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Figure 7. Technique complexity comparison-learning rate. 

dicative of a nonrepresentative design sample rather 
than too fast a design rate .. 

Networks 4 and 5 were designed on reduced reso­
lution design patterns, using 90-by-90 and 60-by-60 
rasters, respectively. The generalization perfor­
mances were tested on full resolution patterns, how­
ever. Network 4, (see Fig. 11) with 240 property 
filters has early minima of 41 and 42%, and mid­
design minima of 43.5 and 46.5%, these latter occur­
ring at different points in the design. Performance 
no better than chance is observed 12 times in the 
design. Network 5 has 250 units and shows pro­
nounced minima only near the end of the design. 
These minima are 41 and 41.5%. Performance no 
better than chance is observed 10 times in the de­
sign. These figures represent significant deteriora­
tions from the first three networks. Combined with 
optical studies, which indicated that full resolution 
is necessary for many patterns, this result indicates 
that the property filters in the first three networks, 

at least in part, are dealing with the proper level of 
detail. 

Networks 6 and 7 were designed with restricte:d 
area subfields for the property filters, No.6 with 90-
by-90 subfields, No.7 with 45-by-45 subfields. �T�h�e�~�y� 

required 280 and 290 property filters. The rate of 
design was similar to the other networks until a 1 
or 2% error rate on the design patterns was 
achieved. Unlike the first four networks, the gener­
alization error rate did not incr:.!ase during the rc!­
maining network design. The minimum error �r�a�t�(�~�s� 

for network 6 (see Fig. 12) are 41.5 and 44.5%. Per­
formance is no better than chance seven time:s. For 
Network 7, the minimum error rates are 43.5 and 
45%. The design fails to better chance performance 
19 times. These results are significantly pooner than 
those with the first three networks. The condusion 
is that local properties are not desirable for thils 
problem when 10 input connections are used for 
each property filter. 
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Figure 9. Machine design #1. 

Optical studies were performed on TIROS 
frames. The resolution of 60 frames was altered to 
several levels using a screening process (see Fig. 13). 
The prints obtained were then examined by 15 to 20 
people, in order of increasing ~esolution. The reso­
lution level at which their decisions became consis­
tent with their final judgment was noted. For a re­
markable number of frames, the panel disagreed in 
their final judgment. When the resolution was too 
low, the frame was almost always judged nonvortex. 
Consequently, when the final judgment was nonvor­
tex, all preceding judgments were also. About half 

of the vortex decisions were reached at the highest 
resolution level (240 lines per frame). The othe~r 
half were made at the coarsest resolution levells 
(about 70 lines per frame). Very few final judgments 
were made at intermediate levels. 

SUMMARY AND CONCLUSIONS 

An extensive study of a particular design tech­
nique for pattern recognition, and particularly its 
application to TIROS photographs, has beem con­
ducted. Many aspects of the technique which were 
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Figure 10. Network performance-machine #1 plus #2 plus #3. 

not specific to this application were investigated in 
a series of experiments on alphabetic characters. 
Other experiments were performed on data from 
actual TIROS frames in an attempt to separate 
frames containing vortices from those which do not. 

Automatic design techniques for pattern recogni­
tion networks may be given varying degrees of 
coupling to a sample of patterns. At one extreme, 
the technique may be tightly coupled in that the 
only design criterion is the correct classification of 
the design sample of patterns. The drawback to this 
extreme is that even if the sample of patterns is very 
representative of the actual distributions, the finite­
ness of the sample can lead to networks giving poor 
generalization results. A nonrepresentative sample 
almost insures poor generalization. The advantages 

are I) that there is no need to make distributional 
assumptions; and 2) that since the goal is a high 
level of performance on all patterns, and since. it is 
unlikely that the generalization performance will ex­
ceed the performance on the design sample, perfect 
or near perfect performance on the design sample is 
a good starting point. At the other extreme are the 
techniques with minimal coupling to the design 
sample. A design is accomplished by making strong 
assumptions concerning the actual distributions of 
patterns, using the sample to estimate a limited 
number of parameters of these distributions. The 
disadvantages are that if the distributional assump­
tions are incorrect, then poor performance is ob­
tained. Even if the assumptions are nearly correct, 
the technique usually results in networks which 



470 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966 

-100 

Machine #4 --- Minimum Errors on Design Patterns 

__ Minimum Errors on Generalization Patterns 

- - - - - Generalization Errors Against Present Threshold 

'"' .2 60 
Q) 

~ 
u 

CJ) 

40 

20 

300 

;; 
~ 
0., 

200 Sn 
"Uj 

Q) 

o 

100 

0~0------~1~0~0------~~~--~3~0~0------~4~0~0-------5~0~0------~6~0~0------~7~0~0------~800 

Number of Property Filters 

Figure II. Network performance-machine #4. 

classify a majority of the patterns correctly, but 
leave a substantial minority incorrect. Increasing 
the sample size does not help usually, for although 
the less common patterns are better represented, 
only a few a·.rerage values are extracted from the 
sample. The advantage is that "the number of 
sample patterns required by the technique is mini­
mized, since the technique is ~ot nearly as sensitive 
to noise and false clues in the sample patterns. 

The present technique was selected to provide a 
compromise between these ex:tremes. Initially, the 
design of the property filters is very loosely coupled 
in that populations of them are designed statistically 
under very strong distributional assumptions. The 
selection of property filters and the design of a linear 
discriminant for the decision element are tightly 

coupled to the design sample. This is done in terms 
of a loss function which reflects how well each 
sample pattern is classified. The losses are used as 
weightings in the statistical averages used to design 
property filters so that as the design process pro­
ceeds, the design of these filters becom(~s more 
tightly coupled to the sample patterns. The intent 
was to derive properties in a loosely coupled fashion 
to avoid the sensitivity to sample representativeness 
of the tightly coupled systems. The purpos.e of in­
creasing the extent of this coupling was to avoid the 
common failing of loosely coupled systems--that of 
solving the same portion of the problem over and 
over, while ignoring the harder parts of the problem. 

The effects of this increase in coupling are evident 
in the experimental programs, in which the generali-
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Figure 12. Network performance--machine #6. 

zation performance nearly always does not improve, 
and often deteriorates as the last few errors in the 
design phase' are eliminated. Overall, the design 
technique appears to be tightly coupled, having 
never indicated an inability to provide perfect per­
formance on the sample patterns with a relatively 
small network. 

Techniques were devised to provide property 
filters which were invariant to linear changes in the 
gray scale. Experiments on the alphabetic charac­
ters indicated that the increase in network complex­
ity required for perfect performance on the sample 
patterns was nominal, although for the type of 
property filter selected, the gray invariance was 
costly in the hardware implementation. 

Consideration of the TIROS frame analysis indi-

cates that the property filters must be designed by a 
covariance analysis-that is, it is combinations of 
intensity values rather than individual intensities 
which are important. The alphabetic characters 
seem more susceptible to analysis of the distribution 
means, due to centering of the patterns. In the ex­
periments on alphabetic characters both mean 
analysis and covariance analysis were used. On the 
TIROS frames only covariance analysis was used. 

Normal populations which differ in their covar­
iance matrices give rise to quadratic input property 
filters. These are very expensive in analog hard­
ware, and require very large amounts of memory in 
digital implementations. A parallel hyperplane ap­
proximation was developed. Experiments on the 
alphabetic characters indicate that with this approx-
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imation the increase in the number of property fil­
ters to separate the sample patterns is not great, 
considerably reducing the overall system complex­
ity. Implementation of the gray invariant version 
of this approximation in digital equipment is simple, 
but the analog form suffers from the same problems 
as the quadratic unit, but on a more limited scale. 
The gray invariant approximation was used in the 
TIROS frame experiments. 

In the experiments on the alphabetic characters, 
eight methods for generating property filters were 
used. Four of these were designed to exploit dif­
ferences in the means of the distributions, and four 
to exploit differences in the covariance matrices. 
Half of the techniques in each case produce prop­
erty filters invariant to changes in the gray scale. 

There was sufficient information in the sample 
patterns to permit each of these techniques to pro­
vide complete networks. The number of property 
filters required to separate the sample patterns gen­
erally ranged between 8 and 15, depending on the 
particular technique. 

The generalization performance of these networks 
was reasonable. For the techniques based on dif­
ferences in the distribution means, there is little dif­
ference in performance, each technique averaging 
about an 8% error rate. The best individual net­
work had about a 6% error rate. The quadratic 
units gave a 10% error rate. The parallel hyperplane 
technique gave a 13% error rate and its gray invari­
ant version yielded 15% errors. The best generali­
zation performance generally occurred when the 
design was about 70% completed. Although the 
performance degrades only about 1 % after the best 
level is reached, better levels might have been 
achieved if the coupling did not become as great as 
it does toward the end of the network design. 

The utility of the gray invariance was demon­
strated by modifying the gray scale of the sample 
patterns. A linear change has no effect on the per­
formance of the gray invariant networks while 
having profound effects on the noninvariant ones. 
Even for some nonlinear changes in the scale, the 
effect on the noninvariant networks is much greater 
than for the invariant ones. 

These performances were achieved on one binary 
decision. The design and generalization sets of 
sample patterns consisted of 20 examples, each con­
taining 12 letters. These were sloppy handprinted 
characters. To put the results in perspective, several 
other design techniques were tried. The best of 
these, in which all of the sample patterns are stored 

in memory, and the unknown patterns correlated 
against all of these to find the highest correlation, 
gave a 5% error rate. In other tests perceptrons with 
both 50 randomly selected property filters, and 50 
property filters designed by analysis of the distri­
bution means, and forced learning and Bayes 
weights for decision function assignment gave 25 
and 20% generalization errors respectively. Using 
14 property filters taken from a network designed by 
the current technique (one which analyzes distribu­
tion means), the forced learning approach gave 9% 
generalization errors, just 1 % more than the net­
work from which the units were taken. The value of 
the selectivity and the coupling in the present tech­
nique is apparent. 

Despite the shortcomings shown in the generali­
zation data, and the hardware difficulties in imple­
mentation, the gray invariant version of the parallel 
hyperplane technique was used in the TIROS frame 
investigation. Unless a considerable amount of 
normalization can be achieved, methods based on 
differences in the distribution means will not be 
effective in photo interpretation. This leaves the 
quadratic units and the parallel hyperplane units. 
The parallel hyperplane units were selected, as they 
require only 22% as much memory for unit specifi­
cation. The value of the gray invariance when the 
gray scale does change was deemed to be sufficient 
compensation for the slightly higher error rate on 
the black and white generalization patterns. 

One thousand patterns were used as design pat­
terns in the TIROS investigation. Five hundred of 
these contained vortices; 500 did not. An additional 
200 patterns used as a generalization sample were 
also equally divided. This classification was ac­
complished by meteorologists with experience on 
TIROS photographs. Classification by Douglas 
personnel was less consistent. 

Optical studies were performed on some TIROS 
pictures to determine· the minimum resolution re­
quirements compatible with good recognition per­
formance by people. Sixty different frames were 
utilized. Prints of these frames were made at vari­
ous resolutions, using a screen process to control 
the resolutions. These were examined by 15 to 20 
people, in order of increasing resolution, to deter­
mine the coarsest resolution level at which their 
classification became consistent. A remarkable 
number of frames resulted in split decisions, nearly 
half of the people calling them vortex and half 
nonvortex, even at the highest resolution level. For 
the vortex patterns the decision point seems to split 
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evenly between the highest and lowest resolution 
levels (240 lines and 70 lines). 

Seven networks were designed to separate the 
sample patterns. The first three of these were 
designed with 180-by-180 resolutions, with each 
property filter receiving 10 connections selected 
randomly from the entire input field. A different 
starting random number provides distinct networks. 
The first two networks required 250 property filters, 
the third required 220 to separate the sample pat­
terns. Thus the networks aver.ged 2400 input con­
nections, or 8% of the available picture points. 
Since the resolution study did not indicate that the 
smaller vortices could be identified at 70 lines (giv­
ing 8% as many elements as 240 lines), one network 
alone will not be particularly general. If the de­
sign sample is sufficiently representative, improved 
generalization should result if the networks are 
combined. Such combinations do not result in 
significant improvements in the generalization per­
formance. 

Each of the three networks can produce generali­
zation error rates less than 40% at some stage 
in its design. Machine No. 1 is best in this respect, 
giving a minimum of 36.5% errors at one point, and 
maintaining 40% or less through most of the design. 
For machines 1 and 2 the error rate has a minimum 
at a point about half way through the design. Quite 
consistently, the error rate on the design patterns is 
3-6% at this point. In all cases the error rate deteri­
orates toward the end of the design. Combining 
the networks overcomes this tendency for the error 
rate to rise. The conclusion from these data is that 
the increase in coupling in the design of the prop­
erty filters is undesirable. 

The poor generalization performance is due to the 
nonrepresentativeness of the sample patterns. That 
500 patterns, unnormalized for size, position, hori­
zon location, or· fiducial mark location, do not 
adequately represent the vortex or nonvortex classes 
on a 32,400-point input field is not surprising. The 
network which achieved perfect separation on non­
representative samples may have accomplished 
some combinations of two things. The network 
may be a good design for a smaller class of vortex 
and nonvortex patterns of which the design sample 
is representative, or it may be a design which capi­
talizes on the nonrepresentativeness of the ex­
traneous features in the samples, such as the loca­
tion of the horizon or fiducial marks. The extent of 
the combination achieved cannot be determined 
without a very detailed study of the design and 

generalization patterns. Some indication is given in 
the resolution results to be discussed next. That at 
least some honest properties were found is ,evi­
denced by the fact that generalization performance 
is consistently better than chance. 

Networks 4 and 5 were designed on lower reso­
lution patterns. These maintained the 180-by-180 
format, but the gray level changed only every 
second or third point, respectively. Generalization 
for these networks was tested against full resolution 
patterns. The networks required 240 and 250 prop­
erty filters, respectively. Each network has a best 
generalization error rate of 41 %, near the beginning 
of the design for Network 4 and near the: end for 
Network 5. This significant deterioration is again 
indicative that some honest properties have b4~en 

derived. 
Networks 6 and 7 were designed with limitations 

on the input fields of the property filters. For Net­
work 6 the connections for the filters were drawn 
from 90-by-90 subfields positioned randomly in the 
main field. For Network 7 45-by-45 subfields were 
used. These networks required 280 and 290 prop­
erty filters for complete design. The rate of design 
is not noticeably slower than for the other networks 
until the error rate on the design patterns is less than 
2%. The minimum generalization error rates are 
41Yz% and 43Yz%, respectively, each minimum 
being achieved twice. Therefore, there does not 
appear to be any advantage, and indeed there is 
some disadvantage, in seeking more localized prop­
erties. 

The following conclusions are drawn: 

I. The design technique is capable of producing 
networks to separate the design sample of patterns. 
When this sample is representative, as with the al­
phabetic characters, good generalization results are 
achieved. In this case, the primary value of the 
process is in the set of property filters derived, rather 
than the discriminant function. When the sample is 
nonrepresentative, as with the TIROS frames, only 
limited generalization success is achieved. 

2. The coupling between the design technique 
and the sample patterns is too tight. The increase 
in coupling in the property filter design should Ibe 
removed or reduced, the parameter which controls 
the rate of design should be adjusted to give a lower 
rate, and perhaps the criteria for acceptance of 
property filters should be weakened. 

3. The size of the design sample required depends 
upon the minimum number of picture points needed 
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for recognition and on the amount of normalization 
and "cleaning-up" of the patterns. For essentially 
unnormalized vortex patterns on a 32,400-point in­
put field, 1000 sample patterns are inadequate to 
give a properly stratified (representative) sample. 

4. If the designs achieved are to be practical, con­
siderably more attention must be given to normal­
ization of the patterns. A size normalization would 
permit the use of a resolution level suitable to all 
patterns rather than just the smallest ones. The re­
sultant decrease in the number of picture points 
required would make the sample more represen­
tative by editing or averaging out noise, and by 
limiting the number of effective translations of the 
patterns. Local and general normalizations of the 
contrast in the frame could eliminate the need for 
gray invariant property filters, reSUlting in a much 
simpler hardware implementation of the parallel 
hyperplane technique, and somewhat better per­
formance. Position normalization (i.e., centering) 
could make one of the techniques based on distribu­
tion means practical, or at least would simplify the 
recognition task. 
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