

July 7, 1994

TECHNOLOGY UpDATES

Low-power ASICs save board space and time to market pg 41

Isolated innovation marks movement toward miniature magnetics pg 59

DESIGN FEATURES

Break the performance bottlenecks in today's multiprocessor designs pg 113
To see spectrumanalysis detail fast, match sweep time to measurement pg 125

Weigh the benefits of fuzzy-logic vs classical control in a disk-drive spindle pg 137

Design Ideas
pg 93
How is DAC ' 94 like a Grateful Dead concert?
pg 201

Get Interactive!

LabWindows/CVI The Programming Power of C, the Development Ease of BASIC

Discover a new approach to C programming for instrumentation - the interactive approach. With LabWindows/CVI, you harness the power and flexibility of ANSI C through easy-to-use interactive code-generation tools. LabWindows/CVI is an ANSI C programming environment with GUI objects, instrumentation libraries, data analysis functions, and utilities specifically designed for data acquisition and instrument control systems.

Interactive Development

As an instrumentation system developer, you need quick results. With LabWindows/CVI function panels, you can interactively acquire data from plug-in boards, or control GPIB, VXI, and RS-232 instruments without writing a single line of code. Then, use function panels to generate code automatically and jump start your programming efforts.

C Programming Flexibility

LabWindows/CVI is more than just interactive tools to make programming easier. With LabWindows/CVI, you have the power and flexibility of ANSI C at your fingertips, so you can be assured that it is fast enough, powerful enough, and flexible enough to get your job done. Plus, the integrated LabWindows/CVI environment has the advanced editing, compiling, and debugging tools you expect. Combining the power of ANSI C with an interactive, BASIC-like development environment results in true programming productivity.

You don't have to sacrifice ease of use when you program in a standard language anymore.
(U.S. and Canada)

[^0]
When Time Is Money...

Call, write or fax for your FREE CATALOG today!
Rated \#1 for...

- Avathatility of Product!
- On-Time Delivent!
- Overall Performance!

Precision, extended record length and
$\left[\begin{array}{lll}T & D & 5 \\ 5\end{array}\right]$
[TDS 644 A$]$
NEW [TDS 310$]$ NEW [TDS +10] $2 \mathrm{Chan} / 150 \mathrm{MHz}$

The Scope of Choice. No Matter Which One You Choose.

It should come as no surprise that Tektronix sells more high performance oscilloscopes than all other companies combined. Because, across the board, the Tektronix TDS family delivers superior performance and usability at every price point. And superior price at every performance point. \square From the new $\$ 2,300$ TDS 310 to our $5 \mathrm{GS} / \mathrm{s} 1 \mathrm{GHz}$ TDS 684A, every TDS scope has the same highly intuitive graphical user interface. Learn one TDS scope and you've learned to use them all. So it's easy to move from scope to scope. And from project to project \quad Our exclusive NuColorm technology gives you the New TDS 684A: industry's best full-color display, for about the same price as competitive monochrome scopes. 4 channels of 1 GHz real-time acquisition, powerful triggering and advanced probing solutions.
 nearest Tektronix representative today. Or call 800-426-2200, ext 284. Make your next scope the scope of choice.

Tektronix

AMPTHESS 0.5 to 2000 W tz

High Power, up to +15 dBm Rugged, Plug-in Package ${ }_{\text {trom }} \$ 133_{(0,-2 \text { atas })}^{95}$

Both inside and out, the high level of performance you've been looking for in a broadband, plug-in amplifier is right here in Mini-Circuits value priced MAN series...featuring gain to 28 dB , reverse gain greater than 40 dB and power output as high as +15 dBm ! These unconditionally stable units are built incredibly tough to meet full MIL-specs and packaged in miniature $0.4 " \times 0.8 " \times 0.25$ " hermetically sealed metal casings. Inside,
the MAN amplifiers consist of 2 stages including coupling capacitors and can withstand operational temperatures from a frigid $-55^{\circ} \mathrm{C}$ to a scorching $+100^{\circ} \mathrm{C}$! MAN amplifiers are available from stock starting at the small price of just $\$ 13.95$. But, don't just read about this impressive list of features ...call Mini-Circuits and put the power of MAN amplifiers to work for you today!
Mini-Circuits...we're redefining what VALUE is all about!

P.O Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718)332-4661

LITTLE FOOT, Big Selection.

Try these specs on for size. Nothing fits your design for low on-resistance load switching, power conversion, and motor control like the original LITTLE FOOT ${ }^{\text {® }}$ power MOSFETs.

Lower on-resistance and more choice than ever.

Whether your system runs at $2.7,3.3,5 \mathrm{~V}$, or more, there's a LITTLE FOOT product that can help it run cooler and more efficiently. You'll notice the difference Siliconix proprietary technologies make, like p-channel devices with a maximum 40-m Ω on-resistance even at 4.5 V !

Walk a mile in our shoes.
You can't beat experience when it comes to quality and service. We've shipped over 150 million devices in three years with less than 1 ppm AOQ .
If the shoe fits, contact your local TEMIC sales office. Or call 1-800-554-5565, ext. 928, for more information.

Siliconix

[^1]

On the cover: With the advent of process technologies that can integrate virtually everything but the load itself, the capabilities of ICs for power actuation and switching seems almost limitless. See our Special Report, beginning on pg 68. (Photo courtesy International Rectifier; concept and computer graphics, Jon Walker, The Dartford Group)

July 7, 1994
THE DESIGN MAGAZINE OF THE ELECTRONICS INDUSTRY

SPECIAL REPORT
Power ICs: weighing the benefits of integration
The business of power ICs is full of stories of technological achievements, but market success of highly complex ICs has not come so easily.-Anne Watson Swager, Technical Editor

Break the performance bottlenecks in today's multiprocessor designs

Desice Features

Operating-system and device-driver software for symmetric multiprocessing hardware make interrupt distribution the least important hardware-design consideration. You achieve better performance by developing an efficient bus protocol.-Brian Bennett, AST Research

To see spectrum-analysis detail fast, match sweep time to measurement

In spectrum analysis, slower sweep speeds provide improved detail. -Morris Engelson, Tektronix Inc

Weigh the benefits of fuzzy-logic vs classical control in a disk-drive spindle

You can apply fuzzy- and classical-control techniques to any servocontrol loop. Which technique you use depends heavily on the nonlinearities in a system.-Brian P Tremaine, Seagate Technology

Design ldeas

Biasing corrects position-sensing photodiode 93
Clean switcher powers 16-bit A/D converters 93
DMM measures frequency 94
Single resistor betters inexpensive buffer 96
12-bit converter upgrades μ C's ADC 96
Sawtooth generator spans a 70-dB range 98
10 -octave audio generator speeds tests 100
Envelope tracker quells jitter 102
IC diodes help deduce junction temperature 102
Low-power interrupt updates real-time clock 106
Continued on page 7

[^2]
What IsThe \#1 Reason To Choose Us For Optoelectronics?

\#1
In Surface Mount Performance And Selection. We offer an unbeatable variety of surface mount products, including TOP-LED"s, SIDE-LED"'s and BOTTOM-LED"'s, as well as our unique MULTI-LED's which let you electrically change the display color. All feature an industry-standard footprint, SMT soldering compatibility, and pick-and-place ease of handling. Call and ask for Lit. SKU \#OPTOO9.
CIRCLE NO. 131

\#1

Linear Optocoupler.
Our commitment to R\&D has resulted in innovations like the IL300 family,
 as well as SIDE-LED ${ }^{\text {m }}$ right-angle SMT emitters and detectors for office automation and consumer applications. Call and ask for Lit. SKU \#ОРТ007.
CIRCLE NO. 133

You Decide.

From simple standard designs to complex custom applications, the most advanced Optoelectronics solutions begin with Siemens.
We've become one of the world's largest suppliers of optoelectronics by helping our customers develop the right product, then get their

\#1

Provider Of The Industry's Highest Board Density Optocouplers.
Nobody offers more innovative optocouplers than
 Siemens. We're first in DIP packages for Dual and Quads. First in SO-8 packages for single, dual and PCMCIA-compatible packages. And the first with a 2 -channel (dual) surface mount in one package (SO-8), which doubles your board density and saves significant board space. Call and ask for Lit. SKU \#OPTOO7.
CIRCLE NO. 132

MOST

Flexible Optoelectronics Solutions In The World.
Our Application Specific Intelligent Displays ${ }^{\oplus}$ let you create your own semicustom display. And we'll deliver
 it in about 14 weeks, for about what you'd pay for a standard part. One example is our SCDV 554X, the first multicharacter 5×5 dot matrix vertical format display. Call and ask for Lit. SKU \#OPT005.
CIRCLE NO. 134

Announcing Our Latest Reason.

\#1
 In Custom Design Flexibility And Affordability.

If your application calls for a unique product design or specific performance requirements, Siemens Custom Optoelectronics Products offers the Custom Engineering Support, Packaging Capabilities and Hybrid Module Expertise to help you develop exactly the right part for the job.
Our engineers are experts in evaluating customer requirements and proposing solutions which can reduce the size and costs of your designs. We can even fabricate products from a variety of hybrid modules, for unequaled flexibility in your design. And we back all our products with on-site field support for added convenience and security. Call and ask for Lit. SKU \#OPT008.
CIRCLE NO. 135

Phone (617) 558-plus 4-digit extension below To send a message to an EDN editor via Internet, add "@MCIMAIL.COM" to the MCI address.

Publisher

Jeffrey Patterson -4454

Editor-in-Chief

Steven H Leibson -4214
Managing Editor
Joan Morrow Lynch -4215
Gary Legg, Senior Technical Editor-4404
Charles Small, Senior Technical Editor-4556 MCI: EDNSMALL
Dan Strassberg, Senior Technical Editor-4205 $\mathrm{MCI}:$ EDNSTRASSBERG
John A Gallant, Technical Editor-4666
Frances T Granville, Senior Associate Editor-4344
James P Leonard, Senior Associate Editor -4324
Anne Coyle, Associate Editor-4333
Gillian A Caulfield,
Manager of Editorial and Art Production -4263
Patricia Shaughnessy, Production Editor -4206
Ken Racicot, Senior Art Director - 4708
Chinsoo Chung, Associate Art Director -4446
Brian Kerridge, Senior Technical Editor
22 Mill Rd, Loddon
Norwich, NR14 6DR, UK
(508) 528435; fax (508) 528430

MCI: EDNKERRIDGE
Doug Conner, Technical Editor
Atascadero, CA: (805) 461-9669
fax: (805) 461-9640; MCI: EDNDCONNER
Markus Levy, Technical Editor
Citrus Heights, CA: (916) 725-4485
MCI: EDNLEVY
Richard A Quinnell, Technical Editor
Aptos, CA: (408) 685-8028
MCI: EDNQUINNELL
David Shear, Technical Editor
Corvallis, OR: (503) 754-9310
MCI: EDNSHEAR
Anne Watson Swager, Technical Editor
Wynnewood, PA: (215) 645-0544
MCI: EDNSWAGER
EDN Asia, Mike Markowitz, Editor
Cahners Asia Ltd
19th Floor, Centre Point
181-185 Ǵloucester Rd, Wanchai, Hong Kong
Phone (852) 838-2666; fax (852) 575-1690
Contributing Technical Editors
Robert Pease, Don Powers, Bill Travis,
Jack Ganssle, David Brubaker

Assistant to Editor-in-Chief

Kathy Leonard -4405
Editorial Services
Helen Benedict, Senior Secretary-4681
Marketing \& Business Director
Deborah Virtue - 4779

Marketing Communications

Jean Graham, Promotion Specialist-4698
Director of Creative Services
Norm Graf, -4293

Production

Andrew Jantz, Group Manager -4372
Karen Banks, Production Manager -4441
Alice Dorsey, Production Associate -4601

EDN Products

301 Gibraltar Dr, Box 650
Morris Plains, N 07950
Phone (201) 292-5100; fax (201) 292-0783

Group Publisher

Terry McCoy, Jr

Associate Publisher

Steven P Wirth, (201) 292-5100, ext 380
Editorial Director
Richard Cunningham, (702) 648-2470
Editor-in-Chief
Bruce Benneft, (201) 292-5100, ext 390
Managing Editor
Jen Brinkman, (201) 292-5100, ext 330
Production Manager
Sheila Rodgers, (201) 292-5100, ext 287
Customer Service Manager
Tara Poli, (201) 292-5100, ext 318
Design Director, John M Angelini
Art Director, Beverly Blake

July 7, 1994
Continued from page 5

Low-power ASICs save board space and time to market

The relentless demand for low power has driven vendors to offer ASICs with reduced power consumption. Some of these devices have such large densities that even a full-blown version must offer thermal management.-John Gallant, Technical Editor

Surface-mount power magnetics: Isolated innovation marks movement toward miniature magnetics

Hampered by fundamental physical limits and manufacturing constraints, the magnetics industry is slowly joining the trend toward surface-mount designs. Standardization, however, remains a distant dream.-Richard A Quinnell, Technical Editor

EDITORIAL

Don't take it any more-act!
Griping and whining don't solve problems. Actions do.
-Steven H Leibson, Editor-in-Chief

Columist

DAC '94 and the Grateful Dead

The picks and the pans of the Design Automation Conference. -John Cooley, EDA consumer advocate

New Products

Computers \& Peripherals 151
Electronic Design Automation 156
Test \& Measurement 162
Integrated Circuits 174
Power Sources 180
Departments
News Breaks 13
Signals \& Noise 27
Literature 185
Career Opportunities 195
Business Staff 196
EDN's International Advertisers Index 198

Squeeze the most out of your design cycle.

You know time is money. And at Texas Instruments, we can help you speed your product to market. Meaning you are free to do what you do best - create the next breakthrough products.

Be first to market with leading-edge

designs. From notebooks and PDAs to wireless communications and multimedia, you can harness the power of TI's DSP solutions, low-power 486 microprocessors and mixed-signal devices to design unique products fast. Our industry-leading TMS320 DSP family offers a road map with the flexibility of software-programmable solutions that can migrate into highly integrated, custom DSPs that deliver cost-effective high performance. And compatible logic families and memory devices also help you move your designs easily from 5 V to 3 V .

Technical support that gets you up to speed, fast. Move quickly from selection to prototype with clear, concise technical information and real-world application notes. And C compilers, emulators, development tools, behavioral models and SPICE rules can help you create DSP solutions in record time.

Setting the benchmark: A 94\% on-time delivery record. At TI, we deliver what we promise. So you won't be left waiting for your ICs to arrive. In fact, in an expanding market, we set an industry benchmark by having a 94% on-time-to-commitdate delivery record.

Win the race to market. Getting to market faster with a better product. That's what business is all about. And with TI, you'll find a unique blend of silicon, support and service. We call it Total Integration. ${ }^{\text {TM }}$ You'll call it your competitive edge. To find out more and receive a free subscription to Integration, simply call 1-800-477-8924, ext. 3922.
EXTENDING YOUR REAC H"

Avoid future shocks Avere

WE PUT IT ALL TOGETHER

SAVE MONEY \& SPACE - NO EXTRA PARTS TO ASSEMBLE

AC input with power factor correction available.
For complete brochure or applications assistance please call Toll Free 1-800-421-8181 (in CA 805/484-4221)

ARNOLD
 MAGNETICS

Data-acquisition board houses eight delta-sigma ADCs

Delta-sigma ADC technology results in admirably low noise, good immunity from aliasing, and exceptional differential lin-earity-traits that data-acquisition designers seek avidly. But unlike successive-approximation ADCs, which have dominated data acquisition for two decades, delta-sigma converters don't lend themselves to multiplexed operation. When you use deltasigma ADCs, unless you can tolerate very low conversion rates, you need an ADC for each channel. On the other hand, even though their outputs correspond to voltages that appeared at their analog inputs milliseconds earlier, delta-sigma ADCs can track signals that change quite rapidly: Units are available that convert audio-bandwidth signals with 16 -bit resolution.

Now, Data Translation has introduced an ISA bus board, the DT3818, that contains eight delta-sigma ADCs driven from a common clock, which you can set to over 10,000 frequencies. The ADCs and everything else on the board run under the control of a Texas Instruments (TI) TMS320C40 DSP. Each ADC can make 1000 to 52,00016 -bit conversions/sec. Inherent in the delta-sigma architecture is a "brick-wall" filter whose passband and stopband track the conversion rate. At 48,000 conversions/sec, the ADCs' $-3-\mathrm{dB}$ frequency is 24 kHz ; noise and artifacts above 26 kHz are attenuated by at least 80 dB . The phase shift through the ADCs matches within $\pm 0.1^{\circ}$.

Each channel's full-scale range is $\pm 10 \mathrm{~V}$. The inputs are differential with an input impedance of $100 \mathrm{M} \Omega$ in parallel with 100 pF and a CMRR of more than 80 dB . Also on the board are two 16 -bit delta-sigma DACs, 24 digital I/O lines, three

Eight delta-sigma ADCs under the control of a C40 DSP give Data Translation's DT3818 data-acquisition board, a member of the company's Fulcrum series, exceptionally low noise and excellent differential linearity.
counter timers, and channel-gain-list hardware. The DT3818 costs $\$ 4995$. The DT3814, which contains two delta sigma ADCs and no DACs but is otherwise identical, costs $\$ 1995$. The DSP Lab developers kit, which includes Spectron Microsystems' Spox V1.4 DSP operating system, TI's DSP development tools, diagnostic routines, and sample programs with source code, costs $\$ 2995$ ($\$ 1995$ without the TI compiler).
-by Dan Strassberg
Data Translation Inc, Marlboro, MA, (508) 481-3700.
Circle No. 548

3V RS-232CIC architecture reduces supply current

To provide both low power and $\pm 5 \mathrm{~V}$ RS232 C performance from a 3 V supply, Maxim Integrated Products' MAX3241 uses a proprietary low-dropout output stage that comprises a voltage doubler instead of a more power-hungry voltage tripler. The IC's maximum supply current of 1 mA is 20 times less than that of ICs based on voltage triplers. In addition to its lower supply current, the three drivers/five receivers serial port requires only four small, inexpensive $0.1-\mu \mathrm{F}$ external capacitors, and the company guarantees the device to run at data rates up to 120 kbps while maintaining $\pm 5 \mathrm{~V}$ RS- 232 C output levels.

The company uses voltage doublers in its standard 5V RS-232C products, but 3 V operation requires a different output stage. To use the lower power
voltage doubler, designers came up with a patent-pending low-dropout stage that enables the doubler to operate from a 3 V supply. The voltage drop from the output of the doubler to the output of the transmitters is only about 50 mV . The new output stage also improved signal skews, allowing operation at data rates far above the guaranteed $120-\mathrm{kbps}$ data rate.

The IC has two extra outputs for the fourth and fifth receivers that are active in the shutdown mode but that draw only $1 \mu \mathrm{~A}$ of current when transmitting. You can use these extra receivers to monitor external devices, such as a modem, without forwardbiasing the protection diodes in circuitry that's disconnected from $V_{C C}$.

The MAX3241 operates with input voltages from 3 to 5.5 V and comes in 28 pin SSOPs and SOICs (\$3.16). Future ICs that will use the doubling architecture include the 3232 and 3222 ($\$ 1.85$ each), which have two drivers and two
receivers. The 3222 also has two active receivers in shutdown. Another future device, the 3242 ($\$ 3.16$), has the same number of drivers and receivers as the 3241 but requires $1-\mu \mathrm{F}$ capacitors and has a lower maximum supply current of $500 \mu \mathrm{~A}$.-by Anne Watson Swager

Maxim Integrated Products, Sunnyvale, CA, (408) 737-7600. Circle No. 549

Power switchers fit in 3 -pin packages

In just 3-pin TO-220 or D-pack powertransistor packages, Power Integrations' TOPSwitch family implements all the functions for a switching power supply. For off-line flyback, forward, and boost-PFC power-supply applications, the ICs combine a high-voltage N-channel MOSFET with a voltagemode switching power-supply controller. These generic PWM power switches offer a duty cycle proportion-
al to the inverse of the control pin's current. In addition to PWM, the devices incorporate the following functions to drive and control the power stage: a high-voltage bias-current source, a bias-shunt regulator/error amplifier, an oscillator, a bandgap reference, a controlled turn-on gate driver, and selfprotection circuits. Controlled MOSFET turn-on and the source-connected thermal tab minimize EMI and filter cost.

To fit all of these functions into one package, the company designed four patented circuits: a temperature-compensated trimmable current source for the oscillator; a circuit that derives the start-up bias current from the drain pin to avoid having to make a separate connection to the rectified line input; the use of the MOSFET's on-resistance as the sense resistor for the current-limit function; and a circuit that combines the feedback-input, compensation, and bias-supply pins.

The resultant design provides the control pin with seven functions: a biassupply current input; an internal-supply bypass pin to provide the instantaneous peak currents for the gate drive; a feedback-signal input; compensation node; a 5.7 V voltage-reference output; an externally triggered shutdown/reset pin; and an auto-restart time-capacitor node (the same capacitor as the one for compensation). The first milliamp into the control pin provides the supply current necessary to run the IC continuously. Any additional current becomes the feedback current for duty-cycle control. Between 1.2 and 2.5 mA , the duty cycle stays at the maximum value of 70% and then decreases linearly to the minimum of approximately 1.5% at 6.5 mA .

The 10-part family comprises five PWR-TOP10X devices with breakdown voltages of 350 V (for $100 / 110 \mathrm{~V}-\mathrm{ac}$ off-line operation) and 2 to $10 \Omega \mathrm{R}_{\mathrm{DS}(O N)}$. The other five PWR-TOP20X devices have breakdown voltages of 700 V (for 85 to 265 V -ac off-line operation) and 3 to $18 \Omega \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$. Some of each group of five are available now, and the others will be available in August. Prices range from $\$ 1(10,000)$ for the TOP100 to $\$ 1.92$ for the TOP204.
-by Anne Watson Swager
Power Integrations, Mountain View, CA, (415) 960-3572.

Circle No. 550

First-year Drexel University engineering students learn how to measure input impedance using an oscilloscope and function generator from HP.

Hewlett-Packard Co has installed 150 of its test-and-measurement instruments in Drexel University's engineering labs. Drexel (Philadelphia) will use the equipment to teach students realworld problem-solving skills. Part of the project comes from a 5-year, $\$ 2.1$ million grant from the Engineering and Science Education Directorate of the National Science Foundation. The directorate designated Drexel the lead project in a 10 -institution, $\$ 4.5$-million effort to improve undergraduate engineering education in the United States.

With the equipment, Drexel created 30 lab stations. Each station includes a computer, an HP 54600A digitizing oscilloscope with an FFT module, an HP 33120A function generator, an HP 34401A 61⁄2-digit multimeter, and an HP 53131A universal counter.
-by Fran Granville
Hewlett-Packard Co, Palo Alto, CA, (800) 452-4844.

Circle No. 551

DC/DC converter topology quiets output

Boosting single-cell voltages to 3 or 5 V is one design challenge, but providing a quality, regulated output is another. To
meet both, Micro Linear's ML4890 combines a high-efficiency (85\%) switching boost circuit with a lowdropout linear regulator. The switching circuit raises the low input to an intermediate voltage that activates the linear regulator, which lowers and smoothes the output. The result is a converter that boosts a battery voltage as low as 0.9 V to $5,3.3$, or 3 V with output ripple of 2 mV p-p. A 2 to 5.5 V adjustable version is also available.

Placing the low-dropout regulator on the same IC as the switching regulator allows the device to use a patent-pending feedback technique that maintains a minimal voltage across the lowdropout regulator's pass transistor. This technique produces high efficiency over a wide range of load demands and allows for maximum ripple rejection over the operational frequency of the switcher.

The ML4890 delivers up to 100 mA and holds its output to within 5% of the desired voltage. Maximum quiescent and shutdown current are 100 and 8 $\mu \mathrm{A}$, respectively. The device requires three external components-one inductor and two capacitors. Samples are available now; production quantities will be available in September. In 8-pin SOICs, the converter costs $\$ 2.95$ (1000).-by Anne Watson Swager

Micro Linear Corp, San Jose, CA, (408) 433-5200.

Circle No. 552

ATM terminalcontroller ICs handle 25 to 155 Mbps

Fujitsu Microelectronics has introduced terminal-controller ICs to suit asynchronous-transfer-mode (ATM) network-interface cards for PCs, highend workstations, and server applications.

The ITC- 25 controller IC targets 25 Mbps PC add-in cards, and the ITC$51 / 155$ suits high-bandwidth applications using $155-\mathrm{Mbps}$ synchronous-optical-network (SONET) STS-3c and synchronous-digital-hierarchy (SDH) STM-1, and $51-\mathrm{Mbps}$ SONET STS-1 interfaces.

Both ICs provide as many as 4096 user-definable virtual channels, on-chip support for ATM adaptation layer 5, and 64 levels of traffic shaping covering

Optimize for Peak Performance!

When making the ascent to a finely-tuned circuit design, you need something better than trial-and-error methods. To design for peak performance, you need Paragon!

Paragon optimizes the performance of analog designs while providing you with complete control over performance goals and constraints. Part of the Design Center family of products, Paragon iteratively simulates your schematic-based circuit design using PSpice or PSpice A/D. Design parameter values are adjusted until the solution is found that best meets your specified goals subject to the constraints.

Unlike most analog circuit optimizers, Paragon implements both unconstrained and constrained minimization algorithms. In fact,

Paragon is the only analog optimizer in the industry that can tackle nonlinear constraint problems! Efficient algorithms mean fewer simulations are required to obtain results.

Featuring a highly interactive user interface, Paragon provides you with immediate graphical feedback so that you can quickly observe circuit performance and investigate tradeoffs between different design parameter values, goals, and constraints. Whether you choose to use Paragon to automatically optimize your circuit design or to manually explore design tradeoffs, you're assured of the most technically sophisticated, easy-to-use, and affordable analog optimizer available on the market today for PC and Sun platforms! Please call for more information.

MicroSim Corporation

The Desktop EDA Company

[^3]peak and sustainable cell rates. In addition, both ICs include interfaces to serial EEPROM for configuration storage, and to EPROM or flash memory for diskless workstations and remote downloading.

A key architectural feature of both controllers is the decoupling of bus and network activity. Local buffer memo-ry-DRAM for the ITC-25 and SRAM for the ITC-51/155-achieves this decoupling, and each chip includes an appropriate interface.

The ITC-25 features physical-level framing compatible with IBM's 25.5Mbps PHY specification, and a multiplexed ISA/PCMCIA-compliant 8/16bit slave interface. The ITC-51/155 version incorporates a PCI-compliant 32-bit master/slave interface.

The company expects prices to be less than $\$ 30(10,000)$ for the ITC- 25 and less than $\$ 60$ for the ITC-51/155. Samples are due in September.

Fujitsu has also announced plans for a range of transceiver ICs (MB580/2/3) that will interface directly with these communication controllers and with the company's network-termination controllers. Samples are due in the fourth quarter.-by Brian Kerridge

Fujitsu Microelectronics, Maidenhead, UK, (628) 76100. Circle No. 553

IEEE P1394 working group selects Inmos technology

The IEEE P1394 working group for a serial-bus interface standard has adopted the Inmos DS-Link bit-level encoding mechanism. (Inmos is a member of the SGS-Thomson Microelectronics group.) The serial bus supports isochronous real-time transmission of data required by multimedia applications. The DS-Link serial technology operates at 100 to 200 Mbps and allows the encoding of clock and data signals to provide a high skew tolerance and reliable asynchronous transmission. DS-Links also allows you to multiplex any number of software, or virtual, channels between any number of devices.

SGS-Thomson Microelectronics, Lincoln, MA, (617) 259-0300.

Circle No. 554

AT\&T rings up first DSP chip with built-in flash

Flash memory translates into quick code updates, which is the intention behind AT\&T's FlashDSP 1616. This device has replaced the DSP1616-x30's 12 k -word ROM with the equivalent amount of flash memory. Systemdesign prototyping time can be reduced considerably, because instead of waiting eight weeks for AT\&T to turn the ROM version, the flash memory can be updated in seconds.

From a technology standpoint, the difficulty of integrating flash memory into a DSP chip is related to being able to obtain an access time fast enough to keep up with the DSP engine. When designing a flash-memory cell, tradeoffs can be made between high-performance reads or writes. AT\&T opted to tweak the cell's design to obtain 10 nsec access times, which is adequately fast to feed the DSP.

For $\$ 20,000$, AT\&T supplies a hard-ware-development system, a demo board, software tools, and three FlashDSP 1616 devices. The software tools include the algorithms you'll need to program and erase the on-chip flash memory. To modify the flash memory, the chip's IEEE-standardized JTAG port delivers the actual commands.
—by Markus Levy
AT\&T Microelectronics Customer Response Center, Allentown, PA, (800) 372-2447, fax (610) 778-4106.

Circle No. 555

Flash gets smart via voltage requirements

Using $0.6-\mu \mathrm{m}$ technology, Intel's new flash-memory device provides system designers with flexibility to choose a variety of supply voltages. The $16-\mathrm{Mbit}$ 28F016SV (SV signifies SmartVoltage technology) dynamically adapts to 5 or 12 V for program and erase operations and 3.3 or 5 V for reads.

Special input-voltage-sensing circuitry for both $V_{C C}$ and $V_{P P}$ detects the system supply and internally switches the device's voltage source. Although the 28 F 016 SV still maintains a separate program/erase voltage pin, the
device can operate from a single 5 V supply. In this mode, similar to all sin-gle-supply flash devices, the 28 F 016 SV utilizes an on-chip charge pump. The system designer has the option of providing 12 V on this pin, essentially doubling program and erase performance. The separate pin provides additional merit for data security, which prevents accidental erase or program. This gives the system control for switching off the supply, either 5 or 12 V , when not performing program or erase operations.

To accommodate low-power systems, the device performs $120-\mathrm{nsec}$ reads at 3.3 V . However, if faster reads are a priority, the 28 F 016 SV can perform 5 V reads at 70 nsec . The 56 -lead TSOP chip costs $\$ 69(10,000)$.-by Markus Levy
Intel Corp, Santa Clara, CA, (800) 4688118.

Circle No. 556

PCI bus controller chip makes debut

Designers trying to create add-in cards for the PCI local bus can now use a sin-gle-chip, general-purpose PCI bus interface controller. The chip, the S5933, is the first in a planned family of such devices from Applied Micro Circuits Corp. Future family members will have interface options that reduce the 160-pin package size of the parent part.

The device provides bus-master or -slave operation and passes data to and from the PCI bus in three ways. It offers a pass-through mode that allows direct access to the bus and peripheral hardware resources. Data can also pass through 32 -byte FIFO buffers, allowing burst transfers. The third option allows the use of mailboxes for exchanging information such as status and control commands.

To provide a user's device ID and BIOS memory, the device offers two interfaces to nonvolatile memory. One interface is a byte-wide port for flash or ROM, and the other is a serial port for EEPROM. The chip allows the use of serial devices as large as 2048 bytes; bytewide devices can be as large as 64 kbytes.
Samples of the S5933 will be available in July, and production is scheduled for late in the year. The part costs $\$ 39.95$ (1000).-by Richard A Quinnell

Applied Micro Circuits Corp, San Diego, CA, (800) 755-2622. Circle No. 557

THE LEADER IN PRECISION OP AMPS IS ALSO THE LAADER IN SINGLE-SUPPLY OP AMPS. (NOW YOU KNOW WHO TO CAL.)

I
f you're looking for a singlesupply op amp, it makes sense to check Analog Devices first.

Not only do we offer
petitor - we also offer the
best performance in
every category.
moon amps....Mope Chooces
So finding the exact single-supply
amp you need has never been easier.
Choose from low power amps
with rail-to-rail I/O. Precision
amps with the lowest noise and
drift. High-speed amps featuring 5 MHz

SINGLE-SUPPLY AMPLIFIER GUIDE (A Paftial listing)															
Part Number				3 V	5 V	12 V	$\pm 15 \mathrm{~V}$	Rail-to-Rail		$\begin{array}{\|l\|} \hline \text { Vos } \\ \hline(\mu V) \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { e noise } \\ \hline(\mathrm{nV} / / \mathrm{Hz}) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 1 Out } \\ \hline(\mathrm{mA}) \\ \hline \end{array}$	$\frac{1 \text { Sup }}{(\mathrm{mA})}$	$\begin{array}{\|c\|} \hline \text { GBP } \\ \hline(\mathrm{MHz}) \\ \hline \end{array}$	Key Feature
	Single	Dual	Quad					Input	Output						
OP	113	213	413		-	-	-			75	4.7	± 40	1.75	3.4	Lowest noise and drift
OP	183	283		-	-	-	-			1000	10	± 25	1.5	5	5 MHz from +3 to +36 V
OP	90	290	490	1.6	-	-	-			150	60	+13/-7	0.015	0.02	Precision micro power
OP		291	491		-	-		-	-	700	21	± 10	0.35	3	Low power R-R I/O
OP		292	492		-	-	-			800	15	± 8	1.4	4.5	Low cost
OP		295	495	-	-	-	-		-	300	45	± 18	0.15	0.075	Accuracy and output drive
AD	820	822		-	-	-	-		-	400	16	± 30	0.8	1.9	FET Input
SSI		2135			-	-	-			1000	4.7	± 40	1.75	3.5	Excellent for audio
					-	-	-			150	25	± 15	0.7	0.3	Easy-to-use +5V inst. amp
AD				-	-	-		$>$		250	250	15	0.23	0.1	Low cost diff. amp

from +3 to +36 V . General-purpose, low cost amps. Amps with FET input. And many more are on the way.

CALL FOR A FREE SAMPLE

Why settle for anything less than the specifications you want. Just match your requirements to the amplifier specs in our handy guide. Then call 1-800-ANALOG -D (262-5643), and we'll rush you a free sample and data sheet. Or fax your request to

617-821-4273.
CIRCLE NO. 93

Analog. Digital. Solutions.

Zuken and Racal-Redac merge

Zuken, a major Asian supplier of pcboard, multichip modules (MCM), and CAD/CAM tools, has acquired RacalRedac, a major European supplier of pc-board and MCM-design software. According to the new company, the merger will have a combined annual sales of $\$ 150$ million, making the company the world leader in pc-board and MCM-design tools. Outside Japan, the company will operate under the name Zuken-Redac.-by Doug Conner

Zuken-Redac, Mahwah, NJ, (201) 934-8700.

Circle No. 558

Teledyne Brown to demonstrate laserdiode correctors

Teledyne Brown Engineering will demonstrate its laser-diode corrector assemblies at the Optical Engineering Instrumentation show on July 24 through 29 in San Diego.

The laser-diode-beam corrector captures 85% of the diode output and converts it into a $0.7-\mathrm{mm}$-diameter circular beam with diffraction-limited performance. With these correctors, laserdiode performance exceeds that of helium neon lasers in a more compact and economical package, according to the company. In addition, laser diodes use 20 to 30 times less power than helium neon lasers. Applications for the laser diodes include point-of-sale and inven-tory-control scanners, laser-disk read-and-write subsystems, fiber optics, and traditional optical-metrology func-tions.-by Fran Granville

Teledyne Brown, Huntsville, AL, (800) 933-2091, ext 2402. Circle No. 559

Report analyzes powerdistribution trends

The Darnell Group market-research company has published Trends in Power Distribution, a report quantifying market sizes and product needs for the distributed-power-architecture market. The $120-\mathrm{pg}, \$ 2500$ publication includes 60 tables and 30 graphs. It
provides 5-year growth estimates for high-density de/dc converters, power-factor-corrected ac/dc front ends, and other types of power electronics for building a distributed-power architecture. The report also quantifies the use of central, in-shelf, per-function, and on-board power distribution.
-by Fran Granville
The Darnell Group, Norco, CA, (909) 279-6684.

Circle No. 560

California begins trial of Racom's contactless smart cards

Three California cities-Gardena, Los Angeles, and Torrance-have begun field tests of an automatic-farecollection system on public buses. The trials are using contactless smart cards from Racom Systems Inc. The cards, called In-Charge cards, automatically debit bus fares while a user boards a bus; the user simply waves the card in front of the fare-collection terminal.

The credit-card-sized, batteryless cards act as 2 -way radios that respond to commands from the bus-fare-collection system. The test will later involve automatic vehicle location, transfer and receipt printing, voice annunciation of stops, and passenger data collection. The system will ultimately be able to monitor vehicle performance, videotape security problems, and integrate onboard electronics.
-by Fran Granville
Racom Systems Inc, Englewood, CO, (303) 771-2077.

Circle No. 561

GenRad spin off specializes in designautomation products

GenRad Inc recently spun off a designautomation products group called Veda design automation (VEDA). The new company, based in Fareham, UK, will focus on providing high-performance VHDL simulation to the electronic-design-automation market. VEDA's strategic focus will include concentrating on the supply of VHDL design and simulation products for topdown electronics system design. VEDA will also address system behavior and ASIC and pc-board design. VEDA
launched its Vital VHDL simulator in January.-by Anne Coyle

Veda Design Automation, Fareham, UK, +44 (0329) 822240. Circle No. 562

Natural MicroSystems forms global group

Natural MicroSystems has formed a not-for-profit entity called the Global Organization for Multi-Vendor Integration Protocol Inc (GO-MVIP). MVIP vendors include Brooktrout, Lindon, Mitel, Natural MicroSystems, Rhetorex, and Scott Instruments. Aculab Ltd sponsored the group's first conference in London on March 24. The group's goal is to provide a "single, local venue at which to meet and exchange ideas and information," according to Alan Pound of Aculab. The companies are making plans for a fourth annual developers' conference, which will take place on October 18 through 20 in Toronto. -by Fran Granville

Natural MicroSystems, Natick, MA, (508) 650-1365.

Circle No. 563

Video-game chip employs system-on-achip technology

Sony Computer Entertainment recently unveiled a CPU chip that will power the company's CD-based home videogame station, the PlayStation. Sony plans to introduce the PlayStation system in 1995. LSI Logic Corp, which uses $0.5-\mu \mathrm{m}$ technology to develop sys-tems-on-a-chip for customers, developed the PlayStation CPU. The chip contains a 32 -bit Mips RISC $\mu \mathrm{P}$, 3D geometric graphics, and high-resolution video from its JPEG decompression subsystem.
The chip generates 3D images as fast as 360,000 polygons $/ \mathrm{sec}$ and moves as many as 40002 D images in a field. The result is high-speed simultaneous movement of characters and high-quality backgrounds generated at 60 fields/sec, which is equivalent to TV transmission. LSI Logic has also employed system-on-chip technology to develop a laser-printer controlller and an asynchronous-transfer-mode chip.
-by John Gallant
LSI Logic Corp, Milpitas, CA, (408) 433-8000.

Circle No. 564

With TI and 1394, a single, real-time I/O is close at hand.

An unprecedented universal I/O solution connects portables, desktops, peripherals and consumer devices as never before. It's the proposed IEEE 1394 High-Performance Serial Bus. And it offers real-time data transfer for multimedia capabilities via low-cost interface. In fact, Byte magazine named 1394 "the most significant new technology" of the fall COMDEX '93 show.

Now available, the first fully compliant 1394 chipset from TI.

We're providing breakthrough silicon in this emerging interface standard. And we are the first to offer a physical-layer chip (TSB11C01) and a link-layer chip (TSB12C01). Combined, they give you a full-chipset solution.

1394 Serial Bus Features

- Real-time data transfer for video and audio applications
- $100 \mathrm{Mbits} / \mathrm{s}$ data rates today; 200 and $400 \mathrm{Mbits} / \mathrm{s}$ in future
- Live insertion and "plug and play" ability
- Branch and daisy-chain support
- No need for active termination
- Allows for bandwidth allocation
- Single connector for all applications - Compliant with proposed 1394 standard Fewer ports, faster data rates. This leading-edge technology allows you to eliminate current I/O solutions such as SCSI, IDE and RS-232. With TI's complete 1394 chipset, you have the capability of designing in one common interface for all applications, such as HDD and CD-ROM, digital cameras and printers.

Inventing the future: You, Texas Instruments and 1394. New possibilities are what the 1394 standard is all about. For complete information, simply return the reply card or call 1-800-477-8924, ext. 3474.

EXTENDING YOUR REACH WITH TOTALINTEGRATIONN

When it comes to

At Toshiba, we've sold more memory products than anyone else in the world.

Anyone.
An achievement we're justifiably proud of.
And why no matter where you look, you'll find our DRAM, SRAM, Non-Volatile products and Memory Cards in more places than anyone else.

16 Mb MROM

$2 M b$ VRAM

Naturally, we're in all types of computers, from PCs to workstations, minis to mainframes, Personal Digital Assistants to supercomputers.

But our influence extends much further.
To laser, dot matrix and color thermal printers.

National Semiconductor, Samsung and others, we're helping take technology to places never before dreamed possible - while standardizing it for everyone's use.

All of which translates into more than just the indus-
 technological innovation and product quality. Reliable alternate sourcing. And the kind of customer service, financial strength and overall stability you'd expect from one of the world's largest corporations.

That's why companies the world over depend
memory, we're in all the right places.
on Toshiba for memory. And why they've put us in the most important place of all - first.

Modems and digital switches. Handheld instruments. Consumer products like mobile phones, faxes and copiers. Even automobiles and electric vehicles.

And thanks to strategic partnerships with companies like IBM, Motorola, Siemens, Rambus,

For more information, or a free product guide, just call 1-800-879-4963.

Then follow the lead of systems manufacturers worldwide.

And commit our name to memory.

You're designing a Pentium- or Power PC-based system and you know it needs synchronous SRAM cache to generate the performance it ought to have.

But synchronous SRAM cache is so expensive that using it is prohibitive.

That's exactly the problem these
new Samsung SRAMs solve. We've used an innovative pipelined burst design to produce a part we can sell for about half the cost of conventional burst SRAMs. But which gives you approximately 99% of the performance that they do.

As you can see, we consider it
heady stuff-we look on it as a revolutionary development.

And because it actually does make performance affordable - and makes synchronous cache available to designers of even highly costconstrained systems-we think you'll probably agree.

This revolutionary design was developed collaboratively with major systems developers. It has already met with wide acclaim throughout the industry, and is second-sourced. It will support 3.3 volt systems up to 75 MHz , and is available in speeds of 7,8 , and 9 ns.

For Samsung, the pipelined burst cache SRAM is just one of many notable achievements in memory-in a program that sails forward with remarkable success.

For information on designing it in, please call $\mathrm{r}-800-446-2760$ or 408-954-7229 today. Or write to

SRAM Marketing, Samsung Semiconductor Inc., 3655 North First Street, San Jose, CA 95134.

SIMSUNA

SEMICONDUCTOR
A Generation Ahead.

Before you get turned on

 by the front of a meter, make sure there's

Fluke meters are designed for professionals who value function over frills. There's nothing superficial about the Fluke family of versatile digital multimeters. Pick one up and you feel that it's a substantial tool. Designed to fit the application and the way you work. With features like our patented Touch Hold ${ }^{\circledR}$ function that freezes a reading on the display, and intelligently updates with each new reading. Automatically. Without requiring a third hand to push a button. Fluke meters attain stable, accurate readings in half the time of most imitations, making you more productive on the job.

Other meters are merely "designed to meet" certain guidelines; Fluke designs and builds a full line of meters that actually achieve UL, VDE and TÜV safety certification. Fluke's guarantee goes beyond manufacturing defects to include meter specifications for an entire year, so you can trust the readings. And Fluke backs you with toll-free customer assistance numbers, and a worldwide service organization. Discover why more professionals around the world say, "Hand me the Fluke." See your local distributor, or call 1-800-87-FLUKE for a catalog and the name of the distributor nearest you.

Tools of the trade

In a letter in the May 26 issue of $E D N$, Ed Sutter wonders, "How do so many emulator vendors stay in business?" Well, as a profitable emulator vendor, I'm delighted to report that bugs are still rampant in embedded systems, and engineers will (quite rightly) buy whatever tool is needed to cure their products' ills as efficiently as possible.
No tool is really essential. I can pound in nails with the heel of my shoe if I choose not to invest in a hammer. Watch engineers working in a lab. How often do you see one remove insulation with his teeth because strippers aren't close at hand? Even Sutter's logic analyzer is not really needed for debugging embedded systems-why not use a scope and tediously move the probe across the data bus to determine what the program is doing?

Emulators offer some critical debugging assets that no other tool provides. Some are obvious, like extensive breakpoint capability-stop the code when exactly this event occurs. Real-time trace is much like the display on Sutter's logic analyzer, but emulators are typically far more closely coupled to a source-level debugger, giving a perfect correlation between source code and what's in the trace buffer. Emulation memory, tied so tightly to the source debugger, makes downloading code a breeze while preserving the debugging links to the source.

While all emulator vendors like to tout how "nonintrusive" their products are, intrusive emulation is a critical feature. Suppose the code doesn't work. Patch it! What's the value of that I/O port when we hit the breakpoint? Read it! Will altering the queue pointers fix the circular buffer code? Try it! Emulators are the only tools that combine nonintrusive program execution with the ability to make changes at will.

One of my personal frustrations is that emulators are more and more regarded as software-development tools only, when in fact there is no easier way to fix a prototype computer board than with an ICE. If the board doesn't work, plug in an emulator and ask it to display ROM repeatedly. Then use a scope to check for chip selects and the like. I/O broken? Use the ICE to read ports and construct scope loops. Is the A/D linear? Without writing a sin-

Measure It All! The DMM/LCR Meter/ Frequency Counter. All in One.

Troubleshoot down to the component level - any component! Verify poorly marked parts, test for tolerances and damage. Wavetek's new DM27XT is not only a fullfunction DMM, but also includes complete inductance, capacitance, and frequency measurement capabilities.

- Wide LCR range: 10Ω to $2000 \mathrm{M} \Omega$ 10 pF to $2000 \mu \mathrm{~F}$ $100 \mu \mathrm{H}$ to 20 H
- Autoranging frequency meter 10 Hz to 20 MHz
- Ac and dc current to 20 A
- Logic test, diode test, max reading hold, continuity beeper, input warning beeper, fused input protection, battery saver

Consolidate your test bench with one meter that does it all Wavetek's high-performing, full-function XT Series DMM. It's all in one compact, rugged, field-ready package with a big 0.7 -inch, $3^{1 / 2}$-digit display. Insulated probes and alligator clip leads are included, and there is a huge selection of accessories, including current, rf and HV probes, temperature converters, holsters, and cases. Ask for Wavetek DMMs. They're the meters to pick when you have things to fix.

\$119 ${ }^{95}$

Other XT Series DMMs from $\$ 89.95$
U.S.A.: (619) 279-2200

Europe: (44/243) 531323
Asia Pacific: (852)865-1903
© 1993 Wavetek Corporation

Get To The Source...

FOR AC/DC SWITCHING POWER SUPPLIES.

- 15 to 650 Watts
- 1 to 8 Outputs
- Universal Input

- UL/CSA/TUV Approval
- Chassis Mount, L-Bracket, Open Frame

- Over 1000 Off-TheShelf Power Supply Solutions

Solve Your Power Supply Problems With Standard, Off-The-Shelf Solutions. Or Talk To Our Engineers About Modifications Or A

Complete Custom Solution.

200 Butterfield Drive, Ashland, MA 01721 Tel: (508) 881-7434 • Fax: (800) 226-2100

CIRCLE NO. 33

45 watt power supply

in a small $3 " x 5$ " size Zenith's Model ZPS-45

- Universal Input
- Triple Output -+12 V or +15 V
- 90-265 VAC, 120-364 VDC
- UL 9950, CSA 22.2, IEC 950, FCC Part 15J, Class B, VDE 0871/B VDE EN60950, BABT 340 and BS 6301; Also available with UL 544
- No minimum load required
- Standard off-the-shelf delivery
- 500,000 hours MTBF \& backed by 1 year warranty

Optional Safety

	Maximum	Main	
Zenith Model	Output Power (Watts)	Volts DC (Nominall)	
ZPS-45	45	+5.0	
ZPS-45-15	45	+5.0	
Call for a free brochure:			
$800-827-8720$			

1000 Milwaukee Avenue, Glenview, IL. 60025-2493
gle line of code, use the ICE to read and display the converter as you ramp its input.

A logic analyzer, scope, or any other tool only lets you watch the system crash and maybe (perhaps if you burn enough incense...if the gods are smiling...if the you paid your taxes) figure out why the system is dead. An emulator lets you run controlled, repeating tests to quickly isolate problems to a specific component.

Yes, we emulator vendors benefit from our customers' mistakes and miseries. It's a synergistic relationship, though: Our tools reduce their angst and ultimately increase both our profits and their profits.
Jack Ganssle, President
Softaid
Columbia, MD

One more

I want to congratulate you on the March $3 E D N$ article "User-interface prototypes help you design products real people can operate" (pg 51). It was quite interesting and educational at the same time...only one thing was miss-ing-us. Virtual Prototypes Inc is a leading supplier of software tools for developing real-time graphical human/machine interfaces (HMIs). VPI's tools are designed to make the development and deployment of graphical HMIs a straightforward task. Our technology, called "virtual prototyping," addresses three basic HMI design needs: rapid prototyping, automatic code generation and retargeting for operation and embedded systems, and real-time simulation and training.
Claire Champeau
Marketing and Communications
Coordinator
Virtual Prototyping Inc
Montreal, Quebec, Canada

Sound off

Send your letters to Signals and Noise Editor, EDN, 275 Washington St, Newton, MA 02158. Or fax us at (617) 558-4470. EDN reserves the right to edit letters for clarity and length.

100 watts per cubic inch is meaningless if it's a big job to cool it.

Give us a call at 1800 526-7819

Not so with AT\&T's next generation of board mounted power modules.

150 Useable Watts in a 50 Watt Package

They deliver up to 150 useable watts in a small $2.4 \times 2.28 \times 0.5$ inch package. Their high efficiency ($>84 \%$) design provides 150 watts of 5 volt output power with an allowable baseplate temperature of $100^{\circ} \mathrm{C}$. They provide power levels from 50 to 150 watts, output voltages from 2.0 to 24 volts, and
before you make your next power decision. From technical support to creative power solutions, we'll give you real reasons to make AT\&T your power resource.

AT\&T Power Systems. The power to do more.

For other AT\&T power literature or power information, call 1800 372-2447, ext. 910.

The LMC7IOI ~ Combines
high-performance and low-voltage opera-
tion in the tiniest possible packaging
(S0T23-5) ~ Provides maximum dynamic
range with rail-to-rail input and output
~ Low voltage (3V to 15V) and low power operation ($500 \mu \mathrm{~A}$ supply current) ~ Low offset of $3 \mathrm{mV} \sim 1 \mathrm{MHz}$ GBW @ 3 V ~

Guaranteed over the industrial tempera-
ture range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right) \sim$ For ordering information and a free product sample kit, call 1-800-NAT-SEMI, Ext. 307.

FAST Track to FAST SCSI

90's Challenges. The 90's demand higher levels of performance and faster delivery than ever. Time-to-market, technological demands, and changing user needs make fast, simple SCSI seem as elusive as the horizon. To stay ahead in these challenging times, you need products you can count on, with proven ability to deliver the quality and reliability your customers require.

90's Products. After over a decade of industry leadership, NCR is still working hard to meet your needs and the challenges of the 90 's. The NCR 53 C 90 family of SCSI Controllers is constantly evolving, implementing and offering state-of-the-art products. For example, the NCR 53C90 family supports multiple bus architectures, advanced SCSI-2 commands, fast SCSI data transfers and provides our exclusive TolerANT ${ }^{\circledR}$ SCSI driver and receiver technology, for reliable data transfers in

90's Solutions. The SCSI challenges of the 90 's can't be solved with silicon alone. NCR quality and service provide you with the competitive edge that can make your industry leading designs a reality. Whether you require SCSI-1 or fast SCSI-2, in any system architecture, NCR has the product to meet your needs today. You can count on us to keep you on the fast track with the right technology, at the right price, at the right time for all your SCSI requirements.

every SCSI system.
 The NCR 53C90 Family
 Proven Performance for the 90's and Beyond

NCR SCSI: Real Products, Real Solutions, Real Fast!

SCSI	FAST SCSI*	*NCR Fast SCSI devices transfer SCSI data at to MB/s synchronous or 7 MB/s asynchronous
53690A	53CF90A	Single-bus architecture; SCSI sequences controlled by hardware state machine to minimize host intervention
53C90B	53CF90B	Adds pass-through parity for increased system reliability
53694	$53 C F 94$	Adds split-bus architecture for more flexibility
53696	53CF96	Adds support for differential transfers

> For more information about NCR SCSI products and a free poster, call 1-800-334-5454.

Don't take it any more—act!

$E D N$'s readers often tell me about problems they've had with suppliers. Sometimes EDN can help, and sometimes we can't. Recently, Creigh Shank, a principal consultant at Cox and Associates, contacted me regarding problems his company was experiencing with a PC component vendor over a 3 -month period. It seems that several of the motherboards and graphics controllers supplied by this vendor had failed, and Shank was getting nowhere fast with his appeals to the vendor for help. Shank's solution was to send 67 letters to various electronics and computer magazines explaining his problems in detail. He also sent a copy of his letter to the vendor along with a list of the magazines he'd contacted.

Shank's gambit worked. Apparently, the vendor is now paying a lot of attention to the problems and is solving them to Shank's "full satisfaction," as he stated in a follow-up letter.

This story, one that repeats often in our industry, is a prime example of how you can be effective in achieving your personal and corporate goals. You do that simply by taking matters into your own hands and acting.

All relationships have problems. You should expect them and not be put off by
them. When problems do occur, the real test of the relationship is what you do in response to the problem. If the problems are sufficiently large, you may choose to terminate the relationship. However, that choice discards the investment you've made in the relationship, which may be very large indeed.

You may try to work the problems out. This was Shank's first move. In his case, this approach seemed not to work, though many times it does.

Finally, Shank used what I call the "two-by-four approach." When you can't get the other party's attention, you must sometimes resort to using the figurative equivalent of a big piece of wood (a two-by-four) to whack the other person on the head and get his or her attention. Note that I'm not advocating physical violence here, nor am I advocating overreacting. I am advocating assertive action to solve problems.

Take a look at the problems plaguing you at the moment. Write them down. Then write down some actions you can take to creatively and assertively attack each of these problems. Griping and whining don't solve problems. Actions do.

\&

Steven H Leibson Editor-in-Chief

Jesse H. Neal
Editorial Achievement Award 1990 Certificate, Best Editorial 1990 Certificate, Best Series 1987, 1981 (2), 1978 (2), 1977, 1976, 1975

Send me your comments via fax at (617) 558-4470, or on the EDN Bulletin Board System at (617) 558-4241, 300/1200/2400 8,N,1. From the Main System Menu, enter ss/soapbox and select W to write us a letter.

A DESICN GCO THAT COMPRA=-3, WEEA

A BUDGET Th Y Sinil $2 s .1410$

A Boss min womasmour

IT'S NOT THT MOMD MAN MORE

You've got a problem that goes way beyond simple data conversion. So you think of Analog Devices first. Which is natural because we're the world leader in converters. But also because we go way beyond simple data conversion. Many of our converters include on-board references and sample/hold amplifiers that offer highly integrated solutions for all your data acquisition needs. We combine advanced mixed-signal techniques with our proven expertise in data conversion. So we can provide ADCs with features like self-calibration. And sigma-delta converters for a variety of specific applications in process con-

The 12-bit AD7892, with a 500 ksps conversion rate and a power dissipation of just 60 mW , features unique voltage protection on the analog input and the flexibility of both serial and parallel interfaces.
trol, computers, medical instrumentation and communications.

Our converters span resolutions from 6 to 24 bits and speed from dc to hundreds of megasamples per second. Advanced functionality is built-in. So leading companies look
to us for converter leadership. Sony" chose our AD875 10-bit, 15 MHz

ADC converter because it gave them the low power, high performance and low cost they needed for their digital camcorder. We supply five of the top seven GSM manufacturers with baseband and voiceband converters. And in a joint venture with IBM^{\star}, we developed a 1 GHz , SiGe

To make the best workstations, you need the best displays. Tbat's why SUN Microsystems Inc. chose our ADV7152 video RAM-DAC, with 220 MHz 24-bit (effective 30-bit) resolution and gamma correction RAM.

DAC that, as one trade journal put it, threatens to upend the wireless communications market.

Put all of this together with our world-class operations, on time delivery, responsiveness, applications support and competitive pricing and what have you got? The world leader in converters. And a good reason to call 1-800-ANALOGD.

Analog. Digital. Solutions.
CIRCLE NO. 26

When you want fully compatible 4-Mbit VRAMs, TI delivers.

To meet the competitive demands of today's graphics market, TI delivers the only commercially available solution - our full family of 4-Mbit VRAMs. And puts you on the path to a higher level of graphics performance than 1- or 2-Mbit VRAMs can provide.

Compatibility means flexibility. The first to introduce the 4-Mbit VRAM, TI is also the first to meet the JEDEC 4-Mbit VRAM standard, including a 256 -bit Serial Access Memory (SAM). So when you start your next-generation high-resolution graphics designs with TI, you get maximum future design flexibility. Something not all 4-Mbit VRAM manufacturers can deliver.

The right devices, right now. We deliver what we promise. Our family of 4-Mbit VRAMs has been in volume production

more than a year, so you can get the devices you need in full production quantity.
Higher integration, lower cost. The higher density of 4-Mbit VRAMs reduces chip count for more efficient use of board space and increased system reliability. The dual asynchronous data ports simplify the CPU interface and greatly reduce the memory bandwidth bottleneck. Add that to our Total Integration ${ }^{\text {™ }}$ philosophy and it equals cost-

Avalu effective designs.

Available today. TI offers you unprecedented service and support, along with timely information, when and where you need it. Just call 1-800-477-8924, ext. 3611.
We'll get the facts on TI's fully compatible family of 4-Mbit VRAMs delivered to you right away.

EXTENDING YOUR REACH WITH TOTAL INTEGRATION"

3pF SCSI Gives Your Bus a Lift

Lighten your bus and take your designs to a new level of speed with Unitrode's UC5613 nine line SCSI active terminator. With the lowest capacitance available today, your designs will have hotswap ability, and a high transfer rate. The UC5613 will launch your CD Rom and computer peripheral designs with confidence and greater speed.

Call, FAX, or write us today for free samples and application information.

Megatransfer Rate

INTEGRATED CIRCUITS

UNITRODE

TEL: (603) 429-8610

FAX: (603) 424-3460
7 Continental Boulevard, Merrimack, NH 03054

The UC5613 Advantages

- 3pF Channel capacitance during disconnect
- Meets SCSI hot plugging capability
- +400 mA Sinking current for active negation
- Custom power packages are utilized to allow normal operation at full power (1.2 watts)
- 0.7V Dropout voltage regulator
- Logic command disconnects all termination lines
- $100 \mu \mathrm{~A}$ Supply current in disconnect mode

Low-power ASICs save board space and time to market

JOHN GALLANT, Technical Editor

> The relentless demand for low power has driven vendors to offer ASICs with reduced power consumption. Some of these devices have such large densities that even a fullblown version must offer thermal management.

It seems like everyone is demanding lowpower consumption from their ICs these days. The reasons are manifold. Batteryoperated devices, such as laptop and palmtop computers and personal digital assistants, require low current drain to increase time between battery charges. Cellular and cordless phones also demand powerconserving features to preserve battery life.

In addition, ASIC density, which formerly ranged from 25,000 to 50,000 gate equivalents, has grown in recent years to 500,000 to 1 million gate equivalents. The high gate counts can stress an ASIC's thermal properties. Therefore, thermal management has become another critical reason for demanding low power consumption from an ASIC. Dense designs using high clock frequencies place severe demands on the thermal-dissipation capabilities of a package.

The most widely used method for achieving low power from an ASIC is to lower the supply voltage from 5 to 3.3 V . All things being equal, the voltage reduction can achieve approximately 60% in power savings. The lower voltage, however, means an approximately 50% lower operating speed. The lower speeds help reduce EMI because the lower voltage produces longer rise and fall times for I/O logic levels than those produced in higher-voltage devices. In addition, an ASIC operating from a 3 V supply can use a much
less expensive package for thermal considerations.

Three flavors of ASIC

Low-voltage ASICs come in three varieties: gate arrays, embedded gate arrays, and standard cells. Gate arrays employ a sea-of-gates architecture in which the gates are prediffused to achieve turnaround in a few weeks for large quantities. Standard cells employ gates that are not prediffused, which allows them to include large macrocells, such as RAM, ROM, and $\mu \mathrm{P}$ cells. Because standard cells require more masking procedures to manufacture, their turnarounds are longer than those of standard gate arrays. An embedded array, a compromise between a gate array and a standard cell, allows embedding of some large

Gate arrays in $0.5-\mu \mathrm{m}$ geometries can feature high gate count and high speed. Hitachi's HG72G/E arrays operate faster than 100 MHz with as many as $\mathbf{6 6 7 , 0 0 0}$ gates that require high-performance packaging.

EDN-Technology Update

LOW-POWER ASICs

macrocells into a standard gate array.
Some vendors, such as American Microsystems Inc (AMI) and NCR, offer a 3 V characterization for their basic 5 V ASIC families. AMI's base gate arrays, the AMI8GxS family, use a $0.8-\mu \mathrm{m}$ CMOS process employing a sea-of-gates architecture. The arrays use double or triple metallization and are available in 5 or 3V. NCR offers the VS500 stan-dard-cell family, which employs a $0.75-$ $\mu \mathrm{m}$ technology. The family allows 5 and $3.3 \mathrm{~V} \mathrm{I/O}$ and core cells for mixed-voltage applications. The family has more than 700 digital core cells.

How to estimate power

How do you estimate the power consumption of an ASIC? Many vendors quote a power factor for a single gate's power dissipation. For CMOS processes, the power factor depends on the
operating frequency, so vendors measure it in microwatts per megahertz per gate ($\mu \mathrm{W} /$ $\mathrm{MHz} /$ gate). In bipolar processes, the power dissipation is constant with frequency, so the vendors measure it the power factor in microwatts per gate ($\mu \mathrm{W} /$ gate). The power factor is different for core cells and I/O buffers, so you must take a weighted average of the total power factors a data sheet provides to achieve an average value.

If you employ CMOS devices, you can break your design into blocks of logic based on switching frequency once you achieve a weighted average for the power factor. You can calculate the dynamic power consump-

Motorola's H4CPLUS 3 V metal CMOS gate arrays suit mixed 3 and 5V applications. A unique interface design permits chip-to-chip communications at 200 MHz with low power dissipation.

Manufacturers of low-POWer ASICs

For free information on the low-power ASIC products discussed in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

American
Microsystems Inc Pocatello, ID
(208) 233-4690

Circle No. 307
AT\&T Microelectronics
Allentown, PA
(800) 372-2447

Circle No. 326
Cadence Design
Systems Inc
San Jose, CA
(408) 943-1234

Circle No. 308
Cascade Design
Automation
Bellevue, WA
(800) 258-8574

Circle No. 309

Fuifisu

Microelectronics Inc
San Jose, CA
(800) 642.7616

Circle No. 310
Hitachi America Ltd
Brisbane, CA
(800) 285-1601, ext 31

Circle No. 311
IBM Microelectronics
Burlington, VT
(802) 769-0111

Circle No. 312
LSI Logic
Milpitas, CA
(408) 433-8000

Circle No. 313

Mentor Graphics
Wilsonville, OR
(503) 685-7000

Circle No. 314
Mitsubishi Electronic
Device Group
Sunnyvale, CA
(408) $730-5900$

Circle No. 327
Motorola Inc
Chandler AZ
(602) $821-4418$

Circle No. 315
NCR Corp
Fort Collins, CO
(303) 226-9500

Circle No. 316
NEC Electronics Inc
Mountain View, CA
(800) 366-9782

Circle No. 317
Oki Semiconductor
Sunnyvale, CA
(408) 720-1900

Circle No. 318
SMOS Systems
San Jose, CA
(408) 922-0200

Circle No. 319
Synergy
Semiconductor Corp
Santa Clara, CA
(408) 730-1313

Circle No. 320

Synopsys Inc
Mountain View, CA
(415) 962-5000

Circle No. 321
Texas Instruments Inc
Dallas, TX
(214) 995-6611, ext 3990

Circle No. 322
Toshiba America Electronic
Components Inc
Irvine, CA
(714) 455-2000

Circle No. 323
VLSI Technology Inc
San Jose, CA
(408) 434-3000

Circle No. 324
VOTE . . .
Please also use the Information Retrieval Service card to rate this article (circle one):

High Interest 589

Medium Interest 590
Low Interest 591

Super Circle Number For more information on lowpower ASIC products available from all of the vendors listed in this box, you need only circle one number on the postage-paid
reader service card.
Circle No. 325
tion by multiplying each block of gates or cells by the power factor and then by the operating frequency. You then sum the power for each block to achieve the total power consumption.

Unfortunately, this method gives you only a ballpark figure because actual power consumption depends on other factors, such as the output pads' load capacitance and frequency. You must also weigh a device's static power consumption. To achieve a more accurate estimate of power consumption, you must develop a netlist for your design and let a simulator give you a power estimate based on test vectors. Tools from electronic-design-automation vendors, such as Cadence, Cascade, Mentor Graphics, and Synopsys, can estimate power consumption. If the test vectors are complete, the power estimates are usually conservative; actual prototypes should yield lower power levels.

Mixed-voltage I/O is popular

Most low-voltage ASICs have mixed-voltage I/O pads and fixed 3 or 5 V cores. Mixed-voltage I/Os allow the device to communicate with inexpensive 5 V devices, such as DRAMs. Motorola's $0.6-\mu \mathrm{m}$ H4CPlus series of gate arrays features current-mode transceiver-logic buffers, which provide a self-terminating I/O method and CMOS chip-to-chip interface speeds exceeding 200 MHz . The arrays have dual $V_{D D}$ rails to power the

The MotorolaVME product line is like a gourmet buffet. You take what you like, and you'll like what you take.

Make The Call, Not The Board.

Motorola VME boards offer you more choices. More ways to get the features you need, at a price you can afford. When you select your board from Motorola, you'll save a lot more than time. Add networking options (such as Ethernet, Serial, X.25, SNA), memory, motor control, A-D
conversion, graphics capabilities with either IndustryPack ${ }^{\text {mim }}$ or VMEmodules.'"

With more than 120 IndustryPack modules and over 3,000 VMEmodules available industry-wide, your options are unlimited, and your finished product will be dependable.

Flexible Performance,

 Inflexible Commitment.Depend on Motorola VMEmodules for a variety of design needs. One of our boards can perform multiple
tasks, saving you slots, cash, and hassle. And as your needs change, just add modules to your existing board.

While we serve up a huge menu of VME selections, there's one thing we won't consider changing: our Five-Year Warranty. Call Motorola and you'll get your just desserts.

Motorola VMEmodules let you select the features you need, at a price you can afford.
$1-800-759-1107_{\text {Ext.EDN }}$
© Copyright 1994 Motorola, Inc. Motorola and the Motorola logo are registered trademarks of Motorola, Inc. "Because The Game Has Changed" and VMEmodule are trademarks of Motorola, Inc. All other products mentioned are trademarks or registered trademarks of their respective holders.

EDN-TEchnology Update

LOW-POWER ASICs

output buffers for 3.3 or 5 V or mixedvoltage levels. You can embed analog PLLs in two corners of the die for on-
chip clock signals as high as 125 MHz .
To achieve high speed at low voltages, many vendors offer high-density 3 V
families with $0.5-\mu \mathrm{m}$ processes. Hitachi, IBM, LSI, NEC, Toshiba, and VLSI all provide ASICs in $0.5-\mu \mathrm{m}$

TABLE 1—LOW-POWER ASICS

Company	Model	Maximum usable gates	Power dissipation ($\mu \mathrm{W} / \mathrm{MHz} /$ gate)	Internal gate delay (psec)	Supply voltage (V)	Price	Features
American Microsystems Inc Circle No. 307	$\begin{aligned} & \text { AM18Gx } \\ & (0.8 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 432,180 \text { and } \\ & 324,526 \end{aligned}$	3.2 at 5 V	200	2.7 to 5.5	Not specified	2- and 3-level metallization; automatic test-pattern generation, includes scan macros; 3 to 5 and 5 to 3 V level shifters; selectable 1 - to $16-\mathrm{mA}$ output-current drivers, synchronous single-port RAMs to $1 \mathrm{k} \times 32$ bits; maximum of 528 bond pads
AT\&T Microelectronics Circle No. 326	$\begin{aligned} & \text { HL } 400 \mathrm{C} \\ & (0.5 \mu \mathrm{~m}) \end{aligned}$	500,000	2	330	2.7 to 3.6	Not specified	Standard cell library has 400 kbits of RAM, $80 \mathrm{C} 196 \mu \mathrm{C}$, UART, and DMA controller; supports 5V, LVTTL, GTL, and PECL I/O ports; system clock speeds greater than 120 MHz ; IEEE 1149.1 boundary-scan macrocell; 3-layer metallization
Fujitsu Circle No. 310	$\begin{aligned} & \text { CG51, CE51 } \\ & (0.5 \mu \mathrm{~m}) \end{aligned}$	490,000	1.2	210	3.3	NRE starts at $\$ 65,000$	3-layer metallization; maximum, system clock speed= 100 MHz ; automatic testpattern generation, JTAG IEEE 1149.1 boundary scan; internal PLL clocks and embedded RAM or ROM
Hitachi Circle No. 311	$\begin{aligned} & \mathrm{HG} 72 \mathrm{G} / \mathrm{E} \\ & (0.5 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 39,000 \text { to } \\ & 500,000 \end{aligned}$	1.2	200	3.3	NRE starts at \$70,000	System clock speed >100 MHz ; ball-grid array with 672 I/O pins; on-chip PLL clocks and maximum metallized memory of 256 kbits
IBM Microelectronics Circle No. 312	CMOS 5L	1.2 million	1 to 1.5	Not specified	3.3	\$200,000 NRE (includes place and route)	4-layer metallization; >100 MHz operation; logic-sensitive scan design generates test vectors; 625-pin ballgrid array; 25 embedded arrays, including RAM
LSI Logic Circle No. 313	$\begin{aligned} & \text { LCB500K } \\ & (0.5 \mu \mathrm{~m}) \end{aligned}$	1.5 million	Not specified	065 at 3.3V	3.3 and 2.4	NRE starts at $\$ 30,000$	System clock speeds >200 MHz ; cell- and gate-arraybased; 4-layer metallization; 160 kbits of RAM and 350 cells; PECL, GTL, and PCI interfaces
Mitsubishi Circle No. 327	$\begin{aligned} & 0.5-\mu \mathrm{m} \\ & \text { CMOS ASIC } \end{aligned}$	1 million	1.3	170	3.3	Not specified	2- or 3-layer metallization; programmable-current output buffers; 256-kbit RAM with $3.7-\mathrm{nsec}$ access time
Motorola Circle No. 315	$\begin{aligned} & \text { H4CPLUS } \\ & (0.6 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 13,000 \text { to } \\ & 295,000 \end{aligned}$	3 at $5 \mathrm{~V}, 1$ at 3 V	$\begin{aligned} & 28 \text { at } 5 \mathrm{~V}, \\ & 42 \text { at } 3 \mathrm{~V} \end{aligned}$	3.3 and 5	NRE ranges from \$35,000 to \$200,000	Current-mode logic-transceiver logic buffers permit CMOS chip-to-chip interfaces $>200 \mathrm{MHz}$; customer-defined array allows large diffused blocks, such as RAMs; 3layer metallization
NCR Corp Circle No. 316	$\begin{aligned} & \text { VS500 } \\ & (0.75 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 200,000 \\ & \text { (180 core- } \\ & \text { cell functions) } \end{aligned}$	$\begin{aligned} & 3.55 \text { at } 5 \mathrm{~V}, \\ & 1.45 \text { at } 3.3 \mathrm{~V} \end{aligned}$	280	3 and 5	Not specified	Global clock tree synthesis to minimize skew; output slew-rate control; IEEE 1149.1 JTAG boundaryscan functions, including test-access-port controller; power simulation provides early identification of thermal characteristics

There may be only one power source more reliable than our switchers.

Condor's Global Performance ${ }^{\circledR}$ power supplies offer continuous range input, full agency approvals and more.

Our Global Performance switchers give you reliability, performance and full agency approvals, including UL1950 without D3 deviation, CSA22.2 No. 234 Level 3, IEC950, EN60950, VDE0805 Class B EMI and VDE0871 Level B EMI. Medical versions are approved to UL544, IEC601-1, CSA234 Level 3 and VDE0750.

Features include:

- 71 models (single- and multi-output)
- Industry-standard packages
- Custom designs available
- 8 power levels (40 to 225 W)
- Continuous-input voltage ($85-264 \mathrm{VAC}$)
- OVP on all 5 V outputs and singleoutput units
- MTBF $100,000+$ hours per Mil Hndbk 217E
- 8 -hour burn-in with cycling (24 hours on medical versions)
- Computerized testing (data sheets furnished)
- 2 -year warranty
-30-day FREE evaluation (call for samples)
If you want top performance and reliability with quick turnaround and competitive pricing, try Condor's Global Performance switchers. The only approval they're missing is yours!
WORLD CLASS RELIABILITY
=CONDOR

EDN-TEchnology UpdatE

LOW-POWER ASICs

geometries. LSI's LCB500K cell-based technology can achieve I/O frequencies from 100 to 500 MHz having as many as 1.5 million gates. The large densities require packages with large pin counts and many power and ground pins to
prevent ground bounce when many outputs switch simultaneously.

Automatic test makes life easy

Traditional test methodologies become impractical at such large den-
sities. LSI Logic has developed an automatic JTAG builder that generates IEEE 1149.1 test vectors. The automatic-test capabilities can insert a boundary-scan/test-access-port controller, generate tests for boundary-

TABEE 1—Low-POWER ASICS (CONT)

Company	Model	Maximum usable gates	Power dissipation ($\mu \mathrm{W} / \mathrm{MHz} /$ gate)	Internal gate delay (psec)	Supply voltage (V)	Price	Features
NEC Electronics Inc Circle No. 317	$\begin{aligned} & \hline \text { CB-C8 } \\ & (0.5 \mu \mathrm{~m}) \end{aligned}$	600,000	0.8	130	3.3	208-pin PQFP with 64 kbits of RAM: \$50 $(10,000)$	64 kbits of RAM and 256 kbits of ROM; 300 macro functions include analog components and data-pathcompiled macros; GTL-bus interface and on-chip PLL; $440 \mathrm{I} / \mathrm{O}$ pads having $124-\mu \mathrm{m}$ pitch; 5V-tolerant I/O pins
	$\begin{aligned} & \text { ECL-8 } \\ & (0.5 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 23,000 \text { and } \\ & 68,000 \end{aligned}$	$1.5 \mathrm{~mW} /$ gate	050	$\begin{gathered} -3.3 \text { and } \\ -5.2 \end{gathered}$	68,000 gates in a 364-pin ceramic QFP: $\$ 770$ (5000)	Supports an output frequency as fast as 1.2 GHz ; embedded self-timed RAM; cell structure $=10 \mathrm{npn}$ transistors, 16 resistors, one capacitor; $4-\mathrm{GHz}$ toggling frequency; supported by Synopsys and Cadence design software
	BiCMOS8CL $(0.5 \mu \mathrm{~m})$	165,000	3.3	180	3.3	$\$ 441$ (3000) for 447-pin plastic PGA	Operates at $150-\mathrm{MHz}$ I/O frequency; $10 \mathrm{KH} \mathrm{ECL}, 100 \mathrm{~K}$ ECL; low-voltage TTL and GTL interfaces; 8-nsec 256× 8 -bit BiCMOS RAM; onchip PLL; 3- or 4-layer metallization
Oki Semiconductor Circle No. 318	$\begin{aligned} & \text { MSM33S- } \\ & 0000 \\ & (0.8 \mu \mathrm{~m}) \end{aligned}$	6.5 to 135,168	Not specified	250	3 and 5	NRE starts at $\$ 33,000$	Automatic test-vector generation using scan macros; clock-skew management guarantess <1-nsec skew; slew-rate-controlled outputs; megacells, such as UARTs, SCSI controller, and JTAG boundary scan
	$\begin{array}{\|l} \hline \text { MSM10R- } \\ 0000 \\ (0.5 \mu \mathrm{~m}) \end{array}$	$\begin{aligned} & 12,230 \text { to } \\ & 541,632 \end{aligned}$	Not specified	110	3.3	NRE starts at \$98,000	624 I/O pins having a 100$\mu \mathrm{m}$ pitch; 3-layer metallization; megacells include RAM, ROM, UARTs, and SCSI controller; clock-skew management of 0.5 nsec ; IEEE 1149.1 JTAG boundary scan
SMOS Circle No. 319	$\begin{aligned} & \text { SLA2-0000 } \\ & (0.65 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 10,700 \text { to } \\ & 100,000 \end{aligned}$	1.6 at 3V	$\begin{gathered} 280 \text { at } 5 \mathrm{~V}, \\ 45 \text { at } 3 \mathrm{~V} \end{gathered}$	3 and 5	NRE starts at \$15,000	System clock speeds >100 MHz ; I/O-level shifting to handle mixed-voltage supplies; 128 to 368 I/O pads; RAM and high-density megacells, including UARTs and embedded $\mathbf{Z 8 0} \mu \mathrm{P}$
	$\begin{aligned} & \text { SLA100L } \\ & (2 \mu \mathrm{~m}) \end{aligned}$	6400	0.3	$\begin{aligned} & 8.5 \mathrm{nsec} \text { at } \\ & 1.5 \mathrm{~V} \end{aligned}$	0.9 to 3	NRE ranges from \$15,000 to $\$ 25,000$	2-layer metallization; 178 I/O pads; 4- and 8-mA output current at 5 V
	SLA100X ($2 \mu \mathrm{~m}$)	1224 to 6200	0.3 at 1.5 V	$\begin{gathered} 8.5 \mathrm{nsec} \text { at } \\ 1.5 \mathrm{~V} \end{gathered}$	0.9 to 3	NRE ranges from \$15,000 to $\$ 25,000$	On-chip level shifters from 1.5 to 3 and from 3 to 5 V ; 2-layer metallization; 24- or $48-\mathrm{mA}$ output drive current at 5 V
Synergy Circle No. 320	System Elements family (1.2 $\mu \mathrm{m}$)	500 to 3500 cells (70,000 gate equivalents)	Programmable at 350 to 1200 μ W/cell	70	5	Not specified	Bipolar and BiCMOS with transistor trench isolation for $\mathrm{f}_{\mathrm{t}}=17 \mathrm{GHz}$, mixed-signal designs with more than 20 analog blocks, including PLLs and DACs; 2-level ECL structures

The World's Most Accurate A/D for Low Level Signals

20-Bit Photo Sensor A/D

DDC101 is a 20-bit, current input A/D converter designed for direct connection to photodiodes and other low level current output devices. It replaces an amplifier circuit, programmable-gain amplifier, and high resolution A / D converter-all on a single, monolithic chip. Use DDC101 for photosensor digitization, medical analyzers, data acquisition systems, chemical analyzers, and infrared pyrometry. It's the closest thing to digitized light!

Light Years Ahead Architecture

DDC101's patented delta modulation architecture accurately digitizes a current signal. Using digital integration, oversampling, digital filters, and DSP, it improves noise and linearity as the input level decreases. Or, as the input signal gets smaller and smaller, DDC101 gets better and better-with an input signal of 0.1% full scale the maximum linearity error is only 0.00028% FSR! Its conversion rate is up to 15 kHz . It is the world's most accurate A / D for low level signals!

DDC101 Key Specifications

- Resolution .20-bit
- Noise...1.6ppm, rms
- Conversion rate
...up to 15 kHz
- Accuracy at low level2.5ppm of FSR, (max)
- Power dissipation.
..170mW
- Digital error correction..CDS
- Packages... .28-pin DIP and 24-pin SOIC
- Demo Board with part (\$350.00)
- From \$18.50 in 1000s

See the Light...FREE Samples!

Try the light years ahead solution! Get your FREE sample and detailed data sheet by calling 1-800-548-6132. Or, contact your local sales rep for more information.

EDN-Technology Update

LOW-POWER ASICs

scan logic, and automatically generate boundary-scan description logic. The builder uses the JTAG cells in the ASIC libraries. The 500,000-gate, 3.3 V library includes RAM, ROM, FIFO buffers, delay-line memories, PLAs, and content-addressable memory. The library is also available in a 2.4 V version for internal and I/O macrocells.

VLSI's $0.5-\mu \mathrm{m}$ FlexArray and cellbased designs have both SRAM and ROM compilers for as much as 128 kbits of memory. Cell-based designs can use a functional-system-block library that comprises embedded processors, serial communications controllers, SCSI controllers, and host interfaces. A typical 2-input NAND gate operating at 3 V with a fan-out of 2 has a $190-$ psec propagation delay and a $1.1-\mu \mathrm{W} / \mathrm{MHz} /$ gate power factor.

LOOKING AHEAD

Vendors are relentlessly pushing to lower process geometries to achieve higher gate densities and lower feature levels. Attendant with this push is the drive to maintain low-voltage power supplies and, consequently, lower power consumption. But changing a fabrication facility to achieve lower geometries is a pure financial decision. It costs about $\$ 500$ million to put a new fabrication facility in place. Therefore, many vendors want to reap some benefits from existing facilities before investing in a new one.

Nevertheless, companies are going forth with fabrication investments. For example, American Microsystems Inc will bring a $0.6-\mu \mathrm{m}$ facility on-line by the fourth quarter to produce a family of 3 V -only gate arrays. IBM has already approved a $0.25-\mu \mathrm{m}$ fabrication facility for higher-density arrays operating at 2.5 V . The new family will feature five layers of metallization, shallow trench isolation, and stacked vias. These low voltage ASICs are increasingly interfacing to low-level interfaces, such as Gunning transceiver logic, low-voltage TTL, and PCI.

The packaging issue for these high-density, low-voltage gate arrays has gotten out of hand. Ball-grid arrays seem to be popular, but ceramic pin-grid arrays, plastic flat packages, ceramic flat packages, tape automated bonding, and plastic leaded chip carriers all come with myriad pin counts and are vying for position. Your choice depends on cost and thermal demands (Ref 1).

TABL 1 LOW=POWER ASICS (CONT)							
Company	Model	Maximum usable gates	Power dissipation ($\mu \mathrm{W} / \mathrm{MHz} /$ gate)	Internal gate delay (psec)	Supply voltage (V)	Price	Features
Texas Instruments Circle No. 322	$\begin{aligned} & \text { TGC1000 } \\ & \text { at } 5 \mathrm{~V} \text {, } \\ & \text { TGC1000LV } \\ & \text { at } 3 \mathrm{~V} \\ & (0.7 \mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 16,000 \text { to } \\ & 455,000 \end{aligned}$	0.8 at 3V	270 at 5V, 360 at 3 V	5 or 3.3	NRE starts at $\$ 20,000$ for the TGC1000 series	2- or 3-layer metallization; sea-of-gates architecture with digital PLL operating as fast as 100 MHz at 5 V and 60 MHz at 3 V ; CMOS base cell operates as low as 2.7 V ; supports mixed-voltage I/O levels; automatic test-pattern generation using level-sensitive scan design
Toshiba Circle No. 323	TC180 Series ($0.5 \mu \mathrm{~m}$)	$\begin{aligned} & 30,000 \text { to } \\ & 315,000 \\ & \text { (TC183G) } \end{aligned}$	2.2	230	3.3 and 5	NRE: $\$ 114,600$	Gate array (TC183G), embedded array (TC183E), standard cell (TC183C); 3.3 and 5 V I/Os; 2- or 3-layer metallization; embedded blocks include RAM and multipliers; 628 I/O pads
	TC170 series ($0.7 \mu \mathrm{~m}$)	$\begin{aligned} & 22,000 \text { to } \\ & \text { 194,000 } \\ & \text { (TC170G) } \end{aligned}$	4.4	270	5	\$15 for 45,000 gates	2-layer metallization, less power than previous 0.8 $\mu \mathrm{m}, 5 \mathrm{~V}$ ASICs; gate array (TC170G), standard cell (TC170C), libraries compatible with TC180 series
VLSI Circle No. 324	FlexArray ($0.5 \mu \mathrm{~m}$)	800,000	1.1	190	3.3	Not specified	2- and 3-layer metallization, cell-based libraries contain large functional-system blocks; supports systemclock rate as fast as 200 $\mathrm{MHz} ; 672$ pins on a taped ball-grid array; GTL- and PCI-compliant I/O interfaces; IEEE 1149.1 boundary scan
		Super Circle Number		For more information on low-power ASIC products available from all of the vendors listed in this box, you need only circle one number on the postagepaid reader service card. Circle No. 325			

Which gets your data faster and easier?

TEXT BASED LANGUAGE
DT VEEFOR WINDOWS

Fred Molinari,
President

DTVEE for Windows: the Obvious Choice!

GET DATA FAST AND EASY!

A complete application in three simple steps
\qquad

- Quick to learn, easy to use
- Powerful data analysis and display
- 100% Windows: simplified interface, DDE
- Flexible application development and maintenance
- No time-consuming compiling-ready to run

Speed your application development with DT VEE ${ }^{\text {m" }}$ for Windows.'. DT VEE is a complete graphical programming approach that lets you create sophisticated data acquisition applications without ever writing code.

With DT VEE, you easily create, debug, and document. Program development is intuitive-simply connect functionspecific objects in a logical sequence and run. It's that easy.

With more than 180 analysis functions, comprehensive display capabilities, and full hardware support, DT VEE has everything you need for data acquisition. DT VEE is based on HP VEE for Windows, ${ }^{\text {T" }}$ and is backed by the Hewlett-Packard and Data Translation commitment to quality.

Call 1-800-525-8528 today (In USA and Canada). FREE DT VEE evaluation version available.

Get SMART

R E G U L A T O R

Cherry Semiconductor SMART Regulators, give you clean, tightlyregulated supply lines, sophisticated microprocessor monitoring \& control, and energy conservation capabilities all in one IC! Available in a range of efficient power packages, simply select the best combination of logic functions for your application:

- Get ENABLE
to control your system actuators as needed.
- Get RESET for your microprocessor during low voltage conditions.
- Get WATCHDOG protection against microprocessor misexecutions.
Call 1-800-272-3601 for your FREE Smart Regulator ${ }^{\text {rw }}$ Selection
Guide!

CHERRRY SEMICONDUCTOR

Cherry Semiconducter Corporation 2000 South County Trail, East Greenwich, RI 401 885-3600

CIRCLE NO. 75

EDN-TECHNOLOGY UpDATE

LOW-POWER ASICs

Oki Semiconductor's $0.8-\mu \mathrm{m}$ MSM3350000 sea-of-gates architecture features slew-rate-controlled outputs, which can be contigured as 3 or 5 V , T LL, or 3 -state having a 2^{-} to $24-\mathrm{mA}$ driver.

Hitachi recently introduced a $0.5-\mu \mathrm{m}$ CMOS gate and embedded array having raw gate counts ranging from 52,000 to 667,000 . The HG72G/E family operates faster than 100 MHz and has 500,000 usable gates and as many as 500 I/O pins. Despite advances in lowpower operation, such ASICs can dissipate 15 to 20 W . Hitachi has developed a ball-grid-array package with as many as $672 \mathrm{I} / \mathrm{O}$ pins to handle these highdensity applications. The HG72G/E family offers on-chip PLL clocks and a maximum metallized memory storing 256 kbits.

Table 1 highlights some representative low-power ASICs. Although the gate densities are high, many of today's EDA tools and package technologies limit the practical density of designs. Many times you can achieve a power savings by breaking up a design into multiple ASICs and using more than one less expensive package.

Reference

1. Pivin, David P, "Pick the right package for your next ASIC design," EDN, February 3, 1994, pg 91.

You can reach Technical Editor John Gallant at (617) 558-4666; fax (617) 5584470.

VOTE

Please use the Information Retrieval Service card to rate this article (circle one):

High	Medium Interest 589	Lnterest 590
Interest		
591		

DC-DC CONVERTERS

Surface Mount - PC Board Mount - Low Profile • Single and Dual Output - Isolated • Industrial to Military up to 1000 Volts

AC-DC
 POWER SUPPLIES

Linear © Switchers • Open Frame - Low Profile - Up to 200 Watts

NeN HIGH POWER CONVERTERS

- New Isolated DUAL Outputs

Wide Input Voltage Range

for Free PICO Catalog.
Call toll free 800-431-1064 in NY call 914-699-5514 FAX 914-699-5565

Electronics,Inc.
453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552
CIRCLE NO. 123

Highlight
critical paths
across windows

QuickBoolean entry embedded in schematic symbol x
Simulation results dynamically displayed on schematic

The Fastest Tools for the World's Fastest FPGAs

The fastest time-to-market is attained when designers use productivity Power Tools for QuickLogic's WildCat ${ }^{\text {TM }}$ Series the world's fastest FPGAs.

QuickLogic toolkit owners find instant productivity with the intuitive interfaces of both our Windows and Sun packages. These tools feature 100% automatic place and route using advanced timing-driven placement that eliminates timeconsuming intervention with hand tools.

Great Power Tools Drive Great FPGAs

Our pASIC® family's low cost WildCat Series provides a wealth of interconnect resources for an environment where design iterations have no effect on pin-out and minimal effect on timing. Even the use of all I/O and flip-flops will consume only 5% of the available interconnect. And your designs will always route, even with all pads fixed.

At the heart of QuickLogic's software is a tool called SpDE ${ }^{\text {TW }}$ (Speedy), and it lives up to its name by running 1 K usable-gate designs in under 2.5 minutes. And our toolkit also includes a powerful Technology Mapper, which improves any synthesized
result, including VHDL and Verilog, with up to 60% reduction in silicon and a performance increase of 25%.

If you need more convincing that QuickLogic delivers a superior time-to-market design solution, just fax us your business card. Be one of the first 100 faxes and receive a FREE Evaluation Kit, complete with all the tools you need to enter, simulate and analyze your design.
To learn more about our Power Tools, fax us at 408-987-2012 or call 1-800-842-FPGA (3742) for a QUICK response.

1-800-842-FPGA(3742) • European Fax: +49 (89) 8577716
© 1994 QuickLogic Corporation. PASIC is a registered trademark and SpDE and WildCat are trademarks of QuickLogic Corporation. All other trademarks are the property of their respective companies.

Whether you' re working with camcorders, cellular phones or electronics notebooks, signal lines or power lines, normal mode or common mode, TOKIN EMC components provide exceptional functionality that can boost
your PC boards to a powerful new performance level.

Intemational Sales Departunent
Sumitomo Seimei Sendai Ghuo Bldg, 4-6-1, Chuo, Aóba-ku,
Sendai 980 , Japan Sendai 980, Japan Phone: 022-211-1281, Fax: 022-211-0975
Korea Representative Office.
\#602, Champs-Elysees Bldg., 889 -5, Daechi-Dong, Kangnarn-gu, Seoul, Korea
Phone: (2) 569-2582~5 Fax: (2) 544-7087
Tokin America Inc.
155 Nicholson Lane, San Jose, California 95134, U.S.A.
Phone: 408-432-8020 Fax: 408-434-0375 Chicago Branch

Tokin Electronics (HK) Ltd.
 Tsimshatsui, Kowloon, Hong Kong Taiwan Liaison Office 1 - Ex, Phone: (102) 7728852 Fax: (02) 7114260 Singapore Branch
 Phone: 2237076 Fax: 2236093,2278772 : F , Shanghai Liaison Office

Takin Europe GmbH

Knorrstr. 142,80937 München, Germany \quad En,
Phone: 089:311 10 66 Fax: 089-311,35:84

Some Delays Can't Be Avoided.

Some Can.

No one likes delays. System engineers especially.
That's why we invented a logic switch so fast it
'disappears' in your system. Its 250 ps propagation delay is at least 10 times faster than standard logic devices. So you can say good-bye to logic-induced performance penalties for good.

This high-end technology has swiftly grown into our QuickSwitch ${ }^{\circledR}$ product family. Offering pin-forpin replacements for bus switches, high-speed buffers and transceivers, and mux/demux devices.

QuickSwitch products deliver delay-free 5 V -to- 3 V signal conversion making them ideal for emerging

Pentium-based
PCs as well as
laptops and PDAs. They also have the hot-plug (live insertion) capability plus a low 5 -ohm "On" resistance. They add no power dissipation, no ground bounce, and require no directional control.

QuickSwitch devices come in SOIC, QSOP, and now QVSOP $^{\text {TM }}$ as well as standard DIP packages. Call today for the popular QuickSwitch Product Handbook chock full of innovative, customer-inspired applications. 1-800-609-3669. Or Fax 408/496-0773.

Avoid delay. We did.

For the industry's most wake up to

> E.
> iFX8160 intel

With FPGAs, it's always something. Sacrifice speed to get density. Give up low power consumption for speed. If you're tired of living with compromise, you'll love what Intel is serving up.
Intel's FLEXlogic family of devices offers the best combination of performance, predictability and advanced features, with low risk and fast time to market. Here's a taste of what we offer:

With FLEXlogic devices, your pin-to-pin ${ }^{\text {PDD }}$
is 10 ns . Period. No matter what path you choose or how you route the device. That makes them the fastest FPGAs at comparable densities, without design surprises.

FLEXlogic chips are extremely flexible, too.

Intel FLEXIogic Family				
device	macroceles	tpd	vo	I_{Cc}
ifx8160	160	10 ns	168	2.5 mA M Mz
ifx780	80		102	1.5 mA M Mz
iFX760	60	10 ns		1.5mAMHz
	40	10 ns	50	
iFX730	30	10ns	30	ImAMHz

select blend of features, Intel FLEXlogic.

Their configurable function blocks can be programmed as either 24 V 10 logic or SRAM. They also have a high number of I/O pins, which you can program for either 5 V or 3.3 V operations.

And FLEXlogic devices reduce design hassles. For example, they fully support JTAG Boundary Scan IEEE 1149.1 and in-system reconfiguration. And the new iFX8160 has on-chip Flash for insystem reprogramming.

To further simplify the design process, Intel FLEXlogic devices are supported by Intel PLDshell

Plus software, available for free, as well as advanced design support on industry-standard CAE tools.

A new day is dawning for logic devices. Call 1-800-879-4683, ext. 138 for complete FLEXlogic specs, or dial FaxBack* at 1-800-628-2283, doc. \#2725. Because when it comes to logic innovation, Intel definitely has something brewing.

intel.

Powerane One pover spplier for alleasms

LINEARS

Produced in an ISO 9000 certified facility and agency certified to EN60950, Power-One linears continue to set the standards for performance.

NRG SERIES"

250 to 550 watts - Available in modular configurations with up to seven outputs or four-output non-modular OEM configurations.

740 Calle Plano • Camarillo, CA 93012 • [800] 693-0212 • FAX [805] 388-0476

SURFACE-MOUNT POWER MAGNETICS

Isolated innovation marks movement toward miniature magnetics

RICHARD A QUINNELL, Technical Editor

Hampered by fundamental physical limits and manufacturing constraints, the magnetics industry is slowly joining the trend toward sur-face-mount designs. Standardization, however, remains a distant dream.

Nearly every segment of the electronics industry has struggled to adapt to surfacemount technology. One of the last holdouts, the magnetic component used in power conversion, is finally adapting, and innovative products are beginning to appear. Surfacemount power magnetics form an immature technology, however, and designers should proceed carefully when selecting components. They should also keep their expectations modest.

Compared with the progress that other electronic components have made toward surface mount, magnetics are only now emerging from the dark ages. Offerings are limited, standardization is nonexistent, and components are still relatively bulky. But such a comparison is a bit unfair, because magnetic components suffer from some fundamental limitations that other components don't face.

Consider, for example, the component's bulk. Before surface-mount technology became widespread, devices such as resistors, capacitors, and semiconductors were a given size, mainly based on packaging. The functional portion of the component could be as low as 20% of the package's total volume. The ubiquitous ${ }^{1 / 4} \mathrm{~W}$ resistor, for example, was widely used because it was inexpensive, not because designs needed the power rating. As circuits
shrank, reducing the resistor's size was relatively easy. Even ICs have seen much of their size decrease because of packaging innovations, not die shrinks.

As a result of the relative ease with which other components shrank, designers have come to expect similar strides in magnetic components. They have been disappointed. Yet there are a number of significant reasons as to why progress has been slow. These reasons include both manufacturing and physical limitations.

Most magnetic component manufacturers are small to midsized companies with tools

Surface-mount power magnetics such as the DT and DO series from Coilcraft, shown here, are making some strides toward compactness. Ultimately, however, such devices are limited in how small they can become by their core dimensions.

SURFACE-MOUNT POWER MAGNETICS

Fig 1-Surface-mount inductors can have an open- or a closed-core design. The toroid (a), double-E (b), and pot (c) cores form closed magnetic paths, reducing the generation of EMI. The open-core design (d) can handle more current but can interfere with sensitive components.
designed for producing traditional component sizes. Most equipment for producing magnetic cores, for example, has an absolute machining tolerance of 0.1 mm to 0.5 mm (0.005 to 0.020 in .). That tolerance is fine for components that are larger than 10 mm (0.4 in.). It represents an intolerable variability when creating a product that must be shorter than 1.2 $\mathrm{mm}(0.05 \mathrm{in}$.) to fit inside a PCMCIA card. But the smaller companies remain reluctant to retool because
the resulting capital expenditure represents a significant portion of their resources.
Such problems are readily solved, however, if there is enough money waiting for those that take the risk. The market is not yet at that point. The emergence of a substantial, uniform market for small magnetic components or the assistance of a large customer is needed to change the manufacturing situation. What will not change so readily are the physical limits that keep magnetic components relatively large.

Physics prevents small magnetics
The physical limits stem from the energy-storage capacity of magnetic devices. The energy (W) stored in a component with inductance (L) carrying an instantaneous current (I) is:

$$
\mathrm{W}=1 / \mathrm{LLI}^{2} .
$$

If the inductor is a solenoid of height (h) and core cross-sectional area (A),

EDN-TEchnology Update

its inductance value is approximately:

$$
\begin{equation*}
\mathrm{L}=\mu \mathrm{N}^{2} \mathrm{~A} / \mathrm{h}, \tag{1}
\end{equation*}
$$

where $\mu=$ the core inductance and $\mathrm{N}=$ the number of turns of wire around the core. The magnetic field strength (B) inside the core is:

$$
\begin{equation*}
\mathrm{B}=\mu \mathrm{NI} / \mathrm{h} . \tag{2}
\end{equation*}
$$

Magnetic cores have an upper limit on the field strength they can contain that, in turn, limits the energy the inductor can store. Solving Eq 2 for I and combining with Eq 1, you can calculate the energy storage as:

$$
\mathrm{W}=\mathrm{B}^{2} \mathrm{Ah} / 2 \mu .
$$

The volume $(A \times h)$ of core material used, therefore, sets an upper limit on the energy an inductor can store.

The energy-storage needs of powerconverter circuits, then, determine the minimum size surface-mount magnetic components can achieve. You have some

LOOKING AHEAD

Designers' major complaint about surface-mount power magnetics, their lack of standards, is unlikely to be corrected anytime soon. For many magnetics suppliers, their competitive edge is the uniqueness of their products. Once their products are designed in, the manufacturers are ensured of a customer. A move toward standardization threatens their existence.

That situation could change if the market demands standardized products. There are some indications that such demands are growing, but the market remains small. The most likely candidate for growing the small standard-magnetic-component market is the PCMCIA card. It has the potential of forming a large demand for low-cost, widely available magnetics; that is, standardized products.

The designer's other complaint, size, is more likely to see industry activity, although that activity will remain sporadic without a concurrent move toward standardization. Magnetics manufacturers are interested in finding new designs and methods; they just can't afford to take too much risk on their own. With the help of large customers, however, they will continue to create options in small magnetic components. Progress will be slow, that's all.
flexibility in that you can trade increased core area for decreased height, thus shrinking the magnetic component's profile. There must be enough height to accommodate the wire turns, however, so even this tradeoff has its limits.

Increase f, lower L

Another option is to raise the switching frequency (f) in your power-conversion circuit. The size inductor you need is inversely proportional to the switching frequency. Increasing switching frequency has its drawbacks, however.

 puter Architecture

EDN-TEchnology Update

SURFACE-MOUNT POWER MAGNETICS

In addition to generating additional EMI, higher frequencies increase ac losses in the inductor. These losses come from two effects: eddy currents and skin effects.

Eddy currents are electrical currents induced in the magnetic core material by the changing fields within the core. The currents circulate around the magnetic field path, dissipating energy as heat within the core material. The size of the currents depends on the changing magnetic field's frequency and the core material's conductivity. Proper selection of core material will limit eddy-current losses.

The skin effect refers to the tendency of high-frequency currents to remain near the surface of conductors. Because the current occupies only a portion of a wire's cross section, the wire's effective resistance increases with frequency. The solution is to use stranded wire when winding the coil, thus increasing the conductor's surface area for the same total volume. Winding small coils with fine stranded wire, however, can prove to be a costly alternative.

If you can't change your design to reduce your inductor needs, you're stuck with the core-volume limit. This limit is the major reason why surfacemount power magnetics have lagged behind other components in size reduction. All is not lost, however. There have

A number of different core types are available in surface-mount form. Not all have the flat surfaces needed for automatic pick-and-place assembly, however. (Photo courtesy of GFS Manufacturing)

been innovations in the industry, and several manufacturers have developed unique structures to reduce component size.

Two of the most common configurations for power magnetic components are the toroid and the double-E core (Fig 1a and b). Both are available in surface-mount versions from a variety of manufacturers. More recently, structures such as pot core (Fig 1c) have become available in products such as the Coilcraft DT series. Coilcraft has also created an open-core product (Fig

FOR FREE INFORMATION...

For free information on the power-magnetic components discussed in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Coilcraft Inc

Cary, IL.
(708) $639-6400$

Circle No. 301
Coiltronics Inc
Boca Raton, FL
(407) $241-7876$

Circle No. 302
GFS Manufacturing Co Inc
Dover, NH
(603) $742-4375$

Circle No. 303
Pico Electronics Inc
Mt Vernon, NY
(914) 699-5514

Circle No. 304
Premier Magnetics Inc
Aliso Viejo, CA
(714) 362-4211

Circle No. 305

VOTE . . .
Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 598
Medium Interest 599
Low Interest 600

Super Circle Number
For more information on power magnetic components available from all of the vendors listed in this box, you need only circle one number on the postage-paid reader service card.

Circle No. 306

1d), the DO series, to provide increased current-handling capability.

Open-core structures are smaller

The open-core structure of the DO series provides several attributes that allow for a greater energy-storage capability than do the more common structures. Because the magnetic field path passes through air, which does not saturate, the device can carry more current before saturating. In addition, the structure allows the use of thicker wire than is feasible with shapes like the toroid or double-E core, which have windows in the core material that thick wire would rapidly fill. The thicker wire offers less resistance, hence introducing less loss into the power conversion.
A family of axial inductors from GFS Magnetics also uses the open-core structure. These inductor blocks are intended for in-line filters in power conversion circuits and offer low dc-resistance. A 10 $\mu \mathrm{H}$ inductor can handle as much as 4 A dc current, and inductors as large as 1 mH are available.
The drawback of the open-core structure these two devices use is a greater tendency to generate EMI. By allowing the field to pass through the open air, the open-core structure runs the risk of having the field interact with other parts on the circuit board. Closed cores constrain the inductor's magnetic field to reside almost entirely within the core.
Coiltronics has made use of planar magnetics to produce an innovation in

How dense can you get?

These remarkable new ultraminiature inductors can shrink your DC-DC converters to the bare minimum.

Coilcraft's DT Series inductors represent a significant breakthrough in size, performance and price.
Thanks to our exclusive L-tra ${ }^{\text {TM }}$ magnetics enhancement technology, you get exceptionally high inductance and current capability in a small footprint part.

"Swinging" inductance

Unlike other DC-DC converter inductors, these parts provide very high L at

zero or low current. This "swinging" inductance characteristic is especially desirable in converters that have varying load currents. It eliminates the need to

use an excessively large inductor to accommodate small or no load conditions.

Excellent power handling

Our DT inductors solve thermal management problems. As you can see from the graph, even at 150% of rated current the temperature rise is less than 15°. You can use them at much higher currents because their construction provides a natural heat sink.
True surface mount design
All materials used in these inductors are optimized for surParts are packaged in tape and reel.
face mounting. There are no structural plastics or potting materials to be damaged by reflow soldering or cleaning oper-

ations. Their flat top and standard tape and reel packaging permit easy auto insertion. And self-shielding characteristics are on a par with toroid designs.

Free evaluation samples

Check out the size and performance advantages of these new DT Series inductors for yourself. Order our $\$ 95$ Designer's Kit No. C104 with 3 each of 38 different parts. Or call 800/322-2645 for free samples of two values.
eem/electronic engineers master
See our catalog in Vol. A, Section 1800

SURFACE-MOUNT POWER MAGNETICS

closed-core design. The company offers a 10 $\mu \mathrm{H}$ double-E core inductor capable of handling 600 mA (peak) yet only 1.19 mm high. The device uses the traces on a multilayer pc board in place of wire for the coil, increasing the coil density. The device, dubbed MicroPower, is the first in a family of low-profile parts that the company will slowly develop as standard products.

Manufacturing challenges remain

Even though the industry is producing some small components, surfacemount magnetics are far from a mature product. You still have some factors to consider that may affect your design's manufacturability. Also, surface-mount power magnetics present some significant manufacturing challenges.

One challenge involves the pick-andplace equipment that automatically positions components on a circuit board for soldering. Such equipment typically uses a vacuum tip to pick up components; hence, it requires that the component have a flat surface. Not all sur-face-mountable magnetic components have a flat surface. A toroid can be made surface-mountable by attaching it to a carrier, for example, but it doesn't provide a flat surface unless it is also enclosed in some form of case. Yet many surface-mount magnetic components are not enclosed.

This forces the board manufacturer to place these compo-

int nents by hand, increasing your design's manufacturing cost.
Another challenge lies in the soldering meth-

Electrical and mechanical compatibility is all but unknown among magnetic components from different suppliers. One exception is the Octa-Pac series from Coilcraft. GFS Manufacturing offers the Power-Pac series, a compatible part, shown here.
ods for surface-mount circuit boards. The most common method uses a heated chamber or IR radiation to melt solder attached to both the board and the components, causing the two solder volumes to flow together. This reflow-soldering technique requires heating the assembly to 220 to $250^{\circ} \mathrm{C}$ for approximately 30 sec .
The problem is, most magnetic components are made of materials that are rated only at 130 to $150^{\circ} \mathrm{C}$ continuous exposure. The brief excursion to higher temperatures risks damaging such things as the enamel insulation used in coil windings. The high temperature also risks deforming the plastics used in the cases, potentially causing the component to lift from the pc board during soldering.

To combat this problem, some mag-netic-component manufacturers, such as Pico Electronics, have switched to materials with greater temperature tolerance. Other manufacturers have designed their components to deflect the heat away from sensitive elements, providing resistance to the brief temperature excursion. Either way, you should check your soldering process with the magnetics manufacturer to ensure that the parts will survive.

A final manufacturing challenge comes from the limited selection of sur-face-mount magnetic components available. You may be forced to go with a custom design in order to meet your circuit's needs, with the attendant development cost. Even if you can use a stock value, you still face one of the custom component's drawbacks: a solesource supplier. Magnetic-component suppliers each have their own techniques and product styles. Rarely do two manufacturers offer devices that are both electrically and mechanically similar.

Limited standardization

One exception is the Octa-Pac series from Coiltronics. This design has been popular enough that other manufacturers have begun to copy it. GFS Magnetics, for example, has introduced its Power-Pac series, a pin-compatible equivalent to the Octa-Pac.

Such exceptions are rare, however. Many magnetics manufacturers attract and retain their customers by offering unique capabilities. Changing from their unique designs to industry-standard products would force them to invest in equipment and tooling without the guarantee of customers. There is little internal motivation to follow that approach, nor are there any magnetics-industry groups that can impose standards. Only a large customer or great demand for uniform products will drive them to standardization.

As a result, innovation in surfacemount power magnetics continues to occur on a sporadic and disjointed basis. So, if the devices that are available don't meet your needs, don't expect the industry to offer alternatives soon. Change
comes slowly on its own. Your best bet is to work with a supplier to develop the product you need. Magnetics manufacturers are glad to help
find innovative answers to your sur-face-mount magnetics needs, if they're not in it alone.

EDN

References

1. Nelson, Carl, "LT1070 Design Manual," Application Note 19, Linear Technology, June 1986.
2. "Careful inductor selection optimizes low-power dc/dc converters," Maxim Engineering Journal, V4, Maxim Integrated Products, 1991.

Acknowledgment

I would like to thank Steve Pietkiewicz, senior design engineer at Linear Technology ((408) 432-1900), and Bruce Moore, staff scientist at Maxim Integrated Products ((408) 737-7600), for their invaluable assistance in researching this article.

Technical Editor Richard A Quinnell can be reached at (408) 685-0504, fax (408) 685-0504*.

VOTE

Please use the Information Retrieval Service card to rate this article (circle one):

High		
Interest		
598	Medium Interest 599	Low Interest 600

From PBX circuitry to advanced fault tolerance, VMEmodules are the talk of the telecommunications industry.

Motorola VMEmodules are an automatic choice to streamline a wide range of manufacturing control applications.

Motorola VMEmodules process the commands that make aircraft simulators fly.

Motorola VMEmodules are helping make high-tech, high-quality medical imaging picture perfect.

Motorola VMEmodules keep systems on cruise ships sailing.

Our VMEmodules are used in electronic prepress to keep it fast, cost-effective, and letter-perfect.

What Would You Like Your VME Board To Be Today?

The MotorolaVME family of | And that's just one module. products are incredibly versatile. In fact, one of our VMEmodules can fulfill an array of functions, yet it fills only one VME slot. VMEmodules give you more functionality per square inch, and more functions per module. For less overall cost than modules you could build yourself.

We Work For You.

Typical VMEmodule"functions include a basic compute engine, network interface, mass storage interface, parallel port interface, serial device interface, VMEbus interface, non-volatile data storage, and various timers.

We want to be your VME partners, and offer you exacting standards, fast turn-around times, and a wide range of options. The options you choose will be delivered to you in modules that snap onto your board or VME backplane. These modules are compatible with thousands of ready-to-use software programs. Start with the functions you need now, and add modules as needed later.

How Much Is Quality Worth?

When you buy your VMEmodules from Motorola, you
know you're buying quality, but you'll be surprised how affordable quality can be. We test our modules to exacting tolerances, and we back our boards with the industry's first Five-Year Warranty. Give us a call and let us know what you need your VME board to be today. We'll show you why ours will be a better value, day in and day out.

Motorola VMEmodules give you more functionality per square inch, and are compatible with thousands of software programs.
$1-800-759-1107$ Ext.EDN

POWER los

The business of power ICs-specifically

 those for power switching and motion control-is full of stories of technological achievements, but market success of highly complex ICs has not come so easily. After a decade of thinking the sky's the limit, vendors and designers are now seeking the right scale of integration from a wide range of possibilities.Anne Watson Swager, Technical Editor

With the advent of process technologies that can integrate virtually everything but the load itself, the current capabilities of ICs for power actuation and switching seem almost limitless. The potentially integrated functions include logic and control, sometimes implemented by a fully functional microcontroller ($\mu \mathrm{C}$); protection; diagnostic feedback; and, finally, a power-output stage. Whether you call it "smart" or "intelligent" power, the technical feasibility of combining these functions into one IC using some mixture of bipolar, CMOS, and DMOS (double-diffused MOS) structures is proven. (See box, "Combining power with memory and a μ C.")

However, once manufacturers started reaching this technological peak, some of them also started backing down the hill. While the concept of a complex IC that can perform every necessary function is allur-

W:GHING THE BENEFITS OF INIEGRATION

Power ICs

ing, the cost and complexity of these ICs greatly narrow their applications. As a result of some disappointing sales, some vendors have backpedaled, now mainly offering custom devices and few if any standard products. Others have concentrated on improving their process technology and have forged ahead producing even more highly integrated devices, again mainly on a custom basis. These companies have lowered costs by carefully targeting their products and services for high-volume markets and by working closely with customers to deliver specific high-performance ICs.

Still other vendors, even those that have the bipolar, CMOS, and DMOS (BCD) technology to produce high levels of integration, are trying an intermediate approach. (See box, "Taking the middle ground.") The overall result is a power-IC business that involves both custom products and a diverse category of standard products

for the general industrial market. Because of this diversity, many of these products are proprietary, although a few compatible sources, particularly of simple driver ICs, do exist. Spice models also become more rare as ICs increase in complexity.

Tackling the definition

Just what constitutes a "power IC" varies from manufacturer to manufacturer, depending on their product portfolios and points of view; that is, whether they approach the market from a discrete-transistor or an IC perspective. Some define power ICs by their functions-whether the IC actually includes the power transistor itselfothers, by the ICs' voltage and current levels, and still others by the ICs' general involvement in controlling power. Even the nomenclature of power ICs is mind-boggling: There are Smart SIPMOS, SmartMOS, and PowerPlus, to name a few.

The result is confusion. To eliminate further confusion, avoid trying to define a power IC explicitly, and instead think of how semiconductors involved with controlling power fit into a general framework (Fig 1). The
a general framework (Fig 1). The
figure shows two inde-
pendent paths of
a general framework (Fig 1). The
figure shows two inde-
pendent paths of

ARRAYS TRANSISTOR(S) WITH OVERCURRENT PROTECTION AND
 power semiconductors as part of a progression, with integration increasing from left to right.

COMBINING POWER WITH MEMORY AND A μ C

Combining power devices with a microcontroller ($\mu \mathrm{C}$) and memory currently represents the highest level of integration. To date, a number of manufacturers, including Motorola, Philips, SGS Thomson, and Texas Instruments, have demonstrated this capability, as the material in Ref 1 shows. In 1990, Motorola integrated its 8 -bit $68 \mathrm{HCO5}$ core with 96 bytes of RAM and 2064 bytes of user ROM and 240 bytes of ROM for test functions.

More recently, SGS Thomson unveiled its third-generation BCD3 process with which the company can combine an ST6 8-bit $\mu \mathrm{C}$ with a DMOS H-bridge power stage, driver and interface functions, a charge pump, and thermal protection. Using BCD3, the company can also integrate EEPROM, making the IC configurable by hardware and software. This "programmable power device," or "power PLD," contradicts the notion that "high integration means narrow application." With the SGS Thomson technology, you can potentially use a highly integrated device for a variety of applications.

TI's Prism process technology physically joins DMOS power switches with $\mu \mathrm{C}$ cores, memories, and analog. Prism tackles this joining through a modular design methodology that minimizes the number of mask steps to only those required for each IC; a power-only device takes six to eight mask steps, for example, and a fully featured product takes 16 to 18 . Harris Semiconductor also uses a semicustom cellbased approach to build power ASICs.

While this technology is extremely impressive, taking advantage of it requires a close working relationship with the vendor, so that the vendor is essentially providing a custom IC. SGS Thomson provides demonstration ICs to show what users can accomplish with the BCD3 process.

Detractors of this approach, including other vendors who've been unsuccessful selling many of the massive ICs they've built, always cite cost as the limiting factor.

Samples of SGS Thomson's H081 demonstration IC cost $\$ 10$ each. Other devices with similar performance to this IC should cost around $\$ 5$ to $\$ 6$ each in OEM quantities.

TAKING THE MIDDLE GROUND

With the Power+Logic family, Texas Instruments attempts to strike a balance between power elements, logic functions, and protection features. The company uses the same 60 V Prism process to produce these ICs as it does to produce its highly integrated ICs. (See box, "Combining power with memory and a $\mu \mathrm{C}$.") The Power+logic family suits powerswitching applications that require multiple power channels and onboard logic but do not require the advanced fault detection and reporting of highly integrated, intelligentpower ICs.

The first three logic devices in the family-the TPIC6259 8 -bit addressable latch, the 6273 octal D-type latch, and the 65958 -bit shift register-emerged two years ago in standard DIP and SOIC packages. The parts feature multiple independent DMOS power transistors with typical on resistances of 1.3Ω and avalanche energy of 75 mJ . Continuous output current is 250 mA , pulsed output current is 1.5 A , and typical quiescent current is $15 \mu \mathrm{~A}$. The devices include 45 or 50 V output-voltage clamps for inductive load switching.

Tl is now releasing the second round of family members, which offer the same three logic functions with their currents scaled down to drive arrays of lamps and LEDs. Typical specifications for the 6B259,6B273, and 6B595 are 5Ω $r_{\text {DSION }}, 30-\mathrm{mJ}$ avalanche energy, $150-\mathrm{mA}$ continuous current, and $500-\mathrm{mA}$ current limit. Prices for all of the devices in the Power+Plus logic family range from $\$ 0.77$ to $\$ 1.89$ (1000).

The company also uses its Prism process and methodology to produce the Power+Arrays family, ICs that combine two to seven multiple-DMOS power transistors. Current ratings range from 1 to 7.5 A of continuous current; $r_{\text {DSION, }}$ ranges from 0.5Ω to $90 \mathrm{~m} \Omega$. The newest low-current arrays come in standard SOIC packages. Prices range from $\$ 1.12$ to $\$ 2.42$ (1000).

Power ICs

 implemented precise functions for specific needs. One such example is the "combo" disk-drive IC, which combines the spindle and voice-coil motor drives, making smaller drives possible. Many of these specialized products, particularly automotive ones, with typical 60 V and 4 A ratings, have spilled over into the general industrial market, starting out as custom ICs and eventually becoming standard offerings.Although the automotive and diskdrive markets are huge, numerous other products target the more fragmented industrial markets. (See box, "Fully integrated H-bridges combine PWM.") Also, emerging high-volume markets are pushing the development of power ICs with high voltage and current requirements. The foremost example is the integration of high-voltage struc-tures-generally greater than 100 V with logic-level circuitry. (See box, "High-voltage power ICs surge.") Many vendors of these ICs are targeting the
market for electronic ballasts for fluorescent bulbs because of its potential volume in commercial applications.

In addition to these strong market influences on IC development, the box, "MOSFET drivers enable Class D audio amplifiers," provides a notable example of integrated ICs' effect on a previously unwieldy application.

Regardless of the end use of a power circuit, one principle is common: Users of power components must choose between relatively simple and flexible functions performed well on the one hand and complex-but conceptually simple-ICs on the other. The magic of simple functions is that you can quickly and easily configure them in the real world and make any necessary future design changes. The allure of a complex IC is its design simplicity: One IC can do everything.

No one would dispute that drivers and discrete power transistors can produce the most flexible designs. Two developments contribute to this flexibility: the wide availability of discrete transistors,
particularly power MOSFETs, and the increasing numbers and types of drivers, particularly MOSFET drivers. Regardless of the driver you select, you can independently select a MOSFET based on the design's speed and efficiency. Vendors of these MOSFETs also continue to make dramatic improvements in the devices' efficiency. The on-resistance ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$) of state-of-the-art TO-220-packaged N channel MOSFETs is less than $10 \mathrm{~m} \Omega$ at 60 V . A similarly packaged, state-of-theart P-channel device has an on-resistance of around $45 \mathrm{~m} \Omega$.

Integrated power transistors just can't compete with discrete transistors on the basis of $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ alone. There is a tradeoff between specific on-imped-ance-a measure of $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vs die areaof discrete transistors and ICs. Most power ICs have higher specific onimpedances than do discrete devices, simply because of fabrication differences that result in the ICs' larger power structures.

Just as discrete transistors' on-resistance has come down, so has that of inte-

Fuly int:cratid H-bidges comine pwM

Although it seems that most highly integrated power ICs are geared toward the automotive industry, vendors do develop many ICs-specialized motor controllers and drivers, in par-ticular-for many computer-peripheral and industrial applications. Some of these drivers now integrate PWM to drive bidirectional stepper and dc motors.

A recent example is National Semiconductor's LMD18245, which takes the level of integration of the company's LMD18200/1 family of DMOS H-Bridges one step further. The company builds the IC using LMDMOS, a proprietary bipolar, CMOS , and $\mathrm{DMOS}(\mathrm{BCD})$ process. Motor controllers from SGS Thomson and Unitrode Integrated Circuit Corp also incorporate PWM, but the 18245's 3A current capability is unique.

In addition to the features of the 18200/1, the new driver uses PWM in a fixed off-time pulsed current-control scheme. The IC generates internal logic signals that switch the bridge on and off at a high frequency to control motor current. Also, an on-chip DAC provides external digital control of the motor's speed and operation.

Setting the DAC's input word to the level of the required motor current causes the current to increase to the desired level, as sensed by an external current-sense resistor. When the DAC and current-sense inputs to the internal comparator are equal-which is the point of the desired level of currentthe bridge shuts off. When the internal monostable times out, the bridge turns back on, and the current again begins to
increase to the selected trigger point. Using this high-frequency chopping action, the IC maintains the DAC-selected current level in the motor.

Other features include typical $\mathrm{r}_{\text {osion }} /$ switch of 0.3Ω, highimpedance current sensing, thermal shutdown, current limiting, and undervoltage lockout. In a 15 -lead TO-220 package, the IC costs $\$ 8.45$ (1000).

Single-Device 5 to $\mathbf{~ 3 . 3 V}$ Power

...That Plugs Right In.

Now, from the innovator in integrated switching regulators, comes a new series of highperformance 5 V to $3.3 \mathrm{~V}, 3 \mathrm{Amp}$, 12-Pin, single in-line products.
The new Power Trends PT6305 family lets you easily solve
the problem of integrating low power 3.3 V logic integrated circuits into existing 5 V systems, without redesigning the power supply.

And, because the PT6305 Series has an extremely low profile of $.36^{\prime \prime} \times 2.00^{\prime \prime} \times .60^{\prime \prime}(\mathrm{H})$,
it's ready to meet your needs and conserve board space. Vertical, horizontal and surface mount versions are available.

The PT6305 features a high operating frequency of 650 KHz , for state-of-the-art power density and 85% efficiency. The device supports a wide input range of 4.5 to 10 V with good line and load regulation. Over-temperature and short circuit protection are built in.

If you're ready for a space-saving on-board power converter that you can plug right in, call Power Trends for a sample today! 1-800-531-5782.

Power ICs

 grated transistors. However, until vendors develop processes that allow for using the same compact DMOS structures in integrated devices that they use in discrete transistors, the two devices' on-resistance numbers will never match because of economic reasons. An IC requires two to four times more die area than does a discrete transistor to achieve the same on-resistance; such a large die area makes ICs too expensive to produce. The on-resistance numbers
also depend on vendors' proprietary processes and voltages.

Using discrete transistors also provides two other advantages: reduced size and increased protection. Discrete transistors are undergoing a dramatic shrinkage. For example, Sil-

Hich-voltace power ICs surce

One of the newest abilities of power ICs is integrating highvoltage structures with logic-level circuitry. Some 20 semiconductor companies worldwide, including AT\&T Microelectronics, Harris Semiconductor, International Rectifier, Power Integrations, and SGS Thomson, are pursuing highvoltage control applications. One of the high-volume markets driving much of this work is the electronic ballast for fluorescent lighting.

Applying IC technology to electronic ballasts is hot for two reasons: a worldwide drive for energy efficiency is causing a boom in the fluorescent-lighting industry, and real money, in the form of utility-company subsidies to consumers, is behind the increased-efficient-energy effort.

On the technical side, high-voltage IC technology has progressed to the point at which vendors can build low-cost ICs that can compete with existing electronic-ballast designs. These designs typically use a pulse transformer and discrete transistors. Using an IC eliminates the need for a transformer, thus easing the design, increasing efficiency, and reducing the design's size.

A recent example of a low-cost approach for this application is International Rectifier's IR2 155 (see "High-voltage ICs displace magnetic components for electronic ballasts," EDN, March 31, 1994, pg 73). The IC costs \$0.098 $(50,000)$.

In addition to its high-voltage floating section, the IC
integrates a number of other useful features. First, the IC self-oscillates at a frequency set by an external R and C, similar to a 555 timer. The IC also has internal circuitry that provides a nominal $1-\mu \mathrm{sec}$ dead time between alternating high- and low-side output for driving half-bridges. Finally, the IC operates directly from the ac line using an on-chip shunt regulator that generates 15 V via a low-watt dropping resistor.

In addition to electronic-ballast applications, high-voltage technologies are also propelling the design of ICs that can work from ac line voltages for all types of applications. For example, a new family of switching-power-supply ICs from Power Integrations shows a significant level of integration and cost reduction. In 3-pin TO-220 packages, devices in the TOPSwitch family integrate a high-voltage N-channel MOSFET with a CMOS PWM controller, including a $100-\mathrm{kHz}$ oscillator and various protection circuits. The off-line ICs work from 85 to 265 V -ac voltages and produce regulated dc outputs. Prices are as low as $\$ 1(10,000)$.

Still other developments include SGS Thomson's BCDOffline, which extends the company's line of BCD processes to higher voltages by incorporating grounded-source lateral DMOS transistors and insulated-gate bipolar transistors that operate at 500 to 700 V . Products undergoing qualification or under development include a full-custom fluorescent-lamp driver and half-bridge driver for appliance motors.

WE'VE TEAMED UP...

FOR A WHOLE NEW BALL GAME IN DC-DC CONVERTERS.

WORLD'S MOST ADVANCED DC-DC CONVERTERS.

- Miniature Size - Up to $58 \mathrm{~W} / \mathrm{In} .^{3}$ ■ Up to 250 Watts Per Module
- 12/24/28/48/270/300 VDC Inputs ■ Single and Triple Outputs
- Parallelable with Current Sharing

■ FAULT-SAFE ${ }^{\text {TM }}$ Power

- N+M Redundancy - No Single Point of Failure
- Hot Plug-in Capability

■ 2nd Sourcing - Independent Manufacturers

- >1 Million Hours MTBF per MIL-HNBK-217E
- Non-Shutdown OVP
- Constant Frequency Operation
- Output Good Signal

■ Optional Synchronization

NEW AUTOMATED PRODUCTION FACILITIES DELIVER HIGH VOLUME AT LOW PRICES.

RO has a new automated production line in Sunnyvale, CA. TOHRITSU's fully automated production facilities can deliver 100's of thousands of units per month. All units are fullfeatured - No stripped down economy models. Customers are invited to visit both facilities.

WE'LL DELIVER ONE OR ONE MILLION

Deliveries of low and medium quantities will be made by RO and higher volume requirements by TOHRITSU. The transition can be as transparent as desired.

LET'S PLAY BALL. CALL TODAY FOR A QUOTE. 800-443-1450

RO ASSOCIATES SINCE 1963

TOHRITSU CO. SINCE 1952

246 Caspian Dr., P.O. Box 61419
Sunnyvale, CA 94088
Tel: 408/744-1450
Fax: 408/744-1521
CIRCLE NO. 38

EDN-SPECIAL REPORT

Power ICs

 iconix recently announced Lite Foot, a power MOSFET that is even smaller than the successful Little Foot family. The Lite Foot family, which features performance similar to that of its predecessor, comes in an 8-pin TSSOP package. Manufacturers of discrete transistors have also found inexpensive ways to add protection features, such as overcurrent protection and output-voltage clamps.
Driver types multiply

The second boost to flexibility of dis-crete-transistor-and-driver designs is the increasing number and types of drivers, particularly MOSFET drivers. The term "MOSFET driver" refers to a wide range of devices. They all provide
a buffer between the analog control circuitry and the true power world, inputting relatively anemic signals and actually driving MOSFETs that can require high peak currents. These drivers suit a wide range of applications, including motor controls, power supplies, UPS systems, automobile braking systems, air-bag deployment, and industrial control.

Classes of MOSFET drivers include generic FET drivers that have one output to drive one MOSFET, usually optimized for low-side switching. More complex devices include bridge-based drivers, such as totem-pole, halfbridge, full-bridge, and 3-phase drivers. These bridges are difficult to work with and require designs that prevent shoot-through currents and maintain the refresh on the upper
floating supply. One benefit of integration in high-side and bridge-based drivers is the charge pump, which pumps the ground-based supply to the necessary floating-supply voltage to drive the gate at 10 to 15 V higher than the upper MOSFET source.

Although these drivers lack a power transistor, they can still implement protection. A separate driver can sense overcurrent with feedback from a series shunt resistor. Some drivers can also sense insufficient gate-drive voltage-a form of undervoltage pro-tection-to prevent the MOSFET from operating in its potentially destructive linear region.

ICs add speed and thermal protection

Clearly, using discrete transistors with many of the available driver ICs

MOSFET dRIVERS Enable CLASS D audio amplifiles

Using a MOSFET driver IC to implement a Class D audio amplifier may seem unusual, but higher integration and faster switching speeds are blending the two. Instead of a motor, the driver's load becomes a speaker and a lowpass filter, and an audio input replaces the motor's control signal. In essence, the same PWM scheme that controls a motor or a switching power supply instead drives a speaker. Harris Semiconductor is championing this idea using its HIP4080 MOSFET driver ($\$ 3.50(1000))$.

The HIP4080 H-bridge driver handles 80 V at 2.5 A while switching into a $1000-\mathrm{pF}$ load at 1 MHz . Typical rise and fall times are 10 nsec . Propagation delays are typically in the 50 nsec range. Other features include a 95 V -dc bootstrap-supply maximum voltage, and an integrated charge pump/bootstrap to maintain the upper switch-bias supply.

The driver's speed and propagation delays are the biggest factors driving its application in Class D amplifiers. The 1 MHz speed eases the design of the filter, and the $50-\mathrm{nsec}$ propagation delaysdifficult to achieve using discretesreduce factors that cause audio distortion. Miniaturization, efficiency, and a simpler design are also key benefits of the Class D approach. The design is less cumbersome than that of discretes because a bridge-based scheme requires an upper drive, which is difficult to implement with discretes.

Any Class D amplifier requires a control block to perform PWM of the control signal. The performance of the amplifier
in the figure is analogous to that of a switching power supply. The circuit first modulates the control signal to some highfrequency level and uses this PWM signal to drive the bridge. The filter then strips the PWM carrier from the bridge's output, leaving only the audio signal.

During a 1993 power-application seminar, Harris demonstrated the use of the 4080 in a 70 W audio amplifier that fit in a $5.25 \times 3.5-\mathrm{in}$. pe board. The design required only small heat sinks. The amplifier's efficiency was around 90%.

A promising application of Class D amplifiers is noise cancellation. Harris and Noise Cancellation Technologies (Stamford, CT) are working jointly on ICs similar to the 4080 to implement active-noise-cancellation products for automotive and industrial applications.

POWER ICs

presents formidable competition to the all-in-one IC approach. However, the advantages of ICs involve more than just combining circuitry into less space. Integrated power and driver ICs can do things that drivers and discrete transistors often cannot. For example, ICs that integrate the driver and power transistor or transistors can boast all the protection features of
discrete transistors, including thermal protection, which discrete transistors can't easily implement. (See box, "Integrating temperature sensing and serial communication.")

Thermally protecting a discrete transistor is possible, but it requires additional components. For example, Siemens accomplishes this task with the TempFET line by including a sensor along with the FET in a TO-220 or 218 package. To the user, this extra
component is transparent. But, aside from this exception, ICs can add thermal protection without additional components. Implementing these protection features in an IC results in lower circuit overhead and power losses, particularly when the IC is sensing overcurrent conditions.

The ability to indicate to other systems via diagnostic feedback that a fault condition exists is another advantage of ICs. According to Siemens, a

INTEGRATING TEMPERATURE SENSING AND SERIAL COMMUNICATION

One of the biggest advantages of integrating a power switch with control and logic circuitry is that it eases a design's ability to sense temperature and implement a fast shutdown. Although thermistors can sense a power transistor's temperature, integrated ICs offer much shorter delays and can more quickly shut off the overtemperature transistor.
Motorola's MC33298 octal serial switch (OSS) demonstrates this capability along with a high level of integration, including multiple output drivers and a serial interface. This integrated lowside switch also serves as an example of a device that a company conceived, specified, designed, and developed for the automotive industry but that's now available as a standard part.
A key aspect of the IC is that it can sense the temperature and independently implement shutdown of each of the eight
channels. Other fault-detection features include open-load detection, overvoltage detection and shutdown, and short-circuit detection and shutdown with one automatic retry per write cycle.

The serial interface exemplifies the diagnostic features available in complex ICs and allows the IC to communicate directly with a microcontroller ($\mu \mathrm{C}$). You can also daisy-chain four of these switches and use the same four serial lines from the $\mu \mathrm{C}$ to control all 32 outputs.

Key specifications of the device include typical $r_{\text {osson }}$ of 35 $\mathrm{m} \Omega$ at $25^{\circ} \mathrm{C}$ and power-supply voltage of 13 V . Sleep-mode supply current drops to a maximum of $50 \mu \mathrm{~A}$ (when $\mathrm{V}_{\mathrm{DD}}<2 \mathrm{~V}$).

The IC can control inductive loads (with output voltages clamped to 60 V) and incandescent loads (with 3 to 6 A output currents). The MC33298 costs $\$ 5.74$ ($1500+$). It comes in 20 -pin DIP and 24 -pin SOIC packages.

There are many areas where our function generator will surpass your expectations.

A built-in 12-bit, 40 MSample/sec, 16 K deep arbitrary waveform generator easily handles your custom waveform needs.

Internal AM, FM, FSK and burst modulation eliminate your need for a second modulation source.

Both linear and log sweeps are built in, making fulter and amplifier testing quick and easy.

And one where it falls short.

The HP 33120A 15 MHz

 synthesized function/arb generator: Within budget, without compromise.In the world of function generators, price and performance have always been synonymous. So it's understandable you'd expect to pay more for the measure of confidence you get with a synthesized signal source that delivers stable, accurate signals test after test. Or, for the flexibility to generate complex waveforms with arbitrary waveform capability.
You'd probably also expect to pay a premium for the convenience of built-in sweep and modulation functions. And to have both HP-IB and RS-232 interfaces standard.
Fact is, you can always get high performance with the high price to
match. Or, order the HP 33120A fully loaded function/arb generator and get something totally unexpected. A price you can afford.

> Call HP DIRECT at 1-800-452-4844*, Ext. 7819 to talk to an HP engineer about your function generator needs.

Want to speak to someone about the HP 33120A function/arb generator features, its complementary BenchLink/Arb software, or your application needs? Calling HP DIRECT is the fast, easy way to get all your questions answered - with no obligation to order.
You see, HP DIRECT is your direct line to information and solutions for HP basic test instruments. With one simple call, you can get product
if you're ready to order, we can help you do that, too.
So give us a call. And discover how much more you get from HP today.

* In Canada, call 1-800-387-3867, Dept. 476

There is a better way.

POWER ICs

 truly "smart" IC, such as those in the company's ProFET family, must be able to indicate its status, including short-circuit, undervoltage, and overvoltage conditions. The ProFET family of high-side switches, which now includes 2-channel devices that sell for around $\$ 2(10,000)$ each, includes diagnostic feedback; CMOS- and TTL-compatible inputs and status outputs; and ESD, overtemperature, overcurrent, and short-circuit protection.An IC also has a speed advantage because it lacks the parasitics associated with the drive and packaging of
discrete transistors. Higher speed benefits not only the device's general performance but also its ability to perform fast shutdown after sensing an overcurrent or overtemperature fault condition.

Ultimately, integrated power devices brush up against limits to usable output power. Handling too much power in an IC becomes uneconomical because of package constraints and excessive dissipation. Just as with the debate of integration itself, packing too much power into an IC eventually gets too expensive because of the larger die sizes such an IC requires. According to some esti-
mates, power greater than 100 W begins to stretch the economic practicality of an IC.

Sorting through the costs

Ultimately, determining the appropriate design approach requires emphasizing total system costs and any indirect savings an integrated design may produce. For example, by increasing switching frequencies, ICs can reduce the size and cost of other components. Reducing the number of discrete components may increase a design's reliability and decrease its size and component count. Eventually, you have to compare the cost of the exact

Manufacturers of power ICs

For free information on the power ICs for motion control and switching applications such as those described in this article, circle the appropriate numbers on the postage-paid Information Retrieval Service card or use EDN's Express Request service. When you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

Allegro Microsystems Inc
Worcester, MA
(508) 853-5000

Full-bridge PWM motor drivers,
lamp and relay drivers
Circle No. 339
AT\&T Microelectronics
Allentown, PA
(800) 372-2447 ext 882

High-voltage technology,
high-side gate drivers
Circle No. 340
Cirrus Logic Inc
Fremont, CA
(510) 226-2001

Disk-drive motion controllers,
power drivers
Circle No. 341
Harris Semiconductor
Melbourne, FL
(800) 442-7747, ext 7127

MOSFET drivers, power ASICs
Circle No. 342
Hitachi America LTD
Brisbane, CA
(415) 589-8300

Custom ICs (including logic, control, diagnostic features, and power output) for disk-drive and automotive applications
Circle No. 343

International Rectifier

El Segundo, CA
(310) 322-3331

High-voltage MOSFET drivers
Circle No. 344

Linear Technology

Milpitas, CA
(408) 432-1900

MOSFET switches and drivers
Circle No. 345

Micrel Semiconductor
San Jose, CA
(408) 435-3408

MOSFET drivers
Circle No. 346

Micro Linear

San Jose, CA
(408) 433-5200

Lamp drivers, motor controllers, electronic-ballast controllers Circle No. 347

Motorola Inc

Phoenix, AZ
(602) $897-3840$

Low- and high-voltage
BCD technology
Circle No. 348
National Semiconductor
Santa Clara, CA
(408) 721-6937

BCD technology, motor drivers
Circle No. 349
Philips Semiconductor
Sunnyvale, CA
(800) 447-1500, ext 3000

BCD technology, motor drivers, and controllers
Circle No. 350

Power Integrations

Mountain View, CA
(408) 960-3572

High-voltage technology,
half-bridge drivers
Circle No. 351

Semtech Corp

Newbury Park, CA
(805) 498-2 111

Interface drivers
Circle No. 352

SGS Thomson

Lincoln, MA
(617) 259-0300

BCD technology
Circle No. 353
Siemens Components Inc Cupertino, CA
(408) 777-4500

Protected FETs and ICs
Circle No. 354

Silicon Systems

Tustin, CA
(714) 573-6200

Disk-drive motor controllers

Circle No. 355

Siliconix

Santa Clara, CA

(408) 988-8000

Switches, motor controllers,
BCD technology
Circle No. 356

Supertex Inc

Sunnyvale, CA
(408) 744-0100

High-voltage ICs
Circle No. 357

Telcom Semiconductor

Mountain View, CA
(415) 968-9241

MOSFET drivers
Circle No. 358
Texas Instruments

Dallas, TX

(214) 995-6611

BCD technology, transistor
arrays, power logic
Circle No. 359
Toko America Inc
Colorado Springs, CO
(719) 528-2200

MOSFET/IGBT drivers
Circle No. 360

Toshiba America Electronics Components Inc
Irvine, CA
(714) 455-2000

Motor drivers and controllers
Circle No. 361
Unitrode Integrated
Circuits Corp
Merrimack, NH
(603) 424-2410

Drivers and motor controllers
Circle No. 362

VOTE . . .

Please also use the Information Retrieval Service card to rate this article (circle one):
High Interest 583
Medium Interest 584
Low Interest 585

Super Circle Number

For more information on the power ICs available from all of the vendors listed in this box, you need only circle one number on the postage-paid reader service card.

Circle No. 363

On the surface, nobody gives you a wider or more reliable choice of surface mount aluminum electrolytic and tantalum chip capacitors than Nichicon.

Fifteen series, designed to help you cut costs and speed assembly time. Each, designed to help you match the operating performance and delivery dates you want to your product needs.

Call your Nichicon representative or distributor for your free Product Catalog. It's an idea you can live with.

POWER ICs

functions you need with the extra circuitry necessary to implement them. When control, protection, and feedback circuitry costs start mounting, it makes sense to take a step or two up the integration scale. [EDN

Reference

1. Kerridge, Brian, "Intelligent power ICs: Auto applications drive up single chip's IQ," EDN, March 17, 1994, pg 27.

Acknowledgment

Thanks to Dean Henderson of Harris Semiconductor, Randy Frank of Motorola, and Arnold Alderman of International Rectifier for useful discussions.

You can reach Technical Editor Anne Swager at (215) 645-0544.

VOTE

Please use the Information Retrieval Service card to rate this article (circle one):

High	Medium	Low
Interest	Interest	Interest
583	584	585

LOOKING AHEAD

Vendors and users are bringing designs down to earth after a decade of thinking the sky's the limit on integration. However, technology doesn't change at an even pace, and highly complex power ICs will no doubt find their way into more and more products.

Companies are working on technology to combine BCD processes to better compete with discrete approaches. For example, Siliconix recently unveiled a line of power MOSFETs that uses a patented ver-tical-trench structure. If the company could combine such vertical structures with CMOS and bipolar structures (it already has a BCD process), many of the cost and performance tradeoffs between discrete and integrated transistors would disappear. None of these developments happen overnight, however. Work on the trench MOSFET began in 1987.

Another interesting development is SGS Thomson's BCD3 technology, which can integrate EEPROM. In the future, processes that combine programmability with power may provide the necessary design flexibility to tip the scale toward more complex power ICs.

For now, most of the action seems to be in medium-level integration, with an emphasis on keeping costs down and efficiently implementing functions, whether that means using a discrete transistor with protection or using a more complex control IC.

IN THIS ISSUE

Whatever your application, ADI has the ideal amplifier for you. And they're available from national distributors and local sales offices nearby. In this issue you'll find our newest amplifiers, with performance and prices to meet the most demanding applications.

High-Speed

High-speed amplifiers for video, highdefinition imaging and graphics, office equipment, communications systems, and test and measurement instrumentation.

Precision

From the inventors of the OP-07 come new circuits that combine superior $\mathrm{ac} / \mathrm{dc}$ specifications, high commonmode rejection, and low gain error.

Single-Supply

If you're designing 3 V or 5 V systems, you need amplifiers specifically designed and tested for low-voltage applications. Choose from the industry's largest selection of true single-supply amplifiers.

Low-Noise

For medical imaging systems or advanced audio equipment, ADI has a low-noise, low-distortion amplifier to fit your needs, at a price you can afford.

Instrumentation Amps

Why build your own instrumentation amplifier when ADI has a full selection ready to go, all with high accuracy and prices to beat discrete designs.

Free Spice Disk

The industry's best SPICE models covering over 392 devices are yours for the asking. The diskette includes macromodels of amplifiers, references, multipliers, analog switches, and more.

Applications Information

Our team is on your team. For assistance call on our factory or field applications engineers. With over twenty-five years of analog experience, we're here to help. 1-800-ANALOG-D.

LEADERS IN HIGH SPEED

FASTEST AMP ON 50 mW

Introducing the industry's fastest op amp on 50 mW . The new AD8001 $800-\mathrm{MHz}$ unity-gain monolithic amplifier uses just 5 mA of supply current. It can process high-speed video signals in HDTV equipment, professional cameras and graphics workstations. Videospecific parameters include 0.1 dB gain flatness to $100 \mathrm{MHz}, 0.01 \%$ differential gain, 0.025° differential phase $(\mathrm{G}=+2$, $\mathrm{R}_{\mathrm{L}}=150 \Omega$).

Other specifications include $1,200 \mathrm{~V} / \mathrm{s}$ slew rate and 10 ns settling of 2 V steps to within 0.1%. A single AD8001 can provide 70 mA of output current and drive up to six backterminated (75Ω load) cable lines. Full power bandwidth is 125 MHz with 5 V p-p signal swings. The AD8001's worst harmonic component at 20 MHz is -60 dB , and voltage noise

at 10 kHz is only $2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.
The AD8001 is packaged in an 8-pin plastic DIP or SO-8 and operates from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Military grades will be available with operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Prices begin at $\$ 2.75$ in $1,000 \mathrm{~s}$.

CIRCLE 1

LOW-POWER 110-MHz BUFFER RUNS COOL

The $110-\mathrm{MHz}$ BUF04 slews at $3,000 \mathrm{~V} / \mathrm{\mu s}$ and consumes only 6.9 mA . At $\pm 5 \mathrm{~V}$, you can reduce power to one-third with full $\pm 15 \mathrm{~V}$ performance. Closedloop design provides low offset and great gain accuracy, and $\pm 10 \mathrm{~V}$ signals settle to within 0.1% in 60 ns . Best of all, the BUF04 is packaged in lowprofile SO-8 and 8-pin DIPs.

Applications include a/d converter buffering, video cable driving, pulse detection, pro-audio d/a converters, and more. The BUF04 operates from

BUF04 KEY SPECS

Parameter	Min	Typ	Max	Units
GBW		110	MHz	
Slew Rate	2,000	3,000	$\mathrm{~V} / \mathrm{ps}$	
Supply Current	6.9	8.5	mA	
Voltage Noise Density	4		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Offset Voltage	0.3	1	mV	
Gain Linearity	0.005	$\%$		

Prices, from $\$ 3.71$ in 1,000 s.
1 Specifications with $\pm 15 \mathrm{~V}$ supply operation
$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies over temperatures from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

WIDE BAND OP AMPS FOR VIDEO, IMAGING, AND

 COMMUNICATIONSThese new high-speed op amps provide optimal price/performance in a wide range of video-speed applications. They excel at driving heavy capacitive loads. Some are specified for operation on single +3 V to +5 V supplies, others use common $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ dual supplies.

AMPS WITH LOW $\Delta G / \Delta \emptyset$

If you need high output drive, try the AD811. It's a high-performance video amplifier with superb video specs to preserve signal fidelity in highdefinition TV systems. The AD811 delivers high output drive of 100 mA for efficient line driving. It's specified over a wide power supply range of $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ and uses just 16.5 mA of power supply current.

Other family members include the AD810 and AD812, ideal for broadcast-quality applications. The AD810 is a low-power version that consumes just 6.8 mA in normal mode, while a DISABLE feature further reduces power to only 2.1 mA . The versatile and low-cost dual AD 812 , runs on a single +3 V or +5 V supply, or from $\pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ supplies. Package options include 8 -pin plastic DIPs, 16 - and 20 -pin SOICs, 8-pin Cerdips, or 20-pin LCCs. CIRCLE 3

TRIPLE VIDEO AMP WITH FAST DISABLE

The triple AD813 packs three currentfeedback op amps, each with its own independent 80 ns disable function. It offers unprecedented gain flatness for high-quality computer video and broadcast video gear. Operation is from either single +3 V to +5 V , or $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies. Supply current is a low $3.5 \mathrm{~mA}(+3 \mathrm{~V})$ and it delivers 100 MHz of unity gain $(-3 \mathrm{~dB})$ bandwidth.

For video muxing, CCD-based equipment, and RGB line driver applications, nothing matches the AD 813 . It operates from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and comes in small 14-pin DIP or narrow body SOIC packages.

```
CIRCLE 4
```


LOW-COST, GENERAL. PURPOSE AMPLIFIERS

The AD817 is optimized for applications that require unity-gain stable operation. Its counterpart, the AD818 is tailored for gains of magnitude equal to or greater than +2 or -1 . The AD818, with low differential phase and gain errors, is great for video cameras and pro video equipment. As an ADC buffer or line driver, the AD817 excels with its combination of high output current and unlimited capacitive load drive.

CIRCLE 5

HIGH-SPEED FET-INPUT

The AD843 and AD845 FET-input op amps combine excellent ac and dc performance with low power consumption. The dc performance of these unity-gain stable op amps is perfect for high-speed data acquisition systems. Their low input bias current and offset voltage can reduce errors in high-speed active filters, integrators, peak detectors, and current-tovoltage converter circuits.

Dynamic performance is equally impressive. They have low total harmonic distortion for high-speed sample/hold circuits, ADCs, and DSP front-end circuits. They also have industry-standard pinouts and can upgrade system performance. Both op amps operate from ± 15 volt supplies with five performance grades specified over commercial, extended, and military temperature ranges.
CIRCLE 6

VIDEO LINE DRIVING MADE EASIER

The figure below depicts a video line driver circuit and provides a list of recommended products with associated resistor values. When using a current feedback op amp for U1, closed-loop bandwidth largely depends on the value of the feedback resistor R_{F}. Attenuation of the circuit's open-loop response, especially when driving a load value $<250 \Omega$, will also affect its bandwidth. Gain resistance $\left(\mathrm{R}_{\mathrm{G}}\right)$ is typically set for stable operation at $\mathrm{G}=2$. Low values of R_{G} and R_{F} will minimize the circuit's feedback time constant and nonlinear behavior. The use of 1% metal-film resistors ensures the widest possible 0.1 dB bandwidth. To achieve even wider bandwidths, you can reduce the magnitude of R_{F}, but you run the risk of increasing signal peaking. Use maximum supply voltages and limit amplifier loads to minimize signal distortion.

With the exception of the AD8001, which operates from $\pm 5 \mathrm{~V}$ supplies, the products in the chart below are characterized with $\pm 15 \mathrm{~V}$ supplies. Bandwidth is a measure of gain flatness at 0.1 dB .

0 R
F
R
A
T
I
0

HIGH SPEED QUAD WITH PRECISION

The OP467, with four fast op amps in one package, has the fastest slew rate $(170 \mathrm{~V} / \mu \mathrm{s}$) and settling time ($\leq 200 \mathrm{~ns}$ to 0.01%) among quads. In multichannel systems, it can save space, reduce power and cost, and increase reliability. It's unity-gain stable and can drive high-capacitance loads up to $1,600 \mathrm{pF}$.

Besides its speed, it offers a low $200 \mathrm{\mu V}$ offset. Use the OP467 in highspeed instrumentation and test equipment, high-speed detectors, laser scanners, sonar arrays, and other applications that need speed, accuracy, and a wide ± 5 to $\pm 15 \mathrm{~V}$ operating range. It's housed in 14-pin plastic DIP, cerdip, 16-lead SOL, and 20contact LCC surface-mount packages.

```
CIRCLE 7
```


IMPROVED EL2020

The ADEL2020, a superior second source, will improve performance with less power drain and lower cost. Low differential gain and phase errors make it ideal for low-power video applications. The ADEL2020 is available in either plastic DIP or SOIC packages specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range.
CIRCLE 8

AN AMPLIFIER WITH A DIFFERENCE

The AD830 wideband amplifier rejects high-frequency common-mode voltage noise in differential line receiver applications. It handles differential signals, system grounds, and low-distortion highfrequency amplification. With $> \pm 50 \mathrm{~mA}$ full-output-current drive, it's useful for driving heavy loads. And its output clamping is great for driving ADCs.

Other benefits include balanced impedance inputs, symmetrical circuit behavior for gain of either +1 or -1 , and low sensitivity to source resistance.

The AD830 uses $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies, but its special offsetting capability allows it to perform with single supplies from +10 to +30 V . Packages include 8-pin plastic miniDIP, cerdip, and SOIC. CIRCLE 9

MODEL	AD810	AD811	AD812	AD813	AD817	AD818	AD843	AD845	OP467	AD830	UNITS
Channels	Single	Single	Dual	Triple	Single	Single	Single	Single	Quad	Single	
Supply Voltages	$\pm 5, \pm 15$	$\pm 5, \pm 15$	+3 to ± 15	+3 to ± 15	+5 to ± 15	+5 to ± 15	± 15	± 15	$\pm 5, \pm 15$	$\pm 5, \pm 15$	Volts
Feedloack	Current	Current	Current	Current	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	
BW, $0.1 \mathrm{~dB}(\mathrm{G}=+2)$	30	35	40	50	16	55	-	-	-	15	NHz
BW, -3 dB (G=+1)	80	140	145	125	50	$130(+2)$	34	16	28	100	MHz
Slew Rate	1,000	2,500	1,600	450	350	500	250	100	170	530	V/ps
Settling Time (0.01\%)	125	65	40 (0.1\%)	40 (0.1\%)	70	80	135	350	200	35 (0.1\%)	ns
SGain Error	0.02	0.01	0.02	0.03	0.04	0.005	0.025	0.04	-	0.05	\%
APhase Error	0.04	0.01	0.02	0.06	0.08	0.045	0.025	0.02	-	0.08	
$\mathrm{V}_{\mathrm{n}}(10 \mathrm{kHz})$	2.9 (1 kHz)	1.9 (1 kHz)	3.5	3.5	15	10	19	18	6 (1 kHz)	27	$\mathrm{nW} / \mathrm{Hz}$
Max V_{0} S	6	3	5	5	2	2	2	1.5	0.5	± 3	mV
Min Outpput Current	40	100 (typ)	40	50	50	50	50	50 (typ)	50 (typ)	± 50	mA
Max Supply Current	8	18	5.5	5.5	7.5	7.5	13	12	10	14.5	mA
Prices in 1,000s	\$2.08	\$2.85	\$2.48	\$3.74	\$1.52	\$1.69	\$3.70	\$2.76	\$4.86	\$2.42	USD
	CIRCLE3	CIRCLE 3	CIRCLE 3	CIRCLE 4	CIRCIF 5	CIRCLE5	CIRCIE 6	CIRCLE 6	CIRCLE 7	CIRCLE 9	

6
5
6
4
3

WEPRE SETTING THE STANDARD FOR PREOISION

LOW-POWER PRECISION FAMILY

When your design demands precision and low power, nothing beats the OP97 family. The OP97 (single) OP297 (dual) and OP497 (quad) are great for designs that need very low bias currents.

The OP97 family is ideal for sample-and-hold circuits, peak detectors, and logarithmic amplifier designs that exhibit low leakage current. Thermocouples, strain gages and other industrial equipment need the OP97's accuracy over wide temperature ranges. Unlike conventional FET-input op amps, these ICs use a unique current cancellation circuit to keep bias current low over the entire temperature range.

The family combines low power consumption with guaranteed accuracy. Maximum voltage offset at $25^{\circ} \mathrm{C}$ is only $50 \mu \mathrm{~V}$ (with only $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift) and bias current is 100 pA . Minimum open-loop gain is $2 \mathrm{kV} / \mathrm{mV}$. Combined, these specs can eliminate the need for offset trims and additional gain stages.

Battery and low-powered systems will benefit from the OP97 family's low supply current: $625 \mu \mathrm{~A}$ (max) per channel. Wide supply voltages range from ± 2 V to $\pm 20 \mathrm{~V}$. Packaging options include 8 - and 14 -pin DIPs and cerdips, 8- and 16 -pin SOICs, and 20 -contact LCCs.
CIRCLE 10

WHAT'S BETTER THAN THE OP-07?

The OP177 is today's industry standard for ultrahigh precision. Maximum offset voltage is only $10 \mu \mathrm{~V}$, with less than $0.1 \mu V /{ }^{\circ} \mathrm{C} V_{\text {OS }}$ drift, eliminating external $V_{\text {OS }}$ trimming and increasing system accuracy over temperature. Other guaranteed specifications include minimum 130 dB CMRR and 120 dB PSRR.

This low-noise, bipolar-input op amp is a good alternative to chopperstabilized amplifiers. The OP177 provides chopper-type performance without high noise, low frequency chopper spikes, external capacitors, and limiting common-mode input voltage
range. The OP177 is available in 8-pin plastic, cerdip and SO-8 packages. Cerdip and 20-lead LCC devices are guaranteed over extended and military temperature ranges.

CIRCLE 11

DUALS AND QUADS TOO

The dual OP200 and quad OP400 offer great performance over temperature and use very little power. For example, the OP200's input offset voltage is typically $25 \mu \mathrm{~V}$ with only $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Its supply current (per amplifier) is a scant $570 \mu \mathrm{~A}$. Industry standard DIP, SOL and LCC packages are available.

MODEL	OP97	OP297	0P497	OP177	OP200	OP400	UNITS
Channels	Single	Dual	Quad	Single	Dual	Quad	
Offset Voltage ($\mathrm{V}_{\text {OS }}$)	25	50	50	10	75	150	pV, \max
$V_{\text {OS }}$ Drift	0.6	0.6	0.5	0.1	0.5	1.2	$\mathrm{p}^{\mathrm{V}}{ }^{\circ} \mathrm{C}, \max$
Offiset Current ($\mathrm{I}_{0 \mathrm{~S}}$)	0.1	0.1	0.1	1	1	1	nA, max
Input Bias Current	± 0.1	± 0.1	0.1	1.5	2	3	nA, max
Voltage Noise @ 1kHz	14	17	15	(118)	11	18	$\mathrm{nV} / \sqrt{\mathrm{Hz}}\left(\mathrm{nV}_{\text {RMS }}\right)$
Current Noise	20	20	20	(8)	400	600	$\mathrm{fA} \sqrt{\mathrm{Hz}}\left(\mathrm{pA}_{\text {RMS }}\right)$
CMRR	132	120	120	130	120	120	dB, min
PSRR	132	120	120	120	-	-	dB, min
Input Voltage Range	± 14	± 14	± 14	± 13.5	± 13	± 13	V
Bandwidth (G=+1)	900	500	500	600	500	500	kHz
Supply Current	600	625	625	2,000	725	725	[1, max
Prices in 1,000s	\$1.00	\$2.50	\$4.04	\$0.95	\$2.48	\$4.50 ${ }^{\circ}$	USD
	CIRCLE 10	CIRCLE 10	CIRCLE 10	CIRCLE 11	CIRCLE 12	CIRCLE 12	

I N
R M
AT
0

SINGLE-SUPPLY AMPLIFIERS DELIVER TOP PERFORMANGE AT LOW COST. INDUSTRY'S BROADEST PRODUCT LINE

Nobody has a broader product portfolio of single-supply amplifiers for low-power and battery-powered gear. These are just a few of the products we've recently introduced.

LOW-COST DUALS AND QUADS OUTPERFORM CMOS AMPS

The dual OP292 and quad OP492 single-supply op amps are low in cost and outperform comparably priced CMOS devices. These $4 \mathrm{MHz}, 4 \mathrm{~V} / \mathrm{ps}$ amplifiers combine the qualities of complementary bipolar-low noise, precision and output drive capability -with the low cost of CMOS devices. With +5 V supplies, the OP292 guarantees 2.4 mV maximum ($500 \mu \mathrm{~V}$ typ) offset over our new HOT temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$, at no additional cost.

Unlike competitive ICs, the inputs of these amplifiers can swing well below ground with output swings to ground. The OP292 and OP492 draw less than 1.4 mA per channel, excellent for multichannel batterypowered applications. Both amps feature low voltage and current noise: $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and $0.7 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and channel separation (at 1 kHz) is 100 dB .

Applications that can take advantage of the OP292 and OP492 include disk drives, mobile phones, multichannel industrial and servo control systems, modems, fax machines, pagers, and power supply monitoring circuits. Packaging options include 8 - and 14 -pin plastic DIPs or surface-mount narrow-body SOICs. USD prices for the OP292 and OP492 start at $\$ 1.32$ and $\$ 2.16$, respectively.

3-V TO 30-V RAIL-TO-RAIL

The dual OP295 and quad OP495 3-V single-supply op amps are the industry's highest accuracy, lowest power true rail-to-rail amplifiers. Their low $30 \mu \mathrm{~V}$ offset, combined with a high gain of $1,000 \mathrm{~V} / \mathrm{mV}$, makes them ideal for portable instrumentation. On a 3 V supply, they drive a $10 \mathrm{k} \Omega$ load from 2.90 V to within only 2 mV of ground-perfect for process and motor control circuitry.

For driving coax cable, large FETs, or other capacitive loads, the OP295 and OP495 offer stability with loads up to 300 pF . They can supply over $\pm 25 \mathrm{~mA}$ to the load on $\pm 15 \mathrm{~V}$ supplies ($\pm 18 \mathrm{~mA}$ at +5 V), with a typical gain-bandwidth product of 75 kHz .

The OP295 uses less power than CMOS chips, gives exceptionally low voltage offset drift (typically $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$), and requires only 50% of the quiescent current of the closest competitive product.

The OP295 and OP495 are specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and packaged in plastic DIPs and SOICs. Die are also available. USD prices in $1,000 \mathrm{~s}$ begin at $\$ 1.98$ and $\$ 3.56$, respectively.

HIGH PRECISION AT +5 V

The OP113, OP213 and OP413 are single, dual and quad single-supply precision amplifiers. Operating from +5 V to $\pm 15 \mathrm{~V}$, these op amps feature low noise ($4.7 \mathrm{nV} \sqrt{\mathrm{Hz}}$), 3.5 MHz bandwidth, $75 \mu \mathrm{~V}$ offset voltage, and drift of just $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Applications include automotive, process control, portable instruments, and pressure/strain gages. Packaging options range from 8 -lead SOIC and plastic DIP to 16 -lead SOL packages. USD prices in 1,000 s begin at $\$ 1.47$ (single), $\$ 2.21$ (dual) and $\$ 4.92$ (quad).

CIRCLE 15

262

NEW SINGLE-SUPPLY AMPLIFIERS - continued

SINGLE-SUPPLY FET

The AD820 (single) and AD822 (dual) are precision, low-power, FET-input op amps that operate from a single +3 to +36 V range, or with dual supplies from ± 1.5 to $\pm 18 \mathrm{~V}$. Their outputs swing from rail to rail (within 10 mV) and their inputs can swing 0.2 V below ground. The JFET input stage maintains low bias current ($\leq 10 \mathrm{pA}$ at $25^{\circ} \mathrm{C}$, B grade), with offsets as low as $900 \mu \mathrm{~V}$ max over temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) and $25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise at 10 Hz .

Though the quiescent current drain is only $620 \mu \mathrm{~A}$, both the AD820 and AD822 will drive loads of up to 15 mA and 350 pF . They both have a unity gain bandwidth of 1.8 MHz and $3 \mathrm{~V} / \mathrm{us}$ slew rate. A 3 -volt version is optimized for low-power operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at no extra cost. The AD820 and AD822 are available in 8-pin plastic DIPs and SOICs.
CIRCLE 16

INDUSTRY'S FASTEST 3 V SINGLE-SUPPLY AMP

If your 3 V system needs a gain bandwidth product greater than 1 MHz , select the OP183 or OP283. They combine 5 MHz bandwidth with low noise for use in low voltage applications, such as ADC buffering, filtering, servo control and audio for portable computers.

These two amps are thoroughly specified for $+3 \mathrm{~V},+5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ supply operation. Unlike competing

3 V devices that specify only typical performance characteristics, the OP183 and OP283 guarantee low offset, high gain, and input and output ranges that include ground. Noise is typically a low $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, and both amplifiers can sink and source 25 mA -even with a 3 V supply.

Both devices are specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are available in 8 -lead plastic DIPs and SO-8 packages. Prices for the OP183 and OP283 (in $1,000 \mathrm{~s}$): $\$ 1.42$ and $\$ 2.15$, respectively.

CIRCLE 17

> SINGLE-SUPPLY INSTRUMENTATION AMPLIFIERS FEATURE SINGLE-SUPPLY, HGH ACOURACY, LOW COST

When accuracy, space and cost are your concern, one of these three in-amps will provide the lowest cost solution-especially when compared with the time to design and implement an equivalent circuit.

SINGLE SUPPLY IN-AMP

Specified for operation from +5 to ± 15 volts, the AMP04 precision inamp packs accuracy in a small SO-8 footprint for those difficult singlesupply designs. The AMP04 can eliminate the need for a separate gain stage to isolate low-level differential signals from high-level common-mode signals. Gain is easily programmable from 1 to 1,000 with a single resistor.

The AMP04 has an input offset current of 1 nA for direct connection to strain gages and high-impedance transducers. Guaranteed max specs include $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift, $150 \mu \mathrm{~V}$ offset voltage, and 0.005% gain non-

linearity, while requiring only $700 \mu \mathrm{~A}$ of supply current. A unique feature of the AMP04 is that it doesn't exhibit common-mode swing limiting at high gain, unlike "triple-amp" designs (see sidebar).

The AMP04 precision in-amp is specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Package options include an 8-pin plastic DIP, 8-pin SOIC, or 8-pin cerdip. USD prices (in 1,000 s) begin at $\$ 4.55$. CIRCLE 18

LOW-COST IN-AMP REPLACES DISCRETE DESIGNS

The AD620 high-accuracy in-amp replaces discrete designs with less overall error, lower power use, and reduced board space. It allows for gains from 1 to 1,000 set by a single external resistor. Noise is low $(0.28 \mu \mathrm{~V}$ p-p, 0.1 to 10 Hz and 9 $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz); bandwidth is $120 \mathrm{kHz}(\mathrm{G}=100)$. With guaranteedmaximum $50 \mu \mathrm{~V}$ voltage offset, $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, 1 nA input bias current, and 40 ppm nonlinearity-and minimum 93 dB CMR $(G=10)$-it's ideal for weigh scales, transducer interfaces and ECG circuits. The supply range is a wide $\pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$, at 1.3 mA (maximum). Prices in $1,000 \mathrm{~s}$ begin at $\$ 3.27$ USD.

FIGURE A.

SINGLE-SUPPLY DIFFERENTIAL AMP

The AD626 is a single-supply, lowpower differential amplifier with onchip gains of 10 and $100 \mathrm{~V} / \mathrm{V}$ (externally set). Its supply range is +2.4 to +10 V single, ± 1.2 to $\pm 6 \mathrm{~V}$ dual, drawing less than $290 \mu \mathrm{~A}$ of current. Uses include current sensing and sensor interfacing, especially in battery and portable applications. Its common mode range, $6\left(\mathrm{~V}_{\mathrm{S}}-1 \mathrm{~V}\right)$, exceeds the supply; for +5 volt supply, CMR $=90 \mathrm{~dB}$ and the output range is +30 V to +4.7 V (minimum). Its inputs are overload protected (50 V continuous), and the internal attenuation network includes RFI filters. Prices $(1,000 \mathrm{~s})$ start at $\$ 2.85$ USD. CIRCLE 20

EXTEND COMMONMODE SWING LIMITATIONS AT HIGH GAIN

In traditional three op amp inamp designs, common-mode voltage (CMV) range is limited at high gain. For example, the in-amp circuit below (Figure A) is designed for a gain of 1001 with a CMV of 10 volts, but there's a problem. Amplifier B must swing to 15.01 volts in order for the circuit's output to swing to 10.01 volts. Operating from a +15 V supply, an op amp cannot handle this swing range. The output will saturate before reaching the supply rails.

The single-chip AMP04 in Figure B, operating at the same common-mode conditions, does not exhibit this limitation. None of its internal nodes reach signal levels that are high enough to cause amplifier saturation. In addition, the AMP04 maintains a gain accuracy of 0.5%, provides high input impedance (4×10^{9}), and features 105 dB of CMRR at a gain of 1,000 .

Instrumentation Amplifier Guide CIRCLE 21

0

LOWEST NOISE \& DISTORTION AMPS

The AD797 features the industry's lowest voltage noise and distortion. It's an excellent choice for use in audio preamplifiers, FFT and spectrum analyzers, and IR and ultrasound imaging: $\mathrm{V}_{\mathrm{n}}=0.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and remains flat over the full 8 MHz bandwidth $($ Gain $=10)$ at 1 kHz . Total harmonic distortion is -120 dB at 20 kHz . Settling time is 800 ns to 16 -bit accuracy.

Many dc specifications are guaranteed, including a maximum $60 \mu \mathrm{~V}$ voltage offset with $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, 300 nA (200 nA typical) input offset current, and $2 \mu \mathrm{~A}$ input bias current. The AD797 features a fast $20 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a gain-bandwidth product of 110 MHz (Gain $=1,000$). Full-power bandwidth is 280 kHz at $20 \mathrm{Vp}-\mathrm{p}$. Output current drive is typically 50 mA , permitting the use of low-value gain-setting resistors to curb resistor noise.

AD797 operates from ± 5 to $\pm 15 \mathrm{~V}$ supplies over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature ranges. Packages include 8-pin plastic DIP, SOIC and cerdip. Prices start at $\$ 3.36(1,000 s)$.

LOW-POWER AUDIO AMPS COMBINE ADVANTAGES OF JFET \& BIPOLAR CHIPS

The single OP176 and dual OP275 op amps feature a patented input circuit (combining both JFET and bipolar technologies) that offers new levels of performance to audio, instrumentation and consumer applications. The result is an op amp that offers the traditional benefits of bipolar amps (low

WORLDWIDE HEADQUARTERS

Analog Devices, Inc. P.O. Box 9106

Norwood, MA 02062-9106, U.S.A
Tel: (800) 262-5643
Fax: (617) 326-8703
distortion and voltage noise) with the advantages of JFETs (high slew rates, and wide dynamic range) at one third the power of the NE5532.

The OP275 features 0.0006% total harmonic distortion plus noise and $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ voltage noise density. Input offset voltage is guaranteed at $<1 \mathrm{mV}$ allowing the OP275 to be used in dc coupled or summing applications without adding noisy offset adjustment circuitry. Dynamic characteristics include $22 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 9 MHz gain-bandwidth product. In addition, the OP275 uses less than 5 mA of supply current, even with ± 22 volt supplies.

For professional audio console designs, the small SO-8 package combined with the low power can save many square inches of board space and many watts of power, resulting in cooler operation and greater density.

Its companion, the OP176 has the same attributes with greater output swing and output short-circuit protection, at much lower power than NE5534, plus it's stable at unity gain.

Both the OP176 and OP275 are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended industrial temperature range and are available in 8-pin plastic DIP or SOIC packages. The SOIC package is offered in 2,500 piece spools for high volume handling. Prices for the OP176 and OP275 begin at $\$.88$ and $\$ 1.08$, respectively in 1,000 s.

CIRCLE 23

MODEL	AD797	OP176	OP275	Units
Channels	Single	Single	Dual	
GBW	110	10	9	MHz
Slew Rate	20	25	22	$\mathrm{~V} / \mathrm{\mu s}$
Supply Current	10.5	2.5	5	mA, max
THD + N	(98)	0.001	0.0006	$(\mathrm{~dB}) \%$
Offset Voltage	0.8	1	1	mV, \max
VouT Swing	± 13	± 13.5	± 13.5	V
Price in 1,000s	$\$ 3.36$	$\$ 0.88$	$\$ 1.08$	USD
	CIRCLE 22	CIRCLE 23	CIRCLE 23	

Printed in U.S.A.
ANALOG DEVICES

They're all powered by Zenith standard switching power supplies--the switchers that accommodate an almost endless range of applications.

Miniature in size with a 3 " $x 5$ " footprint, but a giant in performance, the Low Power Series includes both a 30 and 45 watt with single, dual or triple outputs. They also feature universal input with no minimum load requirements. The full featured quad output Mid Power Series, ranging from 150-400 watts, offers complete system protection and user-adjustable voltage output settings as standard.

All are designed to meet rigid international safety and EMI standards: CSA, IEC, FCC, and BS 6301, as well as UL 544, and IEC 601 for medical equipment.

And these competitively priced switching power supplies are tough and reliable--with up to 500,000 hour MTBF rating for durable performance, and are backed by one or two year warranty coverage.

Best of all, they're designed by Zenith. For over 70 years, we've been a leader in quality through design, engineering and world class manufacturing. With our worldwide distribution network and off-the-shelf delivery, we've earned a reputation for responsiveness to customer needs.

From the minds of scientists to the hearts of youngsters, Zenith switchers provide the power to make your applications come to life.

Call today for more information: 1-800-827-8720

Some of Our Competitors Are Really Big in ADCs.

But we put a 12-bit micropower ADC into an SO-8 package. For less than \$5.

With the demand for small, lowcost, battery-powered electronic products accelerating, you face some tough design challenges. Until now, most ADCs were too big, too expensive, and consumed too much power.

You can solve these problems with the industry's smallest, lowest cost, lowest power 12-bit micropower ADCs, the LTC1286 and the LTC1298. Both devices include a sample-and-hold, serial I/Os, 1- or 2-channel MUX, $\pm 3 / 4$ LSB maximum DNL, and operate on a single 5 V supply.

Battery operation is extended since the LTC1286 draws only $250 \mu \mathrm{~A}$ at 12.5 ksps , while the

CTIINER

LTC1298 draws $340 \mu \mathrm{~A}$ at 11.1 ksps . Power drain drops even more in autoshutdown to $20 \mu \mathrm{~A}$ at 1 ksps , and at idle it plunges to 1 nanoamp!

The best news is the price. The LTC1286 and LTC1298 are priced at just $\$ 4.98$ for the SO-8 package and $\$ 4.65$ for the DIP in 1000 piece quantities.

And for 3 V systems, our new LTC1285 and LTC1288 offer the same great features as their 5 V counterparts, at even lower power.

For more details, contact Linear Technology Corporation, 1630 McCarthy Boulevard, Milpitas, California, 95035/ 408-432-1900. For literature only, call 1-800-4-LINEAR.

EDN-Desicn Ideas

Biasing corrects position-sensing photodiode

Yishay Netzer, Consultant, Yuvalim, Israel

..An integrator powers the light source in Fig 1's positionsensing circuit, eliminating errors arising from variations in the source's intensity. This circuit's accuracy is essentially that of the sensor itself, beating designs that use a more complex analog divider.

Amplifiers $\mathrm{IC}_{1 \mathrm{~A}}$ and $\mathrm{IC}_{1 \mathrm{~B}}$ convert the two detector currents from D_{1}, a photosensitive strip, into voltages in the conventional manner. $\mathrm{IC}_{2 \mathrm{~B}}$ subtracts these two voltages to derive the output signal $V_{0} . V_{0}$ is proportional to the position of the spot cast by the light source upon D_{1}.
$\mathrm{IC}_{2 \mathrm{~A}}$ integrates these two voltages along with a current from a regulated 5V source, driving the light source via Q_{1}. This closed-loop scheme supplies illumination proportional to the sum of the two input currents, providing a fixed-scale factor for the signals supplied to the difference amplifier, $\mathrm{IC}_{2 \mathrm{~B}}$. Using a monolithic resistor network for all the $10-\mathrm{k} \Omega$ resistors in the circuit enhances temperature stability. (DI \#1452)

EDN

To Vote For This Design, Circle No. 328

Fig 1-A closed-loop integrator powers the light source of this posi-tion-sensing circuit, providing a fixed-scale factor for the signals supplied to the circuit's difference amplifier.

Clean switcher powers 16-bit A/D converters

Patrick Kevin Garner, Advanced Technology Systems, Mclean, VA

The low-noise switcher in Fig 1 works much like a TV's hor-izontal-deflection circuit to provide clean power for a 16-bit A/D converter.

In operation, Q_{3} is a logic-level gate-drive MOSFET driven
by the same $100-\mathrm{kHz}$ square wave that clocks the A / D converter. When Q_{3} turns off, the primary of T_{1} resonates with C_{3} and flies back to 25 V . Energy then transfers to the transformer's secondary. When the flyback voltage attempts to go

Fig 1-This resonant switcher provides clean power for high-resolution A/D converters.

EDN-DEsicN Ideas

below ground, the integral body diode of the power MOSFET Q_{3} clamps the flyback voltage, causing excess resonant energy in the transformer to flow back through its primary, recharging C_{1}. While C_{1} is recharging and the drain of Q_{3} is nearly at 0 V , the gate of Q_{3} gets turned on again, repeating the cycle.
Q_{1} adjusts T_{1} 's input voltage to achieve regulation in response to the error amplifier's comparing the output voltage to a 2.5 V reference (not shown). $\mathrm{IC}_{1}, \mathrm{Q}_{2}$, and associated components form the error amplifier. Because Q_{1} is a linear regulator, you must trim C_{3} 's maximum voltage to achieve the best efficiency. Trim C_{3} to raise T_{1} 's
input voltage to above 4 V . At $4.5 \mathrm{~V}, 70 \%$ efficiency is possible.
T_{1} 's construction is not critical. The primary consists of seven turns of 24 AWG, and the secondary has 12 turns of 24 AWG with the ground tap at six turns. The core is a Philips E1873C85, and the gap in the outer legs of the core measures 2 mils. The primary's inductance should be around $12 \mu \mathrm{H} . \mathrm{C}_{3}$ must be a high-quality, low-inductance electrolytic, suitable for switching supplies. (DI \#1451)

EDM

To Vote For This Design, Circle No. 329

DMM measures frequency

Walter P Sjursen, Base Ten Systems Inc, Trenton, NJ

The circuit in Fig 1 uses two ICs, a few passive compo- dent resistor, then the current through the resistor is
nents, and a standard DMM to measure frequency. In the circuit, a switched-capacitor network, ana\log switch IC_{2} and capacitor C_{1}, simulates a frequency-dependent resistor.

The network's resistance is the inverse of the input frequecy, f_{IN}, multiplied by C_{1} 's value. If the circuit applies a constant voltage $\left(V_{\mathrm{REF}}\right)$ across the frequency-depen-

Table 1-Convenient C C_{1} Values

Frequency range (kHz)	$\mathbf{C 1}$ $(\mu \mathrm{F})$
0 to 0.1	1
0 to 1	0.1
0 to 10	0.01
0 to 100	0.001

directly proportional to the frequency.
IC_{1} supplies this 10 V reference voltage. Capacitor C_{2} is a lowpass filter and should be much larger than C_{1}. Table 1 contains values for C_{1} that provide convenient scale factors. (DI \#1448)

EDN

To Vote For This Design, Circle No. 330

Fig 1-Because a switched-capacitor network can simulate a frequency-dependent resistor, this circuit allows a common DMM to measure frequency.

High Reliability Power Converters ... On Time and On Budget!

The unique cost/performance/size objectives of your new high-density power distribution system may require unique DC/DC converters. DATEL's world-class design, development and manufacturing team stands ready to define, design and assemble the exact power solution you need.

DATEL has compiled a large library of DC/DC designs that are currently used in a variety of telecommunication, medical, computer, railway, aerospace and industrial applications. We may already have the converter you need.
When reliability, delivery and cost are crucial, look to the leader ... DATEL.

- Narrow or Ultra-Wide Input Ranges
- Single or Multiple Outputs
- High or Low-Voltage ($<2 \mathrm{~V}$) Outputs
- Output Power to 100 Watts
- Isolated and Non-Isolated Designs
- Smart Load Sharing
- Extended Temperature Ranges
- High-Speed, Automatic SMT Assembly
- Calculated and Demonstrated MTBF's
- Burn-in / HALT / HASS
- Environmental Screening; EMI Testing

EDN-Design Ideas

Single resistor betters inexpensive buffer

Jim Riphahn, Comlinear Corp, Fort Collins, CO

Differential gain and phase are important video characteristics, and video-equipment manufacturers welcome any lowcost method of improving these parameters. Fig 1 shows one simple method using a low-power, low-cost, closed-loop buffer with a total circuit cost of around $\$ 1.60$, including resistors and bypass capacitors. Because output-stage drive capabilities affect differential gain and phase, low power often translates into degraded numbers. For example, the CLC109's typical differential gain and phase are 0.7% and 0.03°, respectively, while driving a 150Ω load. However, by adding a $1-k \Omega$ pulldown resistor on the output pin, the respective numbers improve to 0.05% and 0.01°, respectively. Thus, the cost of a single resistor brings an order-of-magnitude improvement and makes the differential gain and phase of the buffer comparable to much more expensive devices. However, if low power is a sensitive issue, you should carefully consider this method. Adding the resistor increases Fig 1's typical supply current from 3.5 to 7.5 mA . This idea works equally well with video op amps. (DI \#1553)

To Vote For This Design, Circle No. 331

Fig 1-Adding a $1-k \Omega$ pulldown resistor to an inexpensive, lowpower buffer's output decreases typical differential gain and phase errors from 0.7% and 0.03° to 0.05% and 0.01°, respectively.

12-bit converter upgrades μ C's ADC

John Wettroth, Maxim Integrated Products, Sunnyvale, CA

The simple circuit in Fig 1 and an accompanying software routine let you easily substitute a multichannel 12 -bit ADC for the 8 -bit ADC internal to the $87 \mathrm{C} 752 \mu \mathrm{C}$. A single assembly can then implement both
the low- and high-performance version of a system. A socket lets you plug in the external ADC when you need it; otherwise, you plug in the network of 10100Ω resistors. At powerup, the $\mu \mathrm{C}$ executes a routine that looks for the external con-

Fig 1-This circuit and corresponding software allow you to switch easily between using a μ C's internal 8 -bit ADC and using a more accurate 12-bit ADC.

SMD Power.

Or where to find the widest selection of power SMDs at the lowest cost/amp.

Small as they are, our power SMDs save you more than just board space. They save you time. And money. With the best price-performance ratio from the widest choice of SMDs available.

All off the shelf. All under one roof. And valuepriced at the lowest cost/amp. From HEXFET ${ }^{\text {® }}$ power MOSFETs and IGBTs to their drivers, the IR2100 Series. And, of course, Schottkys.

You'll find no other power SMDs so closely matched in features and capabilities. But don't take our word for it. Send for our "SMD Power Pak" by fax. Or call. 310-322-3331, ext. 2529.

You'll be surprised at what you save.

Available now at key IR distributors.

EDN-DESGEN IDEAS

verter. If the converter is present, the $\mu \mathrm{C}$ uses the external ADC . If the converter is absent, the 8 -bit ADC takes over. The $\mu \mathrm{C}$ internally handles all conversion results as 12 -bit values.

This idea relies on the fact that the 87 C 752 's five ADC input pins can also serve as the bidirectional pins of an 8051 port (Port 1). The resistor network connects the internal ADC directly to the applied analog inputs. Alternatively, replacing the network with the external ADC connects those inputs to corresponding channels on that converter, and the $\mu \mathrm{C}$'s ADC input pins (now acting as a bidirectional port) serve as a digital interface to the converter.
The assembly-language software routine attached to EDN BBS /DI_SIG \#1554 determines the presence of an external converter by triggering a conversion and noting whether the
converter's busy flag (SSTRB) goes low. If it does, the $\mu \mathrm{C}$ sets an internal global flag (AD12) that tells it to use the external-converter routines for each subsequent conversion. This action is transparent to the calling routine. The conversion result, returned as bytes ADHI and ADLO, has the same format in either an internal- or external-ADC case, except the four LSBs are 0 for 8 -bit converter data.

The μ C's full-scale range is 5 V , but the MAX 186 ADC sets it full-scale input range with an internal reference of 4.096 V . Software resolves the incompatibility in this example, but you can also use a different ADC, such as the MAX188, with an external 5 V reference. (DI \#1554)

EDN

To Vote For This Design, Circle No. 332

Sawtooth generator spans a 70-dB range

Paul Hendricks, Analog Devices, Wilmington, MA

The circuit in Fig 1 demonstrates a simple method for generating a voltage-programmable sawtooth waveform having a dynamic range greater than 70 dB . In addition to the sawtooth waveform, the circuit also produces corresponding tri-angle- and square-wave outputs. The three ICs and associated components cost a total of about $\$ 13$. IC_{1} 's astable-multivibrator-type V/F converter produces a square wave whose frequency is accurately proportional to the converter's analog input and produces a differential 1.8 V p-p triangle wave of equal frequency across its timing capacitor C_{T}. IC_{2} 's video-difference amplifier level shifts and amplifies this square wave to produce a 20 V p-p triangle wave. A highpass filter differentiates this signal to generate an in-phase square wave. The triangle wave and differentiated signal
drive the analog input and reference-comparator inputs of IC_{3} 's gain-of-one balanced modulator.
IC_{3} 's output under these circumstance is a 20 V p-p sawtooth waveform having a positive slope and twice the original frequency of the triangle wave. IC_{1} 's output is a square wave with dc offset; ac coupling level-shifts the signal and produces a symmetrical square wave having no dc level shifts with a change in frequency. Although the full-scale frequency of IC_{1} can be set as high as 500 kHz by the proper selection of R_{S} and C_{T}, the sawtooth waveform output begins to degrade above 50 kHz due to the bandwidth limitations of IC_{3}. (DI \#1557)

EDN
To Vote For This Design, Circle No. 333

Fig 1-Three ICs and accompanying components produce a programmable sawtooth waveform with a $70-\mathrm{dB}$ dynamic range and produce corresponding square and triangle waves.

Power-full tiny inverter.

Or how to shrink a 1hp, 3-phase motor control inverter to fit your pocket...book.

Take six IR surface-mount IGBT CoPacks with built-in diodes. Add one 600 V IR2130J three-phase driver. And you end up with a 1 hp inverter about the size of a credit card.

The lower part count, size and weight reductions bring added value to your end product.

This motor control inverter is $3^{\prime \prime} \times 3^{\prime \prime}$ sq. and features six SMD-220 surface-mount CoPack UltraFast IGBTs driven by a single $600-\mathrm{volt}$, 3 -phase driver (IR2130J) with current-sensing. Your customers benefit from the pass-along savings. And you gain the competitive edge.

Thanks to the most compatible line of power devices ever. Value-priced to save you money. In stock to save you delivery time. Send for our data "Shrink Pak." Quicker yet, call. 1-800-245-5549.

You'll see how small your inverters can get.

Available now at key IR distributors.

10-octave audio generator speeds tests

Wayne Sward, Consultant, Bountiful, UT

固Testing the frequency response of an audio device typically requires a sine-wave oscillator, an ac voltmeter or an oscilloscope, and an operator to record the response of the device at several frequencies across the audio band. Complicating this test is the inability of many audio oscillators to maintain a constant output level as the frequency varies, particularly when switching between frequency ranges.

To speed testing, the circuit in Fig 1 generates a composite audio signal comprising 10 sine waves of 10 different equalamplitude frequencies across the audio band. Values stored in EPROM determine the frequencies. Driving an audio device-under-test with this circuit allows you to test that device's responses quickly by connecting its output to an audio-spectrum analyzer. A quick check of frequency response requires only a few seconds. The output amplitude at the LINE output is 1 V rms , and harmonics are all below -20 dB .
IC_{1} generates a $128-\mathrm{kHz}$ clock, which R_{1} adjusts, to drive counter IC_{2}. The count from IC_{2} addresses successive locations in EPROM IC_{3}. The EPROM contains the data values to generate the 10 octaves of equal-amplitude sine waves (see
listing in EDN BBS /DI_SIG \#1559). In this case, the frequencies are 1 octave apart from 31.3 Hz to $16 \mathrm{kHz} . \mathrm{IC}_{4}$ and IC_{5} latch the 8 -bit data from IC_{3}. The latched values drive IC_{6}, an 8-bit DAC.

The first amplifier of IC_{7}, a quad op amp, converts the current output of IC_{6} to a voltage. The next two amplifiers filter the resulting signal, removing all frequencies above 20 kHz . The signal then goes through a level control and pad resistors to permit connection to the line or microphone inputs of the audio device. The signal also goes through the last section of IC_{7} to an inverse RIAA filter. This filter compensates for the magnetic phono input of an audio amplifier, resulting in an overall flat frequency response of the test setup.

Two 9 V batteries power the circuit. Voltage regulator IC_{8} provides 5 V power for IC_{1} through IC_{5}. The resistors between -9 V and each of the LM324 outputs prevent crossover distortion. All of the ICs are low-power to increase battery life. (DI \#1559)

EDN
To Vote For This Design, Circle No. 334

Fig 1-To speed testing of audio equipment, this circuit generates a composite audio signal comprising 10 frequencies of equal amplitude that span 10 octaves from 31.3 Hz to 16 kHz .

Motor control savings.

Or how to design noise-free inverters that switch faster for less money. The 1200V IGBT CoPack.

TO-247 UltraFast IGBT

Now you can design simpler, more efficient motor control inverters. That switch at 20 kHz . Quietly. Without snubbers. All it takes is our UltraFast 1200 V CoPack with built-in diode.

You cut system costs with less parts. Get the lowest conduction loss. Fastest switching speed. Short circuit withstand. And super-soft recovery. All from more than 200 IGBT part numbers.

Rated from a few amps up to 50 amps . And value-priced to save you money. Delivery? Right from stock. Call for data on today's most cost effective IGBT line. 310-322-3331, ext. 2529.

You'll save more than you think.
Available now at key IR distributors.

Output current vs frequency for two IRGPH50KD2 in half-bridge, 50% duty cycle.

Switching waveforms of the IRGPH50KD2 in a clamped inductive load at $\mathrm{Tj}=90^{\circ} \mathrm{C}$.

TTSR|International Rectifier

[^4]
EDN-DESIGN IDEAS

Envelope tracker quells jitter

Roger C Whipple, Hazeltine Corp, Braintree, MA

Fig 1's envelope tracking circuit solves the problem of receiving ac-coupled NRZ data over a coaxial data link. Because the spectral content of the NRZ data approaches dc (even with alternate frame inversion), the signal tends to integrate in any ac-coupled stage preceding the zero-crossing detector, despite the low cutoff frequencies. Thus, the de level of the received data wanders, changing the relative switching point at the comparator.

The system input determines the data pattern, which can have frequencies that beat with the data frame rate, causing the data's envelope to have large excursions. After passing through a transmission medium, the signal is band-limited

Fig 1-To prevent jitter that leads to corrupted NRZ data, this envelope tracker creates a reference voltage that is always centered between the local excursions of the data.
and has slow edges. Since the zero-crossing detector on the receiving end switches as the data crosses the reference-signal input, the apparent switching point moves if the reference is fixed but the data isn't. This movement can add a considerable amount of jitter to the output signal.

The envelope tracking circuit compensates for this problem by creating a reference voltage that is always centered between the local excursions of the data. The circuit uses the filtered average of positive and negative peak detectors as the reference voltage. The circuit itself is simple; C_{1} charges on positive peaks through R_{1} and D_{1}, and C_{2} charges on negative peaks through R_{2} and $\mathrm{D}_{2} . \mathrm{R}_{3}$ and R_{4} determine the time constant of the discharge and provide the mean value to the reference pin. C_{3} provides some noise immunity and should be near the comparator pin. The data rate determines the specific component values. The values chosen here work well with data rates from 0.5 to 1.5 Mbps. R_{1} and R_{2} determine the chargetime constant, which should be at least an order of magnitude shorter than the discharge-time constant controlled by R_{3} and R_{4}.

Other factors that determine component selection are the drive capability of the input source, which must be able to charge the capacitors through the 390Ω resistors, and the amplitude of the input signal, which must be greater than two diode drops. Fig 1's values are optimum for a signal of about 3 V p-p biased at about 2.5 V . You may have to reverse the polarity of C_{2} if the input is not biased above ground. Circuit performance is not sensitive to any of the component values. (DI \#1558) [DDN

To Vote For This Design, Circle No. 335

IC diodes help deduce junction temperature

Edward S Brinkman, Cincinnati Electronics Corp, Mason, OH

A simple method for directly measuring an IC's temperature uses the device's input-protection diodes as temperature sensors. Static-discharge protection diodes are common features in many modern IC input structures, and their location on the IC makes them ideal as noninvasive temperature sensors.

Fig 1 shows the typical input structure for a CMOS IC and the measurement setup. One protection diode is forwardbiased with a current source and suitable supply voltage
greater than $V_{D D}$. The device under test can be fully operational if the selected input is normally tied to logic HIGH. For a logic LOW input, substitute a current sink and find a voltage supply less than V_{SS}. Other IC process technologies may also have accessible diode structure.

The ideal diode equation

$$
\left.\mathrm{V}=(\mathrm{nKT} / \mathrm{q})^{*}\left(\mathrm{I} / \mathrm{I}_{0}+1\right)\right)
$$

Power Supply savings.

Or how to get the lowest cost-per-amp fast, simple and easy.

Just plug in IR's UltraFast 500V IGBT. And you instantly improve the efficiency and cost-peramp of your single-ended off-line switch-mode power supplies. Without redesigning.

Our IGBTs also come paired with IR supersoft recovery diodes in CoPacks for half-bridge supplies. All give you the lowest conduction losses ever. And fast switching speeds.

Available from the most cost-effective IGBT line today. Value priced to save you money. In stock to save you delivery time. Send for our IGBT data pack. Or call. 310-322-3331, ext 2529.

You'll easily save more for your converters.

Available now at key IR distributors.

Tor International Rectifier

CIRCLE NO. 116

Gage Applied Sciences Inc., the recognized world leader in ultra-fast PC based data acquisition and instrumentation, presents the CompuScope family with FREE GageScope oscilloscope emulation software.

CSLITE	$8 \mathrm{bit} / 40 \mathrm{MSPS} / 16 \mathrm{~K}$	$\$ 595$
CS220	$8 \mathrm{bit/} / 40 \mathrm{MSPS} / 256 \mathrm{~K}$	$\$ 1,995$
CS250	$8 \mathrm{bit} / 100 \mathrm{MSPS} / 32 \mathrm{~K}$	$\$ 3,500$
CS1012	$12 \mathrm{bit} / 20 \mathrm{MSPS} / 512 \mathrm{~K}$	$\$ 4,995$

CALL 1-800-567-GAGE

Fig 1—Using one of an IC's input-protection diodes as a sensor allows you to directly determine the junction temperature.
indicates the diode's temperature dependence. In practice, the voltage-temperature relationship is not quite linear, particularly over a large temperature range. Forward-bias currents from $10 \mu \mathrm{~A}$ to 1 mA have worked successfully with diode temperature sensors. Using the higher end of this range is recommended to avoid errors from device input current and the $\mathrm{V}_{\text {DIODE }}$ meter impedance; use lower bias current when the IC's input structure includes a significant series resistance. The performance of the $\mathrm{I}_{\text {BIAS }}$ constant-current generator is not critical. It is best to measure the volts-vstemperature (V-T) slope of at least one representative device rather than relying on the above equation alone because of process-related departure from ideal behavior.

For a given process lot, the slope of the diode's V-T curve demonstrated consistent temperature-rise measurements within 1 or $2^{\circ} \mathrm{C}$ over a $100^{\circ} \mathrm{span}$. Slope values of -2 to -2.4 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ are typical for silicon. The intercept point on the V-T curve is less repeatable among devices, so if only lot sample data is available, a second measurement at a known temperature is recommended (ie, room temperature with the device's power off).

A word of caution: older CMOS ICs suffer from parasitic SCR latch-up when the input-protection diodes are driven into conduction. The results of this condition can be catastrophic. Modern CMOS designs are free from latch-up, with input diodes conducting tens of milliamps or more.

Also beware of problems due to noise, crosstalk from adjacent pins, and ground bounce. Also, the hottest spot on the chip may not necessarily be near the bond pad, and temperatures could be higher elsewhere. (DI \#1555)

EDN
To Vote For This Design, Circle No. 336

How to use our bulletin board

罝This icon identifies those Design Ideas that have com-puter-readable material posted on $E D N$'s bulletinboard system (BBS). Call our free BBS at (617) 5584241 (300/1200/2400 8,N,1). Not every Design Idea has downloadable material, but each one does have a BBS number printed at the end of it. If you'd like to comment on any Design Idea, include the number in the subject field of your message.

Loral Makes a Replacement for the Versatec V80 ${ }^{\mathrm{m}}$ That Uses No Liquid Chemicals.

NEW FROM LORAL

The Loral 9080 is a plug-compatible, exact replacement for the Versatec V80. It gives you everything you want and need in a high speed printer/plotter. With the 9080, you get clean, crisp copies every time using an environmentally-friendly dry process. No chemical inks or toners.

EASY TO INSTALL AND USE

Installation couldn't be easier. Simply unplug the V80 and plug in the 9080. The 9080 is designed to work with all existing Versatec V80 software and hardware interfaces.

Powered by the Astro-Med Print Engine, the 9080 prints high-resolution documents at 200 dpi on fanfold or roll paper. Print Speed is 15 pages per minute. Plot speed is one inch per second. Price is under $\$ 12,000$.

To order the Model 9080, call (813) 378-6984. For more information write: Loral Data Systems, P.O. Box 3041 M/S41, Sarasota, FL 34230 or call our hotline (813) 377-5590.

The next 12-bit ADC standard drives speed/power periormance to new heights.

THE CS5032 DEIIVERS 500 kHz FOR ONLY 55 mW

'Datasheet specifications for $-55^{\circ} \mathrm{C} / 125^{\circ} \mathrm{C}$

$1-800-550-5030$

Low-power interrupt updates real-time clock

Yongping Xia, EBT Inc, Torrance, CA

Some μ P-based systems need a real-time clock. The $\mu \mathrm{P}$'s built-in timer can do the work, but it usually requires several milliamps of current to keep the timer running. If the main power drops, the clock requires a backup battery to operate. The size of the backup battery depends mainly on how long the clock must run without main power supply and how much current the $\mu \mathrm{P}$ draws. Usually, during the main power supply's dropping period, the only task the $\mu \mathrm{P}$ should perform is to update the real-time clock.

Fig 1-A further way to conserve power during main power-down conditions, is to generate a low-power interrupt that awakens the $\mu \mathrm{P}$ from sleep mode to update its real-time clock quickly.

However, there is an alternative way to run the real-time clock. Most CMOS-based μ Ps have stop or sleep modes in which the $\mu \mathrm{P}$ consumes only a few microamps of current. Instead of running all the time, the $\mu \mathrm{P}$ goes into stop or sleep mode if it detects a main power drop. Under these conditions, you can use an external interrupt source to awaken the $\mu \mathrm{P}$ and cause it to update the real-time clock and then return to sleep mode. Because the real-time-clock update takes only a short time, the $\mu \mathrm{P}$ still spends most of its time in sleep mode.

Fig 1's circuit provides an interrupt every 0.5 sec . The HA7210 (Harris Semiconductor, Melbourne, FL) low-current crystal oscillator consumes about $4 \mu \mathrm{~A}$ with a $32,768-\mathrm{Hz}$ crystal. The CD4060 14-stage binary counter divides the output signal from the HA7210 down to a 0.5 -sec square wave and consumes $7 \mu \mathrm{~A}$ more. You can set the $\mu \mathrm{P}$ to posi-tive- or negative-edge-trigger interrupt mode. If the average $\mu \mathrm{P}$ current is $9[\mathrm{mu}] \mathrm{A}$, the total current with the interrupt circuit is around $20 \mu \mathrm{~A}$. (DI \#1556)

To Vote For This Design, Circle No. 337

ΔT never
 DESIGN NOTE

Source Resistance Induced Distortion in Op Amps

Design Note 84

William H. Gross

Introduction

Almost all op amp data sheets have Typical Characteristic Curves that show amplifier total harmonic distortion (THD) as a function of frequency. These curves usually show various gains and output levels but almost always the input source resistance is low, typically 50Ω. In some applications, such as active filters, the source impedance will be much larger. If the input impedance of the op amp is nonlinear with voltage, the resulting distortion will be significantly higher than the values indicated in the data sheet.

Test Circuit

It is quite easy to evaluate source resistance induced distortion. Connect the amplifier as a unity-gain buffer operating on $\pm 15 \mathrm{~V}$ supplies. Feed a low distortion $20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ signal to the noninverting input through a source resistor and measure the output signal distortion. The setup is shown in Figure 1. The readings at 1 kHz and 10 kHz were recorded for various values of source resistance from 100Ω to 100 k . The measured results for several op amps are plotted in Figures 2 and 3.

Figure 1

Results

Unfortunately there is no easy way to predict which amplifiers will have the lowest source resistance induced distortion from the data sheets. There are two main causes of the distortion: nonlinear input resistance and nonlinear input capacitance. At first thought, one would not expect the small input capacitance of an

ON84•F02
Figure 2. 1kHz Distortion vs Source Resistance

Figure 3. 10kHz Distortion vs Source Resistance
op amp to cause distortion at a few kHz. But a 10k source is loaded 0.01% by 1 pF at 1.6 kHz ! Therefore a change in input capacitance of 1 pF will cause measurable distortion at 1 kHz . For lowest distortion we want an amplifier with low input capacitance as well as very high (and constant) input resistance.

FET input op amps have the highest input resistance but they also have a significant nonlinear input capacitance. The LF356 is a typical FET input op amp; the distortion is 5 to 20 times worse with a 10 k source compared with a low source resistance. The LT1169 is a new dual FET input op amp with very low input capacitance (1.5 pF) and therefore has about three times lower distortion than the LF356.

The OP27 is a popular high speed precision op amp that has very low distortion when driven from a 50Ω source. Unfortunately the input bias current cancellation circuit works well only at very low frequencies; at 1 kHz the input resistance is very nonlinear. The distortion from the OP27 is 50 times worse with a 10 k source than with a 100Ω source. The LT1124 is a dual low noise precision op amp that uses a different input bias current cancellation circuit. The LT1124 has the least source resistance induced distortion at 1 kH of any of the op amps tested. The LT1355 is a member of a new family of low power, high slew rate op amps that have outstanding high frequency performance. The LT1355 has the least source resistance induced distortion at 10 kHz of any op amp tested.

Figure 4 shows a 20 kHz Butterworth active filter as might be used for anti-aliasing or band limiting in a data acquisition system. Figure 5 shows the frequency re-

Figure 4

Figure 5. Filter Frequency Response
sponse of the circuit. Note that for signals well below the cutoff frequency, the capacitors have no effect and the op amp sees a 6.2 k source resistance. Distortion was measured with several op amps in the circuit to confirm the data shown in Figures 2 and 3. Table 1 shows the results of the best op amps.

Table 1. Filter Distortion

Amplifier	100Hz	1kHz	2kHz	5kHz	10kHz
LT1124	0.0004%	0.0005%	0.0008%	0.0021%	0.0090%
LT1355	0.0005%	0.0006%	0.0010%	0.0035%	0.0052%
LT1169	0.0005%	0.0012%	0.0024%	0.0080%	0.0100%

Source resistance induced distortion usually limits the dynamic range of unity-gain RC active filters. An interesting high performance alternative is the LTC1063 and LTC1065. These fifth order, switched-capacitor lowpass filters are not only smaller and easier to use, their distortion is less than 0.01% even with 10k source resistance.

For literature on our Operational Amplifiers, call 1-800-4-LINEAR. For applications help, call (408) 432-1900, Ext. 456

GaAs

Finally! A line of SPDT absorptive, reflective and transfer switches that appeals to your technical side, and business side as well! It's Mini-Circuits GaAs switches...providing outstanding performance features such as very high isolation (up to 60dB), superfast 3nsec switching speed and excellent compatibility with surface mount soldering techniques. Additionally, the entire series is built extremely tough and is immediately available from stock with a 1 week shipment guarantee. At only $\$ 2.95$ (qty.10), this top-of-the-line value is priced with your bottom line in mind! To order, call or Fax Mini-Circuits with your requirements today.

The High PERFORMANCE Gigahertz Relay

 he TO- 5 family of relays are great performers in RF switching applications. They are inherently that way. Low intercontact capacitance. Low insertion loss. Up through 500 MHz . No problem.

But then you wanted them for even higher frequencies. You wanted gigahertz performance, and not just 1 GHz , but 3 or 4 . That took some serious doing. But our combination of experience and innovation was equal

- RF Switching up to 4 GHz
 - Magnetic latching cuts power drain - Convenient Centigrid ${ }^{\oplus}$ package - Aerospace and commercial versions

to the task. We married over three decades of TO- 5 and Centrigrid ${ }^{\circledR}$ technology with some new techniques we developed to enhance the RF characteristics. The results? The gigahertz Centigrid ${ }^{\circledR}$ relay (RF 170). We were able to extend the relay's performance from the MHz range to the GHz range. And handle RF switching functions all the way up to 4 GHz . The RF 170 has higher isolation across contacts and across poles over the frequency range.

The high performance gigahertz Centrigrid ${ }^{\circledR}$ relay (RF 170) will handle your toughest switching assignments, especially when power drain is critical. For price, delivery, and more technical information, call 1-800-284-7007 or Fax us at 1-213-779-9161.

~TELEDYNE RELAYS
Innovations In Switching Technology

Simple As 1,2,3! Configure Your OwnModular Power Supply

200 to 2000 Watts

Now configuring your own power supply is as easy as filling in the blanks. Just tell us which input and which DC outputs you need and we'll put the modules in place. What could be simpler?

- Up to 16 outputs in the voltage/current combinations of your choice
- Parallel/Current-Share (optional)
- 200 to 2000 Watts
- 2.5 to 5 inches high
- Power Factor Correction (IEC 555-2) Call for your free catalog:

(619) 575-1100.

Shown: AC input with PFC, 600 Watts, 4-Outputs, $2.5^{\prime \prime} \times 5^{\prime \prime} \times 11^{\prime \prime}$ 4 Watts/in ${ }^{3}$

SELECT INPUT VOLTAGE
AC
115/230 VAC
(Auto Select optional)

AC with PFC
85-264 VAC
(Meets IEC 555-2)

DC (48 VDC)
(CHECK ONE)
SELECT DC OUTPUTS

Volts	Amps	Module	QuantityNeeded
$2-6 \mathrm{~V}$	25 A	B	
$2-6 \mathrm{~V}$	60 A	A	
$2-6 \mathrm{~V}$	100 A	L	
$5-15 \mathrm{~V}$	12 A	C	
$5-15 \mathrm{~V}$	24 A	F	
$5-15 \mathrm{~V}(\times 2)$	$6 \mathrm{~A} \mathrm{max}^{*}$	E	
$12-28 \mathrm{~V}(\times 2)$	$3.5 \mathrm{Amax} *$	H	
$12-28 \mathrm{~V}$	7 A	D	
$12-28 \mathrm{~V}$	15 A	G	
$25-60 \mathrm{~V}$	10 A	J	

Select up to 8 DC output modules. *Total current from dual output module.
3.

CALL (619) 575-1100 . . . OR FAX (619) 575-7185

ISO 9001
Certified
Manufacturer

FAST

FASTIER FASTITEST

 High Speed Audio Frequency Testing

FAST

ATS-1 is a competitively priced audio test set featuring front panel and CPIB programmable operation as well as higher performance and speed than the typical audio testers it replaces. Both Audio Precision and HP 8903B CPIB command sets are supported. A sample suite of 43 measurements' takes only 33 seconds. The dual channel ATS-1 is at home in production floor environments thanks to its rugged fancooled enclosure and front or rear mount modular connector panels.

FASTER

System One automated integrated audio test sets measure distortion, frequency, phase, wideband or selective noise, and crosstalk in production test environments benefiting from high speed and performance. System One can make a sample suite of 43 measurements ${ }^{1}$ in 21 seconds. Optional spectrum analysis and digital domain signal generation and analysis capabilities make it the onestop audio test system. Available both in GPIB and PC controlled versions, System One is today's recognized standard in audio testing.

1 Sample suite of GPIB programmed audio measurements included i) noise measurement (20 Hz -22kHz bandpass, 2) 31 point single tone frequency response sweep over $20 \mathrm{~Hz}-22 \mathrm{kHz}$ range, and 3) 11 point distortion sweep over 20 Hz -22kHz range 2FASTIEST uses mult-tone stimulus and analysis to make the same measurements listed above

FAGTTEST

System One DSP versions test any audio channel in the fastest possible time. With DSP power, FASTIEST completes the 43 measurement ${ }^{2}$ example above in 2 seconds! System One FASTTEST technology generates and analyzes special multi-sinewave test signals. These wideband signals provide complete frequency response, distortion and noise measurements from a single stimulus acquisition.

Audio precision

P.O. Box 2209

Beaverton, OR 97075-3070
(505) 627-0852 (800) 231-7550

FAX: (503) 641-8906

EDN-DesicN Fature

Break the performance bottlenecks in today's multiprocessor designs

Brian Bennett, AST Research Inc

Abstract

New operating-system and device-driver software for symmetric multiprocessing hardware make interrupt distribution the least important bardware-design consideration. You achieve better performance by developing an efficient bus protocol and increasing concurrency.

Early efforts to supply additional processing power by adding CPUs to a common bus resulted in a simple masterslave relationship between CPUs, called "asymmetrical multiprocessing." Though this architecture was simple, it soon reached a "premature" bottleneck because of poor task distribution among processors. The architectural limitations occur in both software and hardware. Early operating-system (OS) software neither could run in multiprocessor systems nor could take full advantage of the increased processing power.

Additionally, most I/O drivers were "single-threaded," which limited their execution to a single dedicated I/O processor. Initially, this was not a major problem because "asymmetrical hardware" typically did not allow all processors access to all system resources. In general, asymmetric hardware dedicates a single processor to I/O functions. The performance of this single I/O processor can, and often does, become the system bottleneck as it reaches its performance limits. Both the asymmetric hardware and single-threaded software pose barriers to system performance. Thus, asymmetric machines exhibit limited scalability because adding processors does not benefit a system that is limited by the performance of one of its processors.
The solution to this bottleneck was to redesign both the hardware and the software, which led to today's symmetric multiprocessors (SMPs) coupled with multithreaded software. An "SMP" is a system in which all processors are identical and all resources-specifically, all the memory and I/O
space and interrupts-are equally accessible. While the symmetrical nature of SMP hardware eliminates any architectural barriers, the software must still efficiently divide the tasks among processors.

SMPs have been slow to catch on because they require software to provide a performance advantage over asymmetrical multiprocessing architectures. That is, without "symmetric" software, SMP hardware performs at the same level as an asymmetrical multiprocessor.

Fixed vs dynamic interrupt allocation

In an asymmetrical multiprocessor system, one processor typically performs all the I/O and, hence, fields all the I/O interrupts, performs the low-level I/O functions, and passes interrupts to the processor elements as needed. One of the most controversial issues in an SMP design is how to distribute the interrupts to the system processors. Generally, you can use one of two implementations: fixed or dynamic (lowest priority) distribution.

From a strictly hardware perspective, fixed distribu-tion-the (programmable) assignment of interrupts to specific processors-offers the advantage of simplicity. Furthermore, by repeatedly assigning a specific interrupt to a given processor, that processor is more likely to have the interrupt-service routine (ISR) in its cache. In this scenario, a CPU (say, CPU A), which has just serviced the interrupt can more quickly and more efficiently handle the interrupt while using less precious system-bus bandwidth than some other CPU (say, CPU B). However, if enough time passes, newer data and instructions may overwrite the contents of CPU A's cache, thus destroying the benefit of sending the interrupt to the same processor. The down side to this approach is that CPU B may be "less busy" and better able to service the interrupt.

Dynamic distribution relies on interrupt-control hardware to route the interrupt to the lowest priority processor. The hardware does this in the hope of assigning the additional workload of the ISR to the least busy processor (the one executing the lowest priority task). This assignment

SYMMETRIC MULTIPROCESSORS

increases a system's scalability by more evenly distributing the workload.

To ascertain the performance impact of interrupt distribution, ask a more fundamental question: What does the OS do within an ISR when the ISR processes an interrupt? Today's ISRs are small routines that identify the source of an interrupt (when multiple devices share an interrupt), perform any housekeeping necessary to re-enable the interrupt, and pass a deferred-procedure call (DPC) to the system via a systemprocess queue. (Fig 1). The next available processor that takes a job from the process queue also handles the interrupt.

In light of this information, coupled with the relative infrequency of interrupts as a percentage of bus-cycle time, you can deduce that the interrupt-distribution method is relatively benign as far as system performance goes. In fact, an asymmetrical interrupt distribution in which one processor services all interrupts is technically acceptable. The asymmetric architecture might, however, make a product difficult to sell. Today's interrupt-handling solutions are based more around cost factors and software support than around the performance merits of the hardware mechanisms that distribute the interrupts.

System-bus bandwidth

An architecturally superior SMP machine can eliminate the previous system bottleneck, but three new bottlenecks
appear: software scalability; limitations of the backbone, or common multiprocessor bus; and limitations of the I/O subsystem. These design tradeoffs are not specific to SMP design, but they become more prominent as you add processors.

Designers generally ask two questions when evaluating a backbone bus for SMP systems:

- 1) What is the clock speed?
- 2) What is the data-bus width?

However, the answers to these questions may not be the best measure of relative performance and usable bandwidth. The overall best number to evaluate a multiprocessor bus is the sustainable bandwidth because it reflects not only the bus speed and data-bus width, but also the bus-protocol efficiency. Although a high number is generally better, it comes with a cost and other tradeoffs.

Designers should expend no more cost than necessary to provide a design that balances system- and I/O-bus requirements. What good is a $400-\mathrm{Mbyte} / \mathrm{sec}$ sustained throughput on a system bus if an application requires an I/O data rate of $40 \mathrm{Mbytes} / \mathrm{sec}$, and the I/O bus operates at only 33 Mbytes/sec? In this example, a user would pay extra for system-bus bandwidth without realizing the benefit. Unfortunately, the variety of applications, each with differing I/O-bandwidth requirements, makes this tradeoff more of an art than a science.

Fig 1—Windows NT keeps interrupt-service routines (ISRs) small by performing only minimal processing at the ISR level. Instead, the ISR generates a deferred-procedure call (DPC), which the system queve manages.

Benefits of improving protocol

Aside from increasing the bus speed and data width, a more efficient use of system-bus bandwidth can yield significant gains. For a fixed memory-access time, increasing the bus speed may provide little gain: Instead of waiting five clocks at 25 MHz , you can wait 10 clocks at 50 MHz . For systems with separate address and data buses, you can pipeline accesses on the bus so that CPUs can simultaneously access multiple memory banks.

Interleaving memory boards on cache-line boundaries allows concurrent memory accesses. Pipelining increases sustainable throughput for a $33-\mathrm{MHz}, 267-\mathrm{Mbyte} / \mathrm{sec}$ bus from 107 to $214 \mathrm{Mbytes} / \mathrm{sec}$ (Fig 2). Because of the probabilistic nature of cache-line interleaving, you may realize on an average only half of this gain. Thus, you can achieve a 50% increase in bus throughput with little added complexi-ty-the ability of the memory to register two addresses plus some minor control logic.

Memory pipelining improves bus efficiency but requires a simpler memory design than does a split-transaction protocol. Because μ Ps can pipeline the address bus, pipelining becomes a natur-

KEYS TO SUCCESS

Dome contact, low profile keypad switches. Lighted \& non-lighted, round \& square. Sub-surface mounting types. Up to 5 million actuations.

Round, square, rectangle shapes. In all popular colors. Wide choice of terminals, circuits, lamp types \& accessories.

FLAWLESSLOGIC

Real or complement coded, decimal or hexidecimal dip rotaries. Screwdriver, shaft or dial actuation. Washable.

We have exactly what every design engineer needs - over one million switch options and more than 40 years of switch knowhow. Before you start your design-in, call for our 456-page Design Guide, then call on our experience. Make sure your design-ins go flawlessly. Make NKK your design partner right from the start. Call NKK Switches, (602) 991-0942 7850 E. Gelding Dr., Scottsdale, AZ 85260 FAX (602) 998-1435.
® ®
stultches

Small wonders, you could call them. Abbott's SM family of surface mount $D C$ to $D C$ converters are the most reliable very high density power supplies available today. Guaranteed to operate without derating over the full-Mil temperature range from -55° to $100^{\circ} \mathrm{C}$. And delivering up to 280 Watts at better than 50 Watts per cubic inch, in an industry standard footprint.

Rugged durability is just the beginning. Inside their tough exteriors is a constant frequency topology that minimizes ripple and makes filtering a breeze. The exclusive use of commercially available, fully derated components eliminates the risk of underperforming on specs -
or stretched out or missed deliveries. Plus full overvoltage and over temperature protection with $(n+1)$ paralleling for designing in redundancy and backup. Even a companion filter module and an input transient suppressor, to make your designs simpler and more compact.

For all this ingenuity, delivery is quite predictable. Get the whole family off-the-shelf. With 50, 100 or 200 Watt outputs. Single or dual output configuration. For inputs

SPEC	$\begin{array}{\|c\|} \hline \text { SM100S } \\ \text { SM200S } \end{array}$	$\begin{aligned} & \text { SMH50 } \\ & \text { SMH100 } \end{aligned}$	SM100D SM200D	SMF200	SM1275
PRODUCT DESCRIPTION	SINGLE OUTPUT	HALF-SIZE SINGLE OUTPUT	DUAL OUTPUT	HALF-SIZED EMI FILTER	$\begin{aligned} & \text { HALF-SIZED } \\ & \text { TAANSIENT } \\ & \text { SUPPRESSOR } \end{aligned}$
PEAK POWER in WATTS	100280	$50 \quad 100$	100200	375	300
voltage ${ }_{\text {InPut }}$ (VDC)	16-50 and 200-400				$\begin{gathered} \text { Mil-STD-1275A } \\ \text { Mil-STD-704A } \end{gathered}$
VOLTAGE (VDC)	$2,3.3,5,5.2,12,15,24,28$		$\pm 5, \pm 12, \pm 15$	-	-

when reliability is imperative ${ }^{\circledR}$
 ranging from 28 to 270 VDC.

Talent recognizes genius, they say. In that case, call Abbott to try out the SM family. And prepare to be impressed.

CIRCLE NO. 48

Abbott Electronics, Inc., 2727 S. La Cienega Blvd., Los Angeles, CA 90034-2643 • Telephone 310/ 202-8820 • Fax 310/ 836-1027

Fig 2-A pipelined system bus (a) achieves a significant increase in throughput over a nonpipelined system (b).
al extension from the CPU to the system bus in SMP systems.
Another way to address long-latency accesses is to use a split-transaction-protocol bus that can reconnect and transfer data. Though you can also use the split-transaction mechanism to access multiple memory modules, the relative speed of memory response usually does not warrant adding such complexity to the memory boards.

A split transaction typically provides the most benefit for long-latency accesses such as those that occur when the processor accesses an I/O controller through an I/O bridge. When the processor writes to such I/O devices, a postedwrite buffer usually can eliminate any write latency, but read operations can still take a long time. In general, an I/Obus bridge contains the logic to be a system bus master. To add the split-transaction capability, you need only to add control logic.

Although many designers recognize the need for split transactions to minimize the bus use on long-latency I/O-bus cycles, many do not see a need to support the split transactions to main memory. The memory references are fast enough to justify this decision, but this unnecessary bus limitation may preclude the bus architecture from supporting future directory-based cache architectures with a scalable-coherent-interface (SCI) topology. A bus that implements SCI correctly has no performance penalty compared with a non-split-transaction bus. Memory boards need only monitor the signal D_FRD to know that they are not responding to the current access (Fig 2). Memory actions are then similar to the actions the memory takes when responding to a snoop-hit-dirty condition.

I/O-subsystem bus bridge

Several multiprocessor systems offer dual-bus bridges to provide multiple paths to I/O resources. Whether or not you choose a multiple-I/O-bridge architecture, you must optimize this interface. When speaking of performance and I/O buses, the magic word is "concurrency." Concurrency can take many forms in any multiprocessor. For example, an SMP can have several concurrent events occurring in the system (Fig 3).

To obtain the highest performance possible from the bus bridge, it must have cache-line buffers to enable it to transfer data to or from the I/O bus concurrent with activity on the multiprocessor bus. Cache-line buffers offer many performance benefits. First, they allow concurrent operations; the system and the I/O bus operate simultaneously. Second, cache-line buffers package the I/O bus' (usually) smaller data width into the full data-bus width and thus consume fewer system-bus cycles. Third, cache-line buffers allow the bus bridge to burst an entire cache line, eliminating any idle time between burst data as the faster multiprocessor bus waits for the next data from the I/O bus.

Cache-line buffers allow transfer of a full cache line over the bus bridge, which raises two issues: What if the I/O device needs to transfer only a few bytes of data, and what if the transfer starts or ends in the middle of a cache line? You solve these problems in one of two ways: Some architectures allow only full cache-line transfers. In this case, you have no choice except to let the bus bridge perform a read-for-ownership cycle and then write the new data into the cache line. When the I/O device proceeds to the next cache line, the

SYMMETRIC MULTIPROCESSORS

buffer must cast out the first line and read in the subsequent line. This approach consumes valuable bus bandwidth because a "worthless" cache-line read accompanies each burst write, which is needless when an I/O device is updating the entire cache line.

Additionally, the cache-line read causes each processor in the system to snoop its cache, potentially decreasing performance. These reads are needless when new data from the bus bridge will overwrite the entire cache line. Alternatively, the bus bridge can perform partial-word transfers until a cache-line boundary occurs. The bus bridge can then burst-write the cache lines without worrying about cache coherency.

Initially, you might assume that it is necessary to snoop the cache-line buffer on the bus bridge to prevent a cache-coherency problem. However, the problem can occur only if the CPU starts reading data in the cache-line buffer before the bus bridge transfers it. Typically, the I/O device generates an interrupt to the system when the I/O operation is complete. If the CPU starts to read data before this interrupt, the data might be stale whether or not it is buffered in a bus bridge. However, if the interrupt has a separate path from the data, the
interrupt can "bypass" the data in the bus bridge (Fig 4).

Separate interrupt and data paths open a small "window" that can be a major problem (and would then require snooping of the bus bridge). If the CPU attempts to use I/O data before the bus bridge transfers the last byte and if the bus bridge lacks a snoop feature, the CPU gets stale data. You can prevent this problem by forcing the bus bridge to empty the data buffers before transferring the interrupt vector. Thus, it is not necessary to snoop the bus bridge.

When the bus bridge is transferring a new cache line to memory, the CPU cache could hold the same cache line as "modified" data. Because this data is "old," a mechanism should tell the CPU to snoop and invalidate without writeback. This scheme eliminates the need for the bus bridge to wait for the snoop results and the write-back of any modified data from the CPUs.

Avoiding deadlock

A system employing bus bridges for concurrent operation must avoid deadlock. Deadlock occurs when a CPU attempts to access the I/O bus at the same time that an I/O device attempts to access the system bus, such as for main-memory access.One of these bus masters needs to back off, but which one? A system employing a standard PC I/O bus, such as EISA, may not have a choice: There is no graceful back-off mechanism.

For single-CPU systems, implementing a single back-off
signal would work fine. However, multiple CPUs complicate the situation. To avoid stopping all processors, each needs a separate back-off signal. Using one signal line is better because the bus bridge tends to be a pin-limited board. Using a deferred response is undesirable because it requires the bus bridge to store several requests while filling the cacheline buffers from the I/O device. Such a scheme is possible but costly and provides little performance gain.

A preferable design is to have processors that are requesting access to the bus bridge monitor the signal line IOBUSBSY. The bus bridge asserts this signal before it grants the bus to the I/O device, thus allowing one possible simultaneous write to access the I/O bus before granting the I/O bus to the I/O device. To accomplish this, when initiating an operation, each CPU must first decode its own address and monitor IOBUSBSY. This technique keeps unnecessary back-off cycles off the system bus.

Partial vs full cache-line transfers

Some designs simplify the memory interface and the bus protocol by allowing only full cache-line transfers. This approach eliminates the need for logic to perform the read-merge-write operations for writing partial words to memory. (The read-merge-write is needed to generate correct ECC bits for a 32 -bit word.) Because most transactions are cache-line operations, this approach may at

We made our High Power Transformers

 smaller, lighter and

BUY DIRECT: (516) 239-5777 太 Fax: (516) 239-7208
Signal Transformer, 500 Bayview Ave., Inwood, NY 11696
*For dimensional drawings, schematics, or any other additional questions you might have, please contact our Engineering Dept.

Signal's new High Power International Transformers, 200VA to 3.5 kVA , they're your passport to worldwide acceptance.

Our new MPI and HPI transformers share the same high performance and volumetric efficiency. Our unique insulating and construction techniques provide high isolation (4000V RMS Hipot), low leakage, and compliance with international safety standards. Here are other features that deserve a closer look: \star Regulation: 7.5% or better (dependant on VA rating) \star Low leakage current for medical applications
$\star 5$ mils thick copper Faraday shield reduces common mode noise
\star Shield terminated to handle high currents \star MPI's-incorporate Faston/screw type shock proof terminals \star HPl's-incorporate Euro style screw terminals
\star MPI's-operate at: $100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ \star HPl's-operate at: $100 \mathrm{~V}, 115 \mathrm{~V}, 215 \mathrm{~V}, 230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ \star MPI's-approvals pending: UL 506, CSA 22.2 \# 66 and VDE 0805 (IEC 950)

* HPI's-approved to UL 506, CSA 22.2 \# 66, and VDE 0550.

Approval pending: TUV IEC 950
\star MPI's-constructed with Class B materials $\left(130^{\circ} \mathrm{C}\right)$
\star HPl's-constructed with Class H materials $\left(180^{\circ} \mathrm{C}\right)$

ORDERING EXAMPLE:			MPI - 400-24	
MULTI-PURPOSE INT'L SERIES VA SIZE (400VA) OUTPUT VOLTAGE (SERIES CONNECTED)				
AVAILABLE IN STANDARD VOLTAGES: $10 \mathrm{~V}, 12 \mathrm{~V}, 16 \mathrm{~V}, 20 \mathrm{~V}, 24 \mathrm{~V}, 28 \mathrm{~V}, 36 \mathrm{~V}, 40 \mathrm{~V}, 48 \mathrm{~V}, 230 \mathrm{~V}$ FOR CUSTOM VARIATIONS CALL OUR ENGINEERING DEPARTMENT				
Part No.	VA	Secondary		$\begin{aligned} & \text { 1-9 Pcs } \\ & \text { Price } \end{aligned}$
		Series	Parallel	
MPI-200-10 THROUGH MPI-200-230	200 \ldots 200	10Vct. @ 20.0A 230Vct. @ 0.87A	$\begin{gathered} 5 \mathrm{~V} @ 40.0 \mathrm{~A} \\ 115 \mathrm{~V} @ 1.74 \mathrm{~A} \end{gathered}$	\$ 85.00
MPI-250-10 THROUGH MPI-250-230	250 \cdots 250	10Vct. @ 25.0A 230Vct. @ 1.1A	$\begin{gathered} 5 \mathrm{~V} @ 50.0 \mathrm{~A} \\ 115 \mathrm{~V} @ 2.2 \mathrm{~A} \end{gathered}$	90.00
MPI-300-10 THROUGH MPI-300-230	300 $\cdots 3$ 300	10Vct. @ 30.0A 230Vct. @ 1.3A	$\begin{gathered} 5 \mathrm{~V} @ 60.0 \mathrm{~A} \\ \ldots 1.62 .6 \mathrm{~A} \end{gathered}$	96,00
$\begin{aligned} & \text { MPI-400-10 } \\ & \text { THROUGH } \\ & \text { MPI-400-230 } \end{aligned}$	400 \cdots 400	$\begin{gathered} \hline 10 \mathrm{Vct} \text { @ } @ 40.0 \mathrm{~A} \\ \text { C.. @ } 1.74 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} @ 80.0 \mathrm{~A} \\ 115 \mathrm{~V} @ 3.48 \mathrm{~A} \end{gathered}$	111.00
MPI-650-10 THROUGH MPI-650-230	650 \ldots 650	10Vct. @ 65.0A 230Vct. @ 2.8A	$\begin{gathered} \hline 5 \mathrm{~V} @ 130.0 \mathrm{~A} \\ 115 \mathrm{~V} @ 5.6 \mathrm{~A} \\ \hline \end{gathered}$	145.00
MPI-900-10 THROUGH MPI-900-230	900 \cdots 900	10Vct. @ 90.0A 230Vct. @ 3.9A	$\begin{gathered} 5 \mathrm{~V} @ 180.0 \mathrm{~A} \\ 115 \mathrm{~V} @ 7.8 \mathrm{~A} \end{gathered}$	162.00

Size	L	W	H	$\mathrm{ML}^{(\mathrm{mtg})^{*}}$	MW (mtg)*	WGT
200VA	$3.750^{\prime \prime}$	$4.203^{\prime \prime}$	$3.720^{\prime \prime}$	$3.250^{\prime \prime}$	$2.800^{\prime \prime}$	6.22 lbs
	95.3 mm	106.6 mm	94.5 mm	82.6 mm	71.1 mm	2.82 kg
250 VA	$4.125^{\prime \prime}$	$3.898^{\prime \prime}$	$4.000^{\prime \prime}$	$3.625^{\prime \prime}$	$2.601^{\prime \prime}$	6.76 lbs
	104.8 mm	99.0 mm	101.6 mm	92.1 mm	66.1 mm	3.07 kg
300 VA	$4.125^{\prime \prime}$	$4.223^{\prime \prime}$	$4.000^{\prime \prime}$	$3.625^{\prime \prime}$	$2.915^{\prime \prime}$	7.80 lbs
	104.8 mm	107.3 mm	101.6 mm	92.1 mm	74.0 mm	3.54 kg
400 VA	$4.125^{\prime \prime}$	$4.805^{\prime \prime}$	$4.000^{\prime \prime}$	$3.625^{\prime \prime}$	$3.505^{\prime \prime}$	9.82 lbs
	104.8 mm	122.0 mm	101.6 mm	92.1 mm	89.0 mm	4.46 kg
650 VA	$5.250^{\prime \prime}$	$4.430^{\prime \prime}$	$4.800^{\prime \prime}$	$4.500^{\prime \prime}$	$3.415^{\prime \prime}$	14.83 lbs
	133.3 mm	112.5 mm	121.9 mm	114.3 mm	86.7 mm	6.73 kg
900 VA	$5.250^{\prime \prime}$	$5.197^{\prime \prime}$	$4.800^{\prime \prime}$	$4.500^{\prime \prime}$	$4.205^{\prime \prime}$	19.84 lbs
	133.3 mm	132.0 mm	121.9 mm	114.3 mm	106.8 mm	9.01 kg

HPI SERIES

Part No.	VA	Secondary				1-9 Pcs Price
		Series		Parallel		
$\begin{aligned} & \text { HPI-20 } \\ & \text { HPI-27 } \\ & \text { HPI-35 } \end{aligned}$	$\begin{aligned} & 2000 \\ & 2750 \\ & 3500 \end{aligned}$	230V@8.7A 230V@12.0A 230V@15.2A		$\begin{aligned} & 115 \mathrm{~V} @ 17.4 \mathrm{~A} \\ & 115 \mathrm{~V} @ 24.0 \mathrm{~A} \\ & 115 \mathrm{~V} @ 30.4 \mathrm{~A} \end{aligned}$		$\begin{array}{r} \$ 368.00 \\ 398.00 \\ 450.00 \end{array}$
Mechanical Dimensions						
Size	L	W	H	ML (mtg)*	MW (mtg)*	WGT
2000VA	$\begin{gathered} 7.500^{\prime \prime} \\ 190.5 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 5.600^{\prime \prime} \\ 142.2 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 6.560^{\prime \prime} \\ 166.6 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 5.750^{\prime \prime} \\ 146.1 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 4.350^{\prime \prime} \\ 110.5 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{aligned} & 41.3 \mathrm{lbs} \\ & 18.71 \mathrm{~kg} \\ & \hline \end{aligned}$
2750VA	$\begin{gathered} 7.500^{\prime \prime} \\ 190.5 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 6.230^{\prime \prime} \\ 158.2 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 6.560^{\prime \prime} \\ 166.6 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 5.750^{\prime \prime} \\ 146.1 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 4.980^{\prime \prime} \\ 126.5 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{aligned} & 48.0 \mathrm{lbs} \\ & 21.77 \mathrm{~kg} \\ & \hline \end{aligned}$
3500VA	$\begin{gathered} 7.500^{\prime \prime} \\ 190.5 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 7.330^{\prime \prime} \\ 186.2 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 6.560^{\prime \prime} \\ 166.6 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 5.750^{\prime \prime} \\ 146.1 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 6.080^{\prime \prime} \\ 154.4 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & 62.4 \mathrm{lbs} \\ & 28.30 \mathrm{~kg} \end{aligned}$

SYMMETRIC MULTIPROCESSORS

first glance appear optimal. But this approach can limit performance when interfacing to a bus bridge. Unless you can guarantee that all I/O-subsystem read operations will begin and end on cache-line boundaries and will contain only full cache-line operations, the bus bridge will need to perform a "read-for-ownership" cycle to acquire the cache line before writing the data from the I/O device. Once the I/O device writes new data into the cache line, the bus bridge must then write the cache line back to main memory. Thus, the bus bridge consumes twice the I/O-bus bandwidth on the system bus. (That is, when transferring data from the I/O bus at 33 Mbytes/sec, the bus bridge needs 33 Mbytes/sec of "read-for-ownership" cycles and 33 Mbytes/sec of cache-line write cycles.)

This design may lose additional performance because it requires two cache snoops: one when the bus bridge reads the cache line and one when it writes the cache line back. However, you could eliminate snooping on cache-line writeback operations.

Software is the key to scalability

Contention for common resources, such as system memory and I/O, cause delays that degrade processor performance, which, in turn, limits hardware scalability. Improved bus throughput, faster memory, and larger caches help mitigate the impact of bus contention, but the software also plays a significant role. The software's scalability lies in its ability to break tasks into subtasks, or "threads," which can execute independently.

Threads differ from traditional "processes" in that they carry less machine context and, therefore, do not overburden a system with context saving and restoring. Building the OS kernel from these threads spreads the work of the OS across several processors. "Single-threaded" software, on the other hand, executes whole tasks on one processor. Early I/O drivers, for instance, executed almost entirely at the ISR level and as single, whole tasks. Thus, they required a major OS rewrite to define threads that could execute in parallel. The finer these threads, the more benefit a design derives from multiple processors.

The point of diminishing returns sets in when the time spent in task synchronization offsets the benefit of smaller threads and when more semaphore accesses cause increased bus use and, in turn, decreased performance.

References

1. Marrin, Ken, "Multithreading support grows among

EDN

Fig 4-Snooping into a bus bridge that contains cache-line buffers is unnecessary if your design ensures that the device interrupt cannot "bypass" the device data.
real-time operating systems," Computer Design, March 1993.
2. "AP-474 An APIC-Based Symmetric Multiprocessor System Design," Intel Corp, 1993.
3. NT Driver Design Guide, Microsoft Corp, 1992.

Author's biography

Brian Bennett is a senior engineer in the Server Systems group at AST Research Inc, Irvine, CA, where he has worked for three years. Brian earned a BSEE from California Polytechnic State University (San Luis Obispo), and an MSEE from the University of Southern California (Los Angeles) in 1981 and 1991, respectively. He is working on an MBA at Pepperdine University (Malibu, CA). In his spare time, he enjoys skydiving, rock climbing, and bronco riding.

VOTE

Please use the Information Retrieval Service card to rate this article (circle one):

High Interest	Medium Interest	Low Interest
592	594	

High-speed hard metric system. A performance step beyond Futurebus+.

ECLiPS ECL differential circuit performance of Z-Pack 2 mm HM system ($t_{r} \approx 250 \mathrm{ps}$).
Multiline models and full simulation services available to simplify development.

The AMP Z-Pack 2mm HM interconnection system offers the modularity and performance scalability you need for critical high-speed, high-density applications. The 2 mm hard metric interface (fully compliant with IEC 917) is ideally suited for global system design.
Stackable 25 and 50 mm modules provide full board-to-board and cable-toboard capabilities, with provision for high-current, coax, and fiber optic contacts. Header pins - in three mating levels - can extend through the backplane for "midplane", cross-connect, or cable-to-backplane arrangements.

If you would like more information about our Z-Pack 2 mm HM interconection system, call our Product Information Center at 1-800-522-6752 (fax 717-986-7575). AMP, Harrisburg, PA 17105-3608. In Canada, call 905-475-6222.

The basic 5-row AMP 2 mm HM system offers 12.5 signal lines/cm for singleended signals with edge rates to 500 ps . Enhanced versions (7-row, with ground shield) provide 20 signal lines/cm for differential signals to 500 ps. Enhanced versions with integral crosstalk shielding maintain 20 signal lines/cm and offer even greater performance - to 250 ps . All this while maintaining $\leq 5 \%$ multiline crosstalk.
If you need performance beyond our standard Futurebus + line, you'll love how fast the fast Z-Pack 2 mm HM system from AMP will come through for you.
ECLiPS is a trademark of Motorola Corp. AMP and Z-Pack are trademarks.

The Harris hip 5000 : Worid's Most INterkatoval High Voitige LNEAR REGLIATOR.

With the industry's widest available $A C$ and $D C$ input voltage ranges, this single-chip regulator tames line currents from Azerbaijan to Zimbabwe - without a transformer. And the HIP5600 packs a lot of features for such a light traveler: a big 650V maximum input voltage plus built-in overcurrent protection and thermal shutdown. All in a T0-220 package that easily heat sinks for even more output range. Use it - or our HV2405E, or one of our other high-performance regulators - to replace discretes and bulky transformers in all kinds of non-isolated off-line applications. And let it take your next design wherever you want it to go.

Features

- Direct off-line AC or DC operation
- 650 V maximum input voltage
- 80V - 280 V AC input
- 50V - 400V DC input
- 1.2 V to 320 V (Vpeak) output voltage range
- 10 mA continuous output current without heat sink
- 35 mA continuous output current with heat sink
- 250 mA continuous output current in "buck" configuration
- Evaluation boards available
- 3-lead T0-220 package
- 8 -lead SOIC available later this year
- Just \$1.34thousand (0EM)
- Underwiters Laboratory recognized

The HIP5600. It's welcome anywhere in the world.

To see spectrum-analysis detail fast, match sweep time to measurement

Morris Engelson, Tektronix Inc

Abstract

In spectrum analysis, slower sweep speeds provide improved detail. If you understand some basics, however, you can choose a sweep speed that provides needed detail without wasting time.

A spectrum analyzer's sweep time (T) depends on the frequency span to be displayed (S), the resolution bandwidth (B), the video-filter bandwidth (V), the signal-intercept or detector function (D), and the vertical-display setting (VD). (Some secondary factors that also affect the sweep time, such as the digital-storage sample rate, are not discussed here.) The sweep time increases directly with the span and inversely with the videofilter bandwidth and the square of the resolution bandwidth. The peak-detector function in the $10-\mathrm{dB} /$ div logarithmic vertical mode usually provides the fastest sweep and the minimum measurement time. In addition, you can achieve faster sweep times by accepting reduced measurement accuracy or by using accessory items such as a preamplifier.
The abbreviated block diagram of Fig 1 relates spectrum-analyzer operating functions to circuits. The fre-quency-sweep width of the first local oscillator determines the span. The swept mixed signal is translated after the bandpass filter that determines the resolution, or signal separation. After the resulting spectrum is detected, it is amplified in a lowpass "video-filter" amplifier prior to display on the CRT. The two most critical functions are the predetection resolution-filter bandwidth (B) and the postdetection videofilter bandwidth (V).

The relationships among the key parameters are well understood and filter.
have been discussed in literature. However, the discussion is spread out over many publications and sometimes appears as a footnote to a different main topic. This article provides a complete picture of accuracy/sweep-time tradeoffs by summarizing and integrating the scattered information.

Span, time, and bandwidth

Ref 1 shows that for spectrum analyzers whose bandwidth is specified at the $-3-\mathrm{dB}$ points (for example, those made by Hewlett-Packard) the span (S), resolution bandwidth (B), and sweep time (T) are related by the formula $\mathrm{S} / \mathrm{TB}^{2}=0.5$. For spectrum analyzers that specify resolution bandwidth at the $-6-\mathrm{dB}$ points (those made by Tektronix,

Fig 1-In the spectrum-analyzer block diagram, the two blocks that have the most influence on the bandwidth (and indirectly on the sweep time) are the variable-resolution filter at the upper right, and the vertical amplifier, at the lower right, which includes the video

EDN-DEsicN FEATURE

SPECTRUM ANALYSIS

for example), the relationship is $\mathrm{S} / \mathrm{TB}^{2}=0.22$. The two formulas are identical when you consider that the resolution bandwidth defined at the $-6-\mathrm{dB}$ points, $\mathrm{B}_{6-\mathrm{dB}}=1.5 \mathrm{~B}_{3-\mathrm{dB}}$ (the resolution bandwidth defined at the $-3-\mathrm{dB}$ points), and $0.5 / 0.22=1.5^{2}$. This relationship holds for the normal spec-trum-analyzer default setting where the video-filter bandwidth is equal to or greater than the resolution bandwidth. Real spectrum analyzers sweep about 25% slower than the theory predicts. Thus, for the Tektronix 2784 spectrum analyzer at a $100-\mathrm{MHz}$ span and $100-\mathrm{kHz}$ resolution, the actual time is 57 msec , whereas the computed sweep time is 45 msec . Similar results will be found for other settings and other spectrum analyzers.

The above is based on the assumption that amplitude must be measured accurately. Sweep time can be significantly reduced when amplitude-measurement accuracy is not critical. As Refs 1 and 2) show, a slight degradation in amplitude accuracy permits a sweep-time improvement of up to 5 times; if you can accept an amplitude-accuracy loss of about 3 dB , a 10 -times sweep-time reduction is frequently possible.

The spectrum-analyzer circuit following the detector is known as the video filter. The video filter's bandwidthwhen it is wider than the resolution bandwidth that precedes the detector-is not a factor in determining the sweep time. A relatively narrow video bandwidth, however, does affect sweep time, because the video filter must faithfully reproduce the amplitude of a pulse of duration $\mathrm{t}=\mathrm{BT} / \mathrm{S}$ (Ref 2).
In the previous example, $\mathrm{S}=100 \mathrm{MHz}, \mathrm{B}=100 \mathrm{kHz}$, and $\mathrm{T}=45 \mathrm{msec}$, so $\mathrm{t}=45 \mu \mathrm{sec}$. To determine the bandwidth of a lowpass filter that will faithfully reproduce the amplitude of this pulse, remember that for a simple RC filter, the product of rise time and bandwidth equals 0.35 . This means that a $7.8-\mathrm{kHz}$ filter has a $45-\mu \mathrm{sec}$ rise time. The usual rule is that the filter output reaches the pulse's full peak amplitude in five rise times.

In the example, a pulse passed through the $100-\mathrm{kHz}-$

Fig 2-Reducing the sweep time from a theoretically correct 130 msec (left trace) to 30 msec (too fast a sweep to yield good amplitude accuracy) produces a response 1.75 dB too low (right trace), but speeds the sweep by a factor of 4.3.

Fig 3-Mixing a sine wave with pulses yields a spectrum in which the presence of the sine wave is barely discernible.
bandwidth filter has more than 10 rise times to reach its final value. Thus, a $100-\mathrm{kHz}$ video-filter bandwidth is more than sufficient to reproduce the output of a $100-\mathrm{kHz}$ resolution filter without need for a change in sweep time. This is not the case for a much narrower video-filter bandwidth, such as 10 kHz .

Automatic settings emphasize accuracy

The sweep time on the Tektronix 2782 spectrum analyzer slows to 200 msec when the video bandwidth is reduced to 10 kHz for a $100-\mathrm{kHz}$ resolution and $100-\mathrm{MHz}$ span. At $\mathrm{t}=\mathrm{BT} / \mathrm{S}$, the video filter must reproduce a $200-\mu \mathrm{sec}$ pulse, which yields a $1.75-\mathrm{kHz}$ video bandwidth for one time constant at a 0.35 product. The usual convention is that you need about five time constants to reproduce a pulse shape properly. A $10-\mathrm{kHz}$ video-filter bandwidth fits this profile at $10 /$ $1.75=5.7$ time constants.

Sweep time (T), span (S), resolution bandwidth (B), and video-filter bandwidth (V) are changed in steps rather than continuously. Also, different instruments may use different filter types or numbers of sections. Therefore, actual spectrum-analyzer settings may differ from each other or from theoretically calculated values. Actual settings approximate those shown in Table 1. Note that the 3- and 6-dB bandwidth relationships are the same when you take into account that the 6and $3-\mathrm{dB}$ bandwidths differ by a factor of 1.5 .

These are the default values that the spectrum analyzer is preset to follow. Ref 1 shows that a sweep-time reduction of up to 10 times compared with default settings is sometimes possible

Introducing OKI's Advanced CODEC's

ALL ROADS LEAD TO OKI when it comes to CODECs. Our cost-effective, feature-rich telecom family delivers state-of-the-art solutions: Single-rail, low-power 3 V and 5 V
 products. Popular industry standards, including μ-law and A-law, G.711-726 for PCM and ADPCM applications. Space-saving TSOPs. Plus immediate delivery. COMPREHENSIVE CAPABILITIES. Why settle for middle-of-the-road? With OKI, you choose from a broad range of top-of-the-line CODECs-designed to meet the most advanced wireless requirements. FAST TO MARKET. Take the easy street to design success with OKI's full line of telecom ICs. To get OKI's CODEC white paper, call

OKI Semiconductor
785 North Mary Avenue Sunnyvale, CA 94086-2909 Phone: 408-720-1900 Fax: 408-720-1918 People-to-People Technology 1-800-OKI-6388 and ask for Pkg No. 021.

SPECTRUM ANALYSIS

with only a minor loss in amplitudemeasurement accuracy. You can achieve good accuracy at higher sweep speeds by manually setting T, B, and V independently of each other, although the instrument will show an error message when you violate the preset relationships in this way.

Fig 2 illustrates some of this discussion. A span of 200 kHz with $3-\mathrm{kHz}$ resolution bandwidth and $1-\mathrm{kHz}$ video-filter bandwidth provides a spectrum display of a $100-\mathrm{MHz}$ sine wave at a $130-\mathrm{msec}$ sweep time. The sweep time computed from the formula for 6-dB-bandwidth-based spectrum analyzers is in good agreement at 133 msec . The second trace, showing a lower-amplitude display, was obtained at a $30-\mathrm{msec}$ sweep time. The 2782 spectrum analyzer is no longer amplitude-calibrated, as indicated by the UNCAL error message near the upper left corner of the screen. An amplitude comparison shows that the absolute amplitude level is in error by 1.75 dB , which would be unacceptable in many applications. Note, however, that if you don't need to measure the amplitude accurately, these settings reduce the measurement time by a factor of $130 / 30=4.3$.

Detector function

Sweep-time limitations discussed so far are determined by how fast a signal can be swept through a filter. The filter bandwidth is the dominant sweep-speed factor when the instrument is set to respond to the peak level of the signal. This is not the case for quasi-peak (QP) and average-signal measurements.
The QP detector, used for EMI measurements, is extremely slow. There are two ways to reduce the measurement time

Fig 4-Reducing the video-filter bandwidth to 1 kHz reduces the amplitude of the pulse spectrum by averaging, and the sine wave shows at 9.47 dB above the averaged pulse-spectrum level. The sweep time increased to 99 msec compared with Fig 3 's 20 msec, however.

Table 1 1-How spectrum- analyzer sweep time varies with bandwidth		
Bandwidth definition	6 dB	3 dB
$\mathrm{~V} \geq \mathrm{B}$	$\mathrm{T}=\mathrm{S} / 0.22 \mathrm{~B}^{2}$	$\mathrm{~T}=\mathrm{S} / 0.50 \mathrm{~B}^{2}$
$\mathrm{~V}<\mathrm{B}$	$\mathrm{T}=\mathrm{S} / 0.50 \mathrm{BV}$	$\mathrm{T}=\mathrm{S} / 0.33 \mathrm{BV}$

Note: These formulas are approximate. A different type of derivation shows a $3-\mathrm{dB}$ bandwidth relationship of $\mathrm{S} / \mathrm{TBV}=0.55$ (Ref 5). Whatever the assumptions, however, the results are similar.
for such measurements. One way is to use the much faster peak detector instead of the QP detector. This is perfectly legal because peak-detector results always show a level at least as high as QP results. Hence, a device that fails interference- acceptance limits in QP also fails in peak-detection mode. The incentive for using the QP mode is that some devices fail acceptance testing in peak but are perfectly all right in QP. Therefore, when measurement time is important, it is a good idea to use peak as the primary measurement mode and retest in QP when a peak measurement is out of spec (Refs 3 and 4).
Sometimes, the signal characteristics are such that the QP detector can be swept much faster than normal with very little degradation in amplitude accuracy. As discussed in Ref 3, by avoiding QP whenever possible and by using a faster-thannormal sweep for some signals, you can achieve speed increases of 10 times or more in most measurements that require the use of QP.

Averaging, no matter how it is done, requires a certain amount of time. You cannot perform averaging measurements as fast as peak measurements. However, you can save much time by choosing an optimum averaging technique based on the application and accuracy requirements. Several procedures discussed in Refs 4, 5, and $\mathbf{6}$ are summarized below.

To speed averaging, try a log display

A common averaging procedure is to set the spectrum analyzer for a narrow video-filter bandwidth. However, sweep time is inversely proportional to video bandwidth. Consequently, the greater the degree of averaging, the longer the sweep takes. In theory, to obtain a correct average value, the averaging should be performed in the linear

Fig 5-This trace, which was taken at $10 \mathrm{~dB} / \mathrm{div}$ in \log mode, shows an improved signal ratio of 16.9 dB . This was obtained at a videofilter bandwidth of 3 kHz and a sweep time of 33 msec .

If you design microprocessor-based boards, or systems, you know that high emissions-EMI-can eat you alive. Your designs could be affected. Or even rejected. And redesigns for clock schemes take time. And cost money.

Don't Lose Another Knight Redesigning Your Boards
AMCC clock and timing products are famous for their low emissions. They'll shield you from certification problems. And, your designs will use fewer components, cost less, and run faster.

Call (800) 755-2622

You Can Live Happily Ever After Our SC3500 family of clock drivers provide:

- Patented low-noise outputs. To eliminate ringing and ground bounce. Fast edges rates without EMI-generating noise
- On-chip termination eliminates extra components.

Theirs Unterminated

Ours Unterminated

- Low skew. As low as 250 ps.
- High speed. Up to 80 MHz for your Power PC, Pentium, Alpha, and other RISC-based applications.
- The SC3300 family provide a53.3V I/0-compatible solution.

Contact AMCC Today

We won't tell you a fairy tale. Ask for a copy of our new Computer Products Databook.
FAX us at (619) 450-9885
Or write to us: MarCom, AMCC,
6195 Lusk Blvd., San Diego, CA 92121-2793.

АМСС

SPECTRUM ANALYSIS

vertical mode．Nevertheless，averaging a logarithmically compressed signal is almost as accurate as linear process－ ing，and the video bandwidth can be five or more times as wide（Refs 4 and 5）．Log－mode averaging，therefore，sig－ nificantly reduces measurement time at a small cost in accuracy．
The plots in Figs 3 and $\mathbf{4}$ illustrate the improvement in averaging by using a logarithmic display．Fig 3 shows a combination of pulsed and continuous－ wave signal spectra．The sine wave is barely discernible within the pulse－ spectrum distribution．In Fig 4，reduc－ ing the video－filter bandwidth to 1 kHz reduces the amplitude of the pulse spec－ trum by averaging，and the sine wave shows at 9.47 dB above the averaged pulse－spectrum level．The sweep time increases to 99 msec compared with Fig 3＇s 20 msec．Fig 5，which was taken at $10 \mathrm{~dB} / \mathrm{div}$ in \log mode，shows an improved signal ratio of 16.9 dB ．This was obtained at a video－filter bandwidth of 3 kHz and a sweep time of 33 msec ．Thus，a $10-\mathrm{dB} / \mathrm{div} \log$ display produces bet－ ter averaging than does the linear mode（ 16.9 vs 9.47 dB ），yet the video bandwidth is wider and the sweep time is less by a factor of three．
Although video－filter averaging is the usual procedure， most spectrum analyzers also provide various means of aver－ aging spectra digitally．Sometimes the digital processing is more effective or faster than the analog technique of using a narrow video filter．One way to save measurement time is to use digital and analog video－filter averaging simultaneously． For the Tektronix 2794 spectrum analyzer，for example， 100 msec of digital averaging is equivalent to using a $5-\mathrm{kHz}$－wide video filter（Ref 6）．Thus，at a $50-\mathrm{MHz}$ span， $100-\mathrm{kHz}$ resolu－ tion bandwidth，and $10-\mathrm{kHz}$ video－filter bandwidth，the sweep time is 100 msec ，as computed from $\mathrm{S} / \mathrm{TBV}=0.5$ ． Simultaneously performing digital and video－filter averag－ ing to achieve the equivalent of a $5-\mathrm{kHz}$ video bandwidth takes no extra time．The combination of $10-\mathrm{kHz}$ video and 5 － kHz digital filtering provides a bandwidth of less than 4 kHz without increasing the measurement time．

Additional factors

As noted previously，a logarithmic display permits faster signal averaging than is possible in the linear vertical mode． Indeed，the logarithmic vertical mode permits a faster sweep than a linear display even at wide video bandwidth，because the width and rise time of the previously discussed $\mathrm{t}=\mathrm{BT} / \mathrm{S}$ pulse increase as the spectrum is compressed in the loga－ rithmic display．Note in Fig 6 how the same sine－wave signal spectrum appears wider in the（outer）logarithmic－mode dis－ play than in the（inner）linear display．
Finally，note an important relationship between measure－ ment sweep time and signal－detection sensitivity．Pulling a small sine－wave signal out of noise requires a very narrow res－
olution bandwidth，which results in a long sweep time．An input－ signal preamplifier increases the signal level so that a wider bandwidth and less measurement time do the job（Ref 7）．［⿴囗玉 $\mathbf{D N D}$

References

1．＂Sweep－time results in spectrum analysis，＂Tektronix Inc，Publication No．2EW－8710－0．

2．Engelson，Morris，Modern Spectrum Analyzer Theory and Applications，JMS，Portland，OR．

3．Engelson，Morris，＂EMI applications using the Tektron－ ix 2712 spectrum analyzer，＂Tektronix Inc，Publication No． 2EW－8888－0．

4．Linkwitz，＂Measurement of narrowband and broadband emissions using peak and average detection，＂Transactions of IEEE EMC symposium， 1989.

5．Linkwitz，＂Average measurements using a spectrum analyzer，＂EMC Test and Design，May／June 1991.

6．＂Selective level－display averaging in spectrum analysis，＂ Tektronix Inc，Publication No．2EW－9016－0．

7．＂Using an input amplifier to enhance spectrum－analyzer measurements，＂Tektronix Inc，Publication No．2EW－8331－0．

Author＇s biography

Morris Engelson is a fellow of the IEEE．He is a consultant with JMS in Portland，OR，and is affiliated with Tektronix Inc in nearby Beaverton．Engelson holds bachelor＇s and master＇s degrees in EE and is a certified electromagnetic－compatibility engineer．Most of his career has been spent in designing spec－ trum analyzers and in developing techniques for measuring radio－frequency signals．

VOTE

Please use the Information Retrieval Service card to rate this arti－ cle（circle one）：
High Interest
Medium Interest 596
Low Interest

If conventionat thinking drives you up the wall, order the Philips DS-750 development tool kit.
It helps you dream up great designs using our 8 -bit 8 XC 750 microcontroller. Including the design that could win you a hot new Camaro! For the low price of just $\$ 4750$ (plus shipping), the Philips DS-750 gives you all the hardware, software and documentation needed to quickly build, emulate and debug 8-bit designs using our 8XC750. The $8 \times C 750$ is our powerful, low-cost entry into the full family of Philips 80C51 microcontrollers.

Together, they give you winning designs.

Which is why you should be sure to enter the exciting Philips
 PHILIPS Machime $8 \times C T 50$ DESIGN CONTEST Dream Machine Design Contest. Just submit a design to us using the 8 XC 750 or any Philips 80C51 microcontroller derivatives by September 30, 1994. If it turns our judges on their heads, you could win the Camaro or a color or monochrome laptop computer.

So turn it up. Use your credit card to order the DS-750 today. We'll also send you more information on this incredible design contest: 1-800-447-I500, ext. II20 DN

The World's Larggest Embedided Sustems Conference Just Goot Larger

The Sixith Annulul

Embedided
 na- 0505 stan
 - Bstart[syz]

 pr- 050 Ena start:
Sustenis

Conference

OS. ETtR GRITCAL ()$=0$ in $41(\mathrm{~m}-) 05 \mathrm{manta}$ es $1-0 / 4)$

September 20-2\%, 1994

Sinita Clifra Convenioon Center

Santa Clijara, CR

The EMBEDDED SYSTEMS CONFERENCE has always been the place developers go for total embedded solutions -- whether its improving design, writing more efficient code or devising more effective project management strategies.

For 1994, the Embedded Systems Conference has been expanded to also cater to the specialized needs of single board computer developers. Our technical program will now offer not only programming tips, but even more hardware-related workshops, lectures, and tutorials on topics like these:

- Control and DSP applications • High-performance and multi-processor applications • Fuzzy logic - Bus interfacing issues - And more!

What you will learn:

- New techniques to help you write tighter code and get your projects out the door
- Programming tips for writing faster code
- Faster debugging through reusability
- Resolutions to systems integrations issues
- Maximizing your use of hardware platforms
- Tailoring software for specific hardware platforms

Witness First-Hand As Vendors Unveil

Their Newest Products
See the largest dedicated exhibition of embedded development tools and utilities and meet face-to-face with representatives from more than 150 leading companies.

Send me the details on the Embedded Systems Conference!

I'm interested!

FAX: (415) 905-2220
September 20-23, 1994
PHONE: (415) 905-2354
Santa Clara Convention Center • Santa Clara, CA
I'm interested in: \square Attending \square Exhibiting

Name	Title	
Company		
Address		
City	State/Province	Zip Code
Phone	Fax	EN4P

CIRCUIT BREAKERS FOR EQUIPMENT

PEREEGTIX

Call or fax for Your free E-T-A Circuit Protection Brochure.
7400 N. Croname Rd., Niles II. 60714-3982 (708) 647-8303 FAX (708) 647-7494
E-T-A Circuit Breakers 236 Hood Rd., Markham, Ontario L3R 3K8 (905) 475-5886 FAX (905) 475-5889

E-T-A Series 1410 Circuit Breakers for Equipment are specially designed to protect printed circuit boards.
The tiny, fast acting 1410 CBE deals with short circuits or current overload quickly and cost-effectively. Because, in the competitive world of electronics manufacturing, extended downtime is unacceptable.
At E-T-A, we believe that protecting circuits allows no compromise. That's why all

- Direct PCB or remote mounting
- Push-button manual reset
- Solder pin or blade terminal connections
- Current ratings from 0.63 to 8.0 A our products fit precise application and performance specs. Perfectly.
So, next time you need to protect a PCB, get on board with perfection, choose E-T-A.

You're welcome. And really, it was no trouble at all. We simply reduced the price of our product-Xilinx ${ }^{\text {m }}$ FPGAs.

Now you can afford to equip your products with the best logic solution available.

You see, thanks to the best research, development and manufacturing in the business, our FPGAs now feature even smaller geometries.

So naturally, they feature even smaller prices, too.

But the impact doesn't stop with your product. What we've done, in effect, is serve

holders. All product pricing is representative of a 5000 or higher quantity order.
notice on the gate array market. To whom we say the following: objects in mirror are closer than they appear.

Quite literally, we're going as far and as fast as the laws of physics will allow.

Which means you can expect Xilinx FPGAs to keep getting faster and denser.

And our prices to keep getting smaller and smaller.

But let's talk about the present. For instance, over the past year, we've made possible as much as a 70\% savings on our high density

XC4000 and up to a 50% reduction on our high performance XC3100A line.
These reductions have even reached our lower end XC2000 and XC3000 lines - as well as our XC7000 series EPLDs, now available for as little as $\$ 4$ each.

At these prices, you really can't afford not to use Xilinx. But not just because they'll save you money.

Because they'll also save you time.

You know that being first out of the gate is an often
staggering advantage.
Well, Xilinx FPGAs get you to market faster than conventional gate arrays months faster.

Xilinx FPGAs can also save you headaches.

Because a Xilinx FPGA isn't finished until you say it is, you're not stuck with what the gate array foundry turns out. You can reprogram it-even in the system - until you get it just right.

And with more than 500 device/package types, we have one that's right for you.

Want to know more?
Just call 1-800-231-3386 and we'll send you a detailed information package.

Or contact your local Xilinx representative.

Then use Xilinx FPGAs for your next project and cut your costs.

We suggest you hurry. After all, your competitors know how to read, too.

E. XIIINX

The Programmable Logic Company."

Think Partnership.
Think Technology Leadership.
Think Competitive Edge.
Now think about calling Philips. And gaining access to some of the world's most-advanced technology - and the production facilities to go with it.

Our array of advanced key technologies will help you develop better, more-competitive products. Or we'll work with you to create a customized solution.

No matter which path you choose, you'll be in partnership with the company that invented the CD, CD-I, the audio cassette and the DCC. Philips also holds over 90,000 patents, and spends $\$ 2$ billion annually on R\&D.
Philips has what you need to succeed. And now it's available to you.
Simply call Philips Key Modules at I-800-235-7373. It's time to turn your wildest product ideas into competitive realities.

Weigh the benefits of fuzzy-logic vs classical control in a disk-drive spindle

Brian P Tremaine, Seagate Technology

You can apply fuzzy- and classical-control techniques to any servo-control loop. Which technique you use depends beavily on the nonlinearities in a system.

A furor is raging over whether you should use fuzzy-logic or classical-control tools to analyze a complex servo-control system. Fuzzy-logic advocates claim it eliminates the need for a mathematical system description, while classical-control advocates claim fuzzy logic's lack of analysis tools makes it undesirable. To observe these extreme views, compare the classical- and fuzzy-control analysis of a disk-drive de spindle motor. The comparison uses a C program, which simulates the plant and classical feedback-control signal.

The FIDE (fuzzy inference-development) program from Aptronix Inc compiles the plant program to simulate a fuzzy controller. The spindle-motor example shows that even a basic system can have nonlinearities, which preclude linear analysis. However, knowledge of the system equations can aid the design of a fuzzy controller.

The de spindle motor, driver electronics, and digital transducers comprise the system's plant and are inherently nonlinear. The driver develops only positive torque, which is a common practice in disk-drive applications. Therefore, the motor depends only on soulomb friction to decelerate. The olant's nonlinearities include saturaion of the error signal, torque control n only one quadrant, and quantization of the transducer signals from the outut control voltage. Therefore, linearnalysis methods do not apply for either he classical or fuzzy set of control ools. This analysis compares the difsrences between a classical proporonal plus integral (PI) controller and a zzy controller.

The plant model (Fig 1) is a dc 3-phase, 12-pole spindle motor along with the driver electronics. The output circuitry comprises three half-bridge drivers with current-sense feedback. The input to the driver is an analog voltage, which generates the spindle motor current through a current amplifier having a gain of gm (amps/volt). When the input voltage equals some reference voltage, the current command is zero, and the output stages are off. During this time, coulomb friction decelerates the motor. Maximum current drive occurs when the input voltage is at 0 V . The motor resistance, supply voltage, and the back EMF from the motor limit the maximum current drive to the motor.

Simulator doesn't model current control

The current-control loop around the motor and the current amplifier typically have a bandwidth several orders of magnitude greater than the motor's velocity bandwidth. There-

Fig 1-The block diagram of the plant for a 3-phase, 12 -pole spindle motor comprises a current amplifier driving the motor and half-bridge output drivers with current-sensing feedback.

EDN-DESGE FEATURE

FUZZY AND CLASSICAL CONTROL

fore, the plant simulation doesn't include the dynamics of the current-control loop in Fig 1. Instead, the plant model calculates the maximum available current and drives the motor using a current source, which is equal to either the commanded current or the maximum available current, whichever is smaller.
The classical-control analysis applies linearization to the nonlinear plant to design a proportional PI controller. The linear model does not predict the correct simulated transient response. The simulated plant model calculates motor speed in rad/sec, position in rad, and a digital encoder pulse, called $f_{\text {com }}$. A digital tachometer and digital phase detector use the $f_{\text {com }}$ signal, which occurs nine times/revolution of the motor $\left(\mathrm{N}_{\mathrm{p}}=9\right)$. The linearized transfer function of the motor and current driver in continuous time is:

$$
\begin{equation*}
\mathrm{H}(\mathrm{~s})=(\mathrm{gm} \cdot \mathrm{Kt} / \mathrm{Jm}) /(\mathrm{s}+\mathrm{Kv} / \mathrm{Jm}), \mathrm{rad} / \mathrm{sec} \cdot \mathrm{~V}, \tag{1}
\end{equation*}
$$

where gm=0.5 A/V, transconductance; $\mathrm{Kt}=1.05 \mathrm{oz}-\mathrm{in} . / \mathrm{A}$, torque constant; $\mathrm{Kv}=0.001 \mathrm{oz}-\mathrm{in} . / \mathrm{sec}$, viscous constant; and $\mathrm{Jm}=752 \mathrm{E}-6$ oz-in.- sec^{2}, inertia.

The equation represents the transfer function from the input voltage to the motor's radial velocity output. Because the tachometer's outputs are discrete, the con-tinuous-time representation is converted to discrete time using the z-transform. The transform involves an approximation because the sample interval is at a fixed motor rotation $\left(2 \pi / N_{p}\right)$ and not at a fixed sample time. As a practical matter, the discrete system is often analyzed assuming T is a fixed sample time. Although we make this approximation, linearizing the system and assuming a fixed sample time completely ignores the real system's nonlinearity. Stability of the linearized system does not ensure global stability of the real system. An appropriate

Lyaponov function could determine a nonlinear system's degree of stability. Finding such a Lyaponov function is difficult, however.

You can derive a difference equation directly from Eq 1 by assuming a small time increment, as follows:

$$
\begin{equation*}
(\omega(\mathrm{t}+\mathrm{dt})=(1-\mathrm{dt} \cdot(\mathrm{Kv} / \mathrm{Jm})) \cdot \omega(\mathrm{t})+(\mathrm{gm} \cdot \mathrm{Kt} \cdot \mathrm{dt} / \mathrm{Jm}) \cdot \mathrm{v}(\mathrm{t}) . \tag{2}
\end{equation*}
$$

If $\mathrm{dt}=\mathrm{T}$ and $\mathrm{t}=\mathrm{kT}$, then Eq 2 becomes
$(\omega(\mathrm{kT}+\mathrm{T}=(1-\mathrm{T} \cdot(\mathrm{Kv} / \mathrm{Jm})) \cdot \omega(\mathrm{kT})+(\mathrm{gm} \cdot \mathrm{Kt} \cdot \mathrm{T} / \mathrm{Jm}) \cdot \mathrm{v}(\mathrm{kT})$.
Noting that the z-transform of $\omega(\mathrm{kT}+\mathrm{T}$ is $\omega(\mathrm{z}) \cdot \mathrm{z}$, the overall transfer function is

$$
\begin{equation*}
\mathrm{H}(\mathrm{z})=\mathrm{gm} \cdot \mathrm{Kt} \cdot \mathrm{~T} / \mathrm{Jm}) /(\mathrm{z}-(1-\mathrm{T} \cdot \mathrm{Kv} / \mathrm{Jm})), \mathrm{rad} / \mathrm{sec} \cdot \mathrm{~V} \text {. } \tag{4}
\end{equation*}
$$

Digital tachometer provides feedback

Regardless of whether the controller is classical or fuzzy, you must measure the spindle speed for feedback control. Fig 1 includes a block diagram labeled "digital tachometer"showing the measurement of the spindle speed, $\omega(\mathrm{t})$. The output of this block is xd_err, a digital word representing speed error.
The digital tachometer counts the period of the $f_{\text {com }}$ pulse with $1-\mu \mathrm{sec}$ resolution (t_{i}). You subtract the final count from a reference count of 1880 . The tachometer then truncates the count to fall within -128 to +127 counts to generate the xd _err signal. If the time interval is T_{t} and the average velocity over an $f_{\text {com }}$ period is $w_{\text {avg }}$, then $w_{\text {avg }}\left(T_{t}\right)$ is the average velocity over the time interval:

$$
\begin{equation*}
\omega_{\text {avg }}\left(\mathrm{T}_{\mathrm{t}}\right)=2 \cdot \pi /\left(\mathrm{N}_{\mathrm{p}} \cdot \mathrm{~T}_{\mathrm{t}}\right) . \tag{5}
\end{equation*}
$$

This equation is nonlinear in the variable T_{t}. To linearize the equation, you can write a Taylor series around the reference velocity $\omega_{\text {ref }}$ and the reference period T_{t}. You linearize a func tion using a Taylor series about an equi librium point. If you linearize $f(x, t$ about the point $x 0$, then the first two terms of the Taylor series are

$$
f(x, t)=f(x 0, t)+f^{\prime}(x 0, t)(x-x 0)
$$

where f^{\prime} denotes the derivative wit respect to x. Applying this to $\mathbf{E q}$ yields

$$
\omega_{\text {avg }}\left(\mathrm{T}_{\mathrm{t}}\right)=\omega_{\text {ref }}-\left(\omega_{\text {ref }} / \mathrm{T}_{\text {ref }}\right) *\left(\mathrm{~T}_{\mathrm{t}}-\mathrm{T}_{\text {ref }}\right) .
$$

Because $\omega_{\text {avg }}\left(T_{t}\right)$ is the average veloci over the period T_{t}, you can express th equation in terms of the velocity at t . beginning and the end of the period, follows:

$$
\omega_{\mathrm{avg}}(\mathrm{k})=(1 / 2) \cdot(\omega(\mathrm{k})+\omega(\mathrm{k}-1)) .
$$

Combining Eqs 7 and $\mathbf{8}$ yields

$$
\begin{gather*}
\left(\omega(\mathrm{k})-\omega_{\text {ref }}+\left(\omega(\mathrm{k}-1)-\omega_{\text {ref }}\right)-\right. \\
\left.2^{\prime}\left(\omega_{\text {ref }} / T_{\text {ref }}\right) \cdot \mathrm{t}_{\mathrm{t}}-\mathrm{T}_{\text {ref }}\right) .
\end{gather*}
$$

Denoting the difference between w \& $\omega_{\text {ref }}$ as ω_{e} and measuring the time int val in terms of t_{i} reduces Eq 9 to

Analog Video ICs

2 CHANNEL VIDEO MIXER/FADER

GT4123A

- Excellent Video \& Control Performance
- 25 MHz 0.1 dB BW; 75 dB Isolation (1) 5 MHz ; $0.02 \% \mathrm{dg}, 0.02^{\circ} \mathrm{dp}$
- 4 ns Control Delay; 1% Control Linearity
- $\$ 5.55$ in 100 unit quantities

UNITY GAIN VIDEO BUFFER WITH POWER-DOWN BB4600

- 100 MHz 0.1 dB BW Driving 27 pF
. $0.02 \% \mathrm{dg}, 0.02^{\circ} \mathrm{dp}$
- Disabled Power Only $160 \mu \mathrm{~W}$
- $\$ 2.42$ in 100 unit quantities

DC RESTORED VIDEO AMPLIFIER

- $\pm 1 \mathrm{mV}$ DC Restore Uses Integration For Accuracy - $0.03 \% \mathrm{dg}, 0.03^{\circ} \mathrm{dp}, 30 \mathrm{MHz}$ BW
- Space-Saving SIP Needs Only 2 External Capacitors - $\$ 5.13$ in 100 unit quantities

NOISE-TOLERANT VIDEO SYNC SEPARATORS GS1881

- Window Circuit For Noise Immunity, Fast Recovery - Excellent Specs \& Temperature Stability ($\pm 1 \mathrm{~ns}$) - Replaces LM1881 With Improved Performance - Industrial Temperature Range Available - \$2.35 in 100 unit quantities

- All the Features of the GS1881 Plus
- Constant Rate, Noise Immune Back Porch Pulse
- Replaces LM1881 For New Designs
- Industrial Temperature Range Available
- \$2.50 in 100 unit quantities

654881

- All the Features of the GS4881 Plus
- Horizontal Sync Output in Place of ODD/EVEN
- H-Sync Output has Superior Noise Immunity
- Industrial Temperature Range Available
- \$2.60 in 100 unit quantities

FULLY BUFFERED SUB-10ns SWITCH

- Sub 10 ns Switching (c) 100 MHz 0.1 dB BW - Ultra Low Switching Transients ($25 \mathrm{mV} / 3 \mathrm{~ns}$) - Outstanding Video Specs $\left(0.02 \% \mathrm{dg}, 0.01^{\circ} \mathrm{dp}\right)$
- $\$ 5.23$ in 100 unit quantities

- Low Offset $(\pm 7 \mathrm{mV})$ Buffered Signal Path
- Excellent Video Specifications ($0,01 \% \mathrm{dg}, 0.01^{\circ} \mathrm{dp}$)
- 80 dB Isolation (100 $10 \mathrm{MHz} ; 100 \mathrm{MHz}-1.0 \mathrm{~dB}$ BW
- $\$ 6.24$ in 100 unit quantities

VIDEO AMPLIFIER WITH SYNC TIP CLAMP GB4550A

- Restores Sync Tip to VCLAMP $\pm 7 \mathrm{mV}$ - $0.03 \% \mathrm{dg}, 0.03^{\circ} \mathrm{dp}, 30 \mathrm{MHz}$ BW - $\$ 4.60$ in 100 unit quantities

For Literature or Samples call (800) 263-9353* ext. 282 Get instant Fax literature at (905) 940-5515 access code 1212

3M boardmount connectors come in all shapes, sizes and applications.

Naturally, we're giving samples.

We've always been known for our high-quality wiremount connectors. Shouldn't the world know about our boardmount connectors, too?

Well, we can get you a complete line of boardmount products: shrouded headers, in both low-profile and latch-eject models; shunts; pin strips. Polarized sockets, straight and right-angled.

We can get you high-temperature bodies, true surface-mounts and through-boards, top and bottom. Choose your pin length. Choose your plating. Great for board-stacking. Plus delivery when promised.

We're out to make your life much simpler when it comes to boardmounts. A call to 800-328-0016, ext. 100, will get you our new Boardmount Engineering Guideit's free. And qualify you for samples of 3 M boardmount connectors at the same time.

FUZZY AND CLASSICAL CONTROL

$$
\omega \mathrm{e}(\mathrm{k})+\omega \mathrm{e}\left(\mathrm{k}-1=-2 \cdot\left(\omega_{\mathrm{ref}} / \mathrm{T}_{\mathrm{ref}}\right) \cdot \mathrm{t}_{\mathrm{i}} \cdot \mathrm{~d}(\mathrm{k}),(10)\right.
$$

where $d(k)$ is the digital count of the time interval.
The z-transform for $\mathbf{E q} \mathbf{1 0}$ is the transfer function of the digital tachometer, as follows:

$$
\begin{aligned}
& \omega \mathrm{e}(\mathrm{z})+\omega \mathrm{e}(\mathrm{z}) / \mathrm{z}=-2 \cdot\left(\omega_{\text {ref }} / \mathrm{T}_{\text {ref }}\right) \cdot\left(\mathrm{T}_{\mathrm{t}}-\mathrm{t}_{\mathrm{i}} \cdot \mathrm{~d}(\mathrm{z})\right. \\
& \left.\mathrm{D}(\mathrm{z})=\mathrm{d}(\mathrm{z}) / \omega \mathrm{e}(\mathrm{z})=-\mathrm{T}_{\text {ref }} /\left(2 \cdot \omega_{\text {ref }} \cdot \mathrm{t}_{\mathrm{i}}\right) \cdot 1+\mathrm{z}\right) / \mathrm{z} .
\end{aligned}
$$

If the motor velocity is significantly different from the reference frequency ($\omega_{\text {ref }}$), the Taylor series expansion is no longer accurate. In addition, if the velocity is low, the sample time is long, and the phase delay of $\mathrm{D}(\mathrm{z})$ is long.

The plant-transfer function in Eq $\mathbf{1}$ has a maximum phase delay of 90°. Even when you represent Eq 1 in discrete form (Eq 4), the closed-loop bandwidth is sufficiently below the Nyquist frequency, $1 / T$, that the phase delay caused by sampling is small. Therefore, you can stabilize the plant using only proportional feedback from the tachometer. However, the speed error is not exactly zero. Offsets in the driver stage and motor running torque relative to the driver input requires a speed error to counteract the offsets.
To force the speed error to zero, classical feedback-control systems sum the speed error and the time integral of the speed error (PI) to generate the feedback-control law. The control-law calculation for a discrete time system follows:

$$
\begin{align*}
& \operatorname{Vint}(\mathrm{k})=\operatorname{Vint}\left(\mathrm{k}-1+\mathrm{k}_{\mathrm{i}} \cdot \mathrm{xd} _\operatorname{err}(\mathrm{k}) ;\right. \tag{13}\\
& \operatorname{Vout}(\mathrm{k})=\mathrm{k}_{\mathrm{p}} \cdot x d _\operatorname{err}(\mathrm{k})+\operatorname{Vint}(\mathrm{k}) \tag{14}
\end{align*}
$$

where xd_err is the digital word representing speed error. Eq 13 is the difference equation for the digital integrator, and Eq 14 is the linear sum of the speed error and time integral of the speed error. You can combine Eqs 13 and 14 into a transfer function in the z -domain for the equivalent digital controller, $\mathrm{C}(\mathrm{z})$, as follows:

$$
\mathrm{C}(\mathrm{z})=\operatorname{Vout}(\mathrm{z}) / \mathrm{xd} _\mathrm{err}(\mathrm{z})=\mathrm{kp}+\mathrm{ki} \cdot \mathrm{z} /(\mathrm{z}-1) .
$$

Fig 3-The fuzzy integral-control block diagram uses a fuzzy-inference unit, which is analogous to the proportional plus integral control of classical methods.

The open-loop gain of the linearized system is

$$
\begin{align*}
& \mathrm{H}(\mathrm{z}) \cdot \mathrm{C}(\mathrm{z}) \cdot \mathrm{D}(\mathrm{z}), \mathrm{Gol}(\mathrm{z})=\mathrm{D}(\mathrm{z}) \cdot\left(\left(\mathrm{k}_{\mathrm{p}}+\mathrm{k}_{\mathrm{i}}\right) \cdot \mathrm{gm} \mathrm{~K}_{\mathrm{t}} \cdot \mathrm{~T} / \mathrm{J}_{\mathrm{m}}\right) \cdot \\
& \left.\left.\quad\left(\mathrm{z}-\mathrm{k}_{\mathrm{p}}\right) /\left(\mathrm{k}_{\mathrm{p}}+\mathrm{k}_{\mathrm{i}}\right)\right) /[\mathrm{z}-(1-\mathrm{T} \cdot \mathrm{Kv} / \mathrm{Jm})) \cdot(\mathrm{z}-1)\right] . \tag{17}
\end{align*}
$$

Substituting some of the system parameters into Eq 17 yields open-loop poles as $z 1=1$, and $z 2=0.99$. The digital tachometer produces a pole at $\mathrm{z}=0$ and a zero at $\mathrm{z}=-1$. The ratio of the integral gain to proportional gain determines the zero at $\mathrm{z}=1 /\left(1+\mathrm{k}_{\mathrm{i}} / \mathrm{k}_{\mathrm{p}}\right)$.

The linearized model predicts closed-loop poles that are well-damped for small k_{i} / k_{p} and under-damped for large k_{i} / k_{p}. This result is in contrast to the simulation results (Fig 2) and highlights the fact that nonlinearities in a system can invalidate the use of linear methods.

Fig 2 shows a plot of the simulated spindle speed using a

```
$ SPINDLE disk drive spindle PI control
$ brian tremaine 6 July 1993, revised 1 Jan. }199
fiu tvfi (min max) ;
>xd_err "bits":-128()127 [
    Neg_Large (@-128,255, @-64,0),
    Neg_Med (@-128,0, @-64,255, @0,0),
    Zero (@-64,0,@0,255, @64,0),
    Pos_Med (@0,0, @64,255, @127,0),
    Pos_Large (@64,0, @ 127,255)];
>v_old "bits":0()255 [
    Neg_Large(@0,255, @64,0),
    Neg_Med (@0,0, @64,255, @128,0),
    Zero (@64,0, @128,255, @ 192,0),
    Pos_Med (@128,0, @192,255, @255,0),
    Pos_Large (@192,0, @255,255) ];
<error "bits": 0()255*(
    Neg_Large = 0.0,
    Neg_Med = 8,
    Zero = 128,
    Pos_Small = 248,
    Pos_Large = 255 );
<v_new "bits": 00255* (
    Neg_Large = 0.0,
    Neg_Med = 64,
    Zero = 128,
    Pos_Med = 192,
    Pos_Large = 255 )
$
```

if $\mathbf{x d}$ _err is Neg_Large
if xd_err is Neg_Med
if xd_err is Zero and v_old is Pos_Large
if xd_err is Zero and $v _$old is Pos_Med
if xd _err is Zero and v_old is Zero
if xd_err is Zero and v_old is Neg_Med
if xd_err is Zero and v_old is Neg_Large
if xd_err is Pos_Med and v_old is Pos_Med
if $x d$ _err is Pos_Med and $v _$old is Zero
if xd_err is Pos_Med and v_old is Neg_Med
if xd_err is Pos_Med and v_old is Neg_Large
if xd_err is Pos_Large
\$
if $\mathbf{x d}$ _err is Neg_Large then error is Neg_Large;
if xd_err is Neg_Med then error is Neg_Med;
if xd_err is Zero
then error is Zero;
if xd _err is Pos_Med
then error is Pos_Small;
then error is Pos_Large;

```
end
```

Fig 4-The listing for the fuzzy controller of the spindle disk drive is compiled with Aptronix's FIDE (fuzzy inference development) program.

Fig 5-The rule table for the fuzzy integral controller contains redundant rows of rules that can be condensed into fewer rules for the fuzzy-inference unit to follow.

Fig 6-The spin-up of the spindle motor from a dead stop using fuzzy integral control shows less overshoot than with a classical PI controller. The integrator reduces motor current to zero when the system is over speed to cause deceleration.
analogous to the proportional plus integral control block of the classical method. Because an FIU has no memory, fuzzy control accomplishes the integral function by using the feedback from the FIU's output to its input. The FIU has the FIDE listing shown in Fig 4. The inputs to the FIU are the speed error (xd_err) and previous output integral count (V_old). The outputs of the FIU are proportional count (error) and integral count (V_new). Fig 5 shows a table representation of the FIU rules. The control law is a summation of both outputs

> Vout=16.(error-128)/255+3 (v_new-128)/255+3.

Fig 6 shows a plot of motor speed and current for spin-up from a dead stop. The steady state speed nearly equals the commanded speed, as in the integral controller. However, the fuzzy method improves transient response, decreases overshoot, and provides faster settling. A classical PI system involves a tradeoff between overshoot and settling time. The fuzzy-system rules and membership functions effectively implement "anti-windup" integral control. When xd_err is positive, (over speed) the integral term (v_new) is forced positive to zero the spindlemotor current immediately to cause deceleration.

Table 1 details the fuzzy model:

Table 1-The fuzzy model	
Model	Fuzzy PI
Inputs	2
Labels/input	5
Outputs	2
Labels/output	5
Rules	17
68HC11 code bytes	717

classical PI controller with a nonlinear plant. In Eqs 13 and $14, \mathrm{k}_{\mathrm{i}}=3 / 2048$, and $\mathrm{k}_{\mathrm{p}}=48 / 2048$. The speed overshoots the target and slowly decays with a linear ramp to the target speed value. From time $t=0$ until Point 1 , the speed error is negative, and the integrator continues to accumulate until it saturates. Not until the speed error begins to go positive does the integrator begin to come out of saturation. At Point 2 the integrator has recovered enough to allow the control voltage to command zero current. From Point 2 until Point 3 the only deceleration is due to coulomb friction. Beyond Point 3, the system settles to a steady state value.

Fuzzy control uses different control blocks

Fuzzy integral control analyzes the spindle motor using a fuzzy-inference unit (FIU) (Fig 3). This analysis block is

The execution time for the above model with a 68 HC 11 $\mu \mathrm{P}$ is about 1.25 msec using a $50-\mathrm{nsec}$ bus cycle time. The execution time is sufficient for the sample time and $\mathrm{f}_{\text {com }}$ period of 1.88 msec . The model is optimized for the minimum number of rules, which is an important step affecting the choice of hardware. The initial pass of the FIU has 30 rules and 877 code bytes. Although this pass executes in 1.6 msec , there is little margin in processor bandwidth.
The output v_new is a function of xd_err and v_old. Because each input has five labels, you can define v_new as a 5×5 matrix, or 25 rules. The output, error, is a function of xd_err only. Because xd_err has five labels, five rules can define the output, error. Therefore, there are 30 rules for the the first pass. In the last row of Fig 5, when xd_err

UPS Standard

UPS Expedited

UPS Express

How small a continent do you want to make it?

UPS just made doing business in North America more manageable than ever before. Because depending on your schedule and budget, you can now choose between three levels of door-to-door service from the United States to either Canada or Mexico: from Standard to Expedited to overnight Express. All of which offer tracking, customs clearance and shipment pricing.

Just tell us when your packages need to get there and we'll be happy to adjust the size of the continent accordingly. For more information on how we can tailor North America for you, simply call us at 1-800-PICK-UPS. The package delivery company more companies count on."

EDN-Design Feature

FUZZY AND CLASSICAL CONTROL

is Pos_Large, V_new is Pos_Large, regardless of v_old. This condition lets you replace five rules with one rule: "If xd_err is Pos_Large, then v_new is Pos_Large." Modifications such as these can reduce the number of rules from 30 to 17 .

In comparing a classical PI servo-control loop with a fuzzy-control loop for a dc spindle motor, the plant and the tachometer have inherent nonlinearities that preclude applying linear stability theory, regardless of the control method. Knowledge of classical PI servo-control principles helps with the design of a fuzzy controller. The performance in terms of the spin-up settling time and the transient response is superior using the fuzzy system compared with the classical PI controller when there are severe nonlinearities.

The C source code for both the FIDE fuzzy modules and the plant model is available from the author. In addition to the PI controller, you can also use the Aptronix bulletinboard system to access source and executable simulation code for proportional control, PLL control, and dual-phase and tachometer loops for classical and fuzzy control. [5DN

References

1. Kosko, B, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice Hall, 1992.
2. Franklin, G, D Powel, and M Workman, Digital Control of Dynamic Systems, Second Edition, Addison Wesley, 1990.

Author's biography

Brian P Tremaine is a senior engineering director for Seagate Technology in Scotts Valley, CA. His job includes managing a group that is responsible for con-trol-system design of actuator and spindle servos on 2.5- and 1.8-in. disk files. In his nine years with Seagate, he has helped to develop a host of disk-file products. Tremaine has BSEE and MSEE degrees from San Jose State University, San Jose, and an MBA from Golden Gate University, San Francisco. He is a registered professional engineer in California, and he is completing an engineer degree at Stanford University, Stanford, CA, this year. Tremaine is married and has two children.

VOTE
Please use the Information Retrieval Service card to rate this article (circle one):

$$
\begin{array}{ccc}
\text { High Interest } & \text { Medium Interest } & \text { Low Interest } \\
586 & 587 & 588
\end{array}
$$

RTXO-100
RTXO-146

- Small size
- Wide temperature range
- +5 VDC, + 12 VDC
- Wide frequency range
- Voltage control option
- Custom options
- Lower cost

FREQUENCY STABILITY:
100: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}: \pm 1 \mathrm{ppm}$ 146: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}: \pm 1 \mathrm{ppm}$

DIMENSIONS:	100	146
Length	$.8^{\prime \prime}$	$1.5^{\prime \prime}$
Width	$.8^{\prime \prime}$	$1.5^{\prime \prime}$
Height	$.4^{\prime \prime}$	$.5^{\prime \prime}$

Call or fax your specs to Sandy Cohen.

RFITROI

ELECTRONICS CORP.
2315 NW 107 AVENUE
MIAMI, FLORIDA 33172 U.S.A.
FAX (305) 594-3973
TELEX 441588 RALSEN
(305) 593-6033

ONLY RALTRON HAS IT ALL
Crystals / Crystal Oscillators
Crystal Filters / Ceramic Resonators

Teeing Off the Engineers

"What do you mean they don't work? Well, you shoulda said something about volts before this. I know Prem custom designs power transformers, but the other guys had a sale on 15 volt units. (CLICK!) Hello...Hello...Picky engineers!

I really shoulda called Prem.
You oughta call Prem!"

Where Quality Really Counts!

[^5]
If You Think You Can't Get Both High Speed And High Capacity In An FPGA...

Think Again. Think Actel. The Industry's Fastest, High Capacity FPGAs.

Do you have a need for both high performance and high capacity? Now you don't need to choose between speed and capacity. Actel's $\mathrm{ACT}^{\text {TM }} 3$ family of FPGAs - with performance to meet your 75 MHz system requirements and capacity needs up to 10,000 gates - in the same device.

Think Performance and Predictability

Based on PREP ${ }^{\text {TM }}$ benchmarks, Actel's ACT 3 devices offer an exceptional speed and capacity combination with the flexibility and predictability Actel has become famous for.

Covering a range of 1,500 to 10,000 gates, ACT 3 devices run up to 167 MHz for counter and datapath designs and offer up to 228 user I/Os. Fast I/Os provide clock-to-out speeds of 7.5 nanoseconds.

Think Fast, Flexible Design

Actel's Designer Series of highly automated FPGA development systems feature powerful logic synthesis and device fitting
software, fully automatic placement and routing, and links to all popular CAE and PLD design tools, including Mentor Graphics ${ }^{\circledR}$, Data I/O ${ }^{\circledR}$, Synopsys ${ }^{\mathrm{TM}}$, Cadence ${ }^{\mathrm{TM}}$, OrCad ${ }^{\text {tix }}$, and Viewlogic ${ }^{\oplus}$. Our Designer Series of development tools start at \$995 and support 386 and $486 \mathrm{PCs}, \mathrm{HP}^{\circledR}$, and Sun^{\oplus} workstations.

Think Service and Support

You get all this, plus extensive service and support. Actel's technical HOTLINE and Action FACTS system provides you with automatic access to technical documents, design tips, and experienced engineering support to help you meet your time-tomarket goals.

Think About The Possibilities

Actel is the best choice - whatever your need may be. For applications ranging from bus interfaces, networking, and communications to high speed graphics and processor interfaces. We offer more than 200 combinations of device, package, speed, and testing options. So for both high speed and high capacity Think Actel. For more information, call us today at 1-800-228-3532. You'll receive our new 1994 full line Data Book. Also ask us about our 1200 gate FPGAs for under $\$ 10$!

Call 1-800-228-3532
Outside U.S. 908-225-0700

Sockets

Harwin, Inc. offers a variety of solder, wirewrap, DIL and SIL sockets. Along with reeled and loose pc board sub miniature sockets, headers, PLCC and PGA sockets. These high reliability sockets are designed to meet severe environmental conditions of high shock, vibration, bump, etc. - ideal choice for those applications where space is limited. Harwin, Inc. (812) 285-0055 FAX (812) 285-0056.

CIRCLE NO. 224

1410 New Albany/Charlestown Pike Jeffersonville, IN 47130 USA Telephone: (812) 285-0055 • Facsimile: (812) 285-0056

Pin Headers and Shunts on 2MM Centers

Pin headers are available from Harwin, Inc., in single and double row, 2 to 32 position lengths in both vertical and horizontal styles. A "small footprint" horizontal style is available for use where PCB space is at a premium. All versions are stocked in both gold and tin finishes. The 2 mm shunts are designed with a low initial point of contact to eliminate the possibility of intermittent contact. The body is end stackable with tapered entry for easy pin header insertion. The contacts offer low insertion force, high retention and are open top for test probe access. Both gold and tin finishes are available. Harwin, Inc. (812) 285-0055 FAX (812) 285-0056.

CIRCLE NO. 225

2mm High Density Connectors Available in 3 Row Versions

Harwin, Inc. announces the availability of a 3 row version of its popular connectors on 2 mm centers. These "Datamate" connectors are designed for use in applications such as mobile communications,data processing, medical and military equipment where miniaturization and absolute contactintegrity is required. The high temperature moldings are produced in 27 to 63 contact versions and the range is doubled by the option of including two power contacts in each size. Additional features include polarization, shrouded contacts, selective plating, replaceable contacts, jackscrew options, small fooprint and low profile. Harwin, Inc. (812) 285-0055 FAX (812) 285-0056.

NOW THERE'S AN EASIER WAY TO SQUEEZE MORE MEMORY ON TO YOUR BOARD

EDI's new range of wide memory devices provide a more practical way to add muscle to microprocessor system performance, while reducing size and weight.

Packing a powerful punch, high speed (down to 12 ns) Static RAMs benefit from ultra high density vertical ZIP and SIMM packaging and wide data widths, up to 32 bits.

There's no need to wrestle with tough decisions either, because they are available in plastic packaging for commercial and industrial use.

Commercial and Industrial Grade SRAM Modules
High Density Vertical Package Styles

Organization	Part No.	Speed (ns)	Package Style
64 Kx 32	EDI8F3265C*	12	64 pin ZIP/SIMM
128 Kx 32	EDI8F32128C*	12	64 pin ZIP/SIMM
256 Kx 32	EDI8F32256C*	12	64 pin ZIP/SIMM
256 Kx 32	EDI8F32257C*	17	64 pin ZIP
32 Kx 24	EDI8F2432C	15	56 pin ZIP
64 Kx 24	EDI8F2464C	15	56 pin ZIP
128 Kx 24	EDI8F24128C	20	60 pin ZIP
Surface Mount Package Styles			
Organization	Part No.	Speed (ns)	Package Style
256Kx8	EDI8F8257C*	70	32 pin SOIC
2x512Kx8	EDI9F81025C	55	36 pin SOIC

*JEDEC Pinout
HIGH PERFORMANCE MEMORY MODULES

1•800•800•SRAM (XT.219)

ELECTRONIC DESIGNS INC.
One Research Drive • Westborough, MA 01581 USA
Tel: 508-366-5151 • Fax: 508-836-4850
Tech Hot Line: 800-400-3349

Systems on silicon enter

the 3Vera.

New 0.5-micron, Cell-Based ASICs run 50\% faster, consume 70\% less power.

Systems on silicon have reached a higher level of performance and a lower level of power consumption with the introduction of NEC's 0.5 -micron, Cell-Based ASICs. Optimized for true 3 V operation, our CB-C8 family offers exciting new possibilities for designers of telecom, personal computer and consumer systems.

CB-C8 ASICs give you a loaded speed of 220 picoseconds,* power dissipation of only $0.8 \mu \mathrm{~W} / \mathrm{MHz} /$ cell and high integration of up to 600,000 gates. Compared to our previous generation of 0.8 -micron ASICs, the new family offers a 50% boost in speed and a 70% drop in power consumption.

* $\mathrm{F} / 0=2, L=2 \mathrm{~mm}$, power gate

Since speed to market counts almost as much as internal system speed, we offer a comprehensive cell library to facilitate your development of 3 V systems on silicon. Macros include:V30MX CPU (33MHz, 8086-compatible)PLL, GTL, PCI* and RAMBUS ${ }^{6 *}$
$\square \mathrm{A} / \mathrm{D}$ and D / A converters*

* under development

Our OpenCAD ${ }^{\circledR}$ Design System also helps to shorten the development cycle. A unified front-to-back-end design package, OpenCAD allows you to mix and match our tools with those of the industry's most popular vendors.

Fast enough to match speeds with the industry's foremost microprocessors, yet featuring exceptionally low power dissipation, our CB-C8 ASICs offer a no-compromise solution to your design needs. For more information on how the CB-C8 family can improve performance for your cellular phone, personal digital assistant, multimedia platform, graphics system, PC or workstation, call NEC today.

[^6]
"When we developed our new PCMCIA fax/modem card series, we needed a semiconductor vendor who understood the design challenges of packing high-speed modem capabilities into our three RediCARD" models... And that company is Zilog.

By migrating our existing $\mathbf{Z 8 0}{ }^{\text {º }}$ software code to Zilog's feature-rich next generation Z182 microprocessor, we easily converted our proven custom modem technology into a PCMCIA design to meet the emerging market demands.

Strategic relationships with companies like Zilog help us to provide innovative products in the shortest possible time to meet the production requirements for some of the worlds largest portable PC manufacturers."

Les Staples, Chief Technical Officer

- DATA RACE

Contact your nearest Zilog sales office or authorized distributor for more information.

210 E. Hacienda Avenue Campbell, CA 95008-6600
(800) 662-9826 - within the U.S.
(408) 370-8000

FAX (408) 370-8056

A bevy of new workstations offers price/performance options

No fewer than four workstation makers have announced new models or new configurations of already-released models. The new offerings come from Hewlett-Packard, IBM, Sun, and Tatung. The basic packages range in price from under $\$ 5000$ to over $\$ 30,000$, with most in the $\$ 10,000$ to $\$ 20,000$ range.

IBM and HP have the more powerful workstations. IBM's RS/6000 3BT, with
optional 1 -Mbyte Level 2 cache, achieves a SPECfp92 rating of 205.3. Sun and Tatung, with similar units based on the microSPARC II, offer better prices. Tatung quotes a base price of $\$ 4570$, but Sun's prices (around $\$ 10,000$) include more hardware options.

Consult Table 1 for more details, but bear in mind that the listings show ranges of specifications for several basic

table 1-Workstations

Manufacturer	HP	IBM	Sun	Tatung
Models	HP 9000 Series 700	RS/6000 $41 T, 41 \mathrm{~W}$,	SPARCstation 5 715,725	COMPstation II-385 3AT, 3BT
Processor	PA-RISC 7100LC Power2	$80-\mathrm{MHz} 601$, microSPARC II	$70-\mathrm{MHz}, 85-\mathrm{MHz}$ microSPARC II	85 MHz
SPECint92	66.6 to100.1	88.1 to 114.3	57 to 64	64
SPECfp92	96.5 to 137	98.7 to 205.3	47.3 to 54.6	54.6
Memory (Mbytes)	32	16 to 32	32	16
Maximum memory (Mbytes)	256 to 512	256 to 512	256	256
Cache (kbytes)	256	512 to 1024	24	NA
Disk (Mbytes)	525	540	535 to 1050	520
Color monitor	17 in.	17 in.	17 in.	14 in.
Price	$\$ 9995$ to $\$ 19,005$	$\$ 12,100$ to $\$ 32,300$	$\$ 9595$ to $\$ 11,595$	$\$ 4570$

New workstations offer powerful processing at ever lower prices. Shown here is Hewlett-Packard's HP 9000 Series 700 Model 715.
configurations. Other configurations and options are also avail-able.-Gary Legg

Hewlett-Packard Co, Palo Alto, CA. (800) 637-7740. Circle No. 401

International Business Machines Corp, Somers, NY. (800) 426-3333.

Circle No. 402
Sun Microsystems Computer Corp, Mountain View, CA. (800) 872-4786.

Circle No. 403
Tatung Science and Technology Inc, Milpitas, CA. (800) 659-5902.

Circle No. 404

PC flash disk emulates hard disk.

The PC Flash Disk, a half-size flashmemory card for the ISA or EISA bus, is essentially a hard disk without moving parts. The disk replaces the disk and controller and does not require cabling. An onboard expansion BIOS eliminates the need for special software. The board also allows for cold boots and provides full magnetic harddisk emulation. It's available in capacities from 1 to 32 Mbytes. 1-Mbyte version, $\$ 180$ (100). M-Systems, Fremont, CA. (510) 505-9081.

Circle No. 405

SCSI adapter boosts I/O rate. By simultaneously processing up to 255 read or write requests, the ABP842 SCSI host adapter doubles the speed at which disk drives and other peripherals deliver data. Its high-speed memory stores all I/O requests from the operating system as opposed to most adapters, which, after receiving four

FREE INFO, FREE POSTAGE

Use our postage-paid reader-service cards to get more information on any of these products.
requests, store additional requests in a "mailbox" and force the OS to wait. The VL-bus-based board comes with SCSI ribbon cable, installation software, and Corel SCSI Version 2 drivers and utilities. \$379. AdvanSys, San Jose, CA. (408) 383-9400.

Circle No. 406

RAID controller works with PC operating systems. The LDP Cache IV RAID 1 controller provides RAID Level 1 (mirroring) capabilities for PC-bus systems. It controls SCSI drives but appears as an IDE controller to the system, allowing use of standard OS drivers. The controller supports as much as 16 Mbytes of cache memory. It provides data-trans-
fer rates of $5 \mathrm{Mbytes} / \mathrm{sec}$, with bursts to $10 \mathrm{Mbytes} / \mathrm{sec} . \$ 795$ without cache memory. Lomas Data Products Inc, Marlboro, MA. (508) 460-0333.

Circle No. 407

DSP board works on PCI bus. The Eagle-56, a DSP board based on Motorola's DSP56002, operates on the PCI local bus. A $40-\mathrm{MHz}$ version offers 20 MIPS performance, and a $66-\mathrm{MHz}$ version boosts performance to 33 MIPS. Each board has a high-speed parallel host interface and four banks of $64 \mathrm{k} \times 24$-bit zero-wait-state SRAM. $40-\mathrm{MHz}$ version, $\$ 2695 ; 66-\mathrm{MHz}$ version, $\$ 3695$. Momentum Data Systems Inc, Costa Mesa, CA. (714) 557-6884.

Circle No. 408

PCI and VL graphics cards provide true color. The VideoBlitz II graphics accelerators, available for the PCI and the VL bus, display true (24-bit) color.

EDN-New Products
 COMPUTERS \& PERIPHERALS

The PCI version, based on the Weitek P9100 accelerator chip, produces a 1280×1024 true-color display; the VL version makes an 800×60024-bit display. Both versions have 2 Mbytes of VRAM; the PCI version is expandable to 4 Mbytes. PCI version, $\$ 589$; VL version, $\$ 549$. Genoa Systems Corp, San Jose, CA. (408) 432-9090, ext 262 . Circle №. 409

PCI and VL graphics cards allow video playback. The Viper Pro
graphics accelerators, available for the PCI and VL buses, allow 30frames/sec video playback with the optional Video Power chip from Weitek. The graphics processor is Weitek's P9100, which provides 1280×1024 true-color (24-bit) displays. The boards are available with 4 Mbytes of VRAM or with 2 Mbytes, upgradable to 4 Mbytes. 2-Mbyte version, \$479; 4Mbyte version, \$699. Diamond Computer Systems Inc, Sunnyvale, CA. (408) 736-2000.

Circle No. 410

Absolute Value.

High performance LCR meters from SRS. Absolutely lowest price. Starting at \$995

For passive component measurement, the new standards in value are the SR720/715 LCR meters from SRS.

Meters that offer significant advantages in performance and price. Performance like $.05 \%$ basic accuracy, 100 kHz test frequency, and fast measurement rates up to 20 per second. Features like a built in Kelvin fixture, averaging, binning and limits, stored setups, and quick calibration. With the standard RS232 and optional GPIB and Handler interfaces, the SR720/715 solves your incoming inspection and automated test needs. All for a price well below what you'd expect.

Call (408)744-9040 today for more information.

SR720
\$1995

- 0.05% basic accuracy
- 100 Hz to 100 kHz measurement frequency
- Two 5 digit displays for simultaneous readout of major and minor parameters.
- Auto, R+Q, L+Q, C+D, C+R, Series and Parallel measurement modes
- 100 mV to 1.0 V test signals
- Internal and External Bias
- Binning and Limits for production testing and component inspection.
- RS232 interface
- GPIB and Handler interface (optional)

SR715

$\$ 995$
Same as SR720 except:

- 0.2% basic accuracy
- 100 Hz to 10 kHz measurement frequency

Computer cards embed PC architecture. Two new 16-bit single-board computers enable use of the PC architecture in embedded systems. The SAT-486SLC-33, based on a $33-\mathrm{MHz}$ 486SLC processor, and the SAT$386 \mathrm{SX}-25$, based on a $25-\mathrm{MHz} 80386 \mathrm{SX}$, are $4.5 \times 7.1-\mathrm{in}$. boards that operate at temperatures from -40 to $+85^{\circ} \mathrm{C}$. The 486 version is also available with clockdoubled parts for clock speeds to 66 MHz . A 16-bit PC/104 connector allows expansion with additional functions. SAT-486SLC-25-1M (with 1 Mbyte of onboard parity-checked DRAM), $\$ 995$; SAT-386SX-25-1M, \$895. WinSystems, Arlington, TX. (817) 274-7553.

Circle No. 411

Pentium and PCI work on passive backplane. The SB586 single-board CPU is based on the Pentium processor and contains a PCI local bus extension. It's available with a choice of two PCIbus passive backplanes from the manufacturer. The board includes IDE and SCSI-2 controllers. CPU, $\$ 3525$; backplanes, $\$ 379$ to $\$ 529$. Industrial Computer Source, San Diego, CA. (800) 523-2320.

Circle No. 412

PCMCIA card adds enhanced parallel port. The SPP-100, a Type II PCMCIA card, is configurable either as a standard parallel port or as an enhanced parallel port (EPP), as defined by the IEEE 1284 specification. A DOS client driver, compatible with PCMCIA Card Services Specification 2.1, configures the card. A separate enabler program allows use without Card Services and Socket Services installed. A cable provides a D-25 connection. \$195. Quatech Inc, Akron, OH. (216) 434-3154.

Circle No. 413

1290 D Reamwood Avenue, Sunnyvale, CA 94089

"When I Call Allied, There's More On The Line Than Parts."

At Allied Electronics, every time our phone rings, we know there's more riding on that call than just parts. That caller is putting his project on the line. Or his reputation. Or, if it's a start-up company, he may be putting the company's future on the line.

They call Allied because we understand what's at stake. They call because they expect results.
And we deliver.

ALLIED IS DIFFERENT
For over 65 years, we've earned the confidence of engineers by being more than simply the best catalog in the industry. Our special Allied brand of personal service means our customers get what they've come to expect and more. Like the engineer who wasn't sure what kind of connector he needed to finish his prototype. The local Allied sales office and our product manager figured it out and the next morning the connector was on the engineer's desk. Our customers know that we become a part of their team. And with more than 80 local Allied offices, Same day
shipment we're there when our customers need us because we realize there's a person at the end of the line.

More than $\mathbf{8 0}$ local offices

MORE THAN A CATALOG

Our catalog is called an Engineering Manual and Purchasing Guide for a reason. The drawings, specifications and tables give more useful information to working engineers than just lists of part names and numbers that you see in other catalogs. And beyond the limits of the printed page, each of our service representatives has on-line access to our own and Avnet warehouses with inventory worth hundreds of millions of dollars.

Expect the best. Call today for your free Engineering Manual \& Purchasing Guide.

Convenient ordering on accounts, credit cards or COD

Allifa electronics wa
 an AVNET COMPANY

Going by the book...And beyond! 1-800-433-5700

The Century. Series A New Era in VF Displays

Actual Size

Versatile, Compact, High-Performance...Value Priced!

For nearly fifteen years IEE has been a premier supplier of Vacuum Fluorescent Display modules. We have manufactured nearly one million FLIP displays for hundreds of customers, filling virtually every conceivable industrial application.
Now, IEE introduces the new FLIP "Century Series" line of lowcost segmented VF displays. Utilizing a 14 -segment "star-burst" font, these modules display standard 64-character ASCII upper case alphanumerics with the light-emitting readability and quality of far more costly displays.

The new "Century Series" modules are the most versatile ever. They offer a unique jumper-selectable multiple processor interface, requiring no external circuitry accommodations. All "Century Series" modules interface to Intel or Motorola host processors.
Choose your data interface - both 8 bit parallel and EIA-232C serial at baud rates up to 19.2 Kb are included. Hardware and software reset features, plus an extensive self-test routine are standard in all models.

Software controls include vertical and horizontal scroll modes, multiple level dimming control, multiple blink rates/fields, and
a unique, selectable "screen-saver" dimming or full display blanking feature for increased tube life in "constant-on" applications.
Very low power 5VDC operation is standard (1.5 watts typical), along with a wide industrial-duty -20 to $+70^{\circ} \mathrm{C}$ operating temperature range $(-40 /+85$ extended range, and conformal coating are standard factory options).
State-of-the-art low-profile surface mount technology yields super-compact packages to solve your most demanding space problems. These high-performance displays are also the answer to your most cost-sensitive applications and can effectively replace LCD modules to enhance the appearance and functionality of your product.
The six models listed below will cover application needs from arms-length instrument use to jumbo annunciators. The FLIP "Century Series" sets a new industry standard for low-cost segmented vacuum fluorescent displays.
IEE provides solutions for all your front panel needs: displays, keyboards, integrated panels and more. Contact us today for a problem-free tomorrow.

IEE is a sustaining member of $\overline{\text { SIID }}$

Model	Display Format	Character Height	Package Size:		
			Length	Width	Depth
03702-020-05220	2×20	5 mm	5.65 "	1.98"	0.82"
03702-021-08110	1×10	8 mm	$5.00^{\prime \prime}$	1.60"	0.90 "
03702-022-13112	1×12	13 mm	7.20 "	$2.40^{\prime \prime}$	0.90"
03702-024-09116	1×16	9 mm	$6.70^{\prime \prime}$	$2.30^{\prime \prime}$	0.90"
03702-026-09120	1×20	9 mm	8.30 "	$2.35{ }^{\prime \prime}$	0.95 "
03702-029-13120	1×20	13 mm	$10.20^{\prime \prime}$	1.93"	$0.96{ }^{\prime \prime}$

EDN-New Products
 COMPUTERS \& PERIPHERALS

DRAM cards hold 2 to 32 Mbytes.
The new Type I, 88-pin DRAM cards, each about the size of three credit cards stacked, are JEDEC/JEIDA compliant and hold 2, 4, or 8 Mbytes of data. Versions to be available later this year will hold 16 and 32 Mbytes. The cards are available with 16 - and 18 -bit memory, with and without parity, respectively. Memory-access time is 60 nsec . Prices range from $\$ 107$ (2 Mbytes, no parity) to $\$ 370$ (8 Mbytes with parity). Motorola Inc, Austin, TX. (512) 933-6700.

Circle No. 414

Computer board combines Pen-

 tium and PCI bus. The LBC4500 connects a Pentium processor with the PCI local bus in a single-board computer for a passive backplane. The card is designed for use with the manufacturer's LBP14 passive backplane, which provides four PCI slots and eight ISA slots. From \$3295. Diversified Technology, Jackson, MS. (800) 443-2667.Circle №. 415

Disk drives increase capacity and performance. Models 425, 850, and 1275 in the Filepro Advantage diskdrive family offer formatted capacities of 425 , 850 , and 1275 Mbytes, respectively. All models are available with either an Enhanced IDE or SCSI-2 interface. The drives support PIO Mode 4, the IDE specification for transferring data at 16.7 Mbytes $/ \mathrm{sec}$, and also DMA Modes 1 and 2, for transfer rates of 13.1 and 16.7 Mbytes $/ \mathrm{sec}$, respectively. Model $425, \$ 255$; Model $850, \$ 399$; Model 1275, \$599. Conner Peripherals Inc, San Jose, CA. (408) 456-4500.

Circle No. 416

Computer board has $\mathbf{1 0 0}-\mathrm{MHz}$

 486. The Little Board/486 DX4 puts a $100-\mathrm{MHz} 486$ and other functions of a PC/AT motherboard into the profile of a5.25 -in. disk drive. With three or four expansion cards, the total space consumed equals a half-height drive. The board accepts PC/104 modules for onboard expansion. $\$ 1950$ (100). Ampro Computers Inc, Sunnyvale, CA. (408) 522-2100.

Circle No. 417

PCI and VL cards combine graphics and video. The Imascan boards, available for the PCI and VL buses, combine with an attachable Chroma
module to graphics acceleration, video frame grabbing, and video-in-a-window display. The boards use the Tseng ET4000/W32P graphics processor for 800×600 displays of 24 -bit color; a single frame buffer holds both graphics and video display data. Video input via the Chroma module can be RS-170, NTSC, PAL, or SECAM in 16- or 24 -bit color or monochrome. Imascan with Chroma module, \$1195. Imagraph Corp, Chelmsford, MA. (508) 256-4624.

Circle No. 418

EDN-New Products
 ELECTRONIC DESIGN AUTOMATION

Software lets you simulate and test ATM network designs. ATM

 Modeler is a software protocol analyzer for testing circuit designs developed for asynchronous transfer mode (ATM) networks. Used with the company's Optium simulation environment, the tool provides a customizable test environment capable of simulating ATM networks with up to 4000 end systems and a variety of network traffic. $\$ 35,000$. Vantage Analysis Systems Inc, Fremont, CA. (510) 659-0901.Circle №. 500

Graphical system design tool provides tighter integration with simulators. Version 1.2 of DesignVision now has the ability to interact directly with VHDL and Verilog simulators from third parties. Not only can you describe behavioral models graphically, you can also set simulation breakpoints in the graphical diagram, display the current simulation state in the diagram, and step through simulation while displaying the simulation changes graphically. A debugging panel lets you step forward or back-

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

ward through simulation time. The workstation-based software costs $\$ 10,000$, but, until October 31, 1994, your company can purchase its first copy for $\$ 3000$. Vista Technologies Inc, Schaumburg, IL. (780) 706-9300.

Circle №. 501

Spice simulator provides graphical results while the simulation is running. The ICAP/4 Virtual Circuit Design Lab lets you avoid the traditional batch-mode simulation of Spice simulators and see graphical waveforms as the simulation progresses. While the simulator is running, you can alter circuit values and observe the effects instantly. An interactive stimulus mode lets you sweep component or model parameters and compare the changing circuit performance. A cross-probing tool lets you see node voltages and device currents
directly on the schematic. The software lets you use simulation breakpoints to stop simulation when a voltage, current, or computed device parameter satisfies a condition you set. Although the simulator directly accepts Spice netlists from all major schematic design tools, the included

SpiceNet schematic design tool can drive the entire simulation process, including graphical circuit editing, Spice netlist generation, simulation control, circuit measurement, and waveform display. ICAP/4 costs $\$ 2595$ and runs under Windows, Windows NT, and on Macintosh systems. Intusoft, San Pedro, CA. (310) 833-0710.

Circle No. 502

We'll provide the $15 \mathrm{~ms} 128 \mathrm{~K} \times 8 \mathbf{3 0 0}$ mil SOJ SRAMs for your first board!

IDT is the only 1 Mb SRAM vendor to offer 15 ns , 300 mil SOJ SRAMs in volume, now. IDT's leading CMOS technology provides the performance and manufacturability to make the IDT71024 the ideal 1Mb SRAM for your design. Available in 300 mil SOJ and 400 mil SOJ/DIP packages, our $128 \mathrm{~K} \times 8$ SRAM is the ideal solution for both high-density board designs and performance upgrades of existing systems. Interested? Call us or FAX in the coupon today to get technical data, application briefs, and details on our free 300 mil SOJ 1 Mb SRAM offer.

NAME
TITLE

COMPANY

ADDRESS

Honey I sbrunk the disk!

Make Flash happen today with DiskOnChip ${ }^{\text {TM }}$! Single chip Flash Disk is on the market now !

DiskOnChip ${ }^{\text {TM }}$ is a miniature with a large capacity. It stores up to 16 MByte of data in a standard integrated circuit package.

DiskOnChip ${ }^{\text {TM }}$ is easily integrated into your system. EUROM designed it to replace the BIOS and provide complete disk and BIOS functionality from the BIOS socket.

No software drivers or hardware changes are needed to incorporate EUROM's technology.

DiskOnChip ${ }^{\text {TM }}$ frees a PCMCIA slot for essential communication cards.

- 100% DOS compatible and fully bootable
- Pin to pin compatible replacement for system BIOS chip
- Embedded Flash File System software
- Single chip solution for space and weight savings
- Single 5 volt supply
- Low power consumption
- Non-volatile storage

Call or fax:

- Headquarters: EUROM FlashWare Solutions Ltd.

Atidim Industrial Park Bldg. 1, P.O.B 58032, Tel Aviv 61580, Israel Tel: +972-3-490 920 Fax: +972-3-490 922

- USA Office: EUROM FlashWare Solutions Inc. 4655 Old Ironsides Drive, Suite 200, Santa Clara, CA 95054
Tel: 408-748-9995 Fax: 408-748-8408

EDN-Nsw Products
 ELECTRONIC DESIGN AUTOMATION

Timing-driven layout tool for ASICs improves performance and reduces die area. The ChipBench product from IBM provides a complete top-down, timing-driven, physicaldesign tool for ASICs. The company claims the tool reduces design-cycle time, improves performance through shorter wiring delays, and reduces chip area. The workstation-based tool starts at $\$ 246,000$. Altium Inc, San Jose, CA. (408) 534-4140.

Circle No. 503
custom prototype hardware. The Paradigm RP turnkey prototyping system handles designs with up to 250,000 gates and starts at $\$ 60,000$. Concept Silicon costs $\$ 28,000$. Zycad Corp, Fremont, CA. (510) 623-4400. Circle No. 506

Spice modeling tool for geometries below $0.5 \mu \mathrm{~m}$. The Device Model Builder is a modeling and characterization tool to help you develop
models and parameters for submicron designs. The software will be available in the third quarter and starts at $\$ 50,000$. Meta-Software Inc, Campbell, CA. (408) 369-5400. Circle No. 507

Automatic place and route tool speeds physical layout of ICs. The PathFinder multilayer router features a window-routing architecture and a topology manager that lets you place

Software tool lets you design and simulate communication systems using graphical blocks. The Advanced Communication Link Analysis and Design Environment (Acolade) lets you model communication systems by stringing together models for each system block such as channel, transmitter, receiver, encoder, and decoder. The tool includes a wide variety of models that may be interconnected to describe virtually any conceivable system topology. Acolade for PCs costs $\$ 8000$; for Sun Sparc systems, the cost is $\$ 12,000$. Amber Technologies Inc, Concord, MA. (508) 369-0515.

Circle No. 504

Schematic capture and pc-board layout software takes advantage of 32-bit system. Running on 386 or higher PCs under DOS, Eagle 3.0 runs in the 32 -bit protected mode and is able to use the entire system RAM. The software includes schematic entry, a layout editor, and an autorouter. \$1897. CadSoft Computer Inc, Delray Beach, FL. (407) 274-8355.

Circle No. 505

Partition large designs into multiple FPGAs for rapid prototyping. The Concept Silicon partitioning software is aimed at the developers of realtime and DSP ASICs and systems. The software provides a complete set of graphical tools for mapping a design onto either the company's Paradigm RP configurable hardware architecture or

Great Things . . . Small Packages!

Ecliptek Introduces the ECCM1 1.3 MM Ceramic SMT Crystal for PCMCIA

- Designed For All PCMCIA Applications
- Lowest Profile Industry Standard Package
- Gold Sealed For Optimum Performance
- Common Chipset Specifications In Stock
- Frequency Range From 11.0592 MHz to 150.000 MHz
- Tape And Reel Standard For Automatic Insertion

Crystals•Clock Oscillators•Inductors

For Further Information, Contact:

ULTRA - MINIATURE

Surface Mount Audio Transformers

Manufactured and tested
to MIL-T-27

- Frequency range 20 Hz to 250 KHz
- Available from 100 milliwatts to 3 watts
- Impedance from 20 ohms to 100 K ohms
- Operating temperature $-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
- Low profile .2" ht.

PICO surface mount units utilize materials and methods to withstand extreme temperature $\left(220^{\circ} \mathrm{C}\right)$ of vapor phase, I.R., and other reflow procedures without degradation of electrical or mechanical characteristics.

See EEM or send direct for Free PICO Catalog. Call toll free 800-431-1064 in NY call 914-699-5514 FAX 914-699-5565
 Electronics, Inc.
453 N. MacQuesten Pkwy., Mt. Vernon, N.Y. 10552 CIRCLE NO. 123
and route complex ICs up to four times faster than previous tools from the company with density improvements of 20 to 30%. The tool uses global routing information to generate chip layout topologies early in the design cycle that will meet timing requirements and reduce layout iterations. PathFinder for gate and embedded arrays is available now, and versions for cell-based designs will be available in the fourth quarter. From $\$ 200,000$. Compass Design Automation, San Jose, CA. (408) 433-4880.

Circle No. 508

Signal-integrity tool includes new IBIS modeling specifications. The I/O Buffer Information Specification (IBIS) 1.1 includes capabilities for simulating open-drain and open-collector driver ICs. Because the models are tailored specifically for signal-integrity simulation, they offer Spice-level accuracy while simulating faster. LineSim Pro V3.2 includes the new IBIS features and costs $\$ 1295$. HyperLynx Inc, Redmond, WA. (206) 869-2320.

Circle №. 509

Automatic test-pattern-generation software offers test logic synthesis. The 2.0 version of TestGen offers improvements in full scan performance, IEEE 1149.1 JTAG support, and test logic synthesis. The tool can automatically select and implement the most effective test methodology for each portion of a complex circuit design in a single pass. The tool may insert full scan, partial scan, or use nonscan design for test techniques where scan cannot be inserted. TestGen 2.0 starts at $\$ 75,000$; the test-synthesis option costs $\$ 25,000$. Sunrise Test Systems Inc, Santa Clara, CA. (408) 980-7600.

Circle No. 510

Create reprogrammable prototype for ASICs. The Logic Animator lets you create reprogrammable proto-
types of ASICs containing as many as 50,000 gates. The software for creating the prototypes costs $\$ 60,000$ and the FPGA-based reprogrammable hardware costs $\$ 30,000$ per unit. Volume production is scheduled for the third quarter. Quickturn Design Systems, Mountain View, CA. (415) 967-3300.

Circle No. 511

Device modeling and characterization tool adds submicron MOSFET model capability. The BSIM3 model was developed specifically for modeling submicron MOSFETs. The model accurately represents shortchannel effects and can predict scaling effects on output characteristics in advance of your process capability. BSIM3 is part of the Success device modeling and characterization tool that interfaces to the company's analog simulator and to analog simulators from other companies. The complete Success system costs $\$ 25,000$. Anacad EES, Milpitas, CA. (408) 954-0600.

Circle No. 512

Design tool lets you explore a variety of tradeoffs in pc-board and MCMs. EDAnavigator lets you work concurrently with electrical, thermal, routability, partitioning, packaging, and component-placement issues to arrive at an optimum design with a minimum of iterations. The tool is available with a variety of modules that let you configure a system to suit your requirements. EDAnavigator runs on workstations and is priced from $\$ 10,500$ to $\$ 45,000$, depending on configuration. Harris Electronic Design Automation Inc, Fishers, NY. (716) 924-9303.

Circle No. 513

SHORTS

VCS 2.1 now provides back annotation of delays and other functions, enabling the Verilog simulator to be used as a sign-off simulator. The simulator costs $\$ 40,000$. Chronologic Simulation, (415) 965-3312.

Circle No. 514
The Aida II automatic test-patterngeneration software now includes a partial scan test capability. $\$ 49,000$. Crosscheck Technology Inc, (408) 432-9200.

Circle No. 515

51/2-digit DVM attaches to PC's parallel port. Unlike classical handheld meters, the $1.41 \times 3.75 \times 6.3-\mathrm{in}$. Intelligent DVM includes no display; it uses your PC to present its readings. The $\$ 299.95$ autoranging unit (1-range version: $\$ 239.95$) offers an error of $\pm 0.01 \%$ of full-scale-range (FSR) and a $\pm 0.015 \% \mathrm{FSR} /{ }^{\circ} \mathrm{C}$ temperature coefficient. A $\$ 339.95$ unit reduces errors by 40% and is $1 / 10$ as sensitive to temperature. On the most sensitive range, the units resolve 100 nV ; the least sensitive FSR is $\pm 200 \mathrm{~V}$. A differential multiplexer scans eight inputs; there are two digital outputs. Conversion speed is 13

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

readings/sec. Windows-based software provides full control; it converts readings to engineering units and displays data as numbers or graphs. Delta Quest, San Jose, CA. (408) 997-8644.

Circle №. 420

ISA bus DSO boards use sequential sampling to capture $\mathbf{3 0 0}-\mathrm{MHz}$ repetitive signals. The single-channel PCI-425 (\$1695) and the 2-channel PCI-435 (\$2695) have 50Ω inputs Although they do not acquire singleshot transients, their bandwidth rivals that of many high-speed benchtop scopes. The BenchCom software that accompanies each unit lets you set up the boards and integrate them into your system. A $\$ 495$ package called BenchTop lets you store and recall setups and waveforms. Delivery, 6 weeks ARO. PC Instruments Inc, Twinsburg, OH. (216) 963-0800.

Circle №. 421

Software tool lets you program DSP applications in Visual Basic. WinSpox enables users of Visual Basic for Windows to control compute- or I/Ointensive operations with a minimum of programming effort. The package works with PCs equipped with fixed- or floating-point DSPs manufactured by TI and Analog Devices. WinSpox doesn't care whether the target resides on the PC motherboard or on an ISA bus add-in card; it does require that the target be running Spox V2.0, the vendor's DSP operating system. WinSpox includes a VBX (Visual Basic Extension) that permits interaction with the Windows Resource-Management Interface (RMI). $\$ 3000$. Spectron Microsystems, Goleta, CA. (805) 968-5100.

Circle №. 422

ISA bus board captures analog signals at 60 M samples $/ \mathrm{sec}$. The $30-\mathrm{MHz}$-bandwidth CompuScope 6012 resolves 12 bits. It can capture two channels simultaneously at 30 M samples/sec, or one channel at 60 M samples/sec. The board, which includes 512 k samples of capture memory, can address 8M samples. Signal-to-noise

Few words can describe the

> Need to know more? Phone or fax Grayhill. Ask for Engineering Catalog No. 1 and information about the $1 / 2$ " diameter Series 26 , binary coded or Gray coded rotary switch. It's the last word in reliability!

TEST \& MEASUREMENT

ratio is 62 dB at the maximum sampling rate. Real-time software calibration reduces the offset and gain temperature coefficients to $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Software drivers permit transferring data to a 486 PC's extended memory at 1.5 M words/sec. $\$ 6995$. (Upgrade from the vendor's CompuScope 1012: $\$ 2500$.) Gage Applied Sciences Inc, Montreal PQ, Canada. (514) 337-6893.

Circle №. 423

Data-acquisition boards offer "hands-off" setup and calibration for under \$1000. The \$995 DT31-EZ and the $\$ 895$ DT34-EZ, which lacks D/A outputs, take up to 330 k 12 -bit samples/sec. Except for address settings, the units are completely free of analog trims and digital jumper or switch settings. Data-transfer modes include 1- and 2-channel DMA, programmed I/O, and fast transfers (330k samples/sec on 486-based PCs) using the REPINSW (repeat instring word) instruction. A 512-point channel-gain memory lets you select different gains for each channel. You can connect 16 single-ended or eight differential signals, and you can select gains of $1,2,4$,
or 8 under software control. The inputs, which tolerate $\pm 35 \mathrm{~V}$ continuously with power on ($\pm 20 \mathrm{~V}$ with power off), withstand electrostatic discharges of 1.5 kV . Each board includes eight TTL I/O lines and complies with FCC Class-A electromagnetic-interference standards. Data Translation Inc, Marlboro, MA. (508) 481-3700. Circle No. 424

Paperless recorder captures data for over $9^{1 / 2}$ years. The ${ }^{1 / 4}$-DIN-size, panel-mounted, line- or dc-powered Data-Chart has one or two channels. The unit can record as fast as 100 sam-
ples/sec or as slowly as 1 sample $/ 10 \mathrm{~min}$. It stores from 64 k to 512 k 8 -bit samples in a nonvolatile PCMCIA card; an internal 16k-sample memory holds new data while you change cards. A back-lit $2.9 \times 1.5-\mathrm{in} .160 \times 80$-pixel LCD presents the latest data or lets you look at previously acquired signals. You can equip the unit with several types of signal conditioning, including linearization and cold-junction compensation for three types of thermocouples. From \$670. Monarch Instrument, Amherst, NH. (603) 883-3390.

Circle No. 425

VMEbus plug-in triggers on anomalies and does 96-channel, 200$\mathbf{M H z}$ timing analysis. The TimbatPB plugs onto the vendor's VBT-325, a VMEbus analyzer that occupies a single VMEbus slot. The resulting product performs state and timing analysis, automatically detects timing violations, and creates a cycle-by-cycle screen display of bus addresses and data. The $200-\mathrm{MHz}$ timing analyzer can trigger on any combination of 1,0 , and don'tcare signals qualified by pattern duration. \$5995. VMEtro Inc, Houston, TX. (713) 584-0728.

Circle No. 426

reliability of our new switch.

EDN-New Products
 TEST \& MEASUREMENT

1 M -sample/sec ISA bus ADC boards offer simultaneous sampling and a differential program-mable-gain amplifier per channel. The Win-30PGSH (gains of $1,2,4$, and 8) and the Win-30PGSL (gains of 1,10 , 100, and 1000) accept eight differential signals. Each channel has its own sam-ple-hold circuit and differential-input programmable-gain amplifier. This configuration eliminates delays associated with settling of an amplifier shared by multiple channels. The 12 -bit

ADC converts a single input 750,000 times/sec, but its speed rises as it scans more channels. When it scans four or more channels, it makes a total of 1 M conversions/sec. $\$ 2250$. United Electronic Industries, Watertown, MA. (617) 924-1155.

Circle No. 427

16-bit ISA bus data-acquisition board costs $\mathbf{\$ 9 9 5}$. The LDAS-16-AC takes 50,000 samples/sec and provides 16 TTL I/O lines. The board itself
accepts 16 single-ended or eight differential inputs. An expansion multiplexer allows up to 256 analog inputs. C-language libraries cost $\$ 295$. Analogic Corp, Peabody, MA. (508) 977-3000.

Circle No. 428

Handheld device programmer also functions as ROM emulator. The $\$ 795$, battery-powered Orbit 32 programs EPROMs to 8 Mbits, EEPROMs, and flash devices as well as some CMOS PROMs and serial EEPROMs. It accepts DIPs with up to 32 pins in rows whose center-to-center spacing ranges from 0.3 to 0.6 in . The unit, which operates in 8 -, 16 -, and 32 -bit modes and also functions as a ROM emulator, has a user interface that is based on a splashproof membrane keypad and a 4line $\times 20$-character alphanumeric display. In many cases, the unit allows you to edit a device's contents while emulation is in process. Stag Microsystems Inc, Santa Clara, CA. (408) 988-1118.

Circle No. 429

Units convert 8- and 16-bit SCSI bus from single-ended to differential and back and extend bus up to $\mathbf{5 6 m}$. These SCSI bus converters and extenders let you mix single-ended and differential units on the bus. Operation is automatic and does not require programming. Versions are available for SCSI-1 and -2, and for SCSI-2 Fast and SCSI-2 Wide. Packaging options include open boards for OEM use and fully encased units with power supplies. Some configurations even include cables. Prices range from $\$ 300$ to $\$ 1550$. Ancot Corp, Menlo Park, CA. (415) 322-5322.

Circle No. 430

2-channel frequency synthesizer covers 100 kHz to 310 MHz with $\mathbf{0 . 1 - H z}$ resolution. The PTS 310 contains two independent synthesizers. Phase noise is $-115 \mathrm{dBc} / \mathrm{Hz}$ at a $1-\mathrm{kHz}$ offset from the carrier, spurious out-

Very Small, Very Fast, Very Smart

The Universe of high-performance, affordable, embedded system design expands with WinSystem's SBCs. Select 386/486 CPUs for standalone use. Or expand with the STD or PC/104 Bus. Unparalleled flexibility for space and budget-limited applications requiring PC performance and compatibility in harsh or remote environments.

Call or write for a free Catalog and Poster.

WinSystems ${ }^{\circ}$

Your clock has the jitters? We can help!

AKM's Stereo DACs don't mind a little jitter. Or even a lot! Up to 100 ns is no problem. AKM's unique architecture provides high tolerance to clock jitter, ideal monotonicity and low distortion-all without trimming. Choose AKM's low cost, easy-to-use DAC products for any application -digital CATVs, satellite receivers, digital audio systems, digital music keyboards, digital sound recording systems, CD players, etc. AKM delivers-price, performance, quality.

Device	\# of bits	DR	S/N	THD + N	Special Features	Voltage
$\begin{aligned} & \text { Newn } \\ & \text { AK4310 } \end{aligned}$	16	92dB	92dB	0.005\%	- High tolerance to clock jitter - On chip buffer	$3 \sim 5.5 \mathrm{~V}$
AK4316	16	90 dB	90 dB	0.01\%	- High tolerance to clock jitter	$+5 \mathrm{~V}$
AK4318	18	97dB	97dB	0.0025\%	- High tolerance to clock jitter - De-emphasis control circuit - Soft mute function	+5V
AK4313	18	93dB	93dB	0.004\%	- High tolerance to clock jitter - De-emphasis control circuit - Soft mute function • Low voltage	$2.7 \sim 4.0 \mathrm{~V}$

For more information, please contact:
USA-2055 Gateway Place, Suite 415, San Jose, CA 95110 Phone: (408) 436-8580/Fax: (408) 436-7591 EUROPE-Avenue Louise 326, Bte 056, 1050 Brussels, Belgium Phone: (32) 2-649-7831 /Fax: (32) 2-640-1809

EDN-New Products
 TEST \& MEASUREMENT

puts are below -70 dBc , frequency switching takes place in under $20 \mu \mathrm{sec}$, and output power is +13 dBm . Each channel has its own 50 -pin parallel interface. A unit with an oven-controlled oscillator stable to ± 10 parts/billion from 0 to $50^{\circ} \mathrm{C}$ and $1 \mathrm{ppm} /$ year costs $\$ 8225$. Programmed Test Sources Inc, Littleton, MA. (508) 4863008.

Circle No. 431

1-oz, \$495 data logger teams 68332 and PIC16C64 $\mu \mathrm{Ps}$. The $2 \times 3 \times 0.5-\mathrm{in}$. Tattletale Model 8 accepts eight analog inputs, which it digitizes to 12 bits at up to 100 k samples/sec. It includes 256 kbytes to 1 Mbyte of RAM, 128 kbytes to 1 Mbyte of flash EEPROM, two RS-232C ports, a real-time clock, and 25 digital I/O lines. For dataintensive applications, you can add a PCMCIA adapter. Support includes C and Basic libraries, technical notes, documentation, tools, and sample programs. Two mezzanine prototyping boards let you connect signal conditioning, communications, I/O, and memory circuits. Onset Computer Corp, Pocasset, MA. (508) 563-9000. Circle No. 432

ISA bus boards expand digitizer's memory to 1 Gbyte, accept 200 Mbytes/sec. The MEM500 board stores $32,64,128$, or 256 Mbytes. It makes 32 - and 64 -bit data transfers via an auxiliary bus at speeds to 200 Mbytes/sec. The board was designed for use with the vendor's DA500 500Msample/sec $350-\mathrm{MHz}$ digitizer-you can connect up to four MEM500s to a DA500-but it is also available separately. Power required is 5 V at 2.4 A max. $\$ 6950$ to $\$ 34,900$. Signatec Inc, Corona, CA. (909) 734-3001.Circle No. 433

Add-in for 1-2-3 and Excel brings

 FFT capabilities to Windows spreadsheets. FFTtools V2.0 is a DLL that calculates mixed-radix FFTs. It preprocesses data sets to remove the mean, pad the data withzeros, truncate the data to speed calculations, or window the data with any of 17 taper functions. It also post-processes FFTs to center them at dc or make them single-sided, logarithmically compress their amplitude, scale them into physical units, compute power, or compute the phase of noisy data. \$99. Users' guide, $\$ 25$. Upgrade from FFTtools V1.0, \$39 (\$29 for registered users). Integrated Scientific Resources, Santa Monica, CA. (310) 453-6809.

Circle №. 434

PCMCIA data-acquisition card captures eight channels at 25k samples/sec. The $\$ 299$ PCM-DAS08 plugs into type II and III PCMCIA slots. Its 12 -bit ADC converts at $25 \mathrm{k}, 12.5 \mathrm{k}$, 6.25 k , or 3.125 k samples $/ \mathrm{sec}$. The standard input range is $\pm 5 \mathrm{~V}$, but ranges of $\pm 0.5 \mathrm{~V}$ and $\pm 0.05 \mathrm{~V}$ are also available. The card has three CMOS digital outputs and two digital inputs. One of the inputs can act as a rising-edge trigger for the ADC. A $\$ 49$ software package includes card and socket services, a uni-

 EAGLEPPCHER LTTHUM BATTERE5
 WéveBesen The Shape OFthing 50 OOME For Ovel5OYears!

Noother battery can fit your application or maximize your circuit board space like Eagle-Picher'S Keeperil Lithium 5eries. For additional information about how we can fit all of your power supplyneeds, call an Eagle-Picher representative right now

CIRCLE NO. 201

EDN-NEw Products TEST \& MEASUREMENT

versal data-acquisition library, and calibration routines. Computer Boards Inc, Mansfield, MA. (508) 261-1123.

Circle No. 435

Abstract

Data-acquisition software graphs to 110 k points/sec in real time. Snap-Master V3.0 can create real-time graphs of much of the data gathered by data-acquisition boards. Most competitive packages plot at speeds no faster than 15 k points $/ \mathrm{sec}$, so they often must plot graphs from previously acquired data. Snap-Master achieves the 110kpoint/sec speed using a $25 / 50-\mathrm{MHz}$ 486DX2 PC with a graphics accelerator; plotting speed is 80 k points/sec without the accelerator. New displays include dials, bar graphs, simulated LEDs, and digital meters. $\$ 995$ to $\$ 2480$. HEM Data Corp, Southfield, MI. (313) 559-5607.

Circle №. 436

Units test PCMCIA sockets. PCCTest 350 series testers verify that PCMCIA sockets are working correctly. The $\mu \mathrm{P}$-based units, which are PCMCIA cards themselves, verify all data, and address and control signals on sock-
ets that comply with V2.x of the PCMCIA standard. An on-board ADC measures the supply voltages. The accompanying software works with socket controller ICs from Intel, Vadim, and Cirrus Logic. An optional RS-232C interface permits connection of a terminal for interactive debugging. $\$ 495$ to $\$ 795$. Sycard Technology, Sunnyvale, CA. (408) 247-0730.

Circle No. 437

Portable cassette-tape instrumentation recorder acquires digital as well as analog data. The Storeplex Portable Instrumentation Recorder now accepts a digital record/replay
module that acquires data from sensors that have digital outputs. You can now also replace the unit's 2 -channel analog record/playback modules with 4-channel record-only modules, thus doubling the channel capacity. A single S-VHS cartridge can store 69 Gbytes. From $\$ 35,000$. Racal Recorders Inc, Irvine, CA. (714) 727-3444.

Circle No. 438

2-channel, 8-pole active filter tunes from $\mathbf{0 . 0 3 ~ H z}$ to $\mathbf{1 ~ M H z}$. Both of the Model 3988's channels can operate as highpass or lowpass filters or voltage amplifiers with up to 70 dB of gain and a $7-\mathrm{MHz}$ bandwidth. In the highpass mode, the maximum corner frequency is 300 kHz . Minimum highand low-pass corner frequencies of 0.003 Hz are optional. You can pick Butterworth or Bessel characteristics with 48 dB /octave slope, and you can connect the two channels as one bandpass or band-reject filter. The inputs accept single-ended or differential signals at levels to $\pm 10 \mathrm{~V}$. Prefilter gain adjusts in $10-\mathrm{dB}$ steps; postfilter gain adjusts in 0.1-dB steps. \$2995. KrohnHite Corp, Avon, MA. (508) 580-1660.

Circle No. 439

CIRCLE NO. 46

IT'S SMALL...
 IT'S BRIGHT..
 IT'S EFFICIENT.
 IF YOU USE LAMPS,
 IT'S FOR YOU.
 IT'S NEW...

 - et
HIGH POWER FACTOR

Custom Switching Power Supplies

for © Engineering work stations - Computer main frames - Computer peripheral equipment - Business equipment

- Telecommunications
- High power factor 0.99 - Design, manufacturing in Japan - Repair center in U.S.A.

FDK also specializes in DC-DC converters, hybrid ICs, memory cards, ferrite cores, lithium batteries, stepper motors, optical isolators, etc
FDK Your Best Strategic Partner FDK AMERICA, INC.

A Division of Fuji Electrochemical Co., Ltd.

San Jose Office: 3099 North First Street, San Jose, CA 95134, U.S.A.
TEL: 408-432-8331 FAX: 408-435-7478

Boston TEL: 617-487-3198 FAX: 617-487-3199

Ihe BP-1200 universal device programmer leads the industry in devices supported, programming speed, ease of use and reliability. With prices starting at $\$ 2495$, free software updates, and a three year limited
 warranty, * the BP-1200 is simply the best choice for those seeking the biggest bang for the buck!

The BP-1200's ability to program virtually every programmable device, including the fastest and largest PLDs, microcontrollers and memories, gives you the freedom to choose the ideal parts for your next design. The BP-1200 also supports all package types. Our full line of interchangeable programming sockets supports DIP, LCC, PGA, PLCC, QFP, SOIC and TSOP devices directly.

The BP-1200 is the first programmer that programs and vector tests devices with up to 240 pins. If you don't need 240 pin support yet, you can start with as little as 32 pin DIP support and upgrade in the field (to $40,48,84,144$ or 240 pins) when you need to do so.

The BP-1200 is the fastest universal programmer on the market. Since the BP-1200 connects directly to your PC's printer port, you can program parts in seconds, not minutes. The BP- 1200 reads files directly from your hard disk or network, so you won't waste time copying files to a floppy disk or waiting on a serial download.

The BP-1200's high speed, high yields and optional Advanced Feature Software make it ideal for production use, whether you are doing medium volume manual programming or very high volume autohandler production.

Call today for more information about the BP-1200 and a free demonstration disk!

DEVICE SUPPORT INCLUJEES:

- Altera 7000 series
- AMD MACH parts
- Intel 32M bit flash EPROM
- Intel FX740 and FX780 FPGAs
- Lattice pLSI and ispLSI devices
- Microchip PIC microcontrollers
- Motorola 68HC705 and 68HC711 families
- over 3400 devices from over 66 manufacturers

BPMICROSYStems
 BP Microsystems, Inc. - Houston, TX

EPSON ${ }^{\top}$

OEN IIENORY CARIS

	SRAII	$0 T \mathrm{P}$	Flash	ATA Flash	IROM
	64 KB - 2MIB	64 KB - IIIB	256 KB - 16.11B	$2.5 \mathrm{VIB}-40 . \mathrm{IB}$	256 KB - 16.11B

BRLITIE Higi Perpornance Most Compritilie Higin Speedid Low Poner Constiption

RETIIL RELIDY PRODICTTS FOR OEN BLNDLING

EPSON® ${ }^{\circledR}$ EPSON AMERICA, INC.
 Component Sales Department Telephone: 310/787-6300

Call your sales rep today.

Interpoint's MIL-STD-883 dc-dc converters: Recognized for outstanding performance.

On Space Station Freedom, the Patriot Missile, European Fighter Aircraft and thousands of critical applications, Interpoint dc-dc converters are the ones designers choose first. However you measure performance, Interpoint commands the field.

HI-REI. DC-DC Converters for Every Power Level

Series		V in		V out
Outputs	Power			
MSA	16 to 40	$5,12,15$	1 or 2	5 W
MHF+	16 to 40	$5,12,15$	1 or 2	15 W
MTR	16 to 40	$5,12,15$	1,2, or 3	30 W
MFL	16 to 40 80 800 160 160	$5,12,15,28$	1 or 2	$65 \mathrm{~W}^{*}$
MFLHP	19 to 40	$5,12,15$	1 or $2 *$	$100 \mathrm{~W}^{*}$

*Multiple units current sbare

Interpoint is recognized for broadest selection. From fully qualified SMD parts to low-cost solutions, from 5 to 285 watts. Interpoint has a solution for almost every power need.
Interpoint is recognized for innovation. Our 20-year history of breakthroughs includes the first $70 \mathrm{~W} / \mathrm{in}^{3}$ board-mountable dc-dc converters.
Interpoint is recognized for reliability. Our power supplies have logged more than $1,000,000$ field hours per failure.
Our new, fully compliant MSA Series offers 5 watts of power in a case just 0.27 high. The MSA also meets MIL-STD-704A input voltages (up to 80 V surges) with 5 , 12 , and 15 Vdc outputs.

For your FREE HI-REL DESIGN FIELD KIT, with Guides to selecting and using dc-dc converters in HI-REL systems, call:

1-800-822-8782

In Europe, call:
Interpoint U.K. (0252) 815511 Interpoint France (1) 34-28-54-55

interpoint

EDN-Nsw Producis INTEGRATED CIRCUITS

8-bit ADCs shut down power to

 0.5 mW . The $20-\mathrm{MHz}$ MP8786 and MP8776 typically dissipate 110 mW . Both converters include output-enable control logic to produce 3 -state outputs that can directly interface with a bus or a $\mu \mathrm{P}$. Pin-for-pin replacements of the company's MP8775 and MP8785, the 8776 (\$5.28 (1000)) and 8786 (\$5.42) come in $24-$ and $20-$ pin, packages, respectively. Micro Power Systems, Santa Clara, CA. (408) 727-5350.Circle No. 440

$100-\mathrm{MHz}$ crosspoint switches drive 75Ω cable. The MAX458/459 8×4 video crosspoint switches replace multiple switches, amplifiers, and logic. The 458 includes four digitally controlled, $100-\mathrm{MHz}$ unity-gain-stable output buffers (gain of +1) and has a differential phase and gain error of 0.05° and 0.01%, respectively. The 459 includes four $90-\mathrm{MHz}, 300 \mathrm{~V} / \mu$ sec amplifiers with a fixed gain of +2 for directly driving 150Ω back-terminated cable without external feedback resistors. To parallel multiple switches, a digitally controlled disable mode turns off each output amplifier and puts each into a high impedance state. The devices come in 40-pin DIPs, and prices start at $\$ 24$ (1000). Maxim Integrated Products, Sunnyvale, CA. (408) 7377600.

Circle No. 441

Genlock IC produces eight standard NTSC and PAL frequencies. The EL4584 generates a master clock that is phase-locked to an external horizontal sync reference. The IC includes eight preset frequencies; you can also use an external divider to generate nonstandard frequencies. When you use the IC with the company's EL4583 sync separator, the IC generates H sync phase-locked clocks. The internal PLL includes a phase-frequency detec-

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

tor, which preempts locking to a harmonic, and a coast feature, which disables the loop without disturbing the VCO. An external varactor and LCtuned circuit or crystal oscillator controls the VCO's frequency, which can go up to 35 MHz . In 16 -pin DIPs and SOICs, the chip costs $\$ 4.71$ (1000). Élantec Inc, Milpitas, CA. (408) 9451323.

Circle No. 442

Photosensor ADC has 20-bit reso-

lution. The DDC101 current-input ADC directly connects to low-level sensors, such as photodiodes and other cur-rent-output devices. The IC uses a patented delta-modulation topologyslightly different from delta-sigma and integrating converters-that accurately digitizes the low-current levels. Using digital integration, oversampling, correlated double sampling, and digital filtering, the IC improves noise and linearity as input level decreases. With an input signal of 0.1% full-scale, the maximum linearity error is 0.0003% FSR. The conversion rate is 15 kHz . The ADC comes in 24 -pin SOICs and 28-pin DIPs; prices start at $\$ 22.95$ (1000). Burr-Brown Corp, Tucson, AZ. (800) 548-6132.

Circle No. 443

Electronic circuit breaker integrates fast fault protection and control. The UCC3912 IC integrates a 0.15Ω power MOSFET and operates from 3 to 8 V . Other features include digitally programmable current limit from 0 to 3 A , a programmable on-time, and a programmable start delay. When disabled, the IC draws $1 \mu \mathrm{~A}$. During extended faults, the IC automatically opens the circuit and resets it at a 3% duty cycle to limit power dissipation. Other than supply bypass, the IC requires only a single external capacitor for fault timing. \$2.50 (1000). Unitrode Integrated Circuits Corp, Merrimack, NH. (603) 424-2410.

Circle No. 444

Dual op amps top $\pm 5 \mathrm{~V}$ video specs. The HA5022 and HA5023 specify typical $0.07-\mathrm{dB}$ gain flatness to 20 $\mathrm{MHz}, 0.03 \%$ and 0.03° respective differential gain and phase, and $0.8-\mathrm{mV}$ input offset when running from a $\pm 5 \mathrm{~V}$ supply. These ICs are dual versions of the company's HA5020. The 5022 features a
per-output enable/disable, which allows video multiplexing without a separate multiplexer. When configured for a gain of +1 , the amplifiers provide a $125-\mathrm{MHz}$, $3-\mathrm{dB}$ bandwidth, a $28-\mathrm{MHz}$ full-power bandwidth, and a $350 \mathrm{~V} \mu \mathrm{sec}$ slew rate. At gains of +2 , the same specs are 95 , $\mathrm{MHz}, 26 \mathrm{MHz}$, and $475 \mathrm{~V} / \mu \mathrm{sec}$, respectively. A 16-pin DIP or SOIC HA5022 costs $\$ 3.30$ (100). The 8-pin 5023 costs $\$ 3.20$. Harris Semiconductor, Melbourne, FL. (800) 442-7747, ext 7224.

Circle No. 445

16-bit DAC integrates fast interface. The DAC712 comes with a precision $\pm 10 \mathrm{~V}$ temperature-compensated reference, $\mathrm{a} \pm 10 \mathrm{~V}$ output amplifier, and a 16 -bit port-bus interface. The digital interface has $60-\mathrm{nsec}$ min write-pulse widths, is double buffered, and has a clear function that resets the analog output to bipolar zero. Double buffering permits simultaneous updating of several DACs. The output swings $\pm 10 \mathrm{~V}$ using ± 12 to $\pm 15 \mathrm{~V}$ supplies. Maximum power dissipation is 600 mW . In 28-pin DIPs and wide SOICs, 13 - and 14 -bit linearity grades are available starting at $\$ 13$ (100). Burr-Brown Corp, Tuc son, AZ. (800) 548-6132. Circle No. 446

Triple and quad video buffers eliminate drive amplifiers. The MAX467 through 470 have closed-loop gains of +1 or +2 for driving 50 or 75Ω back-terminated coaxial cables with low differential gain and phase error of 0.01% and 0.03°, respectively. Specified for $\pm 5 \mathrm{~V}$ operation, the buffers guarantee an output drive of $\pm 2.5 \mathrm{~V}$ into a 150Ω load. The buffers also feature $100-\mathrm{MHz}$ unity-gain bandwidths and $300 \mathrm{~V} \mu \mathrm{sec}$ slew rates. Prices for the 16 -pin DIPs and SOICs start at $\$ 3.70$ (1000). Maxim Integrated Products, Sunnyvale, CA. (408) 737-7600.

Circle No. 447

Video DACs feature true color and gamma correction. Each IC in the ADV15x series combines three 10-bit

CMOS SWITCHES DELIVER 22 CHANNEL MATCHING AND 3 R RON FLLTNESS

Unrivaled Precision- $\mathbf{0 . 0 1 2 \%}$ CMRR without trimming

Maxim's new precision analog switches guarantee 3Ω on-resistance flatness and 2Ω channel matching. These ground-breaking specifications assure lower distortion, improved linearity and accuracy, and freedom from trimming for attenuators, tuned filters, and programmable-gain amplifiers. The circuit shown, for example, allows CMRR as low as 0.012% without trimming. All switches operate from single supplies of 10 V to 30 V , or dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

Choose the right switch for your design!

PART	FUNCTION	RON (Ω)	MATCH (Ω)	FLATNESS (Ω)	CHARGE INJECTION (PC)	VLOGIC	*COST (\$)
MAX301	dual SPST	30	2	3	15	\checkmark	1.23
MAX303	dual SPST	30	2	3	15	\checkmark	2.57
MAX305	dual SPST	30	2	3	15	\checkmark	2.57
MAX317	SPST	30	N/A	3	10	\checkmark	1.05
MAX318	SPST	30	N/A	3	10	\checkmark	1.05
MAX319	SPST	30	2	3	10	\checkmark	1.41
MAX333A	quad SPST	30	2	3	10	N/A	3.60
MAX351	quad SPST	30	2	3	10	\checkmark	1.76
MAX352	quad SPST	30	2	3	10	\checkmark	1.76
MAX353	quad SPST	30	2	3	10	\checkmark	1.76
MAX361	quad SPST	85	2	9	10	\checkmark	1.29
MAX362	quad SPST	85	2	9	10	\checkmark	1.29
MAX364	quad SPST	85	2	9	10	N/A	1.14
MAX365	quad SPST	85	2	9	10	N/A	1.14

FREE Mux \& Switch Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample
MasterCard ${ }^{\circledR}$ and Visa ${ }^{\circledR}$ are accepted for Evaluation Kits or small quantity orders.

[^7]
EDN-New Products
 INTEGRATED CIRCUITS

video DACs and associated colorpalette RAM in one package. The DACs can deliver 24 -bit true-color performance at rates up to 220 MHz . Four other family members operate at 170 , 135,110 , and 85 MHz . The ADV7150 and 7152 feature three 8 -bit control inputs that provide 256^{3} addressable colors. Their companion, the pseudocolor 7151, displays images of equal resolution but with a choice of 256 colors/frame. The 7151's three 256×10 pixel color look-up table enables on-chip linearization, including gamma correction and monitor calibration. Prices range from $\$ 69$ to $\$ 71$ for the $85-\mathrm{MHz}$ versions to $\$ 121$ to $\$ 167$ for the 220 MHz grades. Analog Devices, Wilmington, MA. (617) 937-1428.Circle No. 448

Dual wideband op amps save board space. The CLC431 and CLC432 current-feedback amplifiers feature typical dc-coupled small-signal bandwidths of 62 MHz at gains of +2 and typical slew rates of $2000 \mathrm{~V} / \mu \mathrm{sec}$. The amplifiers operate from single 10 to 36 V and dual ± 5 to $\pm 18 \mathrm{~V}$ supplies. Typical supply current is 7.1 mA /channel ($\mathrm{R}_{\mathrm{L}}=$ infinity). The dual amplifiers have closely matched dc and ac electrical characteristics, and channel isolation is 70 dB at 10 MHz . The 14 -pin 431 ($\$ 2.99$ (1000)) includes a disable feature that operates single-ended or differentially to accommodate a wide range of logic families. The $432(\$ 2.49(1000))$ comes in an 8-pin package. Both are available in DIPs and SOICs. Comlinear Corp, Fort Collins, CO. (303) 226-0500.

Circle No. 449

Video preamps meet XGA-monitor requirements. The LM1207 and LM1208 video preamplifiers have bandwidths of 85 and 130 MHz , respectively. Both feature 0 to 4 V -de controls for interfacing with $\mu \mathrm{Cs}$, on-chip video blanking requiring only six external components, and dc restoration. The 1208 also features a $40-\mathrm{dB}$ drive-control range. The outputs are stable, and output rise and fall times are symmetrical. The devices come in 28 -pin DIPs, and
prices begins at $\$ 2.20(1000)$ and $\$ 2.50$, respectively. National Semiconductor, Santa Clara, CA. (408) 721-5240.

Circle No. 450

Small bus drivers meet auto stan-

 dards. The Si9241EY and Si9243EY narrow-body SOICs meet the ISO9141 standard for communication between automotive computers and diagnostic equipment. The devices include shortcircuit and overtemperature protection and can handle the high voltages and stresses imposed by load dump, field decay, and other automotive transients. The 9241 features a bidirectional K-line pinout. The 9243 provides K- and L-line pinouts. In large OEM quantities, the 9241 and 9243 cost $\$ 0.89$ and $\$ 1.05$, respectively. Siliconix, Santa Clara, CA. (800) 554-5565, ext 29 . Circle No. 451Interconnection devices offer high I/O densities. The IQ line of field-programmable interconnect devices (FPIDs) offers I/O densities from 96 to 320 ports. The devices operate as fast as 100 MHz and have pin-to-pin delays of 10 nsec . The heart of the devices' architecture is a nonblocking globally connected switch matrix, which allows flexible routing signals. You can program each I/O port as an input, an output, or a bidirectional port. The devices offer programmed switch-matrix connections and I/O port attributes that are configured with data stored in internal SRAM cells and registers. Prices range from $\$ 0.20$ to $\$ 0.30 /$ port $(10,000)$. I-Cube Inc, Santa Clara, CA. (408) 986-1077.

Circle No. 452

Serial memory interfaces with $\mu \mathbf{P}$.

 The X84041 provides 4 kbits of EEPROM organized as 512 bytes. The 5 V nonvolatile-memory device adapts seri-al-memory functions to a $\mu \mathrm{P}$. The architecture incorporates write-, out-put-, and chip-enable signals, which exist on wide bus systems, eliminating the need for latches and I/O ports. The devices replace low-density byte-wide devices in applications with low package size and height. The device comes in 8 -pin SOICs (\$1.64) and DIPs (\$1.45) (10,000). Xicor Inc, Milpitas, CA. (408) 432-8888.Circle No. 453
V.32bis chip sets have small form factor. The CL-MD1414UN and its PCMCIA version, CL-MD1414UNP, are data, fax, and voice modem chip sets that offer external controller code that
supports international communication standards. By moving this code to external ROM, EPROM, RAM, or flash memory, you can design internationally compliant data, fax, and voice modems. A mixed-signal design makes it possible to integrate analog and digital functions on two CMOS chips. Standards supported include CCITT V.23, V.21, V.32, V.32bis, V.22, Bell 212A, and Bell 103 for data and CCITT V.17, V.29, V.27ter, and V. 21 ch2 for fax. $\$ 50$ (1000). Cirrus Logic Inc, Fremont, CA. (510) 226-2037.

Circle No. 454

CD-ROM controller offers IDE inter-

 face. The OTI-011 provides an IDEbus interface for CD-ROMs. It follows the AT attachment-packet interface (ATAPI) standard, allowing the host PC to identify the CD-ROM drive and configure itself upon power-up. The controller works with CD-ROM, CDROM/XA, and CD-I disks and handles drives four times faster than the standard CD-ROM speed. The device comes with ATAPI drivers and costs $\$ 8.95$ $(10,000)$. Oak Technology Inc, Sunnyvale, CA. (408) 737-0888. Circle No. 455

Start-up regulator runs off 15 to 450V-dc inputs. The LR645 3-terminal, high-input voltage regulator provides a fixed output of nominally 10 V . Available in TO-92, TO-220, and sur-face-mount SOT-89 packages, the ICs can output 3 mA of continuous and 30 mA of peak current. Typical line regulation is $0.1 \mathrm{mV} / \mathrm{V}$, and load regulation is $50 \mathrm{mV} / \mathrm{mA}$. Supply current is typically $50 \mu \mathrm{~A}$. A $100-\mathrm{nA}$ typical off-state leakage current ensures low power dissipation when the IC is off. $\$ 0.21$ $(50,000)$. Supertex Inc, Sunnyvale, CA. (408) 744-0100.

Circle No. 456

Digital video mixer handles 12-bir data. The HSP48212 accepts two 12bit digital video signals and provides a weighted average proportioned according to a 12 -bit mix ratio. The 13 -bit output value is automatically rounded to

A COMPLETE 2OMHz FUNCTION GENERATOR IN ONE IC!

No Design Needed to Produce Sine, Square, and Triangle Waveforms

Designing 20 MHz function generators just got easy with the new MAX038. The MAX038 produces modulated and unmodulated Sine, Square, and Triangle waveforms from 1 Hz to 20 MHz .

ALL THIS

IN THIS!

FREQUENCY MODULATION

- 1 Hz to 20 MHz Operation
- Sine, Square and Triangle Waveforms
- 1\% Distortion
- $\pm 5 \mathrm{~V}$ Supply Operation
- 350 to 1 Frequency Sweep Range
- Independent Frequency \& Duty Cycle Adjustment

CALL TOLL FREE 1-800-998-8800 For Free Samples

MasterCard ${ }^{\circledR}$ and Visa ${ }^{\circledR}$ are accepted for Evaluation Kits or small quantity orders.

[^8]
EDN-New Products INTEGRATED CIRCUITS

12,10 , or 8 bits to match system needs. The device accepts video at clock rates to 40 MHz and delays each input signal by as many as seven clock cycles to help synchronize video sources. It is available in 68-pin PLCC ($\$ 14.32$ (1000)) or 64-pin PQFP (\$18.46) packages. Harris Semiconductor, Melbourne, FL. (800) 442-7747, x7200.

Circle №. 457

Disk controllers include error cor-

 rection. The AIC-8300 family of disk controllers handle data as fast as 100 Mbps and provide programmable error-correction coding (ECC). The ECC is a 297 -bit, 3 -way interleaved code that applies to data. A separate ECC protects the disk's data-field identifiers. Both the AIC-8370 IDE and the AIC-8320 SCSI devices include a 48 Mbyte/sec buffer interface for storing data flowing between host and disk. The parts cost $\$ 20$ each; the 8370 is available now, and the 8329 is due in August. Adaptec, Milpitas, CA. (408) 945-8600.Circle №. 458

Two cells produce RS-232C output levels. The MAX218 dual transceiver operates from input voltages of 1.8 to 4.25 V and maintains true RS-232C and EIA/TIA-562 voltage levels. The IC guarantees data rates up to 120 kbps . The two receivers remain active in 1 μ A shutdown mode to monitor external devices that can wake up the IC when data needs to be transferred. The ICs come in 20 -pin SSOPs, DIPs, and wide SOICs, and prices start at $\$ 2.10$ (1000). Maxim Integrated Products, Sunnyvale, CA. (408) 737-7600. Circle No. 459

μ C supervisor has programmable

 watchdog timer. The X25043 microcontroller ($\mu \mathrm{C}$) supervisor combines 4 kbits of EEPROM with a complex reset controller and a watchdog timer with programmable intervals. The device has a high-speed serial peripheral interface and software protocol, which allows rapid access to data on a 3-wire bus. The reset controller generates a reset signal to the $\mu \mathrm{C}$ during power-up, power-down, and brown-out situations.The watchdog timer begins running once the reset signal is released. Two EEPROM bits of a configuration register, which selects one of four options, control the watchdog timer. 8-pin DIP, $\$ 1.50(10,000)$. Xicor Inc, Milpitas, CA. (408) 432-8888.

Circle No. 460
0.5- $\mu \mathrm{m}$ gate array has high gate count. The HG72G/E gate-array family operates faster than 100 MHz . The devices have master slices ranging from 52,000 to 667,000 raw gates. The ASICs feature 3.3 V operation and are available in a variety of packages, including ball-grid arrays with more than $600 \mathrm{I} / \mathrm{O}$ pins. The arrays accommodate embedded functions, including memories. On-chip access times are as fast as 3.5 nsec. Internal gate delay for a 2 -input NAND gate with a fan-out of 2 and 1.4 mm of metallization is 200 psec. Power dissipation is 1.2 $\mu \mathrm{W} / \mathrm{MHz} /$ gate. Prices depend on customer requirements. Hitachi America Ltd, Brisbane, CA. (800) 285-1601.

Circle No. 461

Analog macrocells enhance design library. These analog macrocells, additions to the vendor's semicustom sys-tem-elements library, include phase and phase-frequency detectors, vari-able-delay elements, charge pumps, and voltage-controlled oscillators that are part of the PLL functions operating from 100 MHz to 2 GHz . The macrocells provide phase jitter as low as 6.5 psec at 622 MHz . The library also includes DACs having $3-, 4-, 5-, 6-$, and 8 -bit resolutions at speeds as high as 500 MHz . An 8-bit video DAC with 4-nsec RAM macrocells offers 1- and 3-channel graphics. NRE charges, $\$ 40,000$. Synergy Semiconductor, Santa Clara, CA. (408) 773-3643.

Circle No. 462
0.7- $\mu \mathrm{m}$ ASICs feature low power. The TC170 series of ASICs are fabricated in a $0.7-\mu \mathrm{m}$ process and come as gate arrays or standard cells. Typical gate delays are 270 psec ; the devices operate from 5 V . The arrays employ two layers of metallization and typically dissipate $4.4 \mu \mathrm{~W} / \mathrm{MHz} /$ gate. Gate complexity ranges from 22,000 to 194,000 for the TC170G gate array and 5000 to 219,000 for the TC170C standard cell. The design libraries are compatible with the company's 3V T180/183 series. Volume pricing is $\$ 15$ for a 45,000-gate product. Toshiba America Electronic Components Inc, Irvine, CA. (800) 879-4963.

Circle No. 463

Zero-drift op amp swings rail to rail. An integrated high-frequency charge pump provides the LTC1152 op amp with an input stage whose com-mon-mode range includes both power supply rails. The amplifier's output stage swings to within millivolts of either power-supply rail when lightly loaded and swings a $1-\mathrm{k} \Omega$ resistor to 4 V with a 5 V supply. The IC is unity-gain stable into capacitive loads as high as 2000 pF with no external components. An external compensation capacitor enables the device to drive unlimited capacitive loads. Typical offset is $1 \mu \mathrm{~V}$, typical offset drive is $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$, and open-loop gain is 130 dB . A shutdown feature drops supply current to $1 \mu \mathrm{~A}$ typ. $\$ 3.12$ in DIPs and $\$ 3.37$ in SOICs (1000). Linear Technology Corp, Milpitas, CA. (408) 432-1900. Circle No. 464

ASIC supports 5 and 3.3 V designs. The Universal PCI Series ASICs support mixed-voltage designs. The ASICs support the PCI local bus, including PCI I/O and Gunning transceiver logic. The gate-array family has three voltage rails and employs a $0.6-\mu \mathrm{m}$ CMOS process including as many as 223,000 gates. Other features include a $290-\mathrm{nsec}$ propagation delay for a 2 -input NAND gate, a $2.7-\mu \mathrm{W} / \mathrm{MHz} /$ gate power dissipation, a 2- or 3-layer metallization, and 160 - to 304 -pin plastic quad flat packaging. Special macros include PLL, clocktree synthesis, and RAM and ROM. \$6 to $\$ 60(10,000)$. NEC Electronics Inc, Mountain View, CA. (800) 366-9782.

Circle No. 465

ASIC family offers high-reliability plastic package. This ASIC family is available in plastic packaging that the vendor claims rivals ceramic packaging's reliability. The packaging suits avionics and military applications and enables ASICs to withstand 1000 temperature cycles over a -65° to $+150^{\circ} \mathrm{C}$ temperature range. The temperature testing exceeds the reliability requirements of ceramicpackaged MIL-STD-883 products. $\$ 299$; same device in ceramic, $\$ 399$. American Microsystems Inc, Pocatello, ID. (208) 234-4690.

Circle №. 466

ISOLATED RS-4855 IN ONE PACKAGE FOR UNDER $\$ 10!$

Complete 28-Pin Solution Includes DC-DC Converter

Why waste time designing and debugging a discrete isolated RS-485 solution when you can plug in the MAX1480 for under \$10? The MAX1480 includes the optocouplers, transformer, DC-DC converter, and diodes necessary to provide a complete 500VRMS isolated RS-485 transceiver in one 28 -pin package.

Save Design Time, Board Space, and Cost

- 2.5Mbps Data Rate Guaranteed (MAX1480A)

- Slew-Rate Limiting Reduces EMI and Reflections (MAX1480B)

FREE Interface Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples

CALL TOLL FREE 1-800-998-8800
For a Design Guide or Free Sample
MasterCard ${ }^{\circledR}$ and Visa ${ }^{\circledR}$ are accepted for Evaluation Kits or small quantity orders.

[^9]
EDN-Naw Products

POWER SOURCES

Lithium thionyl-chloride cells run for 15 years continuously outdoors. Eternacell lithium thionylchloride cells have an open-circuit voltage of 3.65 V and capacities ranging from 0.9 to 30 Ahr. Cell sizes include $2 / 3 \mathrm{~A}, 1 / 2 \mathrm{AA}, \mathrm{AA}, \mathrm{C}, \mathrm{D}$, and DD. The cells are hermetically sealed in stainlesssteel cases and have a 15 -year outdoor service life min. 23 A, $\$ 4.97$; DD, $\$ 17.95$ (1000) Power Conversion Inc, Elmwood Park, NJ. (800) 452-1211.

Circle No. 364

PCMCIA power controller replaces forest of MOSFETs. The MIC2560 is a PCMCIA-slot power controller that manages the profusion of both mainsupply and programming voltages. The

FREE INFO, FREE POSTAGE
 Use our postage-paid reader-service cards to get more information on any of these products.

controller's 16-pin surface-mount package fits between a PCMCIA controller and a PCMCIA socket, replacing 6 to 10 MOSFETs and associated glue logic. The device's outputs are short-circuit and overvoltage protected. $\$ 2.96$ (1000). Micrel Semiconductor, San Jose, CA. (408) 944-0800.

Circle No. 365

50W dc/dc converter suits telecomm applications. The HDB49-C4050 W de/de converter has outputs of $5.6,12,-12$, and -5.2 V . Outputs are adjustable by $\pm 10 \%$. The converter accepts input voltages ranging from 35 to 60 V . Noise and ripple are 1% p-p. The unit is overvoltage, overload, and short-circuit protected. Operating temperature is 0 to $50^{\circ} \mathrm{C}$ with no derating. The unit complies with FCC or VDE EMI regulations and measures $6.60 \times$ 3.94×1.95 in. $\$ 99$ (100). Total Power International Inc, Lowell, MA. (508) 453-7272.

Circle No. 366

Supplies energize ultraminiature ultraviolet lamps. The 44 series and PS-5 series power supplies accept 5,12 , and 24 V de and measure $3 \times 3.3 \times 1.5 \mathrm{in}$. The supplies power Pen-Ray and CP series ultraviolet lamps. The lamps are low-pressure, cold-cathode, mercury gaseous-discharge lamps made of dou-ble-bore quartz whose lighted length ranges from 0.75 to 90 in . $\$ 40$ to $\$ 240$. UVP Inc, Upland, CA. (800) 452-6788, ext 210.

Circle No. 367

High-density dc/dc converters output 5 or 3.3 V . The PKU series of high-density de/dc converters comprises a $5 \mathrm{~V}, 150 \mathrm{~W}$ model and a $3.3 \mathrm{~V}, 100 \mathrm{~W}$ model. The converters accept 36 to 72 V dc and measure $2.19 \times 4.79 \times 0.66 \mathrm{in}$. Their calculated MBTF is 1.2 million

OUR DC/DC CONVERTERS CIRCLE THE GLOBE.

At Reliability, our commitment to worldwide manufacturing of zero-defect DC-DC
converters assures our customers of receiving the highest quality products possible.

Our products are available in 1 to 25 watts with efficiencies up to 90%. All our products carry a three year warranty. Contact us today for a copy of our catalog.

Quality is Reliability
A Zero-Defects Company
Call: 713.492.0550 Fax: 713.492.0615

1-CELL (1.1V) INPUT STEP-UP GUARANTEES 5V, 30mA OUTPUT

Internal Synchronous Rectifier Assures Complete 20^A Shutdown

The MAX777/MAX778/MAX779 step-up dc-dc converters deliver more power from a single battery cell (1.1V) than any other IC solution available. An internal active rectifier diode increases efficiency and provides true $20 \mu \mathrm{~A}$ shutdown. Only 2 capacitors and a small $22 \mu \mathrm{H}$ inductor are needed, saving space and cost. Guaranteed start-up is 1V (10 mA load). In shutdown, the internal switched rectifier opens the DC path from the input to the output, stopping current drain associated with conventional step-up converters. Also, the Active RectifierTM allows these regulators to act as buck/boost converters, providing regulation for input voltages above and below the output voltage. Order the complete surface-mount evaluation kit (MAX778EVKIT-SO) to speed your design.

- 5V @ 30mA or 3.3V @ 60mA from 1.1V Inputs, Guaranteed
- Internal Synchronous Rectifier
- True 20uA Shutdown Supply Current
-3.3V or 5V Regulated Output from 1V to 6.2V Input
-8-Lead DIP or SOIC Package
- MAX777: 5V Output

MAX778: 3.3V/3V Output
MAX779: Adjustable Output (2.7V to 6V)

- Evaluation Kit Available

FREE Power Supply Design Guide-Sent Within 24 Hours! Includes: Data Sheets and Cards for Free Samples
 CALL TOLL FREE 1-800-998-8800
 For a Design Guide or Free Sample

MasterCard ${ }^{\oplus}$ and Visa ${ }^{\oplus}$ are accepted for Evaluation Kits or small quantity orders.

Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delltron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland, FMG Electronics Italy, Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland, Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip. Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic

designing the $\mathrm{I} / 0$ than the contr

system. Wouldn't yo

drop-in solution right about

ANNOUNGING THE AD420, THE FIRST SINCLE CHIP 4-20mA CURRENHLOOP OUIPUU DAC.

why spend valuable time and money designing 4-20mA driver circuits for your industrial control system?

Analog Devices' new AD420 DAC does it for you. It's the only DAC that takes serial information directly from your controller and converts it into a $4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$ output.

And since the AD420 is a single chip solution, you can reduce your I/O footprint or add more channels in the same board space.

GUARANTEED PERFORMANCE

Our new AD420 provides you
with complete functionality plus
guaranteed performance over the full industrial temperature range. So you can spend time designing systems, not circuits.

The AD420 is the first in a new family of industrial DACs from Analog Devices. Its advanced sigma-delta technology actually delivers 16 -bit monotonicity for 30% less than you'd pay for 12 -bit accuracy.

- Complete 4-20mA output channel
- SP $^{\oplus}$ and MicroWire ${ }^{\oplus}$ compatible serial interface
- Loop-fault detection capability
- 16-bit monotonicity
- $\$ 10$ in 1000 s \dagger

AD420

Small footprint SOIC minimizes board space per channel.

CALL NOW FOR A SAMPLE

Get the full story. Call today and we'll rush you a sample and complete technical information. Just dial

1-800-ANALOG-D

(262-5643). Or fax
your request to
617-821-4273.

Analog. Digital. Solutions.

EDN-New Products
 POWER SOURCES

hours at $25^{\circ} \mathrm{C}$ ambient. Below $60^{\circ} \mathrm{C}$, the converters require no heat sinks if airflow is 300 lfm . $\$ 145$ (1000). Ericsson Components Inc, Richardson, TX. (214) 997-6561.

Circle No. 368

Lithium primary batteries are thin

 enough to fit in PCMCIA cards. Powerdex lithium primary batteries furnish 3 or 6 V outputs yet measure 0.7 mm thick. Units come in $6.6 \times 9.4-$, $4.6 \times 7.4-$, and $3 \times 3.9-\mathrm{cm}$ sizes. Capacities are 50 to 1400 mAhr . You can solder the batteries' coplanar side tabs directly to a pe board. Gould Electronics Inc, Eastlake, OH. (800) 722-7890.Circle №. 369

25W dc/dc converters accept wide-ranging inputs. The TA series 25 W de/dc converters is available with single, dual, or triple outputs. The inputs accept voltages ranging from either 9 to 36 V or 20 to 72 V . The units measure $2.50 \times 3 \times 0.83$ in. $\$ 58$ to $\$ 69$ (500). Semiconductor Circuits Inc, Windham, NH. (603) 893-2330.

Circle №. 370

Miniature 0.5 and $\mathbf{I W} \mathbf{d c} / \mathrm{dc}$ converters target distributed applications. The PM600 series 0.5 and 1 W $\mathrm{dc} / \mathrm{dc}$ converters measure $1.25 \times 0.8 \times$ 0.4 in . and exhibit 50% efficiency. The converters operate from either 5 or 12 V $\pm 10 \%$. The converters come with an internal input filter. $\$ 15$ (OEM quantities).Computer Products, South Boston, MA. (617) 464-6656.

Circle №. 371

Rechargeable-battery snap bollixes 9 V primary batteries. A battery snap for 7.2 or 8.4 V NiCd rechargeable batteries has a third contact that precludes users' connecting conventional 9 V primary batteries. The third contact strikes a plate found only on rechargeable batteries. \$0.40 (1000). Memory Protection Devices Inc, Farmingdale, NY. (516) 293-5891.

Circle No. 372

Lab supplies deliver prodigious currents. The EA-9000 laboratory
power supplies come in three voltage/ current combinations: 0 to 18 V at $300 \mathrm{~A}, 0$ to 36 V at 180 A , and 0 to 72 V at 90 A . The power-factor-corrected units require 3 -phase input power. The supplies feature automatic remote sensing, 0.15% stability, programmability, and analog or LCD meters. Rack mounting and an IEEE-488 interface are optional. $\$ 3000(2 \mathrm{~kW})$; $\$ 8000$ (6 kW). Electro Automatic Corp, Lawrence, MA. (508) 687-6411.

Circle №. 373
 a 486 DX 4 or $486 \mathrm{DX2}$ PC. enhanced by a resistive touchscreen, and housed in a compact $11.7^{\prime \prime} \times 16.6^{\prime \prime} \times 4.5^{\prime \prime}$ metal OEM frame (or optional 19 " rackmount).

See it clearly.

The impressive 14" VGA LCD displays 262,000 brilliant colors --perfect for machine control environments where operator information must be highly visible.
Workstation power

- 486DX4 at 100 MHz or $486 \mathrm{DX2}$ to 66 MHz with local bus video \& Windows accelerators
- Up to 32 M DRAM and 1.5 M semiconductor disk
- 65 W switching power supply included
- Disk drive options: 1.44 M 3.5" floppy, or 2.5 " hard disk drive up to 500 M

Expansion possibilities

- One or two slot PCMCIA credit card drive
- SBX interface on board the single board computer
- Up to six rear-mounted PC bus expansion slots
DisplayPacs come in many sizes, in all price ranges. Call for our NEW CATALOG, and ask a Computer Dynamics Applications Engineer for information on our wide variety of flat panel solutions.
"The Flat Panel Experts"TM

107 SOUTH MAIN STREET, GREER, SC 29650 (803) 877-8700 • FAX (803) 879-2030

INTRODUCING MICRO-CAP IV.' MORE SPICE. MORE SPEED. MORE CIRCUIT.

PC-based circuit analysis just became faster. More powerful. And a lot easier. Because MICRO-CAP IV is here. And it continues a 12 -year tradition of setting CAE price/ performance standards.

Put our 386/486 MICRO-CAP IV to work, and you'll quickly streamline circuit creation,

AC Analysis
from SPICE 2G. 6 models plus extensions. Comprehensive analog behavioral modeling capabilities. A massive model library. Instant feedback plotting from real-time waveform displays. Direct schematic waveform probing. Support for both Super and Extended VGA.

And the best is still less. At $\$ 2495$, MICRO-CAP simulation and edit-simulate cycles - on circuits as large as 10,000 nodes. In fact, even our 286 version delivers a quantum leap upward in speed. Because, for one thing, MICRO-CAP IV ends SPICE-file-related slowdowns; it reads, writes and analyzes SPICE text files and MC4 schematic files. It also features fully integrated schematic and text editors. Plus an interactive graphical interface-windows, pull-down menus, mouse support, on-line HELP and documentation - that boosts speed even higher.

Now sample MICRO-CAP IV power. It comes, for example,
outperforms comparable PC-based analog simulators- even those $\$ 5000+$ packages - with power to spare. Further, it's available for Macintosh as well as for IBM PCs. Write or call for a brochure and demo disk. And experience firsthand added SPICE and higher speed - on larger circuits.

1021 S. Wolfe Road
Sunnyvale, CA 94086
(408) 738-4387 FAX (408) 738-4702

Catalog of Xilinx products. DigiKey is the first catalog distributor to carry Xilinx products; this catalog covers the full range, including field-programmable gate arrays, erasable pro-grammable-logic devices (EPLDs), serial configuration PROMs for FPGAs, and the Viewlogic base development system. Digi-Key Corp, Thief River Falls, MN.

Circle No. 516

Brochure features ICs for automotive applications. This $12-\mathrm{pg}$ brochure includes both text and diagrams pertaining to motor-control ICs, driver/special-function ICs, and powermanagement ICs. The brochure also highlights typical applications, including multiplex wiring, automatic suspension control, air-bag activation systems, and ignition control. Unitrode Integrated Circuits Corp, Merrimack, NH.

Circle No. 517

Technical note covers DSO applications. Digital Oscilloscope Applications in High Speed Electronics explains how scope bandwidth and sample rate affect the measurement of both repetitive and single-shot signals. The publication also addresses problems making measurements in the presence of noise; cross-channel timing measurements; crosstalk; $\mu \mathrm{P}$ crashes; timing problems due to clock stew; metastability; probes; and using long memory to gain higher effective bandwidth. LeCroy, Chestnut Ridge, NY. Circle No. 518

Free configuration tool for dataacquisition systems. This free tool allows designers to reduce the complex-
ity and time to configure a PC-baseddata acquisition system for PC/XT/ AT/EISA and Micro Channel-based computers, including laptops and notebooks. National Instruments, Austin, TX.

Circle No. 519

Catalog details technical supplies.

This illustrated buying guide provides information on electronic tools, test equipment, and technical supplies for assembling, testing, and repairing electronic products. The catalog also covers precision hand tools, test instruments, datacomm/telecomm equipment, tool kits, soldering/desoldering systems, lamps, magnifiers, and static-control products. HMC, Canton, MA.

Circle №. 520

Guide to test-and-measurement

 instruments. This $96-\mathrm{pg}$ guide contains information and specifications on a line of hand and stationary tachometers, frequency meters, running time meters, insulation testers, stroboscropes, controllers, and static eliminators. In addition, the catalog presents information on multimeters and test instruments. Herman H Sticht Co, Brooklyn, NY.Circle №. 521

Book teaches graphical programming language. Cutting Your Test Development Time with HP VEE provides a detailed tutorial on HP VEE, a graphical programming language. The book features numerous programming examples along with additional exercises for advanced users. \$38. Hewlett-Packard, Palo Alto, CA.

Circle No. 522

Catalog describes new electronic

 test-and-calibration instrumentation. This $98-\mathrm{pg}$ catalog describes a line of signal sources, including waveform, function, and pulse generators; precision calibrators and multimeters; and RF signal/sweep generators. It also covers a line of high-performance VXI signal sources, options, and accessories. Wavetek Corp, San Diego, CA.Circle No. 523

Catalog describes line of pc-board

 pin headers and receptacles. A 50pg catalog provides information on and product drawings for standard and custom interconnections for pe boards. Specialty Electronics Inc, Landrum, SC.Circle No. 524

Brochure highlights books and journals for instrumentation, measurement, and sensors. This catalog details a range of books, journals, and reference works for instrumentation, measurement, and sensors. Sample copies of journals mentioned in the brochure are available. Institute of Physics Publishing Inc, Philadelphia, PA.

Circle №. 525

Guide for comm products, ASICs, and cache controllers. The 1994 Vitesse Product Selection Guide contains general information on all Vitesse standard products and ASICs. Products include 1-Gbps Fibre Chan-nel-compatible data-communications devices, $2.5-\mathrm{GHz}$ SONET-compatible ICs, and cache controllers for Pentium and P54C CPUs. Vitesse Semiconductor Corp, Camarillo, CA.

Circle No. 526

Test-accessory catalog. A 36-pg catalog lists over 100 products, including logic-analyzer test accessories, IEC1010-safe probes, and banana jacks. Other products include boxes, test strips, and laboratory power supplies. ITT Pomona Electronics, Pomona, CA.

Circle No. 527

Data book for programmablelogic products. This $600-\mathrm{pg}$ data book offers detailed information on field-programmable gate arrays, erasable pro-grammable-logic devices, and serial PROMs. Electrical and timing parameters for all subfamilies are provided. The book offers 160 pgs on applications, ranging from general design hints to documented subsystem examples. Also included is The Best of XCELL, a collection of newsletters filled with hints for programmable-logic users. Xilinx Inc, San Jose, CA.

Circle No. 528

Heat sinks for cooling μ Ps detailed. This $36-\mathrm{pg}$ catalog covers a broad range of heat sinks, attachment methods, interface materials, and other thermal-management products. A heat $\operatorname{sink} / \mu \mathrm{P}$ selector guide and an applications form are also included. Aavid Engineering Inc, Laconia, NH.

Circle №. 529

Data book on DSP products. This data book contains detailed technical information on a variety of DSP products, including video imaging products, enhanced speed grades of existing products, and data sheets of 41 DSP products. Logic Devices Inc, Sunnyvale, CA.

Circle No. 530

Catalog offers wide selection of power products and ac sources. A $66-\mathrm{pg}$ catalog provides technical information for ac sources, de power supplies, dc electronic loads, power test systems, and solar-array simulators. Hewlett-Packard, Palo Alto, CA.

Circle No. 531
Library of power subcircuits for developing power ICs and systems. Circuit Simulation of Switching Regulators Using HSpice is a collection of papers and subcircuit models that allows you to convert power building blocks, such as switching regulators, pulse-width modulators, and inverters, to board or IC designs. The library comprises power subcircuits for simulating switching-regulator power systems in continuous- or discontinuousconduction modes. All the library subcircuits come as HSpice files on a floppy disks or as standard Spice files. To download the files, call DOM Engineering Services at (512) 477-0756, $E D N$ at (617) 558-4231, or the Intusoft

BBS on Compuserve. The library and technical-reserach packet costs $\$ 50$. Meta-Software, Campbell, CA.

Circle №. 532

RF/wireless handbook provides applications and design information. This $1100-\mathrm{pg}$ handbook incorporates application information and design short cuts for engineers. The handbook highlights amplifiers, companders, IF systems, front-end systems, baseband processors, frequency synthesizers, and transmitters. Philips Semiconductors, Sunnyvale, CA.

Circle №. 533

Catalog features discontinued semiconductor products. This 106pg guide details the selection of devices available to be built to various screening levels and in various packages. Rochester Electronics Inc, Newburyport, MA.

Circle No. 534

Catalog features optoelectronic

 products. This $88-\mathrm{pg}$ short-form guide details optoelctronic products, including military high-reliability displays, optocouplers, LED lamps, infrared and fiber-optic emitters, and custom products. Siemens Components Inc, Cuptertino, CA.Circle No. 535

Application guide for low-temperature infrared sensors. This $16-\mathrm{pg}$ guide is for users with little or no experience with low-temperature infrared sensors. Topics include infrared energy and how an infrared sensor works. The brochure also includes charts, graphs, and a list of applications. Watlow Electric, St Louis, MO.

Circle No. 536

Literature on interconnection applications. This $8-\mathrm{pg}$ brochure highlights interconnection technologies for improving pc-board building efficiency and reliability. It also describes additional interconnection products designed to meet electronic production needs. Zierick Manufacturing Corp, Mt Kisco, NY.

Circle No. 537

Paper evaluates high-performance, VME-based embedded computer systems. The SKYchannel Technical White Paper reviews circuitswitched architectures, quick-ring architectures, and packet-bus architectures for communications on and
between VME accelerator boards. SKY Computers Inc, Chelmsford, MA.

Circle No. 538

Selection guide of switches. This $50-\mathrm{pg}$ product-selection guide lists switches manufactured in ISO 9002certified facilities in Europe. The guide specifies washable and miniature toggle, rocker, and pushbutton switches and power toggle switches. In addition, the guide covers switch hardware and switch-sealing boots. MORS/ASC, Wakefield, MA.

Circle No. 539

Guide highlights full-service testing. This $10-\mathrm{pg}$ illustrated guide details the testing, procurement, and assembly of high-reliability electronic components. Four pages describe state-of-the-art testing services for discrete and high-complexity circuits. Two other pages cover the parts-management program, which combines procurement, testing, and just-in-time delivery of microcircuits and semiconductors. Solid State Testing Inc, Burlington, MA.

Circle No. 540

Brochure provides application data for environmental test chambers. This $20-\mathrm{pg}$, color brochure details application, operational, and dimensional specifications for a line of environmental test chambers. The brochure also details controls, instrumentation, and chamber-design characteristics that help achieve specific environments. Blue M Electric, Blue Island, IL.

Circle No. 541

Our Power Module is Dual...

 theirs is only single output! Now-75, 100 and 200 Watt Models- Low Cost DC-DC Converters

Single Outputs s104 | Dual Outputs $\$ 149$

- Dual Isolated Outputs 28 Standard Models / Special Voltages Available
- Wide Input Voltage

Four Series / 18-380 VDC Input

- Parallel Operation Fixed Frequency 100 kHz True Redundancy Operation

100 VDC Output,standard!

Patent Pending

The availability of DUAL ISOLATED OUTPUTS creates cost and space savings in many applications.
Fully safeguarded for over voltage, over temperature and continuous short circuit protection, these FIXED Hi-Frequency units minimize technical problems.

With output voltages from 3.3VDC to 100VDC, four distinct input ranges and the choice of single or dual outputs plus the capability of Parallel Operation, as standard features, your circuit designs can be optimized.

Assembled in the U.S.A. with PICO quality components, these hi density units allow the most stringent mechanical, electrical and environmental requirements.

FAX or call today for immediate engineering assistance, product information or FREE catalog.

P
 IC

Catalog describes 4-channel

 portable recorder. A $10-\mathrm{pg}$, 4 -color brochure describes the Dash IV 4-channel field and lab recorder. The brochure contains specifications and a variety of full-size unretouched chart samples. Astro-Med Inc, West Warwick, RI.Circle No. 542

Handbook on distributed power architectures. This free comprehensive design guide covers the benefits of distributed power and details physical, electrical, and mechanical issues related to decentralized power architectures. It also describes component mechanical integrity and how each element in a distributed system affects reliability. Ericsson Components AB, Stockholm, Sweden.

Circle №. 543

Brochure describing expandable,

 embedded PCs and modules. This $16-\mathrm{pg}, 4$-color catalog offers an overview of embedded-PC products, including single-board computers, $\mathrm{PC} / 104$ modules, and software tools. Also featured is a line of PC/104 modules, including analog-I/O, digital-I/O,VGA, and flat-panel controllers; communications; networking; solid-statedisk; and a Sound-Blaster-compatible audio card. WinSystems Inc, Arlington, TX.

Circle No. 544

Connector data sheets. These data sheets describe three families of 20 gauge electrical connectors for highperformance and rugged field applications. The families include the Bee-Line connectors for airborne applications, the D-Series connectors for the most rugged environments, and the MIL-C-28840 connectors for
shipboard applications. PackardHughes Interconnect, Irvine, CA.

Circle No. 545

Brochure on electromagnetic shielding. The Unseen Force details a new diagnostic service that performs an on-site analysis of electromagnetic levels, provides an evaluation, and designs and installs a shielding solution. Free. Lindgren R F Enclosures Inc, Glendale Heights, IL. Circle No. 546

Brochure describes Visual Engineering Environment. This $12-\mathrm{pg}$, color brochure (Literature 5962-9239E) describes Hewlett-Packard's Visual Engineering Environment (VEE). The brochure focuses on VEE's graphical programming language, its benefits over traditional methods of generating code, and its impact on areas of automated test. Examples illustrate how VEE can be applied in jet-engine component testing, design verification for mobile phones, life testing for consumer appliances, and functional test for transponders. Hewlett-Packard, Palo Alto, CA.

Circle No. 547

Non Contact Measurement? Low Cost Sensor? Thermopiles TPS 424 and TPS 434 will meet your requirements.

New series of thermopile sensors in TO-5 package with very low temperature coefficients enable monitoring of temperature from a distance.

Produced by latest Silicon Micro Machined technologies.
Options available including temperature reference thermistor and special narrow band optical filters.

Our experience in sensor mass production stands for high quality and consistant parameters.
Try this new device - the performance will convince you.

Within the EG\&G Group Heimann Optoelectronics specializes in Pyroelectric IR-Sensors, Thermopile Sensors, Photoconductive Cells, Image Tubes, Flash Tubes and Trigger Coils. Contact our US office today under 1-800-995-0602 or by Fax 215-368-4790 to obtain more details from our specialist: EG\&G Optoelectronics group: EG\&G Canada, EG\&G Electrooptics, EG\&G Heimann Optoelectronics, EG\&G Judson, EG\&G Reticon, EG\&G Vactec.

OurEMIfiltershelpkeep yourbriffeasefrom becoming abatileground.

If business is war, this is where the fight gets serious.
Cellular phones, notebook computers, pagers and soon, PCS devices - the potential for interference among them is surpassed only by the potential for interference inside them. Fortunately, our EMI/RFI filters are superb peacekeepers. We offer the widest selection of EMI/RFI filters in the industry, in unsurpassed ranges of inductance and capacitance values, temperature ratings, frequencies and current ratings. Products like our unique high-frequency L-Chip Inductor, with its precision tolerance of
$\pm 2 \%$, are made possible by our exclusive thin-film technology. And our ability to combine high current ratings with lower DC resistance means you don't have to compromise one for the other in your designs. So as you're designing the newest weapon for the corporate wars, let us be a small part in your success and help you avoid internal strife. For more information and our EMI Filter catalog, call 1-800-831-9172, ext. 129.

A small part in your success

Need a display with only characters?

Or a display that will express your character?

Noritake has whatever kind of Vacuum Fluorescent Display that will fit your particular needs, including a wide range of character modules and graphic modules.

```
- Low cost
- High brightness
- Easy user interface
- SMT
- Flexible control data
- Character Modules - over 20 models
- High visibility
- Graphic Modules - over 10 models
```

Call TOLL FREE 800-837-4727
or contact your local Noritake office:

Chicago
2635 Clearbrook Drive Arlington Heights, IL 60005 Tel. 708-439-9020
Fax 708-593-2285

Boston
945 Concord Street, Ste. 118 Framingham, MA 01701 Tel. 508-626-0811 Fax 508-626-0429

Dallas
2454 Dallas Trade Mart Dallas, TX 75207 Tel. 214-742-9389 Fax 214-747-5065

Los Angeles 2050 E. Vista Bella Way Compton, CA 90220 Tel. 310-603-9770 Fax 310-603-9810

New Jersey
75 Seaview Drive
Secaucus, NJ 07094
Tel. 201-319-0600
Fax 201-319-1962

Canada
Noritake Canada Ltd. 90 Nugget Avenue Agincourt, Ontario M1S 3A7 Tel. 416-291-2946
Fax 416-292-0239

Europe
Noritake Europa GmbH.
Frankfurter Strasse 97-99
W-6096 Raunheim, Germany
Tel. 06142-43095/96/97

EDN

PRODUCT MART

This advertising is for new and current products.

Please circle Reader Service number

 for additional information from manufacturers.

CIRCLE NO. 242

The Most Flexible EPROM Emulator You Can Get Today

- Accepts Intel Hex Motor ola
Binary files.
- Software available for IBM

PC and compatibles.

- Base 27256 EPROM System 5395.00 . Other
- Examine and modify Examine modit

Incredible Technologies, Inc.
Visa, Mastercard and American Express Accepted

Order Mow - If's Easy
Call (708)870-7027 Or Fax (708)870-0120 For Mora information

CIRCLE NO. 250
UNIVERSAL/GANG PROGRAMMERS

FLEX.700
32 pin from $\$ 645$ 40 pin from $\$ 845$ 48 pin from $\$ 945$ ALL-03A s s95 IC Manufacturer approved \& under \$1000

- Supports Altera 7xxx, MACH 435, Xilinx, Intel FX7xx, nearly all FPGA/CPLD/PLD
- Support EPROM, 28/29F FLASH, Serial PROM, PSD4XX/5XX, Intel/Motorola/T1/NEC/Hitachi MPU/DSP devices.
- Test 74/40/45 series, DRAM(SIP/SIMM), and SRAM
- Parallel port connection to PC option.
- Free software updates via BBS.

Tribal	Tribal Microsystems Inc. 44388 S. GRIMMER BLVD., FREMONT,CA 94538 Tel: (510) 623-8859 Fax: (510) $623-9925$

CIRCLE NO. 252

CIRCLE NO. 247

PILOT-U84 Universal Programmer
\#1 in New Device Support \& Expandability Altera 7064.7128.7160,7192 in 84-. 100- and 160-pin packages Xilinx 1765D. 17128 etc Intel FLEX. 87 C196 KC. KD.JR.MC etc. Mot $68 \mathrm{HC} 7 \mathrm{II} .68 \mathrm{HC705}$. WSI PSD-3XX.-4XX.-5XX.PAC.SAM Atmel 29 C 040 , ATF22V10 etc. AMD MACH435. 29F040, etc Latice pLSI-1000.2000.-3000. Microchip PIC micros All packages to 256 -pin: PLCC.PGA.QFP.TQFP.TSOP.SOIC 800-627-2456 FAX:(408) 736-2503, Sunnyvale, CA.

ANALYZER-EMULATOR

UniLab 8620

- PC Based, Zero-Wait-State Operation
- Non-Stop Analysis: Define \& Refine Triggers \& View Multiple Traces On-The-Fly
- Source Level \& Symbolic Debug
- Built-In EPROM Programmer
- Same Base Unit Supports Most 8-bit μ Cs \& $\mu \mathrm{PS}$, including 8051, $68 \mathrm{HC05}, 68 \mathrm{HC11}, \mathrm{Z80}$, $80 C 196,6502,8085$, etc.

1-800-729-7700

180 Independence Dr., Menlo Park, CA 94025 U.S.A.
CIRCLE NO. 248

CIRCLE NO. 243

Rated \#1 for
Ease-of-use by OEMs \& end users

Expandable

 Logic Analyzer plus$\checkmark 50 \mathrm{MHz}$ and 25 MHz state and timing $\checkmark 32 \mathrm{~K}$ sample depth, up to 192 channels \checkmark Professional features in PC-based product \checkmark Easy-to-use, windows-like interface \checkmark PC-based desktop and ISA bus versions \checkmark Digital/analog pattern generator option

Gang/Set E/EPROM StaO
Programming

(3) PP42 - the total solution for Gang/Set programming of EPROMs and EEPROMs
(6) 8, 16 or 32 -bit programming of device sets in a single operation (24 to 32 pins)
(2) Option modules for ganging Micros, MROM EPROMs, 40-pin DIP/16-bit or 32-PLCC
(1) 4 Mbits RAM standard - expands to 64 M
(1) Stand-alone or PC operation
(1) Serial and Parallel ports

Stag Microsystems, Inc
Tel: 408 988-1118 Fax: 408 988-1232

CIRCLE NO. 251

S4 programs EPROMs, EEPROMs, FLASH, PICs, 8751 micros. It emulates RAM and ROM too! To get S4 on your desk tomorrow, or to simply request iterature, call 800-328-2336 or 407-649-3335 Fax: 407-649-3310 BBS: 407-649-3159

CIRCLE NO. 254

\#1 in Adapter Solutions for over 10 years

FREE 1994 Interconnect Solutions Catalog
\checkmark Over 3,500 devices for one-stop-shopping $\checkmark 120$ "Off-the-shelf" items available for overnight delivery \checkmark Unlimited application consulting
\checkmark Time saving solutions for product development \checkmark Ask about our custom designs
\checkmark Leading edge technology -- over 500 PQFP solutions

EMULATION TECHNOLOGY, INC 800.995.4381

PLCC LoClip - PLCC Probe

Probe in Place

- Probe surface mounted PLCC chips
- Lowest profile Clip (. 45 " - .75")
- Instrument VME bds. etc with no extender
- PLCC sizes from 20-84 pins
- Annotations available
- Mechanically and electrically reliable connection
- Ask about custom solutions

IRONWOOD ELECTRONICS P.O. BOX 21151, ST. PAUL, MN 55121 (612) 431-7025; FAX (612) 432-8616

CIRCLE NO. 238

NEED MORE SPEED. DOMT WAMT TO REDESIGM
MOTOROLA CPU "ACCELERATOR ADAPTERSTM
Δ Replaces original CPU with next generation technology. Δ Extends the life of your current system. Δ Avoids the high cost of redesign.
Δ Add 32 -bit RAM and math coprocessor. Δ Custom design and manufacturing services.
Interested in speeding up your system? Computer System Associates
7564 Trade Street Phone: (619) 566-3911 San Diego, CA 92121 FAX (619) 566-0581

CIRCLE NO. 234

LITTELFUSE ANNOUNCES NANO ${ }^{2}$

 SURFACE MOUNT CIRCUIT PROTECTION SYSTEMLittelfuse, Inc. recently introduced a complete surface mount circuit protection system that meets all PC board lay out, circuit and maintenance needs.
With this system, the manufacturer has the freedom to choose the NANO ${ }^{2 T M}$ Fast-Acting
 or Slo-Blo ${ }^{\otimes}$ SMF fuses for direct mount applications, or either fuse pre-installed in the SMF Omni-Blok ${ }^{\text {® }}$ surface mount fuse block that permits easy fuse replacement if frequent replacements may be required.

Littelfuse, Inc.
(708) 824-0400

LOGICAL

Has a Full Range of High Quality Universal \& Gang (EEPROMs, FLASH, PLD, \& MICRO CONTROLLER) Programmers

LOcical

Stiol
$1800331-7766$ Ext: 103

CIRCLE NO. 239

CH1785, A Complefe Modem

- V. 22 bis, V.22, 212A, 103
- FCC Part 68 Approved
- AT Commands
- 5V, Low Power
- $1.25^{\prime \prime} \times 1.00$ " x $0.50^{\prime \prime}$ Your Source for Modem Components

Cemmetek

Tel: 408-752-5000
Fax: 408-752-5004
Cermetek Microelectronics, Inc.
1308 Borregas Ave. • Sunnyvale, CA 94089
CIRCLE NO. 233

Smart TekMeter from Tektronix

The new TekMeter integrates the usability of a digital multimeter with the waveform display of an oscilloscope in a compact, easy-touse, two pound battery-operated package. TekMeter has $25 \mathrm{Ms} / \mathrm{sec}$ digitizer(s) automatic setup, spike detect and cursors. Prices for TekMeters range from $\$ 859$ to $\$ 1,259$. For more information, call Tektronix at 800-426-2200 or your local distributor.

CIRCLE NO. 245

This DSP System will help get your new product to market fast.

Blazing-fast, PC-based Turbo C30-II Real-Time DSP Development Board gives you the tools (like TI TMS320C30 32-bit DSP; up to 2MB Dual Access, 0 wait state memory; $4.2 \mathrm{MB} / \mathrm{sec}$ data transfer; TI \& Tartan C/C++ software; and more)-and industry-leading engineering services provide support-for quick product design. Turbo C30-II \& Prototyping Boards

Call	7 WIN
800-550-7302	ENGI
for details.	CORPOR

HAND HELD TERMINALS \& COMPUTERS Industry Proven Reliability

- RS-232, RS-422 RS-485
- 5 VDC, Extended 8-24 VDC or Battery Powered - 4×20 or 8×24 16×32 Supertwist Liquid
Crystal Displays
- Rugged Ergonom-
ic Housing
- Full Range of

Models Available

- Off The Shelf or

Quickly Customized To Suit Your Needs

?
 Two Technologies 419 Sargon Way Horsham, PA 19044 Tel: (215) 441-5305 Fax: (215) 441-0423

 CIRCLE NO. 257

 CIRCLE NO. 257}
RELIABILITY PREDICTION SOFTWARE

ARE YOUR PRODUCTS RELIABLE?
The RelCalc 2 Software Package automates the reliability prediction procedure of MIL-HDBK217, or Bellcore, allowing quick and easy reliability analysis of electronic products on your PC. Say goodbye to tedious, time consuming, and error prone manual methods!

- NEW UPDATE! VERSION 3.1 now available.
- User friendly: pop-up menus, hypertext help.
- Very easy to learn and use; quick data entry.
- Part library for rapid recall of part data.
- Global editing functions for what-if? trials.
- Reports which clearly organize results.
- Save time \& money as you design for quality
- Try our Demo Package today for \$25.

T-Cubed Systems, 31220 La Baya Drive, Suite 110, Westlake Village, CA 91362 CALL: (818) 991-0057 FAX: (818) 991-1281

CIRCLE NO. 244

IMACNE IF YOUR PRODUCT COULD TALK!

V8600 textto-speech synthesizer

- Converts plain ASCII text into speech ("talking printer") - Requires only a single 5V supply and speaker - Unlimited vocabulary-no custom recording necessary - Programmable pitch, rate, tone, volume, etc. - Text, character, phonetic, tone and PCM modes - Microprocessor, serial and printer interfaces
- Use in telecom, robotics, monitoring systems, etc.
- Less than $\$ 100$ in OEM quantities
- ISA, PC/104 and stand-alone versions available

FREE V8600 DATA BOOK USA Ph: 206 355-3800 Fax: 355-1098 UK/Europe PT: +44815390285

RC Systems, Inc. 1609 England Avenue. Everett, WA 98203 USA

QFP and SOIC SMT Adaptors for Emulators and Logic Analyzers

- Two part modular construction
- 62 mil high generic base replaces the chip variety of tops can be purchased separately, e.g. emulator, logic analyzer, ZIF socket, cable, etc. tops
- Easy to solder
- 160 leads under 1 minute
- no special equipment or experience required
- Rugged construction, minimum size, short traces
- Vertical extensions available
- Deliveries from stock to 3 days on most products

EDI Corp., PO Box 366, Patterson, CA 95363 , Tel.: 209/892-3270, Fax: 209/892-3610

CIRCLE NO. 261

A Complete Line of Development Boards, Programmers and In-Circuit Emulators

NEW . . .NEW . . .NEW . . .NEW. . .
DS-186 - In-Circuit Emulator for 80C186/8/XL/EA/EB/EC, V40/50 8086/8 and other μ Cs
*** NEW ADDRESS IN THE USA*** Call today for your free demo and software update
Toll Free: 1-800-833-4084
CEIBO
7 EDGESTONE CT FLORISSANT, MO 63033 TEL: 314-830-4084 FAX: 314-830-4083
CIRCLE NO. 232

PC-EISA TO ENCORE HSD DATA LINK/EMULATION
Using our PCEHSD® card and file transter software, files can be moved between a PC EISA bus computer and an Encore computer HSDII board. The PCEHSD also emulates the HSDII; therefore, the PCEHSD can drive a HSDII compatible peripheral device. Transfer rates in excess of $10 \mathrm{Mbytes} /$ /econd. DOS $/ / 0$ routines and interactive test program, and UNIX driver available. This product is an excellent tool for hi-speed data acquisition, monitoring or product test fixture.

APPLIED DATA SCIENCES, INC.
P.O. Box 814209, Dallas TX 75381-4209 (214) 243-0113•FAX (214) 243-0217

Combine your Product Mart ads in EDN Magazine and
 Products Editions for

higher impact and a lower rate!

CIRCLE NO. 259

REMOVE HARDWARE LOCKS

PROTECT YOUR INVESTMENT!

 MAINTAIN PRODUCTIVITYISoftware utility that allows for the removal of hardware locks.

Available for most major CAD/CAM and PCB software programs
Easy - Simple - Guaranteed
Programs start at \$99.00 U.S.
Visa and Mastercard Welcome
Call or Fax for more Information
SafeSoft Systems Inc.
201-1111 Munroe Ave.
Winnipeg, Mb. R2K $3 Z 5$
Phone (204) 669-4639
Canada

CIRCLE NO. 241

Find out how you can break through the clutter to get big results for a small price, by placing a 4-color ad in EDN Product Mart. Call Joanne Dorian at (212) 463-6415 for details.

Software Engineer to be member of small development team; Participate in the development of software products and documentation to allow personal computers and laser printers to print checks and other negotiable documents as well as design, strategy and planning of product. Must be able to write applications for Microsoft windows using C or C++. Require: BA, BS, BE in computer science or engineering with $1 \mathrm{yr} 6 \mathrm{mths} \exp$. in job offered. Salary: \$42,000/yr; M-F $8 \mathrm{am}-5 \mathrm{pm} ; 40$ hrs wk; Located in Jacksonville, FL
Send resume to: Job Service of Florida, 2810 Sharer Rd., Suite 30B, Sugar Creek Plaza, Tallahassee FL 32312. Job No. FL1037984.

Company needs an Electrical Engineer to design electrical power distribution systems, generation systems, lighting systems and control systems for commercial and industrial use, to develop graphics software, computer aided design software and electrical circuit simulation software to evaluate the accuracy and behavior of $A C$ and $D C$ circuit models; and to perform hands-on work as well as doing theoretical calculations. Applicant must have M.S.E.E. and one year experience in power distribution systems and computer aided design systems and must know how to use PsPice and Matlab simulators for analyzing electrical circuit. 40 hrs./week, $\$ 27,650 /$ year. Submit your proof of qualification and resume to John F. Scott, Missouri Division of Employment Security, 421 East Dunklin Street, Post Office Box 59, Jefferson City, Missouri 65104-0059, re: Job \#127233.

DESIGN/FIELD SERVICE

 ENGINEERNew England independent repair co. Requires electrical and mechanical experience with proven hands-on ability to install, repair, retrofit \& maintain industrial, utility, government and commercial. Circuit breakers, transformers, switchgear, $\mathrm{ac} / \mathrm{dc}$ drives, etc. Send resume in confidence to: Fredrick A. Farrar, Inc. 15 Avon St. Keene, N.H. 03431. 603/352-4316

A SMALL

AD HERE COULD ATTRACT A LOT OF ATTENTION

[^10]

If you want to reach over 163,000 engineering professionals, in over 52,000 locations, EDN Career Opportunities is the best place to advertise your company's positions.
Get the attention of 100% qualified engineers and managers involved in designing or developing electronic products, who look to EDN Magazine's Classified section for career opportunities.
Only EDN can guarantee you're reaching the key design engineers in the Electronic Original Equipment Manufacturer market.
For more information on advertising, contact:
JACKIE DANIELS Tel: 1-800-603-4859 Fax: 1-617-630-3925

EDN-Buswiss STaff

EDN Headquarters
275 Washington St
Newton, MA 02158
Fax: (617) 558-4470

Publisher

Jeffrey Patterson
(617) 558-4454

Maria McGrath, Assistant (617) 558-4346

Advertising Sales Director

Paul Rothkopf
(617) 558-465

Marketing/
Business Director
Deborah Virtue
(617) 558-4779

Promotion
Jean Graham
(617) 558-4698

Production Staff

Andrew A Jantz,
Group Manager
(617) 558-4372

Karen Banks, Manager (617) 558-4441

Alice Dorsey, Associate (617) 558-4601

Contracts

Muriel Murphy,
(617) 558-4451

Circulation: Denver, CO
Denise Garcia,
(303) 398-7694

Custom Publishing

Services

Patricia Tyler, Director
(617) 558-4526
fax: (617) 558-4470

Reprints of EDN articles are available on a custom printing basis at reasonable prices in quantities of 500 or more. For a quote, phone Ellen Sandram, Cahners Reprint Service at (708) 390-2773.

NEW ENGLAND

Chris Platt
Tel: (617) 964-3730
Fax: (617) 332-7128

NEW YORK/NEW JERSEY
 AND MID/SOUTH
 ATLANTIC

Diane Driscoll
Tel: (203) 326-5161
Fax: (203) 326-5160
IL, IN, KY, OH,
TN, TX, OK, FL, SC
JoAnn Cannon
Tel: (708) 635-8800
Fax: (708) 635-0929
IL, MI, MN, NE, IA, KS, ND, SD, WI, MO, AL, AR, GA, MS, CANADA Jack Johnson
Tel: (708) 635-8800
Fax: (708) 390-2815

ARIZONA

Donnie Jones Adams
Tel: (408) 243-8838
Fax: (408) 243-2 144
ORANGE/RIVERSIDE/ SAN DIEGO COUNTIES LOS ANGELES/ SOUTHERN CA, NV
Susan N Green
Tel: (714) 851-9422
Fax: (714) 752-6867

NORTHERN CA/
 SILICON VALLEY

Donnie Jones Adams
Bettina McGowan
Tel: (408) 243-8838
Fax: (408) 243-2 144

EUROPEAN
 OPERATIONS

Tully Giacomazzi,
Managing Director
Tel: 498976902391
Fax: 498976902144

UK

John Waddell
Tel: 44-81-312-4696
Fax: 44-81-312-1078
NORWAY, SWEDEN, FINLAND
Roland Nihlmar,
Lars Grunberger
Tel: 4686160760
Fax: 4686160777

DENMARK

Aase Kisborg
Tel: 4533149888
Fax: 4533149288

GERMANY-NIELSEN 4/
 BAVARIA

Margarethe Munchmeier
Tel: (49-89) 222015
Fax: (49-89) 299160

SPAIN

Luis S Giner
Tel: 343-894-43-26
Fax: 343-894-88-37

AUSTRIA

Sven Kollensperger
Tel: 43-732-79-34-55
Fax: 43-732-79-34-58

ISRAEL

Asa Talbar
Tel: 972-35-223-621
Fax: 972-3-524-2177

ITALY

Roberto Laureri
Tel: 39-2-236-2500
Fax: 39-2-236-4411

SWITZERLAND

Roswitha N Briand
Tel: 41-1-261-4690
Fax: 41-1-251-45-42

NETHERLANDS/

BELGIUM/NORTHWEST
GERMANY (NIELSEN 1, 2,

5, 6, 7)

Albert Ticheler
Tel: 31-40-41-37-27
Fax: 31-40-42-04-30

CENTRAL/

SOUTHWEST GERMANY
(NIELSEN 3A, 3B)
Renate Munk
Tel: (49) (6272) 2345
Fax: (49)(6272) 2167

FRANCE

Alain Faure
Tel: 33-1-4629-4629
Fax: 33-1-4093-0337

HONG KONG

Adonis Mak
Tel: 852-838-2666
Fax: 852575 1690/
8525751967
JAPAN
Kaoru Hara
Tel: (81-3) 3389-1822
Fax: (81-3) 3389-1761

KOREA

Jeong-gwon Seo
Tel: 82-2-752-4392
Fax: 82-2-752-4394

SINGAPORE/

MALAYSIA
Hoo Siew Sai
Tel: 65-738-0122
Fax: 65-738-2 108

AUSTRALIA

Alexandra Harris-Pearson
Tel: 61-2-299-5677
Fax: 61-2-299-6178

TAIWAN

Parson Lee, John Shih
Tel: 886-2-7114833
Fax: 886-2-7415110

PRODUCT MART

Joanne Dorian
Tel: (212) 463-6415
Fax: (212) 463-6404
INFO CARDS/
LITERATURE LINK
Melissa Bachman
Tel: (617) 558-4282
Fax: (617) 558-4328

RECRUITMENT

Jacqueline Daniels
Tel: (617) 558-4488
Fax: (617) 630-3925
Direct Mail Service:
(708) 390-2361

Cahners

Magazine Division
Robert Krakoff,
President, CEO,
Cahners Publishing
Michael Wisner,
Senior VP/General Mgr,
Boston Div
Tom Dellamaria,
Senior VP/Production \&
Manufacturing

Play with Our Video Building Blocks!

EL4083E
Curremt Mode 4-Quadrant Multiplier

$\pm 200 \mathrm{MHz}$ Bandwidth
-THD < 0.1\% @ 10 MHz

- $\$ 6.90$ in 1,000 's P-DIP

EL4451C
Widehand Variable-Gain Amp

- 80 MHz Bandwidth
- Calibrated Linear Gain Control
- $\$ 3.33$ in 1,000 's P-DIP

ANALOG INTEGRATED CIRCUITS
FOR SAMPLES CALL (800) 333-6314 ext 311 For Literature Only - ext 234

ELANTEC, INC. $=1996$ Taroh Court = Milpitas, CA 95035 - (408) 945-1323 = (800) 333-6314 = FAX (408) 945-9305

EDN-INTERNational AdVerisers Index

Company	Page	Circle	Company	Page	Circle	Company	Page	Circle		
AMP Inc	121-123	47	Incredible Technology	191	237	Siemens AG	10-11*	89		
AT\&T	29	209	Integrated Device			Siemens Components	613	31-135		
Abbott Electronics Inc	116	48	Technology Inc	157		Sierra Circuits	191	242		
Actel Corp	145	49	Intel Corp	54-57	108	Signal Transformer	119	148		
Advin Systems	191	230	International Power Sources	28	33	Signum Systems	192	243		
Allied Electronics Inc	153	192	International Rectifier	97	109	Siliconix	4			
Analog Devices Inc	17	93		99	110	Spectrum Software	184	149		
	34-35	26		101	34	Stag Microsystems	192	251		
	83-90			103	111	Stanford Research	152	199		
	182	210		C3	112	T-Cubed	194	244		
Applied Data Sciences	194	231	Interpoint	171-173		TDK Corp	161	153		
Applied Micro Circuits Corp	129	64	Ironwood Electronics	193	238	Tektronix Inc	2	154		
Arnold Magnetics Corp	11	65	Lambda Qualidyne Inc	111	121-122		193	245		
Asahi Kasei			Linear Technology	$\begin{gathered} 92 \\ 107-108 \end{gathered}$	190	Teledyne Relays	110	155		
Microsystems Co Ltd	166	66				Texas Instruments	8-9	107		
Audio Precision	112	94	Littlefuse		258		19-21	157		
BP Microsystems	169	211	Logical Devices	193	239		27-38			
Burr-Brown Corp	47	79	Loral Data Systems	105	113		36-39			
CEIBO	194	232	MCSI	192	240	Texas Instruments Europe	127*	158		
Cermetek	193	233	Maxim Integrated Products	175	205		129*	159		
Cherry Semiconductor	50	75		177	206		131*	160		
Chomerics Inc	82	76		179	207	3M	140	92		
Coilcraft	63	77		181	208	Tokin Corp	52	161		
Computer Dynamics	183	27	Melcher AG	6^{*}	88	Toshiba America Electronic				
Computer System			Metalink Corp	193	249	Components	22-23	98-99		
Associates	193	234	MicroSim Corp	151	150-152	Toshiba Electronics	104-105*	162		
Condor Inc	45	84	Mini-Circuits		196	Tribal Microsystems	191	252		
Crystal Semiconductor	106	191		109	202	Two Technologies	194	257		
Cypress Semiconductor	C4		Motorola Computer Systems	s 43	217	US Logic	192	256		
Dale Electronics	156	85		65-67	215	United Parcel Service	143	163		
Data Translation	49	189	Murata Electronics	189	82	Unitrode Integrated Circuits	40	164		
Dataman Programmers LTD	192	254	NCR Corp	32	218	VME Microsystems	155	91		
Datel Inc	95	78	NEC Corp	148-149	114	Wavetek	27	185		
Digi-Key Corp	1	1	NKK Switches	115		Welch Allen Inc	168	46		
Diversified Technology	60-61	28	National Instruments	C2	36	WinSystems	165	186		
E-T-A Circuit Breakers	133	95	National Semiconductor	30-31		Wintriss Engineering	193	253		
EDI Corporation	194		Nichicon	81	194	Xilinx	134-135	187		
EG\&G Heiman			Nohau Corp	191	250	Zaxtek	192	246		
Optoelectronics Inc	188	29	Noritake	190	220	Zenith Power Supplies	91	223		
ESL	200	96	Oki Semiconductor	127	115		28	197		
EUROM Flash Ware			Orion Instruments	192	248	Zilog	150	188		
Solutions Ltd	158	105	Oyster Terminals	104	116	Zworld Engineering	191	247		
Eagle-Picher	167	201	Payton Industries	82*	117					
Ecliptek Corp	159	200	Philips Key Modules	136	221					
Elantec	197	212	Philips Semiconductor	131						
Electronic Designs Inc	147	97	Pico Electronics	50	123					
Embedded Systems				160	123					
Conference	132192 235-236			187	136					
Emulation Technology					Power Convertibles Corp	77	83			
Epson America Inc	170	86	Power One	58	124	Recruitment Advertis	ing	195		
Epson Semiconductor	63*	198	Power Trends	73	137					
Ericsson Components	199	80	Prem Magnetics	144	138					
FDK Corp	168	203		180	139					
Fluke Corp	26	30	Quad Design	10	222					
Gage Applied Sciences Inc	104	31	Quality Semiconductor Inc	53	125					
Gennum Corp	139	213	Quicklogic	51	144					
Grayhill Inc	162-163	87	RC Systems	194	255					
Hansen Corp	164	193	RO Associates Inc	75	38	*Advertiser in European edition				
Harris Semiconductor	124	32	Raltron Electronics	144	145	Adveriser in European edirion				
Harwin Inc	146	214	Reliabilty Inc	180	37					
Hewlett-Packard	79	106	Safe Soft Systems	194	241					
Hirose Electric USA	154 103-104		Samsung Semiconductor Inc $24-25$Samtec Inc 12		146	publisher does not assume any omissions.	liability for	errors or		
IEE			147							

$15 \mathrm{~g}(0.520 \mathrm{z})$

Low Cost

$1,500 \mathrm{~V} \mathrm{dc}$
Isolation

The new MacroDens"' DC/DC converter. So small it's bound to make a big impression.

The latest in a long line of $\mathrm{DC} / \mathrm{DC}$ converter innovations for distributed power from Ericsson, the MacroDens ${ }^{\text {TM }}$ is unlike any other 3-7 watt device on the market. In a remarkably small 18-pin DIL package measuring just $48 \mathrm{~mm} \times 24 \mathrm{~mm} \times 8 \mathrm{~mm}\left(1.89^{\prime \prime} \times 0.94^{\prime \prime} \times 0.31^{\prime \prime}\right)$, the different versions weigh only 15-20 grams ($0.52-0.71 \mathrm{oz}$). This makes it the first device of its type suitable for automatic placement. And there's a choice of through-hole or surface mount versions.

The size of the MacroDens ${ }^{T M}$ does not limit its specification: 38 to 72 Vdc input range; a choice of $2,3.3,5$ or 12 V outputs; and $1,500 \mathrm{Vdc}$ isolation. And thanks to its optimized flyback circuitry, smart power chip, and highly integrated design, the MTBF is more than 400 years!

If you need more power, simply parallel MacroDens ${ }^{\mathrm{TM}}$ converters together. You don't even need load sharing components.

In short, the MacroDens ${ }^{\text {TM }}$ is certainly the world's most advanced miniature DC/DC converter, so it's bound to make a big impression. Call us for the full specification.

[^11]

Why fret over development test? Think positive. Prove your results beyond the shadow of a doubt with the TRW VP8000 Wideband Signal and Test System.

The key is deep memory. The TRW VP8000 has up to 64 megabytes of it. With high-speed capture and generation in both analog and digital. This lets you soak up more real-world signal. In more detail. In less time. With less retesting.

This assures that you catch problems in the lab. Not in production.

The TRW VP8000 proves to be a positive in other ways, too. A single workstation-based system, it replaces stacks of test and measurement devices. Integrating the accessibility of computers with the power of instrumentation. Delivering such doubtless benefits as fast test set-up... a smooth upgrade path... portability ... and affordability.

So, don't just prove results the usual way - improve. Give us a call at 1-800-354-6195. And let us prove how the TRW VP8000 will erase all your doubts about development test.

The TRW VP8000 - there's no doubt about it.

Trī

EDN-COLUMNIST

John Cooley, EDA CONSUMER ADVOCATE \& FOUNDER OF ESNUG

DAC '94 and The Grateful Dead

The parallels between going to a Grateful Dead concert and attending the Design Automation Convention (DAC) are uncanny. Both events typically last for four or five days with a main floor show and lots of more interesting things happening off the floor. At night, you can partake in all sorts of fun in the parking lot if you're at the Dead show, or at an EDA vendor-sponsored dinner party if you're at DAC. Sign that unwritten, unspoken social contract not to tell anyone what you're about to see and do, and they'll let you into that tent/bus/van for extra special "fun" only hinted at on the Dead concert floor. Sign that lawyer-written, carefully
worded nondisclosure agreement from EDA vendors and they'll let you into their demo suites to see their extra special upcoming software only hinted at on the DAC showroom floor.

Just like there are sets of songs that get the Dead audience all rocking and sets that put everyone to sleep, there are DAC panels that have everyone talking and others that people walk out on. And, just like there are lightweight, occasional recreational drug users next to hard-core junkies in the Dead concert, there are occasional PC-based schematic-capture FPGA designers next to hard-core Unix-workstation-pumping, Ver-

ilog/Synthesis/ATPG, $200-\mathrm{MHz}$, 350 k -gate GaAs ASIC designers at DAC. Both worlds employ "pushers" (salesmen) to provide the controlled substances (or controlled software) to the users for a hefty cut of the price.

Both subcultures wear special attire (tie-dyes or suits), trade bootleg material (concert tapes or EDA benchmarks), and converse in special words that have meaning only to members of that particular subculture ("electric Kool Aid," "ganja," "tripping" vs "ESDA," "PLI," and "regressions"). Just as there are unique personalities known in the Dead world (Timothy Leary, Bill Graham, Jack Kerouac, Tom Wolfe, Ken Kesey, and Hunter S Thompson), unique personalities also exist in the DAC world (Aart De Geus, Ron Collett, Bill Fuchs, Richard Goering, John Sanguinetti, and Joe Costello). But enough cultural anthropology, on with the awards!

WORST OVERALL SURPRISE AT
DAC: An awful lot of attendees at DAC were caught off guard when the DAC exhibit hall closed a day early. Yes, technically it was buried in the schedule, but who reads schedules until the day of the event? (As a consequence, on Thursday, I found myself in a $2^{1 / 2}$-hour lunch/interrogation about industry trends with Ron Collett, a market researcher.) Also, DACnet had technical problems the first day that made it very difficult to log in and use. This meant many people were hard to contact because they blew off retrying the healthy DACnet on subsequent days. (A good DACnet note: they added telnet and ftp capability this yeargreat!)

MOST ANXIOUS EDA VENDOR(S):

Virtually all of the non-Cadence- and non-ViewLogic-affiliated Verilog vendors were acting like debutantes at their first ball. Because Synopsys tipped its hand in the Verilog/VHDL wars in its failed bid for Chronologic, and Mentor is openly stating it needs a Verilog solution, the remaining independent Verilog vendors are terrified at

the prospect of not being asked to dance.

WHAT EDA USERS THOUGHT WAS

HOT: Because submicron and lowpower design seems to be of interest to quite a few people these days, one of the hottest talked-about companies at DAC this year was Epic Design Technology. Its PathMill is an advanced static analysis tool, PowerMill is the leading dynamic power analysis tool, and TimeMill is the Spice-like accelerated analysis tool-all for submicron design.

The second hot topic was Chrysalis' Design Insight and Design Verifyer, two of the first commercial tools to take the formal verification approach to check for your design flaws. Because these products take a mathematical approach, Chrysalis claims that formal verification beats dynamic simulations by orders of magnitude in overnight regressions.

The third topic people were discussing was Synopsys' Behavioral Compiler, a tool that can take algorithmically written Verilog or VHDL and convert it to gates. Unlike regular synthesis that pretty much translates from the original structure in the source HDL, Behavioral Compiler literally juggles around things like registers, multiplexers, and adders to best fit the designer's scheduling goals.

The Redwood/Comdisco demo and the recent purchase of Redwood by Cadence were also on people's minds.
(The big question is how many of the original Redwood R\&D engineers are going to stick around?) Cadence's Verilog and VHDL cosimulation products were also hot. (Mix and match Verilog/VHDL source/libraries at will!)

ArcSys is targeting Cadence in the place and route business, and Integrated Silicon Systems (ISS) also seems to be attacking Cadence on the mask-verification front (Dracula). Everyone goes after the big company.

BEST DAC PANEL: Tie between the EE Times/DEC/ViewLogicsponsored DAC Forum and the DAC-sponsored Four CEO panel. What people liked about the DAC Forum was that they could "vote" electronically for what a particular panelist was saying at the moment, making it very audience interactive in a grand way. (Only users-no vendors-were given the handheld voting machines.) What the audience liked about the Four CEO Panel was a rare look at how these industry bigwigs see the world.

WORST DAC PANEL: The EE Times Benchmarking Summit. Lots of people on the panel and in the audience came prepared to discuss issues like the Actel Proposal, how Prep works, benchmarking clauses in nondisclosure agreements, and benchmarkers who blackmail EDA vendors. Instead, the moderator (a non-EDA-knowledgeable person) had everyone spend 2 hours partaking in a UN conflict-resolution exercise where we had to argue the opposing side's point of view. (Someone would say something and the moderator would then have everyone determine, "What should I write in the 'ASSUMPTION' column and in the 'WANTS' column on that statement?") Every time an interesting exchange started, the moderator would actively step in and stop it. As a result, all we could do was lightly touch some of the politics of benchmarking.

BEST AFTER-HOURS PARTY:

 Quickturn Emulation's Tuesday night bash. The company had a sit-down dinner after which the Temptations per-
2mm PITCH CONNECTORS FOR STACKING

High densification in assembly is now possible with Hirose's A3C-A3D series of ultra compact 2 mm pitch connectors for board-to-board stacking. When combining with other receptacles in the A3

High Density Board-to-Board Connector Proves Ideal for Downsizing PC's.

Developed for downsizing personal computers and workstations, Hirose is providing its 3200 series of high-density interface connectors (board-to-board) with 0.8 mm contact spacing and 152 positions. The new 3200 series connector offers two rows of contacts with 0.8 mm contact pitch. Its low profile is only 5.5 mm from the PCB with a reliable two point contact pin; each pin is protected by an insulator wall against deformation caused by severe handling, such as twisting.
For further information, contact Hirose Electric (U.S.A.), Inc., 2688 Westhills Court, Simi Valley, CA 93065-6235. (805) 522-7958 or FAX (805) 522-3217. For catalog information by fax: 1-800-879-8071, ask for \# 8004

Hirose Shielded Modular Connectors

Hirose Electric has announced the TM11 Series of shielded modular connectors for computers, office automation equipment, and telecom The TM11 series offers the only connectors specifically designed and compatible with industry standards to provide RFI/EMI shielding and protect against ESD discharge. The low profile TM11 has eight signal lines and a grounded shield. 6-8 positions currently available.
For further information, contact the sales department, Hirose Electric (U.S.A.), Inc., 2688 Westhills Court, Simi Valley, CA 93065-6235. (805) 522-7958 or FAX (805) 522-3217. For instant fax catalog information: 1-800-879-8071, ask for \# 3002

CIRCLE NO. 73 family, a number of diverse lightweight applications are possible. Pin assortments on the receptacles are 2 through 20 , plus 24 , $26,28,32$, and 50 . Pin headers are available from 2 to 28 . Ideal for HDD, FDD, VTR and mobile telephone production. When used board-to-board, the spacing between boards can be either 6 mm or 5.1 mm . For information, contact
Hirose Electric
(U.S.A.) Inc. 2688 Westhills Court, Simi Valley, CA 93065-6235. (805) 522-7958 or FAX (805) 522-3217. For instant fax catalog information: 1-800-879-8071. Ask for number 5006

CIRCLE NO. 70

Great
Designs
Are A Snap
With Hirose
Circular
Connectors!

HRoof Holos the Key yo SMT Comectoor!

The uncomplicated design of the HR10A Snap-Lok ${ }^{T M}$ circular connector series assures
rugged dependability and enables rapid, error-Snap-Lok ${ }^{\text {TM }}$ circular connector series assures
rugged dependability and enables rapid, errorfree mating and unmating - even under the most adverse situations.
Three shell sizes are available $(7 \mathrm{~mm}$, 10 mm and 13 mm) with insert arrangements from 4 to and 13 mm) with insert arrangements from 4 to
20 contacts; in-line receptacle jacks are also available with crimp or solder contacts.
The handsome, high-tech design and sturdy
construction of Snap-Lok ${ }^{\mathrm{m}}$ connectors ensure
The handsome, high-tech design and sturdy
construction of Snap-Lok ${ }^{\text {m }}$ connectors ensure engineering integrity. That's why so many leading manufacturers worldwide insist on only Hirose HR10A series connectors. For further information, contact the sales department, Hirose Electric (U.S.A.), Inc.
2688 Westhills Court, Simi Valley, CA $93065-$ 2688 Westhills Court, Simi Valley, CA $93065-$ 6235. (805) 522-7958 or FAX (805) 522-3217 For instant fax catalog information: 1-800 879-8071. Ask for \#1001.

CIRCLE NO. 71

formed. Although it had appeared that ViewLogic was going to win this award with a ferry ride to a sit-down dinner on Harbor Island and comedian (everyone was schmoozing like crazy to get tickets before this event), the comedian turned out to be a flop in many people's opinion. (He was more caustic than funny: Attendees were stuck laughing nervously to be polite.) It was rumored that LSI gave 100 of its "most favored customers" a regatta in San Diego bay with six people per sailboat. It sounded like fun, but was too limited a party to qualify for an award.

BEST USE OF DAC TERRAIN

 FOR A PARTY: Synopsys' wild night at the zoo. The moment you got off the bus, there was a table full of beers with helpers saying "Take two! The tour's 45 minutes," as they shooed you onto the double-decker open-air tour bus to go around the zoo. (Harvey Jones, Synopsys' chairman, who was sitting two seats behind me, commented on how excited I was when we saw the sheep exhibits.) Stumbling off the bus, we got more beer and great predinner munchies at a party where we could pet six different animals. Then we had a choice of a swordfish or chicken dinner in an open-air Gilligan's Island setting. Afterwards, all 300 of us were given Irish coffee as we walked to the firedrummer's performance. (In contrast, Collett reports that Cadence also had a dinner at the San Diego Zoo for about 65 people with no tour and three petting animals brought in after dinner. Mentor did something of similar ilk and size at the San Diego Aquarium.)BEST RARE DAC FREEBIE: Summit Design's denim jackets. They were well made with a small, tasteful "Summit" patch on the left shoulder. Total number given away: 175 (120 went to its Pacific Rim distributor, 25 on the showroom floor, and 30 for schmoozers).

BEST COMMON DAC FREEBIE: The Official DAC gym bag. It's sturdy, use-
ful and has a tasteful royal purple, teal, and black color scheme. (One user wondered if IBM was "in" on the bag's color scheme because all the IBM shirts matched it exactly.) Runners Up: a tie between the ViewLogic soccer ball and the Epic Design Technology sports radio. (ViewLogic consciously chooses a high-quality freebie that's a pain to carry back on the plane so everyone can see you carrying it in the airport. They did it last year with the baseball bat and this year with the soccer ball. The message I get with this type of freebie is

"we're hard to work with.") The Epic Design Technology sports radio is great (batteries included!) but nowhere near the quality of a Sony.

MOST UNEXPECTED DAC FREEBIE: Quad Design's hammers. (RacalRedac and Analogy gave out tape measures. Are their marketing managers a little confused about what the hard-ware-design industry is?) Runner Up: Aptyx's coconuts. Huh?

MOST CONTENT-FREE VENDOR PRESENTATION: Synopsys' talk on submicron design. I'm told it was 40 minutes and only two things were said: design is headed toward the submicron level, and there's going to be more transistors on chips in the future. A close second was Cadence's re-engineering talk where the company spent 20 minutes vaguely discussing customer successes and stating that, "Cadence is
here to help with your re-engineering needs."

BIGGEST VENDOR LIE: Quite a few people told me about going through the ViewLogic Soccer Ball Quest. They had to sit through a "VHDL is better than Verilog" talk by a ViewLogic salesman. The salesman confidently said that "Vital is just around the corner! VHDL handles concurrent processes better!" These statements surprised the experienced simulation users because they've always described Verilog as "just like C but with wires, registers, and constructs to handle concurrent processes." Plus, it took five years to get fully debugged Verilog libraries from ASIC ven-dors-why should Vital be different? Ready for a discussion on these topics, they asked the salesman to explain his reasoning. The salesman replied, "Well, that's what I've been told."

Abstract

WHAT DO YOU MEAN "WHAT'S NEW?": A long-time customer asked people in the Mentor booth: "What do you have new this year?" They were unable to answer with anything other than a simple design manager tool.

MOST PERSONALLY GRATIFYING

DAC PANEL: The HDL Summit. Ron Collett moderated six panelists ranging from Verilog bigots to people using both to VHDL bigots. As usual, Collett tried to conclude the panel with his spin that VHDL was where everyone was going, etc. Just to annoy him, I pointed out how, years ago, a researcher at Dataquest had made a now-embarrassing prediction that VHDL users would outnumber Verilog in early '92-a prediction that turned out to be greatly exaggerated. That Dataquest researcher was Ron Collett.

[^12]
SmartFET.

Or how to protect your power switch, your budget and your competitive edge.

IRSF3010

Our new IRSF3010 single-chip, 50V SmartFET device is today's lowest cost way to upgrade power switching protection. With 11A overcurrent shutdown. And full turnoff at $165^{\circ} \mathrm{C}$.

Plus 55 V overvoltage protection with a guaranteed clamped energy rating of 400 mJ . The IRSF3010 SmartFET power switch easily handles more than 4,000 volts of ESD, too.

It's SmartFET performance like this that protects your end product and competitive edge. Delivery? Off-the-shelf. Write for data and price. Quicker yet, call. 1-800-245-5549.

You'll save a lot more than you think.

SmartFET

Two chips

Overvoltage protection

High

ESD protection

One chip

One chip

Available now at key IR distributors.

DELICIOUS ATM, WITHOUT THE JITTERS.

Here's a wake-up call for anyone designing-in ATM functionality: the CY7B951 SST" ${ }^{\text {" }}$ (SONET Serial Transceiver) clock recovery chip from Cypress. With its minis-

Industry's Lowest Jitter cule jitter of just 10 ps , the SST is as close as you can get to guaranteed flawless performance in your ATM environment.
In fact, it is the only solution to support both major ATM application frequencies (51.8 OC-1 and 155.52 MHz OC-3.)

Thanks to its integrated transmit and receive phase lock loops, the SST lets you use a low-cost 19.44 MHz

oscillator. The SST also performs wonders for board space by eliminating the need for external filter components.
By using advanced BiCMOS technology, the SST consumes a miserly 50 mA , for power savings of up to 50% over competitive devices. And its loop-back testing capabilities enable in-system diagnostics.
So don't let the stringent jitter requirements of ATM get on your nerves. Start off your next design day with the SST from Cypress, the high-speed leader. It'll open your eyes.
For your free sample certificate and design kit. Call 1-800-858-1810, Dept. C413

[^0]: Branch Offices: Australia 038799422 • Austria $0662435986 \cdot$ Belgium 027570020 • Canada 5196229310 • Denmark 45762600 • Finland $905272321 \cdot$ France $148142424 \cdot$ Germany 0897413130 Italy 0248301892 • Japan 0337881921 • Netherlands $0348033466 \bullet$ Norway 32848400 • Spain 916400085 • Sweden 087304970 • Switzerland $056270020 \cdot$ U.K. 0635523545
 © Copyright 1994 National Instruments Corporation. All rights reserved. Product and company names listed are trademarks or trade names of their respective companies.

[^1]: 2201 Laurelwood Road, Santa Clara, CA 95054 Fax: 408-970-3995, ext. 928.
 Members of the TEMIC Semiconductor Division: Telefunken Semiconductors, Siliconix, Matra MHS, Dialog Semiconductor TEMIC International Sales: UNITED KINGDOM: 0344-485757. GERMANY: 07131 67-0. FRANCE: 1-30 6070 00. ITALY: 02-332 121. SCANDINAVIA: 08-733-0090. SINGAPORE: 65-788-6668, ext. 249. HONG KONG: 852-3789789. JAPAN: 3-5562-3321.

[^2]: EDN ${ }^{\circ}$ (ISSN 0012-7515, GST Reg. \#123397457, IPM \#0280844) is published 38 times per year, bi-weekly with one additional issue per month, by Cahners Publishing Company, A Division of Reed Publishing USA, 275 Washington Street, Newton, MA 02158-1630. Robert L. Krakoff, Chairman and Chief Executive Officer; Timothy C. O'Brien, Executive Vice President/Finance and Administration; Michael Wisner, Senior Vice President/General Manager, Boston Division; Michael Wisner, Vice President/Publishing Director. Circulation records are maintained at Cahners Publishing Company, 8773 South Ridgeline Blvd., Highlands Ranch, CO 80126-2329. Jelephone (303) 470-4445. Second-class postage paid at Highlands Ranch, CO $80126-2329$ and additional mailing offices. POSTMASTER: Send address changes to EDN ${ }^{*}$, PO Box 7500, Highlands Ranch, CO 80126-7500. EDN ${ }^{\text {® }}$ copyright 1994 by Reed Publishing USA. Rates for nonqualified subscriptions, including all issues: US, $\$ 140.00$ one year, $\$ 238.00$ two year; Canada, $\$ 209.00$ one year, $\$ 355.00$ two year (includes 7% GST, GST\# 123397457); Mexico, $\$ 195.00$ one year, $\$ 332.00$ two year; Foreign surface $\$ 245.00$ one year, $\$ 417.00$ two year; Foreign air expedited surcharge add $\$ 152.00$ one year, $\$ 304.00$ two year. Except for special issues where price changes are indicated, single copies are available for $\$ 10.00$ US and $\$ 15.00$ foreign. Please address all subscription mail to EDN ${ }^{\oplus}, 8773$ South Ridgeline Blvd., Highlands Ranch, CO 80126-2329. EDN ${ }^{\text {® }}$ is a registered trademark of Reed Properties Inc., used under license.
 (Printed in USA)

[^3]: 20 Fairbanks • Irvine, CA 92718 • USA • (714) 770-3022 (800) 245-3022 \cdot FAX: (714) 455-0554-BBS: (714) 830-1550

[^4]:

[^5]: For Prem's new catalog or additional product information, call or write Prem Magnetics, Inc.
 3521 North Chapel Hill Road, McHenry, IL 60050.
 Phone: 815-385-2700. FAX: 815-385-8578.

[^6]: All registered trademarks are property of their respective bolders

[^7]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delltron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

 Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland, FMG Electronics Italy, Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland, Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip. Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic

[^8]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delltron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

 Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland. FMG Electronics Italy, Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland. Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip. Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic

[^9]: Distributed by Arrow, Bell, Digi-Key, Elmo, Hamilton Hallmark, and Nu Horizons. Authorized Maxim Representatives: AL, M-Squared, Inc. AZ, Techni Source Inc. CA, Mesa, Pro Associates, Inc., Infinity Sales, Inc. CO, Component Sales CT, Comp Rep Associates DE, TAI Corporation FL, Sales Engineering Concepts GA, M-Squared, Inc. ID, E.S. Chase IL, Heartland Technical Marketing Inc. IN, Technology Marketing Group IA, JR Sales Engineering, Inc. KS, Delltron LA, BP Sales MD, Micro-Comp, Inc. MA, Comp Rep Associates MI, Micro Tech Sales MN, Mel Foster Technical Sales, Inc. MS, M-Squared, Inc. MO, Delltron MT, E.S. Chase NE, Delltron NV (Reno, Tahoe area only) Pro Associates, Inc. NH, Comp Rep Associates NJ, Parallax, TAI Corporation NM, Techni Source Inc. NY, Parallax, Reagan/Compar NC, M-Squared, Inc. OH, Lyons Corporation OK, BP Sales OR, E.S. Chase PA (Pittsburgh area) Lyons Corporation, (Philadelphia area) TAI Corporation SC, M-Squared, Inc. TN, M-Squared, Inc. TX, BP Sales UT, Luscombe Engineering Co. VA, Micro-Comp, Inc. WA, E.S. Chase WI, Heartland Technical Marketing, Inc. Distributed in Canada by Arrow. Authorized Maxim Representative in Canada: Tech Trek.

 Austria, Allmos Electronics Belgium, Master Chips Denmark, Exatec A/S Finland, Yleiselektroniikka Oy, France, Maxim France, France/Distributors: Maxim France, ASAP Germany, Maxim GmbH Germany/Distributors: Maxim GmbH, Spezial Electronic KG Ireland, FMG Electronics Italy. Consystem S.r.I., Italy/Distributor: Esco Italiana Electronics Supply Netherlands, Koning En Hartman Norway, Odin Electronics A/S Poland, Uniprod, Ltd. Portugal, ADM Electronics, S.A. Spain, ADM Electronics S.A. Sweden, Egevo AB Switzerland, Laser \& Electronic Equip Turkey, Interex (U.S.A.) U.K. Maxim Integrated Products (U.K.), Ltd., U.K./Distributors, Maxim Integrated Products (U.K.), Ltd., 2001 Electronic Components, HB Electronic

[^10]: IOWA RF/TELECOM WIRELESS IOWA-MINNESOTA-ILLINOIS I have immediate openings for Design Engineers and Technical Project Managers with BS/MS plus 3 to 10 years RF/Radio design experience in any of the following areas: RF circuit design (100 MHz to 3.0 GHz), Receivers, Transmitter Exciters, Low-noise Frequency Synthesizers, Power Amplifiers, Spread Spectrum Modulation, Digital Radio DSP. These positions are all with top non-defense companies in good Upper-Midwest locations

 DON GALLAGHER, MSEE
 Gallagher \& Brei Associates 1145 Linn Ridge Rd., Mount Vernon, IA 52314 (319) $895-8042$ - Fax (319) 895-6455

[^11]: Sweden Stockholm, Tel: +46-8-721 6356 Fax: $+46-8-7217001$ Denmark København, Tel: +45-33883100 Fax: +45-33883105 Finland Helsinki, Tel: +358-0-299 4189 Fax: $+358-0-2994188$ France Guyancourt, Tel: +33-1-30648500 Fax: +33-1-30 641146 Germany Nue-Isenburg, Tel: +49-2115340 Fax: +49-2115341514 Great Britain Swindon, Tel: +44-793-488300 Fax: +44-793-48 8301 Hong Kong Hong Kong, Tel: +852-950 2388 Fax: +852-590 7152 Italy Milano, Tel: +39-2-55 212616 Fax: +39-2-55 213036 Norway Billingstad, Tel; +47-66841810 Fax: +47-66841909 United States Richardson, TX, Tel: +1-214-997-6561 Fax: +1-214-680-1059

[^12]: John Cooley, an EDA consumer advocate and founder of the outlaw E-mail Synopsys Users Group (ESNUG), lives on the Holliston Poor Farm in Massachusetts. He raises sheep and is an EDA- and ASIC-design instructor and project-in-crisis consultant. He can be reached at "jcooley @world.std.com" or at (508) 429-4357.

