

A CAHNERS PUBLICATION June 18, 1992
ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE

Special Report:
8 - and 16-bit μ Cs form the building blocks of embedded applications

SPECIAL REPORT

The world of 8 - and 16-bit microcontrollers pg 90

DEsIGN Features

Fuzzy-logic basics: intuitive rules replace complex math pg 111

Fuzzy-logic system solves control problem pg 121

TECHNOLOGY UPDATES
 DSP for motion control

pg 51
Video amplifiers set sights beyond large 3-dB bandwidths
pg 61
Professional issues
The enduring appeal of consulting pg 205

Ask EDN
pg 34
Design Ideas
pg 135

High-Speed IEEE-488.2 Control Put the AT-GPIB to Your Test

IEEE-488.2 and SCPI

IEEE-488.2 is the foundation of Standard Commands for Programmable Instruments (SCPI) and of the new generation of GPIB test systems. Our AT-GPIB interface and $\mathrm{Nl}-488.2^{\text {Th }}$ Software are the tools for putting IEEE-488.2 to work for you The AT-GPIB features the NAT4882 ${ }^{\text {mM }}$ ASIC, which is 100\% IEEE-488.2 compatible, and the performanceenhancing Turbo488® ASIC. Transfer rates of 1 Mbytes/sec and above are possible with this powerful chip combination, and test program throughput is significantly increased.

Software

Our Nl-488 software is recognized as a de facto industry standard. Our latest generation of
software, $\mathrm{Nl}-488.2$, is compatible with existing

The NAT4882/Turbo488 technology is also available on boards for the IBM PS/2 Macintosh NuBus, IBM RS/6000, Sun SPARCstation, and DECstation 5000.
application programs, and adds greater functionality, such as IEEE-488.2-specified Controller routines and dynamic system configuration. The AT-GPIB is shipped with Nl-488.2 software for MS-DOS and Windows Software is also available for OS/2 and UNIX.

To find out how you can put our latest GPIB technology to your test, call for a FREE brochure and catalog. (512) 794-0100 or (800) 433-3488 (U.S. and Canada).

IMAGINE...

the resistor/capacitor or custom networks you need.

Circle No. 1

ORDER ENIRY 10 ShIPPING

order entry and customer sewice is provided by a friendly competent stalf providing reat time stock status, ontine order enty and instant information retideval.

From arder entry to ship ping the typical Digisky erder is processed in tust 106 minutest a his is why more than 92% of all orders are shipped within 24 hours?

Your order has been filled in 59 minutes ind is routed to qual ity assurance where It is checked for accuracy quantity quality and proper packaging.

701 Brooks Avenue South Thie River Falls MMv 56701 Toll free 1-800-3A4 4539 FAXC $218-68123380$

yourorder/s inducted dato Digukeys inteligentronveyor system uilizing: stateostheart barcoding and produation technologies to achieve upparalled speed and ascuracyin order processing.

Desighated zones for valuezaded produatind exceptions shisure that evea arders with truy unique regen ements are handred routinely in Digukeys filfument process

Your order is carefully packaged and prepared for shipment using antistatic environmentally safe. CFCfree packaging materials.

Fully surcnised biv sigicey shost computej the convey ors pos wamed
 order selet tiv y dreatig it to each relevant piding zone

Plus more then 25% of the procucts 1 the eigh key catolog areavaild te for off the shelf delvery This gives yo a a eve of pefomance that is thequalled among electronic somponent distributors.
Cell write or fax for your EREEAALOG 10 CHy

Your order is shipped ya ane of Digh

 Keys 43 standard delivery options Next day delivery would typically place this orderimyour hands the next moring.
RF TRANSFORMERS

Over 50 off-the-shelf models... $3 K \mathrm{~Hz}-800 \mathrm{MHz}$ from $\$ 325$

Having difficulty locating RF or pulse transformers with low droop, fast risetime or a particular impedance ratio over a specific freq range?... Mini-Circuits offers a solution.

Choose impedance ratios from 1:1 to 36:1, connector or pin versions (plastic or metal case built to meet MIL-T-21038 and MIL-T-55831 requirements ${ }^{\star}$). Ultra-wideband response achieves low droop and fast risetime for pulse applications. Ratings up to 1000 M ohms insulation resistance and up to 1000 V dielectric voltage. For wide dynamic range applications involving up to 100 mA DC primary current, use the T-H series. Coaxial connector models are offered with 50 and 75 ohm impedance; BNC standard; request other types. Available for immediate delivery with one-year guarantee.

T, TH, TT
bent lead version style X 65
finding new ways
setting higher standards
case styies
T, TH, case W $38, \times 65$ bent lead version, KK81 bent lead version TMO, case A 11, t case B 13 FT, FTB, case H 16 NEW TC SURFACE MOUNT MODELS from 1 MHz to 1500 MHz

NSN GUIDE

MCL NO. NSN
FTB1-1-75 5950-01-132-8034 FTB1-6 5950-01-225-8773 T1-1 5950-10-128-3745 T1-1T 5950-01-153-0668 T2-1 5950-01-106-1218 T3-1 $5950-01-153-0298$ T4-1 5950-01-024-7626 T9-1 5950-01-105-8153 $\begin{array}{ll}\text { T16-1 } & 5950-01-094-7439 \\ \text { TMO1-1 } & 5950-01-178-2612\end{array}$

5950-01-183-6414 5950-01-215-4038 5950-01-215-8697 5950-01-215-8697 5950-01-168-7512 5950-01-067-1012 5950-01-091-3553 5950-01-132-8102 5950-01-183-0779 5950-01-141-0174 5950-01-138-4593

SURFACE-MOUNT or PLUG-IN

$\$ 395$
Expose Mini-Circuits' TUF-mixers to $250^{\circ} \mathrm{C}$ for five minutes, or to the extreme shock and vibration stresses of MIL-STD-28837, or to 200 cycles of thermal shock from -55° to $+100^{\circ} \mathrm{C}$... they'll survive without any change in specs. They are mighty tough mixers!

Available with LO drive levels from +7 to +17 dBm , performance features include very low conversion loss flat over the entire band, high isolation (L-R, L-I), and well-matched VSWR at all ports.

All-welded internal and external construction is used to assemble and package the TUF-unit in its tiny 0.5 by 0.2 by 0.25 in. metal case, for plug-in or surface-mount* assembly.

TUF-Ultra-Rel ${ }^{\text {TM }}$ mixers are guaranteed for five years and boast unprecedented "skinny" sigma (δ) unit-to-unit repeatability as shown in the Table.

Tough, tiny, and with tight repeatability ... Mini-Circuits' Ultra-Rel ${ }^{\text {TM }}$ TUF-mixers with a five-year guarantee, priced from $\$ 3.95 \ldots$ available only from Mini-Circuits.

ULTRA-REL" MIXERS

5-YR. GUARANTEE
with extra long life due to unique HP monolithic diode construction, $300^{\circ} \mathrm{C}$ high temp. storage, 1000 cycles thermal shock, vibration, acceleration, and mechanical shock exceeding MIL requirements.
finding new ways
setting higher standards

SPECIFICATIONS

Model	$\begin{aligned} & \text { LO } \\ & \text { Power } \\ & (\mathrm{dBm}) \end{aligned}$	Freq. LO/RF (MHz)	$\begin{aligned} & \text { Conv. Loss } \\ & \overline{\mathrm{X}}^{(\mathrm{dB})}{ }_{\delta} \end{aligned}$		Isol. L-R (dB)	Price, Ea. 10 qty
TUF-3 TUF-3LH TUF-3MH TUF-3H	$\begin{array}{r} 7 \\ 10 \\ 13 \\ 17 \end{array}$	0.15-400	$\begin{aligned} & 4.98 \\ & 4.8 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.37 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 46 \\ & 51 \\ & 46 \\ & 50 \end{aligned}$	$\begin{array}{r} 5.95 \\ 7.95 \\ 8.95 \\ 10.95 \end{array}$
TUF-1 TUF-1LH TUF-1MH TUF-1H	$\begin{array}{r} 7 \\ 10 \\ 13 \\ 17 \end{array}$	2-600	5.82 6.0 6.3 5.9	$\begin{aligned} & 0.19 \\ & 0.17 \\ & 0.12 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 42 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 5.95 \\ & 6.95 \\ & 8.95 \end{aligned}$
TUF-2 TUF-2LH TUF-2MH TUF-2H	$\begin{array}{r} 7 \\ 10 \\ 13 \\ 17 \end{array}$	50-1000	$\begin{aligned} & 5.73 \\ & 5.2 \\ & 6.0 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.3 \\ & 0.25 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 47 \\ & 44 \\ & 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 6.95 \\ & 7.95 \\ & 9 . .95 \end{aligned}$
TUF-5 TUF-5LH TUF-5MH TUF-5H	$\begin{array}{r} 7 \\ 10 \\ 13 \\ 17 \end{array}$	20-1500	$\begin{aligned} & 6.58 \\ & 6.9 \\ & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.27 \\ & 0.25 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 41 \\ & 50 \end{aligned}$	$\begin{array}{r} 8.95 \\ 10.95 \\ 11.95 \\ 13.95 \end{array}$
TUF-860 TUF-860LH TUF-860MH TUF-860H	$\begin{array}{r} 7 \\ 10 \\ 13 \\ 17 \end{array}$	860-1050	$\begin{aligned} & 6.2 \\ & 6.3 \\ & 6.8 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.27 \\ & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 38 \end{aligned}$	$\begin{array}{r} 8.95 \\ 10.95 \\ 11.95 \\ 13.95 \end{array}$
TUF-11A TUF-11ALH TUF-11AMH TUF-11AH	$\begin{array}{r} 7 \\ 10 \\ 13 \\ 17 \end{array}$	1400-1900	6.83 7.0 7.4 7.3	$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 33 \\ & 36 \\ & 33 \\ & 35 \end{aligned}$	$\begin{aligned} & 14.95 \\ & 16.95 \\ & 17.95 \\ & 19.95 \end{aligned}$

*To specify surface-mount models, add SM after P / N shown

- $\bar{X}=$ Average conversion loss at upper end of midband ($f_{u} / 2$) $\delta=$ Sigma or standard deviation

Distribution Centers/NORTH AMERICA 800-654-7949 • 417-335-5935 Fax 417-335-5945 EUROPE 44-252-835094 Fax 44-252-837010

On the cover: Today's 8 - and 16 -bit microcontrollers can be as unadorned or sophisticated as need be. Pick and choose the peripherals you want to satisfy any low- or high-end application. (Photo courtesy Motorola Inc; concept by Staats Falkenberg \& Partners Inc; photography by Tomás Pantin)

PAGE 90

Foldout contents

Turn to the last information-retrieval service card in the back of this magazine and you'll find a foldout table of contents. Now, instead of flipping back and forth from this table of contents to the articles you want to read, you can have the convenient foldout open at all times while you're reading EDN. Use the foldout contents to mark off articles you'd like your colleagues to read or to remind yourself to copy stories for your files.

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE
SPECIAL Report

The world of 8- and 16-bit microcontrollers

From meager beginnings, microcontrollers have evolved into a wide range of diverse processors. You can find a $\mu \mathrm{C}$ with the right speed, peripheral mix, power, and price for almost any embedded application you'd care to tackle.-Ray Weiss, Technical Editor

Fuzzy-logic basics: intuitive rules replace complex math

Although "fuzzy logic" may seem to imply imprecision, it's based on a reliable and rigorous dis-

Fuzzy-logic system solves control problem

Complex, nonlinear control problems can yield to simple fuzzy-logic techniques that require no model-

DSP for motion control:

 Analog movements go digital with DSPThe cost of DSP ICs has plunged to half of the 1989 selling prices. As a result, design engineers are now using these chips for improved stability and precision in robotic and motor applications by avoiding the component drift and aging problems inherent in analog control circuits.-JD Mosley, Technical Editor

Continued on page 7

[^0]
POWER To Configure

MegaPAC ${ }^{\text {TM }}$ W
Power: Up to 1200 Watts
Input: $\quad 110 / 220$ VAC, strappable; 300 VDC
Outputs: 1 to 8 isolated and fully regulated, 2 to 95 VDC
Size: $\quad 11.8^{\prime \prime} \mathrm{L} \times 6.0^{\prime \prime} \mathrm{W} \times 3.4^{\prime \prime} \mathrm{H}$

Plug into instant power supply configurability with the new MegaPAC switcher from our Westcor division. MegaPAC outputs can be configured in virtually an infinite number of voltage and power combinations using up to 8 slide-in

ModuPAC ${ }^{\text {TM }}$ assemblies. Want to change a voltage or power level at your factory or at a customer site? No problem. . .shut down input power, slide out the ModuPAC you want to replace and slide in the new one. It's that simple.

MegaPAC's instant configurability takes Westcor's popular StakPAC to the next level of customization and flexibility. And its improved manufacturability means a substantial price reduction too! At the heart of each plug-in ModuPAC is a standard Vicor VI-26X series DC-DC converter module. . .over 1 million are operating reliably in systems world-wide. With potential applications around the globe, MegaPAC is designed to meet stringent UL, CSA, and IEC safety standards (approvals in process).

So take the risk out of specifying your system power supply. Contact us today and request ordering information. . .then sit back and relax. . . your custom-tailored MegaPAC will be delivered within four weeks.

Call VICOR EXPRESS (800) 735-6200 for information and be sure to ask for a MegaPAC data sheet. Or call WESTCOR (division of Vicor) at (408) 395-7050. Fax us at (508) 475-6715 or (408) 395-1518.

VICOR Corporation
23 Frontage Road, Andover, MA 01810

EDN's editors have selected HewlettPackard's Kittyhawk disk drive as this issue's Editors' Choice. The device, which holds 21.4 Mbytes, uses 1.3-in.-diameter media and weighs less than an ounce. Read more about it on PAGE 77

EDN Magazine offers Express Request, a convenient way to retrieve product information by phone. See the Reader Service Card in the front for details on how to use this free service.
ExpressiIII Request

Video amplifiers set sights beyond large 3-dB bandwidths

You can buy video amplifiers and subcircuits that have low, stable gains and low distortion for $\$ 3$ to

61 \$10.-Anne Watson Swager, Technical Editor

PRODUCT UPDATES

Disk drive with 1.3-in.-diameter media 77
Software tool for analog models 78

PROCESSOR UPDATES

16-bit microcontroller 81
Graphics processor for X-Window design 82
$386 \mu \mathrm{P}$ for mixed-voltage systems 84
DESICN IDEAS
8031's unused address bits become inputs 135
FPGAs trade off modules for speed 136
PC printer port programs PROMs 140
Simple system speeds state machines 144
Program calculates noise from Spice file 144
Feedback and Amplification 148
Software Shorts 152

Introducing the premier high speed video op amp - the AD811 from Analog Devices.

What makes the AD811 such a star is that it delivers maximum performance in all the critical specs for video, while costing just $\$ 2.85$ (in 1000s).

In fact, the AD811 offers excellent specs in bandwidth (140 MHz , $\mathrm{G}=+1$), slew rate ($>2500 \mathrm{~V} / \mu \mathrm{s}$), differential gain (0.01%) and differential phase $\left(0.01^{\circ}\right)$, and output drive ($>100 \mathrm{~mA}$) - and this high per-

time (50 ns to 0.1% and 65 ns to 0.01%), low noise ($1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) and low distortion (-74 dB @ 10 MHz), the AD811 will make your video design look great. Also available in an 8 -pin SOIC.
formance is achieved whether driving one or two back-terminated 75Ω cables. All of which makes the AD811 not only HDTV compatible, but ideal for professional and consumer video cameras, routers, special effects generators, multi-media and general purpose high speed data acquisition.

The AD811 is one more example of how Analog Devices is the one company you can look to for affordable performance. For our free High Speed Op Amp Selection Guide, SPICE model diskette and an AD811 sample, call 1-800-262-5643. Or write to us at the address below.

MAGAZINE EDITION

Home Office

275 Washington St, Newton, MA 02158
EDN Bulletin Board: (617) 558-4241
MCI: EDNBOS
(617) 558-extension

VP/Publishing Director

Peter D Coley -4673

VP/Publisher

Roy Forsberg -4367
VP/Editor/Editorial Director
Jonathan Titus -4573

Executive Editor

Steven H Leibson -4214
Managing Editor
Joan Morrow Lynch -4215
Assistant Managing Editor
Anne Gallagher -4653
Gary Legg, Senior Technical Editor -4404
Tom Ormond, Senior Technical Editor -4414
Charles Small, Senior Technical Editor -4556
MCI: EDNSMALL; Compuserve: 70324, 3270
John A Gallant, Technical Editor -4666
John C Napier, Technical Editor -4690
Dan Strassberg, Technical Editor -4205
Julie Schofield, Senior Associate Editor -4619
Jay Fraser, Associate Editor -4561
Carl Quesnel, Associate Editor -4484
Susan Rose, Associate Editor -4738
Helen McElwee, Senior Copy Editor -4311
James P Leonard, Copy Editor -4324
Gillian A Caulfield, Production Editor -4263
Erin Heffernan, Production Editor -4333
Editorial Field Offices
Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
MCI : EDNDCONNER
J D Mosley, Technical Editor
Arlington, TX: (817) 465-4961
MCI: EDNMOSLEY
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI : EDNQUINNELL
Anne Watson Swager, Technical Editor
Wynnewood, PA: (215) 645-0544
MCI: EDNSWAGER
Ray Weiss, Technical Editor
Woodland Hills, CA: (818) 704-9454
MCI : EDNWEISS
Maury Wright, Technical Editor
San Diego, CA: (619) 748-6785
MCI: EDNWRIGHT
Brian Kerridge, Technical Editor
22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
(508) 28435

MCI: EDNKERRIDGE

Contributing Editors

Robert Pease, Don Powers, Dave Pryce,
David Shear, Bill Travis
Editorial Coordinator
Kathy Leonard -4405
Editorial Services
Helen Benedict -468

Art Staff

Robert L Fernandez, Art Department Director
Ken Racicot, Senior Art Director -4708
Chinsoo Chung, Associate Art Director -4446
Cathy Madigan, Associate Art Director -4599

Marketing \& Business Director

Deborah Virtue -4779
Marketing Communications
Kathy Calderini, Manager-4526
Pam Winch, Promotion Specialist -4660

Don't confine innovation to the R\&D lab

EDITORIAL

Companies can't expect to prosper-or even necessar-
47 ily survive-if they confine their innovation to the R\&D

PROFESSIONAL ISSUES

The enduring appeal of consulting

Independent consulting has its drawbacks, but for 205 some engineers it's the only way of life.-Jay Fraser, Associate Editor

New PRODUCTS

Integrated Circuits. 161
Test \& Measurement Instruments. 167
Computers \& Peripherals. 173
Components \& Power Supplies. 181
CAE \& Software Development Tools. 193

DEPARTMENTS

Inside EDN 11
News Breaks 21
Signals \& Noise. 31
Ask EDN 34
Calendar. 41
Literature. 203
Career Opportunities 217
Business Staff. 221
EDN's International Advertisers Index. 223
EDN's Acronyms \& Abbreviations. 224

FINALLY, One Company offers you the Power and the ease... with integrated Workstation tools from PADS...

PADS-View

- A complete design entry and simulation solution
A Mixed mode A/D simulation
A Multiple windows for probing simulation results
A Backward and forward annotation to PCB design
A Integrated analysis tools for Engineering Rule Checking
A Cross-probing between PCB and schematic

PADS-Look

- Complete PCB design solution for UNIX ${ }^{\text {TM }}$ based workstations
- Easy to install, learn and use
- Excellent price performance ratio
- Complete support of all current printed circuit board technologies
- Specialized tools for analog, digital and high speed design

PADS-ForceRouter

- Autorouting for high density design and testability
- Gridless, shape based architecture supports: metric, fine pitch and off-grid placements
- High speed design toolset with table driven crosstalk analysis
- State-of-the-art "Design for Manufacturability"

PADS offers hardware independent EDA Solutions within your budget and to meet your toughest engineering challenges. PADS products offer you a consistent, easy-to-learn, easy-to-use design environment. For database compatibility, total migration and a common design philosophy between PC's and Workstations, call 1-800-554-SALES, or your authorized PADS partner.

What's in a name? Well, if the word "fuzzy"is a part of that name-as in fuzzy logicperhaps engineers won't take the concept very seriously. That's what some people believe is one factor that has kept fuzzy logic from really taking off in the US since it was first proposed in 1965 by Lotfi Zadeh, a professor of electrical engineering at UC Berkeley.

Another reason is the dearth of good material that explains in direct terms the concepts behind fuzzy logic, which is a computationally simple way to handle complex, nonlinear control problems. Determined to get past this stumbling block, Senior Technical Editors Charles Small and Gary Legg went on a mission to find an expert that could write the way engineers think. After a long search, they found David Brubaker, author and coauthor of the articles on fuzzy logic included in this edition of EDN.

In this issue and in the next, we're devoting a considerable number of pages to analyze and explain the concepts and enormous implications behind fuzzy logic. According to Legg and Small, who handled the editing of Brubaker's articles, Fuzzy logic basics is a tutorial that gives you a solid foundation in the fundamentals. Fuzzy logic solves control problem without complex math provides practical steps on how to design a simple fuzzy-logic system. And in the next issue of EDN, look for the third part of our special cov-erage-Legg's article on the software tools that can help you at each step of a fuzzy-logic design.

For this issue's Special Report, Technical Editor Ray Weiss takes an extensive look at forces that have shaped the evolution of 8 - and 16 bit microcontrollers. He came to the conclusion that you'll have no problem finding a device that gives
the proper combination of processing power, peripherals, and price. Soon to come will be smarter peripherals and lots more on-chip memory.

Using "video" as an adjective tells a designer that a part operates up to a certain frequency. But the video op amps and subcircuits that Technical Editor Anne Swager dis-

This issue's Special Report covers the evolution of 8 - and 16 -bit microcontrollers.
cusses in her article don't rely on just their bandwidths to satisfy the "video" label. She covers the auxiliary specifications that make the devices tailored to state-of-the-art video applications.

In three years, the typical price of a DSP IC has been cut in half. As these chips have become more affordable, designers have been finding some pretty innovative ways to use them. One such method supplants traditional analog circuits for motion control with 16-bit DSP devices. Technical Editor J D Mosley investigates DSP for motion control-just don't be lulled into thinking it's a complete panacea.

Joan Morrow Lynch
Managing Editor

A Winning Hand of DDM早:
AMPHFLRS

"THIS ONE'S MY FAVORTE. WE LAID IT OUT IN THREE DIFFERENT PROCESSES AND STIL BROUGHT IT IN ON TIME AND UNDER BUDGE THANKS TO NEW EPOCH."

INTRODUCING EPOCH.

"But I don't have time to learn a new set of IC design tools."

We hear that from design engineers all the time, and our answer is always the same, "You won't have to."

We named our product Epoch because it truly is a

FEATURES AND BENEFITS

Open architecture for seamless interfacing with a wide range of CAE plafforms.

Process-independent design methodology and a robust, parameterized library for true process migration and design reusability. Instead of simply re-scaling the entire design, Epoch automatically manipulates design rules independently to take full advantage of target processes.

Performancedriven layout to help create chips with the optimum balance of speed, density and power consumption.

Automated place and route with optional interactive optimization that enables the designer to finetune the design at critical junctures. new way of looking at IC design. With Epoch, a designer can continue to work in a familiar CAE environment such as Mentor, Cadence, ViewLogic, VHDL, Verilog or EDIF and, at the same time, access a powerful set of design tools. Tools that have proven their ability, chip after chip, to deliver complex IC designs on time and within budget.

Epoch is a brand new version of a tool that engineers throughout the world have used for years to design ICs for all kinds of applications, from engine controllers to consumer electronics and from medical imaging to DSP. But our new version is so rich in capabilities we decided to give it a new name.

Epoch was developed, tested and proven by a team of engineers who have years of experience in IC design, IC software and a wide variety of foundry processes. Our team has a vital commitment to helping you succeed with Epoch, and to make sure you do, we're here with all the technical support you'll ever need.

Discover what's really new in IC design productivity. Call Cascade Design Automation: 1-800-258-8574.

AMD Delivers The World's Fastest 386s.

The great 386 race is over. And the clear winner is the Am386 microprocessor family. The fact is, no other 386 microprocessors available today can rival the sheer speed and performance of the Am386 microprocessors. The Am386DXL-40 CPU brings 40 MHz ,

The 40 MHz DXL-40
and the $33 \mathrm{MHz} \mathrm{SXL-33} \mathrm{are} \mathrm{available}$ in low-cost POFP packaging.
full 32-bit 386 performance to the desktop.The Am386SXL-33 CPU makes 33 MHz the standard for 386SX machines both at the desktop and for battery powered applications.

In either case, they're over 20\% faster than those run-of-the-mill 386 s.

Am386Microprocessors.

And of course, they're proven-compatible with the IBM ${ }^{*}$ standard.

Best of all, they're available now, available in quantity, and available at surprisingly low prices.

So don't just keep up with the competition with ordinary 386 systems. Blow them away with the world's fastest 386 systems-built around the Am386 microprocessors from Advanced

Micro Devices. Call 1-800-222-9323 for more information.

7
Advanced Micro Devices
"We're Not Your Competition"."

IT can be rather useful to have a supplier who, like us, makes not just one, but

EVERY significant fast SRAM.

[Perbaps we'd fit into your strategy.]

If a single supplier can answer all your needs in a major category like fast srams, then that in itself is a good reason to include the supplier in your buying strategy.

Samsung is such a supplier. And
we can help you succeed with your game plan.

We produce every significant fast sram used in the pc, workstation, mainframe, and telecommunications markets. Ours are
state-of-the-art cmos srams, and several are the fastest смоs parts made-including our 17-ns I-megs. All remaining products in our line are equal in speed to the fastest смоs chips available.

Beyond these fast srams in cmos, we also offer a comprehensive group of high-density, standard sRams (through $4^{-\mathrm{mb}}$). And we're now completing a full line of advanced asynchronous and synchronous,
ultra-fast, Bicmos sRams.
So in a manner of speaking, you could say we make everything from pawns to knights on up to royalty.

Please call I-800-446-2760 or 408-954-7229 for more information
today. Or write to sram Marketing, Samsung Semiconductor Inc., 3655 No. First St., San Jose, ca 95134.
fisamsung
A Generation Ahead.

Philips Semiconductors

The key to getting to market faster, with a better design, is finding a single PLD supplier who meets all your needs.

That's exactly what you get with Signetics.
Only Signetics offers all the PLDs needed to design your entire system.
With Signetics you can choose from the most popular PLDs for the majority of your designs. Then you can pick the application specific devices needed for that critical portion of your design that requires performance, efficiency and a high level of customization.

More often than not you will need several different PLD architectures to complete a single design. Only Signetics delivers every PLD you need for your system design. This eliminates the need to deal with multiple vendors, multiple qualifications and multiple contracts.

These PLD devices range from standard PAL ${ }^{\circledR}$ devices like our 10ns CMOS 22 V 10 and 4.5 ns ECL 20EV8 to application specific devices including 7.5 ns 32 bit address decoders, 55 MHz program-

SIGNETICS PUTS 100\% OF YOUR PLD REQUIREMENTS RIGHT AT YOUR FINGERTIPS.

mable state machines, 32 -bit programmable bus interfaces, up to 5000-gate CMOS EPLDs and more.

Plus our complete PLD family is supported by industry-standard software and programmers. This allows you to eliminate the need for specialty programmers, and you can complete 100% of your design using a single software package.

So make the right selection. Call Signetics today to receive your PLD selection guide and software demo disk: 800-227-1817, ext. 733D.

Signetics offers you the complete PLD solution.

PHILIPS

FUELING THE NEXT GENERATION IN DEFENSE ELECTRONICS

The Commitment of HP, the Technology of Avantek.

Avantek, the innovative and reliable MIL SPEC RF/microwave component manufacturer you've trusted for the past quarter century now has the backing and resources of Hewlett-Packard. And a new commitment to meet your defense/aerospace program requirements far into the next century.

We're proud to have played a part in many of your EW, ECM, $C^{3} I$, and guidance programs, such as:

ASPJ, APG-68, MIMIC, ALQ-142, LANTIRN, ALR-67, EAGB/ ADVCAP... AN/APR-50, SSMIS, ALQ-162, HARPOON, ALQ-161, ICSB1B... TPQ-37, TORNADO-ELS, ALR-85, DESM, ALO-184, ESM... GD53, ALQ-94/137, GPS, ALQ-99,

AMRAAM, ALQ-117/172, S3B... TPQ-36, PAVEMINT, ALQ-119, RAPPORT, ALR-56C/M... SUPERCVR, APR-50, AQUILA, SLQ-32, ERINT, APG-65, SM-2, APG-164... MILSTAR, ALO-126B, HARM, ORC80, RAPIER, ALQ-131, JASRADAR... ALR-62(I), ALARM, APG-66, ZEUS, ALQ-135, ADVANCED(PAT)... ALR-64, PATRIOT, ALO137, DCSC, ALR-66, MANPACK...

And, we're taking this opportunity to tell our customers we will offer a renewed dedication to design, develop and deliver the highest performance RF/ microwave ICs, components, and sub-assemblies available amywhere.

We've geared up to meet your requirements. With the vanguard technology of Avantek, combined with HP's tradition of reliability, competitive pricing and customer service, we're just
what you'll need in the next generation of defense electronics.

The Next Generation in Defense Electronics is Here.

As you begin making the critical choices for platform retrofits and next generation programs, from conformal/steerable array radar, to anti-stealth platforms, to microexpendables, advanced countermeasures, and communications systems, call Avantek. We're poised for the long runthanks to HP - and we're looking to bring our new team to your new team.

For additional information call:

USA:	$1(800) 752-0900$
	ext. 3203

Europe: 44-276-685753

Kit teaches fuzzy-logic design

Now through August, you can order a $\$ 195$ fuzzy-logic educational kit that explains how to implement fuzzy-logic functions on Motorola's standard microcontrollers. The FLEDKTOO kit will cost $\$ 295$ on September 1. The kit is more than just a demo version of the company's announced Fuzzy Inference Development Environment (Fide); it contains three basic items: a computer-based educational course that teaches users how to apply fuzzy logic to their applications by guiding them step by step through a typical fuzzy-logic design cycle; an introductory version of Fide, which helps users determine the correct membership functions and rules for their application and generates microcontroller code for the HCO 5 and HCl 1 microcontroller families; and free fuzzy-logic-related software and associated documentation.
For a limited time, you can also order an M68HC05EVM and M 68 HCIEVM board-level in-circuit emulator along with the kit for $\$ 600$ (part numbers are FLEDKT05 and FLEDKT 11 , respectively). The kit requires a minimum of a $\mathrm{PC} / \mathrm{AT}$-class or -compatible computer with one $5^{1 / 4}$ - or $31 / 2$-in. floppy, a 40-Mbyte hard drive, and a VGA monitor. DOS 3.30 with Windows 3.0 is required, but DOS 5.0 is recommended. Motorola Inc, Austin, TX, (512) 891-2840, contact Jack Davis.-Anne Watson Swager

RISC $\mu \mathrm{P}$ available as ASIC core processor

If your latest embedded design requires the performance of a 32 -bit $\mu \mathrm{P}$, but lacks the budget or power supply for the "bigname" processors, you should consider the ARM6 (advanced RISC machine) processor core now available from GEC Plessy Semiconductors. The processor executes 15 MIPS at 20 MHz and requires less than 250 mW at that speed. The core architecture includes features you'd expect a 32 -bit processor to have, such as a mem-ory-management unit and a 4 -kbyte, 64 -way, setassociative cache mem-
ory. NRE charges for ASICs incorporating this processor core start at $\$ 60,000$, and parts cost approximately $\$ 45(1000)$. Software development tools include C, Fortran 77, and Pascal compilers; an assembler; and an emulator. GEC Plessy Semiconductors, Scotts Valley, CA, (408) 4382900, FAX (408) 438-5576, contact Stephen Tang-Kong.-Steven H Leibson

Controller pumps data at 24 Mbytes/sec

Higher disk capacities require faster disk-to-controller data-transfer rates. Simulex Corp's IPI-2 disk
controller, the SC1615, can pump data at rates as high as $24 \mathrm{Mbytes} / \mathrm{sec}$ with builtin error-correction code (ECC). The chip integrates the company's SC1610 disk controller chip and SX1620 ECC chip. It has a 36-bit DMA data bus (64Mbyte address space), as well as a separate processor interface.

To speed system performance, the chip provides a 32-bit DMA channel to the host. The DMA channel moves data at rates as fast as 50 Mbytes/sec and handles multiple command, response, or data buffers. A 16 -word FIFO buffer delivers DMA bursts of 1, 2, 4, 8, or 16 words. To offload the CPU, the chip executes all IPI-2 disk sequences without the need for CPU intervention. Available July 20, the chip comes in a 208-pin quad flatpack and sells for $\$ 72$ (1000). Simulex Corp, Tustin, CA, (714) 730-1300, FAX (714) 730-7176.-Ray Weiss

Generate ASIC cell libraries quickly

GenRad's Master Toolbox suite of utilities guarantees that target cell libraries simulate in the target environment exactly as the source cells simulate in the source environment. The company claims the software lets users create rapid highaccuracy cell libraries for a range of simulators in weeks, instead of months. Source and target design environments include

VHDL (VHSIC Hardware Description Language), Spice, GenRad's System HILO 4, LSI Logic's Modular Design Environment, Mentor's QuickSIM II, and Cadence's Verilog-XL. You can use other environments by adding a procedural interface. Depending on the configuration, prices range from $\$ 100,000$ to $\$ 250,000$. GenRad Inc, Milpitas, CA, (408) 432-1000.
-Doug Conner

Foundryindependent floorplanner speeds IC design

Using Preview, a floorplanner from Cadence, you can control the physical layout of an IC by providing data that specifies the rough topology, timing, size, and power requirements that will be used during physical layout. The software is automated, and the company claims you can use it effectively even if you have little or no physical design experience. You input a set of design constraints, and the software analyzes it to create a floorplan automatically. You can modify the floorplan to optimize it further.

Without a floorplanner, you typically work with statistical prelayout delays that use little, if any, information about how your design will be placed on the IC. Even if the logical design is perfect, a complex IC design running at 50 MHz or

Text continued on pg 22

Text continued from pg 21
faster may fail timing simulation when you get the accurate timing data for the physical layout back from the foundry. A floorplanner can reduce or eliminate the need for additional iterations of IC layout to get the performance you need out of your design.

The software will be available in the third quarter of 1992 on the Sun-4 workstation for $\$ 25,000$ per network license. It will be available on Digital, IBM, and HP workstations in the fourth quarter. Cadence Design Systems, San Jose, CA, (408) 943-1234, FAX (408) 943-0513.
-Doug Conner

EPROMs adapt to application needs

The humble EPROM has joined the ranks of generalpurpose memory devices that are adapting to specific applications. The conflicting needs of high-speed processors, power-limited systems, and low-voltage operation has prompted National Semiconductor to introduce three specialfeature EPROM product families.

The processor-oriented EPROM family, NM27Pxxx, addresses the timing constraints posed by 80×86 and 680×0 processors. To meet processor hold times,

Mips-based RISC CPU board prototypes X-Terminal

X-Terminals require heavyweight graphics and local processing. LSI Logic's prototype X-Terminal board, the RacerX, is built around the company's $25-\mathrm{MHz}$ Mips-based RISC CPU, the LR33020 GraphX. The board is a complete XTerminal with screen resolutions to 1280×1024 pixels, monochrome or 8 -bit color, and video refresh rates as high as 75 Hz . The $7 \times 9.25-\mathrm{in}$. board has 4 Mbytes of dynamic RAM (DRAM) that's expandable to 8 Mbytes, optional video RAM (VRAM) (1 Mbyte, which is expandable to 2 Mbytes), a PS/2 keyboard port, a mouse port, two serial RS-232C ports, and thick or thin Ethernet.

The board's processor is supplemented by an on-chip graphics processor, video controller (with DMA), static RAM, VRAM, and DRAM memory controllers. The graphics coprocessor offloads the CPU with its bitblt processor and DMA channel. The on-chip memory and video controllers minimize board glue logic. Each evaluation board costs $\$ 2950$ (monochrome display) or $\$ 3950$ (color display). The boards will be available in July. You can buy Age Logic's Xoftware M300L X-Server software with the board ($\$ 25,000$ for a binary OEM license). A full set of software is also available for the CPU, including real-time operating systems, a PROM monitor, graphics libraries, and networking programs. LSI Logic Corp, Milpitas, CA, (408) 433-
8000.-Ray Weiss
the devices retain valid output data for 5 to 30 nsec following deselection, compared with the 0 to 60 nsec of valid data from conventional EPROMs. The lowcurrent family, NM27LCxxx, draws less than 10 mA when operating, $100 \mu \mathrm{~A}$ in standby. The low-voltage family, NM27IVxxx, offers operation at 3 V .

The processor-oriented family comes in densities from 512 kbits to 4 Mbits with access speeds from 90 to 200 nsec . Prices start at $\$ 4$ (1000). The low-current family is available in 64-, 256 -, and 512 -kbit sizes with 8 -bit-wide interfaces. Prices range from $\$ 2.49$ to $\$ 4.84$ (1000). The low-voltage family currently has only one member, a 1-Mbit device. It costs \$6.15 (1000) in a 32-pin plastic leaded chip carrier and $\$ 7.05$ for thin small-outline packages. The low-voltage version is not presently available in a windowed package. Na tional Semiconductor, Santa Clara, CA, (408) 721-5000. -Richard A Quinnell

Hardware modeler simulates complex devices

A 640-pin device adapter and the release of version 2.0 of its software lets Logic Modeling do a better job simulating complex devices. The software features automatic timing-error detection and improved handling of unknown conditions. In addition, simulations run faster because the software evaluates the hard-
ware model simultaneously with the software model instead of serially, as it did in the past. The device adapter costs $\$ 9700$, and the software upgrade is $\$ 10,800$ for users not covered by maintenance agreements.
Logic Modeling, Milpitas, CA, (408) 957-5200.
-Doug Conner

MPEG ICs target consumer products

Two new MPEG (Moving Picture Experts Group) ICs target cost-sensitive applications in consumer electronics. C-Cube Microsystems and SGSThomson have announced chips that will perform real-time decoding of MPEG video for a hardware price of $\$ 30$ to $\$ 50$. Both ICs suit CD video and other full-motion video applications. C-Cube's CL450, which will cost $\$ 50$ in production qty, is available now in sample qty for $\$ 250$. SGS-Thomson is projecting a $\$ 20$ large-quantity price for its STI3240, but the chip requires an external DCT (discrete cosine transform) chip, which will increase the overall decoding cost. Samples of the STI3240 will be available in September; SGS-Thomson has not announced a smallquantity price. C-Cube Microsystems, Milpitas, CA, (408) 944-6370. SGSThomson, Grenoble, France, (33) 7658-5184 and Phoenix, AZ, (602) 867-6100.-Gary Legg

THE "FASTBALL"
Scorching access times and a wide range of densities make our SRAMs untouchable. $12 \mathrm{~ns} 256 \mathrm{Ks}, 8 \mathrm{~ns} 64 \mathrm{ks}, 4 \mathrm{~ns} 16 \mathrm{Ks}$ and more.

THE "CUT FASTBALL"
At 70 MHz , with read/write clocks and synchronous flag features, our FIFOs and Bi-firOs move data in and out quichly.

THE "CURVEBALL"
Let 'em just try to keep up with the hottest SPARC multiprocessing concept going.

THE "SPLIT FINGER FASTBALL"

The fastest access in every PROM density, Broad options make these hard to beat.

THE "KNUCKLER"

PLDs allow crafty designers to mix Gate Aray density with 40 MHz performance: even support 125 NHz state machines.

THE "SLIDER"

Just when you thought the board was full, multichip modules slip 1 MB SRAMs into a $1 / 8^{\prime \prime}$ space.

PLAY HARDBALL WITH THE COMPETITION.

Call today for your free copy of the Cypress 1992 CMOS/BiCMOS Data Book. Get the handbook that's jammed full of the semiconductors you need to create winning product line-ups. Then, smoke the competition. FREE 1992 DATA BOOK HOTLNE: 1-800-858-1810*. Ask for Dept. C44.

[^1]
EDN-NEWS BREAKS

West Coast wins the Fourth Annual Computer Bowl

The West Coast wrested the title "Computer Masters of the Universe" from their East Coast Rivals in the Fourth Annual Computer Bowl, May 1, 1992, at Boston's Park Plaza Castle. The score was 320 to 240 . The East and West are now tied at two wins each in this bicoastal contest of computer knowledge and trivia that has become computerdom's own celebrity classic event. The Computer Bowl Trophy will now travel to the West Coast until April of 1993, when the West will co-host the Fifth Annual Computer Bowl with The Computer Museum. This tie-breaker will be the final contest leading to the Championship Computer Bowl in 1994.

The event was created and produced by The Com-
puter Museum in Boston and presented by the Association for Computing Machinery; it benefits the Museum's educational programs. The Computer Bowl, similar in format to TV game shows, has raised $\$ 2.2$ million in cash, products, and services since 1988. Educating the public about computers is the mission of The Computer Museum. It is the world's only museum exclusively devoted to computers and their impact on society. The Association for Computing Machinery is one of the world's leading associations of computing professionals. The Computer
Bowl, Boston, MA, (617) 426-2800.-Susan Rose

CASS-tester venture formed

General Electric Co, HewlettPackard, and Teradyne have formed Automated Test International (ATI), which will develop and market a commer-

With a score of 320, the West Coast won the Fourth Annual Computer Bowl. The winners are, from left to right, Vern L Raburn (Slate Corp), Jeffrey C Kalb (MasPar Computer Corp), Team Captain John F Shock (Asset Management Corp), Ruthann Quindlen (Alexander Brown \& Sons), and Dr John E Warnock (Adobe Systems Inc).

SPARC board set uses MBus modules

SPARCstations are shifting to module-based designs for fast upgradability, high-performance, low-cost implementations. Nimbus Technology's NIM600 SPARC Board Set includes a chip set and pc board that makes up the mother board for a SPARC clone. The clone can take the new SPARC MBus modules from Sun Microcomputer Systems, Texas Instruments, and Cypress Semiconductor. With the board set, vendors can turn out an MBus-based SPARCstation with a minimum of design.

Sun's latest generation of workstation/servers is built around the $64-\mathrm{bit}, 40-\mathrm{Mbyte} / \mathrm{sec}$ MBus. The processors are on MBus modules with a standard 120-pin pinout, which you can swap out to upgrade the system. Nimbus provides the same capabilities to SPARC clone vendors. The SPARC Board Set consists of seven chips-each a controller: the Interrupt, Peripheral I/O, Graphics, MBus-toSBus, DMA, and two memory controllers.

The NIM6027 graphics controller chip has a video RAM frame buffer and runs directly on MBus, rather than SBus, speeding data transfers between the host SPARC and the graphics processor. Nimbus has a full mother-board design that is built around one MBus processor module, two 25MHz SBus slots, and as much as 96 Mbytes of 60 - to 80-nsec dynamic RAM SIMMs (single in-line memory modules), SCSI, and Ethernet and ISDN. The board set is compatible with Sunsoft, SunOS, and Solaris operating systems and fits into the SPARCstation enclosure and backplate. The chip set and board cost $\$ 350(10,000)$. The board is available now in sample quantities, with production volumes available in 30 days. Nimbus Corp, Santa Clara, CA, (408) 727-5445, FAX (408) 727-5447.—Ray Weiss
cial counterpart to the US Navy's CASS (Consolidated Automated Support System) standard test system. The venture is organized as a limited partnership, HP and Teradyne being the limited partners and GE the managing general partner. ATI, Daytona Beach, FL, (904) 226-2295.-Susan Rose

Disk plant expands

KAO Infosystems is expanding its facility in Plymouth, MA, making it one of the
three largest floppy-disk manufacturers in the world. The automated facility will perform the coating and manufacturing functions in the production of $31 / 2$ - and $5^{1} / 4$-in. floppy disks. The facility will produce standard, high-density, and extra-density disks. The company will be able to produce 26 million disks per month in North America and nearly 36 million disks per month worldwide. KAO Infosystems, Plymouth, MA, (508) 747 5520, FAX (508) 747 -5521.-Susan Rose

Why Settle for $1 / 2$ an 040 Board?

You've chosen the ' 040 because you need maximum performance in your VME system. But look carefully, because other Single Board Computers may only give you only half of what you expected from the ' 040 .

Compare Synergy's SV430 performance to any other SBC. Compare bus speed, MIPs, support, flexibility, documentation, reliability, I/O intelligence or any spec you can think of. We think you'll find the same thing we did - the

SV430 outperforms every other SBC on the market by as much as 150%.

Surprisingly, this kind of quality won't cost you any extra, because Synergy products lead in another important area-value. At Synergy, you don't have to pay a premium price for premium performance.
Let us show you just how far ahead your system can be with a Synergy processor board. Call us today, and get the whole '040 story.

Compare our specs. Synergy is superior across the board!

VME
Transfers
VME64 doubles bus performance to $66 \mathrm{MB} / \mathrm{s}$ - and the SV430 is the only '040 board that has it. But we don't need VME64 to win this comparison.
Even normal 32 -bit transfers race at $33 \mathrm{MB} / \mathrm{s}$. That's 200% faster than Force or Motorola.

I/O Modules

Synergy's EZ-Bus modules are compatible with our entire line of SBCs. This means Synergy's current line of 12 intelligent I/O modules are immediately available for the SV430 - today. No other vendor comes close for selection, functionality or availability.

Data from Motorola MVME165 data sheet dated 2/90, and Force CPU-40 data sheet AI Rev. I. DRAM measurements hown are with parity. VMEbus transfers are to a 60 ns slave. VME64 is a trademark of Performance Technologies. Inc

DRAM
Burst
Rates
A 25 MHz ' 040
is capable of accessing memory at $80 \mathrm{MB} / \mathrm{s}$. The closer you are to this maximum, the more '040 perform-
ance you're gaining. SV430 bursts are 26% faster than Force and Motorola.

'020/'030 Compatibility
Software compatibility between Synergy
SBCs means users have simple upgrades to the SV430 from our '020 and

DRAM Random Accesses Non-burst '040 performance is measured in wait states. Fewer wait states mean higher performance. The SV430 is not only 66%
faster than Force or Motorola, it supports twice the on-board memory -32 MB .

Product Warranty Synergy backs the reliability of its SBCs with a two year standard warranty. Force and Motorola only offer you one.
'030 SBCs. Force offers compatibility only from the ' 030 level, and Motorola offers "upward migration" - a polite phrase that means rewrit-

the world's largest selection 2 KHz to 10 GHz from $\$ 2^{95}$

With over 300 standard models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, $50-$ and $75-$ ohms, covering 2 KHz to 10 GHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. And, with rapid turnaround time, we'll also supply "special" needs, such as wider bandwidth, higher isolation, lower insertion loss and phase matched ports.

Available for use in military and commercial requirements, models include plug-in, flat-pack, surface-mount, connectorized standard and custom designs. New ultra-miniature surface mount units provide excellent solutions in cellular communications, GPS receivers, Satcom receivers, wireless communications, and cable systems.

All units come with a one-year guarantee and unprecedented "skinny" sigma unit-to-unit and production run-to-production run repeatability. All catalog models guaranteed to ship in one week. Mini-Circuits... dedicated to exceed our customers' expectations.

10ns BiCMOS1Megs from Motorola. Everything else is dead inthe water.

1 Meg BiCMOS Fast SRAMs from Motorola demonstrate a simple evolutionary principle: survival of the fastest.
With 10ns access times at 1 Meg densities, nothing else even comes close enough to compare for speed and density.

MCM6726	MCM6728	MCM6729	MCM67282 *	MCM6727
128 Kx 8 bit	256 K x 4 bit	$256 \mathrm{~K} \times 4$ bit	256 K x 4 bit	1 meg $\times 1$ bit
$10^{\bullet}, 12,15 \mathrm{~ns}$	$10,12,15 \mathrm{~ns}$	$10,12,15 \mathrm{~ns}$	$10,12,15 \mathrm{~ns}$	$10,12,15 \mathrm{~ns}$
MCM6706A	MCM6705A	MCM6708A	MCM6709A *	MCM67082A
$32 \mathrm{~K} \times 8$ bit	$32 \mathrm{~K} \times 9$ bit	$64 \mathrm{~K} \times 4$ bit	$64 \mathrm{~K} \times 4$ bit	$64 \mathrm{~K} \times 4$ bit
$8,10,12 \mathrm{~ns}$	$10,12 \mathrm{~ns}$	$8,10,12 \mathrm{~ns}$	$8,10,12 \mathrm{~ns}$	$10,12 \mathrm{~ns}$

And as if that weren't enough to scare off the competition, these 1 Meg Fast SRAMs support both TTL and ECL I/O. They also feature an advanced pinout, with power supply, ground, and I/0 pins centered on the package for reduced inductance and improved ground and power bussing.
Looking for even more speed? How about 8ns? That's the access time on our 256 K BiCMOS Fast SRAMs.

Choose whichever speed-and-density combination is

right for you. Either way you'll get the built-in quality and reliability of
Motorola's high volume, sub-micron manufacturing.
Reel in the power of our BiCMOS Fast SRAMs for your next design, and get ready to throw everything else back in the water.
To request technical information or a sample device, just mail in the coupon or FAX it to Motorola's Fast SRAM FAX line at 1-800-347-MOTO (6686).

If you like what's new, wait 'til you see what's next.

A recent survey of over 1000 Electronic Design Magazine subscribers named OrCAD's Schematic Design Tool's Release IV as the CAD/CAE software of choice. Preferred over Mentor, Valid or P-CAD. Which isn't surprising, when you consider everything OrCAD has to offer. OrCAD EDA products are complete electronic design automation solutions: easy to learn and use, affordable, and offering the best support in the industry.

The facts are in: OrCAD is the Clear Leader.

Whether you're a start-up design shop or a Fortune 500 Company, OrCAD EDA tools can be quickly configured to do designs the way you want. Then altered or extended as your needs change. OrCAD products are powerful enough to do large scale designs quickly and easily. Which means everyone gets the maximum output from their engineering resources. OrCAD EDA tools are also offered on the most popular EDA platforms, both UNIX and DOS.

OrCAD products are the first to offer design software with the ESP framework to give the user unprecedented ease of use. This powerful environment allows seamless integration between schematic design, simulation and other processes.
But more than software, OrCAD provides telephone technical support, a 24 hour BBS. free product updates, and other support services to maximize your success with OrCAD technology. In fact, over one half of all OrCAD employees are devoted to customer service.

Call or write today to receive a free demo disk. You'll see why more designs are made by more designers on OrCAD products

SALES LINE: (503) 690-9881
FAX LINE: (503) 690-9891
BBS: (503) 690-9791

Sourie:
A survev of Electronic Design readers made by the Adams Co.. Palo Alto, Califorinia (415) 325-9822

Small companies can get help for PID design

Timothy Rusco writes (EDN, March 16, 1992, pg 27) concerning the difficulty engineers at small companies face in getting started with PIDs (proportional-integralderivative) devices. Let me offer a suggestion: Make use of distributors' design centers to do your first design.

Many distributors have the PID manufacturers' development systems and are willing to let prospective customers use them. (Be sure to buy at least the prototype parts from the distributor you use.) Once you've got a PID designed into a product, it's really easy to get a few thousand dollars freed up to buy your own development system.

I've been down this path myself and thought it worked fairly well. Of course, the snare is that your development system limits you to one family of PIDs, so look for the PID family that best serves your company's family of products.
Jim Honea
Electronic Design Engineer
Aerospace Controls Corp
Little Rock, AK

Report left out product for testability synthesis

In Michael Markowitz's article on "Design for test (without really trying)" (EDN, February 17, 1992, pg 114), he compared our test and testability tools with those of the competition and found differences. Unfortunately, he left out Panther Expert, the top-end product of our test and testability-synthesis product line. Testability synthesis refers to all actions necessary for making an IC design testable.

Panther Expert provides three types of access: direct, serial scan, and transfer-or a combination thereof. Direct access is possible if a macro has its pins connected directly to IC pins. Serial Scan is a proven method for generating easy access and saving test design time. Transfer is used to generate access
when optimal IC performance is required. It utilizes transfer properties of macros by knowing the function of the macro (for example, the multiplier $\mathrm{c}=\mathrm{a}^{*} \mathrm{~b}$ is transparent from a to c if b is fixed to " 1 ").
Panther automatically performs test-control block generation. The test-control block controls internal signals during test without adding many test pins.
Automatic boundary-scan insertion adds the necessary input/output logic and controller to the IC design, according the IEEE-1149 standard. The scan-chain router optimizes the interconnection of individual scan chains (for macros where scan is used) into an optimal number of optimal-length scan chains.
Jaap B Sondervan
Marketing Manager EDA
Philips Electronic Design \& Tools Hilversum, The Netherlands

People's program for building "their" something

In his editorial, Dan Strassberg asks "Where have all the investments gone?" (EDN, February 17, 1992, pg 55).
If there could be a kind of economic Homestead Act, where people could use their limited means and some of their own hard work to build something that would be theirs, a whole new energy for a renewal would emerge. People in the past have given and have supported their government and industry, while receiving no tangible results.

Now, the people who do the rejuvenation need to be given a little. They need something that will show them where their hard work will do something for them. If we are a nation of the people and for the people, the people themselves must be able to achieve what their effort is about.

[^2]
LON ${ }^{\mathrm{m}}$ or $\mathbf{L I N C}^{\mathrm{TM}}$?

Now that engineers have investigated LON technology, many are coming back to the original LINC (the CY233 Local Intelligent Network Controller), or are discovering the CY233 chip for the first time.
With CY233s, one IBM-PC COM port can address up to 2048 TTL I/O lines. Try this with LON!

- The CY233 instruction set and features are fully documented. Try getting this info for LON.
- The CY233 does not require a $\$ 17,995.00$ development system! You can start for $\$ 17.95$ plus any RS232 port computer.
- No CY233 royalties or licenses required. Be sure to check out LON terms and conditions.
- Learn 7 LON levels or 1 easy LINC level.
- Easy CY233 interface to 8051 and similar microcontrollers.
- The CY233 is in stock now.

Discouraged by $\$ 17,995.00$ to start using LON? If you need a network, but LON is overkill, try these introductory offers! Get started with the \square CYB233 prototyping kit with an onboard CY233 and wirewrap area, ready to assemble, for only \$179.95, \square or try our introductory chip offer of 2 CY 233 s for only $\$ 17.95$ each.

> Call 415-726-3000 today or Fax 415-726-3003 for info.
> Say LON sent you, and get these great introductory prices! Credit Cards OK!

The CMOS CY233 operates at speeds up to 57,600 baud and is available from stock in a 40 -pin DIP. (44-pin PLCC or Quad Flat Pak available in 1000s.)

Cybernetic Micro Systems

PO Box 3000
San Gregorio CA 94074
Tel: 415-726-3000
Fax: 415-726-3003
LON is a trademark of Echeion Corp.
CY233-Linc is a trademark of Cybernetic Micro Sys. Limit one of each introductory offer per customer.

FடபKE。

Maybe the best $61 / 2$ digit DM

Can a $51 / 2$ digit DMM really outperform a $61 / 2$ digit DMM? The answer is a resounding "yes" if both ease-ofuse and performance are important.

There's a lot more to evaluating a DMM's overall utility than simply counting the number of digits displayed on the front panel.

Take the time-tested $51 / 2$ digit Fluke 8842A: It gives HP's new 6½ digit 34401 something to measure up to, starting with ease of use.

Turn on a Fluke 8842A and what you see is what you get: A clean, simple front panel, ready to use. There's a function for each button and clear annuciators that show you where you are. HP's 34401, on the other hand, powers up in $51 / 2$ digit mode and then

Feature	Fluke 8842A	HP 34401A
Normal Mode Noise Rejection	$>98 \mathrm{~dB}$	$>70 \mathrm{~dB}$
Common Mode Noise Rejection	$>140 \mathrm{~dB}$	140 dB
MTBF	$>100,000 \mathrm{Hrs}$	Unknown
Stored Set-Ups	Not needed	No
Input Impedance@ 20V	$10,000 \mathrm{Mn}$	$10 \mathrm{Mn} \Omega$
dV Ranges	Six:20 mV	
-1000 V	Five 1000 mV -1000 V	
Isolation Common ModeVoltage	1000 Vdc	500 Vdc
Basic One Year DC Accuracy	$\pm 0.003 \%$	$\pm 0.0035 \%$

requires as many as 14 keystrokes before finally arriving at the specified $61 / 2$ digit mode. There's no display to tell you where you are in the process. And if you turn it off, your set-up is gone.

Then there's interference. Will common or normal mode noise

Mis actuallya $51 / 2$ digit DMM.

interfere with your measurements? Will input impedence load your circuits? Not with a Fluke 8842A. It beats HP's 34401 hands down.

If isolation is an issue - say you're making null measurements Fluke's 8842 A provides the 1000 V dc you need, unlike HP's 34401 which has just 500 V dc.

Since their introduction, the 8842A and its companion the 8840A have become the most popular bench

DMMs in the business because they deliver what you're looking for: accuracy, stability and ease of use. Simple as that.

So if you're looking for a tough, dependable tool, look beyond the data sheets and the footnotes.

You'll choose the Fluke 8842A. For more information, contact your local Fluke representative. Or give us a call toll-free at $1-800-44-$ FLUKE (1-800-443-5853).

Compact monitor needed to run off car's dc voltage

We are working on a project that requires us to install a VGA (640×480-pixel resolution) monochrome or color monitor in an automobile. Our design calls for the monitor to be powered from the de voltages available in the car, either through a regulator or a dc/dc converter. Because the monitor will be mounted on a pedestal, we are interested in display technologies that offer compact, thin, and lightweight designs, such as LCDs and electroluminescent and plasma displays. As the final constraint, the monitor must be able to plug directly into the VGA port on our computer without requiring any additional adapter hardware.

We have contacted several vendors whose products seemed
promising, but so far no one can satisfy all of our requirements. Some of the vendors said that they were working on displays that would satisfy our requirements, but we feel strongly that someone has already built one, and we just haven't heard about it yet. Can you help?
Greg Larson
California Dept of Transportation Div of New Technology
Sacramento, CA
EDN's first reaction to Mr Larson's request was to inquire whether the application precludes using a complete laptop or notebook computer. Many of these computers have de/dc converters that let you plug them into an automobile cigarette-lighter socket, so using one seemed to be a compact solution.
However, Mr Larson informed us that his computer, which runs MS-

DOS software, resides in a VMEbus card cage that requires an external monitor. Because his application is mobile, he can't use a bulky CRT display having a dc/ac inverter. He has considered using an external dc/ac inverter to drive a display, but he can't afford the power loss caused by the inefficiencies of these products. Mr Larson's application needs an external compact monitor whose dc/dc converter can operate from any automobile dc voltagepreferably 12 V . If anyone knows of such a product, please contact Ask EDN.

European reader wants to renew subscription

Please send me the fax number of your European edition in The Netherlands. The number is not printed in the magazine at all. I

HUGE INNOVATIONS IN HIGH

You can rely on Harris to generate innovations in high-rel power. Why, Harris offers a full complement of everything you need for that high-rel application. And we offer a wide variety of hermetic packages, including surface mount and modules.

Some of our power MOSFETs are mega-rad hard. Others are QPL. (Just like our MOVsthey're the only ones in the world that are). And our bipolar power transistors are mil-qual, too.

So for the real source of power in high-rel, come to Harris. Call 1-800-4-HARRIS, ext. 7010. Today.

HARRIS

need to notify them that I want to renew my subscription, which expired in March.
Francisco Amado
Datalum
Barcelona, Spain
The fax number of the European subscription office is (31) 206531316 .

Manual needed for discontinued unit

We still use a few "Displayphones," a product of Northern Telecom sold by the Dutch company DTT until the spring of 1990 . The unit is an integrated business telephone and data terminal that can handle voice and data calls at the same time, so you can talk to someone while accessing a database and viewing the information on the unit's screen.

In Holland there are no manuals or schematic diagrams available for our NT6K80 series Displayphone. Could you help us find this information?
Peter Winters
Application Engineer
Pehaco Electronics
Groningen, The Netherlands
Northern Telecom's address and phone number are
8200 Dixie Rd
Box 3000
Brampton, Ontario
L6V2M6 Canada
(416) 452-2000.

A company representative told us that most of the Displayphone documentation was sent to Liam Dowling in the Galway, Ireland, office. His phone number is $353-91-$ 57671, and he will be sending you the manual you seek shortly.

Reader seeks processor definitions

I am a subscriber to EDN and ask for the definitions of microprocessor, microcontroller, and digital signal processor.
William P O'Hara
Scientific Components
Cheshire, CT
Technical Editor Ray Weiss responds: These days there are many confusing definitions for different processors. Here is a set of definitions that work:

Microprocessor-a processor on a chip. It may or may not have onchip memory and an MMU, but otherwise a microprocessor is a complete CPU with registers, an ALU, and addressing capability. Some microprocessors have on-chip floatingpoint units; others use a support chip. Motorola's 68040, Intel's 486,

-REL POWER

DOCKED IN SPACE Haris Power MOSFEfs are permonent members of the crew of the Space Station. In fact, we're the leading supplier for power distribution and power management.

Haris supplies IGBTs for high-rel medical electronic devices like pacemakers and defibrillators.
and Mips' R4000 are all microprocessors.
Microcontroller-a single-chip microprocessor that has on-chip memory and peripherals. There are 4 -, 8 -, and 16 -bit microcontrollers, but no 32 -bit ones. This definition works for 4 - and 8 -bit chips, but starts to fail for 16- and 32-bit processors, which cannot hold enough memory for large-scale processors. The Intel 8051, Motorola 68 HC 05 , Zilog Z8, Hitachi H8, Microchip PIC, and the NEC K0 are examples of microcontrollers. Some of these microcontrollers can access both external and internal memory. For example, the Intel 8051 accesses both external and internal memory; the Motorola 68 HC 05 accesses onchip memory only.

Embedded processor-a microprocessor designed for embedded applications. Embedded processors
are typically microprocessors augmented with on-chip peripherals for embedded systems and may or may not have on-chip memory. Zilog's Z80 variants, Motorola's 683xx family, and Intel's 186 and 196 are all embedded processors. By definition, microcontrollers are a subset of embedded processors. Advanced Micro Devices' 29000 and Intel's i960 32-bit RISC chip families are embedded processors. Both require off-chip memory but are used in embedded applications.
DSP processor-a microprocessor optimized for digital signal processing; that is, one that's strong in algorithmic and vector processing. DSP processors represent an evolutionary path different from that of microprocessors. DSP chips have simple memory interfaces and typically execute multiple operations in parallel. These chips generally do
a multiply and accumulate (multiply two numbers and add the result to an accumulated total) in one cycle. This operation may be pipelined; the multiply could execute in one cycle, and the add execute in the next cycle in parallel with the next multiply. Additionally, DSP processors usually provide automatic indexing for the x and y parameters (the two numbers to be multiplied), which minimizes inner-loop processing.

And just to confuse these definitions, DSP processors and peripherals such as multiply-and-accumulate units (MACs) are emerging in standard microprocessors and microcontrollers. Both National Semiconductor and Zilog, for example, have added DSP capability to their microcontrollers, and Motorola has added a MAC unit to its 68HC16.

KEEP TRANSIENT PROBLEMS FROM

Once a transient has fried your circuit, it's a very permanent problem. That's why you need surge protection from Harris.

We're a leading supplier of transient surge suppressors. With products that can stop everything from a lightning strike. To the dreaded HERF (high energy radio frequencies). In fact, our ceramic chips and MOVs cover a range of voltages from 3.5 V dc to 6000 V ac. From a tiny 10th of a joule to tens of thousands of them.

And Harris is your one and only source for QPL MOVs. So suppress those transient surges. Call 1-800-4-HARRIS, ext. 7011. Today. TRANSIENT THREATS

Rieger's third question answered

In the January 20, 1992, Ask EDN, James Rieger posed three questions. Answers to the first two questions were printed in the April 9,1992 , issue. His third question was "What is the carrier deviation for transmission of a satelliterelayed television signal? Because the television waveform is asymmetrical, what is the position of blanking with regard to the band edges of the channel? Does white cause a positive deviation of the carrier frequency or a negative one?" A reader wrote in to put this last question to rest.

In response to James Rieger's third question in the January 20, 1992, EDN, I may be of some help.

The carrier deviation for trans-
mission of a satellite-relayed television signal depends on the satellite and transponder being used. Most domestic satellite-relayed television signals use frequency modulation on the 5925- to 6425MHz band for transmitting to the satellite. The 3700 - to $4200-\mathrm{MHz}$ band is used for receiving from the satellite. The transponders are typically 36 MHz wide and have $20-\mathrm{MHz}$ channel spacing with $40-$ MHz channel spacing for transponders of equal polarization.

Carson's Rule for RF bandwidth is $B_{R F}=2 \Delta f+2 f_{V}$; in this case, $B_{R F}$ is the RF bandwidth of 36 MHz and f_{V} the video bandwidth of 4.2 MHz for NTSC. Thus, the Δf peak $F M$ deviation must be less than 13.8 MHz to ensure a good quality picture with tolerable distortion.

The position of blanking level

0 with regard to the band edges of the channel is equal to 25% $\pm 2.5 \%$ of the peak FM deviation on systems without a triangular energy-dispersal waveform. White causes a positive deviation of the carrier frequency.
Bari Ari
ONE Inc
Lake Bluff, IL

Ask EDN solves nagging design problems and answers difficult questions. Address your letters to Ask EDN, 275 Washington St, Newton, MA 02158. FAX (617) 558-4470; MCI: EDNBOS. Or send us a letter on EDN's bulletinboard system at (617) 558-4241: From the Main System Menu, enter SS/ASK_EDN and select W to write us a letter.

BECOMING PERMANENT

Traditional transient suppressors have their response times slowed by parasitic lead impedances. But Harris's new sufface mount surge suppressors feature a unique multi-layer interdigitated construction that results in virtually zero inductance. For response time less than 100 picoseconds. And much better protection.

TRANSIENT THREAT	TYPE OF APPLICATIONS	Connector Pin MOVs Unique design slips over connector pin, eliminoting inductive lead effects
NEMP	Military, Rad Hard	
HERF, EMI	Aerospace	0.10
ESD	Instrumentation, Computer Logic	
EMP	Motors, Power Supplies, Controls, Medical	Protects all pins of connector, odding negligible weight and space
Primory lightning	Tronsformer, Power Delivery \& Distribution, HVAC	Mutilicyer Surfoce Mount
Secondary Lightning Onductive Swithhing)	Domestic, Industriol, PCs, Medical	Surge Suppressors Unique lead-less design has virtually zero inductonce; improves response time,
Automotive Lood Dump	ABS, Engine Manogement	increases protection

Some companies pro Murata Erie can only

mise you the moon. deliver the world.

Promises are one thing, resources and performance another.

In selecting your component source, only the latter two count - especially when you're out to strengthen your ability to compete in a shifting, global manufacturing and marketing environment.

In passive components, that source is Murata Erie. Because no one's better positioned to address the multiple needs of those committed to winning market-share battles anywhere in the world.

First, we know you seek certainty about having product and technical support where they're needed, when they're needed and our world ranging facilities end those concerns. We're nearby. Whether the need is a million monolithics in Manaus, Brazil, or design aid in Aldershot, England.

Further, we both know design cycle times are compressing. So an alliance with Murata Erie also puts proven technological leadership and responsiveness at your side. And helps your products consistently draw the leading-edge line.

Next, you demand the best in product and service. From the start, that's been a Murata Erie "given," now even more strongly ensured by our 1.0 QRS (100\% quality, reliability, service) Program.

Finally, as owners of the broadest product line, from chip caps to piezoelectric gyroscope systems, need we remind you that acquiring your components from one source can, beyond streamlining logistics, bring measurable economic advantages.

Call or write for details: Murata Erie North America, Marketing Communications, 2200 Lake Park Drive, Smyrna, GA 30080; 1-800-831-9172. Because, if it's the world you're after, we deliver.

MURATA ERIE NORTH AMERICA

If you're looking for easier embedded debugging, try our new environment.

Real-time software performance analyzer profiles your code and speeds optimization.

User-configurable tools offer intuitive operation and share common look and feel.

Full-featured C debugger runs in-circuit with our emulator.

Concurrent real-time analyzers and debuggers provide simultaneous, linked views of target.

The new HP 64000 embedded debugging environment makes it easy.

If easier embedded debugging is what you're looking for, the HP 64000 can point you in the right direction, with a new graphical user interface that has pull down menus for workstation hosted products. Point and click measurements. And rapid action keys to speed up routine tasks.

For most popular processors, the interface is always the same. So you don't have to learn new commands for different jobs.
And the interface is completely integrated. Emulators, debuggers,
and the software performance analyzer all operate consistently and interactively. Which means you can share data between tools, and enjoy all the productivity benefits of synchronized measurements operating in a multiple window, high-performance environment.
So, if you're looking for a simpler way to develop embedded systems, call 1-800-452-4844. Ask for Ext. 3036, and we'll send you a free video that shows you how the HP 64000 embedded debugging environment makes it easy.
© 1992 Hewlett-Packard Co. TMCOL205/EDN

There is a better way.

EMULATORS ${ }^{(1)}$		
MOTOROLA		
68000/EC000 68HC000/001 68302	68331/332 68340 68020/EC020	68030/ECO30 68040/ECO40 68LC040
INTEL		
80960SASB 80960KAKB	80C186EAEB/EC 80C186XL	8086/88 80C186/188 80286/C286
PLATFORM SUPPORT		
HP 9000 Series 300,400 \& 700 Sun Microsystems SPARCstations IBM PC Compatibles		
(1)Also support for AMD, Texas Instruments, Zilog, National Semiconductor, ATT, NEC, Hitachi and Mitsubishi; call for more information.		

Statistical Process Control in Semiconductor Manufacturing (short course), University of California, Berkeley, CA. University of California Extension, Dept B, 2223 Fulton St, Berkeley, CA 94720. Phone (510) 642-4151. FAX (510) 643-8683. June 29 to July 1.

Symposium on Parallel Algorithms \& Architectures, San Diego, CA. HT Kung, SPAA Program Chair, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15217. June 29 to July 1.

International Broadcasting Convention, Amsterdam, The Netherlands. IBC Convention Office, Savoy Pl, London WC2R 0BL, UK. Phone (071) 240-1871. FAX (071) 497-3633. TLX 261176. July 3 to 7.

International Workshop on Com-puter-Aided Software Engineering, Montreal, Quebec, Canada. Gene Forte, CASE Consulting Group, 11830 Kerr Pkwy, Suite 315, Lake Oswego, OR 97035. Phone (503) 245-6880. FAX (503) 245-6935. July 5 to 10.

IEEE Power Engineering Society Summer Meeting, Seattle, WA. Robert Youngs, Seattle City Light, 1015 3rd Ave, Seattle, WA 98104. Phone (206) 684-3040. July 12 to 16.

IEEE Nuclear \& Space Radiation Effects Conference, New Orleans, LA. Charles Utrias, United Technologies Microelectronics Center, 1575 Garden of the Gods Rd, Colorado Springs, CO 80907. Phone (719) 594-8087. FAX (719) 594-8187. July 13 to 17.

International Conference on Supercomputing, Washington, DC. Ken Kennedy, CITI Rice University, Box 1892, Houston, TX 77251. Phone (713) 527-6009. July 19 to 24.

Powerful New Features!

- $A C$ and $D C$ measurements of up to 1600 points; each with 6 guard points
- Test capacitors, inductors, resistors, semiconductors, opens and shorts
- Complete 400-point systems with fixture and PC for $\$ 9995$. (200-point core systems starting at $\$ 4495$.)

The most cost-effective way to

 find manufacturing faults!Call (206) 653-4861

CHECKSUMV

8416 134th St. N.E., Arlington, WA 98223

CIRCLE NO. 34

No two emulators run the same. The trick is to get the best functionality you can for your investment. With the SIGNUM 8051 family incircuit emulator you get even more . . . you get:

- Outstanding price/performance
- Easy window interface \& flash download
- Free user support
- C and PLM debuggers
- Local variable support
- 512 K Mappable emulation RAM with 256K HW breakpoints
- Break on register ranges
- Program \& external data access on the fly
- Bank switching

SIGNUM also has the Intel 8048, Zilog Z8 and Super-8, Texas Instruments DSP, the 8051/52 (from AMD, Siemens and Signetics), and more chips covered.
So, don't just look at in-circuit emulators. The only way to truly test an emulator is to use it. Call for your own free trial and demo disk.
You owe it to yourself to find how much emulator you can really get for your money.

[^3]CIRCLE NO. 36

CIRCLE NO. 37

MCSI introduces the new diskless IND-386SX single board computer featuring the PROMDISK ${ }^{\circledR}$ multi-drive disk emulator.

- Occupies only a single slot!
- Low-power CMOS architecture.
- OEM configuration switches.
- 100% PC/AT compatible \& directly runs MS-DOS, QNX, etc.
- High speed (25 MHz).
- 16Meg DRAM.
- 4Meg PROMDISK ${ }^{\circledR}$.
- Co-processor socket.

Made in the USA, MCSI products are backed with a level of service that can't be matched.

For optimal performance on your next project, call MCSI at (619) 598-2177 today and ask for your free 30-day evaluation.

2598-G Fortune Way, Vista, CA 92083 Tel. 619/598-2177 • Fax 619/598-2450

Joint European Conference on Information Systems, London, England. Elias Awad, University of Virginia, McIntire School of Commerce, Charlottesville, VA 22903. Phone (804) 924-3423. July 22 to 24.

Computational Learning Theory (workshop), Pittsburgh, PA. Robert Daley, University of Pittsburgh, Dept of Computer Science, Pittsburgh, PA 15260. Phone (412) 624-5930. July 27 to 29.

International Conference on Factory Automation, York, England. IEE Secretariat, Conference Services, Savoy Pl, London WC2R 0BL, UK. Phone (071) 240-1871, ext 222. FAX (071) 497-3633. TLX 261176. July 27 to 29.

Summer Computer Simulation Conference, Reno, NV. Society for Computer Simulation, Box 17900, San Diego, CA 92177. Phone (619) 277-3888. July 27 to 30.

National Association of Scientific Materials Managers Conference \& Trade Show, Philadelphia, PA. Barbara Neff, 92 Host, St Joseph's University, Chemistry Dept, Philadelphia, PA. Phone (215) 660-1790. August 3 to 7.

Fed Micro '92: Microcomputer Conference \& Exposition, Washington, DC. National Trade Productions, 313 S Patrick St, Alexandria, VA 22314. Phone (800) 638-8510; (703) 683-8500. FAX (703) 836-4486. August 5 to 6 .

Symposium in Principles of Distributed Computing, Vancouver, BC, Canada. Norm Hutchinson, University of British Columbia, Dept of Computer Science, 6356 Agriculture Rd, Vancouver, BC V6T 1Z2, Canada. Phone (604) 8228188. August 10 to 12.

With 546 different standard product configurations, our Piezoresistive Silicon Pressure Sensors meet almost anyone's spec. DIP and surface mount packages help cut your assembly costs, too. Which makes you more competitive -and more profitable. Find out why so many engineers are designing these sensors into their OEM applications. Circle the number below. We'll send you product literature and data sheets. Or call 800-767-1888.

1701 McGarthy Blvd. Milpitas, CA 95035-7416

546 Different Silicon Pressure Sensors. One Phone Call.

When systems demand extra can shape a TMS320 to your

-special DSPs, we needs.

Choosing the right DSP for your application is vital to your marketplace success. Only TI has the customizable capability and broad TMS320 family to help you get what you need.

What you want is what you get With our unique customizable digital signal processing (cDSP) capability, you can achieve the integration and product differentiation you
want. You can choose system peripheral functions (A/D, D/A, serial ports, timers, phase comparators and oscillators), add interface logic and then integrate them all directly on proven TMS320 DSP chips. You can even change the mix of on-chip memory and peripherals: Yet device development cycles are shorter and costs are lower than with full-custom gate-level approaches.
Over the past five years, this innovative TI technology has created winning solutions for hundreds of high-volume market leaders.

Broad TMS320 family

Our more than 30 standard DSP solutions can meet the majority of your price/performance needs.
You can choose from our 16-bit fixedpoint DSPs that start at $\$ 3$ or from our 32-bit floating-point devices beginning
at $\$ 25$.
There are family members delivering 50-MFLOPS performance, EPROM and OTP DSPs and
those optimized for specific applications, plus military versions.
When you want super-processing power, our parallel-processing
TMS320C40 DSP allows direct pro-cessor-to-processor communications to achieve the MOPS, MBPS, MIPS and MFLOPS your design requires.

World-class support

To speed you to market faster, you can talk with TMS320 specialists, attend hands-on workshops, read over 2,000 pages of applications notes and contact more than 100 third parties and consultants.
The development environment you will use is the same as that for generalpurpose microprocessors whether you are working with a standard TMS320 or a cDSP. It includes high-levellanguage optimizing compilers, multitasking operating systems and realtime emulation
To make your DSP match, call 1-800-336-5236, ext. 3538
You will receive information on our cDSP capability, the complete TMS320 family of devices and our world-class support. What's more, we'll send
 you "Designing with DSPs is Easy" - an interactive disk that gives you a personal look at TMS320 support and the TMS320 Programmer's Interface.

Local Resources Speed ASIC Design Cycle

asy access to ASIC support means fast design cycles-and fast time to market. Oki's East and West Coast design centers offer the local, comprehensive ASIC resources you need for quick turnaround times. With Oki, you work in a userfriendly environment equipped with state-of-the-art workstations, industry-standard CAD tools, advanced software support, and an experienced staff. We provide leading-edge $0.8 \mu \mathrm{~m}$ sea-of-gate, standard cell, and 3-volt technology. Plus we assign a task team to your project, ensuring a steady communications link and a speedy, successful design flow.

For easy access to complete, local ASIC design support, call 1-800-OKI-6388 today. To receive Oki's ASIC Capabilities Brochure, ask for Package 057.

Oki ASIC Design Tool Support for $0.8 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, \& 1.2 \mu \mathrm{~m}$

Vendor	Platform	Operating System/Application
Cadence	Sun/Solbourne	Verilog: Simulation, fault grading, design verification
DAZIX	Sun	Design capture, simulation
IKOS	IKOS	Simulation, fault grading
Mentor	HP/Apollo	Design capture, simulation
Graphics	Sun/Solbourne	Parade: Layout, clock and timing structures
Synopsys	Sun-4 Design synthesis, test synthesis Interface to Mentor, Valid, Viewlogic	
Valid	Sun/Solbourne DECstation 3100 IBM RS6000	Design capture, simulation Design check GED, ValidSIM, RapidSIM
VIEWlogic	Sun-4	Design capture, simulation
	PC386	Design check

Don't confine innovation to the R\&D lab

Jesse H. Neal
Editorial Achievement Awards 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

In doing some research for upcoming articles, I've acquired a disquieting impression about American companies' willingness to innovate.
The field I'm exploring is filled to bursting with acronyms and buzzwords: concurrent engineering, JIT (just in time), DFT (design for test), QFD (quality function deployment), TQM (total quality management), and many, many more. The fact that so many American managers won't try new ways of doing things until someone has given those new ways a name or an acronym is evidence of the bankruptey of the managers' approach to their jobs.

Generally speaking, what happens is that someone, usually in Japan, innovates and learns which techniques work and which don't. Then an American visits Japan, studies what the Japanese are doing, develops a seminar or writes a book, and figures out a catchy name. Only then, when the approach has been dubbed "all the rage," will Americans try it. Although the recent malaise in the Japanese stock market may have put a crimp in this copy-cat approach, there is little reason to believe that Americans won't soon return to finding more Japanese techniques to imitate.

In this country, we make much of the fact that Americans originated many of the techniques the Japanese have employed to such good advantage, and that the Japanese copied the techniques from us. But the spirit of innovation that produced those techniques is no longer evident in American business. That spirit appears to have been submerged by conservatism that threatens to engulf American business.

Of course, there is another less cynical
and more hopeful explanation: American companies are innovating new processes for designing, developing, and manufacturing products. But companies that innovate see their innovations as a competitive advantage and don't talk about them. Maybe those companies are too busy innovating to do much talking.
As you know, EDN is written by and for design engineers. Your business is innovation; so is ours. But a company that wants to remain competitive can't confine its innovation to design. It must innovate in every one of its functionsmanufacturing, test, service, purchasing, marketing, sales It must adopt innovative ways of dealing with its people. If the folks in R\&D are the only ones innovating, they'll soon be innovating for some other company-if they're fortunate enough to find new jobs.

If your company has developed an innovative way of doing something and is willing to go public with the story, let me know. The sorts of things I'm looking for differ from the circuit and software innovations we publish in the Design Ideas section, or the more complex technical innovations covered in our Design Features. I'm looking for innovations in how companies define new products and get them to market, manage projects, make sure that customers are happy, etc. The innovations should affect the way design engineers work and should be the sorts of techniques that design engineers and managers can drive an organization to implement. Above all, each story should contain a message about what worked for you and why it worked.

Send me your comments via FAX at (617) 558-4470, or as E-mail on the EDN Bulletin Board System at (617) 558-4241 300/1200/2400, 8, N, 1; on 9600-bps modems try (617) 558-4580, 4582, or 4398. My user ID on the EDN BBS is EDNSTRAS.

Memories of Tomorrow. Available Today.

For fast answers, call us at:
USA Tel:1-800-632-3531. Fax:1-800-729-9288. Germany Tel:0211-650302. Fax:0211-6503490. The Netherlands Tel:040-445-845. Fax:040-444-580. Sweden Tel:08-753-6020. Fax:08-755-3506 France Tel:1-3067-5800. Fax:1-3946-3663. Spain Tel:1-504-2787. Fax:1-504-2860. Italy Tel:02-6709108. Fax:02-66981329. UK Tel:0908-691133. Fax:0908-670290. Ireland Tel:01-6794200. Fax:01-6794081. Hong Kong Tel:755-9008. Fax:796-2404. Taiwan Tel:02-719-2377. Fax:02-719-5951. Korea Tel:02-551-0450. Fax:02-551-0451. Singapore Tel:253-8311. Fax:250-3583.
Australia Tel:03-8878012. Fax:03-8878014. Japan Tel:03-3454-1111. Fax:03-3798-6059.
48 - EDN June 18, 1992

Low-voltage chips give you new design freedom. They not only decrease power consumption, they also reduce noise and heat concerns. NEC is the leader in developing low-voltage memories that offer outstanding performance across the full spectrum of memory needs.

4M DRAMs

Low-voltage 4M DRAMs available today include:
$\mathrm{x} 8, \mathrm{x} 9, \mathrm{x} 16, \mathrm{x} 18$ configurations for $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
$\mathrm{x} 1, \mathrm{x} 4$ configurations for $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, 3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}, 3.0 \mathrm{~V}-5.5 \mathrm{~V}$
The $x 1$ and $x 4$ devices are forerunners of a new generation of 4 M DRAMs, fabricated with the 0.55μ process developed for our 16 M DRAMs. They have plenty to offer besides low-voltage operation.Access speed: 60ns. \square Self-refresh function.Package types: SOJ, ZIP, TSOP.
We'll soon introduce $x 8, x 9, x 16$ and $x 18$ versions and 16M DRAMs, all at the three low-voltage regions.

SRAMs
Low-voltage SRAMs to meet your needs for lower power applications are available in both 256 K and 1 M densities. These devices require only 3.0 V power supplies and are specifically designed for all handheld and battery-backed applications. They come in SOP and TSOP packages to save you board space as well as power. Fast statics are available in 3.3 V for 64 K and 256 K densities.

If your design calls for low-voltage memories, you'll find exactly what you're looking for at NEC. Call us today for information about our comprehensive development program covering DRAMs, SRAMs, Mask ROMs, EPROMs, and VRAMs.

From the leader in memory technology

[^4]C) 1992 Data I/O Corporation

EDN-TECHNOLOGY UPDATE

DSP FOR MOTION CONTROL

Analog movements go digital with DSP

The cost of DSP ICs has plunged to half of the 1989 selling prices. As a result, design engineers are now using these chips for improved stability and precision in robotic and motor applications by avoiding the component drift and aging problems inherent in analog control circuits.

Motion control has traditionally been an analog function. However, 16 -bit DSP chips-selling for as little as $\$ 3$ in OEM quantities-are demonstrating that with enough speed and power you can use binary data to represent continuous movements while reducing the size and cost of your control circuit and increasing its accuracy. For example, compact DSP-based motor-control circuits are key factors in the continuing miniaturization of hard-disk drives. Similar innovative trends are occurring as design teams integrate DSP processors into automotive and robotic controls.
DSP chips are particularly suitable for use in motion control because their high-
speed hardware multipliers and fast onchip memories eliminate the delay associated with data I/O. These factors promote rapid execution of control algorithms. In addition, the filtering capabilities of DSP processors allow for smooth output and noise reduction.

DSP-based control circuits also involve lower component counts when compared with their hardware-based analog counterparts. Fewer components result in increased reliability, faster access times, and increased circuit density.

In addition, the electrical characteristics of analog components vary with temperature and age. In contrast, even under extreme environmental condi-

With its on-chip DSP functions, Motorola's MC68HC16YI microcontroller simplifies the task of designing a servo-motor control.

IS A 50¢ LNEAR REGULATOR BURNING UPYOUR BOARD?

PLAY IT COOL WITH OUR 1.5 AMP INTEGRATED SWITCHING REGULATOR

Do you have a board with a 3-terminal linear regulator that's generating more heat than an irate customer? Are you locked into a tight compact design that leaves no extra space for a larger heatsink? Fortunately, you can now play it cool with an innovative product from Power Trends-a 1.5 Amp Integrated Switching Regulator (ISR) that needs no heatsink.

Power Trends' 1.5 Amp ISR is pin-compatible with existing 3 -terminal "78 and 79 Series" linear regulators, fits into the same space, and is just as easy to use. With 85% efficiency, our ISR provides a cool replacement alternative

for a hot linear regulator. Of course it costs more, but it could save you thousands.

Specifications include: laser-trimmed output voltages from 3.3 to 15 volts, calculated MTBF of over $1,000,000$ hours, 0.2% line and 0.4\% load regulation, and power densities of 25 to 100 watts per cubic inch.

So if you have a heat/ space/reliability problem now, or just want to make sure you don't have one in the future-check out Power Trends' super-efficient ISR. Call or write for more information, and ask about samples.

POWER TRENDS

DSP FOR MOTION CONTROL

tions, digital devices remain stable and linear, so their output maintains predictability.
Applications for DSP processors traditionally involve filtering tasks for image and audio processing. However, the computational processing speed of these chips lets them rapidly implement the increasingly complex control algorithms now used in servo mechanisms more efficiently than other general-purpose processors can.
All motion-control systems include a controller, motor, load, and sensor. The motor and load are referred to as the plant. Under classical control, the control system is described as single-input, singleoutput transfer functions with algorithms that provide notch filtering, lead/lag compensation, and pro-portional-integral-differential (PID) control.
Modern control algorithms use matrices for system representation, estimation of plant output, and control law. These algorithms include state controllers, state estimators, linear-quadratic regulators, and stationary Kalman filters. Although

When dealing with mixed analog and DSP control loops, you can use a software simulator such as Analogy's Saber to detect potential problems in the early stages of the design.
the structure of the algorithms is the same, the difference lies in design techniques that provide multivariable control and optimization of specific performance criteria.

A more complex type of algorithm provides adaptive control with self-tuning model references and dynamic Kalman filters. Adaptive control allows for real-time system identification and parameter updates. These algorithms let you use a single controller for multiple plants, but you may have to resort

Table 1-Performance comparisons between DSP and general-purpose processors

Parameter	$\begin{gathered} \text { TMS320C14 } \\ \text { DSP } \end{gathered}$	$\begin{gathered} \text { TMS320C25 } \\ \text { DSP } \end{gathered}$	$\begin{gathered} \text { TMS320C30 } \\ \text { DSP } \end{gathered}$	$\underset{\text { DSP }}{\text { TMS320C50 }}$	$\begin{gathered} \text { Intel } \\ \text { 80C196 } \mu \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Motorola } \\ & 68020 \mu \mathrm{P} \end{aligned}$
Instructioncycle time (MHz)	25	40	33	50	12	24
FIR filter TAP ($\mu \mathrm{sec}$)	0.32	0.10	0.06	0.05	2.80	1.10
PID loop ($\mu \mathrm{sec}$)	2.30	1.40	0.84	0.75	27.00	5.10
Matrix multiply $(3 \times 3)(3 \times 1)$ ($\mu \mathrm{sec}$)	4.30	2.70	1.60	1.40	24.30	9.70
Third-order Kalman filter stationary ($\mu \mathrm{sec}$)	15.30	7.80	4.70	3.90	Not applicable	Not applicable
Interrupt response ($\mu \mathrm{sec}$)	0.32	0.30	0.00	0.50	2.70	1.40

to relatively expensive floatingpoint DSP chips for dynamic range.
The speed difference between DSP chips and slower generalpurpose processors is often an order of magnitude or more. This difference is partially because most DSP processors use a Harvard architecture, which has separate data and instruction memories that separate buses access. As a result, instructions and data move in parallel instead of sequentially, so most instructions execute in a single cycle. In contrast, a $\mu \mathrm{P}$ requires several clock cycles to execute one multiply instruction.
One example offered by Irfan Ahment and Steven Lindquist of Texas Instruments is a 13 -instruction program for a PID control algorithm that executes in $2.6 \mu \mathrm{sec}$ on a $20-\mathrm{MHz}$ TMS32010 DSP chip. The same algorithm executes in 25.4 μ sec if you use a $10-\mathrm{MHz}$ Motorola $68000 \mu \mathrm{P}$ or in $26.1 \mu \mathrm{sec}$ with a 12 MHz Intel (Chandler, AZ) 8096 processor. Other speed comparisons are offered in Table 1.

In addition, microcontrollers $(\mu \mathrm{Cs})$ are not as precise as DSP processors because they rely on look-up tables to approximate the results of intricate algorithms. In contrast, DSP processors provide real-time calculations for analoglike performance without look-up

DSP FOR MOTION CONTROL

tables. Processing-speed specs for DSP chips range from 5 to 30 MIPS. Recognizing this strength, Motorola actually added DSP functions to its 68 HC 16 line of $\mu \mathrm{Cs}$.

Furthermore, DSP processors integrate data-acquisition, computation, and filtering capabilities on a single chip, thus permitting designers to develop algorithms that result in smoother outputs for digital performance that closely approximate analog results. Position sensors, disk-drive servos, and auto-motive-engine controls are just a few of the applications that demand such integrated capabilities.

Tweak the software

Another reason DSP processors are gaining favor over hardwarebased analog circuits is the ease of altering the control parameters. Instead of desoldering and replacing different values of resistors and capacitors, with a DSP-based circuit you can fine tune or radically change control signals via software revisions. The time and money saved in designing the initial control circuit and in revising for subsequent product improvements makes the switch to DSP chips an obvious way to cut costs without sacrificing quality.

However, to gain maximum advantage of this software-based flexibility, your design team must be adept in real-time programming techniques. To fit your algorithms into the small memory space that DSP chips have available, you'll have to resort to coding in assembly language. For example, one popular DSP processor-Analog Devices' ADSP-2105 - can address only 1 k 24-bit words of program RAM and 512 16-bit words of data.

To offset the difficulties of coding in such a small space, the company offers a set of development tools ranging from the $\$ 499$ EZ-Kit to a $\$ 17,000$ full-featured emulator. The EZ-Kit includes development-soft-

Table 2-Representative DSP ICs for motion control

Vendor	Model	Instruction cycle time (MHz)	Price	Program memory	$\begin{gathered} \text { Data } \\ \text { memory } \\ \hline \end{gathered}$	Serial ports	Timers
Analog Devices	ADSP-2101	66	\$72 (100)	$\begin{gathered} 2 \mathrm{k} \times 24 \\ \text { bits } \end{gathered}$	$\begin{gathered} \hline 1 \mathrm{kx16} \\ \text { bits } \end{gathered}$	2	$\begin{gathered} 1 \\ \text { (programmable) } \end{gathered}$
	ADSP-2105	40	\$9.90 (1)	$\begin{aligned} & 1 \times 24 \\ & \text { bits } \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{k} \times 16 \\ & \text { bits } \end{aligned}$	1	$\begin{gathered} 1 \\ \text { (programmable) } \end{gathered}$
	ADSP-2111	66	\$87 (100)	$\begin{gathered} 2 \mathrm{kx} \times 24 \\ \text { bits } \end{gathered}$	$\begin{aligned} & \text { 1kx16 } \\ & \text { bits } \end{aligned}$	2	$\begin{gathered} 1 \\ \text { (programmable) } \\ \hline \end{gathered}$
Motorola	MC68HC16Y1	16.78	$\begin{gathered} \$ 33.80 \\ (10,000) \end{gathered}$	$\begin{aligned} & 48 \mathrm{k} \times 16 \\ & \text { bits } \end{aligned}$	$\begin{gathered} 2 \mathrm{kx} 16 \\ \text { bits } \end{gathered}$	2	2
	MC68HC16Z1	16.78	$\begin{array}{\|c\|} \hline \$ 17.60 \\ (10,000) \end{array}$	8 k to 64kx16 bits	1-kbyte static RAM	2	2
Texas Instruments	TMS320C14	25	$\begin{gathered} \$ 9.90 \\ (1000) \end{gathered}$	$\begin{gathered} 4 \mathrm{k} \\ \text { words } \end{gathered}$	$\begin{gathered} 256 \\ \text { words } \end{gathered}$	1	4
	TMS320C25	40	$\begin{gathered} \$ 15 \\ (1000) \end{gathered}$	4 k words	$\begin{gathered} 544 \\ \text { words } \end{gathered}$	1	1
	TMS320C30-27	33	$\begin{gathered} \$ 137 \\ (1000) \end{gathered}$	$\begin{gathered} 4 \mathrm{k} \\ \text { words } \end{gathered}$	$\begin{gathered} 2 k \\ \text { words } \end{gathered}$	2	2

ware design tools, an evaluation board for testing applications in real time, a DSP textbook, and an applications handbook with source code on floppy disks. The emulator offers an 8 k -word trace buffer, breakpoints and hardware event triggers, and conversion kits for multiple processors. The company also offers a $\$ 1995$ EZ-ICE emulator that provides full-speed emulation, single-step capability, 16 breakpoints, and upload/download capability from your personal computer.

Math adds to the problem

Yet, one aspect of control design that DSP development tools won't address is the mathematical conversion of vectored motion into algorithms. If you don't already have a mathematics guru on staff, it would be wise to invest in a math-analysis program. Such software helps you convert the movements you want into the algorithms that represent their mathematical descriptions.
Analogy Inc markets simulation software to ease your introduction to the z domain and sampled-data systems. The firm's $\$ 15,000$ Saber simulator provides top-down modeling capability on Sun, Hewlett-

Packard, and DEC workstations. Because this simulator can model both the analog and digital aspects of a motion-control loop, you gain the flexibility of mixed-mode simulation to study cascade failure effects found in actual applications. Saber lets you describe your sam-pled-data application as functional blocks. Its library of component and behavioral models represent algebraic, integral, differential, and rational polynomial functions.

Comdisco Systems also has a software package, Signal Processing Worksystem, for interactively designing DSP systems. Available for Sun, HP, and DEC workstations, this $\$ 25,000$ simulator provides a graphical user interface that lets you design, test, and implement both DSP and mixed analog-digital designs. Via mouse and menu selections, you can create block diagrams of hierarchical signal flows in multiple windows. A signaldisplay editor provides analysis and review functions, including autoand cross correlations, histograms, FFTs, and x, y plots.

Yet, even with such sophisticated tools to aid development, a DSPbased control system may not be

Changing the Signal Processing World Forever.

ZAP! Sometimes the best ideas come suddenly. With one great flash of insight, the problem is illuminated and quickly solved. Provided, of course, you are working with SPROC ${ }^{\text {™ }}$ signal processing technology from STAR Semiconductor.

Before SPROC, many bright ideas produced little more than a flash of light and wasted energy. And you have probably seen more than one enlightened solution bogged down in the time-consuming prototyping of an analog board or the agonizing handcoding of a DSP chip.
Now SPROC can help you transform your bright ideas into brilliant signal processing solutions in a flash. By integrating an advanced, programmable signal processing chip and a powerful, easy-to-use
development system, SPROC technology allows you to create and modify an application in a matter of minutes . . . without writing code.

How? The SPROClab ${ }^{\text {T1 }}$ development system uses the unique "Sketch and Realize" design approach to allow rapid transformation of signal processing designs from signal flow block diagrams. SPROClab automatically converts your diagrams into code optimized for the SPROC chip, which contains multiple on-chip processors for real-time signal processing performance.
To learn more about the new SPROC technology, specially-designed to handle the needs of real-time signal processing, call
for your free 350-page DataBook and demonstration disk. (908) 647-9400.
 The Signal Processing Company

25 Independence Boulevard, Warren, NJ 07059 CIRCLE NO. 45

DSP FOR MOTION CONTROL

appropriate for your application. Despite their fast computational speed, DSP processors are certainly not a panacea for motion control. Software development time tends to be longer for DSP-based controllers when compared with using gen-eral-purpose processors. In addition, $\mu \mathrm{Cs}$ and $\mu \mathrm{Ps}$ can actually outperform DSP chips in applications that require large amounts of memory. And if your performance criteria are not particularly high, a $\mu \mathrm{P}$-based control circuit will typically be your least expensive digital alternative.

Your design team's ability to compress the necessary code to fit the memory parameters of your DSP chip will determine the level of complexity of your circuit. However, you should remember that the effort required for code development becomes a progressively reduced factor in the cost of your product when amortized over the production run. In contrast, hardware ultimately reaches a compo-nent-cost level that will not diminish, regardless of the volume of product you can market.

As a result, the more hardware you can replace with software, the better the bottom line will be for your product. As noted by Thomas Bucella, president of Teknic Inc, which designs DSP-based motioncontrol systems, some of the circuits you can replace include A/D and D/A converters, sine-wave commutation circuits, and encoder counters. A DSP processor with onchip timers and PWM capabilities can efficiently generate arbitrary waveforms, run small isolation supplies, and calibrate circuits. Teknic has even begun utilizing fuzzy logic to implement even more sophisticated functions into its products. And to simplify the design effort of driving brushless motors, the company offers a single-chip DSPbased controller, the TEK32BL15, for $\$ 90$ (OEM).

For more information . . .

For more information on the DSP products discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Analog Devices Inc
1 Technology Way
Norwood, MA 02062
(617) 461-3074

FAX (617) 326-8703
Contact Denis Regimbal
Circle No. 708
Analogy Inc
9205 SW Gemini Dr
Beaverton, OR 97075
(503) 626-9700

FAX (503) 643-3361
Circle No. 709

Comdisco Systems Inc
919 E Hillsdale Blvd
Foster City, CA 94404
(415) 574-5800

FAX (415) 358-3601
Circle No. 710
Motorola Inc
6501 William Cannon Dr W
Austin, TX 78735
(512) 891-3465

FAX (512) 891-4465
Contact Judy Racino
Circle No. 711

Teknic Inc

214 Andrews St
Rochester, NY 14604
(716) 546-3212

FAX (716) 546-6183
Circle No. 712
Texas Instruments Inc
Box 809066
Dallas, TX 75380
(800) 336-5236
(713) 274-2517

Circle No. 713

However, the general-purpose DSP chip preferred by designers at Teknic is Texas Instruments' TMS320C14. Although not the most powerful of DSP processors, the C14 includes the on-chip peripherals necessary for motion control with a minimum of external hardware. The chip has four 16 -bit timers, two general-purpose timers, a watchdog timer, a baud-rate generator, 16 bit-selectable I/O pins, a serial port, and an event manager with 6-channel PWM and D/A capability. The event manager consists of a 6 -output-compare subsystem and a 4 -input-capture subsystem. You can vary the PWM output from 8 bits of resolution at 100 kHz to 14 bits at 1.6 kHz .

When compared with traditional analog controllers, DSP-based control systems offer greater reliability, maintainability, and testability. By eliminating the analog problem of parameter drift and by providing increased noise immunity, soft-ware-driven DSP chips can actually outperform certain hardware-based controllers. Reduced size, power, weight, and costs also make DSP chips an attractive control solution.

However, you may find that it is not a simple process to convert to DSP if your product currently has a control algorithm implemented in
hardware. Although some circuits will require only a simple component swap for a successful conversion, be aware that you may actually have to redesign part of your control system to accommodate the modification. To determine whether DSP is right for your control application, you must carefully analyze your design team's ability to meet the math and coding challenges that DSP controllers present. EDU

References

1. Ahmed, Irfan and Steven Lindquist, "Digital Signal Processors: Simplifying high-performance control," Machine Design, September 10, 1987, pg 125.
2. Karagozyan, Kapriel, Digital control system design with the ADSP-2100 family, Analog Devices application note AN-227, January 1992.
3. Meshkat, S and I Ahmed, "Using DSPs in ac induction motor drives," Control Engineering, February 1988, pg 54.
4. Press, Flannery, Teukolsky, and Vetterling, Numerical Recipes in C, Cambridge University Press, 1988.
5. Texas Instruments, Digital Control Applications with the TMS320 Family-Selected Application Notes, 1991.

Article Interest Quotient
 (Circle One)

High 482 Medium 483 Low 484

So Much Real-Time Power. Such A Small Package.

Pick up these ROMs and you're in touch with the world's most powerful real-time 680X0 system software solution-OS-9. But OS-9 is so much more than just a powerful real-time kernel. Check out this Critical Features Checklist to find out how OS-9 can give you
"Real Time In No Time."

| CRITICAL FRATURES CHECKLTST | |
| :--- | :--- | :--- |

Also, ask us about OS- 9000° for 386/486 and RISC processors.

Grab the Power.

So get your hands on these ROMs that have been proven in thousands of specialized and demanding 680X0 applications. Call Microware today to put OS-9 to work for you.

1-800-475-9000

Call Microware Today!
In California, call (408) 980-0201

microware

MICROWARE SYSTEMS CORPORATION
1900 N.W. 114th Street • Des Moines, Iowa 50325-7077
England / Benelux: (44) 703601990
France / Spain / Italy: (33) 42.58.63.00
Germany: (49) 6221-862091 • Sweden: (46) 18-192990
Switzerland: (41) 56-83-3377

We finally found a multiprotocol processor

Integrated Multiprotocol Processor

And thousands of high performance fanatics agree.

When it comes to communications, the 68302 is the highest-performance, highestintegration multiprotocol controller ever made. So it can work wonders for almost any board. That's why it's the choice of thousands of cost-conscious designers around the world.

It communicates like crazy.
Nothing communicates like the 68302. Its dual processor architecture teams a Motorola 68000 microprocessor core with a high-speed RISC-based engine to manage three serial communication controllers.

So it can handle up to three different protocols concurrently. With superb efficiency. Including HDLC, UART, Bisync, transparent and more. And the 68302 deals with frames, not just bytes.

board the 68302 can't radically improve.

So grab your board.

Want even more performance? Just switch modes. The 68302 becomes a peripheral to processors like the 68020 and 68030 families.

Easy integration? The 68302's system integration block is chock full of system glue logic, like timers, DMA and chip selects.

In all, it saves you a ton of time, money and board space. And it's backed by superior support and a wide range of development tools.

So grab your board. And call for all the exciting details.

CALL NOW! 1-800-925-5059

Data Communications Hours: 8AM - 5 PM CT M-F Ref. EDN061892

We'll show you how the amazing 68302 can make your next board nothing short of radical.

SIEMENS

With Four Times The Performance Of The Competition, Nobody Else In The Field Is Even In The Running.

Our innovative controllers keep you on the fast track of communications.

With our advanced 8-channel Enhanced Serial Communication Controller-the ESCC8 (SAB82538)-Siemens demonstrates once again why we lead the pack in communication IC technology.

The World's First 8-Channel Multi-Protocol Data IC.

The ESCC8 is the latest in a long line of advanced communications controllers which have made us the industry leaders. Like the HSCX (SAB82525) for telecommunications and the ESCC2 (SAB82532), the first 2-Mbit asynchronous multi-protocol communications controller.
The ESCC8 offers a superior price/performance solution for your communications applications. Compared to the standard 2-channel devices, the ESCC8 provides four times the data throughput,
and the fastest speeds in the industry-up to $10 \mathrm{Mbit} / \mathrm{sec}$ synchronous and $2 \mathrm{Mbit} / \mathrm{sec}$ asynchronous. Which lets you replace four 2-channel devices with one ESCC8, for substantial savings in time, boardspace, and development costs.
The ESCC8 also supports a wide range of protocol options-including X. 25 LAPB, ISDN, LAPD, HDLC, SDLC, and both ASYNC and BISYNC-plus easy adaptability to either Intel ${ }^{\text {a }}$ or Motorola ${ }^{*}$ microprocessors through the use of a 16 -bit data bus interface. For fast, reliable and accurate multi-protocolling.

A New Breed Of Performance ICs.

With 16- or 32-bit CRC handling and 28 programmable universal I/Os, the ESCC8 gives you superior performance in a communications controller. And only the ESCC8 offers a collision detect resolution scheme which provides multiple masters on one bus to prioritize data instructions,
plus 64-byte FIFOs per channel for increased storage capabilities.

2- and 8 -Channel Controllers

And Siemens continues to hold a leadership position throughout the rest of the industry, with innovations like the DSP-based ARCOFI-SP, the world's most advanced speakerphone IC for digital terminals. As well as advancements in CMOS echo cancellation technology which have made us the frontrunner in single-chip ISDN U-interface transceivers.
For an ESCC8/ESCC2 evaluation kit, or more information on our full line of innovative communications ICs, call $\mathbf{8 0 0}-456-9229$. And put yourself on the fast track of communications.
Ask for literature package M12A014.

Siemens
World Wise, Market Smart.

EDN-TECHNOLOGY UPDATE

> You can buy video amplifiers and subcircuits that have low, stable gains and low distortion for \$3 to \$10.

Video amplifiers set sights beyond large 3-dB bandwidths

ANNE WATSON SWAGER, Technical Editor

The latest generation of video op amps and subcircuits have much more going for them than bandwidths topping 100 MHz . Some amplifiers have differential gain and phase specifications of 0.01% and 0.01°, respectively; others have gain flatness of 0.1 dB to 30 MHz . These devices' high-frequency performance holds true for gains as low as 1 and 2 . And the devices exhibit their high performance even when driving heavy loads such as cables. See Table 1 for typical performance specs of state-of-the-art video amplifiers.

Many high-speed op amps and subcircuits also have added features that suit them for video applications. These features include gain control, fast disable pins, and devices that comprise three amplifiers.

The existence of highspeed amplifiers that are stable at low gains diminishes the misuse of the term "gain-bandwidth product." It's all too convenient for manufacturers to drop-and users to forget-the product part. The specification for gain-bandwidth product is meaningful only when you divide this term by the minimum closed-loop stable gain of the amplifier. An amplifier rated for a gain-bandwidth product of 250 MHz with a minimum stable gain of 5 has a usable bandwidth of 50 MHz .

The fact that many video amplifiers are stable at unity gain eliminates much of the former confusion. Even when an amplifier isn't unity-gain stable, more
manufacturers are stating the bandwidth specification as the bandwidth at some usable gain. However, always be sure to check the minimum stable gain on an amplifier's data sheet.

Instead of reporting only the $3-\mathrm{dB}$ bandwidth, manufacturers are starting to specify the shape of the bandwidth curve. Any peaking in the frequency response of a video amplifier distorts the video signal. Thus, gain flatness minimizes distortion. For standard color TV

Table 1-Typical performance of state-of-theart video amplifiers

Specification	Performance
3-dB bandwidth	$>100 \mathrm{MHz}$
Gain flatness	0.1 dB to 10 MHz (amplifiers for composite systems) (amplifiers for HDTV systems) Minimum stable gain Output drive Differential gain and phase 2 Cost
$0.1 \%, 0.1^{\circ}$	
	$\$ 3$ to $\$ 10$

systems-NTSC in the US and PAL (phase-alternation line) in Europe-the desired flatness is a gain variation of only 0.1 dB from de to 10 MHz . The desired $0.1-\mathrm{dB}$ flatness for proposed HDTV (high-definition television) sytems extends from dc to 30 MHz .

The ultimate in gain flatness is Harris Semiconductor's line of HFA11xx buffers and amplifiers. These devices vary by no more than 0.04 dB to 50 MHz . However, at $\$ 9.95$, the devices cost much more than most other video op amps. Several op amps in the $\$ 3$ to $\$ 5$ price range, such as Analog Devices'

So many custom applications.

Not just for board test anymore.

If you think spring loaded test probes are only used in Bed of Nail Printed Circuit Board Testers, think again. Compact and reliable, with consistent contact and compression force, Augat POGO ${ }^{\circledR}$ spring probes are the answer to unlimited test and non-test applications.

Test Sockets you can live with.

With superior electrical shielding, POGO Custom Test Sockets offer reduced pin-to-pin cross talk. In addition, with a service life of 250,000 cycles versus less than 1,000 for conventional pin and Socket technology, POGO Test Sockets win again with the lowest total applied cost.

Augat POGOs let you design it your way.

Ideal for custom assemblies, Augat POGOs are the smart choice for portable cellular telephone and military communication, battery recharging connectors.

With uniform contact force and excellent resistance to shock and vibration, Augat has the answer for your battery powered portable equipment. For Surface Mount boards, custom designed POGOs allow you to reflow solder the probes directly to the board, saving space and assembly costs.

$\mathbf{1 , 0 0 0 , 0 0 0}$ cycle life.

With rated life of up to one million cycles, Augat POGOs, utilizing coil springs, out-perform conventional stamped and formed technology. With superior life and mating tolerances, plus a wide range of spring forces and electrical loads, POGOs are easily adaptable to your specific needs.

A feature you can't resist.

Low levels of contact resistance are important. However, the more critical

One solution.

performance measurement is the consistency of the resistance. Augat's unique Biasing Ball ${ }^{\circledR}$ design assures consistency over life, even to 3 sigma.

To learn more about how Augat POGOs can help answer your custom socket and contact needs, call and ask for our POGO Application Engineer.

AUG:TI${ }^{\circledR}$ Quality and Innovation
INTERCONNECTION PRODUCTS DIVISION

VIDEO OP AMPS AND SUBCIRCUITS

AD811 and Comlinear's CLC411, meet specifications of 0.1 dB to 30 MHz . Elantec's EL2120 has a gain flatness of 0.1 dB to 20 MHz . (Note: All quoted prices are for 100-piece quantities.)

Distortion takes many forms

Video amplifiers can exhibit distortion in several other ways. Two critical distortion specs are differential gain and phase.

Differential gain is the change in output amplitude of a small, highfrequency sine wave at two stated levels of a low-frequency signal on which the sine wave is superimposed. Differential phase is the difference in output phase of a small, high-frequency sine wave at two stated levels of a low-frequency signal on which the sine wave is superimposed.
The amplitude of a TV signal carries brightness information and the phase of a high-frequency subcarrier carries the color information. Any shift in gain or phase can distort the video picture. Thus, you need to control differential gain and phase tightly-especially in systems that cascade many amplifiers together. In component video sys-
tems-systems that operate with color already separated into red, green, and blue components-differential gain and phase are not critical specs.

Many system specs for professional video equipment call for differential gain and phase numbers of 0.1% and 0.1°, respectively. (Differential gain and phase specs are often numerically equal.) Systems that require chains of amplifiers have to use amplifiers whose specs are far below those numbers. Currently, just a few amplifiers can boast differential gain and phase specifications of 0.01 dB and 0.01°. These amplifiers include Analog Devices' AD811 (\$3.35), Elantec's EL2120 (\$2.80), Comlinear's CLC411 (\$4.99), and Linear Technology's LT1227 (\$2.45).

For less-demanding system requirements or systems that require shorter amplifier chains, more than a handful of amplifiers have gain and phase specs between $0.01 \% /$ 0.01° and $0.05 \% / 0.05^{\circ}$. Such parts include Analog Devices' AD810 ($\$ 2.80$); Burr-Brown's OPA621 (\$8.95), OPA622 (\$7.10), and OPA623 (\$5.10); Comlinear's CLC406 (\$5.35) and CLC430
(\$2.99); Harris Semiconductor's HA-5020 (\$2.85); and Maxim Integrated Products' MAX404 (\$2.98).
Manufacturers specify only the typical differential gain and phase partly because these characteristics are difficult to measure. Judging extremely low differential gain and phase specs with some skepticism is warranted. You should always ask how a manufacturer tests its devices.
Each manufacturer has a preferred method for testing differential gain and phase. For example, some manufacturers measure the total effect of 10 cascaded amplifiers and divide the test results by 10 . This approach is somewhat flawed because there can be additive or cancellation effects between each of the 10 stages.
Some benchtop equipment, such as the Tektronix VM700 stimulus and measurement box, can measure the differential gain and phase of op amps, but this equipment is limited to the accuracy of its internal components. According to Comlinear, which supplied some of the op amps in the VM700, the instrument has a resolution of 0.01% and 0.01° but an accuracy spec of

For more information . . .

For more information on the video op amps and subcircuits discussed in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

```
Analog Devices Inc
Box 9106
Norwood, MA 02062
(617) 329-4700
FAX (617) 329-1241
Circle No. 700
Burr-Brown Corp
Box 11400
Tucson, AZ 85734
(602) \(746-1111\)
FAX (602) 889-1510
Circle No. 701
```

Comlinear Corp
4800 Wheaton Dr
Fort Collins, CO 80522
(303) 226-0500

FAX (303) 226-0564
Circle No. 702
Elantec Inc
1996 Tarob Ct
Milpitas, CA 95035
(408) 945-1323

FAX (408) 945-9305
Circle No. 703

Harris Semiconductor

Box 883

Melbourne, FL 32901
(407) 724-3704

FAX (407) 724-3937
Circle No. 704
Linear Technology Corp
1630 McCarthy Blvd
Milpitas, CA 95035
(408) 432-1900

FAX (408) 434-0507
Circle No. 705

Maxim Integrated Products Inc
120 San Gabriel Dr
Sunnyvale, CA 94086
(408) 737-7600

FAX (408) 737-7194
Circle No. 706
National Semiconductor Corp Box 58090
Santa Clara, CA 95052
(800) 272-9959
(408) 721-5000, ext 18096

FAX (408) 721-4148
Circle No. 707

VOTE . . .
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 473 Medium Interest 474 Low Interest 475

VIDEO OP AMPS AND SUBCIRCUITS

0.05% and 0.05°. The result, according to the company, is that this equipment can at best measure differential gain and phase as small as 0.04% and 0.01°, respectively.

Comlinear has an application note describing its method of testing differential gain and phase (Ref 1). The method involves ramping the dc output of the amplifier and using a network analyzer to observe the small signal changes.

Many video applications require driving a doubly terminated 75Ω cable, or a total of 150Ω. For these cases, a gain of 2 is optimum for delivering an exact replica of the signal to the receiver. Thus, if not unity-gain stable, most video op amps are at least stable for gains of 2 .

Driving these cables requires output-drive capability, and several video op amps can supply between 50 and 100 mA to the output. Analog Devices' AD811 typically can supply 100 mA ; Elantec's EL2073 and EL2120 (both \$7.95) can supply a minimum of 50 and 60 mA , respectively.

Many video op amps have a wide operating power-supply voltage range, which lets you use the same devices in different parts of a system. Some amplifiers are specified over the ± 5 to $\pm 15 \mathrm{~V}$ range. Linear Technology's LT1227's range extends from $\pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$. Note, however, that a device's performance specifications at each supply level may differ. For example, the AD811's gain flatness specification extends to 35 MHz for $\pm 15 \mathrm{~V}$ but shrinks to 25 MHz when the op amp operates with $\pm 5 \mathrm{~V}$ supplies.

The power dissipation of highspeed parts continues to diminish. Burr-Brown's BUF600 and -601 video open-loop buffers ($\$ 5.68$, $\$ 5.83$) have quiescent currents of 3 and 6 mA , respectively, and a signal bandwidth of 320 MHz . Comlinear's CLC411 op amp has a $10-\mathrm{mA}$ noload typical quiescent current.

Fig 1-Driving cables is a challenge for any high-speed video amplifier. The El2099 distribution amplifier from Elantec can deliver $\pm 11 \mathrm{~V}$ into 25Ω at slew rates of 900 V / μ sec while operating from $\pm 15 \mathrm{~V}$ supplies.

Finally, the cost of these parts is becoming competitive with the cost of discrete designs. You'll find these specs in many op amps that cost less than $\$ 3$ (Ref 2).

Features add flexibility

The standard specifications and cost of these stand-alone op amps are noteworthy. But these amplifiers can also include extra features. Several devices include fast disable pins, which makes connecting amplifiers in parallel and switching between them easy. Video op amps that have disable functions include the AD810, CLC411, and LT1227.

Several video amplifiers implement gain control. The LT1228 (\$3.95) current-feedback amplifier includes a dc to $75-\mathrm{MHz}$ gain-controlled amp . Together, the two amplifiers form a wideband variable-gain amplifier that has a $60-\mathrm{dB}$ control range. While driving a 75Ω cable, the device's differential gain and phase
are 0.04% and 0.1°, respectively.
These stand-alone amplifiers can work together to implement a variety of video functions, such as distribution amplifiers, video buffers, differential receivers, and dc-restoration amplifiers. However, many of these functions are available in stand-alone ICs.
Distribution amplifiers are common in video systems, and highperformance types are becoming available. Operating from $\pm 15 \mathrm{~V}$ supplies, Elantec's EL2099 (\$4.95) can deliver $\pm 11 \mathrm{~V}$ into 25Ω at $900 \mathrm{~V} /$ μ sec and can drive six 75Ω, doubleterminated cables (Fig 1). (The part also works at $\pm 5 \mathrm{~V}$.) This device features differential gain and phase of 0.03% and 0.05°, respectively.
Differential receivers and difference amplifiers help reject commonmode noise at high frequencies. The AD830's (\$2.95) common-mode rejection ratio at 5 MHz is 60 dB . The device can provide 50 mA to an out-

Mil/Pac ${ }^{\text {m }}$ high-density military power supplies.

Now you can order Abbott's full mil-qualified compact power supplies in both DC and AC input models.

Mil/Pacs come in 20W, 35W and 50W configurations, with single ($5,12,15,24$, or 28 V) or dual $(\pm 12 \mathrm{~V} ; \pm 15 \mathrm{~V}$) outputs.
DC-to-DC models accept input from 14 V to 32 V . AC-to-DC models accept 103.4 to 126.5 V rms, $47-440 \mathrm{~Hz}$ single phase.

All Mil/Pacs operate at temperature extremes from
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. All are designed with a field-proven topology that has been verified by rigorous environmental stress screening.
Mil/Pacs are available with or without MIL-STD-2000. Either way, the specs are worth reading. Just write us at 2727 South La Cienega BI., Los Angeles, CA 90034. Or call (213) 936-8185.

PCO DP-DC CIDUSTRIAL COIVERIERS Economical Wide Input Voltage 36-170V DC Hi Reliability

Single and Dual Isolated Outputs
Low Profile, .500" max. ht. Up to 15 Watts
No External Components Required

- Fully Regulated
- Short Circuit Protection

No Heat Sink or Electrical Derating Required $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operating Temp. Ambient

Delivery-
stock to one week $\sqrt{\text { See EEM }}$ send direct for PICO or send PICO Catalog Electronics, Inc. 453 N. MacQuesten Pkwy. Mt. Vernon, N. Y. 10552 Call Toll Free 800-431-1064 IN NEW YORK CALL 914-699-5514 faX 914-699-5565

VIDEO OP AMPS AND SUBCIRCUITS

Fig 2-Configured as a differential-line receiver, the AD830 from Analog Devices receives a differential signal from system A relative to A 's ground and exactly reproduces that voltage relative to the ground of system B. The device rejects any common-mode noise caused by ground noise, interference, or a mismatch between system grounds.
put and draws a quiescent current of 14 mA (Fig 2).
Some single amplifiers also include video-specific functions. National Semiconductor's LM1202 ($\$ 8.50$) is a $230-\mathrm{MHz}$ video amplifier system for high-resolution monochrome or RGB color monitors. The device includes one video amp, a gated differential-input black-level clamp comparator for brightness control, a dc-controlled attenuator for contrast control, and a dccontrolled subcontrast attenuator for drive control.
Devices that contain three amplifiers can serve as preamplifiers for graphics displays. Having three amplifiers in each package lets you slave the three devices, which provides for better tracking of the three color channels. High bandwidth for these amplifiers is necessary because of displays' highresolution and refresh-rate requirements. For example, a $1280 \times 1024-$ pixel display requires amplifier bandwidths of 100 to 120 MHz .
The one drawback of triple devices is crosstalk, which is invariably higher in packages that contain multiple high-speed amplifiers. To minimize crosstalk, National Semiconductor packages its triple RGB amplifiers in large packages and adds multiple power and ground pins to help isolate each amplifier. The isolation between one channel and a reference channel of the com-
pany's LM1203 and LM1204 (both $\$ 6.85$) devices is 15 dB at 100 and 150 MHz , respectively. At lower frequencies, the isolation rises to 60 dB or greater.

Elantec also sells two triple amplifiers, the EL2390 (\$6.95) and EL2393 (\$5.25). Each amplifier in these devices has a flatness of 0.1 dB to 10 MHz .
Triple-amplifier devices often contain much more than three amplifiers. For example, the EL2390 includes dc-restore circuitry. In addition to the three balanced amplifiers, the LM1204 contains on-chip blanking, a sync stripper, and backporch clamp generators. The chip also provides digital control of the contrast adjustment, brightness, and color balance. The device directly drives most hybrid or discrete CRT amplifier input stages without needing an external buffer transistor.

EDU

References

1. Potson, David, and M Steffes, "Differential gain and phase for composite video systems," Application note OA08, Comlinear Corp, 1989.
2. Swager, Anne Watson, "Highspeed monolithic op amps: Low-cost op amps break speed barriers," EDN, January 2, 1992, pg 53.
[^5]
Disk drive stores 21 Mbytes using 1.3 -in. platters

Bypassing the 2.5- and $1.8-\mathrm{in}$. diskdrive form factors, HewlettPackard has introduced a drive that uses 1.3 -in.-diameter media. The Kittyhawk drive holds 21.4 Mbytes, measures $2 \times 1.44 \times 0.4 \mathrm{in}$., and weighs less than one ounce. You can actually fit two Kittyhawk drives in the volumetric space required by available 1.8 -in. drives.
The small size, low weight, and ruggedness of Kittyhawk prompted the company to label the product a "personal storage module" rather than a disk drive. The drive can operate reliably through a 100 g shock-equivalent to a 3 -ft fall onto a concrete floor. The operatingshock spec is five times better than what the best $1.8-\mathrm{in}$. drive can offer and one or more orders of magnitude better than $2.5-\mathrm{in}$. and larger drives. Therefore, the Kittyhawk will target applications ranging from automobiles to laser-printer font cartridges to video-game cartridges, as well as portable-computer applications.

The drive operates through shocks by preparing for them. It uses the same type of technology used by car makers to sense collisions and deploy air bags. Therefore, the on-board controller can ensure the drive heads are not reading or writing data when a severe shock occurs.
The manufacturers of Flash memory storage devices have targeted traditional disk-drive applications with products that cost $\$ 50$ and more per Mbyte. Kittyhawk has the physical characteristics necessary to serve the same applications at OEM prices that should soon be less than $\$ 10$ per Mbyte. The drive's low price and ruggedness may well find it a place in traditional solid-state applications more than vice versa.

Kittyhawk provides a minimum of $100,000 \mathrm{start} /$ stop cycles and features a MTBF of 300,000 hours. The drive spins its platters at 5400 rpm , resulting in an average rotational latency of 5.6 msec . It also features an average seek time of 18 msec and a sustained data-transfer rate of $0.9 \mathrm{Mbytes} / \mathrm{sec}$.

The drive's controller includes a 4-level power-management scheme consisting of active, idle, standby, and sleep modes. Power consumption ranges from 2.2 W at startup, to 1.6 W for read/write operations, to 15 mW while in sleep mode. And the drive only requires 750 msec to spin up from sleep mode. The drive uses two glass-substrate platters and records data on three surfaces.

Kittyhawk's $0.4-\mathrm{in}$. height should
make it among the first products to meet the new PCMCIA type-3 (Personal Computer Memory Card Industry Association) standard for removable disk drives. Furthermore, two Kittyhawk drives can fit in a single PCMCIA type-3 slot.

You can buy samples of the Kittyhawk now for $\$ 450$, and production units will ship this month. Furthermore, expect higher-capac-ity-drive announcements from the company later this year. The drive's areal density of $111 \mathrm{Mbits} / \mathrm{in}^{2}$ is state of the art, but not on the outer fringe of levels available with current technology.-Maury Wright
Hewlett-Packard Co, 11413 Chinden Blvd, MS 337, Boise, ID 83714. Phone (208) 323-2332. FAX (208) 323-3991.

Circle №. 730

The first 1.3 -in. disk drive available, called Kittyhawk, stores 21.4 Mbytes in a $2 \times 1.44 \times 0.4$-in. package and can operate through a 100 g shock. EDN-PRODUCT UPDATE

Software builds analog models automatically

The Analog Model Synthesis software tool accepts graphical data from circuit simulations or laboratory instruments and produces an equivalent analog behavioral model from that data. The model is written in the company's Mast analog hardware-description language. For frequency-domain simulations, the synthesizer can extract pole and zero information from the input data. In the time domain, the synthesizer models frequency response.

You can use this $\$ 2000$ product to create a model of an actual component, using lab equipment for applying stimulus to and measuring response from the part, or to convert a circuit-level description into a behavioral one. Usually, circuitlevel descriptions are more accurate than behavioral descriptions, but they require more simulation time. Replacing circuit-level models with behavioral models can reduce simulation times by orders of magnitude.
Analog behavioral models can benefit chip, board, and system designers. Chip designers can use behavioral models of proven cell designs to speed up the overall simulation time of an IC while using cir-
cuit-level descriptions of newly designed cells to investigate the cells' behaviors. Board designers can encapsulate the behavior of entire subsystems using the synthesizer's ability to build models from stimulus and response data. Board and system designers can use the synthesizer to create behavioral simulation models for sensors, actuators, and other subsystems external to the circuit under development.

The company has demonstrated the synthesizer by using it to model a switched-capacitor filter (Fig 1). Because the synthesizer looks only at the input and output waveforms, the tool's output doesn't reflect the underlying circuitry. Thus, it didn't really matter whether a continuousor discrete-time filter was being modeled. For the simple 1-pole filter model in Fig 1, the result would have been the same either way. You can use the synthesizer to create more complex models having more poles and zeros if you wish.
-Steven H Leibson
Analogy Inc, 9205 SW Gemini Dr, Beaverton, OR 97075. Phone (503) 626-9700. FAX (503) 6433361.

Circle No. 731

Fig 1-The response of a 1 pole switched-capacitor-filter model created by the Analog Model Synthesis software tool (blue trace) closely follows the general trend of the actual circuit's response (yellow trace). The tool can produce more accurate models having more poles and zeros, if you prefer.

\squareAt last. A personal output device that combines the best features of a desktop laser printer with the ability to produce large format drawings. It's called ProTracer - a 360 dpi desktop printer/plotter that produces A, B, as well as C-size output. ProTracer's speed and quiet operation come from the latest Canon inkjet technology and an Intel i960 processor. Drawings that take up to half an hour to print on a pen plotter take only five minutes on ProTracer! And, unlike other large format devices, ProTracer isn't limited to plotting. Start with the ProTracer base unit that incorporates resident IBM ProPrinter and Epson LQ1050 emulations, as well as an ADI plotter driver for AutoCAD users. Then, depending on your needs, choose from a variety of optional accessories includ-

Optional Printer Accessories	
HP-GL emultaion cord	\$399
Postscript language emulation card	5499
2 MB memory upgrade	\$299
4 MB memory upgrade	5499
8 MB memory upgrade	5899
Sheet feeder I (100 sheet)	S149
Sheef feeder II * (100 sheet)	\$129
Pocifitallk (Appletalk interface module)	\$199
*Sheet feederl is required for use	

ing HP-GL ${ }^{\oplus}$ and PostScript ${ }^{\text {® }}$ language emulation cards.

On a much larger scale.

At Pacific Data Products, we're devoted to customer service. We offer a 60 -day money back guarantee of satisfaction, one year and optional extended warranties, and free lifetime technical support. Should you require a replacement unit while under warranty, one will be rushed to you immediately to minimize your downtime.

If you'd like to expand your printing and plotting capabilities, call Pacific Data Products at (619) 597-4653, Fax (619) 552-0889.

PACIFIC DATA
 P R O DUCTS

[^6]
Use the "574" of the Future... Today

The
 Evolution Continues

Since its introduction in the early 70's, the "574" has evolved from a multi-chip hybrid in an expensive, ceramic package to our new ADS574 and ADS774. Instead of requiring three supplies with power requirements approaching 1 watt these low power, single supply, low cost, complete solutions are your " 574 " of the future-here, now!

Advanced Innovations

We designed our new 12-bit CMOS A/D converter with the future in mind. ADS574 and ADS774 drop into most applications without any system modifications, use only 100 mW power, and operate from a single +5 V supply. Complete with on-chip sample/ hold, clock, reference, $\mu \mathrm{P}$ interface, threestate outputs, and internal scaling resistors, ADS574 and ADS774 are tomorrow's innovations.

Key

Specifications

- Throughput time (acquire \& convert) 25 us max..... ADS574 8.5μ s max.... ADS774
- Power consumption 100mW max...ADS574 120mW max...ADS774
- Single +5 V supply
- Guaranteed AC, DC performance
- Industry standard input ranges
- Industry standard digital interface
- Compact 0.3" or plug compatible 0.6" wide 28-pin plastic or ceramic DIP. 28-pin SOIC, die
- From \$13.10*

Try it Now!

Try tomorrow's parts...now. Test these innovative parts in your design. Just call 1-800-548-6132 for samples and detailed data sheets or contact your local sales rep for immediate assistance.

* U.S. OEM prices, in 100 s.

Burr-Brown Corp.
P.O. Box 11400

Tucson, AZ 85734

EDN-PROCESSOR UPDATE

16-bit microcontroller upgrades to $20-\mathrm{MHz}$ clock, 32 -kbyte ROM

Intel continually modifies its 16 bit 196 family, which is one of the first 16 -bit embedded controllers. A new version, the 196 KD , boosts chip clock rate to 20 MHz from the $196 \mathrm{KC's} 16 \mathrm{MHz}$ and doubles on-chip program ROM to 32 kbytes (ROM, one-time-programmable, or EPROM). In addition, onchip RAM has been expanded to 1 kbyte of register and data RAM, up from 544 bytes.
The combination of a faster clock and larger memories raises 196KD code throughput. With the faster clock, multiply (156×16 bits) and divide ($32 / 16$ bits) are $1.4 \mu \mathrm{sec}$ and $2.4 \mu \mathrm{sec}$, respectively. A register-to-register add takes 400 nsec, which is four 100 -nsec internal clock cycles (the $20-\mathrm{MHz}$ external clock is divided down by two, providing a 100 -nsec base clock cycle.) The larger on-chip memory opens up the chip to more effective execution for programs in higher level languages like C or PL / M.

The 196 KD is organized as a register architecture. On-chip RAM consists of a 1 -kbyte RAM organized as 128 16-bit (or 2568 -bit) registers, which serve as sources and destinations for ALU and other operations. The remaining RAM serves as on-chip data memory or as variable size (32-, $64-$, or 128 byte) register windows that can overlay register memory. These register windows support fast context switches, saving processor overhead by switching to another register bank rather than paying the cost of saving and restoring the current register values.

Memory address space is a single, 64 -kbyte space shared by both code and data. The chip provides an 8and 16 -bit external memory interface for accessing external memory. External memory access costs two clock cycles. Because the chip has programmable wait states, it can accommodate slower memories.

Originally developed as a custom
processor for an automotive customer, the 196 suits motor control as well as automotive applications. Over the years, a peripheral set for the 196 has evolved that includes an ADC with variable scheduling, PWM generators, complex timing packages for capturing and detecting timing events, a waveform generator, and a peripheral controller for processing events without interrupting the CPU code stream. One $\mu \mathrm{C}$ variation, the 196 MC , is tailored to control 3-phase ac and brushless de motors.
The 196 KD incorporates a number of $\mu \mathrm{C}$ peripherals: eight 8 -bit I/O ports, an A/D converter, a special PWM generator with three dedicated independent timers, and the 196's HSIO-a high speed, complex timer set for capturing time on external events, and signaling time events. Also on chip is the pe-ripheral-transaction service (PTS), whereby a controller automatically handles peripheral events (such as

Intel's 196, one of the first 16 -bit $\mu \mathrm{Cs}$, has a register-based architecture with fast multiply and divide.

EDN-PROCESSOR UPDATE

Intel 196KD $\mu \mathrm{C}$

- $16-, 20-\mathrm{MHz}$ external clock (divide-by-2 internal clock)
- Register-based architecture with 128 16-bit registers in RAM (or 2568 -bit registers)
- $\operatorname{ADD}(\mathrm{R}+\mathrm{R}), 400 \mathrm{nsec} ;$ NOP, 200 nsec; 1.4- $\mu \mathrm{sec}$ MPY; $2.4-\mu \mathrm{sec}$ DIV
- 1-kbyte RAM (register and data)
- 32-kbyte ROM (EPROM, one-timeprogrammable available)
- Single 64 -kbyte address space
- 8 - or 16 -bit multiplexed external bus
- Off-chip memory controller
- 48 I/O pins
- 2 16-bit timer/counters
- 16-bit watchdog timer
- 8-bit, 3-channel PWM generator
- 8 - or 10 -bit A/D with S / H (programmable)
- High-speed I/O: timer/counter capture and compare unit
- Peripheral transaction service: peripheral DMA controller
- 5 external interrupts
- Full-duplex serial port
- ApBuilder software graphically programs CPU/peripherals (free)
- 68-pin PLCC
- $16-\mathrm{MHz}$ ROM, $\$ 21.95 ; 20-\mathrm{MHz}$ ROM, \$26.25 (2000)

A/D or HSIO time flags) without forcing the CPU to take an interrupt.

PTS takes control of the hardware and can service an event, moving data between peripherals and memory. A PTS single transfer takes 18 states plus 3 for each memory controller reference. A PTS event moves a single byte or a block of data for each transaction.

Programming the 196 is easier than programming the many complex $\mu \mathrm{C}$ (microcontroller) chips because of ApBuilder, a Windowsbased software package developed by Intel. ApBuilder presents an interactive environment for configuring and programming the 196 peripherals. Using it, you can graphically set up and program the chip's peripherals, and the software will generate the appropriate code.

In addition, the package serves as an on-line hypertext data book. It documents the chip's instruction set, peripherals, and controls. This
software package is an effective code-training tool; you can interactively write assembly language code using the 196 instruction set. ApBuilder is free of charge and will be available for the 196 in July.

In addition, Intel is releasing an in-circuit emulator, the ICE196KD/HX, which provides $20-\mathrm{MHz}$ 196KD operation. The ICE handles the $196 \mu \mathrm{C}$ line as well.-Ray Weiss

Intel Corp, Embedded Processor Group, 5000 W Chandler Ave, Chandler, AZ 85226. Phone (602) 554-8080.

Circle No. 732

Graphics processor strips down for X-Window

Designing X-Window terminals that cost less than $\$ 1000$ is a tough task. It is getting easier, however, as chip vendors tailor processors to deliver low-cost, high-resolution-graphics performance. Texas Instruments has stripped down its TMS34020 graphics processor for low-cost, gray-scale and color X-terminal designs. In volume quantity, the processor will cost less than $\$ 40$.

The TMS340X is a scaled-down TMS34020: It retains the $40-\mathrm{MHz}$ clock but runs as a stand-alone processor rather than a PC coprocessor. To reduce costs, the PC host, coprocessor, and multiprocessor interfaces have been stripped off. For an X terminal, the TMS340X acts as the X-graphics-server CPU driven by one or more applications that run on networked client-application processors. The processor has a 16 - or 32 -bit CPU with a 16 -bit instruction word (multiple words for some operations) and 32-bit ALU and data.

The TMS340X isn't the only Xterminal processor. Other chips that target low-cost X terminals include the AMD 29 K , Intel i960, and

LSI Logic Mips-based LR33020
RISC processors.
The 29 K family is a classic RISC design that migrated to embedded systems, suiting applications in laser printers and X terminals. Intel's i960 is a specialized RISC family also used in laser printers, X terminals, and communications systems. The upper end of the 1960 family

Texas Instruments TMS340X

- 32-, 40-MHz external clock (divide-by-4 internal clock)
- 32-bit processor; 32-bit data word and ALU; 16-bit instruction; 32-bit multiplexed external memory bus
- 30 32-bit registers in two sets: A set-15 general purpose; B set-15 special purpose
- 512-byte instruction cache (256 words)
- 100-nsec ADD (R+R), NOP
- 3.7- $\mu \mathrm{sec}$ MPY; 3.7- $\mu \mathrm{sec}$ DIV
- Single 512-Mbyte address space
- External bus for dynamic RAM, video RAM: provides as much as 1 Mbyte of VRAM; $\overline{C A S}$ strobe for DRAM; VRAM block writes; minimum 2 cycles for access
- Pixel addressing (x, y coordinates) (linear)
- Programmable pixel sizes of $2,4,8$, 16 , or 32 bits
- Built-in graphics processing: clipping, line checks, rotate and merge variable width fields, detect pixel in window, find left- or right-most bit, fill, pixel block moves
- Programmable CRT control signals; display refresh
- 144-pin pin-grid array
- $\$ 75$ (sample qty), available in July; in production qty, less than $\$ 40$ $(10,000)$ by fourth quarter
includes superscalar RISC CPUs. To minimize extra logic, AMD's 29200 has on-chip memory and video interfaces. LSI Logic pushed this further with its Mips-based LR33020, integrating special peripheral functions with a core Mips R3000 CPU. These peripherals include a bitblt processor, video controller, and four DMA channels.

The advantage of the TMS340X is that it's a dedicated graphics

Now You Can See True Colors Without Getting Soaked.

New full-featured RAMDACs from Brooktree deliver 24-bit true color for cost-conscious PC designers. Introducing four new RAMDACs that span the spectrum of PC applications, from 640×480 VGA systems to 1280×1024 workstation-quality graphics. They've got the right features, the right prices and are available right now.

True Color In A VGA Environment

 Unplug Sierra. Plug in our totally compatible Bt481 or Bt482. You'll get 24-bit performance at 16-bit prices.These new RAMDACs support 15-bit TARGA, 16 -bit 5:6:5 and 24-bit true-color formats. They even allow you to switch between VGA and true color on a pixel-by-pixel basis.

Choose the Bt481 if you prefer an external
hardware cursor. Or pick the Bt482 for its on-board $32 \times 32 \times 2$ cursor - ideal for faster windowing environments.

Workstation Graphics at PC Prices Introducing the Bt484 and Bt485, our newest mouth-watering RAMDACs. They combine true color with higher resolutions for higher performance graphics subsystems. And they're economical, too.

Bt 485 operates at up to 135 MHz to drive pseudo color to 1280×1024 resolutions and gamma correct true color to 1024×768. It has a $64 \times 64 \times 2$ cursor and all the serialization and timing to directly interface to a VRAM frame buffer

Bt484 provides maximum flexibility with its programmable pixel port to provide 256
to 16.8 million colors, on-board $32 \times 32 \times 2$ cursor and supports both interlaced and noninterlaced monitors.

Call Brooktree at 1-800-VIDEO-IC for technical details and pricing today

Brooktree Corp., 9950 Barnes Canyon Road, San Diego, CA 92121, (619) 452-7580, FAX (619) 597-0673.
Brooktree
processor. Even though its divide-by-4 clock makes it slower than the high-clock-rate RISCs, the chip directly supports graphics processing, which simplifies graphics programming greatly. For example, the TMS340X CPU provides bitlevel addressing to the pixel level. Programmers don't have to convert word- or byte-level code to find and handle bit-level data. The CPU addresses pixel data at the bit level, either as an x, y display construct or as a linear stream of bits.
Even better, pixel and screen sizes are programmable, held in special hardware registers. The same code can drive different-size CRT displays and pixel sizes without changes-other than setting the defining hardware registers. Thus, 340X designs can work with different graphics configurations without needing redesign. The 340X's graphics instructions include pixel draw and advance, pixel transfer, inner loop of Bresenham's line algorithm, a fast line draw, pixel block transfer, fill pixel array, clip an array for window, test if pixel point in window, and fill trapezoid block
lines. Window-checking hardware checks pixel placement relative to a defined window and provides automatic transparency processing for combining pixel overlays.

The chip provides mixed-memory implementations of dynamic RAM (DRAM), video RAM (VRAM), and ROM. The chip has a 32 -bit multiplexed external bus, but it provides page-mode support with shared $\overline{\text { RAS }}$ and CAS address lines. Memory support includes as much as 1 Mbyte of VRAM and 4 Mbytes of DRAM. A complete X-terminal subsystem—with a 340 X chip, memory (VRAM, DRAM, boot EPROM), LAN chip, keyboard/ mouse/serial-port controller, two to three PAL devices for glue logic, and a RAMDAC-takes up just 35 to 42 in 2. TI's 9×10-in. X-terminal evaluation board is called the Wildcat; the company also supplies RAMDACs, including a strippeddown palette chip for low-cost gray X terminals (TLC34074).
The basic bottleneck of this chip is memory bandwidth-the amount of pixel or graphic data it can move in a given time. The 340X has a

The TI 340X is a stripped-down, stand-alone TMS34020 graphics processor that targets X-terminal applications.
small on-chip instruction cache, 512 bytes or 25616 -bit instructions-or less, for multiple word instructions. This is enough for graphics algorithm inner loops, given the CPU's compact graphics instructions. Thus, in an inner loop, the memory bandwidth can be dedicated to pixel manipulation. With a $10-\mathrm{MHz}$ internal clock and a 2 -clock memory cycle, pixel bandwidth reaches 20 or $80 \mathrm{Mbytes} / \mathrm{sec}$ when setting four pixels to the same value in VRAM. According to the company, the 340X will support both color and gray-scale CRTs with a 1280×1024 resolution, and 8 -bit pixels (256 colors or shades).
The TMS340x is code compatible, but not pin compatible, with the TMS34020. Instead, it comes in a lower-cost, 144-pin quad flatpack. Development tools include an ICE, assemblers, C compilers, and graphics libraries.-Ray Weiss
Texas Instruments Inc, Box 809066, Dallas, TX 75380. Phone
(800) 336-5236, ext 3990; (213) 9956611, ext 3990.

Circle No. 733

$386 \mu \mathrm{P}$ operates at 3.3 and 5 V

Switching from 5 to 3.3 V for lowpower applications isn't as easy as you might think. Some key parts still have only 5 V versions, but not Intel's 386SL. This processor can handle mixed-voltage systems in which some circuits are 3.3 V and others 5.0 V . The chip's ability to manage both voltages eliminates the need for additional voltagetranslation hardware.
Designers built the 386SL by integrating a static 3.3 V processor core with programmable voltage translators. This version lets you reconfigure existing notebook computers designed around the 5.5 V 386SL for 3.3V peripherals without adding additional circuitry. You can set both the memory bus and the

LaSt Sepiemben, 85 MIIIION PEPPIE Desprerativ Wantit A demowstraiton of OUR FINEST LOEIC ANaIzzer.

Only one logic analyzer could have brought the most crippling communications failure in U.S. history to a swift conclusion.

The new DAS/SE from Tektronix. With 200 MHz synchronous clocking, thousands of cycles of memory depth, and literally
hundreds of channels, the DAS/SE is without question the fastest and most powerful logic analyzer around. And with 11

different stimulus $\&$ acquisition modules, it can be configured to solve any of your digital debug
problems. For a personal demonstration, call Tektronix today and ask about the DAS/SE. The logic
analyzer that could very well prevent another banner year. TALK TO TEK/1-800-426-2200 EXT. 73

Tektronix

New Four or Eight Channel Programmable Analog Filter

IOtech's Filter 488 prevents A / D converter aliasing

IOtech's Filter 488 is a four or eight channel IEEE 488 or RS-232 programmable lowpass filter that can be configured with Bessel, Butterworth, Chebychev, or elliptic filter modules for use in time and frequency-domain applications. These filter options make the unit a versatile alternative to custom filters and PC plug-in and data-acquisition board filters, which offer less configurability.
Anti-Aliasing for Accurate Measurement. Filter488 increases test system accuracy by preventing A/D converter aliasing, which occurs when frequency components of a measured analog signal exceed one half the converter's sampling rate, leading to falsesignal generation. Filter488's low-pass 8pole Bessel, Butterworth, Chebychev, and elliptic filter options prevent aliasing by eliminating the measured signal's high frequency components, thus limiting its bandwidth. These filters provide attenuation slopes of $30 \mathrm{~dB}, 48 \mathrm{~dB}, 60 \mathrm{~dB}$, and 70 dB , respectively, which enable steep rolloff with high stopband attenuation and suit them for antialiasing applications wherein the desired signal is near the cutoff frequency.
Wide Cut-Off Frequency. Filter 488 features a 0.5 Hz to 50 kHz cut-off frequency, programmable in range-determined increments of .002 to 100 Hz , for excellent differentiation between wanted and unwanted signals. The unit also permits direct reading of low-level voltages without filtering via a bypass mode that provides $\mathrm{X} 1, \mathrm{X} 10$, or X100 input gain.

Easy TestSystem Integration. Filter 488 's range of programming options permits its use with an array of test systems and computer platforms. For example, its IEEE488 programmability enables its integration into IEEE 488 systems for use as a front end with digitizing oscilloscopes and other digitizers or as an output filter with arbitrary function generators. Filter488's RS-232 programmability permits its integration into PC plug-in A/D board-based systems via a PC's COM port, eliminating the need for an IEEE interface.

Filter 488 is rack mountable and offers BNC terminal signal connections for easy test system connection and integration. It also features a nonvolatile memory for userdefinable configuration upon power up.
Software Programmable Calibration. Filter 488 provides software-controlled offset adjustment by means of on-board D/A converters for each of its channels. These converters enable the controlling computer to perform automatic nulling of outputs based on external A/D converter measurements, eliminating the need for the user to make manual potentiometer adjustments.

Pricing. The four channel Filter488/4 is priced at $\$ 1,995$, and the eight channel Filter $488 / 8$ is priced at $\$ 2,995$. Both are available from stock. For more information, call IOtech at (216) 439-4091 or fax your request to (216) 439-4093.
standard PC/AT bus interfaces to 5 or 3.3 V operation.

The 386SL is an extended 386. Chip designers increased processor throughput by adding an on-chip cache controller. To minimize glue logic and power, designers also added an ISA bus controller, a dy-namic-RAM controller, and EMS (expanded memory) 4.0 hardware. A system-management mode integrates extended power management into the system. Instead of a single NMI (nonmasked interrupt) reset, the system supports several

Intel 386SL $\mu \mathrm{P}$

- $20-, 25-\mathrm{MHz}$ external clock
- 32-bit processor
- Static design, clock down to 0 Hz
- Register-based architecture; eight 32-bit registers: 4 general, 4 pointer; six 16 -bit segment registers
- Cache controller and tag static RAM for off-chip, write-through cache; no glue logic; 16-, 32-, or 64-kbyte cache; direct, 2- or 4-way set-associative organization; 16 -bit line size
- Memory controller addresses as many as 32 Mbytes; page-mode interface; hardware LIM EMS (expanded memory) 4.0 address translation; 7 -clock-cycle read/write
- ISA bus interface
- 3.3V core; 3.3, 5 V interfaces
- 227-pin land-grid array
- 20-MHz version, \$101 (\$84 without cache); $25-\mathrm{MHz}$ version, $\$ 122$ (1000)
system-management interrupts. External and internal events that can trigger these interrupts include a battery-low indicator, suspend button, modem ring, alarm, and various clocks.

The 386 SL is part of a 2 -chip set. The other chip, the 82360SL, serves as an ISA peripheral subsystem. The chip has two DMA channels, two timer/counters, a real-time clock, two serial I/O ports, an interrupt controller, and a keyboard controller. The two chips interact via the system ISA bus.-Ray Weiss

Intel Corp, Box 58119, Santa Clara, CA 95052. Phone (800) 5484752 for literature. Circle No. 734

When Every Nanosecond Counts

Squeeze critical nanoseconds from your high-speed logic interface with the fastest FCT logic available. IDT's FCT-CT family offers speeds that are 50% faster than standard FCT or FAST logic families - as fast as 3.4 ns (typical)!

The Perfect System Solution

As a system designer, you need the perfect combination of:

1. Fastest speed

2. Low ground bounce
3. Low power consumption

FCT-CT logic has true TTL compatibility for ease of design. The reduced output swings and controlled output edge rate circuitry ensure low system noise generation. No other technology offers higher speeds or lower power consumption.
The FCT-CT family is completely pin- and function-compatible with FCT logic, and is available today in all standard packaging.

FUNCTION	PROPAGATION DELAY (Max)	OUTPUT ENABLE (Max)	OUTPUT DISABLE (Max)
Buffers	4.1 ns	5.8 ns	5.2 ns
Transceivers	4.1 ns	5.8 ns	4.8 ns
Registers	5.2 ns	5.5 ns	5.0 ns
Latches	4.2 ns	5.5 ns	5.0 ns

Free Logic Design Kit

Call our toll-free hotline today and ask for
Kit Code 3061 to get a 1991 High-
Speed CMOS Logic Design Guide and free FCT-CT logic samples.

(800) 345-7015 • FAX: 408-492-8454

The IDT logo, CEMOS, BiCEMOS, and R3051 are trademarks of Integrated Device Technology, Inc.

12ns 256K SRAMS

Fastest cache solutions for RISC and CISC CPUs. 36+ ultra-high-speed submicron SRAMs for 33 MHz processing \& beyond are in the SRAM Data Book.

35mips RISC CHIPS AND MODULES

R3000A for the most mips at any MHz; R3051 for CPU, cache, \& buffers on one chip. Modules, eval. boards \& software complete the family. See them in the RISC Data Book.

HIGHEST-PERFORMANCE MEMORIES

Fast FIFOs, dense dual-ports, BiCEMOS ECL, \& memory modules. $120+$ FIFOs \& multi-port memories, 5 ns ECL, \& multi-chip modules are in the

Specialized Memories Data Book.

Call today for your new IDT data books with complete technical specifications and application information.

Designing it, however, took slightly longer.

The key was simplicity. Getting the design down to as few parts as possible.That's where our engineers really outdid themselves.

You see, it takes only a handful of parts to produce our new 7213.

Far fewer than any other drive in its class.

But it also takes something else. Experience.

In designing the 7213, Maxtor engineers took full advantage of the experience that comes from producing more than 3 million 7000 series drives at our world class

Howlongdid it take lowest cost 200 M B dish

manufacturing facilities.
The end result? A disk drive that's easier to manufacture in high volumes. And with greater reliability and lower production costs.

And that's great news for you.The Maxtor 7213 is simply the lowest cost 200 MB class disk drive in the business.

It's just one more example of the "New Drive at Maxtor." A very serious
commitment to customer satisfaction. Unequalled service and support. And visionary product design.

For more information, take a few seconds to call 1-800-2-MAXTOR. The Maxtor 7213. It drives a hard bargain.

us to produce the drive? About 8 seconds.

WORLD 8- and 16-bit microcontrollers

The microcontroller ($\mu \mathrm{C}$) world is bubbling with new and evolving processors. Architectures range from simple accumulator-based CPUs to general-purpose registerset implementations having RISClike features. Gone are the days when engineers had to make do with a simple timer and a few I/O ports. Today's $\mu \mathrm{Cs}$ are bulking up on peripherals, such as A / D converters, secondary clocks, and LCD drivers. Complex timer sets and peripheral controllers offload $\mu \mathrm{C}$ CPUs by generating signals and processing events independently.

First-generation $\mu \mathrm{Cs}$ are also moving up the performance trail. Designers are adding peripherals and increasing clock rates. Designers have also optimized 8 -bit $\mu \mathrm{Cs}$ such as Motorola's 68HC05 and Zilog's Z8 for low-end applications by reducing pin counts, using smaller packages, and lowering large-volume costs to less than $\$ 1$ each. These 8 -bit chips are now challenging the dominance of 4-bit $\mu \mathrm{Cs}$ in low-end applications.

Architectural innovation is flourishing as $\mu \mathrm{C}$ designers devise new implementation strategies to boost chip performance. You want processing power? Now you've got it

> From meager beginnings, microcontrollers have evolved into a wide range of diverse processors.
> You can find a $\mu \mathrm{C}$ with the right speed, peripheral mix, power, and price for almost any embedded application you'd care to tackle.

Ray Weiss, Technical Editor

with DSP coprocessors or MAC (multiply and accumulate) units bolted onto 8 - and 16 -bit μ Cs. Chip designers have also improved performance by tailoring $\mu \mathrm{Cs}$ for specific applications such as industrial and process control and fuzzy-logic processing.
Today there's a controversy about which is more effective: accumulator-based $\mu \mathrm{C}$ CPUs that have a few hardware registers or CPUs that rely on a set of generalpurpose registers. First-wave 8and 16 -bit microcontrollers were
accumulator based. Silicon was expensive in the 1970s, so architectures tended to use one or two accumulators and only several index registers. Most operations, particularly those to and from memory or the ALU, passed through the accumulator. Second-wave $\mu \mathrm{Cs}$ took advantage of increasing silicon densities to weigh in with one or more general register sets but no accumulators.

First-wave $\mu \mathrm{Cs}$ include the 8 -bit Intel 8048 and 8051, National Semiconductor COP800, Motorola $6800 / 68 \mathrm{HC} 11$, and SGS-Thomson ST6, as well as the 16 -bit National Semiconductor HPC, Motorola 68 HC 016 , and Intel 196. Secondwave $\mu \mathrm{C}$ members include the 8 bit Microchip PIC family and Zilog Z8, as well as the 16 -bit NEC K0/ K2/K3 family, Siemens 80C166, and Hitachi H8. Some $\mu \mathrm{Cs}$, like the Z 8 , don't have on-chip data RAM at all. Instead, they address on-chip data storage as sets of registers.

Intel's 8048 , a pioneering 8 -bit $\mu \mathrm{C}$, has an accumulator-based architecture as well as dual sets of general-purpose registers. Operations must go through the accumulator, but RAM-based generalpurpose registers are available to

8- and 16-bit microcontrollers

hold interim values. Intel's popular 8051, like its parent 8048, has an accumulator and a register file. The device has four RAM-based register sets, but externalmemory ALU operations must still pass through an accumulator.
Another $\mu \mathrm{C}$ that combines an accumulator with register RAM is Microchip's PIC16C5x and -17C42 $\mu \mathrm{Cs}$. These processors have a RISC-like architecture that relies on a small on-chip RAM organized as registers. Unlike classic RISC (reduced-instruction-set computer) CPUs, however, PIC registers are not in a multiported register file for multiple single-cycle accesses. Instead, PIC CPUs use an accumulator or working register to hold values for memory and ALU operations.
For the 16 -bit 196, Intel took another tack to get around the accumulator problem. The 196 has 256 accumulators in register RAM, and ALU operations can go through any of them. The ALU core has three temporary registers to hold ALU inputs and outputs.
General-purpose register sets don't necessarily mean faster instruction cycles. Accumulator-based $\mu \mathrm{Cs}$ that have hardware registers can easily gate two register inputs to an ALU in one bus cycle, as can a registerbased CPU that has a set of hardware registers or dual-ported RAM. However, if not dual ported, a RAM-based register set provides one register per RAM access cycle. If an add needs two register values, the CPU needs two access cycles to move the register data for an ALU add operation. Also, the CPU needs a temporary holding register to hold the first value while it accesses the RAM for the second value.
However, general-purpose register sets do have their advantages. They can hold interim values for fast CPU access. Also, multiple register sets enable fast CPU context switches between tasks. Instead of saving all the registers, all you have to do is switch to another register set for the new task. Microcontrollers with RAM-based register sets include NEC's K0/ K2/K3 family, Hitachi's H8 family, Toshiba's TLCS90, and Siemens' 80C166 family. Siemens' 16-bit 80C166 operates on a set of 16 general-purpose registers that reside in dual-ported RAM.

Timer evolution

The first $\mu \mathrm{Cs}$ had relatively simple timers and counters that relied on the processor for bookkeeping and control. The 8048, for example, has a single 8 -bit timer/counter (with a prescalar counter) running with an internal or external clock source. This timer leaves it up to the code to load and track timing. The situation improved with the advent of the 8051, which has two 16 -bit timer/counters. These timers clock at the internal rate (with a prescalar counter) to count time or clock with an external signal to

A register-based architecture (a) can take longer to do an add than an accumulator-based architecture (b). The register-based design requires two cycles to move register values to the ALU.
count events. Counter overflow triggers an interrupt.
With simple timers and counters, complex timing and counting tasks can eat up a lot of code. One school of thought began to separate the actual timer/counter activity from higher-level processing. Several companies defined a new level of hardware counting and timing capabilities, including event-triggered time capture, time-detection events, pulse counting, and pulsewidth modulation (PWM). Instead of using multiple timers, this new approach involves using a free-running timer to detect multiple time points and capture the time of external events.
One of the first $\mu \mathrm{C}$ architectures to benefit from this approach was the Motorola 68HC11. Instead of confining a timer to a single task, the 68 HC 11 has a complex timer. A general-purpose timer runs free and is the base for counting and timing functions. The 68 HC 11 employs input capture and output compare registers. These registers either capture timing values based on an external event or compare the running timer value to values held in compare registers and trigger an interrupt on a match. The timer of Motorola's 16 -bit 68 HC 16 is even more impressive. The general-purpose timer unit includes a capture/compare unit, a pulse accumulator, a prescalar counter, and a PWM unit with two outputs.
Many other μ Cs also employ complex timers. Intel added a complex timer/counter pack to its 8 -bit 8051 $\mu \mathrm{C}$ architecture. The Intel 87 C 51 GB has two program-

EDN-SPECIAL REPORT

mable counter arrays. Each array has a 16 -bit freerunning timer and five compare/capture modules. The timer/counter serves as a time base for the compare/ capture modules, which can act as a software timer, external event-capture register, or PWM generator. The $\mu \mathrm{C}$ also has three 16 -bit timer/counters for baud generation and up/down counting as well as additional timers and event counters.
Siemens also added a complex timer package to its 80C517A-5, a souped-up 8051. Four 16 -bit timers serve the compare/capture unit, which can have as many as 21 output channels and 5 capture inputs.

On the 16 -bit side, Siemens' 80 C166 has two timer units. One unit has two 16 -bit timer/counters for simple tasks; the other unit has three. The $\mu \mathrm{C}$ also has a capture/compare unit having two timers, two reload
registers, and 16 capture/compare registers. The capture/compare unit can handle as many as 16 compare interrupt-request flags and take in as many as eight I/Os as capture-event triggers. Also, Intel's 196 has a complex timer unit similar to the programmable counter arrays in the 87C1GB.

Working smarter

One of the first bits of common wisdom tossed at junior engineers is that it's better to work smarter, not just harder. Microcontroller designers have taken this advice to heart: These days, many $\mu \mathrm{Cs}$ are working smarter, not harder. Instead of slaving $\mu \mathrm{C}$ CPUs to their peripherals, chip designers have offloaded much of the work in setting up, running, monitoring, and exchanging data to peripherals. Not only have

Table 1-Representative microcontroller characteristics

Processor characteristics	Processors (Vendor, $\mu \mathrm{C}$)	Comments
Accumulator architectures	Intel 8051* Motorola 68HC05/11/16 National COP800, HPC1600 SGS-Thomson ST6 Microchip PIC	Stripped-down architectures built around a minimal register set. Generally, all major operations pass through the accumulator.
General-purpose register architectures	Microchip PIC Hitachi H8 NEC K0/K2/K3 Siemens 166, Intel 196 Toshiba TLC90	Chips use general-purpose registers. Many have multiple register sets and do fast context switches.
Complex timers	Motorola 68HC11/16 Intel 8051FA Siemens 166, 80C517A-5 Hitachi H8, NEC K2/K3 TI 370, Intel 196	Complex timers provide functions on top of one or more timers. Functions include register compares, input capture, and multiple interrupts.
Wide-word instructions	Microchip PIC Hitachi H8/300	Chips use an instruction word wider than the data path. A wide word minimizes need for 2-and 3-byte instructions.
Low-voltage chips	National COP800 Motorola 68HC11 Matra 8051 Signetics 8051 SGS-Thomson ST6, Zilog Z8 Hitachi H8	Embedded μ Cs for small systems that need low power consumption. Power cut by using power modes, multiple clocks, static designs, and low-power chips.
RISC techniques	Microchip PIC Hitachi H8 Siemens 166 NEC K0/K2/K3	Pipelined designs have multiple stages, not hardwired CISCs. Small instruction sets; load/store architecture.
DSP, MAC, math capabilites	Zilog Z8 derivatives Motorola 68HC16, 68302 National HP1600 Siemens 80C517A	Add math processing power via an integrated DSP processor or MAC (multiply-accumulate) unit.
Intelligent processing	Motorola 68302, 68HC16 NEC K2/K3, Hitachi H8 National HPC, Intel 196 Toshiba TLC90 Siemens 166	Offload peripheral processing from CPU with on-chip I/O controller.
Peripherals	Motorola 68HC05 National COP8 SGS-Thomson ST6 Zilog Z8	Add range of special peripherals to meet application requirements. Custom chips available having desired peripheral combinations.
Special applications	Echelon Neuron 3150 Togai FC110	μ Cs aimed at specific processing niches such as fuzzy logic or networked industrial control.

[^7]Table 2-Representative 8-and 16-bit microcontrollers

Company	Model	External clock (internal)	Memory	$\begin{gathered} \text { Price } \\ (10,000) \end{gathered}$	Comments
Hitachi	H8/330	(10 MHz)	32-kbyte ROM 1-kbyte RAM	\$7.55	8/16-bit μ C. 200-nsec instruction cycle; 16-bit instructions; OTP version available.
	H8/532	(10 MHz)	32-kbyte ROM 1-kbyte RAM	\$14.20	16 -bit $\mu \mathrm{C}$ has $200-$ nsec instruction cycle and $2.3-\mu \mathrm{sec} 16 \times 16$-bit multiply.
Intel	87C51FC	16 MHz	32-kbyte ROM 256-byte RAM	\$7.10	Programmable counter array, 3 timers, 32-kbyte EPROM.
	80C196KD	20 MHz	32-kbyte ROM 1-kbyte RAM	$\begin{aligned} & \$ 26.25 \\ & (2000) \end{aligned}$	16 -bit μ C. Complex timer, PWM modules, ADC.
Matra	$83 C 154 \mu-30$	30 MHz	16-kbyte ROM 256-byte RAM	\$8.50	Static 8051 has 3 timers with watchdog and 4 I/O ports.
Microchip	PIC16C57	20 MHz	2kx12 bits ROM 80-byte RAM	\$3.16	Low-end, fast 8-bit $\mu \mathrm{C}$ in 28 -pin package. OTP version available.
	PIC17C42	16 MHz	2kx16 bits ROM 256-byte RAM	\$6.25	More powerful PIC. Has 8-bit data and 16 -bit instructions. OTP version available.
Motorola	68 HC 05 K 1	4 MHz	504-byte ROM 32-byte RAM 8-byte EEPROM	\$1.85	Stripped-down 68HC05. 10 I/O pins; 16-pin DIP or SOIC package.
	68HC11E9	4 MHz	12-kbyte ROM 512-byte RAM	\$8	32 kbytes of ROM and 1 kbyte of RAM max. Has compare/capture timer.
	68HC16Y1	4 MHz or 32 kHz (16.78 MHz)	$\begin{aligned} & \text { 48-kbyte ROM } \\ & \text { 2-kbyte RAM } \end{aligned}$	\$34	16-bit μ C has MAC capability and sophisticated peripherals.
	68302	16.78 MHz	1152-byte RAM	$\begin{aligned} & \$ 53.46 \\ & (1000) \end{aligned}$	Communications controller built on a 68000 CPU core. Has 6 serial ports and built-in RISC CPU.
Motorola and Toshiba	Neuron 3150	$\begin{aligned} & 612 \mathrm{kHz} \text { to } \\ & 10 \mathrm{MHz} \end{aligned}$	2-kbyte RAM 512-byte EEPROM (data)	$\begin{gathered} \$ 11.39 \\ \$ 10 \end{gathered}$	Specialized process/network controller.
National Semiconductor	COP820CJ	10 MHz	1-kbyte ROM 64-byte RAM	\$1.25	Low-end, 8 -bit μ C. Has watchdog timer, brownout detection, PWM timer, and analog comparator.
	HPC46100	40 MHz	Off-chip ROM/RAM 1-kbyte RAM	\$12	Integrates HPC CPU with MAC unit, timer, and ADC peripherals.
NEC Electronics	78K011	10 MHz	16-kbyte ROM 1056-byte RAM	\$6.38	8/16-bit $\mu \mathrm{C}$ has 4 -bit peripherals, dynamic clock speed, and $32-\mathrm{kHz}$ subclock.
	78K217AGC	16 MHz (8 MHz)	32-kbyte ROM 1-kbyte RAM	\$8.50	8/16-bit $\mu \mathrm{C}$ has I/O controller and complex timer. 500-nsec add.
Oki Semiconductor	MSM66417	10 MHz	32-kbyte OTP 1-byte RAM	\$21	Redesigned 8051 has 400-nsec instruction cycle, 16 -bit internal bus, and 8 -bit external bus.
	MSM67620	10 MHz	16-kbyte OTP 512-byte RAM	\$24	16-bit, advanced 8051 has 200-nsec instruction cycle.
Signetics	83C751	12 MHz	2-kbyte ROM 64-byte RAM	\$1.95	8051 in 300-mil-high DIP. Has serial bus.
SGS-Thomson	ST6210	8 MHz	2-kbyte ROM 64-byte RAM	\$2.28	Low-end 8 -bit $\mu \mathrm{C}$ in 20 -pin package. No multiply or divide; $6.5-\mu \mathrm{sec}$ add.
Siemens	80C166S	$\begin{gathered} 40 \mathrm{MHz} \\ (20 \mathrm{MHz}) \\ \hline \end{gathered}$	8-kbyte ROM 1-kbyte RAM	\$25	16-bit RISC-like $\mu \mathrm{C}$ has 4 -stage pipeline with $100-\mathrm{nsec}$ stages.
	83C517A-5N	18 MHz	32-kbyte ROM 256-byte RAM 2-kbyte XRAM	\$15	Enhanced 8-bit 8051 has extra RAM, 32/16-bit math unit, and timer compare/capture unit.
Texas Instruments	TMS370C756	20 MHz	$\begin{gathered} \text { 8-kbyte ROM } \\ \text { 512-byte RAM } \\ \text { 512-byte EEPROM (data) } \end{gathered}$	\$17.51	8 -bit $\mu \mathrm{C}$ has complex timer, PWM generator, and watchdog timer.
Togai	FC110	20 MHz	Off-chip memory 256-byte RAM	$\begin{gathered} \$ 50 \\ (1000) \end{gathered}$	16-bit $\mu \mathrm{C}$ has instructions for fuzzy logic.
Toshiba	TMP90C840AN (member of TLCS90 family)	12.5 MHz	8-kbyte ROM 256-byte RAM	\$4	Dual register set; 163 instructions. Has stepping motor control and I/O DMA.
Zilog	Z86L06	8 MHz	1-kbyte ROM 124-byte RAM	\$1.45	Low-end, 18-pin $\mu \mathrm{C}$ features 2 V operation, brownout detection, and analog comparators. Has $1-\mu \mathrm{sec}$ instruction cycle.
	Z89120	20 MHz	24-kbyte ROM 256-byte RAM	$\begin{aligned} & \$ 11.25 \\ & (1000) \end{aligned}$	8 -bit $\mathrm{Z} 8 \mu \mathrm{C}$ plus a 16 -bit DSP chip. Separate processors have their own I/O and peripherals.

Notes: $M A C=$ multiply and accumulate; OTP = one-time programmable; RISC = reduced-instruction-set computer; XRAM = extended RAM.

8- and 16-bit microcontrollers

peripherals gotten smarter, but some $\mu \mathrm{Cs}$ now have peripheral controllers that service peripherals directly instead of forcing a CPU interrupt and context switch. These controllers typically use DMAs to exchange data between peripherals and memory.

NEC's K2/K3 series has a built-in macro service that automatically responds to peripheral events. Macros steal bus cycles from the CPU to move data between memory and a peripheral. The CPU doesn't have to take an interrupt and pay the penalty of a context switch.

Hitachi's 16 -bit H8/500 has an on-chip data-transfer controller that bypasses the CPU by moving data between peripherals and memory. An interrupt activates the data-transfer controller and provides a pointer to the DMA transfer information in register memory. The controller can trigger another interrupt at the end of the DMA transfer to signal a peripheral event to the CPU.

The peripheral-event controller of Siemens' 80 C 166 provides an alternative service to peripheral interrupts. As many as eight interrupts are handled by peripheral-event-controller service channels. Each channel moves a word at a time and automatically decrements a counter for that channel. The controller takes priority over most CPU interrupt servicing. The worst-case, peripheral-event-controller, interruptresponse time is 350 nsec at 40 MHz , which is less than the worst-case interrupt response of 500 nsec . Both times assume on-chip ROM code execution.

Intel has upgraded its 196 architecture with a periph-eral-transaction server, which can handle transfers of as many as 32 bytes for each peripheral event. Intel engineers added a waveform-generator block to the 196MC. The block generates 3 -phase sine waves for motor control. Coupled with an on-chip PWM module, the 196 can sustain PWM frequencies exceeding 30 kHz .

Early 8 -bit $\mu \mathrm{Cs}$ were lucky to have a set of ports and a timer. But over the years, 8 -bit $\mu \mathrm{Cs}$ have followed in the footsteps of their 4 -bit ancestors by adding peripherals, including drivers for LCDs and other displays. Many 4 -bit $\mu \mathrm{Cs}$ are customized for specific applications. Following that lead, Motorola's 8 -bit 68HC05 exists in more than 100 variations. Motorola engineers developed many of these chips as custom designsvariations on the 6805 with a different peripheral twist-and later converted the custom chips into mainline products. To encourage even more diversity, Motorola has set up a program to tailor application-specific processors for custom applications. For volume production, the customization cost ranges from nothing for mixes of common peripherals to ASIC NRE charges for custom circuits.

National Semiconductor, Zilog, and SGS-Thomson
have similar programs to provide application-specific processors. Many 8 -bit $\mu \mathrm{Cs}$ are manufactured using modular chip layouts. Thus, vendors can easily devise special peripheral mixes or add new peripherals to the base design. The National Semiconductor COP800 employs a dual-bus structure for adding peripherals and special functions.

NEC, a major 4 -bit- $\mu \mathrm{C}$ supplier, is moving its 4 -bit peripherals to its 8 -bit K2 processor line. The new K0 line, μ PD780xx, is based on a stripped-down version of the K2. The line is code compatible with the K2 line and features display drivers and controllers for LCDs and fluorescent displays. The K0 line has an added multiclock capability, which lets you dynamically change the base clock rate to a number of count-down values. NEC also added a $32.67-\mathrm{kHz}$ secondary clock, or subclock. A common feature of 4 -bit watch processors, the subclock delivers a slow base clock rate to minimize power while waiting for a trigger event.

Peripherals alone are not enough. Many engineers also want increased microcontroller processing power to accommodate larger and more complex programs and handle demanding applications such as servo control. Using RISC techniques is one way to boost CPU power. RISC techniques and characteristics include pipelining, minimal instruction sets, load/store architectures, fixed instruction-word sizes, sets of generalpurpose registers in a register file, Harvard architectures (separate instruction and data memory buses), and simple, easily implemented instructions. The idea behind RISC is to simplify the architecture and thus minimize implementation logic. Simpler, less complex logic results in a compressed register-to-ALU cycle time, which speeds execution.

Designers are applying these techniques to a new generation of high-end 8 - and 16 -bit $\mu \mathrm{Cs}$. These microcontrollers include the Hitachi H8, NEC K0/K2/K3 series, and Siemens 80 C 166 . None of these $\mu \mathrm{Cs}$ are classic RISC processors; nonetheless, they share some common characteristics including general-purpose reg-

A single timer can handle multiple functions. Input registers capture timer values on an external trigger. Also, compare registers hold time points that are detected and flagged as events.

8- and 16-bit microcontrollers

ister sets and load/store architectures that have some instruction exceptions. These architectures lend themselves to high-level languages like C.

The most RISC-like $\mu \mathrm{C}$ is Siemens' 16-bit 80C166. It utilizes a 4 -stage pipeline and has a dual-ported register file. The device includes a branch-target cache, which caches the last branch-target address to minimize branch delays during looping. And like later RISC chips, the 166 has multiply and divide instructions. At 40 MHz , if the pipeline is full and no long instructions, such as multiplies or divides, are waiting, instructions step through the pipeline in $100-$ nsec increments. The average instruction latency is 400 nsec (4 stages $\times 100 \mathrm{nsec}$).

The Siemens 166 differs from classic RISC CPUs. First, it-and all other RISC-like $\mu \mathrm{Cs}$-has no data or instruction caches. Instead, the $\mu \mathrm{C}$ holds 8 kbytes of ROM or PROM and 1 kbyte of RAM on chip and addresses as much as 64 kbytes of external memory. Second, unlike classical RISC processors, the 166 is not a load/store machine in which all accesses to memory are loads and stores and all data manipulation is between registers. In the 166, you can add a register to a memory location.

Hitachi's $\mathrm{H} 8 / 300$ series $\mu \mathrm{Cs}$ aren't full RISC processors either. However, Hitachi designers employed several RISC concepts. The $\mathrm{H} 8 / 300$ is a load/store architecture based on a set of general-purpose registers and has a fixed instruction size of 2 or 4 bytes. An H8/330 delivers a base $200-$ nsec instruction cycle with a 10 MHz clock (20 MHz external).

Designers of the Motorola 68302-a specialized communications processor-built in a RISC-like processor to supplement the 16 -bit 68000 core processor. The RISC-like processor handles line-level communications processing including checking, stripping off, and adding packet headers and trailers. The chip uses six serial ports as I/O for three full-duplex serial communications controllers. The controllers support protocols including the High-level Data Link Control protocol (HDLC), Synchronous Data Link Control protocol (SDLC), Binary Synchronous Communications protocol (BISYNC), and the Synchronous/Asynchronous Digital Data Communications Message Protocol (DDCMP).

RISC techniques aren't confined to high-end 8- and 16 -bit $\mu \mathrm{Cs}$. They've been applied to the low-end 8 -bit chips as well. One 8 -bit $\mu \mathrm{C}$ that takes advantage of

Manufacturers of 8-and 16-bit microcontrollers

Abstract

For more information on microcontrollers such as those described in this article, circle the appropriate numbers on the Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you saw their products in EDN.

Echelon Corp

4015 Miranda Ave
Palo Alto, CA 94304
(415) 856-6153

FAX (415) 856-6153
Circle No. 650

Hitachi America Ltd

Semiconductor and IC Div
2000 Sierra Point Pkwy
Brisbane, CA 94005
(415) 589-8300

FAX (408) 583-4207
Circle No. 651
Intel Corp
Embedded Processor Group
5000 W Chandler Ave
Chandler, AZ 85226
(602) 554-2388

Circle No. 652
Matra MHS Electronics Corp
2201 Laurelwood Rd
Santa Clara, CA 95056
(408) 970-5856

Circle No. 653
Microchip Technology Inc 2355 W Chandler Blvd
Chandler, AZ 85224
(602) 963-7373

Circle No. 654

Motorola Inc

Microprocessor Products Group 6501 William Cannon Dr W Austin, TX 78735
(512) 891-2000

FAX (512) 891-2652
Circle No. 655
National Semiconductor Corp
Box 58090
Santa Clara, CA 95052
(408) 721-6816

FAX (408) 730-6241
Circle No. 656
NEC Electronics Inc
Box 7241
Mountain View, CA 94039
(415) 960-6000

Circle No. 657
Oki Semiconductor Inc
785 N Mary Ave
Sunnyvale, CA 94086
(408) 720-1900

FAX (408) 720-1918
Circle No. 658
VOTE . . .

Siemens Components Inc
2191 Laurelwood Rd
Santa Clara, CA 95054
(408) 980-4500

Circle No. 659
Signetics
(Philips Components)
811 E Arques Ave, MS 76
Sunnyvale, CA 94088
(408) 991-2000

FAX (408) 991-2311
Circle No. 660
SGS-Thomson
Microelectronics Inc
1000 E Ball Rd
Phoenix, AZ 85022
(602) $867-6100$

FAX (602) 867-6102
Circle No. 661

Texas Instruments Inc
Box 809066
Dallas, TX 75380
(713) 274-2000

Circle No. 662
Togai Infralogic Inc
5 Vanderbilt
Irvine, CA 92718
(714) 975-8522

FAX (714) 975-8524
Circle No. 663

Zilog Inc

210 Hacienda Ave
Campbell, CA 95008
(408) 370-8092

FAX (408) 370-8092
Circle No. 664

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 485 Medium Interest 486 Low Interest 487

RISC techniques is Microchip's PIC $\mu \mathrm{C}$ line. Designed originally as a peripheral controller for minicomputers and mainframes, the PIC architecture has since found a niche as a low-end $\mu \mathrm{C}$ crammed into a package that can have as few as 18 pins.

PIC μ Cs have a small set of single-word instructions: 33 for the PIC16C5x line and 55 for the PIC17C42, which the company introduced last year. Both lines feature a 2 -stage pipeline (fetch, execute) for all instructions. At 20 MHz and with a divide-by- 4 internal clock, the PIC16C5x has a 200 -nsec clock cycle, one period for each pipeline stage. When the $\mu \mathrm{Cs}$ are executing sequential code, each instruction appears to execute in one clock cycle. However, like its older-brother RISC CPUs, when the execution thread hits a branch, the $\mu \mathrm{C}$ incurs a 1 -cycle penalty while reloading the pipeline.

Microchip's PIC designers took a wide-instructionword approach similar to that of 4 -bit- $\mu \mathrm{C}$ designers. The PIC16C5x has a 12 -bit instruction word, and the PIC17C42 has a 16 -bit instruction word. A wider instruction word gives 8 -bit microprocessors a definite advantage in instruction processing. The wider word minimizes the need for multiple-byte instructions because the word is big enough to hold an opcode, source/ destination, and literal value.
Like most early commercial RISC processors, PIC microcontrollers don't have multiply or divide instruc-tions-these operations are done in software. Consequently, PIC microcontrollers suit fast, low-cost control applications, not tasks requiring heavyweight math processing. Another limitation is the $\mu \mathrm{Cs}^{\prime}$ small data RAM, which is organized as registers. The PIC16C5x has as many as 80 bytes, and the PIC17C42 as many as 232 bytes. Also, an automatic stack feature limits task processing in both microcontrollers.

You don't necessarily have to go to newer architectures to get higher processing power. Older architectures, such as the Intel 8051, are beefing up as well. Several vendors are already working on new, highspeed cores to take advantage of today's design technology and cheaper silicon.
Oki Semiconductor has revamped the 8051 core for its nX family, which comprises the 8 -bit 65 K series, $8 / 16$-bit 66 K series, and 16 -bit 67 K series. These $\mu \mathrm{Cs}$ are spin-offs of the 8051 architecture. They keep the older chip's Harvard architecture and can address as many as 64 kbytes each of program and data memory. A translator is available for porting 8051 code.

The minimum instruction-execution time for an 8 -bit 65 K series $\mu \mathrm{C}$ running at 10 MHz is 400 nsec , compared with $1 \mu \mathrm{sec}$ for a $12-\mathrm{MHz} 8051$. The 66 K series chip runs at the same clock rate but combines an 8-bit external bus with 16 -bit internals (ALU, registers, buses) to boost processing power. The 67 K series chip has a 16 -bit CPU that delivers 200 -nsec instruction cycles. A 16-bit add takes 200 nsec , a 16×16-bit multiply takes $2.3 \mu \mathrm{sec}$, and a $32 / 16$-bit divide also takes $2.3 \mu \mathrm{sec}$.

Another 8051 vendor, Siemens, increased processing power by adding potent peripherals. Siemens' SAB80C517A-5 includes a multiplication/division unit that supplements the 8 -bit 8051 with 32 -bit division and 16 -bit multiplication. The unit has six registers for operands and results. At 12 MHz , a $32 / 16$-bit divide takes $6 \mu \mathrm{sec}$; a $16 / 16$-bit divide, $4 \mu \mathrm{sec}$; and a 16×16-bit multiply, $4 \mu \mathrm{sec}$. The multiplication/division unit gives the 8051-class processor the same math capabilities as many 16 -bit μ Cs.
Siemens' engineers removed more processing bottlenecks by adding 2 kbytes of extended RAM to the 8051 as well as providing eight 16 -bit address pointers. The 8051 normally has a maximum of 256 bytes of

Some high-end microcontrollers have a peripheral controller to offload the CPU. The controller moves data to and from peripherals and memory on a cycle-stealing basis.

8- and 16-bit microcontrollers

RAM. (Using extended RAM, however, results in an external-access penalty.) The additional 16 -bit pointers make life a lot easier for 8051 programmers, who otherwise are restricted to one DPTR pointer.

Other vendors, such as Motorola, have no plans to upgrade their $\mu \mathrm{C}$ architectures. Instead, management is counting on improved speeds and greater chip densities as silicon processes improve. Higher silicon densities mean room for larger ROM, RAM, and EEPROM, as well as for more peripherals and faster clocks. Shrinking a layout to 80% of its previous size and keeping the original die gives designers more area for larger memories or more peripherals. An 80% shrink every two to four years is not excessive. Keeping the die size constant, the first shrink provides an additional 36% area. The second and third shrinks provide 59 and 73% more area than the original chip.

Some vendors are increasing performance by raising clock rates. National Semiconductor kicked up performance on its 16 -bit HPC microcontrollers by going to a $40-\mathrm{MHz}$ external clock ($20-\mathrm{MHz}$ internal). Signetics and Matra have moved 8051 clock rates to 33 and 30 MHz , respectively. And Siemens is introducing an even faster 8051 version this month.

Adding DSP power

Another way to push the power curve is to bolt on additional computational power to a $\mu \mathrm{C}$ architecture in the form of a DSP coprocessor or DSP capabilities. DSP provides the horsepower to handle tough matrix and vector processing quickly. DSP processors typically have a multiply-accumulate (MAC) unit that multiplies two variables in one clock cycle and keeps a running sum in an accumulator register. In addition, DSP processors automatically address parameters (the x, y values for multiplication) by indexing through tables. The combination of a MAC unit and automatic indexing minimizes the overhead of a core inner loop.

Zilog was first to integrate an 8 -bit $\mu \mathrm{C}$ with a 16 -bit DSP coprocessor. The combination provided high-end processing capability in a $\mu \mathrm{C}$ package. Zilog's latest version is the Z8912, which combines a Z8 microcontroller with a 16-bit DSP processor. The DSP processor is not slaved to the Z8. Instead, the $\mu \mathrm{C}$ and DSP processor operate in tandem, each with its own set of peripherals and interrupt handling. This independence lets the Z8 concentrate on digital control and interfaces while the DSP processor handles the math-intensive through put processing and interfacing. The DSP processor drives its own PWM channel and has its own A/D converter to take in analog parameters for DSP processing. Other Zilog Z8/DSP combinations include the Z86C99, which has peripherals and I/O for controlling hard-disk drives.

The $\mathbf{Z 8 9 1 2 0}$ chip integrates a $\mathbf{Z 8}$ microcontroller and a 16 -bit DSP processor. The two run independently and coordinate processing through a shared mailbox and interrupts.

In the 16 -bit arena, National Semiconductor integrated a 16 -bit DSP MAC unit in its HPC4600 16-bit μ C. The HPC $\mu \mathrm{C}$ has an accumulator-based, minimal architecture with 256 bytes to 1 kbyte of data RAM and 8 or 16 kbytes of program ROM. Its CPU has several builtin speed-ups such as 1-byte, complex instructions and automatic loop indexing with bounds checking. National Semiconductor engineers stripped out the ROM to make room for the supplementary MAC unit.

Unlike Zilog's implementation, National Semiconductor's MAC unit is tightly coupled to the $\mu \mathrm{C}$; it uses the processors' registers to set up and load the variables and control the loop counts. A 16×16-bit MAC cycle takes eight 50 -nsec clock cycles, or 400 nsec . The $\mu \mathrm{C}$ includes a 3-timer PWM unit that runs in parallel with the CPU. The company has aimed this chip at the servo-control market, such as hard-disk head positioning and process control loops.

Motorola's designers also added a MAC unit to the 68 HC 16 , the 16 -bit extension to the 68 HC 118 -bit $\mu \mathrm{C}$. The MAC unit is tightly coupled with the CPU and has two 16 -bit multiplier registers and 36 -bit accumulators. Addressing is automatic and circular, but relies on two of the CPU's index registers.

Smaller is better

Processing power, however, is not everything. A wide range of low-end, embedded applications has different requirements. For these applications, engineers need low-cost 8 -bit processing combined with a small form factor and the right peripheral mix. Pennies count at this level of embedded-system design, where the engineering task is to get the job done at minimal hardware cost.

Some vendors tailor their 8-bit $\mu \mathrm{Cs}$ for this down-in-the-dirt, low-pin-count, low-cost application world. These μ Cs include Motorola's 68HC05, Signetics' lowprofile 8051s, and SGS-Thomson's ST6, as well as members of Microchip's PIC, National Semiconductor's COP8, and Zilog's Z8 lines.

Telecom relays from the winning team in telecommunications. Because you know the score.

Scoring points is never a coincidence. Neither in sports nor in telecommunications.

We took a three-way approach to make our MT relay family the industry's top contender. After all, we've played the game long enough to know what counts.

First, in the development phase, we made sure that our products thoroughly address current and future requirements. Granted, we have an edge on the competition: we happen to be the largest user of telecom relays.

Second, our specifications in terms of materials and fabrication are probably unmatched. They're so strict that we had to design and build our own production facilities. Your advantage: greater precision.

And third, our MT4 relay is remarkably compact. It takes up less space without sacrificing reliability
or function. That means greater packaging densities and lower cost!

The bottom line: MT2 relays and MT4 relays score top points. Mail the coupon below to join the winners.

We're interested in scoring big points. Please send us detailed literature on the MT relay family.

Name \qquad
Job title \qquad
Company \qquad
Address \qquad
Telephone \qquad Telefax \qquad
Alcatel STR AG, CH-8055 Zurich, Friesenbergstr. 75 Telephone +41-1-465 21 52, Telefax +41-1-465 2160

8- and 16-bit microcontrollers

Motorola's 68 HC 05 K 1 is a low-end 68 HC 05 for logic replacement and other low-cost applications. Costing less than $\$ 1$ each in large quantities, the 68 HC 05 K 1 integrates the basic 05 architecture-accumulator, index, stack pointer, and program-counter registerswith 32 bytes of RAM, 504 bytes of user EPROM, and 8 bytes of "personality" EPROM for holding processoror product-specific data. The $\mu \mathrm{C}$ also includes a 15 -bit timer and a watchdog timer. Running with a $4-\mathrm{MHz}$ external clock, the chip completes an indexed add in $1.5 \mu \mathrm{sec}$.

Zilog has a line of low-end $\mathrm{Z} 8 \mu \mathrm{Cs}$ for specific application areas such as video and multimedia, automobiles, and consumer goods. The line includes a $\mu \mathrm{C}$ that operates inside a mouse at 3 V . Packaged in 18-pin DIPs or SOIC packages, these Z8s have 1 kbyte of ROM, 124 bytes of register-set RAM, a watchdog timer, brownout protection, and optional low EMI/power operation. Peripherals include analog comparators and serial peripheral interfaces. At 12 MHz , a typical instruction time is $1 \mu \mathrm{sec}$.

SGS-Thomson's ST6 and Microchip's PIC16C5x $\mu \mathrm{Cs}$ also suit low-end applications. Pin counts for these chips are 18 to 28 pins and 20 to 28 pins, respectively. Both μ Cs have small instruction sets: 31 instructions for the ST6 and 33 for the PIC. And because the chips are intended for basic control functions, both lack multiply and divide instructions. The ST6 has the advantage of as many as 512 bytes of RAM and 16 kbytes of ROM versus the PIC's 80 bytes of RAM and 2 kbytes of ROM. However, the PIC has the performance edge, with a basic instruction cycle of 200 nsec versus the ST6's $6.5 \mu \mathrm{sec}$.

Another low-end 8 -bit $\mu \mathrm{C}$ is National Semiconductor's COP800, a first-wave $\mu \mathrm{C}$ with a simple accu-mulator-based architecture. Pin counts can be as low as 20 pins. Peripherals include a 16 -bit timer/counter, PWMs, a brownout detector, and a watchdog timer. In large volumes, the chip costs less than $\$ 1$.

Another way to increase processing throughput is to tailor a processor for specific applications. Two examples of such specialized 8 -bit $\mu \mathrm{Cs}$ are the Togai Infralogic FC110, which executes fuzzy-logic programs, and the Echelon Neuron chips made by Motorola and Toshiba, which are tailored for networked industrial, office, and process control.
Togai's FC110 is a 16 -bit processor that has a reduced instruction set of 19 operators. Instruction and main data memory are 16 bits wide. The chip has a 64 -kbyte address space for program and memory and

> Processing power is not everything. Low- end embedded applications require low-cost 8-bit processing combined with a small form factor and the right peripheral mix.

256 bytes of byte-wide local memory to hold parameters and stack information. Special instructions speed fuzzy-logic processing.

A fuzzy-logic program includes a set of input membership functions that determine the fuzzy sets-such as warm, hot, low, fast-that input variables fit into. A set of logic rules (if x is hot, then turn y high) and a "defuzzifier" convert rule results into output variables. The FC110 converts inputs into membership functions and then evaluates the rules in parallel. Evaluating a simple problem comprising 2 inputs, 1 output, and 7 rules takes the FC110 $32 \mu \mathrm{sec} ; 7$ inputs, 3 outputs, and 35 rules takes 172 seconds; and 20 inputs, 10 outputs, and 100 rules takes $2.11 \mu \mathrm{sec}$.

Echelon engineers designed a specialized Neuron $\mu \mathrm{C}$ with built-in code for the Lontalk networking protocol and low-end communications. The Neuron 3120 and 3150 (ROMless) chips represent a new approach in commercial processor design. Given three tasks-networking, low-end communications, and process con-trol-the designers opted for three concurrent processors, one for each task, all on a single chip. Each CPU has its own register set, but the three CPUs share the data and address ALUs and memory resources. The processors are pipelined, and instructions take three clock cycles. The CPUs have a data stack and a callreturn stack. Clock rates run from 655 kHz to 10 MHz .

The three CPUs run in parallel, offset from each other by one clock cycle in their pipelines-when CPU_{1} executes pipeline cycle $1 ; \mathrm{CPU}_{2}$ executes cycle 2 ; and CPU_{3} executes cycle 3 . The benefit of this approach is that there is no context-switch overhead for moving from task to task. Tasks don't need scheduling-they essentially time-share the processor resources. At 10 MHz , instructions take 0.6 to $4.2 \mu \mathrm{sec}$. A dedicated tool set, Lonbuilder, as well as a C variant for networked control applications help you utilize the chips.

Unlike the commercial desktop RISC world, which is coalescing on a few architectures, the embeddedsystem world is continuing to diversify as vendors compete to give engineers the magic combinations of processor power, peripherals, power management, and cost. Microcontroller architectures won't stand still, they'll continue to evolve. Process shrinks will open up the 8 -bit $\mu \mathrm{Cs}$ to larger on-chip memories and faster logic. You can expect to see on-chip memory double in the next two years. At the same time, peripherals will continue to get much smarter, and that trend will continue as well.

All the $\mu \mathrm{C}$ Peripherals you need.

In one chip.

PSD $^{\text {r"3 }} 3$ XX: A family of field-programmable peripherals with logic and memory. For embedded-control designs.

WSI's PSD3XX single-chip μ C peripherals pack all the programmable logic, SRAM, and EPROM needed for your embedded-control design. Plus advanced features like paging, cascading, address/data tracking - and more. PSD3XX devices configure in just minutes to interface with any 8 - or 16 -bit microcontroller. And they're available with $256 \mathrm{~Kb}, 512 \mathrm{~Kb}$, or 1 Mb of program store to suit every embeddedcontrol design.

In use the world over, PSD3XX $\mu \mathrm{C}$ peripherals are the ideal solution wherever higher-level integration is required: from industrial controllers to cellular phones - and thousands of other

applications. Before PSD" $3 X X$

After PSD ${ }^{\text {ru }} 3 X X$

For a free design kit, call today:

In Canada, call Intelatech, Inc.: 416/629-0082

GPS-40-3000
Features:

115-230 VAC universal input
 EMI class " B " conducted emissions
 High +12V peak current for disk startup UL, CSA, TUV agency approvals

The GPS-40-3000 is the ideal power supply for worldwide applications where compact size is critical. It is an economical and dependable choice for printers, peripherals, and point of sale terminals.
Its clean design and low component count give it high reliability and make it the best value in $3^{\prime \prime} \times 5$ " open frame switchers.
Call or write today for more information about the GPS-40-3000 and our full line of custom and standard power supplies.
*In production quantities

Golden Power Systems

DISCOVER THE NEW GOLD STANDARD IN OEM POWER SUPPLIES.

2125-B Madera Rd.
Simi Valley, CA $93065 \quad 805.582 .4401$

8- and 16-bit microcontrollers

The 16 -bit- $\mu \mathrm{C}$ world seems to be gaining ground with new, more powerful processors. Fitting in between the 8 - and 32 -bit worlds, the 16 -bit chips are tunneling into applications that need higher processing power but can't pay the cost of 32 -bit processing. Helping this trend is an industry shift to high-level languages like C to increase both the portability and maintainability of code. The larger memories and program stacks of 16 -bit processors make them more suitable than 8 -bit $\mu \mathrm{Cs}$ for running C programs.

EDJ

References

1. Hintz, Kenneth J and Daniel Tabak, MicrocontrollersArchitecture, Implementation, Programming, McGraw Hill, New York, NY, 1992.
2. Ayala, Kenneth J, The 8051 Microcontroller: Architecture, Programming, and Applications, West Publishing, St Paul, MN, 1991.
3. Markowitz, Michael, "EDN's 18th Annual $\mu \mathrm{P} / \mu \mathrm{C}$ Chip Directory," EDN, November 21, 1991, pg 82.
4. Anceau, Francois, The Architecture of Microprocessors, Addison-Wesley Publishing Co, Reading, MA, 1986.
5. Ganssle, Jack G, The Art of Programming Embedded Systems, Academic Press Inc, San Diego, CA, 1992.

Technical Editor Ray Weiss can be reached at (818) 704-9454; FAX (818) 704-7083.

Article Interest Quotient (Circle One) High 485 Medium 486 Low 487

ASK EDN

Have you been stumped by a design problem? Can't interpret a spec sheet? Ask EDN.

The Ask EDN column serves as a forum to solve nagging problems and answer difficult questions. EDN's editors will provide the solutions. If we can't solve a problem, we'll find an expert who can, or we'll print your letter and ask your peers for help.

Address your questions and answers to Ask EDN, 275 Washington St, Newton, MA 02158; FAX (617) 558-4470; MCI : EDNBOS. Or, send us a letter on EDN's bulletinboard system. You can reach us at (617) 558-4241 and leave a letter in the /ask_edn Special Interest Group.

NO BUS!
 80C186eb

DARE TO COMPARE!

Compare our new SBX-C186EB to ANY Single Board Computer on ANY bus. Our new Powerful, Expandable, Inexpensive, Easy to Program Single Board Computer was designed to eliminate expensive and complicated Bus systems. All of the basic functions needed for most embedded applications are on-board. Additional I/O expansion is provided by four on-board iSBX ports which may be used to accommodate any of the iSBX modules currently available.

HARDWARE FEATURES

* 16 -Bit 80 C 186 Eb Up To 16 MHz
* On-Board 80C187 Co-Processor
* 8570 Real Time Clock
* Four 8/16-Bit iSBX Expansion Ports
* Watch Dog Timer And Power Fail Detect
* Two Serial Ports (RS-232/422/485)
* 10 Year Lithium Battery For RTC And RAM
* Up To 512K Of EPROM/FLASH EPROM
* Up To 512K Of Battery Backed Static RAM
* 32 Parallel I/O Lines With Open-Collectors
* Five 16-Bit Interrupt Timers
* Program Controlled Dip-Switch And LED's
* Available In -40 to +85 C Temperature Range

SOFTWARE FEATURES

* On-Board FLASH EPROM Programming
* Borland Turbo C++ Fully Supported
* Borland Turbo Debugger Supported
* I/O Driver Library Provided Free
* Demo Programs Provided Free
* No Software Royalities
* No DOS Required

QTY(1) \$425
QTY (100) \$319
EXCLUDING OPTIONS

Turbo C++ and Turbo Debugger may be trademarks of Borland, DOS is a trademark of IBM, iSBX is a trademark of Intel

Talk reliability, and leave a small footprint.

In the small form factor arena, our CHAMP . 050 connectors weigh in on your side with 0.050 " centers, a friendly trapezoidal interface, and an inherently forgiving dual-row leafcontact design.
Their performance comes directly from design, not from complicated (and costly) manufacturing techniques. So their economy comes directly from their simplicity.

In your board-to-board applications, our compliant-receptacle, fixed-plug contacts tolerate wide mating depth variations - good news for high linecount designs - and perform well in blind-mate applications. We offer parallel, perpendicular, and in-line styles, $30-200$ positions.
And in shielded I/O, compliant plug and receptacle contacts in the controlled header-to-plug interface

. 050 CL, leaf-contact design

meet today's emerging global intermateability standards. Mass IDC termination and fast braid crimp keep production rates up; AMP tooling covers any volume requirements. Choose 14-100 positions.
When things get small, our CHAMP . 050 high-density interconnect line delivers big. We can also be a big help if you're
looking for a head start on design. Look into our exciting models on CD-ROM. CHAMP . 050 connector drawings, 2D and

3D files, and fully characterized models simplify your CAD work right up front.

Synchronous 4Mb At 100 MH ,

41×489715

$$
\begin{aligned}
& \text { All } 14 \\
& \text { prit }
\end{aligned}
$$ (1)

Cached DRAM. It Screams!

Matching low-cost DRAM technology with today's high-speed CPUs can be a design engineer's nightmare. Until now. Introducing the 100 MHz 4 Mb Cached DRAM from Mitsubishi.
FIRST SYNCHRONOUS DRAM
Mitsubishi combined a fast, 4K $\times 4$ SRAM and a $1 \mathrm{M} \times 4$ DRAM with a wide, 16×4 bit internal bus and a synchronous clock design, all into one tiny TSOP IC. The result is the industry's first synchronous DRAM with on-board cache.

100 MHz OPERATION

The Cached DRAM's large, 16×4 bit internal data path can transfer a 16 -line data block in just one cycle, allowing the small on-chip cache to perform like a much larger external cache. The result is fast, 100 MHz performance at a much lower cost than separate cache configurations. Plus, the Cached DRAM's fast copy-back scheme significantly reduces the miss cycle penalty time.

COST-EFFICIENT, SMALL SIZE

The Cached DRAM die and package are only 7% larger than those of a standard $1 \mathrm{M} \times 4$ DRAM. And, since they are manufactured with the same process and on the same production line as Mitsubishi's standard 4Mb DRAMs, Cached DRAMs are highly cost-efficient to manufacture.

LOW POWER OPERATION

With a clock that can be stopped to reduce power consumption to as low as 1 mW , the Cached DRAM is ideal for portable and highly integrated applications where low power consumption, compact size and fast operation are essential.

MITSUBISHI'S CACHED DRAM PERFORMANCE

CLOCK GENERATION AND SUPPORT

Minimize clock skew.

With a minimal loss of sanity.

Designing a system clock for a high-performance application can be the ultimate exercise in frustration.

Unless you begin by calling National. Our new family of advancedCGS ${ }^{\text {w }}$ (Clock Generation and Support) products includes

FEATURES

- Typical pin-to-pin skew:
—ECL: 50-150ps
-CMOS: 100-200ps
-Bipolar: 200-400ps
- Extensive development tool support
- Future CGS products in development
bipolar, CMOS and ECL clock drivers tested and guaranteed for minimum skew. They meet the requirements of highend microprocessors: duty cycle, skew, and edge rates.

And they're supported with the development tools you need to simplify your end-system design: SPICE models and a CGS design handbook that includes derating curves.

All of which means you can actually minimize skew while
optimizing system speed and performance. Without losing your wits.

Protect your sanity.
Call National today.
For more information on our CGS2525, CGS2526 and 100115 clock drivers, call 1-800-NAT-SEMI, Ext. 177.

[^8]
EDN-DESIGN FEATURE

Fuzzy-logic basics: intuitive rules replace complex math

David I Brubaker, The Huntington Group

Although "fuzzy logic" may seem to imply imprecision, it's based on a reliable and rigorous discipline. Fuzzy logic lets you accurately describe control systems in words instead of complicated math.
Fuzzy logic, based on fuzzy set theory, allows you to express the operational and control laws of a system linguistically-in words. Although such an approach might seem inadequate, it can actually be superior to (and much easier than) a more mathematical approach. The main strength of fuzzy'set theory, a generalization of classical set theory, is that it excels in dealing with imprecision.

In classical set theory, an item is either a part of a set or not. There is no in-between; there are no partial members. For example, a cat is a member of the set of mammals, and a frog is not. Such sets are called crisp sets.

Fuzzy set theory recognizes that very few crisp sets actually exist. The crisp set of mammals, for example, encounters a problem with the platypus. We have to consider the platypus a full member of the set, even though it has a duck-like bill and lays eggs. Fuzzy set theory doesn't have to deal with such exceptions (or with a number of paradoxes that arise from the strict member/nonmember dichotomy).

Fuzzy logic allows partial set membership; it allows gradual transitions between being fully a member of the set and fully not a member of the set. Being partially a member of a given set, a given element is also partially not a member of that set.

Because fuzzy set theory allows both full membership and full nonmembership (although not simultane-

Fig 1-In traditional logic (a), a woman is either a member of the set TALL WOMEN or not, and a mere fraction of an inch can make the difference. Fuzzy logic (b) allows partial set membership that is characterized by a gradual transition from not tall to tall.
ously), it is a generalization of classical set theory. You can actually use fuzzy logic to implement crisp systems, although there is little reason to. Most of the action in fuzzy systems occurs in the transitions-the partialmembership regions of a set.
Traditional logic recognizes only full or null membership in a set and requires that a given assertion be either true or false. Fuzzy logic, however, allows partial truth and partial falseness. Fig 1 illustrates the difference.

FUZZY LOGIC

In classical set theory, we may ask whether Mary, a woman who is $5 \mathrm{ft}, 8 \mathrm{in}$. tall, belongs to the set of tall women. In logic, we ask whether the statement "Mary is a tall woman" is true or false; using bilevel logic, we must select one or the other. If we say that Mary is tall, would she still be tall if she were a quarter inch shorter? Or half an inch shorter?

Fuzzy logic allows the statement "Mary is tall" to have a range of truthfulness, depending on Mary's height. If Mary is 5 ft even, the assertion that she is tall is completely false, but if she is 6 ft even, the assertion is completely true. If she is $5 \mathrm{ft}, 8 \mathrm{in}$. tall, the assertion may be 75% true.

Working with this premise-that the path from truth to falseness may be gradual (and also, implicitly, that something can be simultaneously partially true and partially false)-requires a new mindset, especially for Western engineers. In principle, we agree that the world is not black and white-that most of it, in fact, is gray. In practice, however, we make assumptions and force our view of the world to be black and white. Fuzzy logic allows us not only to accept the gray, but to work with it in a very powerful way.

To apply fuzzy set theory, we must indicate the degree to which a variable is a member of a set. We do this with the "degree-of-membership" variable, most often represented by the Greek letter μ. The expression

$$
\mu_{\mathrm{A}}(\mathrm{x}) \rightarrow[0,1]
$$

means that the degree of membership of the element x in the fuzzy set A ranges from 0 to 1 , inclusive. When applied to fuzzy logic, μ is called the "truth value" and represents the degree to which an assertion is true (Fig 2). The range $0 \leq \mu \leq 1$, with 0 indicating null membership (or complete falseness) and 1 indicat-

Fig 2-The degree to which an element is a member of a fuzzy set, denoted μ, can range from 0 (null membership) to 1 (full membership). In this example, a woman $5 \mathrm{ft}, 8 \mathrm{in}$. tall has a degree of membership in the set TALL WOMEN of $\mathbf{0 . 7 5}$.
ing full membership (or complete truth) is consistent with notation used in traditional bilevel logic.

Just as bilevel logic has logical operators for combining logic variables, so does fuzzy logic. Variables in the two logic systems necessarily have different definitions, but they use the same operators: AND, OR, and NOT. The definitions most commonly used are those proposed by Lotfi Zadeh, the creator of fuzzy logic (see box, "Fuzzy perspective").

The AND of two fuzzy-logic variables, by Zadeh's definition, is the minimum truth value. That is, for fuzzy variables A and B,

$$
\mu_{(\mathrm{A} \text { AND B) }}=\min \left(\mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right) \text {. }
$$

The OR of two fuzzy-logic variables is the maximum truth value. Again, for fuzzy variables A and B,

$$
\mu_{(\mathrm{A} \text { OR } \mathrm{B})}=\max \left(\mu_{\mathrm{A}}, \mu_{\mathrm{B}}\right) .
$$

The NOT of a fuzzy logic variable is given by
$\mu_{(\mathrm{NOT} \mathrm{A})}=1-\mu_{\mathrm{A}}$.

Fuzzy perspective

Fuzzy set theory was "created" by Lotfi Zadeh in 1965 and is based on work in multivalued logic by a number of mathematicians earlier in the century. Zadeh was, and is, a professor of electrical engineering and computer science at the University of California, Berkeley.

In his work with complex, nonlinear systems, Zadeh observed that the more complex a system becomes, the less meaningful are low-level details in describing overall system operation. The drive for precision in com-plex-system description actually becomes a stumbling block; precision often is not only unnecessary, but counterproductive. One of Zadeh's basic assumptions is that
a system's operational and control laws can be expressed linguistically-in words.
Fuzzy logic is itself not "fuzzy," but a rigorous mathematical discipline. Neither is it merely another way of looking at probability theory, although both disciplines deal with uncertainty. Probability theory deals with the uncertainty that results from random behavior, whereas fuzzy theory addresses the uncertainty resulting from boundary conditions. The two disciplines are complementary in that there can be (and are) fuzzy stochastic systems, but one does not replace or eliminate the need for the other.

All three of these operators are equivalent to their respective counterparts in bilevel logic for μ limited to 0 and 1 .

Plain words replace complex math

In order to work more easily with systems that are too complex to model accurately with mathematics, fuzzy logic resorts to linguistic variables. It is very difficult to express mathematically even the basic control laws involved in driving a car, say, but a verbal description of how to drive-that is, how to react to the various situations that are presented to the driver-is actually quite simple. Any such description, however, must necessarily use imprecise terms such as fast, slow, hard, and soft. (The latter two, for example, describe how much to apply either the accelerator or the brake.)
Fuzzy-set theory accommodates such imprecise terms. For example, the linguistic variable SPEED

Fig 3-A fuzzy rule-based system has three major components. First, a crisp-to-fuzzy transform changes crisp inputs into degrees of membership, or truth values. Next, an inference mechanism determines actions to take by applying the truth values as conditions to rules. Finally, a fuzzy-to-crisp transform converts fuzzy actions into crisp actions and combines them to form a single, executable action.
might have as values (among others) the fuzzy sets VERY SLOW, SLOW, MEDIUM FAST, FAST, and VERY FAST. It will also have as a value the crisp set STOPPED.

A degree-of-membership function represents each of the fuzzy sets and acts as a transform between the crisp real world and our fuzzy view of the real world. For example, a SPEED of 70 mph may have degrees of membership in each of the fuzzy sets:

$$
\begin{aligned}
\mu_{\text {VERY SLOW }}(70 \mathrm{mph}) & =0 \\
\mu_{\text {SLow }}(70 \mathrm{mph}) & =0 \\
\mu_{\text {MEDIUM FAST }}(70 \mathrm{mph}) & =0.3 \\
\mu_{\text {FAST }}(70 \mathrm{mph}) & =0.8 \\
\mu_{\text {VERY FAST }}(70 \mathrm{mph}) & =0.4 .
\end{aligned}
$$

In fuzzy-logic control algorithms, degrees of membership serve as inputs. The determination of appropri-

Fig 4-Degree-of-membership functions transform crisp inputs into fuzzy degrees of membership. Here, a speed of 70 mph has membership in the fuzzy set FAST with $\mu=0.80$ and in the set VERY FAST with $\boldsymbol{\mu}=0.38$.
ate degree-of-membership functions is part of the design process.
The rule-based system is currently the most popular application of fuzzy logic. Its basic structure (Fig 3) has three major sections: a crisp-to-fuzzy transform ("fuzzifier"), an inference mechanism that employs rules, and a fuzzy-to-crisp transform ("defuzzifie").
In using such a system, we transform into a fuzzy domain, manipulate the data, and transform back into the crisp domain. This approach is analogous to working in the frequency domain on transformed timedomain data. Because the necessary processing is easier in the frequency domain than it is in the time domain, processing time-domain data warrants the expense of an FFT and an inverse FFT. In a fuzzy system, the base of rules describing system operation in fuzzy terms is easy to work with. Consequently, we transform crisp inputs and outputs into a fuzzy domain of intuitive, linguistic rules rather than transforming fuzzy rules into the crisp domain.

As indicated in Fig 4, the crisp-to-fuzzy transform is a mapping of an actual crisp value to a degree of membership via an input degree-of-membership function. The resulting degree of membership then becomes an input to the next system block, the inference mechanism.
In the inference mechanism, inputs and truth values serve as conditions for the rules that make up the rule base. At regular intervals, the fuzzy controller samples inputs and applies them to the rule base, resulting in appropriate system outputs. Theoretically, the rule base should cover all possible combinations of input values, but such coverage is typically neither practical nor necessary.
The general form of each rule is:
if (INPUT is VALUE1) then (ACTION is VALUE2),

fuZZY LOGIC

where VALUE1 and VALUE2 refer to the respective specific fuzzy sets associated with the particular INPUT or OUTPUT.

For example, a deceleration throttle-control rule might read:

if (SPEED is VERY FAST) then (THROTTLE is SLIGHT).

When this rule "fires" (when SPEED is VERY FAST), the action occurs (THROTTLE gets set to SLIGHT). In contrast with other rule-based systems, the action occurs only to the degree that the input is true. If SPEED is VERY FAST with $\mu=0.25$, then THROTTLE gets set to SLIGHT also with $\mu=0.25$. This partial setting to SLIGHT occurs in a step that performs combination and defuzzification.

Four ways to defuzzify

A method of combining actions is necessary because more than one rule may fire for any given set of inputs. In addition, the resulting single action (combined from the actions of triggered rules) must be transformed from a fuzzy value to a crisp, executable value. There are currently four popular combination/defuzzification techniques.

The maximizer technique takes the maximum de-gree-of-membership value from the various triggered rules and performs the corresponding single action. If, for example, as a result of three rules having fired, the THROTTLE mentioned above has

$$
\begin{aligned}
\mu_{\text {SLIGHT }} & =0.75, \\
\mu_{\text {SLIGHT }} & =0.40, \\
\mu_{\text {MEDIUM }} & =0.20,
\end{aligned}
$$

then the throttle setting associated with $\mu_{\text {SLIGHT }}=0.75$ will result, because 0.75 is greater than the other two values of μ. If two actions have the same μ value, and that value is the maximum μ, then some form of conflict resolution is necessary. One possibility is to use an average of the corresponding outputs; another is to select the action associated with a rule's position in the rule base.

The maximizer technique is the simplest combination/defuzzification approach, but it ignores potentially important actions. Another technique, the weightedaverage method, averages the various actions after assigning weights based on degree-of-membership values. Although conceptually strong and not computationally demanding, this approach suffers from ambiguity in the output function, as does the maximizer method.

Ambiguity arises because an output degree-ofmembership function can specify more than one output value for a given value of μ. An output membership function typically is shaped like a pyramid or a truncated pyramid. If $\mu=0.5$, the output value can come from the function's rising or falling edge. Worse yet, for a truncated pyramid, $\mu=1.0$ corresponds to a whole range of values.

It is possible to eliminate ambiguity by mapping out-put-function components through the specific rules back to input functions. The procedure is tedious, however, and disallows the use of negated input functions as rule conditions. (For example, we could not say "if (SPEED is NOT FAST)".)

The centroid method, illustrated in Fig 5, results in an output action that is associated with the center of mass of the active rule outputs. Because we are no longer using the edges of degree-of-membership functions, we no longer have ambiguity.

Unfortunately, the centroid method is computationally intensive and suffers from an additional shortcoming. For a vertically symmetric degree-of-membership function, the centroid always corresponds to a single output value, regardless of the value of the input degree of membership (μ). As a result, to achieve smooth operation over the entire output range, several (or at the very least two) rules must fire at each system iteration. In order for multiple rules to fire at once, input degree-of-membership functions must overlap. Despite these shortcomings, the centroid method is currently the best technique for combination and de-

Fig 5-The centroid method combines several fuzzy output actions to form a single executable action. This single output is a weighted average of the centroids of each active degree-of-membership function. This example shows three active rule actions, specifying SLIGHT throttle twice ($\mu=0.75$ and $\mu=0.40$) and MEDIUM throttle once ($\mu=0.20$). Function centroids are marked with small circles. The resulting output is a throttle setting of 29% full throttle.

FaFasasFast SRAMs for 50MHz Applications

CMOS Cache RAMs for use with X86 \& RISC Architectures

For Optimized Performance, Processor Specific 256K SRAMS to Support 5V and 3.3V Processors

In addition to the above fast SRAMs, Performance Semiconductor offers the P4C214, a processor-specific 16Kx16 SRAM with transparent address latches and 13ns access time for speed-critical, wideword applications. Functionally similar to the popular $2 \times 4 \mathrm{~K} \times 16$ cache RAM, the P4C214 is pin-configurable for direct-mapped or 2-way-set

cache (supporting 386 speeds to 50 MHz) and is designed for 16 -bit and 32-bit bus systems, keeping chip count and power dissipation low. For use in secondary cache, the P4C214, with ALE tied high, behaves as a general-purpose $16 \mathrm{~K} \times 16$ SRAM.

Very soon your Notebook PC users will demand cache . . with low power, small space, higher throughput. The 3.3 V version, P3C214, with TTL-compatible I/0, uses a 3.3V power supply with access times from 12 ns to 25 ns. Ideal for use with a $3.3 \mathrm{~V}, 16$-bit bus 386SL or 386SX. Only one unit is needed for a 32KByte cache!

For more information on ultra-fast SRAMs, call Performance Semiconductor In the United States call 408 734-9000 In Europe call 44-256-59585 (U.K.)

EDN-DESIGN FEATURE

FUZZY LOGIC

fuzzification that available fuzzy-logic tools support.
The remaining combination/defuzzification method, the singleton technique, is a special case of the centroid method. This technique represents each fuzzy output set as a single output value by using a weighted average to combine multiple actions. This approach requires much less computation than the centroid method, but it still requires overlapping input functions to avoid discontinuities in the output. Because of its conceptual and computational simplicity-and unless someone develops a new and more powerful tech-nique-the singleton method will probably replace the centroid method as the most common output technique.

Fuzzy feedback controllers

You can sample selected outputs of a fuzzy system and use them as inputs to make a feedback controller (Fig 6). A fuzzy system fuzzifies inputs, which then serve as conditions to the rule base. The rule base operates on those inputs, then it combines and defuzzifies actions from triggered rules to produce one or more controller outputs.

Increasingly, fuzzy rule-based systems use adaptive techniques-neural nets and genetic algorithms, for example-to refine degree-of-membership functions and even the actual rule bases. In addition, fuzzy decision systems that do not use a rule base are beginning to use fuzzy (rather than crisp) inputs to make predictions from vague and incomplete data.

Fuzzy logic has been applied to many different and

Fig 6-In a fuzzy feedback controller, selected sampled outputs serve as inputs. Modeling is unnecessary, even with nonlinear systems, as long as the response function is describable in words.
diverse applications. These include categorization of weather patterns and of sea gull behavior; control of cement kilns, passenger trains, and elevators; scheduling of subway trains and service technicians; and making predictions in risk management.

Fuzzy logic systems are often superior to alternate approaches in five general areas:

- In complex systems where an adequate system model is difficult or impossible to define
- In systems normally controlled by a human expert
- In systems that have moderately to very complex continuous (or semicontinuous) inputs and outputs and a nonlinear response function
- In systems that use human observations as control rules or inputs
- In systems where vagueness is common; for example, in economic systems, natural sciences, and behavioral sciences.

GDD

Author's biography

David Brubaker is president of The Huntington Group, consultants in the design of systems using real-time embedded processors and fuzzy logic. He has worked with Sun Microsystems, Beckman Instruments, Motorola, TRW, Ford, and ESL. David holds BS, MS, and $P h D$ degrees, all in electrical engineering, from Stanford University. His
 personal activities include walking, backpacking, and coaching his children's basketball teams.

Article Interest Quotient (Circle One)
High 479 Medium 480 Low 481

Interested in more information on fuzzy logic?

Turn to pg 121 in this issue for more information on fuzzy logic. The practical steps outlined in the next article show how to design a simple fuzzylogic system.

We continue our special coverage of fuzzy logic in the July 6, 1992, issue of EDN, which will feature a staff-written article on software tools used for fuzzy-logic design.

Nobody fills these slots better than we do.

For years, Wavetek has set the standard in Arbitrary and Function Generators. Now, we've put our latest models on boards, and their front panels on a disk. Other than that, nothing has changed.

The Model 1370 12 MHz Function Generator combines your mostneeded features with a very low price. It delivers $10 \mathrm{Vp}-\mathrm{p}$ into 50Ω, with continuous, triggered, gated and burst modes.

Our VXIArbitrary Generator, Model 1375, has a 32 K memory (expandable to 128 K), 12 bit vertical resolution and can sample at up to 20 MHz . It also has a 64 K Shared Memory that lets you download waveforms 40 times faster than the conventional binary method. Yet it only requires a single Csize slot.

Both instruments use SCPI-compatible command language for easy integration into automated test systems. Run

WaveTest program development software on the system controller and you'll have complete "soft panel" displays for the Models 1370 and 1375, along with many other VXI and GPIB instruments. A new Wavetek ARB software package rounds out your waveform creation system.

So if you have openings for a really good function generator, arbitrary generator or test development software, call Wavetek at 1-800-223-9885.

ANNOUNCING YET ANOTHER FIRST IN THE ENDLESS QUEST FOR DISK DRIVE INNOVATION.

Fast lane, flat out. Only open road ahead. And no looking back. Just another day in the life of a disk drive designer.

Well, strap yourself in a little tighter- the race is picking up.
VTC proudly submits its latest addition to your high-tech disk drive toolbox for the '90s: the world's first 3-volt read/write preamp. Now ready for you to put through the paces.

It's another in a long line of industry firsts from VTC, your trusted partner in read/write electronics for almost three decades. The company that's been there through it all—and intends to stay right there in it with you.

The VM3200 is a high-performance, very low power read/ write preamp for two-terminal thin-film/ MIG recording heads. It operates on a single 3.3 V power supply, making it ideal for battery-powered 2.5 and 1.8 -in drives in laptops, notebooks, and palmtop PCs.

The innovative circuit design of the VM3200 maintains 5 V performance at 3.3 volts. Not only does it meet your needs in today's mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ environment, it makes your transition to the complete 3 V system much easier.

Key features include fast current rise time, low input noise level, and a sleep mode that reduces power dissipation to 1.8 mW . It's available for two or four channels, in a variety of packages.

The VM3200: another first for VTC. Because we put you first.
So what's the first thing you do? Call us, of course, and - may we suggest speed dialing? VTC Inc., 2800 East Old Shakopee Road, Bloomington, MN 55425 USA. 612/853-5100. Fax 612/853-3355.

Call 1-800-VTC-DISC

VTC Inc.

Value The Customer ${ }^{\text {ma }}$
CIRCLE NO. 71

Custom shielding in record time.

For custom shielding, nobody helps you beat the clock-and the costslike Instrument Specialties.

Using the most modern CAD capabilities plus a half-century of EMC experience, our experts can quickly determine the best shielding for your design... often before you've built it.

With maximum flexibility and minimum tooling, our prototyping capabilities are both fast and economical. We've even dedicated an entire fabricating operation just for short runs. Our in-house design, plating, photoetching and heat treating also keep your costs down Or we could modify our standard
shielding products to fit your application... helping you save even more time and money.

When you do decide to start full production, you'll have the complete in-house capabilities of a leading worldwide shielding supplier behind you... including wire EDM toolmaking, sophisticated fabrication techniques,
and comprehensive EMC testing-all assuring just-in-time deliveries.

So call Instrument Specialties for your next custom shielding project. Because whether you need 5 parts or 5 million, we'll be on time... and on budget

Where Shielding is a Science

Instrument Specialties

Headquarters: Delaware Water Gap, PA 18327-0136
TEL: 717-424-8510 FAX: 717-424-6213
Western Division: 505 Porter Way, Placentia, CA 92670 TEL: 714-579-7100 FAX: 714-579-7105
European Division: 3 Avenue du Progres, B4432 Alleur, Belgium TEL: + 32-41-63-3021 FAX: + 32-41-46-4862

Precision Resistor Networks

 Custom Precision SIP Resistor Networks Engineered to your Application...Fast
 - Resistance Values from 100 ohms to 50 Meg
 - Absolute Tolerance from $\pm 0.025 \%$ to $\pm 0.25 \%$
 - Ratio Tolerance as tightas 0.01%
 - Absolute TC of $15 \mathrm{ppm}, 25 \mathrm{ppm}$ or $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
 - Ratio TC of $5 \mathrm{ppm}, 10 \mathrm{ppm}, 25 \mathrm{ppm}$ or $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Standard Precision SIP Resistor Networks

Type T912 Two Resistor Networks
Type T914 Four Resistor Networks

- Ratio Tolerance 0.01\% to 0.10\%
- Ratio TC 2 ppm, 5 ppm or $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Type 1776 Decade Voltage Dividers

- Ratios of 10:1, 100:1, 1000:1 and 10000:1
- Ratio Tolerance $0.02 \%, 0.05 \%, 0.10 \%$ to 0.50%
- Ratio TC 5ppm, $10 \mathrm{ppm}, 25$ ppm or $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- 1200 V Input Voltage Rating

Type 1787 Current Shunts

- Resistance Values from 0.9 ohm to 100 ohms
- 0.1Ω Available in a Custom Network
- Absolute Tolerance from $\pm 0.05 \%$ to $\pm 0.25 \%$
- Absolute TC of 25 ppm to $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Transient Tolerant Precision SIP Networks

- Lightning Transient Handling Capability
- 50 ohm pair, 100 ohm pair or 200 ohm pair
- Also Voltage Divider Networks
- Absolute Tolerance from $\pm 0.10 \%$ to $\pm 2.0 \%$
- Ratio Tolerance from 0.10\% to 0.50\%

More high performance resistor products from ELECTRONICS, INCORPORATED

The23rdEdition of theCaddock GeneralCatalog includesspecifications on over200 models of high performance resistor products. Call for your copy.

Applications Engineering Caddock Electronics, Inc. 17271 North Umpqua Hwy. Roseburg, Oregon 97470 Phone: (503) 496-0700 Fax: (503) 496-0408

Sales Office - USA and Canada Caddock Electronics, Inc. 1717 Chicago Avenue Riverside, California 92507 Phone: (714)788-1700 Fax: (714) 369-1151

Fuzzy-logic system solves control problem

David I Brubaker, The Huntington Group, and Cedric Sheerer, C/S Associates

Complex, nonlinear control problems can yield to simple fuzzy-logic techniques that require no modeling. Although fuzzy logic does not produce an analytic solution, you can verify the solution's validity using simulation.

You can use fuzzy logic to control a complex system. The practical steps in the following sample problem show how to design a simple fuzzy-logic system, in this case, a system that controls a traffic light for a freeway's on ramp. The traffic light will automatically control the traffic flow onto a freeway (Fig 1). The design goal is to minimize the impact of the inflow traffic on the prevailing freeway traffic.
Currently, on northern California freeways, a red-and-green traffic light meters on-ramp traffic. The traffic light has a constant green-to-red cycle. An accompanying sign states that a single vehicle is allowed onto the freeway for each green light. A fixed timer switches metering on automatically during periods that usually have heavy traffic-typically during commuting times.
For our design, we would like to add a bit of complex-ity-and hopefully capability-to the system. First, we will allow the delay between green lights to depend on the prevailing freeway traffic's speed and density: The delay increases for higher traffic density and decreases for higher freeway speed. And second, by controlling the length of time the green light is active, we will allow potentially more than one car onto the freeway during each green light. A standard traffic light, having green, yellow, and red lights, will perform the metering.
The system will be fuzzy; that is, it will continuously
monitor the inputs and from them determine appropriate output responses based on rules stated in wordsor, more formally, linguistically stated control criteria. Although the fuzzy system will make its decisions based on these rules, the system is not an abstruse "natural-language" artificial-intelligence system. Just like any other control system, the fuzzy system will take in numeric inputs from its sensors and output numeric data to control the traffic light.
Is a fuzzy system appropriate for this application? Or, more to the point, would you use a fuzzy approach for traffic metering outside this tutorial setting on a real freeway?
For several reasons, the answer is yes. Although an on-ramp metering system seems on the surface to be simple, the system is actually quite complex and, to a great degree, nonlinear. The behavior of human drivers tends to be nonlinear but also fairly predictable and, therefore, not random.
This nonlinear physical system is difficult to model mathematically, but you can easily express the sys-

Fig 1-The fuzzy-logic system in this article will control the flow of cars from an on ramp onto a busy freeway by cycling a traffic light according to the freeway traffic's density and speed.

FUZZY LOGIC

tem's operation in linguistic rules using fuzzy variables. You can also accomplish any needed subsequent modifications to the system quite simply.

System design

As is the case with designing many complex, nonmodeled systems, designing a fuzzy rule-based system is largely a seat-of-the-pants job. Recognizing the lack of a formal procedure, this example uses the following four steps:

1. Identify system inputs and those inputs' fuzzy ranges and establish degree-of-membership (or truthvalue) functions for each range.
2. Identify outputs and those outputs' fuzzy ranges, again including the degree-of-membership functions.
3. Identify the rules that map the inputs to the outputs.
4. Determine the method of combining fuzzy rule actions into executable, "crisp" system outputs.

The system has two inputs: SPEED-the current average speed of the freeway traffic, and DENSITYthe current average density of the freeway traffic. In the real world these two inputs are somewhat tightly linked: Density tends to decrease as freeway speed increases because drivers allow greater separations between themselves and the car in front. However, we shall treat the two inputs separately.
Each input can assume a number of linguistic values, each value represented by a fuzzy set. To the fuzzy variable DENSITY we'll assign three fuzzy values (Fig 2): HEAVY-separation between cars is minimal, MEDIUM_HEAVY-separation between cars is nominal, and LIGHT-Separation between cars is maximum.
The fuzzy variable SPEED will also have three fuzzy values: SLOW-traffic is moving slowly,

MEDIUM_FAST-traffic is moving at a nominal velocity below the speed limit, and FAST-traffic is moving at or above the speed limit.

We must deal finally with numbers-the linguistic values suggested have no quantitative meaning. Fig 2 shows the degree-of-membership functions associated with the two inputs. Each linguistic fuzzy value has a corresponding fuzzy set. The shape of the fuzzy set determines its degree-of-membership, or "truthvalue," function. Notice, for example, that the speed of 15 mph has a degree of membership of about 0.40 in both the SLOW and MEDIUM FAST fuzzy sets. We arrived at the fuzzy sets in Fig 2 arbitrarily, although an inherent requirement of a linguistically represented system is that the values be intuitively valid.

Identify system outputs

The system will have two outputs:

1. GREENLIGHT-The duration of the green-light state, in seconds, during which cars may enter onto the freeway.
2. REDLIGHT-The duration of the red-light state, also in seconds (which will include a constant-period yellow-light state), during which on-ramp cars may not enter onto the freeway.

Three fuzzy values apiece handle the two output variables nearly identically: SHORT-the given light is on only a short time, MEDIUM_LONG-the given light is on a medium period of time, LONG-the given light is left on for a long period of time. Fig 3 shows the membership functions of these fuzzy values, as functions of time (seconds). In addition to these values, GREENLIGHT must have one additional (and crisp) value: CONSTANT_ON-the green light is on continuously.

After assigning input and output values to defined

Fig 2-The degree-of-membership functions for the two system inputs, DENSITY (a) and SPEED (b), transform the measured (crisp) inputs into degrees of membership in fuzzy sets.

EDN-DESIGN FEATURE

fuzzy sets, we must map each of the possible nine input conditions to an output. You do this mapping through the rule base. The most common form of expression for rules is linguistic:
if (condition or antecedent) then (action or consequence).

For example,
if (DENSITY is HEAVY and SPEED is SLOW) then (GREENLIGHT is SHORT, REDLIGHT is LONG).

You must keep in mind the heart of a fuzzy rulebased system: the degree to which the actions are executed corresponds directly to the degree to which the respective input conditions are true. The "AND" operator in the statement of the condition is a fuzzy AND, not a Boolean AND. The fuzzy AND means that the lesser value of the two degree-of-membership functions gets taken.

Continuing in this manner completes the rule base. A more compact form, and one that ensures we have covered all condition combinations, is the matrix representation. Fig 4 shows both a list of rules and equivalent matrices for the metering-light rule base.

Several techniques exist for combining fuzzy actions into a single, crisp output. The fuzzy development and simulation program we used to verify this design supports only one: the centroid technique. The centroid technique, incidentally, is currently the most popular technique.

In making our first go at the design, we implemented

Fig 3-The degree-of-membership functions for the two system outputs, REDLIGHT and GREENLIGHT, transform the fuzzy actions that the rule base specifies back into executable (crisp) outputs.
the system using Hyperlogic's Cubicalc fuzzy tool and a simulator. The simulator provided a range of densities of simulated freeway traffic and several speed ranges for each density as inputs to the system. Resulting simulated outputs are the length of delay for each red light (that is, delay between green lights) and the number of cars allowed through for each green light.

To show how the fuzzy inference mechanism works, we'll step through a single iteration. The concept is not difficult, but the process has a number of potentially confusing steps. Refer to Figs 5 and 6.

We assume a traffic density of 0.35 (which trans-

1 if (DENSITY is HEAVY and SPEED is SLOW) then (REDLIGHT is LONG, GREENLIGHT is SHORT)
2 if (DENSITY is HEAVY and SPEED is MEDIUM_FAST) then (REDLIGHT is MEDIUM_LONG, GREENLIGHT is MEDIUM_LONG)
3 if (DENSITY is HEAVY and SPEED is FAST) then (REDLIGHT is SHORT, GREENLIGHT is LONG)
4 if (DENSITY is MEDIUM HEAVY and SPEED is SLOW) then (REDLIGHT is MEDIUM LONG, GREENLIGHT is MEDIUM LONG)
5 if (DENSITY is MEDIUM HEAVY and SPEED is MEDIUM FAST) then (REDLIGHT is SHORT, GREENLIGHT is LONG)
6 if (DENSITY is MEDIUM_HEAVY and SPEED is FAST) then (REDLIGHT is (SHORT), GREENLIGHT is CONSTANT_ON)
7 if (DENSITY is LIGHT and SPEED is SLOW) then (REDLIGHT is SHORT, GREENLIGHT is LONG)
8 if (DENSITY is LIGHT and SPEED is MEDIUM_FAST) then (REDLIGHT is (SHORT), GREENLIGHT is CONSTANT_ON) 9 if (DENSITY is LIGHT and SPEED is FAST) then (REDLIGHT is (SHORT), GREENLIGHT is CONSTANT_ON)
(a)

	SLOW	GREENLIGHT MEDIUM FAST	FAST
LIGHT	${ }^{7}$ CONSTANT_ON	${ }^{8}$ CONSTANT_ON	${ }^{9}$ CONSTANT_ON
MEDIUM HEAVY	${ }^{4}$ MEDIUM _LONG	5 LONG	6 CONSTANT_ON
HEAVY	1 SHORT	${ }^{2}$ MEDIUM LONG	3 LONG

(b)

Fig 4-You can represent the rules that relate inputs to outputs in linguistic form (a) or in matrix form (b). The rules map the various fuzzy values of the inputs DENSITY and SPEED to the outputs GREENLIGHT and REDLIGHT. Note that four SHORT values of REDLIGHT have parentheses. The parentheses indicate a don't-care state because the corresponding state for GREENLIGHT is CONSTANT_ON.
lates into each car having approximately two carlengths between itself and the car in front) and an average speed of 17 mph . The density maps into a degree of membership in the fuzzy sets MEDIUM_HEAVY and HEAVY, with, respectively, $\mu_{\text {MEDIUM_HEAVY }(0.35)}=0.80$ and $\mu_{\operatorname{HEAVY}(0.35)}=0.28$. Similarly, the speed 17 mph maps to degrees of membership $\mu_{\text {SLOW }(17)}=0.22$ and $\mu_{\text {MEDIUM_FAST }(17)}=0.50$.

Applying these four nonzero degrees of membership to the rule base triggers four rules, including Rule 4. Recall that Rule 4 states:

If (DENSITY is MEDIUM_HEAVY and SPEED is SLOW) then (REDLIGHT is MEDIUM, and GREENLIGHT is MEDIUM).

We have already determined that DENSITY is MEDIUM_HEAVY ($\mu=0.80$) and SPEED is SLOW ($\mu=0.22$). The fuzzy AND of these two expressions is the lesser of the two values, so the truth value (which, again, for our purposes is synonymous with "degree of membership") of the input condition for Rule 4 is $\mu_{\text {CONDITIIN }}=0.22$.

This result we apply to both output actions:

$$
\begin{aligned}
\mu_{\text {MEDIUM_LONG }}^{\text {REDLIGHT })} & = \\
\mu_{\text {MEDIUM_LONG }(\text { GREENLIGHT })} & =0.22 .
\end{aligned}
$$

Had Rule 4 been the only rule that fired, these values would also uniquely determine the actual executed values for REDLIGHT and GREENLIGHT. However, given the two specific inputs, a total of four rules will fire: Rules $1,2,4$, and 5 . By following the same steps as we did for Rule 4, we would find that the calculated REDLIGHT and GREENLIGHT durations are (here including the Rule 4 results)

$$
\begin{gathered}
\mu_{\text {LONG(REDLIGHT })}= \\
\mu_{\text {SHORT }(\text { GREENLIGHT })}=0.22 \\
\mu_{\text {MEDIUM_LONG(REDLIGHT })}= \\
\mu_{\text {MEDIUM_LONG(GREENLIGHT })}=0.28
\end{gathered}
$$

$\mu_{\text {MEDIUM_LONG }}$ (REDLIGHT) $=$
(Rule 4) $\mu_{\text {MEDIUM_LONG }}($ GREENLIGHT $) ~=0.22$

$$
\begin{aligned}
\mu_{\text {SHORT(REDLIGHT) }} & = \\
\mu_{\text {LONG(GREENLIGHT) }} & =0.50 .
\end{aligned}
$$

(Rule 5)

We must now combine and translate these results into a crisp, executable output. As Fig 6 shows, we use the centroid technique to do so for the REDLIGHT duration. Again using Rule 4's action, the membership function of MEDIUM_LONG is sliced off at the designated truth value, $\mu=0.22$. The centroid of the resulting area is at REDLIGHT Rule $4=6 \mathrm{sec}$.

Fig 5-A traffic density of 0.35 translates into $\mu=0.80$ in the fuzzy set MEDIUM_HEAVY (a). Similarly, a traffic speed of 17 mph yields $\mu=0.22$ in the fuzzy set SLOW (b).

Fig 6-The centroid method of combination/defuzzification crops the fuzzy set MEDIUM_LONG at a height of 0.22-the result from Fig 5. The centroid of the resultant truncated figure is at a delay of 6 seconds.

In a similar manner, calculating the centroids for the output areas corresponding to the actions of Rules 1 , 2 , and 5 yields: REDLIGHT Rule $1=13.2 \mathrm{sec}$, REDLIGHT $_{\text {Rule } 2}=6 \mathrm{sec}$, and REDLIGHT Rule $5=2.75 \mathrm{sec}$. A weighted-average method, where the weights are the respective truth values, combines all these centroids. The final output is:

$$
\begin{gathered}
\mathrm{t}_{\text {REDLIGHT }}=((13.2)(0.22)+(6)(0.28)+(6)(0.22)+ \\
(2.75)(0.50)) /(0.22+0.28+0.22+0.50)=5.96 \text { seconds. }
\end{gathered}
$$

Performance is pretty much as expected. For light traffic, the system allows cars onto the freeway with little or no delay and with little impact on freeway speed and density. As the number of cars on the freeway (DENSITY) increases, the number of cars allowed in from the on ramp decreases dramatically.
Obviously, the design suffers from a significant oversight. This oversight is an intentional setup; it allows for an extra modification step, and the ease of modification of fuzzy systems is important. When traffic is very dense, the system allows a bare minimum of cars, approaching zero, to enter from the on ramp. With a little thought, the reason becomes obvious. If the design goal, implicit in the rule base, is to optimize freeway density, then freeway density is least adversely affected when the system allows no cars to enter from the on ramp. Thus, while the design goal of optimizing freeway traffic flow is desirable to those already on the freeway, it would not be a popular one among the drivers stacking up on the on ramp.

System modification

We need to modify our system. The system as it stands now has a natural correctional feedback (drivers wanting to enter onto the freeway that see an overly long line at the on ramp will tend to look for an alter-

Fig 7-Simulations reveal that the rules in Fig 4 will allow no cars onto the freeway if the prevailing traffic is heavy. Having added these Q_IENGTH fuzzy sets and modified the rule base, the system will now attempt to balance the need to optimize freeway-traffic density with the need to minimize on-ramp queve length.
nate route), but it is minimally effective. To improve on the design, we must include another input and a corresponding additional set of rules to balance the "minimal impact on freeway density" goal with a "minimal number of cars on the on ramp" goal.
The input we'll add is the number of cars currently on the ramp waiting to be metered onto the freewaycall it Q_LENGTH. As with the other inputs, Q_LENGTH is a fuzzy variable and comprises three fuzzy values, each with its own degree of membership function: SHORT-a few cars are on the on ramp, MEDIUM_LONG-a moderate number of cars are on the on ramp, and LONG-many cars are on the on ramp. Fig 7 shows these functions.
Adding Q_LENGTH to the rule base adds a third dimension to the original matrix. Because the original

Fuzzy logic evinces interest from US engineers

Even a year ago, fuzzy-logic practitioners, recognizing the highly publicized successes in Japan, were bemoaning US companies' utter lack of interest in fuzzy-logic systems. The Western engineering community, caught up in the need for precision that has been evident as far back as Aristotle, was incapable of appreciatingmuch less applying-fuzzy logic. The term "fuzzy" itself was an encumbrance, part of an overall psychological barrier that embodied a distrust of anything imprecise.
This situation is changing rapidly. The Japanese still dominate in fuzzy applications, but American engineers
are now starting to catch on, often through the efforts of internal individual and small-group "champions" that learned the technology, caught the spirit, and are now busy converting their colleagues and management.
The psychological barrier is coming down. And if we can keep from getting caught up in a self-defeating hype campaign, we will come to accept fuzzy logic as a viable and powerful system-design paradigm.
The bottom line is that, because fuzzy logic is a fundamental mathematical technique, there are few disciplines where you cannot apply it.

EDN-DESIGN FEATURE

FUZZY LOGIC

matrix is valid for low freeway densities (where onramp cars enter the freeway with little or no delay), we shall allow the original matrix to stand for Q_LENGTH = SHORT. However, as the number of cars on the freeway increases, we need to give queue length a higher priority, knowing that doing so is at the expense of those out on the freeway. Fig 8 shows the new, 3 -D rule base for the output REDLIGHT in matrix form.

After running simulations a second time, the results were more in line with what we expected. For light traffic, cars enter from the on ramp unimpeded. Under medium freeway-traffic densities, the delay increases somewhat, but is still not intolerable.

Finally, when traffic is heavy and the queue is short, freeway density dominates and on-ramp delays are long; for increasing queue lengths, the need to move cars onto the freeway becomes more important, and freeway density suffers. We now have a system whose operation is consistent with what we would expect to see were this system used in an actual application.

Why did we simulate the system? Currently, rulebased fuzzy systems are nonanalytic. By expanding fuzzy systems' capability to handle extremely complex and nonlinear systems, we have sacrificed the ability to analyze mathematically their correct operation and complete representation of the system being controlled. To ensure correct operation (or at least an increased comfort margin) we must simulate the system's operation. This nonanalytic approach often rankles those who are grounded in traditional, linear theory but, if done correctly, it is tested and reliable.

Porting to the real world

Several options exist to assist porting a fuzzy rulebased system to a real-world application. The first option is to develop your own fuzzy system. As you can see from the example, the basic architecture has three stages:

1. A crisp-to-fuzzy transformation of inputs.
2. Applying these fuzzy inputs as conditions to the rule base.
3. Combining the resulting actions and transforming from a fuzzy set of outputs back to executable, crisp outputs.
Actually, although developing your own system may sound involved, it is not all that difficult. The real complexity in developing a fuzzy system is in creating and testing both the degree-of-membership functions and the rule base, rather than in implementing the runtime environment.

The second porting option is to use an embedded architecture that supports DOS and utilize the runtime environments provided by the various toolmakers. Fi-
nally, both Hyperlogic and Togai Infralogic optionally provide the C source code they use in their runtime environment, which will allow cross compilation into nearly any target.
The example is conceptually straightforward. The intent of this article is not to design a traffic light but rather to demonstrate how to design a fuzzy system. You can follow the approach outlined here to develop even relatively complex fuzzy rule-based systems.
Note that at no time did we have to create a model of the physical system. The solution used linguistically stated rules describing actions that are in response to inputs. This lack of a model is the dominant strength

Q_ LENGTH is SHORT			
	SLOW	MEDIUM_FAST	FAST
LIGHT	(SHORT)	(SHORT)	(SHORT)
MEDIUM HEAVY	MEDIUM_LONG	SHORT	(SHORT)
HEAVY	LONG	MEDIUM_LONG	SHORT
Q_LENGTH is MEDIUM_LONG			
SPEED SLOW MEDIUM FAST FAST			
LIGHT	(SHORT)	(SHORT)	(SHORT)
MEDIUM HEAVY	SHORT	SHORT	(SHORT)
HEAVY	MEDIUM_LONG	SHORT	(SHORT)
Q_ LENGTH is LONG			
LIGHT	(SHORT)	(SHORT)	(SHORT)
MEDIUM HEAVY	(SHORT)	(SHORT)	(SHORT)
HEAVY	SHORT	(SHORT)	(SHORT)

Fig 8-Compare these three matrices for REDIIGHT with the single REDLIGHT matrix in Fig 4. When the queve's length is short, the rules are the same as Fig 4's. But as the queve gets longer, the rules make the REDIIGHT interval shorter. (The GREENLIGHT interval, not shown, is the complement of the REDIIGHT interval.)

100% get a free DMM .

Our logic analyzers sell themselves. All we have to do is get one in your hands. To make sure you do, we're giving you a Fluke DMM*, whether you buy our analyzer or the competition's.
Only the Philips PM 3580 family of logic analyzers give you true dual state and timing on up to 96 channels - simultaneously. All accessible with one probe and one keystroke. Which means no more dual probing or reconfiguration between state and timing. Or no probes at all if you use our boundary-scan test option!

[^9]All our analyzers feature 50 MHz state and up to 200 MHz timing speeds. As well as integrated state and timing triggering for fast debug of complex hardware and software problems. Plus broad μ p support like Intel ${ }^{\text {® }}$ S i486; i386; 80286; 80186/88 families. The MCS-96, 8051, and i960 families. And the Motorola 68040 to 6800 , 68HC11, 68332/1, 68302, 68340, 56001, AMD ${ }^{\circledR}$'s AM 29030, and TI's 320Cxx family. The PM 3580 family of logic analyzers is priced from $\$ 4495$ to $\$ 11,450$ - about half the cost of comparable analyzers. What's more you can have them up and running in only 30 minutes.
Find out why the PM 3580 family of logic analyzers were the only ones cited for
excellence and innovation by Electronic Design, EDN, Embedded Systems, Electronic Products, and R\&D magazines. Take the Fluke Challenge. The odds are 100% you'll be totally impressed.
For literature, our video or a demonstration,
call 1-800-44-FLUKE.

John Fluke Mifg. Co., Inc., P.O. Box 9090, M/S 250C,

Everett, WA 98206-9090. U.S. (206) 356-5400.
Canada (416) 890-7600. Other countries: (206) 356-5500.
(c) 1992. All rights reserved. Registered T.M. of Advanced Micro-Devices and Intel Corp. Ad No. 00244

FAST ANSWERS

FLபKE

Low Sost, Нich Speed μ Р НЕat Dissipator

IERC's 2-piece $\mu \mathrm{P}$ dissipator for 486 / 586 / i860 / i960 microprocessors allows circuit designers a rugged, quick connect, thermally efficient product. Its clip quickly and rigidly attaches directly to the $\mu \mathrm{P}$ without the need for a socket. No tools are required. Easy assembly saves time and money.

Choose from IERC's low profile configuration which uses minimal board space or a heat dissipator which can work with ZIF sockets. Custom models are available.

For superior thermal performance, stay cool with IERC!

International Electronic Research Corporation a subsidiary of Dynamics Corporation of America 135 W. Magnolia Blvd., Burbank, CA 91502 TEL: (818) 842-7277 • FAX: (818) 848-8872

CIRCLE NO. 76

FUZZY LOGIC

of a fuzzy rule-based system. Using intuitive terms rather than abstract mathematical models, you can implement complex systems rapidly.

We have presented a simple fuzzy system. It demonstrates the lowest level of how to incorporate fuzzy logic into system design. Higher-level fuzzy structures can take the form of either adapting traditional, crisplevel structures or creating new structures that are achievable only with fuzzy logic.
A fuzzy solution may be the only one possible. For example, fuzzy decision and scheduling schemes handle imprecise inputs, logically combining them to provide some optimal decision or schedule. In addition, fuzzy evidence techniques allow collecting both deductive and inductive evidence in forming conclusions, again in light of incomplete or uncertain data.

One final point. Proponents often claim that fuzzy logic sacrifices precision for a more accurate "bigpicture" view of the system. This is not entirely correct. Fuzzy logic does retain the high-level view of a system better, but it also only sacrifices unnecessary precision. If you need greater precision, you can get it from your fuzzy system by, for example, increasing the number of input and output values and accounting for input-to-output mapping through an increased number of more specific rules.

도디
To get a foundation in the basics of fuzzy logic, turn to pg 111 in this issue.

Authors' biographies

David Brubaker is president of The Huntington Group (Menlo Park, CA), consultants in the design of systems using real-time embedded processors and fuzzy logic. He has worked with Sun Microsystems, Beckman Instruments, Motorola, TRW, Ford, and ESL. David holds BS, MS, and PhD degrees, all in electrical engineering, from Stanford
 University. His personal activities include walking, backpacking, and coaching his children's basketball teams.

Cedric Sheerer is president of C/S Associates (Los Altos, CA). He holds degrees in both electrical engineering and business and has 23 years of experience as a software and hardware engineer and an ixternational consultant. His professional specialties include artificial intelligence (AI), video-digital imaging, data acquisition, and algorithmic signal
 processing, which he has used to develop AI-based analog/digital board-level diagnostic tools.

Article Interest Quotient (Circle One)

 High 476 Medium 477 Low 478
SWITCHES

Where will you find the world's first discrete MOSFET that looks after itself?

Wherever you look on a modern car there are motors driving everything from fuel pumps to headlight wipers.

And wherever there's a motor, there's a place for Philips' unique TOPFET power switch.

It's the world's first fully protected discrete
power MOSFET. What it offers designers is precisely controlled performance in extremely tough conditions

It does this by integrating short-circuit, overtemperature and over-voltage protection onto the chip itself.

Philips Components Discrete Products Division, 2001 W Blue Heron Blvd, Riviera Beach, FL 33404 USA. Tel: 1-800 4473762

Philips Semiconductors

So the chip can perform its switching task on-site, with no additional protection circuitry and no worries about reliability.

Of course, the TOPFET range isn't the only way Philips can add value to a car.

Our new, solid-state magnetoresistive sensors can
provide contactless angle and rotational measurement wherever it's needed in the vehicle.

With its tradition of innovation, design-in expertise and worldwide logistic support, Philips Semiconductors is geared-up to serve the most demanding customers.

Wherever they happen to be

CIRCLE NO. 78

The smallest, double-pole, 30A relay you can buy for either printed circuit board or panel mounting!

Space-efficient design... Our new T92 relay saves valuable space in your power switching application. It lets you do more with less whether you're switching HVAC compressors, appliance pump motors or ballasts in energy management applications.

Switches 0.5 to 30A loads... Double pole T92 can switch two, 30A loads in either its panel-mount or PC board configuration. And for many loads its life is comparable to that of more costly definite purpose contactors. Both a dust cover and a sealed, immersioncleanable enclosure are available.
Contact Ratings \& Electrical Life
(Normally Open Contacts, DC Coil) (Normally Open Contacts, DC Coil)

Load

30A @ 240VAC
1.0 HP @ 120VAC
2.5 HP @ 240VAC
25.3 FLA, 110 LRA

TV10 @ 120VAC
20A @ 28VDC

Expected Life
300K operations 100K operations 100K operations 100K operations 100K operations 100K operations

Low coil power requirement... The T92's efficient coil requires less than 1.7 W of power for DC types; 4.0VA for AC models. Coil voltages are offered from 6 through 110VDC and from 24 through 277VAC.
Meets standards worldwide... Designed to meet VDE isolation requirements, T92 provides internal spacings of 8 mm through air and 9.5 mm over surface. Dielectric strength is 4 kV between contacts and coil, 1.5 kV between open contacts and 2 kV between poles.
The quality you demand... Of course, T92 relays are built to the same stringent standards that have allowed many of our general purpose and power relays to become the standards of the industry. No brag, just fact!

Find out more...
Contact us today to learn more about how you can use the T92 to solve your toughest power switching problems.

OPTIONAL LAYOUT USES . 072 (1.83) DIA. HOLES ON THE SAME CENTERS SHOWN

Panel Mounting Dimensions

Two 125 (3.175) mounting slots are provided on 2.351 (59.71) centers.

Solving switching problems is what we're all about...
Potter \& Brumfield
200 S. Richland Creek Dr.
Princeton, IN 47671-0001
Fax: (812) 386-2335
Call toll-free 1-800-255-2550 for the P\&B authorized distributor, sales representative or regional sales office serving your area.

Not SinceYouWere a Kid Have You Had So Many Choices.

Remember the candy store? Having so much to choose from was the best part of going there.

And that's the way it is with Teledyne Components. We have the most extensive product offering in power drivers than any other manufacturer in CMOS technology. We have more than 40 individual devices in our product line; single, dual, quad in pull-up or pull-down configurations. Our specs range from 1.5A to $9 \mathrm{~A} ; 15 \mathrm{~ns}$ to 25 ns.

Best of all, whichever Teledyne Components power driver you do choose, you know you are selecting high performance, reliability and the Teledyne name.

For a free information packet describing our power driver choices, call toll free 1-800-888-9966; in California (415) 968-9241 or write Teledyne Components, 1300 Terra Bella Avenue, Mountain View, CA 94039. Choosing power drivers will be like a trip to the candy store!

がTELEDYNE COMPONENTS

The new LTC1155 is a dual, highside MOSFET driver designed specifically for battery operated applications such as laptop computers and hand-held instrumentation. By producing a gate voltage higher than the power supply rail, the LTC1155 facilitates the use of low cost, N -Channel MOSFETs instead of larger, more expensive P-Channel parts. It delivers up to 12 V of gate drive from a 5 V supply. And both channels of the driver include independent short circuit protection. Gate voltage is generated in a unique on-chip voltage multiplier that requires no external parts! The quiescent current

LTC1155

- NO EXIERNAL PARTS
- space saving 50-8PRG(DUAK)
- SHORT CIRCUIT APOTECTION
- 8μ AOFE, $80 \mu A$ ON
- DRIVES LOW COST N-CHANWEL MOSEETS (NOHEAT SINKS)
- LOGIC INTERFACE
- CAN USE FOR 24 V
drops to $8 \mu \mathrm{~A}$ when both TTL and CMOS compatible inputs are switched to OFF. A time delay can also be added to prevent false triggering on high in-rush loads.

Operating supply voltage range extends from 4.5 V to 18 V . The LTC1155 is available now in 8 -pin SO or 8 -pin DIP. A quad version, the LTC1156, is also available. Prices for 100 piece quantities are $\$ 3.20$ for the LTC1155 SO-8 package and $\$ 5.35$ for the LTC1156 16-pin SO part. For details, contact Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035 / 408-432-1900. For literature only call 800-637-5545.

CTIMEAR

TOUGH PRODUCTS FOR TOUGH APPLICATIONS. CIRCLE NO. 81

8031's unused address bits become inputs

Mike Harris, Ten X Technology, Austin, TX

Normally, if an 8031 accesses external program memory, none of the unused pins of I/O-port P2, which outputs the high byte of the 16 -bit address, are available for other kinds of I/O. However, the simple software in Listing 1 allows you to use leftover pins for I/O. The only restriction is that the pins cannot source current; open-collector/drain devices must drive them, or you can just jumper them to ground.

Fig 1 shows an 8031 that has 8 kbytes of external memory. Because the design uses only 13 address lines, $\mathrm{A}_{13}, \mathrm{~A}_{14}$, and A_{15} are available as extra I/O lines. In the figure, A_{13} and A_{14} connect to configuration jumpers, and an open-collector 74 HC 03 drives A_{15}.
To use an 8031's I/O port as an input, software must set the corresponding output-latch control bit to 1 to turn off the pin's output driver and allow the 8031's internal pull-up resistor to pull the signal high. In this state, an external device can leave the pin high or pull it low.

Unused address bits of P2, however, will usually be low and therefore not usable as inputs. In Listing 1, the program remedies this situation by executing a

Listing 1-8031 P2 enabling scheme			
nigh:			${ }^{\text {a }}$
		${ }_{\text {a }}^{\text {A, pr }}$	

long jump to an address that sets the unused bits of P2 high. For the circuit in Fig 1, adding E $000_{\text {HEX }}$ to an address sets $\mathrm{A}_{13}, \mathrm{~A}_{14}$, and A_{15} high. After reading the state of these bits, the program simply does a long jump back to restore the program counter.
If your application cannot tolerate the overhead of long jumps, you might try relocating your program to start at $\mathrm{E} 000_{\mathrm{HEX}}$, which would cause the unused bits to remain high during all code fetches. However, not all linkers and EPROM programmers tolerate this relocation. EDN BBS /DI_SIG \#1148 EDD

To Vote For This Design, Circle No. 743

Fig 1-This simple $\mathbf{8 0 3 1}$ circuit gets some use out of otherwise useless address pins in port $\mathbf{P 2}$.

EDN-DESIGN IDEAS

FPGAs trade off modules for speed

Warren Miller, Actel Corp, Sunnyvale, CA

Unlike designers who work with other forms of logic, field-programmable-gate-array (FPGA) designers can trade off complexity for speed. Fig 1 shows a simple 8 -bit adder that uses the sum-and-carry approach. This design uses the fewest number of FPGA internal modules for a parallel design. However, the worst-case delay is relatively long because signals might have to propagate through eight logic levels.
Fig 2 uses 40 modules but only three logic levels, which decreases propagation delays at the expense of increasing the module count. The carry logic computes carries by assuming both true and false values for certain carries and then using the actual value of the assumed carry to select (via a multiplexer) the proper result at the last nanosecond. Fig 2's circuit develops higher-order sums in a similar manner.
Fig 3a and Fig 3b show modifications of the carryselect adder. The two circuits require 34 modules (four levels) and 32 modules (five levels), respectively. Fig 3a's circuit saves six logic modules by adding the C 2 and C6 outputs from the carry-generation logic and simplifying the sums for S2, S3, S5, S6, and S7.

Fig 1-This straightforward adder design uses the fewest FPGA internal modules but incurs eight logic-level delays.

Fig 2-Introducing parallel, "predictive" chains of logic increases the module count for this adder but reduces logic-level delays to three.

dc to 2000 MHz amplifier series

SPECIFICATIONS

MODEL	FREQ. MHz	GAIN, dB			$\underset{(\text { note })}{\text { Min. }}$	- MAX PWR. dBm	$\begin{aligned} & \text { NF } \\ & d B \end{aligned}$	PRICE Ea.	\$ Qty.
		$\begin{gathered} 100 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 1000 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2000 \\ & \mathrm{MHz} \end{aligned}$					
MAR-1	DC-1000	18.5	15.5	-	13.0	0	5.0	0.99	(100)
MAR-2	DC-2000	13	12.5	11	8.5	+3	6.5	1.35	(25)
MAR-3	DC-2000	13	12.5	10.5	8.0	+8ロ	6.0	1.45	(25)
MAR-4	DC-1000	8,2	8.0	-	7.0	+11	7.0	1.55	(25)
MAR-6	DC-2000	20	16	11	9	0	2.8	1.29	(25)
MAR-7	DC-2000	13.5	12.5	10.5	8.54.	+3	50	1.75	(25)
MAR-8	DC-1000	33	23	-	19°	+10	3.5	1.70	(25)

NOTE: Minimum gain at highest frequency point and over full temperature range.

- 1dB Gain Compression
$\square+4 \mathrm{dBm} 1$ to 2 GHz

designers amplifier kit, DAK-2

5 of each model, total 35 amplifiers

finding new ways

Unbelievable, until now...tiny monolithic wideband amplifiers for as low as 99 cents. These rugged 0.085 in.diam.,plastic-packaged units are 50ohm* input/output impedance, unconditionally stable regardless of load*, and easily cascadable. Models in the MAR-series offer up to 33 dB gain, 0 to +11 dBm output, noise figure as low as 2.8 dB , and up to DC-2000MHz bandwidth.
MAR-8, Input / Output Impedance is not 500 hms , see data sheet. Stable for source/load impedance VSWR less than 3:1

Also, for your design convenience, Mini-Circuits offers chip coupling capacitors at 12 cents each. \dagger

Size	Tolerance	Temperature (mils)	Value			
80×50	5%	Characteristic				

setting higher standards
\square Mini-Circuits

EDN-DESIGN IDEAS

Fig $\mathbf{3} \mathbf{b}$ simplifies the design further by adding another level of logic for S7.

Random logic and multipliers can also use this "predictive" method. Counters, too, can employ the predictive technique by using the least significant bits to select between the two possible counting results: toggle and hold. Again, this technique requires more logic modules than traditional techniques, but it can increase performance dramatically because the least significant bits require only a single logic level. The most significant bits can tolerate more logic levels because they change infrequently.

This module/logic-level tradeoff also applies to other FPGA designs such as counters, random logic, multipliers, and state machines. State machines can use the bit-per-state approach. Additional techniques for increasing performance at the expense of module count are pipelining and paralleling logic to reduce fanout. EDN BBS /DI_SIG \#1149 [क्य

To Vote For This Design, Circle No. 744

Fig 3-Intermediate in complexity between Fig 1's and Fig 2's designs, the adder in (a) has four logic-level delays. Substituting the circuitry in (b) for the dashed circuitry in (a) yields a simpler design having five logic-level delays.

A COMPLETE +5 V RS-232 SERIAL PORT IN $1 / 3$ THE SPACE!

Transceiver Uses $\mathbf{1 5} \mu \mathrm{A}$ to Monitor Ring Indicator

Maxim's new MAX223 RS-232 transceiver has four drivers and five receivers - ideal for notebooks and palmtops. Two of the MAX223's receivers are active in the shutdown mode so ring indicator can be monitored using only $15 \mu \mathrm{~A}$ quiescent current. The MAX223 in a 28 -pin shrink small outline package (SSOP) plus four $1 \mu \mathrm{~F}$ external capacitors fits into less than $1 / 3$ the space of existing solutions that use a 28-pin small outline package with four $10 \mu \mathrm{~F}$ external capacitors.

- Ultra Compact SSOP (Shrink Small Outline Package) - 60\% Smaller than 28-Pin Wide SO
- Monitor Ring Indicator in Shutdown Mode - Only 15 $\mu \mathrm{A}$
- Uses 4 Small 1 μ F Capacitors
- 116kbits/sec Data Rate LapLink ${ }^{\circledR}$ Compatible
- Guaranteed 3V/ $\mathbf{~ s ~ S l e w ~ R a t e ~}$

Choose the RS-232 Transceiver to Shrink Your Design

Part	Drivers	Receivers	28-Pin SSOP	Description	Price ${ }^{\text {* }}$
MAX223	4	5	\checkmark	Complete +5 V AT port receivers active in shutdown mode	\$3.99
MAX241	4	5	\checkmark	Complete +5V AT port	\$3.99
MAX560	4	5	\checkmark	$+3.3 V$ receivers active in shutdown mode	$\$ 4.21$
MAX561	4	5	\checkmark	$+3.3 V$ complete AT port	$\$ 4.21$

* 1000 piece recommended resale

FREE Interface Design Guide - Sent Within 24 Hrs!

 Includes: Data Sheets and Cards for Free Samples CALL TOLL FREE 1-800-998-8800 For a Design Guide or Free SampleMaxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX 737-7194.

[^10]
EDN-DESIGN IDEAS

PC printer port programs PROMs

Yongping Xia, EBT Inc, Torrance, CA

Fig 1 shows a 2817 programmer you can build. A PC's printer port controls the programmer. The printer port has eight data-output lines (pins 2 to 9), four control lines (pins 1, 14, 16, and 17), and five input lines (pins $10,11,12,13$, and 15). The data lines send out the 2817's address and program data. The control lines control the programming sequence. After programming is completed, the PC reads
the programmed data back in through its input port for verification.
The Turbo C program in Listing 1 sends the 2817's program, contained in a binary file named p2817.dat, to the programmer in this sequence: 8 bits of data, followed by the low 8 bits of the address, and finally by the high 3 bits of the address (which the programmer latches into $\mathrm{IC}_{1}, \mathrm{IC}_{2}$, and $\left.\mathrm{IC}_{3}\right)$. The printer port's

Fig 1-A PC's printer port and a simple Turbo C program control this 2817 programmer.

QUAD 5V DAC SWINGS RAIL TO RAIL

Vout Range Includes Vss and Vad with $\mathbf{+ 5 V}$ or $\pm 5 \mathrm{~V}$ Supplies

Trim offsets, set thresholds, and attenuate analog signals anywhere within the supplies with Maxim's new MAX505/MAX506 quad DACs. The MAX505 combines four 8-bit DACs and four op-amps in a single 24-pin DIP/SO package, and provides 1 LSB Total Unadjusted Error over temperature. Each DAC has its own reference input, which can accept any DC or AC voltage up to and including VDD and $V_{\text {SS }}$. The MAX506 is offered in an even smaller 20 pin DIP/SO, and has a single reference input shared by all four dacs.

- Save Board Space: Replace 4 DACS and 40 Op -Amps
- Eliminate Trimpots: Total Error = 1 LSB (max)
- 500kHz Bandwidth
- Pin Compatible 5V Upgrades for: 7225 (MAX505) 7226 (MAX506)
- Low \$6.10 price*

Connect VREF directly to +5 V , and set 4 voltages anywhere from 0 to 5 V to trim offsets or set thresholds in your system.

FREE D/A Converters Design Guide - Sent Within 24 Hrs! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800 For a Design Guide or Free Sample

Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX 737-7194.

MノXIV

[^11]

Replace Messy Grease Under Isolated Transistors

- Q-Pad II replaces grease in applications
where isolation is not required (isolated transistors).
- Q-Pad II provides maximum heat transfer between interfaces. $0.1^{\circ} \mathrm{C} / \mathrm{W}$ att TR.
- . 006 in. thickness, Silicone / Alum. Foil construction, $2.5 \mathrm{~W} / \mathrm{m}-\mathrm{k}$ Therm. Cond., available in standard configurations and custom shapes.

Contact Bergquist for a Free Copy of the New Sil-Pad Design Guide, 1-800-347-4572

BERTDUIST

5300 Edina Industrial Blvd., Minneapolis, MN 55439 Tel: (612) 835-2322 • Fax: (612) 835-4156

CIRCLE NO. 85

HIGH POWER FACTOR

Custom Switching Power Supplies
for OEngineering work stations

- Computer main frames
- Computer peripheral equipment
- Business equipment

- High power factor 0.99
- Design, manufacturing in Japan - Repair center in U.S.A.

FDK also specializes in DC-DC converters, hybrid ICs, memory cards, ferrite cores, lithium batteries, stepper motors, optical isolators, etc.

FDK
 Your Best Strategic Partner
 FDK AMERICA, INC.

A Division of Fuji Electrochemical Co., Ltd.
San Jose Office: 3099 North First Streel, San Jose, CA 95134, U.S.A.
TEL: 408-432-8331 FAX: 408-435-7478
Boston TEL: 617-487-3198 FAX: 617-487-3199
pin 14 clocks these 19 bits in. Then the PC polls the 2817's RDY/BUSY line via printer-port pin 11, waiting for the chance to send the next data-address combination. After programming all 2 kbytes of the PROM, the PC will read the 2817 using printer-port pins 16 and 17. A copy of the program is available on the EDN BBS. EDN BBS /DI_SIG \#1146

GDN

To Vote For This Design, Circle No. 745

Listing 1-2817 programmer control program

\#include <stdio.h>

define COWTROL_PORT	37a	/* printer control port address
\#define IN_PORT	0×379	/* printer input port address
\#define OUT_ PORT	0x378	/* printer output port address

main()
int buffer,tp, data[2048], i, add_h, add_l, readin_1, readin_2, read_data;
outportb(CONTROL PORT, 0x07):
if ((stream = fopen("p2817.dat", "rb")) == NULL)
fprintf(stderr,"Cannot open input file. \n"): return 1;
seek(stream, 0, 0
for ($\mathrm{i}=0$; $\mathrm{i} \times 2048$; $\mathrm{i}+\mathrm{+}$)

buffer=0;

fread(8buffer, 1, 1, stream);
data[i] =buff
fclo
fclose(stream)
(add $h=i / 256$;
add_l=i-add_h*256
outportb(OUT̄ PORT, data[i]); /* send out data
outportb(CONT̄ROL_PORT, 0x05);
delay(
outportb(COWTROL PORT, 0x07):
outportb(c)
outportb(COWTROL PORT, 0×05)
delay(1);
outportb(COWTROL_PORT, 0x07);
delay(1);
outportb(OUT_PORT, add_h);
outportb(COWTROL_PORT, 0x05) :
elay(1);
utportb(COWTROL PORT, 0x07) :
elay(1);
utportb(COWTROL_PORT, OX06):
lelay(1);
do C
delay(1) ;
) while (inportb(IN_PORT) \& $0 \times 80!=0 \times 00$); /* wait *
for ($\mathrm{i}=0$; i <2048; $\mathrm{i}++$)
add_h=i/256;
add_l=i- add $h * 256$;
outportb(OUT_PORT, add_1); /* send out low address */
outportb(COWTROL_PORT, Ox05);
delay(1);
outportb(COWTROL_PORT, 0x07);
utportbic
outportb(OUT-PORT, add_ h);
outportb(CONTROL_PORT, 0x05)
utportb(COWTROL PORT, 0x07);
delay(1);
outportb(COWTROL_PORT, 0x03);
delay(1);
readin_1=inportb(IN_PORT) \& 0×78; /* read tow 4-bit data */
outportb(
delay(1);
outportb(CONTROL PORTT OxOT)
delay(1);
read_data=readin_1/8 + readin_2*2;
if (read_data $!=$ data $[i]$)
fprintf(stderr,"Program error. ${ }^{\text {n" }}$)
return 1;
, ${ }^{3}$
return 0 ;

MUX \& SWITCH LEAKAGES NOW ONLY 10pa!

 CMOS Analog Switches Improve System Accuracy - \$3.65*

 CMOS Analog Switches Improve System Accuracy - \$3.65*}

Abstract

Maxim's new MAX326 and MAX327 are the lowest leakage CMOS switches available today-<1pA typical! Low leakage improves system accuracy by reducing the voltage error across source impedances and on-resistances, or when multiple switches connect to leakage sensitive modes.

- Quad, SPST Analog Switches:

MAX326 Normally Closed;
MAX327 Normally Open

- Pin-Compatible Upgrades for DG201A/202 and DG211/212
- Interchangeable Inputs/Outputs
- 3pC Charge Injection

The MAX326/327 offer at least 100 times less typical leakage at $+25^{\circ} \mathrm{C}$ than DG201/202

CMOS Analog Muxes Maintain Low System Errors - \$4.75*

The MAX328 and MAX329 multiplexers feature <1pA (typ) leakage, providing system accuracy up to 16 bits over temperature. For applications that must withstand 110 V AC faults while maintaining less than $1 \mu \mathrm{~V}$ offset error voltages, low leakage allows use of high-value ($43 \mathrm{k} \Omega$) resistors in series with the analog inputs.

The MAX328/329 have 1000 times less typical leakage at $+25^{\circ} \mathrm{C}$ than the DG508A/509.

- Single-Ended, 1-of-8 Device (MAX328) Differential, 2-of-8 Device (MAX329)
- Pin-Compatible Upgrades for DG508A/509A
- 3pC Charge Injection

- Analog-Signal Range Includes Supply Rails

FREE Multiplexer \& Switch Design Guide - Sent Within 24 Hrs! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800 For a Design Guide or Free Sample

Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX 737-7194.

[^12]
Simple system speeds state machines

Mohamed Shawky, Université de Compiègne, Compiègne, France

If you follow two simple design precepts, you will be able to fit complex finite-state machines into the fastest PALs such as the $16 \mathrm{R} 4,6$, and 8 .

1. Do not decode the PAL's output bits; use the Q or \bar{Q} outputs of the PAL's D flip-flops as outputs directly. You may have to include dummy bits (unused outputs) in your state assignments to get a sufficient

Fig 1-Using the flip-flop outputs of a PAL directly as state-machine outputs means you may have to include unused flip-flop outputs as dummy state-machine output bits to make state assignments. The hardware-description-language (HDL) fragment shows how to enforce this precept.
number of unique states. Fig 1 shows flip-flops used as outputs without decoding and a hardware-descrip-tion-language (HDL) program for the state machine. Note that the figure also shows a dummy output, without which the state machine would not have enough states.
2. When making state assignments, ensure that a given bit is active for only the required number of states. Fig 2 shows a sample state assignment.

This method limits the PALs' outputs. For example, a 16R8 can have only eight or fewer outputs; if you were to decode a 16R8's output flip-flops, you could have as many as 256 outputs. So, for state machines that require more than eight outputs, you will have to connect PALs in parallel. EDN BBS /DI_SIG \#1147

GDD

To Vote For This Design, Circle No. 746

Fig 2-When making state assignments, ensure that a given output bit is active for only the requisite number of states.

Program calculates noise from Spice file

Richard Faehnrich, Bio-Imaging Research Inc, Lincolnshire, II

Although Spice can calculate the noise-voltage spectral density for each particular frequency you specify, it cannot calculate the total output rms noise voltage over a specified frequency range.

But you need this total-noise figure if, for example, you're going to calculate the S/N ratio.

The C program in Listing 1 uses the trapezoidalapproximation method to integrate the mean square

94\% EFFICIENT +5V STEP-DOWN CONVERTER

Regulator EV Kit Uses Only 4 External Components

The new MAX639 switching regulator extends battery life by providing the world's highest-efficiency step-down regulation. Efficiency is greater than 90% at output currents from 2 mA to 200 mA , thanks to an ultra-low $20 \mu \mathrm{~A}$ quiescent current. The MAX639 saves space, requiring only four small, inexpensive external components. Its unique "constant peak current" design allows the use of physically smaller external components than typical switching regulators, making it perfect for surface-mounted applications

- High Efficiencies:

94\% at IOUT $=75 \mathrm{~mA}$
92% at lout $=150 \mathrm{~mA}$

- Up to 200mA Output Current
- EV Kits Speed Design Time
- Ultra-Low 20uA Supply Current
- 8-Pin SOIC and DIP Packages
- Wide Input Voltage Range: Up to +11.5 V
- Pre-Set +5 V or Adjustable Output
- Logic-Controlled Shutdown

EV Kits Trim Weeks Off Prototype Leadtime

MAX639 surface-mount and DIP evaluation kits have all the components (including $100 \mu \mathrm{H}$ inductor and PC board) needed to build a complete +5 V step-down circuit. Kits are available for only $\$ 20$.

High-efficiency step-down regulation is simple using the MAX639.

FREE Power Supply Design Guide - Sent Within 24 Hrs! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800 For a Design Guide or Free Sample
Maxim Integrated Products, 120 San Gabriel Dr., Sunnyvale, CA 94086, (408) 737-7600, FAX 737-7194.

[^13]

Compact motorized blowers provide high vacuum and pressure

Windjammer ${ }^{\text {® }}$ centrifugal blowers, only $5.7^{\prime \prime}$ in diameter provide performance from $75^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ vacuum at 0 flow to 125 CFM at $\mathrm{O}^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$. Designed for business machines, medical equipment and materials handling systems. Drive options include brushless DC motors with or without an integral controller, featuring manual or remote speed control. AMETEK, Technical Motor Division, 627 Lake Street, Kent, OH 44240. Tel: 216-673-3452. Fax: 216-678-8227. In Europe, Friedrichstrasse 24, D6200 Wiesbaden, Germany. Tel: 0611-370031. Fax: 0611-370033.

AMETEK
 TECHNICAL MOTOR DIVISION

CIRCLE NO. 89

Introducing...second generation CD quality, stereo hi-fidelity digital audio record/playback for PC-AT 386/486 or compatible. Now with DVI/CDI/CD-ROM XA audio compression up to 44.1 kHz .

Featuring...real time direct-to-disk data transfer.. 18 bit resolution... 64 x oversampling... 22 kHz audio response... 0.005% THD ... 6.25 to 50 kHz programmable sample rate...92dB dynamic range...90db s / n ...plus 4:1 ADPCM compression.

For broadcast quality recording, editing and transmission in high-end entertainment systems, A/V presentations and interactive CDI/DVI applications. Phone 1 (800) 338-4231 for details on the 2nd generation AUDIO PRO Model SX-15.
of the noise voltage. The program then takes the square root as a final step to arrive at the root-meansquare noise voltage.
For simplicity, the program operates on the variable ONOISE, which must be printed in the first column of a standard Spice output file. The program reads the Spice output file line by line, searching the text for keywords "FREQ" and "ONOISE" in the same line. The program reads the frequency and noise values as text, converts them to floating-point numbers, and stores them in arrays. You could modify the program to also calculate other noise values.
To run the program in Listing 1, enter "ntot <filename.ext>", where <filename.ext> is your Spice output file. You can get a copy of the listing from the EDN BBS. EDN BBS /DI_SIG \#1150

BD]
To Vote For This Design, Circle No. 747
Listing 1 -Spice rms-noise-voltage program
/* to

* Vrms = square of over frequency using trapezoidal method
* Usage: ntot "filename.ext" mean-square noise Example: ntot lowpass.out
define TRUE 1
ddefine FALSE -1
include <math.h>
:include <stdio. h >
tinclude
<string.
char string[81];
float fr(100);
main(argc,argv)
int argc; char *argv [1;
FILE *fptr;
int flag $=$ FALSE;
int index $=0$;
float ntot $=0$;

f((fptr=fopen (argv[1] "r")) =-NULL)
(printf("Can't open file \&s.", argv(1]) ;exit() ;)

if (flag $==$ TRUE \&\& string $[0] \quad!=$ NEWLINE $) / *$ if noise data, then read */
sscanf(string," कe कe", \&fr[index], \&on[index]) ;/* get freq and onoise data *
printf("freq $=$ se onoise $=$ \&e $\backslash n$ ", fr[index],on[index])
f(strstr(string, "FREQ") $!=$ NULL $\& \delta^{\prime *}$ strstreck for noise analysis page */
flag = TRUE;
fclose (fptr) ;

ntot $=$ sqrt $($ ntot $)$.
printf("\nTotal noise voltage $=\{$ e Vrms $\backslash n "$ ntot $)$;

Three Things You Should Think About Before You Design Your Next Gate Array.

EDN-DESIGN IDEAS

Feedback \& Amplification

Reader proposes real turnoff

My circuit in Fig 1 is an improved version of Carl Hallman's ("Battery-powered microprocessor turns itself off," EDN, January 20, 1992, p 133). When you press S_{1}, transistor Q_{1} turns on, enabling transistor Q_{2}, which in turn powers the 5 V converter, $\mathrm{IC}_{1} . \mathrm{IC}_{1}$ powers the rest of the circuitry. The $\mu \mathrm{P}$ must immediately bring HOLD_POWER high to keep Q_{1} and Q_{2} on. The transistors are MOSFETs, which reduces the circuit's power consumption.

Turning Carl's circuit off might not be quite as easy as he describes, especially with his bipolar transistors. You must be careful that the signal HOLD_POWER doesn't return high because of an undefined $\mu \mathrm{P}$ state that-occurs as the $\mu \mathrm{P}$ powers down. Adding a Motorola MC34064 undervoltage sensor to the $\overline{\mathrm{RST}}$ line of the $\mu \mathrm{P}$ keeps the circuit from waking back up. R_{1} and D_{1} ensure that HOLD_POWER is "don't care" whenever the MC34064 has determined that the V_{CC} line is too
low. The MC34064 will work down to $\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$. At 1 V , insufficient voltage remains to turn Q_{1} back on.
Compared to Carl's circuit, all the diodes in my circuit may seem a bit Byzantine, but the reason I've rearranged everything is to allow the free end of S_{1} to connect to 9 V rather than ground. Thus we can sense further switch presses by level-shifting the signal through Q_{3} and R_{2}, creating SW_PRESSED. Your software can monitor this signal as an on switch or as a toggling on/off switch.
The $r_{D S}$ of Q_{2} can be significant if the circuit draws more than about 100 mA . So use the circuit for CMOS $\mu \mathrm{Ps}$ only.
Robert Lamm
Kesa Corp
4701 Patrick Henry Dr, Suite 1801
Santa Clara, CA 95054

Fig 1-This improved circuit ensures that the $\mu \mathrm{P}$ turns itself off and stays off.

Resistor replaces circuit

I would like to discuss "IBM PC board adapts to different buses," (EDN, March 2, 1992, p 142, DI \#1088) by Vladimir Bochev. First let us examine the circuit's structure and cost, assuming the specification is cor-rect-for a while. Because the flip-flop has complementary outputs, you can replace the NOT and AND gates with NANDs (exchanging the PRESET and CLEAR inputs as well). Now let us take a closer look at the inputs. A memory read or write will set the outputs,
and, therefore, feeding the clock input directly from the MEMR line seems to be sufficient. Thus you need only a flip-flop and an inverter. If you insist on edgetriggering the circuit, these functions fit nicely in one 7474 (I love asking students to make an inverter using a spare flip-flop); if latching is good enough, you need only a 7400 .
And now, back to the specification. The sole purpose of the circuit is to identify the slot type, and, fortu-

Think Performance.

Think Mitsubishi Gate Arrays.

Before you design your next gate array, or even your first, you've got to think about performance. Your very next thought ought to be: Mitsubishi Gate Arrays.

Mitsubishi's triple-layer metal, $0.8 \mu \mathrm{~m}$ gate arrays offer 400,000 gates with over 60% utilization, and a typical loaded delay as fast as 215 picoseconds. We also give you up to $512 \mathrm{I} / \mathrm{Os}$ and pin counts as high as 576 in our exclusive μ Pitch TAB ${ }^{\text {TM }}$ packaging.

We also offer design kits for the industry's most popular workstations, from logic synthesis, to simulation, to automatic test pattern generation (ATPG). So you can design on your own workstation or ours.

Mitsubishi offers both local design support and the global resources of a stable, well-capitalized company. As one of the world's top 10 semiconductor suppliers, we've been in the ASIC business over 15 years and we're continuing to invest in technologies for the next decade.

When you think gate arrays, think performance. Then think Mitsubishi. You'll be glad you did.

Phone (408) 730-5900 ext. 2106

WHEN ITCOMESTO SURFACE MOUNTCRYSTAL UNITS, ONLYRALTRON HAS ITALL.

RALTRON manufactures one of the industry's most complete lines of high quality crystal units. Call us for all your crystal needs from microprocessor to AT strip to tuning fork to high accuracy. Or call us for our 28 page catalogue.

NEW! SURFACE MOUNT CRYSTAL UNIT2.5 MM HEIGHT - T25 SMD

- Frequency Range: $3.5 \mathrm{MHz}-50 \mathrm{MHz}$
- Oscillation Mode: Fundamental to 3rd O.T
- Frequency Tolerance: $\pm 50 \mathrm{ppm}$ @ $25^{\circ} \mathrm{C}$ - Frequency Stability: $\pm 50 \mathrm{ppm}\left(-10^{\circ} \mathrm{C}\right.$ to $+60^{\circ} \mathrm{C}$)

NEW! SURFACE MOUNT CRYSTAL UNIT3.0 MM HEIGHT- HC-49 SHORT SMD

- Frequency Range: $8 \mathrm{MHz}-50 \mathrm{MHz}$
- Oscillation Mode: Fundamental to 3rd O.T
- Frequency Tolerance: $\pm 50 \mathrm{ppm}$ @ $25^{\circ} \mathrm{C}$
- Frequency Stability: $\pm 100 \mathrm{ppm}$ max $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
- Crystals•Crystal Oscillators•Crystal Filters •Ceramic Resonators

RFITROT ELECTRONICS CORP.
2315 NW 107th Avenue, Miami, Florida 33172 U.S.A. FAX (305) 594-3973 TELEX 441588 RALSEN (305) 593-6033

CIRCLE NO. 93

,	XC/MP
Written in C Portable by design Message based Transparent Distributed operation	Intel $80 \times 86,80 \times 96,805$ Motorola 68HC11/16, 68xxx TI TMS320C30/C40 Zilog Z80, Z×80 Hitachi 6303 Inmos T2xx, T4xx, T8xx
Dynamic priorities Task management Timer management Memory management Semaphores Message mailboxes FIFO queues Resource management	From 8 -bit microcontrollers to multiple 32-bit processors: same API with /MP! Four different and compatible versions!
Virtual Single Processor with RTXC/MP !	Distributed debugger System generation tool Tracing monitor Standard I/O \& runtime Signal Processing Lib
No royalties Source code 3 months free upgrades and support	Free demo and evaluation kit Step-in at 900 US $\$$. New version 3.0.
Intelligent Systems International Lindestraat 9, B-3210 Linden, Belgium Tel. $1+322 \mid 16.62$ 15 85. Fax. $(+32) \mid 66.621584$	

Feedback \& Amplification

nately, no logic at all is necessary to accomplish this task. The solution to adapting an IBM PC board to different buses is to use a pull-up resistor wired to the D_{18} pin on the short PC bus connector. This pin is a GND line, so the sensed level is low for a 16 -bit bus and high for an 8-bit bus.
The submitted circuit is not good in any aspect, and I believe it should not have been selected for printing. I agree that Design Ideas do not have to be optimal or minimal solutions, but why publish things that have no advantages?
Jerzy R Chrzaszcz
Institute of Computer Science
Warsaw University of Technology
Nowowiejska 15/19
00-665 Warsaw

Poland

(Ed Note: The writer's name is pronounced Yair-zhuh Shar-shon-sth.)

Square-root routines yield correct results

Much to my surprise, the square-root routine in "8086 computes square roots," (EDN, August 19, 1991, p 166, EDN BBS /DI_SIG \#1007) by Jack D Dennon, not only was not as tight as it could be, it also produced incorrect results. Posted on the EDN BBS as a reply to EDN BBS /DI_SIG \#1007 are two routines of mine for computing the square roots of 32 - and 16 -bit integers. My routines are shorter and produce correct results.
James W Neil
Medicomp Inc
7845 Ellis Rd
West Melbourne, FL 32904

How to use our bulletin board

을This icon identifies those Design Ideas that have computer-readable material posted on EDN's bulletin-board system (BBS). Call our free BBS at (617) 558-4241 (300/1200/2400/9600 8,N,1). Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. Once you get into the system, you can use that number to find more information on a particular idea. If you'd like to comment on any Design Idea, include the number in the subject field of your message.

Think Low Power.

Think Mitsubishi Gate Arrays.

Whether you're designing your next gate array, or your first, you've got to think about system power requirements. Your very next thought should be: Mitsubishi Gate Arrays.

Our $0.8 \mu \mathrm{~m}$ arrays give you four speed/power options to control total chip power consumption. Four transistor sizes within each macro allow optimization for either high speed or low power. The result is power dissipation as low as $2.4 \mu \mathrm{~W} / \mathrm{MHz} /$ gate, at 5 V . And, with Mitsubishi's 3 V library, you can achieve even lower power dissipation. You can switch more nodes in the array, control the power and still use lower-cost, plastic packaging.

Add to all of this 400,000 gates, $512 \mathrm{I} / \mathrm{Os}$, and Mitsubishi's exclusive μ Pitch $\mathrm{TAB}^{\mathrm{mm}}$ packaging with pin counts as high as 576 .

We also offer design kits for industry's most popular workstations, from logic synthesis, to simulation, to automatic test pattern generation (ATPG). So you can design on your own workstation or ours.

With both local design support and the global resources of a stable, well-capitalized company, Mitsubishi is one of the world's top 10 semiconductor suppliers. We've been in the ASIC business for over 15 years and we're continuing to invest in technologies for the next decade.

When you think gate arrays, think low power. Then think Mitsubishi. You'll be glad you did. Phone (408) 730-5900, ext. 2106.

Design Entry Blank

\$100 Cash Award for all entries selected by editors. An additional $\$ 100$ Cash Award for the winning design of each issue, determined by vote of readers. Additional $\$ 1500$ Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.
To: Design Ideas Editor, EDN Magazine Cahners Publishing Co
275 Washington St, Newton, MA 02158
I hereby submit my Design Ideas entry.
Name
Title \qquad Phone \qquad
Company
Division (if any)
Street \qquad
City \qquad State \qquad
Country Zip \qquad
Design Title
Home Address \qquad

Social Security Number
(US authors only)
Entry blank must accompany all entries. Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Fully annotate all circuit diagrams. Please submit software listings and all other computer-readable documentation on a $51 / 4-\mathrm{in}$. IBM PC disk in plain ASCII.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author, or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.
Signed \qquad
Date \qquad

ISSUE WINNER

The winning Design Idea for the March 30, 1992, issue is entitled "CMOS logic creates precision waveforms," submitted by Michael A Wyatt of Honeywell SSO (Clearwater, FL).

Your vote determines this issue's winner. All designs published win $\$ 100$ cash. All issue winners receive an additional $\$ 100$ and become eligible for the annual $\$ 1500$ Grand Prize. Vote now, by circling the appropriate number on the reader inquiry card.

PWM gives voice to a PC

András Pomozi and László Szilágyi, Technical Iniversity of Budapest Budapest, Hungary

In EDN BBS /DI_SIG \#1151, the pulse-widthmodulation (PWM) program enables a PC to speak, sing, and play music.

To Vote For This Design, Circle No. 748

Spice models controlled resistance

Keith Timothy
Orange, CA

The Spice models in EDN BBS /DI_SIG' \#1152 for voltage-controlled and current-controlled resistances command Spice to try a range of values of R in a single pass without specifying individual values.

To Vote For This Design, Circle No. 749

PC debugs DSP56001 $\mu \mathrm{P}$

M Venkateswarlu and G V L Narasimba Babu, Hindustan Aeronautics Ltd Hyderabad, India

In EDN BBS/DI_SIG \#1153, the programs and documentation let you debug Motorola DSP56001 $\mu \mathrm{P}$ projects over a PC's serial line, thus obviating an in-circuit emulator.

To Vote For This Design, Circle No. 750

These Software Shorts listings are too long to reproduce here. You can obtain the listings from the Design Idea Special Interest Group on EDN's bulletin-board system (BBS): (617) 558-4241, 300/1200/2400/9600 8,N,1. From Main Menu, enter ss/DI_SIG, then rknnnn, where nnnn is the number referenced above.

Think Packaging.

Think Mitsubishi Gate Arrays.

Whether it's your next gate array design, or your first, you've got to think about packaging. Your very next thought should be: Mitsubishi Gate Arrays.

We offer the packaging solutions for fast, compact and gate-intensive systems.
For example, our exclusive μ Pitch $\mathrm{TAB}^{\text {TM }}$ packaging, with its ultra-fine 0.25 mm lead pitch, gives you pin-counts as high as 576 .

Mitsubishi also offers power-cooling packages for higher reliability in fast, gateintensive arrays. Available in both μ Pitch TAB and QFP, power packaging features an aluminum heat spreader that transfers heat from the die across the entire package. The result is a much cooler die and higher reliability. We also give you over 100 packaging options, including plastic and ceramic QFPs and PGAs.

Mitsubishi's $0.8 \mu \mathrm{~m}$ arrays give you the highest gate count (400,000 gates) and lowest power dissipation $(2.4 \mu \mathrm{~W} / \mathrm{MHz} /$ gate $)$ you can get.
We also offer design kits for the industry's most popular workstations, from logic synthesis, to simulation, to automatic test pattern generation (ATPG). So you can design on your own workstation or ours.

We're one of the world's top 10 semiconductor suppliers, and we've been in the ASIC business for over 15 years. As a result, you can depend on local design support and the global resources of a stable, well-capitalized company.

When you think gate arrays, think packaging. Then think Mitsubishi. You'll be glad you did.
Phone (408) 730-5900, ext. 2106.

There's only one alternative to quality.

And Cherry has so many quality alternatives.

Success is no longer a matter of knowing the right button to push or switch to choose. Now, it's a matter of engineering entire assemblies and systems. For Cherry, it's designing for manufacturability, with capabilities such as solid modeling and finite element analysis. In final production, success means that every one of our products is the result of our Total Quality Leadership-so that every one of your products starts with the finest control devices. Sure, Cherry provides every switch, sensor and control device shown above (and much, much more), but more important, we have success stories for every one.

Call us now for information on these Cherry success alternatives.
For specific application success stories, call 1-708-360-3518.
For general product information, call 1-708-662-9200.

Introducing the AD620, the In Amp of the 90's.

If you're not designing with the AD620, you're behind the times. Because it's the one totally integrated instrumentation amplifier that delivers the highest price/performance combination possible.

Since the AD620 is a full function monolithic in amp, it (and the single supply AD626) does away with all the design hassles of discrete parts. Available in an 8-pin SOIC - the first of its kind - or in a DIP, it requires less space and just 1.6 mA of supply current. Plus it gives you a wide power supply range ($\pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$), low input offset voltage and drift ($125 \mu \mathrm{~V}$ and $<1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, respectively), and flexible gain setting with only one external resistor.

With all this, the AD620 delivers higher reliability and outperforms any 'make' or 'buy' solution. And best of all, at $\$ 3.27$ (in 1000 s), it costs far less than any other solution.

For a free AD620 Design In Kit which includes In Amp Applications and Selection Guides, samples and data sheets, call 1-800-262-5643 or write to us at the address below. You'll see that when it comes to affordable performance, the AD620 is ahead of its time.

Ariel V-C40 Hydra Breaks the BOPS Barrier

1.1 billion operations per second sets the record for 6U VMEbus coprocessor cards

Only Ariel's Hydra combines four TI TMS320C40 DSPs to deliver twice the processing speed and four times the I/O bandwidth of any 6 U VMEbus coprocessor card. It's the only choice for the most compute-intensive multiprocessor applications.
The V-C40 packs up to 64 Mbytes of DRAM as well as up to 5 Mbytes of SRAM in eight banks-two per processor. Each DSP has direct access to memory via dual 32 -bit memory buses, as well as six parallel I/O ports and a high-speed six-channel programmable DMA controller. All six channels can transfer data simultaneously without interrupting program execution.

Hydra also includes a 24 -bit parallel ADbus that lets you access a wide range of high-speed data acquisition cards. Development support includes an ANSI C compiler and the first PC-based XDS510 in-circuit emulator to support parallel processing. And of course, with Ariel's legendary technical support, you'll never work alone.

To learn more about the V-C40 Hydra, or any of Ariel's DSP products for ISA/EISA, VMEbus, SBus, Hewlett-Packard, NeXT, or Macintosh computers, send us a fax, leave us a message on the BBS or E-mail, or just give us a call.

Distributed in: France, REA Informatique, tel: 1496525 50, fax: 1496525 69; Israel, Militram Futuristic Technology Ltd., tel: 52-545685, fax: 52-574383; Italy, International Trading Device SRL, tel: 02-749 0749, fax: 02-761 0407; Japan, Marubun Corp., tel: 033-639 9816, fax: 033-661 7433.

The DSP Authority

JOIN THE TEAM WITH ALL THE MCU TOOLS.

Oki MCUs-
 For Total Toolset Support.

s incomplete support preventing your MCU design from moving forward? Join the nX crew at Oki, where our nX MCUs provide the performance upgrades and toolset support needed to propel your design swiftly to the finish line.

Choose from a range of nX generation 8 -bit or 16 -bit MCUs, including OTPs, and a variety of onchip features: A/Ds, I/Os, PWMs, and more.

Our in-circuit emulator and evaluation modules expedite programming and emulation. And with nX , you receive complete software support-including assemblers, debuggers, converters, and translators.

Starting a new design? Want to convert your resident 80 C 51 codes? Look to the team that won't leave your design dead in the water. With nX and Oki's total tool support, your design glides smoothly and quickly from concept to code.

Call 1-800-OKI-6388 for our nX Brochure (ask for Package 052).

785 North Mary Avenue Sunnyvale, CA 94086-2909 1-800-OKl-6388 (Ask for Pkg 052)

Just What Your Customers Need, Another Outlet For Their Creativity.

.What's in? Video Out. Outputting video to a VCR and displaying video on a composite monitor are the newest capabilities every computer will need to compete in the Multimedia Age.

Now you're just a single chip away from adding Video Out to your very next computer design. Introducing Bt858, a monolithic digital device that packs in a board full of analog circuitry and puts out studio quality composite video.

Bt858 is a tweakless all-digital chip that bridges the video gap between RGB computers and composite or S-VHS outputs in the NTSC/PAL formats. It accepts multiformat digital inputs from 24, 16 or 15-bit RGB, 24 and 16 -bit YCrCb and 8 -bit VGA.

And because it has a programmable clock rate it adjusts for the 1:1 square pixels in computers and 4:3 rectangular pixels on TV without distortion.

Bt858 gives your system an image quality advantage, too. Studio quality output is a step
above tape decks and TV monitors so images always look "first generation."
You've read the book. Now see the picture. Call 1-800-VIDEO IC and we'll send you "The Ins and Outs of Video Out," a revealing presentation of Bt858's capabilities.
That's all folks.
Brooktree Corporation, 9950 Barnes Canyon Road, San Diego, CA 92121, (619) 452-7580, FAX (619) 452-7294
Brooktree

Digital synthesizer. The Q2220 singlechannel direct digital synthesizer (DDS) has dedicated pins controlling the output frequency via the frequency control register. This feature allows the output to be programmed asynchronously or synchronously with the system clock. It can modulate at 50 MHz with a minimal 5 -clock-cycle pipeline delay. The onchip sine-computation function provides a digitized 10 -bit value for the sinewaveform output with spurious levels below -60 dBc . From $\$ 13.50$ (1000). Qualcomm Inc, 10555 Sorrento Valley Rd, San Diego, CA 92121. Phone (619) 597-5005. FAX (619) 452-9096.

Circle No. 394

1-Mbit SRAM. Organized as $64 \mathrm{k} \times 16$ bits, the TC551664J-xx series of static RAMs (SRAMs) comes in speed ratings of 15,20 , and 25 nsec . The speed and organization suits these chips as a secondary cache for the Mips R4000. Maximum operating currents with a 5 V supply range from 200 to 260 mA . All devices come in 44-pin SOJ packages. Depending on speed, from $\$ 62$ to $\$ 118$ (1000). Toshiba America Electronic Components Inc, 9775 Toledo Way, Irvine, CA 92718. Phone (714) 455-2000.

Circle No. 395

Hard-disk motor driver. Encapsulated in a space-saving $9 \times 9 \times 1.7-\mathrm{mm}$ high-power quad flatpack, the HA13517F controls the spindle motor and voice-coil motor in small hard-disk drives. The IC provides $1 \mathrm{~A} /$ phase of peak current for the spindle motor and 400 mA (max) of voice-coil motor current. The combina-
tion driver supports sensorless spindle designs and features soft-switching outputs and latch capabilities. \$8 (1000). Hitachi America Ltd, Semiconductor and IC Div, 2000 Sierra Point Pkwy, MS-080, Brisbane, CA 94005. Phone (415) 589-8300. FAX (415) 583-4207.

Circle No. 396

Serial communications controller. The Z80230 Z-bus version of the company's enhanced serial-communications controller allows easier interfacing to many multiplexed CPUs, including the Z8, Z8000, and the 80 X 86 family. The Z80230 permits direct register access, simplifying I/0 operations. An 8-byte receive FIFO and 4-byte transmit FIFO reduce the overhead needed to move data between the transmitters and receivers. In $10-$ and $16-\mathrm{MHz}$ versions, $\$ 10.21$ and $\$ 15.71$ (100), respectively. Zilog, 210 E Hacienda Ave, Campbell, CA 95008. Phone (408) 3708000. FAX (408) 370-8056. Circle No. 397

Floating-point DSP. The ADSP-21010 32-bit floating-point IC performs a 1024point FFT in 1.54 nsec at a $12.5-\mathrm{MHz}$ cycle time ($80-\mathrm{nsec}$ instruction cycle). The unit works with 32-bit IEEE float-ing-point and fixed-point operations only. In 304 -pin plastic quad flatpacks, $\$ 40.90$ (100). Analog Devices Inc, Box 9106, Norwood, MA 02062. Phone (617) 461-3672.

Circle No. 398

Temperature sensors. The TC620, TC621, and TC626 temperature sensors directly convert temperature to a digital output. The TC620 allows users to program upper and lower temperature settings. The TC621 is designed for use with an external thermistor for remotesensing applications. The TC626 unit is preset at the factory (in $5^{\circ} \mathrm{C}$ increments) for applications that require a switch.

In plastic and ceramic DIPs and SOICs, $\$ 2.15(10,000)$. Teledyne Components, 1300 Terra Bella Ave, Mountain View, CA 94039. Phone (415) 968-9241.

Circle No. 399

Cache RAMs. The CY7B180 and CY7B181 BiCMOS cache-tag RAMs feature a 12 -nsec address-to-match time. Both units provide 16 tag bits and 2 status bits in each entry. The devices consolidate cache status validation and chip-select decoding on chip. The RAMs feature separate compare-data and data ports as well as independent access to tag and status fields. $\$ 72.05$ (100). Cypress Semiconductor, 3901 N First St, San Jose, CA 95134. Phone (408) 9432600.

Circle No. 400

Laser diode. The HL6713G AlGaInP laser diode operates at 670 nm . It features a $5-\mu \mathrm{m}$ astigmatism and a maximum droop of 10%, specified at $3-\mathrm{mW}$ output with a pulse rate of 600 Hz . Beam divergence is 9° typ, and slope efficiency equals $0.34 \mathrm{~mW} / \mathrm{mA}$. The unit incorporates a built-in photodiode and operates over -10 to $+50^{\circ} \mathrm{C} . \$ 62$ (1 to 99). Hitachi America Ltd, Semiconductor \& IC Div, 2000 Sierra Point Pkwy, Brisbane, CA 94005. Phone (415) 5898300. FAX (415) 583-4207. Circle No. 401

Display drivers. The SNJ553491 and SNJ553492 provide 80 channel outputs and comply with MIL-STD-883 Class B. The devices are designed to provide row and column drive for LCDs. The 491 provides the row drive function and features serial data in and data out. The 492 provides the column drive and features a 4 -bit input data bus. In 100-pin ceramic quad flatpacks, $\$ 128.50$ (1000). Texas Instruments Inc, Semiconductor Group (SC-92032), Box 809066, Dallas, TX 75380. Phone (800) 336-5236, ext 3990; (214) 995-6611, ext 3990

Circle No. 402

ECL SRAM. MBM family 4-Mbit static RAMs have a $15-$ nsec access times. The MBM101C524, MBM10C524-15, MBM$100 \mathrm{C} 524-15$ have a 1 M -word $\times 4$-bit organization; the MBM101C520-15, MBM10C520-15, and MBM100C52-15 have a 4 M -word $\times 1$-bit organization. In 32 - and 36 -pin surface-mount packages, $\$ 425$ (1000). Fujitsu Microelectronics Inc, 3545 N First St, San Jose, CA 95134. Phone (800) 642-7616; (408) 9229825.

Circle No. 403

RISC $\boldsymbol{\mu} \mathbf{P}$. The 32-bit IDT79R3081 RISC (reduced-instruction-set-computer) $\mu \mathrm{P}$ consists of an R3000A execution unit and memory-management unit (MMU) integrated with an R3010A floatingpoint accelerator, a total of 20 kbytes of instruction and data cache, and 4deep read/write buffers. The MMU function gives the designer page management and Unix compatibility. Unit, with or without translation look-aside buffer (TLB), from $\$ 130$ (without TLB). Integrated Device Technology Inc, 3236 Scott Blvd, Santa Clara, CA 95052. Phone (408) 727-6116. FAX (408) 4928674.

Circle No. 404

LCD drivers and controllers. The M50532-002FP and M50530-001FP controller drivers drive 4 -line $\times 10$-character and 4 -line $\times 8$-character LCDs, respectively. Both feature 256 -character onboard ROM. The companion M50524FP and M50521FP drivers expand drive capacity to a maximum of one line of 256 characters, two lines of 128 characters, or four lines of 64 characters. The 24FP drivers have two sets of 40 -channel LCD drive circuits; the 21FP units fea-
ture two sets of 20 -channel circuits. The 128-pin M50532-002FP, \$7; 100-pin M50530-001FP and M50524FP, \$5; 60pin M50521FP, $\$ 2.50(10,000)$. Mitsubishi Electronics America Inc, 1050 E Arques Ave, Sunnyvale, CA 94086. Phone (408) 730-5900.

Circle No. 405

D/A converter. The DAC650 12-bit DAC comes with internal reference and data latches. It features a $500-\mathrm{MHz}$ update rate and is optimized for direct digital synthesis and arbitrary-wave-form-generation applications. Data and clock inputs are ECL compatible. The unit is housed in a 64-pin chip carrier
and operates over a 0 to $70^{\circ} \mathrm{C}$ range. From $\$ 250$ (100). Burr-Brown Corp, Box 11400, Tucson, AZ 85734. Phone (800) 548-6132; (602) 746-1111. FAX (602) 889-1510. TWX 910-952-1111.

Circle No. 406

Disk controller. The FDC37C65C + diskcontroller IC maintains all drive formats. The unit offers the same features as the industry-standard FDC7C65C floppy-disk controller, as well as additional 2.88 -Mbyte support. The + designation represents the addition of a 16 byte FIFO and vertical-recordingformat mode to the IC. C + CMOS 5 V device, $\$ 4.75(25,000)$. Standard Microsystems Corp, 35 Marcus Blvd, Hauppauge, NY 11788. Phone (516) 2733100.

Circle No. 407

Latched drivers. MIC58PXX/MIC59PXX 8-channel drivers feature overcurrent shutdown for each channel, overtemperature protection, and undervoltage lockout. The devices run at greater than 3 MHz and accept TTL or CMOS levels of 5 to 15 V on the in-

You can control a lot of power with a knife switch.

The knife switch is a very efficient tool. When it's "ON" current flows, but there is no voltage drop. When it's "OFF" there's voltage, but no current . therefore, no loss. Switching power supplies work the same way to control power with very little loss. The difference, of course, is that the venerable knife may switch once or twice a minute - our modern switchers do it 100,000 times a second or more. By controlling the ratio of "ON" time to "OFF" you get to control the output with high efficiency.
 SINCE 1946

Instrumentation
Switching a-c to d-c and $d-c$ to $d-c$

146-1785

146-1760

Call/fax/ write to Dept. MTH-12 for any of our catalogs.

EDNFNEW PRODUCTS

Integrated Circuits
puts. Off current is in the $\mu \mathrm{A}$ range. The separate logic and power grounds allow for power-level shifting or PIN diode driving with 5 V logic and $-5 /$ +7 V diode drive. $\$ 2.35$ to $\$ 3.20$ (100). Micrel Semiconductor Inc, 560 Oakmead Pkwy, Sunnyvale, CA 94086. Phone (408) 245-2500. FAX (408) 2454175.

Circle No. 408

FPGA. The A1225-1 features a capacity of 2500 gate-array-equivalent gates, 6250 PLD-equivalent gates, and 70 TTL-equivalent packages. The FPGA offers 451 logic modules, 383 flip-flops, and 83 user I/O. System speed equals 75 MHz , and 16-bit loadable counterspeed measures 85 MHz . In ceramic pin-grid arrays, plastic quad flatpacks, and plastic leaded chip carriers, $\$ 88$ to $\$ 187$ (100). Actel Corp, 955 E Arques Ave, Sunnyvale, CA 94086. Phone (408) 739-1010. FAX (408) 739-1540.

Circle No. 409

Read channel chip. The FC3560 contains analog and digital circuitry; it provides a pulse detector, four gated servo
peak detectors, bandgap reference, a data synchronizer, a frequency synthesizer, and oscillators. The unit also contains an uncommitted digital gate (800 gates max) that users can employ to generate digital functions, such as en-coder-decoder and address mark. Preconfigured version of FC3560, the ML6010, $\$ 7$ (production qty). Micro Linear Corp, 2092 Concourse Dr, San Jose, CA 95131. Phone (408) 433-5200.

Circle No. 410

A/D converters. The SPT family incorporates TTL- and ECLK-compatible converters. The $10-\mathrm{Msample} /$ sec SPT7920 and 30-Msample/sec SPT7922 have ECL-compatible I/Os. Both units are compatible with TTL and CMOS. ECLcompatible units dissipate less than 1.4W; TTL/CMOS devices dissipate less than 1.1W. Output-data format is straight binary with an overrange signal to indicate overflow conditions. $\$ 150$ to $\$ 250$. Signal Processing Technologies Inc, 1510 Quail Lake Loop, Colorado Springs, CO 80906. Phone (719) 540-3999. FAX (719) 540-3970.

Circle No. 411

Video-rate convolver. The ZR3377145 performs 2-D filtering functions at 45 MHz . The unit operates on 8-bit data with 9 -bit kernel coefficients. For maximum flexibility the device supports multiple filter-kernel sizes ranging from 2×2 - to 7×7-in. on-chip, double-buff-

ered register banks. In 100-pin plastic quad flatpacks or 84-pin pin-grid arrays, $\$ 39$ (OEM qty). Zoran Corp, 1705 Wyatt Dr, Santa Clara, CA 95054. Phone (408) 986-1314. FAX (408) 9861240.

Circle No. 412

Power tools

Power tools
Power tools

KEPCO SWITCHING POWER SUPPLIES

> Low profile, wide range a-c input, single output, 25-150W d-c out
> \square Available open-frame or enclosed. \square UL/CSA/TÜV EN 950
> \square FCC Class B
> Kepco Group FAW Power Supplies

VISA

Fully enclosed very high efficiency single output, $50-1500 \mathrm{~W}$
\square Industrial-grade, enclosed. \square UL/CSA/TÜV EN 950.
\square FCC Class A.
Kepco Group RAX Power Supplies

Standard footprint low profile PC card* triple output, 40 \& 50W
$\square \pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ with +5 V .
\square UL/CSA/TÜV EN 950.
\square FCC Class B.
Kepco Group MRW Power Supplies
*Optional enclosure

So you don't think that's fast?
Consider this. The LTP 5000
Series thermal printer mechanisms print up to 700 characters a second.

Figure a typical typed page at 65 characters per line, 54 lines deep. That's 3,510 total characters divided by 700 .
By the time a feather falls 5 feet or 8.775 seconds a LTP 5000 prints a page. That's flying. At up to 8 dots per millimeter the thermal printed page is virtually

photographic quality. Perfect for high resolution graphics, measuring and analysis instrumentation, point of sale/communications terminals, medical equipment and more.
The LTP 5000 Series is very compact. Feather weight.
Extremely reliable and easily integrated.

By the way, that thud you heard as the feather hit the bottom of this
page is about as loud

as the LTP 5000 Series thermal printer mechanism. Find out more about Seiko Instruments quality products and reliable service, call today.

Seiko Instruments
Seiko Instruments USA Inc Electronic Components Division 2990 W Lomita Blvd., Torrance, CA 90505 Phone (213) 517-7787 Fax (213) 517-7792

PRINT FASTER THAN A FALLING FEATHER.

 When computer mouse manufacturers needed a tiny, yet highly reliable snap action switch that could stand up to rough, high-frequency switching, they turned to Omron. To meet the challenge, Omron developed the model D2F subminiature switch. With its remarkably small size and incredible life of 5 million operations, the advanced switch really "clicked" with the industry. For advanced switching solutions for the office automation, computer peripheral, appliance and consumer electronics industries, Omron provides the performance you need in basic switches. Choose standard, micro, miniature and subminiature styles in a wide variety of contact configurations, amp ratings, terminal types or actuator styles. With highly automated production and 100% performance testing with zero defects. And with our switch you need - fast. So, if you're find the right switch, call Omron at
 you get consistently high quality large local inventories, you get the tired of running around in circles to
WE HAVE THE FUTURE IN CONTROL. $1-800-62-O M R O N$.

What's the Siliconix secret for remaining the world's number one supplier of small-signal fieldeffect transistors?

A "Fitter FET" is one that meets your specific design requirements. And having done so, performs on and on reliably. Its manufacturer must have the same kind of staying power.
Siliconix does.
And we've demonstrated it for thirty years - through good times and bad. But what about the future?

Renewal and commitment.

Many suppliers are reacting to current business conditions by discontinuing, or de-emphasizing, their JFET product lines. As others quit or lower their JFET priorities, we will continue to produce. And with renewed energy, continue to develop industry-leading devices with lower leakage and lower noise - in both through-hole and surface-mount versions. Whatever your application, Siliconix will provide you with "FitterFETs" in the form of standard products, application-specific JFETs, or custom devices.
For example, our versatile line of amplifiers includes low-noise, low-leakage and high-frequency solutions
that come in TO-92, SOT-23, or hermetic package types. And we have a complete selection of dual amplifiers in SOT-23 and hermetic packages to satisfy your low-noise, high-gain, high-frequency, and general-purpose
needs. Add to this our low-leakage diodes, current limiters, and analog switches, and the result is the industry's broadest product line.
Fitter FETs? Absolutely. From a supplier that's in shape to go the distance. Contact your local Siliconix sales office. Or call our toll-free hot line now! 1-800-554-5565, ext. 968. Ask for your "Fitter FETs" Design Kit. And remember, at Siliconix we're committed to meeting your JFET requirements, both now and in the future.

Siliconix

2201 Laurelwood Road, Santa Clara, CA 95056

EDN-NEW PRODUCTS

Test \& Measurement Instruments

PC-based IC programmer. The Sprint Optima programmer is small enough to fit in the palm of your hand. Unlike small programmers that have their own interface cards, it connects to a PC's printer port, so you can easily move it from PC to PC. Moreover, the parallel interface downloads data much faster than serial interfaces do. The unit's small size makes for more than easy portability; it limits the length of internal leads and minimizes both lead inductance and ground bounce. Ground bounce during programming is responsible for a significant portion of the instances of ICs' failing to program correctly. \$3495. SMS North America Inc, Box 3159, Redmond, WA 98073. Phone (206) 883-8447. FAX (206) 883-8601.

Circle №. 377

C-size VXI mainframe. The E1401A device provides 650 W at $55^{\circ} \mathrm{C}$-more than 50% more power than its predecessor could supply. A separate fan is dedicated to cooling the power supply. You can replace the supply from the rear of the mainframe with just a screw driver and without disturbing any of the instrument modules. E1401A, $\$ 6350$; E1492B, including mainframe and VXI command module, $\$ 8750$. Delivery, four to six weeks ARO. Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 452-4844.

Circle No. 378

1-GHz spectrum analyzer. The SSA1000A analyzer operates from 150 kHz to 1 GHz with a frequency accuracy of $\pm 10 \mathrm{kHz}$. It features a quasi-peak detector, a wideband or narrowband

AM/FM receiver, and an RF preamplifier for off-the-air monitoring. The narrowest resolution bandwidth is 1 kHz ; the widest is 2 MHz . An internal 4-color plotter provides screen printouts. $\$ 6950$. Wayne Kerr Inc, 600 W Cummings Park, Woburn, MA 01801. Phone (800) 933-9319. FAX (617) 933-9523.

Circle No. 379

DAC-per-pin IC programmer. You can upgrade the Allpro-4i from an initial complement of 24 pins to 40 pins and more. Each pin can slew voltage, slew current, sense voltage, sense current, and drive programming clocks to 4 $\mathrm{MHz} . \$ 1295$ for a 24 -pin unit with software for programming logic devices only; $\$ 1495$ for 32 pins and software for memory devices only; $\$ 2495$ for 40 pins and software for memory and logic devices. Logical Devices Inc, 1201 NW 645th Pl, Fort Lauderdale, FL 33309. Phone (305) 974-0967. Circle No. 380

Thermal-imaging system. The IQ 325 detects, measures, and aids in analyzing infrared radiation. Its resolution is high for a system using a thermoelectrically cooled detector. The system includes both hard-disk and floppy-disk drives, allowing the analysis of images in real time or after acquisition. From $\$ 47,500$. Flir Systems Inc, 16505 SW 72nd Ave, Portland, OR 97224. Phone (503) 6843731. FAX (503) 684-5452. Circle No. 381

VXIbus digital I/O modules. The 128channel, C-size IO100VXI, IO110VXI, and IO120VXI all use 74ACT CMOS input receivers. The first unit uses 74 F TTL drivers; the second uses 74 ACT drivers; and the third uses open-collector TTL drivers. The first two units have 163 -state-control lines. The third has 16 output-enable lines. All inputs are latched and all outputs are double latched, permitting all outputs to change state at once. You can assign channels to 1 - to 32 -bit-wide groups of your own choice. Eight lines perform
input handshaking; eight others perform output handshaking. IO100VXI and IO110VXI, $\$ 1995$ each; IO120VXI, $\$ 2500$. Interface Technology, 196 University Pkwy, Pomona, CA 91768. Phone (714) 595-6030. FAX (714) 5957177.

Circle No. 382

VXIbus programmable attenuator. Various members of the 7250 Series operate in four frequency ranges from dc to 26 GHz . You can set the attenuation from 0 to 132 dB in $1-\mathrm{dB}$ steps (10 dB optional) via a 2 -port register. The units are single-width C-size modules. $\$ 5495$. Delivery, six weeks ARO. Racal-Dana Instruments Inc, 4 Goodyear St, Irvine, CA 92718. Phone (800) 722-3262. FAX (714) 859-2505. Circle No. 383

IC evaluation system. The Logic Master ATS125 tests digital and mixedsignal ICs. It delivers clock rates to 125 MHz , data rates to 250 Mbps , and typical edge-placement accuracies to ± 400 psec. You can upgrade the system to the vendor's higher performance ATS200 and use the same fixturing and software as the vendor's Logic Master XL series. $\$ 2200$ to $\$ 2800$ per pin. Integrated Measurement Systems Inc, 9525 SW Gemini Dr, Beaverton, OR 97005. Phone (503) 626-7117. FAX (503) 644-6969.

Circle No. 384

500-Msample/sec DSOs. The 2-channel 54505 B and 4 -channel 54506B provide $125-\mathrm{MHz}$ single-shot bandwidth and $300-\mathrm{MHz}$ repetitive-waveform bandwidth. Reconstruction filtering minimizes the uncertainty in displays of single-shot events. Waveform-memory depth is 8 ksamples/channel. The scopes perform signal-processing func-

tions such as computing FFTs and integrating and differentiating waveforms. The DSOs also trigger on 5-nsec glitches, perform mask testing, and compute measurement statistics such as the mean of a group of readings. The

Test \& Measurement Instruments

54505B, \$8350; 54506B, $\$ 13,990$. Delivery, 8 to 12 weeks ARO. HewlettPackard Co, Box 58059, MS 51L-SJ, Santa Clara, CA 95051. Phone (800) 4524844.

Circle No. 385

Handler for IC programming, testing, and marking. The benchtopmounted Model 6000 automates existing PLD programmers. It works with several brands and models. It lets you change device setups in less than 5 minutes. From $\$ 30,000$. Exatron Automatic Test Equipment, 2842 Aiello Dr, San Jose, CA 95111. Phone (800) 3928766; (408) 629-7600. FAX (408) 6292832.

Circle No. 386

Evaluation board for DSP56401

 audio transceiver. The 600-01497 board lets you put the DSP56401 through its paces. The chip includes interfaces to balanced, unbalanced, and optical transmission media, as well as ports that communicate with several Motorola DSP $\mu \mathrm{Ps}$, including the DSP56156, which incorporates a sigmadelta ADC. The board also includes in-terfaces to ADCs used in multimedia and professional audio applications. A dc/dc converter accepts 5 V dc and supplies all dc voltages the board needs. \$495. Spectrum Signal Processing Inc, 3700 Gilmore Way, Suite 301, Burnaby, BC V5G 4M1, Canada. Phone (800) 6638986; (604) 438-7266. FAX (604) 4383046.

Circle No. 387

200-Msample/sec portable DSO. The 475 scope provides $200-\mathrm{MHz}$ repeti-tive-signal bandwidth and 8-bit vertical

resolution. The maximum sample rate, which governs the scope's usable singleshot bandwidth, is higher than that of
other DSOs in its price range. The full $200-\mathrm{MHz}$ bandwidth applies even on the $2-\mathrm{mV} / \mathrm{div}$ range. Options include a builtin 4-color plotter and an IEEE-488/RS423 interface that supports the SCPI syntax (standard commands for programmable instruments). The 14-lb unit accepts power from the ac line or from a 12 to 33 V de source. From $\$ 3990$. Gould Inc, 8333 Rockside Rd, Valley View, OH 44125. Phone (216) 328-7000. FAX (216) 328-7400.

Circle No. 388

1-Msample/sec, 6 VME/VXI dataacquisition board. The DVX 2504 provides eight differential inputs that have $>86 \mathrm{~dB}$ of common-mode rejection at 60 Hz . It provides 14-bit resolution. A sequence controller, which includes 2 kbytes of channel-list memory, allows continuous data acquisition without host intervention. A 1024 -word FIFO buffer ensures that processor and DMA latency won't cause data gaps. Datadependent triggering initiates data collection upon detection of specific measured values. Dual-channel DMA lets you store pre- and post-trigger data in different areas of the host memory.

SAFETY.

It's this simple.
Maxell offers an incredibly wide range of long life Lithium Thionyl Chloride and Lithium Manganese Dioxide Batteries, covering more of your industrial/engineering applications than most others.

Every Maxell Lithium Battery is built with our unique manufacturing process and rigorous chemical purity and process control to assure maximum battery safety and performance.

Every one is engineered with controlled internal resistance for slower discharge and longer shelf life. Some are even available with built-in resistors and diodes to safeguard memory backup.

So when you're looking for the ultimate in Lithium Battery selection, performance and safety, look to Maxell.

It's that simple.

Maxell Corporation of America, 22-08 Route 208, Fair Lawn, NJ 07410, 1.800-533-2836.

EDN-NEW PRODUCTS

Test \& Measurement Instruments
$\$ 4500$. Delivery, 8 to 10 weeks ARO. Analogic Corp, 8 Centennial Dr, Peabody, MA 01961. Phone (508) 9773000. FAX (508) 532-6097. TLX 6817144.

Circle No. 389

252-kHz to 2-GHz signal generator.

 The HP 8643A exhibits maximum sin-gle-sideband phase noise of -130 dBc at 1 GHz with a $20-\mathrm{kHz}$ offset from the carrier. Spurious signals are at least -100 dBc . The generator provides amplitude, frequency, and pulse modulation. $\$ 21,000 ; \$ 15,500$ with maximum output frequency of 1.03 GHz . Delivery, seven weeks ARO. Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 452-4844.Circle No. 390

4-channel, scanning DMMs. The MM100, MM100A, and MM200 digital multimeters, each of which is powered by a 9 V battery, offer three display modes: 4 channels $/ 3^{1 / 2}$ digits, 2 channels/ $4^{1} / 2$ digits, and 1 channel/9 digits (MM100, MM100A). When measuring dc voltage, the error is $\pm 0.2 \%$. All mod-
els let you program each channel for manual or automatic ranging. The MM200 allows you to specify upper and lower resistance setpoints. A bar-graph mode presents a 1 -channel, $4^{1 / 2}$-digit display along with a 16 -segment bar-graph display. The MM100 has a $200-\mathrm{mA}$ range; the others have 2 A ranges. $\$ 229.95$. Hub Material Co, 33 Springdale Ave, Canton, MA 02021. Phone (617) 821-1870. Circle No. 391

2-channel, 8-bit-resolution LCD DSO. The P-3820 device measures $6 \times 9.25 \times 2 \mathrm{in}$. Its bandwidth is 2.4

MHz ; it takes $20 \mathrm{Msamples} / \mathrm{sec}$; and it has a 2 k -word acquisition memory that stores 16 waveforms. The scope, which has a 3.25×4-in. screen, receives power from six AA cells or from an ac adapter. Interfaces include an RS-232C port (standard) and a printer interface (optional). The unit makes cursor-controlled voltage and time-interval measurements and marks its displays with the date and time. Less than $\$ 975$. Protek Inc, Box 59, Norwood, NJ 07648. Phone (201) 767-7242. FAX (201) 7677343.

Circle No. 392

LAN monitor. The HP 4995A Lanprobe II instrument completely implements the Remote Network Monitoring Management Information Base (RMON MIB) standard, which aids in planning networks, diagnosing their faults, tuning their performance, and providing multivendor interoperability via the Simple Network Management Protocol (SNMP). Several SNMP software packages manage the LAN monitor. From $\$ 2595$. Hewlett-Packard Co, 19310 Pruneridge Ave, Cupertino, CA 95014. Phone (800) 452-4844.

Circle No. 393

Power Converters

20Watt
 DC/DC Converters Single/Dual/Triple 34 New Models

- Inputs:4.6-13.2V,9-18V, 9-36V, 18-72V
- Typical Efficiencies to $84 \%+$
- World's ONLY Wide Range 5V IN
- Extended Operating Temperature
- $\mathrm{V}_{\text {out }}$ Adjustment Capability (TRIM)
- Insulated Case (will not short PC etch)
- TTL-compatible ON/OFF control
- Metal Case Shielding
- Single $\mathrm{V}_{\text {out }}: 2.1,3.3,5,12,15 \mathrm{~V}$
- Dual out $^{2} \pm 5, \pm 9, \pm 12, \pm 15 \mathrm{~V}$
- Triple $\mathrm{V}_{\text {out }}: 5, \pm 12 \mathrm{~V}$ and $5, \pm 15 \mathrm{~V}$

General Specifications

- State-of-the-Art Thermal Management
- Continuous Short Circuit Protection
- Internal Input/Outputfiltering
- Overvoltage Protection
- 100\%Burn-in@ Full Load
- Industry Standard Pinout \& Packaging
- Very High Reliability
- Fully Encapsulated
- Delivery From Stock!

10Watt
 DC/DC Converters Single/Dual/Triple 25 NewModels

- Inputs:4.7-7V, $9-18 \mathrm{~V}, 9-36 \mathrm{~V}, 18-72 \mathrm{~V}$
- World's Smallest Commercial 10 W
- Lowest Profile:0.37" tall
- Typical Efficiencies of $84 \%+$
- Insulated Case (will not short PC etch)
- Metal Case Shielding
- World's ONL Y Wide Range $5 \mathrm{~V}_{\text {IN }}$
- Extended Operating Temperature
- Single $\mathrm{V}_{\text {out }}: 3.3,5,12,15 \mathrm{~V}$
- Dual $\mathrm{V}_{\text {our }} \pm 5, \pm 12, \pm 15 \mathrm{~V}$
- Triple $\mathrm{V}_{\text {out }}: 5, \pm 12 \mathrm{~V}$ and $5, \pm 15 \mathrm{~V}$

3Watt
 DC/DC Converters Single/Dual Output 15 New Models

- Inputs:4.5-9V, 9-18V, 18-72V
- Switching Frequency 200 KHz (typ)
- Black Plastic Case
- Pi-type Filter (L-type all -D48)
- Typical Efficiencies to $82 \%+$
- Ideal for Telecomm/PCB applications
- Low Profile: 0.435 " tall
- ExcellentLine/LoadRegulation
- 1000 Vdc Isolation (min)
- $\mathrm{V}_{\text {out }}: 5,12,15, \pm 12, \pm 15$
OTTOM VIEW

BOTTOM VIEW

2-

For complete data call or write today for a free new Power Supply catalog. DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048. Tel: (508)339-3000, FAX: (508)339-6356. For immediate assistance: all USA, EST business hours 1-800-233-2765; Western region only, PST business hours 1-800-452-0719.

MILITARY TRIMMERS from the Techno Division include broad MIL qualification to RT24, 26, 27 RTR24; RJ24, 26 and RJR24, 26. Techno RJ24 and RJR24 trimmers offer you 25 turns for precision adjusting, while the RJ26 and RJR26 offer 22 turns. They have zero backlash and offer a monolithic clutch In addition, Techno offers $1 / 4^{\prime \prime}$ and $3 / /^{\prime \prime}$ multiturn trimmers with a TCR of $\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ for precision applications. All Established Reliability trimmers meet the requirements of MIL-STD-202, Method 208 Contact: Techno Division, Dale Electronics, Inc. 7803 Lemona Avenue, Van Nuys, California 91405-1139 Phone (818) 781-1642.

Dale Can.

Add trimmers to the list of ways Dale ${ }^{\circledR}$ can help keep your project under budget and on-time. We offer immediate interchangeability with models you're using now. Cermet wirewound. Military, industrial, commercial. Square, round rectangular. Surface mount and through-hole. Discover how Dale trimmers can end your search for multiple suppliers. More than ever we're your 1 -stop source for resistive components - always ready to match your delivery schedule from factory or distributor stock. Call today.

COMMERCIAL TRIMMERS include Surface mount: Thick film chips (.2W) plus .197" (.2W) and $1 / 4^{\prime \prime}(.25 \mathrm{~W})$ square cermet styles. Through-hole cermet styles include: $276^{\prime \prime}(.5 \mathrm{~W})$ round, $1 / 4^{\prime \prime}$ (.25W), $9 / 32^{\prime \prime}(.5 \mathrm{~W})$ and $3 / 8^{\prime \prime}(.5 \mathrm{~W})$ square cermet. Rectangular: $3 / 4^{\prime \prime}(75 \mathrm{~W})$ wirewound
For more information contact: Dale Electronics, Inc., 1155 West 23 rd Street. Tempe, Arizona 85282-1883 Phone (602) 967-7874.

World Leader Altanter in High-Speed Analog High-Speed Amps/Buffers

■ ONLY $1.5 \mathrm{f} / \mathrm{MHz}$

- 325 V/us Slew Rate - Single or Split Supplies as Low as 2.5 V

FOR SAMPLES CALL OUR APPLICATIONS HOTLINE - (800) 333-6314 ext 311, Literature Only - ext 234

EDN-NEW PRODUCTS

Computers \& Peripherals

Flash memory cards. The IDE series memory cards have from 2.5 - to 20 Mbyte capacity. The cards plug into an IDE-compatible base controller. The base controller accepts two removable cards for a maximum capacity of 40 Mbytes. The units replace a $2.5-\mathrm{in}$. hard-disk drive without requiring a change in the system BIOS. IDE base controller, $\$ 375 ; 2.5$-Mbyte card, $\$ 425$; $20-\mathrm{Mbyte}$ card, $\$ 2750$. AT\&T Microelectronics, Dept 520404200, 555 Union Blvd, Allentown, PA 18103. Phone in US (800) 372-2447, ext 840; in Canada, (800) 553-2448, ext 840; (908) 771-2788.

Circle No. 355

R4000 computers. The ARCsystem family of computers consists of two product lines-the Magnum 4000 and the Millennium 4000. Both product lines employ a $50-\mathrm{MHz}$ R 4000 RISC (re-duced-instruction-set-computer) CPU. The company will upgrade them to 67 and $75-\mathrm{MHz}$ CPUs later in the year. The products deliver from 40 to 60 SPECmarks and run on qualified Windows NT and Unix operating systems. Software development models have a $15-\mathrm{in}$. flat color monitor, 1024×768 pixel XGA graphics, 8 Mbytes of RAM, a 200 -Mbyte hard-disk drive, a CDROM, and floppy-disk drives. Magnum $4000, \$ 9990$ to $\$ 14,990$; Millennium 4000, $\$ 10,990$ to $\$ 15,990$. Mips Computer Systems Inc, 950 DeGuigne Dr, Sunnyvale, CA 94088. Phone (408) 7201700. FAX (408) 524-7950. Circle No. 356

$50-\mathrm{MHz}$ i486 computer. The ME 48650 computer contains 4 Mbytes of RAM, a 200-Mbyte hard-disk drive, a Hi-Color VGA card, and a monitor that displays 32,768 colors having a resolution of 800×600 pixels. It also has both $5^{1 / 4}-\mathrm{in}$. and $31 / 2$-in. floppy-disk drives, a mouse, DOS 5.0, and Windows 3.0. System RAM is expandable to 32 Mbytes using

70-nsec SIMMs (single-in-line memory modules). Desktop model, $\$ 3395$; tower model, $\$ 3995$. Micro Express, 1801 Carnegie Ave, Santa Ana, CA 92705. Phone (714) 852-1400. FAX (714) 852-1225.

Circle No. 357

Projector/monitor. The Prism is a 7 lb color thin-film-transistor (TFT) panel that serves dual roles as an overhead projector and a stand-alone monitor. A snap-on backlight cartridge converts the unit from an overhead-projection panel to a stand-alone monitor. The cartridge doesn't alter the unit's $15 \times 12.5 \times 2$-in. dimensions. Features include 640×480 pixels, $0.33-\mathrm{mm}$ pixel pitch, and a toggle-select color palette from 512 to 185,000 colors. $\$ 8495$. Dolch Computer Systems, 372 Turquoise St Milpitas, CA 95035. Phone (408) 9576575. FAX (408) 263-6305. Circle No. 358

Laser printer. The Laser Beam Printer produces 300 -dpi resolution. The unit has nine scalable or eight bit-mapped fonts. The printer has 512 kbytes of RAM, expandable to 2.5 Mbytes, and a 1-kbyte input buffer. The unit prints at 4 pages/minute and emulates a Diablo 630 printer. $\$ 1249$. Canon USA Inc, 1 Canon Plaza, Lake Success, NY 11042. Phone (800) 848-4123.

Circle No. 359

Printer accelerator. The Betteryet IV device for HP Laserjet Series II and Laserjet III printers consists of a board and cartridge that emulate PCL-5 and Postscript-compatible printers. The board automatically switches between the two emulation modes in network operations. It also provides an enhanced resolution of $600 \times 300 \mathrm{dpi}$ in both emulation modes. The board installs in the printer's optional I/O port, and the cartridge fits into the left font slot. $\$ 999$. Output Technology Corp, 2310 N Fancher Rd, Spokane, WA 99212. Phone (800) 468-8788; (509) 536-0468. FAX (509) 533-1280.

Circle No. 360

Programmable keypad encoder. The USE145 encodes the outputs of matrix keypads having from 1×23 to 12×12 keys. You can program the encoder to interface with an 8 - or 16 -bit ISA bus computer or an RS-232C port. A menu-driven utility program, called Usecon, lets you program pinouts and key codes. The encoder measures $2.5 \times 3.6 \mathrm{in}$. and requires 5 V for an RS232 C port. $\$ \mathbf{1 4 5}$. VG Controls Inc, 34 Jenkins Rd, Hewitt, NJ 07421. Phone (201) 853-4600. FAX (201) 853-7913.

Circle No. 361

Windows accelerator board. The Winsprint 100 Plus employs the S3 86C911 VGA accelerator chip. It displays 1024×768 noninterlaced pixels having 256 colors at a $72-\mathrm{Hz}$ refresh rate. A 1280×1024 interlaced pixel board having 16 colors is also available. The board is compatible with VGA and Super VGA standards. \$595. Artist Graphics, 2675 Patton Rd, St Paul, MN 55113. Phone in US and Canada, (800) 627-8478, ext 814; (612) 631-7814. FAX (612) 631-7802.

Circle No. 362

Macintosh LC accelerator board. The Tokamac ELC for Macintosh LC computers contains a $25-\mathrm{MHz} 68 \mathrm{EC} 040$ CPU, which doesn't have a math coprocessor and a memory-management unit. The board's software automatically switches between the 68EC040 CPU and the Macintosh LC's $68020 \mu \mathrm{P}$. $\$ 1295$. Fusion Data Systems, 8920 Business Park Dr, Suite 350, Austin, TX 78759. Phone (512) 338-5326. FAX (512) 794-9997.

Circle No. 363

486 portable computer. The Model 120 Portable 486 contains a $33-\mathrm{MHz}$ i486 $\mu \mathrm{P} ; 4$ Mbytes of RAM expandable to 32 Mbytes; a $3^{1} / 2$-in. disk drive; a detachable keyboard; and Multilock security features. The computer uses thin-filmtransistor (TFT), active-matrix, black-and-white display technology having VGA resolution to 64 shades of gray.

Computers \& Peripherals

Two EISA expansion slots and an Enhanced Option Slot for graphics expansion are part of the unit. Model 120 with 120-Mbyte hard-disk drive, $\$ 5899$; Model 210 with a $210-\mathrm{Mbyte}$ disk drive will be available later this year, $\$ 6899$. Compaq Computer Corp, Box 692000 , Houston, TX 77269. Phone (713) 3700670.

Circle No. 364

Desktop plotter. The HI Jetpro Series Model V100 plotter produces $360-\mathrm{dpi}$ resolution C-size drawings in less than 5 minutes. Because the unit supports PCX formatted files, it can plot FAX messages. The unit also works with TIFF, RLC, and CALS Group 4 formatted files to permit plotting of scanned raster images. The plotter emulates an IBM Proprinter to remain compatible with a range of word processors. $\$ 2995$. Summagraphics Corp, 60 Silvermine Rd, Seymour, CT 06483. Phone (203) 881-5400. Circle No. 365

Computer board. The ESP 8680 Module contains Chips \& Technologies' 8680 single-chip computer IC. It also has a

memory-card socket, CGA graphics, as much as 1 Mbyte of DRAM, a keyboard port, and a serial port. The board's form factor, called the Extremely Small Package, measures 1.7×5.2 in. $\$ 995$. Dover Electronics Manufacturing West, Box 1532, Longmont, CO 80502. Phone (800) 848-1198; (303) 772-5933. FAX (303) 776-1883.

Circle No. 366

SBus graphics accelerator. The model GXTRA/1 contains a Weitek W8720 integrated controller, 1-Mbyte color-frame buffer (8-bits), a Sun-4 keyboard and mouse port, and a SunOS

CG3 device driver. The SBus board drives screens having resolutions from 640×480 pixels to 1152×900 pixels. The board accelerates graphics for Sun's X11/News, Sunview, and MIT's X11R4, and X11R5 software. $\$ 1750$. Tech Source Inc, 442 S North Lake Blvd, Suite 1008, Altamonte Springs, FL 32701. Phone (407) 830-8301.

Circle No. 367

Turbochannel-to-VME bus adapter.

 The adapter interconnects a DEC Turbochannel computer to a VMEbus system. The system consists of a Turbochannel card and a 6U VMEbus card that interconnect via a round 25 -ft EMI shielded cable. Memory mapping permits either the Turbochannel or VMEbus host to execute random-access reads and writes on the other system. A DMA controller transfers 16-Mbyte blocks of data from one system to the other at $25 \mathrm{Mbytes} / \mathrm{sec}$. The system also exchanges interrupts between the two buses. $\$ 2850$. Bit 3 Computer Corp, 8120 Penn Ave S, Minneapolis, MN 55431. Phone (612) 881-6955. FAX (612) 881-9674.Circle No. 368

The
 Wo

No matter how fast you want to go, Orion's 8800 Emulator/Analyzer

can take you there. Forthe 6800,68332 and other high-performance 16 -bit \& 16/32-bit processors, nothing's as fast as the new 8800 . With support
for emulation memory access times of less than 40 nsecs* and bus cycle times of only 30 nsecs, you can debug tomorrow's faster processors today-at full-speed, transparently, with no cycle stretching or wait states. Of course, the 8800 sports a range of features making it the world's leader in other categories, too.
For example, with 16 K trace standard and 64 K optional, you get the deepest traces in the industry. In addition, a unique Clip- $\mathrm{On}^{\mathrm{TM}}$ emulation option works with soldered-in processors.

Computers \& Peripherals

Ethernet print server. The XP-1 lets the company's printers become intelligent nodes on a Unix or DEC Ethernet network. The $2.5 \times 9.5 \times 11-\mathrm{in}$. box fits alongside the printer. It can handle transmission speeds of 3000 lines $/ \mathrm{min}$ ute. On DEC networks the unit operates with DEC Local Area Transport (LAT) protocol to share printer resources transparently. The unit also works with the TCP/IP (transmis-sion-control-protocol/internet-protocol) suite. $\$ 1295$. Dataproducts, Box 746, Woodland Hills, CA 91365 . Phone (818) 887-8000. FAX (818) 887-4789.

Circle No. 369

Serial-communications board. The IV-3234 is a serial-communications controller board for the VMEbus. A 68 EC 030 microcontroller handles asynchronous and synchronous data rates as fast as 64 kbps on as many as 16 ports. When all ports are running bidirectionally at full speed, 90% of the CPU's power is held in reserve. The board runs under Vxworks, pSOS + , and OS-9 operating systems. You can optionally mount a daughter board containing a

Z8530 4-port SIO chip for faster communications rates. $\$ 170 /$ port. Ironics Inc, 798 Cascadilla St, Ithaca, NY 14850. Phone (607) 277-4060. TLX 705742.

Circle No. 370

Voice board. The DM1000LP-1 device can reproduce digitized messages as long as 2 minutes. It stores the messages in a 4-Mbyte EPROM. You can digitize voices using the company's 880 voicè-development system or a voicedigitization service. A momentary grounding of a trigger pin begins playback. The board requires a 6 to 12 V de supply and draws $1 \mu \mathrm{~A}$ in standby mode. It can deliver $3 W$ into an external 4 or 8Ω speaker. $\$ 30$. Development system, \$495. Eletech Electronics, 1262 E Katella Ave, Anaheim, CA 92805. Phone (714) 385-1707. FAX (714) 3851708.

Circle No. 371

FDDI concentrator. The Fiberhub 1600 connects from 8 to 16 stations to a 100 Mbps FDDI network. The modular design lets you increase the number of ports in increments of two. The concen-
trator can handle any mix of fiber-optic or copper media and features "hotswappable" modules. You can configure PHY and power-supply modules for dual-or single-attachment connections to another concentrator. You can also configure the unit for fault tolerance, using two MAC modules. $\$ 13,995$. Interphase Corp, 13800 Senlac, Dallas, TX 75234. Phone (214) 919-9000. FAX (214) 919-9200.

Circle No. 372

Flat-panel operator. The DisplaypaccLCD contains a full-color LCD screen, a DOS-compatible 80386 SX singleboard computer, and a capacitive touchscreen. The LCD screen offers 512 colors and offers a low-cost alternative to an active-matrix thin-film-transistor (TFT) display found on competitive products. The $11.75 \times 8.5 \times 1.75-\mathrm{in}$. package runs at 25 MHz and contains 16 Mbytes of dynamic RAM, a VGA flat-panel controller, floppy- and IDE hard-disk controllers, and a batterybacked time clock. $\$ 2995$. Computer Dynamics, 107 S Main St, Greer, SC 29650. Phone (803) 877-8700. FAX (803) 879-2030.

Circle No. 373

stest Emulator

And since user memory and interrupts aren't pre-empted, transparency is superb. Plus, true source level debugging with full local variable support is available via Intermetrics' powerful XDB debugger.

	Nert Geereration Emulation Speed	${ }^{64 K}$ Trace	Clip-On Emilation	Afforabable
ORION 8800	NO	NO	NO	$?$
Applied	NO			
HP	NO	NO	NO	$?$
Microtek	NO	NO	NO	$?$

There's more. Orion's 8800 is the first PC-based emulator to take full advantage of 386 protected mode features. So now, you can run your editor/compiler while waiting for a breakpoint, as well as use symbol tables of virtually unlimited size. At last, the full power of your PC comes alive with your emulator.

Sound too good to be true? Not from Orion. We've been making emulators since 1980. The new 8800 is just the latest in a long line of innovative products to make your debugging efforts more productive. And every system we sell is backed by the Performance Promise, ${ }^{\mathrm{TM}}$ your assurance that our solutions solve your problems. Best of all, a complete 8800 system starts at just $\$ 8800 \dagger$. Why get slowed down with someone else's emulator?
Call today for a fast response on the world's fastest emulator.
1-800-729-7700
${ }^{*}$ With high-speed option \dagger Introductory price. U.S. list only
©1992 Orion Inbstruments, Inc., 180 Independence Drive, Menlo Park, CA 94025, USA. TEL: (415) 327-8800 FAX: (415) 327-9881 All rights reserved. All trade names referenced are trademarks or registered trademarks of their respective companies.

NON-OBSOLESCENCE

The Microelectronics Center does not obsolete any required products and provides 15-20 years availability. An on-site, state-of-the-art CMOS and SOI (Silicon-on-Insulator) wafer fab is available to manufacture your build-to-print and custom designs in a Class 1 clean room. We offer very competitive prices for COMSEC and Aerospace products on 1u through 7u technologies.

ASICs

Choose from more than 720, Mentor based, standard cells including ROM, RAM, FIFO, ALU, Multipliers and Dual Port RAMs with built-in boundry scan testability.

PRODUCTS

- $4 \mathrm{~K} \times 1$ and $1 \mathrm{~K} \times 4$ Rad Hard SOI SRAMs
- Low cost SOI replacements for SOS
- FPGA/PLD conversions to ASICs
- Low Power Single Chip Mil-Std-1750A Processor

HIGHEST INDUSTRY STANDARDS

Full compliance to the highest industry standards: MIL-M-38510 • MIL-STD-883C • NSA Approved Vendor • IQUE Approved • Radiation Hardening and Class "S" capabilities

ALLIED-SIGNAL AEROSPAGE COMPANY

MICROELECTRONICS CENTER Contact: Marketing and Sales at (410) 964-4047, FAX: (410) 992-5813, 9140 Old Annapolis Road/MD 108, Columbia, Maryland 21045 USA.

Computers \& Peripherals

ISDN facsimile machine. The FAX7000 G4 Group 4 fax machine has a builtin ISDN port. In addition, the company is offering the ISDN kit, which lets you add an ISDN port to FAX7000 computers. Both products provide a fax machine with both Group 3- and Group 4compatible telephone numbers. The products let you transmit documents at 2 pages/minute where conventional phone lines transmit documents at 11 pages/minute. FAX7000 G4, $\$ 14,495$; ISDN kit, $\$ 3500$. Ricoh Corp, 5 Dedrick Pl, West Caldwell, .NJ 07006. Phone (201) 882-2000. FAX (201) 8822506.

Circle No. 374

Rewritable optical-disk system. The OPTI/Max subsystem has an average access time of 7.6 msec . The subsystem, which runs on Unix workstations using the SCSI bus, consists of a $5^{1 / 4}-\mathrm{in}$. rewritable optical disk, a SCSI-to-SCSI caching controller, an uninterruptible power supply, and an enclosure. Each disk contains 600 Mbytes of storage. $\$ 5000$ to $\$ 10,000$. Unison Information Systems Ltd, 21 Walsh Way, Framingham, MA 01701. Phone (508) 879-3200. FAX (508) 879-0772.

Circle No. 375

Audio board. The SX-15 ISA bus audio board provides direct-to-disk recording and playback of digitally sampled sound in real time. The board employs a TI TMS320C51 DSP chip having a 50 -nsec cycle time. It lets you simultaneously record and play back two separate audio channels having 18 -bit resolution and programmable sampling rates from 6.25 to 50 kHz . The board also meets the real-time compression requirements of industry file-format standards such as DVI, CD-I, and CDROM XA. $\$ 1895$. Antex Electronics Corp, 16100 S Figueroa St, Gardena, CA 90248. Phone (800) 388-4231; (310) 532-3092. FAX (310) 532-8509.

Circle No. 376

More Signs of the Times.

The signs of the times are everywhere. Designers are demanding greater speed and greater functionality at lower cost. And they're turning to Headland's Virtual Cache ${ }^{T M} 486$ Chip Set and Windows Express ${ }^{\text {TM }}$ Local Bus VGA for unbeatable price/performance.

HTK340

Virtual Cache ${ }^{\text {m }} 486$ Chip Set
Team up Headland's HTK340 Virtual Cache 486 core logic chip set with Intel's new super-fast 486DX2.

CORE LOGIC

$(486 \mathrm{DX} 2)+($ HTK340 $)=\underset{\text { POWER MELER 1.7 }}{29.3 \text { MIPS }}$
POWER MEER 1.7
byte gathering write buffer and out of HTK340 offers the best price/performance in the business.

Virtual Cache ${ }^{\text {TM }}$ and Windows Express ${ }^{T M}$ are trademarks of Headland Technology Inc. All other brand and product names are trademarks or registered trademarks of their respective companies.

HT216-32
 Windows Express ${ }^{\text {™ }}$ Local Bus VGA
 With Headland's HT216-32 local bus, commands

GRAPHICS

WINMARK $=8.1 \mathrm{M}$ and data are transferred at speeds up to 33 MHz . By incorporating Windows ${ }^{\text {TM }}$ raster operations, the
Windows Express local bus graphics controller will boost the performance of Windows applications significantlyas much as four times faster than SVGAs. Without a costly co-processor or VRAM.

Call Headland now for more information on our complete line of local bus core logic and graphics products. And follow the signs to the products of the future.

Headland

Technology Inc
46221 Landing Parkway, Fremont, CA 94538 800-238-0101

Get ALoadOf This!

Closest Thing Yet To A Real-World Load

No more testing trade-offs! Kikusui's PLZ3 W series has everything you want in an electronic load. Four operating modes - constant current, voltage, resistance and power - let you simulate any real-world loading requirements.

Recreate your actual load demand on the PLZ-3W by capturing it with a DSO. Then use Kikusui's exclusive sequence mode, which acts as a 10 bit arbitrary waveform generator, to accurately replay the captured waveform on the load. For added flexibility, you can program functions and read measured valuesfrom

KIKUSUI INTERNATIONAL CORP.
the front panel or the optional GPIB or RS-232C interfaces. Additional advances include programmable rise and fall times, slew rates to $4 \mathrm{~A} / \mu \mathrm{sec}$, soft start and short circuit capabilities, plus such convenience features as front panel calibration.

Find out how easily you can produce incredible load simulations for research, testing and manufacturing of all DC power devices. Contact us by calling toll free 1-800-545-8784 or by fax at 1-310-986-1624. Kikusui International Corp., 1980 Orizaba Ave.,Signal Hill, CA 90804.

ET
 Targets Vour Costs Without Cempromising Your Standards.

Defense dollars have been significantly reduced but the performance demands of your system have not. IEE has NDI (non-development-item), MODIFIED NDI and OFF-THE-SHELF keyboard and display solutions to your man-machine interface requirements.

Flat Panel Displays

IEE designs and manufactures ruggedized and full-military VF, LCD and ACTFEL displays. VF displays are available with hermetically sealed and/or QPL components as well as shock mounting. Our standard LCD displays operate over a wide temperature range and can be illuminated. Our standard 3×5 and 4×8 ACTFEL displays are available in rugged and full-military configurations which can be EMI/RFI shielded.

IEE interactive displays combine VF, DC plasma, and ACTFEL displays with optical and mechanical touch switches to provide an integrated man/machine interface device. Information from a host system can be readily displayed, understood and controlled from a single assembly. Our V.I.P. ${ }^{T m}$, PEP $^{T M}$ and EL interactive displays provide very sophisticated operator interface in a minimum amount of space.

Interactive Displays

Keypads and Keyboards

IEE Thinswitch, Panelswitch, Telswitch and Sealedswitch keypads are available in various standard configurations. These keypads incorporate such features as proprietary gold-plated switch domes, environmental sealing, integral illumination

Our FTMK (Full-Travel Modular Keyboard) is available with "full-travel data entry" or "snap-function" modular keyswitches. The FTMK has proven itself in the most demanding operational environments and has unequalled survivability.

Control Display Units

Portable E. IEE

Safety In Numbers.

 150 Design Kits From 35 ASIC Vendors.

If you're an ASIC designer, DAZIX has the numbers you can count on.

Our ASIC design environment lets you choose from over 150 design kits from 35 major ASIC vendors. These kits contain the libraries, models, and interfaces you need for fast, accurate design and simulation of PLDs, FPGAs, gate arrays, cell-based, and full custom ASICs. And by giving you a large number of ASIC vendors to choose from, we expand your design options and help you increase control of your design process.
Within our ASIC design environment, you can select a variety of technologies - including CMOS, HCMOS, bipolar/ECL, and GaAs. Plus, you can
combine different technologies, devices, and vendors. And there's just one design suite and one icon-driven interface to learn, so you won't need to retrain as you migrate from foundry to foundry, project to project, and device to device.
What's more, once your ASIC design is completed, it can be integrated directly into your PCB, hybrid, and MCM designs.

Call for free ASIC catalog. To learn more about how DAZIX can make your ASIC design job easier, call for our newest catalog, ASIC Design Solutions.
In the U.S., call 800-239-4111. In Europe, fax 33-1-4537-7135. In the Asia Pacific area, call 852-8661966.

$$
D A T X X
$$

An Intergraph Company

LEDs. BP280 Series T-1-3/4 bi-pin LEDs are available in heights ranging from 0.5 to 1 in . The line includes 25 styles of diffused or high-intensity LEDs in red-yellow-cyan, orange, and bluealong with 12 styles of 5 and 12 V units featuring an integral resistor. The family also includes three infrared versions. Operating characteristics range from 2 to 160 mcd ; infrared units are rated for 1.4 to $80 \mathrm{~mW} / \mathrm{cm}^{2}$. From $\$ 0.45$ (1000). Ledtronics Inc, 4009 Pacific Coast Hwy, Torrance, CA 90505. Phone (310) 549-9995. FAX (310) 549-4820.

Circle No. 413

Keyboard. The KB-3050 84-position keyboard can incorporate a mouse key if desired. Measuring 10.5 mm high, the unit has the same feel as a keystroke of a full-size desktop keyboard. Keys include three full membrane sheets with a rubber dome. Keystroke equals 3 mm . $\$ 12$ to $\$ 15$. NMB Technologies Inc, 9730 Independence Ave, Chatsworth, CA 91311. Phone (818) 341-3355. FAX (818) 341-8207.

Circle No. 414

Motor driver. The EDM-107 microstepping driver measures only $3 \times 5.9 \times 1.1$ in. and handles 2 kW of peak output power. The unit features 14 programmable microstep ranges that can be changed on the fly. The $400-$ to $51,200-$ microstep/revolution range provides precise positioning. Short-circuit and overtemperature protection are standard. Less than $\$ 320$ (100). Portescap US Inc, 36 Central Ave, Hauppauge, NY 11788. Phone (516) 234-3900. FAX (516) 234-3986.

Circle No. 415

VME chassis. The VEV features 21 $6 \mathrm{U} \times 160-\mathrm{mm}$ slots as well as mounting and power for as many as four drives and a 500 W power supply. The standard unit has a vertically mounted J1 backplane. Three fans cool the card cage and a fourth fan is dedicated to cooling the power supply. A power-switch-only control panel is standard; a panel with
a system reset and ac-fail detect is optional. Versions with or without drive bays, $\$ 3850$ and $\$ 3750$, respectively. Zoltech Corp, 16658 Arminta St, Van Nuys, CA 91406. Phone (818) 780-1800. FAX (818) 780-1978. Circle No. 416

Radial capacitors. Type 2014S radial capacitors are available with values of 0.001 to $0.033 \mu \mathrm{~F}$ in standard tolerances of $\pm 2, \pm 5, \pm 10$, and $\pm 20 \%$. The units operate over a -25 to $+85^{\circ} \mathrm{C}$ range and have voltage ratings of $1000,1250,1600$, and 2000 V dc. At $20^{\circ} \mathrm{C}$, insulation resistance equals $4 \times 10^{11} \Omega$. From $\$ 0.15$ (1000). Delivery, stock to eight weeks ARO. Tecate Industries Inc, Box 711509, Santee, CA 92072. Phone (619) 448-4811. FAX (619) 448-0912.

Circle No. 417

Equipment towers. These VME towers hold $6 \mathrm{U} \times 160-\mathrm{mm}$ boards. Air-flow dynamics allow air intake from the front and exhaust at the back. Cards are accessible from the tower front. The system is available in $3-, 5-, 7$-, and 12 -slot versions. All units come fully wired, tested, and ready to run with power supply, fans, and J1 and J2 backplanes. Drive bays are optional. A 3 -slot version, \$1668. Bustronic Corp, 44350 Grimmer Blvd, Fremont, CA 94538. Phone (510) 490-7388. FAX (510) 4901853.

Circle No. 418

Interference design kit. This EMI/ RFI design kit has 20 compartments that are filled with selected ferrite components used to solve EMI/RFI problems. The kit's 200 pieces are ready for installation. Parts include single- and multihole beads, beads on leads, and 6hole chokes. Specifications are provided for all parts. $\$ 50$. Ferronics Inc, 45 O'Connor Rd, Fairport, NY 14450. Phone (716) 388-1020. FAX (716) 3880036. TLX 256549.

Circle No. 419

LIF connectors. N Series connectors are available with 70 to 350 contacts spaced on $0.1-\mathrm{in}$. centers. The contacts are rated for 3 A and have a life expectancy of 100,000 operations min. Contacts for crimp, flow solder, wrappedwire, and integral float mounting are available as standard. $\$ 30$ to $\$ 150$ (1000). Delivery, 14 weeks ARO. Hypertronics Corp, 16 Brent Dr, Hudson, MA 01749. Phone (800) 225-9228; (508) 568-0451. FAX (508) 568-0680.

Circle No. 420

Detector module. FU-112PD detector modules operate in the 1000 - to $1600-\mathrm{nm}$ range and can function with either the FU-116SLD-1 or FU-116SLD-3 laserdiode modules. For $1300-\mathrm{nm}$ wavelengths, the 116SLD-1 diode outputs 1.5 mW , and the 116SLD-3 unit outputs 0.2 mW . Operating range spans -40 to $+85^{\circ}$ C. FU-112PD, \$95. Delivery, 14 weeks ARO. Mitsubishi Electronics America Inc, 1050 E Arques Ave, Sunnyvale, CA 94086. Phone (408) 7305900.

Circle No. 421

Sockets. TAZ PGA ZIF sockets have a spring-loaded cover that keeps the empty socket in an open position. A hand tool activates the socket, eliminating the need for a space-consuming lever. The sockets are available in 0.1×0.1 - and $0.05 \times 0.1-\mathrm{in}$. contactspacing versions. From $\$ 0.04$ to $\$ 0.20$ per line. Delivery, four to six weeks ARO. AMP Inc, Box 3608, Harrisburg, PA 17105. Phone (800) 522-6752.

Circle No. 422

Memory-card connectors. IC5 Series 88-pin dynamic-RAM card connectors conform to PCMCIA, JEIDA, and JEDEC standards. The card-side receptacle has 1-mm-pitch surface-mount contacts in two staggered rows. The mating pin header has through-hole terminations. Connector life equals 10,000 cycles. Receptacle and header, $\$ 4.59$ and $\$ 3.93$, respectively (100). Hirose Electric USA Inc, 2685-C Park Center Dr, Simi Valley, CA 93065. Phone (805) 522-7958. FAX (805) 522-3217.

Circle No. 423

Potentiometers. G3 Series surfacemount single-turn pots have a 100Ω to $1 \mathrm{M} \Omega$ resistance range. Tolerance equals 20%. The potentiometers are available in two styles; the A version has J-hook leads, and the B version has gull-wing terminations. Power rating

Our newest line of defense against heat.

Insist on Interpoint.

A full line of high-temperature DC-DC converters from the industry leader.

Get the hottest technology in board-mounted power supplies. Full military temperature range. Unsurpassed reliability. The lowest profiles. You can get it all with Interpoint's new line of DC-DC converters.

From arctic blasts to desert storms, Interpoint's new generation DC-DC converters stand up to the toughest military environments. They deliver full power over the entire -55° to $+125^{\circ} \mathrm{C}$. temperature range. And over an unprecedented power range, too. Interpoint can now offer you an off-the-shelf hybrid power supply for any power level from 2 to 200 watts.

For more than a decade, Interpoint DC-DC converters have proven their reliability in many of the world's most
advanced weapons systems - including mission-critical electronics on the Patriot and Tomahawk missiles, the Bradley Fighting Vehicle and F/A-18 aircraft. Our new generation converters are the most reliable yet. Each of them was designed with the specific intent of being qualified to the full performance and reliability standards of MIL-STD-883C.

And Interpoint continues to lead the way in power supply miniaturization. With power densities as high as 40 watts per cubic inch and package heights as low as .270 inch, this new generation of converters is built for the tightly packed boards in today's military and commercial avionics, ground

It's the hottest new technology in DC-DC converters. And it's available only from Interpoint. For more information, call 1-800-822-8782. In Europe, 44-276-26832.

Components \& Power Supplies

equals 125 mW at $70^{\circ} \mathrm{C}$, and operating range measures -55 to $+125^{\circ} \mathrm{C}$. $\$ 1.50$ (1000). Tocos America, 565 W Golf Rd, Arlington Heights, IL 60005. Phone (708) 364-7277.

Circle No. 424

Power transistors. CZT surfacemount power transistors are available in SO-223 packages. CZT5338 units are 5 A 100 V devices. The line also includes the CZTA44 unit with a 400 collector-toemitter rating, and the CZT2000 200 V Darlington transistor. All units have a 2 W rating. $\$ 0.36$ to $\$ 0.56$ (1000). Central Semiconductor Corp, 145 Adams Ave, Hauppauge, NY 11788. Phone (516) 435-1110. FAX (516) 435-1824.

Circle No. 425

Pin isolators. The Plecse-52-H is a plastic-leaded-chip-carrier pin isolator for electronic-hardware debugging. The isolators accept a device under development and plug into a socket on the target board. Switches on the pin isolator can isolate any one pin on the IC in the socket. Each switch has test pins on both sides, allowing monitoring of chip and board signals. \$223. EDI Corp, Box 366, Patterson, CA 95363. Phone (209) 892-3270. FAX (209) 892-3610.

Circle No. 426

Filters. CF-40000-1200-4-R bandpass filters operate at frequencies ranging to 40 GHz . Bandwidths of 3 to 25% of center frequency are available. Insertion loss equals 0.5 dB and VSWR measures 2:1 max. Filter impedance equals 50Ω. From $\$ 375$. RLC Electronics Inc, 83 Radio Circle, Mount Kisko, NY 10549. Phone (914) 241-1334. FAX (914) 241-1334.

Circle No. 427

Sockets. SMM Series 2-mm sockets suit vapor-phase and infrared soldering processes. The sockets measure 0.14 in . high and feature heat-treated beryllium copper, 4 -finger contacts, and slotted tails. Optional retention clips and removable pick-and-place pads are available to improve automated assembly operations. From \$0.05/pin. Samtec Inc, Box 1147, New Albany, IN 47151. Phone (800) 726-8329; (812) 944-6733. FAX (812) 948-5047.

Circle No. 428

Pushbutton switches. PB1-3 and WP13 Series spdt switches feature contact ratings ranging from dry circuit to 6 A at 125 V ac. The unsealed PB units
are available with various bushing and lighted or unlighted bezels. WP switches are totally sealed. PB units, from $\$ 2.56$; WP units, from $\$ 2.73$ (1000). MORS/ASC, Box 544, Wakefield, MA 01880. Phone (617) 246-1007. FAX (617) 245-4531.

Circle No. 429

Coaxial adapter. The PE9136 is a female BNC-to-SMB jack adapter. It features a de to $4-\mathrm{GHz}$ range and operates from
-65 to $+165^{\circ} \mathrm{C}$. The unit has a brass nickel-plated body, a gold-plated contact, and teflon insulation. $\$ 25.95$. Pasternack Enterprises, Box 16759, Irvine, CA 92713. Phone (714) 261-1920. Circle No. 430

Transformers. IF Series pc-board transformers meet UL, CSA, IEC, and VDE standards. The transformers are available in 2 - to $30-\mathrm{VA}$ sizes. The units feature dual primaries and a secondary,

Are your designs limited by prehistoric technologies?

 $\square^{\text {deday's engineers }}$ future. They need tech
 nology which allows rapid prototyping and reduces development costs.

At Advanced Microelectronics,
we can help you out of the Stone Age and into the future by reducing manufacturing costs, providing unlimited flexibility, and rapid results.

Our FPGA design methodology allows you to migrate your architecture to gate array, standard cell, or full custom implementations. In addition to FPGAs, we also offer custom mixed signal solutions using bipolar, CMOS, and BiCMOS process technologies. From IC design, to modeling, to testing, to finished goods, we have a proven track record.

We give you the future now.
Call today for more information: (601) 932-7620, Fax 932-7621. email: design@aue.com

Advanced Microelectronics
which is wound alongside the primary rather than above the primary. A 4000 V hi-pot is standard. $\$ 7.63$ to $\$ 13.99$ (100). Signal Transformer Co Inc, 500 Bayview Ave, Inwood, NY 11696. Phone (516) 239-5777. FAX (516) 2397208.

Circle No. 431

Panel meter. Series DPM-500 digital panel meters feature a $3-1 / 2$-digit LCD. Features include low-battery warning,

Pick a Style, Any Style... There's an IC Self-healing Metallized Polyester Film Capacitor for Every Application.

Illinois Capacitor's MSR/MWR/MSS/MWF metallized film capacitors have what it takes to handle the most demanding applications. Their construction utilizes the latest in metallized Mylarepolyester film dielectrics for compact size and high performance. The self-healing metallized-film design prevents shorting due to high-voltage arc-over. Their construction makes them ideal for transient suppression and EMI reduction as well as for coupling and bypass applications.

- Wide variety of cose styles and sizes.
- Non-inductive, self-healing.
- 0.001 mfd to $22 \mathrm{mfd}: 63 \mathrm{wvdc}$ to 1000 wvdc.
- Capacitance tolerance $\pm 10 \%$ (k) standard; $\pm 5 \%(\mathrm{j})$ oprional.
- Wide operating temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
- Excellent for telecommunications and audio applications.
MSR/MWR/MSS and MWF capacitors are in stock for immediate delivery. For complete details, contact your local IC distributor or IC.

Ask for our FREE Copacitor Engineering Guide.

3757 West Touhy Avenue Lincolnwood, IL. 60645 708 675-1760
FAX:708 673-2850
auto zero, auto polarity, and $200-\mathrm{mV}$ FS display. The meter has a $0.1 \% \pm 1$ count accuracy and can be mounted in a DIP socket. \$46.25. Martel Electronics, Box 897, Windham, NH 03087. Phone (603) 893-0886. FAX (603) 8986820.

Circle No. 432

Heat sinks. These clip-on heat sinks are designed for the Intel 80486 and the Motorola $68040 \mu \mathrm{Ps}$. The six standard models come with optional attachment clips and are available in straight-fin and pin-fin designs. Standard heights are $0.25,0.35$, and 0.60 in . Model 330011 B 00000 for the Intel $\mu \mathrm{P}$ has straight fins and provides $4.2^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance. $\$ 1.057$ (1000). Aavid Engineering Inc, Box 400, Laconia, NH 03247. Phone (603) 528-3400. FAX (603) 528-1478.

Circle No. 433

Servo amplifier. Model 303B has a 3kHz bandwidth and operates as a current or voltage source. The unit develops $\pm 6 \mathrm{~A}$ continuous ($\pm 12 \mathrm{~A} \mathrm{pk}$) at $\pm 90 \mathrm{~V}$, measures $6.5 \times 4 \times 1.1 \mathrm{in}$., runs at 95% efficiency, and switches at 22 kHz . $\$ 250$ (100). Copley Controls Corp, 410 University Ave, Westwood, MA 02090. Phone (617) 329-8200. FAX (617) 329-4055.

Circle No. 434

Toggle switches. These switches are available in spdt, spst, sp3t, dpdt, 3pdt, 4 pdt , and dp3t versions. The panelmount units feature coin-silver or goldplated contacts. Contacts are rated for 5 A resistive at 120 V ac or 28 V dc. Switch life equals 50,000 cycles, and operating range spans -30 to $+85^{\circ} \mathrm{C}$. $\$ 0.68$ to $\$ 4$ (1000). CUI/Stack Inc, 9640 SW Sunshine Ct G-700, Beaverton, OR 97005. Phone (503) 643-4899. FAX (503) 643-6129.

Circle No. 435

Enclosures. VP series 3-slot VME enclosures feature a monolithic backplane and a card cage assembly. The $6 \mathrm{U} \times 160$ mm cage provides direct access to VME-card front panels. The fan-cooled enclosures are available with either 80 or 130 W power supplies, which provide outputs of ± 5 and $\pm 12 \mathrm{~V}$. $\$ 1095$. Hybricon Corp, 12 Willow Rd, Ayer, MA 01432. Phone (508) 772-5422. FAX (508) 772-2963.

Circle No. 436

Optical connector. EC fiber-optic connectors have a $60-\mathrm{dB}-\mathrm{min}$ return loss and a $0.25-\mathrm{dB}$-typ insertion loss. The

LATTICE
 GAL22V10-7

Our GAL22V10-7 is Super Fast.

At 7.5ns, Lattice provides the world's fastest field-programmable 22V10. Based on our high-performance $\mathrm{E}^{2} \mathrm{CMOS}{ }^{\circledR}$ technology, the GAL22V10-7 combines $111 \mathrm{MHz} \mathrm{F}_{\text {max }}$ with extremely low power consumption. It even supports industry standard loads and pinouts. What's more, it's 100\% tested to guarantee perfect programming yields, less board rework and
fewer system failures.

For free samples and a GAL ${ }^{\circledR}$ Data Book, call 1-800-FASTGAL and ask for information packet 107.

Lattice

Leader in E^{2} CMOS PLDs."

Use our low power, low voltage memory and buy more time.

If you design battery operated systems such as laptop and notebook computers, Micron's low power, low voltage memory components can buy you more time.

Micron's extensive line of leading edge, low power, low voltage DRAMs and SRAMs are designed to give you optimum 3.3 volt operation in battery powered systems,
extending battery life and system operating time. Since the parts run cooler, they also increase system reliability. And we offer the latest packaging technologies such as TSOP and PQFP.

So call Micron today at 208-368-3900. And find out how to buy more time.

Micron. Technology that works for you.

EDN-NEW PRODUCTS

Components \& Power Supplies
units are easy to install and require no convex polishing. The connectors have $\mathrm{a} \pm 0.1-\mathrm{dB}$ repeatability after 500 mating/unmating cycles and operate over a -40 to $+85^{\circ} \mathrm{C}$ range. $\$ 40.30 /$ mated pair (500). Radiall Inc, 150 Long Beach Blvd, Stratford, CT 06497. Phone (203) 386-1030. FAX (203) 375-3808.

Circle No. 437

Combination meter. The P7000 features a 6-digit resolution and can be configured as a controller or a real-time clock. Standard features include configuration via the front panel or via the optional RS-232C or RS-485 communications boards. NEMA-4 front-panel and five configurable open-collector outputs for alarm or setpoints are also standard. $\$ 345$. Newport Electronics Inc, 2229 S Yale St, Santa Ana, CA 92704. Phone (800) 639-7678; (714) 540-4914, ext 301. FAX (714) 546-3022.

Circle No. 438

Resistor networks. PRN110 networks are housed in a 25 -mil-pitch smalloutline package. The devices are available in isolated and bused terminations and $16-$, 20 -, and 24 -pin narrow-bodypackage configurations. Resistance values range from 10Ω to $1 \mathrm{M} \Omega$, and tolerance equals $\pm 0.1 \%$. Temperature coefficient measures $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. $\$ 0.95$ $(10,000)$. Delivery, six weeks ARO. California Micro Devices Corp, 215 Topaz St, Milpitas, CA 95035. Phone (408) 263-3214. FAX (408) 263-7846.

Circle No. 439

Telephone interconnect transformers. The surface-mount SPT-042 telephone interconnect transformers have a $600: 600 \Omega$ impedance ratio and are designed for dry circuit applications. The transformers meet FCC and DOC specifications and have a $1500 \mathrm{~V}-\mathrm{rms}$ hi-pot rating. The units have gull-wing leads and are compatible with pick-and-place equipment. $\$ 4.18$ (5000). Delivery, stock to six weeks ARO. PREM Magnetics Inc, 3521 N Chapel Hill Rd, McHenry, IL 60050. Phone (815) 3852700. FAX (815) 385-8578. Circle No. 440

Power inductors. The pc-boardmountable inductors for power-supply applications come in 16 ratings with inductance values of 15 to $460 \mu \mathrm{H}$. Current ratings range to 16 A . The inductors are available in two package sizes that feature molded standoffs to ease
board cleaning. From $\$ 3$ to $\$ 7.50$ (500). Microtran Co Inc, Box 236, Valley Stream, NY 11582. Phone (516) 5616050.

Circle No. 441

LCD backlight system. This system employs a light-pipe system and a reflector board, as well as dual-chip, sidelooking LEDs. Five standard sizes contain from 2 to 10 LEDs in green, yellow, amber, and red. Power requirements
approximate 5 V dc, and current draws are appropriate for the size of the units and number of LEDs used. From $\$ 2$ to \$15. Lumex Opto/Components Inc, 292 E Hellen Rd, Palatine, IL 60067. Phone (708) 359-2790. FAX (708) 3598904.

Circle No. 442

Test socket. The CA-QFE160S-Z-P tests $160-\mathrm{pin}$ ICs housed in quad flatpacks (QFPs). The device comprises

Unlike most competitive surface mount connectors which are merely adaptations of through hole mount designs, our unique, patented MMS series connectors have been designed - from scratch - specifically for surface mount applications. They offer the features and true performance you've been looking for -

- Wide DC to 8 GHz frequency range
- Extremely low VSWR - typically 1.07 at 2 GHz
- Low insertion loss - typically 0.09 dB at 2 GHz
- Compact design - only 5.2 mm mated height
- Extended mounting legs to facilitate visual inspection of soldering integrity
- Tape and reel packaging for pick and place automated assembly
- Standard cables (1 mm, 2 mm, 0.085 conformable) on mating right-angle plug assemblies
- Full range of accessories - between series adapters and tools
- Cost effective
- Immediate availability

RADIALL

North American Headquarters Radiall, Inc., 150 Long Beach Blvd., Stratford, CT 06497 = Tel: (203) 386-1030 / Fax: (203) 375-3808 European Headquarters Radiall, SA, 101 Rue Philibert Hoffmann, 93116 ROSNY-sous - BOIS Cedex, France in Tel: (33) (1) 49353535 Fax: (33) (1) 48546363

Can't find a way to interconnect your boards?

two pieces-the QFP emulator foot and the socket-test probe assembly. The emulator foot has the same footprint as the QFP device. $\$ 500$. Ironwood Electronics Inc, Box 21151, St Paul, MN 55121. Phone (612) 431-7025. FAX (612) 432-8616.

Circle No. 443

Pin adapters. These pin adapters are designed for testing 25 -mil pitch sur-face-mount devices. The units will host emulators or pin-grid-array (PGA) devices on top of a socketed platform. The socket is mated to spring-loaded test probes and configured into 25 -mil leadspacing patterns. The units are available in generic PGA layouts or can be ordered for specific devices. From $\$ 807$ (10). ITT Pomona Electronics, Box 2767, Pomona, CA 91769. Phone (714) 469-2900. FAX (714) 629-3317.

Circle No. 444

Power supplies. SLR series supplies output 4000 W . The power supplies offer as many as eight outputs and feature power-factor correction. The supplies feature $n+1$ redundancy and are available in militarized versions. From $\$ 925$ (100). Applied Power Conversion, 100 School St, Bergenfield, NJ 07621. Phone (201) 385-0500. FAX (201) 3850702.

Circle No. 445

Double-balanced mixer. The SYM860 double-balanced mixer operates over an $800-$ to $1050-\mathrm{MHz}$ range. The surface-mount device has a $7-\mathrm{dBm}$ LO drive and a $5.6-\mathrm{dB}$ conversion loss. LO-to-RF and LO-to-IF isolation equals 39 and 37 dB , respectively. The mixer has a 2-tone, third-order IM intercept of 17 dBm. \$8.95. Mini-Circuits, Box 350166, Brooklyn, NY 11235. Phone (718) 9344500. FAX (718) 332-4661. TLX 6852844.

Circle No. 446

Power supplies. TPG units have a 94 to 264 V ac universal input and outputs of 5 and $\pm 12 \mathrm{~V}$. Output currents range from 0.2 to 6 A . Efficiency equals 65%, and all models are short-circuit and overvoltage protected. \$40. Total Power International Inc, 418 Bridge St, Lowell, MA 01850. Phone (508) 4537272. FAX (508) 453-7395. Circle No. 447

Reed relays. Series 8200 relays are housed in single in-line packages and come in four standard models with a 5
or 12 V coil voltage and 10 or 50 W switching options. The relays feature a 2000 V dielectric isolation. The units are potted in a thermoplastic polyester shell with hermetically sealed contacts. Mercury wetted contacts are available. From $\$ 0.70$ to $\$ 1.49$ (OEM qty). Coto Wabash, 55 Dupont Dr, Providence, RI 02907. Phone (401) 943-2686. FAX (401) 942-0920.

Circle No. 448

Memory-card connectors. Series ICM-C connectors are designed for $0.050-\mathrm{in}$. pitch, 60 -position memory cards. The receptacle contacts have independent twin-beam construction and have a 10,000 -cycle life. The contacts are rated for 0.5 A . The connectors are available for surface-mount and through-hole mounting. $\$ 0.05 /$ mated position (OEM qty). JST Corp, 1200 Business Center Dr, Suite 400, Mount Prospect, IL 60056. Phone (800) 947-1119; (708) 803-3300. FAX (708) 803-4918.

Circle No. 449

External supplies. PSA Series external supplies develop single outputs of 9.5 to 24 V at 3 to 1.25 A current levels. The supplies have a universal 90 to 264 V ac input and a total line and load regulation of $\pm 2 \%$ max. The supplies have safety approvals from UL, CSA, and TUV. \$47. Phihong USA, 920 Hillview Ct, Suite 195, Milpitas, CA 95035. Phone (408) 263-2200. FAX (408) 263-2213.

Circle No. 450

Temperature transmitters. The 87500 Series scalable transmitters mount on a standard DIN rail and come with built-in alarm relay. Features include $\pm 0.05 \%$ accuracy, $\pm 0.1 \%$ linearization, zero and span adjustments, and automatic upscale indication. \$245. S-Products Inc, 35 Kings Hwy E, Fairfield, CT 06430. Phone (203) 331-9546. FAX (203) 335-2723.

Circle No. 451

New Albany, Indiana USA • Cumbernauld, Scotland UK • Singapore

SAMTEC, INC. P.O. Box 1147 • New Albany, IN 47151-1147 USA • Phone 812-944-6733 • Fax 812-948-5047 • TWX 810-540-4095 • Telex 333-918

No One Offers More 1 Meg SRAMs. Period.

More variety. More speeds. More packages.
SRAMs built to run at extended operating temperatures, yet take only $12 \mu \mathrm{~A}$.

Plus fast cache and quick delivery so you can get better products to market sooner.

Sony knows low power, small spaces, high volume, quality, and reliability like no other company.

Call 1-800-288-SONY. Or FAX your current requirements to (714) 229-4333 in U.S.A., (416) 499-8290 in Canada.

Model	$\begin{aligned} & \text { Speed } \\ & \text { (ns) } \end{aligned}$	Package	Standby Current (1 A)	Speciol Features
CXK581000P	100/120	DIP 600 mil	12/50	-25 $-+85^{\circ} \mathrm{C}$
CXK581000M	100/120	SOP 525 mil	12/50	$-25^{\circ}-+85^{\circ} \mathrm{C}$
				$-40^{\circ}+885^{\circ} \mathrm{C}$
CXK581100TM	100/120	TSOP	12/50	
CXK581100YM	100/120	TSOP (rev.)	12/50	
CXK581001P	70/85	DIP 600 mil	12/50	
CXK581001M	70/85	SOP 525 mil	12/50	
CXK581020SP	35/45/55	DIP 400 mil		
CXK581020J	35/45/55	S01 400 mil		
OXK581021]	47	501400 mil		
CXK581120」	15/17/20	501400 mil		
CXK77910]	20	S0J 400 mil		Sync., 128K $\times 9$

Note: All packages $5 \mathrm{~V}, 32$ pin, $128 \mathrm{~K} \times 8$, unless otherwise noted.

We make the chips. You make the history.
 AD \& D/A CONVERSION POWER HYBRIDS

SWITCH INTELLIGENTLY WITH SSPCs

witch power intelligently with Solid-State Power Controllers (SSPCs). They permit faster and more reliable computer control of your power distribution than elec-tro-mechanical circuit breakers or solid-state relays. They support land, sea, air, hazardous industrial, and space applications. This is because SSPCs provide real-time status outputs and permit external logic input control. DDC's SSP-21110, 28 Vdc (9 to $40 \mathrm{Vdc}) 1$ through 25 Amperes, and SSP-21116, 270 Vdc (60 to 300 Vdc) 1 through 15 Ampere series SSPCs, and the SSP-21120, 80 Ampere module, can be remotely located near the load because of the digital I/O controls they support. The series offers fault ("instant trip") and true $\mathrm{I}^{2} \mathrm{~T}$ trip characteristics to protect wiring and loads.

Using power MOSFET switches, these power controllers offer low "ON" resistance, low voltage drop, high "OFF" impedance, and low power dissipation. Built with Power MOSFETs and custom monolithics and using thick-film hybrid technology, they offer small size, low power, and very high reliability.

The status lines are TTL/CMOS compatible in order to support microprocessor or logic integration of a consolidated electrical load management center (ELMC). Optional hysteresis using Schmitt trigger characteristics is offered on both TTL or CMOS input control for better noise immunity.

Built-In-Test has been provided to monitor, in real time, the status of the internal circuitry as well as the status of the external load. These SSPCs detect
a load that, under normal power out conditions, is under 5\% of its rated current.

Optional features available are $\mathrm{I}^{2} \mathrm{~T}$ trip curve K-factor adjustments, optional truth table, modified soft turn-"ON" and -"OFF" rise and fall times, various current ranges, power-"ON" reset mode, leakage clamp on the 270 Vdc unit can be deleted, and custom packaging is available.

The SSP-21110 \& SSP-21116 \& SSP-21120 series will operate over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Military screening and optional features and packaging are available upon request.

Please contact Steve Friedman at (516) 567-5600 extension 381 for further information concerning the SSPC products.

INTRODUCING MICRO-CAP IV.' MORE SPICE. MORE SPEED. MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12-year tradition of setting CAE price/ performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation, simulation and edit-simulate cycles - on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface - windows, pull-down menus, mouse support, on-line HELP and documentation - that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example,
from SPICE 2G. 6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $\$ 2495$, MICRO-CAP outperforms comparable PC-based analog simulators - even those $\$ 5000+$ packages - with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed - on larger circuits.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702

EDN-NEW PRODUCTS

CAE \& Software Development Tools

PC-board design for the Mac. The CAD/CAM Professional System for the MAC consists of three programs: Designworks, Professional Layout, and Autorouter. Using this software on the Macintosh, you design boards as large as $32 \times 32 \mathrm{in}$. The software handles design from schematic entry through simulation, placement, and routing. Designworks, \$995; Professional Layout, $\$ 1500$; Autorouter, $\$ 700$. Douglas Electronics Inc, 2777 Alvarado St, San Leandro, CA 94577. Phone (510) 4838770. FAX (510) 483-6453. Circle No. 452

Data visualization for MS-Windows. Pointmaster runs under MSWindows and lets you visualize scientific and engineering data. The software presents a WYSIWYG interface for data display, analysis, manipulation, and printing. As many as 20 simultaneous data sets appear on one page. $\$ 189$. Smoothvision Software Inc, 15 Brandon Rd, Midland Park, NJ 07432. Phone (800) 832-0098; (201) 652-3839. FAX (201) 444-9127.

Circle No. 453

DSP design software. DSP Station provides top-down design from software specification through simulation, including DSP-oriented silicon synthesis. You can choose cost/performance ratios, development, and production times by selecting from among several physical implementations including commercial DSP chips, gate-array or FPGA, and ASIC standard cell and module generators. For HP Apollo workstations, $\$ 33,000$. Mentor Graphics, 8005 SW Boeckman Rd, Wilsonville, OR 97070. Phone (408) 436-1500.

Circle No. 454

Layout editor for MS-Windows. The Gred layout editor for MS-Windows reads and writes GDSII stream format to import and export to other physical design tools. You use menus to access all commands for layout editing and manipulating data. The software uses MSWindows to swap files and print features. It also provides 64 layers of each by name and number, sublayers, and text layers. \$995. Date Inc, 10870 N Stelling Rd, Cupertino, CA 95014. Phone (408) 996-7600. Circle No. 455

Call-processing board driver for OS/2 2.0. Engineers who are developing voice-processing systems using Dialogic hardware can use Dialogic OS/2 Driver to control hardware functions by programming in C. The driver's function libraries include commands to record and play back voice files, detect and dial DTMF tones, and perform telephony management functions. OS/2 2.0 is the 32 -bit, 386 -specific successor to IBM's 286 -specific OS/2 1.x products. Driver annual license fee, $\$ 1250$. Dialogic Inc, 300 Littleton Rd, Parsippany, NJ 07054. Phone (201) 334-8450.

Circle No. 456

Three compilers for OS/2 2.0. The NDP Fortran, NDP C and $\mathrm{C}++$, and NDP Pascal compilers take advantage of the Intel 386 architecture along with OS/2 to load and run 32 -bit applications on the 386SX, 386, and 486. They are supposed to port 32 -bit mainframe applications to the 386,486 , and i860. $\$ 595$ each. Microway, Box 79, Kingston, MA 02364. Phone (508) 746-7341. FAX (508) 746-4678.

Circle No. 457

Equation solver. TK Solver 2.0 lets users solve equations and create pres-entation-quality reports. Additions to the Presentation View tool display any number and combination of sheets of equations in WYSIWYG graphics. Users also edit, move, resize, and solve equations from Presentation view. Another addition is a macro tool for keystroke recording and playback. $\$ 595$. Universal Technical Systems Inc, 1220 Rock St, Rockford, IL 61101. Phone (708) 291-1616.

Circle No. 458

Remote computing for MS-Windows. Using a LAN, modem, or direct connection, Central Point Commute 2.0 provides access to MS-Windows, DOS programs, and files located on distant

PCs. Instead of transferring full information about every bit map and pixel on the host display, the software taps into the video device driver on the host PC. From there it captures and sends high-level MS-Windows graphics commands, reducing the amount of data and time required for screen updates. The program automatically uses high, extended, or expanded memory. The program drives super-VGA monitors and works with MS-Windows drivers to 600×800 pixels. $\$ 129$. Central Point Software Inc, 15220 NW Greenbrier Pkwy \#200, Beaverton, OR 97006. Phone (800) 445-4208; (503) 690-8090. FAX (503) 690-8083. TLX 757710.

Circle No. 459

Macintosh-system utility tools. Central Point Mactools 2.0 gives data protection to Macintosh users and system administrators. Data protection, including data recovery, antivirus, and backup, can be done on a continual or scheduled basis. Scheduled processes include disk analysis and repair and backup. System start-up or shutdown can trigger these processes, and you can also schedule them to occur at daily or weekly intervals. $\$ 149$. Central Point Software Inc, 15220 NW Greenbrier Pkwy \#200, Beaverton, OR 97006. Phone (503) 690-8090. FAX (503) 6908083. TLX $757710 . \quad$ Circle No. 460

C-size inkjet plotter. The HI Jetpro Series Model V100 plotter produces Csize drawings in less than 5 minutes so that you can review plots from your CAD system before committing them to vellum or another expensive medium. For comparison, a single CAD drawing can take about 20 minutes to 1 hour to plot on a pen plotter. The Jetpro plotter also prints fax messages and scanned raster images, reports, letters, and spreadsheets. $\$ 2995$. Summagraphics Corp, 60 Silvermine Rd, Seymour, CT 06483. Phone (203) 881-5400. FAX (203) 881-5400.

EDN-NEW PRODUCTS

CAE \& Software Development Tools

Development tools for Verilog HDL.

 Using Metatools for Verilog, you can develop and debug microcode, assembly code, or high-level-language software for processors and programmable devices being designed with Verilog. You can interactively debug the simulated hardware using symbolic referencing and disassembly, setting breakpoints and monitors, and examining source code and register contents as the Verilog simulation executes. Metatools provides a retargetable meta assembler optimized for vertical and horizontal microcode, a retargetable linker/loader, a utility for converting compiler-relocatable output to Metatools format, mem-ory-management utilities, and tracedebug utilities. $\$ 10,000$. TD Technologies Inc, 12608 Cedar Rd, Cleveland Heights, OH 44106. Phone (216) 3719777. FAX (216) 371-9776. Circle No. 462

PLD software for Sun. You can use PLS-WS/SN software to develop progammable-logic software on a networked, client-server workstation. The software works with all of the company's EPLD (erasable-programmable-logic-device) families and can automatically partition large designs into components without requiring manual intervention. It runs on Sun SPARCstations and can operate across LANs to give project-wide access to any user equipped with an X-Terminal or desktop computer running the X11 protocol. The software also utilizes a Motif interface. Single floating license, $\$ 13,995$. Altera Corp, 2610 Orchard Pkwy, San Jose, CA 95134. Phone (408) 984-2800. FAX (408) 435-1394.

Circle No. 463

2-D electromagnetic field solver. The RLGC Parameter Generator uses the Spectral Domain Method to simulate transmission lines for high-frequency designs. Because the method eliminates the need to calculate the polarization charge at the dielectric interfaces, it allows the software to compute
mode velocities accurately and reduce the matrix sizes and number of unknowns to be evaluated. Other features include correct modeling of the edge condition, handling of any number of dielectric layers and arbitrary conductor cross sections. PC version, $\$ 4500$; HP or Sun version, $\$ 8400$. Contec Microelectronics USA Inc, 2188 Bering Dr, San Jose, CA 95131. Phone (408) 434-6767. FAX (408) 434-6884.

Circle No. 464

Open-parts-list system. The Capsure Preferred Parts List cross-reference option for the Computer-Aided Product Selection (CAPS) system allows users to link an arbitrary number of parameter/value pairs to part numbers. Using this feature, an engineer combines internal and proprietary data with commercial data. The user then extracts all data to a file to meet upstream and downstream requirements for design and manufacturing. Updated monthly,

You can start your debugging with this FREE demo simulator. You can load up to 512 bytes of code, assembler, C, or PL/M and do full debugging/simulation in assembly and source level. A great way to get started for FREE. Fantastic for schools! Just call and we'll send it!

Full Simulator

The full-blown simulator is an extension of the DEMO. You can load up to 64 K of code and use 64 K of XDATA space. You can program an "external environment" to interact with your code to simulate your target system. The emulator is the hardware extension of the simulator!

The 30 MHz real-time emulator has been the industry standard for years. With its complex breakpoint logic and advanced trace, nobody can beat it for performance. Plug-in or RS-232 configuration. All 8051 derivatives are supported!

nOHaU

CORPORATION
Call Nohau's 24-hou information center to receive info on your FAX 408-378-2912

51 E. Campbell Avenue, Campbell, CA 95008 (408) 866-1820 • FAX (408) 378-7869

Australia (02) 654 1873, Austria (0222) 3876 38, Benelux +31 1858-16133, Canada (514) 689-5889, Czechoslovakia 0202-2683, Denmark (42) 6581 11, Finland 90-452 1255, France (01)-69 4128 01, Germany 08131-25083, 'Great Britain $0962-7331$ 40, Greece 01-862-9901, Hungary (1) 117 6576, Israel (03) 4848 32. Italy (011) 77100 10, Korea (02) 784784 1, New Zealand (09) 392-464, Portugal 01-80 9518, Norway 02-649050, Singapore (065) 284-6077. Spain (93) 217 2340, Sweden 040-9224 25, Switzerland (01) 7404105 , Taiwan (02) 7640215, Thailand (02) 281-9596, Yugoslavia 061621066.

EDN-NEW PRODUCTS

CAE \& Software Development Tools
the system gives engineers querydriven access via CD-ROM media to more than 700,000 parts and hundreds of thousands of manufacturers' datasheets, technical specifications, and application data. Base CAPS system in stand-alone PC version, \$9000; Capsure option, $\$ 2000$. Cahners Technical Information Service Div, 275 Washington St, Newton, MA 02158. Phone (617) 558-4960. FAX (617) 630-2168.

Circle No. 465

Library of radar models. The Radar Library option to the Signal Processing Worksystem simplifies developing signal flow diagrams for radar-processing systems. The signal flow diagrams describe FFTs, filters, modulators, channels, and other functions that eliminate the need for handwritten DSP programs. The library includes six group models: target and clutter, pulse-compression waveforms, Doppler processing blocks, automatic detectors, com-

PORTABLE desktop
Built - in $9-1 / 2^{\prime \prime} 1024 \times 768$ SVGA Color CRT Display

MICROPROCESSOR	PORTABLE desktop	PORTABLE workstation
i 486 DX-50	$\$ 3,475.00$	$\$ 3,375.00$
$i \mathbf{4 8 6}$ DX-33	$\$ 2,885.00$	$\$ 2,785.00$
$i 386$ DX-33	$\$ 2,485.00$	$\$ 2,385.00$
i 386 DX-25	$\$ 2,385.00$	$\$ 2,285.00$

11606 E. Washington Blvd. Suite A Whittier, California 90606
Tel: (310) 692-5345 Fax: (310) 695-9623 Tech Support: (310) 695-5166
ponents and subsystems, and radarrange, equation-scale factors. $\$ 3000$. Comdisco Systems Inc, 919 E Hillsdale Blvd, Foster City, CA 94404. Phone (415) 574-5800. FAX (415) 358-3601.

Circle No. 466

Behavioral entry for Xilinx FPGAs.

Xilinx-Abel, a Xilinx-specific version of Data I/O's Abel Design Software, is available for the Xilinx XC2000, XC3000, and XC4000 families. Designers can describe circuits by Boolean equations, state machines, and truth tables, or as functional blocks on schematic diagrams that reference logic described in the Abel Hardware Description Language. The software compiles and merges the various forms of design description to form a single output. The software also provides automatic "onehot" encoding-also called "state per bit"-that produces fast designs in the flip-flop-rich Xilinx FPGA and offers a simple method of generating perform-ance-optimized state machines. For DOS, \$1495. Xilinx Inc, 2100 Logic Dr, San Jose, CA 95124 . Phone (408) 5597778. FAX (408) 559-7114. Circle No. 467

Real-time software tools for RS/

6000. RTworks is a tool kit for developing applications for acquiring, analyzing, distributing, and displaying realtime data. Applications include realtime inferencing, dynamic graphical user interfaces, and client/server data distribution. Floating license, $\$ 35,000$. Talarian Corp, 1043 N Shoreline Blvd, Suite 201, Mountain View, CA 94043. Phone (415) 965-8050. FAX (415) 9659077.

Circle No. 468

GUI development tool. The GIB Graphical Interface Builder generates both windowed interfaces resembling those of MS-Windows, as well as more general interfaces, such as instrumentcontrol panels and process-control displays. Application code developed with the software runs on systems with as little as 512 kbytes of memory. DOS version, \$475. Tao Research Corp, 39812 Mission Blvd, Suite 205, Fremont, CA 94539. Phone (510) 770-1659. FAX (510) 770-1659. Circle No. 469

Fractal compression software. P.oem Fractal Compress for MSWindows accepts color images to $640 \times 400 \times 24$ bits $/$ pixel and uses the fractal transform to compress them in

Choosing reliable, long-lasting oscilloscope probes is no longer a problem. Select from 10 modular kits with interchangeable tips and interface connections: from Standard 100 MHz to the Professional $200-300 \mathrm{MHz}$ series, including an RF Detector probe kit.

Performance? You bet. X1, X10 and switchable attenuations with 1-16ns rise times and $6-60 \mathrm{pF}$ input impedances to match up with your most demanding uses. And, readily replace-- mid able parts will assure long int service life.

Italy: (2) 8358351, U.K.: (081) 9989061
$+\infty$ France: (1) 43027606, Germany: (089) 3887210

We're Making Technology Easier To Live With.

Call. FAX or write today for your free copy of Pomona's 140-page 1992 Electronic Test Accessories Catalog.

EDN-NEW PRODUCTS

CAE \& Software Development Tools

software to a default image size. Depending on the compression mode selected and the size of the input image, compression can take from 20 sec to 6 minutes. The compressed image resides in a FIF (Fractal Image Format) file. Using the Fractal Formatter, the image can be viewed or converted to another image format. P.oem Fractal Compress, \$198. P.oem Fractal Formatter, \$99. Iterated Systems Inc, 5550A Peachtree Pkwy, Suite 545, Norcross, GA 30092. Phone (404) 840-0728. FAX (404) 8400029.

Circle No. 732

SCSI multitasking for MS-Windows.

Future/CAM for Windows software has a 32-bit SCSI multitasking interface between MS-Windows 3.1 and Future Domain host adapters. It provides a virtual device driver that communicates directly with Future Domain SCSI host adapters, bypassing DOS and the PC BIOS for disk calls. The software simplifies interfacing multiple SCSI devices to MS-Windows under ISA, EISA, and Micro Channel Architecture buses. $\$ 200$. Future Domain Corp, 2801 McGaw Ave, Irvine, CA 92714. Phone (714) 253-0400. FAX (714) 2530913.

Circle No. 733

Voice processing for MS-Windows.

Remark! for MS-Windows is a serverbased product that allows networked PC users to record, play, and manage voice information as part of any Windows application that supports DDE or OLE. Users can voice-annotate wordprocessing documents and spreadsheets with verbal comments, voice-script presentation graphics, and capture conversations, such as conference calls. The product requires no additional hardware for user PCs, and it uses a desk telephone for sound recording and playback. Configuration for 100 users, \$10,500. Simpact Associates Inc, 9210 Sky Park Ct, San Diego, CA 92123. Phone (619) 565-1865.

Circle No. 734

DOS graphing software. Sigmaplot 5.0 provides $3-\mathrm{D}$ plotting for scientific data. You can create mesh and scatter plots using commands similar to those used in creating 2-D graphs. Further 3-D features include hidden-line removal, filled or unfilled polygons, frame lines, and backplanes with color and grids. \$495. Jandel Scientific, 2591 Kerner Blvd, San Rafael, CA 94901. Phone (415) 453-6700. FAX (415) 4537769.

Circle No. 735

3M Reveals

New Long Term EMI/RFI Shielding Tape

Tin-alloy coating on both sides of copper foil offers superior solderability, environmental stability.

AUSTIN, Tex. - This new UL Recognized Scotch ${ }^{\mathrm{TM}}$ Foil Shielding Tape 1183 employs a tin-alloy coating on smooth copper foil to produce a durable and effective electromagnetic shield.

The tin-alloy coating is on both sides of the copper for thorough protection.

The tape is a tinalloy coated version of the widely used 3M 1181 Tape and provides shielding when wrapped around flat and round cable, and cable connectors.

The unique elec-trically-conductive adhesive enables 1183 tape to make electrical connections across seams and between mating sections, of electronic enclo-
sures ranging from small equipment housings to large shielded rooms. The tape can also shield the energy radiating from seams between the sectors of dish antennas.

The special tin-alloy coating on both sides of the foil provides two significant benefits.

1. Thorough environmental stability and corrosion resistance.
2. Exceptional solderability for applications such as sealing the seams when the tape is used as a shield around cable connectors.
3M 1183 Tape also serves as a corrosion resistant contact surface for conductive gasketing, beryllium copper "spring fingers" or other resilient conducting media used around doors and openings of electronic cabinetry.

For more information about all 3M Foil Tapes, contact a 3M Electrical Specialties Division representative or authorized distributor or call 1-800-233-3636.

[^14]
Prevent Parallel Port Power-Up Pyrotechnics With

SUPER I/O

SMC's® FDC37C651 Floppy Disk Controller

STANDARD MICROSYSTEMS CORPORATION
 COMPONENT

80 ARKAY DRIVE • HAUPPAUGE, NY 11788 USA TEL: (516) 435-6000 • FAX: (516) 273-3123

FEATURES:

- ChiProtect ${ }^{\text {™ }}$ Parallel Port Protection
- 4 Floppy Drive Direct Support
- True CMOS 765B Floppy Disk Controller Core
- Advanced Digital Data Separator - Multiple Powerdown Modes - Bidirectional Parallel Port ■ Two 16450

Compatible UARTs
IDE Interface
- Data Overflow/ Underrun Detection

The new FDC37C651 and FDC37C652 Super I/O Floppy Disk Controllers from Standard Microsystems Corporation prove once again why SMC is the leading supplier of floppy disk controllers. Both the FDC37C651 and the FDC37C652 feature SMC's ChiProtect circuitry, which protects your PC from printer power-up damage.

Created using SMC's vast portfolio of standard SuperCells ${ }^{\mathrm{TM}}$ for true IBM ${ }^{\circledR}$ compatibility and increased reliability, the FDC37C651 offers software-configurable set-up support for motherboard applications, while the FDC37C652 includes on-chip game port select logic and is the optimal choice for controller card applications.

At SMC, servicing our customers is our number one priority with a full array of support and development tools to augment our world-wide product applications support team.

If you are looking for a Super I/O solution, call us at 800-443-SEMI and ask for Department C651.

As easy as building blocks

New easy-to-assemble anechoic chambers from Tokin

The more you need anechoic chambers, the more you'll appreciate Tokin.
Why?
Because Tokin's new assembly method makes building them as easy as child's play.
Look.
With Tokin, panels $(120 \mathrm{~cm} \times 120 \mathrm{~cm})$ come with ferrite tiles already attached. You don't have to waste time-or money-attaching 10 cm tiles, piece by piece, yourself. Then, Tokin's panels are lightweight, and put together with a hanging bar-simplicity itself.
But assembly ease is not their only strong point. Tokin's chambers are designed by computer simulation using the most reliable testing and advanced EMC technology. So whatever your needs are for diversified EMI counter measurement, Tokin skillfully meets them.
If you're in the business of measuring noise immunity and EMI, you'll find it worthwhile to look into these new Tokin chambers.
They're the basic building blocks of your new success.

Small-sized anechoic chamber for EMI and EMS
 Portable anechoic chamber

Tokin Corporation

Hazama Bldg. 5-8, Kita-Aoyama 2-chome, Minato-ku, Tokyo 107, Japan Phone: 03-3402-6166 Fax: 03-3497-9756

Korea Representative Office

\#602, Champs-Elysees Bldg., 889-5
Daechi-Dong, Kangnam-gu, Seoul, Kore
Phone: (2) 569-2582~5 Fax: (2) 544-7087
Tokin America Inc.
155 Nicholson Lane, San Jose, California 95134, U.S.A Phone: 408-432-8020 Fax: 408-434-0375
Chicago Branch
9935 Capitol Drive, Wheeling, Illinois 60090 , U.S.A.
Phone: 708-215-8802 Fax: 708-215-8804
Boston Branch
945 Concord Street, Framingham, Massachusetts 01701, U.S.A Phone: 508-875-0389 Fax: 508-875-1479

POWER OVER

When driving your system through a wide range of changing input voltages, take those curves with a Power Convertible.

You get high performance even under extreme temperatures. Nothing handles better in telecom and portable applications.

Cruise into distributing power with Power Convertibles' SMT construction, sleek profile and compact styling.

Burr-Brown quality and reliability fuel long lifetime mileage. The low cost will let you leave your power supply design worries in the dust.

DRIVE THE WIDE RANGE with POWER CONVERTIILIES'M

Our Lossy Transmission Lines Have the Edge!

Faster Simulation and Greater Accuracy

That's our lossy transmission line edge. We've extended PSpice's intrinsic T device to model lossy transmission lines using the distributed approach rather than the traditional lumped approach. What you get is a smoother approximation of the line's behavior in significantly less time. Here's why.

The Distributed Model Advantage

Our lossy line behavior is computed using impulse responses instead of the commonly used ladder structures associated with lumped models. Using this technique, lossy lines can be easily specified in terms of their electrical length and the resistance, inductance, capacitance, and conductance distributed along the entire length of the line.

Elimination of Spurious Oscillations

Modeling lossy lines as continuous lines eliminates the frequency artifacts observed in lines modeled as a finite set of lumped segments. With the lumped model, oscillations are produced at points where abrupt changes occur in the signal

Comparison of the ideal and lossy transmission line models
traveling along the line segments. Using the distributed model, these oscillations vanish.

Optimized Simulation Performance

For any given circuit, simulation time using the distributed model can be several times faster than the simulation time using the lumped model. With the lumped model approach, the number of segments required for accurate results can become large. Hence, the simulation time can become very long. The continuous lines produced by the distributed model avoid the performance overhead created by multiple line segments.

Get the PSpice Lossy Line Edge

That way, you can efficiently model the loss and dispersion in your non-ideal lossy transmission lines. Discover for yourself why PSpice continues to hold the industry edge in mixed analog and digital circuit simulation. For more information on PSpice and the Design Center, call MicroSim Corporation toll free at (800) 245-3022 or FAX at (714) 455-0554.

MicroSim Corporation

The Standard for Circuit Design
20 Fairbanks • Irvine, CA 92718
The: Makers of PSpice

Brochure on pulse generator and plug-in modules. This publication features the 9210 pulse generator and the 9211, 9212, and 9213 plug-in modules. It describes straightforward controls, variable edge rates to 300 psec , automatic load compensation, high precision and accuracy, and IEEE-488 programmability. LeCroy Corp, Signal Sources Div, 700 Chestnut Ridge Rd, Chestnut Ridge, NY 10977. Phone (914) 425-2000. TWX 710-577-2832.

Circle No. 351

DSP hardware and software. This 8 -pg brochure presents DSP plug-in boards and software for PC/AT and Macintosh computers. It describes hardware for the AT-DSP2000, a DSP accelerator for high-accuracy analog I/O channels. It also discusses hardware for three Macintosh Nubus computers: the NB-DSP2305, the NB-DSP2300, and the NB-DSP2301. National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. In US and Canada, phone (512) 794-0100. Circle No. 352

Pamphlet on IEEE-488.2 instrument control. This 8-pg brochure presents IBM PC/XT, PC/AT, EISA, and PS/2 interfaces; Macintosh interfaces; and workstation and industrial-bus inter-
faces. The publication also describes support products such as bus extenders and plug-in converters, and it provides two pages on software, including NI488.2 for Windows. National Instruments, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in US and Canada, (512) 794-0100.

Circle No. 353

Handbook for VXIbus instrumentation standard. The $92-\mathrm{pg}$ handbook, An In-depth Seminar on the VXIbus Instrumentation Standard, summarizes the development of VXI and covers topics such as VXI backplanes and protocols. The handbook also explains how test engineers can combine embedded or external VXI hardware and software to build smaller test systems. The section, VXI Specification, includes VXI module sizes, mainframe and extension requirements, programming requirements, and different types of VXI devices. Two other sections deal with VXI system configurations and VXI software. National Instruments Corp, 6504 Bridge Point Pkwy, Austin, TX 78730. Phone in US and Canada, (512) 794-0100.

Circle No. 354

Guide to nonprofit groups. The $\$ 7$ Electronic Networking for Nonprofit Groups, jointly published by Apple Computer and the Benton Foundation of Washington, DC, guides nonprofit groups in the use of computer-based telecommunications networks. It explains how to access local bulletin boards run by single agencies, regional and national networks that deal with a variety of subjects, and international affairs and activities. Apple Computer Inc, 20525 Mariani Ave, MS 38J, Cupertino, CA 95014. Phone (408) 974-2974; (202) 8577829, ext 21.

INQUIRE DIRECT

Ceramic Dielectric Trimmer Capacitors

Rugged 5 \& 7 mm types Operating temp: -55° to $+125^{\circ} \mathrm{C}$ Cap ranges: $1.3-2.0 \mathrm{pF}$ to $12-160 \mathrm{pF}$
Miniature types suitable for hybrids Operating temp: -25° to $+85^{\circ} \mathrm{C}$
3 series: $2.0 \times 1.2 \mathrm{~mm} ; 3.0 \times 1.5 \mathrm{~mm}$; $5.0 \times 2.0 \mathrm{~mm}$
Cap ranges: $2.5-10 \mathrm{pF}$ to $5.5-40 \mathrm{pF}$
Microwave types
Operating temp: -55° to $85^{\circ} \mathrm{C}$
Cap ranges: $0.5-2.0 \mathrm{pF}$; 1-4.0 pF; 2.0-10 pF Q > 500 at 100 MHz
Plastic encased $4 \times 4.5 \mathrm{~mm}$ and 5 mm types Designed for volume applications
Surface mount and printed-thru-hole models
Cap ranges: $1.7-3.0 \mathrm{pF}$ to $10-50 \mathrm{pF}$
Phone, fax or write today for
Engineering Bulletin SG-305B.

SPRAGUE G00Dman

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

CIRCLE NO. 134

Sprague-Goodman

c

Surfcoil ${ }^{\text {® }}$ SMT Inductors

- Inductance from 10 nH to 1 mH
- 8 model serie's in 3 sizes:
$2.5 \times 2.0 \times 1.6 \mathrm{~mm}\left(0.098^{\prime \prime} \times 0.079^{\prime \prime} \times 0.063^{\prime \prime}\right)$
$3.2 \times 2.5 \times 2.2 \mathrm{~mm}\left(0.126^{\prime \prime} \times 0.098^{\prime \prime} \times 0.087^{\prime \prime}\right)$
$4.5 \times 3.2 \times 3.2 \mathrm{~mm}$ ($\left.0.177^{\prime \prime} \times 0.126^{\prime \prime} \times 0.126^{\prime \prime}\right)$
- Shielded, unshielded, ferrite core and
nonmagnetic models
- Operating temp: -20° to $+85^{\circ} \mathrm{C}$
- Carrier and reel standard
- Fully encapsulated

Phone, fax or write today for Engineering Bulletin SG-800B.

SPRAGUE GOODMAE

134 Fulton Ave., Garden City Park, NY 11040 Phone: 516-746-1385 • Fax: 516-746-1396

VARITRONIX LIMITED VL ELECTRONICS, INC.

VE

SOPHISTICATED ONE-STOP CUSTOM SERVICES

LCD DISPLAYS AND CUSTOM MODULES
TOTAL TURNKEY ASSEMBLY PROJECTS
TOUCH SENSITIVE COMPUTER HANDHELD TERMINALS

VL ELECTRONICS, INC.	VARITRONIX LTD.	VARITRONIX (UK) LTD.	VARITRONIX (FRANCE) S.A.R.L.
3250 WILSHIRE BLVD., SUITE 1301,	4/F., LIVEN HOUSE,	KING'S STABLES	74 AVENUE CHARLES DE GAULLE,
LOS ANGELES,	61-63 KING YIP STREET,	3/4 OSBORNE MEWS	91420 MORANGIS,
CA 90010,	KWUN TONG, KOWLOON,	WINDSOR, BERKS, SL4 3DE	FRANCE.
U.S.A.	HONG KONG.	UNITED KINGDOM	
TEL: (1) (213) 738-8700	TEL: (852) 389-4317	TEL: (44) 753-833060	TEL: (33) 169097070
FAX: (1) (213) 738-5340	FAX: (852) 343-9555	FAX: (44) 753-833040	FAX: (33) 169090535

* NOW AVAILABLE FROM VARITRONIX, EXTENDED TEMPERATURE STN DISPLAYS AND MODULES*
--.-- GROUP COMPANIES OF VARITRONIX INTERNATIONAL LTD. -- .-.
WITH MANUFACTURING FACIUTIES IN HONG KONG, CHINA, AND MALAYSIA.

The Enduring Appeal of
 Consulting

Independent consulting has its drawbacks, but for some engineers it's the only way of life.

Jay Fraser, Associate Editor

"I never enjoyed working for a company," says Brian Bandhauer, who decided to become an independent engineering consultant almost two years ago. "It has to do with simple freedom, being able to choose my own hours and my own projects, what I want to do and when."
Bandhauer did what many engineers only think about doing. He left the corporate world behind and struck out on his own, pursuing that dream so dear to engineers everywhere: to be his own boss.
After he had worked at two small high-tech firms in Colorado, Bandhauer and his wife decided to move to the West Coast. They eventually settled in Corvallis, OR, because they liked the city, even though opportunities for engineers were scarce there. The situation gave Bandhauer the chance he'd always wanted-to go into business as a consultant. He has never regretted it. "I end up working a lot more, but I enjoy every second of it," he says. "I'm the happiest I've ever been."
For some engineers, becoming a consultant isn't completely voluntary. Ron Lang worked for firms
> "Consulting is a contact sport. You only make money when you're grappling with your clients." -Ron Lang
such as United Technologies, Becton-Dickinson, and Digital Equipment Corp before he joined a small, start-up array-processor company in Newton, MA. He became its chief financial officer because no one else wanted the job. "That was the turning point," says Lang. "I learned what accounting is all about, how to deal with bankers, and what a balance sheet is supposed to look like."

Four years later, the president of the company resigned. Lang notified the board of directors that he wanted to move up to that position. "I didn't get the job, and I was angry," he says. "It was held against me that I was an engineer, and I was very upset about that. I was on the technology side, not the marketing side, but I felt that I could run that company because of my experience. So I quit and hung out my shingle,

EDN-PROFESSIONAL ISSUES

and I can't tell you how happy I've been since."
Independence is the number one reason engineers give for becoming consultants. Ideally, consultants can choose their own assignments, decide how they will do the work, and make all the business arrangements themselves.
"I have the responsibility to close my own deals. I don't have to depend on people above me to close them," says Lang. "I pick the jobs I feel like quoting on, and I get to take 3 -day weekends whenever I please."
Consultants also enjoy being able to work on many different kinds of projects. In a large high-tech firm, engineers may become locked into a small area of specialization. It's not unusual for an engineer to spend months or even years working on a single project. "I get to see a wide variety of engineers and engineering practices," says Bandhauer. "I'm learning more from being a consultant than I did in any single place that I worked."
A third reason engineers become consultants is they don't want to be bound by the wage structure of a corporation. They don't want to have to age their way up to a higher salary level. In theory, the amount of money consultants can earn is restricted only by how hard they work and how well they run their businesses.

The problems of consulting

Many engineers, however, don't realize how difficult it is to run a business. They have little idea how much time and energy they will have to spend on paperwork, bookkeeping, and prospecting for new clients.
William Billowitch is the president of his own consulting and prod-uct-development firm in Allentown, PA. Previously, he worked for a small software company that relocated to another state. Rather than

uproot his family, he decided to remain where he was and start his own consulting business. At first he was surprised by how much time he needed to devote to nonengineering work.
"You probably need one day a week totally dedicated to making sure you're going to have something to do six months from now," he says. "When I began, I didn't understand that. I'd get a job and spend 100% of my time working on it. Then, when I got down toward the end of it, I'd realize that I had nothing in the pipeline. Now I set aside one day a week to call customers, follow up leads, take care of any administrative work, and make sure that when I'm done with one job there will be another one right behind it."

Another disadvantage to becoming a consultant is financial insecurity. Working for a corporation may be stifling sometimes, but it does provide a steady paycheck. Working for yourself may bring in money at irregular intervals. It's also possible that you won't make as much as you did as a salaried employee, especially during the time you're getting your business up and running.

"If I'm feeling burned out

 I may take off and go bike riding. You can't do that in a company."
-Brian Bandhauer

Your financial success or lack of it as a consultant can also depend on factors beyond your control. You may be a talented and knowledgeable engineer, but if the national economy is in recession, there may be simply no work available.

Big companies also supply other comforts and perks that you won't enjoy if you're a consultant. For example, you'll have to pay your own Social Security taxes and healthinsurance premiums, and you'll have to provide for your own retirement. You'll also have to pay your travel and entertainment expenses and the tuition for any college courses you take. And when you're working for yourself, there's no such thing as a paid vacation.
"Consulting is a contact sport," says Lang. "You only make money when you're grappling with your clients. If I were to take two weeks off and fly to Honolulu, I wouldn't be making money. But, more impor-

Designing with Motorola's

Microprocessors?

Then you need HMI's development systems. We support the entire 68000 family. As Motorola enhances and increases integration of its microprocessors, you can count on HMI to be there with
high-quality development products to support your projects. HMI believes in supporting the entire family of products for the Motorola family. Ease of use and familiarity are common in all the emulators.

Features of HMI's development systems includes:

- Run at real-time with no wait states
- Window driven source level debugging-SourceGate ${ }^{\text {® }}$
- C, Pascal and ADA compiler source level support for all major compiler companies.
- Real-time hardware performance analyzer.
- Works with IBM PC family and UNIX based machines including Sun and Apollo.
- RS232 Interface up to 115.2 K .
- Parallel Interface for high-speed code downloading.
- Complex events and sequences for break and trigger conditions.
- Two independent 4 K deep trace buffers.
- $1 \mu \mathrm{sec}$ resolution interval timer.
- 100 nsec resolution Time-stamp in trace buffer.
- Logic state analyzer capabilities built into the emulator.
- 16 External Trace bits.
- Overlay memory up to 4 Mbytes.

If you are looking for one emulator company that provides support for the entire Motorola family, then look to HMI for total support. Write or call for further information and free demo disk.

Motorola Devices Supported Include:			
68000	68302	68 EC 020	
68008	68301/303	68 EC 030	Huntsville Microsystems, Inc.
68010	68330/333	68HC001	
68020	68331/332	68 HC 11 including	3322 South Memorial Parkway
68030	68340	F1 and D3	Huntsville, AL 35801
6809		68HC16 Family	Tel.: (205) 881-6005
$\mathrm{IBM}_{\text {I Rcg. T. }}^{\text {No }}$	upporrting	0 Series	FAX: (205) 882-6701

> "Establishing a high degree of recognition is the key to being a top consultant." -William Billowitch

tant, there wouldn't be anybody here to answer the phone and help someone who's in trouble. You feel an obligation to your customers. It's almost like being a doctor."
Another unpleasant surprise that lies in wait for new consultants is that they can end up working long hours. "I tend to work seven days a week," says Bandhauer. "If I were to total it up, I probably put in 50 or 60 hours of actual hard-core work a week. But, on the other hand, come two o'clock in the afternoon, if I'm feeling burned out, I may take off and go bike riding. You can't do that in a company."
The projects consultants deal with are often different from the work an engineer usually sees in a high-tech company. After all, consultants are called in when something goes wrong or when a prob-
lem crops up that no one on the staff can solve. You may face resentment from a company's engineers if you've been called in to straighten out something they've handled badly.
As an independent consultant you may also miss the stimulation of working with other engineers every day. "For a year and a half, I operated out of my home. It gets lonely. There's no one to bounce ideas off," says Billowitch. "You can pick up the phone and call people, but it's not the same as getting a cup of coffee and walking down the hall and chatting about some technical problem with an associate."

Expertise is not enough

There are serious drawbacks to independent consulting, and some engineers try it for a while and then go back to work for a corporation. If you've ever thought about leaving your job to become a consultant, the first thing you should know is that engineering skills and expertise alone won't make you a success.
"I've always felt that consulting
is 50% salesmanship and 50% execution," says Lang. "If you're an engineering genius but you can't sell yourself, you're dead. And if you can only sell yourself but not perform, you're also dead."

Salesmanship and the ability to manage a small business are only two of the nonengineering skills you need to succeed as a consultant. You must also know how to market yourself. You have to understand how your particular talents and knowledge fit the needs of the companies you deal with.

Many people believe that a consultant has to possess exceptional intellectual powers and stand head and shoulders above ordinary engineers. But that's not necessarily true.
"I have a specialty, and I have about five years' experience behind me, but I'm certainly not a superstar engineer," says Bandhauer. "I try to market myself toward the engineering places that are in a temporary crunch. They get too much work all of a sudden and they can't handle it, but they don't want to hire another guy, so they contract out. I'm trying to fill that need in the market."

Becoming a consultant requires a commitment. To be successful, you can't dabble in consulting; you must commit your time, energy, and even your money. If you work out of your home, you'll have to invest in office equipment and supplies, and perhaps in lab equipment too. For tax purposes, you might also want to incorporate yourself. Before you take the plunge into fulltime consulting, it may pay to talk to a lawyer or an accountant about the best way to proceed.

If you're just starting off in consulting, it's crucial to make yourself known to potential clients and to other engineers who could refer clients to you. There are many ways to establish visibility. You can join professional organizations and net-

INDUSTRIAL STRENGTH POWER

 Vicor converters have consistently, economically and reliably kept industrial electronics under control.

For immediate delivery of converters or for additional information call Vicor Express today at 1-800-735-6200.

23 Frontage Road • Andover, MA 01810 TEL: (508) 470-2900 • FAX: (508) 475-6715
work through them. You can present papers or give talks at technical conferences. You can publish articles in technical magazines.

In addition, you can join national organizations that are specifically for independent consultants, such as the Professional and Technical Consultants Association (San Jose, CA), the American Consulting Engineers Council (Washington, DC), and the Independent Computer Consultants Association (St Louis, MO). These organizations sponsor meetings and seminars to help consultants run their businesses, publish and circulate directories of their members, and provide services that match clients with their member consultants.

Consultants acquire most of their new clients through referrals. That means the most important asset a consultant can have is a good repu-
tation. "You have to establish a personal reputation as being an expert in a field, and that generally involves being extremely active in a variety of organizations in your market niche," says Billowitch. "Establishing a high degree of recognition is the key to being a top consultant. There are a lot of people who are consultants, but very few are top consultants."

As with any profession, consulting has its pros and cons. The personal freedom, variety of projects, and opportunity for an increased income have to be weighed against the long hours, demands of running a business, and financial insecurity. But for some people, once they leave company life and get their first taste of independence, there's no turning back.
"I absolutely love consulting. The only thing that would ever make
me leave it would be the possibility of losing my house," says Bandhauer. "I'd do it right up to that point before I'd go back to a corporation. But I'd make a lousy employee because as soon as things became stable, I'd take off and be a consultant again."

EDJ

Jay Fraser, Associate Editor, can be reached at (617) 558-4561, FAX (617) 558-4470.

Article Interest Quotient
(Circle One)
High 470 Medium 471 Low 472

We've taken SMDs to d higher power...

Central's SOT-89 \& SOT-223 high-power SMD packages.
And we do it from start to finish . . . with complete inventory . . . short lead times and competitive pricing. Plus improved power dissipation, up to 2 Watts . . . total traceability back to wafer level, thanks to part number marking and date codes . . . excellent PPMs . . . a complete line of standard devices . . . an expanding list of unique devices. And Central backs it all up with superior service . . . a full commitment to SOT-89 and SOT-223 ... and a willingness to build what your design calls for.
Available Types:

SOT-89		SOT-223	
CBCX68	CXT4033	CBCP68	CZT4033
CBX69	CXT5401	CBCP69	CZT5401
CXT2222A	CXT5551	CZT2222A	CZT5551
CXT2907A	CXTA14	CZT2907A	CZTA14
CXT3019	CXTA42	CZT3019	CZTA42
CXT3904	CXTA64	CZT3994	CZTA64
CXT3906	CXTA92	CZT3906	CZTA92

Take your SMD applications to the highest power in SMD manufacturing ... Central. For more information, write or call.

Central: We make the difference.
145 Adams Avenue, Hauppauge, NY 11788
Tel: (516) 435-1110 • Fax: (516) 435-1824

CZT4033
CZT5401
CLI5551
CZTA42
CZTA64
CZTA92
$\rightarrow 4$

(\%)Advin

ADVIN versus DATA I/O

- Data I/O and Model 2900: reputable company. dependable equipment, supports 40 -pins. Software updates: fair amount.
- Advin and PILOT-U40: reputable company. dependable equipment, supports 40 -pins. Software updates: free via electronic BBS

ADVIN SYSTEMS INC. 800-627-2456, 408-243-7000, Fax 408-736-2503

CIRCLE NO. 340

FINALLY

One tool to satisfy all your firmware development needs
PROMCCE is a universal system. - Develops code for any microprocessor -Complete, real time, source level debugging -Host software for DOS, Unix, Mac, VMS - Non intrusive on your target system -Simply plugs into any ROM socket

PROM]CE also supports Turbo Debugger, C_thru_ROM, FreeForm, GDB, and more.

CIRCLE NO. 343

FOR 8XC751/2 MICROCONTROLLERS Real time and transparent in-circuit emulator, supports Philips/Signetics 83C751/2 and 87C751/2 microcontrollers, Symbolic Debugger compatible with Intel object files, Source Level Debug for C and PLM, 2 K hardware breakpoints and conditional breakpoints, 2 K of internal memory, 64 K Software
Trace, serially linked to IBM PC or compatible hosts, On-line Assembler and Disassembler, easy to follow pull-down menus and windows, small size $1^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}(2.4 \mathrm{~cm} \times 13 \mathrm{~cm} \times 15 \mathrm{~cm})$.
Also available from CEIBO: Microcontroller and
EPROM Programmers, Development Boards and other Emulators.
CEIBO $\begin{aligned} & \text { 1 BALLARD TERRACE LEXINGTON MA } 02173 \\ & \text { TEL: } 617-863-9927 \text { FAX: } 617-863-9649\end{aligned}$ ISRAEL:
ISRAEL:
MERKAZIM BUILDING, P.O.BOX 2106 HERZELIA 46120
TEL: 972-52-555387 FAX: 972-52-553297

CIRCLE NO. 346

CIRCLE NO. 341

8051689 ClCl COP8 684705

- A 4K frame frace buffer with odvanced seorching capobilities.
- iceMASTER connects easily to your PP, requires no disossembly or exponsion slots. Works on ony PC (DOS or OS/ $/ 2$), Microch Chnnel or EISA. Even laptops!
- Broad support of derivitive devices.
- Rental and 10 -day trials available.
- Now quick-breaks, virtual memory and mouse support.
- Call today for free demo disk and ask about a free

8051 Macro Assembler! (800) 638-2423

CIRCLE NO. 344

High Speed Emulators

Model P-ICE 8051
This model begins with a unique de. sign approach that allows the emulator itself to be universal. By simply changing pods, a wide range of micro-controilers can
${ }_{8031}$ 80C31 Pod 51 Supports: Pod 51 Supports ${ }^{8031, ~ 80 C 31, ~ 8032, ~ 80 C 32, ~ 8344, ~}$ $8051,80 C 51, ~ 8052, ~ 80 C 52, ~ 8751 . ~$ 87C51, 8752. 87C52. 80C154. 83C154, 85C154.

DEEMAY

Model P-ICE DSP320C25 Supports the entire family of TI's TMS320C2x family of Digital Signal Processors, up to 50 MHz with zero wait state.
Supports:
TMS32020, TMS320C25
TMS320C25-33, TMS320C25-50, TMS320E25, TMS320C26. New CPUs are constantly being added to the list of supported devices. lease contact Deemax for any

WHERE INNOVATION COMES FIRST
Deemax Technology, Inc.
12611 Hiddencreek Way, Suite G
Cerritos, CA 90701 U.S.A. (310) 921.8224 FAX (310) 921.9315 IRCLE NO. 347

8051, 8096, 68HC11, 68332 SINGLE BOARD COMPUTERS

We feature a series of single board computers for process control applications. Each is available as a bare printed circuit board, or fully assembled and tested. Optional development software is also available. Please contact us to discuss your requirements and receive a literature package covering technical specs and pricing.

ALLEN SYSTEMS
2346 Brandon Road, Columbus, OH 43221 614-488-7122

144 Oakland Street, Springfield MA 01108 (413)788-6191/CaII TOLL FREE (800)628-8862 Fax (413)788-0490

CIRCLE NO. 345

68HC705K1

REAL TIME In-Circuit Emulation
An add-on board, with re-created 68 HC 705 K 1 interrupt logic and 64 bit PEPROM in hardware, converts the 68 HC 05 P 8 EVS into a complete 68 HC 05 K family real time ICE, not a simulator. Comes with user friendly PC driver software, 16 pin emulator cable and plug. (Demo disk: $\$ 5.00$) Part number: EVSK1-ICE Price: $\$ 68.05$

68HC11 A,D,E,F1

- PC based user friendly real time $68 \mathrm{HCl1}$ ICE.

New 64 K memory module supports different probes.
Active probe reduces propagation delay to target system.
On-board 64 K emulation RAM maps to 4 K blocks.

- 64 K real time hardware breakpoints.

Breaks on address, address range and memory RD/WR.
Full symbolic debugging. Supports all A,D,E, and F1 parts.
64 K memory module $\$ 295.00$
Probe (with PC driver) $\$ 450.00$
$\begin{array}{ll}\text { - } 44 \text { PLCC to } 40 \text { DIP adapter } \$ 55.00 & \text { Suite } 140, \text { Bldg. \#C } \\ 52 \text { PLCC to } 48 \text { DIP adapter } \$ 55.00 \\ 185 \text { E. Lake Street }\end{array}$

Wytec

FRANCE distributor: Bloomingdale, IL 60108
I.S.IT. CO. Tel: 3361855767 (708) 894-1440

50MHz Pulse/Function Generators Two available models from under $\$ 3000$. High fidelity waveforms from 10.00 mHz to 50.00 MHz and from 10.00 mV to $32.0 \mathrm{Vp}-\mathrm{p}$. Auto-calibration preserves full accuracy from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Fully complies with the new IEEE-488.2 standard. Built-in GPIB compiler makes model 8551 bus compatible with HP's model 8116A device dependent commands. Provides sine, triangle, variable/fixed duty cycle pulses, positive and negative ramp waveforms; triggered, gated, and counted burst modes; pulse width, amplitude, and frequency modulation modes; lin/log sweep modes; automatic PLL to an external source with $\mathrm{a} \pm 180^{\circ}$ phase offset range. Tabor Electronics 25 Rutgers Ave. Cedar Grove, NJ 07009 Tel: U.S.A. (201)239-0425; ISRAEL (04)676868 CIRCLE NO. 349	CIRCLE NO. 350	ACQUISITION \& COMMUNICATION HANDBOOK 1991-1992 handbook features 86 pages of the latest information on our complete line of communication, data acquisition and waveform synthesizers. 1-800-553-1170 QபATECH 662 Wolf Ledges Parkway Akron, Ohio 44311 (216) 434-3154 CIRCLE NO. 751
LOGIC ANAIYZER/DSO Debug and test mixed analog/digital circuitry with a single instrument! Omnilab features: - 48 or 96 LA channels, 200 MHz async, 34 MHz sync $\quad 2$ DSO channels, $100 \mathrm{MHz}, 200 \mathrm{Ms} / \mathrm{s}$ - Powerful Mixed Analog/Digital Triggering ■ Timealigned Analog /Digital display ■ μ P disassembly support - Mouse driven Graphical User Interface \quad Test programs are automatically created as you use the Omnilab. Prices start at $\$ 3,500$ for 4 month rental. FREE DEMO DISK. 1-800-729-7700 Fax 415-327-9881 180 Independence Dr., Menlo Park, CA 94025	TURBO XT WITH SOLID STATE DISK -PC Bus, $4.2^{\prime \prime} \times 6.7^{\prime \prime}$, MS/DOS 2.0 - 5.0 - 2 Serial Ports, 1 Parallel Port - Up to 2 FLASH SSDs, Bootable - 1 Meg total FLASH storage, 2 Meg DRAM - 10 MHz Operation, WatchDog Timer - Software Included / SSD, EMS Handling - 6 Layer, CMOS, Wide Temp. Range - Made in the U.S.A. / 1 Year Warranty - \$295.00 qty. 1, Quantity VMAY ${ }^{\text {© }}$ Pricing Available TEMPUSTECH, INC. TEL: (800) 634-0701 FAX: (813) 643-4981 295 Airport Road Naples, FL 33942 CIRCLE NO. 753	SOLID STATE DISK * BOOTABLE * VERSATILE * SIMPLE * COMPATIBLE * DURABLE * FAST * RELIABLE * ANOTHER SEALEVELI ANNABOOKS INNOVATION
MIL-STD-1553 TEST EQUIPMENT - Complete error injection/detection capability for 1553 A/B terminals and systems - Simulates a Bus Controller, up to 32 Remote Terminals and/or a Bus Monitor - Supports all phases of testing: Development, Validation and Production - Dynamic/Real-time simulation 2-DAY SEMINAR - Comprehensive discussion of MIL-STD-1553 and testing - Lab session illustrates 1553 communication and provides experience in trouble-shooting - Offered in Phoenix three times a year and available on-site VALIDATION TESTING - Approved by the Air Force - Testing to the RT VALIDATION TEST PLAN - Approved test procedure and test report - Assistance in analyzing test results and troubleshooting TEST SYSTEMS, Inc. \qquad Supporting MIL-STD-1553 since 1979 CIRCLE NO. 755	48 Channel 50MHz Logic Analyzer Complete System $\$ 1895.00$ New Windows 3.0 Compatible Software - 48 Chnnls @ $50 \mathrm{MHz} \times 4 \mathrm{~K}$ words deep - 16 Trigger Words/16Level Trigger Sequence - Storage and recall of traces/setups to disk - Disassemblers available for: $68000,8088,8086$, 6801, 6811, Z80, 8085, 6502, 6809, 6303, 8031 NCI - 6438 UNIVERSITY DRIVE, HUNTSVILLE, AL 35806 (205) 837-6667 FAX (205) 837-5221 CIRCLE NO. 756	Consistency is key to the power of EDN Product Mart

To advertise in Product Mart, call Joanne Dorian, 212/463-6415
214 • EDN June 18, 1992

The Ultimate 5 Volt Flash! Xicor Delivers memory products that provide features to make your design easy. fast. and flexible. - 5 Volt Operation - No Erase Cycle Required - Self Timed Write Operation - Byte or Page Alterable - Cost Effective Solution No Eraser Required 国	Attn: HP Logic Analyzer Users - PQFP, PLCC, PGA, and DIP pre-processor interfaces for 1650 and 16500 Series HP logic analyzers. - Available for Intel, Motorola, Mips, Zilog, National Semiconductor, AMD, and IDT Microprocessors - Plugs between the analyzer and the target CPU socket or surface mount pads. - Inverse assembler and configuration files included. Call for a free catalog. Emulation Technology, Inc. 2344 Walsh Ave. Santa Clara, CA 95051 Phone:408-982-0660 FAX:408-982-0664 CIRCLE NO. 759	SM LAND/SOCKET PLUGGABLE SURFACE MOUNT The OFP and PLCCSM LAND/SOCKET provides a very reliable solution for socketing QFPs or PLCCs in production or ZIF (test/burn-in) patterns. The device is surface mounted to the SM LAND/SOCKET which converts the QFP or PLCC to a base pin array of the production or ZIP QFP socket and can then be soldered to target board or socketed using Ironwood's sockets receptacles. This results in a reliable connection at a reasonable cost. From $\$ 20$. IRONWOOD ELECTRONICS P.O. BOX 21151, ST. PAUL, MN 55121 (612) $431-7025$ FAX (612) 432.8616 CIRCLE NO. 760
Combine Your Product Mart Ads In EDN's Magazine and News Editions for higher impact and a lower rate.	fully integrated, rack mount and rugged SUN SPARC WORK STATION STANDARD FEATURES INCLUDE: * SPARK ENGINE 2 CPU WITH 16MB RAM \star 207MB HARD DISK, 150MB TAPE DRIVE * 644MB CDROM, REMOVEABLE HARD DISK * 1.44MB FLOPPY, 2 RS-232 AND S BUS PORTS * SCSI-2 AND ETHERNET INTERFACE $\star 16$ INCH RACK MOUNT COLOR MONITOR \star KEYBOARD, MOUSE AND SUnOS 4.1 FOR CUSTOM CONFIGURATIONS AND FURTHER DETAILS CONTACT: IBI SYSTEMS IMC., 6842 NW 20M AVE., FT. LAUDERDALE, FL 33309, 305-978-9225 FAX: 305-978-9226	BLIND MATABLE POWER SUPPLY CONNECTOR LSeries rack \& panel connectors provide optional 8, $15,25,50$ and 200 amp contacts in a rugged float mountable assembly. L Series connectors use the Hypertac ${ }^{\text {® }}$ hyperboloid, low force contact which offers high cycle life, immunity to shock and vibration, and contact resistance in the .4 to 2.5 milliohm range FOR ADDITIONAL INFORMATION, CONTACT: HYPERTRONICS CORPORATION 16 Brent Drive, Hudson, Massachusetts 01749 (800) 225-9228 (In MA \& Canada (508) 568-0451) FAX: (508) 568-0680
ABEL-PLD: Logic design for less. - 150 PLD supported (more than 4000 devices) - Uses ABEL Hardware Description Language (ABEL-HDL ${ }^{\text {TMI }}$ Call Data I/O Direct today to order ABEL-PLD. - Intelligent synthesis and optimization Upgradable to full-featured ABEL Design Software 1-800-3-DataIO (1-800-332-8246) *U.S. list price only. DATA I/O	Save $\$ 1000$ on our entry-level logic system.	Powerful - Affordable Fully Integrated, Easy to use, Analog Circuit Simulation Environment, From One Vendor, Featuring: A powerful SPICE simulator performing AC, DC, and Transient, analyses, extensive model libraries, schematic entry, graphical waveform processing, and report quality printouts. Call Or Write For O Bax 710 San Pedro. Intormation Kitt Tel. 310-833-0710 intusoft CA $90733-0710$ Fax 310-833-9558

Device
 Programming

Certified by the Semiconductor Industry

World's largest selection of PC based and stand-alone programmers from $\$ 395.00$ to $\$ 10,000$.
ALLPRO" 88 1-800-331-7766 LOGEGAL

CIRCLE NO. 767

MacABEL
PLO Design on the Apple Macintosht
Data I/O's industry-standard ABEL PLD design package is now avaliable on the Macintosh, exclusively from Capilano Computing! - Use Boolean and integer equations, state machines and truth tables programmer. Best device support in the industry, including ALTERA AMD, ATMEL, CYPRESS, GOULD, HARRIS, ICT, INTEL, LATTICE, NATIONAL, RICOH, SAMSUNG, SGS, SIGNETICS, SSS, TI, VTI and others - Interactive "in-circuit" schematic entry and simulation when
used with DesignWorks Call (800) 444-9064 Capilano Computing
FAX: (604) 522-3972
(604) 522-6200

CIRCLE NO. 770

Control Cross-C

Full ANSI Cross-C Compilers \& Assemblers

- HD64180, HD647180X, Z80, Z180, Z280 \& NSC800.
- DOS based cross-compilers for ANSI and K\&R C code.
- Completely automatic MMU support (no programming effort) for UP TO 1 MEG Z180 programs.
- Includes HD64180/Z180 support library with source.
- Complete with high-speed assembler, linker, and librarian
- Includes macros to interface C and assembly.
- All ANSI .H files and libraries provided. Source available.
- Char types are not promoted to int. Generates inline port I/O.
- Allows in-line assembly with access to C variables.
- All code is reentrant and ROMable.
- Fast ANSI/IEEE 754/INTEL floating point support.
- Supports C ISR's. Can compile to user defined segments - 32 functions of real-time exec. (RTX) accessible from C.
- RTX - up to 256 tasks, queues, \& boxes w/ full interrupt support.
ANSI C Compiler, Assembler, Linker - $\$ 699$ Assembler and Linker Only - $\$ 279$
32 Fn. Real-Time Executive incl. Source - $\$ 399$

> SOFTOOLS, INC.
> 8770 Manahan Drive
> Ellicott City, MD 21043 (410) 750-3733

> FAX/BBS (410)750-2008

State Machine Design

For Complex \& High Density PLDs

The most powerful PLD/FPGA CAE design software from $\$ 495.00$

CIRCLE NO. 768

Low Current VME?

If your VMEbus system needs to run on battery or solar power, or if you're concerned about system heat generation and cooling, Micro-Link has the answers. Micro-Link's VLP backplanes radically reduce system power consumption. With our VME201 MC68HC000 installed and running at 16 MHz a system consumes less than 275 mA at +5 V ; with our VME203 MC68030 at 40 MHz it consumes less than 750 mA
Hear about a full range of VME products and outstanding software and applications support ready for your immediate use:

Call 1-800-428-6155
or FAX: 317-848-2254

Carmel, Indiana
SEA-ILAN, INC.
CIRCLE NO. 771

SIMPLIFY BOARD LAYOUT

MICRO/Q 1000° ceramic decoupling capacitors share board mounting holes with IC pins to simplify board design. Now add more active devices with increased density in the same space, or design with the same package on a smaller board
Circuit Components Inc., 2400 S. Roosevelt St., Tempe, AZ 85282 602/967-0624

CMOS 186
Single Board Computer

Runs C or QuickBASIC Programs

Powerful 16 -bit computer directly executes EPROM's containing any C or BASIC . EXE file. NO LOCATORS! Soffware includes multi-tasking multi-drop comm, PID control, OPTOMUX."

- $10,12,16 \mathrm{MHz} 80 \mathrm{C} 186$
- CMOS design
- 512K RAM
- $384 K$ EPROM
- STD BUS Expansion
- COM1 RS232/485
- COM2, LPTI
- RTC Avail
- 80 C 187 Avail
- OEM discounts

MICRO/SYS
3447 Ocean View Blvd., Glendale, CA 91208 (818) 244-4600 FAX (818) 244-4246

CIRCLE NO. 769

GPStar
100 ns to UTC (without S/A) 5×10^{-10} Frequency Accuracy Frequency Synthesizer 1-32MHz 1PPS Time Output RS232 Interface Time Tagging/Event Triggering Accommodates Long Cable Runs IRIG B Time Code Generator Option 8 Digit Display

Precision Time Division

Phone (714) 758-0400 (800) 374-4783 Fax (714) 758-8463 *OEM and Quantity Discounts Available

CIRCLE NO. 772

$805180 C 196 \quad 80 C 186$

 $68 \mathrm{HCl1} 64180$

Orion's 8620 Analyzer-Emulator Supports

 These Processors \& Over 180 More!- Cost-effective, PC-based emulation for over 1808 - and 16 -bit CPUs \quad Source level and symbolic debug support - Interactive triggering - Program Performance Analyzer - Tremendous macro capabilities © Built-in EPROM programmer ■ Two-week evaluation program - Backed by over 11 years of emulation experience! Call or fax today for more info and a FREE DEMO DISK. Limited offer - 1 month free
with 3 month rental!
1-800-729-7700
Fax 415-327-9881

180 Independence Dr., Menlo Park, CA 94025 CIRCLE NO. 775

EDN-CAREER OPPORTUNITIES

1992 Recruitment Editorial Calendar			
Issue	Issue Date	Ad Deadline	Editorial Emphasis
Magazine Edition	July 20	June 25	INTERNATIONAL PRODUCT SHOWCASE-Vol. II • Computers \& Peripherals - Components - CAE - Test \& Measurement
News Edition	July 23	July 9	Engineering PCs \& Workstations • CAE Software - SIGGRAPH Hot Products • Graphics Technology • Engineering Management Special Series • Regional Profile: Arizona, New Mexico
Magazine Edition	Aug. 6	July 16	Microprocessor Development Tools • ICs \& Semiconductors • Technical Article Database Index •EDN's "Innovation Crusade"-Finalists Coverage • Reader Vote Contest: All advertisers in the issue qualify

Call today for information on Recruitment Advertising:
East Coast: Janet O. Penn (201) 228-8610
West Coast: Nancy Olbers (603) 436-7565
National: Roberta Renard (201) 228-8602

Knock, Knock.

In EDN's

Magazine and News Editions, opportunity knocks all the time.

ESCAPE TO WISCONSIN

Join the Midwest's Fastest Growing Product Design and Test Development Firm. We develop microprocessor based products for Fortune 500 companies in a variety of industries. We currently have openings for the following engineering positions.

PROJECT MANAGER

Candidates must have solid experience, seven years minimum, in all aspects of managing and designing microprocessor based products. This includes knowledge of hardware, software and mechanical design. BSEE required.

If interested in becoming a member of our team, send your resume and salary requirements in confidence to Lynn Schomisch. An equal opportunity employer.

Technology Group, Inc.

EEO/M/F
55 Jewelers Park Drive Post Office Box 677 Neenah, WI 54957-0677

Great Work. Great Living. IBM Burlington, Vermont.

One of the world's most advanced semiconductor operations is what you'll find at IBM's major development and manufacturing facility in Burlington, where continued business growth is matched by a superb living environment. We now have outstanding career opportunities for engineers with the specialized computer skills to make significant impact on RISC microprocessor development.

Logic Design

Responsible for definition, logic design and verification of high performance RISC microprocessors. To qualify, you must possess a BSEE or higher, with an emphasis on Computer Engineering, and be capable of carrying logic design through to physical chip design stage. Minimum of 3 years in logic/chip, CMOS and VLSI design required. RISC experience is key. Background in microprocessor and multiprocessor design desirable.

Circuit Design

Will design CMOS circuitry for RISC-based microprocessor functions. Includes custom SRAM cache design, complex logic dataflow circuitry, random logic, IO, clocking and other circuitry in custom microprocessor layouts. Requires BSEE or higher with emphasis on Computer Engineering or Circuit Design. Ability to design complex CMOS or Bi CMOS circuits and perform circuit analysis and verification is essential, along with minimum of 3 years circuit design experience in industry. CMOS, VLSI, digital circuit design is a prerequisite.

Physical Design

Responsible for CMOS VLSI chip physical design of RISC microprocessor in advanced CMOS technology. Includes using state-of-the-art CAD tools to perform chip layout, wiring and chip timing analysis. A BSEE or higher, with emphasis on Computer Engineering or Circuit Design, is essential, along with at least 3 years of physical design experience in industry. RISC and CMOS, VLSI design experience (chip layout/wiring) necessary. Background in microprocessor design desirable.

Located between Lake Champlain and Vermont's Green Mountains, Burlington offers year round recreation and open space. Unspoiled beauty, affordable housing and a sense of community come together here. This is life at its most enjoyable; technology at its best.
IBM offers salaries commensurate with qualifications and a comprehensive benefit package. For confidential consideration, please send your resume, indicating area of interest, to: IBM Corporation, Professional Recruiting, 1000 River Street, Essex Junction, VT 05452.

An equal opportunity employer.

The capacity to show the way by taking the lead. To influence or direct the activities of others.

> Some appear to be the leader. But actions speak much louder than muscle. We believe in the personal power of the individual. Which is why, at Motorola Semiconductor Products Sector (SPS), we encourage our people to be champions. To establish goals. To influence by example. As a result, we're an international innovator in the semiconductor industry.
> The microelectronics technology leader. Naturally, it's the Microprocessor and Memory Technologies Group, Motorola SPS Openings now exist in our Texas facility for:
> IC DESIGN ENGINEER Design logic and CMOS control circuitry for a RISC-based microprocessor cache. Involves circuitry definition, modeling, and verification, plus integration of custom SRAM cache and MMU arrays. Requires BS/MSEE with emphasis on computer engineering and $3+$ years VLSI CMOS design experience. Cache/MMU control design expertise is a must.
> CUSTOM SRAM DESIGN ENGINEERS Design, verification and test of CMOS and BiCMOS fast static RAMS. Requires a BSEE/MSEE and 1-5 years in design of fast statics. Experience in design of BiCMOS SRAMS desirable.

> SOFTW ARE ENGINEER Develop, port and support RISC architecture debuggers. Includes UNIX X Window graphics HWISW tools and porting of cross-tools to various development platforms. Requires BSCS and $4+$ years C/UNIX experience with a minimum of 2 years in UNIX \times Window graphics. $\mathrm{C}^{+}+$skills preferred.

> SENIOR DESIGN ENGINEER Participate in specification, design and implementation of next generation 68000 microprocessors. Requires BS/MSEE and 5 years experience with a strong background in new product specification, behavioral modeling, VLSI and microprocessor design.

GRAPHICS/EMBEDDED CONTROL

 MARKETING MANAGER Develop/implement marketing strategies for 88000 and PowerPC graphics embedded control products with an emphasis on facilitating design wins in targeted areas. Requires BSEE and $4+$ years experience marketing embedded control microprocessors. Knowledge of HW/SW development tools and key operating system software is essential.SYSTEM VERIFICATION ENGINEER Develop verification programs/behaviorals to verify RISC/68000 microprocessor families' functions and perform failure analysis at system and chip levels. Requires BS/MSEE and 3-5 years experience with proficiency in C/UNIX.

CAE DESIGNER Develop an integrated VLSI CAD platform based on vendor tools and design/code. Includes evaluation, design methodology and tool support. Requires BS/MSEE, plus 3-5 years experience in workstation tool development and SW integration. Knowledge of relational database and graphical user interfaces (X, motif) would be a plus.
DEVICE ENGINEERS Responsible for failure analysis, yield enhancement and problem resolutions. Requires strong technical/ analytical skills with experience in device design, product or process engineering within the semiconductor industry. Requires a related BS degree and 1-5 years experience
There's no company - or opportunity - in the world like this one. Be part of it. For consideration, send your resume to: Motorola Recruitment, Dept. ATX-9212, 505 Barton Springs Rd., One Texas Center, Suite 400, Austin, TX 78704. (800) 531-5183; (512) 322-8811 FAX. Equal Opportunity/Affirmative Action Employer

(A) MOTOROLA

Microprocessor and Memory Technologies Group

Create the Industry's Most Advanced Digital Loop Carrier Systems!!

Pulse Communications, with 28 years' experience in the Telecommunications market, had another successful record-setting year in 1991. Our highly skilled technical staff will be developing next generation TR-303 compliant digital loop carrier and SONET transport systems. Join an industry leader during our vigorous growth phase.

Qualified applicants will have a BSEE, or BSCS and a minimum of two years experience in a telecommunications environment. An advanced degree, knowledge of Bellcore standards, and demonstrated capabilities in the design of advanced voice and data transmission products are definite pluses. Specific opportunities are available for:

SOFTWARE ENGINEERS

- Embedded real-time systems
- C programming on a UNIX platform
- Intel 8051 and Motorola 68XXX processors

ASIC DESIGNERS

- HDL design
- Valid running on Sun Workstations
- SONET, ADM, TSI
- EPLD, ASIC, FPGA
- ISDN, T1

LINE CARD DESIGNERS

- Analog and digital
- Voice and data transmission
- Microprocessor control
- High speed backplanes
- X. 25 , LAN

COMMON CONTROL DESIGNERS

- Motorola 68XXX microprocessors
- ASIC or FPGA
- Remote test

Pulsecom offers excellent and competitive salaries and a liberal fringe benefits package.

Pulsecom is a subsidiary of Hubbell, Inc. and is located on the western edge of Fairfax County, Virginia, adjacent to Dulles International Airport, and 30 minutes from downtown Washington, D.C.

If you have the background we seek, send your resume and salary history to: Pulsecom, Human Resources, 2900 Towerview Road, Herndon, Virginia 22071 or call (703) 471-2900 or (800)821-7924. An Equal Opportunity Employer M/F/D/V.

Get

 a Job!

Business/Publishing
Headquarters
Headquarters
275 Washington S \dagger
Newton, MA 02158
Fax: (617) 558-4470
VP/Publishing Director
Peter D Coley
(617) 558-4673

Ora Dunbar, Sales Coordinator

VP/Publisher

Roy W Forsberg
(617) 558-4367

Darlene Fisher, Assistant
Advertising Sales Director
Jeff Patterson
(617) 558-4583

Marketing/Business Director
Deborah Virtue
(617) 558-4779

VP/Production/Manufacturing
Wayne Hultizky
Director of Production/
Manufacturing
John R Sanders

NEW ENGLAND/NY

Chris Platt, Clint Baker
199 Wells Ave
Newton, MA 02159
Tel: (617) 964-3730
Fax: (617) 332-7128

NEW YORK CITY/NEW JERSEY

Dan Rowland
249 W 17th St
New York, NY 10011
Tel: (212) 463-6419
Fax: (212) 463-6404

SOUTHEAST CORRIDOR/PA

Steve Farkas
487 Devon Park Dr
Wayne, PA 19087
Tel: (215) 293-1212
Fax: (215) 293-0359

IL, IN, KY, MI, OH, TN

Greg Anastos
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60018
Tel: (708) 635-8800
Fax: (708) 635-0929
IL, MN, NE, IA, KS, ND, SD, WI, MO, AL, AR, OK, CANADA
Jack Johnson
Cahners Plaza
1350 E Touhy Ave, Box 5080
Des Plaines, IL 60018
Tel: (708) 635-8800
Fax: (708) 635-0929

ARIZONA

John Huff
44 Cook St
Denver, CO 80206
Tel: (303) 388-4511
Fax: (303) 394-4709

COLORADO

Bill Klanke
44 Cook St
Denver, CO 80206
Tel: (303) 388-4511
Fax: (303) 394-4709

ORANGE/RIVERSIDE/

SAN DIEGO COUNTIES
Jim McErlean
18818 Teller Ave, Suite 170
Irvine, CA 92715
Tel: (714) 851-9422
Fax: (714) 752-6867

LOS ANGELESI

SOUTHERN CA, NV
Charles I Stillman
12233 W Olympic Blvd
Los Angeles, CA 90064
Tel: (213) 826-5818
Fax: (213) 207-1067
Susan N Green
18818 Teller Ave, Suite 170
Irvine, CA 92715
Tel: (714) 851-9422
Fax: (714) 752-6867

NORTHERN CAI
 SILICON VALLEY

Phil Branon, Bill Klanke
James W Graham, Frank Granzeier
3031 Tisch Way, Suite 200
San Jose, CA 95128
Tel: (408) 243-8838
Fax: (408) 243-2144

WASHINGTON, OREGON

Pat Dakin
1750 SW Skyline Blvd, Box 6
Portland, OR 97221
Tel: (503) 297-3382
Fax: (503) 297-4305

TEXAS

Al Schmidt
Two Forest Plaza
12201 Merit Dr, Suite 730
Dallas, TX 75251
Tel: (214) 419-1825
Fox: (214) 419-1829

UK

John Waddell
Crystal Communications
Purland House
151 Nathan
London SE28 OAB
Tel: 44-81-312-4444
Fax: 44-81-310-1201

ITALY

Gianni Soddu
International Advertising Network
Via Cassola 6
20122 Milano Italy
Tel: 39-2-545-1833
Fax: 39-2-546-2573

SCANDINAVIA

Stuart Smith
27 Paul St
London EC2A 4JU
Tel: 44-71-628-7038
Fax: 44-71-628-5984

FRANCE/BELGIUM

Laura Whiteman
14 Rue des Parisiens
92600 Asnieres sur Seine
France
Tel: 331-47900507
Fax: 331-47900643

BAVARIA

Karin Steinbacher
New Media Munchen
Ismaniger Str 108
8000 Munchen 80
Germany
Tel: 49-89-98-51-35
Fax: 49-89-981-0117

SPAIN

Luis S Giner
Urbanizacion Santa Barbara
Edificio Cumbre, Apt 7B
08870 Sitges (Barcelona) Spain
Tel: 3-894-43-26
Fax: 3-894-88-37

HUNGARY

Erika Alpar
Publicitas Budapest
Kossuth L ter 18
1055 Budapest, Hungary
Tel: 111-48-98 or 111-44-20
Fax: 111-12-69

AUSTRIA

Harald Brandt
Permedia
Mozartstrasse 43
A-4020 Linz
Tel: 732-79-34-55
Fax: 732-79-34-58

ISRAEL

Asa Talbar, Talbar Media
Box 22917
Tel Aviv 61228, Israel
Tel: 972-3-223-621
Fax: 972-3-524-2177

SWITZERLAND

Peter Combaz, Roswitha N Kunzle
Exportwerbung AG
Kirchgasse 50, 8024 Zurich 1
Tel: 4112614690
Fax: 4112514542

NETHERLANDS/NORTHWEST

GERMANY (NIELSEN 1,2)
Albert Ticheler
Dialtic
Busweg 46
5632 PN Eindhoven
Tel/Fax: 31-40-41-37-27

CENTRALISOUTHWEST

GERMANY

Franz Fleischmann, MediaPac
Hanaver Landstrasse 294
D-6000 Frankfurt/Main 1
Germany; Tel: 4969422951
Fax: 4969421288

HONG KONG

Adonis Mak
Cahners Asia Limited
22nd fl, Lo Yong Court
Commercial Bldg
212-220 Lockhart Road
Wanchai, Hong Kong
Tel: 852-572-2037
Fax: 852-838-5912

JAPAN

Kaoru Hara
Dynaco International Inc
Suite 1003, Sun-Palace Shiniuku
8-12-1 Nishishinjuku, Shinjuku-ku
Tokyo 160, Japan
Tel: 81-3-366-8301
Fax: 81-3-366-8302

KOREA

Jeong-guon Seo
Media Network
CPO Box 6997
Seoul, Korea
Tel: 82-2-752-4392
Fax: 82-2-752-4394

Production Staff
Andrew A Jantz, Supervisor
Sheilagh Hamill, Manager
Lynn Morelli, Assistant

SINGAPORE/MALAYSIA

Hoo Siew Sai
Major Media Singapore PTE Ltd
52 Chin Swee Rd
\#06-00 Resource Bldg
Singapore 0316
Tel: 65-738-0122
Fax: 65-738-2108

AUSTRALIA

Alexandra Harris-Pearson
World Media Network Pty Ltd
Level 2, 285 Clarence Street
Sydney, NSW 2000 Australia
Tel: 61-2-283-2788
Fax: 61-2-283-2035

TAIWAN

Parson Lee
Acteam International Marketing Corp
Box 82153, Taipei, Taiwan ROC
Tel: 886-2-7114833
Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian
249 W 17th St
New York, NY 10011
Tel: (212) 463-6415
Fax: (212) 463-6404

INFO CARDSI

LITERATURE LINK
Heather McElkenny
Tel: (617) 558-4282

CAREER OPPORTUNITIESI

CAREER NEWS

Roberta Renard

National Sales Manager
Janet O Penn, Eastern Sales Manager
Diane Philipbar, Sales Assistant
103 Eisenhower Pkwy
Roseland, NJ 07068
Tel: (201) 228-8602, 228-8610,
228-8608; fax: (201) 228-4622
Nancy Olbers
Western Sales Manager
238 Highland St
Portsmouth, NH 03801
Tel: (603) 436-7565
Fax: (603) 436-8647
Direct Mail Service
(708) 390-2361

Wendy A Casella, Mary Beth Cassidy, Muriel Murphy
Advertising/Contracts Coordinators (617) 964-3030

Cahners Magazine Div

Terry McDermott, President
Cahners Publishing Co
Frank Sibley, Executive Vice President/
General Manager, Boston Div
Tom Dellamaria, VP/Production \&
Manufacturing
Circulation: Denver, CO
(303) 388-4511

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For an exact quote, contact
Andrea Marwitz, Cahners Reprint Service, Cahners Plaza, 1350 E Touhy Ave, Box 5080, Des Plaines, IL 60017. Phone (708) 390 -2240.

to.5 belar technologr

The Surface Mount Centigrid ${ }^{\circledR}$

- Leads formed for direct surface mounting

- High performance military relay
- RF switching through 1 GHz

There's only one new thing about the newest Centigrid ${ }^{\circledR}$ relay. It has leads formed for direct PC board surface mount "onsertion."

Everything else is the same. The same 100% all welded construction and rugged uniframe design. Operating power as low as 200 mW . High force/mass ratios for increased resistance to shock and vibration.

Electrical characteristics are the same, too. Precious metal

contact material with gold plating assures switching capabilities from dry circuit to 1 amp . Low intercontact capacitance and contact circuit losses make it an excellent choice for RF switching at frequencies through 1 GHz .

In other words, Teledyne Relays has done it again. We've taken a popular, reliable product based on proven TO- 5 technology, and adapted it to the latest produc-
tion techniques without affecting its performance. And it's that performance, after all, that has won Centigrid its place in your hearts and designs.

The Surface Mount Centigrid. It's available in both general purpose and sensitive versions. Call or write today for complete information.

NTELEDYNE RELAYS Innovations In Switching Technology

[^15]Abbott Electronics 65
ACCEL Technologies Inc 211
Advanced Micro Devices 14-15
Advanced Microelectronics 183
Advin Systems 213
Alcatel 99
Allen Systems 213
Allied Signal 176
Ametek 146
AMP 104-105
Analog Devices Inc 8, 155
Antex Electronics 146
Apex Microtechnology Corp 11
Ariel 156
Augat 62
Aval Corp of Ireland 213
Avantek Div of Hewlett-Packard 20
BASF* 32-33
Belden Wire \& Cable C4
Bergquist Co 142
Bi-Link Computer 196
BP Microsystems 211
Brooktree Corp 83, 158
Burr-Brown Corp 80
Caddock Electronics Inc 120
Capilano Computer Systems Inc 216
Capital Equipment Corp 42
Cascade Design Automation 12-13
Ceibo Ltd 213
Central Semiconductor 210
Checksum 41
Cherry Electrical Products Inc 154
Circuit Components Inc 216
Cybernetic Micro Systems Inc 31
Cypress Semiconductor 23
Dale Electronics Inc 1, 171
Data I/O Corp* $46,50,215$
Datel 170, 224D
Deemax Technology 213
Design Computation Inc 212
DigiKey 2
EAO Elektro-Apparatebau Olten Ag^{*}. . 80
Elantek 172
Emulation Technology Inc 215
FDK Electronics 142
Gates Energy Products Inc 197
Golden Power Systems 102
Harris Semiconductor 34-35, 36-37
Headland Technology 179
Hewlett-Packard Co 40
Huntsville Microsystems Inc 207
Hypertronics Corp 215
IBI Systems Inc 215
IC Sensors 43
IDT 87
IEE 179
IERC 128
ILC Data Device Corp 191
Illinois Capacitor 184
Incredible Tech 211
Instrument Specialties Co Inc 119
Intelligent Systems Inc 150
Intergraph Corp 180
Interpoint 182
Intusoft 215
IOtech Inc 86
Ironwood 215
ITT Pomona Electronics 198
John Fluke
Manufacturing Co Inc . . 32-33, 127
Kepco Inc 162-163
Kikusui 178
Lattice Semiconductor Corp 185
Linear Technology Corp 134
Logical Devices Inc 216
Maxell 168-169
Maxim Integrated Products . . 139, 141,143, 145
Maxtor 88-89
MCSI 42
Memtech 128
Metalink Corp 213
Micro Link 216
Micron Semiconductor 186
MicroSim Corp 202
MicroSys 216
Microware Systems Corp 57
Mini-Circuits Laboratories 3, 4,26-27, 137
Mitsubishi ElectronicsAmerica Inc106-107, 147,149, 15i, 153
Motorola Semiconductor
Products Inc 28-29, 58-59
Murata Erie North America Inc . . 38-39
National Instruments C2
National Semiconductor Corp . . 108-110NEC Corp48-49
NCl 214
Nohau Corp 195
Odetics 216
OKI Semiconductor 46, 157
Omation Inc 214
Omron Electronics Inc 165
OrCAD Systems Corp 30
Orion Instruments . . 174-175, 214, 216
Pacific Data 79
PADS Software Inc 10
Performance Semiconductor Corp 115
Philips Semiconductor . . 129, 130-131Pico66, 78
Planar Systems 224
Potter \& Brumfield 132
Power Convertibles 201
Power Trends Inc 52
Qua Tech Inc 214
Radiall Inc 187
RLC Enterprises 103
Samsung Semiconductor 16-17
Samtec Inc 188, 189
SAT Solder Absorbing Tech 213
Sealevel Systems 214
Seiko Instruments 164
Siemens 212
Siemens Components Inc 60
Sierra Circuits 211
Signetics Corp 8-19
Signum Systems 41
Siliconix Inc 166
Softools 216
Sony 190
Spectrum Software 192
Sprague-Goodman Electronics Inc 203
Standard Microsystems 199
Stanford Telecommunications 194
Star Semiconductor Corp 55
Synergy Microsystems 25

A/D—analog/digital
ALU—arithmetic logic unit
ASIC-application-specific integrated circuit
BISYNC-Binary Synchronous Communications protocol
CMRR-common-mode rejection ratio
CPU-central processing unit
D/A-digital-to-analog
DDCMP—Synchronous/Asynchronous Digital Data Communications Message Protocol
DIP-dual in-line package
DMA-direct memory access
DOS-disk operating system
DSP-digital signal processing
EEPROM-electrically erasable programmable read-only memory
EPROM-erasable programmable read-only memory
FFT-fast Fourier transform
HDLC-high-level data-link control protocol
HDTV-high-definition television
I/O-input-output
LCD-liquid-crystal display
MAC-multiply and accumulate; a MAC unit multiplies two numbers and keeps a running sum of the results

NRE-nonrecurring engineering (costs) NTSC-the color-television broadcast standard used in the US; a $3.58-\mathrm{MHz}$ composite signal that carries both brightness and color information
PAL-the color-television broadcast standard used in Europe; a composite signal differing from NTSC in a few ways, one being that the color subcarrier frequency is 4.43 MHz
PID-proportional-integral-differential PROM-programmable read-only memory PWM-pulse-width modulation
RAM—random-access memory
RGB-the red, green, and blue color signals used in component video systems to drive monitors
RISC-reduced-instruction-set computer ROM—read-only memory
SDLC-synchronous data-link control protocol
SOIC-small-outline integrated circuit TPU-time-processing unit

This list includes acronyms and abbreviations found in EDN's Special Report, Technology Updates, and feature articles.

CIRCLE NO. 142

PACIFIC TITLE \& ART STUDIO

Pacific Title and Art Studio, a leading motion picture post production facility, is looking for motivated individuals to work in its high resolution digital image compositing facility.

Applications Software Engineer

Qualified applicants should have a BSEE or BSCS or equivalent experience and at least 3 years of programming experience with UNIX/C systems developing windowed applications and graphical user interfaces running on high end graphics workstations. Primary duties include specification, design, and implementation of a graphical user interface environment for compositing and manipulation of high resolution images, as well as development of applications as required for the support of the facility. Experience with windowing systems including X Windows, Motif, Unix operating systems and systems programming procedures are essential.

Hardware Engineer

Qualified applicants should have a BSEE or equivalent experience and at least 3 years of hardware design experience. This person will specify, design, build and verify analog and digital circuits, assemble and integrate various computer systems, install high resolution video distribution systems as well as high speed digital signal communication systems. Establish and implement maintenance procedures for specialized custom hardware, set up maintenance shop and spare parts inventory. Experience with PAL, FPGA, and CAD tools essential. Neat and meticulous bench technique required. Familiarity with computer network systems, Unix systems, assembly language and C language programming a plus.
Please send your resume to Pacific Title Digital Facility, 6350 Santa Monica Blvd., Hollywood, CA 90038. No phone calls please. All inquiries confidential.

books that work the way you work

Based on the EDN series -- 20\% new material Troubleshooting Analog Circuits

Robert A. Pease, National Semiconductor
1991 208pp. cloth $0750691840 \$ 32.95$ ($£ 19.95$)
Analog Circuit Design:
Art, Science, Personalities
Jim Williams, Linear Technology
1991 352pp. cloth $0750691662 \$ 44.95$ (£30.00)
Loaded with practical information
Rechargeable Batteries Applications Handbook
Technical Staff, Gates Energy Products
May 1992 432pp. cloth 0750692278 \$49.95 (£38.50)
BUTTERWORTH-HEINEMANN
80 Montvale Ave. Stoneham MA 02180
1-800-366-2665
M-F 8:30-4:30 ET
FAX 617-279-4851

The EDN Series for Design Engineers

U.K. and Europe:

Reed Book Services Ltd., Special Sales Department P. O. Box 5, Rushden, Northants NN10 9YZ U.K. TEL. 093358521 FAX 093350284

High Frequency, Low Power BICMOS PWM's

 the UCC3802 makes smarter.

For free samples and application information, give us a call today:
"THE CURRENT MODE PWM LEADER"

The Future is Now

The Best You Can Buy For Your Products And Premises

Since 1976, Belden has worked with some of the largest companies in the world to help them integrate fiber optic teciniology into their product designs, premise communications and data transmission networks.

Today, you can use Belden ${ }^{\circledR}$ fiber optic cable as backbone highways for multiple LANs; direct connections to workstations, mainframes and supercomputers; and as ideal interconnects for real-time response and graphic intensive systems.

All Belden ${ }^{*}$ fiber optic cables meet Fiber Distributed Data Interface (FDDI) standard specifications for high speed transmissions...the only fiber network standard to progress to industry-wide product development and in-stock availability.

Belden ${ }^{\star}$ networking cables for FDDI include loose and tight buffered cables for outdoor and indoor applications. All indoor premise cables are NEC rated. Connectorized assemblies are also available.

These are the basic fiber optic products in our catalog, but if you have an unusual application or requirement, you can once again count on Belden. Our new 69,000 square foot Belden Engineering Center can help you develop products and systems that meet whatever design requirements you might have.

This state-of-the-art facility is dedicated to keeping our OEM customers on the leading edge of technology, with product sample development, test and analysis, process and equipment testing and de-
veiopment, and compound materials testing and development.

So if you've been concerned about who's going to help you meet your company's future needs for fiber optic products and technology, stop worrying and give us a call. At Belden the future is now.

For more information and a free copy of our new Fiber Optic Catalog, call:

1-800-BELDEN-4

Cooper Industries,
Belden Division
P.O. Box 1980

Richmond, IN 47375

[^16]
COOPER

Belden

[^0]: EDN* (ISSN 0012-7515, GST Reg. \#123397457) is published 48 times a year (twice monthly with 2 additional issues a month, except for March and October, which have 3 additional issues and July and December which have 1 additional issue) by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. errence M McDermott, President/Chief Operating Officer; Frank Sibley, Executive Vice President; Jerry D Neth, Senior Vice President/Publishing Operations; J J Walsh, Senior Vice President/Finance; Thomas J Dellamaria, Senior Vice President/Production and Manufacturing; Ralph Knupp, Vice President/Human Resources. EDN ${ }^{\text {© }}$ is a registered trademark of Reed Properties Inc., used under license. Circulation records are maintained at Cahners Publishing Company, 44 Cook Street, Denver, CO 80206-5800. Telephone: (303) 388-4511. Second-class postage paid at Denver, CO 80206-5800 and additional mailing offices. POSTMASTER: Send address changes to EDN®, PO Box 173377, Denver, CO 80217-3377. EDN ${ }^{\ominus}$ copyright 1992 by Reed Publishing USA; Robert LKrakoff, President and Chief Executive Officer. Annual subscription rates for nonqualified people: USA, \$119.95/year; Mexico, \$169.95/year; Canada, \$181.85/year; all other nations, \$207.95/year for surface mail and \$329.95/year for air mail. Single copies are available for \$20 USA and $\$ 25$ foreign. Please address all subscription mail to Ellen Porter, 44 Cook Street, Denver, CO 80206-5800.

[^1]: *In Europe, fax your request to the above dept. at (32) 2-652-1504 or call (32) 2-652-0270. In Asia, fax to the above dept. at 1 (415) 961-4201. © 1992 Cypress Semiconductor, 3901 North First Street, San Jose CA 95134. Phone 1 (408) 943-2600, TELEX: 821032 CYPRESS SNJ UD TWX: 910-997-0753

[^2]: Roy L Ruth
 Component Engineer
 Video Monitors Inc
 Chippewa Falls, WI

[^3]: ## 10 DAY FREE TRIAL

 SIGNUM SYSTEMS
 171 East Thousand Oaks Blvd.
 Thousand Oaks, CA 91360

[^4]: *U.S. list price only.
 Data I/O Corporation 10525 Willows Road N.E, P.O. Box 97046, Redmond, WA 98073-9746, U.S.A. (206) 881-6444
 Data I/O Canada 6725 Airport Road, Suite 302, Mississauga, Ontario L4V IV2 (416) 678-0761
 Data I/O Europe 660 Eskdale Road, Winnersh, Wokingham, Berkshire, United Kingdom RG11 5TS, 0734448899
 Data I/O GmbH Lochhamer Schlag 5A, 8032 Graefelting, Germany, +49 (0)
 Data I/O Japan Sumitomoseimei Higashishinbashi Bldg., 8F, 2-1-7, Higashi-Shinbashi, Minato-Ku, Tokyo 105, Japar Data I/O Limited 660 Eskdale Road, Winnersh, Wokingham, Berkshire, United Kingdom RG11 5TS, 0734440011

[^5]: Article Interest Quotient
 (Circle One)
 High 473 Medium 474 Low 475

[^6]: acific Data Products, Inc., 9125 Rehco Road, San Diego, CA 92121 . Protracer is a trademark of Pacific Data Products, Inc. Postscript is a registered trademark of Adobe Systems, Inc. Canon in a registered trademark of Canon, Inc. All other trade names referenced are the trademarks or registered trademarks of the respective manufacturer. Nozzle image courtesy of AutoDesk Inc. Tiger rendering, artist unknown; picture part of public domain. ProTracer uses the latest in high technology innovation including PeerlessPage ${ }^{\text {ra }}$, the advanced Imaging Operating System from Peerless. EUROPEAN OFFICES: Geneva Tel (41) 22 412650 , Fax (41) 224106 82, France Tel (33) 1392320 00, Fax (33) 1396331 20, U.K. Tel (44) 442231414 , Fax (44) 442236540 © 1992 Pacific Data Products, Inc.

[^7]: "Multiple second sources with architectural variations.

[^8]: NORTH AMERICA: P.O. Box 7643, Mt. Prospect, IL 60056-7643 (Tel: 1800628 7364, ext. 177; Fax: 18008885113); EUROPE: Industriestraße 10, D-8080 Fürstenfeldbruck, Germany
 (Tel: 498141103 0; Fax: 498141103 515); HONG KONG: 15th Floor, Straight Block, Ocean Centre, 5 Canton Rd., Tsimshatsui, Hong Kong (Tel: 852 737 1654; Fax: 852736 9921); JAPAN: Sanseido Building 5F, 4-15-3, Nishi-shinjuku, Shinjuku-ku,Tokyo, Japan 160 (Tel: 8133299 7001; Fax: 81332997000).

[^9]: *The top-of-the-line Fluke 12 in our newest DMM family. It combines a smart set of troubleshooting features in a new design that's exceptionally fast and simple to operate - with one hand. It's yours after our 30 minute demo, no matter whose logic analyzer you purchase. Offer expires September 30,1992.

[^10]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: AL, M2i Montgomery Marketing, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Centaur Corporation; CO, Component Sales; CT, NRG Limited; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M2ı Montgomery Marketing, Inc.: ID, E.S./Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc. MA, Comp Rep Associates; MI, R.O. Whitesell; MN, Mel Foster Technical Sales, Inc.: MS, M2i Montgomery Marketing, Inc.; MO. Delltron; MT, E.S./Chase; NE, Delltron; NV' (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ, Emtec Sales, Inc.. TAl Corporation; NM. Techni Source Inc.: NY, Parallax, Reagan/Compar; NC M2i Montgomery Marketing, Inc. OH, Lyons Corporation; OK, BP Sales; OR, E.S./Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation: SC, M2i Montgomery Marketing, Inc.; TN, M2i Montgomery Marketing, Inc.; TX, BP Sales; UT, Utah Component Sales, Inc.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI Carlson Electronics. Distributed in Canada by Arrow, Future, and Zentronics. Authorized Maxim Representative in Canada: Tech Trek. ®Traveling Software, Inc. \quad Maxim is a registered trademark of Maxim Integrated Products. © 1992 Maxim Integrated Products.

[^11]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: AL, M2i Montgomery Marketing, Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc. Centaur Corporation; CO, Component Sales; CT, NRG Limited; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M2i Montgomery Marketing, Inc.; ID, E.S./Chase; IL, Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, R.O. Whitesell; MN, Mel Foster Technical Sales, Inc.; MS, M2i Montgomery Marketing, Inc.; MO, Delltron; MT, E.S./Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ. Emtec Sales, Inc., TAl Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M2i Montgomery Marketing, Inc. OH, Lyons Corporation; OK, BP Sales; OR, E. S./Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M2i Montgomery Marketing, Inc. TN, M2i Montgomery Marketing, Inc.: TX, BP Sales; UT, Utah Component Sales, Inc.; VA, Micro-Comp, Inc.; WA, E.S. Chase; WI, Carlson Electronics. Distributed in Canada by Arrow, Future, and Zentronics. Authorized Maxim Representative in Canada: Tech Trek.

[^12]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: AL, M2i Montgomery Marketing Inc.; AZ, Techni Source Inc.; CA, Mesa, Pro Associates, Inc., Centaur Corporation; CO, Component Sales; CT, NRG Limited; DE, TAI Corporation; FL, Sales Engineering Concepts; GA, M2i Montgomery Marketing, Inc.; ID, E.S./Chase; IL. Heartland Technical Marketing Inc.; IN, Technology Marketing Group; IA, JR Sales Engineering, Inc.; KS, Delltron; LA, BP Sales; MD, Micro-Comp, Inc.; MA, Comp Rep Associates; MI, R.O. Whitesell; MN, Mel Foster Technical Sales, Inc.; MS M2i Montgomery Marketing, Inc.; MO, Delltron; MT, E.S./Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH, Comp Rep Associates; NJ Emtec Sales, Inc., TAI Corporation; NM, Techni Source Inc.: NY, Parallax, Reagan/Compar; NC, M2i Montgomery Marketing, Inc.; OH, Lyons Corporation; OK, BP Sales; OR, E.S./Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC, M2i Montgomery Marketing, Inc.i. TN, M2i Montgomery Marketing, Inc.; TX, BP Sales; UT, Utah Component Sales, Inc.; VA Micro-Comp, Inc.; WA, E.S. Chase; WI, Carlson Electronics. Distributed in Canada by Arrow Future, and Zentronics. Authorized Maxim Representative in Canada: Tech Trek.

[^13]: Distributed by Arrow, Bell/Graham, Elmo, Hall-Mark, Nu Horizons, Pioneer, and Wyle. Authorized Maxim Representatives: AL, M2i Montgomery Marketing, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Centaur Corporation CO Component Sales; CT, NRG Limited; DE, TAI Corporation; FL, Sales Engineering Concepts; GA M2i Montgomery Marketing, Inc. ID, E.S./Chase; IL. Heartland Technical Marketing Inc. IN. Technology Marketing Group: IA, JR Sales Engineering, Inc.; KS. Delltron; LA BP Sales; MD. Micro-Comp, Inc.; MA Comp Rep Associates; M1, R.O. Whitesell; MN, Mel Foster Technical Sales, Inc.; MS, M2i Montgomery Marketing, Inc.; MO, Delltron; MT, E.S./Chase; NE, Delltron; NV (Reno, Tahoe area only) Pro Associates, Inc.; NH. Comp Rep Associates; NJ. Emtec Sales, Inc., TAI Corporation; NM, Techni Source Inc.; NY, Parallax, Reagan/Compar; NC, M2i Montgomery Marketing, Inc. OH, Lyons Corporation; OK, BP Sales; OR, E.S./Chase; PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation; SC. M2i Montgomery Marketing, Inc.; TN. M2i Montgomery Marketing, Inc.; TX, BP Sales; UT, Utah Component Sales, Inc.; VA. Micro-Comp. Inc.; WA, E.S. Chase; WI, Carlson Electronics. Distributed in Canada by Arrow, Future, and Zentronics. Authorized Maxim Representative in Canada: Tech Trek.

[^14]: 3M Electrical Specialties Division
 6801 River Place Boulevard
 Austin, Texas 78726-9000

[^15]: Home Office, 12525 Daphne Avenue, Hawthorne, CA 90250 - Telephone: 213-777-0077 • FAX: 213-779-9161
 U.S. REGIONAL SALES OFFICES: EASTERN: (908) 272-0020, SOUTHEAST: (407) 682-9044, NORTH CENTRAL: (708) 529-1060, CENTRAL: (214) 348-0898, WESTERN: (408) 978-8899. OVERSEAS: GERMANY, 0611-7636-0, ENGLAND: (081) 571-9596, FRANCE: 47-61-08-08, BELGIUM: (02) 673-99-88, JAPAN: (3) 3797-6956.

[^16]: NEC* is a registered trademark of the National Fire
 Protection Association, Inc. Quincy, MA.

