
Microsoft/3Corn LAN Manager Network Driver
Interface Specification

Version 1.0.2 Preliminary Draft

3Com Corporation
3165 Kifer Road
Santa Clara, California 95052-8145
Printed in the U.S.A.

Manual Part No. 6406-00
Published January 1989

Disclaimer
3Com makes no warranty of any kind with regard to this material, including,- but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. 3Com shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

NOIS - ii

Contents

Chapter 1: Introduction
Definition of Terms 1-1
Scope of this Document 1-2

Chapter 2: Configuration and Binding
Configuration and Binding Process 2-1

Chapter 3: Protocol to MAC Interface Description
Transmission 3-1
Reception 3-2

Non Host-Buffered adapter 3-2
Host-Buffered adapter 3-3

Indication Control 3-3
Status Indication 3-4
General Requests 3-4
System Requests 3-5

Chapter 4: Data Structures
Module Characteristics 4-1

Common Characteristics 4-1
MAC Service-specific Characteristics 4-3
MAC Service-specific Status Table 4-5
MAC Upper Dispatch Table 4-6
Protocol Lower Dispatch Table 4-6
Characteristic Tables for NetBIOS Drivers 4-7

Frame Data Description 4-9
Transmit Buffer Descriptor 4-10
Transfer Data Buffer Descriptor 4-10
Receive Chain Buffer Descriptor 4-10

PROTOCOL.INI 4-11
Configuration Memory Image 4-12

.. ConfigMemorylmage 4-12
ModuleConfig 4-13
KeywordEntry 4-14
Param 4-15
BindingsList 4-16

NDIS - iii

Chapter 5: Specification of Primitives
Direct Primitives 5-4

TransmitChain 5-4
TransmitConfirm 5-5
ReceiveLookahead 5-6
TransferData 5-8
IndicationComplete 5-9
ReceiveChain 5-10
ReceiveRelease 5-12
IndicationOff 5-13
IndicationOn 5-14

General Requests 5-15
InitiateDiagnostics 5-16
ReadErrorLog 5-17
SetStationAddress 5~18
OpenAdapter 5-19
CloseAdapter 5-20
ResetMAC 5-21
SetPacketFilter 5-22
AddMulticastAddress 5-23
DeleteMulticastAddress 5-24
UpdateStatistics 5-25
ClearStatistics 5-26
Interrupt 5-27
Set FunctionalAddress 5-28
SetLookahead 5-29
General Request Confirmation 5-30
Status Indication 5-31
RingStatus 5-32
AdapterCheck 5-33
Start Reset 5-34
Interrupt 5-35

System Requests 5-36
InitiateBind 5-37
Bind 5-38

Protocol Manager Primitives 5-39
GetProtocolManagerlnfo 5-40
RegisterModule 5-41
BindAndStart 5-42
GetProtocolManagerLinkage 5-43

NOIS - iv

Chapter 6: Protocol Manager
Protocol Manager Initialization 6-1
Binding Sequence 6-1
OS/2 Calling Convention 6-3
DOS Calling Convention 6-4

Chapter 7: VECTOR
VECTOR Binding 7-1
Vector Demultiplexing 7-1

Appendix A: System Return Codes

Appendix B: Reference Material

Appendix C: 802.3 Media Specific Statistics

Appendix D: OS/2 NETBIOS Device Driver Interface
Introduction D-1
NetBIOS Driver Configuration D-2
NetBIOS Driver Initialization D-2
NetBIOS NCB Handler D-5
Common Problems and Hints D-7

NDIS - v

NDIS:
Introduction 1

1-1

Chapter 1: Introduction
This document describes the LAN Manager driver architecture and interfaces that let a DOS 3 or
OS/2 system support one or more network adapters and protocol stacks. This architecture provides a
standardized way for writing drivers for network adapters and communications protocols. It also
solves the problem of how to configure and bind multiple drivers into the desired set of layered
protocol stacks.

Drivers written to the interfaces defined here will function concurrently in a system with other
networking and protocol drivers, and will operate correctly with the LAN Manager software for
DOS and OS/2.

Definition of Terms
To simplify the job of supporting multiple adapters and protocols, the architecture defines three
kinds of drivers:

• Media Access Control (MAC) drivers, which provide low-level access to network adapters. The
main function of a MAC driver is to support transmitting and receiving packets, plus some basic
adapter management functions.

• Protocol drivers, which provide higher-level communication services from data link to session
(depending on the driver). An example is a NetBIOS driver that provides a NetBIOS interface at
the top and talks to a MAC driver at the bottom.

• The Protocol Manager driver. This is a special driver that provides a standardized way for
multiple MAC and protocol drivers to get configuration information and bind together into the
desired protocol hierarchy. The Protocol Manager gets all configuration information from a
central file, PROTOCOL.INI.

applications

DOS 3 or OSI2

LAN Manager

NetBIOS driver

(PROTOCOLlNI) f--. I Protocol Ethernet, Token Ring,
Manager or MAC driver

1 NDIS:
Introduction

1-2

Scope of this Document
This document defines:

1. Protocol Manager functions and interfaces for configuration and binding of MAC and protocol
drivers.

2. The software interface between MAC and protocol drivers.

3. The software interface provided specifically by NetBIOS drivers that will work with LAN
Manager.

Separate documents will specify'the configuration and interface details for other kinds of protocol
drivers, including data link and transport drivers.

NOIS:
Configu ration

and Binding 2
2-1

Chapter 2: Configuration and Binding
A network server or workstation includes at least one Media Access Control (MAC) and one
protocol driver, plus the Protocol Manager driver. More complex configurations may have multiple
MA C and protocol drivers.

The Protocol Manager is always defined in CONFIG.SYS to load before any MAC or protocol
drivers. Its job is to read the configuration information out of the PROTOCOL.INI file and make -
this available to MAC and protocol drivers which load later.

MAC and protocol drivers use this information to set initialization parameters and allocate memory
appropriately. For example, a NetBIOS driver may use the configuration information provided by
the Protocol Manager to determine its maximum number of names and sessions.

As each driver configures and initializes itself, it identifies itself to the Protocol Manager using a
driver-defined "module name" and "characteristics table". The module name defines a kind of
logical name for the communication service provided by the driver. The characteristics table
provides specific parameters about the service and the set of entry points the driver uses to
communicate with other drivers. A single driver may identify itself to the Protocol Manager as
multiple logical modules if, for example, it implements more than one layer of protocol interface
(such as transport and data link).

Before two modules can communicate, they must be bound together. Binding is the process of two
modules exchanging characteristics tables so that they can access each other's entry points. This
establishes the linkage they need to make requests of one another and indicate asynchronous request
completion. Binding is controlled by the Protocol Manager based on information from
PROTOCOL.INI.

Configuration and Binding Process
In the typical case of a system with one MAC driver and a NetBIOS driver, the set of drivers load
and initialize as follows:

1. Protocol Manager loads, initializes, and reads PROTOCOL.INI.

2. MA C driver loads. It calls GetProtocolManagerInfo to get any needed configuration
information, like its DMA channel.

3. MAC driver initializes and calls RegisterModule to identify itself as the module named
"ETHERCARD." This call passes ETHERCARD's characteristics table to Protocol Manager.

2
2-2

NDIS:
Configuration
and Binding

4. NetBIOS driver loads. It calls GetProtocolManagerInfo to get any needed configuration
infonnation, like the maximum number of names, sessions, and commands to support.

5. NetBIOS driver initializes and calls RegisterModule to identify itself as the module named
"NetBIOS". This call passes NetBIOS's characteristics table to Protocol Manager and
indicates that NetBIOS wants to bind to E1HERCARD.

6. After all device drivers have loaded, Protocol Manager determines from the information
supplied on previous RegisterModule requests that NetBIOS should bind to ETHERCARD.
Using a defmed dispatch address in the characteristics table for NetBIOS, Protocol Manager
calls NetBIOS and instructs it to bind to ETHERCARD. The call, InitiateBind, includes the
characteristics table for ETHERCARD.

7. NetBIOS calls ETHERCARD, requesting to Bind. The modules exchange characteristics
tables with each other. They now have each other's entry points and are bound.

8. NetBIOS may now call ETHERCARD at its defmed entry points for transmitting and receiving
packets (see next section).

The configuration and binding steps and API calls are defined in the supplement, "Protocol Manager
Binding: NETBIND and the PROTOCOL.INI file."

NDIS: 3
Protocol to MAC

Interface Description

3-1

Chapter 3: Protocol to MAC Interface
Description
The interface between a protocol and MAC driver provides for the transmission and reception of
network packets, called frames. The interface includes other functions for controlling and
determining the status of the network adapter controlled by the MAC.

To allow for efficient use of memory and to minimize buffer copies, frames being transmitted and
received are passed between protocol and MAC using a scatter/gather buffer description convention.
This passes an array of pointers/lengths called a frame buffer descriptor. There are three types of
these descriptors, one for describing frames being transmitted (TxBufDescr) and two for frames
being received (RxBufDescr and IDBufDescr).

Overall, the calls at the protocoVmac interface are grouped into categories of transmission, reception,
indication control, status indications, and general requests. An additional category of function,
system requests, is generic to all drivers.

Transmission
Transmitting data can work either synchronously or asynchronously, at the option of the MAC.
Protocols must be able to handle both cases. Primitives are TransmitChain and TransmitConfinn.

Protocol MAC

Transmit Chain -CALL->

<-RETURN-

Later on, after data is copied by MAC:

TransmitConfirm <-CALL-

-RETURN->

Call passes TxBufDescr and unique handle. MAC may
copy data now or later.

Return indicates if data has been copied. If not, MA C now
owns frame data blocks and will copy them
asynchronousl y.

Call supplies unique handle from Transmit.

Data block ownership returned to protocol.

NOTE: If the MAC transmits the frame synchronously, it indicates this on the return from
TransmitChain and will not generate a TransmitConfinn.

3
3-2

Reception

NDI8:
Protocol to MAC
Interface Description

Receiving data can work in either of two ways, depending on the MAC. Protocols must be able to
handle both cases.

• The MAC generates a ReceiveLookahead indication that points to part or all of the received
frame in contiguous storage. This is called the "lookahead" data. The protocol may issue a
TransferData call back to the MAC if it wants the MAC to copy all or part of the received frame
to protocol storage. The protocol may, of course, copy the look ahead data itself. In some
implementations, this may be the entire frame.

• The MAC generates a ReceiveChain indication that points to a RxButDescr that describes the
entire frame received. The protocol may copy the data immediately or later. If later. it releases
the frame buffer areas back to the MAC via a call to ReceiveRelease.

Generally, the frrst approach will be implemented by MAC drivers for non-host buffered network
adapters, while drivers for host buffered network adapters will implement the second. Non-host
buffered adapters that use programmed I/O or DMA will generally provide a small leading portion
of the received frame as look ahead data, whereas those using a single memory mapped buffer will
usually provide the whole frame.

In either case, the protocol must validate the received packet very rapidly (within a few instructions)
and to reject it if necessary. This is very important to performance in a multi-protocol environment.

The following sections illustrate the non host-buffered adapter versus host-buffered adapter receive
scenarios:

Non Host-Buffered Adapter

MAC

ReceiveLookahead

Protocol

-CAL~> Call passes pointer to look ahead data. Protocol
examines this data.

If protocol wants the frame and look ahead wasn't the whole frame, the protocol can ask MAC to
transfer the frame:

TransferData <-CALL-

-RETURN->

Passes TDBufDescr indicating where to put the
received data.

<-RETURN- Upon return from protocol, MAC re-enables the
hardware.

IndicationComplete

NDIS: 3
Protocol to MAC

Interface Description

-CALL->

<-RETURN-

3-3

MAC calls protocol to allow interrupt-time post
processing.

Host-Buffered Adapter

MAC

ReceiveChain

Indication Complete

Protocol

-CALL-> Call passes pointer to RxDataDescr.

<-RETURN- Return tells if protocol accepts the frame, and if so,
whether it copied the data. If accepted but not copied,
ownership of data blocks passes to the protocol which
copies the data asynchronously.

-CALL->

<-RETURN-

MAC calls protocol to allow interrupt-time post
processing.

Later, if protocol deferred copying the data (this may occur during IndicationComplete)

<-CALL- ReceiveRelease. The call supplies the unique handle
from ReceiveChain.

-RETURN-> Data block ownership returned to MAC.

Indication Control
Two primitives let a protocol selectively control when it can be called with indications from the
MAC. These are IndicationOn and IndicationOff.

Before calling an indication routine, the MAC implicitly disables indications. This means, for
example, that if another frame arrives while the protocol is processing the indication for the previous
one, the protocol will not be reentered. Likewise, if the protocol issues a TransmitChain for
loop back data from within the ReceiveLookahead indication routine, it will not be reentered to
process the loopback data reception.

Protocols can re-enable indications upon returning from ReceiveLookahead, ReceiveChain or Status
indications or by calling IndicationOn within the IndicationComplete routine.

NDIS: 3 Protocol to MAC
Interface Description

3-4

Status Indication
Status indications are calls from a MAC to protocol that convey a change in adapter or network
status.

A status indication works much like a reception indication. The status indication handler is entered
with indications disabled and there is a mechanism which will leave indications disabled.

MAC

Status

IndicationComplete

Protocol

-CALL->

<-RETURN-

-CALL->

<-RETURN-

General Requests

Call passes status type and information.

MAC calls protocol to allow interrupt-time post
processing.

General requests are calls from a protocol to a MAC, asking it to do a general function such as open
or close the network adapter or change the station address.

General requests work much like a TransmitChain request, except the primitives are Request and
RequestConfmn.

Protocol MAC

Request -CALL-> Issue request to MAC with unique handle.

<-RETURN- Return indicates if request completed.

Later, if request completed asynchronously:

<-CALL-

-RETURN->

RequestConfirm. The call supplies unique handle from
Request.

If the MAC satisfies the request synchronously, it indicates this on the return from Request and will
not generate a RequestConfirm.

NOIS: 3
Protocol to MAC

Interface Description

3-5

System Requests
System requests are calls from the Protocol Manager to a MAC or protocol module. Their purpose
is to support module binding and management functions.

System requests work much like general requests except that all are synchronous and the requests
are not module specific.

Upper Module

System

Lower Module

-CALL->

<-RETURN-

Issue request to lower module.

Return indicates request completed.

NDIS: 4
Data Structures

4-1

Chapter 4: Data Structures

Module Characteristics
Protocol and Media Access Control (MAC) modules are described by a data structure called a
characteristics table. Each characteristics table consists of several sections: a master section called
the common characteristics table and four subtables. The common characteristics table contains
module-independent information, including a dispatch address for issuing system commands like
InitiateBind to the module. The four module-specific subtables are chained off the common
characteristics table. These define module-specific parameters and the entry points used for inter
module communication (such as the MAC/protocol interface functions). When two modules bind
together, they exchange pointers to their common characteristics tables, so that each gets access to
the other's descriptive information and entry points. Static information which needs to be referenced
frequently (such as entry points) should be copied into the local data area for efficient access. This
information should not be copied prior to the Bind call and should not be used unless the Bind
completes successfully.

NOTE: The information in the characteristics table for a module is primarily infonnational, in
support of network management and configuration tools. Upper modules binding to lower ones will
NOT generally need to parse this information to adapt their behavior at the interface. They will
generally just use the information to validate that they have been bound to the correct type of
module. Most of the other information is provided in the structure to support infonnation utilities
and provide hints.

Common Characteristics
The fonnat of this information is identical for all modules. Note that all information in this section
of the table is static.

WORD
WORD
WORD

BYTE
BYTE
DWORD

Size of common characteristics table (bytes)
Level of common characteristics table (zero this version)
Level of service-specific subtables (zero for MAC and

NetBIOS definitions in the following sections)
Major Module Version (2 BCD digits)
Minor Module Version (2 BCD digits)
Module function flags, a bit mask (hints only):

o -Binding at upper boundary supported
1 - Binding at lower boundary supported
2-31 - Reserved, must be zero

BYTE[I6]
BYTE

BYTE

BYTE

BYTE

WORD

WORD
LPFUN
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF

4 NDIS:
Data Structures

4-2

Module name - ASCIIZ fonnat
Protocol level at upper boundary of module:

I-MAC
2 - Data link
3 - Network
4 - Transport
5 - Session
-1 - Not specified

Type of interface at upper boundary of module:
For MAC's: 1 => MAC
For Data Links: To be defined
For Transports: To be defined
For Session: 1 => NCB
For any level: 0 => private (ISV defined)

Protocol level at lower boundary of module
0- Physical
1-MAC
2 - Data link
3 - Network
4 - Transport

-1 - Not specified
Type of interface at lower boundary of module:

For MAC: 1 => MAC
For Data Link: To be defined
For Transport: To be defined
For Session: 1 => NCB
For any level: 0 => private (ISV defined)

Module ID filled in by Protocol Manager on return from
RegisterModule

ModuleDS
System request dispatch entry point
Pointer to service-specific characteristics (NULL if none)
Pointer to service-specific status (NULL if none)
Pointer to upper dispatch table (see below; NULL if none)
Pointer to lower dispatch table (see below; NULL if none)
Reserved for future expansion, must be NULL
Reserved for future expansion, must be NULL

NOTE: LPSZ Long pointer to an ASCIIZ string
Long pointer to a data buffer
Long pointer to a function

LPBUF
LPFUN

In addition to the above common characteristics table, a given module will typically have a set of
sub-tables that are chained off the common table:

• Service-specific characteristics table:
This table contains descriptive infonnation and parameters about the module.

NDIS: 4
Data Structures

4-3

• Service-specific status table:
This table contains runtime operating status and statistics for the module.

• Upper dispatch table:
This table contains dispatch addresses for the upper boundary of the module - i.e., the entry
points it exports as a service provider.

• Lower dispatch table:
This table contains dispatch addresses for the lower boundary of the module - i.e., the entry
points it exports as a service client.

NOTE: Under OS/2 dispatch addresses and data segments are RingO selectors. This field is usually
set at Ring 3 INIT time even though the selector set in must be Ring 0 (obtained from the device
header filled in byOS/2).

MAC Service-specific Characteristics
All MAC's use the following format for this table. This table contains volatile information (like the
current station address) which may be updated by the MAC during the course of operation. Other
modules may read this table directly during execution retrieve this information.

WORD
BYTE [16]

WORD
BYTE [16]
BYTE [16]
DWORD
LPBUF
DWORD
DWORD

Length of MAC service-specific characteristics table
Type name of MAC, ASCIIZ format:

802.3,802.4,802.5,802.6, DIX, DIX+802.3, APPLETALK,
ARCNET, FDDI, SDLC, BSC, HDLC, ISDN

Length of station addresses in bytes
Pennanent station address
Current station address
Current functional address of adapter (0 if none)
Multicast Address List (structure defined below)
Link speed (bits/sec)
Service flags, (provided as hints only):
o -broadcast supported
1 - multicast supported
2 - functional/group addressing supported
3 - promiscuous mode supported
4 - software settable station address
5 - statistics are always current in service-specific status table
6 - InitiateDiagnostics supported
7 - Loopback supported
8 - Type of receives
o -MAC does primarily ReceiveLookahead indications
1 - MAC does primarily ReceiveChain indications
9 - IB M Source routing supported
10 - Reset MAC supported
11 - Open / Close Adapter supported
12 - Interrupt Request supported
13 - Source Routing Bridge supported

WORD
DWORD
WORD
DWORD
WORD
CHAR[3]
CHAR
LPSZ
WORD

4 NDIS:
Data Structures

4-4

14 - GDT virtual addresses supported
15-31 - Reserved, must be zero
Maximum frame size which may be both sent and received
Total transmission buffer capacity in the driver (bytes)
Transmission buffer allocation block size (bytes)
Total reception buffer capacity in the driver (bytes)
Reception buffer allocation block size (bytes)
IEEE Vendor code
Vendor Adapter code
Vendor Adapter description
Interrupt level used by adapter

Remaining bytes in table (based on Length) are vendor-specific

Multicast Address List is a buffer formatted as follows:

WORD
WORD
BYTE[16]
BYTE[16]

BYTE[16]

Maximum number of multicast addresses
Current number of multicast addresses
Multicast address 1
Multicast address 2

Multicast Address N

The Multicast Address List is kept packed by the MAC so that the current multicast addresses occur
first in the list.

In interpreting these tables the implementer should always bear in mind that additional functions
may be added to future MAC's and that the support of functions that the protocol does not need
should not prevent the protocol from accepting a bind for the MAC.

The nonnal type name of an ethemet MAC would be "DIX+802.3." See Appendix B for references
on IEEE 802.3 and DIX.

If GDT virtual addresses are supported (bit 14 is set) then Ring 0 GDT virtual addresses may be used
to describe frames. All MAC's must support the use of physical addresses to describe frame;
however, for some MAC's it is preferable to supply a GDT address if one is readily available. The
GDT address must remain valid throughout the scope of its use by the MAC.

If IBM source routing is used (bit 9 is set) it is the protocol module's responsibility to encode and
interpret appropriate source routing information. This bit merely implies that the device is capable
of sending packets with the "source routing bit" set in the source address so that a protocol may
recognize such a packet.

If Source Routing Bridge is set then it is implied that the MAC is capable of receiving all packets on
the network which have the source routing bit set.

NOIS: 4
Data Structures _

4-5

If a MAC does not support loopback (bit 7 is set) a protocol must handle this function itself. In other
words, if the source and destination addresses of a frame are the same, or the frame is a broadcast
frame or multicast frame to a local multicast address, then the protocol must handle the loopback
delivery of the frame. MAC's that support loopback must do so either by actually transmitting the
frame to the media, or via a mechanism that lets the receive indication be done at interrupt time.
MAC's should support loopback if at all possible. Loopback support will substantially improve the
performance of some protocols (particularly DLC).

MAC Service-specific Status Table

WORD
DWORD

DWORD

WORD

Length of status table
Date/time when diagnostics last run (OxFFFFFFFF if not run). Format is seconds

since 12:00 Midnight January 1, 1970
MAC status, a 32-bit mask:
0-2 - Opcoded as follows:

o -Hardware not installed
1 - Hardware failed startup diagnostics
2 - Hardware failed due to configuration problem
3 - Hardware not operational due to hardware fault
4 - Hardware operating marginally due to soft faults
5-6 Reserved
7 - Hardware fully operational

3 - If set, MAC is bound, else not bound
4 - If set, MAC is open, else not open (if adapter doesn't support open/close function,

set to 1 if hardware is functional)
5-31 - Reserved, must be zero
Current packet filter, a bit mask:
o -directed and multicast or group and functional
1 - broadcast
2 - promiscuous
3 - all source routing
4-15 - Reserved, must be zero

Statistics for MAC's (OxFFFFFFFF means not kept):
LPBUF Pointer to media specific statistics table (may be NULL)
DWORD Date/time when last ClearStatistics issued (OxFFFFFFFF if not kept) fonnat is

seconds since 12:00 Midnight January 1, 1970
Total frames received DWORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Frames with CRC error
Total bytes received
Frames discarded - no buffer space
Multicast frames received
Broadcast frames received
Frames received with errors
Frames exceeding maximum size
Frames smaller than minimum size
Multicast bytes received

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

4 NOIS:
Data Structures

4-6

Broadcast bytes received
Frames discarded - hardware error
Total frames transmitted
Total bytes transmitted
Multicast frames transmitted
Broadcast frames transmitted
Broadcast bytes transmitted
Multicast bytes transmitted

. Frames not transmitted - time-out
Frames not transmitted - hardware error

Remaining bytes (based on Length) ~ table are vendor specific.

All statistics counters are 32-bit unsigned integers that wrap to zero when the maximum count is
reached. When updating these counters, a frame is counted in all the supported counters that apply.

MAC Upper Dispatch Table
The number and meaning of dispatch addresses provided here apply to the boundary between a
MAC and a protocol. This may differ at other protocol boundaries. Note that each upperllower
module binding may have its own unique set of dispatch addresses that is set up when the modules
exchange characteristics tables. This can be achieved by exchanging copies of the common
characteristics table, where the copy has the desired pointers to the specific dispatch tables for the
binding.

LPBUF
LPFUN
LPFUN
LPFUN
LPFUN
LPFUN
LPFUN

Back pointer to common characteristics table
Request address
TransmitChain address
TransferData address
ReceiveRelease address
IndicationOn addres~
IndicationOff address

NOTE: No dispatch address is allowed to be NULL.

Protocol Lower Dispatch Table
The protocol lower dispa~c~ table is specified in the characteristics table for the protocol binding to
the MAC. The charactenstIcs table for the MAC actually does not supply a lower dispatch table (the
pointer to it is NULL).

LPBUF
DWORD

LPFUN

Back pointer to common characteristics table
Interface flags (used by Vector frame dispatch):

0- Handles non-LLC frames
1 - Handles specific-LSAP LLC frames
2 - Handles non-specific-LSAP LLC frames
3-31 - Reserved must be zero

Req uestConfirm address

LPFUN
LPFUN
LPFUN
LPFUN
LPFUN

NOIS: 4
Data Structures

TransmitConfmn address
ReceiveLookahead indication address
IndicationComplete address
ReceiveChain indication address
Status indication address

4-7

NOTE: No dispatch address is allowed to be NULL.

Characteristic Tables for NetBIOS Drivers
NetBIOS drivers written to the existing LAN Manager RingO NetBIOS specification can be adapted
to fit into the Protocol Manager structure by defining a common characteristics table for them shown
below. Note that such a NetBIOS driver must still respond to the existing LAN Manager NetBIOS
Linkage binding mechanism; these drivers will only use Protocol Manager binding at their lower
boundary (to the MAC). A variant kind of NetBIOS module will be defined in the future that takes
advantage of Protocol Manager binding at both boundaries.

Common characteristics for NetBIOS drivers:

WORD
WORD
WORD
BYTE
BITE
DWORD
BYTE[16]
BITE
BYTE
BYTE
BYTE
WORD
WORD
LPFUN
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF
LPBUF

Size of common characteristics table (bytes)
Level of common characteristics table: 0
Level of service-specific subtables: 0
Major Module Version (2 BCD digits)
Minor Module Version (2 BCD digits)
Module function flags, Ox00000002 (binds lower)
NetBIOS Module name
Protocol level at upper boundary of module: 5 = Session
Type of interface at upper boundary of module: 1 = LANMAN NCB
Protocol level at lower boundary of module: 1 = MAC
Type of interface at lower boundary of module: 1 = MAC
NetBIOS Module ID
NetBIOS Module DS
System request dispatch entry point
Pointer to service-specific characteristics (see below)
Pointer to service-specific status (NULL)
Pointer to upper dispatch table (see below)
Pointer to lower dispatch table (see below)
Reserved, must be NULL
Reserved, must be NULL

Upper dispatch table for a NetBIOS module:

LPBUF
LPFUN
LPFUN

Back pointer to common characteristics table
Request address
NetBIOS NCB handler (LANMAN calling conventions)

4 NDIS:
Data Structures

4-8

Lower dispatch table for a NetBIOS module:

LPBUF
DWORD

LPFUN
LPFUN
LPFUN
LPFUN
LPFUN
LPFUN

Back pointer to common characteristics table
Interface flags (used by Vector frame dispatch):

0- Handles non-LLC frames
1 - Handles specific-LSAP LLC frames
2 - Handles non-specific-LSAP LLC frames
3-31 - ReseIVed must be zero

. RequestConfinn address
TransmitConfmn address
ReceiveLookahead indication address
IndicationComplete address
ReceiveChain indication address
Status indication address

SeIVice-specific characteristics (LANMAN NetBIOS Linkage table):

WORD
WORD
BYTE
WORD
WORD

DWORD
WORD
WORD
WORD
WORD
DWORD
BYTE

OemExtTable:

WORD
WORD

where

Bytes of data returned in this table
Bytes of data actually available

LANA number
Net driver type (1 = NCB)
Network Status:

Bit 0: ReseIVed, must be zero
Bit 1: Cleared = nonnal driver

Set = loop back driver
Bit 2-15: ReseIVed, must be zero

Network bandwidth (bits/s)
Maximum sessions
Maximum number of NCB's
Maximum number of names
NetBIOS driver's DS value
NetBIOS NCB Handler address
Number of commands in OEM extension table

ExtStruct
ExtStruct

NOIS: 4
Data Structures ,

4-9

ExtStruct structure:

Cmd
CmdInfo

BYTE Extended NCB Command Opcode Value
WORD Command descriptor bits
bit 0 == 1: standard buffer used

1 == 1: second buffer used
2 == 1: lock buffers
3 == 1: asynchronous option allowed
4 == 1: command can be cancelled

6n == 1: if regular command

8 == 1:
9 == 1:

10= 1:
11 =0:

1:
12-15 == 0:

2: if privileged command
3: if exclusive command
Uses LSN field
Uses N amN urn field
Uses Local Name Field (ncb_name)
Buffer segments must be read-write
Buffer segments may be read-only
Reserved, must be 0

Frame Data Description
The MAC describes frame data with a data structure called a buffer descriptor. The descriptor is
composed of pointers and lengths which describe a logical frame. Buffer descriptors are ephemeral
objects. A descriptor is valid only during the scope of the call that references it as a parameter. The
called routine may not modify the descriptor in any way. If the called routine needs to refer to the
described data blocks after returning from the call, it must save the infonnation contained in the
descriptor.

Data blocks described by descriptors are long-lived. Ownership of the data blocks is implicitly
passed to the module that is called with the descriptor. The called module relinquishes ownership
back to the caller either via setting a return argument, or by later issuing a call back to the supplying
module. Under OS/2, some pointers may be either GDT virtual addresses or physical addresses. In
this case the pointer has an associated pointer type opcoded field. Defined values are 0 for physical
address and 2 for GDT virtual addresses. GDT virtual addresses may be supplied to the MAC only
if bit 14 of the service flags in the MAC service specific characteristics table is set. The GDT
address must remain valid throughout the scope of its use by the MAC.

Under DOS there is no distinction between physical and virtual addresses. All addresses in this case
are segment: offset. Care must be taken to ensure that the segment offset plus data length do not
exceed the 64K segment boundary. The pointer type field if present is always encoded as a O.

4 NDIS:
Data Structures

4-10

Transmit Buffer Descriptor
All transmit data is passed using a far pointer to a transmit buffer descriptor, TxBufDescr. The
format of this descriptor is:

WORD
LPBUF
WORD

TxImmedLen
TxImmedPtr
TxDataCount

;Byte count of immediate data; max is 64
; Virtual address of immediate data
;Count of remaining data blocks; max is 8

Followed by TxDataCount instances of:

BYTE
BYTE
WORD
LPBUF

TxPtrType
TxResByte
TxDataLen
TxDataPtr

;Type of pointer (O=Physical, 2=GDT)
;Reserved Byte (must be 0)

, ;Length of data block
;Physical address of data block

In a TxB ufDescr structure, the immediate data described by the first two fields is ephemeral and may
be referenced only during the scope of the call that supplies it. Such immediate data is always
transmitted before data described by TxDataLen and TxDataPtr pairs. If the called routine needs to
refer to the immediate data after returning from the call, it must copy the data. The maximum size of
immediate data is 64 bytes.

Transfer Data Buffer Descriptor
Transfer data can be described by a far pointer to a transfer data buffer descriptor, TDBufDescr.
Transfer data buffer descriptors have the following format:

WORDTDDataCount; Count of transfer data blocks; max is 8

Followed by TDDataCount instances of:

BYTE
BYTE
WORD
LPBUF

TDPtrType
TDResByte
TDDataLen
TDDataPtr

;Type of pointer (O=Physical, 2=GDT)
;Reserved Byte (must be 0)
;Length of data block
;Physical address of data block

Receive Chain Buffer Descriptor
Receive chain data can be passed by a far pointer to a receive chain buffer descriptor, RxButDescr.
Receive chain buffer descriptors have the following format:

WORD RxDataCount ;Count of receive data blocks; max is 8

Followed by RxDataCount instances of:

WORD
LPBUF

RxDataLen
RxDataPtr

;Length of data block
; Virtual address of data block

For received frames that are larger than 256 bytes, the first data block of the frame must be at least
256 bytes long.

Data Structures ..
NDIS: 4

4-11

PROTOCOL.lNI
The PROTOCOL.INI file stores configuration and binding information for all the protocol and MAC
modules in the system. The flie uses the same general fonnat as the LANMAN .INI file. It consists
of a series of named sections, where the section name is in fact the module name from a module
characteristics table. Below the bracketed module name is a set of configuration settings for the
module in name=value format. For example:

[MYNetBIOS]
Drivemame = NetBIOS$
Bindings = ETIIERCARD
MaxNCBs= 16
MaxSessions = 32
MaxN ames = 16

The rules for PROTOCOL.INI contents are:

• Bracketed module name. Must be the name of a protocol or MAC module, e.g. [MYN etBIOS].
This is the name of the module as defined in that module's characteristics table. The name must
be 15 characters or less (not counting the brackets). Mixed case may be used but the Protocol
Manager will convert it to uppercase when it reads the file into memory.

• Drivemame = <device driver name>. This parameter is required for all modules. It defines the
name of the OS/2 or DOS device driver that the module is contained in. Note that a single device
driver name may be mentioned by several sections of the PROTOCOL.INI file, if the driver
contains multiple logical modules.

• Bindings = <module name> I <module name>,<module name>, ... This parameter is optional
for protocol modules. It is not valid for MAC modules. If present, it is used by the protocol
module to determine what MAC modules it should ask to bind to. (In other words, changing this
parameter in the PROTOCOL.INI file can reconfigure a protocol to bind to a different MAC.)
The Bindings parameter may be omitted if the protocol driver software is preconfigured to bind
to a particular MAC, or if the system will only contain one MAC and one protocol module. In
the latter case, the Protocol Manager by default will ask the one protocol to bind to the one MAC.

• Other keywords and parameters. Any other keyword=value statements are module specific.
Keyword names must be 15 characters or less. They may be mixed case but are converted to
uppercase when read by the Protocol Manager. Note that keyword names are unique within the
scope of each <module name> section and can appear within the section in any order.

• Whitespace around the equals sign is not significant, nor is trailing white space on the line.
Except for this leading and trailing white space, all other characters of the value string are taken
verbatim.

• A list of 0 or more parameters can appear to the right of the equals sign. If there are no
parameters the equals sign can be optionally omitted. A parameter is terminated by a space, tab,
comma, or semicolon. No parameters are interpreted by the Protocol Manager.

4 NDIS:
Data Structures

4-12

• A parameter can either be up to a 31-bit signed numeric value or a string of any length.

• A numeric parameter can be expressed either in decimal or hexadecimal fonnat. All numeric
parameters must start with the characters '0' through '9' or by a + or - followed by the '0' to'9'
character. A hexadecimal parameter must start with 'Ox' or 'OX' and use valid hexadecimal
digits. A non-hexadecimal numeric parameter is treated as decimal integer. A parameter not
surrounded by quotes and starting with 0 to 9 or + and - followed by 0 to 9 will be assumed to be
a numeric parameter.

• A string is a parameter which either starts with a non-numeric character or is surrounded with
quotes (" "). The string is preserved in the memory image as it appears in PROTOCOL.IN!.

• A line starting with a semicolon in column 1 is a comment and is ignored. Blank lines are
ignored too.

• Lines may be as long as required. Continuation lines are not supported. Lines end with CR LF.

• Tabs, formfeeds, and spaces are considered to be white space.

Configuration Memory Image
When the Protocol Manager initializes, it reads PROTOCOL.INI and parses it into a memory image
that it makes available to MAC and protocol modules via the Get Protocol Manager Info call. The
parsed image is fonnatted to ma..1(e it easy for run-time modules to interpret. All infonnation
contained in PROTOCOL.INI is present in the memory image in the same order as in the file.
(Comments and white space are of course not present in the image). Note that the image is only
available during device-driver initialization time.

ConfigMemorylmage
The ConfigMemoryImage data structure defines the complete memory image for all logical devices
read from the PROTOCOL.INI configuration file. It is a doubly linked list of ModuleConfig
structures. Each ModuleConfig structure corresponds to one module. The ConfigMemorylmage
structure is defined as follows:

struct ConfigMemory Image
(

};

where:

struct Module Config(1) Module(l);
struct Module Config(2) Module(2);

struct ModuleConfig(N) Module(N);

N=the number of modules encountered by the Protocol Manager when parsing the configuration file
PROTO COL.IN I.

NDIS: 4
Data Structures

4-13

ModuleConfig
The ModuleConfig(i) structure defines the memory image for configuration parameters
corresponding to one (bracketed name) module. For the (i)th module specified in PROTOCOL.INI
it is defined as follows:

struct ModuleConfig(i)
(

};

where:

struct ModuleConfig(i+ 1) far *NextModule;
struct ModuleConfig(i-l) far *Prev Module;
unsigned char Module Name [16];
struct KeywordEntry(1) KeywordEntry(1);
struct KeywordEntry(2) KeywordEntry(2);

struct KeywordEntry(N) KeywordEntry(N);

N = the number of keyword entries encountered in the PROTOCOL.INI file for this module.

NextModule = a FAR pointer to the next module configuration structure. NULL if this is the
structure for the last module. For OS/2 the selector is the Ring 3 INIT time selector. For DOS the
pointer is a segmentoffset pair.

PrevModule = a FAR pointer to the previous module configuration structure. NULL if this is the
structure for the first module. For OS/2 the selector is the Ring 3 INIT time selector. For DOS the
pointer is a segment:offset pair.

ModuleName = array containing the characters of the module name (given in brackets in the
configuration file). This is an ASCIIZ string consisting of a maximum of 15 non-null uppercase
characters.

4 NDIS:
Data Structures

KeywordEntry
For each keyword line in the configuration file for the module a memory image structure is created
specifying the keyword and the parameter values. The G)th keyword encountered in the
PROTOCOL.INI file for the module is defined as follows:

struct KeywordEntryG)
(

};

where:

struct KeywordEntryG+ 1) far *NextKeywordEntry;
struct KeywordEntryG-l) far *Prev KeywordEntry;
unsigned char Keyword[16];
unsigned NumParams;
struct Param(1) Param(1);
struct Param(2) Param(2);

struct Param(N) Param(N);

N = the number of parameters entered with the keyword. If N =0 the parameters are not present.

NextKeywordEntry = a FAR pointer to the next keyword entry structure in the memory image.
NULL if this is the last keyword entry. For OS/2 the selector is the Ring 3 INITtime selector. For
DOS the pointer is a segment:offset pair.

PrevKeywordEntry = a FAR pointer to the previous keyword entry structure in the memory image.
NULL if this is the first keyword entry. For OS/2 the selector is the Ring 3 INIT time selector. For
DOS the pointer is a segment offset pair.

Keyword = the array containing the characters of the keyword found in the configuration file. This
is an ASCIIZ string consisting of a maximum of 15 non-null characters. The case of alphabetic
characters will be uppercase in the memory image.

NumParams = the number (N) of parameters entered with the keyword each parameter described by
a param structure. The value is 0 if no parameters were present.

Param(k) = the (k)th parameter structure to specify the value of one parameter in a list of parameters
for a keyword. "Param(k+ 1)" follows Param(k) in sequence within the memory image. Each
parameter is delimited by a length field for the parameter. It is assumed that a keyword's fields will
be parsed sequentially.

Param

NDIS: 4
Data Structures

4-15

For the (k)th parameter defined in a parameter list for a specific keyword the following structure
defines its value and attributes:

struct Param(k)
{

};

where:

unsigned ParamType;
unsigned ParamLen;
union ParamValue
{

long Numeric;
unsigned char String[STRINGLEN];

};

STRINGLEN = length of the ASCIIZ parameter string (including the tenninating NULL) for string
parameters.

ParamType = the type of parameter. The following types are supported:
= 0 signed integer supporting up t031 bit values least significant byte first.
= 1 a string of characters.

ParamLen = the length of the parameter value. The length could be one of the following either be 4
for numeric parameters or STRINGLEN for string parameters where STRINGLEN is
the length of the string (including the tenninating NULL).

Numeric = a 31-bit signed numeric value.

String = an ASCIIZ character string. The case of alphabetic characters in the string is preserved
from that in PROTOCOL.INI.

4 NDIS:
Data Structures

4-16

BindingsList
For each module that registers with the Protocol Manager a BindingsList structure may be given to
the Protocol Manager specifying the set of modules that the given module wishes to bind to. The
current module will require services from these other modules. This structure is defined as follows:

struct BindingsList
{

};

where:

unsigned NumBindings;
struct Module
{

}

char ModuleName[16];
BoundDriver[NUMBINDINGS];

NumBindings = the number (NUMBINDINGS) of modules that the specified module wants to be
bound to it from below. A value of 0 in this field is equivalent to passing a NULL bindingslist
pointer in the Register Module command.

ModuleName = an ASCIIZ string specifying the logical name of a module which the current module
wishes to have bound to it from below. Maximum of 15 non-null characters. The Protocol Manager
will convert all alphabetic characters to uppercase.

BoundDriver = an array of NUMBINDINGS module names specifying the list of modules to which
the current module wants to be bound.

NOIS: 5
Specification of

Primitives

5-1

Chapter 5: Specification of Primitives
MA C implementers should obey the following general guidelines:

• All primitives specified in this section can be called in protected mode in either interrupt or task
context under OS/2. Since any primitive may be called in interrupt context it is illegal to block
during the execution of a primitive.

• All routines should run (as much as possible) with interrupts enabled. Interrupt handlers should
dismiss the interrupt at the 8259 as soon as possible.

• An indication handler will normally be entered with interrupts enabled but an indication handler
should not enable interrupts. The handler may disable interrupts if it chooses and on return the
MAC must assume that interrupts may have been disabled. Under MS-DOS indication handlers
must assume they have only 200 bytes of stack space. If more stack space is needed then the
handler must supply a stack.

• An indication handler may only issue TransmitChain and TransferData primitives. Any MAC
interface request may be issued from a confirmation or IndicationComplete handler.

• Confirmation and IndicationComplete handlers must be fully re-entrant and are always entered
with interrupts enabled. Under DOS Confirmation and IndicationComplete handlers must
assume they are entered on whatever stack the interrupt occurred on. This means they must
usually provide their own stack.

• A confirmation handler may be entered with the confirmation for a request before the request has
returned.

• A protocoltnust assume whenever it gives control to a MAC that interrupts may be enabled by
the MAC unless otherwise explicitly specified.

• When passing a virtual address to one of these primitives under OS/2 the address must be a Ring
OaDT address unless otherwise specified. The interrupt service routine portion of the MAC
must handle the fact that this address may not be valid if an interrupt occurs in real mode.

• All primitives have a set of specific error codes defined. In general, MAC's and protocols
should return these specific codes. However it is acceptable to return GENERAL_FAILURE for
any non-recoverable failure.

5
5-2

NDIS:
Specification of
Primitives

• Parameters are passed on the stack compatible with Microsoft C FAR Pascal calling conventions.
On entry to this routine the called module must save the caller's DS before setting its DS from
the "dataseg" parameter. At exit the caller's DS must be restored. Furthennore the called
module should follow standard Microsoft C conventions about saving "register variable" SIDI
registers if these are used. The direction bit is assumed to be clear on entry and must be clear
upon exit.

• The function returns in AX a return code specifying the status of function invocation.

• Before calling a module in OS/2 it is the caller's responsibility to ensure that it is currently
executing in protected mode. IT it is running in real mode it must do an OS/2 "ReaIToProt"
DevHlp call before calling the inter-module interface function. Furthermore in OS/2 the inter
module call can only be made at post CONFIG.SYS INIT time since all selectors are Ring 0
selectors.

• A MAC starts with packet reception disabled. A protocol must call SetPacketFilter to enable
reception of packets.

• The number of Request commands which can be simultaneously queued by the MAC should be
configurable. The suggested keyword in the configuration file is "MaxRequests." If it is not
configurable then the minimum value for this parameter is 6.

• The number offransmitChain commands which can be simultaneously queued by the MAC must
be configurable. The suggested keyword in the configuration file is "MaxTransmits". The
suggested minimum default value for this parameter is 6.

• On a DIX or 802.3 network, packet buffers received may have been padded to the minimum
packet size for short packets. It is the responsibility of the MAC client to examine the length
field if present and strip off the padding.

• For DIX or 802.3 networks the MAC client can transmit a buffer with packet length smaller than
the minimum. It is the responsibility of the MAC to provide the required padding bytes before
transmission on to the wire. The content of the padding bytes is undefined.

• For perfonnance reasons, frame data buffers used for transmission and reception should be word
aligned.

• The MAC header is passed protocol-to-MAC or MAC-to-protocol in exactly the format in which
it exists on the medium. The protocol should convert header fields found in the header buffer
passed up to whatever format is required to conveniently store the mind local memory. For
example multi-byte fields (e.g., 802.3 length) may not be received in the byte order that is
normally used by the CPU for storing multi-byte parameters. For exact format of the MAC
header refer to the appropriate standards document (see Appendix B).

• Commonly Used Parameters

NDIS: 5
Specification of

Primitives

5-3

Pro tID The unique module ID of the protocol, assigned at bind time by the Protocol
Manager.

MACID The unique module ID of the MAC, assigned at bind time by the Protocol Manager.

ReqHandIe Unique handle assigned by the protocol to identify this request. If asynchronous
request is being done, the MAC will return this ReqHandle on the completion call it
later makes to indicate completion. A ReqHandle of 0 indicates that the completion
routine should be unconditionally suppressed.

/

ProtDS DS value for called protocol module, obtained from the module's dispatch table at
bind time.

MACDS DS value for called MAC module, obtained from the module's dispatch table at bind
time ..

Direct Primitives

TransmitChain

5
5-4

NDIS:
Specification of
Primitives

Purpose: Initiate transmission of a frame

PUSHWORD ProtID ;Module ID of protocol
PUSHWORD ReqHandle ;Unique handle for this request or 0

;Pointer to framebufferdescriptor
;DS of called MAC module

PUSHLPBUF TxBufDescr
PUSHWORD MACDS
CALL TransmitChain

Returns: OxOOOO
OxOOO2
OxOO06
OxOOO7
OxOOO8
OxOOOA
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
HARDWARE-.'-ERROR
GENERAL_FAILURE

TxBufDescr Far pointer to the buffer descriptor for the frame.

Description:

This call asks the MAC to transmit data. The MAC may either copy the data described by
TxBufDescr before returning, or queue the request for later (asynchronous) processing. The MAC
indicates which option it is taking by setting the appropriate return code.

In the asynchronous case, ownership of the frame data blocks passes to the MAC until the
transmission is complete; the protocol must not modify these areas until then. Ownership of the data
blocks is returned to the protocol when the MAC either returns a status code which implies
completion of the original request or calls its TransmitConfinn entry with the ReqHandle from
TransmitChain. If a request handle of zero was used and therefore TransmitConfmnwiH not be
called, then ownership should not be considered returned until the protocol receives a message that
implies the transmission has occurred (e.g., receiving an ACK to the transmitted message).

Note that when doing asynchronous transmission, the MAC must retain any needed information
from TxBufDescr, since the pointer to that structure becomes invalid upon returning from
TransmitChain. Also, if the TxlmmedLen of the descriptor is non-zero, the MAC must retain a copy
of the immediate data at TxlmmedPtr, since the immediate data area becomes invalid upon returning
from TransmitChain.

The MAC header must fit entirely in the immediate data, if present, or in the first non-immediate
element described in TxBufDescr if there is no immediate data.

A MAC must be prepared to handle a TransmitChain request at anytime, including from within
interrupt-time indication routines.

TransmitConfirm

NDIS: 5
Specification of

Primitives

5-5

Purpose: Imply the completion of transmitting a frame.

PUSH WORD ProtID
PUSH WORD MACID

;Module ID of Protocol
;Module ID of MAC

PUSH WORD ReqHandle ;Unique handle from TransmitChain
;Status of original TransmitChain
;DS of called protocol module

PUSH WORD Status
PUSH WORD ProtDS
CALL TransmitConfirm

Returns:

Description:

o x 0000
OxOOO7
OxOOFF
OxOOOA

SUCCESS
INVALID_PARAMETER
GENERAL_FAILURE
HARDWARE_ERROR

This routine is called by a MAC to indicate completion of a previous TransmitChain. The purpose
of this is to return ownership of the transmitted data blocks back to the protocol.

The ProtID parameter must be the value passed by the protocol on the previous TransmitChain to
identify the requestor.

The ReqHandle is the value passed by the protocol on the previous TransmitChain which identifies
the original request.

5
5-6

NOIS:
Specification of
Primitives

ReceiveLookahead
Purpose: Indicate arrival of a received frame and offer lookahead data.

PUSH WORD MACID ;Module ID of MAC
PUSH WORD FrameSize ;Total size of frame (0 if not known)

;Bytes of lookahead available in Buffer
; Virtual address of lookahead data

PUSH WORD BytesAvail
PUSH LPBUF Buffer
PUSH LPB YTE Indicate ; Virtual address of indicate flag
PUSH WORD ProtDS
CALL ReceiveLookahead

Returns: OxOOOO
OxOOO3
OxOOO4
OxOOO5
OxOOO6
OxOOO7
OxOOFF

;DS of called protocol module

SUCCESS
FRAME_NOT _RECOGNIZED
FRAME_REJECfED
FORWARD_FRAME
OUT_OF _RESOURCE
INVALID_PARAMETER
GENERAL_FAll..URE

FrameSize The total size, in bytes, of the received frame. A value of 0 indicates that the MAC
does not know the total frame size at this time.

B ytesA vail The number of bytes available in the lookahead buffer. This is guaranteed to be at
least as large as the lookahead size established with the SetLookahead request. For
frames which are smaller than the lookahead size, the lookahead buffer will contain
the whole frame.

Buffer Virtual address of contiguous lookahead buffer. The buffer contains the leading
B ytesA vail octets of the frame. This buffer is ephemeral; it is addressable to the
protocol only during,the scope of the Receive call.

Indicate Virtual address of indication flag byte. This byte is set to OxFF by the MAC prior to
this call. If the protocol clears the byte to zero prior to returning then indications will
be left disabled until IndicationOn is called from IndicationComplete.

Description:

This routine is called by a MAC to indicate reception of a frame and to offer frame lookahead data.
The protocol is expected to inspect this infonnation very rapidly to determine if it wants to accept
the frame or not. If it wants to accept the frame, it may call TransferData to ask the MAC to copy
the frame data to a specified buffer described by a TDBufDescr. The protocol can indicate that it is
rejecting or does not recognize the frame by returning an appropriate error code. Note that the frame
not recognized error has special significance to the Vector function. If the protocol is accepting the
frame and if the lookahead buffer contains the whole frame, the protocol can simply copy the data
itself before returning from Receive. The protocol may detennine that it has the whole frame if
BytesAvail equals FrameSize, or if the lookahead information includes a protocol header with the
frame length, and this matches BytesA vail.

NDIS:
Specification of

Primitives 5
5-7

The MAC implicitly disables indications (IndicationOff) before calling Receive Lookahead, and by
default will re-enable them on return from this routine. If the protocol chooses to leave indications
disabled, it can enable them within IndicationComplete by calling IndicationOn.

The protocol must absolutely minimize its processing time within the ReceiveLookahead handler.
This is necessary to let certain MAC's re-enable the hardware to avoid loss of incoming frames.
Shortly after returning from ReceiveLookahead, the MAC will call the protocol back at its
IndicationComplete entry point. The protocol can do any needed post-processing of the received
frame at that time. The MAC does not guarantee to provide one IndicationComplete call for each
indication. It can choose to issue a single IndicationComplete for several indications that have
occurred.

5
5-8

NDIS:
Specification of
Primitives

TransferData
Purpose: Transfer received frame data from the MAC to a protocol.

PUSH LPWORD
PUSH WORD
PUSH LPBUF
PUSH WORD
CALL TransferData

BytesCopied ;Number of bytes copied
FrameOffset ;Starting offset in frame for transfer
TDBufDescr ;Virtual address of transfer data desc
MACDS ;DS of called MAC module

Returns:

BytesCopied

FrameOffset

TDBufDescr

Description:

OxOOOO
OxOOO7
OxOOO8
OxOOFF

SUCCESS
INVALID_PARAMETER
INVALID_FUNCTION
GENERAL_FAILURE

VirtuaJ address of buffer for returning number of bytes copied during transfer data
operation.

Starting offset in received frame where data transfershould start. The value of
FrameOffset must be less than or equal to the value of BytesAvail from the
corresponding ReceiveLookahead.

Virtual address of transfer descriptor describing where to store the frame data.

A protocol calls this synchronous routine from within its ReceiveLookahead handler before return,
to ask the MAC to transfer data for a received frame to protocol storage. The protocol can specify
any starting frame offset and byte count for the transfer, so long as these don't exceed the frame's
length. TransferData may be called only once per ReceiveLookahead indication. Subsequent calls
within the same indication will return an error.

NDIS: 5
Specification of

Primitives

5-9

IndicationComplete
Purpose: Allow protocol to do post-processing on indications.

PUSH WORD MACID ;Module ID of MAC
PUSH WORD ProtDS
CALL IndicationComplete

Returns:

Description:

OxOOOO
OxOO07
OxOOFF

;DS of called protocol module

SUCCESS
INV ALID _PARAME1ER
GENERAL_FAILURE

A MAC calls this entry point to enable a protocol to do post-processing after an indication. The
MAC will always generate an IndicationComplete eventually after an indication regardless of the
return code of the indication. Although still in interrupt context and subject to the nonnal OS/2
guidelines for interrupt processing, the protocol is not under the severe time constraints of the
indication. The MAC should minimize stack usage before calling this routine and, under DOS,
should have swapped off of any special "interrupt" stack.

This routine is always entered with interrupts enabled and with the network adapter interrtipt
dismissed from the interrupt controller. Therefore, it may be reentered at the completion of another
indication. Also no one-to-one correspondence is guaranteed between indications and
IndicationComplete. A MAC may generate one IndicationComplete for several indications. A
protocol may enforce a one-to-one correspondence by leaving indications disabled until the return
from IndicationComplete.

If indications are explicitly disabled by a protocol on return from an indication, it is the protocol's
responsibility to invoke IndicationOn as soon possible during IndicationComplete.

5
5-10

NDIS:
Specification of
Primitives

ReceiveChain
Purpose: Indicate reception of a frame in MAC-managed buffers.

PUSH WORD MACID ;Module ID of MAC
PUSH WORD FrameSize ;Total size of frame (bytes)

;Unique handle for this request PUSH WORD ReqHandle
PUSH LPBUF RxBufDescr ; Virtual address of receive descriptor

; Virtual address of indicate flag PUSH LPBYTE Indicate
PUSH WORD ProtDS ;DS of called protocol module
CALL ReceiveChain

Returns:

FrameSize

RxButDescr

Indicate

Description:

OxOOOO
OxOOOl
OxOOO3
OxOOO4
OxOOO5
OxOOO6
OxOOO7
OxOOFF

SUCCESS
WAIT_FOR_RELEASE
FRAME_NOT_RECOGNIZED
FRAME_REJECfED
FORWARD_FRAME
OUT_OF_RESOURCE
INVALID_PARAMETER
GENERAL_FAILURE

Total size of received frame, in bytes.

Virtual address of receive descriptor describing the received frame.

Virtual address of indication flag byte. This byte is set to OxFF by the MAC prior
to this call. If the protocol clears the byte to zero prior to returning then
indications will be left disabled until IndicationOn is called from
IndicationComplete.

A MAC calls this routine to indicate the reception of a frame in MAC-managed storage. Ownership
of this storage is implicitly passed to the protocol when this call is made. At its option, the protocol
may copy the data right away and indicate this via the return code (in which case ownership reverts
to the MAC); or the protocol may queue the request and copy the frame later, in which case it retains
ownership of the frame's storage until it calls ReceiveRelease. Since the protocol may queue data
received in this manner, it is possible that the MAC may run low on available frame buffers. The
MAC may elect to call ReceiveLookahead instead of ReceiveChain while it is low on frame buffers.
This allows the MAC to retain control of its remaining buffers until the protocol releases the buffers
it is holding.

Note that for frames longer than 256 bytes, the MAC must guarantee that the first data block of the
frame is at least 256 bytes long. This requirement greatly facilitates protocol processing efficiency.

NOIS:
Specification of

Primitives 5
5-11

Like ReceiveLookahead, a protocol's processing within ReceiveChain is time critical. At some
point after return from ReceiveChain the MAC will generate an IndicationComplete to allow post
processing of the indication.

The MAC implicitly disables indications (IndicationOft) before calling ReceiveChain, and by
default will re-enable them on return from this routine. If the protocol chooses to leave indications
disabled, it can enable them within IndicationComplete by calling IndicationOn.

5
5-12

ReceiveRelease

NDIS:
Specification of
Primitives

Purpose: Return frame storage to the MAC that owns it.

PUSH WORD ReqHandle ;Unique handle from ReceiveChain
;DS of called MAC module PUSH WORD MACDS

CALL ReceiveRelease

Returns:

Description:

OxOOOO
·OxOOO7

OxOOO9
OxOOFF

SUCCESS
INV ALID _PARA1vIE1ER
NOT_SUPPORTED
GENERAL_FAILURE

A protocol uses this call after it has copied frame data provided by a ReceiveChain calL
ReceiveRelease returns ownership of the frame data blocks to the MAC.

IndicationOff
Purpose: Disable MAC indications

NOIS:
Specification of

Primitives 5
5-13

PUSH WORD MACDS ;DS of called MAC module
CALL IndicationOff

Returns:

Description:

OxOOOO
OxOO08
OxOOFF

SUCCESS
INVALID_FUNCTION
GENERAL_FAILURE

A protocol may use this call to prevent the generation of ReceiveLookahead, ReceiveChain and
Status indications from the MAC. This is similar in concept to disabling interrupts. When
indications are off, a·MAC should queue events that would cause it to generate indications to the
protocol. A MAC implicitly disables indications just before calling the ReceiveLookahead,
ReceiveChain or Status indication entry point of a protocol. Additionally a protocol may not call
IndicationOff from within its ReceiveLookahead, ReceiveChain or Status indication handler.

The only legal use of IndicationOff is to bracket a call or calls to the MAC. For example the
following sequence is valid:

IndicationOff
TransmitChain
IndicationOn

In this situation the protocol must not block while indications are off and must call IndicationOn as
soon as possible.

Note that IndicationComplete may still occur even though indications are disabled. Disabling
indications has no effect on a MAC's ability to call IndicationComplete.

This function always returns with interrupts disabled. It is the responsibility of the caller to re
enable them.

5
5-14

IndicationOn

NOIS:
Specification of
Primitives

Purpose: Enable MAC indications

Called from protocol to MAC.

PUSH WORD MACDS ;DS of called MAC module
CALL IndicationOn

Returns:

Description:

. OxOOOO
OxOO08
OxOOFF

SUCCESS
INVALID_FUNCTION
GENERAL_FAILURE

A protocol may use this 'call to re-enable indications after having disabled them. Note that a MAC
may optionally defer the actual re-enabling of indications. Additionally a protocol may not call
IndicationOn from within its ReceiveLookahead, ReceiveChain or Status indication hamdler.

It is possible that IndicationOff and IndicationOn pairs will nest. Therefore the MAC must maintain
a reference count to enable it to determine when to actually re-enable indications. The protocol must
not assume that a call to IndicationOn will immediately enable indications.

IndicationOn may be called from an IndicationComplete handler after leaving indicatiOll6 disabled
on return from an indication handler. IndicationOn may also be used, paired with IndicationOff, to
bracket a call or calls to the MAC.

This function always returns with interrupts disabled. It is the responsibility of the caller to re
enable them. No indications will be generated until after the call has returned.

General Requests

NDIS:
Specification of

Primitives 5
5-15

General requests are commands from a protocol to a MAC directing it to do adapter management
operations like setting the station address, running diagnostics, and changing operating parameters or
modes. A MAC may choose to implement any of the Request functions synchronously or
asynchronously. A MAC returns the REQUEST_QUEUED return code to inform the protocol that a
given request will be processed asynchronously. When this is the case, the MAC will call back to
the protocol's RequestConfirm entry point to indicate when processing of the request is complete. If
a request handle of zero is used then the RequestConfirm call is suppressed. It is the caller's
responsibility to make certain that any data referenced by the request remains valid until the called is
guaranteed to have completed.

All general requests have the following common calling convention:

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
Paraml
Param2
Opcode
MACDS

;Module ID of Protocol or 0
;Unique handle for this request or 0
;Request dependent word parameter or 0
;Request dependent dword parameter or 0
;Opcode of request
;DS of called MAC module

5
5-16

InitiateDiagnostics

NOIS:
Specification of
Primitives

Purpose: Start runtime diagnostics.

PUSH WORn
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
o

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0

Returns:

Description:

o ; Pad parameter - must be 0
1
MACDS

; Initiate Diagnostics Request
; DS of called MAC module

OxOOOO
OxOOO2
OxOOO6
OxOOO7
OxOOO8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

Causes a MAC to run hardware diagnostics and update its status information in the MAC-specific
status section of the characteristics table. A MAC may return an error if it does not support run time
diagnostics.

ReadErrorLog
Purpose: Return error log.

NDIS: 5
Specification of

Primitives

5-17

PUSH WORD
PUSH WORD
PUSH WORD
PUSH LPBUF
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
LogLen
LogAddr

; Module ID of Protocol
; Unique handle for this request or 0
; Length of log buffer
; Buffer for returning log
; Read Error Log Request

Returns:

Description:

2
MACDS ; DS of called MAC module

o x 0000
OxOOO2
OxOO06
OxOOO7
OxOO08
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

Causes a read error log to be issued to adapter. This command is implemented on the IBM token
ring adapter and possibly other adapters. The fonnat of the infonnation returned is adapter specific
and not specified here.

5
5-18

SetStat io n Ad dress

NDIS:
Specification of
Primitives

Purpose: Set the network address of the station.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH LPBUF
PUSH WORD
PUSH WORD
Call Request

Pro tID
ReqHandle
o
AdaptAddr
3

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0
; Buffer containing the adapter address
; SetStationAddress Request

Returns:

Description:

MACDS ; DS of called MAC module

OxOOOO
OxOOO2
OxOO06
OxOOO7
OxOOO8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

There is only a single station address. This command can be called as often as desired. Each time it
replaces a current station address buffer internally maintained by the MAC in the MAC service
specific characteristics table and will reconfigure the hardware to receive on that address if required.
The station will be initially configured with a default address either read out of hardware or obtained
from the PROTOCOL.INI file if not available from hardware. That initial address will be
maintained in the permanent station address field of the MAC service-specific characteristics table.

If the hardware does not support a mechanism to modify its station address then the current station
address buffer is not updated and this function returns INVALID_FUNCTION. In this case the
MAC continues to use the permanent station address to recognize incoming directed packets.

On hardware which supports OpenAdapter, SetStationAddress may not take effect while the adapter
is in a closed state.

OpenAdapter

NDIS: 5
Specification of

Primitives

5-19

Purpose: Issue open request to network adapter.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

Pro tID
ReqHandle
OpenOptions
o

; Module ID of Protocol
; Unique handle for this request or 0
; Adapter specific open options
; Pad parameter - must be 0

Returns:

Description:

4 ; Open Adapter Request
MACDS ; DS of called MAC module

OxOOOO
OxOOO2
OxOOO6
OxOOO7
OxOOO8
OxOOO9
OxOO24
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INY ALID _PARAMETER
INYALID_FUNCfION
NOT_SUPPORTED
HARDWARE_FAILURE
GENERAL_FAILURE

The purpose of the OpenAdapter function is to activate an adapter's network connection. This may
involve making an electrical connection for some adapters like token ring adapters. This also
implies that a considerable delay may occur between submittal of this request and its confinnation.

While an adapter is closed the following functions are guaranteed to operate: SetLookahead,
SetPacketFilter, SetStationAddress, Interrupt, Indicationoff, IndicationOn.

Since this function is adapter specific it is expected that any necessary parameters are either known a
priority by the MAC or can be recovered from the PROTOCOL.INI file. The fonnat of the
information is highly adapter specific and left up to the implementer to define.

The OpenOptions parameter is adapter specific. For IBM TokenRing and compatible adapters, these
are defined in the IBM Token Ring Technical Reference Manual.

5
5-20

CloseAdapter

NDIS:
Specification of
Primitives

Purpose: Issue close request to network adapter.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

Pro tID
ReqHandle
o

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0

Returns:

Description:

o ; Pad parameter - must be 0
5 ; Close Adapter Request
MACDS ; DS of called MAC module

OxOOOO
OxOOO2
OxOOO6
OxOOO7
OxOOO8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
!NY ALID_PARAMETER
!NY ALID_FUNCfION
NOT_SUPPORTED
GENERAL_FAILURE

This function closes an adapter. This causes it to decouple itself from a network so that packets
cannot be sent or received. CloseAdapter resets the functional or multicast addresses currently set.

Since this function is adapter specific it is expected that any necessary parameters are either already
known by the MAC or can be recovered from the PROTOCOL.INI file. The fonnat of the
infonnation is highly adapter specific and left up to the implementer to define.

ResetMAC

NDIS: 5
Specification of

Primitives

5-21

Purpose: Reset the MAC software and adapter hardware.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
o

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0

Returns:

Description:

o ; Pad parameter - must be 0
6 ; Reset MAC Request
MACDS ; DS of called MAC module

OxOOOO
OxOOO2
Ox0006
OxOOO7
Ox 000 8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INV ALID _PAR~METER
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

The function causes the MAC to issue a hardware reset to the network adapter. The MAC may
discard without confinnation any pending requests and abort operations in progress. The MAC must
preserve the current station address, LOOKAHEAD length, packet filter, multicast address list and
functional address. The MAC also enables indications.

-- For MAC's that support the Openadapter function, the Reset MAC command leaves the adapter in
the opened state if it was opened prior to the reset. The adapter open parameters that were in effect
prior to the reset should be the same ones in effect after the reset.

When the reset is initiated, the -MAC should generate a StartReset status indication back to the
protocol. For some MAC's a considerable delay can elapse between the start of the reset and its
completion. All MAC's should subsequently issue an IndicationComplete when the reset is
complete. During the time between the StartReset indication and reset IndicationComplete the MAC
should generate INVALID_FUNCTION for any Requests it cannot handle while the reset is in
progress. The IndicationComplete notifies the protocol that the MAC can continue handling
Requests.

5
5-22

NDIS:
Specification of
Primitives

SetPacketFilter
Purpose: Select received packet general filtering parameters.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
FiIterMask
o
7
MACDS

; Module ID of Protocol
; Unique handle for this request or 0
; Bit mask for packet filter
; Pad parameter - must be 0
; Set Packet Filter Request
; DS of called MAC module

FilterMask bit

Returns:

Description:

o directed and multicast or group and functional
1 broadcast packets
2 any packet on LAN (promiscuous)
3 any source routing packet on LAN
4-15 Reserved, must be zero

OxOOOO
OxOOO2
OxOOO6
OxOOO7
OxOOO8
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INV ALID _FUNCfION
GENERAL_FAILURE

This function implies to the MAC the kind of packets it should allow indications to be generated. A
packet filter of 0 indicates that the MAC should not indicate received packets.

NOTE: The packet filter used by the MAC mayor may not correspond to the capabilities of the
hardware adapter. For example a MAC may be designed to receive multicast frames by
promiscuously receiving all frames and discarding those that do not match the filter. It is optional
for the MAC to support such software filtering.

If the MAC does not support the receiving packets of the type specified it will return
GENERAL_FAILURE. In this case the packet filter is left in its previous state.

If this Request returns SUCCESS the hardware is enabled to receive the types of packets requested
and will generate Indications to the protocol for those types of packets. Filtering implied by the bits
in Filtermask is optional. For example, a protocol may receive broadcast packets even if bit 1 is not
set in the filter.

NOIS: 5
Specification of

Primitives

5-23

AddMulticastAddress
Purpose: Allow adapter to respond to a multicast address.

; Module ID of Protocol PUSH WORD
PUSH WORD
PUSH WORD
PUSH LPBUF
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
o
MultiAddr
8

; Unique handle for this request or 0
; Pad parameter - must be 0
; Buffer containing multicast address
; Add Multicast Address Request

MACDS ; DS of called MAC module

Returns:

Description:

OxOOOO
OxOOO2
OxOO06
OxOO07
OxOOO8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INV ALID _PARAMETER
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

This function allows the addition of multicast addresses. The term multicast address also implies
802.5 group addresses. This function allows the addition of only one address at a time but can be
repeated to add more mul ticasts.

It is the MAC's responsibility to return an error if too many multicast addresses have been added
- (INVALID_FUNCfION error) or if an address of the wrong type has been added

(!NV ALID _PARAMETER).

Multicast addresses are never over written and will return an error (INVALID_PARAMETER error)
if they already exist no matter what their type. They must be explicitly deleted.

5
5-24

NDIS:
Specification of
Primitives

DeleteMulticastAddress
Purpose: Forbid adapter to respond to a multicast address.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH LPBUF
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
o
MultiAddr
9

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0
; Buffer containing multicast address
; Delete Multicast Address Request

Returns:

Description:

MACDS ; DS of called MAC module

OxOOOO
OxOOO2
OxOOO6
OxOOO7
OxOOO8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNcrION
NOT_SUPPORTED
GENERAL_FAILURE

This function removes a previously added multicast address. The tenn multicast address also
implies 802.5 group addresses.

UpdateStatistics

NOIS: 5
Specification of

Primitives

5-25

Purpose: Cause MAC statistics to be updated.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

Pro tID
ReqHandle
o

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0

Returns:

Description:

o ; Pad parameter - must be 0
10
MACDS

; Update Statistics request
; DS of called MAC module

OxOOOO
OxOO02
OxOO06
OxOO07
OxOOO8
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCTION
GENERAL_FAILURE

Causes the MAC to atomically update the statistics counters in its characteristics table. The
requester can read that table when this operation completes. If the statistics table are always current
this function should return SUCCESS.

5
5-26

ClearStatistics

NDIS:
Specification of
Primitives

Purpose: Cause MAC statistics to be cleared.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandIe
o

; Module ID of Protocol
; Unique handle for this request or 0
; Pad parameter - must be 0

Returns:

Description:

o ; Pad parameter - must be 0
11
MACDS

; Clear Statistics request
; DS of called MAC module

OxOOOO
OxOO02
OxOOO6
OxOO07
OxOO08
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCITON
GENERAL_FAILURE

Causes the MAC to reset its statistics counters. This implies that all statistics should be reset to zero
in an atomic operation.

Interrupt

NOIS: 5
Specification of

Primitives

5-27

Purpose: Request asynchronous indication.

Pro tID ; Module ID of Protocol
o
o
o

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

12
MACDS

; Pad parameter - must be 0
; Pad parameter - must be 0
; Pad parameter - must be 0
; InterruptRequest
; DS of called MAC module

Returns:

Description:

OxOOOO
OxOOO6
OxOO08
OxOOO9
OxOOFF

SUCCESS
OUT_OF _RESOURCE
INVALID_FUNCTION
NOT_SUPPORTED
GENERAL_FAILURE

This function requests the MAC to generate an asynchronous Interrupt Status indication back to the
protocol. The protocol may control the generation of this Interrupt Status indication by disabling
and later enabling indications. The MAC may at its discretion suppress the generation of this
indication if there is another indication pending which may be issued in place of the Interrupt status
indication. This request is intended to be used for MAC's which can generate a hardware interrupt
on demand. This function should be implemented if at all possible. Interrupt request will
substantially mprove the performance of some protocols (particularly DLC).

5
5-28

SetFunctionalAddress

NDIS:
Specification of
Primitives

Purpose: Cause adapter to change its functional address.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH LPBUF
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
o
FunctAddr
13
MACDS

; Module ID of Protocol
. ; Unique handle for this request or 0
; Pad parameter - must be 0
; Buffer containing functional address
; Set Functional Address Request
; DS of called MAC module

Returns:

Description:

OxOOOO
OxOOO2
OxOOO6
OxOOO7
OxOOO8
OxOOO9
OxOOFF

SUCCESS
REQUEST_QUEUED
OUT_OF _RESOURCE
INVALID_PARAMETER
INVALID_FUNCfION
NOT_SUPPORTED
GENERAL_FAILURE

This sets the IEEE802.5 functional address to the passed functional address. The adapter will use
the functional address to discern packets intended for it. For more information on functional
addresses see the IEEE 802.5 specification.

SetLookahead

NOIS: 5
Specification of

Primitives

5-29

Purpose: Set length of lookahead infonnation for ReceiveLookahead.

PUSH WORD
PUSH WORD
PUSH WORD
PUSH DWORD
PUSH WORD
PUSH WORD
Call Request

ProtID
ReqHandle
Length
o
14
MACDS

; Module ID of Protocol
; Unique handle for this request or 0
; Minimum length of lookahead info
; Pad parameter - must be 0
; Set Lookahead Request
; DS of called MAC module

Returns: OxOOOO
OxOO02
OxOOO7
OxOOFF

SUCCESS
REQUEST_QUEUED
INV ALID _PARAMETER
GENERAL_FAILURE

Description:

This request sets the minimum length in bytes of lookahead infonnation to be returned in a Receive
Lookahead indication. Until SetLookahead is initially called, a value of 64 bytes is assumed for the
lookahead length. When first called, SetLookahead sets the lookahead length value equal to the
Length parameter of the request. After the first SetLookahead request, the lookahead length is
changed only if the value of the Length parameter is larger than the current lookahead length.
SetLookahead may be called at any time and the lookahead length is preserved during a reset. The
maximum value for the lookahead length is 256 bytes. MAC's which never call Receive Lookahead

_ or always return lookahead information of length greater than or equal to 256 bytes may return
. SUCCESS without any internal action.

5
5-30

NOIS:
Specification of
Primitives

General Request Confirmation
Purpose: Confmn completion of a previous General Request.

PUSH WORD ProtID
PUSH WORD MACID

; Module ID of Protocol
; Module ID of MAC

PUSH WORD ReqHandle ; Unique handle of original request
; Final status of original request PUSH WORD Status

PUSH WORD Request ; Original Request opcode
PUSH WORD ProtDS
Call RequestConfinn

Returns:

Description:

OxOOOO
OxOOO6
OxOOO7
OX()()24
OxOOFF

; DS of called Protocol module

SUCCESS
OUT_OF _RESOURCE
INV ALID_PARAMETER
HARDWARE_FA~URE
GENERAL_FAILURE

Notify a protocol that an asynchronous MAC control Request has completed after previolls Request
had returned a REQUEST_QUEUED. It is possible that a RequestConfmn can be returned to the
protocol before the protocol's corresponding Request function has completed.

The ProtID parameter must be the value passed by the protocol on the previous general request to
identify the requestor.

Status Indication

NOIS: 5
Specification of

Primitives

5-31

Status indications are spontaneous calls from a MAC to a protocol, typically at interrupt time. They
inform the protocol of changes in MAC status.

All status indications have the following common calling convention:

PUSH WORD
PUSH WORD
PUSH LPBYTE
PUSH WORD
PUSH WORD
Call Status

MACID
Paraml
Indicate
Opcode
ProtDS

; Module ID of MAC
; Opcode dependent word parameter or 0
; Virtual address of indicate flag
; Opcode of status indication
; DS of called Protocol module

Indicate is the viz:tual address of the indication flag byte. This byte is set to OxFF by the MAC prior
to this call. If the protocol clears the byte to zero prior to returning then indications will be left
disabled until IndicationOn is called from IndicationComplete.

5
5-32

RingStatus

NOIS:
Specification of
Primitives

Purpose: Return a change in ring status.

PUSH WORD
PUSH WORD
PUSH LPBYTE
PUSH WORD
PUSH WORD
Call Indication

Returns: OxOOOO

Description:

MACID
Status
Indicate
1
ProtDS

; Module ID of MAC
; New Ring Status
; Virtual address of indicate flag
; Ring Status Indication
; DS of called protocol module

SUCCESS

Called by 802.5-style drivers to indicate a change in ring status. The status codes can be found in
the IBM Token Ring Technical Reference Manual.

AdapterCheck
Purpose: Return hardware status.

PUSH WORD
PUSH WORD
PUSH LPBYTE
PUSH WORD
PUSH WORD
Call Indication

MACID
Reason
Indicate
2
ProtDS

NDIS: 5
Specification of

Primitives

5-33

; Module ID of MAC
; Reason for Adapter Check
; Virtual address of indicate flag
; Adapter Check Indication
; DS of called protocol module

Returns: OxOOOO SUCCESS

Description:

Called to indicate an adapter error. This is to be considered fatal. For 802.5, error definitions are
defined in the IBM Token Ring Technical Reference Manual. Note that these definitions are merely
adhered to for ease of DLC implementation; MAC's other than 802.5 can generate this indication.

5
5-34

StartReset

NOIS:
Specification of
Primitives

Purpose: Imply that adapter has started a reset.

PUSH WORD
PUSH WORD
PUSH LPBYTE
PUSH WORD
PUSH WORD
Call Indication

MACID
o
Indicate
3
ProtDS

; Module ID of MAC
; Pad parameter must be zero
; Virtual address of indicate flag
; S tart Reset Indication
; DS of called protocol module

Returns: OxOOOO SUCCESS

Description:

Called to indicate that adapter has started a reset. This function always returns SUCCESS.

Interrupt

NDIS:
Specification of

Primitives 5
5-35

Purpose: Imply that an interrupt has occurred as the result of a interrupt request.

PUSH WORD MACID
PUSH WORD 0
PUSH LPBYTE Indicate
PUSH WORD 4
PUSH WORD ProtDS
Call Indication

; Module ID of MAC
; Pad parameter must be 0
; Virtual address of indicate flag
; Interrupt indication
; DS of called protocol module

Returns: OxOOOO SUCCESS

Description:

The MAC calls this function to indicate to a protocol that an interrupt requested by an Interrupt
request has occurred. Since this indication may be deferred by disabling indications, a protocol may
use this mechanism to implement a simple scheduling scheme to allow it to regain control once
outside of a critical code region. The MAC may at its discretion suppress the generation of this
indication if there is another indication pending which may be issued in place of the Interrupt status
indication.

5
5-36

System Requests

NDIS:
Specification of
Primitives

All MAC and protocol modules implement a set of system request functions that support module
independent functions such as binding. The caller of these functions is usually the Protocol
Manager. The entry point for system requests is defined in the common characteristics table for the
module. All system requests are implemented synchronously. Note that all pointers in system
requests are Ring 0 GDT virtual addresses.

All system requests have the following common calling convention:

PUSH DWORD
PUSH DWORD
PUSH WORD
PUSH WORD
PUSH WORD
Call System

Paraml
Param2
Param3
Opcode
TargetDS

; Request dependent dword parameter or 0
; Request dependent dword parameter or 0
.; Request dependent word parameter or 0
; Opcode of request
; DS of called module

InitiateBind

NOIS: 5
Specification of

Primitives

5-37

Purpose: Instruct a module to bind to another module.

PUSH DWORD
PUSH LPBUF
PUSH WORD
PUSH WORD
PUSH WORD
CALL System

o
CharTab
LastBind
1

; Pad parameter must be 0
; Characteristics of module to bind
; Non-zero if last InitiateBind
; Initiate Bind Request

Returns:

Description:

ProtDS

OxOOOO
OxOOO8
OxOO21
OxOO22
OxOO23
OxOO24
OxOO25
OxOO26
OxOO27
OxOO28
OxOOFF

; DS of called Protocol module

SUCCESS
INV ALID _FUNCITON
INCOMPLETE_BINDING
DRIVER_NOT_INITIALIZED
HARDWARE_NOT_FOUND
HARDWARE_FAILURE
CONFIGURATION_FAILURE
INTERRUPT_CONFLICT
INCOMPATIBLE_MAC
INITIALIZATION_FAILED
GENERAL_FAILURE

This call is issued by the Protocol Manager to an upper protocol module. It passes the address of the
characteristics table of the lower module that the upper module should issue a Bind call to. LastBind

.- is used to indicate the last Initiate Bind request so the module may perform any final initialization
prior to returning. If a module other than a MAC does not have lower bindings, the Protocol
Manager will still issue an Initiate Bind to the module to allow final initialization. In this case
CharTab will be NULL and LastBind will be non-zero.

If the Bind operation fails then the Initiate Bind operation should also fail returning the same return
code as the failing Bind call.

5
5-38

Bind

NDIS:
Specification of
Primitives

Purpose: Exchange module characteristic table infonnation.

PUSH LPBUF
PUSH LPBUF

CharTab
TabAddr

; Pointer to caller's table
; Address where to return a pointer
; to called module's characteristics
; Pad parameter must be zero o PUSH WORD

PUSH WORD
PUSH WORD
CALL System

2
TargetDS

; Bind Request
; DS of called module

Returns:

Description:

OxOOOO
OxOOO8
OxOO22
OxOO23
OxOO24
OxOO25
OxOO26
OxOO27
OxOO28
OxOOFF

SUCCESS
INVALID_FUNCTION
DRIVER_NOT_INITIALIZED
HARDWARE_NOT_FOUND
HARDWARE_FAn...URE
CONFIGURATION_FAILURE
INTERRUPT_CONFLICT
INCOMPATIBLE_MAC
INITIALlZA TION_FAn...ED
GENERAL_FAn...URE

U sed by one module to bind to another. It exchanges pointers to
characteristics tables between the two modules. A MAC will accept
only one bind and will not accept additional bind attempts.

NOIS: 5
Specification of

Primitives

5-39

Protocol Manager Primitives
Since the Protocol Manager primitives may be accessed via an IOCfL in OS/2, a request block is
defined as follows:

struct ReqBlock
{

};

unsigned Opcode;
unsigned Status;
char far *Pointerl;
char far *Pointer2;
unsigned Word1;

/*Opcode for Protocol Manager request
/*Status at completion of request
/*First parameter Ring 0 GDT pointer
/*Second parameter Ring 0 GDT pointer
/*Parameter word

*/
*/
*/
*/
*/

Direct calls are made to the Protocol Manager with a pointer to the ReqBlock on the stack. For
IOCfL requests, the parameter buffer contains a pointer to the ReqBlock. The direct calling
sequence is as follows:

PUSH LPBUF
PUSH WORD
Call ProtManEntry

ReqBlock
TargetDS

; Ring 0 GDT Address of ReqBlock
; DS of Protocol Manager

Note that under OS(2 the direct entry cannot be used at CONFIG.SYS initialization time since the
driver is still in Ring 3 context.

5
5-40

NDIS:
Specification of
Primitives

GetProtocolManagerlnfo
Purpose: Retrieve pointer to configuration image.

Opcode

Status

Pointerl

Pointer2

Word!

Returns:

Description:

- 1

- On return contains request status

- On return contains a FAR pointer to the structured memory image representing the
parsed user configuration file PROTOCOL.lNI. For OS/2 the selector of the pointer
returned here is valid only at device INIT time. This pointer cannot be used later.
For DOS this is a ~egment:offset pair.

- Unused

- On return contains the BCD-encoded major (low byte in memory) and minor (high
byte in memory) version of the specification on which this Protocol Manager driver is
based. (1.0 for this specification)

OxOOOO
OxOOFF

SUCCESS
GENERAL_FAILURE

This request is used by a module to obtain the configuration information parsed from the user
defined protocol configuration file PROTOCOL.INI. Modules invoke this function during device
driver initialization to obtain this information for initializing configuration variables and making
dynamic memory allocations and to determine their inter-module bindings.

NDIS: 5
Specification of

Primitives

5-41

RegisterModule

Purpose: Register a module and its bindings.

Opcode

Status

Pointer!

Pointer2

Word!

Returns:

Description:

-2

- On return contains request status

- Contains a FAR pointer to the module's common characteristics table. The module
should have all information in that table filled in except for the Module ID which is
filled in by the Protocol Manager on return.

- Contains a FAR pointer to a BindingsList structure of the modules to which this
module wishes to be bound to. The Protocol Manager will use only the information
passed in the BindingsList to determine the relevant module bindings.

-Unused

OxOOOO
OxOOFF

SUCCESS
GENERAL_FAILURE

This request is used by a driver to identify one of its contained modules to the Protocol Manager.
After calling register module, a driver must remain installed and respond to system requests. This
register is accomplished by passing a pointer to the module's characteristics table to the Protocol
Manager. The driver also passes a bindings list requested by the module. The bindings list contains
the one or more module names which the module wishes to bind to as a client. This binding
information is later used by the Protocol Manager to determine necessary sequence of InitiateBind
commands to issue.

A driver which contains multiple modules can call Register Module multiple times, once for each
module. The Protocol Manager responds to each request by assigning each module a module ID.
The module ID is returned in the module's characteristics table on completion of the Register
Module request.

5
5-42

NOIS:
Specification of
Primitives

BindAndStart
Purpose: Initiate the binding process.

Opcode

Status

Pointerl

-3

- On return contains request status

- Caller's virtual address of FaiIingModules structure. This structure in the caller's
address space is filled in by the Protocol Manager prior to returning from
BindAndStart. If BindAndStart reports an error, it contains the module names in
ASCIIZ fonnat of the upper module and lower module (may be a NULL string)
reporting the error. If BindAndStart is successful then both are NULL strings.

struct FaiIingModules
(
char UpperModuleNarne[16]; /* Upper failing module */
char LowerModuleN arne { 16} ;/* Lower failing module * /
}

Pointer2

Word!

Returns:

Description:

- Unused

- Unused

OxOOOO
OxOOO7
OxOOO8
OxOO20
OxOO21
OxOO22
OxOO23
OxOO24
OxOO25
OxOO26
OxOO27
OxOO28
OxOO29
OxOOFF

SUCCESS
INVALID _PARAMETER
INVALID_FUNCTION
ALREADY_STARTED
INCOMPLETE_BINDING
DRIVER_NOT_INITIALIZED
HARDWARE_NOT_FOUND
HARDWARE_FAILURE
CONFIGURATION_FAILURE
INTERRUPT_CONFLICT
INCOMPATIBLE_MAC
INITIALIZATION_FAILED
NO_BINDING
GENERAL_FAILURE

This is used to trigger the Protocol Manager bind and start sequence. This permits an application
program (e.g., executing from an AUTOEXEC.BAT or STARTUP.CMD file) to trigger the bind
sequence. The bind sequence is invoked by the Protocol Manager's calling each module's inter
module InitiateBind function. If an InitiateBind fails then BindAndStart will fail with same return
code as the failing InitiateBind.

NOIS: 5
Specification of

Primitives

5-43

GetProtocolManagerLinkage
Purpose: Retrieve Protocol Manager Dispatch and DS Value.

Opcode

Status

Pointer!

Pointer2

Word!

Returns:

Description:

-4

- On return contains request status

- On return contains the Protocol Manager Dispatch point.

- Unused

- On return contains the Protocol Manager DS.

OxOOOO
OxOOFF

SUCCESS
GENERAL_FAILURE

This request is used by a module to obtain the dispatch entry point and DS of the Protocol Manager.
Direct calls may then be made by Ring 0 drivers to the dispatch entry point.

NDIS: 6
Protocol Manager

6-1

Chapter 6: Protocol Manager

Protocol Manager Initialization
The Protocol Manager is loaded and initialized in both the OS/2 and DOS environment via the
operating system CONFIG.SYS INIT sequence. It must be loaded before any protocol or MAC
driver is loaded. In DOS the Protocol Manager will be provided in a file called PROTOMAN.DOS.
For OS/2 the file is PROTMAN.OS2. This device header name for the Protocol Manager device
driver is PROTMAN$.

For OS/2 and DOS the PROTOCOL.INI file is read at INIT time by the Protocol Manager and
parsed into a memory image.

If the Protocol Manager CONFIG.SYS initialization is successful it is ready to support the
initialization of the other drivers. However the initialization can be aborted for either of the
following reasons:

1. The Protocol Manager did not have enough memory to hold the PROTOCOL.INI
configuration memory image.

2. The Protocol Manager encountered a syntax error while parsing the PROTOCOL.INI file.
This could have been an illegal hex or decimal parameter value, an overflow condition
(numeric value could not fit into 32 bits) was encountered or a string was encountered with
missing end quotes.

These conditions are flagged as fatal errors to prevent erroneous configuration parameters from
propagating to the drivers for their operation.

Binding Sequence
The Protocol Manager works from the bottom to the top of the protocol hierarchy, telling each upper
module to bind to the appropriate lower module. The command used to do this is called
InitiateBind. In response, the upper module initiates a Bind command to the specified lower module,
which serves to exchange characteristics tables directly between the two modules.

An important aspect of the binding scheme is that it allows for modules to specify that they only do
binding from above or below. This is a requirement in cases where a monolithic module exposes
several interfaces, such as a NetBIOS, TLI, and DLC. The TLI could be presented as a logical
module that had an upper interface (the TLI) but no lower interface (since it uses a private internal
interface to its DLC). Such a module would have a characteristics table with the following settings:

DWORD

BYTE

BYTE

BYTE

BYTE

LPBUF
LPBUF

6 NOIS:
Protocol Manager

6-2

Module function flags, a bit mask (hints only):
Bit 0 - set (binds at upper boundary)
Bit 1 - clear (doesn't bind at lower boundary)

Protocol level at upper boundary of module:
4 - Transport

Type of interface at upper boundary of module:
1 =>TLI

Protocol level at lower boundary of module
-1 - Not specified

Type of interface at lower boundary of module:
For any level: 0 => private (ISV defined)
Pointer to upper dispatch table
Pointer to lower dispatch table (NULL)

Sequence for non-VECfOR configurations:

1. Protocol Manager driver (PROTMAN.OS2 for OS/2 or PROTMAN.DOS for DOS) is loaded
during CONFIG.SYS initialization. The Protocol Manager must be configured ahead of any
MAC or protocol drivers in CONFIG.SYS.

2. Protocol Manager initializes and reads PROTOCOL.INI to build the configuration memory
image.

3. MAC and protocol drivers are loaded by the operating system. During its initialization
processing, each driver optionally does the following:

a. Open the PROTMAN$ device

b. Use the GetProtocolManagerInfo call to PROTMAN$ to get a pointer to the
configuration memory image.

c. Read configuration parameters from the image and use these to finish initialization and
build characteristics tables.

d. Use the RegisterModule function once for each module to be defined to the Protocol
Manager.

4. CONFIG.SYS processing ends and applications are started.

5. An application opens the PROTMAN$ device and issues the BindAndStart IOCTL.

6. The Protocol Manager uses infonnation passed on previous RegisterModule calls to determine
the module binding hierarchy.

NDIS:
Protocol Manager 6

6-3

7. Proceeding from bottom to top of the binding hierarchy, the Protocol Manager uses
InitiateBind to cause each module to bind to the module below it in the hierarchy. Each
module getting this call responds by issuing a Bind call to the module specified by the Protocol
Manager on InitiateBind.

8. When all modules have been bound, the Protocol Manager returns from BindAndStart.

The system is now fully operational.

OS/2 Calling Convention
All of the Protocol Manager requests are supported by a single OS/2 IOCfL function. The services
are demultiplexed via a function code specified in the ReqBlock structure.

This IOC1L has the following IOCfL request packet parameters:

1. Block Device Unit Code: Undefined since the Protocol Manager is a character device.

2. Command Code: 16 for Generic IOCfL.

3. Status: If the IOCTL corresponds to one of the Protocol Manager commands then the status
field is returned with the ERR bit cleared signifying IOC1L successful completion. However
the final status of the command is returned in the "status" field of the ReqBlock buffer as
defined below. Note that if the command is recognized the ERR bit is always cleared
regardless of the status returned in "status", However if the command is not recognized an
IOCfL status UNKNOWN_COMMAND (3) is returned with the ERR bit set. Finally all of
the commands return with the status "DON" bit set.

4. Category code: Ox81 which is the LAN Manager category code.

5. Function code: Ox58 for Protocol Manager command type.

6. Parameter buffer: Pointer to ReqBlock structure.

7. Data buffer: Unused and therefore the pointer is NULL.

By using the GetProtocolManagerLinkage request a module may obtain the Protocol Manager
dispatch point and DS. Once a module obtains the Protocol Manager's entry point and data segment
it passes the a request to the Protocol Manager via the following function call:

int (far pascal *ProtManEntry)(ReqBlockPtr, DataSeg);
struct ReqBlock far *ReqBlockPtr;
unsigned DataSeg;

6 NDIS:
Protocol Manager

6-4

where:

ReqBlockPtr = a FAR pointer to the request block

DataSeg = the Protocol Manager's data segment base.

The Protocol Manager returns in AX. the same return code that is
returned in the ReqBlock "status".

DOS Calling Convention
All of the Protocol Manager requests are supported by a single DOS IOCfL function. The services
are demultiplexed via a function code specified in the ReqBlock. This IOCfL should be requested
via Interrupt 21 with general registers loaded with the following contents:

AH = 44H for IOCfL request
AL = 02H for device input
DS :DX = Pointer to ReqBlock structure
ex = 14 for the size of the ReqBlock structure
BX = Handle from DOS Open of "PROTMAN$"

This IOCTL generates the following IOCTL request packet parameters:

1. Block Device Unit Code: Undefined since the Protocol Manager is a character device.

2. Command Code: 3 for IOCTL input.

3. Status: If the IOCTL corresponds to one of the Protocol Manager commands then the status
field is returned with the ERR bit cleared signifying IOCTL successful completion. However
the final status of the comman~ is returned in the "status" field of the ReqBlock buffer as
defined below. Note that if the command is recognized the ERR bit is always cleared
regardless of the status returned in "status". However if the command is not recognized an
IOCTL status UNKNOWN_COMMAND (3) is returned with the ERR bit set. Finally all of
the commands return with the status "DON" bit set.

4. Media Descriptor Byte: Unused

5. Transfer Address: Pointer to ReqBlock structure.

6. Byte/Sector Count: 14

7. Starting Sector Number: Unused

By using the GetProtocolManagerLinkage request a module or application may obtain the Protocol
Manager dispatch point and DS. It then makes a request to the Protocol Manager via the same direct
calling mechanism as OS/2.

Chapter 7: VECTOR

NDIS: 7
VECTOR

7-1

The VECfOR is a function that is implemented within the Protocol Manager that allows more than
one protocol stack to drive a single MAC. The Protocol Manager uses the VECfOR function only if
it detects that more than one protocol will be using the same MAC. If more than one MAC is
attached to multiple protocol stacks then an instantiation of the VECTOR is created for each MAC
so attached.

VECTOR Binding
The Protocol Manager will modify the normal binding process if it detects that multiple protocols
have requested the use of the same MAC in the PROTOCOL.INI file.

1. At INIT time from RegisterModule the Protocol Manager has determined the bind hierarchy
and has found some MAC's that bind to 2 or more protocols, signaling the insertion of
VECfOR.

2. To a MAC that will support multiple protocol stacks, the Protocol Manager issues Bind passing
a Protocol Manager characteristics table with entry points into the VECTOR module. The
MAC starts itself and returns, passing back to the Protocol Manager a pointer to the MAC's
characteristic table.

3. For a protocol that is part of a multiple protocol stack binding to the single MAC that was
issued the previous Bind command, the Protocol Manager issues InitiateBind passing as the
bind inter-module entry point, an entry point within the VECTOR module inside of the
Protocol Manager.

4. The protocol module responds by issuing a Bind request back to the Protocol Manager through
its VECTOR entry point. The protocol module passes its characteristics table to the Protocol
Manager VECTOR. The Protocol Manager returns the characteristics table of the associated
MAC, substituting the VECTOR entry points for the real MAC's entry points. The protocol
then starts itself and returns from InitiateBind.

5. The Protocol Manager then issues subsequent Initiatebind to other protocol modules as
described above. If these other protocols are bound to a MAC through the VECTOR, the
VECTOR procedure is repeated. Otherwise the non-VECTOR procedure is used.

At the conclusion of the binding process the VECTOR is in a position to filter calls as appropriate
going in either direction across the MAC/protocol interface.

7 NDIS:
VECTOR

7-2

Vector Demultiplexing
The Vector dispatches incoming frames to protocol stacks based on the Interface Flags variable in
the protocol's lower dispatch table. These flags describe the protocol according to the kinds of
frames it handles:

• Protocols that handle non-LLC frame

• Protocols that handle LLC frames with specific LSAP's

• Protocols that handle LLC frames with non-specific LSAP's

The Vector will poll protocols in that order (and within that, in the order they Registered~ until it
finds one that will accept the frame. '

NDIS: A
System Return Codes

A-1

Appendix A: System Return Codes
OxOOOO SUCCESS: The function completed successfully.

OxOOOl WAIT_FOR_RELEASE: The ReceiveChain completed successfully but the protocol has
retained control of the data buffer. ReceiveRelease will be called to release the data buffers.

OxOOO2 REQUEST_QUEUED: The current request has been queued. If the request handle is non
zero the module will call TransmitConfirm or RequestConfinn when the request completes.

OxOOO3 FRAME_NOT_RECOGNIZED: Returned from the protocol when a MAC does an
Indication and the frame does not make sense to the protocol. This may be interpreted by the
VECTOR to mean that the next protocol in line ought to be called with the Indication.

Ox0004 FRAME_REJECTED: A received frame was recognized but it was discarded. The buffer
may be immediately re-used.

Ox0005 FORWARD_FRAME: A protocol wishes the received frame to be offered to other
protocols but wishes to receive an IndicationComplete. This may be interpreted by the VECTOR to

._ mean that the next protocol in line ought to be called with the Indication.

Ox0006 OUT_OF _RESOURCE: The module is in a transient out of resource condition. The current
request was not completed.

Ox0007 INVALID_PARAMETER: One or more parameters was invalid.

OxOOO8 INVALID_FUNCTION: A command function was requested when it was not legal to do so
or a invalid request was made.

Ox0009 NOT_SUPPORTED: A valid request which is not supported by the Module was issued.

OxOOOA HARDWARE_ERROR: A hardware error occurred during the execution of this request.
The request was not completed successfully.

Ox0020 ALREADY_STARTED: The Protocol Manager has already started the network drivers.
This error occurs when BindAndStart is called more than once.

Ox0021 INCOMPLETE_BINDING: This bind-time error occurs when the Protocol cannot complete
all of the bindings described in the bindings list, most probably due to missing modules.

A NOIS:
System Return Codes

A-2

Ox0022 DRIVER_NOT_INITIALIZED: This bind-time error occurs when the MAC does not
initialize properly during system boot, and a subsequent request is made to the MAC.

Ox0023 HARDW ARE_NOT_FOUND: This bind-time error occurs when the network adapter is not
found by the MAC.

Ox0024 HARDWARE_FAILURE: This bind-time error occurs in the following cases: network
adapter reset failed, network adapter diagnostics failed, network adapter is not responding, network
adapter is not found by the MAC.

Ox0025 CONFIGURA TION_FAaURE: This bind-time error occurs when the configuration is
unacceptable to the network adapter.

Ox0026INTERRUPT_CONFLICf: This bind-time error occurs in OS/2 only, when an interrupt
from some other device in the computer conflicts with the network adapter's.

Ox0027 INCOMPATIBLE_MAC: This bind-time error occurs when a Protocol determines a MAC
is not compatible for the binding operation. Thus, binding cannot proceed.

Ox0028 INITIALIZATION_FAILED: This bind-time error occurs when a Protocol fails its
initialization.

Ox0029 NO_BINDING: This bind-time error occurs to indicate that the binding was not perfonned.
This error can occur if a protocol driver took an error exit during its initialization or if a protocol
driver has its upper level incorrectly specified as a MAC.

OxOOFF GENERAL_FAILURE: Unspecified failure during execution of the function

OxFOOO - OxFFFF: Reserved for vendor defined error returns. These errors are treated as
GENERAL_FAILURE.

NOIS:
Reference Material B

8-1

Appendix 8: Reference Material
OS/2 Device Drivers Guide

DOS Technical Reference

ANSI/IEEE standard 802.2 - 1985 (ISO/DIS 8802/2) Logical link control standard.

ANSI/IEEE standard 802.5 - 1985 (ISO/DIS 8802/5) Token ring local area network standard.

ANSI/IEEE standard 802.3 - 1985 (lSOIDIS 8802/3) Carrier Sense Multiple Access with Collision
Detection local area network standard.

The Ethernet. A Local Area Network. Data Link Layer and Physical Layer Specifications, V2.0,
November 1982. Also known as the "Ethernet Blue Book"

IBM Token Ring Network PC Adapter Technical Reference (69X7830)

IBM Token Ring Network Architecture Reference - November 1985 (6165877)

Information processing systems - Open Systems Interconnection - Basic Reference Model, (ISO
7498) The OS! reference model.

NOIS: C
802.3 Media Specific

Statistics

C-1

Appendix C: 802.3 Media Specific Statistics
The 802.3 media specific statistics structure is defined as follows:

WORD
WORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Length of 802.3 Statistics structure, including this field
802.3 Statistics structure version level (1)
Frames with alignment error
Receive error failure mask
Frames with overrun error
Frames transmitted after at least 1 collision
Frames transmitted after deferring
Frames not transmitted - max (16) collisions
Total collision during transmission attempts
Late (out of window) collisions
Frames transmitted after exactly 1 collision
Frames transmitted after multiple collisions
Frames transmitted, CD heartbeat
Jab ber errors
Carrier sense lost during transmission
Transmit error failure mask

The 802.3 failure masks are defined as follows:

Receive error failure mask:
Bit 0 = CRC error
Bit 1 = Framing error
Bit 2 = Frame size exceeds maximum
Bit 3-31 reserved, must be zero

Transmit error failure mask:
Bit 0 = Excessive collisions error
Bit 1 = Carrier check failed error (SQE test failed, CD heartbeat)
Bit 2 = Short circuit error
Bit 3 = Open circuit error
Bit 4 = Frame too long error
Bit 5 = Remote failure to defer error (out of window collision)
Bit 6-31 reserved, must be zero

On initialization the failure masks are O. A bit is set the first time the corresponding error occurs.

When updating the statistics counters, a frame is counted in all the supported counters that apply.

c
C-2

Examples:

NDIS:
802.3 Media Specific
Statistics

(a) A 'Receive frame with a eRe error' is counted in all the the following statistics counters:

• Total Frames received,

• Frames with eRe errors, and

• Frames with error counters.

(b) A 'Transmit frame with one collision' is counted in all the following statistics counters :

• Total Frames transmitted, .~

• Frames transmitted with one or more collision, and

• Frames transmitted with only one collision.

NOIS: D
OS/2 NETBIOS Device

Driver Interface

D-1

Appendix D: OS/2 NETBIOS Device Driver
Interface

Introduction
NetBIOS drivers install as standard OS/2 device drivers. All programming considerations for device
drivers apply to NetBIOS drivers, with the additions noted herein.

Because NetBIOS drivers get called by the operating system to do I/O, a direct Ring 0 linkage
mechanism has been defined. This allows OS/2 to request network I/O services via a direct call to
the NetBIOS driver, as opposed to going through standard device driver interfaces.

OS/2 performs a standard DosDevloctl to the NetBIOS driver to get the far address of the direct I/O
routine. This routine is analogous to a real mode INT 5C handler-i.e., it gets called with a pointer to
an NCB. All NCB's passed to this routine contain physical buffer addresses only and the NCB and
buffers have already been locked if appropriate. A convention is defined to support OEM-defined
NCB's such that the operating system can still perform appropriate locking on behalf of the extended
NCB's.

To support NetBIOS drivers, the operating system provides two standardized routines,
PhysNCBDone and VirtNCBDone, for handling NCB completion. NetBIOS drivers need not
process synchronous or asynchronous NetBIOS options; they just call an NCBDone routine when
processing is complete. The linkage to the NCB Done routines is defined below.

We recommend that NetBIOS drivers for LanMan support a configurable "call" time-out. This
parameter specifies the maximum amount of time that the driver will wait for a response from the
remote machine when handling Call, AddName, and AddGroupName NCB's. The parameter should
be settable from the DEVICE= line in the CONFIG.SYS file.

D
0-2

NDIS:
OS/2 NETBIOS Device
Driver Interface

NetBIOS Driver Configuration
NetBIOS drivers are nonnal OS/2 device drivers and are installed by inserting a DEVICE=
statement in CONFIG.SYS. Note that NetBIOS drivers depend on the Microsoft-supplied
NE1WKSTA.SYS driver. This must be installed AFfER all NetBIOS drivers.

Multiple NetBIOS drivers can be installed in a single system. Each is described by a set of
parameters in a configuration file, LANMAN.lNI, as follows:

[networks]
netl = toknet$,O,LMIO,32,32,16
net2 = ethnet$,I,LMIO,32,32,16

The format of each NetBIOS network definition is:

<network name> = <DN>,<LN>,<type>,<NCB's>,<Sess>,<Name>

<DN>
<LN>
<type>
<NCB's>
<Sess>
<Name>

= OS/2 driver name
= LANA Number
= driver type
= Number NCB's
= Number Sessions
= Number Names

Required
Not required, default is 0
Not required, default is "LMIO"
Not required, default is driver default
Not required, default is driver default
Not required, default is driver default

When the workstation is initialized, it will initialize each driver using the <NCB's>, <Sess>, and
. <Name> parameters. This configuration information is processed by the NETWKSTA.SYS driver in
support of the protected mode NetBIOS API. It allows applications to open NetBIOS drivers by
logical name, independent of the actual OS/2 driver name and LANA number. The
NETWKST A.SYS driver also handles OS/2 related processing that is common to all NetBIOS
drivers, including translation of NCB's from virtual to physical form and synchronization between
interrupt time and task time asynchr.onous NCB completion.

NetBIOS Driver Initialization
Network drivers perform device initialization at load time just like any other device drivers. They
must also support a DosDevloctl command that is issued from OS/2 to the NetBIOS driver during
system initialization. The driver initialization sequence is:

1. Respond to the device Init command at driver load time by allocating packet buffers, setting up
tables, and running startup diagnostics as appropriate.

Note that GDT selectors (allocated via the AllocGDTSelector Device Help) are not valid to use
during initialization. Any access to memory that nonnally would be done via an allocated
GDT selector must be done via PhysTo Virt.

NDIS: D
OS/2 NETBIOS Device

Driver Interface

D-3

2. Respond to the sequence DosOpen, DosDevloctl: NetBIOSLinkage, DosClose. Via this
mechanism, the redirector passes in the entry points of PhysNCBDone and VirtNCBDone
routines and the lana number requested. The driver is responsible for filling in a table
parameters that the redirector needs.

Note that a driver must be prepared to respond to multiple initialization sequences of DosOpen/
DosDevloctl!DosClose. For a driver supporting multiple LANA's, this would happen once for each
LANA defined to the system.

NetBIOSLinkage: DosDevIocti Category 81, Subfunction 62

Purpose: Get NetBIOS driver linkage table.

Request packet 13-BYTE Request header

BYTE
BYTE
DWORD
DWORD

Function category = 81 h
Function code = 62h
Parameter buffer address
Data buffer address (returned)

Parameter Packet

WORD
WORD
DWORD

BYTE
BYTE
DWORD

Parameter Packet length in Bytes
Data Packet length in Bytes
NCB Done handler address

NOTE: This address is only valid after completion of CONFIG.SYS processing by
OS/2. Hence it may not be called until the first NCB has been received through the
NetBIOS NCB Handler entry point.

LANA Number (as specified in the NetBIOS network definition in LANMAN.INI)
Pad
VirtNCBDone handler address

NOTE: This address is only valid after completion of CONFIG.SYS processing by
OS/2. Hence it may not be called until the first NCB has been received through the
NetBIOS NCB Handler entry point.

The driver can determine if the given version of NETWKSTA.SYS supports the VirtNCBDone entry
point by checking the Parameter Packet length. If the length is less than 14 bytes, the VinNCBDone
entry point is not available.

The data buffer is filled in by the NetBIOS driver to contain the following NetBIOSLinkage
structure:

D
D-4

NDIS:
OS/2 NETBIOS Device
Driver Interface

NetBIOSLinkage structure:

WORD
WORD
BYTE
WORD
WORD

DWORD
WORD
WORD
WORD
WORD
DWORD
BYTE

OemExtTable:

WORD

WORD

where

Bytes of data returned in this table
Bytes of data actually available
Reserved do not change.
Net driver type (I=NCB, 2=MCB)
Network StabUs:
Bit 0: Reserved, must be zero
Bit 1: Cleared = normal driver

Set = loop back driver
Bit 2-15: Reserved, must be zero
Network bandwidth (bits/s)
Maximum sessions
Maximum number of NCB's
Maximum number of names
NetBIOS driver's DS value
NetBIOS NCB Handler address
N umber of commands in OEM extension table

ExtStruct

ExtStruct

ExtStruct structure:

Cmd
CmdInfo

BYTE
WORD

Extended NCB Command Opcode Value
Command descriptor bits

bit 0 == 1:
1 == 1:
2== 1:
3 == . 1:
4== 1:
6n == 0:

8 _---
9 _---
10==
11 ==

1:
2:
3:
1:
1:
1:
0:
1:

12-15 == 0:

standard buffer used
second buffer used
lock buffers
async option allowed
command is cancelable
invalid encoding
if regular command
if privileged command
if exclusive command
Uses LSN field
Uses N amN urn field
Uses Local Name Field (ncb_name)
Buffer segments must be read-write.
Buffer segments may be read-only ..
Reserved must be zero

NDIS: D
OS/2 NETBIOS Device

Driver Interface

D-5

The OemExtTable is optional (can have 0 entries). It defines NCB commands that are OEM-defined
extensions to the standard NetBIOS interface. The CmdInfo parameter describes the extended
NCB's usage of buffers and asynchronous notification. It also indicates whether the command is
cancelable and whether the requesting application needs to have opened the NetBIOS driver in
privileged or exclusive mode to issue the command. The operating system needs this information to
provide correct addressing and protection in making application-level buffers available to the
NetBIOS driver in physical address form. The highest three bits are used to protect Server and Redir
Sessions and Names from interference from user submitted NCB's.

NetBIOS NCB Handler
The NetBIOS NCB handler is entered via a far call. The calling conventions are essentially identical
to those for real-mode INT 5C, except that ES:BX is the virtual address of the NCB to be executed.
The physical address of the NCB is available in DX:AX.

Entry:

Return:

Errors:

ES:BX
DX:AX
DS
TOS:DWORD
TOS+4:DWORD
TOS+8:DWORD

AX

Virtual address of NCB
Physical address of NCB
NetBIOS driver's DS
Return address
Virtual address of NCB
Physical address of NCB

NetBIOS-defined result code

NetBIOS-defined immediate result codes

The virtual address of the NCB (passed in ES:BX and TOS+4) will be a GDT based address and will
be accessible by the driver (both at task time and interrupt time) until driver has completed the NCB
(or rejected it via the immediate return code).

Parameters are passed both in registers and on the stack. The NCB Handler must always exit via a
far return, with parameters removed from the stack and an immediate NCB return code in AX. These
conventions allow the handler to be coded in high level languages.

Note that if the immediate result code returned is non-zero, the NCB is considered to be completed,
an NCBDone routine must NOT be called. .

The addresses within the NCB are physical addresses that are guaranteed to be valid until the
invocation of PhysNCBDone or VirtNCBDone. OS/2 will handle locking and unlocking of these
data regions.

NOTE: When transferring blocks of data via REP instructions, a maximunl size of 2k is allowed.
See the OS/2 Device driver guidelines.

The values of the NCB_POST and the NCB_CMD_CPLT fields are reserved and must not be
. modified during the course of processing

D
D-6

NDIS:
OS/2 NETBIOS Device
Driver Interface

The NetBIOS NCB handler should not distinguish between synchronous and asynchronolls NCB's.
It need just start the necessary I/O going and return. NCB completion and synchronizatioJ\ is handled
by a Microsoft supplied routine, NCB Done.

NOTE: The NCB Handler MUST NOT blockat any time.

The interrupt routine must issue a far call to either P4ysNCBDone or VirtNCBDone upon
completing processing of an NCB (usually at Interrupt time). The address of the NCB being
completed must be passed to the given NCBDone routine on the stack (the far addresses of
PhysNCBDone and VirtNCBDone are passed to the driver via initialization-time DosDevloctl
described in this appendix, "NetBIOS Driver Initialization"). Entry conditions for PhysNCBDone
and VirtNCBDone: "

1. Mode = ProtMode. See DevHlp GoProt and GoReal documentation.

2. SS == SS at driver entry point (either interrupt handler or at task time). (Note: if GQProt is
used in an interrupt handler, SS == SS upon return from GoProt.)

3. Entry for PhysNCBDone
TOS:DWORD Return address
TOS+4:DWORD Physical address of NCB

Entry for VirtNCBDone
TOS:DWORD Return address
TOS+4:DWORD Virtual address of NCB as passed to the drivers NCB handler in ES:BX.

4. The NCB_RETCODE field has the correct Return Code value.

5. The Following fields must contain the values present at NCB submission time: NCB_POST,
NCB_CMD_CPLT.

6. All NetBIOS processing of this NCB must be complete. The internals of NCBDone reserve the
right to modify the NCB in any way.

NDIS: D
OS/2 NETBIOS Device

Driver Interface

D-7

Common Problems and Hints
• For perfonnance reasons, it is recommended that PhysToGDT be used whenever possible instead

of PhysTo Virt.

• When a Reset NCB is received, the driver MUST complete (call PhysNCBDone or
VirtNCBDone) all outstanding NCB's with a canceled or name deleted status. It is recommended
that for the driver's own protection, the driver should not accept any NCB's while a reset is in
progress. The handler should complete all other outstanding NCB's before completing the reset
NCB.

• The NCB Handler MUST NOT block at any time.

• When a session is aborted (as opposed to hung-up), the driver should be return error code I8H
(Session Ended Abnormally). The error code OAH (Session Closed) should only be returned
when either end hangs up the session. The redirector needs this information for its session
handling.

• The virtual address passed (on the stack) to VirtNCBDone must be the SAME address that was
passed to the drivers NCB handler in ES:BX (and on the stack).

• The driver may use either PhysNCBDone and VirtNCBDone, but must only call ONE of the
routines for any given NCB.

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	A-01
	A-02
	B-01
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07

