June 23, 1994
THE DESIGN MAGAZINE OF THE ELECTRONICS INDUSTRY

Technology Updates
Three DSP RTOSs are ready to merge with Windows pg 29
Solid mechanical designs tempt engineers away from designing optical sensors
pg 53

Design Featuris

Layout techniques boost dynamic range for high-speed ICs pg 99
Keep metastability from killing your digital design pg 109

Desicn Ideas

pg 77

To multiprocess or not to multijnocess?

Start with.OrCAD Finish with OrCAD.

Schematics. PCB Layouts. FPGAs. OrCAD has what it takes to get the job done. Fast.

OrCAD delivers the complete solution for all board, PLD and FPGA designs. Over the years more than 90,000 engineers have used OrCAD's design tools, making them the world's most popular EDA software. Today, OrCAD's enhanced 386+ software quickly handles your most complex designs, and gives you the fastest graphics of any PCB design tool. What's more, you can now design with OrCAD in a DOS session under Microsoft Windows. All this, plus a one-year product warranty, makes OrCAD the best value in PCB design solutions. From Start to Finish.

Speed your boards from Concept to

 Production.Start with the enormous capacity of OrCAD's SDT 386+ schematic capture tool. Couple it with our powerful PCB $386+$ layout solution to reduce your design cycle time. PCB 386+ gives you superior functionality, with over 1,000 footprints, automatic footprint generation, and on-line all object editing. And PCB $386+$ boasts an embedded, 100\% completion autorouter that tops all other PC-based solutions. OrCAD delivers all this, plus, you'll finish your design with complete manufacturing output.

Target virtually any FPGA device with OrCAD's new PLD 386+.

Capture your design in OrCAD schematics,

9300 SW Nimbus Ave. • Beaverton, OR 97005 • (503) 671-9500 • (503) 671-9501 - Fax
96, rue St. Charles • 75015 Paris, France • 33-1-45 755000 • 33-1-45 778289 - Fax OrCAD is a rgistered trademark of oncAD, Inc. Other brand and product names are trademarks of their respective ouners.

(Top) Combine SDT 386+ and PLD 386+ to design your boards and the programmable logic devices that populate them. (Left) Design verification is fast and easy with VST $386+$. And, it's supported by Xilinx, Actel, and other major FPGA vendors.

Description Language, or both. The multi-level synthesis capability of OrCAD's PLD $386+2.00$ rapidly compiles your largest FPGA designs. And it delivers greatly expanded device support, including: Actel, Intel Flexlogic, Xilinx 2000, Xilinx 3000 , Xilinx 4000 , Xilinx EPLDs, AMD MACH, AMD MACHXL, Lattice PLSI, Texas Instruments, and many others. Finish your job with speed and accuracy using VST $386+$ to verify the timing of your placed and routed design.

See how you can do your whole job faster and easier. Call for a free demo disk and try our complete solution Start to Finish. For your copy or for product information and pricing, call OrCAD DIRECT at (800) 671-9505.

CIRCLE NO. 37

When Time Is Money...

- Core

386 SL super set

- Keyboard I/F 81CS51SL
- Memory

RAM 1MB,4MB ROM $\quad 128 \mathrm{~KB}$ or 256 KB

- VGA

CL-GD6412
(CIRRUS LOGIC, Inc.)
Analog RGB
Mono-STN or color TFT

- FDC

SPC2052

- Power supply
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, 5.0 \mathrm{~V} \pm 5 \%$
- BIOS

IBM PC AT Compatible BIOS
Set-up utility
VGA BIOS
Power management BIOS

- SUPPORT TOOLS

Eval. Board
Peripheral Kit
ROM Writer
Connector

The EPSON CARDIO-386 incorporates IBM PC AT compatible functions into a credit card size form factor. The card consists of the Intel 386 SL $^{m m}$ super set, VGA controller, ROM, RAM, FDC and a keyboard controller, and can connect to various devices and external peripherals via a 236-pin connector. This product utilizes the EASI (EPSON-All-In-One-System-Interface) which allows future system upgrading.

GaAs
 SWITCHES DC-2GHz Immediate Delivery tom $\boldsymbol{L}_{\text {trow of }}$

Finally! A line of SPDT absorptive, reflective and transfer switches that appeals to your technical side, and business side as well! It's Mini-Circuits GaAs switches...providing outstanding performance features such as very high isolation (up to 60dB), superfast 3nsec switching speed and excellent compatibility with surface mount soldering techniques. Additionally, the entire series is built extremely tough and is immediately available from stock with a 1 week shipment guarantee. At only $\$ 2.95$ (qty.10), this top-of-the-line value is priced with your bottom line in mind! To order, call or Fax Mini-Circuits with your requirements today. Mini-Circuits...we're redefining what VALUE is all about!

Model No.
MSW-2-20
(Reflective)
MSWA-2-20
(Absorptive)
MSWT-4-20

Freq. (GHz)	Insertion Loss (1) dB (max.)	$\begin{gathered} 1 \mathrm{~dB} \\ \text { Comp. (1) } \\ \mathrm{dBm} \text { (typ.) } \end{gathered}$	$\begin{aligned} & \text { In-Out } \\ & \text { Iso. (1) } \\ & \text { dB (typ.) } \end{aligned}$	Price \$ea. (qty.10)
DC-2.0	1.0	$+24$	34	2.95
DC-2.0	1.3	$+27$	40	3.45
DC-2.0	$\begin{aligned} & 1.8 \text { TX (2) } \\ & 2 \text { RX (3) } \end{aligned}$	$+28 \mathrm{TX}(2)$	30	3.95

(1) Midband, $500-1000 \mathrm{MHz}$ (2) Transmit (3) Receive

All Units: SOIC 8pin Package
All Units: SOIC 8pin

E

On the cover: When to use several processors-that is the question. If you've got practical problems, tight schedules, and limited budgets, multiprocessing might be the answer. See our Special Report, beginning on pg 64. (Photo courtesy Hewlett-Packard)

To multiprocess or not to multiprocess?

Use several processors when one would do? Never; well...hardly ever. But when one processor isn't enough, there are approaches and tools that can help you to stay on schedule and avoid breaking the bank.-Dan Strassberg, Senior Technical Editor

Layout techniques boost dynamic range for high-speed ICs

A systematic approach to good grounding and bypassing practices allows high-speed analog circuits to deliver dynamic range equivalent to Spice predictions.-Rosie Loaiza-Montiel, Burr-Brown Corp

Keep metastability from killing your digital design

Synchronizing asynchronous signals causes metastability, which makes it difficult to iron out the bugs during system test. Paying close attention to the synchronizer and some metastability equations can help you avoid the pitfalls.-Debora Grosse, Unisys

Technology Update

Three DSP RTOSs are ready to merge with Windows

DSP-based virtual subsystems allow common hardware to assume many identities.-David Shear, Technical Editor

[^0]

Endless Power Options

WW Field-Configurable MegaPAC ${ }^{\text {TM }}$ Switching Power Supplies

Your opportunities are endless to mix and match MegaPAC options. And with so many possible power solutions available, you can define one precisely to fit your needs.

But MegaPAC flexibility doesn't end there. If your needs change, so can your switcher ...which gives you another reason to choose MegaPAC power supplies: they're the only field-configurable power supplies on the market. To alter voltage or power levels on site, just loosen a screw, slide out a ModuPAC converter assembly, and slide in a new one. It's that simple.

Take a look at our new additions to the MegaPAC family, highlighted at right.
For details about MegaPAC switching power supplies, call Vicor Express at 800-735-6200 or Vicor's Westcor Divison at 408-395-7050 (FAX 408-395-1518).

Home Office

275 Washington St, Newton, MA 02158 EDN Bulletin Board: (617) 558-4241 MCI: EDNBOS; fax (617) 558-4470 Phone (617) 558 -plus 4 -digit extension below To send a message to an EDN editor via Internet, add "@MCIMAIL.COM" to the MCl address.

Publisher

Jeffrey Patterson -4454

Editor-in-Chief

Steven H Leibson -4214

Managing Editor

Joan Morrow Lynch -4215
Gary Legg, Senior Technical Editor-4404 Charles Small, Senior Technical Editor-4556 MCI: EDNSMALL
Dan Strassberg, Senior Technical Editor-4205 MCI: EDNSTRASSBERG
John A Gallant, Technical Editor-4666
rances T Granville, Senior Associate Editor - 4344
James P Leonard, Senior Associate Editor -4324
Anne Coyle, Associate Editor - 4333
Gillian A Caulfield,
Manager of Editorial and Art Production-4263
Patricia Shaughnessy, Production Editor -4206
Ken Racicot, Senior Art Director -4708
Chinsoo Chung, Associate Art Director -4446
Brian Kerridge, Senior Technical Editor
22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
(508) 528435; fax (508) 528430

MCI: EDNKERRIDGE
Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
fax: (805) 461-9640; MCI: EDNDCONNER
Markus Levy, Technical Editor
Citrus Heights, CA: (916) 725-4485
MCI: EDNLEVY
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI: EDNQUINNELL
David Shear, Technical Editor
Corvallis, OR: (503) 754-9310
MCI: EDNSHEAR
Anne Watson Swager, Technical Editor
Wynnewood, PA: (215) 645-0544
MCI: EDNSWAGER
EDN Asia, Mike Markowitz, Editor
Cahners Asia Ltd
19th Floor, Centre Point
181-185 Gloucester Rd, Wanchai, Hong Kong
Phone (852) 838-2666; fax (852) 575-1690

Contributing Technical Editors

Robert Pease, Don Powers, Bill Travis,
Jack Ganssle, David Brubaker

Assistant to Editor-in-Chief

Kathy Leonard -4405

Editorial Services

Helen Benedict, Senior Secretary -4681
Marketing \& Business Director Deborah Virtue - 4779

Marketing Communications

Jean Graham, Promotion Specialist-4698
Director of Creative Services
Norm Graf, -4293

Production

Andrew Jantz, Group Manager -4372
Karen Banks, Production Manager - 4441
Alice Dorsey, Production Associate -4601
EDN Products
301 Gibraltar Dr, Box 650
Morris Plains, N 07950
Phone (201) 292-5100; fax (201) 292-0783

Group Publisher

Terry McCoy, Jr

Associate Publisher

Steven P Wirth, (201) 292-5100, ext 380
Editorial Director
Richard Cunningham, (702) 648-2470
Editor-in-Chief
Bruce Bennett, (201) 292-5100, ext 390
Managing Editor
Jen Brinkman, (201) 292-5100, ext 330
Production Manager
Sheila Rodgers, (201) 292-5100, ext 287
Customer Service Manager
Tara Poli, (201) 292-5100, ext 318
Design Director, Art Director
John M Angelini, Beverly Blake

June 23, 1994
Continued from page 5

Solid mechanical designs
Technology Update tempt engineers away from designing optical sensors

All the bits and pieces for designing an optoelectronic-sensoring system are readily available. But the stressful environment in which sensors live often tilts the choice toward packaged systems. -Charles H Small, Senior Technical Editor

DEsicN Ideas

Cell-cycler sorting sires superior batteries 77
Switcher IC hikes battery charger's efficiencyCurrent-feedback amps square upfast signals82
Software Shorts 84

COLUMNIST

The shape of things to come? 141- John Cooley, EDA Consumer Advocate and ESNUG Founder

New Products

Embedded Systems 119
Integrated Circuits 120
Electronic Design Automation 127
Boards and Buses 128
Components 132

Departments

News Breaks 13
Signals \& Noise 21
Editorial 25
Career Opportunities 137
Business Staff 139
EDN's International Advertisers Index 140

For the industry's most wake up to

> \int
> iFX8160 intel

With FPGAs, it's always something. Sacrifice speed to get density. Give up low power consumption for speed. If you're tired of living with compromise, you'll love what Intel is serving up.
Intel's FLEXlogic family of devices offers the best combination of performance, predictability and advanced features, with low risk and fast time to market. Here's a taste of what we offer:

With FLEXlogic devices, your pin-to-pin t_{PD}
is 10 ns . Period. No matter what path you choose or how you route the device. That makes them the fastest FPGAs at comparable densities, without design surprises.

FLEXlogic chips are extremely flexible, too.

Intel FLEXlogic Family				
DEVICE	MACROCELLS	${ }_{\text {tPD }}$	I/O	I_{CC}
iFX8160	160	10 ns	168	$2.5 \mathrm{~mA} / \mathrm{MHz}$
iFX780	80	10 ns	102	$1.5 \mathrm{~mA} / \mathrm{MHz}$
iFX760	60	10 ns	60	$1.5 \mathrm{~mA} / \mathrm{MHz}$
iFX740	40	10 ns	50	$1 \mathrm{~mA} / \mathrm{MHz}$
iFX730	30	10 ns	30	$1 \mathrm{~mA} / \mathrm{MHz}$

Their configurable function blocks can be programmed as either 24V10 logic or SRAM. They also have a high number of I/O pins, which you can program for either 5 V or 3.3 V operations.

And FLEXlogic devices reduce design hassles. For example, they fully support JTAG Boundary Scan IEEE 1149.1 and in-system reconfiguration. And the new iFX8160 has on-chip Flash for insystem reprogramming.

To further simplify the design process, Intel FLEXlogic devices are supported by Intel PLDshell

Plus software, available for free, as well as advanced design support on industry-standard CAE tools.

A new day is dawning for logic devices. Call 1-800-879-4683, ext. 138 for complete FLEXlogic specs, or dial FaxBack ${ }^{*}$ at 1-800-628-2283, doc. \#2725. Because when it comes to logic innovation, Intel definitely has something brewing.

intel

You're designing a Pentium- or Power PC-based system and you know it needs synchronous SRAM cache to generate the performance it ought to have.

But synchronous SRAM cache is so expensive that using it is prohibitive.

That's exactly the problem these
new Samsung SRAMs solve. We've used an innovative pipelined burst design to produce a part we can sell for about half the cost of conventional burst SRAMs. But which gives you approximately 99% of the performance that they do.

As you can see, we consider it
heady stuff-we look on it as a revolutionary development.

And because it actually does make performance affordable - and makes synchronous cache available to designers of even highly costconstrained systems - we think you'll probably agree.

It ACTUALLY makes performance affordable: Our pipelined Cache SRAM for PENTIUM and POWER PC. [A development of rather REVOLUTIONARY proportions.]

This revolutionary design was developed collaboratively with major systems developers. It has already met with wide acclaim throughout the industry, and is second-sourced. It will support 3.3 volt systems up to 75 MHz , and is available in speeds of 7,8 , and 9 ns.

For Samsung, the pipelined burst cache SRAM is just one of many notable achievements in memory-in a program that sails forward with remarkable success.

For information on designing it in, please call $\mathrm{I}-800-446-2760$ or 408-954-7229 today. Or write to

SRAM Marketing, Samsung Semiconductor Inc., 3655 North First Street, San Jose, CA 95134.

SEMICONDUCTOR
A Generation Ahead.

Cashing-In on Cache Logic

Acartoon from the 1920s has a musician soundly sleeping through the William Tell Overture until the precise moment his one triangle note is queued by the conductor. His work done, the character immediately falls back to sleep. The paradox of contemporary digital design is many logic devices on the board play a very limited part. In actuality, an orchestra percussionist plays scores of instruments during the course of a performance. Diversity is function in the rhythm section.
In contemporary designs, a single task or feature application is usually made up of many small, macro-level operations; like counters, multipliers, shift registers, and multiplexers. When that task is divided into its sub-operations, two things become apparent. First functionality overlaps; any single functional element may be used several times. Second, there is a high degree of functional latency. At any given time, only a portion of a tasks logic operations are active; few are used in the same clock cycle. By consolidating functionality, eliminating redundancy and tracking each sub-operation, functions can be organized so a single relatively small, inexpensive device can be continually reconfigured to perform many or all of the functions. And, otherwise costly, space consuming parts can be designed-out. Such adaptive logic also cuts months in development time by reusing proven functions, extends product life, and insures compliance to standards and protocols as yet unwritten.
Atmel Corporation has developed an enabling technology to implement Cache Logic ${ }^{\text {TM }}$ designs; it is a simple and straight forward way of im-
plementing task application logic more efficiently. Under Cache Logic, the active functions of an application are performed by a fieldprogrammable gate array (FPGA) reconfigured as it operates. Inactive functions are stored in an inexpensive configuration memory such as an EPROM. As new functions are called, they are written directly over the last functions.

Designing with Cache Logic

Cache Logic is similar in concept to cache memory. In cache memory, the high-speed memory (usually SRAM) is used to store active data, while the bulk of data resides in lower cost storage, such as Flash memory, EPROM, or disk. In Cache Logic, a conventional 10,000 -gate application might actually only require 2,000 gates at any given cycle. By caching the extra 8,000 gates for

"Using the same

hardware to implement multiple logic functions significantly cuts design and production costs."

- Joel Rosenberg

FPGA Marketing Manager Atmel Corporation
later use, a 2,000-gate device replaces an expensive 10,000 -gate device. Since only a small fraction of the circuit is active at any given time, only those functions which are loaded into the logic cache. Reserve functions, or variations, reside in
lower cost system memory. It's even possible to compile design variations, in real time. This may be thought of as hardware sub-routing.
The Atmel AT6000 FPGA is ideal for Cache Logic designs. To effectively achieve the functionality and diversity required of Cache Logic an FPGA must be capable of continuous dynamic in-system reconfigura-tion-without disrupting the remaining logic inside the device.
At the board-level prototype stage, Cache Logic can reduce the time required to complete the design conception and implementation. Cache Logic FPGAs can be reconfigured at any time throughout the design cycle without being removed from the circuit board for reprogramming.

Added Value Extends Product Life

Cache Logic FPGAs enable custom products without retooling the production line. It allows new protocols, system interfaces or other application specific logic to be loaded into the system at the final destination. This also results in lower manufacturing costs. Cache Logic FPGAs eliminate special manufacturing flows and mis-programmed devices. Inventory management is simplified by using standard parts that are programmable in-system.
On the flip side, system development time and risk can be significantly reduced by using functions already proven. Once a design is simulated and working, the function may be saved (in software) for use in subsequent designs.

For more information call: 800-292-8635

血目

EDN - NEWSBREAKS

EDITED BY FRAN GRANVILLE

Fre tool helps configure multivendor VXI systems

An interactive CD-ROM-based Windows software tool called VXIplug\&play Integrator asks questions about your application, controller type, operating system, and software needs. Based on your answers, it assists you in making choices of system hardware and software. As you decide which elements you want to use, the tool makes sure that your choices are compatible. For example, if you select an embedded controller with internal ISA bus expansion slots, you can learn about compatible data-acquisition, DSP, and IEEE- 488 boards. At the end of the process, you will have all of the information you need to order each component from its manufacturer.

Configuring multivendor VXI systems that work right out of the box has become less problematical with the introduction of VXIplug\&play Integrator, an interactive CD-ROM-based software tool available free from National Instruments.

Also on the CD-ROM are an extensive tutorial covering VXIbus capabilities and specifications and data sheets for 80 VXI instruments
that displays at least 256 colors.
-by Dan Strassberg National Instruments Corp, Austin, TX, (512) 794-0100.

Circle No. 466

Fast μ Ps and $\mathrm{I} / 0$ draw attention at Comdex

Blazingly fast processors and speedy I/O schemes got a share of the spotlight at the recent Spring Comdex in Atlanta, with most of the attention falling on Alpha, Mips, and PowerPC $\mu \mathrm{Ps}$ and on products for the Peripheral Component Interconnect (PCI) local bus. The joint presentation of Comdex and Windows World drew more than 500 exhibitors and 100,000 attendees. Although computer products for retailers and end users largely dominated the combined show, OEM products were in abundance.

Alpha μ Ps from Digital Equipment Corp were the speed champs of the show. New PCs and workstations from Aspen Systems, Carrera Computers, and NekoTech featured the $275-\mathrm{MHz}$ Alpha 21064 A , and Carrera demonstrated a $333-\mathrm{MHz}$ system based on a still-unreleased Alpha chip. Comdex
also marked the official availability of the $200-\mathrm{MHz}$ Mips $\mathrm{R} 4400 \mu \mathrm{P}$ from semiconductor partners Integrated Device Technology, Mips Technologies, NEC, and Toshiba. Motorola pushed the new and relatively inexpensive PowerPC 603 at the show, as well as new PowerPC development tools for Windows NT.

Aspen Systems, Wheat Ridge, CO, (303) 431-4606.

Circle No. 467
Carrera Computers Inc, Laguna Hills, CA, (714) 707-5051. Circle No. 468

Digital Equipment Corp, Maynard, MA, call local office. Circle No. 469

Integrated Device Technology Inc, Santa Clara, CA, (800) 345-7015.

Circle No. 470
Mips Technologies Inc, Mountain View, CA, (800) 998-6477 or (415) 3902136.

Circle No. 471
Motorola Inc, Austin, TX, call local office.

Circle No. 472
NEC Electronics Inc, Mountain View, CA, (800) 366-9782 or (415) 9656159.

NekoTech, Irvine, CA, (714) 5800055.

Circle No. 474
Toshiba America Electronic Components Inc, Irvine, CA, (800) 879-4963.

Circle No. 475
The PCI bus was prominent at Comdex, with new products for designers ranging from development tools to disk accelerators. Development tools from FirmWorks, for example, include a collection of Open Firmware ROMs, drivers, and tools that help you develop boot firmware for use on different processors and buses. Some modules in the collection apply specifically to PCI. For PCI add-in cards based on i960 $\mu \mathrm{Ps}$, new tools from Intel aid development. A bridge chip from PLX Technology provides the PCI-to-i960 connection.

FirmWorks, Mountain View, CA, (415) 917-0100.

Circle No. 476
Intel Corp, Santa Clara, CA, (408) 765-8080.

Circle No. 477
PLX Technology, Mountain View, CA, (415) 960-0448.

Disk accelerators introduced at Comdex help disk drives catch up to the speedy PCI bus. Accelerators from Promise Technology, available in IDE and SCSI versions, provide burst throughput of 132 Mbytes/sec and sustained transfers of $33 \mathrm{Mbytes} / \mathrm{sec}$. For do-it-yourself accelerator design, the new Forsythia PCI-IDE cache-controller chip from Infomedia Microelectronics allows sustained data transfers of 22 Mbytes/sec for read operations and $33 \mathrm{Mbytes} / \mathrm{sec}$ for writes.

Infomedia Microelectronics Inc, Fremont, CA, (510) 683-9088. Circle No. 479

Promise Technology Inc, San Jose, CA, (408) 452-0948.

Circle No. 480
Small-disk storage took a jump at the show with a new 2.5 -in., 810 -Mbyte
drive from IBM. The 3-platter drive uses magneto-resistive (MR) heads and comes in AT (IDE) and Fast SCSI-2 versions. For larger storage systems, IBM announced that 17 companies are supporting its Serial Storage Architecture (SSA). SSA is a full-duplex, framemultiplexed interface for storage devices, storage subsystems, servers, workstations, and PCs. Its advantages include low cost and an easy migration path for SCSI systems. SCSI got a boost itself from Micro Design International's SCSI Extender, which allows use of 49 peripherals on a single host adapter. The extender uses logical-unit numbers, not just target identifiers, to increase the number from the usual limit of seven.

International Business Machines Corp, White Plains, NY, Call local office.

Circle No. 481
Micro Design International Inc, Winter Park, FL, (407) 677-8333.

Circle No. 482
In the huge sight-and-sound multimedia portion of the show, DSP-based sound cards based on Analog Devices' Personal Sound Architecture (PSA) were a small but notable presence. DSP cards account for only 4% of the soundcard market, but of that 4%, according to Analog Devices, PSA has 75\%. The company says PSA has reached an installed base of 250,000 in the year since its introduction.-by Gary Legg

Analog Devices, Norwood, MA, (617) 461-3881.

Circle No. 483

AutoBahn Spanceiver concept is functional at first silicon

Motorola Semiconductor and PEP Modular Computers have achieved functional silicon from the first wafers of the AutoBahn Spanceiver (serial-parallel transceiver), an ECL gate array that transfers data at 1.6 Gbps. PEP created the AutoBahn for 3 U VMEbus
starter kit for VME designs and two VME boards.

The kit includes two Spanceivers, each on a small mezzanine board that plugs into the VME backplane. The mezzanine comes with 128 kbytes of 20nsec static RAM, a fast GAL containing logic circuitry to connect the parallel interface to a 32 -bit data source, an address counter, and the serial interface to pins on the VME backplane. Designs from the kit should reach a sustained transfer rate as high as $200 \mathrm{Mbytes} / \mathrm{sec}$. The kit comes with one or two PEP VM30 68EC030/68302based single-board computers that implement PEP's public-domain controllerextension module as an electrical extension of the data and address lines of the 68302 intelligent multiprotocol processor. The kit also includes a data pack specifying start-up methodologies, test equipment, typical measurements, and results evaluation. A kit
cards. Motorola is fabricating the Spanceiver wafers in the $0.8-\mu \mathrm{m}$ Mosaic V process and expects the beta-test program to last several months. When the wafers become available, Motorola will begin offering samples within 60 days. Sample prices will range from $\$ 180$ to $\$ 250$, depending on quantity. To speed proliferation of Spanceivers in VME applications, PEP has announced a

68EN360 quad-integrated communications controller that supports Ethernet, Profibus, and RS-232C modems; as much as 16 Mbytes of dynamic RAM; as much as 4 Mbytes of EPROM; and 1 Mbyte of static RAM. The highest performance device sells for $\$ 2355$ (1 to 9). The graphics board includes a $32-\mathrm{MHz}$, 32-bit Texas Instruments TMS34020 $\mu \mathrm{P}$, a 1-Mbyte video RAM, an X. 11 window server, a 4-Mbyte dynamic RAM, a $135-\mathrm{MHz}, 8$-bit/pixel color look-up table, a hardware cursor, and an $1180 \times 800 \times 8$-bit, 256 -color RGB output. Price is $\$ 2650$ (1 to 9).
-by Fran Granville Motorola Semiconductor Products Sector, Phoenix, AZ, (602) 655-5734.

Circle No. 484
PEP Modular Computers, Scottsdale, AZ, (602) 483-7100. Circle No. 485

Hitachi sticks another feather in its KAP

Hitachi's H8/3434 IKAP (for integrated keyboard and power management) II is not just your usual keyboard controller. Designed for high-end portable computers, the device provides an interface for an external keyboard, a mouse, and other input devices. Like most other integrated keyboard controllers, the IKAP-II can suspend and awaken the CPU and peripheral devices. Besides handling power management, the device's A/D converter
feeds back information pertaining to a with one VM30 costs $\$ 4990$; one with two VM30s costs $\$ 6295$. Adding a Spanceiver mezzanine costs $\$ 690$; an AutoBahn backplane costs $\$ 590$.

PEP also announced two boards: the VM42A single-board computer and the VGPM-32 graphics subsystem. The VM42A offers a choice of $\mu \mathrm{Ps}$: a 40MHz 68 LC 040 or 68 EC 040 or a $50-\mathrm{MHz}$ 68040. It also includes a $25-\mathrm{MHz}$

Get a sample of reality.

Looking for analog confidence in a digital oscilloscope? Tektronix' TDS 350 sets the standard with Digital Real Time. ■Its

High-end digital features. Each model features over 20 automatic measurements.

Continuous update for hands-free opera- incredible one gigasample/ second sampling delivers reallife capture like never before-

One Point
CAPTURED. CAPTURED. Single event
CAPTURE USING Equivalent Time SAMPLING.
$20 \mathrm{MS} / \mathrm{s}$ 100 MHz DSO

Real Life Capture. Single event CAPTURE USING DIGITAL REAL
TIME. $500 \mathrm{MS} / \mathrm{s}$ 100 MHz DSO. both for single shot or repetitive events.

Select peak detect for slow events, or push the scope to its full 200 MHz bandwidth - with
no aliasing. $=$ And, like the entire TDS 300 family, the TDS

tion. Four acquisition modes and video trigger-perfect for tailoring the display. And a communication option for hardcopy
mance: under \$4000.

Analog look and feel.
The TDS 300 family is simple and intuitive; just like your trusty analog scope. Even the digital interface is simplified with on-screen

There's a TDS $\mathbf{3 0 0}$ Series scope for every application. And every budget. to most printers, or to
icons. You may never have to crack open
the instruction manual!

send/receive waveforms and setups. Get real. For more real-time benefits of the TDS 300 family, call your authorized Tektronix distributor
battery's remaining charge and charge rate. The converter performs this battery management using a mechanism based on a standard that Intel and Duracell proposed.

To facilitate design efforts, the device comes with 32 kbytes of on-chip flash memory. The memory saves time and money by eliminating the need for either component swaps or an external, nonvolatile memory device for keyboard BIOS storage. After you debug the code, you can replace the flash memory with less expensive mask ROM or one-time-programmable (OTP) memory (H8/3437). Along with Hitachi, Cygnus Support and Green Hills Software offer a set of hardware- and soft-ware-development tools, including an in-circuit emulator, a C compiler, an assembler, and a simulator/debugger. The flash and OTP versions of the IKAP-II cost $\$ 36$ and $\$ 23.75(25,000)$, respectively.-by Markus Levy
Hitachi America Ltd, Brisbane, CA, (800) 285-1601, ext $21 . \quad$ Circle No. 486

VITA considers 320-
 Mbyte/sec packet bus

A task group of VITA (VFEA International Trade Association) has begun defining the electrical and mechanical layers for Skychannel transfers across the VME P2 backplane. Skychannel is a 64-bit, 320-Mbyte/sec packet bus, which Sky Computers developed and proposed to VITA as a standard VMEbus interface. Designed for large multiprocessor systems, it provides 16 terabytes of globally shared memory.
-by Gary Legg
Sky Computers Inc, Chelmsford, MA, (508) 250-1920.

Circle No. 487

Feature-packed 80C51-type μ C includes 10-bit ADC

The Philips 8XC576, an 80C51 derivative, is a highly integrated controller with a Universal Peripheral Interface and an ADC with 9 -bit accuracy. The IC's designers reduced the parts' irradiated noise to ease compliance with FCC standards. Though the IC's EMI/RFI emissions depend on the
application, the company claims that the 8 -bit $\mu \mathrm{C}$ has reduced emission more than 20 dB in some designs. Additional features include: 8 kbytes of ROM/ EPROM, 256 bytes of RAM, three 16 -bit counter/timers, a programmable counter array, an on-chip watchdog timer, analog comparators, enhanced UART, two PWM outputs, power and oscillator failure detection, user-programmable outputs, and Schmitt trigger inputs. You can order the IC in two versions: 83 C 576 with ROM and 87C576 with EPROM or one-time-programmable ROM. Packaging options include 40-pin DIPs and 44-pin LCCs and QFPs. $\$ 4.90$ (5000).
-by Anne Watson Swager
Philips Semiconductors, Sunnyvale, CA, (408) 991-5207. Circle No. 488

Modem chips ease international compliance

Recognizing that the telephone systems of many nations differ in their connection, signaling, and electrical requirements, Cirrus Logic has created the CL-MD1414UN modem chip-set series. These devices use external controller software to conform to countryspecific signals such as dial tone, busy, and ring. They also handle special requirements, such as call-progress monitoring and blacklisting.
The modem chip sets comprise a memory device and two additional parts: a DSP and a sigma-delta analog front end. Code for the DSP resides in the memory, which can be flash, EPROM, or ROM, and controls the set's compliance to a country's standards. Cirrus offers code for France, Germany, the United Kingdom, and Japan.
The devices provide a 14.4 -kbps data throughput and support V.32bis, V. 42 error correction, V.42bis data compression, and all fallback data modes. The family has two members: a universal version (MD1414UN) and one with an on-chip PCMCIA interface (MD1414- UNP). The devices cost $\$ 50$ (1000) each, and samples will be available in August. The company has scheduled production for September.
-by Richard A Quinnell
Cirrus Logic, Fremont, CA, (510) 226-2037.

Audio ICs employ DSP

Expanding its PC chip-set business into peripheral devices, Opti Inc is introducing a series of ICs for audio and communications control. The series includes a 16 -bit audio controller, a 32-bit audio and communications controller, and a DSP engine for wave-table audio synthesis. Opti's Media Chips subsidiary designed all three devices, which are sampling now.

The 82C929 16-bit audio controller (\$11) provides a Sound Blaster- and Windows Sound System-compatible digital audio processor, along with interfaces to the MPU-401 and OPL2/3/4 audio synthesizers. The device also includes ISA bus and CDROM interfaces with enough drive capability to eliminate the need for buffers. The device offers softwareprogrammable address, IRQ, and DRQ registers, allowing a jumperless design, and has several power-down operating modes to facilitate battery operation.

The 82C950 (\$42) DSP-based audio and communications processor operates with AT\&T's DSP3207. The processor provides entertainment and business audio capability using wavetable synthesis. It also provides audio communications functions, including telephony, $14.4-\mathrm{kbps}$ fax/modem, speaker-phone, speech-I/O, and audioencoding/decoding functions. The soft-ware-programmable CD-ROM interface allows the device to handle a variety of standard and proprietary interfaces.

The 82 C 940 ($\$ 35$) comes with two ROMs and provides wave-table synthesis for music and sound generation. It produces 32 simultaneous voices with a 256 -level attack-decay-sustain-release envelope. It also offers independent left- and rightchannel volume control, a 4-level pedal sensitivity, and frequency interpolation. The device uses compressed audio samples in its wave table, allowing its internal 2-Mbyte sample RAM to hold the equivalent of 8 million samples.
-by Richard A Quinnell Opti Inc, Santa Clara, CA, (408) 9808178, ext 850

Circle No. 490

he wants a single power supty

Too bad he didn't tell you

where to find the op amps.

THE LEADER IN PRECISION OP AMPS IS ALSO THE LEADER IN SINCLE-SUPPLY OP AMPS. (NOW YOU KNOW WHO TO CALL.)

\squaref you're looking for a singlesupply op amp, it makes sense to check Analog Devices first.

Not only do we offer
 petitor - we also offer the

	SINGLE-SUPPLY AMPLIFIER GUIDE (A PARtial listing)														
	Part Number			3 V	5 V	12 V	$\pm 15 \mathrm{~V}$	Rail-t	0-Rail	Vos	e noise	I Out	I Sup	GBP	Key Feature
	Single	Dual	Quad					Input	Output	($\mu \mathrm{V}$)	($\mathrm{nV} / \mathrm{/} / \mathrm{Hz}$)	(mA)	(mA)	(MHz)	
OP	113	213	413		-	-	-			75	4.7	± 40	1.75	3.4	Lowest noise and drift
OP	183	283		-	-	-	-			1000	10	± 25	1.5	5	5 MHz from +3 to +36 V
OP	90	290	490	1.6	-	-	-			150	60	+13/.7	0.015	0.02	Precision micro power
OP		291	491		-	-		-	-	700	21	± 10	0.35	3	Low power R-R I/O
OP		292	492		-	-	-			800	15	± 8	1.4	4.5	Low cost
OP		295	495	-	-	-	-		*	300	45	± 18	0.15	0.075	Accuracy and output drive
AD	820	822		-	-	-	\bullet		-	400	16	± 30	0.8	1.9	FET Input
SSM		2135			-	-	-			1000	4.7	± 40	1.75	3.5	Excellent for audio
A 489					-	-	-			150	25	± 15	0.7	0.3	Easy-to-use +5 V inst. amp
ADE				*	-	-		$>$		250	250	15	0.23	0.1	Low cost diff. amp

best performance in
every category

MORE AMPS...MORE CHOICES

So finding the exact single-supply
amp you need has never been easier.
Choose from low power amps
with rail-to-rail I/O. Precision
amps with the lowest noise and
drift. High-speed amps featuring 5 MHz

Low cost dift amo

We know the right time to cross over from 4 Mb to 16 Mb DRAMs.

It's when you can get access times as fast as 50 ns .
A greater than four-fold drop in power consumption.

Plus, our 1Mx16 with self-refresh minimizes power consumption in standby mode, making it ideal for today's PDA applications. And our 3.3V 1Mx16 DRAM gives notebooks power to go.

And greatly increased design flexibility with byte-wide and word-wide organizations.

Which happens to be right now, with Toshiba.

For starters, we can help you save substantial

Organization	Refresh Rate	Access Time $(n s)$	Package
$1 M X 16,3.3 \mathrm{~V}$	$1 K, 4 K$	$70 / 80$	SOJ, SOP
$1 M X 16,3.3 \mathrm{~V}$	Self-Refresh	$70 / 80$	SOJ, TSOP
$1 M X 16,5 \mathrm{~V}$	$1 K, 4 K$	$60 / 70 / 80$	SOJ, TSOP
$1 M X 18$	$1 K$	$60 / 70 / 80$	SOJ
$2 M X 8$	$2 K$	$60 / 70 / 80$	SOJ, TSOP
$4 M X 4$	$2 K, 4 K$	$50 / 60 / 70$	SOJ, TSOP
$16 M X 1$	$4 K$	$50 / 60 / 70$	SOJ

Naturally, all Toshiba DRAMs come with backward compatibility to the 4 Mb generation, access times of 60,70 and 80 ns , and a wide variety of SOJ and TSOP package options.

And they all combine
board space by replacing four 1 Mx 4 parts with one 1Mx16 part.

Our 1Mx36 and 2Mx36 SIMM modules utilize 1Mx18 DRAM in place of 4 Mb DRAMs, and fit
to deliver maximum design flexibility.
But that's what you always get with Toshiba.
Because by staying in front of memory technology, we keep you in front of your competition.

go to great widths to offer you design flexibility.

just right into today's power-conscious systems.
And for your next generation of portables,
Toshiba's 2 Mx 8 organizations are the best way to provide 8 MB of base memory.

For more information, or to receive our DRAM specification guide, just call 1-800-879-4963.

And we'll help widen your sphere of influence.

Think if you've seen one relay and you've seen them all? Take a closer look at Omron relays, and you'll find real value. The bottom line value of Omron's superior technology coupled with some of the most extensive customer support services in the business. Find, for instance, our new G6R and you'll discover a relay twice as small as previous models. One that allows for smaller circuit board requirements, leading to smaller products, and the kind of treasure that ultimately returns lower product costs. The G6R also meets or exceeds all major international standards. But the real value of Omron is our extensive customer support services. Real treasures like: Designed-in features to meet your requirements, Quality testing and that give tremendous value by and administrative costs. So if you take a closer look at Omron. custom stocking programs. Benefits reducing your application design think all relays are created equal,
WE HAVE the future in control. Call us at 1-800-62-OMRON.

LCD Proto Kit

Everything you need to start your LCD application create complex screens in just a few hours!

Kit also includes:
Power supply provides +5 v and Gnd for

(\$595 pre-assembled \& tested)
*The CY325 CMOS 40 -pin DIP and 44 -pin PLCC LCD Controller IC are available from stock @ \$75/singles, \$20/1000s .
CyberneticMicroSystems
Box 3000 - San Gregorio CA 94074 Tel: 415-726-3000 • Fax: 415-726-3003

Hyundai Sticks

Hyundai Eliminates Glue Logic.

The zero TTL solution from Hyundai builds all the logic right onto the chip. There's not a single extra part that needs to be "glued" on.

It's the answer that gives you low cost, high reliability, low parts count, and more features. It's the answer you would expect from a top-rated semiconductor manufacturer with its own research, development, and fabs. It's the answer you would expect from the company certified to ISO 9001 standards.

Hyundai sticks to the job.
We're glued to the idea of meeting the needs of the crossfunctional buying team. We give the engineer better performance.

We give manufacturing high quality, readily obtainable parts at the best price and delivery. We give management the broad support required to build a longterm strategic partnership.

We're stuck on the idea of giving you support today and tomorrow. Today, with the 486 VL-bus chipset. Down the road, we'll continue to offer full management and engineering support when we introduce PCI chipsets for the 486 , multiprocessing Pentium, and PowerPC.
The 486 VESA Chipset.
There are three pieces in the

Without Glue.

chipset, the HYF82481, the HYF82920 VESA Controller, and the HYF822930 Address Buffer. The chipset supports 386DX, 486SX/DX/DX2/DX4 and P24T CPUs with external clock speeds up to 50 MHz , and up to 3 VESA local bus master slots. Cache sizes can range from 32 K to 1 M , in selectable write-through or write-back configurations. The chipset currently supports up to 64 MB of memory, in 4 banks of 256 K , 1 M , or 4 M DRAM.

Hyundai specs and prices match or beat any other manufacturer. Sample quantities are available promptly on request.

Hyundai For Total Support and Total Commitment.

- The best price/ performance solution.
- VESA Bus Master support.
- One-step solution (Chipset+DRAMs+Cache SRAMs). - High reliability, compatibility, and quality.
- Hyundai as a supplier means stable supply
and quick delivery.

New data sheets.

Yours for the asking. Please phone, fax, or write for your copies today. Evaluation boards are available for immediate delivery. Phone (408) 473-9274. Fax (408) 473-9370. Hyundai Electronics America, 166 Baypointe Parkway, San Jose, CA 95134.

Committed to your Success.

With the growing demand for wireless communication products, you need an IC supplier with devices that know no boundaries.

That's exactly what you get with our wireless communcation ICs. They are leading-edge, highly integrated devices that make it easy for you to design smaller, higher performance products.

It's possible because our ICs are designed to meet all the key standards of the world, including the standard of excellence.

Which is why designers from all parts of the world choose us. They benefit from our years of experience delivering innovative ICs for voice and data communications.

To deliver the most innovative wireless communication ICs, we have to live up to everybody's standards.

These ICs include both analog and digital solutions in our powerful bipolar and QUBiC BiCMOS processes. Plus low-voltage, low-power RF and baseband ICs so your designs run longer on fewer batteries.

And we offer one of the world's smallest packages - our SSOP (Shrink Small Outline Package). With it you can design products that are more portable than ever.
So before you map out your next wireless design, be sure to include the highest standard in integrated circuits.
Then you'll see why we have a world of innovative ICs on hand for your wireless designs.
USA, call:1-800-447-1500 ext. 1010DN Europe, fax: 31-40-724825
Asia Pacific, fax: 886(2)500-5888

Semiconductors
PHILIPS

EDN-EDITORIAL

Let's dump MIPS/W

The latest marketing figure of merit for μ Ps, MIPS/W, is a poor figure of merit, and we should dump it now. It's not like miles/gallon. I know of no engineers who actually select $\mu \mathrm{Ps}$ based on a MIPS/W rating. That's because the single figure of merit masks two important figures of merit that you really want to know: processing power (expressed in million instructions per sec at a certain clock rate or some other way) and power dissipation (expressed in watts).

Whenever you see a figure of merit that masks important characteristics, you have to wonder what the vendor is hiding. Now, maybe the group that cooked up MIPS/W was really looking for a way to simplify the task of selecting a $\mu \mathrm{P}$, but I'm jaded enough to believe that something darker was afoot.

If I had a very low-power $\mu \mathrm{P}$ that didn't run very fast, I'd probably be
very interested in a figure of merit like MIPS/W, too. Similarly, if I built a screamer of a $\mu \mathrm{P}$ that could fry eggs to boot, my processor's MIPS/W rating would look OK. Further, it has become well-known that you can greatly enhance your MIPS/W rating if you rate the processor at impossibly low capacitive loading levels. These "cooked" ratings serve only to mislead.

In the real world, applications have a certain amount of processing to do and a certain amount of power available. Those two parameters define the solution space and a set of processors that can do the job. The single MIPS/W rating does not tell you whether a processor falls within that solution space.

While you can sound hip and knowledgeable by using New Age figures of merit, such as MIPS/W, you don't get any closer to a good design.

Steven H Leibson Editor-in-Chief

Jesse H. Neal

Editorial Achievement Award 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

American Society of Business Press Editors Award 1991, 1990, 1988, 1983, 1981

Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400 8,N,1. From the Main System Menu, enter ss/soapbox and select W to write us a letter.
the fact that We make

500 DIFFERENT AMM HFIERS

Probably polsh yitany ch.

NOBODY DOES AMPLIFIERS LIKE ANALOG DEVICES

Your design specs are tight. Not to mention your cost target and time to market window. So

The dual OP295 is the industry's bighest accuracy,lowest power true rail-to-rail amplifier for single-supply applications.
you call the company that not only has the industry's broadest line of high performance op amps, but also the absolute best part in every category. High speed, precision, low noise, instrumentation, single supply and low power. Drop-in solutions and robust designs. And all at competitive prices. Which sounds pretty good in these days of shrinking boards and shrinking budgets.

With a combination of bigh output current, excellent AC performance, and unlimited cap load drive, the low cost $A D 817$ is ideal for demanding video applications.

The high speed, low power AD817 offers 50 MHz unity gain bandwidth, $350-\mathrm{V} / \mu \mathrm{s}$ slew rate and needs only 7.0 mA supply current. The AD620 is the first
monolithic instrumentation amp that outperforms traditional discrete designs using three op amps and associated resistors, yet costs less. The OP295 single supply, dual op amp is the industry's highest accuracy, lowest power true rail-to-rail amp. The amazing AD8001 delivers 800 MHz bandwidth on only 50 mW of power.

The AD620 bigh-accuracy instrumentation amplifier provides gain from 1 to 1,000 and replaces discrete designs with less overall error, board space and cost.

So you get performance and value. Plus our worldwide manufacturing capabilities, technical documentation, applications engineering support and problem solving. Put another way, exactly the right amplifier at exactly the right price so your design works exactly the way you want. Please call1-800-ANALOGD (262-5643) for more information.

Analog. Digital. Solutions. CIRCLE NO. 83

Products for the art of fiber design.

Whatever your fiber work of art, we've got the component solutions you're looking for. Active devices. Connectors and assemblies. Couplers, multiplexers, and attenuators. Fiber management hardware, and more. Just the help you
 need to build, maintain, control, and reconfigure your fiber system. And all our products are designed to simplify and speed the job.

Our data link modules are available in FDDI, ATM, and Fiber Channel versions, with industry-standard footprints and connector interfaces. Our couplers, attenuators, WDMs, and switches offer unique characteristics and a range of performance levels to meet your most demanding transport
challenges. We offer a complete selection of fiber connectors-including advanced "crimp" styles that terminate in under two minutes with no epoxy, no risk of improper curing. And our fiber management systems accommodate any need you can imagine - providing simplified access and control of complex network configurations.

AMP is dedicated to the future of fiber-with over 500 people working to develop and produce the industry's best optical interconnection systems. From the circuit board through the network, find out more about what we do, and what we can do to help. Just call.

AMP is a trademark.

Three DSP RTOSs are ready to merge with Windows

DAVID SHEAR, Technical Editor

> DSP-based virtual subsystems allow common hardware to assume many identities.

In an ideal world, all Windows applications would work with all available hardware. Further, Windows applications would be able to take advantage of DSPs and their real-time operating systems (RTOSs). You could design a DSP-based subsystem that would provide different functions to different applications simultaneously.

When you came up with a new and improved DSP-based device, existing applications could start using it as soon as it was installed. You would not have to supply different drivers for each application or be forced to "emulate" a competing product because more applications support it.

This ideal is not yet reality, but Microsoft and DSP RTOS vendors are working toward it. The first step in reaching this goal is to create a standard method for Windows-based applications to interact with DSP-based hardware. According to Microsoft, the company's proposed DSP resource-manager interface (RMI) "provides Windows applications access to DSP board hardware. The DSP interface is message-based and defines a common structure for messages and a programming model for communication between host device drivers and their corresponding DSP tasks."

Much of the beauty of Windows is that it isolates hardware from software. Windows applications make calls to subsystems via high-level application programming interfaces (APIs). Drivers within the API perform error-checking and translation functions on the messages and then move the messages between the application and the hardware.

Today, the APIs interact with hardware-specific drivers that directly control the hardware. The hardware can be DSPbased and still work within this framework. In fact,
many modems and sound cards are moving to DSP-based designs. But when you wish the DSP to take on more than one function at a time, this approach falls short.

For example, a PC user may want to listen to MIDI background music, while receiving a fax, while inputting voice data into a spreadsheet, and while the PC is converting a voice-mail message into text-based electronic mail. You can do all of this today, but you need a separate subsystem for each task.

The DSP RMI provides another layer in the software architecture. This layer isolates the DSP hardware and allows a single DSP-based board to perform multiple tasks (Fig 1). When an application requests a DSP-based function, the DSP RMI interacts with the RTOS on the DSP hardware. The RMI first determines if the new DSP function fits within the unused resources of the DSP board. It then loads the new function and handles the messages between the application and the DSP.

This extra layer of isolation allows Win-dows-based applications to work with any DSP hardware that conforms to the DSP RMI standard. The message-based DSP interface defines common structures and a

DSP RTOSS

programming model for communication between host device drivers and their corresponding DSP tasks.

The DSP driver is responsible for loading the DSP RTOS and DSP task to the hardware. Once the task is running, the DSP driver moves data and messages between the host PC and the DSP board. The DSP driver on the host and the DSP RTOS on the DSP hardware are not aware of the content of the messages and data. They just ensure that the multiple data and message streams get to the correct device driver on the host and to the appropriate task on the DSP hardware.

Three DSP RTOSs are working toward this model: VCOS from AT\&T, Mwave from IBM, and Spox from Spectron Microsystems. VCOS works with AT\&T's DSP3200 family of 32-bit float-ing-point DSPs. Mwave works with the IBM's Mwave 16-bit fixed-point DSPs. Spox works with Analog Devices' 2100 family of 16 -bit fixed-point devices and 21000 family of 32 -bit floating-point devices, Motorola's 56000 family of 24 bit fixed-point devices and 96000 family of 32 -bit floating-point devices, and Texas Instruments' TMS320C5X family of 16 -bit fixed-point devices, and TMS320C3X and TMS320C4X family of 32-bit floating-point devices.

Though these DSP RTOSs are true multitasking operating systems, they operate in an environment different from that of a typical embedded system. In a typical real-time system, you have awareness of the tasks the system must perform, how often the tasks must run, and the required completion times of the tasks. When designing the system, you use a method that meets the needs of the system. In many cases, a simple round-robin scheduler is enough. At other times, you select multiple priority levels and use a preemptive scheduler.

In the Windows/DSP case, on the other hand, you don't have this awareness. You can't predict which tasks the DSP will run and what the required priorities will be. For example, the DSP may be providing just a single function, such as a modem, or several simultaneous functions, such as a modem, compression, fax, and text to speech. You cannot predetermine the mix.
Therefore, it is critical that the DSP RMI accept only those tasks that can work together. The DSP RMI must also
guarantee that the tasks operate in a fashion that ensures that each task continually meets its start and completion times.

Each of the three DSP RTOSs addresses this requirement in a different way. All three share in requiring that each function must have a header. This header provides the worst-case cycles the function requires, the completion time, the memory requirements, the rate of execution, and other data the DSP RMI requires to fully characterize the function.

When an application requests a function from the DSP RMI, the DSP RMI evaluates the header file, checks what is already running on the DSP, and then informs the application if the new function can fit within the remaining resources of the DSP. If the function can't fit within
those resources, the application must tell the user that other DSP-related applications must first be turned off. This graceful failure mode ensures that the applications don't swamp the DSP.

Two basic types of tasks are available: real-time and nonreal- time. Realtime tasks are those that have hard start and completion times, such as fax and modem functions. A fax function's inability to receive incoming data will adversely affect communication.

Nonreal-time tasks are those that can wait some amount of time; their completion times are not hard. Functions such as JPEG still-image compression and V. 42 bis compression can work as nonre-al-time tasks. It won't be long before some clever programmers realize that a DSP within a PC makes a wonderful coprocessor. By having access to the

Fig 1-The proposed interface between a Windows-based application and the DSP hardware provides layers of drivers to isolate the application from the hardware. Thus, an application could run on different DSP hardware without modifications.

The Winning Hand

IDT's QSOP... Your Ace In The Holet

IDT adds the Quarter-Size Outline Package (QSOP) to complete its winning hand of surface-mount packages for its high-speed FCT Logic family. With products available in TSSOP, QSOP, SSOP, and standard SOIC packages, IDT now offers the industry's widest line of high-density packaging for both Octal and Double-Density logic.
Dramalic Spase Savings! At half the length and width of industry standard SOIC packages, the new QSOP package is the most compact Octal package available. In addition to the area savings, the new package is only 0.0645 inches high, making it ideal for low profile applications.

IDT's Logic family is the highest performing, lowest power bus interface solution. Available in a wide variety of 5 V and 3.3 V functions, and speed grades from 6.5 ns to 3.2 ns (t_{pd} max), IDT's FCT Logic family supports all levels of performance at competitive prices.
Quill, Low-nioise Oulpuls
IDT's FCT Logic is offered in a variety of low-noise output drive configurations to minimize ground bounce and to match Compact IDT FCT Logic Packaging

Package	Ordering Code	Pin-Pitch (mm)	$\begin{gathered} \text { Area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { Length } \\ & (\mathrm{mmin}) \end{aligned}$	$\begin{aligned} & \text { Widith } \\ & (\mathrm{mm}) \end{aligned}$	Height (mm)
$\begin{aligned} & \text { osop } \\ & 20-\mathrm{pin} \end{aligned}$	Q	0.635	52.1	8.7	3.9	1.6
$\begin{aligned} & \text { ssop } \\ & \text { 20-pin } \end{aligned}$	PY	0.650	56.0	7.2	5.3	1.9
$\begin{aligned} & \text { soic } \\ & 20 \text {-pin } \end{aligned}$	S0	1.270	133.1	12.8	7.5	2.5
TSSOP 48-pin	PA	0.500	102.1	12.6	6.2	1.1
$\begin{aligned} & \text { SSOP } \\ & 48 \text {-pin } \\ & \hline \end{aligned}$	PV	0.635	164.4	15.9	7.5	2.6

(800) 345-7015 • FAX: 408-492-8674 ASK FOR KIT CODE 3151

specific design requirements.
Output configurations include: standard TTL-compatible high drive and very low-noise balanced drive with source terminating resistors.

Call or FAX us today and receive a free IDT calculator, QSOP cross reference guide, sample package card, Logic Design Guide and Logic Data Book.

Integrated Device
Technology, Inc.
EDN June 23, 1994 • 31

DSP RTOSs

DSP on a nonreal-time basis, these programmers will use leftover DSP cycles without impacting the real-time tasks.
Each DSP RTOS is using a different method to provide resource management and ensure that as much of the DSP's resources are available as possible (Fig 2). AT\&T's VCOS uses a frame-based block-processing method. Each frame is a unit of processing time. You can choose any period, but 10 msec is typical. VCOS executes each task on the real-time execution list once every frame. Nonrealtime tasks execute during the frame time the real-time tasks do not use.
When developing a function for VCOS,
you have to partition your code into pieces that fit within the model. A single task cannot take longer than the period of the frame. You must break your tasks into smaller chunks, so that they not only fit within the frame, but also leave enough time for other tasks to run.

Mwave uses a kernel that comprises a preemptive dynamic deadline-scheduling algorithm. A periodic interrupt suspends operation of a task and provides control to the kernel. The kernel then determines which task should next run. The task it selects is the one whose start time has arrived and whose deadline is earlier than that of any other task.

You can see Mwave's dynamic-scheduling nature by looking at the linear multitasking plots at the bottom of Fig 2. The order of task execution changes as each of the tasks interacts with the scheduler. In effect, Mwave dynamically arranges the priorities of each task at each time tick.

Mwave also implements a cycle counter to verify that each task stays within the header's processing requirements. If a task runs past its maximum cycle count, Mwave posts an error to the Mwave manager with a pointer to the current task. If the designer of the task miscounted the maximum cycle count,

Fig 2-The three DSP RTOSs use different scheduling methods to ensure that the DSP hardware executes each task within its required time constraints.

The World's Most Accurate A/D for Low Level Signals

20-Bit Photo Sensor A/D

DDC101 is a 20 -bit, current input A/D converter designed for direct connection to photodiodes and other low level current output devices. It replaces an amplifier circuit, programmable-gain amplifier, and high resolution A/D converter-all on a single, monolithic chip. Use DDC101 for photosensor digitization, medical analyzers, data acquisition systems, chemical analyzers, and infrared pyrometry. It's the closest thing to digitized light!

Light Years Ahead Architecture

DDC101's patented delta modulation architecture accurately digitizes a current signal. Using digital integration, oversampling, digital filters, and DSP, it improves noise and linearity as the input level decreases. Or, as the input signal gets smaller and smaller, DDC101 gets better and better-with an input signal of 0.1% full scale the maximum linearity error is only 0.00028% FSR! Its conversion rate is up to 15 kHz . It is the world's most accurate A / D for low level signals!

DDC101 Key Specifications

- Resolution .20-bit
- Noise..6ppm, rms
- Conversion rate ... to 15 kHz
- Accuracy at low level2.5ppm of FSR, (max)
- Power dissipation... 170 mW
- Digital error correction..CDS
- Packages...-28in DIP and 24-pin SOIC
- Demo Board with part (\$350.00)
- From \$18.50 in 1000s

See the Light...FREE Samples!

Try the light years ahead solution! Get your FREE sample and detailed data sheet by calling 1-800-548-6132. Or, contact your local sales rep for more information.

DSP RTOSs

Mwave identifies the offending task.
Spox is a full preemptive multitasking RTOS for general-purpose embeddedsystem use. For such an RTOS to work properly, you must assign each task an appropriate priority. As stated, a Windows/DSP system doesn't allow prediction of which tasks the DSP will run.

In this case, the Spox DSP RMI must assign the priorities to each task running on the DSP. Spox uses a ratemonotonic scheduling algorithm to assign appropriate priorities each time you add or delete a task. When you add or delete a task, the scheduling algorithm arranges the priorities of all tasks currently running on the DSP. As such, the absolute priority of each task may actually change as you add tasks to and delete tasks from the DSP.

As you develop DSP-based products to run in the Windows environment, you should minimize the amount of real-time tasks you use. The amount of real-time tasks each function requires is very important. A sloppily designed function might simply put all of its processing requirements in real time, consuming a valuable and often-limited resource.

Also, if you design a function so that there is a large difference between the worst-case cycle or memory requirement and the average for that function, then fewer real-time functions can run. The

FOR FREE INFORMATION...

For free information on the DSP real-time operating systems discussed in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.
AT\&T Microelectronics
Allentown, PA
(800) 372-2447, ext 886

Circle No. 334

IBM

Chicago, Il
(800) 426-0181, ext 500

Circle No. 335
Spectron Microsystems
Santa Barbara, CA
(805) 968.5100

Circle No. 336

DSP RMI uses worst-case numbers to determine if a function fits within the DSP resource. If a function only rarely uses its worst-case numbers, the DSP RMI still reserves resources for it. Therefore, the DSP does not run at full capacity.

A well-designed function minimizes its real-time requirements and levels its real-time operation so that the worst case is close to the average. No one appreciates a function that hogs much of the DSP. On the other hand, one that only slightly impacts the valuable real-time resource allows many functions to run on the DSP at once. End users quickly learn which functions are properly designed.

The DSP RMI is still in the proposal stage but is expected to be a solid standard by the end of this year. In the end, everyone will benefit. It will give application developers access to new subsystem options. It will give users the ability to integrate new DSP-based products easily. And it will mean that designers have to create only one driver to run DSP-based products within Windows.

Article Interest Quotient
 (Circle One)

High 595 Medium 596 Low 597

LOoking AHEAD

The future for DSPs in the PC world is very bright. More and more, Windows applications will begin using virtual subsystems provided by one or many DSPs.

Detractors of DSP often say that if the DSP were so useful, it would already be on the motherboard. They also say that the host $\mu \mathrm{P}$ is getting so powerful it will be able to take on the DSP functions without requiring a separate DSP chip.

The response to these critics is: No, not many PC manufacturers have integrated the DSP onto the motherboard. But it doesn't make much sense yet. Some PC manufacturers have placed a DSP on the motherboard, but these are narrow-market PCs that require specific functions of the DSP.

There are just too many DSP options right now. You have not only many DSPs from which to choose, but also many systemdesign options. You may even wish to have more than one DSP to provide the horsepower you need.

Standard access to DSP-based boards is a major roadblock to their use. The upcoming DSP resource-manager interface is a step to remove this blockage. Also, applications that can use the power of the DSP are just beginning to emerge. Before the move to multimedia, the DSP had little reason to be in a PC.

Those who say the host $\mu \mathrm{P}$ will absorb the capabilities of the DSP just don't understand what a DSP really is. Placing a multiplier on a chip does not make a DSP. You also need complex multiple-function instructions for parallel operation, advanced addressing, multiple data paths both on and off the chip, and incredibly fast I/O data rates. Many DSP subsystems will have local buses to allow unimpeded access to their memory and I/O. Just trying to move data around the system at similar speeds would consume the resources of a host computer system.

But to see the hardware's future, look at the software. Many years of effort have gone into creating very fast and optimized code for use on DSPs. Even if the hardware were fast enough, it just doesn't make sense to recreate all of this effort to move the software onto the host $\mu \mathrm{P}$.

Besides, few systems have more host processing power than they need. Sure, the processing power of the host may occasionally exceed the need-for a while. But software has a way of bringing hardware to its knees. The host $\mu \mathrm{P}$ will be busy enough just trying to keep up with what applications ask it to do, let alone take on what the DSPs provide.

INNOVATIONS INANALOG FROM NATIONAL

75 mV : A little powver takes you a long way.

The world's lowest power 1 MHz 12-bit ADC:
Designers of high-end instrumentation and communications systems no longer have to rely on

Maximum power dissipation of just 75 mW at $\varsigma \mathrm{V}$ provides the low power consumption needed to improve overall system efficiency ~ Fast sampling rate of 1 MHz is ideal for high-speed data acquisition ~ Patented EEPROM trimming architecture guarantees AC and DC specs unmatched in the industry: Gain error $= \pm 1$ LSB (max.), offset error $= \pm 1.25$ LSB (max.), INL $= \pm 1$ LSB (max.), DNL $= \pm 0.95$ LSB (max.), and SNR @ 100 kHz is 69.5 dB expensive, power-hungry hybrids to fulfill their high

Because nothing combines low power, high speed, and precision like National's new
interface save board space and test costs -Power-down feature increases battery life in portable instrumentation designs.

In oscilloscopes, signal analyzers, and data acquisition boards for test and measurement applications, National Semiconductor's ADC12062 simply does more. On less. 1000piece price (U.S.) starts at $\$ 29.30$.

5.5us: The world's fastest DAS flies from A-to-D.

The world's fastest 12 -bit data acquisition system: There are certain applications - diagnostic systems, portable instrumentation, industrial control where nothing short of a high-speed, low-power, fully integrated data acquisition system will suffice.

Fortunately for those applications, there's

National's high-speed, lowpower DAS is ideal for robotics and industrial control. nothing faster, more power-efficient, or more fully integrated than the LM12H454/8.
Maximum conversion rate of $5.5 \mu \mathrm{~s}$ (minimum
throughput rate of 140 ksps) -
The industry's lowest power
consumption: 34 mW ($50 \mu \mathrm{WW}$ in powerdown mode) ~ Mixed analog and digital technology creates a complete system on a chip, fully capable of providing stand-alone operation \sim High integration simplifies complex designs by reducing testing and debugging - Analog front-end consists of a self-calibrating 12-bit plus-sign ADC with sample and hold, a reference, and a four- or eight-channel MUX ~ Digital features include an eight-word instruction RAM, a sequencer, a 16 -bit timer, and a 32 -word FIFO "Watchdog" comparison mode provides quick ($1.4 \mu \mathrm{~s}$) threshold detection and alarm monitoring. Guidance and control. Medical instrumentation. Energy management. For applications that demand it all, the LM12H454/8 delivers. 1000-piece price (U.S.): $\$ 17.00$.

The ADC12062 offers the industry's best combination of power consumption, speed, and precision. The LM12H454/8 provides an unmatched mix of high speed and high integration. For more information, call 1-800-NAT-SEMI, Ext. 287.

25fA: Input current reduced to its lowest level.

$25 \times 10^{-15} \mathrm{~A}$ - The new standard in low input current op amps: In highly sensitive measuring equipment, there's no room for error. Which means there's no room for an op amp with excess input current. That's why National Semiconductor designed the LMC6001 to have the world's lowest guaranteed input current. Low enough to improve system accuracy in such applications as pH meters, medical analysis equipment, gas detectors, and various types of photodiode-based systems.

Guaranteed I_{b} of $25 f \mathrm{~A}$ (max.) at $25^{\circ} \mathrm{C}$ is 100% production tested ~ Low input offset voltage of $350 \mu \mathrm{~V}$ (max.) for increased precision

- Low voltage
offset drift of $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max.) \sim Increased dynamic range through rail-to-rail output swing \sim Low voltage noise ($e_{n}=22 n V / \sqrt{\mathrm{Hz}}$
@ 1 kHz) provides higher sig-nal-to-noise ratio than JFET input type electro-

With a low input current of only $25 f A$ (max.), the LMc6oor is ideal as a meter amplifiers preamp for current output transducers. ~ Low supply current of $750 \mu \mathrm{~A}$ (max.) is ideal for power-sensitive applications and minimizes heating effects on input current and offset voltage Available in plastic DIP \sim Designed and guaranteed for operation over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ - Available in A Grade (25fA), B Grade (100fA), and C Grade (1000fA).

The LMC6001 is exactly what you need for transimpedance amplifier applications. In 1000piece quantities, pricing (U.S.) starts at: A Grade \$8.50; B Grade - $\$ 5.15$; C Grade - $\$ 1.40$ (8-pin PDIP).

Versatile: High speed, high drive, low power.

The LM6181/2 and LMC6572/4: You no longer have to pay a premium for op amps that deliver solid, all-around performance.
LM6181/2: Single- and dual-current feedback amps for video, communications, and imaging systems -100 MHz unity gain bandwidth and IoomA of output current \sim No-hassle, one-chip solution eliminates output buffer ~ Differential gain of 0.05% and differential phase of 0.04° $2000 \mathrm{~V} / \mu \mathrm{s}$ slew rate and ς ons settling time (o.1\%) - Tight offset voltage (3 mV max.) and input bias current (Ib^{+}
$\left.=2.0 \mu \mathrm{~A} / \mathrm{Ib}^{-}=5.0 \mu \mathrm{~A} \max .\right)$
for precision needs \sim Fully specified for $\pm \varsigma \mathrm{V}$ and $\pm 15 \mathrm{~V}$ operation ~ DIP and soic. LMC6572/4: Provides guaranteed 2.7 V and 3 V single-supply performance for portables and mobile communications systems ~ Ideal for

interfacing

with 3.3 V digital logic regulated or unregulated supplies - Rail-to-rail output swing maximizes
S / N and dynamic signal range, providing an efficient interface to

3-volt analog: Fueling the portable wave.

Maximum performance on a minimum of power: The popularity of portability is rising fast. Portable computing, mobile communications, and handheld instrumentation designs need lowvoltage solutions that will reduce system size and extend battery life. That's why National is leading the way by offering high-performance 3 V analog products in data acquisition, power management, and amplifier ICs. Products that save power without sacrificing performance.

LM12L454/8 12-bit plus sign data acquisition system: Complete system on a chip with 106ksps throughput, 15mW (max.) power dissipation $(5 \mu \mathrm{~W}$ in power-
down mode), and all the functionality needed for stand-alone operation $~$ ADC12LO3O/2/4/8 12-bit plus sign A/D: Fastest 3V 12-bit serial A/D (maximum conversion time of $5.5 \mu \mathrm{~s}$) at 15 mW (max.) power dissipation ($40 \mu \mathrm{~W}$ in powerdown);
 configurable registers LMC6572/4 op amp: Low supply current of $40 \mu \mathrm{~A} / \mathrm{op}$ amp minimizes power consumption; guaranteed 2.7 V and 3 V single-supply performance; low input current increases accuracy LMC6482/4 op amp: Rail-torail input and output increases dynamic signal range at 3 v ; lower offset voltages and higher CMRR
 increases precision - LM2574/5/6 SIM-

PLE SWITCHER ${ }^{\circledR}$ power converter: First easy-touse power converter family with 3.3 V output and guaranteed system performance; requires

your portable designs - while reducing power le consumption. And all of them come with the from the original
leader in analog IC
technology. For pricing ower consumption and power dissipation -

LM4041 voltage reference:

Subminiature sotbox to your left or call the number below.
tem size; adjustable voltage option $(1.24 \mathrm{~V}$ to $10 \mathrm{~V})$ provides design flexibility.

All of National's 3 V analog solutions are designed to increase the per-
formance

Magnetics: Opto-ess chipset brings reliable power supplies offline.

The world's only 1 MHz magnetically coupled offline power supply chipset: For the first time, high-speed pulse magnetics replace opto feedback devices. The result is smaller, more efficient, more reliable switchmode power supplies. The reason is

National's LM3001/3101
offline power supply
chipset.
Two-chip
solution: LM3001 primary side driver and LM3101 secondary side controller:

Fast AC feedback provides quicker response than optos ~ Up to 1 MHz switching frequency enables the use of smaller inductors and capacitors.

LM3001: Accepts AC pulse feedback ~ 10 ns rise and fall times provides greater efficiency and fast response to faults - On-board oscillator manages chip start-up -2.5 A peak current drives MOSFETS at high speed ~ Dual-level current limit provides virtually fail-safe operation: Cycle-bycycle current limit offers fast current protection, while second-level current limit initiates complete shutdown in the case of a major fault.

LM3101: Generates AC pulse feedback ~ Pulse-width-modulator (PWM) provides master pulse width control $\sim \pm 2 \%$ voltage reference for highprecision control of output voltage - Trimmed onboard oscillator offers programmable frequency control $\sim 8 \mathrm{MHz}$ bandwidth error amp ensures fast, stable, easy loop compensation ~ Frequency shift for short circuit assures the best possible over-
load protection. 100-piece pricing (U.S.) starts
at: LM3001-\$1.85; LM3101-\$1.70.
\square

Dual: MPovver LDO does twvice the work.

The world's first dual micropower low dropout regulator: When it comes to extending battery life in portable applications, two regulators are better than one. Case in point: National's LP2956. Two low dropout regulators in one package make it possible to shutdown one system and save power, while keeping a second system active.

Low dropout voltage of 470 mV extends battery life - Low quiescent current of $170 \mu \mathrm{~A}$ reduces power consumption and power dissipation ~ In portable applications, the dual LP2956 shuts down inactive systems while maintaining continuous power for essential functions.

Independent, auxiliary low dropout regulator enables
and off as desired - Auxiliary comparator can be used for low-
battery detection, fault
detection, or as a reset signal to a microprocessor ~ Error flag for the main regulator indicates when
it has fallen out of regulation by more than 5%.
The LP2956 is the highest performance dual low dropout regulator available. It's the best thing to happen to your battery-powered designs since the batteries themselves. 100-piece price (U.S.): \$2.95.

If your design plugs into a wall socket, we've got your power supply chipset. If it runs on batteries, we've got your low dropout regulator. To get your free product sample kits, call

1-800-NAT-SEMI, Ext. 287. second load (up to 75 mA) to be driven while driving a primary load of up to

250 mA - Electronic shut-

03 ${ }^{\circ}$ тн: 60 watts never sounded as good as this.

The world's best sounding monolithic audio amplifier: See if you like the sound of this.

National's Lm3886t provides a higher standard of high fidelity, as well as maximum power with
maximum protection.
The 60-watt Lm3886T enables better, louder, longer sound in high-end audio applications like A / V surround sound receivers.

Lowest typical total har-
monic distortion (THD) from 20 Hz to 20 kHz at
25,40 , and 60 watts of continuous power pro-
vides the industry's best distortion/power rating

130мнг: High-speed LM1205 saves board space.

Complete broadband preamplifier system: When used with National's LM2419 CRT driver (see back cover), the LM12O5 130 MHz RGB video preamplifier replaces up to 36 components, compared to using standard preamps and discretes.

Provides the entire amplifier path

Features
Bandwidth 130 MHz
dC CONTROLS O-4V
video blanking yes
Channels 3
application high-res. displays required between the rear chassis input and the cathode for 1024×768 monitors ~ Each channel contains matched video amplifiers - Gated, singleended input and black-level clamp provide brightness control \sim Matched DC-controlled attenuators provide contrast control - DC-controlled sub-contrast attenuators provide white balance - All DC control inputs are

5.Ons: For a picture everyone can appreciate.

High-performance triple CRT driver for high-resolution monitors: Picture a device that provides resolution up to 1024×768 in color monitors while simplifying overall design. You're picturing the LM2419, National Semiconductor's triple 65 MHz CRT driver. Typical rise/fall time of 5 ns provides clean, sharp signal transition edges for highresolution images -65 MHz video bandwidth at 50 Vpp output swing with 8 pf load for a
image - Three drivers match red, green, and blue channels in one device \sim Available in industry-standard TO-220 molded power packages ~ Electrically isolated heat sink may be grounded for ease of manufacturing and improved RFI/EMI shielding ~ Pin-forpin compatible with LM2416, simplifying

The LM2419's $5 n s$ riselfall time provides clean, sharp signal transition edges for bigh-resolution images. upgrades - No low-frequency tilt compensation required. For direct cathode drive capability in VGA, SVGA, XGA, IBM and Macintosh monitors, nothing looks better.

For high resolution in color monitors, your choice is clear. Call 1-800-NAT-SEMI, Ext. 287

A DESIGN CONTEST FOR ENGINEERS WHO SEE THINGS DIFFERENTLY.

If conventional thinking drives you up the wall, order the Philips DS-750 development tool kit.
It helps you dream up great designs using our 8 -bit 8 XC 750 microcontroller. Including the design that could win you a hot new Camaro! For the low price of just $\$ \mathbf{4 7 5 0}$ (plus shipping), the Philips DS-750 gives you all the hardware, software and documentation needed to quickly build, emulate and debug 8 -bit designs using our 8 XC 750 . The 8 XC 750 is our powerful, low-cost entry into the full family of Philips 80C51 microcontrollers.

Together, they give you winning designs. Which is why you should be sure to
 enter the exciting Philips Dream Machine Design Contest. Just submit a design to us using the 8 XC 750 or any Philips 80C51 microcontroller derivatives by September 30, 1994. If it turns our judges on their heads, you could win the Camaro or a coloror monochrome laptop computer.

So turn it up. Use your credit card to order the DS-750 today. We'll also send you more information on this incredible design contest:
1-800-447-I500, ext. II20 DN
Co-sponsored by EDN

Interactive Vides
SECURE INFORMANON

Cellular Communicas
CONNEGTIVITY

Office Automation

INDUSTRIAL CONTRNV

We're ARMed to the teeth to jump start your embedded control designs.

Connect your design to VLSI's battery of ARM $^{\text {Tw }}$ silicon and software, and energize your system with the most power-efficient 32-bit RISC processor available today.

From a rich family of off-the-shelf controllers to user-configurable ASIC-based solutions utilizing the ARM core as an embedda- ble $\mathrm{FSB}^{\text {tw }}$ library element, VLSI gives you the flexibility to implement your ARM design exactly the way you want. Exactly the way you need. Nobody else can do that.

With the world's smallest 32-bit RISC chip, we bring you the highest MIPS/mA and lowest \$/MIPS ratios of any 32-bit RISC on the market. High performance and low power. 3 V or 5 V .

Our ARM products are charged by a set of tools that are easy to use. With a powerful real time multitasking operating system, and a graphical development environment that's fully symbolic.

Products and tools you can design with. Service and support you can depend on. And costs you can live with.

So don't wait to find out how VLSI's ARM solutions can boost your particular application. Call us today at (602) $752-6630$ or Fax us at (602) 752-6001.

We'll give you a real jump on your competition!

VLSI ARM: The Embeddable RISC Machine ${ }^{\text {TM }}$

THE POWER TO DRIVE 2 WINDINGS WITH ONE IC

2916, 2917, \& 2918 Dual Full-Bridge PWM Motor Drivers

FEATURES

- For Bipolar Stepper Motors or For Two DC Motors
$\pm .75 \mathrm{~A}$ or $\pm 1.5 \mathrm{~A}$ Continuous Output Current
- 45 V Output Sustaining Voltage
- Internal PWM Current Control
- Internal Clamp Diodes
- Internal Thermal Shutdown

Circuitry Elegantly

Engineered To Meet Your System Requirements
Containing two full bridges, the Allegro's 2916, 2917, \& 2918 motor drivers are designed to drive both windings of a bipolar stepper motor or bidirectionally control two dc motors. Each bridge is capable of sustaining

45 V and includes internal pulsewidth modulation (PWM) control of the output current to $\pm .75 \mathrm{~A}$ (2916) or $\pm 1.5 \mathrm{~A}(2917,2918)$. Current is determined by the user's selection of a reference voltage and sensing resistor. Included on chip are ground clamp and flyback diodes for protection against inductive transients. Internally generated delays prevent cross-over currents when switching current direction. Thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

Designed For Manufacturability

Allegro's ICs are "designed-formanufacturability" under stringent standards of Total-Quality. Design/ Production teams, under our

PACE (Product And Cycletime Excellence) program, work closely with our customers to meet their time-to-market and quality/reliability objectives.

Headquartered in Worcester, Massachusetts, Allegro operates two Wafer-fabrication plants as well as assembly/test facilities. Design centers are located worldwide, sharing common cell libraries and design tools.

Take A Test-Drive... Call For Samples

Samples are available now. Just give us a call at $1 \cdot 508 \cdot$ ALLEGRO and we'll have our Sample Pack in the mail to you the same day. After all, the measure of our success can only be your total satisfaction.

THE PACE QUICKENS

CIRCLE NO. 96

OPTOELECTRONIC SENSING

Solid mechanical designs tempt engineers away from designing optical sensors

CHARLES H SMALL, Senior Technical Editor

> All the bits and pieces for designing an optoelectronicsensoring system are readily available. But the stressful environment in which sensors live often tilts the choice toward packaged systems.

Sensors animate your design, allowing it to react to the real world almost the way a living creature would. Perhaps the thrill of bestowing life explains why engineers are so interested in sensors. Refs 1 through 5 are a sampling of ingenious sensor designs engineers have sent to $E D N$'s Design Ideas section.

You can buy all the bits and pieces to design your own advanced optical-sensing system, or you can select a prepackaged system. Whichever path you take, you have more choices than can be detailed in a single magazine article. Batelle Institute estimates that more than 500,000 types of sensors, measuring over 100 measurement variables, are commercially available (Ref 6).

Silicon photodiodes can monitor such applications as machine-tool tracking, targeting, and remote-position sensing. One recent improvement on the classical silicon photodiode is Silicon Sensors' quad photodiodes. The quad photodiodes put four sensors into one TO-8 package. Special blue-sensitive and high-speed versions are available.

Lumex Opto/Components Inc also has discrete photodiodes, PIN photodiodes, phototransistors, photo darlingtons, infrared-emitting diodes, and photointerrupters. In a more specialized vein, Mitsubishi has a series of contact image sensors and an accompanying interface IC. The sensors combine LED, rod-lens, and
sensor arrays. The sensors can scan images at 8 or 16 dots $/ \mathrm{mm}$ at rates from 2.5 to 10 $\mathrm{msec} / \mathrm{line}$. The IC converts the scanner's analog output to digital signals. Sensors range from $\$ 50$ to $\$ 100$ each, and the ICs cost $\$ 3.50(10,000)$.

Other specialized ICs, such as the BurrBrown DDC101, bolt directly to optoelectronic devices. The DDC101 is a 20 -bit, cur-rent-input A/D converter that connects directly to low-level sensors, such as photodiodes.

However, some optoelectronic companies can supply you assemblies that integrate some system-level devices into one package.

Omron photomicrosensors come with attached cables. The sensors' internal electronics overcome the adverse effects of ambient light.

OPTOELECTRONIC SENSING

For example, Clarostat's Model T60 amplifiers provide a modulated output for position-sensor LEDs. BurrBrown's OPT202 (\$4.25), OPT209 (\$5.25), and OPT301 (\$11.10) integrate a 0.09×0.09-in. photodiode, a precision FET-input transimpedance amplifier, and a $1-\mathrm{M} \Omega$ feedback resistor on a single chip. The OPT209's bandwidth is 16 kHz for general-purpose applications. The OPT202's bandwidth is 50 kHz for pulsed-light applications, such as barcode scanners. The OPT301 has a $4-\mathrm{kHz}$ bandwidth, and its $400-\mu \mathrm{A}$ quiescent current suits it for battery-powered applications.

Before committing to a one-of-a-kind hybrid device, you could use Centronics' OSI 5-DEV prototyping device. It combines a silicon photosensor, an op amp, and associated components in a 10-lead TO-5 package. You can order a variety of sensors, op amps, and other components. The prototype device can stand in for a full-blown hybrid device during development.

Too much, too fast

An optical sensor leads a tough life. In addition to meeting applicable safety regulations and being foolproof to install and maintain, an optical-sensor system must account for a host of environmental variables. Ambient-light changes, variations in the sensed object's reflectivity or speed, changes in the sensed object's temperature, and changes in the general environmental conditions can all affect the sensor's electronic output (Refs 7 and 8).

Additionally, optical sensors' and

You can solder Banner photoelectric sensors directly to your pe boards.
emitters' performance changes with age. Degradation of a sensor's package accounts for some of the aging, particularly in plastic packages because of thermal mismatches among the materials used. Subtle semiconductor-physics effects account for the rest of the aging. For example, the light output of LEDs falls off with age because of nonradiative recombination sites that form within the semiconductors.

Consequently, designing an opticalsensor system that exhibits accurate, stable performance in a changeable environment over time is not a simple task. Sensor companies have made advances by fielding packaged devices that combine the sensor and signal-conditioning circuitry in one industrialgrade package.

Also, some of the devices are gener-

LOOKING AHEAD

Optical sensors play a tiny, but vital, role in fiber-optic communications. The predicted "Information Superhighway" will have to employ fiber-optic links to achieve meaningful performance. So, while armies of optical sensors continue to toil quietly in the factory, fiber-optic communications will spark the most dramatic growth.

For example, Galaxy Microsystems has developed its LL7720 Series fiberoptic transmission system using singlemode fiber that costs less than current
multimode fiber-optic systems. Yet it has much better performance than lowercost LED-based systems. The system's lower cost has allowed customers to install local networks, many kilometers in total length, that carry voice, data, and video all on the same fiber-optic cable. Accelerated development of semiconductor lasers and photosensors for fiber-optic communications will provide low-cost, high-reliability components that engineers can press into service for other applications.
al-purpose; others are extremely specialized. For example, the sole job of Exergen's AAM series of infrared temperature detectors is to monitor the temperature of adhesives during application and curing.

Photoelectronic switches

The simplest optical sensor is the photoelectronic switch. For flexibility, most photoelectronic-switch lines include models that accept ac or dc power. Output choices include pnp or npn transistors, FETs, or relays. The switch's light sources operate in either diffuse mode for proximity sensing or retroreflective mode as a beam-interruption switch.

The current trend is to make these photoelectronic components resemble the electromechanical components they replace as much as possible. For example, Automatic Timing \& Controls' 7680 series of photoelectronic switches features miniature rectangular NEMA 4 housing. Scientific Technologies Inc and Automatic Timing \& Controls both have switches that come in standard $18-\mathrm{mm}$ packages; Balluff Inc has optoelectronic sensors that mount on DIN rails. For ease of installation, Omron ships photointerrupters that have cables installed. And Banner can supply photoelectric sensors that you can solder directly to your pe boards or plug in using a mounting jack.

Engineers most often think "thermocouple" when tasked with measuring temperature. But radiated heat is a

The fastest time-to-market is attained when designers use productivity Power Tools for QuickLogic's WildCat ${ }^{\text {™ }}$ Series the world's fastest FPGAs.

QuickLogic toolkit owners find instant productivity with the intuitive interfaces of both our Windows and Sun packages. These tools feature 100% automatic place and route using advanced timing-driven placement that eliminates timeconsuming intervention with hand tools.

Great Power Tools Drive Great FPGAs

Our pASIC® family's low cost WildCat Series provides a wealth of interconnect resources for an environment where design iterations have no effect on pin-out and minimal effect on timing. Even the use of all I/O and flip-flops will consume only 5% of the available interconnect. And your designs will always route, even with all pads fixed.
At the heart of QuickLogic's software is a tool called SpDE ${ }^{\mathrm{TM}}$ (Speedy), and it lives up to its name by running 1 K usable-gate designs in under 2.5 minutes. And our toolkit also includes a powerful Technology Mapper, which improves any synthesized
result, including VHDL and Verilog, with up to 60% reduction in silicon and a performance increase of 25%.

If you need more convincing that QuickLogic delivers a superior time-to-market design solution, just fax us your business card. Be one of the first 100 faxes
 and receive a FREE Evaluation Kit, complete with all the tools you need to enter, simulate and analyze your design.
To learn more about our Power Tools, fax us at 408-987-2012 or call 1-800-842-FPGA (3742) for a QUICK response.

1-800-842-FPGA(3742) • European Fax: +49 (89) 8577716
© 1994 QuickLogic Corporation. pASIC is a registered trademark and SpDE and WildCat are trademarks of QuickLogic Corporation. All other trademarks are the property of their respective companies.

EDN-TECHNOLOGY UpDATE

OPTOELECTRONIC SENSING

form of light that optical sensors can measure. Optical heat sensors range from pinpoint devices that measure one small spot's temperature to scanners that develop a thermal map of an area. For example, the MP4 family of multipoint scanning thermometers from Raytek Inc continuously scans and displays real-time, full-color thermal contour maps or temperature profiles of surface temperatures.

AGEMA Infrared Systems' Thermo-
point single-point radiometers monitor a fixed spot. The company's Thermoprofile Infrared Smart Line Scanner can plot temperature up to 24,000 points/line across a 90° arc, as often as 40 times/second. For bigger jobs, a Thermovision 900 infrared imager can measure a large object's temperature in up to 100 areas.

Just as infrared sensors can measure temperature without touching the object to be measured, LED- and
semiconductor-laser-based systems can measure an object's position without touching it. Selective Electronic Inc has self-contained, high-speed dimensional-gauging sensors that use laser triangulation. The SLS 5000 series integrates a sensor and a processor within the device's head. The processor performs data averaging and filtering.

Laser-based systems trade off accuracy for measuring speed or range. For

FOR FREE INFORMATION...

For free information on the sensor products discussed in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

AGEMA Infrared Systems

Secaucus, NJ
(201) 867-2191

Temperature sensors
Circle No. 301
Aleph International
San Fernando, CA
(818) 365-9856

Actuators, interrupters,
and reflectors
Circle No. 302

Aromat Corp

New Providence, NJ
(800) 228-2350

Laser-based measuring systems
Circle No. 303
Automatic Timing \& Controls
Marion, OH
(614) 387-8827

Photoelectric sensors
Circle No. 304

Avtek Electrosystems

Ottawa, ON, Canada
(613) 226-5772

Laser-diode drivers
Circle No. 305

Balluff Inc

Florence, KY
(606) 727-2200

Optoelectronic sensors
Circle No. 306
Banner Engineering Corp
Minneapolis, MN
(612) $544-3164$

Photoelectric sensors,
fiber-optic sensors
Circle No. 307

Burr-Brown

Tucson, AZ
(602) $746-1111$

Optoelectronic ICs, converters
Circle No. 308

Centronics Inc

Newbury Park, CA
(805) 499-5902

Photodiodes, development systems Circle No. 309

Clarostat

Sensors and Controls Group Plano, TX
(214) 423-4661

Photosensor amplifiers
Circle No. 310
Exergen
1 Bridge St
Newton, MA
(800) 422-3006

Infrared temperature sensors Circle No. 311

Galaxy Microsystems
Systems Div
Austin, TX
(512) 467.9871

Laser position sensors
Circle No. 312
Hamamatsu Corp
Bridgewater, NJ
(908) 231.0960

UV detectors
Circle No. 313
International Light Inc
Newburyport, MA
(508) 465-5923

UV detectors
Circle No. 314

Kaman Instrumentation Corp

Colorado Springs, CO
(719) 599-1132

Position sensors
Circle No. 315
Laser Atlanta Optics
Norcross, GA
(404) 446-3866

Laser range and speed sensors
Circle No. 316
Linear Laboratories
Fremont, CA
(510) 226-0488

Temperature sensors
Circle No. 317
Lumex Opto/Components Inc
Palatine, IL
(708) 359-2790

Photo sensors and emitters
Circle No. 318

Melles Griot
Electro-Optics Div
Boulder, CO
(303) 440-0140

Laser-diode assemblies
Circle No. 319
Mitsubishi
Sunnyvale, CA
(408) 730-5900, ext 2667

Contact image sensors
Circle No. 320
MTI Instruments
Latham, NY
(518) 785-2464

Noncontact fiber-optic
measurement instruments
Circle No. 321
Omron Electronics Inc
Control Components Div
Schaumburg, IL
(708) 843-7900

Opto sensors
Circle No. 322
Ramco Electric Co
West Des Moines, IA
(800) 280-6933

Laser position sensors
Circle No. 323
Raytek Inc
Santa Cruz, CA
(408) 458-1 110

Temperature sensors
Circle No. 324
Scientific Technologies Inc
Hayward, CA
(510) 471 -.9717

Photoelectric sensors
Circle №. 325
Selective Electronic Inc
Southfield, MI
(313) $355-5900$

Laser-based position sensor
Circle №. 326

SICK Optic-Electronic Inc
Eden Prairie, MN
(612) $941-6870$

Photoelectric switches, scanners,
distance measurers
Circle No. 327
Silicon Sensors
Dodgeville, WI
(608) 935-2707

Photodiodes
Circle No. 328

Skan-A-Matic
Plano, TX
(214) 422-1844

Position sensors
Circle No. 329
Tri-Tronics Inc
Tampa, FL
(800) 237-0946

Photoelectronic sensors
Circle №. 330
UBM Corp
Roselle, NJ
(908) 241-8652

Laser-based measuring systems
Circle No. 331
Watlow Infrared
Decorah, IA
(800) 251-1473

Temperature sensors
Circle No. 332

Super Circle Number

For more information on the sensor products available from all of the vendors listed in this box, you need only circle one number on the postage-paid reader service card.

Circle No. 333

Want A Similar View OY Your Embedded Real-Time Applications?

WindView ${ }^{\text {™ }}=$ The First Visual Analysis Tool For Real-Time Developers.

Thanks to Wind River Systems, you can see what makes your real-time application tick. With your very own eyes.

WindView lets you observe the precise sequence and timing of all the events in your application. Every interaction between tasks, interrupts, semaphores, message queues, including applica-tion-level events that you define. WindView captures information from applications running in real time. Then lays it all out in living color.

You can zoom in for micro-second-resolution detail. Or zoom out to get the big picture

With WindView, you can quickly and easily visualize an application at the syotem level.

THE REAL POWER IN BEAL TIME.
on your software's execution. You'll see race conditions, deadlocks, performance bottlenecks and missed deadlines-those tough real-time problems that delay projects by days, weeks, even months-and diagnose them in a matter of minutes.

We call it a logic analyzer for embedded software. But WindView, by any name, is a visible breakthrough for real-time development. And a truly ingenious addition to the WindPower Tools for VxWorks. To try WindView for yourself, call us
 and we'll send you our free demo. After all, seeing is believing. 1-800-677-1586.

WIND RIVER SYSTEMS

[^1]

The availability of DUAL ISOLATED OUTPUTS creates cost and space savings in many applications.
Fully safeguarded for over voltage, over temperature and continuous short circuit protection, these FIXED Hi-Frequency units minimize technical problems.
With output voltages from 3.3 VDC to 100 VDC, four distinct input ranges and the choice of single or dual outputs plus the capability of Parallel Operation, as standard features, your circuit designs can be optimized.
Assembled in the U.S.A. with PICO quality components, these hi density units allow the most stringent mechanical, electrical and environmental requirements.

See EEM or send direct for Free PICO Catalog. Call toll free 800-431-1064 in $N Y$ call 914-699-5514 FAX 914-699-5565 Electronics, Inc. 453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552 CIRCLE NO. 78

OPTOELECTRONIC SENSING

example, UBM Corp's laserbased UBC 14 noncontact measuring system's accuracy is $0.01 \mu \mathrm{~m}$ over a $0.04-\mathrm{in}$. measurement range. Ramco Electric's SUNX LA511 laser sensor exhibits $0.01-\mathrm{mm}$ accuracy over a much wider area. Clarostat's Skan-A-Matic detects a 0.020 -in. object at $36-\mathrm{in}$. separation between emitter and sensor. And Aromat Corp's LM laser sensor series offers a selection of ranges, bandwidths from 1 to 20 kHz , and resolutions from 0.0002 to 0.000008 in.

Even though most optical sensors are either visible-light or infrared sensors, ultraviolet sensors do exist. International Light Inc's SED220/NS184 "solarblind," deep-UV detector comes in a watertight, anodized-aluminum package. The sensor's maximum response is 160 nm . A species of Geiger-Müller tube, Hamamatsu's UVTRON R2868 "hostileflame" sensor can detect a flame's ultraviolet emanations from as far away as 16 ft .

EDN

References

1. Vandana, Jhoti, "[UV] Detector spots sneaky smokers," EDN, August 5, 1991, pg 161.
2. Netzer, Yishay, "Dual timer senses position capacitively," EDN, October 1, 1992, pg 115.
3. Williams, Jim, "Transistor tem-

Mitsubishi's contact image sensors combine an LED array, a rod-lens array, and a sensor array.
perature sensor needs no compensation," EDN, April 25, 1991, pg 180.
4. Stoenescu, Gheorghe and Neculai Grosu, "Diode sensor compensates [semiconductor] laser," EDN, June 20, 1991, pg 161.
5. Hwang, Sheng-Feng, "[capacitive] Detector spots extra sheets," EDN, December 7, 1989, pg 260.
6. Ormond, Tom, "Smart sensors tackle tough environments," $E D N$, October 14, 1993, pg 35.
7. Graeme, Jerald, "Circuit options boost photodiode bandwidth," EDN, May 21, 1992, pg 155.
8. Graeme, Jerald, "Phase compensation optimizes photodiode bandwidth," EDN, May 7, 1992, pg 177.

Article Interest Quotient
(Circle One)
High 598 Medium 599 Low 600

The lenses of Scientific Technologies' STI/Elestra 72 series of self-contained photoelectric sensors are flat because flat lenses collect less dirt than do curved lenses. The sensors come in standard $18-\mathrm{mm}$ packages.

GET DATA FAST
A complete application
in three simple steps
ADContig
- Quick to learn,
easy to use
- Powerful data
analysis and display
- 100% Windows:
simplified interface,
DDE
- Flexible application
development and
maintenance
- No time-consuming
compiling-ready to run

Speed your application development with DT VEE ${ }^{\text {mw }}$ for Windows." DT VEE is a complete graphical programming approach that lets you create sophisticated data acquisition applications without ever writing code.
With DT VEE, you easily create, debug, and document. Program development is intuitive-simply connect functionspecific objects in a logical sequence and run. It's that easy.
With more than 180 analysis functions, comprehensive display capabilities, and full hardware support, DT VEE has everything you need for data acquisition. DT VEE is based on HP VEE for Windows, ${ }^{\text {s", }}$ and is backed by the Hewlett-Packard and Data Translation commitment to quality.

Call 1-800-525-8528 today (In USA and Canada). FREE DT VEE evaluation version available.

When you're ready to enter the information superhighway, TI is there.

Now, with ATM silicon solutions from
Texas Instruments, you'll make data communications break the sound barrier. And the video barrier. And ultimately the office barrier. Because TI has the road map of ATM solutions that will help accelerate your entrance onto the superhighway.
Thanks to the Total Integration ${ }^{\text {wiw }}$ solution, TI has opened a high-performance, cost-effective gateway that brings ATM digital communications into the LAN environment.
ATM to the desktop. Introducing TDC1599, the first two-chipset designed exclusively for network interface adapter cards. TDC1599 provides complete ATM cell transport and processing, from the physical (PHY) layer through the adaptation (SAR) layer.
This cost-effective solution is optimized for connecting desktop computers and hubs because it was devised by semiconductor leader TI in tandem with two other world leaders in their fields, Sun and SynOptics.

Highly integrated solutions put you ahead of your market. TI's advanced capability in submicron CMOS and BiCMOS process technology allows TI to integrate the functionality of as many as 12 different silicon chips onto this highly integrated twochipset. The ICs are also available individually as single-chip PHY and SAR: the TDC1500 physical-layer device and the TDC1560 segmentation and reassembly device.

With its worldwide manufacturing

infrastructure and extensive LAN to WAN broadband communications and networking experience, TI helps you speed your entry into the arena of multimedia LAN communications and bandwidth on demand. And comprehensive support is available. TI is working with third-party vendors to offer solutions for adapter cards, design kits, technical documentation and software drivers.

Samples are now

 available. For complete product information, simply return the reply card or call 1-800-477-8924, ext. 3035, today.$$
\begin{gathered}
\text { EXTEENDING YOUR REACCH } \\
\text { WITH TOTAL INTEGRATION* } \\
\text { INSTRUMENTS }
\end{gathered}
$$

To multiprocess to multiprocess?

Use several processors when one would

Dan Strassberg, Senior Technical Eitor

do? Never; well...hardly ever. But when one processor isn't enough, there are approaches and tools that can help you to stay on schedule and avoid breaking the bank.

ICs themselves, or on the expansion cards that house the chips.

As the PC demonstrates, large, performance-at-anyprice parallel-processing systems are not the only form of multiprocessing system. Networks of computers or workstations are also multiprocessing systems, though such networks are more commonly called "distributedprocessing systems."

Under the "multiprocessor-systems" umbrella, you'll encounter a variety of philosophies and architectures. Like the PC, many multiprocessor systems are far from massive or costly. Some are cost-effective even for relatively small embedded systems. Nevertheless, all but the most passionate advocates of multiprocessing are loath to recommend any form of the technique (except, maybe, the type found in a PC) to anyone who doesn't need it.

Avoid overkill

If a 1-processor system can do the job-and if over the product life the improvements you expect in $\mu \mathrm{P}$ processing power support the growth you anticipate in system-performance requirements-opt for the 1processor implementation. It will usually be smaller and less costly than a multiprocessor system and will use less power. Even more important, software development will be faster and easier.
The biggest bugaboo in multiprocessor systems is synchronization among the processors, which is a job

PERVASIVE COMPUTING

that gets more difficult the more tightly the processors are coupled. If not handled deftly, synchronization can become so complex and burdensome that the overhead eats system throughput alive. If you don't do the job well, your multiprocessor system can turn out to be less productive than a singleprocessor system would have been. As one developer puts it, "We thought we were developing a dual-processor system; what we created was a system of dueling processors. We made the sword, and both processors fell on it."

But there are exceptions that prove the rule, and the PC provides one. Although it would probably be cheaper to build a PC in which the CPU chip took over all of the functions that half a dozen specialized processors now perform, development of a suitable CPU chip could easily add years to the PC's development cycle. Given the evanescence of products in today's PC marketplace, the 1-processor PC might not arrive until years after anyone had an interest in buying it. (The developers of the aforementioned ill-fated dualprocessor system eventually replaced their custom 2-processor CPU board with a standard PC motherboard. On it is the usual small army of specialized μ Ps that support the main CPU.)

Many multiprocessor chips

Despite the problems involved in developing a single chip to perform all of a PC's processing functions, single chips that incorporate multiple proces-

Signal processing lends itself to parallel processing better than do most application areas. Adaptive Solutions' CNAPS-PC board, which plugs into the ISA bus, accommodates proprietary chips that each contain as many as 64 DSPs, allowing a single slot to accommodate 128 processors.
sors are starting to proliferate. Of these, TI's MVP, also known as the TMS320C80, has received the most publicity of late. The MVP includes a 32-bit RISC master processor and four 32 -bit DSPs, as well as a video controller and a transfer controller that manages communication among the processors.

The MVP is scarcely the only multiprocessor on a chip, however. Another example is Motorola's 68360 QICC (quad integrated communications controller), which includes a 32 -bit microcontroller core (a full implementation of the CPU32 core of the vendor's 683xx series), a special-purpose RISC processor, and four serial-communication controllers. Star Semiconductor's SPROC-

1400 chip includes, among other elements, four 24 -bit fixed-point DSPs. Adaptive Solutions' CNAPS chips (normally sold only as part of VMEbus and ISA-bus boards) include as many as 80 16 -bit fixed-point DSPs on a single piece of silicon.

Besides compute-bound applications in which processing-power requirements dictate the use of multiple processors, certain classes of applications require multiprocessing:

- Fault-tolerant types, such as online transaction-processing (OLTP), in which the failure of a CPU must not affect system availability. Such applications require multiple, redundant CPUs.
- Distributed applications, such as

SIGNAL PROCESSORS LISTEN TO THE RADIO

Companies spend millions on radio and TV advertising. And they often have to rely on the logs that station personnel keep to verify that the commercials they pay for actually air. Although most local advertisers or their advertising agencies still use primitive approaches, for large national accounts, listening for commercials has gone high-tech...very high tech.

In the operations center of Broadcast Data Systems in Kansas City, MO, a system called Radiotrack constantly monitors 900 radio stations and the audio of 600 TV stations in the 100 largest US markets. The company operates similar systems in Europe and Asia. The system's primary input is a receiver's audio output. An ADC converts this into a series of digital words.

The converter output goes to a bank of DSPs that uses matrix differencing to compare the incoming signals against a stored
library of digitized signatures of commercials and other program material. It isn't necessary to store an entire commercial; the first few seconds suffice. The matrix-differencing operation produces a ranking of signatures most likely to match the unknown signal. An array processor then performs an FFT on the unknown signal and compares it against FFTs of the library items most likely to match it.

The hardware uses a combination of a 68040 , multiple TMS320C50s, and a pair of array processors from Sky Computers. Identical technology can determine which recordings radio stations are playing most often; airplay is key to determining whether a recording will be a commercial success. If you listen to the radio very much, you know that one of the system's great strengths is that the multiple processors never complain about having to listen, hour after hour, to rap or heavy metal...or Rush Limbaugh or Larry King.
process control and factory data collection. Such applications often have faulttolerance requirements almost as stringent as those of OLTP. Even more important, distributed intelligence reduces the system's message traffic, allowing the use of much less expensive networking hardware.

The box, "Multiple approaches to
multiprocessor systems," contains a slightly different and somewhat broader view of these issues. The box is based on material supplied by Doug Williams, marketing manager at Sky Computers.

An area where additional CPUs can make sense even if they aren't absolutely mandatory is managing user interfaces. In many systems, one $\mu \mathrm{P}$ handles
operator-interface functions while another manages real-time control functions. This arrangement represents a multitasking, multiprocessing application. Instead of executing all tasks on a single $\mu \mathrm{P}$, specific tasks are assigned to specific μ Ps. Several attributes characterize this division of responsibilities:

MUITIPLE APPROACHES TO MULTIPROCESSOR SYSTEMS

Applications suited to a single powerful processor or (depending on throughput requirements) to parallel processing:

- Single-threaded numerical applications
- Applications with a single, pipelined data stream
- Parallel processing is appropriate in applications that were previously handled by a single processor but where increases in required performance have outstripped the capabilities of a single processor.

Examples:

- Medical imaging (CAT-computer-assisted tomography, MRI-magnetic-resonance imaging, PET-photon-emission tomography)
- Radar and sonar
- Industrial inspection
- Ultrasonic detection

Advantages of single-processor architecture:

- Simpler, less expensive hardware
- Simpler software, lower development cost

Advantages of parallel processing:

- Much greater throughput; functions that would take a long time if handled by a single processor need not significantly impact overall performance
- Scalability; often easier to add capability as performance requirements increase

Applications suited to multiple loosely coupled processors:

- Multithreaded applications with Unix interprocessor communication (IPC)
- Applications with multiple data streams
- Applications in which a network of processors shares a centralized numerical-computing resource
- Fault-tolerant applications

Examples:

- Electronic-warfare systems
- Flight simulators
- Seismic data-processing systems
- Automatic test equipment \qquad
- Character-recognition systems
- On-line transaction-processing systems

Concerns when developing systems that
use multiple loosely coupled processors:

- Coordination of tasks
- Processors may have to wait for each other
- IPC overhead
- Memory contention
- System complexity

Advantages of loosely coupled

 processors:- Handle multiple operations and tasks simultaneously
- In some cases, dividing the work among multiple developers is easier than with a single processor.

TABLE 1-SUPPLIERS OF EMBEDDED-SYSTEM DEVELOPMENT TOOLS THAT SUPPORT MULTIPROCESSING AND/OR μ PS

Company	Circle No.	Location	Phone	Product	Base US Price ${ }^{3}$
Accelerated Technologies	382	Mobile, AL	(205) 661-5770	Nucleus DBUG	$\$ 5000$ kernel
Adaptive Solutions	383	Beaverton, OR	(503) 690-1236	CNAPS series	\$2995
Advanced RISC Machines	384	Los Gatos, CA	(408) 399-5195	BlackICE	<\$1000
Aeon Systems	385	Albuquerque, NM	(505) 828-9120	VMEAlpha64/SP	\$16,875
American Arium	386	Tustin, CA	(714) 731-1661	ICE-15, -154	\$33,000
Applied Microsystems	387	Redmond, WA	(206) 882-2000	EL 3200	\$17,200
Ariel Corp	388	Highland Park, NJ	(908) 249-2900	AXDS-510	\$2495
Avalon Computer	389	Santa Barbara, CA	(805) 965-9559	Alphacard	\$9900
Biomation	390	Milpitas, CA	(408) 435-7800	CLAS4000/D	\$10,000
BSO/Tasking	391	Dedham, MA	(617) 320-9400	Various	
CARDtools Systems	392	Sunnyvale, CA	(408) 559-4240	T-N-T Sim	\$7000
Coactive Aesthetics	393	San Francisco, CA	(415) 626-5152	GCB11	\$149
Comdisco Systems (now Alta Group)	394	Foster City, CA	(415) 574-5800	SPW MultiProx	$\begin{aligned} & \$ 25,000 \\ & \$ 15,000 \end{aligned}$
Concurrent Computer	395	Oceanport, NJ	(908) 870-4500	Maxion system	
Concurrent Sciences	396	Moscow, ID	(208) 882-0445	Soft-Scope	\$1500
CSPI	397	Billerica, MA	(508) 663-7598	SuperCard development environment	\$25,000
Diab Data	398	Foster City, CA	(415) 571-1700	D-tective	
Digital Equipment	399	Maynard, MA	(800) 297-4863	DEC OSF/1	\$1250
Drumlin	400	Glendale, CA	(818) 244-4600	CTS, CTK	\$395
dSPACE GmbH	401	Paderborn, Germany	5251-1638-0	DSP1201	\$11,500
Embedded Performance	402	Santa Clara, CA	(408) 980-8833	CCE29K	\$4900
Emulation Technology	403	Santa Clara, CA	(408) 982-0660	ET-iC8plus	\$2690
Eyring	404	Provo, UT	(801) 375-2434	PDOS	\$3000
General Micro Systems	405	Rancho Cucamonga, CA	(909) 980-4863	GMS V64	\$4995
Green Hills Software	406	Santa Barbara, CA	(805) 965-6044	Green Hills C	\$1500
Hewlett-Packard	407	Santa Clara, CA	(800) 452-4844	$16500 \mathrm{~B}$ 64700 System	$\begin{aligned} & \$ 10,600 \\ & \$ 23,970 \end{aligned}$
Heurikon Corp	408	Madison, WI	(608) 831-0900	Nitro60	\$5495
Hitex GmbH	409	Karlsruhe, Germany	721 9628-0	Teletest 32	\$15,950
Huntsville Microsystems	410	Huntsville, AL	(205) 881-6005	HMI-200-68000 SourceGate II	\$10,000
Integrated Systems	411	Santa Clara, CA	(408) 980-1500	pSOSystem	\$9150
Intel	412	Santa Clara, CA	(800) 628-2283	GNU960 CTools960 iRMX III	$\begin{aligned} & \hline \$ 600 \\ & \$ 2000 \\ & \text { (DOS) } \\ & \$ 9795 \end{aligned}$
Intermetrics Microsystem Software	413	Cambridge, MA	(617) 661-0072	Precise Solution	\$8500
ITCN	414	Dayton, OH	(513) 439-9223	C-TAC	\$29,950
JMI Software Systems	415	Spring House, PA	(215) 628-0840	C Executive	\$2500
KADAK Products Ltd	416	Vancouver, BC	(604) 734-2796	Insight	\$695
Lloyd I/O	417	Beaverton, OR	(503) 222-0702	Vantage	\$1195
Mercury Computer	418	Chelmsford, MA	(508) 256-1300	SuperVision	\$5500
Micro Digital	419	Cypress, CA	(714) 373-6862	386 smx smxNet	$\begin{aligned} & \$ 4000 \\ & \$ 5000 \end{aligned}$

EDN-SPECIAL REPORT

WITH WORD LENGTH ≥ 32-BITS ${ }^{1,2}$

Description

Assembly, C, and multitasking debuggers for realtime kernel supporting 32-bit $\mu \mathrm{Ps}$.
ISA-bus and VMEbus boards with up to 512 DSPs
In-circuit emulator based on on-chip debug features of ARM7 32-bit RISC core.
VMEbus development board for $150-\mathrm{MHz}$ DEC Alpha $\mu \mathrm{P}$. Optional i960 I/O processor.
Logic analyzers and ICEs for Pentium at 100 MHz
ICEs for i960CA/CF, 68xxx, and 683xx series.
Debug software for Hydra II VMEbus DSP co-
processor board, which contains four C40s.
Parallel-processor module with Alpha $\mu \mathrm{P}$
Logic-analysis system with support for 32 -bit processors and multiprocessing.
C compilers, debuggers, and ICEs for 32-bit μ Ps.
CASE tools for complex real-time projects.
Networked HC11 microcontroller card.
Signal Processing WorkSystem. MultiProx Ccode generator partitions block diagrams for execution on multiple DSPs.
Multiprocessor system using $150-\mathrm{MHz}$ R4400s.
Remote-target debugger for X86 family.
Heterogeneous mixed-multiprocessing point-anddlick, X11-based debugger, system and emulation software, simulator, RTOS kernel.
Debugging tools for 68060 .
Full Unix environment for real-time applications of Alpha AXP μ Ps.
Communications coprocessor; software tools.
DSP coprocessor boards and software tools; DSP1201 board has multiple TMS320C40s.
Development tool kit for Am29K RISC family.
8 -bit ICE usable for multiprocessor systems. RTOS; native and cross-development tools. VMEbus SBCs that accept 32- and 64-bit CPUs. Optimizing compiler; multiprocessor support. $500-\mathrm{MHz}$ logic-analysis system expandable to 680 channels with 1 M -frame memory. ICE; supports many 32-bit CPUs; supports developing homogeneous and heterogeneous multiprocessor systems via intermodule and coordinated measurement buses.
VMEbus CPU board based on 68060. Vendor supports and licenses VxWorks RTOS.
ICE; supports heterogeneous multiprocessing. ICE and debug software for 68 xxx series.

Development environment based on pSOS+M real-time multiprocessing kernel.
C compiler, assembler, linker, and debugger. C compiler, assembler, linker, utilities, and library support. (Both are for i960.)
Development kit for i386, i486, and Pentium using iRMX RTOS and SoftScope III debugger.
C cross compiler, task-aware source-level
debugger, simulator; multiprocessor support.
Embedded-system profiler and ICE for 680X0,
683 XX, 1960, X86, R3000/4X00, and buses.
Binary development package for most popular 32-bit CISC, RISC, and DSP families. Based on real-time multitasking kernel.
Software debug tools for 32-bit μ Ps.
Development system used with networked CPUs.
Debugger for vendor's RACE real-time embedded multicomputers.
Real-time embedded kernel for i386.
TCP/IP stack for use with smx.

- The turnaround of the two classes of functions are radically different. Usually, operator-interface activities have time scales in tens or hundreds of milliseconds. Realtime functions are likely to require response times measured in microseconds.
- Deciding which tasks should be assigned to a specific processor is not complicated; with just a moment's thought, you can usually determine which functions relate to the operator interface and those involved in real-time control.
- The interprocessor communication requirements are minimal. The data to be passed between the real-time and user-interface processors often will not severely tax an RS232C port operating at 19.2 kbps. If greater speed is needed, it rarely exceeds a bidirectional parallel port's capabilities. If the $2-$ processor system must communicate with a still higherlevel system by way of, say, an Ethernet network, also using Ethernet for communications between the real-time and user-interface processors sometimes makes sense.
Note that in this 2-processor example, each processor has its own memory; the processors share no memory. Moreover, each processor has its own operating system (OS), quite often a compact real-time kernel. If the user interface is based on a graphical interface, such as X.11, the user-interface processor might run under a full-blown, real-time operating system (RTOS).

Symmetry is beauty

Though some people consider this 2processor example to be trivial, it is, in fact, both useful and workable and is an example of a "symmetric" multiprocessing system. The characteristics that earn it that title are that neither processor is in control of the other and that both processors have their own

OS. In a symmetric multiprocessing system, the OSs on the several processors can be the same or different.
The two processors in this example can be of the same type (homogeneous multiprocessing) or of different types (heterogeneous multiprocessing). Because the processors do not share memory, byte ordering usually doesn't cause problems. When a heterogeneous multiprocessing system employs shared memory, byte-ordering differences among the several $\mu \mathrm{Ps}$

The configuration flexibility of high-end logic-analysis systems such as Biomation's CLAS 4000 lets you bring multiple cross-triggered analyzers to bear on thorny hardware problems in multiprocessor systems. Because one unit can contain several analyzers, the setup is more compact and less intimidating than you might expect.
can cause trouble, which is the socalled little endian/big endian issue: Is the most significant byte first or last? Is the most significant bit on the left or the right? You must reconcile such differences. And any method you choose, whether hardware- or softwarebased, will slow your system.

Byte ordering notwithstanding, assigning different processes, tasks, or threads to different CPUs is usually fairly straightforward. It is, however, far from the only way to divide a computing problem among μ Ps. Another approach is parallel processing. Here, multiple CPUs divide the work related to a single task. Probably the most common example of parallel processing, particularly in embedded systems, is in DSP.
When performed by a single processor, many DSP operations consist of iterative loops. Even when the results of one iteration are needed for the next, it is often possible to speed an

TABLE 1—SUPPLIERS OF EMBEDDED-SYSTEM DEVELOPMENT TOOLS THAT SUPPORT MUITIPROCESSING AND/OR μ PS

Company	Circle No.	Location	Phone	Product	Base US Price ${ }^{3}$
Microtec Research	420	Santa Clara, CA	(408) 980-1300	Spectra	\$2500
Microtek International	421	Hillsboro, OR	(503) 645-7333	MPE, MPT	\$15,000
Microware Systems	422	Des Moines, IA	(515) 224-1929	FasTrak	\$14,500
Motorola	423	Austin, TX	(512) 891-2000	M68MEVB1632	\$1295
Object Technology International	424	Ottawa, ON	(613) 820-1200	Envy/Developer	\$12,000
Pentek Inc	425	Norwood, NY	(201) 767-7100	SwifTools	$\begin{aligned} & \$ 1000 \\ & \text { (DOS) } \end{aligned}$
Performance Computer	426	Rochester, NY	(716) 256-0200	PT-VME161	
Precise Software Technologies	427	Nepean, ON	(613) 596-2251	Precise/ MQX $+M$ and others	\$10,000
Promark Technology West	428	Sunnyvale, CA	(408) 733-0272	Kontron KSE5	\$22,000
QNX Software Systems	429	Kanata, ON	(613) 591-0931	QNX V4.2	\$795
SGS-Thomson	430	Lincoln, MA	(617) 259-0300	IMSD7314 Windows version	\$1750
Signalogic	431	Dallas, TX	(214) 343-0069	DSPower	
Signum Systems	432	Mountain View, CA	(415) 903-2220	USP-380	\$6495
Sky Computers	433	Chelmsford, MA	(508) 250-1920	Skyvec, Skybolt	From $\$ 20,000$
Softaid	434	Columbia, MD	(410) 290-7760	UEM series	\$5500
Software Development Systems	435	Oak Brook, IL	(708) 368-0400	CrossCode SingleStep	$\begin{aligned} & \$ 2000 \\ & \$ 1500 \end{aligned}$
Sonitech International	436	Wellesley, MA	(617) 325-3824	Brahma	\$4500
Spectron Microsystems	437	Goleta, CA	(805) 968-5100	SPOX	\$12,000
Standing Applications Laboratory	438	Kirkland, WA	(206) 453-7855	DSP Lab One	\$3295
Star Semiconductor	439	Warren, NJ	(908) 647-9400	SprocLab V1.4	\$5460
STEP Engineering	440	Sunnyvale, CA	(408) 733-7837	Eclipse 29K	\$10,000
Systems and Software	441	Irvine, CA	(714) 833-1700	$\begin{aligned} & \text { OMF, SP, CV } \\ & \text { tools } \end{aligned}$	$\begin{aligned} & \text { From } \\ & \$ 595 \end{aligned}$
Tartan Inc	442	Monroeville, PA	(412) 856-3600	IPS	
Tektronix	443	Beaverton, OR	(800) 426-2200	$\begin{aligned} & \text { TLA520 } \\ & \text { DASXPD2 } \\ & \text { DASNTD2 } \end{aligned}$	$\begin{aligned} & \$ 30,000 \\ & \$ 46,800 \\ & \$ 46,800 \end{aligned}$
Texas Instruments	444	Houston, TX	(713) 274-2320	TMS320C80 development tools	\$30,000
Transtech Parallel Systems	445	Ithaca, NY	(607) 257-6502	TTM200	\$9945
US Software	446	Portland, OR	(503) 641-8446	SuperTask!	\$3500
VenturCom	447	Cambridge, MA	(617) 661-1230	Venix SVR 4.2	\$6300
White Mountain DSP	448	Nashua, NH	(603) 883-2430	Mountain-40 Mountain-510 PPDE	$\begin{aligned} & \$ 3995 \\ & \$ 3495 \\ & \$ 495 \end{aligned}$
Wind River Systems	449	Alameda, CA	(510) 748-4100	VxMP WindView	$\begin{aligned} & \$ 3995 \\ & \$ 4995 \end{aligned}$
Ziatech	450	San Luis Obispo, CA	(805) 541-0488	STD 32 Star System	\$4500
Notes: 1. Some of the listed vendors are suppliers of multiprocessing hardware. 2. Despite its length, the listing is not comprehensive; vendors and products shown are representative only. 3. Where a vendor has indicated a range of prices or prices for several products, the price shown is the lowest one					SUPER CIRCLE NUMBER

EDN-SpECIAL REPORT

WITH WORD LENGH ≥ 32-BITS ${ }^{1,2}$

Description

Cross-development "backplane" with multiprocessor support.
Pentium ICE and hardware-assisted debugger.
Development environment for OS-9 RTOS. Supports 680X0, 683XX, 386 to Pentium, PowerPC.
Evaluation boards for CPU32 and CPU32+.
Multiuser object-oriented development environment. Supports heterogeneous multiprocessing, Smalltalk+C tools.
Multiprocessing symbolic C debugger for DSP boards (mainly C30- and C40-based).
68060-based VMEbus board.
Multiprocessor real-time executive for 680X0, 683XX, 320CX0, X86. Cross-debugger for distributed and multiprocessing.
ICE; supports 32 -bit $\mu \mathrm{Ps}$ and multiprocessing.
Development system; works with Watcom C compiler (V9.5). Supports X86 μ Ps.
Supports multiprocessing using X86 μ Ps.
Cross-development tools for Transputer family. Inclues compiler/configurer and post-mortem debugger. Windows development system for 32-bit DSPs.
ICE usable with networked processors.
Development environment for vendor's parallel-processing hardware-VMEbus boards and systems that perform to 20 Gflops.
ICEs for many $\mu \mathrm{P}$ families. Support multiprocessing with all supported μ Ps.
C and C++ compilers for 680X0 family. Debugger for CrossCode.
ICE for TMS320C40. Uses IEEE-1149.1 port. Single unit supports multiple μ Ps.
DSP development system for Analog Devices, Motorola, and TI chips. Supports multi-DSP systems; provides links to host CPU.
Integrated development system with four TMS-
230C51s and one TMS34010.
Software tools for multiprocessing systems based on vendor's Sproc DSP chip.
ICEs for Am 29K family.
Individual C/C++ tools and tool sets for X86 $\mu \mathrm{Ps}$ in real and protected modes.
Coordinates Ada programs between $68 x x x \mu$ Ps and Cx and C4x DSPs.
Digital-analysis (logic-analysis) systems. Handle many vendors' μ Ps, including Alpha, MIPS, Pentium, and SPARC. Handle multiprocessing with any supported $\mu \mathrm{Ps}$.
Simulator, emulator, and DSP C debuggers for the MVP chip, which includes a RISC master processor processor, four 32-bit DSPs, a video controller, and a crossbar interprocessor interface.
Parallel-processing module that includes an i860XP and a T805 Transputer.
RTOS and related tools for developing i960, MIPS, SPARC, 680X0, and 683XX applications.
Development environment for 386 to Pentium.
ISA-bus evaluation module, universal emulators, and parallel-processing debug environment for TI DSPs.

Multiprocessing extension of VxWorks RTOS for $680 \times 0,683 \times X$, i960, 386, R3000, SPARC. Software logic analyzer for 680X0 and 683XX.
Multiprocessor, multitasking system made up of up to seven 486 CPUs on STD 32 cards.
For more information on tools available from all of the vendors in this table, you need only circle one number on the postage-paid reader service card. Circle No. 451
operation substantially by dividing it among several processors. If necessary, these can operate in a pipelined fashion: A processor passes the result of its computation to a neighbor, which performs more of the computation. The first processor then operates on the next datum. Of the four multiprocessor chips mentioned previously, three incorporate multiple DSPs.

Two classes of applications

Many parallel-processing DSP applications have something in common with the simple multitasking application discussed earlier-in which one $\mu \mathrm{P}$ handles the real-time tasks and a second processor handles the user interface. Partitioning the workload among the several processors is fairly easy. Indeed, if you think about the effort required to partition the work, multiprocessing applications seem to fall into two categories: those that the human mind can easily divide among multiple processors and those that defy this simple approach to apportioning work.

For complex signal-processing jobs that do not easily break into portions several processors can handle, help is at hand. You can now obtain parallelizing compilers that divide the work efficiently. Though products with the same purpose have been available for parallel supercomputers for some time, these software products are relatively new to the embed-ded-systems world. (Their properalbeit jawbreaking-name is parallelizing, vectorizing compilers.) They are extensions of vectorizingcompiler technology, which has existed for 20 years or more, dating back to the days of minicomputers and add-on vector- or array-processor units.

Vectorizing compilers take operations that would have been performed sequentially and combine the data into longer words that a suitable processor can handle in one clock cycle (or a few cycles). Examples of processors that support this vectorprocessing approach are the PowerPC, the Alpha AXP, the R4000, the i860, and the SPARC family. These RISC μ Ps use so-called superscalar architectures.

Parallelizing compilers divide vectorized data into portions and route different portions to different pro-
cessors. These compilers are hard-ware-specific; they work with vectorprocessing hardware available from the processor vendor. Currently, several vendors offer VMEbus-based vector-processing systems that use multiple i860s (In Table 1, see CSPI, Mercury Computer Systems, and Sky Computers).

Sometimes, $2 \times 2=\ll 4$

The figure of merit for parallelizing compilers is scalability. Ideally, a system having four processors would perform a designated operation on a given data set 4 times as fast as a system that uses one processor of the same kind. If the system has eight processors, it would perform the operation 8 times as fast. In practice, a 4-processor system is less than 4 times as fast as a 1-processor system, and an 8processor system is less than 2 times as fast as a 4-processor system. Scalability measures just how much less than linearly the speed increases as you add processors.

It is not uncommon to find 10 processor configurations whose performance is only 15% of the ideal; that is, 10 -processor systems that are only 1.5 times as fast as 1-processor systems. Sky Computers claims that its parallelizing compiler represents the state of the art and that it turns in scores of roughly 50 to 70% of the ideal, even in configurations having 10 processors or more.

Hardware and software from companies such as Sky find their way into some fascinating applications. Some are military and are classified. Several involve pattern recognition in medical imaging systems. One even involves recognizing commercials in radio broadcasts (see box, "Signal processors listen to the radio").

Such applications are not massmarketed. The developers usually build a few systems-sometimes hundreds. When unit quantities rise to 10,000 or more, the companies take different hardware approaches; for example, they design special-purpose chips. But for products built in smaller quantities, using programmable general-purpose processors has significant advantages. The most obvious of these advantages is ease of modifying the code as the developers and their customers gain experience with the application.

EDN-SPECIAL REPORT

PERVASIVE COMPUTING

A good example of an application wellsuited to the programmable general-purpose-processor approach is compression of full-motion video images. The idea behind image compression is to minimize the bandwidth needed to transmit images or the amount of memory needed to store them. Once you have an image in compressed form, you must decompress it before you can display it. The compression and decompression problems are quite different. Unlike image compression, image decompression is clearly a job for a special-purpose chip. Millions upon millions of such chips will be required-one for every TV set. Compressing the images is a different story. The number of TV and movie studios around the world is much smaller than the number of TV sets.

Compressing moving images also involves far more complex computations than does decompressing them. For instance, image compression can involve cross-correlating frames with other frames. Cross-correlation establishes that an object has moved and indicates where it has moved. In most full-motion-video applications, such mathematical operations must be done in real time.
Even though correlation of successive frames can easily take more time than is available between frames, parallel processing can allow the mathematical operations to keep up with the incoming data. If a new frame appears every 33 msec and the math takes 330 msec , you might
assign the work to 10 processors in roundrobin fashion. Although no one processor could keep pace with the incoming data, the 10 processors could; their output would be delayed with respect to their input by 330 msec , however.

In comparison, reconstruction is much less demanding. A complete representation of a moving object (at least one whose shape doesn't change as it moves) requires only one instance of the data set that describes the objectnot one instance per frame. Even less information is needed to describe the object's trajectory. Moreover, the mathematical operations are much less complex than correlation; for example, you might simply replicate the original image at the proper location in each frame. Most likely, a single processor could handle this task.

Tools are us

Parallelizing compilers are just one of many types of tools available for developing multiprocessing systems. Table 1 lists a wide variety of tools, both hard-ware- and software-based, from more than 60 vendors. These tools support the development of multiprocessor systems of all types and of single-processor systems based on $\mu \mathrm{Ps}$ whose word length is at least 32 bits. Although we do not set out to list suppliers of multiprocessor hardware, some of the vendors that responded to our survey supply such hardware, and we list them. Our queries emphasize our interest in
tools. For example, we asked RTOS vendors to supply information on tools associated with their RTOS products, not on the OSs themselves.

RTOSs hold the key to simplifying the development of many multiprocessor systems. With an appropriate operating system and development environment, developers of multitasking software need not be aware of whether they are writing code that will run on a single $\mu \mathrm{P}$ or on multiple μ Ps.

At some point in the debugging process, though, you probably have to be quite clear about where different tasks are running. It is entirely possible for bugs in code running on one $\mu \mathrm{P}$ to cause another processor to hang up. Meanwhile, the $\mu \mathrm{P}$ whose code contains the bug might continue to run. Tools such as logic-analysis systems that contain multiple cross-triggered logic analyzers in a single unit are well suited to debugging problems of this sort.

Contact Senior Technical Editor Dan Strassberg at (617) 558-4205; fax (617) 558-4470. E-mail:
EDNStrassberg@MCIMAIL.COM EDN BBS: EDNStras.

VOTE
Please use the information Retrieval Service card to rate this article (circle one):

High interest	Medium interest	Low
588	589	590

LOOKING AHEAD

With processor speeds increasing almost daily, you're apt to wonder why anyone in the embedded-systems world should have to build a multiprocessor system. (Even if you concede that such systems are necessary today, you may be skeptical about the need for them next year.)

In fact, though, the need for multiprocessing is increasing. Especially in signal processing, the demand for computing power is rising more rapidly than $\mu \mathrm{P}$ performance. Fortunately, like all types of computing hardware, multiprocessing hardware continues to become smaller and more affordable. Thus, on the hardware side, there is no real barrier to using multiprocessing in embedded systems. The barriers that exist are with the tools and software. From the length of Table 1, it's fairly obvious that finding the right tools for your development job is no trivial task.

But things are looking up. The number of embedded systems
produced each year will continue to grow dramatically, and the percentage of those employing multiprocessing in some form should at least hold constant. There should be increases in both the number of system types and the average number of systems of any type that are shipped. Meanwhile, continued declines in the average selling price of single systems should spur demand even further.

These trends point to an increase in the potential payoff to suppliers of software and tools for multiprocessor embeddedsystems development. The possibility of greater rewards should encourage suppliers to offer a greater variety of software and tools. Barriers to multiprocessor-system development that currently result from limited software and tool availability will weaken. Though the barriers won't disappear, they will become less significant. The bottom line is that developing multiprocessor systems will become easier.

With the TMS320 Software Cooperative, it's easy to get a jump on your competition.

Now, beating your competition to market with a DSP-differentiated product isn't such a stretch. Just turn to the new TMS320 Software Cooperative. We've brought together information on more than 100 off-theshelf, third-party-developed digital signal processing (DSP) algorithms for many of the applications you may be working on (or thinking about).

Once installed, these easy-to-use algorithms are C callable. And they help cut cycle time while allowing you

DSP Algorithms

- Speech Recognition
- MPEG Audio
- V. 32 bis Modem
- V. 17 Fax
- Text-to-Speech
- G. 728 Speech Compression
- Run-Time Support Libraries
- And Many More
to differentiate your product instead of writing generic code for DSP functions. What's more, you'll deal directly with the third-party vendors who test, license and maintain the algorithms. Meaning you save time and product life-cycle costs.

To learn how you can get the jump on your competition and receive a FREE TMS320 Software Cooperative kit, which includes an index and data sheets on the algorithms, simply call 1-800-477-8924, ext. 3552.

8ns BiCMOS 1Megs from Motorola. Everything else is dead in the water.

Motorola 0.5 micron BiCMOS SRAMs demonstrate a simple evolutionary principle: survival of the fastest.
With 8ns access times at 1Meg densities and 12 ns at 4 M , nothing else even comes close enough to compare - for speed and density.

MCM101524	MCM101525	MCM6726A	MCM6728A
1 Mx4 bit	2 M x 2 bit	$128 \mathrm{~K} \times 8$ bit	$256 \mathrm{~K} \times 4$ bit
$12,15 \mathrm{~ns}$	$12,15 \mathrm{~ns}$	$8,10,12,15 \mathrm{~ns}$	$8,10,12,15 \mathrm{~ns}$
MCM6729A	MCM6706A	MCM6705A	MCM6708A
256 Kx 4 bit	$32 \mathrm{~K} \times 8$ bit	$32 \mathrm{~K} \times 9$ bit	$64 \mathrm{~K} \times 4$ bit
$8,10,12,15 \mathrm{~ns}$	$8,10,12 \mathrm{~ns}$	$10,12 \mathrm{~ns}$	$8,10,12 \mathrm{~ns}$
MCM6709A	MCM6706R	MCM6709R	
$64 \mathrm{~K} \times 4$ bit	$32 \mathrm{~K} \times 8$ bit	$64 \mathrm{~K} \times 4$ bit	
$8,10,12 \mathrm{~ns}$	$6,7,8 \mathrm{~ns}$	$6,7,8 \mathrm{~ns}$	
- Output Enable			

Looking for even more speed? How about 6ns? That's the access time on our 256 K BiCMOS Fast SRAMs.

Choose whichever speed-and-density combination is right for you. Either way, you'll get the built-in

quality and reliability of Motorola's high volume, 0.5 micron manufacturing.
Reel in the power of our BiCMOS Fast SRAMs for your next design, and get ready to throw everything else back in the water.

To request technical information or a sample device, just mail in the coupon or FAX it to Motorola's Fast SRAM FAX line at 1-800-347-MOTO (6686).

If you like what's new, wait 'til you see what's next.

$5 \mathrm{~V} \rightarrow 3.3 \mathrm{~V}$: Linear or Switcher?

You have chosen your processor, now you must choose your power supply. Linear Technology provides you with the best solutions, linear regulator or switching regulator to convert from 5 V to 3.3 V at any current. We also allow you to tailor your output from 2.9 V to 3.6 V .

For highest efficiency, the LTC1148 synchronous switching regulator will convert from 5 V to 3.3 V at up to 10 A loads with greater than 90% efficiency. Linear
Technology also provides synchronous switching designs for high efficiency at currents up to 20A at 3.3 V ! These solutions require no heat sinks, allowing easy integration onto your CPU board.

For lowest cost, the LT1085 low dropout linear regulator provides up to 3 A of load current at a
regulated 3.3 V in standard TO-220 or power surface mount DD packages. Linear Technology's broad line of low dropout linear regulators supply up to 7.5 A for 5 V to 3.3 V conversion applications. LTC also has micropower linear regulators for low current, battery powered applications requiring the lowest quiescent current.

Linear Technology has the parts, designs and applications assistance to make your source for 3.3 V power design an easy choice. For details, contact Linear Technology Corporation, 1630 McCarthy Boulevard, Milpitas, California 95035/ 408-432-1900. For literature only, call 1-800-4-LINEAR.

EDN-DEsign Ideas

Cell-cycler sorting sires superior batteries

Bob T Pham, Lockheed EVAS, Houston, TX

To ássemble superior NiCd batteries, you need to form and match the individual cells making up a battery. First, formation takes place in a NiCd cell only after numerous charge-discharge cycles. Second, you must collect voltage data during these cycles to match up cells having uniform characteristics.
To keep costs under control and to minimize human error, the circuit in Fig 1 processes cells in batches. Fig 1 shows a single cell channel. You can place as many channels on a pc board as suits your purposes. The ZIPfile attached to EDN BBS /DI_SIG \#1446 contains a write-up of this Design Idea and the circuit diagram in OrCAD format.
In addition to the circuit, you will need a computer-controlled, data-acquisition system to cycle the cells and record data. If you were to build a pc board bearing 16 channels to handle 16 NiCd cells simultaneously, for example, your data-acquisition system would need one digital output per channel (D_{1}), one digital output per pc board $\left(\mathrm{D}_{2}\right)$, one analog output per board to set the charging rate, and one analog input per cell.
As the system performs timed cycling, it records individual cell voltages-the only data it needs. The system can then calculate each cell's internal impedance using $\mathrm{dV} / \mathrm{dI}$ and calculate each cell's capacity in ampere-hours (Ahr). Further,
the computer can determine each cell's voltage-cutoff point during discharging.
The circuit provides closed-loop current regulation. The master analog-input voltage, A_{IN}, dictates the magnitude of charge or discharge currents- $1 \mathrm{~V}=1 \mathrm{~A} . \mathrm{IC}_{2 \mathrm{~B}}$ buffers the ana-log-input voltage. Because all channels on the pe board use the same analog-input voltage, the LC filter, L_{1} and C_{1}, minimizes reflected noise.

A 5 V power supply provides up to 2.5 A charging current. Digital input D_{2} configures relay K_{2} for charge or discharge. All channels share D_{2}. Digital input D_{1} controls each channel's current flow.

Applying a high input to both D_{1} and D_{2} (the controlled-discharge state) causes the relays to place the 5 V supply in series with the cell to bring the effective voltage to 6.2 V nominal. The relays also create a path that allows the cell to discharge through the same circuit that charges it. The 6.2 V ensures that the cell maintains a constant discharge current. (DI \#1446)

EDN

To Vote For This Design, Circle No. 452

Fig 1-This circuit processes cells in batches so you can assemble matched NiCd batteries.

EDN-DEsigN IDEAS

Switcher IC hikes battery charger's efficiency

Huw Jones, Gyrus Medical Ltd, Cardift, Wales, UK

The adjustable switching-regulator LM2575T-ADJ, IC_{1}, in Fig 1 replaces a power-wasting pnp transistor in the databook design for the NiCd battery charger IC_{2}, a MAX713. (Its sister device, the MAX712, handles NiMH cells.) IC_{2} "fast-charges" cells by monitoring the cell's voltage and charging current until they exhibit subtle anomalies that signal a fully charged cell. Because the circuit charges at only a 1.5 C rate, the circuit does not need to sense the cell's temperature. (A 1C, or "standard," rate signifies charging the battery to its full capacity in 1 hour.)

The circuit in Fig 1 fast-charges $500-\mathrm{mAhr}$ AA NiCd cells. Depending on the setting of SW_{1} and SW_{2}, the circuit handles two to eight cells, providing the circuit's input voltage is at least 15 V ; at higher voltages, power IC_{3} from IC_{2} 's pin 15 . Charging starts when you plug in the battery. When the battery is fully charged, LED1 extinguishes, and the charger switches to trickle-charge mode.

The circuit employs IC_{2} purely as a charge controller; IC_{2}
supplies the actual charging current to the battery. Experiments show that IC_{1} 's control loop is several orders of magnitude faster than IC_{2} 's. Therefore, a closed-loop system using IC_{2} 's DRV pin to control IC_{1} 's regulation proves unstable. Instead, IC_{1} 's feedback loop tries to maintain a voltage across C_{1} that results in a 1.25 V signal at IC_{1} 's FB pin.
R_{1} sets the charging current. Select sense resistor R_{2}, which is in series with the battery, so that it develops 0.25 V at the proper charging current (corresponding to 750 mA in this implementation). $\mathrm{IC}_{3 \mathrm{~A}}$ scales this sense voltage for IC_{1}, and $\mathrm{IC}_{3 \mathrm{~B}}$ buffers the sense voltage for IC_{2}. $\left(\mathrm{IC}_{3 \mathrm{~B}}\right.$ must supply IC_{2} 's expected -BATT voltage).

Because IC_{1} is a switcher, it's efficiency is about 85%, and it needs no heat sink to pass charging currents under 1A. (DI \#1447)
(EDN
To Vote For This Design, Circle No. 453

Fig 1-This NiCd battery "fast" charger substitutes a simple switcing-regulator IC for a power-wasting pnp pass transistor to increase efficiency.

POWER SPLIITERS/ COMSHERS

the world's largest selection 2 KHz to 10 GHz from $\$ 2^{95}$

With over 300 standard models, from 2-way to 48 -way, $0^{\circ}, 90^{\circ}$ and 180°, 50 - and 75 -ohms, covering 2 KHz to 10 GHz , Mini-Circuits offers the world's largest selection of off-the-shelf power splitter/combiners. And, with rapid turnaround time, we'll also supply "special" needs, such as wider bandwidth, higher isolation, lower insertion loss and phase matched ports.

Available for use in military and commercial requirements, models include plug-in, flat-pack, surface-mount, connectorized standard and custom designs. New ultra-miniature surface mount units provide excellent solutions in cellular communications, GPS receivers, Satcom receivers, wireless communications, and cable systems.

All units come with a one-year guarantee and unprecedented "skinny" sigma unit-to-unit and production run-to-production run

finding new ways ...
setting higher standards

PLDs eliminate ISA pc-board's jumpers

Vladimir Bochev, Bulgarian Academy of Sciences, Sofia, Bulgaria

回
Having software ask users about base addresses for newly installed ISA-bus (industry-standard-architecture, ie, the IBM PC bus) pc board is far more elegant than requiring the users to decipher HEX address and set pc-board jumpers. GAL20R8 PLDs, programmed according to Listings 1 and 2, along with an 8-bit comparator allow software to set pc boards' base addresses.

The comparator has one input tied to the ISA address bus and the other to one of the PLDs. This PLD contains a register initialized to some base address on power-on. The second PLD contains a "table" (actually, a Boolean formulation) of available base addresses.

The first time an I/O address matches an address from those stored in the second PLD, the register PLD latches this I/O address as the pe board's base address, holding it until the PC gets a hardware reset.

Once all new pc boards are functioning without I/Oaddress conflicts, the setup software can insert a simple program retaining the selected addresses and signature into autoexec.bat. The ZIPfile attached to EDN BBS /DI_SIG \#1428 contains a writeup of this design and the PLD files in plain ASCII.

A problem remains when a user installs two pe boards with the same factory-set base addresses. This design cannot distinguish between such boards. You can also supply a unique

Listing 1-I/O-logic PLD program

;TMS AIO = THE A10 ADDRESS LINE INPUT FROM THE ON-BOARD UP
iPS = PROGRAM SELECT SIGNAL FROM THE ON-MOARD UP
;AEN, IOR, IOW, A3 ... A9 = PC SLOT SIGNALS iAR OUT $=$ ADDRESS RANGE OUT SIGNAL FOR THE AUTOMATIC BOARD BASE ADDRESS EQUATIONS
$\mathrm{XF} \cdot \mathrm{TRST}=\mathrm{GND}$
RS.TRST $=$ GND
RS. TRST $=$ GND
PS
HOLDA.TRST $=$ GND
TMS_A10.TRST $=$ GND $\begin{aligned} & \text {;THE ABOVE PINS ARE USED AS INPUTS }\end{aligned}$
EXT_A10.TRST $=$ RS * HOLDA
;TO BE A REAL ADDRESS PIN EXT_A10 IS THREE-STATED WHEN IN RESET ; OR HOLD
${ }_{\text {/ EXT }}$ EXT A10 $=/ \mathrm{TMS} \mathrm{A} 10+\mathrm{PS}$ * $/ \mathrm{XF}$
; EXT A10 FOLLOWS TMS A10 EVERY TIME THE PS IS LOW BUT CAN BE FORCED TO LOW BY THE XF PIN ON DATA MEMORY ACCESS $/ A R$ _OUT $=/$ IOR * A9 * A8 */A7 */A6 * /A5 */A4 */A3 */ABN

 ;A PULSE ON EACH OF THE BASE AD
$/ R D$ STAT $=/ A 2$ * A1 * A0 */BRD_SEL */IOR
;READ STATUS OF THE PROCESSORS AT ADDRESS BASE +3
signature with each pe board-perhaps merely a number printed on the board and in the documentation. In this case, the setup software makes a write to the base address with a data value equal to the signature. Only the board whose signature matches the one sent can latch the contents of the ISA address bus.

Many variations of this basic design are possible, including changing the board's base address on demand (a somewhat dangerous possibility). You can implement the base-address table in a PROM for a larger address span and even an EEPROM for extreme flexibility.

Of course, you must have some clock source for the GAL20R8s to operate. If your design is "clockless" or has only some very low-rate clock compared with the bus' addressing speed, you can draw high-speed pulses from the ISA bus itself. (DI \#1428)

EDN
To Vote For This Design, Circle No. 454

Listing 2-Base-address "table" PLD program

TITLE PC-BOARD AUTOMATIC BOARD BASE ADDRESS SELECTOR
PATTERN P
REVISION 001
AUTHOR: VLADIMIR BOCHEV
CHIP PC_DSP_AUTO
PINS
$\begin{array}{lll}\text { CLK } & \stackrel{2}{A R} \text { OUT } & 3 \\ \text { RESET_DRV } & \stackrel{4}{4}\end{array}$ $\begin{array}{ll}\text { 9 } & 10 \\ \text { A6 } & \text { A7 }\end{array}$
PINS
PINS
$\begin{array}{llllllll}13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ \text { OB } & \text { NC } & \text { LATCH } & \text { RA7 } & \text { RA8 } & \text { RA } 9 & \text { RA6 } & \text { RA5 } \\ 21 & 22 & 23 & 24 & & & & \\ \text { RA4 } & \text { RA3 } & \text { NC } & \text { VCC } & & & & \end{array}$
;A3 \ldots A9 ARE THE PC SLOT ADDRESS LINES
RA3 ... RAA ARE THE REGISTERED ADDRESS LINES GOING TO THE BOARD-SELECT
COMPARATOR
;RESET DRV = THE PIN OF THE SAME NAME ON THE PC BUS
AR_OUT = THE FIRING SIGNAL FROM "M" PLD FOR THE AUTOLOADING BASE ADDRESS EQUATIONS
/LATCH : =/RESET DRV */AR OUT +/RESET DRV */LATCH
; SBT TO HIGH AT RESET, FIRES ON AR_OUT LOW AND HOLDS THE
;LOW STATE UNTIL A NEW POWER ON ;LOW STATE UNTIL A NEW POWER ON
/RA9 : $=$ GND * RESET DRV

+ AR OUT $* / R \overline{R S E T}$ DRV */RA9 * LATCH

RAB := GND * RESET DRV
$\begin{aligned} & \text { : }=\text { GND * RESET DRV } \\ & \text { + AR OUT } \\ & \text { * } / \text { RESET DRV * }\end{aligned} /$ RAB * LATCH
$+/$ RESET_DRV * $/$ A $\bar{R} _$OUT * $/$A8 * LATCH
+

$+/$LATCH
$+/$ LATCH * /RAB
/RA7 : $=\mathrm{VCC} *$ RESET DRV

+ AR OUT * /RESET DRV */RA7 * LATCH
$+/ \mathrm{RESET} \mathrm{DRV}^{*} / \mathrm{AR} \bar{R}_{-} \mathrm{OUT}$ * /A7 * LATCH
$+/ \mathrm{LATCH} * / R A 7$
/RA6 : = VCC * RESET_DRV
+ AR OUT * /RĒSET DRV */RAG * LATCH
+ /RESET_DRV */AR_OUT */A6 * LATCH
$+/$ LATCH $^{-} * /$ RA 6
/RA5 : = VCC * RESET DRV
+ AR OUT */RESET DRV */RAS * LATCH
+ ARR
$+/$ RESET_DRV */AR_OUT */AS * LATCH
$+/$ LATCH
$+/ \mathrm{LATCH}^{-} * / \mathrm{RAS}$
/RA4 $\begin{aligned} &:= \\ & \text { GND * } A R \text { RESET } * / R E S R E T-D R V ~ * / R A 4 ~ * ~ L A T C H ~\end{aligned}$
$+/ R \bar{E} \overline{S E T}$ DRV */AR_OUT * /A4 * LATCH
$+/$ LATCH $* / R A 4$
$+/$ LATCH $^{-}$* /RA4
/RA3 : = VCC * RESET DRV
;
+ ARCOUT
+ $/$ RESET $/$ RESET
+

$+/$ LATCH ${ }^{-}$* /RA3
ALL REGISTERED EQUATIONS EXEPT THE FIRST FOLLOW THE SAME PATTERN. THE CORESPONDING OUTPUT IS FORCED TO A FIXED VALUE AT RESET (0×310 ;HERE) AND HOLDS THIS VALUE UNTIL A FIRING CONDITION OCCURS. THEN THE REGISTER LOADS WITH THE NEW VALUE (WHICH MAY BE THE SAME AS ; POWER ON) AND HOLDS THIS VALUE "FOREVER", IE UNTIL A POWER SHUT DOWN

LOW-COST VIDEO CROSSPOINT ICSNO EXTERNAL PARTS!

8 x 4 Switch Includes Four 75 2 Drivers
100MHz Bandwidth (MAX458, Av = +1)
90MHz Bandwidth (MAX459, Av = +2)

- Outputs Drive $\pm 2.0 \mathrm{~V}$ into 150Ω
- No External Feedback
-60ns Switching Time
- 65 dB Crosstalk at 10 MHz
- Expandable for Larger Arrays
- High-Z Output Capability

The MAX459 includes 75Ω cable drivers with a fixed gain of +2 to directly drive back-terminated cables (150) loads).

The new MAX458 and MAX459 8×4 crosspoint switches offer the highest level of integration and precision in the industry. These monolithic ICs replace multiple switches, amplifiers, and logic, and save significant cost, board space and design time over the discrete alternative. The MAX458 includes four digitally controlled, 100 MHz unity-gain buffers. The MAX459 includes four $90 \mathrm{MHz}, 300 \mathrm{~V} / \mathrm{s}$ s amplifiers with a fixed gain of +2 for driving 150Ω back-terminated cable directly, without external feedback resistors.

The Most Comprehensive Large-Array Video Crosspoint Selection

PART	CROSSPOINT ARRAY	BANDWIDTH (MHz)	DIFF. GAIN ERROR $(\%)$	DIFF. PHASE ERROR (degrees)	75Ω OUTPUT DRIVE	EXPANDABLE
NEW	MAX458	$\mathbf{8 \times 4}$	$\mathbf{1 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 5}$	YES

FREE Op Amp/Video Design Guide-Sent Within 24 Hours!
 Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample
MasterCard ${ }^{\oplus}$ and Visa ${ }^{\oplus}$ are accepted for Evaluation Kits or small quantity orders.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086, (408) 737-7600, FAX(408) 737-7194.

[^2]
EDN-Design Ideas

Dual microphones separate voice from noise

Samuel Kerem, Infrared Fiber Systems, Silver Spring, MD

The circuit in Fig 1 uses a pair of microphones to extract a voice from a noisy background. You must mount electret microphones X_{1} and X_{2} on the left and right sides of the user's chest.

Sound sources not equidistant from the microphones experience a phase shift. Because sound travels at $1120 \mathrm{ft} / \mathrm{sec}$, the maximum phase shift for this design's mounting scheme is about 0.5 msec . This phase shift corresponds to a 90° phase shift at about 1000 Hz . Thus, all sounds in the vocal frequency range, except the user's voice, tend to cancel.
$\mathrm{IC}_{1 \mathrm{~A}}$ and $\mathrm{IC}_{1 B}$ buffer the signals from the microphones. R_{1}
and R_{2} provide the needed bias current for the electret microphones. R_{3} 's and R_{4} 's values determine the conversion coefficients. Choose R_{3} and R_{4} so that $\mathrm{IC}_{1 A}$'s and $\mathrm{IC}_{1 B}$'s outputs never saturate. The bipolar 4-quadrant multiplier, IC_{2}, separates the audio signal from the noisy background. R_{5} and R_{6} provide additional voltage gain after multiplication. R_{7}, $\mathrm{C}_{1}, \mathrm{R}_{8}$, and C_{2} form a lowpass filter. (DI \#1449)

ESD

To Vote For This Design, Circle No. 455

Fig 1-Two microphones placed equidistant from a user's mouth on the user's chest produce in-phase signals to this noise-canceling circuit's multiplier, IC_{2}, separating the users voice and out-ot-phase signals from background noise.

Current-feedback amps square up fast signals

Rea Schmidt, Comlinear Corp, Fort Collins, $\mathbf{C O}$

Using current-feedback amplifiers to convert signals from sine waves to square waves for DSP confers advantages over the more common comparator approaches.

Current-feedback amplifiers have wide bandwidths and relatively small and constant propagation delays. These small, constant delays help meet the setup-and-hold requirements of digital logic. Typically, current-feedback amplifiers have delays from 1.1 to 5 nsec.

The circuit in Fig 1 overdrives its output to 32 times the input signal. Typical recovery times measure 2.8 nsec for a 0
to 2.2 V step at the output. The delay measures 2.5 nsec .
Because current-feedback amplifiers' input stages operate in the linear mode, you can minimize the amplifiers' noise terms when sensing low input-signal levels. For the values in Fig 1, resistors R_{1}, R_{2}, R_{3}, and R_{4} clamp the output's voltage swing from zero to a positive voltage.

The accuracy of the clamps depends upon the load. For loads greater than $1 \mathrm{k} \Omega$, the accuracy depends on the tolerance of the resistors and the power supplies. The clamps provide a minimal overshoot and preshoot of 0%, with rise and

TRIPLE 8-BIT DACs REPLACE TRIMPOTS-ONLY 65FIAC

3V and 5V Serial DACs Shut-Down to $1 \mu \mathrm{~A}$

Get the first \& only 3V triple-DACs available, for your next design, and save power, space, and cost. Our new MAX512 and MAX513 low-cost digital-to-analog converters are ideal for your low-power applications, including digitally adjustable RF bias circuits, digital gain and offset adjustments, and programmable attenuators.

- Three 8-Bit Voltage-Output DACs
- Single or Dual Supply: 5 V or $\pm 5 \mathrm{~V}-\mathrm{MAX} 512$ 3 V or $\pm 3 \mathrm{~V}$-MAX513
- 1mA Operating Current
- $1 \mu \mathrm{~A}$ Shut-Down Current
- Guaranteed Monotonic
- Microwire ${ }^{\text {TM }}$, SPI $^{T M}$, QSPI ${ }^{\text {TM }}$ Compatible Serial Interface
- Small 14-Pin DIP \& SO Packages

FREE D/A Converter Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples
 CALL TOLL FREE 1-800-722-8266
 For a Design Guide or Free Sample
 MasterCard ${ }^{\oplus}$ and Visa $^{\oplus}$ are accepted for Evaluation Kits or small quantity orders.

[^3]
fall times of less than 4.7 nsec . The recovery time varies sightly, depending upon how far the input drives IC_{1} into saturation. For capacitive loads, you can adjust R_{5} to improve the output square wave.
R_{G} selects the circuit's gain, and R_{F} is the recommended feedback resistor. A resistor, R_{x}, tied to the appropriate supply, forces any desired initial condition at the output V_{0}. (DI \#1450)
[10N
To Vote For This Design, Circle No. 456

Fig 1-A clamped current-feedback amplifier allows for controlled preshoot and overshoot when translating a high-frequency sine wave into a fast-edged square wave at a desired voltage level.

SOFTWARE SHORTS Noise-voltage generator runs under Windows version of Spice
 Klaus Kübnel Bäch/SZ, Switzerland

Based on an earlier DOS program by prolific Design Ideas contributor Steve Hageman of Calex, the noise-source generator written in Visual Basic for Windows in EDN BBS /DI_SIG \#1434 takes advantage of the Windows user interface to allow you to set up customized noise sources for MicroSim's Windows version of pSpice.

To Vote For This Design, Circle No. 457

Shell converts ADC data
 Paul Kemp, NASA Johnson Space Center Houston, TX

The generic shell attached to EDN BBS /DI_SIG \#1435 is a bit-manipulation program for Motorola's 68 HC 11 that converts binary data from A/D converters into ASCII data ported out through the μ P's asynchronous serial port.

To Vote For This Design, Circle No. 458

NEW ULTRA-SMAL PACKAGE $1 / 2$ THE SIII OF 8-PIN SOIC

Over 45 Maxim ICs Available in the New μ MAX Package!

- μ P Supervisory ICs

Functions include reset, watchdog timer, power-fail warning, and manual-reset input. Both +5 V and +3 V versions available. MAX705-MAX709, MAX813L.

- Op Amps

$600 \mathrm{kHz}-10 \mathrm{MHz}$ bandwidth, rail-to-rail input/output, $130 \mu \mathrm{~A}$ quiescent current option, and 2.7 V minimum supply. MAX473*, MAX495*.

- Comparators

Rail-to-rail inputs, 100 ns Tpd, 2.7 V minimum supply, low $3 \mu \mathrm{~A}$ supply current, and $1.2 \mathrm{~V} \pm 1 \%$ reference included. MAX941/2*, MAX921-3*, MAX931-3*

- Under/Overvoltage Detectors

Trip points externally programmable, low $3 \mu \mathrm{~A}$ supply current. MAX8211/12, ICL7665A*.

- Power Supply ICs

Regulated and unregulated charge pumps, no inductors, 50 mA outputs, doublers and inverters, up to 250 kHz switching frequencies, and $1 \mu \mathrm{~A}$ shutdown currents. MAX860/1*, MAX856-9*, ICL7660*.

- RS-485 Transceivers

Slew-rate limited, $120 \mu A$ quiescent current, single +5 V supply, RS-485 and RS-422 applications. MAX253, MAX481/3/5/7.

FREE Samples-Sent Within 24 Hours!
 CALL TOLL FREE 1-800-998-8800

MasterCard ${ }^{\circledR}$ and Visa ${ }^{\circledR}$ are accepted for Evaluation Kits or small quantity orders.

[^4]
EDN-DESIGN IDEAS

SOFTWARE SHORTS

Our Solid State Relays Are Solid In Every Way

25 years of solid state relay experience-commercial/industrial experience since 1968. All of our products contain that know-how. Our price/performance ratios are better than ever. Here is an example:

The C-15 ac solid state relays are truly valued engineered, employing back-to-back SCRs with a zero crossing turn on circuit. They also provide transient free switching of AC loads and very low EMI and noise generation. This series of solid state relays has versions rated at 10 and 25 amps rms at 250 V rms. These units are packaged in the familiar industry standard configuration.

TELEDYNE ELECTRONIC TECHNOLOGIES SOLID STATE RELAYS
Home Office, 12964 Panama Street, Los Angeles, CA 90066-6534 Telephone: 310-577-3825 • FAX: 310-574-2015 OVERSEAS: GERMANY: (0611) 7636-143; ENGLAND: (081) 571-9596; BELGIUM: (02) 717-52-52; JAPAN: (03) 3797-6956. CIRCLE NO. 48

THE VCXO WITH PULLABILITY FROM RALTRON.

Call or fax your specs to Sandy Cohen.

RFITTROI

ELECTRONICS CORP.
2315 NW 107 AVENUE MIAMI, FLORIDA 33172 U.S.A. FAX (305) 594-3973 TELEX 441588 RALSEN (305) 593-6033

ONLY RALTRON HAS IT ALL
Crystals / Crystal Oscillators Crystal Filters / Ceramic Resonators

C function converts hex to binary

John Santic, consultant
Frederick, MD
The C listing in the text file attached to EDN BBS /DI_SIG \#1436 is a simple function that converts an ASCII hexadecimal string to binary. The function (htoi) works very much like the standard atoi library function.

To Vote For This Design, Circle No. 459

Chaotic amplifier generates Spice noise

José M Miguel-Lopez, Telecommunication School Barcelona, Spain
The Spice subcircuit for an ingenious chaotic oscillator in EDN BBS /DI_SIG \#1437 generates a random voltage that varies between 0 and 1 V . The noise generator's output has a flat spectrum ("white noise") from 0 Hz to a maximum frequency you select.

To Vote For This Design, Circle No. 460

Technique tricks Spice
 into displaying real-world data

Patrick Goss, ARS Microsystems
Basingstoke, Hants, UK
The Spice technique described in the ZIPfile attached to EDN BBS /DI_SIG \#1438 allows you to trick Spice into simultaneously displaying the output of a simulated circuit and real-world data taken from a prototype of the circuit.

To Vote For This Design, Circle No. 461

These Software Shorts listings are too long to reproduce here. You can obtain the listings from the Design Idea Special Interest Group on EDN's bulletin-board system: (617) 558-4241, 300/1200/2400 8, N,1. From Main Menu, enter ss/DI_SIG, then rknnnn, where nnnn is the file referenced above.

How to use our bulletin board

This icon identifies those Design Ideas that have computer-readable material posted on $E D N$'s bulletin-board system (BBS). Call our free BBS at (617) 558-4241 (300/1200/2400 8,N,1). Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. If you'd like to comment on any Design Idea, include its number in the subject field of your message.

LOW POWER 3V/5V SIGNAL CONDITIONING 24-BIT ADC FOR LESS THAN \$3.00 PER CHANNEL

Signal Conditioning Applications? The AD7714 has everything you need: high resolution, low power, low component

CONVERTERS

This guide describes some of the new converters from Analog Devices - the most interesting and innovative integrated circuits for digital-to-analog and analog-to-digital conversion that you can find anywhere in the world, from any manufacturer.

High resolution, low cost, multiple channels, industry standard products, ground-breaking new devices they're all here.

The only exceptions are our range of fast converters - you'll find them, together with companion products, in our High Speed Products guide.

And if you're interested in high speed data acquisition or control, you won't want to miss that.
count and incredible versatility all at an astonishingly low price!

The AD7714 is a complete analog front-end for low-frequency measurement applications. It includes a 5-channel programmable-gain frontend, 24-bit "no missing codes" chargebalancing ADC , low-pass filter and a 3 -wire serial interface. It is completely under software control - gain settings, signal polarity, filter cut-off, calibration and channel selection can be configured using the input serial port.

Not convinced yet? The device operates from either 3 V or 5 V supply, and draws just $750 \mu \mathrm{~W}$ (at 3 V) and
$50 \mu \mathrm{~W}$ in sleep mode. RMS noise is typically $1.2 \mu \mathrm{~V}$ and 300 nV with gains of 1 and 128 , respectively.

The AD 7714 is available in a 24 -pin DIP and SOIC, and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The diagram shows the AD7714 in a typical strain-gauge application, with four spare channels.

COMPACT 16-CHANNEL, 8-BIT MULTIPLYING DAC SAVES SPACE IN ATE, SONAR, ULTRASOUND, INSTRUMENTATION...

Multi-channel applications suddenly get a lot smaller, a lot better specified and a whole lot easier to design with the introduction of the AD 8600 .

Shoe-horning 16 independent 8-bit multiplying DACs into a compact (PLCC-44) package is impressive enough, but doing it with the performance we're offering is little short of a
miracle (admittedly, a small miracle).
The AD8600 contains 16 indepen-
control logic provide the high-speed digital interface. Continued on back dent voltage-output digital-to-analog converters that share a common external reference input voltage. Each DAC has its own DAC register and input register to allow double buffering. An 8-bit parallel data input, four address pins and

MAKE THE SWITCH TO 16 BITS

THE 16-BIT DACS YOU'VE BEEN WAITING FOR

The AD660 and AD669 are complete 16-bit, serial/byte and parallel input DACPORTs which provide leadingedge performance at down-to-earth prices. Their combination of high performance, complete functionality, flexible digital interface, small footprint and low price make them the perfect solution for 12-bit DAC users seeking to upgrade their systems without significantly increasing costs.

The AD660 and AD669 feature

15-bit monotonicity and accuracy over the entire industrial or military temperature range. They are fully AC and DC specified, and offer doublebuffered latches, an on-board precision voltage reference and a pinprogrammable output amplifier. Output can be either unipolar (0 to +10 V) or bipolar $(\pm 10 \mathrm{~V})$.

These devices provide low-cost performance for a wide range of applications including industrial control, wireless communication, ATE, robotics, data acquisition and instrumentation.

2 AD660/9 \$13.60 in 1000s

GROUND ZERO

Without a doubt, the single largest cause of problems in achieving the desired performance with data converters is grounding. At even low resolutions, good ground design is necessary to maintain the desired performance; for high-resolution devices it is absolutely crucial.

The best way to avoid them is to remember that "ground" isn't a magic current sink, but a connection through which currents flow to complete a circuit. Make their path smooth and your life easy!

- Have separate analog and digital grounds - and only connect them at one point.
- Check that noisy signals are kept away from sensitive ones - and that applies to return paths too.
- Where will the return currents flow?
- Are there any potential ground loops?
- Do the return paths have low enough impedance?
- Are the components well decoupled?
- Do you need a ground plane?

For more help call applications support: 1-800-ANALOGD.

TRUE 16-BIT ADCS AT A LOW PRICE (92dB AT 100KSPS FOR \$25)

Your customers are asking you to. Your competitors are doing it. Your boss is ordering you to. Soon even your mother will be telling you to make the switch to 16 -bit resolution. Thankfully, with the AD676 and AD677, you can make that move successfully and affordably. What's more, with these elegantly designed devices you get a host of other benefits too.

The AD676 and AD677 are 16-bit sampling ADCs which provide industryleading performance, cost and space efficiencies. Their 92 dB signal to noise ratio combined with $\pm 1 \mathrm{LSB}$ integral non-linearity offer superior 16 -bit performance at 100 ksps throughput rates.

This high accuracy is a result of auto-calibration, which improves performance without the wasted board space and cost of external trims. A "ground sense" pin is included - invaluable if the signal has to be carried some distance to the A / D converter.

This combination of features makes the AD676 and AD677 the perfect solution for medical and analytic instrumentation applications as well as PC-based data acquisition and industrial applications like power supply monitoring and signal monitoring in transportation and industrial controls.

Both components are fully specified and tested for AC and DC parameters. The AD677 offers easy-to-interface three-wire serial output data. The AD676 offers full parallel output.

The AD676 is available in a 28-pin, ceramic, side-brazed package as well as a 28 -pin plastic DIP. The AD 677 is offered in a 16 -bit skinny ceramic package and plastic DIP and 28 -pin SOIC packages.

MAKE THE SWITOH TO 16 BITS

166KSPS AND 16-BIT RESOLUTION IN A LOW. POWER, LOW-NOISE ADC

The AD7884 and AD7885 are fast, monolithic 16 -bit sampling ADCs. They offer true 16 -bit resolution with 16 -bit no missing codes, and a high throughput rate of 166 ksps .

The AD7884 and AD7885 dissipate only 250 mW of power. Features includes analog input ranges of $\pm 3 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ as well as parallel and byte interfacing (AD7884 and AD7885 respectively).

In medical and scientific instrumentation, noise is a critical requirement, and with their excellent noise performance $(78 \mu \mathrm{~V}$ rms at $\pm 3 \mathrm{~V}$ input range) the $\mathrm{AD7884/5}$ are earning wide popularity. They also offer SNR of 86 dB , while THD is -88 dB .

The AD7884 is available in 40-pin cerdip and 44-pin PLCC packages. The AD7885 is available in a 28 -pin DIP package while the AD7885A is available in a 44-pin PLCC package. Temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The AD7884/7885 are high performance 16 -bit ADCs. Their high speed (6 conversion time) and low noise (88dB SINAD) make them ideal for wide bandwidth signal processing applications.

THE FIRST DIGITAL TO 4-20mA SYSTEM: NEW CHIP INTEGRATES DAC WITH LOOP DRIVER

16-Bit Industrial Control DAC
The AD420 is the only single-chip solution available for generating $4-20 \mathrm{~mA}$ current loop signals from digital data. It is the first current-loop output DAC, and its high performance, low price and compact design make it perfectly suited for almost any industrial control application. It provides a single-chip solution for generating precision $4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$ signals, and runs on a single supply (up to 36 V).

The AD420 has been designed to make the system engineer's life easier. It includes a 16 -bit sigma delta DAC, for guaranteed monotonicity and excellent linearity. The loop driver circuitry includes a loop fault detect circuit, so a warning signal can be generated if the current loop is open circuited. It has an SPI° - and MicroWire ${ }^{\bullet}$ - compatible serial interface, and can interface seamlessly with most controllers. Furthermore, it is a completely specified part - there is no need to worry about component

interaction or error budgets. Finally, although the chip can drive loops directly, it is a trivial matter to use an external boost transistor to extend the temperature range or obtain lower drift performance.

Typical applications for this unique product include valve and motor control in a wide variety of industrial applications. It is ideal for use in distributed control systems
(DCS), programmable logic controllers and data I/O cards and modules. Its uses range from plant or process automation to single PC-based control systems.

24 pin PDIP or SOIC, temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^5] 262 5643

FLEXIBLE, ACCURATE QUAD 12-BIT DAC EASY TO SET OUTPUT VOLTAGE RANGE

The Only DC Setpoint D/A Converters You'll Ever Need.
This family of quad 12-bit voltage-out D/A converters provides all the features most designs will ever need, plus the low cost every design requires all in a small footprint package.

Because you may want unipolar, bipolar or asymmetric outputs, they provide separate Vref high and Vref low inputs and a single-supply output op amp - so it is trivial to set exactly the output range you need. And unlike some parts, that means both positive
and negative outputs are available.
The voltage-switched DAC architecture offers the best overall accuracy available from a quad 12-bit converter (including offset and temperature accuracy).

These DACs all operate from a wide range of supply voltages (+5 V to $\pm 15 \mathrm{~V}$). Their high speed (80ns data load timing for DAC8412/13, or 12 MHz clock for DAC8420) combines with low power dissipation to meet performance requirements while reducing power supply and cooling demands.

Interface: State at Reset (RST strobe): Price:

7 DAC8420	Serial	Programmable (mode pin)	$\$ 25.16$ in 1000 s
8 DAC8412	Parallel	Reset to zero	$\$ 24.26$ in 1000 s
9 DAC8413	Parallel	Reset to midscale	$\$ 24.26$ in 1000 s

MAKE IT EASY

Life is hard enough already - but when it comes to helping you get converter circuits to work, Analog Devices' applications engineers have more experience than anyone else in the world - just give them a call. Some of this experience is available in ready made forms; evaluation boards allow you to easily appraise a component, but also offer a well-designed and fully tested circuit that can be used as a reference design. And data sheets give circuit designs and pcb layouts.

There are a number of application notes that offer ideas or advice. Some of the more popular include:

- Getting the most from high resolution digital-to-analog converters
- Analog signal handling for high B speed and accuracy
- Differential and multiplying D/A applications
- DAC ICs: How many bits is enough?
- An IC amplifiers guide to E decoupling, grounding and making things go right for a change

USING THE INDUSTRY STANDARD AD574? THEN MOVE UP TO THE AD1674

When Analog Devices introduced the AD574, it quickly became the industry standard. Now, the AD1674 takes that standard to yet another level.

The AD1674 is a high-performance sampling 12-bit A/D which offers users of the AD574 family (AD574, AD674, AD774) an instant upgrade with up to three times the speed, along with lower power and greater accuracy. It utilizes the AD 574 pinout for easy replacement in existing designs, providing increased capabilities while reducing costs through the elimination of external SHA and support circuitry.

The power and versatility of the AD1674 make it an ideal generalpurpose converter for a wide variety of applications ranging from industrial control to data acquisition and instrumentation. Additional features include $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-10 \mathrm{~V}$ and $0-20 \mathrm{~V}$
input ranges, internal reference, 8and 16 -bit microprocessor interfaces and a wide selection of package styles.

The AD1674 is available in 28 -pin PDIP and 28 -pin SOIC packages in commercial and industrial temperature ranges as well as in a 28 -pin sidebrazed ceramic package for industrial and military ranges. All specifications are both AC and DC guaranteed. Full MIL-883B and SMD devices are also available.

10 AD1674 \$11.60 in 1000s

A NEW GENERATION OF 12-BIT ADCS, WITH UNMATCHED PERFORMANCE, SINGLE 5V POWER SUPPLY OPERATION, ROBUST INPUT CIRCUITRY AND EASE OF USE IN A COMPACT DESIGN.

THE SMALLEST 12-BIT ADC

A single-channel ADC in a tiny $0.15^{\prime \prime}$ wide 8 -pin SOIC package.

The AD7893 provides a throughput rate of 117 ksps , with a power dissipation of less than 50 mW . It handles data transfer via a two-wire serial interface.

OCTAL ADC-7X SAVINGS IN SIGNAL CONDITIONING

The AD7890 is an eight-channel version which offers a seven-fold savings in channel support circuitry over other integrated solutions. This economy is possible because access to MUXOUT means that the same signalconditioning circuitry can be used for all eight channels. The AD7890 has a throughput rate of 100 ksps . It also features a power dissipation of less than 50 mW , and on-chip reference.

Robust Inputs

Both parts are available with three distinct input range options. Like the AD7892, they operate from a single 5 V power supply, and their analog inputs are tolerant to voltages which extend well outside of the supplies, protecting them from overvoltage fault conditions (up to 17 V outside for the -10 version).

AD7890-2	$0-2.5 \mathrm{~V}$
AD7890-4	$0-4 \mathrm{~V}$
AD7890-10	$+/-10 \mathrm{~V}$
AD7893-2	$0-2.5 \mathrm{~V}$
AD7893-5	$0-5 \mathrm{~V}$
AD7893-10	$+/-10 \mathrm{~V}$

FASTER SIGNALS AND CLEARER RESULTS THE HIGHEST SINAD SPECS FROM A COMPLETE 12-BIT 1.25MSPS ADC
The AD1671 delivers leading-edge performance from a complete converter - with on-chip reference and wide bandwidth, high impedance sample-and-hold amplifier.

The AD1671's exceptional dynamic performance includes 69 dB SINAD, a full power bandwidth of 2 MHz and a small signal bandwidth of 12 MHz . This allows better, faster data acquisition - delivering sharper images from scanners or clearer signals from communication links.

The AD1671 performance and price breakthrough are enabling markets that were previously prohibited by cost, power or price constraints. They include communications systems (high speed modems, base stations, HDSL), imaging (color scanners, medical imaging, IR) and highspeed data acquisition.

The AD1671 is available in both a 28 -pin cerdip and 28 -pin PLCC package, in commercial, industrial and DESC versions.
13 AD 1671 Less than $\$ 40$ in volume.

8

2
3
2

43

TINY, COMPLETE SINGLE SUPPLY DACS SMALLEST PACKAGES, EASIEST TO USE

Total DAC System - In the Industry's Smallest Packages
The DAC8512, DAC8562, AD8522 and AD8582 are a set of single-supply 12-bit DACs, offering a complete "plug and play" output system. Everything there, everything included, everything tested and specified. And everything squeezed into a tiny SO-8 package (DAC8512).

Each part includes all the related circuits - bandgap reference, voltageswitched $R-2 R$ ladder DAC, and an output rail-to-rail op amp. Full-scale voltage of 4.095 V with $1 \mathrm{mV} /$ bit output coding creates a programming-friendly environment while maximizing the analog output swing for all loads.

These parts also feature low power dissipation of $3 \mathrm{~mW} / \mathrm{DAC}$ and compact designs which make them ideal for portable or battery-operated equipment.

The 8- and 14-pin count DAC8512 and AD8522 serial parts also offer the industry's smallest surface mount packages to reduce space consumption.

	Channels:	Interface:	Package:	Price:
14 DAC8512	Single	Serial	SO-8/DIP-8	$\$ 4.49$ in 1000s
$\mathbf{1 5}$ DAC8562	Single	Parallel	SOL-20/DIP-20	$\$ 7.52$ in 1000s
$\mathbf{1 6}$ AD8522	Dual	Serial	S0-14/DIP-14	$\$ 7.86$ in 1000s
$\mathbf{1 7}$ AD8582	Dual	Parallel	SOL-24/DIP-24	$\$ 9.44$ in 1000s

12-bit DAC in SO-8 package

PROBABLY THE BEST VOLTAGE REFERENCE IN THE WORLD

5 V voltage reference - low dropout, low power, high accuracy Many of our converters are available with built-in voltage references, but sometimes you want to use an external reference. And when that's true, there is no better choice than the REF-195.

To say that this has been popular would be an understatement - it has been a scorching success, with thousands of applications and millions shipped. And when you look at the specifications, it is obvious why - a 5 V micropower reference with only 0.1 V drop-out, low power (just $45 \mu \mathrm{~A})$ and high accuracy $(\pm 3 \mathrm{mV})$. What's more, because it can source up to 30 mA , the REF- 195 can act as both a precision voltage reference and a highly efficient voltage regulator. And all that for an astonishingly low cost - what more could you look for in a reference?
18 REF195 \$1.94 in 1000s

HIGH PERFORMANCE 12 BIT ADC SAMPLES ACROSS WIDE DYNAMIC RANGE

The AD7886 is a high-speed, powerefficient 12 -bit ADC with a throughput rate of 1 Msps . Its high performance makes it ideal for sampling applications requiring a broad dynamic range over a large bandwidth, as well as high-speed and multiplexed data acquisition systems. The full-power bandwidth of the on-chip sample-andhold extends well above the 500 kHz Nyquist limit, allowing the AD7886 to be used in undersampling systems in addition to the standard signalprocessing applications.

The AD7886 has a low power dissipation of 250 mW , and is comprehensively specified for AC and DC parameters. It features a high speed interface with 57 ns bus access times, making it directly compatible with DSPs and microcontrollers.

It is available in 28 -pin DIP and 28 -pin surface mount packages. Temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the industrial grades and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the extended range.

The full power bandwidth of the SHA allows the AD7886 to sample up to 1 MHz bandwidth - ideal for undersampling applications.

FAST 12-BIT SIGMA-DELTA ADC ELIMINATES NEED FOR ACTIVE ANTIALIASING FILTER

The AD7721 is a 12-bit sigma-delta ADC with a 200 kHz bandwidth and an output word rate of 470 ksps .

It offers all the advantages of digital filter design, including freedom from the component matching or drift issues commonly associated with analog filters. It also drastically simplifies the design of the input anti-aliasing filter - in many cases no filter other than a simple RC rolloff is required. Other advantages include device-device repeatability, linear phase characteristics and dramatic improvement in SNR.

Operating from a single 5 V supply, the AD7721 dissipates only 175 mW of power while supporting a full-power signal bandwidth of 200 kHz . Other features include an onchip reference and a choice of either parallel or serial interfacing, a powerdown mode and pseudo-differential inputs. It also offers a calibration

TRIMDAOS REPLAGE TRIMMERS AND POTS - FOR LESS THAN \$1.OOEACH

Question: What's the cheap, efficient and reliable way of removing adjustment trimmers and potentiometers from your designs?
Answer: Replacing them with TrimDACs.

The TrimDAC ${ }^{\circledR}$ Family of octal, 8-bit serial-input digital-to-analog converters provides a low-cost way to replace mechanical components, improving performance and reducing PC-board space. Not only can trimming now be digitally controlled, but performance and reliability can be dramatically improved. By using thinfilm resistor technology, the TrimDAC family provides better temperature stability performance than traditional potentiometer solutions.

The TrimDAC family reduces space requirements by providing eight independent gain channels in 20- and 24-pin packages, guaranteed to operate over the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. Other features include low-power dissipation and 3-wire serial μ controller interface to simplify periodic

service or remote adjustment.
For DC adjustment, the DAC8800 provides high and low reference inputs to establish the output swing. For AC signals, the DAC8840 features 4-quadrant multiplying adjustment for inputs up to 1 MHz , while the AD8842 is suited for lower bandwidths $(50 \mathrm{kHz})$ at a lower price and half the power requirement.

TrimDAC is a registered trademark of ADI.
mode to minimize offset and gain errors.

The AD7721 is available in 28 -pin plastic DIP, SOIC and cerdip packages. Temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the extended grade.

20 AD7721 \$13.60 in 1000s

12-BIT MDACS - CHEAPER SMALLER, BETTER

Upgrading your design with the latest generation of 12 -bit multiplying DACs couldn't be easier. The AD7943/45/48 set new standards in performance, power efficiency and cost. And feature pin-outs compatible with the industry standard AD754x DACs.

The AD794x series feature significantly improved accuracy, fast 600 ns settling time, and low 60 nV -secs glitch energy. They also feature the fastest digital interface available anywhere -40 ns pulse width. Operating from a single +3 V or +5 V supply, power consumption is a miserly 1 mW .

For new designs, the AD794x series lets you save valuable space; all devices are available in ultrasmall 20-pin SSOP packages, which use less than 0.1 square inch of precious board space.

The AD7943, AD7945 and AD7948 provide serial, parallel and byte digital interface, respectively. In addition to the SSOP, industry standard packages are available. These devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ temperature range.

28 AD7943/45/48 \$4.90 in 1000s 0

4 3

12-BIT 500KSPS ADCS THAT

 SURVIVE OVERVOLTAGE!Real-world data acquisition and control systems often have to cope with tough environments. It isn't always possible to guarantee which system will power up first. Sometimes signals on input lines can go out of range even beyond the supply rails. Until now, this was a guarantee for destroying your ADC - and that was an expensive fuse!

The ADC7892 is a versatile, highspeed ADC expressly designed to cope with these circumstances. It is a 12 -bit sampling A/D converter with a throughput rate of 500 ksps , low power dissipation of only 60 mW and the flexibility of both serial and parallel interface capability. Crucially its analog inputs are tolerant to voltages which extend well outside of the supplies;
this resilience protects them from overvoltage fault conditions (up to $\pm 17 \mathrm{~V}$ outside supply range for the $\pm 10 \mathrm{~V}$ input version). It also features an on-chip reference, as well as a power down mode.

The AD7892 is available in two versions. The AD7892-2 has an analog input range version of 0 to 2.5 V for complete 5 V single-supply systems. The AD7892-1 has input ranges of $\pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ for industrialtype systems where the larger LSB sizes are important.

Both versions are available in $24-$ pin plastic DIP, SOIC and cerdip pack-
ages. Temperature ranges are $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the industrial grades and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the extended range.

25 AD7892 $\$ 13.60$ in 1000s

A HIGH-RESOLUTION A/D CONVERTER, MOTOR CONTROLLER AND ISOLATION DEVICE FOR ONLY \$2.95

The AD654 provides designers with a converter that can be applied to solve a wide range of design problems at much lower cost than ever before possible.

It is a monolithic V / F converter which reduces space requirements by integrating an input amplifier, precision oscillator system and a high-current output stage. Its high performance, low cost, low power consumption and small size make it the perfect choice for an unlimited variety of applications.

The AD654 provides a square wave output and can drive up to 12 TTL loads, opto-couplers, long cables or similar loads. The input amplifier provides low drift, permitting operation directly from low level transducers like thermocouples, strain gauges and cur-
rent shunts. It also offers a high $(250 \mathrm{M} \Omega)$ input resistance to positive voltage signals. Only 2.0 mA of quiescent current is required using the single positive supply from 4.5 V to 26 V , and the output stage can sink up to 10 mA with saturation voltage less than 0.4 V .

The AD654 combines low cost with very high accuracy. Linearity error is only 0.03% for a 250 kHz full scale frequency, and operation is guaranteed over an 80 dB dynamic range. A single RC network is all that's needed to set up any full scale frequency up to 500 kHz .

Applications for this product range from high-resolution A / D converters, process control systems, and isolation to energy management, motor speed controls and power monitoring.

The AD654 is available in 8-pin PDIP and 8-pin SOIC packages in commercial temperature ranges.

26 AD654 \$2.95 in 1000s

Continued from front

Finally, the AD8600 features a new DAC design (patent-pending) which reduces reference glitch during reprogramming.

Space savings is a major benefit of this part, since it provides all these capabilities in a PLCC-44 package. But other features include: simplified full-scale setting; fast $2 \mu \mathrm{~s}$ settling time for fast updates for analog instrument systems; minimal (2 mV) zero level system errors; and fast (30ns) data loading write times. A data readback feature allows system self-check at power-on.

The AD8600 operates from dual $\pm 5 \mathrm{~V}$ or single +5 V supplies, in extended temperature range $-\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

27 AD8600 $\$ 25.28$ in 1000 s

WORLDWIDE

HEADQUARTERS
Analog Devices, Inc.
P.O. Box 9106

Norwood, MA 02062-9106, U.S.A
Tel: (800) 262-5643
Fax: (617) 326-8703

Why fret over development test? Think positive. Prove your results beyond the shadow of a doubt with the TRW VP8000 Wideband Signal and Test System.

The key is deep memory. The TRW VP8000 has up to 64 megabytes of it. With high-speed capture and generation in both analog and digital. This lets you soak up more real-world signal. In more detail. In less time. With less retesting.

This assures that you catch problems in the lab. Not in production.
The TRW VP8000 proves to be a positive in other ways, too. A single workstation-based system, it replaces stacks of test and measurement devices. Integrating the accessibility of computers with the power of instrumentation. Delivering such doubtless benefits as fast test set-up... a smooth upgrade path... portability ... and affordability.

So, don't just prove results the usual way-improve. Give us a call at 1-800-354-6195. And let us prove how the TRW VP8000 will erase all your doubts about development test.

The TRW VP8000 - there's no doubt about it.

TR푸

Introducing the Downsized 16 -meg DRAM. [At 300 mils, it's lost width.]

At 300 mils, our new 16 -meg DRAM is, in a word, svelte. Especially when you compare it to the rather fat 400 -mil part which has been the only way you could get a 16 -meg.

And-size being size-the thin 300-mil gives you an advantage nothing
else does. It lets you put more into the same amount of space.

If you're a

Then. Now. manufacturer of high-end workstations, mainframes, and supercomputers, you'll have the
potential to increase your number of memory chips-and therefore your memory-by as much as 33 percent. Compared to what you get with the 400-mil part.

Samsung is among the first suppliers in the world to complete the $300-\mathrm{mil}$ 16-meg. Partly because the

SimpleAs 1,2,3! Configure Your Own Modular PowerSupply

 200 to 2000 Watts
CALL (619) 575-1100 . . . OR FAX (619) 575-7185

Now configuring your own power supply is as easy as filling in the blanks. Just tell us which input and which DC outputs you need and we'll put the modules in place. What could be simpler?

- Up to 16 outputs in the voltage/current combinations of your choice
- Parallel/Current-Share (optional)
- 200 to 2000 Watts
- 2.5 to 5 inches high
- Power Factor Correction (IEC 555-2)

Call for your free catalog:
(619) 575-1100.

Shown: AC input with PFC, 600 Watts, 4-Outputs, $2.5^{\prime \prime} \times 5^{\prime \prime} \times 11^{\prime \prime}$ 4 Watts/in ${ }^{3}$
3.

SELECT INPUT	VOLTAGE	(CHECK ONE)
$\checkmark \sim$	AC 115/230 VAC (Auto Select optional)	
	AC with PFC 85-264 VAC (Meets IEC 555-2)	
	DC (48 VDC)	

Select up to 8 DC output modules. *Total current from dual output module.
SELECT DC OUTPUTS

Volts	Amps	Module	QuantityNeeded
$2-6 \mathrm{~V}$	25 A	B	
$2-6 \mathrm{~V}$	60 A	A	
$2-6 \mathrm{~V}$	100 A	L	
$5-15 \mathrm{~V}$	12 A	C	
$5-15 \mathrm{~V}$	24 A	F	
$5-15 \mathrm{~V}(\times 2)$	$6 \mathrm{~A} \mathrm{max} *$	E	
$12-28 \mathrm{~V}(\times 2)$	$3.5 \mathrm{~A} \mathrm{max} *$	H	
$12-28 \mathrm{~V}$	7 A	D	
$12-28 \mathrm{~V}$	15 A	G	
$25-60 \mathrm{~V}$	10 A	J	
Select up to 8 DC output modules. *Total current from dual output module			

ISO 9001
Certified Manufacturer

Layout techniques boost dynamic range for high-speed ICs

Rosie Loaiza-Montiel, Burr-Brown Corp

A systematic approach to good grounding and bypassing practices allows high-speed analog circuits to deliver dynamic range equivalent to Spice predictions.

Circuits with dynamic range exceeding 90 dB are always challenging; when combined with hundreds of megahertz of bandwidth, they become especially challenging. Manufacturers of such high-speed, wide-dynamic-range circuits always recommend using plenty of ground plane, short leads on components, and "good board-layout techniques." However, even the best efforts at interpreting these instructions can lead to frustration. Going step-by-step through the optimization of an evaluation board for Burr-Brown's OPA642 analog circuit ($500-\mathrm{MHz}$ bandwidth, 2 V p-p output, $-90-\mathrm{dBc}$ distortion in a 50Ω load at 5 MHz) allows you to address such considerations as:

- Where to put the bypass capacitors
- How big the capacitors should be
- Whether ground planes are needed on both sides of the board.
You can use a router to fabricate the evaluation boards. The router mills grooves in copper on a blank board, using a layout from a CAD program for control. The resulting board functions very much like a conventional pe board. Thus, you optimize performance before tooling the production board, thereby saving time and money.

Start with some assumptions about good board-layout techniques. These include putting ground planes on both sides of the board, which yields controlled impedance for the signal lines. Also, ground fill around the power lines reduces electromagnetic-field coupling. In this kind of high-frequency application, surface-mount components are particularly appropriate. Surface-mount resistors on the bottom of the board, for example, allow the feedback path to run beneath the amplifier. Chip capacitors on the top (amplifier) side permit the closest possible connections to the package pins.

It's important to connect the bypass capacitors directly at the package pins to ensure a low-impedance power supply at high frequencies. They reduce the area of the loop through which the ac power-supply currents flow because they allow the high-frequency components of the power-supply current to bypass the power-supply inductance. The rule of thumb is smaller loop=lower inductance=lower impedance=better performance.

It's easy and common to overlook this small bit of advice about bypassing. For example, when the board detailed in this article was tooled for mass production, the board designer moved the bypass capacitors to the bottom of the board. This seemingly minor change caused distortion problems at high gains and necessitated board retooling.

Fig 1 shows the initial board layout; Fig 2, the schematic diagram; and Fig 3, the measured performance. The schematic for the board is that of a simple voltage follower

Fig 1-The first cut at the layout connects positive and negative supplies and uses a single bypass capacitor for each.

EDN-Descen Feature

HIGH-SPEED ICs

(buffer). This configuration presents a rigorous challenge for a high-speed amplifier, as it demands unity-gain stability and it exercises the full input common-mode range at the signal frequency. The 50Ω resistor in series with the output allows the amplifier to drive the 50Ω input of the spectrum analyzer with no reflection problems. To ensure a clean input signal, a $5-\mathrm{MHz}$ bandpass filter (not shown) conditions the input sine wave. This conditioning eliminates the analog equivalent of garbage in, garbage out.

The OPA642 has separate pins for the output-stage power supply. Early on in the design stage, the IC designer realized the importance of a low-impedance power supply. The separate pins for the output-stage supply prevent the high-frequency, high-amplitude output currents flowing in the pack-age-pin inductance from modulating the power-supply voltage of the remainder of this high-dynamic-range amplifier. The designer also added on-chip bypass capacitors along with low-value resistors (Fig 4) to filter the supply voltage for the most sensitive part of the amplifier, and thus reduce the effects of supply noise.

For the initial layout, designers connect the low- and highlevel power supplies to allow using a single capacitor to bypass each power supply. This configuration is the obvious first choice for area and cost considerations. The board has $2.2-\mu \mathrm{F}$ tantalum capacitors at the power-supply connector. Because these become inductive at fairly low frequencies, the designers add $0.01-\mu \mathrm{F}$ chip capacitors on the IC side of the board, directly at the package pins.

Fig 3a shows the measured performance. All the spec-trum-analyzer plots show only the second harmonic, which is the limiting factor for dynamic range with this amplifi-

Fig 2-This follower configuration is a tough test for a high-speed amplifier because of common-mode and unity-gain-stability requirements.
er. If the screen showed the fundamental, the second harmonic would be lost in the noise floor because the spectrum analyzer has limited dynamic range for wideband measurements.

Performance of the initial board is fairly good, with distortion measuring -77 dB for a 2 V p-p, $5-\mathrm{MHz}$ sinewave into 50Ω. (The fundamental is 4 V p-p into 100Ω at the output of the amplifier; thus, 2 V p-p into 50Ω or 3 dBm at the analyz-

Fig 3-The layout of Fig 1 produces second-harmonic distortion of -80 dB with $0.01-\mu \mathrm{F}$ bypasses (a) and -87 dB with $0.1-\mu \mathrm{F}$ bypasses (b).

Fig 4-The OPA642 has internal power-supply filtering to reduce the effects of power-supply noise.

If you design microprocessor-based boards, or systems, you know that high emissions-EMI-can eat you alive. Your designs could be affected. Or even rejected And redesigns for clock schemes take time. And cost money.

Don't Lose Another Knight Redesigning

 Your BoardsAMCC clock and timing products are famous for their low emissions. They'll shield you from certification problems. And, your designs will use fewer components, cost less, and run faster.

Call (800) 755-2622

You Can Live Happily Ever After Our SC3500 family of clock drivers provide:

- Patented low-noise outputs. To eliminate ringing and ground bounce. Fast edges rates without EMI-generating noise
- On-chip termination eliminates extra components.

Theirs Unterminated

Ours Unterminated

- Low skew. As low as 250 ps.
- High speed. Up to 80 MHz for your Power PC, Pentium, Alpha, and other RISC-based applications.
- The SC3300 family provide $\mathrm{a}^{533.3 V} \mathrm{I} / 0$-compatible solution.

Contact AMCC Today

We won't tell you a fairy tale. Ask for a copy of our new Computer Products Databook
FAX us at (619) 450-9885
Or write to us: MarCom, AMCC,
6195 Lusk Blvd., San Diego, CA 92121-2793

АМСС

EDN-DESGEN FEATURE

HIGH-SPEED ICs

er input.) The spectrum looks quite clean, but Spice predicted -90 dB , vs the -77 dB obtained. Is the Spice prediction faulty, or could the layout be improved?

Fig 5-This layout separates the low- and high-level supplies and uses $0.01-\mu \mathrm{F}$ chip capacitors on all four supply pins.

Fig 6-Separating the supplies improves distortion to -90 dB (a); connecting the top and bottom ground planes with copper foil improves it further to -94 dB (b).

An old standby for improving performance is to use bigger bypass capacitors. Increasing the value from 0.01 to $0.1 \mu \mathrm{~F}$ yields the performance of Fig 3b, with $-87-\mathrm{dB}$ distortion. At 5 MHz , the impedance of the $0.1-\mu \mathrm{F}$ capacitor is $0.3 \Omega \mathrm{vs} 3 \Omega$ for the $0.01-\mu \mathrm{F}$ bypass. Lower-impedance power supplies are critical because supply currents at the signal frequency flow through this impedance and create signals that the amplifier must reject, by the amount determined by its power-supply rejection ratio (PSRR). At dc or low frequencies, the OPA642 has a $95-\mathrm{dB}$ PSRR, but, at 5 MHz , the PSRR is only about 60 dB .

The next step in the quest for improved performance is to use the extra power-supply pins to separate the output currents from the supplies of the low-level stages. Fig 5 shows the new layout, with $0.01-\mu \mathrm{F}$ chip capacitors on all four supply pins. (The bottom of the board is the same for all the boards.) Fig $6 \mathbf{a}$ shows the performance with this configuration. The distortion improves to -90 dB , somewhat short of expectations.

A noticeable difference in the new board of Fig 5, as compared with that of Fig 1, is that the IC is now near the edge of the board, instead of in the middle. The ground plane is, therefore, rather narrow. Could this increase the ground impedance and add distortion? A quick way to check this is to solder copper tape around the edge of the board where the

Fig 7-Separating the negative (a) and positive supplies (b) one at a time and centering the amplifier on the board produce noticeable reductions in distortion.

Loral Makes a Replacement for the Versatec V80"' That Uses No Liquid Chemicals.

NEW FROM LORAL

The Loral 9080 is a plug-compatible, exact replacement for the Versatec V80. It gives you everything you want and need in a high speed printer/plotter. With the 9080, you get clean, crisp copies every time using an environmentally-friendly dry process. No chemical inks or toners.

EASY TO INSTALL AND USE

Installation couldn't be easier. Simply unplug the V80 and plug in the 9080. The 9080 is designed to work with all existing Versatec V80 software and hardware interfaces.

Powered by the Astro-Med Print Engine, the 9080 prints high-resolution documents at 200 dpi on fanfold or roll paper. Print Speed is 15 pages per minute. Plot speed is one inch per second. Price is under $\$ 12,000$.

To order the Model 9080, call (813) 378-6984. For more information write: Loral Data Systems, P.O. Box 3041 M/S41, Sarasota, FL 34230 or call our hotline (813) 377-5590.

EDN-Design Feature

HIGH-SPEED ICs

Fig 8-Separate negative (a) and positive (b) supplies yield distortion figures of -90 and -91 dB , respectively.
ground plane is narrow. This step yields a very satisfactory -94 dB (Fig 6b). Some questions remain: Are all four capacitors needed? Is it necessary to separate both supplies? The extra area and components add cost, but you don't want to sacrifice performance.

The next board has good connections between the top and bottom ground planes, the amplifier in the middle of the board, and both supplies separable. A knife and soldering iron allow us to examine the effects of connecting the 5 and -5 V supplies. Separating the power supplies one at a time produces the layouts of Figs 7a (negative supplies separated) and $\mathbf{7 b}$ (positive supplies separated). Improvement is noticeable in both cases, as seen in the plots for these layouts (Figs $\mathbf{8 a}$ and $\mathbf{8 b}$, respectively).

Distortion levels are now -90 and -91 dB , respectively, as compared with -87 dB with both pairs of supplies sharing a single bypass capacitor, and -94 dB with separate supplies and bypass capacitors. The final board of Fig 9 uses this optimum configuration (separate supplies, individual bypasses), and yields -94 dB distortion (Fig 10), verifying that this level of performance is repeatable.

The optimization process shows that good power-supply routing and bypassing can be tricky and elusive. Chip capacitors mounted directly at the package pins can be crucial for some applications because power-supply impedance of even a few ohms at the frequency of interest can severely degrade performance.

Fig 9-The optimized board uses four supply connections, an effective ground plane, and four bypass capacitors.

Fig 10-The optimized board of Fig 9 yields a clean spectrum, with second-harmonic distortion of -94 dB .

Author's biography

Rosie Loaiza-Montiel is an associate engineer in the High Speed Design Div of Burr-Brown Corp, Tucson, AZ, where she has worked for nine years. In her current position, she is responsible for evaluating prototypes and transferring them to production. She helped develop the OPA64X family of analog circuits. Loaiza-Montiel received an associate's degree in engineering from Pima Community College in Tucson, AZ, and is currently working toward a BSEE at the University of Arizona, Tuscson. She enjoys outdoor activities and sports, especially softball.

[^6]
Check Out the Sanimiti in Power Components

C Largest Selection of ImputOutput Comininations in the industry

Over 2.5 Million Modules in the Field

C
 $1-800-155-5220$

Introducing the fir for embedd

EThe embedded Intel $386^{T M}$ EX processor. We asked you what you wanted in an embedded processor, and your suggestions truly hit home. The result is the embedded Intel $386^{T M}$ EX processor. The first and only PC-compatible 386 that's optimized for embedded designs.

The integrated Intel386 EX processor offers power management and low-voltage operation for portable applications. It also increases your design flexibility by
allowing you to configure its on-board peripherals according to your own specifications.

For example, the Intel386 EX processor can be programmed to provide DMA-supported serial transfers to reduce the CPU load. Its Chip Select unit eliminates the need for external logic with address decoding, wait-state generation and ready-logic on chip. And its enhanced external bus supports dynamic bus sizing to interface with 8 - and 16 -bit peripherals.

And designing with an embedded Intel386 processor

st 386 custom built

ed applications.

couldn't be easier. The off-the-shelf tools and support of the PC architecture will allow you to get your designs out more quickly, and differentiate them with familiar interfaces like DOS and Windows*

Dial the FaxBack* service at 1-800-628-2283, cat. \#2312 to get additional information about the embedded Intel386 EX processor. Or contact your distributor to receive Intel386 EX processor

Embedded Intel $386^{1 /}$ EX Processor Block Diagram

Programmable Chip Selects (8)		Bus Interface 26 Address, 16 Data
DMA (2 Channels)		
Timer/Counter (3 Chatinels)		sxc
Interrupt Controller (Two 82 C 595)		16 MHz 20 MHz
Async. SIO (2 Chamels) (2 Channels)		25 MHz (5V only) Extended Temp.
Sinc. SIO Full Duplex		
$\begin{aligned} & \text { DRAM/PSRAM } \\ & \text { Refresh } \end{aligned}$		System Mgh. Mode
Watchdog Timer (H/W,S/W)		Clock Generation \& Power Management
JTAG Boundary Scan		$\begin{gathered} \text { Parallel } I / O \\ \text { (Up to } 24 \text { Lines) } \end{gathered}$

samples or to get current pricing of Intel386 SX and DX processors.

Move into an embedded Intel386 EX processor. Because when you want a solution that's optimized for embedded, nobody else is even in the neighborhood.

intel.

FASJ' Track to FAST SCSI

90's Challenges. The 90's demand higher levels of performance and faster delivery than ever. Time-to-market, technological demands, and changing user needs make fast, simple SCSI seem as elusive as the horizon. To stay ahead in these challenging times, you need products you can count on, with proven ability to deliver the quality and reliability your customers require.

90's Products. After over a decade of industry leadership, NCR is still working hard to meet your needs and the challenges of the 90 's. The NCR 53 C 90 family of SCSI Controllers is constantly evolving, implementing and offering state-of-the-art products. For example, the NCR 53C90 family supports multiple bus architectures, advanced SCSI-2 commands, fast SCSI data transfers and provides our exclusive TolerANT ${ }^{\circledR}$ SCSI driver and receiver technology, for reliable data transfers in

every SCSI system.
 The NCR 53 CO 9 Family
 Proven Performance for the 90's and
 for the 90's Beyond

NCR SCSI: Real Products, Real Solutions, Real Fast!

SCSI	FAST SCSI*	- NCR Fast SCSI devices transer SCSI data at $10 \mathrm{MB/s}$ synchronous or 7 MB/s asylychron
53C90A	53CF90A	Single-bus architecture; SCSI sequences controlled by hardware state machine to minimize host intervention
53C90B	53CF90B	Adds pass-through parity for increased system reliability
53 C 94	53CF94	Adds split-bus architecture for more flexibility
53C96	53CF96	Adds support for differential transfers

For more information about NCR SCSI products and a free poster, call 1-800-334-5454.

90's Solutions. The SCSI challenges of the 90 's can't be solved with silicon alone. NCR quality and service provide you with the competitive edge that can make your industry leading designs a reality. Whether you require SCSI-1 or fast SCSI-2, in any system architecture, NCR has the product to meet your needs today. You can count on us to keep you on the fast track with the right technology, at the right price, at the right time for all your SCSI requirements.

Keep metastability from killing your digital design

Debora Grosse, Unisys

Abstract

Synchronizing asynchronous signals causes metastability, which makes it difficult to iron out the bugs during system test. Paying close attention to the synchronizer and some metastability equations can belp you avoid the pitfalls.

Synchronization bugs cause intermittent failures in board designs. These bugs can be frustratingly difficult to reproduce in the lab. Fortunately, careful designers can avoid this frustration by fulfilling two requirements. First, understand the principles of synchronization and metastability. Second, recognize the subtle situations in which these principles apply.

To see what can go wrong, consider the representative synchronous state machine in Fig 1. Because of a design bug, the state occasionally makes transitions from State 1 to State 0 instead of jumping forward to State 2. The state number is the binary value of the machine's three state flip-flops. The INIT, DATA_VALID, and COUNT_EN outputs are decoded from the state bits. The REQ signal is an asynchronous input. The design assumes that REQ holds its value for longer than the system clock period, guaranteeing that the machine sees all transitions.

The culprit causing the design bug is the asynchronous input, REQ. Being asynchronous, the REQ input may change at any time relative to the clock. Suppose that the REQ signal goes true at a time that violates the setup time of the state flip-flops. Because of skew or slight variations in timing for the flip-flops, some of the flip-flops might respond to the REQ input, and others might not. Suppose that the least-significant state flip-flop responds to the REQ input quicker than the other flip-flops. Then, instead of transitioning from State 1 to State 2, the machine could go from State 1 to State 0 . This condition can occur even when the flip-flops are on the same die.
To prevent improper transitions, you can clock the asynchronous signal into one flip-flop, called a "synchronizer" (Fig 2). In the above case, the synchronizer would latch the REQ input on a clock edge to produce the signal LREQ. LREQ
replaces REQ as the input to the state machine. If the synchronizer responds to the REQ value change before the clock edge, LREQ takes on the new value. If the clock edge precedes the change in REQ, LREQ doesn't change until the following clock edge. LREQ transitions are synchronous to the clock, drastically reducing the state machine's failure rate.

Synchronization causes metastability

A synchronizer prevents most failures caused by an asynchronous input. Unfortunately, a phenomenon called "metastability" complicates synchronization. If an active clock edge and a data transition occur very close together, a flip-flop or a latch may not immediately make a transition from its current state into the new state. The flip-flop may remain in an in-between state, called the "metastable state," for an indeterminate time. Eventually, it settles to a 0 or a 1 . While it is deciding, its output may glitch, oscillate, sit at an intermediate voltage, or merely show an increased clock-tooutput delay.

The settling time is probabilistic. The longer the time after the clock edge, the more likely that the flip-flop will resolve to a valid state. Unfortunately, there is no guaranteed upper bound on the settling time. You can't build a bistable device such as a flip-flop that cannot go metastable. Its two stable equilibrium states are potential-energy minimums. Between the two minimums is a potential-energy maximum. Because the slope of the energy curve is 0 at the maximum, the maximum is also an equilibrium state, although an unstable one.

The MTBF that results from metastability depends on several factors. One basic metastability equation (Ref $\mathbf{1}$) is as follows:

$$
\begin{equation*}
\text { MTBF }=\frac{1}{f_{c} \times f_{d} \times T_{0}} \times e^{\frac{t^{t}}{\tau}}, \tag{1}
\end{equation*}
$$

where f_{c} is the clock frequency and f_{d} is the frequency at which the data input transitions. (For a flip-flop in an arbitration circuit, f_{c} and f_{d} would be the frequency of transitions of the two arbiter input signals.) T_{0} and τ are device-specific constants. The time allowed for the output to settle is t , which starts at the clock-edge transition. The formula is

EDN-Desien Feature

METASTABILITY

meaningless, of course, for t' less than the normal clock-tooutput delay.

The terms preceding the exponential in the equation indicate how often a flip-flop can become metastable. High clock and input transition frequencies f_{c} and f_{d} present more opportunities for metastability to occur. T_{0} is a scale factor. You can conceptualize T_{0} as the width of a time window around the clock edge during which, if a data transition occurs, the flip-flop becomes metastable. The term $\mathrm{f}_{\mathrm{c}}{ }^{*} \mathrm{~T}_{0}$ is the fraction of the clock period occupied by this time window. Because f_{d} is the number of data transitions per unit time, $\mathrm{f}_{\mathrm{d}} * \mathrm{f}_{\mathrm{c}} * \mathrm{~T}_{0}$ is the number of data transitions per unit time that fall within the metastable time window.

The exponential term in the equation describes the probability that a metastable condition will last for time t'. As you increase the time t' that you wait before looking at a flipflop's output, you exponentially decrease your likelihood of seeing unresolved metastability. The time constant for the exponential term is τ.

To find the probability of a synchronizer failure due to metastability, set t' equal to the maximum time that a synchronizer flip-flop can be metastable without affecting a succeeding flip-flop. Therefore, t ' is usually the time interval between the active clock edge at the first flip-flop and the next active clock edge at the succeeding flip-flop, minus the setup time of the second flip-flop and minus the path delay between the two flip-flops (Fig 3).

Manufacturers use various forms of the metastability equation. For example, Ref 2 uses three constants, k1, k2, and Δ_{o}, giving MTBF in the form

$$
\begin{equation*}
\mathrm{MTBF}=\frac{1}{\mathrm{fCLOCK} \times \mathrm{fDATA} \times \mathrm{k} 1} \times \mathrm{e}^{\frac{\Delta-\Delta_{0}}{\mathrm{k} 2}} . \tag{2}
\end{equation*}
$$

A little algebra puts this equation into the same form as $\mathbf{E q} \mathbf{1}$:

$$
\begin{equation*}
\operatorname{MTBF}=\frac{1}{\mathrm{fCLOCK} \times \mathrm{fDATA} \times\left(\mathrm{k} 1 \times \mathrm{e}^{\frac{\Delta 0}{\mathrm{k} 2}}\right)} \times \mathrm{e}^{\frac{\Delta}{\mathrm{k} 2}} \tag{3}
\end{equation*}
$$

so that T_{0} is

$$
\begin{equation*}
\mathrm{k} 1 \times \mathrm{e}^{\frac{\Delta 0}{\mathrm{k} 2}} \tag{4}
\end{equation*}
$$

and τ is k 2 .
Because metastability formulas aren't standardized, you
have to read application notes carefully to understand the manufacturer's definition of each parameter. For example, Cypress (Ref 3) defines:

$$
\begin{equation*}
\mathrm{MTBF}=\frac{1}{\mathrm{f}_{\mathrm{c}} \times \mathrm{f}_{\mathrm{d}} \times \mathrm{W}} \times \mathrm{e}^{\frac{\mathrm{t}_{\mathrm{r}}}{t_{\mathrm{sw}}}} \tag{5}
\end{equation*}
$$

where
$\mathrm{t}={ }_{\mathrm{r}}=1 / \mathrm{f}_{\mathrm{c}}-1 / \mathrm{f}_{\max }, \mathrm{f}_{\max }=1 /($ clock-to-feedback time-setup time $)$, and
$1 / \mathrm{f}_{\mathrm{c}}=$ the system clock period.
Thus,
$\mathrm{t}_{\mathrm{r}}=$ (clock period)-(clock-to-feedback time)-(setup time).
The clock-to-output time of the flip-flop is part of t^{\prime}, as shown in Fig 3. The clock-to-output delay is not part of t_{r} because the delay is subtracted in the clock-to-feedback term. The difference between t^{\prime} and t_{r} corresponds to a change in scale factor W relative to the T_{0} parameter in $\mathbf{E q} \mathbf{1}$. The path of the potentially metastable output is assumed to be entirely inside one PLD, from one flip-flop through the feedback to another flip-flop, both clocked by the same clock. This configuration is generally the best design, but if your design violates this assumption, you have to adjust this formula.

Because of these variations in parameter definitions as well as differences in the techniques used to detect metasta-

TestPoint is a software tool for building test, measurement, and data acquisition applications for Windows. TestPoint lets you build complete applications without drawing, connecting, or wiring icons or writing lines of code.

New Capabilities

TestPoint brings extraordinary capability to instrument control and data acquisition for the benchtop or production line. TestPoint's software functions can replace hardware functions worth thousands of dollars, provide new measurement capabilities and simplify testing.

Better Tests

Sharp graphics and clear indicators eliminate errors and improve accuracy.

Cut Through the Paperwork
TestPoint can "hot link" to your spreadsheets, databases and word processing files so the paperwork is done the instant the test is finished.
There is no faster, better or easier way to build applications. Guaranteed!

- Data Acquisition

Multitasking A/D, D/A, Digital I/O

- Instrument Control IEEE-488, RS232, RS485
- Analysis

Mathematics, DDE

- Presentation

Graphics Charts
Displays File I/O

Development System \$995
Free Unlimited Runtime License
Literature 1-800-234-4232
Applications 617-273-1818

Capital Equipment Corp.
76 Blanchard Road
Burlington, MA 01803

METASTABILITY

bility, it is difficult to compare T_{0} across manufacturers. However, these variations should not affect τ, the parameter to which MTBF is most sensitive.
The following example calculates MTBF for the REQ synchronizer discussed previously. What is the probability that LREQ will go metastable and that this state won't resolve in time to meet the setup time on the state bits? Using a Cypress 22V10-20 as a synchronizer and assuming that the system clock frequency is 20 MHz and that REQ asserts every $3.1 \mu \mathrm{sec}$, you can calculate the MTBF. Because there are low-to-high and high-to-low transitions every $3.1 \mu \mathrm{sec}$ of the REQ signal, f_{d} is 0.645 MHz . In addition to these values, you must use the PLD's maximum operating frequency, $f_{\text {max }}$, which you take directly from the Cypress data sheet. The maximum operating frequency is 41.6 MHz . Using the Cypress formula and the W and $\mathrm{t}_{\text {sw }}$ parameters from the Cypress data sheet yields

$$
\begin{equation*}
\text { MTBF }=\frac{1}{\mathrm{f}_{\mathrm{c}} \mathrm{f}_{\mathrm{d}} \times 0.125 \times 10^{-12} \mathrm{~S}} \times \mathrm{e}^{\frac{t_{r}}{0.190} \text { nsec }}, \tag{6}
\end{equation*}
$$

where t_{r} is given as $1 /(20 \mathrm{MHz})-1 /(41.6 \mathrm{MHz})=26$ nsec. Plugging in the values to the equation, yields an MTBF $=1.7 \times 10^{59}$ sec, or 5×10^{51} years, a very large number.

Suppose, however, that the system clock speeds up to 40 MHz . The MTBF becomes approximately 1 minute, an MTBF figure that is obviously unacceptable.

Fig 2-Synchronize an asynchronous input in one circuit only before using it in a synchronous system.

For some systems, you cannot conveniently describe f_{d} in hertz. For example, an asynchronous input on an image-processing board may change state twice/image. Expressing f_{d} in units of 1 /image gives MTBF as the mean number of images processed between failures.

The MTBF calculated here is for a single synchronizer. Multiple asynchronous inputs to the system yield a lower MTBF than that of a single synchronizer.

Parameter values are not maximums

The calculation is simple. However, finding the parameter values is difficult. Although some manufacturers provide values for T_{0} and τ in application notes, many do not. Second,

Calculating MTBF for a 2-stage synchronizer

It is difficult to give a formula for the MTBF of a 2-stage synchronizer (Fig A). The failure whose frequency is being calculated is the failure of the secondstage flip-flop to resolve by time t^{\prime}. The clock frequency at the synchronizer flipflops (f_{c}) and the data-input transition frequency $\left(f_{d}\right)$ are known. The difficulty is in determining $f_{d 2}$, the number of datainput transitions expected/unit of time for the second flip-flop.

One possible assumption is to let $f_{d 2}$ be the probability that the first flip-flop has not settled by one setup time before the clock of the second flip-flop. $\left(1 / f_{c}-T_{\text {su2 }}\right)$. Then, the following equation (Ref 4) shows the MTBF for the synchronizer, assuming both have the same metastability parameters:

$$
\operatorname{MTBF}=\frac{1}{f_{d 2} \times f_{c} \times T_{0}} \times e^{\frac{t^{\prime}}{\tau}}
$$

By assumption, $1 / f_{d 2}=$ MTBF of the first synchronizer (MTBF ${ }_{1}$).

MTBF $_{1}=\frac{1}{f_{d 1} \times f_{c} \times T_{0}} \times e^{\frac{\frac{1}{f_{c}}-T_{\mathrm{su} 2}}{\tau}}$.

Therefore,
MTBF $=\frac{1}{f_{d} \times f_{c}^{2} \times T_{0}^{2}} \times e^{\frac{t^{\prime}+\frac{1}{F_{c}}-T_{s u} 2}{\tau}}$.
Because the f_{d} term appears only once, this is not the square of MTBF_{1}, as is sometimes claimed.

Setting $f_{d 2}=1 / M T B F_{1}$ assumes that one uniformly distributed asynchronous data transition occurs each time the first stage goes metastable. One could
argue that this assumption doesn't necessarily hold. The apparent $f_{d 2}$ depends on the first flip-flop's metastable behavior. For example, oscillations and intermediate voltage levels from the first flipflop would be more likely to cause setup violations on the second one, producing a larger apparent $f_{d 2}$ that would runt pulses and delayed transitions. Nevertheless, errors in $f_{d 2}$ are insignificant compared with uncertainties in the exponential term.

Fig A-Calculating the MTBF of a 2 -stage synchronizer requires an estimate of $f_{d 2}$.

VIEWLOGIC PRO SERIES

The world's most powerful Windows-based design tools

PROcapture ${ }^{\text {m" }}$
EDN Reader's Choice Survey rated Viewlogic tools as the best schematic entry solution. \$1,995

PROanalog ${ }^{\text {T" }}$
Windows-based analog design and SPICE simulation. From \$2,995

PROdeveloper ${ }^{\text {m"/ } / \text { PROchip }}{ }^{\text {T" }}$
For complete PLD, FPGA and systems design including design entry, verification and place and route. From \$9,995

CALL 1-800-USE-VIEW NOW FOR A FREE DEMO DISK

METASTABILITY

the reported parameter data may not be very accurate. A scan of the literature shows that numbers for the same type of device vary considerably from one report to another. Reported parameter values are not guaranteed maximums but are usually averages of a few parts tested. Like propagation delays, metastability parameters vary with process variations, voltage, and temperature. Small variations in the time constant τ, especially, cause enormous variations in calculated MTBF because τ is in the exponential term. The material in Ref 4 discusses the problem of parameter variation, giving an example in which a typical MTBF of 317 years shrinks to 12 minutes when you use estimated worst-case values.

Calculations are useful for getting a rough idea of the magnitude of the metastability problem. Following basic principles helps you to minimize the problem. The most important principle is to allow as long a time as possible for metastable conditions to settle. Clocking the synchronizer flip-flop with the opposite clock edge may speed your design by half a cycle, but it also costs you heavily in MTBF. This method reduces t', thus having the same effect on the exponential term as doubling the clock frequency. In the state-machine example, clocking the synchronizer with the opposite clock would cause MTBF to plummet from 5×10^{51} years to less than 2 minutes. On the other hand, decreasing the clock frequency yields exponential improvements in MTBF.

Simple guidelines can gain a few nanoseconds, which may translate to many multiples of τ. First, if you are implement-

Fig 4-You can increase reliability by allowing the state transitions that are affected by a potentially metastable signal to follow a Gray code.

NOTE: CLOCK 1 AND CLOCK 2 ARE USUALLY THE SAME SIGNAL.
Fig 3-The time interval from the clock edge until a flip-flop's output is valid is defined as t^{\prime}.
ing a synchronizer in a PLD, put the synchronizer flip-flop and destination flip-flops in the same part to minimize the delay from the synchronizer's output to its destination. Second, you can reduce the effects of metastability by using a multiple-stage synchronizer, which adds stages of pipeline delay. A multiple-stage synchronizer is a chain of flip-flops that synchronizes one asynchronous signal. The output of each additional stage in the synchronizer is less likely to be metastable than is its input. The longer the chain of flip-flops, the less likely it is that metastability will occur at the last stage's output.

It is possible to rearrange a design to increase the length of the synchronization pipeline without adding latency. In the state-machine example, metastability on LREQ has to settle one setup time before the clock to avoid errors in the state bits. You could renumber the states, as shown in Fig 4, using a Gray code for the transitions that LREQ affects. Using this technique, each LREQ edge affects only one state flip-flop, preventing illegal state transitions. Even if LREQ fails to settle one setup time before the clock, an error does not result unless the changing state bit goes metastable and remains metastable long enough to cause further timing violations.

A third way to improve MTBF is to choose devices with better metastability parameters. Metastability charac-

Very Small, Very Fast, Very Smart

The Universe of high-performance, affordable, embedded system design expands with WinSystem's SBCs. Select 386/486 CPUs for standalone use. Or expand with the STD or PC/104 Bus. Unparalleled flexibility for space and budget-limited applications requiring PC performance and compatibility in harsh or remote environments.

Call or write for a free Catalog and Poster.

WinSystems ${ }^{\circ}$

EDN-Design Feature

METASTABILITY

teristics depend on circuit factors, such as internal gainbandwidth product. Faster logic families often-but not always-have faster metastable resolutions. For example, the material in Ref 1 measures a τ of 0.4 nsec for a sample of 74 F 74 flip-flops but measures a τ of 1.7 nsec for the ECL 10131 flip-flops. For the same values of f_{c}, f_{d}, and t^{\prime}, it calculates an MTBF of $1 \times 10^{13} \mathrm{sec}$ for the Fast family of D flip-flops but only 30 sec for the 10K ECL family of D flip-flops.

Devices claim to be metastable immune

Some devices, specifically designed to avoid metastability, are not guaranteed metastable-free but have small values of T_{0} and τ and relatively well-behaved outputs. Philips Components, for example, claims that Signetics designed the "metastableimmune" 74F50XXX family to avoid runt pulses, oscillations, and intermediate voltage states on the outputs (Ref. 5).
Using a dual-port RAM or FIFO buffer may seem a way to dodge the synchronization issue. Using these devices, you depend on the IC designer to implement the arbitration for reads and writes correctly. However, you still must think about asynchronous changes in status flags.

Before trying to handle an asynchronous signal properly, make sure that it actually is asynchronous. The metastability equations assume that the input data transition is equally likely to occur at any time during the clock period. In some synchronizing situations, such as an asynchronous interface with a handshake, this assumption may not be valid. Assume that a synchronous-state machine generates a request and that the circuitry at the other end of the interface runs the request through some combinatorial logic and then generates an acknowledge. The timing of the acknowledge is, therefore, correlated with the state machine's clock.
If you treat a clock-correlated signal as an asynchronous signal, the system will probably work fine most of the time. However, each state machine has part delays, and, under some conditions, the system may fail. The delays may be such that the system violates setup times on every transition. The MTBF formulas don't work if the input is correlated with your clock.
Similarly, excessive path delays in synchronous logic can result in the same condition. The delays of some parts could be such that the data input of a flip-flop always makes a transition during the time window that causes metastability. Synchronous logic's advantage is its deterministic timing, but sloppy timing can cause it synchronous logic to be reliably bad rather than reliably good.

If you can't avoid synchronization, follow these basic rules to avoid trouble. First, be aware of which signals are asynchronous. Second, receive each asynchronous signal by clocking it into only one flip-flop. Finally, mitigate against metastability by allowing needed settling time. Design your synchronization scheme, rather than synchronizing ad hoc, and document the scheme so that you keep your design in mind as you make changes.

EDN

References

1. Chaney, Thomas, "Measured Flip-Flop Responses to Marginal Triggering," IEEE Transactions of Computers, Volume C-32, No. 12, December 1983, pgs 1207 to 1209.
2. "GAL Metastability Report," GAL Data Book, Lattice Semiconductor Corp, 1992, pgs 6-1 to 6-15.
3. "Are Your PLDs Metastable?" Applications Handbook, Cypress Semiconductor, 1993, pgs 4-1 to 4-17.
4. Shear, David, "Exorcise metastability from your design," EDN, December 10, 1992, pgs 58 to 64.
5. "Synchronizing and Clock Driving Solutions-Using the 74F50XXX Family," AN220, Fast Logic Supplement, North American Philips Corp, 1990, pgs 283 to 286.
6. Horstmann, Jens U, Hans W Eichel, and Robert L Coates, "Metastability Behavior of CMOS ASIC flip-flops in theory and test," IEEE Journal of Solid-State Circuits, Volume 24, No. 1, February 1989, pgs 146 to 157.
7. Bolton, Martin, "A Guided Tour of 35 Years of Metastability Research," Wescon/87 Professional Program Session, Record 16, San Francisco, CA, November 17 to 19, 1987, Section 4, pgs 1-9.

Author's biography

Debora Grosse has worked at Unisys in Plymouth, MI, for nine years. She has BSEE and MSEE degrees from the University of Michigan. In her spare time, she enjoys taking walks with her family.

Article Interest Quotient (Circle One) High 592 Medium 593 Low 594

Please send me \qquad copies of EDN's DESIGNER'S
GUIDE TO ELECTROMAGNETIC COMPATIBILITY@ \$19.95.
Sales tax (orders shipped to these states must include applicable sales tax: CA, CT, MA, NJ, NY)
Shipping: \$3.50/copy (US); \$15.00/copy (foreign);
\$3.00/additional copy

> Total

CALL TOLL FREE (800) 523-9654 (FAX 708-390-2779) to order. Or fill out this coupon and mail it to: Cahners Reprint Services, 1350 E. Touhy, Des Plaines, IL. 60018

My check is enclosed payable to Cahners Reprint Services Charge my credit card: Master Card Visa Amex
CREDIT CARD \# EXPIRATION DATE SIGNATURE

NAME	COMPANY		
ADDRESS			
CITY	STATE	ZIP	PHONE

If you were 4,000 miles from spare parts, what 2 mm connector would you spec?

For 2mm, trust 3M. Now available in convenient tape-and-reel packaging.

When it comes to reliability, 3 M 's 2 mm connectors are second to none. They're tough enough to withstand the high-temp rigors of infrared and vapor phase soldering - without warping or blistering. They're compatible with vacuum pick-and-place equipment, providing precise placement every time. And, they possess the same 3 M quality construction and durability that hallmarks every one of our products.

All of which means that they'll provide years of trouble-free service to the people who depend on your products day and night, even if that night lasts for months at a time.

Of course, those same qualities also mean you'll enjoy fewer manufacturing
problems, especially when you take advantage of our tape-and-reel packaging.

3 M offers a full line of 2 mm connectors, as well as custom engineering support. No matter what you need, we can build it. In fact, you could go to the ends of the Earth and not find a better, more reliable connector, or a more responsive supplier.

So, if failure leaves you cold, call 1-800-354-1919 and we'll send you more information on some of the hottest 2 mm connectors around. 3M Electronic Products Division, 6801 River Place Boulevard, Austin, Texas, 78726-9000.

You're choosing a Motorola 683XX for its high degree of integration, superior real-time performance and low cost.

Choose OS-9` system software for the same reasons.

Abstract

The OS-9 Real-Time Operating System is a perfect software match for Motorola's 683XX family of integrated processors. Each member of the 683XX family can be coupled with a specific, optimized 0S-9 microkernel assuring you matching performance. OS-9's modular I/O system complements the I/0 on your 683XX, including full support of the 68360 Quad Integrated Communication Controller. This allows seamless integration into any application such as telecommunications, automotive, consumer electronics or industrial automation.

To get your software development up quickly and to produce the tightest 683XX application code, Microware provides FasTrak productivity tools built around Ultra C. The Ultra C ANSI C compiler features modes targeting the 68000 and CPU32 cores for highly optimized applications. And Ultra C's ability to link prior to optimization introduces true global and interprocedural optimization into your code.

OS-9 also offers cost-effective software licensing with no per-project development fees. And $0 S-9$'s modularity lets you ship only the software you need for your product.

Get the real-time operating system that matches your 683XX. Get OS-9. Call 1-800-475-9000 today for more information.

EDN-New Products
 EMBEDDED SYSTEMS

$\$ 59 \mu \mathrm{C}$ board is programmable in C

The P-57 Mustang is the first in a series of small, low-cost boards that allow you to prototype in C. This first product is based on the PIC $16 \mathrm{C} 57 \mu \mathrm{C}$ from Microchip Technology. Future boards will contain other 8 -bit $\mu \mathrm{Cs}$ such as the 80C751/2 from Philips and Motorola's 68 HC 05 and 68 HC 11 .

The board costs $\$ 59$; in addition, you can buy the Mustang C development kit for $\$ 150$, which includes a C compiler, assembler, in-circuit simulator, and source-level debugger along with the 2×3-in. P- 57 Mustang board, power supply, and RS232 C cable.

The C compiler generates code for a virtual microcontroller (VMC). The CPU on the board emulates this generic VMC, making the C code portable to future versions of the Mustang board based on other $\mu \mathrm{Cs}$. The $\mu \mathrm{C}$ executes intermediate code up to 20,000 statements/sec, faster than interpreted C or Basic, but slower than compiled C code.

The code runs out of the serial $\mathrm{I}^{2} \mathrm{C}$ EEPROM. You can quickly download your compiled code from the PC-based host via an RS-232C interface. Once downloaded, the Mustang can operate stand-alone.

The in-circuit simulator emulates the μ C's operation on the PC. It operates at PC speeds (often faster than the $\mu \mathrm{C}$) and drives the $\mu \mathrm{C}$'s pins on the board so your code can exercise the target I/O. The in-circuit simulator also checks for accesses made to uninitialized or unim-
plemented memory, stack overruns, and other errors. It supports 64 breakpoints, shows the value of up to 32 variables, and can \log up to 10,240 execution cycles in a history log.

The PIC 16C57 has 20 I/O lines, 2048×12-bit ROM, 72 -byte RAM, and a real-time clock/counter. The board's 8 -kbyte EEPROM is expandable to 64 kbytes. The $\mathrm{I}^{2} \mathrm{C}$ serial bus connects the EEPROM and the $\mu \mathrm{C}$, providing an inexpensive memory interface that lets you easily expand memory capacity. The μ C's onchip ROM contains the VMC emulation code, application utilities, and basic operating-system services.

A 1×2-in. prototyping area allows you to customize or expand the system. Signals from the $\mu \mathrm{C}$ are available in the prototype area-or you can install a ribbon connector to bring the signals off the board. A 4 -wire RS-232C serial interface links the board to a host system. This serial interface is also available to applications. The C compiler contains common I/O functions to control the interface.-David Shear

P\&E Microcomputer Systems With the Mustang board series, which is based on popular μ (s, Inc, Woburn, MA. (617) 353-9206. you can use C to create prototypes quickly and easily.

Circle No. 338

VRTX moves to $\mu \mathrm{Cs}$

VRTXmc is a new version of the VRTX real-time operating system (RTOS) designed for use with μ Cs. Many embedded applications, such as handheld devices, have very limited RAM/ROM. This new version reduces the RAM requirement to less than onethird of that required by the VRTX32 kernel, requiring only 1-kbyte RAM for
a typical embedded application. The VRTXmc kernel needs only 3 to 6 kbytes of ROM space.

VRTXmc, the third member of the VRTX family, is compatible with the Spectra cross-development backplane and the XRAY debugger. It is a subset of VRTXsa and includes preemptive scheduling, mailboxes, event flags,
queues, partitions, optional time slicing, and other services.

It now supports Motorola 68000/302 and CPU32 targets. A single development license starts at $\$ 1000$ (10 production licenses cost $\$ 332$).
-David Shear
Microtec Research Inc, Santa Clara, CA. (408) 980-1300.

Circle No. 339

EDN-New Products INTEGRATED CIRCUITS

RAMDAC families support true color for PCs and workstations

Abstract

Two families of RAMDACs from AT\&T Microelectronics support true-color graphics at resolutions from 640×480 to 160×1200 pixels. The 21C505/504, 20C506, and $20 \mathrm{C} 510 / 511$ for highperformance PCs and the 20C567/565/568 for highperformance workstations support multiple-color display modes that can bypass or use red, green, and blue, on-chip, 256×8-bit color-look-up RAMs. The display includes 8-bit pseudocolor, 15/16-bit high color, and 24-bit true-color choices.

The families offer $\pm 5 \%$ brightness accuracy, on-chip clock synthesizers, and precision PLL-based analog clock multipliers. Register-level compatibility allows you to amortize software development across a range of products at different prices and performance levels. An onchip integrated voltage reference permits precision trimming of the voltage reference and DAC output current. The DAC output current error is less than 3%.

Iwo families of RAMDACs offer true-color graphics ranging from 640×480 to 160×1200 pixels. On-chip DAC output current error is less than 3%.
lower-cost memory. The ICs are available in 135-, 150-, and 170MHz speeds. The entry-level 21 C 504 is also available at 85 and 110 MHz .
The company has incorporated power-saving features into the RAMDACs to minimize operating-power dissipation. The midrange family members dissipate around 1.5 W , and the high-end members dissipate around 1.8 W . The devices also support power-management schemes under software control. The RAMDACs operate in one of four reduced-power modes.
The 21C505/504, 20C506, and $20 \mathrm{C} 510 / 511$ ICs offer 32 - and 64bit pixel ports. In addition to the on-chip color-look-up table, all of the ICs offer hardware cursor support, overscan RAM for border colors, and a dedicat-

On-chip multipliers allow the RAMDAC to accept a load clock signal directly from the frame buffer and create the appropriate pixel clock. A multiplexed pixel format allows the framebuffer memory to operate slower than the pixel clock, permitting the use of
ed 8-bit SVGA port. The display modes range from 10 to 38, depending on the device. Prices range from $\$ 11$ to $\$ 32$ for $135-\mathrm{MHz}$ versions $(10,000)$.

—John Gallant

AT\&T Microelectronics, Allentown, PA. (800) 372-2447.

Circle No. 340

Communications engine combines three processors

The MC68356 communications processor separates communication tasks into three functions and provides a processor for each. A $25-\mathrm{MHz}$ general-purpose $\mu \mathrm{P}$ core handles communications protocols and high-level command interpretation. A microcoded RISC processor handles bit-level manipulation, such as formatting and bit- ordering. A $60-\mathrm{MHz}$ DSP $\mu \mathrm{P}$ with on-chip RAM and ROM handles encoding, compression, and other math-intensive tasks.

The device is a blend of the MC68302 communications controller and the DSP56002 24-bit digital signal processor, retaining software compatibility with each. The MC68356 provides three serial communications
channels capable of handling a variety of protocols, including UART, bisync, and HDLC/SDLC. The RISC processor controlling bit-level tasks can automatically determine the baud rate and format of incoming data. Two DMA controllers-one for transmit and one for receive-support each serial channel.

Three control interfaces connect the 68356 to its environment. One allows connection of the 68000 CPU to the host system. Another allows direct connection to the 56002 DSP. The third interface allows the device to serve as a PCMCIA slave or, alternatively, emulate a 16550 UART. The UART emulation permits the 68356 to act as if it were a serial port on the IBM PC/AT.

The device also provides three internal communication paths between the DSP and the 68000 . The DSP connects to the 68000's host bus, allowing the 68000 to program and control the DSP. The link also allows the DSP to read and write directly to memory on the 68000 bus. The two paths further connect through one of the serial channels, allowing highspeed data transfers directly between the processors.

Clocking the device can simply be a matter of providing a clock or crystal operating anywhere between 25 kHz and 6 MHz . Internal phase-locked loops provide all the clocks needed for serial communications and processor operation. The processors are fully static,

EDN-Naw Products
 INTEGRATED CIRCUITS

allowing the device to control power consumption by adjusting clock speeds or stopping clocks in a variety of lowpower modes.

The device incorporates JTAG boundary-scan circuits for checking connections between the 357 -pin ball-grid-array package and the circuit board. It also provides an on-chip emulation capability to simplify debugging. In support of application development, Motorola is offering a \$1995 Application Development System (ADS), which includes an evaluation board that can connect to a Sun-4 or IBM computer or to a dumb terminal. The ADS will be available by the third quarter.

The 68356 begins general sampling in August; production is scheduled for the fourth quarter $(\$ 64.95(10,000)$). A version optimized for modem applications, the 68356 M , is planned for later in the year; the M version will be preprogrammed with V. 34 data pump soft-ware.-Richard A Quinnell

Motorola, Inc, Austin, TX. (512) 8912429.

Circle №. 341

The MC68356 combines MC68302 communications-controller functions (shown above) with a 56002 DSP core.

SCSI chip boosts server I/0 transfer rates

By processing as many as 255 data requests simultaneously, the ASC1000 SCSI-2 controller reduces data-access overhead in multitasking system and server applications. The device can use up to 94% of the SCSI bandwidth on a sustained basis.
The controller comes in two varieties: The ASC1000 has a 32-bit VESA local-bus interface; the ASC1200 has a 32 -bit PCI local-bus interface. Both contain a RISC processor, DMA circuit, byte-wide SCSI-2 handshake logic, and a 128 -byte FIFO memory.

The RISC processor coordinates activities within the chip and replaces much of the needed handshaking logic with microcode. In addition, to speed data retrieval it runs scatter-gather algorithms to keep data blocks for files grouped together on the disk drives. In server applications, the device also tags incoming disk data with an iden-
tifier that links it to specific requests.
The DMA processor allows the device to produce sustained data-transfer rates of $120 \mathrm{Mbytes} / \mathrm{sec}$ on the local bus without CPU intervention. Acting as a safety net to the high-speed trans-

By processing 255 data-access requests simultaneously, the ASC1000 achieves 94% SCSI-2-bandwidth utilization.
fers, a 128 -byte FIFO buffers the incoming data.

The device comes with diagnostic software that allows it to configure itself to the system. On activating a switch, the device searches for available IRQ lines and for its address within the system. Other software available with the device includes an ASPI (advanced SCSI programming interface) manager and drivers for a variety of hard-disk, tape, and CDROM drives as well as scanners and printers. The drivers are available for DOS, Windows, OS/2, and Novell Netware.
The ASC1000 costs $\$ 21.95$ (1000) (now in production). The ASC1200 costs the same and begins sampling in July (full production scheduled for September). Both come in 160 -pin PQFP packages.
-Richard A Quinnell
AdvanSys, San Jose, CA. (408)
383-9400.
Circle №. 342

THE HOTIEST NEWWNYTDESGN COOLELCTRONICS.

ICEPAK.

Don't let your cool packaging design get burned by slow, outmoded thermal design methods. Now there's a hot alternative. Icepak. The new thermal design software from Fluid
 Dynamics International.

FAST RESULTS.

No matter what kind of electronic packaging you're designing, nor what kind of thermal design experience you may have. Eliminate hot spots to optimize thermal performance even while reducing enclosure sizes. With lcepak, you beat the heat of shortened design cycles and everincreasing cost pressures.

QUICK LEARNING CURVE. Problem set-up and results generation are fast. You get the short turn-around time you need to keep up with desian changes.

INTELLIGENT GRAPHICAL INTERFACE. lcepak is a radical departure from any design methods or software. This
object-based tool combines an intelligent graphical user interface with a modern software architecture.

A FULLY INTEGRATED SOLUTION. Lcepak includes an interactive model-builder, powerful automatic mesh generation, an accurate solver, and the most sophisticated postprocessing and 3D graphical visualization capabiilties you've ever seen. Nothing else comes even close. And nothing else is easier to use.

FROM THE LEADER: FDI. All this is just what you'd expect from FDI...the leader in FEA based CFD software for over 10 years. For more information about lcepak, or to arrange a demonstration, call or fax today. Make your next hot design the coolest one yet.

icepak
 Fast, Easy Thermal Design.

© 1994, Fluid Dynamics International. All rights reserved. Icepak is a trademark of Fluid Dynamics International.

EDN-New Products INTEGRATED CIRCUITS

PEEL arrays unrestrict PAL-block CPLDs. The PA7128 and PA7140 programmable electrically erasable logic (PEEL) arrays combine a segmented PLA with field-programmable gatearray (FPGA)-like logic cells. This approach frees users from the architectural restrictions of PAL-like blocks of segmented complex PLDs. The company is offering its Place development software and fitters for popular thirdparty software, such as Data I/O's ABEL, free to qualified users. All the devices use CMOS EEPROM. The main elements of the PEEL array include flexible FPGA-like logic-control cells. I/O cells and global cells are interconnected via a wide-gate PLA. $66-\mathrm{MHz}$ PA7128J, \$3.60 (1000). ICI Inc, San Jose, CA. (408) 434-0678. Circle No. 343

4-Mbit flash memory has selec-

 table organizations. The M5M28F400 4-Mbit flash memory for nonvolatile reprogrammable storage offers a user-selectable organization of 256×16 or $512 \mathrm{k} \times 8$ bits. The chip also offers 32 symmetrical erase blocks of 16 kbytes or 8 k words each. The maximum active supply current is 30 mA , and the device can read using a 5 V power supply. Programming and erasing use a 12 V power supply. Other features include power-up/power-down protection, automated program/erase and 10,000 program/erase cycles/block. To prevent overerasure, an embedded timer controls the program/erase pulse widths. $\$ 23(10,000)$. Mitsubishi Electronics America Inc, Sunnyvale, CA. (408) 730-5900.Circle No. 344

Synchronous SRAMs have 32k \times 32-bit organization. The MT58LC32K32 SyncBurst static RAM (SRAM) has a $32 \mathrm{k} \times 32$-bit organization. These wide, synchronous SRAMs offer zero-wait-state read and write-cache memory for high-performance $\mu \mathrm{Ps}$, such as the Pentium and the PowerPC. The devices deliver a data rate as fast as $500 \mathrm{Mbytes} / \mathrm{sec}$ using a low-voltage TTL interface. The device operates from 50 to 125 MHz and employs a 3.3 V power supply. The inputs and outputs

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

are 5 V tolerant, which allows the SRAMs to connect directly to 5 V parts without using translators. The devices support 4-cycle burst accesses and pipelined and nonpipelined operations. \$35. (100). Micron Technology Inc, Boise, ID. (208) 368-3900. Circle No. 345

FPGA family features $233-\mathbf{M H z}$ data paths. The X3100A family of field-programmable gate arrays (FPGAs) features $233-\mathrm{MHz}$ data paths, $180-\mathrm{MHz}$ loadable prescaled counters, and $>300-\mathrm{MHz}$ toggle rates. The family achieves average Programmable Electronics Performance Corp (PREP) benchmark speeds of 85 MHz . The combinatorial delay is 2.2 nsec , the config-urable-logic-block (CLB) clock-to-output time is 1.7 nsec , and the CLB setup time is 1.8 nsec . The devices use a 0.8 $\mu \mathrm{m}$ process. Prices start at $\$ 17.50$ (100). Xilinx Inc, San Jose, CA. (408) 559-7778.

Circle No. 346

CPLDs feature low power. The ATV2500B, a 44-pin complex program-mable-logic device (CPLD), uses a $0.65-$ $\mu \mathrm{m}$ manufacturing process. The chip offers $12-$ nsec propagation delays and 10 -nsec pin-to-pin delays. The lowpower device draws 2 mA of standby current and contains 24 flexible macrocells that have 17 product terms each and are globally connected by a single AND/OR matrix, which provides 100% connectivity. Each macrocell has two flip-flops that can be configured as D- or T-Type. Both registered nodes and a third combinatorial node can all be buried. A PLCC version costs $\$ 19.75$ (100). Atmel Corp, San Jose, CA. (408) 441-0311.

Circle No. 347

Chip set plays video CDs. The TMS32AV220 MPEG video decoder, the AV120 audio decoder, and the AV420 NTSC encoder provide all the major functions to create a player that accepts compressed video-CD signals and produces synchronized NTSC sound and video for television display. The AV220 connects directly to the CD-ROM and decompresses 176×144-pixel MPEG-I video, strips out the digital audio information, and provides audio-synchronization control. The AV120 works with the chip set or serves as a stand-alone

MPEG audio decoder. The AV420 converts digital video to NTSC analog video, interpolating scan lines to create a full-screen image. In volume, the chip set costs $<\$ 40$. Texas Instruments Inc, Denver, CO. (800) 477-8924, ext 4500.

Circle No. 348

FIFO memories are $\mathbf{3 2 k} \times 9$ bits. The CY7C464 and CY7C474 $32 \mathrm{k} \times 9$-bit FIFO memories address large memory systems, such as those used in asyn-chronous-transfer-mode (ATM) networks. The devices provide data buffering for systems running as fast as 33 MHz . They have an access time as fast as 15 nsec and draw 110 mA from the power supply. Additional features include programmable flags to signal almost-full and empty status and a mark-and-retransmit feature that supports regeneration of packet information during transmission. The devices are available in PLCC and DIP packages and have access times of $15,20,25$, and 40 nsec . A 40 -nsec PLCC version costs $\$ 58.15$ (100). Cypress Semiconductor, San Jose, CA. (408) 943-2600.

Circle No. 349

16-Mbit DRAMs have self-refresh. The TC51V16160AJS and 8160AJS are 16 -Mbit dynamic RAMs (DRAMs) organized as $1 \mathrm{M} \times 16$ bits. The devices suit the personal-digital-assistant market and come with self-refresh, which allows the DRAM controller and the clock to be turned off instead of refreshing the DRAM. The self-refresh feature draws $80 \mu \mathrm{~A}$ of refresh current. The DRAMs operate from 3.3 V and have 70- or $80-\mathrm{nsec}$ access times. $\$ 120$ for an SOJ-packaged version (1000). Toshiba America Electronic Components Inc, Irvine, CA. (714) 455-2000.

Circle №. 350

LCD-column drivers provide 256,000 colors. The CL-FP65xx family provides banks of column drivers for color active-matrix LCDs. The drivers offer 6-bit resolution, producing

EDN-New Products
 INTEGRATED CIRCUITS

as many as 256,000 colors on a compatible LCD panel. The 652x series offers 192 output channels, the 651 x offers 201 channels, and the 650x offers 240 channels. The devices operate from a 3.3 or 5 V supply and drive the LCD as fast as a $75-\mathrm{Hz}$ refresh rate. The devices come in a TAB package for greatest packaging density. The 652 x costs $\$ 14$ (1000); the $651 \mathrm{x}, \$ 15.50$; and the $650 \mathrm{x}, \$ 17$. The 650 x is available for sampling now, and the company has scheduled production for the fourth quarter; the others are in production. Cirrus Logic Inc, Fremont, CA. (510) 226-2011. Circle No. 351

Chip set encodes MPEG audio live.

 The Musicore DSP chip set encodes all forms of ISO/MPEG-I audio, including stereo, joint stereo, and single- and dual-channel, in real time. The device's software also compresses the audio information based on psycho-acoustic modeling. A minimal chip set includes a boot ROM with the Musicore encoder and decoder software and an 8XC51 microcontroller running the Musicore management program. You add a DSP56002 and three static RAMs to complete the circuit. The minimal setcosts $\$ 400$ (sample quantities) or $\$ 40$ (1000). Philips Semiconductors, Sunnyvale, CA. (800) 447-1500. Circle No. 352

Workstation 3D graphics comes to the PC. The GLiNT 300SX and 300TX are 3D-graphics processors with PCI interfaces for desktop computers. The processors implement the pixel-processing layers of the OpenGL 3D software standard, which future releases of Windows will include as Windows' 3D-
graphics application-programming interface. The devices can produce 300,000 shaded, Z-buffered, antialiased, translucent polygons/sec, and the 300 TX can accelerate texture mapping. When used with graphical user interfaces, the devices achieve 100,000 24-bit WinMarks. The 300SX costs $\$ 150(50,000)$; the 300 TX will be available by year-end. 3Dlabs Inc, San Jose, CA, (408) 436-3455.

Circle No. 353

RAMDAC switches modes each pixel. Incorporating two PLL clocks, a

 triple 256×6-bit palette, and triple 135MHz DACs, the CH8398 RAMDAC provides a wide range of operating modes. It handles VESA, VGA, SVGA, and XGA with 8-bit pseudocolor and 5-5-6 color modes along with 24 -bit bypass. It switches between modes on a pixel-bypixel basis, allowing combination of lower-resolution, full-color windows within a high-resolution screen. The device provides an 8- or 16-bit pixel interface accepting data at 67.5 M pixels/sec. Price of the 68 -pin PLCC is <\$10. Chrontel Inc, San Jose, CA. (408) 383-9328.Circle No. 354

PCT CERAMIC CURRENT LIMITERS ...IN A RUSH.

Need a Ceramic Current Limiter in a hurry for testing? Then call us today and we'll rush you a standard sample. These effective components protect circuits from destructive overcurrent conditions. Their self-resetting design makes them an inexpensive alternative to fuses and fixed resistors.
Custom samples for special applications are also available for testing.
Call us at (610) 777-4100. We'll answer your questions, and send you a sample . . . in a rush.

THERMODISC

MIDWEST COMPONENTS PRODUCT GROUP
P.O. Box 3303, Muskegon, Michigan 49443 (616) 777-4100 FAX (616) 773-4214

One Stop Shopping! All your circuit board needs under one roof.

PCB MANUFACTURING

- 2 day turn on multi-layers
- Prototype and production
- Gerber Data Test
- FR4, Polyimide
- Turnkey assembly
- PCMCIA up to 6 layers

PCB DESIGN LAYOUTS

- Layouts for Economical manufacturing
- Backplanes
- Impedance Control
- Analog and ECL
- Surface Mount
- 3 CAD Workstations

TECHNICAL SUPPORT

- Free Design Layout Tips
- Free MFG Cost Cutting Tips
- We accept Gerber Data Via Modem

Call For A Quote!

How do you replace a surface mount fuse in under 5-seconds?

Get all the facts by FAX: 1-708-391-0894 Check the surface mount fuses you're interested in and fax us this ad and the following information. In minutes, we'll fax you back the information you want.

I'd like information on other Littelfuse Surface Mount products.
Name: \qquad
Company Name: \qquad Company Address: \qquad City: State: Zip: \qquad
Your return FAX: \qquad
Company phone \#: \qquad
Application needs: \qquad

WIRELESS

 DESIGN SOLUTIONS

 DESIGN SOLUTIONS
 Now, You Can Design Across The Spectrum.

©1994 Mitsubishi Electronics America Inc., Electronic Device Group, Sunnyvale, California (408) 730-5900, Ext. 2106 CIRCLE NO. 73

EDN-Naw Products
 ELECTRONIC DESIGN AUTOMATION

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

Company lowers price on PLD software. The Max+Plus II PLD software now starts at $\$ 495$. You can add support for the Max 7000 or Flex 8000 devices for $\$ 995$ each. The software provides schematic capture, text entry using the company's hardware-description language, timing analysis, logic synthesis, fitting, timing, annotated Verilog or VHDL output, and a bidirectional EDIF interface. Altera Corp, San Jose, CA. (408) 894-7110.

Circle №. 355

HDL-code generator is now available on Windows NT and Unix. ACEPlus Designer is now available on both PCs and workstations. The tool automatically generates VHDL, Verilog, or ABEL hardware-description languages (HDLs) from graphical design descriptions. ACEPlus Designer costs $\$ 3500$. Intergraph Corp, Huntsville, AL. (800) 837-4237.

Circle №. 356

Neural network software learns

quickly. The Neural Network Toolbox 2.0 uses a training method that learns 10 times faster than using conventional back-propagation learning algorithms, according to the vendor. Prices for the PC version of the software begin at $\$ 895$. The MathWorks Inc, Natick, MA. (508) 653-2997.

Circle №. 357

Tool simplifies wire-harness design, layout, and documentation. The E3LCable tool ($\$ 9900$) helps you create interconnect designs more efficiently and earlier in the design process. The tool provides transparent data exchange between the electrical and mechanical phases of interconnect design. The tool works with the company's Logical Cable tool. Mentor Graphics, Wilsonville, OR. (503) 685-8000.

Circle No. 358

Floor planner helps reduce IC-layout iterations. ArcCell 2.3 works with Synopsys' floor-plan-manager and logic-synthesis tools to communicate path constraints to the timing-driven layout tools. According to the company, the layout tool can often produce an
optimal layout in a single pass. The ArcCell timing-driven option costs $\$ 50,000$, and the Synopsys interface costs $\$ 15,000$. ArcSys Inc, Sunnyvale, CA. (408) 738-8881.

Circle No. 359

System-design tool offers workstation performance for $\mathbf{\$ 4 9 9 5}$. FlowHDL 2.0 runs on workstations and provides the tools you need to enter a design graphically, verify, analyze, and automatically generate code in VHDL or Verilog. Knowledge Based Silicon Corp, Columbia, SC. (803) 779-2504.

Circle No. 360

SHORTS

The Magellan 3.0 Verilog debugging environment starts at $\$ 1995$ and includes a source-level debugger, a navigator, a waveform display and logic analyzer, and a register-trans-fer-level behavioral block viewer. System Science Inc, (415) 8121800.

Circle №. 361
The 7.0 revision of P-CAD Master Designer for pc-board design offers an integrated aperture table for WYSIWYG imaging, enhanced online design-rule checking, autodimensioning, and an improved user interface. The software runs on DOS and Unix systems; prices begin at $\$ 1995$. Altium Inc, (408) 534-4140.

Circle No. 362
The ADSpice library of 392 Spice models is available on 3.5 -in diskettes. The free library includes 40 new macromodels, including video amplifiers, buffers, references, and analog multipliers. Ana\log Devices Inc, (617) 329-4700.

Circle №. 363
Design Center from MicroSim is now fully integrated with Cadence's Design Framework II, providing a complete analog, digital, and mixedsignal circuit-design environment for Sun workstations. The Cadence integration product sells for $\$ 4950$ domestically and $\$ 6450$ internationally. MicroSim Corp, (714) 7703022.

Circle №. 364

ANALOG VIDEO ICs

- Replaces LM1881 With Improved Performance
- Window Circuit For Noise Immunity, Fast Recovery
- Excellent Specs \& Temperature Stability ($\pm 1 \mathrm{~ns}$)
- H-Sync output version available
- $\$ 2.35$ in 100 unit quantities

2 CHANNEL VIDEO MIXER/FADER GT4123A

- Excellent Video \& Control Performance
- $25 \mathrm{MHz} 0.1 \mathrm{~dB} \mathrm{BW} ; 75 \mathrm{~dB}$ Isolation © 5 MHz ;
$0.02 \% \mathrm{dg}, 0.02^{\circ} \mathrm{dp}$
- 4 ns Control Delay; 1% Control Linearity
- \$5.55 in 100 unit quantities

FULLY BUFFERED
SUB-10ns SWITCH GY4102A

- Sub 10 ns Switching @ 100 MHz 0.1 dB BW - Ultra Low Switching Transients ($25 \mathrm{mv} / 3 \mathrm{~ns}$) - Outstanding Video Specs ($0.02 \% \mathrm{dg}, 0.01^{\circ} \mathrm{dp}$)
- $\$ 5.23$ in 100 unit quantities

For information on our complete line of analog and digital video ICs and to receive samples, please call:
(800) 263-9353 ext. 282

In Canada, call (905) 632-2999 ext. 282.
Get instant Fax literature at:
(905) 940-5515 access code 1212

P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3 Y3 Tel (905) 632-2996 Fax (905) 632-2055

EDN-NEW Products
 BOARDS \& BUSES

Boards extend range of Multibus offerings

Continuing its support of the Multibus architecture, Intel Corp introduced a range of boards for both Multibus I and II. The offerings include communications modules for local- and wide-area networks (LANs and WANs), peripheral interfaces, and computer boards with flash-memory options.

The iSBC 221S SCSI controller provides an upgrade path for ST506 and ESDI disk-drive users in Multibus I systems. By offering two I/O protocols, the 221 S allows you to use SCSI-2 disk drives without changes to the software drivers of older systems, or it provides full SCSI-1 and SCSI-2 capability. The board can handle as many as seven peripheral devices in full-SCSI mode or handle four SCSI hard-disk, SA4xx floppy-disk, or QIC-02 tape drives using the I/O Parameter Block protocol. The
board includes a 256 -kbyte flash memory and a 512-kbyte cache; it costs $\$ 1450$.

The iSBC 282 Ethernet controller is an add-on module for Intel's Multibus I boards and connects to the AUI (attach-ment-unit interface) on thick Ethernet cables. The $\$ 350$ module uses the same network drivers as the EtherExpress 16 board and is software configurable. It comes with drivers for the NetWare, LAN Manager, 3+ Open, and Vines network operating systems.

The MIX232 and MIX422 also are add-on modules, but they follow the Modular Interface Extension (MIX) used in Multibus II boards. The modules both offer eight individually programmable communications ports operating as fast as 39.4 kbaud and are stackable to offer as many as 24 total ports. The MIX422 provides RS-422
signals and supports the RS-449 and X. 21 communications protocols; it can operate at 1.544 Mbps on selected channels. The MIX232 provides an RS-232C interface. Each module costs $\$ 2695$.

The iSBC 386/12 and 486/12 Multibus I single-board computers include sockets for holding up to 512 kbytes of flash memory. The boards come with $66-$ MHz 486 DX2, $33-\mathrm{MHz} 486$, or $20-\mathrm{MHz}$ 386 processors, DMA control, and up to 64 Mbytes of DRAM. The flash-memory sockets include the circuitry necessary for in-system programming. Programming instructions and sample code are available on the Intel Bulletin Board; phone (916) 356-3600 for access.-Richard A Quinnell

Intel Corp, San Jose, CA. (800) 438 4769.

Circle No. 464

Power PC processor comes to VMEbus

The PowerPC processor architecture has made it to the VMEbus in the form of the MVME160x computer-board family. The boards employ a modular architecture to provide a range of CPU and memory options with a common base. Options include $66-$ or $100-\mathrm{MHz}$ CPUs and as much as 128 Mbytes of DRAM.

The 160x family base boards contain the peripheral devices linked over a 32 bit PCI local bus running at 33 MHz . Peripherals directly on the PCI bus include Ethernet and wide-SCSI-2 ports and an SVGA driver. Bridges connect the VMEbus and low-speed peripherals such as parallel I/O, mouse, and keyboard to the PCI bus. The base board also offers an IEEE P1386.1 PCI Mezzanine Card option, providing a mechanism for adding other I/O capabilities.

The CPU, along with its local ROM and secondary cache, plugs into the PCI bus through a socket on the base board. The module can contain either a $66-\mathrm{MHz}$ PC603 processor or a $100-\mathrm{MHz}$ PC604 processor; its design ensures that all high-frequency signals remain within the module and that the CPU remains decoupled from the PCI bus. The CPU's main memory resides on a third pc board that connects directly to the CPU module. The memory can range from 8 to 128 Mbytes.

Despite all the module stacking, the

MVME1603-containing the PC603 processor-fits into a single 6 U slot in a VME system. The MVME 1604 occupies more than a single slot width due to the height of the CPU's heat sink. As lowerpower versions of the PC604 become available, the interference problem should vanish.

The MVME160x family comes with extensive software support. Motorola offers its VMEexec real-time development software for PowerPC modules. In addition, real-time kernel vendors have committed to supporting the family with their products. Vendors include

Integrated Systems (pSOSystem), Lynx Real-Time Systems, Microtec Research (XRAY, VRTX), Microware Systems (OS-9), and Wind River Systems (VxWorks, WindPower).

The boards come with a 5 -year parts-and-labor warranty for factory repair. The MVME1603 will be available in September; an 8 -Mbyte DRAM configuration costs from $\$ 3575$. The MVME1604 starts at $\$ 4575$ and will be available in November.-Richard A Quinnell

Motorola Computer Group, Tempe, AZ. (800) 759-1017, ext PR.

Circle №. 465

[^7]
KEYS TO SUCCESS

Dome contact, low profile keypad switches. Lighted \& non-lighted, round \& square. Sub-surface mounting types. Up to 5 million actuations.

Round, square, rectangle shapes. In all popular colors. Wide choice of terminals, circuits, lamp types \& accessories.

FLAWLESS LOGIC

Real or complement coded, decimal or hexidecimal dip rotaries. Screwdriver, shaft or dial actuation. Washable.

FREE DESIGNTOOL

POINTS OF LIGHT

WASH AND GO

NKK washables lead the way with the industry's widest range of circuits, actuators, terminals \& accessories. Micro thru std. sizes.

Tiny, but bright. Low-profile snap-in or panel mounting. Numerous actuators, circuits, ratings, terminals and colors.

The latest surface mount technology. Washable, vapor phase solderable toggles, pushbuttons and dip rotaries. Gull-winged terminals.

We have exactly what every design engineer needs - over one million switch options and more than 40 years of switch knowhow. Before you start your design-in, call for our 456-page Design Guide, then call on our experience. Make sure your design-ins go flawlessly. Make NKK your design partner right from the start. Call NKK Switches, (602) 991-0942 7850 E. Gelding Dr., Scottsdale, AZ 85260 FAX (602) 998-1435.

तHU swikches

FINALY, THEREIS A FAMHY OF 12-BH ADCs THAT WONT AG LIKE THIS IN YOUR SYSUEM.

No matter how well you design a system, if voltages go outside the rails, your circuits can fry.

That's why Analog
Devices now offers you a

Voltage spikes can bappen any time. So you need $A D C$ overvoltage protection all the time. time. So roltage
family of 12 -bit,
single supply, low power A/D con-
verters - all with
system-saving
overvoltage
protection.
Each of our ADCs operates from
5 V supplies, has serial output, and offers a variety of input ranges including a $\pm 10 \mathrm{~V}$ option. And each eliminates the need for resistors and diodes at the ADC input to protect against voltage fault conditions.

SMALLEST 12-BIT ADC

Our new AD7893 sampling ADC is the smallest 12 -bit A/D converter available occupying

LOWEST POWER

Coming soon, our newest family

75\% less board space
than any of its nearest competitors

8-CHANNEL MUXOUT

MUXOUT that uses only one eighth of
the signal conditioning circuitry sounds good, try our new 12-bit AD7890.

CIRCLE NO. 31
member, the AD 7892 . It's the lowest power ADC available with a 500 ksps throughput rate. And it offers very flexible interfacing, with both serial and parallel capability.

Make sure the ADCs you use aren't simply expensive fuses in disguise. For samples and information about our entire AD789X family, call

1-800-ANALOG-D (262-5643) today.
Or fax your request to 617-821-4273.

Analog. Digital. Solutions.

DSP boards stack on PC/ 104 bus. The PC5-DO board uses a $50-\mathrm{MHz}$ DSP32C processor to perform IEEEcompatible 32 -bit floating-point arithmetic. The boards use the PC/104 interface and are stackable for greater performance. Stacked boards communicate through a $25-\mathrm{Mbps}$ serial port. They also offer a 32 -bit, 100-Mbyte/sec mezzanine connector for attaching I/O daughtercards. The daughtercards provide several audio options, including voice codec and dual-channel audio I/O ports. The board costs $\$ 1395$. Communication Automation and Control Inc, Allentown, PA. (215) 776-6669. Cirde №. 365

FDDI adapters run sans CPU. The 1250 series of VME boards contains an ASIC that handles communications control for synchronous and asynchronous FDDI (fiber distributed data interface). The ASIC eliminates the need for a CPU and associated circuitry, lowering the cost of the adapter. The boards come in single- and dual-attachment configurations and can work with fiber or unshielded twisted-pair (UTP) network media. The boards also offer an optional content-addressable memory to speed address matching. Their streams-based link-level software is available for Sun, Data General Avion, and HewlettPackard 700i series controllers. Prices begin at $\$ 2995$ for UTP-based and $\$ 4195$ for fiber-based boards. Rockwell Network Systems, Santa Barbara, CA. (805) 968-4262.

Circle №. 366

Ruggedized VME boards use Pen-

 tium CPUs. The RPC series of 6U VMEbus-based PC-compatible boards offers a -40 to $+85^{\circ} \mathrm{C}$ operating-temperature range as well as shock, vibration, and humidity immunity. The boards include a 486 or a Pentium CPU; 64 Mbytes of RAM; VGA, Ethernet, and SCSI-II interfaces; and a PC-104 expansion bus. The boards' VGA controllers handle resolutions of $1280 \times$ 1024 pixels. The boards also offer two serial ports, a bidirectional Centronics printer interface, and a PS/2 mouse port. or Industrial Computers, Reading, Berkshire, UK. 0734-331010.Circle No. 367

STD 32 board connects to Interbus-
S. The UE9002 connects the STD 32 bus to the Interbus-S distributed serial-I/O system developed by Phoenix Contact (Harrisburg, PA) for industrial monitoring and control. The board operates as a master or a slave on the Interbus-S,

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

depending on system needs. As a bus master, it controls as many as 4096 I/O points. The interface is programmable in Basic, Pascal, and C. The board costs $\$ 495$, and an optically isolated version costs $\$ 795$. Universal Systems, Flint, MI. (810) 785-7970.

Circle No. 368

Single-board PC/ATs sport 486SLC CPUs. Two boards patterned after the IBM PC/AT architecture are available in a 4.5×7.1-in. form with a PC/104 expansion connector. The SAT-496SLC-33 (\$995) and SAT-386SX-25 use $25-\mathrm{MHz}$ 386 SX and $33-\mathrm{MHz} 486$ SLC processors, respectively. A clock-doubled version of the 486SLC is also available. Each board handles as much as 4 Mbytes of dynamic RAM, offers three sockets for EPROM or flash memory, and can be jumpered to boot from RAM- or ROM-based DOS. The boards include the full AT motherboard, including keyboard and speaker interfaces. Add-in cards connect to the PC/104 interface. WinSystems Inc, Arlington, TX. (817) 274-7553.

Circle №. 369

Single-board computer uses FPGA. The 188SBC is a single-board computer based on the 80 C 188 processor. It provides 12 - or 16 -bit ADC and DAC, serial and parallel ports, a PC/104 expansion bus, and a field-programmable gatearray (FPGA) socket. The socket accepts a Xilinx 3000 -series FPGA, which the processor can configure to provide custom capability to the board. The board also offers 512 kbytes of bat-tery-backed static RAM, keyboard and LCD interfaces, sockets for as much as 2 Mbytes of EPROM, and flash programming circuitry. Prices range from $\$ 299$ to $\$ 750$. HiTech Equipment Corp, San Diego, CA. (619) 566-1892. Circle No. 370

SPARCstation 10-compatible VME board holds four CPUs. The SPARC 10 MP is a 6 U VME board with 100% binary compatibility with the SPARC-station-10 workstation family. The
board holds four Fujitsu HyperSPARC or two Texas Instruments SuperSPARC processors operating as fast as 80 MHz . The board runs standard Solaris 1.1 and 2.3 operating systems; accepts ECC memory-expansion modules with as much as 256 Mbytes of RAM; offers two SBus slots; and includes Ethernet, SCSI-II Fast, serial, and Centronics ports. Prices start at \$12,995 for a board with 32 Mbytes of memory. Themis Computer, Pleasanton, CA. (510) 734-0870. Circle No. 371

DSP board employs data-flow architecture. Based on six $50-\mathrm{MHz}$ TMS320C40 DSP processors, the DSP46 VME board accepts data at 160 Mbytes/sec. The board uses a 68040 processor to control data flow, allowing a parallel or pipelined data-processing structure. Each DSP on the board has a 1-Mbyte private RAM (expandable to 16 Mbytes), and all processors share a 4-Mbyte memory block as well as the VME64 interface. Three of the DSPs connect to a FIFO-buffered, 50-Mbyte/ sec, 36 -bit parallel port to the board's front panel. All processors connect to the 160 -Mbyte/sec ScreamerBus on the backplane. The board costs $\$ 17,749$. PC/M Corp, Dublin, CA. (510) 8298700.

Circle No. 372

SHORTS \& REVISIONS

Heurikon Corp has purchased the design and manufacturing rights to the RISQ Modular Systems' line of MIPS-based VME boards. Heurikon will continue to market the RISQengine 6e board, replacing it this year with an R3000-based board. Heurikon Corp, (608) 8315500.

Circle №. 373
With the introduction of its Type-3 digital I/O mezzanine module, Valley Technologies now has a port that keeps pace with the company's UltraDSP board's processing power. The $\$ 10,000$ module allows the DSP board to sustain a $20-\mathrm{MHz}$ data-input rate for block sizes as large as 32 kbytes. Valley Technologies, (717) 668-3737. Circle №. 374
Ampro has upgraded its Little Board/486 single-board computer by adding a version using the Intel 80486DX2 CPU. The board is now available in $33-$ and $66-\mathrm{MHz}$ versions. Ampro Computers Inc, (408) 522-2100.

Circle №. 375

COMPONENTS

Surface-mount LED emits a true

 "medical red." The microLED 597 set of surface-mount LEDs and detector includes a $658-\mathrm{nm}$ red emitter (28 med at 20 mA), a $940-\mathrm{nm}$ infrared emitter $(0.8 \mathrm{~mW}$ at 20 mA$)$, and a PIN-diode detector (950 nm pk). The "medicalred" emitter provides a tightly controlled wavelength without the sec-ondary-emission peak common to ordinary LEDs. The set measures an object's or a substance's absorption of red light for applications such as glucometry, pulse oximetry, and fetal monitoring. The packages measure $1.2 \times 1.27 \times 3.2 \mathrm{~mm} . \$ 3.90$ for a set of all three (1000); delivery is four to eight weeks ARO. Dialight Corp, Manasquan, NJ. (908) 223-9400. Circle No. 376
Transducers answer phone calls

 about status and measurements. The PhoneDucer P-9000 industrial transducers measure pressure at remote locations and report the monitored variable when polled over a phone line. The units cover the pressure range from 0 to 9000 psi . The factory calibrates and temperature-compensates each unit. The unit comes in stainless-
FREE INFO, FREE POSTAGE

Use our postage-paid reader-service cards to get more information on any of these products.

steel enclosures measuring $3 \times 1.5 \mathrm{in}$. and weigh $<1 \mathrm{lb}$. The unit requires no power supply or batteries; it gets its power via its RJ-11 connector. Other measurement variables are optional. $\$ 495$ (singles). Elwood Corp, Oak Creek, WI. (414) 764-7500. Circle No. 377

Ceramic resonators pack built-in capacitors. The ZTS series of ceramic resonators incorporates a pair of $30-\mathrm{pF}$ capacitors ($100-\mathrm{pF}$ optional) to form a logic-compatible tank circuit in one package. Resonant frequency ranges from 2 to 12 MHz . The devices' frequency variation is $\pm 0.3 \%$ at ambient

Piher's New Cermet Trimmers...

 From Our Shelf To Your Product

Piher's new highly compact cermet trimmers are ideal for applications where space is restricted and component size is critical; their nominal body size is only $1 / 4^{\prime \prime}$ in all dimensions. And, they are available directly from stock.

You can order these trimmers in either horizontal or vertical adjustment in an ohmic range of 100Ω to $1 \mathrm{M} \Omega$, on tape for automatic insertion, or in bulk. Contact us if you would like to have samples, product literature or more information.

[^8]temperature (mostly because of $\pm 0.3 \% /$ year aging), and operating temperature is -20 to $+80^{\circ} \mathrm{C}$. Although ceramic resonators' frequency accuracy cannot match that of quartz crystals, ceramic resonators are less expensive, consume less than 1 mW , and operate properly from voltages below 5 V . Being low-Q devices, they quickly start oscillating, minimizing spurious activity from newly energized μ Ps struggling to come up to speed. Integrity Technology Corp, Santa Clara, CA. (408) 2628640.

Circle No. 378

Relay driver eliminates interface components. The avalanche-rated ZVN4206AV N-channel MOSFET comes in a TO-02 package and is rated for a 60 V drain-to-source voltage at 600 mA max. The device has an on-resistance of 1Ω and accepts a 5 V gate drive. The device requires no free-wheel diode when controlling inductive components. The avalanche breakdown of the device's intrinsic MOSFET body diode dissipates the inductive component's stored energy. $\$ 0.32$ (1000); delivery, 10 to 12 weeks. Samples are available. Zetex Inc, Commack, NY. (516) 543-7100.

Circle No. 379

Red and green LEDs are sunlightvisible. The red SLA-570 LED provides a luminous intensity of 2400 mcd at 10 mA , and the green version emits 750 med, both exhibiting a 24° viewing angle. The units have 100,000 -hour MTBF. Green LED, $\$ 0.07$; red LED, $\$ 0.125$ (10,000). Rohm Corp, Antioch, TN. (615) 641-2020, ext 121.

Circle №. 380

Orders for single electronic cases shipped within 24 hours. Electronic carrying cases molded from ABS/ polycarbonate alloy meet ATA 300 standards and can withstand $2000-\mathrm{lb}$ stacking loads. The cases come in 10 sizes ranging from $8^{1 / 2} \times 6 \times 3^{1 / 2}$ to $27 \times 18 \times 6^{3 / 16}$ in. Options include various foam linings, colors, dividers, locks, watertight gaskets, and shoulder straps. $\$ 18.70$ to $\$ 182.50$ (singles). Cases Plus, Livermore, CA. (510) 606-5350.

Circle №. 381

PRODUCT MART

This advertising is for new and current products.

Please circle Reader Service number for additional information from manufacturers.

CIRCLE NO. 253

CIRCLE NO. 249

UNVERSAL CANG PROGRAVMIDRS

FLEX. 700 32 pinfrom 566 40 pin from $\$ 845$ 48 pin from $\$ 945$
ALL-03A 5 ;95
IC Manufacturer approved \& under \$1000

- Supports Altera 7xxx, MACH 435, Xilinx, Intel FX7xx, nearly all FPGA/CPLD/PLD
- Support EPROM, 28/29F FLASH, Serial PROM, PSD4XX/5XX, Intel/Motorola/T/NEC/hitachi MPU/DSP devices.
- Test 74/40/45 series, DRAM(SIP/SIMM), and SRAM.
- Parallel port connection to PC option
- Free software updates via BBS.

Tribal	Tribal Microsystems Inc.
	44388 S. GRIMMER BLVD., FREMONT,CA 94538
	Tel: (510) 623-8859
	Fax: (510) 623-9925

ANALYZER-EMULATOR

UniLab 8620

- PC Based, Zero-Wait-State Operation
- Non-Stop Analysis: Define \& Refine Triggers \& View Multiple Traces On-The-Fly
- Source Level \& Symbolic Debug

Built-In EPROM Programmer

- Same Base Lnit Supports Most 8 -bit HCs \& ${ }^{1} \mathrm{PP}$, including 8051, $68 \mathrm{HC05}, 68 \mathrm{HC11}, \mathrm{Z80}$, 80C196, 6502, 8085, etc.

1-800-729-7700
 Fax: 415-327-9881 INSTRUMENTS 180 Independence Dr., Menlo Park, CA 94025 U.S.A.

CIRCLE NO. 259

The first truly universal keyboard encoder can accommodate any keypad layout with up to 24 lines (up to 144 keys). Supports PC XT/AT and RS232 interfaces can operate in parallel with standard IBM keyboard. Al key codes and interface parameters are stored in EEPROM and can be changed by the user at any time using a supplied utility. $2.4^{\circ} \times 3.6^{\prime \prime}$. $\$ 145$ qty 1 , volume disc avail.

VG Controls, Inc.
34 Jenkins Rd., Hewitt, NJ 07421 Tel (201) 853-4600 Fax (201) 853-7913

CIRCLE NO. 239

Only a Specialized Keypad Manufacturer Could Provide Versatile and Economic Products. With more than 11 years of experience in this field, we proudly offer you various types of conductive silicone rubber pads, rubber pads with multicolor keys and multicolor printing, translucent parts for backlighting. Please contact us early for design assistance and information.

GENERAL SILICONES CO., USA
G8 650 W. Duarte 401 Arcadia CA 91007 , USA Tel: (818) 445-6036 Telex: 3716189 GSCU Fax (818) 445-6084

PCB RUSH SERVICE Proto Manufacturing

鲑 24 hour Multi/Rigid
10 day std delivery Design \& CAM Laser Plotting LPI/DFSM Mil GF \& GI Nice People

Dial (800) PCB-RUSH Sun Circuits Incorporated 5124 Calle del Sol Santa Clara, CA 95054 (408)727-7784 fax (408)727-0347 BBS/Modem (408) 988-3591

CIRCLE NO. 237

Eclipse - unparalleled Speed \& Sophistication True Universal Device Support Capability

- 96 to 256 pin drivers as standard
- Universal DIP \& PLCC modules - do away with stacks of fragile socket adaptors
- Stand-alone or remote operation with Windows or DOS
High performance pin drivers - test even the fastest PLDs
Stag Microsystems, Inc
Tel: 408 988-1118 Fax: 408 988-1232

A Complete Line of Development Boards, Programmers and In-Circuit Emulators

NEW...NEW...NEW...NEW . .

DS-186 - In-Circuit Emulator for 80C186/8/XL/EA/EB/EC, V40/50 8086/8 and other μ Cs
*** NEW ADDRESS IN THE USA ${ }^{\star \star \star}$ Call today for your free demo and software update Toll Free: 1-800-833-4084

CEIBO
7 EDGESTONE CT FLORISSANT, MO 63033
TEL: 314-830-4084
FAX: 314-830-4083

CIRCLE NO. 256

Weekly to the
electronics OEM
through EDN Magazine
and Products Editions'
Product Mart sections.

CIRCLE NO. 257
CIRCLE NO. 257

Communicate Weekly

 to the electronics OEM through EDN Magazine and Products Editions' Product Mart sections.
TEST SMT QFP

IN ZIF SOCKET

The Ironwood line of CARRIER ADAPTERS allow probing of SMT QFP devices by simply mounting a QFP EMULATOR FOOT to the land pattern. The SOCKET/ PROBE assembly is then plugged onto the FOOT with matching connector. Target IC is then inserted into ZIF socket for easy test/removal. EMULATOR FOOT is constructed for easy installation and reliability. Available in sizes from 44 to 208 pins.

IRONWOOD ELECTRONICS P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 241
48 Channel 50MHz Logic Analyzer

Complete System \$1695.00 New Windows 3.1 Compatible Software
-48 Chnnls @ 50 MHzx 4 K words deep

- 16 Trigger Words/16Level Trigger Sequence - Storage and recall of traces/setups to disk -Disassemblers available for: $68000,8088,8086$, 6801, 6811, Z80, 8085, 6502, 6809, 6303, 8031, 64180
NCI口 6438 UNIVERSITY DRIVE, HUNTSVILLE, AL 35806 (205) 837-6667 FAX (205) 837-5221

CIRCLE NO. 255

LBA
SNAP-MOUNT ALUMINUM ELECTROLYTIC CAPACITORS

Extremely high CV density in a rugged design. Quick attachment to printed circuit board. Welded terminations, low ESR and low inductance design. Capacitance Range: 47 Mfd . to $47,000 \mathrm{Mfd}$., Voltage Range: 16WVDC to 450WVDC, Operating Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Prices as low as $\$.90$ each in 1,000 piece lots.
IILINOIS CAPACITOR, INC.
3757 W. Touhy Ave., Lincolnwood, IL 60645 (708) 675-1760

VHDL

TRAINING

5 day course in VHDL based ASIC design using Object Oriented Principles. Special Advertising Offer: only $\$ 950$ per person August 1-5, 1994 Dallas, TX

SHELOR ENGINEERING 3308 Hollow Creek Rd Arlington, TX 76017-5346 (817) 467-9367 cfshelor@acm.org

NEW DATEL CATALOG HAS 50 NEW PRODUCTS

New 64-page DATEL catalog. New-product information and product-selection guides for data conversion components, DC/DC converters, DPM's and I/O boards for PC/AT, EISA and VME. ADC's up to 14 bits at 10 MHz . Modular DC/DC's up to 50 Watts. Smallest $3^{1 / 2}$ and $41 / 2$ digit LED/LCD DPM's. EISA I/O boards to $12 / 14$ bits at 10 MHz . Detailed specs for many new products.

DATEL, Inc.

11 Cabot Boulevard
Mansfield, MA 02048
(508) 339-3000 • (800) 233-2765

FAX (508) 339-6356
CIRCLE NO. 236

CIRCLE NO. 234

CIRCLE NO. 242

LOGICAL

Has a Full Range of High Quality Universal \& Gang (EEPROMs, FLASH, PLD, \& MICRO CONTROLLER) Programmers

LOMGICAL

tixice ine: digelec
1800331 -7766 Ext: 103

Up to $20 \mathrm{Mhz}, 0$ wait state emulation - Up to 115 k baud serial downloads - 105 k in $10 \mathrm{~s} \bullet 128 \mathrm{k}$ to 1 MB write-protectable over lay RAM - 1 MB execute, memory read/write, /O write breakpoints - 1 MB address monitor, breaks on any combination of execute, read or write from address. - Debug without hardware - Includes: High-powered Turbo-debug-like source-level debugger - Debug assembly and C code - Open multiple windows Watch/inspect/modify any C variable of any type - Structs and arrays expand into members and elements - Banked program support - Unlimited program size - Full mouse support © Runs under Windows 3.1 - Seamless support for Softools' Control Cross-C and others - Do it right - fix your bugs fast!

Z1BO ICE-CUBE INTRO PRICE FROM $\$ 1799$ Also avallable -- ANBIC oompliars, maoro orosemessemblers and remi-time Os paokagee

410-964-9903 Bales 410-964-9905 FAX/BB8

- 1994, Softoole, Inc. All undemarka owned by heir respective compenies.

CIRCLE NO. 252

MEED MORE SPEED... DOMT WAMT TO REDESIGM
MOTOROLA© CPU "ACCELERATOR ADAPTERSTM
Δ Replaces original CPU with next generation technology Δ Extends the life of your current system Δ Avoids the high cost of redesign Δ Add 32-bit RAM and math coprocessor. Δ Custom design and manufacturing services.
Interested in speeding up your system? Computer System Associates
7564 Trade Street Phone: (619) 566-3911 San Diego, CA 92121 FAX (619) 566-0581

SCANTEAV 3400 CCD
WELCH ALLYN INTRODUCES
THE SCANTEAM ${ }^{\circledR} 3400$ HAND HELD CCD SCANNER

The ST3400 features:

- Unique CCD optics for superior first-read rate -Depth of field up to four inches - Ability to read bar codes wider than scan head
- Ergonomic pistol grip - Optional integrated decoder interface
- High durability/no moving parts

For more information on how the ST3400 can solve your scanning needs, contact:

Welch Allyn NBi

Data Collection Division - OEM Sales 4619 Jordan Road skaneateles Falls, NY 13153 Phone (315) 685-8945 FAX (315) 685-3172

CIRCLE NO. 254

Speed Your Product to Market

With The QED Board

Ready-to-Use Computer Saves You Time and Effort - Onboard hardware and software control dozens of analog and digital //O lines, serial ports, keypad and LCD display - High level programming language includes hundreds of useful functions for data analysis and instrument control - Complete QED Product Design Kit is available to provide quick hassle-free instrument prototyping
Call or fax now for a complete QED catalog! Phone 510/790-1255•Fax 510/790-0925溉 Mosaic Industries, Inc. I- 5437 Central Ave., Suite I • Newark, CA 94560

CIRCLE NO. 232

Low-Cost Digital Multimeter Adapter

Quatech's new DMM-100 is a digital multimeter adapter for IBM PC/AT and compatible computers. Input functions include DC and AC voltage, DC and AC current, resistance, and diode/continuity tests. The DMM100 provides a full $33 / 4$ digit resolution and programmable sampling rates from 10 samples per second to over 1 hour between samples.

For more information and a free product catalog call: 1-800-553-1170

TCUATECH 662 Wolf Ledges Parkway Akron, Ohio 44311

FAX (216) 434-1409

200MSa/s Digital Oscilloscope

200 MSa /s Sampling Rate up to 128K Samples/Channel PC-BASED INSTRUMENT 2 Analog Channels (2 ch. Oscilloscope) 8 Digital Channels (8 ch . Logic Analyzer) All 10 channels can be used at same time Simultaneous use of all 10 channels Cross Triggering of Digital and Analog 125 MHz Single Shot Bandwidth
\$1799 DSO-28200 (200MSa/s, 4K/Ch) \$2285 DSO-28264 (200MSa/s, 128K/Ch)

400 MHz Logic Analyzer

up to 128 Channels up to 400 MHz up to 16 K Samples/Channel Variable Threshold 8 External Clocks 16 Level Triggering Pattern Generator (Option)
\$1299 - LA32200 (200 MHz, 32 Ch) Pods \& Software \$1899 - LA32400 (400 MHz, 32 Ch) included Also Available:
\$799 - LA12100 ($100 \mathrm{MHz}, 24 \mathrm{Ch}$, TTL only)

Universal Programmer

PAL - GAL - MICRO
EPROM - EEPROM - FLASH

\$475
Call for full device support list
Free software updates on BBS
Call (201) 808-8990

ha
Link Instruments
369 Passaic Ave, \#100, Fairfield, NJ 07004 fax: 808-8786

Software Engineer to be member of small development team; Participate in the development of software products and documentation to allow personal computers and laser printers to print checks and other negotiable documents as well as design, strategy and planning of product. Must be able to write applications for Microsoft windows using C or C_{++}. Require: BA, BS, BE in computer science or engineering with 1 yr 6 mths exp. in job offered. Salary: $\$ 42,000 / \mathrm{yr}$; M-F 8am -5pm; 40 hrs wk; Located in Jacksonville, FL
Send resume to: Job Service of Florida, 2810 Sharer Rd., Suite 30B, Sugar Creek Plaza, Tallahassee FL 32312. Job No. FL1037984.

A SMALL AD HERE COULD ATTRACT A LOT OF ATTENTION

ENGINEERING CIRCUIT DESIGN MANAGER

 International television manufacturing company is looking for an experienced hands on Production Engineer. This professional with strong analytical skills has the following: 10 to 15 years exp. in a color television manufacturing company. Knowledge and ability to evaluate color televisions at the design stage. High skill in analyzing television circuit design. Good communication skills. B. S. in Electronics preferred. Responsibilities: New model review and evaluation. Introduction of new models to production. Analysis of circuit problems and troubleshooting.Competitive Salary, relocation available for the right individual. Location: San Diego CA \& Tijuana, México Maquiladora company Send resume in confidence with salary history to: Maela KelleyESCALANTE
\& Associates International, Inc. RECRUITERS Bilingual a Plus 3444 Camino del Rio N., Suite 204,

San Diego, CA 92108
619-283-7191 Fax619-283-7242

Quality design andadvanced technology. Becauselivesdepend on it.

Siemens Pacesetter is a world leader in technological innovation for cardiac arrhythmia management devices. Together with our parent company, multibillion dollar Siemens, we are bringing these life-saving and lifeenhancing products to today's everchanging healthcare marketplace. If your vision matches ours, we offer a supportive, advancement-oriented environment to the professionals who join us as:

SR. SOFTWARE ENGINEER (Software Development Dept.)

 Individual will use creativity and high-quality standards to design and implement software for implantable/external pacemaker applications. Responsibilities include developing product and software specifications, architecture design, detailed design, implementation, unit tests and integration tests suite. $5+$ years experience in all phases of high reliability software development is required. BSCS/MSCS and C/ C++ background preferred. Demonstrated systems development experience using OOP techniques in real-time systems desirable. Respond to Dept. EDN/SSE.
SR. STAFE

SOFTWARE ENGINEER

 Advanced Product DevelopmentWill design/develop software for new pacemaker/programmer interfacing and communications. Involves requirements definition, design, coding, testing and debugging. Will also perform large scale software integration to ensure functionality of final product. Requires a BS/MS degree in CS or equivalent and 5+ years experience with knowledge of Assembly and C. Respond to Dept. EDN/SSSE.

SR. MECHANICAL DEVELOPMENT ENGINEER

The selected candidate will be called on to design and develop new leads, as well as provide test protocols and documentation. Also entails coordinating leads project teams, and designing related tooling/fixtures. Related BS degree in Engineering required, with $5+$ years directly related experience. Respond to Dept. EDN/SMDE.

TEST ENGINEER

Our selected candidate will develop and design new software/hardware to test new products, maintain existing software and test equipment, and generate related documentation and reports. BSEE or equivalent and a minimum of 5 years mixed signal test engineering experience strongly preferred. Knowledge of C program language (with a preference in Assembly) and precision analog test methods/ circuits a must. Respond to Dept. EDN/ATE.

In addition to our desirable Southern California location, we offer competitive compensation, paid relocation and complete benefits, including employer-paid pension plan, $401(\mathrm{k})$ savings, tuition reimbursement, vision care and a choice of medical/dental plans. Send resume (NO PHONE CALLS, PLEASE!) to the appropriate department: Sue Mayes, Employment Representative, Siemens Pacesetter, Inc., 15900 Valley View
Court, P.O. Box 9221, Sylmar, CA 91392-9221. AA/EOE.

EDN Headquarters
275 Washington St
Newton, MA 02158
Fax: (617) 558-4470

Publisher

Jeffrey Patterson
(617) 558-4454

Maria McGrath, Assistant
(617) 558-4346

Advertising Sales Director

Paul Rothkopf
(617) 558-4651

Marketing/
Business Director Deborah Virtue (617) 558-4779

Promotion

Jean Graham (617) 558-4698

Production Staff Andrew A Jantz, Group Manager (617) 558-4372

Karen Banks, Manager (617) 558-444

Alice Dorsey, Associate (617) 558-4601

Contracts

Muriel Murphy,
(617) 558-4451

Circulation: Denver, CO
Denise Garcia,
(303) 398-7694

Custom Publishing Services

Patricia Tyler, Director (617) 558-4526
fax: (617) 558-4470

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For a quote, phone Ellen Sandram, Cahners Reprint Service at (708) 390-2773.

NETHERLANDS/

BELGIUM/NORTHWEST GERMANY (NIELSEN 1, 2, 5, 6, 7)
Albert Ticheler
Tel: 31-40-41-37-27
Fax: 31-40-42-04-30

CENTRAL/

SOUTHWEST GERMANY
(NIELSEN 3A, 3B)
Renate Munk
Tel: (49) (6272) 2345
Fax: (49)(6272) 2167

FRANCE

Alain Faure
Tel: 33-1-4629-4629
Fax: 33-1-4093-0337

HONG KONG

Adonis Mak
Tel: 852-838-2666
Fax: 852575 1690/
8525751967

JAPAN

Kaoru Hara
Tel: (81-3) 3389-1822
Fax: (81-3) 3389-1761

KOREA

Jeong-gwon Seo
Tel: 82-2-752-4392
Fax: 82-2-752-4394

SINGAPORE/

MALAYSIA
Hoo Siew Sai
Tel: 65-738-0122
Fax: 65-738-2 108

AUSTRALIA

Alexandra Harris-Pearson
Tel: 61-2-299-5677
Fax: 61-2-299-6178

TAIWAN

Parson Lee, John Shih
Tel: 886-2-71 14833
Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian
Tel: (212) 463-6415
Fax: (212) 463-6404

INFO CARDS/

LITERATURE LINK
Melissa Bachman
Tel: (617) 558-4282
Fax: (617) 558-4328

RECRUITMENT

Jacqueline Daniels
Tel: (617) 558-4488
Fax: (617) 630-3925

TELEMARKETING SALES

Judy Telander
Tel: (310) 826-5818
Fax: (310) 207-1067
Direct Mail Service:
(708) 390-2361

Cahners

Magazine Division

Robert Krakoff,
President, CEO,
Cahners Publishing
Michael Wisner,
Senior VP/General Mgr,
Boston Div
Tom Dellamaria,
Senior VP/Production \&
Manufacturing

DC-DC

 CONVERTERSSurface Mount © PC Board Mount

- Low Profile • Single and Dual Output
- Isolated • Industrial to Military - up to 1000 Volts

AC-DC
 POWER SUPPLIES
 Linear • Switchers • Open Frame - Low Profile • Up to 200 Watts

453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552
CIRCLE NO. 78

eDN-International Adveriliers Index

Company	Page C	ircle	Company	Page Circle	
AMP Inc	28	26	Motorola Semiconductor		
Advin Systems	133	240	Products	74-75	
Allegro Corp	52	96	Murrietta Circuit Design	124	
Analog Devices Inc	17	27	NCl	135	255
	26-27	83	NCR Corp	108	72
	87-94		NKK Switch	129	
	130	31	National Semiconductor	35-48	
Applied Micro Circuits Corp	101	71	Omron Electronics	20	81
Atmel Corp	12	9	OrCad	C2	37
B\&C Microsystems Inc	135	230	Orion Instruments	134	259
Belden Wire \& Cable	4	74	Philips Semiconductors		
Burr-Brown Corp	33	88	North America RSO	24	
CEIBO	134	256		49	
Capital Equipment Corp	111	82	Pico Electronics	58	
Cirexx Corp	133	248		140	78
Computer System			Piher International	132	76
Associates	136	245	Quatech	136	251
Cybernetic			Quicklogic	55	84
MicroSystems Inc	21	77	Raltron Electronics	86	38
Cypress Semiconductor	C4		Samsung Semiconductor	10-11	39
Data Translation	59	1		96-97	46
Datel Inc	135	234	Shelor Engineering	135	236
Digi-Key Corp	1	91	Sierra Circuits	133	243
ESL Inc	95	28	Siliconix	C3	
Ecliptek Corp	84	79	Softools	136	252
Epson America Inc	2	87	Stag Microsystems Inc	134	244
Fluid Dynamics			Sun Circuits	134	237
International	122	29	Tektronix Inc	15	47
General Silicones	134	231	Teledyne Electronic Relays	86	48
Gennum Corp	127	2	Texas Instruments	60-63	
Hyundai Electronics				73	49
Industries	22-23		Thermodisc	124	17
Illinois Capacitor Inc	135	258	3M Components	117	19
Incredible Technology	133	249	Toshiba America		
Integrated Device			Electronic Components	18-19	8-99
Technology Inc	31	4	Tribal Mircosystems	133	238
Intel Corp	8-9	3	VG Controls	134	239
	106-107	30	VLSI Technology Inc	50-51	64
Intusoft	134	233	Vicor Corp	105	95
Ironwood Electronics	135	241	Viewlogic Systems	113	65
Lambda Qualidyne Inc	98	121-	Welch Allyn	136	254
		122	Westcor Corp	6	66
Linear Technology Corp	76	33	WinSystems Inc	115	69
Link Instruments	136	250	Wind River Systems	57	70
Littlefuse	125	36	Zworld Engineering	133	253

Logical Devices 135242
Loral Data Systems $103 \quad 32$

Maxim Integrated Products Inc	81	85

	83	86
	85	94
Metalink Corp	135	235
Microware Systems Corp	118	80
Mini-Circuits	3	92
	79	93
Mitsubishi Electronics		
\quad America	126	73
Mosaic	136	232

Recruitment Advertising 137-138

This index is provided as an additional service. The publisher does not assume any liability for errors or omissions.

John Cooley, EDA Consumer Advocate \& ESNUG FOUNDER

I couldn't help but think about overly idealistic college activists while listening to Andy Graham, president of the CAD Framework Initiative (CFI), wrap up CFI's first conference on EDA integration and interoperability (EII) with a call for users to pressure EDA vendors to make their products more interoperable with their competitor's. I felt as if I were witnessing some sort of modern-

day scene from Don Quixote, where a wellintentioned management-type was expecting normally overworked engineers to suddenly drop what they're doing, spontaneously unite, and assault the buildings where evil, scheming EDA vendors workall in an attempt to force them to become CFI compliant.

Doesn't Andy know that it's not human nature for people to get worked up over something they already have a solution for? Sure, most EDA tools from different vendors choke a little when you try to get them
to work together, but there's always a way to find a workaround. Trying to invoke major political changes with EDA vendors is a slow, messy, and uncertain process-and it doesn't solve that "not all EDIFs are alike" problem for me right now, when I need the solution.

Then my mind wandered into all the political realities involved with having fully interoperable EDA tools. EDA vendors would love it because it offers them one standard framework to design their competitive, hot, and innovative tools that would steal business from the big EDA vendors. Realizing this, big EDA vendors are infamous for providing all sorts of lip service to promoting interoperability and things like CFI standards-but allocate next to nothing in funding to make it happen. Customers would love it because there would be no pesky interoperability issues to occasionally hack through.
Of course, as any salesman will tell you, customers can be very fickle: They aren't willing to pay an extra cent for interoperability, but if it's free they'll take it. When I asked all five CAD managers on the EII panel the question, "Given a choice of either a screamingly new EDA tool that helped you do new functionality or complete interoperability of your current tools, which would you choose?", all five EDA customers unequivocally chose getting the new EDA tool over interoperability.

Zero tolerance

Also, unlike how they feel about tools offering sexy new EDA functionality, customers have zero tolerance for any bugs in a framework. The big EDA vendors who sunk a little money into making their own proprietary frameworks (ie, Mentor with the Falcon Integrator and Cadence with Cadence Frameworks) got burned big time by "displeased" customers who ran into major and minor framework bugs. Most of the customers stopped using the framework and

edA Consumer Advocate

bombarded suppliers with nasty phone calls, which is another valid reason the big EDA vendors give frameworks tons of lip service but not much more.

The final effect an indus-try-wide interoperability solution would have would be that soup-to-nuts "totalsolution" EDA vendors (like Mentor) would be threatened, because EDA tools would become commodity items. (Customer loyalty lasts all of 30 seconds in the EDA business.) EDA vendors would be forced to offer quality tools at dirt-cheap prices because the competition would be cutthroat! On

paper, this sounds like a great idea for EDA customersand a living hell for EDA vendors. Maybe the engineers of the world should unite for CFI! But take this scenario a little further and you'll find that those software pirates known as EDA vendors are not necessarily as evil as they appear to be on this issue.

The future's a funny thing. Although in the short run customers would benefit from commodity-priced EDA tools, who's going to pay for the blockbuster next generation of EDA tools? Sure, a lot of great EDA tools start from two guys in a garage, but what bootstraps real development is the high profit margin these new companies get with their hot tools. For example, Chronologic Simulations couldn't have made a screaming Verilog simulator if they could only get $\$ 3000$ per copy early on. The same is true for the ambitious projects the big EDA vendors take on: Synopsys couldn't have made a behavioral synthesizer without the financing from sales of its RTL level synthesizer, and Racal-Redac had to sell its behavioralsynthesizer research-along with most of its remaining EDA product line-because it wasn't making money in the EDA business.

No matter how grod EDA tools get,

CFI's ANDY GRAHAM'S LIST OF THINGS TO DO...

\checkmark Support the creation of certification boards for de facto standards like EDIF, Verilog, VHDL, etc
\checkmark Habitually and publicly report specific tools that are and aren't up to the certified standards
\checkmark Encourage a single frameworks standard for the small EDA vendors to agree on to save on development costs
\checkmark Separate CFI's Ell conference from VIUF. Interoperability isn't a Verilog or VHDL issue-it's a universal problem, and as such should not have the appearance of partisanship in the Verilog/VHDL wars.
there's a limited market for this type of software, and somehow the R\&D money for next-generation tools has to come from customers.

For those who doubt my reasoning, look at the commodity PC-clone market compared with the old, big computer makers. Sure, the big computer makers were big, piggy, and financially greedy, but these were the places where a lot of hardware design concepts were conceived and developed. Scan, JTAG, the use of large ASICs, early FPGAs, and lots of EDA tools were financed by sales to companies like HP, DEC, IBM, Sun, Tandem, SGI, Intergraph, etc. Compared with the number of technological breakthroughs the Taiwanese PC-clone makers made in the hardware industry as a whole, you'll see where I'm coming from.

Please don't misunderstand: I'm not advocating ignoring the need for better interoperability among tools from different vendors, but as long as there's some viable workaround, you're not going to hear me complaining (much).

[^9]
LITTLE FOOT, Big Selection.

Try these specs on for size. Nothing fits your design for low on-resistance load switching, power conversion, and motor control like the original LITTLE FOOT ${ }^{\text {® }}$ power MOSFETs.

Lower on-resistance and more choice than ever.

Whether your system runs at 2.7, 3.3, 5 V , or more, there's a LITTLE FOOT product that can help it run cooler and more efficiently. You'll notice the difference Siliconix proprietary technologies make, like p-channel devices with a maximum $40-\mathrm{m} \Omega$ on-resistance even at 4.5 V !

Walk a mile in our shoes.
You can't beat experience when it comes to quality and service. We've shipped over 150 million devices in three years with less than 1 ppm AOO .
If the shoe fits, contact your local TEMIC sales office. Or call 1-800-554-5565, ext. 928, for more information.

Siliconix
a Memeror fuct Temic coup

DELICIOUS ATM, WITHOUT THE JITTERS.

Here's a wake-up call for anyone designing-in ATM functionality: the CY7B951 SST ${ }^{\text {mu }}$ (SONET Serial Transceiver) clock recovery chip from Cypress. With its minis-

Industry's Lowest Jitter cule jitter of just 10 ps , the SST is as close as you can get to guaranteed flawless performance in your ATM environment.

In fact, it is the only solution to support both major ATM application frequencies (51.8 OC-1 and $155.52 \mathrm{MHz} \mathrm{OC}-3$.

Thanks to its integrated transmit and receive phase lock loops, the SST lets you use a low-cost 19.44 MHz

oscillator. The SST also performs wonders for board space by eliminating the need for external filter components.

By using advanced BiCMOS technology, the SST consumes a miserly 50 mA , for power savings of up to 50% over competitive devices. And its loop-back testing capabilities enable in-system diagnostics.

So don't let the stringent jitter requirements of ATM get on your nerves. Start off your next design day with the SST from Cypress, the high-speed leader. It'll open your eyes. For your free sample certificate and design kit. Call 1-800-858-1810, Dept. C 413

[^0]: tional issue per month, by Cahners Publishing Company, A Division of Reed Publishing USA, 275 ' Washington Street, Newton, MA 02158-1630. Robert L. Krakoff, Chairman and Chief Executive Officer; Timothy C. O'Brien, Executive Vice President/Finance and Administration; Michael Wisner, Senior Vice President/General Manager, Boston Division; Michae Wisner, Vice President/Publishing Director. Circulation records are maintained at Cahners Publishing Company, 8773 South Ridgeline Blvd., Highlands Ranch, CO 80126-2329. Telephone (303) 470-4445. Second-class postage paid at PO Box 7500 , Highlands Ranch, CO $80126-7500$. EDN © copyright 1994 by Reed Publishing USA. Rates for nonqualified subscriptions, including all issues: US, $\$ 140.00$ one year, $\$ 238.00$ two year; Canada, $\$ 209.00$ one year, $\$ 355.00$ two year (includes 7% GST, GST\# 123397457); Mexico, $\$ 195.00$ one year, $\$ 332.00$ two year; Foreign sur face $\$ 245.00$ one year, $\$ 417.00$ two year; Foreign air expedited surcharge add $\$ 152.00$ one year, $\$ 304.00$ two year Except for special issues where price changes are indicated, single copies are available for $\$ 10.00$ US and $\$ 15.00$ for eign. Please address all subscription mail to EDN®, 8773 South Ridgeline Blvd., Highlands Ranch, CO 80126-2329. EDN is a registered trademark of Reed Properties Inc., used under license.
 (Printed in USA)

[^1]: © Wind River Systems, Inc. 1994. 1010 Atlantic Avenue, Alameda, CA 94501. WindView is a trademark and VxWorks is a registered trademark of Wind River Systems, Inc.

[^2]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delltron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

 Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland, FMG Electronics Italy, Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland, Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip. Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic
 ${ }^{\text {TM }}$ SPI and QSPI are trademarks of Motorola, Inc.

[^3]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delltron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

 Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland, FMG Electronics Italy, Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland, Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip. Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic

[^4]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delitron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

 Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland, FMG Electronics Italy, Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland, Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip. Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic
 *Contact factory for availability

[^5]: $6 \mathrm{AD} 420 \$ 10$ in 1000 s
 SPI is a registered trademark of Motorola Inc. MicroWire is a registered trademark of National Semiconductor Inc.

[^6]: Article Interest Quotient (Circle One)
 High 585 Medium 586 Low 587

[^7]: Modularity is the hallmark of the MVME1603/4 board designs. CPU, main memory, and peripherals are located on separate, interconnecting pc boards.

[^8]: PIIIER
 A MMEGGITT Co.
 903 Feehanville Drive Mt. Prospect, IL 60056 Telephone: 708/390-6680 Toll-Free: 800/323-6693 Facsimile: 708/390-9866

[^9]: John Cooley, an EDA consumer advocate and founder of the outlaw E-mail Synopsys Users Group (ESNUC), lives on the Holliston Poor Farm in Massachusetts. He raises sheep and is an EDA- and ASICdesign instructor and project-incrisis consultant. He can be reached at "icooley@world.std.com" or at (508) 429-4357.

