\times 10$ improvement is bandwidth and slew rate. You cas also use the device as a micropowe amplifier. ESD clamps protect th inputs. A drop-in replacement fo many other dual op amps, th:

MC33102 comes in 8-pin DIP and SO packages. $\$ 1.60(10,000)$.

Motorola Semiconductor, EL340, 2100 E Elliot Rd, Tempe, AZ 85284. Phone (602) 897-3615. FAX (602) 897-4193.

Circle No. 360

After all, it's Sun.
That's right, FORCE and Sun have teamed up to offer one of the brightest new products in embedded systems. The SPARC ${ }^{\text {™ }}$ CPU-1E engine. It's a complete implementation of SPARCstation ${ }^{\text {TM }} 1$, fully supported by the powerful SunOS ${ }^{\text {TM }}$ and the real-time expertise of FORCE.

For the first time, you can design with SunOS and real-time on the same VME backplane. With industrystandard SPARC technology, no less.

And that's just the beginning. FORCE will spark embedded systems for generations to come, based on our partnership with Sun. In fact, we're already designing the SPARC CPU-2E. Of course, our entire family of SPARCbased products is 100% SunOS-compatible.

So nothing stands between you and the most powerful development environment in embedded systems. With SunOS and the SPARC CPU-1E, you can program, debug and observe real-time code. All within the same development and target system, thereby slashing costs and development time.

The SPARC CPU-1E accommodates up to 80 Mbytes of DRAM. You can run real-time, UNIX, ${ }^{\circledR}$ Sun Windows ${ }^{\text {TM }}$ and utility programs. Standard DMA-driven SCSI and Ethernet interfaces give you full network access. There's even an SBus ${ }^{\text {TM }}$ interface for I/O expansion.

We also provide such leading real-time operating systems as VxWorks, ${ }^{\text {TM }}$ VADSWorks, ${ }^{\text {TM }}$ VRTX, ${ }^{\text {TM }}$ MTOS, ${ }^{\text {TM }}$ PDOS $^{\text {TM }}$ and OS-9/9000 $0^{T M}$ products. Along with over 2100 third-party applications from Sun's Catalyst ${ }^{\text {TM }}$ program.

Finally, we can supply all your system components. Everything from SPARCstations and mass storage modules to expansion boards, monitors and keyboards.

But that's what you'd expect from the vendor with the broadest, most flexible line of embedded systems solutions. So call 1-800-BEST-VME, ext. 10 for more information or fax a request to (408) 374-1146.

And put the heat on your competition.
FORCE Computers, Inc. 3165 Winchester Blvd.. Campbell, CA 95008-6557 All brands or products are trademarks of their respective holders. © 1991 FORCE Computers, Inc.

Our New Partnership Is As Hot As It Gets.

CIRCLE NO. 54

EDN-NEW PRODUCTS

Integrated Circuits

Communications controller. The COM20010, a token-passing communications controller, is targeted for highspeed data highways in factory process controls and building automation applications. You can use the device with coaxial, twisted-pair, or fiber networks. The controller interfaces with Intel, Motorola, Zilog, and NEC microcontrollers. A $1 \mathrm{k} \times 8$-bit RAM handles message storage. The device supports as many as 255 nodes at a data rate of 2.5 Mbps .

From $\$ 11.36$ (1000). Standard Microsystems Corp, Component Products Div, 35 Marcus Blvd, Hauppauge, NY 11788. Phone (516) 273-3100.

Circle No. 361

Light sensor. Linking directly to a microprocessor ($\mu \mathrm{P}$), the TSL220 light-tofrequency converter converts small changes in light intensity to digital signals. The device, which has a dynamic

range of 118 dB , typically produces a $100-\mathrm{kHz}$ signal in office desk lighting and 1 Hz in darkness. An external capacitor can adjust the output frequency for a given light level to match the sensor to the input frequency range of a μ P. \$4.61 (1000). Texas Instruments Inc, Semiconductor Group (SC-91086), Box 809066, Dallas, TX 75380. Phone (800) 336-5236, ext 700; outside US and Canada, (214) 995-6611, ext 700.

Circle No. 362

Triport bus exchanger. The IDT 73720 is a 16 -bit triport bus exchanger for interbus communication in multiway interleaving memory systems and in high-performance multiplexed address and data buses. The device, which features a maximum port-to-port delay of 6.5 nsec , supports bidirectional read and write operations between the CPU and two memory ports, eliminating bus contention. 68-pin plastic leaded chip carrier, $\$ 9.70$ (100). Integrated Device Technology, Box 58015, Santa Clara, CA 95052. Phone (408) 727-6116. FAX (408) 492-8674.

Circle No. 363

Smartcard microcontrollers. The ST16623 and ST16301 combine an 8-bit CPU with on-chip ROM, RAM, EEPROM, and hardware and software security features. The 16623 and 16301 offer 6 and 3 kbytes of ROM, 224 and 126 bytes of RAM and 3 and 1 kbytes of EEPROM, respectively. The devices have a $5-\mathrm{MHz}$ operating speed and are available in die or micromodule form. ST16301, \$2.78; ST16623, \$3.82 (5000). SGS-Thomson Microelectronics, 1000 E Bell Rd, Phoenix, AZ 85022. Phone (602) 867-6100. FAX (602) 867-6290.

Circle No. 364

Servo driver/controller chip set. This 2-chip set is for $2.5-\mathrm{in}$. hard-disk drives. The SSI-32H6510 servo driver is for systems employing linear or rotary

Need to make your product more intelligent? Fuzzy Logic is the solution of choice. Need to do it quickly and economically, with maximum flexibility? Then the NeuraLogix NLX230 Fuzzy MicroController ${ }^{\text {TM }}$ is in a class by itself!

The NLX230 is a single-chip solution. One 40-pin package delivers Fuzzy Logic mastery to the most complex control problems.

The NLX230 is flexible. It can be easily configured for your specific control problem, usually in a matter of hours.

The NLX230 is fast. Its rule processing time is 30 to 40 times faster than typical software-based or software/hardware hybrid solutions.

The NLX230 is economical. In production quantities, this remarkable Fuzzy MicroController is priced under $\$ 4$ per unit.

As the first true hardware based Fuzzy Logic controller, the NLX230 makes artificial intelligence available and simple. For most applications it can be an affordable highperformance replacement for 8 -bit microprocessors. See how easily it adapts to your requirements; evaluate how the NLX230 can meet your demands with our low-cost Applications Development System.

Move your product to the head of its class with hardware-controlled Fuzzy Logic. Call now for specifications and price quotation on the NLX230 and other fuzzy logic and neural network devices.

NeuraLogix

American NeuraLogix, Inc.
411 Central Park Drive Sanford, FL 32771
Telephone 407/322-5608
FAX 407/322-5609

EDN-NEW PRODUCTS

Integrated Circuits

voice-coil motors. The SSI-32H6520 servo controller provides four areadetection circuits and includes em-bedded-servo burst processing, faultdetection logic, D/A circuitry, and a CPU/DSP bus interface. Driver and controller chips in 36 - and 44 -pin SO packages, $\$ 3.50$ and $\$ 5.50$, respectively (10,000). Silicon Systems, 14351 Myford Rd, Tustin, CA 92680. Phone (714) 731-7110. FAX (714) 669-8814.

Circle No. 365

SCSI disk controller. The AIC-8010 automated SCSI controller is for 1.8 -, $2.5-$, and $3.5-\mathrm{in}$. SCSI and SCSI-2 disk drives. Key features include automating SCSI operations through hardware implementation and control, full-track data access without $\mu \mathrm{C}$ intervention, automated buffer management, con-stant-density recording with embedded servo control, and 88 -bit Reed-Solomon error correction. The AIC-8010 supports SCSI-2 data transfers of 10 Mby-

tes/sec and disk NRZ data rates of 36 MHz . In a $100-\mathrm{pin}$ quad flatpack, $\$ 18.95$. Adaptec, 691 S Milpitas Blvd, Milpitas, CA 95035. Phone (408) 945-8600.

Circle No. 366

Graphics chip. Compatible with existing MS-DOS programs, the OTI-087 24-bit color chip can increase graphics performance as much as 10 times and boost the speed of Windows programs as much as 5 times over existing VGA chips. The chip obtains its speed by communicating directly to 80386 and 80486 CPUs over the 32 -bit local bus, instead of through the 16 -bit AT bus. Available in a 160 -pin quad flatpack, $\$ 31$ (1000). Oak Technology Inc, 139 Kifer Ct, Sunnyvale, CA 94086. Phone (408) 737-0888. FAX (408) 737-3838.

Circle No. 367

$I^{2} \mathbf{C}$ EEPROMs. Compatible with the 2 wire $\mathrm{I}^{2} \mathrm{C}$ bus, the XL24C04 operates from a 5 V supply and features a V_{CC} lockout to ensure data integrity during power-up and power-down cycles. The companion XL24C04-3 has a range of 2.7 to 5.5 V for battery operation. Internally organized as 256×8 bits, the lowpower devices draw only 1 mA (active) and $2 \mu \mathrm{~A}$ (standby). A 16-byte pagewrite mode and a self-timed write cycle minimize the total-per-byte write time. In 8-pin DIP and SO packages, the XL24C04 and XL24C04-3, \$1.49 and $\$ 1.94$, respectively, $(10,000)$. Exel Microelectronics, Box 49038, San Jose, CA 95161. Phone (408) 432-0500. FAX (408) 434-6444.

Circle No. 368

Dual-port video RAMs. Available in two versions, these 2 -Mbit video RAMs can handle the high-speed data and fast display-refresh rates inherent in advanced graphics applications. Both the fast-page version (μ PD482234) and the hyper-page version ($\mu \mathrm{PD} 482235$) include dual ports. With one port for the CPU and one for the display, processor efficiency is doubled. The devices come in 40-pin SOJs and ZIPs, and 44-pin

Now! Achieve global EMC compliance without giving up more than you have to.

Instrument Specialties helps you integrate EMC into your designs... from the beginning.

Reduce interference problems and costs at their source: The initial design and material selection stage.

If you fail to consider potential EMI and RFI problems at the design stage, meeting FCC or foreign standards and your own performance requirements can become an expensive and timeconsuming task. Often, it involves costly corrective shielding measures, complex design retrofits, and possibly compromised system performance.

By targeting potential EMC (Electromagnetic Compatibility) problems during initial design-well before the required testing stage-designers can costeffectively implement EMC controls, and achieve optimum system efficiency.

Remedial EMC controls:

A negative trade-off in volume, weight, efficiency, and cost.

When a system exceeds restrictions, designers are often forced to trade efficiency for acceptable EMC performancewith undesirable results. As a finished design is modified to accommodate necessary remedial shielding measures, weight and volume inevitably increase, and overall efficiency drops.
Planned EMC controls and testing during the design phase, on the other hand, not only help you maintain the in-
tegrity of the original design, but allow modifications in favor of greater system efficiency. In computer design, for example, EMC considerations such as selecting lower clock frequency, maintaining the smallest possible circuit layout areas, utilizing multi-layer boards, and minimizing the use of multiple shielding all contribute to optimum design efficiency.

The three EMC design techniques.

Achieving EMC is largely a function of three control techniques: Suppression, Isolation, and Desensitization. Through a combination of these methods, undesirable signals (EMI/RFI) are suppressed at their origin...generating circuits are isolated...and susceptible circuits are desensitized. When applied from the beginning, these techniques help you create fully integrated designs that offer both optimum performance and the best possible production economies.

Instrument Specialties:

A total resource for state-of-the-art shielding technology, products and design assistance.

After implementing proper circuitdesign controls, the most significant EMC design technique to reduce interference and susceptibility is effective shielding

Shielding not only contains radiated electromagnetic fields, but significantly reduces internal and circuit path coupling and overall common-mode coupling. In many cases, shielding eliminates the need for EMI filtering. In instances where filtering is required for conducted emissions, shielding can augment the performance characteristics of the filter. Instrument Specialties has been the leader in the science of shielding since EMI and RFI first became a problem. During this time, we have become the industry's most comprehensive resource for shielding design, manufacturing technology, and custom-design services. facilitating the use of lighter, thinner enclosure materials and enhanced system performance.

From concept to completion, teams of skilled specialists are at your disposal, providing assistance with state-of-the-art testing for FCC and global standards, as well as consulting, custom manufacturing, prototype production, and a vast range of standard off-the-shelf shielding

Instrument Specialties

CIRCLE NO. 94

LOW DROPOUT REGULATORS

TK114xx

- 200 mW Power Rating
- Super Small SOT23L Package
- ON/OFF Switch
- Internal Protection Features

TK115xx

- 600 mW Power Rating
- Low Noise
- Internal Protection Features
- ON/OFF Switch
- Active HIGH and Active LOW Control - External Boost Transistor Connectable

TK116xx

- $\mathbf{5 0 0} \mathbf{~ m W}$ Power Rating
- Internal Protection Features

Call Your TOKO Representative For Data Sheets and Additional Information

TOKO AMERICA, INC. 1250 Feehanville Drive Mount Prospect, IL 60056
l:心TOKO

MIDWEST: (708) 297-0070 EAST: (203) 748-6871 SOUTHEAST: (205) 772-8904
WEST: (408) 432-8281

TSOPs. \$30. NEC Electronics Inc, Box 7241, Mountain View, CA 94039. Phone (415) 960-6000.

Circle No. 369

Power drivers. The TC4421 and TC4422 can drive large MOSFETs or IGBTs (insulated gate bipolar transistors) at 9 A at high speed. The TC44xx family includes quad drivers with current ratings of 1.2 A and switching times of 20 nsec, as well as open-drain drivers with current ratings of 1.5 to 6 A and switching times of 25 nsec . All of the drivers feature ESD protection on every pin. In 8 - and 14 -pin packages, $\$ 2.95$ (1000). Teledyne Components, 1300 Terra Bella Ave, Mountain View, CA 94039. Phone (800) 888-9966; (415) 968-9241.

Circle No. 370

Were breaking new ground BY MAKING IT EASY TO PUT SCSI ON THE MOTHERBOARD.

Introducing Adaptec's new AIC-6260.
You're already a big believer in the performance and connectibility of SCSI. But you're also digging around for an uncomplicated way to design-in SCSI to your AT motherboard. Well. . Eureka! Now with Adaptec's new AIC-6260, you've just hit pay dirt.

After all, it makes a lot of sense that a single-chip solution is easier to design-in than multiple chip packages. They're also more reliable. And take up less real estate. Plus, since we've built the AT bus in, designing SCSI in is as easy as connecting signal lines dot-to-dot.

What's more, we get you to market in the fastest
possible time. That's because industry-standard, Adaptec-developed SCSI software drivers and BIOS are ready and available. For all major peripherals under all major operating systems. All this, and a complete design-in package, too. Which means, you can now afford to design the performance and connectivity of SCSI in your system as a standard feature.

So step on it. And call us at 1-800-227-1817, ext. 52 today. We think you're going to really dig it.

Crying for micro interconnects but nobody listening?

Cross-Computer User-Interface Development Tool

- Aids development of software for Windows and OSF/Motif
- Separates user-interface code from application code
Wintran is an object-oriented graphical user-interface development tool that lets you avoid writing and debugging code for individual windowing models. The tool provides a means for your applications to manipulate named visual objects, such as text, lists, images, and tables rather than the windows themselves. Because your applications in $\mathrm{C}, \mathrm{C}++$, or Pascal don't have to manage the user interface, your
code can be denser, more reliable, and easier to maintain. The software consists of an applicationbuilder module, which provides project management on 80386- and 80486-based computers, and an application server. The server is a computer-dependent runtime module that loads the interface descriptions, paints the displays, and receives and interprets messages from the operating system. Applica-tion-builder module, $\$ 995$; application server, $\$ 495$.

Guideware Corp, 2483 Old Middlefield Way, Suite 224, Mountain View, CA 94043. Phone (415) 9696851.

Circle No. 371

Configuration- And Data-Management Software

- Has an X-Window graphical interface
- Supports software, electronic, and mechanical engineering projects The Teamnet Unix-based configu-ration- and data-management tool tracks and controls files around an NFS (Network File System) Network. The software is based on an Openlook graphical user interface. The software resolves file sharing and edit conflicts using a 2-phase mechanism for checking in changes and managing your work area. Filemerge capabilities allow a visual side-by-side comparison of conflicting file changes. A virtual-copy capability improves software performance in creating work areas, checking in changes, and building baselines. License, from $\$ 3000$.

TeamOne Systems Inc, 710 Lakeway Dr, Sunnyvale, CA 94086. Phone (408) 730-3500. Circle No. 372

Numeric Computation Software

- Allows sparse-matrix approach to problem solving
- Allows visual and audio analysis Matlab version 4.0 expands the
software's analysis and presentation capabilities. Flexible File I/O allows you to import and export large data sets. To improve the software's ability to solve problems using these large data sets, the tool offers sparse-matrix algorithms that define computation time as a function of the nonzero elements in the matrix. The software solves problems written in the company's programming language, allowing you to bypass traditional program/ compile/debug cycles. Debugging features that bypass the traditional include breakpoint control, context changing during debugging, and single stepping. Application toolboxes provide special functions for DSP, filter, and control-system design and analysis, among others. You can output audio data or create color 3-D surfaces, mesh plots, contour plots, scatterplots, and a host of other graphical representations. The software will be available in early 1992, and it runs under X Windows. $\$ 2995$.

The Mathworks Inc, Cochituate Pl, 24 Prime Park Way, Natick, MA 01760. Phone (508) 653-1415. FAX (508) 653-2997. TWX 910-240-5521.

Circle No. 373

Samtec hears your smallest request.

Whether you need to shrink your centers or lower your profile, Samtec has the solutions you need. And even when you only need a small quantity, Samtec still jumps to fill your order fast.
Our new Sudden Solution Guide shows thousands of Micro Interconnect solutions.
Call 1-800-SAMTEC-9 for your free copy today!

$.050^{\prime \prime} \times .050^{\prime \prime}$

Samer

AVDin Of Hif BHIDR

FREE DOS-installable driver included with Ziatech's PC/AT and PS/2 interfaces.

IEEE 488 interfaces for PC/AT, PS/2, STD Bus and MULTIBUS

- Popular language support built in

Discount pricing for OEM purchases

FREE BROCHURE 805/541-0488

3433 Roberto Court
San Luis Obispo, California 93401 USA
FAX (805) 541.5088
Telephone (805) 541.0488

Design validation software. DDA software evaluates each net and interconnection on a pe board using circuitboard and line characteristics, powersupply attributes, line/trace length, and IC-manufacturer-supplied operating specifications. The software performs 66 tests on each net to achieve 98% fault isolation. Purchased licenses, $\$ 6995$; leased licenses, \$2400. Digital Design Analysis, 150 El Camino Real, Suite 200, Tustin, CA 92680. Phone (714) 5738730. FAX (714) 573-8736. Circle No. 374

Windows Driver for IEEE-488. Driver488/Win facilitates integration of IEEE-488 instrument control into Windows applications. The driver allows multiple tasks to simultaneously access the same interface board and conforms to Windows' event-handling system. The software includes an application that aids in creating and testing driver command lines. \$195. IOTech Inc, 25971 Cannon Rd, Cleveland, OH 44146. Phone (216) 439-4091. FAX (216) 439-4093.

Circle №. 375

Router between VMS and MSDOS. The Reliable Transaction Router for MS-DOS software allows you to integrate DOS-based PCs into multivendor networks where at least some of the machines run VMS. The router permits information sharing and protects against system faults and site failures. The software also supports MS-Windows and both DECnet and TCP/IP (Transfer Control Protocol/Internet Protocol). Licenses, \$275/CPU. Digital Equipment Corp, 200 Forest St, Marlborough, MA 01752. Phone (508) 467-5111.

Circle No. 376

DSP source-code generator. The Codegen generator provides both a macroprocessor and a template. The macroprocessor reads files you create using the template and interprets the embedded macros. After converting it

Sprague-Goodman

Ceramic Dielectric
 Trimmer Capacitors

Rugged 5 \& 7 mm types
Operating temp: -55° to $+125^{\circ} \mathrm{C}$
Cap ranges: $1.3-2.0 \mathrm{pF}$ to $12-160 \mathrm{pF}$
Miniature types suitable for hybrids Operating temp: -25° to $+85^{\circ} \mathrm{C}$
3 series: $2.0 \times 1.2 \mathrm{~mm} ; 3.0 \times 1.5 \mathrm{~mm}$; $5.0 \times 2.0 \mathrm{~mm}$
Cap ranges: $2.5-10 \mathrm{pF}$ to $5.5-40 \mathrm{pF}$

Microwave types

Operating temp: -55° to $85^{\circ} \mathrm{C}$
Cap ranges: $0.5-2.0 \mathrm{pF}$; 1-4.0 pF; 2.0-10 pF $Q>500$ at 100 MHz
Plastic encased $4 \times 4.5 \mathrm{~mm}$ and 5 mm types Designed for volume applications
Surface mount and printed-thru-hole models Cap ranges: $1.7-3.0 \mathrm{pF}$ to $10-50 \mathrm{pF}$
Phone, fax or write today for
Engineering Bulletin SG-305B.

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

CIRCLE NO. 99

Sprague-Goodman

Sapphire Pistoncaps ${ }^{\circ}$

- Q to 4000 at 250 MHz
- 6 mounting styles suitable for all RF structures
- Designed to meet MIL-C-14409D
- Operating temp: -55° to $+125^{\circ} \mathrm{C}$
- Cap ranges: 0.3-1.2 pF to 0.8-8.0 pF
- Subminiature size
- Multiturn resolution
- Extremely stable over temperature, frequency, voltage, etc.
Phone, fax or write today for
Engineering Bulletin SG-207A.

SPRAGUE G00Dman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

Appliance specific.

Four new microcontrollers optimized for small home appliances.

We've applied our minds to the needs of home appliance designers and come up with four new microcontrollers specifically for applications such as hot pot, coffee maker and battery charger. Providing all core functions in a 28 -pin package, our 17 K microcontrollers are more efficient and more economical than standard chips.

17K microcontrollers also require significantly less programming time. Running in the MSWINDOWS ${ }^{\text {TM }}$ V3.0 environment, our exclusive SIMPLEHOST ${ }^{T M}$ debugger offers full screen and source-level debugging. For even greater speed to market, we provide one-
time PROM types for all four microcontrollers.

Instead of going out of your way to design around a standard
device, use the microcontrollers that go out of their way to suit your system. For information on the 17 K Series, contact NEC today.

Device	$\mu \mathrm{PD} 17134 \mathrm{~A}$	$\mu \mathrm{PD} 17135 \mathrm{~A}$	$\mu \mathrm{PD} 17136 \mathrm{~A}$	$\mu \mathrm{PD} 17137 \mathrm{~A}$
ROM (bits)	1024×16		2048×16	
RAM (bits)	112×4			
1/O port	22 lines (including one input, one sense input and 8 N -ch open-drain lines)			
Analog input	4 channels (usable as port pins)			
Timer	8-bit timer: 2ch Basic interval timer/Watchdog timer: 1ch			
Serial interface	1 channel (usable as a port pin)			
Stack	5 levels			
Power-on reset	Provided			
System clock	RC oscillation	Ceramic oscillation	RC oscillation	Ceramic oscillation
Instruction execution time	$8 \mu \mathrm{~s}(2 \mathrm{MHz})$	$2 \mu \mathrm{~s}$ (8MHz)	$8 \mu \mathrm{~s}(2 \mathrm{MHz})$	$2 \mu \mathrm{~s}(8 \mathrm{MHz})$
Standby function	STOP/HALT			
Power supply	2.7 to 5.5 V ($5 \mathrm{~V} \pm 10 \%$ when A / D in use)			
Package	28-pin plastic shrink DIP/28-pin plastic SOP			
One-time PROM	$\mu \mathrm{PD17P136A}$	μ PD17P137A	$\mu \mathrm{PD17P136A}$	μ PD17P137A

SIMPLEHOST: Trademark of NEC Corporation. MS-WINDOWS: Trademark of Microsoft, Inc.

ULTRA-MINIATURE SURFACE MOUNT

 DC-DC Converter

 DC-DC Converter Transformers Transformers and Power and Power Inductors

 Inductors}

These units have gull wing construction which is compatible with tube fed automatic placement equipment or pick and place manufacturing techniques. Transformers can be used for self-saturating or linear switching applications. The Inductors are ideal for noise, spike and power filtering applications in Power Supplies, DC-DC Converters and Switching Regulators.

- Operation over ambient temperature range from $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- All units are magnetically shielded
- All units exceed the requirements of MIL-T-27 ($+130^{\circ} \mathrm{C}$)
- Transformers have input voltages of 5V, 12V, 24 V and 48 V . Output voltages to 300 V .
- Transformers can be used for self-saturating or linear switching applications
- Schematics and parts list provided with transformers
- Inductors to 20 mH with DC currents to 23 amps
- Inductors have split windings

Electronics, Inc.
453 N. MacQuesten Pkwy. Mt. Vernon, N.Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514

EDNHEW PRODUCTS

CAE \& Software Development Tools
to the format and sequence the host processor requires, the software writes the result to a file for assembly or compilation. The MS-DOS-based software doesn't contain assemblers or compilers. $\$ 89.95$. Dynacomp Inc, 178 Phillips Rd, Webster, NY 14580. Phone (716) 671-6160.

Circle No. 377

IC design tools. Owing to a recent agreement, Integrated Silicon Systems' layout editor, verification software, and mask-pattern-generation software will be included in the Dazix tool suite. LTL-100 layout editor, from $\$ 23,900$; verification software, including designand electrical-rules checkers, layout/ schematic compare, and layout-parameter extraction, approximately $\$ 90,000$; PG-100 pattern generator, from $\$ 12,900$. Dazix, 1 Madison Industrial Park, Huntsville, AL 35894. Phone (205) 7302000. FAX (205) 730-8344. Circle No. 378

Security software. Menuworks Total Security software provides data encryption; passwords; directory, file, command, and function-key locking; and boot protection. It also scans file changes caused by viruses. A utility searches your hard disk for more than 2500 programs and categorizes the programs to build useful system menus for MS-DOS-based computers. \$149.95. PC Dynamics Inc, 31332 Via Colinas \#102, Westlake Village, CA 91362. Phone (800) 888-1741; (818) 889-1741. FAX (818) 889-1014.

Circle No. 379

Scan-test tester software. The version 1.5 upgrade to the GR228X tester has a Scan Pathfinder Boundary-Scan Toolkit option. This option can test IEEE-1149.1 test-access port, the boundary-scan path, and connections between boundary-scan devices. In addition, the software aids in identifying and diagnosing the faults between boundary scan and nonboundary scan parts. The upgrade also includes a hardware fault-insertion capability. Scan Pathfinder, from $\$ 35,000$. GenRad Inc, 300 Baker Ave, Concord, MA 01742. Phone (508) 369-4400, ext 2101.

Circle No. 380

Data-acquisition software. The Macintosh System 7-version of Labview 2.2 is a high-performance version of the data-acquisition software. It generates in-line floating-point instruction that utilizes Mac Quadra on-chip floating-

EDN REPRINTS

A Designer's Guide to

 Circuits

Volume I

This original, 186 -page collection by Jim Williams offers a wealth of analog design information. It includes practical and efficient ways to use op amps, comparators, data converters, and other analog ICs.

A Designer's Guide to Linear Circuits

Volume II

Jim Williams' analog design articles from 1983 to 1986 - in Volume II. Volume II covers more complex circuits and systems in 66 pages.

SurfaceMount Technology Design Project
This 48-page, four-color reprint follows the progress of EDN editor Steve Leibson as he designs a 2Mbyte memory board using surfacemount technology. He includes typical problems you might encounter and objectively reports about both good and bad design decisions made along the way.

CALL NOW!
Cahners Reprint Services 708/390-2777

End the connector compromise...

1. LIF RACK \& PANEL CONNECTORS

2. MULTIPIN WITH 8-200 AMP CONTACTS

3. MIL-C-28748A RELIABILITY

...in electronic power supplies

Only Hypertronics ends the compromise in power supply connectors for backplane subassembliesin military, computer and other electronic systemsby combining Low Insertion Force (LIF) power, signal and MIL spec reliability in a single rack \& panel connector.

Our modular design gangs power contacts, rated from 15 to 200 amps , with low-insertion-force signal contacts. Combine these design alternatives with high current/small size performance of the Hypertac ${ }^{\circledR}$ contact-for unique cost and space efficiency.

And now our L Series connectors have been proven to MIL-C-28748A performance standards.

Now you can have it all...in rack \& panel
connectors for power and signal applications ranging from power supply to portable disc drives. End the connector compromise by calling 1-800-225-9228, toll free.

HYPERTAC ${ }^{\circledR}$:

Inserting pin into hyperboloid sleeve.

HYPERTRONICS CORPORATION
"New Horizons in Connectors"

Put All Your Clocks On One Chip

> Replace multiple crystal can oscillators with a single frequency synthesis IC.

In computer graphics and general purpose timing applications, IC DESIGNS' multiple- and variablefrequency devices save board space and money. Which is why some of the industry's largest companies use our components.

ICD2023 PC Motherboard

 Clock Generator - The industrystandard; 7 independent clock outputs up to 80 MHz ; ideal for $386 / 486$ desktop computers.ICD2027 PC Motherboard Clock Generator - 6 clock outputs up to 100 MHz ; hardware and software power-down modes; ideal for 386/486 laptop/notebook computers.

Contact us for more information about these or other IC DESIGNS components.

12020 113th Ave. N.E.Kirkland, WA 94034-6920 FAX: 1-206-820-8959 CIRCLE NO. 105
point processing. The tools acquire data from IEEE-488, VXI, or RS-232C instruments or from the vendor's own plug-in data-acquisition boards. $\$ 245$ to $\$ 4995$. National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in US and Canada, (800) 433-3488; (512) 794-0100. Circle No. 381

PC-board design-for-assembly software. Using parts-based analysis, PCB Design for Assembly analyzes the cost of component assembly and provides indices that reflect the difficulty of board manufacture. The indices in the DOS-based tool weigh the analysis of such criteria as component placement, density, height, autoinsertion, quality, labor, and cost. $\$ 9500$. Boothroyd Dewhurst Inc, 138 Main St, Wakefield, RI 02879. Phone (401) 783-5840, FAX (401) 783-6872.

Circle No. 382 Texas Instruments Inc, Information Technology Group, Box 869305, MS 8404, Plano, TX 75086. Phone (800) 3365236 , ext 1400 .

Circle No. 383

Reliability-rating program. The Enhanced Component Stress Analysis Program analyzes electrical, electronic, and electromechanical equipment in accordance with USAF, Naval Air Systems Command, NASA, and Department of Defense requirements. The stress-analysis tool is an enhancement to the vendor's Reliability Prediction Program. The option generates seven reports. Option, $\$ 1000$. Powertronic Systems Inc, Box 29109, New Orleans, LA 70189. Phone (504) 254-0383. FAX (504) 254-0393.

Circle No. 384

Test tools for software development. Software Testworks uses an OSF/Motif user interface and runs on X Window System workstations. The software consists of two tool suites: STW/COV is a test-coverage analysis suite, and STW/REG automates software testing. A minimum configuration allows three users. $\$ 18,300$. Software

Research Inc, 625 Third St, San Francisco, CA 94107. Phone (415) 957-1441. FAX (415) 957-0730. Circle No. 385

Raster-image software. Jetview Plus and Jetview Professional allow you to retrieve, view, and print raster images. Both packages sense a raster file's format before loading the file. Once loaded, you can measure lines and angles or print to output devices that have appropriate drivers. Jetview Professional includes adds such file-manipulation features as deskewing, rotating, cropping, or file conversion. From \$595. Houston Instrument, 8500 Cameron Rd, Austin, TX 78753. Phone (512) 835-0900. Circle No. 386

Localtalk network debugger. Localpeek works like a telephone tap on a Macintosh network to create and analyze network statistics. The software keeps such statistics as network utilization, and evaluates error packets such as cyclic redundancy check/checksum, overruns, underruns, and transmit errors. Decoders within the software allow you to look inside error packets and discern the source of the errors. $\$ 495$. The AG Group Inc, 2540 Camino Diablo, Suite 202, Walnut Creek, CA 94596. Phone (510) 9377900. FAX (510) 937-2479. Circle №. 387

Network backup software. Arcserve 4.0 backup and restore package for Novell networks achieves backup speeds of more than $20 \mathrm{Mbytes} /$ minute. Features include automated tape rotation for removing files that you don't use for a specified period of time, and a disaster recovery feature that rebuilds all or part of a network by reading a stored database from the backup tape. DOS-based software, from $\$ 295$ for five users. Cheyenne Software Inc, 55 Bryant Ave, Roslyn, NY 11576. Phone (516) 484-5110. Circle No. 388

Fortran compiler for System 7. Fortran version 3.0 makes use of the Macintosh System 7 features such as AppleEvents, Publish and Subscribe, aliases, and virtual memory. In addition to optimized code for 68000 -based microprocessors and Cray pointers, the software adds such debugging features as heap validity checking, useful error dialogues, and execution window tracing. From \$495. Language Systems Corp, 441 Carlisle Dr, Herndon, VA 22070. Phone (703) 478-0181. Circle No. 389

Text continued on pg 204

FடபKE

Powerful DSP signal analysis, including almost real- time FFT

Automatic go/no-go decisions with template and limit tests
analog

Push a button to better view complex signals in the analog mode

If you can't instantly see why our digital/analog DSOs are better than HP° or Tek...

	Fluke PM 3394	Tek ${ }^{\ominus}$ TDS Series	HP $^{\bullet}$ 545xx
Analog/Digital Combination	YES	NO	NO
Limit Test	YES	YES	YES
Template Test	YES	NO	NO
Analysis Functions Int. Dfit, Hist., Filer, FFT	YES	NO	NO
FFT	YES	NO	NO
4 Channels	YES	YES	NO
Analog Display	YES	NO	NO

maybe you need specs.

Believing is seeing. Philips DSOs from Fluke give you the sophisticated measurement and analysis features of an advanced digital scope costing up to five

times as much. Plus the familiarity of analog, for visual proof with infinite display resolution and speed. Looking for an easy-to-use scope? Our Touch Hold and Measure ${ }^{\text {TM }}$, Autoset, and pull-down menus define the term. And we back our combination DSOs with a 5 -year CRT warranty (3 -year on the mainframe). Now that's value you just have to see to believe.

For literature or a demonstration, call

1-800-44-FLUKE.

John Fluke Mig. Co., Inc., P.O. Box 9090, M/S 250C, Everett, WA 98206-9090. U.S. (206) 356-5400. Canada (416) 890-7600. Other countries: (206) 356-5500. ©1992. All rights reserved. Tek® and $\mathrm{HP} ®$ are registered trademarks of Tektronix, Inc., and Hewlett-Packard, Inc. Ad No. 00180.

FAST ANSWERS

FLபKEE。

CIRCLE NO. 107

EDN-NEW PRODUCTS

CAE \& Software Development Tools

Ethernet analyzer. Netminder Ethernet is a network analyzer that runs on Macintosh computers; it debugs, troubleshoots, and monitors Ethernet networks. The analyzer provides features such as packet filtering, postfiltering, triggering, and traffic-level alarms. Among the Ethernet protocols the software can decode are Appletalk, TCP/IP (Transfer Control Protocol/Internet Protocol), DECnet, Netware, Bridge/ 3 Com , and Banyan Vines. $\$ 595$. Neon Software Inc, 1009 Oak Hill Rd, Suite 203, Lafayette, CA 94549. Phone (510) 283-9771. FAX (510) 283-6507.

Circle No. 390

Network printer software. The Newsprint 2.0 upgrade allows you to print files from networks containing heterogeneous computers and workstations. As long as the network contains a SPARC workstation, the software uses this CPU to handle page imaging of Postscript and non-Postscript language files. $\$ 695$. Sunpics, 2550 Garcia Ave, Mountain View, CA 94043. Phone (415) 960-1300. FAX (415) 969-9131.

Circle No. 391

Somewhere in the world a Sanyo battery is being "designed-in" to a high performance application. Right now.

Industry leaders select industry leaders.
CADNICA. In 1964 Sanyo's proprietary technology led to a breakthrough battery that withstands continuous overcharging and overdischarging...the sealed, rechargeable nickel cadmium Cadnica.
LTHIUM. Sanyo developed the technology for manganese dioxide compounds to be used in Lithium batteries which produced a cell with high voltage and high energy density charactererstics
CADNICA EXTRA. sanyo's Cadnica E series incorporates high-density electrode plates in a new concept design for 40% greater capacity than conventional batteries and 1 -hour charge capability via Sanyo's $-\Delta V$ voltage

sensor changing method.

SOLAR. Sanyo leads the

 development of solar cells with the application of amorphous silicon for physical flexibility and the ability to be fabricated into large-area
cells.

For specification and design assistance please contact
your regional Sanyo sales office at the following address:
SANYO Energy (U.S.A.) Corporation In Florida: (904) 376-6711

Abstracting analog information. This 224-pg collection, The Best of Analog Dialogue, consists of application articles, tutorials, and problem-solving products judged by readers as the most helpful and useful. The collection, which covers 25 years, is arranged in chronological order and has an index. Analog Devices, Literature Center, 70 Shawmut Rd, Canton, MA 02021. FAX (617) 821-4273.

Circle No. 351

HDL Reference Manual. The Language Reference Manual, Release 1.0 describes the vendor's hardware description language (HDL). The $300-\mathrm{pg}$ publication explains how you can create HDL-based tools and descriptions. $\$ 50$. Open Verilog International, 1016 E El Camino Real, Suite 408, Sunnyvale, CA 94087. Phone (408) 987-5417.

INQUIRE DIRECT

Instrument Handbook. The Monitor \& Control Handbook presents data sheets, illustrations, specifications, and applications for a line of LED and LCD digital panel meters, printers, process monitors, and calibrators. Also included is a summary guide for data-acquisition
boards, de/dc power converters, and other data-conversion products. The 210-pg publication highlights a series of hybrid digital voltmeters in a choice of 30 colors, including red, green, yellow, amber, orange, and blue. Datel Inc, 11 Cabot Blvd, Mansfield, MA 02048. Phone (508) 339-3000. FAX (508) 3396356.

Circle No. 352

Digital-signal-processing databook. This databook describes DSP products for commercial and military applications and includes application notes. It also summarizes 1- and 2-D filters, multipliers, signal synthesizers, and specialfunction devices. Harris Semiconductor, Box 883, Melbourne, FL 32901. Phone (800) 442-7747, ext 1047; (407) 724-3704. Circle No. 353

Switching and linear supplies. The 1992 catalog of power supplies provides specifications, mechanical drawings, and prices for more than 1300 standard power supplies, power systems, and accessories. In addition to the large selection of standard-switching and linear supplies, the $208-\mathrm{pg}$ publication introduces eight product series. Lambda Electronics Inc, 515 Broad Hollow Rd, Melville, NY 11747. Phone (516) 6944200.

Circle No. 354

Catalog of software and hard-

 ware. A 544-pg, 4-color catalog covers the vendor's line of software and hardware products for developing instrumentation systems. The catalog is colorcoded by section-Application Software, GPIB, Data Acquisition, VXI/ MXI, and Training. Tutorials provide applications illustrated with diagrams that the reader can use as templates to create similar systems for instrument control, data acquisition and analysis,test and measurement, and other applications. National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in USA and Canada, (800) 4333488; (512) 794-0100.

Circle No. 355

Catalog of small-sized pc boards.
The 88-pg Micro PC Catalog discusses a line of small pe boards and accessories that operate over an extended temperature range. The book provides technical information and pricing for control and expansion boards, cables, displays, keypads, terminal boards, and other items for configuring a system. Octagon Systems Corp, 6510 W 91 Ave, Westminster, CO 80030. Phone (303) 430-1500. FAX (303) 426-8126.

Circle No. 356

Trimmer capacitor catalog. This 26-pg catalog describes RF and microwave trimmer capacitors and tuning devices. The capacitor-selection guide provides profiles that show the size of units. The catalog concludes with prototyping kits that let you identify and evaluate products discussed in the

publication. Johanson Manufacturing Corp, Rockaway Valley Rd, Boonton, NJ 07005. Phone (201) 334-2676. TWX 710-987-8367.

Circle No. 357

FM SERIES MODUFLEX SWITCHERS WITH 0.99 POWER FACTOR

SINE WAVE CURRENT

HARMONICS MEET IEC 555-2
1-7 OUTPUTS, 600-2000 WATTS
MODELS FOR VME, VXI, FUTUREbus, etc.
120 kHz. MOSFET DESIGN
UNIVERSAL INPUT

OUTPUTS REGULATED \& FLOATING

Call Toll Free 1-800-523-2332
In PA: 215/699-9261

OUTPUT LOCATIONS

2000 Watt FM Configurations

FM SERIES DIMENSIONS

DESCRIPTION

Moduflex switchers form a comprehensive line of open frame power supplies assembled from standard "off the shelf" modules. These subunits and assembly hardware are pre-approved by safety agencies so that certifications can automatically apply to custom models. Additional advantages include first piece delivery within two weeks and the elimination of engineering costs for qualified "OEM" requirements using stock modules.

FM Series are corrected to produce a 0.99 power factor. The resultant input current waveform is nearly a perfect sine wave compliant to the harmonic requirements of IEC 555-2.

Modular construction permits high volume manufacturing with an outstanding quality level and at competitive cost.

FEATURES

0.99 power factor. 5 watts per cubic inch.
600-2000 watts output.
120 kilohertz design.
TUV/VDE, UL, CSA.
All outputs:
Adjustable
Fully regulated
Floating
Overload and short circuit proof
Overvoltage protected
Standard features include:
System inhibit
Fan output

MODEL SELECTION

Input modules are available in ratings of 600, 1000, and 2000 watts with corresponding code letters of C, E and G. Refer to Power Code Table.

Output modules are available in ten types ranging in nominal power from 75 to 2000 watts. Refer to Output Code Table for codes and nominal power output.

Input Power Codes	
Codes	Watts
C	600
E	1000
G	2000

Output Codes	
Codes	Nominal Power
J	75
K	150
G	300
L	300
M3	400
M4	500
M5	600
M6	750
M7	1000
M9	2000

The Table of Ratings for the various types of output modules lists the maximum current for each type as a function of corresponding voltage rating.

Ratings in the shaded area are Preferred and are stocked for fast delivery.

Note: When computing output load power, multiply the fraction of actual current to max. rated current by the nominal power rating of the output module.

RATINGS OF OUTPUT MODULES

Nominal Power	75 W	150W	300 W	300 W	400 W	500 W	600 W	750 W	1000 W	2000 W	
Code	Volts	J	K	G	L	M 3	M 4	M 5	M 6	M7	M9
0	2	10	20	20	30	80	100	120	150	200	400
1	3.3	10	20	20	30	80	100	120	150	200	400
2	5	10	20	30	30	80	100	120	150	200	400
3	12	6	12	20	24	34	42	50	62	84	168
4	15	5	10	20	20	26	33	40	50	67	134
5	18	4	8	16	16	22	28	33	42	56	112
6	24	3	6	12	12	17	21	25	31	42	84
7	28	2.5	5	10	10	14	18	21	27	36	72
8	36	2	4	8	8	11	14	17	21	28	56
9	48	1.5	3	6	6	8	10	12	16	21	42

HOW TO ORDER

Select the letter F for power factor correction, then select the letter M to designate the series. Choose the desired configuration of output modules and list the configuration code. Insert the power code letter and follow with the output code numbers for each individual output. Enter a dash and from the option table insert the sum of the option codes. See example below.

	OPTIONS
Option Code	Function
1	Power Fail Monitor
2	Cover (600W only)
4	End Fan Cover (600W only)
8	Top Fan Cover (600W only)

SPECIFICATIONS

INPUT

$90-264 \mathrm{VAC}, 47-63 \mathrm{~Hz}$.
190-264 for 2000W units.
POWER FACTOR
0.99 at full load.

HARMONIC CURRENTS
Compliant to IEC 555-2.

INPUT SURGE

230 VAC - 75A max.
115 VAC - 40A max.

HOLDUP TIME

20 milliseconds from loss of AC power.

OUTPUTS

See model selection table.

ADJUSTABILITY

$\pm 5 \%$ trim adjustment.

OUTPUT POLARITY

All outputs are floating from chassis and each other and can be referenced to each other or ground as required.

LINE REGULATION

Less than $\pm 0.1 \%$ or $\pm 5 \mathrm{mV}$ for input changes from nominal to min. or max. rated values.

LOAD REGULATION

$\pm 0.2 \%$ or $\pm 10 \mathrm{mV}$ for load changes from 50% to 0% or 100% of max. rated values.

MINIMUM LOAD

Main output requires a 10% minimum load for full output from auxiliaries. Main output is \#1 on 600W and 1000W units and \#2 on 2000W units.

REMOTE SENSING

On all outputs except type J modules.

RIPPLE \& NOISE

1% or 100 mV pk-pk, 20 MHz bandwidth.

OPERATING TEMPERATURE

$0-70^{\circ} \mathrm{C}$. Derate $2.5 \% /{ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.

COOLING

A min. of 10 LFS cooling air directed on cooling surfaces over the 600W units for full rating. Two test locations on chassis rated for max. temperature of $90^{\circ} \mathrm{C} .1000 \mathrm{~W}$ and 2000 W models have built-in ball bearing fan.

TEMPERATURE COEFFICIENT

$\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.

EFFICIENCY

70% to 80%.

SAFETY

Units meet UL 1950, CSA 22.2 No. 234, IEC 950, EN 60950 , VDE 0804, VDE 0805, VDE 0806. Certifications in process.

DIELECTRIC WITHSTAND

3750 VRMS input to ground
3750 VRMS input to output.
700 VDC output to ground.

SPACING

8 mm primary to secondary.
4 mm primary to grounded circuits.

LEAKAGE CURRENT

3.5 mA max.

EMISSIONS

Units meet FCC 20780 Part 15 Class A and VDE 0871 Class A for conducted emissions. Compliance with Class B limits by use of additional external filter.

DYNAMIC RESPONSE

Peak transient less than $\pm 2 \%$ or $\pm 200 \mathrm{mV}$ for step load change from 75% to 50% or 100% max. ratings.

RECOVERY TIME

Recovery within 1%.
M3, M4, M5, M6, M7, and M9 modules - 200 microseconds.
J, K, G, and L modules - 500 microseconds.

UNDERVOLTAGE

Protects against damage for undervoltage operation.

OVERVOLTAGE PROTECTION

Standard on all outputs.

REVERSE VOLTAGE PROTECTION

All outputs are protected up to load ratings.

OVERLOAD \& SHORT CIRCUIT

Outputs protected by duty cycle current foldback circuit with automatic recovery. Auxiliaries have additional backup fuse protection.

THERMAL SHUTDOWN

Circuit cuts off supply in case of local over temperature. Units reset automatically when temperature returns to normal.

SOFT START

Units have soft start feature to protect critical components.

FAN OUTPUT

Nominal 12 VDC @ 12 watts maximum.

INHIBIT

TTL compatible system inhibit provided.

SHOCK

MIL-STD 810-D Method 516.3, Procedure III.

VIBRATION

MIL-STD 810-D Method 514.3, Category 1, Procedure I.

MECHANICAL

600W - Case 1. $-2.5 \times 5.05 \times 12$
1000W - Case 2. $-5.05 \times 5.05 \times 12$
2000W - Case 3. $-5.05 \times 8 \times 12$

POWER FAIL MONITOR

Optional circuit provides isolated TTL and VME compatible power fail signal providing 4 milliseconds warning before main output drops by 5% after an input failure.

FAN COVER

Optional covers with brushless DC ball bearing fan which provides the required air flow for full rating of 600 W units. Choice of low profile or top mounted types.

[^13]Int'l. Units: Delaire • Sallynoggin Road, Dun Laoghaire, Co. Dublin, Ireland. Tel: + 353-1-2851411 • FAX: + 353-1-2840267
Delinc • Padre Mier y Dr. Mina, Reynosa, Tamps., Mexico 08866. Tel.: (892) 38723 Prefix - from USA - (01152) FAX: (892) 38776

"The engineering professional's link to technical literature"

INSTRUMENT CONTROL AND DATA ACQUISITION

Free 1992 catalog of instrumentation products for PCs, workstations, and more. Features IEEE-488.2 interfaces and software, plug-in data acquisition boards. VXIbus controllers, DSP hardware and software, and signal conditioning accessories. Application software for complete acquisition, analysis, and presentation of data, including graphical interfaces. Application tutorials and training classes also detailed.

National Instruments
6504 Bridge Point Parkway
Austin, TX 78730
512-794-0100, 800-433-3488 (U.S. and Canada) FAX: 512-794-8411

Circle \# 204

AMD 29K, RISC DESIGN CONTEST BROCHURE

AMD and Embedded Systems Programming magazine are sponsoring a 29 K RISC microprocessor design contest. Show off your hardware or software design talents and you could win a free trip for two to Hawaii! Find out why Apple, HewlettPackard, Tektronix and Samsung power their embedded RISC designs using the 29 K Family
Call or return reply card to get your free 29 K Contest brochure or other literature today.

Advanced Micro Devices, Inc.
5900 E. Ben White Blvd., MS 561
Austin, TX 78741

Circle \# 205

1992 DATA ACQUISITION CATALOG

From Keithley MetraByte-New Free 288 page full-color Data Acquisition Catalog and Reference Guide. It introduces many new products and provides facts on all their plug-in boards, Data Acquisition and Analysis Software, IEEE-488.2 interfaces, Precision Data Acquisition Systems, and PC Instrumentation for use with IBM PC/ XT/AT, PS/2 and Micro Channel computers. Includes helpful selection charts and application notes.

Keithley MetraByte

440 Myles Standish Blvd.
Taunton, MA 02780
508-880-3000

Circle \# 206

1,239,580-ELECTRICAL WAVE FILTERS

TTE's 100 -page catalog offers a broad line of Active and Passive Filters. Included are Bessel, Butterworth, Chebyshev, Elliptical Function, AntiAliasing, Programmable, Notch and Custom designs, all operating within the 0.1 Hz to 500 MHz range. Ordering information is clear and easy to use. Part numbers, values and case numbers from the tables are provided for each product. Additional information includes general specifications, attenuation curves, response comparisons, case dirawings and mounting dimensions.

TTE Incorporated

2251 Barry Ave.
Lost Angeles, CA 90064-1400
213-478-8224 FAX: 213-445-2791

Circle \# 207

ELECTRONIC DESIGN ON THE MACINTOSH

The first fully integrated CAE/CAD software that makes the Macintosh the most powerful micro-based engineering tool for electronic circuit design. McCAD design modules include: - Schematic Capture Analog/Digital Simulation • PLD Design • PCB Layout Editors• Advanced Autorouting, etc.

Vamp Inc.
6753 Selma Ave. Los Angeles, CA 90028
213-466-5533

Circle \# 208

SCHURTER CATALOG

Schurter, Inc. now offers an expanded technical catalog detailing fuses, fuseholders, ac connectors and plugs, NEMA 5-15R outlets, power entry modules, and voltage selectors. Included is the recently acquired line of Feller PCC components which enhances the line of ac power entry products with $1-\mathrm{A}$ to $20-\mathrm{A}$ IEC 320 inlets, outlets, and plugs for "cold" or "hot" connections, snap-in and chassis-mount filtered power entry modules, and the FELCOM ${ }^{\star}$ power entry modules for custom configurations. Medical grade fuseholders are included.
Schurter, Inc.
1016 Clegg Court
Petaluma, CA 94954
707-778-6311 FAX: 707-778-6401

Circle \# 209

RUGGED BOARD LEVEL COMPUTER

The 8660 R is based on Intel's $80 \mathrm{C} 186 \mathrm{mi}-$ croprocessor and includes 256 K of battery backed RAM, 256 K EPROM and integrated I/O. It is designed for rugged environments from -40 to +85 degrees C and meets the NAVMAT P-9492 Vibration Standard. I/O includes an 8 -channel 12 -bit A/D converter, two RS-232 serial ports and four eight-bit parallel ports. A development environment based on Borland's turbo $\mathrm{C}++$ is available. The 8660 R sells for $\$ 849$ in single quantity. In non-rugged form, the 8660 is $\$ 695$.
Cubit Div., Proteus Industries Inc. 340 Pioneer Way
Mountain View, CA 94041
415-962-8237 FAX: 415-965-9355

Circle \# 210

EMI/RFI POWER LINE FILTERS

Emission Control specializes in high current 3-phase power line filters in the 20 to 60 amp range. Their integrated coil assemblies provide attenuation to electrical interference while maintaining minimum space requirements and flaw-free performance for today's systems applications. Can design filter to meet special requirements. All filters have recognition of Underwriter's Laboratories, Canadian Standard Assn., TUV.

Emission Control, Ltd.
P.O. Box 797

Cedarburg, WI 53012
414-375-4775

Circle \# 211

STEPPER MOTOR CONTROLS

SLO-SYN ${ }^{*}$ Preset Indexer Model SP-255 Bulletin SP255-691 describes new motion control that addresses a multitude of single, repetitive applications. Features all motion parameters programmable by front panel switches; index distance selected from remote switches also; single step and jog operation provided for manual setup; built-in bipolar chopper drive operates stepper motors in full/half step; and motor current from 0.5 to 3 A front panel selectable. Call 1-800-447-7171.

Superior Electric

383 Middle Street
Bristol, CT 06010
203-582-9561

Circle \# 212

VMEBUS PRODUCT SUMMARY

VMEbus Product Summary features over 75 products with hundreds of options. Includes VAX on VME, Host Computer Interfaces, VME-to-VME Links, Digital I/O Boards, Analog I/O Boards, Synchro/Resolver Boards, Serial I/O Boards, Interrupt Expanders, Intelligent I/O Controllers, and Universal I/O Controllers. Products are used worldwide in applications including data acquisition, simulation and training, robotics, process control, and factory automation.

VME Microsystems

 International Corporation12090 South Memorial Parkway
Huntsville, AKL 35803-3308
800-322-3616, 205-880-044

HIGH STABILITY MODULAR HIGH VOLTAGE POWER SUPPLIES

Spellman's MP Series HV power supplies provide a $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient, 0.001% regulation and a 0.001% peak to peak ripple. The units are available in voltages ranging from 1 kV to 15 kV at 10 Watts. The high voltage output can be controlled remotely and terminals are provided for monitoring output voltage and current. The MP modules are ideal for applications such as photomultiplier tubes, scintillation counters, electron guns, and nuclear instruments.
Spellman High Voltage Electronics 7 Fairchild Ave.,
Plainview, NY 11803
516-349-8686 FAX: 516-349-8699

Circle \# 215

4kW HIGH VOLTAGE POWER SUPPLY IN A $5^{1 / 4^{\prime \prime}}$ HIGH CHASSIS

New! Extremely compact and rugged power supply available in voltages from 1 kV to 60 kV at 4 kW . The SA4 is housed in a $5 \quad 1 /$ $4^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 22^{\prime \prime} \mathrm{D}$ rack mountable chassis. The supply provides 0.1% ripple, 0.005% voltage regulation, 0.05% current regulation and low EMI and RFI due to sine wave conversion. Flexible remote interface is standard. Floating filament supplies are available. The SA4 is ideal for applications such as analytical x-ray, sputtering, electron beam systems, and radar modulators
Spellman High Voltage Electronics 7 Fairchild Ave., Plainview, NY 11803

Spellman High Voltage Electronics
7 Fairchild Ave., Plainview, NY 11803
516-349-8686 FAX: 516-349-8699

Circle \# 216

516-349-8686 FAX: 516-349-8699
Circle \# 217

NEW MAGNETICS CATALOG!

Prem's new, full-line, 24 -page catalog features domestic and international printed circuit power transformers, telecommunication magnetics, CRT products, and inductors for use in switch-mode power supply applications. Power transformers carry UL and CSA listings. International series includes UL, IEC, VDE, CSA and GOST approvals. Catalog includes cross reference chart to competitor's part numbers.

Prem Magnetics, Incorporated 3521 N. Chapel Hill Rd.
McHenry, IL 60050
815-385-2700 FAX:815-385-8578

Circle \# 218

NEW IEEE-488 HARDWARE AND SOFTWARE

This catalog introduces CEC's newest and fastest IEEE-488 hardware and software. Support for Visual BASIC, Turbo Pascal for Windows, a Windows DLL, Turbo $\mathrm{C}++$, BASIC 7, and Quick Pascal are shown. A code generator and instrument libraries for QuickBASIC, Turbo Pascal, Microsoft C and FORTRAN are described along with the latest IEEE-488.2 software.

Capital Equipment Corpation

Burlington MA 01803
Literature: 800-234-4232;
Tech Support: 617-273-1818;
FAX: 617-273-9057

Circle \# 219

PORTABLE FLUXGATE MAGNETOMETER

The FGM is a rugged, accurate, highly sensitive portable hand-held instrument which can measure dc magnetic fields from 1 gamma ($\operatorname{lnTes} 1$ a) to 2 gauss. It is powered by a conventional 9 V alkaline battery commonly found in portable electronic devices. This instrument can measure dc magnetic fields to an absolute accuracy $+/-0.5 \%$ on all ranges with linearity of $+/-0.2 \%$ (traceable to NIST). The full scale ranges include $+/-2000$ milligauss, $+/-200$ milligauss. and $+1-20$ milligauss. The $3^{1 / 2}$ digit LCD display provides a resolution of 0.05%.

Walker Scientific Inc.

Rockdale Street
Worcester, MA 01606
508-852-3674

Circle \# 220

IEEE-488 SUPPORT PRODUCTS

This brochure describes the complete line of National Instruments IEEE-488 support products including, converters, controllers, bus extenders and expander/isolator, data buffer, and switch box. These products provide simple solutions for the integration of IEEE-488, SCSI, RS-232, RS-422, and Centronics parallel devices. Also described is an IEEE-488 bus analyzer/monitor for diagnosing GPIB problems quickly

National Instruments

6504 Bridge Point Parkway Austin, TX 78730
512-794-0100; 800-433-3488
(U.S. and Canada); FAX: 512-794-8411

Circle \# 221

UL, CSA, VDE COMPONENTS CATALOG

Free 130-page engineering catalog contains descriptions and technical data on IEC connectors, battery holders, RFI/EMI filters and internationally approved power cords. All components are available for off-theshelf delivery from stock, and are detailed with specifications, ratings and engineering diagrams. All Power Dynamics products carry full worldwide safety agency approvals.

Power Dynamics, Inc.

P.O. Box 539, 59 Lakeside Ave

West Orange, NJ 07052
201-736-5722 FAX:201-736-8930

Circle \# 222

LEMO'S NEW CIRCULAR CONNECTOR CATALOG

LEMO's new circular connector catalog highlights expanded shell and insert designs. Insert configurations are available in single, multi or mixed designs including sig. nal, coaxial, triaxial, high voltage, fiber optic and fluidic/pneumatic. Shell styles are available in standard chrome plated brass, anodized aluminum or stainless steel.

Lemo USA Inc

P.O. Box 11488

Santa Rosa, CA 95406
800-444-LEMO; FAX: 707-578-0869

Circle \# 223

STD BUS CATALOG

WinSystems' free 470 -page databook provides complete detailed technical information on over 200 STD and CMOS STD Bus products for both embedded and DOS compatible systems. The catalog includes nonDOS single board computers, $80-88 / 286 /$ 386 CPUs, memory, Ethernet and ARCNET networks, industrial I/O, card cages with power supplies, video controllers and software tools for use in harsh industrial applications

WinSystems, Inc.
715 Stadium Drive, Suite 100 Arlington, TX 76011
817-274-7553 FAX: 817-548-1358

Circle \# 225

EMI/RFI FILTER AND CONNECTOR SELECTION GUIDE

New six page brochure describes Spectrum Control's broad EMI/RFI filter product line including tubular filters, capacitors solder-in filter, resin sealed filters, hermetically sealed filters, multisection filters, filterplate assemblies, filtered connectors, custom filters and EMC testing services. Brochure provides information on applications, features, performance parameters and Fed/MIL approvals for each component.

Spectrum Control

2185 West Eighth St.
Erie, PA 16505
814-455-0966

Circle \# 226

POWER SUPPLY REFERENCE GUIDE

Power-One's new Reference Guide contains product information, corporate background and capabilities, application guide and a glossary of terms. Over 200 standards, switchmode and linear AC to DC power supplies available direct from Power-One or authorized distributors. Models are offered with outputs ranging from 2 V to 250 V , up to 2,000 watts. Single and multiple output models, all are design to meet UL, CSA, IEC, and VDE specs. Custom designs available.

Power-One, Inc.,
740 Calle Plano,
Camarillo, CA 93012
800-678-9445 FAX: 805-388-0476

Circle \# 227

E(E)PROM PROGRAMMERS

Reliable, fast and easy to use, Needham's Electronics E(E)Prom programmers are available in PC based or stand-alone models. Supporting 2716-4Megabit devices, Needham's programmers are capable of support for the latest in EPROM technology. Whether your needs are development or production, Needham's Rlectronics offers an affordable model to meet your programming requirements. All models are made in the USA by Needham's Electronics

Needham's Electronics

4539 Orange Grove Ave.
Sacramento, CA 95841
916-924-8037 FAX: 916-972-9960

Circle \# 228

ELECTRONIC TEST ACCESSORIES

New 130-page E-Z-Hook Catalog 65 features over 12,000 problem-solving, timesaving solutions to common testing, hookup, and assembly applications. Products include DIP testing accessories, continuity and voltage testers, multilead assemblies, test leads, wire/cable, components and adaptors, and type N, TNC, BNC, SMA/ UHF coaxial test accessories. Catalog provides product specs, configuration diagrams, application examples, and ordering information.

E-Z-Hook

P.O. Box 450

Arcadia, CA 91066
818-446-6175 FAX:818-446-0972

Circle \# 229

SMARTFAN ${ }^{\circledR}$ SPEED CONTROLLERS COOL AND QUIET

New Catalog and Design Guide details how SmartFan controls the speed of AC or DC fans and blowers to reduce acoustical noise $15 \mathrm{~dB}(\mathrm{~A})$ or more and regulate temperature. Included is basic design, installation and test information. A new special features section describes fan failure and temperature alarms, fail-safe features and more.

Control Resources, Inc.,

P.O. Box 315

Harvard, MA 01451
508-772-4043

Circle \# 230

RAYOVAC LITHIUM BATTERY GUIDE

Design engineers looking for data on lithium batteries will find a wealth of information in Rayovac's "Lithium Batteries Product Guide".
This comprehensive guide covers lithium battery types and selection, calculation of battery life, performance characteristics, product specifications and battery handling procedures.
For your free guide, contact:

Rayovac Technical Sales

601 Rayovac Drive,
Madison, WI 53711,
or call 608-275-4694 FAX: 608-275-4994

Circle \# 231

ULTRA-MINI TRANSFORMERS, INDUCTORS, DC-DC CONVERTERS, AC-DC POWER SUPPLIES

New 88-page catalog from Pico Electronics, Inc. is filled with electrical specifications for their line of ultra-miniature transformers, inductors and DC-DC converters. Transformers \& inductors available as plug-in, surface mount or torodial. Inductors are offered with axial leads. More than 850 standard models of converters with single \& dual outputs. Their small size (only $0.2^{\prime \prime}$ high) makes their encapsulated packaging attractive. Included are low profile AC to DC power supplies, $0.5^{\prime \prime}$ ht. up to 55 Watts.
Pico Electronics, Inc.
453 No. MacQuesten Parkway,
Mt. Vernon, NY 10552
914-699-5514 (NY) Toll Free: 800-431-1064

Circle \# 232

BURR-BROWN POWER CONVERTIBLES

This selection guide provides an overview of over $500 \mathrm{DC} / \mathrm{DC}$ Converters offered by Burr-Brown Power Convertibles. It illustrates innovation in power density, small size packaging and surface mount manufacturing. Products are available in miniature SIP and DIP packages as well as other industry standard pin outs. With output power ranging from .450 watts to 25 Watts they come in regulated and unregulated units. Input voltages vary from $5,9,12,15$, $24,18,48$ and output configurations are in single and dual voltages at $5,9,12,15$.

Circle \# 233

ELECTRONIC MEASUREMENTS INC.

POWER SUPPLIES

SCR-REGULATED DC POWER SUPPLIES

SINGLE PHASE TCR

-4 power levels 600 W 1,000 W - 1,800 W - 2,800 W

- DC outputs variable over full range of 0 to 7.5 V DC through 0 to 2,500 V DC
- Regulated and metered (V and A)
-CV/CC with automatic crossover
- Fully programmable and remote sense
- Complies with VDE 875-N and VDE 871-A
-5-year warranty

THREE PHASE TCR

- 3 power ranges 2,500 W 5,000 W - 10,000 W
- DC outputs variable over range from 0 to 6 V DC through 0 to 600 V DC
- Regulated and metered (V and A)
- CV/CC with automatic crossover
- Complies with VDE 875-N and VDE 871-A
-5-year warranty

EMHP THREE PHASE

- Catalog units 20 kW through $60 \mathrm{~kW}, 30$ to $3,000 \mathrm{~A}$; modified/ custom units to 5,000 A and 100 kW
- Fully programmable and remote sense
-Regulated and metered (V and A)
- CVICC with automatic crossover
- Complies with VDE 875-N and VDE 871-A

HCR 250 W DC POWER SUPPLIES

- 9 models 0 to 7.5 V DC through 0 to 300 V DC
- Regulated and metered (V and A)
- CV/CC with automatic crossover
- Fully programmable and remote sense
- $1 / 2$ rack packing
-5-year warranty

- Output power via rear mounted terminal boards or front panel binding posts

ATR LINEAR DC POWER SUPPLIES

-3 100 W $1 / 4$ rack models
-3 250 W $1 / 2$ rack models

- Voltages range from 0 to 32 V DC through 0 to 128 V DC
- Regulated and metered (V and A)
- Both models are fully programmable sources of constant voltage or constant current
- Output power via rear mounted terminal boards or front panel binding posts

EMS HIGH FREQUENCY SWITCHING DC POWER SUPPLY

- 48 models 600 W to $1,000 \mathrm{~W}$ to $2,500 \mathrm{~W}$ to $10,000 \mathrm{~W}$
- Voltages from 7.5 V DC through $1,000 \mathrm{~V}$ DC
- High density packaging - up to 3.1 W/cubic inches at 5 kW
-Regulated and metered (V and A)
- Fully programmable and remote sense
- CVICC with automatic crossover
-5-year warranty
-U/L recognized

BIPOLAR OPERATIONAL SOURCE-SINK

- 3 power levels 100 W to 200 W to 400 W
- 4 modes of operation: (1) bipolar power supply (2) an operational power supply
(3) sourcing power supply (4) sinking power supply
- DC output voltages of ± 20 V DC through ± 200 V DC
- IEEE-488 or RS232 digital control
- Regulated and metered (V and A)

ELECTRONIC MEASUREMENTS INC.

CALL TOLL FREE 1-800-631-4298

Training with

Sports science and high-tech training equipment have helped our Olympic athletes, but a shortage of funds hinders the program.

JAY FRASER, Associate Editor

Before a rifle or pistol shooter at the US Olympic Training Center pulls the trigger, the coach knows where the bullet will hit the target. Engineers from the Sports Science Division and outside companies have developed a solid-state-laser aiming device that weighs less than two ounces. It's mounted on the gun and directs an infrared beam at the target. A video camera picks up the beam and displays it on a monitor. The coach can determine where the shooter is aiming before the shot is fired.

During bad weather US Olympic rowers train indoors with computerized ergometers. These machines simulate the resistance of water to an oar. They record not only force and stroke rate, but also speed, time, distance, and caloric energy consump-

Sports scientists measure a runner's oxygen consumption, heart rate, and other physiological indicators.
tion. The ergometers can be connected to a monitor that generates a display of boats racing each other. Some colleges use these devices to stage competitions with other schools in the off-season.

One of the unique facilities at the training center in Colorado Springs, CO , is the swimming flume. It's the aquatic equivalent of a wind tunnel. Pumps circulate water through the flume, so someone swimming in it remains in place. The speed and temperature of the water can be controlled, and a window on one
boxer's uppercut. The difference between winning and losing in the Olympic Games is sometimes only a fraction of an inch or a fraction of a second. It's crucial for today's athletes to find some way to gain an edge over their competitors. Sports science and high technology can often provide that edge.

America was slow to understand the importance of technology to training, but after the 1976 Olympic Games Congress finally realized that the US team needed help. That summer, the Soviet Union finished first overall with 125 medals. America came in second with 94 . And tiny East Germany, with a population

Physiologists monitor a runner's breathing to determine how efficiently he uses oxygen during exercise.
side allows the swimmer to be observed and videotaped. It's the only such flume in the US.

The engineers and scientists who work with the US Olympic Team are using sophisticated technical equipment to measure and analyze everything from the angle of a sprinter's feet to the force of a
of only 17 million, almost edged out the US by winning 90 .

The success of the Eastern Bloc countries was largely credited to their extensive sports-science programs, which they had begun in the 1950s. Convinced at last of the need for a similar program for US athletes, Congress passed the Amateur Sports Act in 1978.

This legislation was far reaching. It made the US Olympic Committee
(USOC) solely responsible for the administration, development, and selection of teams for the PanAmerican and Olympic Games. It also funded a variety of research grants and established training centers at Lake Placid, NY, and Colorado Springs.

At the Lake Placid center, athletes train for winter sports in addition to boxing, rowing, canoeing, and kayaking. The much larger center at Colorado Springs deals with all other Olympic sports. Its 33 -acre campus encompasses dormitories for 600 athletes and coaches, five gymnasiums, a weight room, an outdoor track, a shooting complex, and the water flume. The center also operates a nearby velodrome and roller-skating racing track.

In order for American athletes to receive technological support and services equivalent to those that Eastern Bloc athletes enjoy, a Sports Science Division was established at the Colorado Springs center. It comprises five departments: psychology, physiology, biomechanics, computer science, and engineering and technology. The main purpose of the division is to analyze and evaluate athletes' performances to help them maximize their efforts.

The engineers and scientists in the Sports Science Division use high-speed video cameras, laser timing systems, and various sensing devices such as ergometers in their work. One of their on-going projects is refining the data-acquisition system they use to monitor an athlete's aerobic capacity, muscle strength, lung function, and heart rate. From time to time the staff hauls its equipment to Lake Placid to test the athletes there. In 1990 they provided 8640 evaluations for US athletes.

The director of the Engineering and Technology Department is Andrew Zolnay. He studied medicine before he earned his PhD in nuclear engineering from Ohio State Uni-

EDN-PROFESSIONAL ISSUES

versity (Columbus, OH). Then he worked at Lawrence Livermore National Laboratory (Livermore, CA) where he designed instrumentation to detect and measure radiation. In his spare time he tinkered with the prototype of a data-acquisition system he had devised for use with athletes.
Zolnay had long been involved in rowing, so his system was specifically designed for that sport, although it could be adapted for others. The basis of the system he envisioned was a series of sensors attached to the athlete and the boat. The sensors would take data every sixtieth of a second and transmit it to a video camera. The data would be encrypted on the video tape to make a correlated record of the image of the athlete with the measurements of his or her performance.
Zolnay organized a team of volunteers at Lawrence Livermore to help him develop his prototype. "I had a reputation for being able to convert more scientists to peaceful purposes than all the demonstrators combined," he says with a smile. He also contacted the USOC and offered the system to them. He received some encouragement, but not much.
Then the head of the Sports Science Division and a colleague took a trip to East Germany to study their athletic programs. When they asked the rowing coach how he trained his teams, he described using a data-acquisition system very similar to Zolnay's. After the two American officials returned to Colorado Springs, they quickly offered Zolnay the directorship of the Engineering and Technology Department. He accepted.
Zolnay feels strongly that the primary purpose of his department isn't to design pieces of hardware. "Engineering's function here is not to build gizmos and widgets for other people," he says, "but to be involved in the actual analysis of
sport from the viewpoint of rigorous engineering discipline. That way you get answers to some of the puzzling problems that occur in sport, rather than thinking that the only thing that wins medals is team spirit or some other nebulous concept."

Soon after he arrived at the Colorado Springs center, Zolnay had a chance to apply some engineering thinking and optimization theory to a training situation. "I went down to weightlifting, and a biomechanist was taking 3-D video photographs of the athletes as they lifted and was digitizing the trajectory of the bar. The staff then compared the trajectories to those of medalwinning weightlifters and tried to duplicate them. I told him that even if you duplicate the trajectories of successful weightlifters perfectly, at best you're only going to be as good as the person you're duplicating. And the idea in the Olympics is not to be "as good as" but to be better.
"You have to calculate the optimum trajectory for each athlete,"

Zolnay explains. "You have to take into account the body dimensions, muscle strengths, linkages, and bone dimensions and sizes of each individual. Then you can say that for this particular athlete, this is the optimum."

Intermingling disciplines

The functions of the departments within the Sports Science Division often overlap and intermingle. Tanya Wheeler, head of the Computer Science Department, says, "We're very much integrated. My department works closely with the others. We find out what they need, and we try to design software that lets the engineers optimize their use of the equipment." Wheeler's background reflects the integration of the disciplines. She holds degrees in both sports science and computer science from the University of Western Ontario.

Because its needs are so specialized, the Computer Science Department can't buy much software off the shelf. Wheeler and her staff have written almost all the pro-

grams the Sports Science Division uses. They even work closely with the psychologists. "We've written some applications for statistical analysis to help the psychologists," says Wheeler. "They maintain a very personal one-on-one level of consultation with the athletes, but we provide an avenue for them to get some of the basic information they need."

When an athlete arrives at the Colorado Springs training center, the first step in the testing and
athlete's performance is to create computerized representations of the athlete's movements.

To analyze a runner's style, markers are placed on his head, shoulder, hip, knees, and feet. As he runs on a treadmill, he is videotaped with a high-speed camera. The image is digitized and a computer program connects the dots corresponding to the markers to generate a stick figure for display. The figure can be run in slow motion or stopped for closer examination.

A sprinter gets set to run through a series of electronic timing lights, which measure his rate of acceleration.
evaluation process is usually a lengthy interview with someone on the Sports Science staff. "I listen carefully to all aspects of their performance as they see it," says Zolnay. "An athlete's sense of what's going on is more sensitive than anything I can ever build."
The athlete may get a physical and dental exam, advice about nutrition, and psychological counseling. The athlete also goes through a series of laboratory and field exercise tests to measure his or her respiration, heart rate, power, and efficiency. One of the methods the engineers and scientists of the Sports Science Division use to evaluate an

The stick figure may reveal aspects of an athlete's movements that aren't readily apparent. Correcting flaws will improve performance and reduce the risk of injuries. For example, Mark Fenton, an Olympic race walker, was videotaped, and his computer image showed that his stride was too long. By shortening it slightly to keep his feet closer to his center of gravity, he improved his time in the $20-\mathrm{km}$ race by approximately 5%.

After the tests are finished, people from departments other than engineering and technology might be called in to help evaluate the results. When the evaluation is com-
plete, a sports scientist will sit down with the athlete and coach and suggest how they could improve their training program. Then they return home. Few athletes stay at the Colorado Springs center for an extended length of time.

Both Zolnay and Wheeler are reluctant to claim credit for any athlete's success because so many factors besides input from the Sports Science Division are involved. But some athletes have shown dramatic improvement after visiting the Colorado Springs center.
"There are some specific instances of athletes who have come through here and improved by leaps and bounds," says Wheeler. "We hope we can say we were a small part of that improvement. For example, with some of the figureskating athletes we've been able to determine that they have so much angular acceleration going into a jump that they should be able to rotate four or five times before they land. When we tell them that they might say, okay, maybe I'll try it. Then they try it and do it. We were able to provide a little bit of information that helped them, but it's their success. They're the ones who worked for it."

The annual budget for the Sports Science Division is less than $\$ 2$ million. Although Congress established the USOC, it doesn't fund it. No tax money goes to support the US Olympic team.

The USOC raises some funds by licensing the Olympic symbols to companies for use on their products. The companies pay royalties to the USOC on sales. The USOC also has 40 corporate sponsors, firms that make donations of either cash or equipment. (The amount of the donation necessary to qualify as a corporate sponsor is confidential.) Otherwise, America's Olympic effort depends on donations from individuals.
"[The Sports Science Division] is

TAB and Lead Frames from the Supplier of Ghoice

 SMM Expertise Means Quality Semiconductor Assembly MaterialsDevice makers around the world have come to rely on SMM's semiconductor assembly materials. Our exclusive technologies for copper plating directly onto polymide film, for example, produce 2-Layer TAB and 2 -Metal TAB with straight side walls on Cu leads, a low profile Cu/Polymide interface and flexible design capabilities.
Moreover, our three-layer TAB, with high lead counts of more than 500, has acquired a reputation for reliability in applicationssuch as supercomputers-that require a multi-pin TAB.
Quality lead frames, essential elements in the infrastructure of ICs, can often make the difference in final product quality. Copper alloy or iron/nickel lead frames from SMM, created through our advanced, fully integrated in-house production system, provide the flexibility and durability you need.
SMM's many other advanced products, including connectors, switches and plastic package boards, combine with our TAB and lead frames to satisfy all your semiconductor assembly needs.
pitifully underfunded," says Zolnay. "I have less staff and resources here than I had with the volunteers back at Lawrence Livermore. This is ludicrous." Right now the entire engineering and technology department consists of him, a senior design engineer, and "two thirds of a research assistant."

Asked what the USOC would need to bring the American effort in sports science up to that of other countries, Zolnay quickly replies, "Fifty million dollars to build a 5 story sports science building, an entire floor for each discipline of the division, along with the instrumentation required to do a first-class analysis, and the appropriate staff."

Today a total of 28 people work full time for the Sports Science Division. By contrast, the Soviet Olympic team is supported by a staff of more than 1800 . Before Ger-
many's reunification, the East German team had more than 500 people working with it.

The USOC's budget constraints are almost certain to create problems in the future. Because the Sports Science staff is so small, it only has the time and resources to work with America's elite athletes. The younger, developing athletes may not get the level of training they'll need to compete successfully someday against world-class athletes from other countries.

Underlying the immediate problems of lack of funding and personnel is the deeper problem of lack of national commitment. "It's just an excuse when people from the US say other countries do much better because they pay their athletes," says Zolnay. "We have the resources here, but they're squandered. Things like facilities and
training, diet and nutrition, technical support, and respect for sport all have to come together. We just don't have the discipline to use what we have. It's sad."
(Since this article was written, Andrew Zolnay has left his position with the USOC by mutual consent.)

コロN

Jay Fraser, Associate Editor, can be reached at (617) 558-4561, FAX (617) 558-4471.

Article Interest Quotient
(Circle One)
High 506 Medium 507 Low 508

TOUCH SCREEN PROJECT?
 We offer immediate delivery of touch screens, decoding electronics and software.

BRADYTOUCH" Stock Touch Screen Program

Our large selection of stock touch screen products helps you launch your project quickly, and saves you the development costs of custom design. Our stock program includes:

- Analog and matrix touch screens in various sizes and styles.
- High gloss and anti-glare surface finishes.
- Decoding electronics and software to enable your screen to function as a mouse.
Custom Design Capabilities
If you don't find what you need in stock, we can custom manufacture your touch screen to fit virtually any CRT, LCD, plasma or electroluminescent display panel.
Let us help you with your touch screen needs.

[^14]
Shrink Your Power Supplies with TOKIN SMDs

The continuous integration of high-density electronic equipment has created a burgeoning demand for thinner, more compact switching power supplies. To meet this demand, TOKIN has come up with an outstanding lineup of SMD

Tokin Corporation

Hazama Bldg., 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan Phone: 03-3402-6166 Fax: 03-3497-9756

Korea Representative Office

\#602, Champs-Elysees Bldg., 889-5,
Daechi-Dong, Kangnam-gu, Seoul, Korea
Phone: (2) 569-2582~5 Fax: (2) 544-7087

Tokin America Inc.

155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375
Phone: 408-432-80
9935 Capitol Drive, Wheeling, Illinois 60090 , U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804
Boston Branch
945 Concord Street, Framingham, Massachusetts 01701, U.S.A.
Phone: 508-875-0389 Fax: 508-875-1479

Tokin Electronics (HK) Ltd.

Room 806 Austin Tower, 22-26A Austin Avenue
simshatsui, Kowloon, Hong Kong
Phone: 367-9157 Fax: 739-5950
Taiwan Liaison Office
$3 \mathrm{~F}-4$, No. 57 Fu Shing N. Road, Taipei, Taiwan
Phone: (02) 7728852 Fax: (02) 7114260
Singapore Branch
140 Cecil Street, No. 13-01 PIL Bldg., Singapore
Phone: 2237076 Fax: 2236093, 2278772

Tokin Europe GmbH

Knorrstr. 142, 8000 München 45, Germany
Phone: 089-311 1066 Fax: 089-311 3584 Telex: 524537 tokin d

HIGH POWER FACTOR
 Custom Switching Power Supplies
 for oEngineering work stations
 - Computer main frames
 - Computer peripheral equipment
 - Business equipment
 - Telecommunications
 - etco

 - High power factor 0.99 - Design, manufacturing in Japan - Repair center in U.S.A.

FDK also specializes in DC-DC converters, hybrid ICs, memory cards, ferrite cores, lithium batteries, stepper motors, optical isolators, etc.

EDNPRODUCT MART

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

PROMICE takes ROM emulation a step beyond. It's an affordable, multi-operational development tool with:

- on board intelligence
- modular design
- source level debugging
- filure expandability
phovice The Fimware
Datelopment System of Tomorrow
Guramnamar
Engline fis

CIRCLE NO. 331

FREE
CATALOG

Affordable
tools for
programmable
devices are just
a phone call away.

- Unbeatable values To order your FREE on Data I/O device catalog, call Data I/O programmers, Direct today.
software, updates, and accessories - 30-day, money back guarantee
-800-3-DatalO (1-800-332-8246)

CIRCLE NO. 334
Malseken
IEC Pub. 801-2
HIGH REPRODUCIBLE ESD TESTING.

ELECTROSTATIC
DISCHAREE SIMULATOR ESS-630A
U.S.A WATAHAN NOHARA INTERNATIONAL, INC. TEL(800)366-3515

CIRCLE NO. 337

Surface Mount Chip Component NVVEF Prototyping Kits-
Non Mount z Only
NAUEE

CC-1 Capacitor Kit contains 365 pieces, 5 ea. of every 10% value from 1 pf to $.33 \mu \mathrm{f}$. CR-1 Resistor Kit contains 1540 pieces; 10 ea. of every 5% value from 10 nto 10 megn . Sizes are 0805 and 1206. Each kit is ONLY $\$ 49.95$ and available for Immediate One Day Delivery!
Order by toll-free phone, FAX, or mail. We accept VISA, MC, COD, or Pre-paid orders. Company P.O.'s accepted with approved credit. Call for free detailed brochure.

COMMUNICATIONS SPECIALISTS, INC 426 West Taft Ave. • Orange, CA 92665-4296 Local (714) 998-3021 • FAX (714) 974-3420
Entire USA 1-800-854-0547 CIRCLE NO. 332

> RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?

The RelCalc 2 Software Package predicts the reliability of your system using the part stress procedure of MIL-HDBK-217E, and runs on the IBM PC and full compatibles. Say goodbye to tedious, time consuming, and error prone manual methods! RelCalc 2 is very easy to use, and features menu windows, library functions, global editing for what-if? trials, and clear report formats. Try our Demo Package for \$25

T-CUBED SYSTEMS, 31220 La Baya Drive \#110. Westlake Village, CA 91362. (818) 991-0057 • FAX: (818) 991-1281

CIRCLE NO. 333

SCHEMA III 3.3

Schematic Capture

COMPLETE DESIGNS ON YOUR PC OR UPLOAD
TO YOUR WORKSTATION FREE DEMO DISK

One schematic capture program stands alone in features, speed, user friendliness \& performance SCHEMA. The new SCHEMA

III 3.3 is still only \$ 495.
(SOMEMA
800-553-9119
CIRCLE NO. 336

CMOS 186

Single Board Computer

Runs C or QuickBASIC"' Programs

Powerful 16 -bit computer directly executes EPROM's containing any C or BASIC . EXE file. NO LOCATORS! Software includes multi-tasking multi-drop comm, PID control, OPTOMUX.'

- $10,12,16 \mathrm{MHz} 80 \mathrm{C} 186$
- CMOS design
- 5I2K RAM
- 384K EPROM
- STD BUS Expansion
- COM1 RS232/485
- COM2, LPTI
- RTC Avail

MICRO/SYS
1011 Grand Central Ave., Glendale, CA 91201 (818) 244-4600 FAX (818) 244-4246

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

To advertise in Product Mart, call Joanne Dorian, 212/463-6415

Complex PLDs

If your good old Data I/O can do the job, stay with it. If not, you can count on Advin. Our PILOT-U84 supports all Altera/Cypress MAX devices, all AMD MACH devices, all Lattice LSI devices, Atmel 5000, Xilinx and others. Qualified by all major manufacturers Please call and ask for a technical staff. 408-243-7000, 800-627-2456, Fax 408-736-2503 Advin Systems Inc.
1050-L E. Duane Ave., Sunnyvale, CA 94086

50 MHz Pulse/Function Generators Two available models from under $\$ 3000$. High fidelity waveforms from 10.00 mHz to 50.00 MHz and from 10.00 mV to 32.0 Vp -p. Auto-calibration preserves full accuracy from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Fully complies with the new IEEE-488.2 standard. Built-in GPIB compiler makes model 8551 bus compatible with HP's model 8116A device dependent commands
Provides sine, triangle, variable/fixed duty cycle pulses, positive and negative ramp waveforms; triggered, gated, and counted burst modes; pulse width, amplitude, and frequency modulation modes: lin/log sweep modes; automatic PLL to an external source with $\mathrm{a} \pm 180^{\circ}$ phase offset range.

Tabor Electronics 25. Rutgers Ave. Cedara Grove, NJ O7009

CIRCLE NO. 350

Control Cross-C

Z280, Z180, Z80 \& 8085 Full ANSI C Compilers

- Completely automatic MMU support (no programming effort) for UP TO ONE MEGABYTE Z180 programs.
- DOS based cross-compilers for ANSI and K\&R C code
- Complete with high-speed assembler, linker, and librarian Includes macros to interface C and assembly.
- NOT A SMALL C!! Full ANSI C at a small C price
- All ANSI .H files and applicable functions provided.
- Optimized code generation for all data types. Char types are not promoted to int. Generates inline port I/O.
- Allows in-line assembly with access to C variables.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support. - Supports C interrupt service routines and pseudo variables to access registers at the C level. Can compile to user defined segments
ANSI C Compiler, Assembler, Linker - $\$ 699$ Assembler and Linker Only - \$279

SOFTOOLS, INC.
8770 Manahan Drive I Illicott City, MD 21043 (410) 750-3733 1:AX/BBS (410)750-2008

CIRCLE NO. 752

LOCIC ANALYZ:R/DSO

analog/digital circuitry with a single instrument! OmniLab features: - 48 or 96 LA channels, 200 MHz async, 34 MHz sync ■ 2 DSO channels, $100 \mathrm{MHz}, 200 \mathrm{Ms} / \mathrm{s}$ - Powerful Mixed Analog/Digital Triggering - Timealigned Analog/Digital display ■ μ P disassembly support - Mouse driven Graphical User Interface ■ Test programs are automatically created as you use the OmniLab. Prices start at $\$ 3,500$ for 4 month rental.

FREE DEMO DISK.

1-800-729-7700
Fax 415-327-9881

180 Independence Dr., Menlo Park, CA 94025
CIRCLE NO. 755

Schematic Capture for the Macintosh

DESIGNWORKS

Schematic features Menu-driven, mouse-controlled operations \bullet cut/copy/paste between circuits • right-angle rubberbanding. Digital simulation 13 -state, event-driven simulation - logic analyzer-style timing window - PLD support. Libraries Fully-simulated 7400, 4000, 10K series, PLDs, PROMs and RAMs, non-simulated analog and discrete components - User-definable, simulated custom symbols. Interfaces Formats for Douglas CAD/CAM, Cadnetix, Calay, Orcad, Tango, Racal Redac, Spice. • user-definable printers, dotmatrix printers, HP, Houston, Roland pen plotters.

CALL (800) 444-9064 TODAY FOR YOUR FREE DEMONSTRATION KIT!
CAPILANO COMPUTING (604) 522-6200 Fax (604) 522-3972 CIRCLE NO. 753

Advanced features for accurate sampling:

- Auto-channel sequencing - DMA interface Also features - 1024 to 31250 samples/sec, ± 5 volt inputs, expandable MUX, sync I/O, power outputs. X-Y display, FFT, ATE S/W.
Other products - Educational S/W: FFTLAB. Create, save, load, analyze signals. With 40 pg . tutorial, \$14.95. Also, instrument amplifiers and standalone DAC interfaces.

BAKER EE-CS
4951 Clairemont Sq., San Diego, CA 92117 (619) 273-2117 (Voice/FAX)
s249.TERMINAL

Featuring - Standard RS 232 Serial Asynchronous ASCII Communications 48 Character LCD Display (2 Lines of 24 Each) - Ten Key Meymbrane neric arayboard piths 8 programmabsed graphics - Optional RS. 422 multidrop protocol mode - Size (5.625" W $\left.\times 6.9^{\circ} \mathrm{D} \times 1.75^{\circ} \mathrm{H}\right)$. Weight 1.25 ibs - 5×7 Dot Matrix font with underline cursor - Displays 96 Character ASCII Set (upper and lower case)
[ロAPUTERTISE, inc

CIRCLE NO. 751

Library Doubled and WINDOW 3.0 with VMS

Integrates Schematic Capture

 PCB Layouts \& Autorouting This top-rated CAD out-routed the competition in the 1990 CAD Showdown. DC/CAD displayed its power and flexibility when routing a double-sided board while competing routers used four to six layers. This non-copy protected package with surface mount support includes:- Multi-strategy 1 -mil parts autoplacer
- "1-mil" autorouting w/ripup \& retry
- Thorough annotating design rule checker
- Full 2-way GERBER and DXF support
- Optional autoground plane support with cross-hatching
- Optional simulation capability \& protected mode for 386 users

LEASE PROGRAM \& SITE LICENSE AVAILABLE 30 DAY MONEY BACK GUARANTEE
DDESIGN
COMPUTATION PोO?
R1. 33, Sherman Square Farmingdate, N 0772-
(908) $938-6661 \cdot(900) 938-6662($ (FAN $)$
DC/CAD . . Innovative, Intelligent \& Integrated Software CIRCLE NO. 754

Baby Bullet-386SX ${ }^{T M}$

- Single Board Computer

AT Compatible - SCSI Interface

- On Board Serial (2), \& Parallel (1) Ports
- On Board Multiple Disk Interface
- Solid State Disk = Low Power - Only 5V
- Smail size - 5.25 Disk Form Factor
- Up To 16MB DRAM = AMPRO Compatible

Dyna Five Corporation
173 Freedom Avenue : Anaheim, CA 92801 (714) 525-8795 • FAX (714) 525-9310

EDN-CARER OPPORTUNITIES

Issue	1992 Recruitment Editorial Calendar		
	Issue Date	Ad Deadline	Editorial Emphasis
News Edition	Mar. 5	Feb. 20	Memory Technology \bullet CPU Boards \bullet Computers \& Peripherals \bullet Diversity Special Series
Magazine Edition	Mar. 16	Feb. 20	COMPUTER \& PERIPHERAL SPECIAL ISSUE • Multimedia • Components • Memory Technology • Computer Peripherals • International Technology Update-Japan
News Edition	Mar. 19	Mar. 5	DSP Software - Communications • Regional Profile: New York, New Jersey, Pennsylvania
Magazine Edition	Mar. 30	Mar. 5	Microprocessors • Analog Circuits \bullet CAE \bullet Test \& Measurement
SOFTWARE ISSUE	Mar. 30	Mar. 5	SOFTWARE ENGINEERING SPECIAL ISSUE • (To be polybagged with the March 30th Magazine Edition issue)
News Edition	Apr. 2	Mar. 19	ICs \& Semiconductors • Multimedia Software/Development Tools • Engineering Management Special Series
Magazine Edition	Apr. 9	Mar. 19	CAE • EDN Hands-on Special Project—Part I: Field-programmable Gate Arrays • Software - Memory Technology
Magazine Edition	Apr. 23	Apr. 2	Portable Computer Design - EDN Hands-on Special Project-Part II: Field-programmable Gate Arrays • Electromechanical Devices • Computer Peripherals
News Edition	Apr. 30	Apr. 16	ASICs SPECIAL ISSUE \bullet FPGAs and EPLDs \bullet CICC Hot Products \bullet ASICs • Regional Profile: Northern California
Magazine Edition	May 7	Apr. 16	Communications/Networks • Test \& Measurement • Surface-Mount Components • Power Sources • Electro Show \& Products Issue

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Hughes Network Systems is an industry leader in the development and manufacture of highly innovative telecommunication products for solving the advanced communications needs of our customers. To continue our success, we're currently seeking a Sr . Designer to implement satellite modem and baseband circuit designs into ASIC.
The ideal candidate will possess demonstrated knowledge of ASIC gate-level design, simulation, test vector generation, design tools and processes, backed up by a strong background in telecommunications and digital circuit design. Experience with larger chip designs, mixed-mode designs, HDL and Mentor Graphics tool is highly desirable. The candidate should possess a BSEE (MSEE preferred).
We offer a competitive salary and benefits package, and relocation assistance. For immediate consideration, send your resume to: Hughes Network Systems, Inc., Dept. 902N382, 11717 Exploration Lane, Germantown, MD 20876. An equal opportunity employer.

HUGHES NETWORK SYSTEMS

Subsidiary of Hughes Aircraft Company

EMPLOYMENT OPPORTUNITY

Company needs a Research Scientist to use Mathematic methods to do research and develop three-dimensional graphics for computer software designs. The applicant musthave Ph.D. in Mathematics and have done research in and produced at least one published paper in the area of differential manifolds and the eigenvalues of Laplace operators living on these manifolds, and know how to use computer languages C , Basic and techniques of programming MS Windows. 40 hr/week, $\$ 38,000 /$ year. Send resume to J. Gaston, Division of Employment Security, 505 Washington, St. Louis, Missouri 63101. Phone (314) 340-4748. Re: Job \#536446.

Get

$?$ Job!

Commit To Excellence Join II

ELECTROSPACE SYSYEMS, INC.

ENGINEERING

ELINT SYSTEMS ENGINEER

BSEE and 8 years experience in systems design, development and test of complex Electronic Warfare, Intelligence and Communication Systems.

SIGINT SYSTEMS ENGINEER

BSEE and 5 years experience in systems design and development in COMINT, TELINT, ELINT, and Tactical and Strategic SIGINT/Reconnaissance, ECM and ESM Systems.

RF DESIGN ENGINEER

Director of Engineering

With approximately 60 people reporting to the func tion, you will lead the development of successful enhancements to current products, and integrate new product introductions and establish strong relationships with Advanced Technology Development, Manufac turing and Applications Laboratory so that new product projects are transitioned to production smoothly; initiate and run Engineering project management system for new products or major product improvements; establish world-class concurrent engineering capabilities and drive PED efforts to reduce new production introduction cycle times; and provide engineering leadership for total quality programs.
To qualify, you should have excellent people skills, tact and be personable while at the same time setting high expectations and goals. You must also have an Engineering Degree, advanced degree desirable; and a proven track record of engineering responsibility for development design of capital equipment similar to that produced by MRC.

Software Engineering Manager

Manage a software engineering team already involved in the design, development and implementation of software requirements for cluster tool systems.
A BS in Computer Science(MS preferred) or Electrical Engineering is required. In addition, your experience should include a minimum of 3-5 years in software development management (including responsibility for a complete operating system); $5+$ years in real-time operating systems and multi-tasking. Experience in RMX or VRTX, PSOS, OS 9000 operating systems, process and process equipment control software preferred We offer excellent salaries, company paid benefits and relocation assistance to those that qualify in our state-of-the-art facilities located in suburban Rockland County, only 30 minutes North of New York City.

Send your resume and salary requirements, indicating position desired, to: Dick Feeney, Senior Personnel Manager, Dept. EDN-217, Materials Research Corporation, 200 Route 303, Congers, NY 10920. We are an equal opportunity employer m/f/h/v.

MATERIALS RESEARCH CORPORATION
"Defining Excellence in Thin Films"

SYSTEMS ENGINEERS

BSEE and 3 years experience in systems level design, development and test of complex Electronic Warfare, Intelligence and/or Communication Systems.

SOFTWARE DESIGN ENGINEERS

BS CS or EE and 5 years experience in design and development of real-time embedded control systems, networks and/or manmachine interface. C, Ada or PASCAL required and DoD-STD-2167A or NSAM 81-3 experience.

MANPRINT SPECIALIST/ HUMAN FACTORS ENGINEERING

BS EE or HFE and 5 years experience in MANPRINT (Manpower and Personnel Integration), Army IEW experience and attendee of Army MANPRINT School.
U.S. Citizenship and ability to obtain a security clearance REQUIRED.

Electrospace recruits, hires, and retains dedicated people. In turn, we provide these people with excellent benefits, facilities, and the resources they need to accomplish the challenges set before them.

If your experience matches the qualifications above and you would like to become part of Electrospace's dynamic team, please call or send your resume, including salary history, to:

The capacity to show the way by taking the lead. To influence or direct the activities of others.

Some appear to be the leader. But actions speak much louder than muscle. We believe in the personal power of the individual. Which is why, at Motorola Semiconductor Products Sector, we encourage our people to be champions. To establish goals. To influence by example. As a result, we're an innovator in the semiconductor industry, demonstrated by our RISC/68000 microprocessor families
The microelectronics technology leader. Naturally, it's the Microprocessor and Memory Technologies Group. Motorola SPS
Openings now exist in our Texas facility for individuals with expertise in the following areas. Positions require a BSEE/CS or advanced degree with emphasis on computer engineering. Experience in RISC architecture, microprocessor, and CMOS VLSI design is essential, as well as strong chip-level circuit and logic design skills. Proficiency in C and UNIX would be a plus.

LOGIC DESIGNERS Responsible for definition, logic design and verification of high performance RISC/68000 microprocessor families. Expertise in specifying, modeling and design is essential.
SYSTEM VERIFICATION ENGINEERS Develop verification programs/behaviorals to verify RISC/68000 microprocessor families' functions and perform failure analysis at system and chip levels. Proficiency in C and UNIX is required

CIRCUIT DESIGNERS Design CMOS chip-level circuitry for RISC/68000 microprocessor-based functions. Must be able to design complex CMOS circuits and perform circuit analysis, verification and design for test.

CAE DESIGNERS Develop an integrated VLSI CAD platform based on vendor tools and design/code. Includes evaluation, design methodology and tool support. Requires experience in workstation tool development and software integration. Knowledge of relational database and graphical user interfaces (X, motif) would be a plus

PRODUCT ENGINEERS From wafer probe and assembly through final test, will ensure effective product yield/cost management. Involves customer interface and characterization of products to support design, manufacturing and quality improvements for RISC/68000 microprocessor families

SOFTWARE ENGINEERS Responsible for software product design, development and support for all Motorola RISC/68000 microprocessors. We are currently working on state-of-the-art C, $C++$, and Fortran compilers and tools. Positions exist in the areas of Compiler Development, Tools Development, Software Test andQuality Assurance, Customer Support, Technical Writing and System Administration.
MARKETING MANAGER Senior Marketing Manager for a new RISC product family. Systems Marketing experience and a detailed understanding of UNIX are needed. Requires a broad understanding of systems manufacturers, systems consortia and systems design, as well as proven management capability.

There's no company-or opportunity-in the world like this one. Be a part of it. For consideration, send your resume to: Motorola Recruitment, Dept. ATX-9204, 505 Barton Springs Rd., One Texas Center, Suite 400, Austin, TX 78704. (800) 531-5183; (512) 322-8811 FAX. Equal Opportunity/Affirmative Action Employer

MOTOROLA
Microprocessor and Memory Technologies Group

> CWOS LOGIC AND CIRCUIT DESKM SWIWISS ' BUS IITEREACE P SIMULMON PSS ARSNIFECTURE , MICROPROCASDR TETH MICDPPOCCESSOR RCMITKMM

Business/Publishing Headquarters
275 Washington St
Newton, MA 02158
Fax: (617) 558-4470

VP/Publishing Director
Peter D Coley
(617) 558-4673

Ora Dunbar, Sales Coordinator

VP/Publisher
Roy W Forsberg
(617) $558-4367$

Advertising Sales Director
Jeff Patterson
(617) 558-4583

Julie Dooley, Sales Coordinator

Marketing/Business Director
Deborah Virtue
(617) 558-4779

AUSTRALIA

Alexandra Harris-Pearson
World Media Network Pty Ltd Level 2, 285 Clarence Street
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788
Fax: 61-2-283-2035

TAIWAN

Parson Lee
Acteam International Marketing Corp
Box 82153, Taipei, Taiwan ROC
Tel: 886-2-7114833
Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian 249 W 17th St
New York, NY 10011
Tel: (212) 463-6415
Fax: (212) 463-6404

INFO CARDSI

LITERATURE LINK
Heather McElkenny
Tel: (617) 558-4282

CAREER OPPORTUNITIES

CAREER NEWS

Roberta Renard
National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
Tel: (201) 228-8602, 228-8610,
228-8608; fax: (201) 228-4622
Nancy Olbers
Western Sales Manager
238 Highland St
Portsmouth, NH 03801
Tel: (603) 436-7565
Fax: (603) 436-8647
Direct Mail Service
(708) 390-2361

Wendy A Casella, Mary Beth Cassidy, Muriel Murphy
Advertising/Contracts Coordinators (617) 964-3030

Cahners Magazine Div

Terry McDermott, President
Cahners Publishing Co
Frank Sibley, Executive Vice President/ General Manager, Boston Div
Tom Dellamaria, VP/Production \& Manufacturing

Circulation: Denver, CO

(303) 388-4511

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of $\mathbf{5 0 0}$ or more. For an exact quote, contact Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60017. Phone (708) 390-2240.

We can give you

 ortant in a motor. How fast it turns. And how fast it gets turned around.For over 80 years Hansen has been custom designing and manufacturing Synchron*, D.C. Servo and Stepper motors with performance and delivery you can rely on. Even under the most demanding conditions.

We'll work with you to develop the most efficient motor for your specific needs... and budget.

For motors that deliver what they promise, when they're promised, call or write Hansen today. Because at Hansen everything revolves around you, the customer.

Synchron ${ }^{\circ}$

- Hysteresis-type
- Exceptional reliability
- Highest quality and precision

Stepper

- Size 19, 23 \& 28
- Direct drive or geared
- Compact and efficient DC/Servo
- Three (3) different sizes
- Optional encoder
- Higher performance at reasonable cost

HANSEN CORPORATION
a minebea GROUP COMPANY
Hansen Corporation a subsidiary of IMC Magnetics Corp. P.O. Box 23, Princeton, IN 47670 • Phone: 812-385-3415 • Fax: 812-385-3013

The Mark of Reliability
CIRCLE NO. 118

We've Got You Covered!

With enclosures for:

- Video Monitors - Analog Units - Keyboards

Molded of $94-5 \mathrm{~V}$ approved Resin and available off-the-shelf in quantities of 1 to 1,000 .

Painting, shielding, fabrication and custom molding available.

Call or write for our complete catalog.
PRIEMA PLASTICS, INC.
P.O. Box 3625 - Des Moines, Iowa 50322

Tel: 1-800-776-7628 \quad FAX: 1-515-270-1333

Ault, the leader in external power, has slashed delivery times on our already low cost universal input single and multiple output switch mode power supplies. Now the finest in the industry is also the fastest. UL, CSA, TUV approved.

ACCEL Technologies Inc 132
Actel 14-15
Adaptec Products Co 193
Advanced Micro Devices 12-13
Advanced Microelectronics 64
Advin Systems 224
Allen Systems 223
Altera Corp 92
American Arium 154
American Neuralogix 189
Ametek 204
AMP 28-29
Analog Devices Inc 91, 112-113
Apex Microtechnology Corp 90
array Microsystems Inc 63
AT\&T 170-171
Atlanta Signal Processors Inc 176
Ault 231
Autec Power Systems 20
Aval Corp of Ireland 223
Avex Electronics 90A-D
Baker Consulting 224
BP Microsystems 225 225
Brooktree Corp 69
Brutus Corp 223
Burr-Brown Corp 89
Cahners CAPS 111
Capilano Computer Systems Inc 224
Capital Equipment Corp 192
C \& K Components Inc 204
Central Semi 234
Cinch Connector Div 190
Comdisco 96
Communications Specialties Inc 221
Communication Specialists 222
Computerwise Inc 224
Concurrent Logic 125
Condor 61
Cybernetic Micro Systems 36
Cypress Semiconductor 6
Dale Electronics Inc 25
Data I/O Corp C4, 222
Deltron Inc 206A-D
Design Computation Inc 224
DigiKey 169
Dolphin Integration 196
DSP Development 233
Dynafive 224
ECM 131
EEsof -
Electronic Measurements Inc 211
Emulation Technology Inc 225
EPIX Inc 23
FDK 220
Force Computers Inc 187
Fujitsu APD 8
Futaba 161
GE Electromaterial 175
Glowlite 234
J W Miller Div/Bell Industries
Keithley Instruments 30-31,
32-33, 34-35
Kepco Inc 71-74
LeCroy Corp 76-77
Linear Technology Corp : . 106, 165-166
Maxim Integrated
Products 99, 101, 103, 105
MCSI 223
Metalink Corp 225
Meta Software Inc 159
MicroSim Corp 23
Microsys 222
Microstar Laboratories 225
Mini-Circuits Laboratories 26-27
$42-43,157,238$
Mizar Inc 182
Molex Inc 234
Murata Erie North America Inc 66
National Instruments 2
National Semiconductor Corp . . 238A-R
NEC Corp 50-51, 107-110, 197
NEC Electronics 150-151
Network Research 41
Nohau Corp 221
Noise Laboratory Co 222
Oak Grigsby 223
Ohmite Mfg Co 174
OKI Semiconductor 75
Omation Inc
Orbit Semiconductor 177, 178-179
Orion Instruments 224
PADS Software Inc 121
PCB/EDN 149
Philips* 227-229
Pico 9, 198
Piher International Corp 163
Planar Systems 192
Powercube 147-148
Power-One Inc 80
Precision Interconnect 10
Priema Plastics 231
Qualidyne Systems Inc 145
Raltron 220
Raytheon 95
RLC Enterprises 173
Samsung Semiconductor 16-17
Samtec Inc 194, 195
Sanyo 205
Siemens 48-49
Signum Systems 167
Softools 224
Sprague Goodman 196
Stanford Research Systems Inc 185
Sumitomo Metal Mining 217
Sun Electronic Systems Inc 94
Tabor Electronics 223, 224
T-Cubed Systems Inc 222
TDK Corp of America 44-45
Tektronix Inc 18-20, 56-57, 181,183-184
Teledyne Relays 237
Todd Products Corp 225
Tokin Corp 219
Toko America Inc 192
Toshiba 78-79
Toyocom 188
Tribal Microsystems 221, 225
Unitrode Corp 137
VME Microsystems 123
Wavetek 3
W H Brady 218
White Technology 223
Wintek Corp 222

DADISP 3.0
 for Scientific Data Analysis

Engineering
Signal Processing \& FFTs
Filter Design
Speech/Communications
Sonar \& Radar
Electronics Design
Mechanical Test
Vibration Analysis

Image Processing
Medical Imaging
Satellite
Seismology
Terrain Rendering
Communications

Science

Statistics
Experimental Design
Hypothesis Testing
Peak Analysis
Chemistry
Medical Research
Quality Management

Matrix Processing
Inverse / Transpose Eigen Values \& Vectors Matrix Math 2D FFT's and convolutions 3D and 4D Graphic Displays Operations Research

CALL 1-800-777-5151

for your free DADiSP Trial Kit. DADiSP is available for SUN, HP, IBM, NeXT, DEC, Concurrent, and Silicon Graphics workstations, and of course, IBM PC compatibles.

One Kendall Square, Cambridge, MA 02139, 617-577-1133, FAX: 617-577-8211

EDN-ACRONYMS \& ABBREVIATIONS

ASIC-application-specific integrated circuit
ATE-automatic test equipment
ATPG-automatic test-pattern generator
BILBO-built-in logic-block observer
BIST—built-in self test
CAE-computer-aided engineering
CD-compact disc
CMOS-complementary metal-oxide semiconductor
CMRR-common-mode rejection ratio
DAC-digital-to-analog converter
DFT-design for test
DMM-digital multimeter
DUT-device under test
ECL-emitter-coupled logic
EC-European Community (Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain, and the UK)
EDIF-Electronic Design Interchange Format
EFTA-European Free Trade Association (Austria,
Finland, Iceland, Norway, Sweden, and Switzerland)
FFT-fast Fourier transform
FPGA-field-programmable gate array
HDL-hardware description language
JFET-junction field-effect transistor
JTAG-Joint Test Action Group
NRE-nonrecurring engineering
PECL-positive emitter-coupled logic; referenced to 5 V
PLA-programmable logic array
PLD-programmable logic device
PLL-phase-locked loop
rms-root-mean-square
SMT-surface-mount technology
SMU-source-measure unit; four instruments in one: a voltage source, a voltmeter, a current source, and a current meter
THD-total harmonic distortion
TPG-test-pattern generator
TTL-transistor-transistor logic
VCO-voltage-controlled oscillator
VHDL-VHSIC Hardware Description Language
VHSIC-very-high-speed integrated circuit

[^15] Updates, and feature articles.

At half the price, our current limiting diodes have few limitations.

 limiting diodes makes a lot of sense They offer superior circuit performance, superior lot-to-lot consistency, and superior thermal characteristics . . in a space-saving, hermetically sealed glass case. Motorola-equivalent leaded or SMD versions are available at about half the price. Special selections also available.
Available Types:

1N5283 THRU 1N5314 (leaded).
CCL0035 THRU CCL5750 (leaded).
CMCL 1300 THRU CMCL 1304 (leaded).
CCLM0035 THRU CCLM5750 (SMD).
Pencil in Central. For more information, write or call
Central + - 陾 semiconductor Corp.
Central: We make the difference.
145 Adams Avenue, Hauppauge, NY 11788
Phone (516) 435-1110 FAX (516) 435-1824
CIRCLE NO. 124

FINALLY... rubber keypads that can't be penetrated by
 Avenger Series of Keypads \& Switches with the patented new GloGuard process. Eliminates the need for costly plastic caps.
For more information, call or write:

$$
1-800-654-3662
$$

RaUls VaLIEY, OK 73075
FAX 405/238-3029

The Ultimate "How To" Book

With Molex's new full-line catalog \#920, you get the ultimate "how-to" book. How-to solve your unique design problems. How-to lower your total applied costs. And how-to meet your specific delivery and quality requirements.
So if you're wondering "how-to" get your hands on the most advanced interconnect technology, call or write Molex today for our new full-line catalog.

Bringing People \& Technology Together, Worldwide ${ }^{\text {sM }}$ Molex Incorporated 2222 Wellington Ct., Lisle, IL 60532 Tel: (708) 969-4550 Fax: (708) 969-1352

Book and software unravel the intricacies of the chaos theory

In James Gleick's book Chaos: Making a New Science, he tells a story about quantum physicist Werner Heisenberg. On his death bed, Heisenberg declared that he would have two questions for God: Why relativity and why turbulence. He said, "I really think He may have an answer to the first question."

Chaos theory may not answer the second question, but it does offer a way to model the behavior of nonlinear systems, in which quantities vary over time or change from place to place in a manner that is not strictly proportional. The equations for such systems generally cannot be solved or added together. These equations model the real worldinstead of idealizing itby including nasty nonlinear variables such as friction.

In such seemingly random systems as the weather, the swinging of a pendulum, the fluctuations in wildlife populations, and even the bobbling of stock prices and the dripping of a faucet, researchers have discovered patterns. Universal laws appear to be buried in what scientists once viewed as turbulence and disorder-an impenetrable quality of the real world.

Science writer Gleick worked with Autodesk to create James Gleick's Chaos: The Software, a series of six interactive programs that bring to life the relationships he described in his best-selling book.

Computers played a crucial role in the founding of the science of chaos. Instead of merely speeding

The colors of this section of the Mandelbrot set show how fast points fall away from the actual set, which is a collection of points
shown as black on screen. The smaller boxes on the left show the points fall away from the actual set, which is a collection of points
shown as black on screen. The smaller boxes on the left show the previous five images.

problem solving, scientists used computers as tools-much as biologists use microscopes and engineers use oscilloscopes-to explore the graphical landscapes generated by seemingly simple equations.
The programs in this package are fully realized versions of the programs that gave rise to the most important discoveries of the science of chaos. The six programs are the Mandelbrot sets, magnets and
pendulums, strange attractors, the chaos game, fractal forgeries, and toy universes. Using the programs you can tweak an image's parameters; view preset images; change colors; add sound, and move around an image by zooming, panning, and centering.
Each chapter of the accompanying manual begins with Gleick's introduction to the chaos theory the program demonstrates and his suggestions of things to try with the program. Next are step-by-step instructions for using the program and information about its features and options. Wrapping up each
chapter is a discussion of the mathematics of that particular program.

The second chapter of the manual describes the Mandelbrot set, which looks like a snowman with smaller and smaller heads attached all over it. Upon closer look, the edges of the heads look like a fine, intricate lace whose pattern never repeats. Users can pan across the set scanning the boundary, then zoom in closer and closer, revealing layer upon layer of complexity.

The actual set is a collection of points shown as black on screen. For each complex number n, the computer computes the sequence of numbers n, $\mathrm{n}^{2}+\mathrm{n},\left(\mathrm{n}^{2}+\mathrm{n}\right)^{2}+\mathrm{n}, \ldots$ If the numbers get larger and larger, running away toward infinity, the original point is not part of the Mandelbrot set. If the point is in the set, the numbers remain locked in a repeating loop or bounce chaotically from one point to the next but do not approach infinity.
The colors of the image are like the colors of a contour map-they show how steeply the rest of the terrain falls away from the set. Points not in the set escape to infinity at varying rates, which the program shows using different colors.
The geometry of the Mandelbrot set shows that processes that are simple in themselves can create complexity through repetition and feedback. The set also shows that boundaries between, say, stability and instability in a system are not necessarily smooth. Such a boundary may be sufficiently complex that a slight change in starting
conditions may throw the system off into a different region.

One drawback to this software package is that it's slow. To draw an image, the program paints the screen four times going from a coarse to an increasingly fine resolution. On my coprocessor-less 286based computer, the first screen takes about 9 sec , the second 25 sec , the third 1 minute and 25 sec , and the fourth almost 6 minutes. However, you don't have to wait for the program to finish an image before you make a change to that image or start a new one.

Chaos runs on IBM PC/XT, PC/ AT, PS/2, and compatible computers that have an EGA or VGA display and 640 kbytes of memory. Autodesk recommends a math coprocessor, although one is not required. The software package includes the illustrated $238-\mathrm{pg}$ manual, $5^{1 / 4}$ - and $3^{1 / 2}$-in. program disks, and quickreference cards.
-Julie Anne Schofield
James Gleick's Chaos: The Software, Autodesk Inc, 2320 Marinship Way, Sausalito, CA 94965. Phone (800) 688-2344, (415) 3322344. FAX (415) 331-8093. \$59.95.

Chaos: Making a New Science, by James Gleick, Viking Penguin Inc, New York, NY, 1987, 354 pgs. ISBN 0-14-00.925-1. Hardcover, \$22.95; paperback, \$14.95.

Finding a map and a compass for leaders and managers

Author Stephen R Covey has taken the ideas from his book The Seven Habits of Highly Effective People and applied them to the arts of leadership and management in an excellent book, PrincipleCentered Leadership. Covey's ap-
proach is fundamental. He is more
concerned with character than personality, with principles than practices. Covey writes: "Practices are the what to do's, ... Principles are the why to do's."
If you're looking for a map to guide you across the managerial terrain, Covey refuses to provide one for you. Business terrains change daily, making maps quickly obsolete. However, if you're looking for a metaphysical compass with which to lead your people, you'll find one in this book. That compass is constructed from Covey's seven habits, which urge you to be princi-ple-centered instead of procedurecentered; procedures can change but fundamental principles won't.
Skeptics may immediately see the potential flaw in this reasoning: people have different ideas about what constitutes a fundamental principle. Covey notes, however, that certain fundamentals are shared by all. These principles include fairness, equity, justice, integrity, honesty, and trust. Few could argue the point. Who wouldn't like to work at a company governed by these principles?

Such a world sounds utopian, though. At first glance, aligning the corporate world with the true North of fundamental principles sounds impossible and that may well be the case. Instead, Covey urges you to make these principles work at your company by internalizing and living them yourself.

Many people feel that things would be great if only that bozo over there or those clowns in that other department would shape up. Covey's philosophy won't let you off the hook that easily. You can always choose your response to any situation, and your choice should be based on these fundamental principles, not emotions or unthinking adherence to procedures. At a stroke, Covey puts you at the center of all of your problems and makes you the
sole solution. His ideas are at the very least thought-provoking.
Unfortunately, the book is not without flaws. It sometimes resembles a patchwork because several of its chapters were created by contributing authors. The topics ramble from you, to business, to your family, and then to educational institutions. One chapter in the book seems to be little more than an advertisement for the Covey Leadership Center; it talks about who the center has worked with but says nothing about what was done.
In addition, small offers appear at the bottom of several pages in the book, urging you to call a tollfree number to obtain free worksheets or audio cassettes. I wish that those worksheets had been included in the book, perhaps in appendices. I can only conclude that Covey took this approach to obtain names for his newsletter's and leadership center's mailing lists. The offers are free so the inconvenience isn't great. Even so, I liked the book.-Steven H Leibson
Principle-Centered Leadership, Summit Books, New York, 1991, $\$ 20$.

What should we get our hands on?

We're interested in what will interest you. Drop us a line and let us know what you'd like to see included in this new section. EDN will also gladly accept software packages and new books to review. Write to Hands On! Editor, 275 Washington St, Newton, MA 02158.

TO-5 RELAY

The Unforgettable Maglatch TO-5

- Non-destructive memory

- Low power consumption
- Inherently bi-stable pulse operation

- CMOS compatible Centigrid ${ }^{\circ}$ version

The Maglatch TO-5. It's a legend in its own time. The little magnetic latching relay that just won't forget. It can't. Because once you set it with a brief pulse of coil voltage, it simply stays in that state until reset. Even if the system loses power.

In applications where power drain is critical, the Maglatch TO-5 is unbeatable. Since no holding power is needed, it uses less energy than any other type of relay on the market.

The Maglatch's inherently low intercontact capacitance gives it high isolation and low insertion loss up through UHF, making it ideal for RF switching applications. And its tiny footprint makes it ideal for high density printed circuit boards.

The Maglatch TO- 5 comes in commercial/industrial versions as well as military versions qualified to "L", "M" and "P" levels of MIL-R-39016. And now it comes
in a CMOS compatible version as well. This version can be driven directly with CMOS level signals, with no outside amplification. That cuts down on the number of components and connections, for even greater system reliability.

The Maglatch TO-5. It's the world's smallest relay with indestructible memory. Call or write today for complete information.

[^16]
RF TRANSFORMERS

Over 50 off-the-shelf models... $3 \mathrm{KHz}-800 \mathrm{MHz}$ from $\$ 325$

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific frequency range?... Mini-Circuits offers a solution.

Choose impedance ratios from $1: 1$ to $36: 1$, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements*). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series. Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types.
Available for immediate delivery with one-year guarantee.

[^17]finding new ways
setting higher standards Fax (718) 332-4661 Domestic and International Telexes: 6852844 or 620156
case styles
T. TH, case W $38, \times 65$ bent lead version, KK81 bent lead version TMO, case A 11, t case B 13 FT, FTB, case H 16 NEW TC SURFACE MOUNT MODELS from 1 MHz to 1500 MHz

NSN GUIDE

MCL NO
 TMO2-1
 TMO2.5-6
 TMO2.5-6T
 TMO3-1T
 TMO4-1
 TMO4-2
 TMO4-6
 TMO4-6 TMO5-1T
 TMOS-1
 TMO16-1

NSN
5950-01-183-6414 5950-01-215-4038 5950-01-215-8697 5950-01-168-7512 5950-01-067-1012 5950-01-091-3553 5950-01-091-3553 $5950-01-132-8102$
$5950-01-183-0779$ 5950-01-183-01-141-0174 5950-01-138-4593

Why iseveryoneswithing from bipolarto|R IGBB5!

Performance. IR IGBTs switch faster, generate less heat, and operate athigher frequencies than bipolars. whythey'reswitching to RIGBTs and you may get three different answers:

Simplicity. Our IGBT's MOS gate makes it much simpler to drive than a bipolar.

Size. Its smaller footprint and lower component count saves a lot of board space.
Butall threeanswers add up to one: Cost effectiveness. Anyway youlookatit, the price/ The old way.

The right way.
performance ratio improves. Or, the bottom line is the bottom line.
For your high voltage, high current

IOR International Rectifier

minmannmin minn iniul
 Pack more logic into every FPGA.

NEW ABEL-FPGA helps you get the most out of the latest FPGAs. If you want to take advantage of the sophisticated capabilities of today's FPGAs, only Data I/O ${ }^{\circledR \text { 's }}$ new ABEL-FPGA ${ }^{\text {TM }}$ Design Software has the power to pack in maximum logic. It combines the indus-try-standard ABEL Hardware Description Language (ABEL-HDL ${ }^{\text {M }}$)
with our new intelligent
FPGA Device Fitter ${ }^{\text {TM }}$
technology. So, you can create more complex designs with less effort -ABEL-FPGA does the hard work for you!

ABEL-FPGA's powerful Device Fitters automatically optimize your circuits for minimum area or maximum speed. Fitters are available for all the leading architectures, including Actel, Altera, AMD, Atmel, ICT, National, Plus Logic, and Xilinx. And with builtin knowledge of its target architec-

[^0]: * In Canada call 1-800-387-3867, Dept. 440.

[^1]: EDN* (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (twice monthly with 2 additional issues a month except for March and Och issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Terrence M McDermott, President/Chief Operating Officer; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN® is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address corrections to EDN , PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{*}$ copyright 1992 by Reed Publishing USA; Robert L Krakoff, President and Chief Executive Officer. Annual subscription rates for nonqualified people: USA, \$19.95/year; Mexico, \$169.95/year; Canada, \$181.85/year; all other nations, $\$ 207.95 / y$ ear for surface mail and $\$ 329.95 /$ year for air mail. Single copies are available for \$20 USA and $\$ 25$ foreign. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^2]: *(32) 2-652-0270 in Europe. ©1991 Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134. Phone: 1 (408) 943-2600, Telex: 821032 CYPRESS SNJ UD, TWX: 910-997-0753. SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.

[^3]: Cahners Publishing Company, A Division of Reed Publishing USA \square Specialized Business Magazines for Building \& Construction \square Research \square Technology \square Electronics \square Computing
 \square Printing \square Publishing \square Health Care \square Foodservice \square Packaging \square Environmental Engineering \square Manufacturing \square Entertainment \square Media \square Home Furnishings \square Interior Design \square and Lodging. Specialized Consumer Magazines for Child Care \square Boating \square and Wedding Planning.

[^4]: © 1991 Actel Corporation, 955 E. Arques Ave., Sunnyvale, CA 94086. ACT, Action Logic, ALES, PLICE, and Actionp robe are trademarks or registered trademarks of Actel Corporation. All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.

[^5]: KOREA
 GOLDSTAR ELECTRON CO., LTD. Tel: 02519-2854 Fax: 02-519-2800

[^6]: GERMANY
 GOLDSTAR Deutschland GmbH Tel: 49-2154-492172 Fax: 49-2154-4336

[^7]: Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158 . FAX (617) 558-4470; MCI: EDNBOS.

[^8]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 234-8438; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454 Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (516) 351-1000, (609) 778-5353; New Mexico, (602) 7.30-8093; New York, (516) 351-1000, (607) 754-2171 N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 234-8438; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 234-8438, (713) 782-4144, (512) 346-9186; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540

[^9]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 234-8438; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (516) 351-1000, (609) 778-5353; New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171: N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 234-8438; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 234-8438, (713) 782-4144, (512) 346-9186; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.

[^10]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: Alabama, (205) 830-0498; Arizona, (602) 730-8093; California, (408) 248-5300, (619) 278-8021, (714) 261-2123; (818) 704-1655; Colorado (303) 779-8060; Connecticut, (203) 384-1112; Delaware, (609) 778-5353; Florida, (305) 426-4601, (407) 830-8444; Georgia, (404) 447-6124; Idaho, (503) 292-8840; Illinois, (708) 358-6622; Indiana, (317) 844-8462; Iowa, (319) 393-2232; Kansas, (816) 436-6445; Louisiana, (214) 234-8438; Maryland, (301) 644-5700; Massachusetts, (617) 329-3454; Michigan, (313) 352-5454; Minnesota, (612) 941-9790; Mississippi, (205) 830-0498; Missouri, (314) 839-0033, (816) 436-6445; Montana, (503) 292-8840; Nebraska, (816) 436-6445; Nevada, (408) 248-5300; New Hampshire, (617) 329-3454; New Jersey, (516) 351-1000, (609) 778-5353; New Mexico, (602) 730-8093; New York, (516) 351-1000, (607) 754-2171; N. Carolina, (919) 851-0010; Ohio, (216) 659-9224, (513) 278-0714, (614) 895-1447; Oklahoma, (214) 234-8438; Oregon, (503) 292-8840; E. Pennsylvania, (609) 778-5353; W. Pennsylvania, (614) 895-1447; S. Carolina, (919) 851-0010; Tennessee, (404) 447-6124; Texas, (214) 234-8438, (713) 782-4144, (512) 346-9186; Utah, (801) 561-5099; Virginia, (301) 644-5700; Washington, (206) 823-9535; W. Virginia, (513) 278-0714; Wisconsin, (414) 476-2790; Canada, (416) 238-0366, (613) 225-5161, (604) 439-1373, (514) 337-7540.
 *Flash Memory Programming Supply. ${ }^{\dagger}$ FOB USA recommended resale.

[^11]: VMIC products are internationally represented by distributors throughout the world. Call or FAX VMIC for complete information.

[^12]: 1290 D Reamwood Avenue, Sunnyvale, CA 94089
 TEL (408) 744 -9040 FAX 4087449049 TLX 706891 SRS UD
 CIRCLE NO. 87

[^13]: Specifications subject to change without notice.

[^14]: W.H. BRADY CO.

 THIN FILM PRODUCTS
 8225 W. Parkland Court • P.O. Box 571 Milwaukee, WI 53201
 414-355-8300 • Fax: 414-354-0453
 Copyright 1991 W.H. Brady Co. All rights reserved.

[^15]: This list includes acronyms and abbreviations found in EDN's Special Report, Technology

[^16]: *-TELEDYNE RELAYS
 Innovations In Switching Technology

[^17]: units are not QPL listed

